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Abstract

This thesis deals with the decomposition of periodic signals into their fundamental parameters.
Based on the well known Frequency Adaptive Observer (FAO) that consists of Second Order
Generalized Integrator (SOGI) and Frequency Locked Loop (FLL), three di�erent systems (es-
FAO, mFAO, tFAO) based on the concept of observers are developed. Hereby, each observer has
unique characteristics. All observers are designed to estimate amplitudes and phase angles of a
prede�ned number of harmonic components out of the periodic signal as well as its fundamental
angular frequency. All observers are further developed such that they imply the estimation of
o�set. The prescription of settling time and the possibility to estimate the angular frequencies of
a given number of harmonic components with largest amplitude are named as special characteris-
tics of some of the observers. Then, the basis for another system (eFAO) which is not completed
yet, is acquired. The developed observers are evaluated using error metrics and compared to each
other. Finally, they are investigated experimentally, also in comparison to well known methods
from literature.

Kurzzusammenfassung

Diese Dissertation befasst sich mit der Dekomposition periodischer Signale in deren fundamen-
tale Parameter. Ausgehend von der bereits bekannten Methode des Frequency Adaptive Observer
(FAO), welcher sich aus Second Order Generalized Integrator (SOGI) und Frequency Locked Loop
(FLL) zusammensetzt, werden drei verschiedene Systeme (esFAO, mFAO, tFAO), welche auf
dem Konzept eines Beobachters beruhen, entwickelt. Jeder Beobachter weist hierbei seine eige-
nen Charakteristika auf. Allen Beobachter gemein sind die Funktionalitäten, Amplituden und
Phasen einer vorde�nierten Anzahl an harmonischen Komponenten aus dem periodischen Signal
zu schätzen sowie dessen Fundamentalfrequenz. Alle Beobachter sind dahingehend weiterentwick-
elt, dass sie auch die Schätzung eines Gleichanteils miteinbeziehen. Als spezielle Eigenschaften
von einigen der entwickelten Beobachter sind die Einstellung einer gewünschten Einschwingzeit
und die Möglichkeit, die Frequenzen einer vorgegebenen Anzahl an harmonischen Komponenten
mit gröÿter Amplitude gesondert zu schätzen, genannt. Anschlieÿend wird die Grundlage für
ein weiteres, noch nicht fertig gestelltes System (eFAO) erarbeitet. Die entwickelten Beobachter
werden mit Hilfe von Fehlermetriken bewertet und miteinander verglichen. Abschlieÿend werden
diese experimentell untersucht, auch im Vergleich zu bekannten Methoden aus der Literatur.
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Chapter 1

Introduction

This thesis deals with the online decomposition of unknown periodic signals into its amplitudes,
phase angles and angular frequencies. But, at �rst, the relevance of this issue is motivated in
Section 1.1. Afterwards, a detailed overview of existing methods is presented in Section 1.2
from which the remaining �eld of research is deduced and gaps are �lled. A summary of the
decomposition methods proposed in this thesis as well as a description of the structure of this
thesis is given in Section 1.3.

1.1 Motivation

Periodic signals are present everywhere in the surrounding world. For example, acoustic or optic
signals, population developments, and electric, mechanic, biologic or climatic processes can be
modeled by periodic functions. Hereby, any periodic function is uniquely de�ned by amplitude,
phase angle, o�set, and angular frequency. In the following, some of these examples are described
in more detail where periodic functions must be analyzed.
Acoustic signals, used e.g. for conversation or music, are characterized by loudness (amplitude)
and pitch (frequency), where the phase angle is not relevant in this context [1]. Especially for
speech recognition, the typically distorted signals must be decomposed into their fundamental
parameters amplitude and frequency. Thus, characteristic patterns can be recognized that relate
to syllables [2].
Another example are optical signals. These play an important role when taking into account
�berglass technology. It can be used for information transfer where a large amount of data is
coded onto a wide frequency range that promotes fast communication [3]. Afterwards, the trans-
mitted information must be decoded again, which means that the incoming signals frequencies
and amplitudes are analyzed. Other applications may be found in optical sensors.
As a last �eld of application, examples in electrical energy systems (e.g. power grid, inverters,
electrical machines) are considered. The �rst thing to mention is that, in accordance to the
norm 'IEC TS 62749:2020 RLV', certain restrictions to the voltage are formulated. E.g., the
allowed range for the fundamental frequency in Europe is de�ned as 50 Hz ± 0.2 Hz. Consider-
ing three-phase-four-wire transmission lines, the fourth (neutral) line also has limitations to the
current �owing through it. Moreover, to keep the overall grid balanced, which is also described
in this norm, the well-known Fortescue transformation [4] must be applied to the three-phase
signals. However, this transformation needs pure sinusoids, i.e. the three (or four) phase voltages
and currents must be decomposed in real-time. Transformers are other applications in electrical
networks. For example, an impedance spectroscopy of transformer insulations can be used to
identify the transformer's state of health, where especially the low-frequency range is of inter-
est [5, 6]. It also is worth noting that the proper functionality of grid converters, that are used
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to couple sustainable energy systems, such as solar or wind power plants, mainly depends on
the voltage quality on the grid side. Voltage abnormalities such as frequency drifts, o�set or
voltage sags might cause detoriated converter performance [7]. A reason for poor voltage quality
may be found in the decentralized power generation by sustainable energy systems. Because
these signi�cantly depend on natural chaotic events (clouds, lulls, etc.), the overall grid inertia
diminishes due to the �uctuating and non-controllable generation and consumption that leads
to frequency deviations. Concluding, all these examples show that online decomposition and
monitoring of the grid voltages and currents is necessary to identify and counteract possible
faults. This ensures stability and quality of frequency and voltages and thus prevents blackouts.
Another very important aspect is that, in addition to economic damage caused by powerless or
destroyed equipment, faults can also pose a danger to humans.
As motivated, a lot of �elds of application exist in which periodic functions must be decomposed
into their amplitudes, frequencies, phase angles, and o�set. Hence, the aim is to develop an
intelligent method of how to extract these in real-time.

1.2 State-of-the-art estimation and detection methods

To begin with, throughout this thesis two kinds of principles for acquiring values using dynam-
ical systems are used. The �rst one is detection and means the calculation of values using the
results of the dynamic system and its input (i.e. with feedthrough). The second one is estimation
and means the calculation of values using only the results of the dynamical system (i.e. without
feedthrough).
The most popular solution for the problem of signal decomposition is the Discrete Fourier Trans-
formation (DFT), which is often used in signal processing. Related to the DFT is the Fast Fourier
Transformation, which is an e�cient implementation of the DFT [8]. It requires a time frame
that is divided (discretized) into smaller time frames of equal length. Based on the large time
frame, it can detect all amplitudes, phase angles, and frequencies comprised in the signal to be
decomposed. The detectable frequencies (and related amplitudes and phases) are limited to a
lower and upper boundary. The lower boundary is de�ned by the length of the large frame and
the upper by the length of the small one. Moreover, inside this frequency band, only discrete
frequencies can be detected that also arise via discretization.
In recent years considerable progress was achieved in the �eld of signal decomposition by de-
veloping a new method known as Direct-Second Order Generalized Integrator-Frequency Locked
Loop (DC-SOGI-FLL). It also will be used in this thesis. The basic component of this method
is a SOGI whose task is to estimate amplitudes and phase angles of all harmonics. A DC com-
ponent is included to estimate o�set. To cover angular frequency estimation as well, a FLL is
attached; it should be noted that other frequency estimation methods like the Phase Locked Loop
(PLL) [9�14] exists, which are not addressed in this thesis.
Many applications for the SOGI with or without angular frequency adaption by a PLL or FLL
already exist. For example, it is used in Static Compensators or Distributed Static Compen-
sators [12, 15�23], in Shunt Active Power Filters [9, 24�33], in synchronization techniques for
grids or other applications [13, 34�96]. It is also used often for �ltering issues [97�139]. Besides
�ltering, the �lters' task is the provision of orthogonal signal components [140�149] that are
needed for the Fortescue transformation [4] to calculate symmetrical components [150�180], for
PLLs [45,181�243] or FLLs [244�277], for explicit fundamental or harmonic extraction [278�309]
or for other applications like electrical generators, transformers, inverters, converters, electrical
vehicles or PV systems to name a few [310�460].
In the following, the progress in research until now is reviewed for each component of the DC-
SOGI-FLL.
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In [461], a system is described that is capable of estimating the fundamental parameters (ampli-
tude, phase and frequency) of a randomly distorted signal with o�set. This system is not based
on the SOGI-method, but on Moving Average Filters. However, it is not designed for estimation
of harmonics or o�set. Another system, called the PI-SOGI, is based on the SOGI system com-
bined with a PI controller for calculating the derivative of the input signal where cascading n
PI-SOGIs results in the n-th derivative [462]. A system for extracting the fundamental compo-
nent based on Zero Crossing Detection is shown in [463]. A di�erent system for �ltering out the
fundamental amplitude is considered in [464]; it is denoted as the Multi Harmonic Decoupling
Cell. Also, it permits the estimation of harmonics. Sliding mode observers for parameter esti-
mations are studied in [465]. The authors of [466] report a quadrature signal generation method
based on Derivative Elements. A Second Order Generalized Di�erentiator to suppress o�set is
published in [467]. In [468], a Frequency Fixed SOGI (FFSOGI) is proposed where the resulting
outputs from the SOGI are incorrect, if the actual frequency is not equal to the �xed one. To
solve this issue, the outputs are corrected by a frequency estimated by a PLL which permits
a faster performance. However, from Figure 3 in this article, it can be seen that the proposed
FFSOGI contains an algebraic loop. This method is extended by an adaptive tuning for the
SOGI in [469]. Another method to achieve a faster performance is proposed in [470]. In view
of adaptive tuning, [471] introduces a wavelet transformation. It is used for online parameter
tuning to satisfy desired �ltering characteristics of the SOGI. The authors of [472, 473] intro-
duce a system of dual SOGIs (two parallel SOGIs, called DSOGI) with joint frequency adaption,
one for each of the α and β components resulting from the Clarke-transformation where the γ
component is neglected. Its purpose is to calculate the positive and/or negative sequence of a
possibly unbalanced three-phase signal. Clearly, no information on the zero sequence can be
acquired with this approach1. In view of the same aim, [474] report a system called Reduced
Order Generalized Integrator (ROGI), that directly feeds both signals from the transformation
(α and β) to one SOGI structure. It is designed to halve the computational burden with respect
to the DSOGI. An alternative to the basic SOGI is illustrated in [475]. It is called Enhanced
Adaptive Filter and is designed to provide estimates of the input and the respective quadrature
signal2. In view of harmonic and o�set �ltering, [476] compares two pre�lter techniques for the
SOGI-FLL. The �rst technique (SOGI-FLL with pre�lter) is described in [477] and the second
(SOGI-FLL with in-loop �lter with feedback) is found in [478�480]. In [481], a di�erent compar-
ison is done which includes a Third Order Generalized Integrator (TOGI). It is an extension of
the SOGI to �lter o�set [482�484]. O�set �ltering is also an aim in [485] wherein the authors
attached an All Pass Filter after the SOGI structure. A Zero-tracking SOGI-FLL (ZT-SOGI-
FLL) is proposed in [228]. It is designed to have better dynamic and stability characteristics
than the conventional SOGI-FLL. In [486], the authors claim to propose a Novel Second Order
Generalized Integrator (NSOGI) for o�set �ltering; however, the NSOGI is doubted to be novel.
Instead, the authors just use a di�erent gain selection and arrangement that can be transferred
to the normal SOGI (with a preceding gain). Lowpass SOGIs (LSOGI) and Highpass SOGIs
(HSOGI) are benchmarked to the standard SOGI in [487] to determine their advantages. The
di�erence between LSOGI, HSOGI and standard SOGI is found in the output signal acquisi-
tion. In [488] another method on how to acquire the quadrature signal (called the Second Order
Adaptive Filter (SOAF)) is shown. It is compared to the SOGI method and the SOGI is better
than the SOAF in all investigated characteristics (e.g. Band width, settling time, total harmonic
distortion of the fundamental component). A review and Linear Time Periodic Modeling of some
types of SOGI-FLL is presented in [489].

1According to the Fortescue transformation, a negative sequence consisting of zero signals for all times does
not imply a balanced three-phase signal.

2The quadrature signal has 90 degrees phase angle delay with respect to the input signal.
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Until now, almost all citations dealt with single SOGIs which solely allow the extraction of one
component of the input signal. A parallelization of SOGIs for extraction of multiple harmonics
can be found in [490�493]. A modi�ed parallelized SOGI system, called the Multi-Magnitude
Integrator-Orthogonal Signal Generator (MMI-QSG) is found in [494]. Therein, the authors
claim that the Magnitude Integrator-Orthogonal Signal Generator approach has better dynamic
response than the SOGI that is veri�ed in a single experiment. The DSOGI (see above) is paral-
lelized in [495]. A comparison of parallel SOGIs to a DFT, FFT and others is published in [496].
The authors of [497] provide a stability proof of the generic parallelization and show the allowed
tuning range for the gains. However, it is based on an assumption: all gains are assumed to be
positive where the case of (at least one) negative gain(s) is not considered.
So far, nearly all of the cited papers do not consider the estimation or detection of o�set in
the input signal, although some were designed to �lter it (e.g. TOGI). For explicit detection,
in [498�500] an easy way on how to obtain o�set from the SOGI outputs is shown. O�set esti-
mation is shown in [501] where also a damped SOGI is proposed. Another method on how to
obtain an estimate for o�sets is shown in [502]. The SOGI capable of estimating o�set, called
the DC-SOGI, is also used for the DSOGI [7,503,504]. The LSOGI and HSOGI are extended to
the Extended State HSOGI (ESHSOGI) and the Extended State LSOGI (ESLSOGI) in [505] to
additionally estimate o�set. A good overview of existing methods for o�set detection, �ltering or
estimation can be found in [506, 507]. Besides the already mentioned DC-SOGI and SOGI with
pre�lter, these papers additionally cover a SOGI with delayed signal cancellation, a SOGI with
complex coe�cient �lter and a notch �lter3. The authors of [508] describe a globally stable PLL
with o�set �ltering capability. Another SOGI-PLL with o�set �ltering capability is proposed
in [509]. In [510], the authors claim to introduce an improved SOGI-FLL that is designed for
special focus on any o�set in the input signal. However, since the authors failed to setup ap-
propriate equations, one must rely on Figure 1 within this paper for implementation. However,
from this �gure it can be concluded that the implementation shown must be wrong, since the
frequency integrator is always multiplied by zero and, hence, outputs a constant frequency. A
parallelization of the DC-SOGI structure is described in [511] that is based on a Kalman Filter
which is almost similar to a DC-SOGI. The only di�erence to the common SOGI is an addi-
tional tuning parameter. Although they brie�y mention that a general parallelization is possible,
neither is it mathematically shown nor is it explicitly validated. The basic concept for such a
SOGI with additional tuning is also shown in [512] but this is put into perspective as they set
the additional tuning factor as a function of the others. It also comes with an o�set estimator.
Alternative approaches for o�set estimation are shown in [513]. These use a parallelization of
extended SOGIs, called Accurate Magnitude Integrators (AMI) (with three integrators per AMI)
and an o�set estimator block. In [514], a parallelization of order three is shown where each har-
monic estimation block consists of a SOGI with in-loop �lter (as above) and an o�set estimator
(i.e. �ve integrators per block).
For now, only the amplitude, phase angle and o�set was considered although frequency esti-
mation was also part of some of the papers. Hereby, the fundamental frequency was usually
adapted by a FLL or PLL. Hence, in the following, the focus is placed on publications explicitly
dealing with frequency estimation. A common way for frequency estimation is found in the FLL
with the SOGI or DC-SOGI as a basis that often comes with a Gain Normalization as described
in [515]. It is compared to other frequency adaptive systems related to the FLL in [516�519].
Another comparison of di�erent FLLs is shown in [520]. The authors concludes that, by proper
gain selection, the investigated FLLs are equivalent. Anonther FLL is found in [521] wherein the
classic FLL is extended by additional signal modi�cations. The authors of [522] show a tuning

3A rather unusual name for the SOGI is "Adaptive Notch Filter" (ANF); since this term is also used in other
contexts, this thesis sticks to the widely used expression "SOGI".
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for the FLL based on fuzzy logic. Another adaptive tuning variant, called Auto Adjustable Gain,
is shown in [523]. An additional method for enhancing the FLL performance is found in [524]
that includes a saturation and anti-wind up. The authors of [525] present a FLL that is tuned
adaptively by characteristics of the SOGI. In [526], a FLL for estimating the fundamental angular
frequency even under heavily distorted signal conditions is proposed. In [527], a slightly modi�ed
SOGI-FLL with an additional SOGI as pre�lter is proposed. It is designed for robust behav-
ior when being fed with signals characterized by o�set, harmonics or phase angle jumps. The
authors of [528] introduce a SOGI with shifted frequency, i.e. the estimated reference frequency
is arti�cially shifted by an enforced constant (initial) frequency in the SOGI. The frequency
integrator then estimates the gap between the constant frequency and the actual one. However,
functionality cannot be guaranteed in the proposed setting since any constant frequency set too
high will prohibit the frequency estimation to converge. In [529], a study on three-phase FLLs is
carried out. The authors of [530] analyze a FLL based on high-order Complex Band Pass Filters.
In [531, 532], a Linear Time Periodic modeling of a SOGI with FLL is performed to get insight
into the stability region and robustness of the FLL. The same task is done for a DC-SOGI with
FLL in [533] and for parallelized SOGIs with FLL in [534]. A method on how to obtain the
fundamental frequency as the di�erential of the estimated angle of a frequency �xed SOGI is
explained in [535]. A FLL for the TOGI is developed in [536] that shows better �ltering and
dynamical characteristics. Other single phase frequency estimators can be found in [537�544]
which are based on Cascaded Delayed Signal Cancellation, alternative orthogonal signal gener-
ators with adaptive frequency estimators, Discrete Fourier Transformations, Recursive Discrete
Fourier Transformations, Inverse Recursive Discrete Fourier Transformations, Modulating Func-
tions Frequency Estimators, Particle Swarm Optimization or Teager Energy Operator.
In terms of stability, no signal decomposition system has yet been properly studied (the only
exception is [497]). Stability is considered in [545] for parallelized TOGIs and in [546] for a
SOGI-FLL with active noise cancellation. The authors of [547,548] show a globally stable single-
phase parameter detection system. In [549], it is extended to three-phase systems. In the last
three approaches, no signal with o�set was considered, which is the case in [550]. However, these
methods still require knowledge on the harmonic orders, i.e. they only are able to estimate the
fundamental frequency.
This issue is addressed in the following literature. The �rst publication to note is [551]; it is
based on coordinate transformations. It estimates all parameters (amplitudes, phase angles and
frequencies of all harmonics) and is denoted as the Full Parameter Identi�cation (FPI). However,
the estimation is performed in transformed coordinates, which does not permit a calculation of
back-transformed estimates. In fact, it cannot be solved analytically for a system order greater
than four. In [552], frequency estimates based on the algebraic derivative method in the frequency
domain are obtained. Back to the parallelized SOGI, a globally stable frequency adaption for
each SOGI-block based on the averaging approach is reported in [553]. However, it does not
consider signals comprising o�set. The authors of [554] show a method for estimating squared
harmonic frequencies that requires a very long estimation time, up to half a minute. A method
for estimating the frequency out of a TOGI is shown in [555]. This is extended for parallelized
TOGIs in [556] which permits estimating multiple frequencies. However, no generic tuning rule
or stability is shown; additionally, convergence seems to be highly dependent on tuning and
initial values (brie�y investigated in Section 4 of this thesis).
To fully review the progress in the recent years, some discretization methods for SOGIs and/or
FLLs are considered in [557�569].
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1.3 Proposed methods and structure of this thesis

From the review made in Section 1.2, to the best knowledge of the author, no generic system
capable of estimating o�set, amplitudes, phase angles and frequencies of a prescribed number of
harmonics with an acceptable performance is known. Thus, the aim of this thesis is to develop
such a system (called observer, cf. De�nition 2.1). It should be

- capable of estimating amplitude, phase angle, angular frequency, and o�set;

- generically extendable to n amplitudes, phase angles and angular frequencies (where n is
a natural number);

- robust to parameter variations � that is, the performance of the system is normed to
amplitude and angular frequency of the signal to be decomposed; and

- exponentially stable.

In order to create an understanding of the development, this thesis proposes methods that
improve performance and/or capability step by step compared to the most common state-of-the-
art methods known from the literature. To give an introductory overview, all proposed methods
are listed in the following:

- The enhanced standard Frequency Adaptive Observer with High Pass Filter

(esFAO) is a very simple parameter detection method with only moderate improvements
in performance and capability. It is able to estimate a prede�ned number of amplitudes
and phase angles with prescribed harmonic orders, o�set, and the fundamental angular
frequency. The stability range of the system is bounded. Parts of it were already published
in [570].

- The modi�ed Frequency Adaptive Observer (mFAO) is constructed to signi�cantly
accelerate the performance when frequency adaption is neglected; in fact, it theoretically
allows for an in�nitely fast settling time. It is capable of estimating a prede�ned number
of amplitudes and phase angles with prescribed harmonic orders. If frequency adaption is
included, then it is capable of estimating the fundamental angular frequency but at cost
of deceleration. The stability range of this system is bounded. Parts of this method were
published in [571]. Based thereon the modi�ed Frequency Adaptive Observer with

o�set (mFAO ) is constructed to expand the capability of the mFAO for estimation of
o�set. Parts of it were already published in [572].

- The transformed Frequency Adaptive Observer (tFAO) is based on the work in [548]
and designed for estimating multiple amplitudes, phase angles, and angular frequencies
without knowing their harmonic orders. It is based on a coordinate transformation. The
systems stability range is theoretically unbounded, i.e. global. An extension of this system,
the transformed Frequency Adaptive Observer with o�set (tFAO ), is developed
to estimate o�set. Both methods are back-transformed into original (α, β) coordinates.

- Ideas for the exponential Frequency Adaptive Observer (eFAO) and the exponen-
tial Frequency Adaptive Observer with o�set (eFAO ) are shown, but they are not
�nished yet. The aim of these observers is to estimate a given number of amplitudes, phase
angles, angular frequencies without knowledge on their harmonic orders and o�set (in case
of eFAO ) within a prescribed time frame. The stability range will be bounded.

6



1.3. PROPOSED METHODS AND STRUCTURE OF THIS THESIS

To conclude this section, the thesis' structure is shown in the following. Starting with Section 2,
the most important mathematical de�nitions and relations used throughout this thesis are shown.
Section 3 contains the theoretical part dealing with the derivation of the proposed methods. All
methods are veri�ed by simulative and experimental setups and compared to each other and
selected literature in Section 4. Finally, Section 5 completes this thesis with a summary and also
shows remaining problems.
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Chapter 2

Mathematical preliminaries

In this chapter, the most important de�nitions, mathematical facts, observations and claims used
throughout this thesis are collected. Where possible, the proofs are omitted and can be found in
the respective references.

De�nition 2.1 (Observer). Let t0 ∈ R. Consider a system of n ∈ N autonomous di�erential
equations and output y

∀ t ≥ t0 :
d
dtx(t) = f(x(t)) ∈ Rn, x(t0) = x0

y(t) = g(x(t)) ∈ R

}
(2.1)

with some vector valued function f and scalar function g. Hereby, only the output y is measurable.
Then, another system

d
dt x̂(t) = h(x̂(t), y(t)), x̂(t0) = x̂0

ŷ(t) = g(x̂(t))

is called observer, if it satis�es
lim
t→∞

x(t)− x̂(t)→ 0n.

Fact 2.2 (Observability of autonomous systems). [573] Consider the autonomous system (2.1).
This system is observable, if and only if the equation

y(x(t)) :=
(
y(t) d

dty(t) · · · dn−1

dtn−1 y(t)
)>

(2.2)

is uniquely solvable for x. If system (2.1) is linear in x, then the well known requirement for
observability [574, Sec. 2.3.1] is obtained.

Note 2.3. If (2.1) is observable, then an observer for (2.1) exists.

Fact 2.4 (Trigonometric identities). [575, p. 124f] Let x1, x2, . . . , xn, a1, a2, . . . , an ∈ R. Then,
the following holds:

sin(x1 ± x2)= sin(x1) cos(x2)± cos(x1) sin(x2) ,
cos(x1 ± x2)= cos(x1) cos(x2)∓ sin(x1) sin(x2) ,

}
(2.3)

sin
(

arctan2
(
x2
x1

))
= x2√

x21+x22
,

cos
(

arctan2
(
x2
x1

))
= x1√

x21+x22
,

 (2.4)

n∑
i=1

ai cos(xi) =

√√√√ n∑
i=1

n∑
i=1

aiaj ·cos(xi − xj) cos

x1 + arctan2

 n∑
i=1

ai sin(xi−x1)

n∑
i=1

ai cos(xi−x1)

 , (2.5)

9
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arctan2
(
x2x3±x1x4
x1x3∓x2x4

)
= arctan2

(
x2
x1

)
± arctan2

(
x4
x3

)
. (2.6)

Hereby, the arctan2-function is de�ned as

arctan2
( y
x

)
:=



arctan
( y
x

)
, x > 0

arctan
( y
x

)
+ π, x < 0 ∧ y > 0

π, x < 0 ∧ y = 0

arctan
( y
x

)
− π, x < 0 ∧ y < 0

π
2 , x = 0 ∧ y > 0

−π
2 , x = 0 ∧ y < 0

0, x = y = 0.

(2.7)

Fact 2.5 (Hurwitz matrix characteristic). [576, Fact 11.17.6] Let A ∈ Rn×n and let χA(s) :=
det(sIn −A) be decomposed into χA(s) = χeA(s)+χoA(s) with only even and odd powers, respec-
tively. Then, A is a Hurwitz matrix if and only if the following three conditions hold:

(i) all coe�cients of χA(s) are positive,

(ii) for all se ∈
{
s ∈ C

∣∣χeA(s) = 0
}

and for all so ∈
{
s ∈ C

∣∣χoA(s) = 0
}
, the condition

< (se) = < (so) = 0 holds and

(iii) the roots are interlaced on the imaginary axis, i.e. for any two consecutive roots of the
even (or odd) polynomial, there exists exactly one root of the odd (or even) polynomial in
between.

Observation 2.6 (Solution of a speci�c de�nite integral). Let ω, ω1, ω2 ∈ R \ {0}, φ1, φ2 ∈ R
and t ∈ R. Then, the following holds:

t+
2π
ω∫

t

cos(ω1τ + φ1) cos(ω2τ + φ2) dτ

=


sin

(
φ1+φ2+(ω1+ω2)t+

2(ω1+ω2)π
ω

)
−sin
(
φ1+φ2+(ω1+ω2)t

)
2(ω1+ω2) , ω1 6= ω2 ∧ ω = ω1 − ω2

π
ω cos(φ1 − φ2), ω = ω1 = ω2

(2.8)

Proof. Observe that

t+ 2π
ω∫

t

cos(ω1τ + φ1) cos(ω2τ + φ2) dτ

(2.3)
=

t+ 2π
ω∫

t

cos(ω1τ) cos(ω2τ) cos(φ1) cos(φ2)− cos(ω1τ) sin(ω2τ) cos(φ1) sin(φ2) dτ

−

t+ 2π
ω∫

t

sin(ω1τ) cos(ω2τ) sin(φ1) cos(φ2) + sin(ω1τ) sin(ω2τ) sin(φ1) sin(φ2) dτ

10



[575, p. 165]
= cos(φ1) cos(φ2)

 sin

(
(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) +

sin

(
(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2)


− cos(φ1) sin(φ2)

 cos

(
(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) −

cos

(
(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2)


− cos(φ1) cos(φ2)

[
sin
(

(ω1−ω2)t
)

2(ω1−ω2) +
sin
(

(ω1+ω2)t
)

2(ω1+ω2)

]
+ cos(φ1) sin(φ2)

[
cos
(

(ω1−ω2)t
)

2(ω1−ω2) − cos
(

(ω1+ω2)t
)

2(ω1+ω2)

]

+ sin(φ1) cos(φ2)

 cos

(
(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) +

cos

(
(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2)


+ sin(φ1) sin(φ2)

 sin

(
(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) −

sin

(
(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2)


− sin(φ1) cos(φ2)

[
cos
(

(ω1−ω2)t
)

2(ω1−ω2) +
cos
(

(ω1+ω2)t
)

2(ω1+ω2)

]
− sin(φ1) sin(φ2)

[
sin
(

(ω1−ω2)t
)

2(ω1−ω2) − sin
(

(ω1+ω2)t
)

2(ω1+ω2)

]
(2.3)
= − cos(φ1)

sin

(
φ2−(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) + cos(φ1)

sin

(
φ2+(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2)

+ cos(φ1)
sin
(
φ2−(ω1−ω2)t

)
2(ω1−ω2) − cos(φ1)

sin
(
φ2+(ω1+ω2)t

)
2(ω1+ω2)

+ sin(φ1)
cos

(
φ2−(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) + sin(φ1)

cos

(
φ2+(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2)

− sin(φ1)
cos
(
φ2−(ω1−ω2)t

)
2(ω1−ω2) − sin(φ1)

cos
(
φ2+(ω1+ω2)t

)
2(ω1+ω2)

(2.3)
=

sin

(
φ1−φ2+(ω1−ω2)

(
t+

2π
ω

))
2(ω1−ω2) − sin

(
φ1−φ2+(ω1−ω2)t

)
2(ω1−ω2)

+
sin

(
φ1+φ2+(ω1+ω2)

(
t+

2π
ω

))
2(ω1+ω2) − sin

(
φ1+φ2+(ω1+ω2)t

)
2(ω1+ω2) . (2.9)

Setting ω = ω1 − ω2 simpli�es (2.9) to

t+ 2π
ω1−ω2∫
t

cos(ω1τ + φ1) cos(ω2τ + φ2) dτ =
sin

(
φ1+φ2+(ω1+ω2)(t+ 2π

ω )
)
−sin
(
φ1+φ2+(ω1+ω2)t

)
2(ω1+ω2) (2.10)

what shows the �rst part of assertion (2.8).
Setting ω1 = ω2 instead, (2.9) can be simpli�ed to

lim
ω2→ω1

t+ 2π
ω∫

t

cos(ω1τ + φ1) cos(ω2τ + φ2) dτ

11
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(2.9)
= lim

ω2→ω1

sin

(
φ1−φ2+(ω1−ω2)

(
t+

2π
ω

))
−sin
(
φ1−φ2+(ω1−ω2)t

)
2(ω1−ω2)

+
sin

(
φ1+φ2+(ω1+ω2)

(
t+

2π
ω

))
−sin
(
φ1+φ2+(ω1+ω2)t

)
2(ω1+ω2)

[575, p. 130]
= lim

ω2→ω1

(
t+

2π
ω

)
cos

(
φ1−φ2+(ω1−ω2)

(
t+

2π
ω

))
−t cos

(
φ1−φ2+(ω1−ω2)t

)
2

+
sin

(
φ1+φ2+2ω1

(
t+

2π
ω

))
−sin
(
φ1+φ2+2ω1t

)
4ω1

= π
ω cos(φ1 − φ2) +

sin

(
φ1+φ2+2ω1

(
t+

2π
ω

))
−sin
(
φ1+φ2+2ω1t

)
4ω1

. (2.11)

With the choice ω = ω1 = ω2, (2.11) can be simpli�ed to

t+
2π
ω∫

t

cos(ωτ + φ1) cos(ωτ + φ2) dτ = π
ω cos(φ1 − φ2). (2.12)

This completes the proof.

Claim 2.7. De�ne the physical unit function U that returns the physical unit U of an expression
e, i.e. U(e) = U. Further consider a exponentially stable dynamical system

∀ t ≥ t0 ∈ R : d
dt x̂ = f(x̂,x,L), x̂(t0) = x̂0 (2.13)

with estimates x̂ = (x̂1, . . . , x̂n)> ∈ Rn of generating states x ∈ Rn and system gain L ∈ Rn×n,
n ∈ N. The generating states model a sinusoidal signal characterized by angular frequencies ω,
amplitudes a and (unitless) phase angles ϕ.
It is claimed that the settling time tset of (2.13) is (approximately) proportional to some linear
map in ω and independent of a, if and only if L is chosen as L 6= L (x) such that for every
i ∈ {1, . . . , n} it holds that

U
(
fi(x̂,x,L)

)
= U(xi)U(ω).

Fact 2.8 (Lyapunov identity). [577, Corollary 3.3.47] Let A ∈ Rn×n be Hurwitz. Then, for
any given 0 < Q = Q> ∈ Rn×n there exists a 0 < P = P> ∈ Rn×n such that

A>P + PA = −Q. (2.14)

Fact 2.9 (Scalar inequalities). Let a, b ∈ R and let m ∈ R>0. Then, the following is true:

2ab = a2

m +mb2 −
(

a√
m
−
√
mb
)2
≤ a2

m +mb2. (2.15)

Further, let a ∈ Rn and A = A> ∈ Rn×n where λmin(A), λmax(A) ∈ R1 denote the minimal and
maximal eigenvalues of A. Then, the following holds:

λmin(A) ‖a‖2 ≤ a>Aa ≤ λmax(A) ‖a‖2 . (2.16)

1The eigenvalues of a hermitian matrix are always real [575, p. 112].
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Fact 2.10 (Bellman-Gronwall-Lemma (di�erential form)). [578] For t0 < t1 ∈ R, let
f(·), g(·) ∈ C([t0, t1);R) and let h(·) ∈ C1([t0, t1);R). Then, if

∀ t ∈ [t0, t1) : d
dth(t) ≤ g(t) + f(t)h(t)

is satis�ed, the following holds:

∀ t ∈ [t0, t1) : h(t) ≤ h(t0)e
∫ t
t0
f(τ)dτ

+

∫ t

t0

g(τ)e
∫ t
τ f(ι)dιdτ. (2.17)

Observation 2.11 (Summation I). Let κ1, κ2, . . . , κn ∈ C. Further let K := {k1, . . . , kl} ⊆
{1, . . . , n} ⊆ N, l := |K| and j ∈ N. Then, the following holds:

n∏
i=1
i/∈K

(κj − κi) = κn−lj − κn−l−1
j

n∑
i=1
i/∈K

κi + · · ·+ (−1)n−l+1κj

n∑
i=1
i/∈K

n∏
h=1
h/∈i,K

κh + (−1)n−l
n∏
i=1
i/∈K

κi. (2.18)

Proof. The proof is conducted via mathematical induction.
Initial case. For n = 1 and K = ∅ it follows

1∏
i=1
i/∈∅

(κj − κi) = κj − κ1 and κ1−0
j + (−1)1−0

1∏
i=1
i/∈∅

κj = κj − κ1.

Induction step. Observe that the following holds

n+1∏
i=1
i/∈K

(κj − κi) = (κj − κn+1)
n∏
i=1
i/∈K

(κj − κi)

(2.18)
= (κj − κn+1)

κn−lj − κn−l−1
j

n∑
i=1
i/∈K

κi + · · ·+ (−1)n−l+1κj

n∑
i=1
i/∈K

n∏
h=1
h/∈i,K

κh + (−1)n−l
n∏
i=1
i/∈K

κi


= κn−l+1

j − κn−lj

n∑
i=1
i/∈K

κi + · · ·+ (−1)n−lκj

n∏
i=1
i/∈K

κi

−κn−lj κn+1 − · · · − (−1)n−l+1κjκn+1

n∑
i=1
i/∈K

n∏
h=1
h/∈i,K

κh − (−1)n−lκn+1

n∏
i=1
i/∈K

κi

= κ
(n+1)−l
j − κ(n+1)−l−1

j

n+1∑
i=1
i/∈K

κi + · · ·+ (−1)(n+1)−l+1κj

n+1∑
i=1
i/∈K

n+1∏
h=1
h/∈i,K

κh + (−1)(n+1)−l
n+1∏
i=1
i/∈K

κi.

This completes the proof.

Note 2.12. Let κ1, κ2, . . . , κn ∈ C. Further let K := {k1, . . . , kl} ⊆ {1, . . . , n} ⊆ N, l := |K|
and j ∈ N. In view of the de�nition in the Nomenclature, the following holds:

n−l+1∑
i=1

(−κj)i−1
n∑

h1<hn−l+1−i=1\K

∏
k∈h

κk
(2.18)

=
n∏
i=1
i/∈K

(κi − κj) . (2.19)
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Observation 2.13 (Summation II). Let n ∈ N, κ1, . . . , κn, υ1, . . . , υn ∈ C and c, r ∈ {1, . . . , n}.
Then, the following holds:

n∑
i=1

n∑
j1<jn−i=1\r

∏
k∈j

κ2
k

∑
l∈j

υl
κl

(−κ2
c)
i−1 =

n∑
j=1
j 6=r

κjυj

n∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
. (2.20)

Proof. The proof is conducted via mathematical induction.
Firstly, note that the following is true:

n∑
i=1

n∑
j1<jn−i=1\r

∏
k∈j

κ2
k

∑
l∈j

υl
κl

(−κ2
c)
i−1 =

n∑
i=1

n∑
j1<jn−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1.

Initial case. For n = 1 it follows

1∑
i=1

1∑
j1<j1−i=1\1

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

1)i−1 = 0 and
1∑
j=1
j 6=1

κjυj

1∏
k=1
k 6=1,j

(
κ2
k − κ2

1

)
= 0.

Induction step. Observe that the following holds

n+1∑
i=1

n+1∑
j1<jn+1−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1

=
n∑
i=1

n+1∑
j1<jn+1−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1 +

n+1∑
j1<j0=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
n

︸ ︷︷ ︸
= 0

=

n∑
i=1

n∑
j1<jn+1−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1

+κ2
n+1

n∑
i=1

n∑
j1<jn−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1

+κn+1υn+1

n∑
i=1

n∑
j1<jn−i=1\r

∏
k∈j

κ2
k(−κ2

c)
i−1

(2.19),
(2.20)

= −κ2
c

n∑
i=2

n∑
j1<jn+1−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−2 +

n∑
j1<jn=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k︸ ︷︷ ︸

= 0

+κ2
n+1

n∑
j=1
j 6=r

κjυj

n∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
+ κn+1υn+1

n∏
k=1
k 6=r

(
κ2
k − κ2

c

)

= −κ2
c

n−1∑
i=1

n∑
j1<jn−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1 − κ2

c

n∑
j1<j0=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
n−1

︸ ︷︷ ︸
= 0
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+κ2
n+1

n∑
j=1
j 6=r

κjυj

n∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
+ κn+1υn+1

n∏
k=1
k 6=r

(
κ2
k − κ2

c

)

= −κ2
c

n∑
i=1

n∑
j1<jn−i=1\r

∑
l∈j

κlυl
∏
k∈j\l

κ2
k(−κ2

c)
i−1

+κ2
n+1

n∑
j=1
j 6=r

κjυj

n∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
+ κn+1υn+1

n∏
k=1
k 6=r

(
κ2
k − κ2

c

)
(2.20)

= −κ2
c

n∑
j=1
j 6=r

κjυj

n∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
+ κ2

n+1

n∑
j=1
j 6=r

κjυj

n∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
+ κn+1υn+1

n∏
k=1
k 6=r

(
κ2
k − κ2

c

)

=

n∑
j=1
j 6=r

κjυj

n+1∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
+ κn+1υn+1

n+1∏
k=1

k 6=r,n+1

(
κ2
k − κ2

c

)
=

n+1∑
j=1
j 6=r

κjυj

n+1∏
k=1
k 6=r,j

(
κ2
k − κ2

c

)
.

This completes the proof.

Claim 2.14. Let n ∈ N and κ1, . . . , κn ∈ C. Then, the following is claimed:

n∑
i=1

(−1)i+n
n∏
k=1
k 6=i

κk

n∏
k1<k2=1\i

(κk1 − κk2) =
n∏

k1<k2=1

(κk1 − κk2) . (2.21)

Observation 2.15 (Summation III). Let n ∈ N, κ1, . . . , κn ∈ C and c ∈ {1, . . . , n}. Then, the
following holds:

n∑
i=1
i 6=c

 1
κi−κc −

κc
n∏
k=1
k 6=c,i

(κc−κk)

κi
n∏
k=1
k 6=i

(κi−κk)

− 1
κc

= −

n∏
k=1
k 6=c

(κk−κc)

n∏
k=1

κk

. (2.22)

Proof. The proof is conducted via mathematical induction.
Initial case. For n = 1 it follows

1∑
i=1
i 6=1

 1
κi−κ1 −

κ1
1∏
k=1
k 6=1,i

(κ1−κk)

κi
1∏
k=1
k 6=i

(κi−κk)

− 1
κ1

= − 1
κ1

and −

n∏
k=1
k 6=1

(κk−κ1)

n∏
k=1

κk

= − 1
κ1
.

Induction step. Observe that the following holds

n+1∑
i=1
i 6=c

 1
κi−κc −

κc
n+1∏
k=1
k 6=c,i

(κc−κk)

κi
n+1∏
k=1
k 6=i

(κi−κk)

− 1
κc

=

n∑
i=1
i 6=c

 1
κi−κc −

κc−κn+1

κi−κn+1

κc
n∏
k=1
k 6=c,i

(κc−κk)

κi
n∏
k=1
k 6=i

(κi−κk)

− 1
κc

+ 1
κn+1−κc −

κc
n∏
k=1
k 6=c

(κc−κk)

κn+1

n∏
k=1

(κn+1−κk)
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=
n∑
i=1
i 6=c

 1
κi−κc −

κc
n∏
k=1
k 6=c,i

(κc−κk)

κi
n∏
k=1
k 6=i

(κi−κk)

− 1
κc
−

n∑
i=1
i 6=c

κc
n∏
k=1
k 6=c

(κc−κk)

κi
n+1∏
k=1
k 6=i

(κi−κk)

+ 1
κn+1−κc −

κc
n∏
k=1
k 6=c

(κc−κk)

κn+1

n∏
k=1

(κn+1−κk)

(2.22)
= −

n∏
k=1
k 6=c

(κk−κc)

n∏
k=1

κk

−
n+1∑
i=1

κc
n∏
k=1
k 6=c

(κc−κk)

κi
n+1∏
k=1
k 6=i

(κi−κk)

= −

n∏
k=1
k 6=c

(κk−κc)

n∏
k=1

κk

−

κc
n∏
k=1
k 6=c

(κk−κc)
n+1∑
i=1

(−1)i+n
n+1∏
k=1
k 6=i

κk
n+1∏

k1<k2=1\i
(κk1−κk2)

n+1∏
k=1

κk
n+1∏

k1<k2=1
(κk1−κk2)

(2.21)
= −

κn+1

n∏
k=1
k 6=c

(κk−κc)

n+1∏
k=1

κk

+

κc
n∏
k=1
k 6=c

(κk−κc)
n+1∏

k1<k2=1
(κk1−κk2)

n+1∏
k=1

κk
n+1∏

k1<k2=1
(κk1−κk2)

=

(−κn+1+κc)
n∏
k=1
k 6=c

(κk−κc)

n+1∏
k=1

κk

= −

n+1∏
k=1
k 6=c

(κk−κc)

n+1∏
k=1

κk

.

This completes the proof.

Fact 2.16 (Strictly positive realness). [579, p. 127, Theorem 3.5.1] Let G(s) be a rational
transfer function with relative degree |rd (G(s))| ≤ 12 taking on real values for real s and not
being identically zero for all s. Then, the transfer function G(s) is strictly positive real if and
only if the following conditions are satis�ed:

(i) G(s) is analytic in <(s) ≥ 0,

(ii) ∀ω ∈ R : <(G(ω)) > 0 and

(iii)


lim
|ω|→∞

ω2<(G(ω)) > 0, rd (G(s)) = 1 or

lim
|ω|→∞

<(G(ω))
ω > 0, rd (G(s)) = −1.

Fact 2.17 (Meyer-Kalman-Yakubovich-Lemma). [579, p. 129f, Lemma 3.5.4] Let n ∈ N,
A ∈ Rn×n be Hurwitz, b, c ∈ Rn and d ∈ R and let G(s) := d + c>(sI − A)−1b be strictly
positive real. Then, for any given 0 < Q = Q> ∈ Rn×n, there exists 0 < q ∈ R, q ∈ Rn and
0 < P = P> ∈ Rn×n such that

A>P + PA = −qq> − qQ and Pb− c = ±q
√

2d. (2.23)

Fact 2.18 (Invariance principle of LaSalle). [580] Let α0 = 0n, n ∈ N be an equilibrium of
d
dtα = f (α) (i.e. f (α0) = 0n) and let, for β ∈ R>0 and γ ∈ R<0, V : Rn 7→ [0, β] be positive
de�nite and let d

dtV : Rn 7→ [0, γ] be negative semi-de�nite. Then, α0 is locally asymptotic stable
if the largest positive invariant subset M of S :=

{
α ∈ Rn| ddtV (α) = 0

}
is M = {0n}. Moreover,

if V (α) is unbounded, i.e. β →∞, α0 is globally asymptotic stable.

2A function f(x) is called rational, if it can be written as a fraction of two polynomial functions: f(x) = n(x)
d(x)

.
Its relative degree is de�ned as the di�erence between the degrees of the denominator and nominator polynomial,
i.e. rd (f) := deg(d)− deg(n).
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Observation 2.19 (Time derivative of matrix exponential with time dependent matrix). Let
n ∈ N and let A ∈ Rn×n be time dependent and invertible. If a decomposition

A(t) = V D(t)V −1, (2.24)

exists with V being constant and D being in diagonal (or Jordan normal) form, the following
holds true:

d
dte

A(t)t = eA(t)t
(
A(t) + t ddtA(t)

)
. (2.25)

Proof. First of all, the argument t is dropped. Observe that

d
dte

At = d
dt

∞∑
k=0

Aktk

k! =
∞∑
k=1

Aktk−1

(k−1)! +
d
dt
At

1! +
( d
dt
AA+A d

dt
A)t2

2!

+
( d
dt
AA2+A d

dt
AA+A2 d

dt
A)t3

3! +
( d
dt
AA3+A d

dt
AA2+A2 d

dt
AA+A3 d

dt
A)t4

4! + · · ·

= eAtA+
(
Int
1! + At2

2! + A2t3

3! + A3t4

4! + · · ·
)
d
dtA

+
(
Int2

2! + At3

3! + A2t4

4! + · · ·
)
d
dtAA+

(
Int3

3! + At4

4! + · · ·
)
d
dtAA

2 + · · ·

= eAtA+
(
In + At

1! + A2t2

2! + A3t3

3! + A4t4

4! + · · · − In
)
A−1 d

dtA

+
(
In + At

1! + A2t2

2! + A3t3

3! + A4t4

4! + · · · − In − At
1!

)
A−2 d

dtAA

+
(
In + At

1! + A2t2

2! + A3t3

3! + A4t4

4! + · · · − In − At
1! −

A2t2

2!

)
A−3 d

dtAA
2 + · · ·

= eAtA+
(
eAt − In

)
A−1 d

dtA+
(
eAt − In − At

1!

)
A−2 d

dtAA

+
(
eAt − In − At

1! −
A2t2

2!

)
A−3 d

dtAA
2 + · · ·

= eAtA+
(
eAt − In

)
A−1

(
d
dtA+A−1 d

dtAA+A−2 d
dtAA

2 + · · ·
)

−A−1
((

d
dtA+A−1 d

dtAA+ · · ·
)
At
1! +

(
d
dtA+ · · ·

)
A2t2

2! + · · ·
)

= eAtA+ eAtA−1
∞∑
k=0

A−k d
dtAA

k −A−1
∞∑
k=0

A−k d
dtAA

keAt

+ lim
r→∞

A−1
(
A−r d

dtAA
rAt

1! +
(
A−r+1 d

dtAA
r−1 +A−r d

dtAA
r
)
A2t2

2! + · · ·
)

= eAtA+A−1
∞∑
k=0

A−k
(
eAt ddtA−

d
dtAeAt

)
Ak

+ lim
r→∞

A−r−1
∞∑
k=0

Aktk

(k+1)!

k∑
l=0

Al d
dtAA

−lAr+1t

(2.24)
= eAtA+A−1

∞∑
k=0

A−kV
(
eDt ddtD −

d
dtDeDt

)
V −1Ak

+ V lim
r→∞

∞∑
k=0

D−r−1 Dktk

(k+1)!

k∑
l=0

Dl d
dtDD

−lDr+1V −1t

= eAtA+ V

∞∑
k=0

Dktk

(k+1)!

k∑
l=0

d
dtDV

−1t

(2.24)
= eAtA+ teAt ddtA

where in the last steps, commutativity of
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(i) two matrices in diagonal and/or Jordan normal form and

(ii) any (quadratic) matrix or its inverse and respective matrix exponential

was used. This completes the proof.

De�nition 2.20 (Performance measures). De�ne, for all t ∈ T := {τ | t0 ≤ τ ≤ t∞} ⊂ R, the
scalar error function e : T → R. Then, the error metrics Integral of Absolute Error (IAE) and
Integral of Time-weighted Absolute Error (ITAE) are de�ned as

∀ t ∈ T :

MIAE : T→ R≥0, t 7→ MIAE(t) :=
t∫
t0

|e(τ)| dτ

MITAE : T→ R≥0, t 7→ MITAE(t) :=
t∫
t0

τ |e(τ)| dτ.
(2.26)
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Chapter 3

Signal decomposition

This chapter describes the proposed methods for decomposing a signal into its fundamental
parameters. It is divided into six sections:

Section 3.1 introduces the generation of arbitrary signals;

Section 3.2 shows the enhanced standard Frequency Adaptive Observer with High Pass Filter
(esFAO);

Section 3.3 shows themodi�ed Frequency Adaptive Observer (mFAO) and themodi�ed Frequency
Adaptive Observer with o�set (mFAO );

Section 3.4 shows the transformation-based Frequency Adaptive Observer in transformed coor-
dinates (tFAO) and the transformation-based Frequency Adaptive Observer with o�set in
transformed coordinates (tFAO );

Section 3.5 shows the transformation-based Frequency Adaptive Observer in α, β coordinates
(tFAO) and the transformation-based Frequency Adaptive Observer with o�set in α, β co-
ordinates (tFAO ); and

Section 3.6 illustrates an idea for the exponential Frequency Adaptive Observer (eFAO) and the
exponential Frequency Adaptive Observer with o�set (eFAO ).

Each section is subdivided into di�erent sections. These are brie�y summarized at the beginning
of the respective section. All Frequency Adaptive Observers (FAO) are a combination of paral-
lelized Second Order Generalized Integrators (SOGI) for estimation of amplitudes (â) and phase
angles (φ̂) and a Frequency Locked Loop (FLL) for angular frequency estimation (ω̂). A general
FAO is pictured in Figure 3.1.

SOGI

FLL

y x̂ ω̂

ω̂1, ω̂2, . . .

â1, â2, . . .

φ̂1, φ̂2, . . .

FAO

Figure 3.1: Frequency Adaptive Observer consisting of parallelized Second Order Generalized Integrators
and a Frequency Locked Loop.
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CHAPTER 3. SIGNAL DECOMPOSITION

These FAOs are designed for single-phase applications. Simulative results are shown throughout
this chapter to illustrate characteristics of the proposed FAOs. At the end of each section, test
signals (de�ned in Section 3.1) are evaluated by the respective system to show its bene�ts. Ex-
perimental validations are presented in Chapter 4. Additionally, mathematical proofs are shown
along with the derivations.

3.1 The internal model principle: Generation of periodic signals

To start with, any periodic signal can be represented by

∀ t0 ≥ 0: y(t) = a0(t) +

n∞∑
j=1

aj(t) cos(φj(t))

with o�set a0(t), amplitude aj(t) and phase angle φj(t) of the j-th component. The order of
the j-th component is denoted as νj , and all νj are collected in H∞. It is denoted as the set of
harmonic orders. It contains positive and possibly unbounded rational numbers, is sorted and
possibly unlimited, i.e.

H∞ := {ν1, ν2, ν3, . . . , ν∞} ⊆ Q>0, 1 ∈ H∞, max(H∞)→∞ and |H∞| =: n∞ →∞.
(3.1)

The component relating to the harmonic order 1 is said to be the fundamental component and
all other components are said to be harmonic components. Note that also harmonic numbers
lesser than one are permitted. Further, the phase angle of each harmonic component is given by

φj(t) =

∫ t

t0

ωj(τ)dτ + φj,0

with the angular frequency ωj(t) and initial phase angle φj,0 of the j-th component. All variables
(o�set, amplitudes, and angular frequencies) are allowed to be time-varying. However, they are
assumed to be constant on certain time intervals:

Assumption 3.1.1. De�ning the total time interval

T := [t0, t1, t2, . . . , t∞) ⊆ R≥0, t∞ →∞

what is divided into subintervals

Ti := [ti, ti+1) such that T = T0 ∪ T1 ∪ T2 ∪ · · · .

In each Ti, all parameters (o�set, amplitudes, and angular frequencies) are constant. Conse-
quently, the input signal on each time interval can be written as

∀Ti ⊂ T, ∀ t ∈ Ti : y(t) = a0 +

n∞∑
j=1

aj cos(φj(t)) = a0 +

=: y∼(t)︷ ︸︸ ︷
n∞∑
j=1

aj cos(ωj(t− ti) + φj,ti)︸ ︷︷ ︸
=: yj(t)

. (3.2)

Note that for readability, the rest of the chapter refers to any time interval Ti ⊂ T what therefore
is not explicitly mentioned anymore. Now, any sinusoidal signal can be generated by a harmonic
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oscillator given in its state-space representation by

∀ t ∈ Ti :
d
dt

=:xj(t)∈R2︷ ︸︸ ︷(
xαj (t)

xβj (t)

)
= ωj

=: J̃ ∈R2×2︷ ︸︸ ︷[
0 −1
1 0

]
xj(t), xj(ti) = xj,ti ,

yj(t) =
(
1 0

)︸ ︷︷ ︸
=: c̃> ∈R2

xj(t).


(3.3)

Consequently, the generation of n∞ harmonics is represented by

∀ t ∈ Ti : d
dt

=:x(t)∈R2n∞︷ ︸︸ ︷
x1(t)
x2(t)
...

xn∞(t)

 =

=:J(ω)∈R2n∞×2n∞︷ ︸︸ ︷
ω1J̃ 02×2 · · · 02×2

02×2 ω2J̃ · · · 02×2

...
...

. . .
...

02×2 02×2 · · · ωn∞J̃

x(t), x(ti) = xti

y∼(t) =
(
c̃> · · · c̃>

)︸ ︷︷ ︸
=: c> ∈R2n∞

x(t).


(3.4)

Hereby, all angular frequencies are collected in the vector

ω :=
(
ω1, . . . , ωn∞

)> ∈ Rn.

Each angular frequency can be written in dependency on the fundamental one by

∀ j ∈ {1, . . . , n∞} : ωj = νjω1 (3.5)

what permits a decomposition of J into

J(ω)
(3.4)
= ω1


J̃ 02×2 · · · 02×2

02×2 ν2J̃ · · · 02×2

...
...

. . .
...

02×2 02×2 · · · ν∞J̃


︸ ︷︷ ︸

=:N ∈R(2n∞)×(2n∞)

. (3.6)

Second, any constant (e.g. o�set) can be modeled by

∀ t ∈ Ti :
d
dtx0(t) = 0 · x0(t), x0(ti) = x0,ti ,

y=(t) = 1 · x0(t)

}
(3.7)

what, combined with (3.4), leads to the overall generation system

∀ t ∈ Ti :
d
dt

=:x (t)∈R2n∞+1︷ ︸︸ ︷(
x0(t)
x(t)

)
=

=:J (ω)∈R(2n∞+1)×(2n∞+1)︷ ︸︸ ︷[
0 0>2n∞

02n∞ J(ω)

]
x (t), x (ti) = x ,ti

y(t) =
(
1 c>

)︸ ︷︷ ︸
=: c> ∈R2n∞+1

x (t) = y=(t) + y∼(t).


(3.8)
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Again, pulling out the fundamental angular frequency from the system matrix yields

J (ω)
(3.8)
= ω1

[
0 0>2n∞

02n∞ N

]
︸ ︷︷ ︸

=:N ∈R2n∞+1×2n∞+1

. (3.9)

(3.2) and (3.8) are related by

∀ t ∈ Ti : a0(t) = x0(t), aj(t) =
√

(xαj )2(t) + (xβj )2(t) and φj(t) = arctan2

(
xβj (t)

xαj (t)

)
. (3.10)

For both equations (3.4) and (3.8), the time derivative of ω is given as

∀ j ∈ {1, . . . , n∞} : d
dtω = 0n∞

(3.5)
=⇒ d

dtνj = 0. (3.11)

The test signals for evaluating the proposed methods mentioned in the introduction are de�ned
as

ytest,N (t) := 50 V cos
(
2π50t+ π

3

)
+ 10 V cos

(
2 · 2π50t− π

3

)
ytest,N (t) := −20 V + 50 V cos

(
2π50t+ π

3

)
+ 10 V cos

(
2 · 2π50t− π

3

)
ytest,Q(t) := 50 V cos

(
2π50t+ π

3

)
+ 10 V cos

(
1.5 · 2π50t− π

3

)
ytest,Q (t) := −20 V + 50 V cos

(
2π50t+ π

3

)
+ 10 V cos

(
1.5 · 2π50t− π

3

)
.

 (3.12)

In Figure 3.21, their amplitudes and frequencies are plotted.
Note that, for readability, the argument t is always dropped in the following.

3.2 The enhanced standard Frequency Adaptive Observer

This section reintroduces the standard Second Order Generalized Integrator (sSOGI) and stan-
dard Frequency Locked Loop (sFLL). In this thesis, the combination of both is called the standard
Frequency Adaptive Observer (sFAO)2. The goal of this section is to enhance the sSOGI in terms
of estimation speed and o�set detection3. The resulting system is called the enhanced standard
Frequency Adaptive Observer (esFAO); parts of it were published by the author in [570].
This section is subdivided as follows:

Section 3.2.1 introduces the SOGI principle and the sSOGI,

Section 3.2.2 describes the parallelization of sSOGIs,

Section 3.2.3 discusses the feedback gains of the parallelized sSOGIs,

Section 3.2.4 explains the enhancement of the parallelized sSOGIs with respect to estimation
speed (esSOGI),

Section 3.2.5 expands the parallelized esSOGIs to detect o�set,

Section 3.2.6 introduces the FLL principle and the sFLL,

Section 3.2.7 discusses the tuning of the FLL and expands it in view of stability (esFLL) and

1Simulation parameters: Ts = 100 µs, Solver: ode4.
2In common literature (e.g. [522]), it is called SOGI-FLL instead.
3Recall that in this thesis, detection means calculation with feedthrough and estimation means calculation

without feedthrough.
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ytest,N

ytest,N

ytest,Q

ytest,Q

Figure 3.2: O�set, amplitudes and frequencies of the test signals ( ).

Section 3.2.8 summarizes and proves the stability of the overall system (esFAO).

3.2.1 The principle idea of a SOGI

First of all, a short recapitulation of the SOGI principle is given [515]. Since a SOGI's purpose
is to reduplicate sinusoidal signals, it is based on a harmonic oscillator. The sinusoid's angular
frequency ω̂ is de�ned by the total oscillation gain Ω, which represents the gain to a signal in a
single circulation (see blue arrow in Figure 3.3). The angular frequency then is given by

ω̂ =
√
−Ω > 0.

Note that, although the angular frequency ω̂ is assumed to be positive, also negative frequencies
are allowed in a mathematical sense. This is not the case in physical systems where the angular
frequency is positive per de�nition. A block diagram of a harmonic oscillator consists of two
integrators with initial values x̂αt0 and x̂

β
t0
connected to a circle as shown in Figure 3.3 where two
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commonly used models of such harmonic oscillators are shown.

∫
ω̂

∫
−ω̂

x̂α

x̂β

z

−ω̂z

−ω̂2z = Ωz

∫
∫−ω̂2

x̂α

x̂β

ω̂

Figure 3.3: Two di�erent types of harmonic oscillators.

So far, a harmonic oscillator outputs a signal with �xed angular frequency ω̂ =
√
−Ω. The

amplitude â of the output signal is de�ned by the integrator's initial values x̂αt0 , x̂
β
t0
and the ratio

of the frequency gains between the integrators in the harmonic oscillator. If the ratio is equal

to one which is the most common case, the amplitude is given as â =
√

(x̂αt0)2 + (x̂βt0)2. Recall
that the purpose of a SOGI is to reduplicate a given signal with unknown amplitude4. To cover
this issue, the harmonic oscillator must be extended such that it is fed by the di�erence between
reference signal y and estimated signal ŷ = x̂α. This di�erence is further referred to as the signal
estimation error

ey := y − ŷ. (3.13)

To have some in�uence options on the performance of the resulting system, the signal estimation
error ey is multiplied by some gain lα. The resulting system is called Adaptive Notch Filter
(ANF) or standard Second Order Generalized Integrator (sSOGI), indicated by the subscript �s�.
Two common structures of such sSOGIs (or ANFs) are shown in Figure 3.4.

Σ lαs Σ ω̂s

∫
∫

ω̂s

y
es,y

x̂αs

x̂βs

−

ŷs

−
Σ lαs Σ ω̂s

∫
∫

ω̂s

y
es,y

x̂αs

x̂βs

−

ŷs

−

Figure 3.4: Two di�erent types of sSOGIs (or ANFs).

The estimate ŷs of the input is given by the state x̂αs and is called �direct signal�. It has the same
amplitude and phase angle as the input signal, if the resonance angular frequency ω̂s matches the
signal's actual angular frequency ω. As a consequence, the signal estimation error es,y will tend
to zero and the harmonic oscillator keeps oscillating without external input. From Figure 3.4 it
can be seen that an additional signal, x̂βs , is available; this signal is called �quadrature signal�.
Considering the left block diagram, x̂βs has the same amplitude and a phase angle shifted by π

2
with respect to the input signal y, if the harmonic oscillator's angular frequency ω̂s is identical
to the signal's angular frequency ω. In case of the right block diagram, the only di�erence is
that the amplitude of x̂βs is damped by ω. The gain lαs remains unspeci�ed for now; from now

4The angular frequency is unknown as well. This is considered in Section 3.2.6.
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on, only the left type of sSOGI from Figure 3.4 is considered.
As mentioned above, the signal estimation error es,y will tend to zero if the signal's angular
frequency ω and the harmonic oscillator's angular frequency ω̂s are identical. Otherwise, although
the harmonic oscillator produces signals with angular frequency ω̂s (instead of ω), the signal
estimation error es,y superposes the harmonic oscillator's signals such that all signals (es,y, x̂αs ,
x̂βs ) oscillate with the angular frequency ω of the input signal y. In other words, exemplarily for
the estimated direct signal x̂αs , in quasi-steady state it holds that

x̂αs = a(ω̂s, ω, t) cos(ω̂st+ φ(ω̂s, ω, t)) = A(ω̂s, ω) cos(ωt+ Φ(ω̂s, ω)) .

In either case, the amplitudes and phase angles of the estimated signals x̂αs and x̂βs and the signal
estimation error es,y with respect to the input signal are obtained by calculating amplitude and
phase responses. These responses describe the distortion of an input signal

∀ t ∈ Ti : y = a cos(φ) ,

to a signal x = aAx(ω) cos(φ + Φx(ω)) where x ∈
{
x̂αs , x̂

β
s , es,y

}
. Ax is called the amplitude

response and Φx the phase response. These are calculated by using the transfer function

X (s) := x(s)
y(s) ⇒ X (ω) = <(X (ω)) + =(X (ω))

as

Ax(ω) =
√
<(X (ω))2 + =(X (ω))2 and Φx(ω) = arctan2

(
=(X (ω))
<(X (ω))

)
. (3.14)

However, a transfer function must not contain time-dependent parameters. Consequently, for
the sSOGI, the harmonic oscillator's angular frequency must be assumed as constant. Then, the
sSOGI's transfer functions are given by

Xαs (s) := x̂αs (s)
y(s) = ω̂slαs s

s2+ω̂slαs s+ω̂
2
s
, X βs (s) := x̂β(s)

y(s) = ω̂2
s l
α
s

s2+ω̂slαs s+ω̂
2
s
, Es,y(s) :=

ey(s)
y(s) = s2+ω̂2

s
s2+ω̂slαs s+ω̂

2
s
;

details on their derivation are shown in Appendix A. The respective amplitude and phase re-
sponses, also shown in Appendix A, are obtained as

AXαs (ω) = ωω̂slαs√
(ω̂2

s−ω2)2+ω2ω̂2
s (lαs )2

, ΦXαs (ω) = arctan2
(
ω̂2
s−ω2

ωω̂slαs

)
,

AXβs
(ω) = ω̂2

s l
α
s√

(ω̂2
s−ω2)2+ω2ω̂2

s (lαs )2
, ΦXβs

(ω) = arctan2
(
−ωω̂slαs
ω̂2
s−ω2

)
,

and AEs,y(ω) = ω̂2
s−ω2√

(ω̂2
s−ω2)2+ω2ω̂2

s (lαs )2
, ΦEs,y(ω) = arctan2

(
−ωω̂slαs
ω̂2
s−ω2

)
.

(3.15)

Note that the amplitude and phase responses show the system's reaction to an input signal when
the system is in quasi-steady state. Moreover, the system only tends to quasi-steady state if it
is stable, which can be in�uenced by the feedback gain lαs . To show the allowed tuning range of
lαs , a brief stability analysis is conducted. The di�erential equations describing the left sSOGI
shown in Figure 3.4 are obtained as

∀ t ∈ Ti :

d
dt

(
x̂αs
x̂βs

)
= ω̂s

[
−lαs −1

1 0

](
x̂αs
x̂βs

)
+ ω̂s

(
lαs
0

)
y,

(
x̂αs (ti)

x̂βs (ti)

)
=

(
x̂αs,ti
x̂βs,ti

)
ŷs =

(
1 0

)(x̂αs
x̂βs

)
.

 (3.16)
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This system is stable if all eigenvalues of the system matrix are in the negative complex half
plane. The eigenvalues are given by

det

([
s 0
0 s

]
− ω̂s

[
−lαs −1

1 0

])
= s (s+ ω̂sl

α
s ) + ω̂2

s = 0

=⇒ s ∈
{
−ω̂s

(
lαs
2 ±

√
(lαs )2

4 − 1

)}
.

(3.17)

Hence, if and only if the gain lαs is chosen positive, the system is stable and the signal estimation
error es,y decreases exponentially. In this case, the system matrix is called a Hurwitz matrix.
Hereby, the choice lαs = 2 minimizes the maximal eigenvalue leading to a faster settling time.
Figure 3.5 shows the in�uence of lαs on the sSOGI's estimation performance5.

Figure 3.5: In�uence of the gain lαs on the estimation performance of the sSOGI.

As predicted, for lαs < 0, the system becomes unstable which can be seen in the rising signal
estimation error amplitude. For lαs = 2, the fastest decrease is achieved. For the other choices
of lαs , the system is still stable but decreasing more slowly. This can also be seen in the Integral
of Time-weighted Absolute Error (ITAE) (see De�nition 2.20) penalizing slow decrease (whereas
the Integral of Absolute Error (IAE) penalizes high overshooting). These measures are shown
for the used gains in Table 3.1.

lαs 5 2 1 −0.1

MIAE / Vs 0.31784 0.31830 0.44231 6.89359
MITAE / Vs2 0.00501 0.00203 0.00312 0.35366

Table 3.1: IAE and ITAE for the di�erent choices of lαs .

Coming back to the oscillation characteristic of a sSOGI, a decomposition of the system matrix
reveals

ω̂s

[
−lαs −1

1 0

]
= ω̂s

[
0 −1
1 0

]
︸ ︷︷ ︸

(3.3)
= J̃

−ω̂s

(
lαs
0

)(
1 0

)︸ ︷︷ ︸
(3.3)
= c̃>

.

5Simulation parameters: Ts = 1 µs, y = 100 sin(2π50t), Solver: ode4. All initial values are 0.

26



3.2. THE ENHANCED STANDARD FREQUENCY ADAPTIVE OBSERVER

Note that the term including J̃ represents the harmonic oscillator and the remaining term rep-
resents the feedback.

3.2.2 Parallelization of sSOGIs

Until now, the basic SOGI principle as well as its system characteristics were described. However,
such a system is only capable of estimating a single component. The next step is the estimation
of multiple components. Therefore, a parallelization of sSOGIs is a very intuitive approach.
More precisely, harmonic oscillators with di�erent resonance angular frequencies ω̂s,j := µjω̂s,1

are parallelized. It must be highlighted that only prescribed orders µj collected in the �nite set
Hn can be used. Clearly, only if Hn = H∞, the input signal y can be reconstructed perfectly.
However, this is very unlikely sinceH∞ possibly is unbounded and, moreover, unknown in general.
The prescribed, sorted set of harmonic orders is de�ned as

Hn := {µ1, . . . , µn} ⊂ Q>0, 1 ∈ Hn, max(Hn) <∞, |Hn| =: n <∞. (3.18)

n is called the system order. The assumed set Hn and the actual set H∞ have at least one
element in common, i.e. it holds that

1 ∈ (Hn ∩H∞) and |Hn ∩H∞| ≥ 1.

Each harmonic oscillator is fed by the signal estimation error es,y. This error is the di�erence of
the input y and the sum ŷs =

∑n
j=1 x̂

α
s,j of the direct signal outputs from each SOGI. Hence, a

straightforward mathematical description results in the parallelized sSOGIs

∀ t ∈ Ti : d
dt x̂s = ω̂s,1

(
N − lsc>

)︸ ︷︷ ︸
=:As ∈R2n×2n

x̂s + ω̂s,1lsy, x̂s(ti) = x̂s,ti , ŷs = c>x̂s (3.19)

with c as introduced in (3.4), N as in (3.6), x̂s :=
(
x̂αs,1, x̂

β
s,1, · · · , x̂αs,n, x̂

β
s,n

)
∈ R2n and ls :=(

lαs,1, 0, · · · , lαs,n, 0
)
∈ R2n. To visualize (3.19), Figure 3.6 shows the corresponding block diagram

and a corresponding detailed single sSOGI for the j-th component.

j-th sSOGI

Σ

1-st sSOGI 2-nd sSOGI · · · n-th sSOGI

c>x̂s

y
es,y

x̂αs,1 x̂βs,1 x̂αs,2 x̂βs,2 x̂αs,n x̂βs,n
ŷs

−

x̂s

(a) Block diagram of the parallelized sSOGIs.

Σlαs,j ω̂s,1

∫
∫µj

ω̂s,j

es,y
−

x̂αs,j

x̂βs,j

(b) Construction of the j-th sSOGI.

Figure 3.6: (a): The parallelized structure of sSOGIs and (b): the j-th sSOGI for estimating amplitude
and phase of the j-th component.
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To understand the functionality of this system, the system's transfer functions are given by (see
Appendix A)

Xαs,i(s) :=
x̂αs,i(s)

y(s) =

sω̂s,1lαs,i

n∏
k=1
k 6=i

(s2+ω̂2
s,k)

n∏
k=1

(s2+ω̂2
s,k)+

n∑
j=1

sω̂s,1lαs,j

n∏
k=1
k 6=j

(s2+ω̂2
s,k)

,

X βs,i(s) :=
x̂βs,i(s)

y(s) =

ω̂s,1ω̂s,il
α
s,i

n∏
k=1
k 6=i

(s2+ω̂2
s,k)

n∏
k=1

(s2+ω̂2
s,k)+

n∑
j=1

sω̂s,1lαs,j

n∏
k=1
k 6=j

(s2+ω̂2
s,k)

, (3.20)

Es,y(s) :=
es,y(s)
y(s) =

n∏
k=1

(s2+ω̂2
s,k)

n∏
k=1

(s2+ω̂2
s,k)+

n∑
j=1

sω̂s,1lαs,j

n∏
k=1
k 6=j

(s2+ω̂2
s,k)

.

By de�ning the abbreviations

ρs(ω) :=

n∏
k=1

(
ω̂2

s,k − ω2
)

and υs(ω) :=

n∑
j=1

ωω̂s,1l
α
s,j

n∏
k=1
k 6=j

(
ω̂2

s,k − ω2
)
,

the respective amplitude and phase responses are calculated depending on the input angular
frequency ω with the formulas given in Appendix (A) as follows

AXαs,i(ωj) =

ωj ω̂s,1lαs,i

n∏
k=1
k 6=i

(ω̂2
s,k−ω

2
j )

√
ρ2s (ωj)+υ2s (ωj)

, ΦXαs,i(ωj) = arctan2
(
ρs(ωj)
υs(ωj)

)
,

AXβs,i
(ωj) =

ω̂s,1ω̂s,il
α
s,i

n∏
k=1
k 6=i

(ω̂2
s,k−ω

2
j )

√
ρ2s (ωj)+υ2s (ωj)

, ΦXβs,i
(ωj) = arctan2

(
−υs(ωj)
ρs(ωj)

)
, (3.21)

AEs,y(ωj) =

n∏
k=1

(ω̂2
s,k−ω

2
j )

√
ρ2s (ωj)+υ2s (ωj)

, ΦEs,y(ωj) = arctan2
(
−υs(ωj)
ρs(ωj)

)
.

They give information on how an input component yj (see (3.2)) with angular frequency ωj
is represented in the signal estimation error es,y, direct x̂αs,i or quadrature x̂βs,i signals. More
precisely, the amplitude response indicates the ampli�cation of yj to the investigated signals
and the phase response indicates the phase angle lag. Since the actual input signal usually is
a superposition of various components with di�erent frequencies ωj , for every component, the
amplitude and phase responses (3.21) must be calculated for each angular frequency ωj and then
superposed again. From (3.21) one can deduce that the i-th sSOGI outputs the i-th harmonic
component yi (and its quadrature component) of the input signal. Other input components yj
are canceled, if their angular frequency is comprised in the parallelized sSOGIs, or �ltered (with
respective damping and phase angle delay), if not.
With the obtained direct x̂αs,i and quadrature x̂βs,i signals for each component, its amplitude and
phase angle can be calculated as follows:

∀ t ∈ T : âs,i =
√

(x̂αs,i)
2 + (x̂βs,i)

2 and φ̂s,i = arctan2

(
x̂βs,i
x̂αs,i

)
. (3.22)
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3.2.3 Stability of the parallelized sSOGIs

In Section 3.2.1, the relation between feedback gain lαs and stability for a single sSOGI was
investigated. In this section, this relation is investigated for the parallelized sSOGIs; it is stated
in the following theorem.

Theorem 3.2.1 (Hurwitz system matrix). Let Hn as in (3.18) and As as in (3.19). Then, if
and only if for all i ∈ {1, . . . , n} it holds that lαs,i > 0, the system matrix As is a Hurwitz matrix,
i.e.

∀ i ∈ {1, . . . , n} : lαs,i > 0 ⇒
{
s ∈ C

∣∣ χAs(s) := det(sI2n −As) = 0
}
⊂ CNHP.

Proof. First note that the characteristic polynomial of ω̂s,1As in (3.19) is given by the denom-
inator of (3.20). It is reduced to the characteristic polynomial of the system matrix As by
normalization with respect to the angular frequency ω̂s,1, i.e.

χω̂s,1As
(s) = det(sI2n − ω̂1As)

ŝ:=
s
ω̂s,1

= det(ω̂s,1ŝI2n − ω̂1As)

= ω̂2n
s,1det(ŝI2n −As) =: ω̂2n

s,1χAs(ŝ) (3.23)

⇒ χAs(ŝ)
(3.20)

= 1
ω̂2n
s,1

 n∏
k=1

(
ω̂2

s,1ŝ
2 + ω̂2

s,k

)
+

n∑
j=1

ω̂2
s,1ŝl

α
s,j

n∏
k=1
k 6=j

(
ω̂2

s,1ŝ
2 + ω̂2

s,k

)
(3.5)
=

n∏
k=1

(
ŝ2 + µ2

k

)
+

n∑
j=1

ŝlαs,j

n∏
k=1
k 6=j

(
ŝ2 + µ2

k

)
. (3.24)

Now, by splitting (3.24) into χAs(ŝ) = χeAs
(ŝ) + χoAs

(ŝ) where χeAs
(ŝ) and χoAs

(ŝ) have even and
odd orders, resp., Fact 2.5 can be used to investigate the Hurwitz property.
Therefore, all three conditions listed in Fact 2.5 are shown: It is easy to see that if for all
i ∈ {1, . . . , n}, lαs,i > 0 is satis�ed, the coe�cients are products and sums of positive constants.
Hence, all coe�cients of the characteristic polynomial χAs(ŝ) are positive, which shows that
condition (i) is satis�ed.
Next conditions (ii) and (iii) are shown. Note that the roots of the even polynomial χeAs

(ŝ) are
given by

∀ i ∈ {1, . . . , n} : (ŝei )1,2 = ±µi =⇒ <((ŝei )1,2) = 0,

Except ŝo0 = 0 (clearly, with <(ŝo0) = 0), all other roots of the odd polynomial χoAs
(ŝ) cannot

be computed analytically but can be assessed using the intermediate value theorem. Therefore,
consider two consecutive positive imaginary roots ŝei and ŝej of the even polynomial χeAs

(ŝ),
i, j ∈ {1, . . . , h, i, j, k, . . . , n}. Inserting these roots into the odd polynomial χoAs

(ŝ) yields

χoAs
(ŝei ) = µil

α
s,i

(
1− µ2

i

)
. . .
(
µ2
h − µ2

i

)︸ ︷︷ ︸
=:Hi

(
µ2
j − µ2

i

) (
µ2
k − µ2

i

)
. . .
(
µ2
n − µ2

i

)︸ ︷︷ ︸
=:Ki

,

χoAs
(ŝej) = µjl

α
s,j

(
1− µ2

j

)
. . .
(
µ2
h − µ2

j

)︸ ︷︷ ︸
=:Hj

(
µ2
i − µ2

j

) (
µ2
k − µ2

j

)
. . .
(
µ2
n − µ2

j

)︸ ︷︷ ︸
=:Kj

.
(3.25)

Now, according to the intermediate value theorem, a continuous function f has at least one root
in the open interval (a, b) if f (a) and f (b) have opposite signs [575, p. 132]. Since the terms Hi,
Hj , Ki and Kj contain an equal amount of positive and negative factors and Hn ⊂ Q>0, if and
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only if sign
(
lαs,i
)

= sign
(
lαs,j
)
it follows sign

(
χoAs

(ŝei )
)

= − sign
(
χoAs

(ŝej)
)
. In this case, it follows

from the intermediate value theorem that there exists ŝo ∈
(
ŝei , ŝ

e
j

)
such that χoAs

(ŝo) = 0.

Hence, <(ŝo) = 0 and =(ŝei ) < =(ŝo) < =(ŝej). If two consecutive negative roots or two roots
with opposing signs are used instead, the result is identical. Next, according to the fundamental
theorem of algebra, a polynomial of m-th order has exactly m roots on C [575, p. 63]. Since
deg(χoAs

(ŝ)) = 2n− 1 and deg(χeAs
(ŝ)) = 2n, for each two consecutive roots of χeAs

(ŝ) = 0 there
exists exactly one root of χoAs

(ŝ) = 0 in between. Thus, conditions (ii) and (iii) are ful�lled.
Hence, the matrix As is a Hurwitz matrix. This completes the proof.

3.2.4 Design of the gain vector: the parallelized esSOGIs

So far, the system is well understood, except for the choice of the gain vector ls. In literature,
common choices are ls =

√
2c [492] and ls = c [497]. These usually are chosen such that a

certain �ltering characteristic is obtained (cf. (3.21)). However, these choices usually result in
very slow system dynamics and shall therefore be improved here. The goal of this section is to
provide a general method for optimizing the tuning of parallelized sSOGIs in terms of speed of
the estimation. An important fact in this context is that the estimation speed of linear systems
is determined by its largest eigenvalue. This eigenvalue is referred to as the dominant eigenvalue
in the following. Hence, a vector

les :=
(
lαes,1 0 lαes,2 0 · · · lαes,n 0

)>
(3.26)

(where the subscript �es� means �enhanced standard�) minimizing the dominant eigenvalue of
Aes := N − lesc

> must be found. More mathematically speaking, the task is to minimize the
following function

λmax(Aes(les)) := min
les∈R2n

{
max
<(λ)
{λ ∈ C| det(λI2n −Aes(les)) = 0}

}
(3.27)

where λ denotes an eigenvalue. Usually, the eigenvalues can be calculated from the characteristic
polynomial χAs in (3.24). Since this polynomial of degree 2n is not factorisable and solutions
for random polynomials only can be determined analytically for 0 ≤ n ≤ 4 [581], a general and
direct correlation between gains and eigenvalues cannot be deduced. Thus, it must be solved
numerically by the gradient method [575]. This method takes advantage of characteristics of the
matrixAes: (i) a set of eigenvalues correlates uniquely to a feedback vector les and (ii) for any two
vectors les,1, les,2 for which it holds that les,1 ≈ les,2, the same holds true for the corresponding
eigenvalues. Hence, an algorithm (implemented as Matlab-code) is developed, beginning with
an initial gain vector lvec_init and searching the direction minimizing the dominant eigenvalue
by the trial and error method. Hereby, the calculation of the eigenvalues is done numerically
by the eig-function. In the case that in one step multiple equivalent directions are found, the
algorithm chooses the last option. The algorithm terminates, if the minimal dominant eigenvalue
is found, i.e. if there does not exist any direction resulting in a more minimal dominant eigenvalue
and if this eigenvalue has negative real part. The respectiveMatlab-code is shown in Appendix
B.
The enhanced system, referred to as the enhanced standard SOGI (esSOGI), is given in its state
space representation by

∀ t ∈ Ti :
d
dt x̂es = ω̂es,1Aesx̂es + ω̂es,1lesy, x̂es(ti) = x̂es,ti

ŷes = c>x̂es.
(3.28)
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To validate the parallelized SOGIs graphically, an exemplary simulation is shown in Figure 3.76.

Figure 3.7: Comparison between parallelized esSOGIs with tuning les according to (3.27) ( ), paral-
lelized ANFs with tuning ls = c ( ) and parallelized sSOGIs with tuning ls =

√
2c ( ).

Shown are the input y and its decomposition into the direct signals xα1 � xα4 , their estimates
ŷ, x̂α1 � x̂α4 and the signal estimation error ey.

As can be seen in Figure 3.7, the parallelized esSOGIs accurately detects all signal components.
Although it is faster than parallelized ANFs and parallelized sSOGIs, it takes about three fun-
damental periods for the system to settle down. In comparison to Figure 3.5 where only a
fundamental system was used, the system with order n = 4 is slower. Thus, the question of
dependency between the system order n and the dominant eigenvalue λmax(Aes) arises. It is
answered in Figure 3.8. Hereby, the set Hn is assumed to be Hn = {1, 2, . . . , n} ⊂ N. In Figure
3.8, also the choices from literature, i.e. ls ∈

{√
2c, c

}
corresponding to parallelized sSOGI and

parallelized ANFs, respectively, are shown.

6Simulation parameters: Ts = 1 µs, y = 100 cos(2π50t) + 20 cos
(
4π50t+ π

2

)
+ 50 cos

(
6π50t+ π

4

)
+

10 cos
(
8π50t+ π

3

)
, Solver: ode4. All initial values are 0.

31



CHAPTER 3. SIGNAL DECOMPOSITION

Figure 3.8: The real part of the dominant eigenvalue <(λmax) of As and Aes versus the system order n
for di�erent choices of ls and les.

Clearly, for higher system orders, the dominant eigenvalue is getting larger which results in a
slower overall system response.

3.2.5 HPF and APC

For now, the system is not capable of detecting o�set. On the contrary, the presence of o�set
in the input signal y will lead to a malfunctioning system as can be seen from the amplitude
and phase responses (3.21) (by inserting ωj = 0 rad

s ). Although in the direct signals x̂αs,i any
o�set is �ltered out completely (and therefore in the estimate of the input ŷ as well), it is still
present in the quadrature signals. In view of post processing applications such as the Fortescue
transformation [4], it could deteriorate their performance. Hence, an intuitive solution is given
by �ltering any o�set from the input signal, which can be done by a High Pass Filter (HPF).
Such a HPF has the state space representation

∀ t ∈ Ti :
d
dtxhpf = −ωhpfxhpf + ωhpfy, xhpf(ti) = xhpf,ti

yhpf = −xhpf + y,

}
(3.29)

with a constant and positive cut-o� angular frequency ωhpf . The �lter's transfer function is given
by

Yhpf(s) :=
yhpf(s)
y(s) = s

s+ωhpf
. (3.30)

Its amplitude and phase response follow as

AXhpf
(ω) = ω√

ω2
hpf+ω

2
and Φ(ω)Xhpf

= arctan2
(
ωhpf

ω

)
. (3.31)

A High Pass Filter is drawn in Figure 3.9.

Σ ∫
ωhpf

y yhpf

xhpf

−

Figure 3.9: A HPF.

By feeding the HPF's output signal yhpf to the parallelized esSOGIs, this signal comes without
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o�set, at least in quasi-steady state. On the other hand, each harmonic component is damped
and shifted according to (3.31). Consequently, the parallelized esSOGIs estimate these distorted
signals, which must be reconstructed again. This can be done in quasi-steady state by an
Amplitude Phase Correction (APC), which is stated in the following proposition.

Proposition 3.2.2 (Amplitude Phase Correction for HPF). Let t ∈ T, ωhpf , ω > 0, a, φ ∈ R,
and let y := a cos(ωt+ φ) and yhpf := aAXhpf

(ω) cos(ωt + φ + ΦXhpf
(ω)) be the in- and output

of a High Pass Filter in quasi-steady state. Further, let q and qhpf be signals having identical
amplitude and a phase lag of −π

2 with respect to y and yhpf , respectively. Then, there exists a
correction (transformation) matrix

Chpf :=

[
1

ωhpf

ω

−ωhpf

ω 1

]
∈ R2×2 (3.32)

such that the amplitude- and phase-corrected signals ỹhpf and q̃hpf have identical phase and am-
plitude as the input signals, i.e. y = ỹhpf and q = q̃hpf for all t ∈ T.

Proof. De�ne (
ỹhpf

q̃hpf

)
:= Chpf

(
yhpf

qhpf

)
, Chpf :=

[
chpf,1 −chpf,2

chpf,2 chpf,1

]
(3.33)

and observe that(
ỹhpf

q̃hpf

)
=

[
chpf,1 −chpf,2

chpf,2 chpf,1

](
yhpf

qhpf

)
=

[
yhpf −qhpf

qhpf yhpf

]
︸ ︷︷ ︸

=:Shpf

(
chpf,1

chpf,2

)
. (3.34)

Note that, for all
(
yhpf , qhpf

)
∈ R2 \ {02}, the matrix Shpf is invertible:

S−1
hpf = 1

(yhpf)2+(qhpf)2

[
yhpf qhpf

−qhpf yhpf

]
def.
= 1

aAXhpf (ω)

[
cos
(
ωt+ φ + ΦXhpf

(ω)
)

sin
(
ωt+ φ + ΦXhpf

(ω)
)

− sin
(
ωt+ φ + ΦXhpf

(ω)
)

cos
(
ωt+ φ + ΦXhpf

(ω)
)] . (3.35)

Therefore, equation (3.34) has a unique solution for chpf,1 and chpf,2. More precisely, by invoking
(2.3), one obtains(

chpf,1

chpf,2

)
= S−1

hpf

(
ỹhpf

q̃hpf

)
!

= S−1
hpf

(
y
q

)
(3.35)

= 1
AXhpf (ω)

(
cos
(
ΦXhpf

(ω)
)

− sin
(
ΦXhpf

(ω)
)) (3.31)

=

(
1

−ωhpf

ω

)
. (3.36)

Inserting (3.36) into (3.33) yields the matrix in (3.32). This completes the proof.

In conclusion, by using an HPF as a pre�lter to the parallelized esSOGIs, the amplitude and
phase distortions resulting from the HPF can be corrected by the APC. Since every harmonic
component with angular frequency ωi is damped and shifted uniquely, for every estimated har-
monic component, an APC with angular frequency ωi (i.e. Chpf,ωi) is required such that

∀ t ∈ T, ∀ i ∈ {1, . . . , n} :

(
x̃y,i
x̃q,i

)
:= Chpf,i

(
x̂αes,i

x̂βes,i

)
. (3.37)

This also allows the detection of an o�set present in the input signal y, but due to the HPF-
APC structure, not in the corrected output signals. These signals are merged in the vector

33



CHAPTER 3. SIGNAL DECOMPOSITION

x̃ := (x̃y,1, x̃q,1, . . . , x̃y,n, x̃q,n)>. Thus, a subtraction of input and estimated output yields the
detected o�set

∀ t ∈ T : x̃0 = y − c>x̃. (3.38)

Remark 3.2.3. Besides the possibility to detect o�set, an HPF-APC can also be used to suppress
low-order harmonics without the typical amplitude and phase distortions in quasi-steady state.

Remark 3.2.4. Considering a Low Pass Filter (LPF) that can be used solely for pre-�ltering
of high-order harmonics, the derivation of the corresponding matrices C lpf,i is similar as for the
matrices Chpf,i and results in

C lpf,i :=

[
1 − ωi

ωhpf
ωi
ωhpf

1

]
. (3.39)

Its derivation is shown in Appendix C.

Remark 3.2.5. In the matrices Chpf,i and C lpf,i, the actual angular frequencies ωi, if unknown,
must be replaced by the estimated angular frequencies ω̂es,i.

3.2.6 The principle idea of an FLL

This section addresses angular frequency estimation. Therefore, at �rst, the principle idea of a
Frequency Locked Loop (FLL) is reviewed. It is based on quasi-steady state observations. For
these observations, the solutions of the signal estimation error and states of (3.28) in quasi-steady
state are required. More precisely, the impact of every harmonic component comprised in the
input y to the signal estimation error ees,y and the states x̂αes,i and x̂

β
es,i is given by

x̂αes,i =
n∞∑
j=1

ajAXαes,i(ωj) cos
(
ωjt+ φj + ΦXαes,i(ωj)

)
=:

n∞∑
j=1

x̂αes,i,j ,

x̂βes,i =
n∞∑
j=1

ajAXβes,i
(ωj) cos

(
ωjt+ φj + ΦXβes,i

(ωj)
)

=:
n∞∑
j=1

x̂βes,i,j ,

and ees,y =
n∞∑
j=1

ajAEes,y(ωj) cos
(
ωjt+ φj + ΦEes,y(ωj)

)
=:

n∞∑
j=1

ees,y,j .


(3.40)

The amplitude and phase responses with subscript �es� result from (3.21) by replacing all lαs,i by
lαes,i. The principle idea for a FLL is stated in the following proposition.

Proposition 3.2.6 (Sign-correct adaption for the enhanced standard Frequency Locked Loop
over one period). Let i ∈ {1, . . . , n}, ωi > 0 and Ti := 2π

ωi
and νi = µi. Consider system (3.28)

with ω̂es,i > 0 and x̂es,i,i := (x̂αes,i,i, x̂
β
es,i,i)

> and the integral

∀ i ∈ {1, . . . , n} :

t+Ti∫
t

ees,y,i(τ)σ>es,ix̂es,i,i(τ)dτ. (3.41)

Therein, ees,y,i is the component of the signal estimation error with angular frequency ωi and

x̂αes,i,i, x̂
β
es,i,i are components of the i-th states with angular frequency ωi. All signals are assumed

to be in quasi-steady state. Then, the following holds

∀ i ∈ {1, . . . , n} ∀σes,i ∈
{(

κ1

κ2

)
∈ R2

∣∣∣∣κ2l
α
es,i < 0

}
:
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t+Ti∫
t

ees,y,iσ
>
es,ix̂es,i,idτ


≥ 0, ω̂es,1 < ω1

= 0, ω̂es,1 = ω1

≤ 0, ω̂es,1 > ω1.

(3.42)

Moreover, if for any κ ∈ R<0 σes,ν = (0, κ)> is chosen, then the phase angles of ees,y,i and
σ>es,ix̂es,i,i are identical.

Proof. De�ne for all i ∈ {1, . . . , n} σes,i := (σαes,i, σ
β
es,i)

> ∈ R2 and observe that

σ>es,ix̂es,i,i
(3.40)

= σαes,iaiAXαes,i(ωi) cos
(
ωit+ φi + ΦXαes,i(ωi)

)
+ σβes,iaiAXβes,i

(ωi) cos
(
ωit+ φi + ΦXβes,i

(ωi)
)
. (3.43)

Invoking (2.5) it follows

σ>es,ix̂es,i,i
(3.43)

=
[(
σαes,iaiAXαes,i(ωi)

)2
+
(
σβes,iaiAXβes,i

(ωi)
)2

+2σαes,iσ
β
es,ia

2
iAXαes,i(ωi)AXβes,i

(ωi) cos
(

ΦXβes,i
(ωi)− ΦXαes,i(ωi)

)]1
2

· cos

ωit+ φi + ΦXβes,i
(ωi)arctan2

 sin

(
Φ
Xβ
es,i

(ωi)

)

cos

(
Φ
Xβ
es,i

(ωi)

)


+ arctan2

 σαes,iAXαes,i
(ωi) sin

(
ΦXα

es,i
(ωi)−Φ

Xβ
es,i

(ωi)
)

σβes,iAXβ
es,i

(ωi)+σαes,iAXαes,i
(ωi) cos

(
ΦXα

es,i
(ωi)−Φ

Xβ
es,i

(ωi)
)

(3.21)
=

(σαes,i)
2a2
i

ω2
i ω̂

2
es,1(lαes,i)

2
n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2

ρ2es(ωi)+υ
2
es(ωi)

+ (σβes,i)
2a2
i

ω̂2
es,1ω̂

2
es,i(l

α
es,i)

2
n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2

ρ2es(ωi)+υ
2
es(ωi)

+2σαes,iσ
β
es,ia

2
i

ωiω̂
2
es,1ω̂es,i(l

α
es,i)

2
n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2

ρ2es(ωi)+υ
2
es(ωi)

cos
(

ΦXβes,i
(ωi)− ΦXαes,i(ωi)

)
1
2

· cos

ωit+ φi + ΦXβes,i
(ωi)arctan2

 sin

(
arctan2

(
−υes(ωi)
ρes(ωi)

))
cos

(
arctan2

(
−υes(ωi)
ρes(ωi)

))


+ arctan2

 σαes,iωi sin

(
ΦXα

es,i
(ωi)−Φ

Xβ
es,i

(ωi)

)

σβes,iω̂es,i+σαes,iωi cos

(
ΦXα

es,i
(ωi)−Φ

Xβ
es,i

(ωi)

)



(3.21)
=

ail
α
es,iω̂es,1

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

√
ρ2es(ωi)+υ

2
es(ωi)

[
(σαes,i)

2ω2
i + (σβes,i)

2ω̂2
es,i

+2σαes,iσ
β
es,iωiω̂es,i cos

(
arctan2

(
−υes(ωi)
ρes(ωi)

)
− arctan2

(
ρes(ωi)
υes(ωi)

))]
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· cos

ωit+ φi + arctan2
(
−υes(ωi)
ρes(ωi)

)
arctan2

 sin

(
arctan2

(
−υes(ωi)
ρes(ωi)

))
cos

(
arctan2

(
−υes(ωi)
ρes(ωi)

))


+ arctan2

 σαes,iωi sin

(
arctan2

(
ρes(ωi)
υes(ωi)

)
−arctan2

(
−υes(ωi)
ρes(ωi)

))
σβes,iω̂es,i+σαes,iωi cos

(
arctan2

(
ρes(ωi)
υes(ωi)

)
−arctan2

(
−υes(ωi)
ρes(ωi)

))


(2.6)
=

ail
α
es,iω̂es,1

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

√
ρ2es(ωi)+υ

2
es(ωi)

[
(σαes,i)

2ω2
i + (σβes,i)

2ω̂2
es,i

+2σαes,iσ
β
es,iωiω̂es,i cos

(
arctan2

(
−υ2es(ωi)−ρ2es(ωi)

0

))]1
2

· cos

ωit+ φi + arctan2
(
−υes(ωi)
ρes(ωi)

)
arctan2

 sin

(
arctan2

(
−υes(ωi)
ρes(ωi)

))
cos

(
arctan2

(
−υes(ωi)
ρes(ωi)

))


+ arctan2

 σαes,iωi sin

(
arctan2

(
ρ2es(ωi)+υ

2
es(ωi)

0

))
σβes,iω̂es,i+σαes,iωi cos

(
arctan2

(
ρ2es(ωi)+υ

2
es(ωi)

0

))


(2.7)
=

ail
α
es,iω̂es,1

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

√
ρ2es(ωi)+υ

2
es(ωi)

· cos

(
ωit+ φi + arctan2

(
−υes(ωi)
ρes(ωi)

)
+ arctan2

(
σαes,iωi

σβes,iω̂es,i

))

(2.6)
=

ail
α
es,iω̂es,1

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

√
ρ2es(ωi)+υ

2
es(ωi)

· cos

(
ωit+ φi + arctan2

(
σαes,iωiρes(ωi)−σ

β
es,iω̂es,iυes(ωi)

σαes,iωiυes(ωi)+σ
β
es,iω̂es,iρes(ωi)

))
. (3.44)

Now, multiplying σ>es,ix̂es,i,i and ees,y,i yields

ees,y,iσ
>
es,ix̂es,i,i

(3.40),(3.44)
= aiAEes,y(ωi) cos

(
ωit+ φi + ΦEes,y(ωi)

)
·

ail
α
es,iω̂es,1

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

√
ρ2es(ωi)+υ

2
es(ωi)

· cos

(
ωit+ φi + arctan2

(
σαes,iωiρes(ωi)−σ

β
es,iω̂es,iυes(ωi)

σαes,iωiυes(ωi)+σ
β
es,iω̂es,iρes(ωi)

))

(3.21)
=

a2i l
α
es,iω̂es,1(ω̂2

es,i−ω2
i )

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

ρ2es(ωi)+υ
2
es(ωi)

· cos
(
ωit+ φi + arctan2

(
−υes(ωi)
ρes(ωi)

))
· cos

(
ωit+ φi + arctan2

(
σαes,iωiρes(ωi)−σ

β
es,iω̂es,iυes(ωi)

σαes,iωiυes(ωi)+σ
β
es,iω̂es,iρes(ωi)

))
.abcde(3.45)
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Solving the integral (3.41) over one period Ti = 2π
ωi

yields

t+
2π
ωi∫

t

ees,y,iσ
>
es,ix̂es,i,idτ

(3.45)
=

a2i l
α
es,iω̂es,1(ω̂2

es,i−ω2
i )

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

ρ2es(ωi)+υ
2
es(ωi)

·

t+
2π
ωi∫

t

cos
(
ωiτ + φi + arctan2

(
−υes(ωi)
ρes(ωi)

))
· cos

(
ωiτ + φi + arctan2

(
σαes,iωiρes(ωi)−σ

β
es,iω̂es,iυes(ωi)

σαes,iωiυes(ωi)+σ
β
es,iω̂es,iρes(ωi)

))
dτ

(2.8)
=

a2i l
α
es,iω̂es,1(ω̂2

es,i−ω2
i )

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

ρ2es(ωi)+υ
2
es(ωi)

· πωi cos

(
arctan2

(
σαes,iωiρes(ωi)−σ

β
es,iω̂es,iυes(ωi)

σαes,iωiυes(ωi)+σ
β
es,iω̂es,iρes(ωi)

)
− arctan2

(
−υes(ωi)
ρes(ωi)

))

(2.6)
=

a2i l
α
es,iω̂es,1(ω̂2

es,i−ω2
i )

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2
√

(σαes,i)
2ω2
i+(σβes,i)

2ω̂2
es,i

ρ2es(ωi)+υ
2
es(ωi)

· πωi cos

(
arctan2

(
σαes,iωi

σβes,iω̂es,i

))
(2.4),(3.5)

=

πa2i l
α
es,iσ

β
es,iµ

2
i ω̂

2
es,1(ω̂2

es,1−ω2
1)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
i )

2

ω1(ρ2es(ωi)+υ
2
es(ωi))

. (3.46)

Since ωi > 0, observe that only ω̂2
es,1 − ω2

1 can change its sign in (3.46). All other terms of the

nominator and denominator, except for lαes,iσ
β
es,i, are non-negative. Hence, for σ

β
es,il

α
es,i < 0 what,

due to les,i > 0 (cf. Section 3.2.1) implies σβes,ν < 0, the following condition is satis�ed

∀σes,i ∈
{(

κ1

κ2

)
∈ R2

∣∣∣∣κ2l
α
es,i < 0

}
:

t+Ti∫
t

ees,y,iσ
>
es,ix̂es,i,idτ


≥ 0, ω̂es,1 < ω1

= 0, ω̂es,1 = ω1

≤ 0, ω̂es,1 > ω1.

This proves assertion (3.42). Moreover, for all κ < 0 and if and only if σes,i = (0, κ)>, the phase
angle of σ>es,ix̂es,i,i is given by

Φσ>es,ix̂es,i,i

(3.44)
= arctan2

(
σαes,iω1ρes(ωi)−σβes,iω̂es,1υes(ωi)

σαes,iω1υes(ωi)+σ
β
es,iω̂es,1ρes(ωi)

)
σes,i=(0, κ)>

= arctan2
(
−υes(ωi)
ρes(ωi)

)
(3.21)

= ΦEes,y(ωi).

This completes the proof.

Remark 3.2.7. In Proposition 3.2.6, the expression
∫ t+Ti
t ees,y,iσ

>
es,ix̂es,i,idτ was investigated.

However, in view of implementation, only the expression
∫ t+Ti
t ees,yσ

>
es,ix̂es,idτ can be evaluated.

In the case of higher orders n ≥ 2, or if Hn 6= H∞, this integral can be split up into terms∫ t+Ti
t ees,y,iσ

>
es,ix̂es,i,idτ with νi = µi (which, according to Proposition 3.2.6, are helpful) and
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others, e.g.
∫ t+Ti
t ees,y,jσ

>
es,ix̂es,i,jdτ . The aim of this Remark is to cover these and to show their

in�uence. For any T ∈ R, they are given in general by

∀h, i, j ∈ {1, . . . , n} :

t+T∫
t

ees,y,hσ
>
es,ix̂es,i,jdτ.

Repeating the procedure described in the proof for Proposition 3.2.6 up to (3.45) and assuming
ωh > ωj, the integral expression with T = 2π

ωh−ωj follows as

t+
2π

ωh−ωj∫
t

ees,y,hσ
>
es,ix̂es,i,jdτ

(3.45)
=

ahaj l
α
es,iω̂es,1

n∏
k=1

(ω̂2
es,k−ω

2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
j )
√

(σαes,i)
2ω2
j+(σβes,i)

2ω̂2
es,j

√
ρ2es(ωh)+υ2es(ωh)

√
ρ2es(ωj)+υ

2
es(ωj)

·

t+
2π

ωh−ωj∫
t

cos
(
ωhτ + φh + arctan2

(
−υes(ωh)
ρes(ωh)

))
· cos

(
ωjτ + φj + arctan2

(
σαes,iωjρes(ωj)−σ

β
es,iω̂es,jυes(ωj)

σαes,iωjυes(ωj)+σ
β
es,iω̂es,jρes(ωj)

))
dτ

(2.8)
=

ahaj l
α
es,iω̂es,1

n∏
k=1

(ω̂2
es,k−ω

2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
j )
√

(σαes,i)
2ω2
j+(σβes,i)

2ω̂2
es,j

√
ρ2es(ωh)+υ2es(ωh)

√
ρ2es(ωj)+υ

2
es(ωj)

·

 sin

(
φh+φj+(ωh+ωj)

(
t+

2π
ωh−ωj

)
+arctan2

(
−υes(ωh)
ρes(ωh)

)
+arctan2

(
σαes,iωjρes(ωj)−σ

β
es,iω̂es,jυes(ωj)

σαes,iωjυes(ωj)+σ
β
es,iω̂es,jρes(ωj)

))
2(ωh+ωj)

−
sin

(
φh+φj+(ωh+ωj)t+arctan2

(
−υes(ωh)
ρes(ωh)

)
+arctan2

(
σαes,iωjρes(ωj)−σ

β
es,iω̂es,jυes(ωj)

σαes,iωjυes(ωj)+σ
β
es,iω̂es,jρes(ωj)

))
2(ωh+ωj)


(2.6)
=

ahaj l
α
es,iω̂es,1

n∏
k=1

(ω̂2
es,k−ω

2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
j )
√

(σαes,i)
2ω2
j+(σβes,i)

2ω̂2
es,j

√
ρ2es(ωh)+υ2es(ωh)

√
ρ2es(ωj)+υ

2
es(ωj)

·
sin

(
φh+φj+(ωh+ωj)

(
t+

2π
ωh−ωj

)
+δ

)
−sin
(
φh+φj+(ωh+ωj)t+δ

)
2(ωh+ωj)

(2.3)
=

ahaj l
α
es,iω̂es,1

n∏
k=1

(ω̂2
es,k−ω

2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
j )
√

(σαes,i)
2ω2
j+(σβes,i)

2ω̂2
es,j

√
ρ2es(ωh)+υ2es(ωh)

√
ρ2es(ωj)+υ

2
es(ωj)

·

 sin

(
φh+φj+(ωh+ωj)

(
t+

2π
ωh−ωj

))
cos(δ)+cos

(
φh+φj+(ωh+ωj)

(
t+

2π
ωh−ωj

))
sin(δ)

2(ωh+ωj)

− sin
(
φh+φj+(ωh+ωj)t

)
cos(δ)+cos

(
φh+φj+(ωh+ωj)t

)
sin(δ)

2(ωh+ωj)

)
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(2.4)
=

ahaj l
α
es,iω̂es,1

n∏
k=1

(ω̂2
es,k−ω

2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
j )

(ρ2es(ωh)+υ2es(ωh))(ρ2es(ωj)+υ
2
es(ωj))

·
(
σαes,iωj(ρes(ωh)υes(ωj)+υes(ωh)ρes(ωj))+σ

β
es,iω̂es,j(ρes(ωh)ρes(ωj)−υes(ωh)υes(ωj))

2(ωh+ωj)

·

(
sin
(
φh + φj + (ωh + ωj)

(
t+ 2π

ωh−ωj

))
− sin

(
φh + φj + (ωh + ωj) t

))

+
σαes,iωj(ρes(ωh)ρes(ωj)−υes(ωh)υes(ωj))−σβes,iω̂es,j(ρes(ωh)υes(ωj)+υes(ωh)ρes(ωj))

2(ωh+ωj)

·

(
cos
(
φh + φj + (ωh + ωj)

(
t+ 2π

ωh−ωj

))
− cos

(
φh + φj + (ωh + ωj) t

)))
(3.47)

wherein

δ = arctan2

(
σαes,iωj(ρes(ωh)ρes(ωj)−υes(ωh)υes(ωj))−σβes,iω̂es,j(ρes(ωh)υes(ωj)+υes(ωh)ρes(ωj))

σαes,iωj(ρes(ωh)υes(ωj)+υes(ωh)ρes(ωj))+σ
β
es,iω̂es,j(ρes(ωh)ρes(ωj)−υes(ωh)υes(ωj))

)
.

From this expression, no tendency is recognizable. Assuming ωh = ωj instead what implies
φh = φj, ah = aj and µi 6= νj, the result for T = 2π

ωh
is obtained as

t+
2π
ωh∫

t

ees,y,hσ
>
es,ix̂es,i,hdτ

(3.45)
=

a2hl
α
es,iω̂es,1(ω̂2

es,i−ω2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
h)

2
√

(σαes,i)
2ω2
h+(σβes,i)

2ω̂2
es,h

ρ2es(ωh)+υ2es(ωh)

·

t+
2π
ωh∫

t

cos
(
ωhτ + φh + arctan2

(
−υes(ωh)
ρes(ωh)

))
· cos

(
ωhτ + φh + arctan2

(
σαes,iωhρes(ωh)−σβes,iω̂es,hυes(ωh)

σαes,iωhυes(ωh)+σβes,iω̂es,hρes(ωh)

))
dτ

(2.8)
=

a2hl
α
es,iω̂es,1(ω̂2

es,i−ω2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
h)

2
√

(σαes,i)
2ω2
h+(σβes,i)

2ω̂2
es,h

ρ2es(ωh)+υ2es(ωh)

· πωh cos

(
arctan2

(
−υes(ωh)
ρes(ωh)

)
− arctan2

(
σαes,iωhρes(ωh)−σβes,iω̂es,hυes(ωh)

σαes,iωhυes(ωh)+σβes,iω̂es,hρes(ωh)

))

(2.6)
=

πa2hl
α
es,iω̂es,1(ω̂2

es,i−ω2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
h)

2
√

(σαes,i)
2ω2
h+(σβes,i)

2ω̂2
es,h

ωh(ρ2es(ωh)+υ2es(ωh))
cos

(
arctan2

(
−σαes,iωh
σβes,iω̂es,h

))

(2.4)
=

πa2hσ
β
es,il

α
es,iω̂es,1ω̂es,h(ω̂2

es,i−ω2
h)

n∏
k=1
k 6=i

(ω̂2
es,k−ω

2
h)

2

ωh(ρ2es(ωh)+υ2es(ωh))
. (3.48)

Since all factors are positive except for σβes,il
α
es,i < 0 and

ω̂2
es,i − ω2

h

(3.5)
= µ2

i

(
ω̂2

es,1 −
ν2h
µ2i
ω2

1

)
,
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it follows

∀σes,i ∈
{(

κ1

κ2

)
∈ R2

∣∣∣∣κ2l
α
es,i < 0

}
:

t+
2π
ωh∫

t

ees,y,hσ
>
es,ix̂es,i,hdτ


≥ 0, ω̂es,1 <

νh
νi
ω1

= 0, ω̂es,1 = νh
νi
ω1

≤ 0, ω̂es,1 >
νh
νi
ω1.

(3.49)

Note that this counteracts the desired goal.
In conclusion, although the statement of Proposition 3.2.6 suggests that for each i-th component to
be estimated, a vector σes,i should be multiplied by the respective states, this is counterproductive
due to (3.49). To illustrate this, consider the following example. Assume that an input signal
contains more than one harmonic component, e.g.

∀ t ≥ t0 : y = a1 cos(ω1t+ φ1) + a2 cos(ω2t+ φ2)

where the fundamental amplitude a1 dominates a2. This signal shall be estimated by parallelized
esSOGIs. Assume that the parallelized esSOGIs have appropriate orders Hn = H∞ = {1, ν}
but are initialized with a wrong reference angular frequency ω̂es,1 6= ω1. Consequently, the signal

estimation error ees,y as well as the parallelized esSOGIs states x̂αes,i, x̂
β
es,i contain all angular

frequency components included in the input signal (in the quasi-stationary state). Now, if all
parallelized esSOGI states are weighted by σes,i and multiplied by the signal estimation error, for
the given example this would result in

ees,y

(
σ>es,1x̂es,1 + σ>es,2x̂es,2

)
(3.40)

= ees,y,1σ
>
es,1x̂es,1,1 + ees,y,1σ

>
es,1x̂es,1,2 + ees,y,1σ

>
es,2x̂es,2,1

+ ees,y,1σ
>
es,2x̂es,2,2 + ees,y,2σ

>
es,1x̂es,1,1 + ees,y,2σ

>
es,1x̂es,1,2 + ees,y,2σ

>
es,2x̂es,2,1 + ees,y,2σ

>
es,2x̂es,2,2.

As investigated above, only the terms ees,y,1σ
>
es,1x̂es,1,1 and ees,y,2σ

>
es,2x̂es,2,2 help �nding the cor-

rect estimate of the angular frequency (cf. (3.46)). Meanwhile, the terms ees,y,1σ
>
es,2x̂es,2,1 and

ees,y,ω2σ
>
es,1x̂es,1,2 disturb the correct estimation (cf. (3.48)). For all other terms, their contribu-

tion is unclear (cf. (3.47)). Hence, the following sum dominates the angular frequency adaption

ees,y,1σ
>
es,1x̂es,1,1 + ees,y,1σ

>
es,2x̂es,2,1

(3.46),(3.48)
=

πa21ω̂
2
es,1

(
lαes,1σ

β
es,1ν

4(ω̂2
es,1−ω2

1)
(
ω̂2
es,1−

ω21
ν2

)2

+lαes,2σ
β
es,2ν

2

(
ω̂2
es,1−

ω21
ν2

)
(ω̂2

es,1−ω2
1)

2

)
ω1(ρ2es(ω1)+υ2es(ω1))

.

It has three equilibria: (i) ω̂es,1 = ω1, (ii) ω̂es,1 = ω1
ν and (iii) ω̂es,1 =

√
lαes,1σ

β
es,1+lαes,2σ

β
es,2

lαes,1σ
β
es,1ν

2+lαes,2σ
β
es,2

ω1.

Therefore, considering all states x̂es,i weighted by σes,i does not lead to a correct estimate of the
angular frequency. In contrast, if the adaption considers only the fundamental components (with
highest amplitude), the result for the angular frequency derivative would be

ees,yσ
>
es,1x̂es,1

(3.40)
= ees,y,1σ

>
es,1x̂es,1,1 + ees,y,1σ

>
es,1x̂es,1,2 + ees,y,2σ

>
es,1x̂es,1,1 + ees,y,2σ

>
es,1x̂es,1,2.

Although this expression still includes an disturbing term ees,y,2σ
>
es,1x̂es,1,2, its impact can be

neglected when a2 is assumed to be signi�cantly smaller than a1. Then, the fundamental term
ees,y,1σ

>
es,1x̂es,1,1 dominates and, hence, leads to a correct estimate of the angular frequency ω̂es,1.

Thus, the following adaption law for the enhanced standard Frequency Locked Loop (esFLL) is
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proposed:
∀ t ∈ Ti : d

dt ω̂es,1 = γesees,yσ
>
es,1x̂es,1, ω̂es,1(ti) = ω̂es,1,ti (3.50)

with some angular frequency gain γes > 0.

3.2.7 Gain normalization and output saturation for the esFLL

Now that the angular frequency adaption of the esFLL has been investigated, the Gain Normal-
ization (GN) for the esFLL is introduced. Its purpose is to normalize the performance of angular
frequency adaption with respect to the input signal. A common way to design a GN is to cancel
the in�uence of the input signal's amplitude by the respective estimated amplitude as reported
in [515]. Accordingly, the angular frequency adaption law is

∀ t ∈ Ti : d
dt ω̂es,1 =

Γesω̂es,1ees,yσ>es,1x̂es,1

max(‖x̂es,1‖2, εes)
, ω̂es,1(ti) = ω̂es,1,ti (3.51)

with some Γes > 0 and εes > 0. Hereby, the constant εes serves as a lower limit for the estimated
amplitude to avoid division by zero. However, it is derived by using linearizations as reported
in [516]. A variation of this GN-method is found in [476]:

∀ t ∈ Ti : d
dt ω̂es,1 =

Γesees,yσ>es,1x̂es,1

max(‖x̂es,1‖2, εes)
, ω̂es,1(ti) = ω̂es,1,ti . (3.52)

Both methods do not normalize the angular frequency adaption with respect to the input angular
frequency. In fact, the settling time is non-linear dependent on the input angular frequency as will
be shown later. To resolve this issue, a total normalization considering amplitude and angular
frequency normalization is proposed. According to Claim 2.7 and assuming that y has the unit
U(y) = U, it follows

U(γes) = 1
U2s2

=⇒ γes =
ω̂2
es,1

max(‖x̂es,1‖2, εes)
Γes, U(Γes) = 1.

This results in the proposed angular frequency adaption law

∀ t ∈ Ti : d
dt ω̂es,1 =

Γesω̂2
es,1ees,yσ

>
es,1x̂es,1

max(‖x̂es,1‖2, εes)
, ω̂es,1(ti) = ω̂es,1,ti . (3.53)

To show the e�ectiveness of the proposed GN, comparative simulations are made rating the
performances of three overall systems (esSOGI and esFLL). Such an overall system is called
enhanced standard Frequency Adaptive Observer (esFAO). Each of the three FAOs uses one of
the mentioned GNs. In these simulations, the FAOs are fed by an input signal whose angular
frequency is varied over a wide range. For each tested angular frequency, (i) the sampling and
simulation time is adapted to the respective input angular frequency such that every test uses
an equal amount of samples and (ii) the performances of the FAOs are analyzed in terms of the
normlized settling time tset,n. The normalized settling time indicates how much oscillations of
the input signal are needed for the estimated angular frequencies to reach and stay within the
1%-band around the reference angular frequency. More precisely, it is de�ned as

∀ t ≥ 2π
ω1
tset,n ∧ @ t < 2π

ω1
tset,n : 0.99ω1 ≤ ω̂es,1 ≤ 1.01ω1. (3.54)

Additionally, to incorporate dependencies from initializations, two di�erent initial values for the
estimated angular frequencies are used: ω̂es,1,ti ∈ {0.5ω1, 1.5ω1}. Figure 3.107 illustrates the

7Simulations parameters: Number of Samples = 400000, ω1 ∈
{

2π10 rad
s
, 2π15 rad

s
, . . . , 2π200 rad

s

}
, y =

cos(ω1t), Solver: ode4. les = (2, 0)>, σes,1 = (0, −2)>, εes = 0.01. All initial values (except for the angular
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simulation results.

Figure 3.10: Comparison of di�erent Gain Normalizations in view of the normed settling time tset that
is plotted against the input angular frequency ω1; (3.51): , (3.52): , (3.53): .

As can be seen from the left and right plot in Figure 3.10, for the known GN methods ((3.51):
and (3.52): ), the normalized settling times depend on the reference angular frequency. This
does not hold true for the proposed GN method ((3.53): ) that is constant in the investigated
angular frequency range. However, it also can be seen that the settling time is dependent on the
chosen initial values for all investigated GN methods. For some frequencies (where tset,n = 20),
(3.52) ( ) is not able to estimate the correct angular frequency within the given time frame
and for ω1 ∈

{
2π10 rad

s , . . . 2π25 rad
s

}
, it even diverges.

Thus, (3.53) is the best choice for an adaption law for the angular frequency ω̂es,1. Nevertheless,
it is based on quasi-steady state observations. The quasi-steady state only can be reached, if the
linear system (3.28) is stable. This is the case, if the estimated angular frequency is positive8.
Thus, it must be kept positive which is achieved by an output saturation (OS). In detail, the
OS limits the estimated angular frequency to lower and upper bounds 0 < ωes,1 < ωes,1, resp.
To distinguish between the estimated and the saturated angular frequency, the estimated one is
referred to as ω̂es,1 and the saturated one as ω̂′es,1. The resulting angular frequency estimation is
illustrated in Figure 3.11.

esFLL

σ>es,1x̂es,1

max(‖x̂es,1‖2,εes)
× Γes

∫
ωes,1

ωes,1

(·)2

x̂es,1

ees,y

ω̂es,1
ω̂′es,1

Figure 3.11: Block diagram of the esFLL.

3.2.8 Summary and stability proof of the esFAO

In this section, the overall system consisting of HPF, parallelized esSOGIs, esFLL and APC,
called the enhanced standard Frequency Adaptive Observer (esFAO) is summarized. Its mathe-

frequency) are 0.
8All eigenvalues of Aes are multiples of the estimated angular frequency.
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matical representation is given by

∀ t ∈ Ti :

d
dtxhpf = −ωhpfxhpf + ωhpfy, xhpf(ti) = xhpf,ti ,
yhpf = −xhpf + y
d
dt x̂es = ω̂es,1Aesx̂es + ω̂es,1lesyhpf , x̂es(ti) = x̂es,ti ,

d
dt ω̂
′
es,1 =

Γesω̂′
2

es,1ees,yσ
>
es,1x̂es,1

max(‖x̂es,1‖2, εes)
, ω̂′es,1(ti) = ω̂′es,1,ti

,

ω̂es,1 = sat
ωes,1
ωes,1

(
ω̂′es,1

)
,

x̃es = blkdiag
1,...,n

(
Chpf,i

)
x̂es,

ỹes = c>x̃es,
x̃es,0 = y − ỹes.



(3.55)

Its block diagram is illustrated in Figure 3.12.

HPF
(3.29)

esSOGI
(3.28)

esFLL
(3.53)

APC
(3.37) c>x̃es

Σ

y
yhpf x̂es x̃es

ỹes

x̃es,0

−

ω̂′es,1

Figure 3.12: Block diagram of the esFAO.

To evaluate the esFAO's performance, the test signals introduced in (3.12) and shown in Figure
3.2 are processed by the esFAO. The results are shown in Figure 3.139.
Firstly note that, although one estimate for each of the angular frequencies comprised in the
input signal is shown, the esFLL only estimates the fundamental one. The other results from
this fundamental one by multiplication (and is not estimated). In the case of correctly assumed
harmonic orders H∞ = Hn, the esFAO settles down within 78.2 ms (ytest,N ) and 86.2 ms (ytest,N )
where (3.54) was evaluated in view of the estimated angular frequency ω̂′es,1. If the actual
harmonic orders H∞ do not match the assumed ones Hn (ytest,Q, ytest,Q ), the esFAO fails to
estimate all parameters satisfactory. However, it still is able to give a rough estimate of the
fundamental angular frequency ω1.
In the following, a stability proof is presented. Note that the HPF is stable for all ωhpf > 0,
which therefore is neglected in the proof.

Theorem 3.2.8 (Bounded-input bounded-state/bounded-output stability of the dynamics of the
esFAO). Consider an essentially bounded input signal, i.e. yhpf ∈ L∞(R≥0;R) and assume that
(i) the estimated fundamental angular frequency is continuous, bounded and uniformly bounded
away from zero by ωes,1 ≥ ω̂′es,1 ≥ ωes,1 > 0, i.e. ω̂′es,1 ∈ L∞

(
R≥0;

[
ωes,1, ωes,1

])
and (ii) the system

matrix Aes in (3.28) is a Hurwitz matrix. Then, the time-varying system (3.28) is bounded-input
bounded-state/bounded-output stable, i.e.

∀ t ∈ Ti : ∃ ces, c̃es > 0: ‖x̂es‖ ≤ ces and |ŷes| ≤ c̃es.

9Simulation parameters (in addition to Footnote 1): Hn = {1, 2}, ωhpf = 2π500, les = (0.667, 0, 1.328, 0)>,
Γes = 0.375, σes,1 = (0, −0.667)>, εes = 10−5, ωes,1 = 2π35, ωes,1 = 2π65.
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ytest,N

ytest,N

ytest,Q

ytest,Q

Figure 3.13: Continuation of Figure 3.2. O�set, amplitudes and frequencies of the test signals esti-
mated/detected by the esFAO ( ).

Proof. Since Aes is Hurwitz, Fact 2.8 holds, which implies the existence of symmetric matrix
0 < P es ∈ R2n×2n. Next, consider the nonnegative Lyapunov-like function

Ves : R2n → R≥0, x̂es 7→ Ves(x̂es) := x̂>esP esx̂es.

The right-hand side of (3.28) is locally Lipschitz continuous with bounded Lipschitz constant
and bounded exogenous perturbation. Hence, the solution of (3.28) exists globally on R≥0 [577,
Theorem 2.2.14 & Proposition 2.2.19] (but still might diverge as t → ∞). The time derivative
of Ves along the solution of (3.28) is, for all t ≥ ti, given and upper bounded by

d
dtVes(x̂es) = d

dt x̂
>
esP esx̂es + x̂>esP es

d
dt x̂es

(3.19)
= ω̂′es,1

[
x̂>es(A

>
esP es + P esAes)x̂es + 2x̂>esP eslesyhpf

]
(2.14)

= ω̂′es,1

[
−x̂>esQesx̂es + 2x̂>esP eslesyhpf

]
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(2.16)

≤ ω̂′es,1

[
−λmin(Qes) ‖x̂es‖2 + 2 ‖x̂es‖︸ ︷︷ ︸

=: a

‖P es‖ ‖les‖ ‖yhpf‖∞︸ ︷︷ ︸
=: b

]
(2.15)

≤ ω̂′es,1

[
−
(
λmin(Qes)− 1

m

)︸ ︷︷ ︸
∃m≥1 s.t. (·)≥εes,m>0

‖x̂es‖2 +m ‖P es‖2 ‖les‖2 ‖yhpf‖2∞︸ ︷︷ ︸
=: ces,m<∞

]
(2.16)

≤ − εes,mωes,1

λmax(P es)
Ves(x̂es) + ces,mωes,1

(2.17)
=⇒ Ves(x̂es) ≤ Ves(x̂es,ti) + 2ces,mωes,1

λmax(P es)
εes,mωes,1

. (3.56)

Hence, in view of Fact 2.9 and (3.56), and with c as in (3.4), one can conclude that

∀ t ∈ Ti : ‖x̂es‖ ≤
√

1
λmin(P es)

(
Ves(x̂es,ti) + 2ces,mωes,1

λmax(P es)
εes,mωes,1

)
=: ces <∞

and |ŷes|
(3.19)

≤ ‖c‖ ‖x̂es‖ ≤ ‖c‖ ces =: c̃es <∞.

This completes the proof.

Theorem 3.2.9 (Boundedness and exponential decrease of the signal estimation error of the
esFAO). Let ωes,1 ≥ ω̂′es,1 ≥ ωes,1 > 0 be bounded. Consider any continuous and bounded input
signal, i.e. yhpf ∈ C(R≥0;R>0) ∩ L∞(R≥0;R) and assume that yhpf is fed to the parallelized
esSOGIs (3.19) with Aes being a Hurwitz matrix. Then, the signal estimation error, de�ned by

∀ t ∈ Ti : ees := x− x̂es (3.57)

with x as in (3.4) and x̂es as in (3.19), is bounded, i.e. there exists ces,e > 0 such that ‖ees‖ ≤ ces,e

for all t ≥ ti. Moreover, if ω1 = ω̂′es,1 and H∞ = Hn for all t ≥ ti, then the norm of the signal
estimation error is exponentially decreasing, i.e. there exist constants ces,V , µes,V > 0 such that

∀ t ∈ Ti : ‖ees‖ ≤ ces,V ‖ees,ti‖ e−µes,V
t−ti
2 .

Proof. First, de�ne the angular frequency error as

ees,ω := ω1 − ω̂′es,1 (3.58)

and the estimation error vector as
ees := x− x̂es. (3.59)

Next, evaluating the time derivative of the signal estimation error vector yields

d
dtees

(3.4),(3.19)
= ω1Nx− ω̂′es,1

(
N − lesc

>
)
x̂es − ω̂′es,1lesyhpf

(3.58),(3.59)
= ees,ωNx+ ω̂′es,1Nees − ω̂′es,1lesc

>ees

(3.19)
= ees,ωNx+ ω̂′es,1Aesees. (3.60)

Now, the time derivative of the Lyapunov-like function Ves = e>esP esees (with P es as introduced
in Theorem 3.2.8) is given for all t ≥ ti, along the solution of (3.60), as follows

d
dtVes(ees) = d

dte
>
esP esees + e>esP es

d
dtees

45



CHAPTER 3. SIGNAL DECOMPOSITION

(3.60)
= ω̂′es,1e

>
es

(
A>esP es + P esAes

)
ees + 2ees,ωe

>
esP esNx

(2.14)
= −ω̂′es,1e

>
esQesees + 2ees,ωe

>
esP esNx

(2.16)

≤ −ω̂′es,1λmin(Qes) ‖ees‖2 + 2
√
ω̂′es,1 ‖ees‖︸ ︷︷ ︸

=: a

‖ees,ω‖∞√
ω̂′es,1

‖P es‖ ‖N‖ ‖x‖∞︸ ︷︷ ︸
=: b

(2.15)

≤ −ω̂′es,1

(
λmin(Qes)− 1

m

)︸ ︷︷ ︸
∃m≥1 s.t. (·)≥ε′es,m>0

‖ees‖2 +
‖ees,ω‖2∞
ω̂′es,1

m ‖P es‖2 ‖N‖2 ‖x‖2∞︸ ︷︷ ︸
=: c′es,m<∞

(2.16)

≤ − ε′es,mωes,1

λmax(P es)︸ ︷︷ ︸
=:µes,V >0

Ves(ees) +
‖ees,ω‖2∞
ωes,1

c′es,m

(2.17)
=⇒ Ves(ees) ≤ Ves(ees,ti)e

−µes,V (t−ti) +
‖ees,ω‖2∞
ωes,1

c′es,m

∫ t

ti

e−µes,V (t−τ)dτ. (3.61)

Hence,

∀ t ∈ Ti : ‖ees‖2 ≤ 1
λmin(P es)

[
Ves(ees,ti)e

−µes,V (t−ti) +
‖ees,ω‖2∞
ωes,1

c′es,m

∫ t

ti

e−µes,V (t−τ)dτ
]

(2.16)

≤ λmax(P es)
λmin(P es)︸ ︷︷ ︸
=: c2es,V >0

‖ees,ti‖
2 e−µes,V (t−ti) +

‖ees,ω‖2∞c
′
es,m

ωes,1λmin(P es)

∫ t

ti

e−µes,V (t−τ)dτ := ces,e <∞, (3.62)

and clearly, for all t ∈ Ti where ees,ω = 0 and Hn = H∞, the estimation error decreases expo-
nentially. This completes the proof.

3.3 The modi�ed Frequency Adaptive Observer and the modi�ed
Frequency Adaptive Observer with o�set

In the previous section, we have seen that the parallelized esSOGIs are able to estimate the direct
and quadrature signals generated by the internal model (3.4). The main disadvantage of the
parallelized esSOGIs was found in a signi�cant limitation of its estimation speed. To tackle this
problem, this section discusses a more general type of SOGI that is based on a Luenberger-like
observer. The basic idea in this context is to construct an observer for (3.4) (which was published
by the author in [571]), called the modi�ed Second Order Generalized Integrator (mSOGI). As
the esSOGI, the mSOGI requires an estimate of the angular frequency. It is provided by the
modi�ed Frequency Locked Loop (mFLL). The overall system (mSOGI and mFLL) is called
the modi�ed Frequency Adaptive Observer (mFAO). Additionally, an extension for estimating
o�set is proposed where the respective observer is based on (3.8) (which was published by the
author in [572]). The respective components modi�ed Second Order Generalized Integrator with
o�set (mSOGI ) and modi�ed Frequency Locked Loop with o�set (mFLL ) construct the modi�ed
Frequency Adaptive Observer with o�set (mFAO ).
This section is structured as follows:

Section 3.3.1 proves the observability of (3.4) and (3.8),

Section 3.3.2 constructs observers for (i) (3.4) (mSOGI) and (ii) (3.8) (mSOGI ),

Section 3.3.3 discusses the feedback gain selection for these observers,

46
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Section 3.3.4 describes the angular frequency estimation including advanced stabilization mech-
anisms, and

Section 3.3.5 summarizes and proves the stability of the overall systems.

3.3.1 Observability

As mentioned above, the goal of this section is to construct an observer based estimation system.
Hereby, the systems to be observed are given in (3.4) and (3.8). Therefore, the �rst step is to
check observability. This is stated in the following proposition.

Proposition 3.3.1 (Observability of generation systems (3.4) and (3.8)). Let J , J , c, c be
as in (3.4) or (3.8), respectively. Then, if and only if ω1 6= 0 and H∞ ⊆ R \ {0} where for all
νi, νj ∈ H∞, i 6= j, it holds that |νi| 6= |νj |, the systems (c>,J) and (c>,J ) are observable.

Proof. Note that the following is true:

∀ l ∈ Z : J̃
l (3.3)

=

(−1)
l−1
2 J̃ , l odd

(−1)
l
2 I2, l even

. (3.63)

Testing the pair (c>,J) for observability [574, Sec. 2.3.1] yields that

O(ω) :=


c>

c>J(ω)
...

c>J2n∞−2(ω)
c>J2n∞−1(ω)


(3.6)
=


c>

ω1c
>N
...

ω2n∞−2
1 c>N2n∞−2

ω2n∞−1
1 c>N2n∞−1



=



c>

ω1c
> blkdiag

1,...,n∞

(
νiJ̃
)

...

ω2n∞−2
1 c> blkdiag

1,...,n∞

(
ν2n∞−2
i J̃

2n∞−2)
ω2n∞−1

1 c> blkdiag
1,...,n∞

(
ν2n∞−1
i J̃

2n∞−1)


(3.3),
(3.4),
(3.5),
(3.63)

=



1 0 · · · 1 0
0 −ω1 · · · 0 −ωn∞
...

...
. . .

...
...

(−ω2
1)n∞

−ω2
1

0 · · · (−ω2
n∞ )n∞

−ω2
n∞

0

0
(−ω2

1)n∞

ω1
· · · 0

(−ω2
n∞ )n∞

ωn∞



=:


O1(ω1) · · · On∞(ωn∞)

...
. . .

...
(−ω2

1)n∞

−ω2
1
O1(ω1) · · · (−ω2

n∞ )n∞

−ω2
n∞

On∞(ωn∞)

 , Oi(ωi) :=

[
1 0
0 −ωi

]
.(3.64)

The large matrix must have full rank, i.e. rank(O) = 2n∞. This is the case, if and only if the
following conditions are satis�ed: (i) ω1 6= 0 and (ii) H∞ ⊆ R\{0} where for all pairwise di�erent
elements νi, νj ∈ H∞, it holds that that |νi| 6= |νj |. This proves the observability of the pair
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(c>,J).
An observability test for the pair (c>,J ) shows

O (ω) :=


c>

c>J (ω)
...

c>J2n∞(ω)

 (3.8)
=


1 c>

02n∞

 c>

...
c>J2n∞−1(ω)

J(ω)

 (3.64)
=

[
1 c>

02n∞ OJ(ω)

]
. (3.65)

Note that J has full rank if O has full rank since ω1 6= 0. Thus, OJ has full rank and therefore
O has full rank which proves the observability of the pair (c>,J ).

3.3.2 Observer construction: The parallelized mSOGIs and the parallelized
mSOGIs with o�set

With the knowledge of observability, Luenberger-like observers are constructed for the gener-
ating system (3.4) in Section 3.3.2.1 and for (3.8) in Section 3.3.2.2. As in Section 3.2.2, they
use the set Hn instead of H∞.

3.3.2.1 The parallelized mSOGIs

First thing to note is that the observer is not based on the matrix J as in (3.4) but the matrix
N as in (3.6). According to Proposition (3.3.1), the pair (c>,N) is observable10. This observer
is a parallelization of modi�ed Second Order Generalized Integrators (mSOGI) and denoted by
the subscript �m�. It is constructed in a straight forward manner as follows [574, Sec. 2.3.1]

∀ t ∈ Ti : d
dt x̂m = ω̂m,1

=:Am ∈R2n×2n︷ ︸︸ ︷(
N − lmc>

)
x̂m + ω̂m,1lmy, x̂m(ti) = x̂m,ti

ŷm = c>x̂m

 (3.66)

wherein

x̂m := (x̂αm,1, x̂
β
m,1, · · · , x̂αm,n, x̂

β
m,n)> ∈ R2n (state vector)

and lm := (lαm,1, l
β
m,1, · · · , lαm,n, l

β
m,n)> ∈ R2n (gain vector).

A visualization of (3.66), especially in view of the additional gains lβm,ν with respect to (3.19) or
(3.28), is given in Figure 3.14. The parallel structure is inherited by Figure 3.6 (a).

j-th mSOGI

lαm,j

lβm,j

Σ ω̂m,1

∫
∫µj

ω̂m,1 Σ

µj

em,y

−
x̂αm,j

x̂βm,j

Figure 3.14: The j-th mSOGI for amplitude and phase estimation of the j-th component.

10If ω1 = 1, it holds that J = N
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To complete the structural analysis, according to Appendix A the system's amplitude and phase
responses follow with

ρm(ω) :=
n∏
k=1

(
ω̂2

m,k − ω2
)
−

n∑
j=1

ω̂m,1ω̂m,jl
β
m,j

n∏
k=1
k 6=j

(
ω̂2

m,k − ω2
)

(3.67)

and υm(ω) :=
n∑
j=1

ωω̂m,1l
α
m,j

n∏
k=1
k 6=j

(
ω̂2

m,k − ω2
)
,

as

AXαm,i(ωj) =

ω̂m,1

n∏
k=1
k 6=i

(ω̂2
m,k−ω

2
j )
√
ω2
j (lαm,i)

2+ω̂2
m,i(l

β
m,i)

2

√
ρ2m(ωj)+υ2m(ωj)

ΦXαm,i(ωj) = arctan2

(
ρm(ωj)ωj l

α
m,i+υm(ωj)ω̂m,il

β
m,i

υm(ωj)ωj lαm,i−ρm(ωj)ω̂m,il
β
m,i

)

AXβm,i
(ωj) =

ω̂m,1

n∏
k=1
k 6=i

(ω̂2
m,k−ω

2
j )
√
ω̂2
m,i(l

α
m,i)

2+ω2
j (lβm,i)

2

√
ρ2m(ωj)+υ2m(ωj)

(3.68)

ΦXβm,i
(ωj) = arctan2

(
−υm(ωj)ω̂m,il

α
m,i+ρm(ωj)ωj l

β
m,i

ρm(ωj)ω̂m,ilαm,i+υm(ωj)ωj l
β
m,i

)

AEm,y(ωj) =

n∏
k=1

(ω̂2
m,k−ω

2
j )

√
ρ2m(ωj)+υ2m(ωj)

and ΦEm,y(ωj) = arctan2
(
−υm(ωj)
ρm(ωj)

)
.

Remark 3.3.2. System (3.66) is a generalization of systems (3.19) or (3.28), respectively; by
a proper choice of the gain vector lm where all lβm,i = 0, i ∈ {1, . . . , n}, the parallelized mSOGIs
become the parallized (enhanced) standard SOGIs.

3.3.2.2 The parallelized mSOGIs with o�set

The construction of the observer for (3.8) can be done similarly to equation (3.66). The observer
is based on N as in (3.9):

∀ t ∈ Ti : d
dt x̂m = ω̂m ,1

=:Am ∈R2n+1×2n+1︷ ︸︸ ︷(
N − lm c>

)
x̂m + ω̂m ,1lm y, x̂m (ti) = x̂m ,ti

ŷm = c>x̂m

 (3.69)

wherein

x̂m := (x̂m ,0, x̂
α
m ,1, x̂

β
m ,1, · · · , x̂αm ,n, x̂

β
m ,n)> ∈ R2n+1 (state vector)

and lm := (lm ,0, l
α
m ,1, l

β
m ,1, · · · , lαm ,n, l

β
m ,n)>R2n+1 (gain vector).

The observer, called the parallelized modi�ed Second Order Generalized Integrator with o�set
(mSOGI ) and denoted by the subscript �m �, is illustrated in accordance to (3.69) in Figure
3.15. Therein, the structure of a single modi�ed Second Order Generalized Integrator with o�set
is identical to the one shown in Figure 3.14.
With
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mDCI

Σ

mDCI 1-st mSOGI · · · n-th mSOGI

c>x̂m

y
em ,y

x̂m ,0 x̂αm ,1 x̂βm ,1
x̂αm ,n x̂βm ,n

ŷm

−

x̂m

(a) Block diagram of the parallelized mSOGI .

lm ,0 ω̂m ,1

∫
em ,y x̂m ,0

(b) Construction of the mDCI.

Figure 3.15: (a): The parallelized structure of the mSOGI and (b): O�set estimator. The j-th mSOGI
is depicted in Figure 3.14.

ρm (ω) := ω
n∏
k=1

(
ω̂2

m ,k − ω2
)
− ωω̂m ,1

n∑
j=1

ω̂m ,jl
β
m ,j

n∏
k=1, k 6=j

(
ω̂2

m ,k − ω2
)

(3.70)

and υm (ω) := ω2ω̂m ,1

n∑
j=1

lαm ,j

n∏
k=1, k 6=j

(
ω̂2

m ,k − ω2
)
− ω̂m ,ν1 lm ,0

n∏
k=1

(
ω̂2

m ,k − ω2
)
,

the amplitude and phase responses of this system follow according to Appendix A as

AXm ,0(ωj) =
ω̂m ,1lm ,0

n∏
k=1

(ω̂2
m ,k−ω

2
j )

√
ρ2m (ωj)+υ2m (ωj)

, ΦXm ,0(ωj) = arctan2
(
−ρm (ωj)
−υm (ωj)

)
,

AXαm ,i
(ωj) =

ωj ω̂m ,1

n∏
k=1
k 6=i

(ω̂2
m ,k−ω

2
j )
√
ω2
j (lαm ,i)

2+ω̂2
m ,i(l

β
m ,i)

2

√
ρ2m (ωj)+υ2m (ωj)

,

ΦXαm ,i
(ωj) = arctan2

(
ρm (ωj)ωj l

α
m ,i+υm (ωj)ω̂m ,il

β
m ,i

υm (ωj)ωj lαm ,i−ρm (ωj)ω̂m ,il
β
m ,i

)
, (3.71)

AXβm ,i
(ωj) =

ωj ω̂m ,1

n∏
k=1
k 6=i

(ω̂2
m ,k−ω

2
j )
√
ω̂2
m ,i(l

α
m ,i)

2+ω2
j (lβm ,i)

2

√
ρ2m (ωj)+υ2m (ωj)

,

ΦXβm ,i
(ωj) = arctan2

(
−υm (ωj)ω̂m ,il

α
m ,i+ρm (ωj)ωj l

β
m ,i

ρm (ωj)ω̂m ,ilαm ,i+υm (ωj)ωj l
β
m ,i

)
,

AEm ,y(ωj) =
ωj

n∏
k=1

(ω̂2
m ,k−ω

2
j )

√
ρ2m (ωj)+υ2m (ωj)

and ΦEm ,y(ωj) = arctan2
(
−υm (ωj)
ρm (ωj)

)
.

3.3.3 Pole placement for the parallelized mSOGIs and the parallelized mSO-
GIs with o�set

Unlike the parallelized (e)sSOGIs from Section 3.2, the parallelized mSOGIs and parallelized
mSOGI s have exactly as many gains as states. This allows to choose all eigenvalues of the
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system matrices Am and Am , respectively. The results of the so called pole placement are
appropriate feedback gain vectors lm and lm , respectively. The calculation of the gain vectors
lm and lm is shown in the following, where at �rst, a preliminary observation must be made:
Consider the matrix

Λ−1
m :=



Λ−1
m,1 Λ−1

m,2 . . . Λ−1
m,n

n∑
j=1
j 6=1

µ2
jΛ
−1
m,1

n∑
j=1
j 6=2

µ2
jΛ
−1
m,2 · · ·

n∑
j=1
j 6=n

µ2
jΛ
−1
m,n

...
...

. . .
...

n∏
j=1
j 6=1

µ2
jΛ
−1
m,1

n∏
j=1
j 6=2

µ2
jΛ
−1
m,2 · · ·

n∏
j=1
j 6=n

µ2
jΛ
−1
m,n


,

where ∀ i ∈ {1, . . . , n} , µi ∈ Hn : Λ−1
m,i :=

[
1 0
0 −µi

]
.



(3.72)

Its inverse is given by

Λm =



µ
2(n−1)
1

n∏
j=1
j 6=1

(µ21−µ2j)
Λm,1 − µ

2(n−2)
1

n∏
j=1
j 6=1

(µ21−µ2j)
Λm,1 · · · (−1)n+1

n∏
j=1
j 6=1

(µ21−µ2j)
Λm,1

µ
2(n−1)
2

n∏
j=1
j 6=2

(µ22−µ2j)
Λm,2 − µ

2(n−2)
2

n∏
j=1
j 6=2

(µ22−µ2j)
Λm,2 · · · (−1)n+1

n∏
j=1
j 6=2

(µ22−µ2j)
Λm,2

...
...

. . .
...

µ
2(n−1)
n

n∏
j=1
j 6=n

(µ2n−µ2j)
Λm,n − µ

2(n−2)
n

n∏
j=1
j 6=n

(µ2n−µ2j)
Λm,n · · · (−1)n+1

n∏
j=1
j 6=n

(µ2n−µ2j)
Λm,n


, (3.73)

since the product of the r-th row of Λm and the c-th column of Λ−1
m yields

µ
2(n−1)
r

n∏
j=1
j 6=r

(µ2r−µ2j)
Λm,rΛ

−1
m,c −

µ
2(n−2)
r

n∏
j=1
j 6=r

(µ2r−µ2j)
Λm,r

n∑
j=1
j 6=c

µ2
jΛ
−1
m,c + · · ·+ (−1)n+1

n∏
j=1
j 6=r

(µ2r−µ2j)
Λm,r

n∏
j=1
j 6=c

µ2
jΛ
−1
m,c

=

µ2(n−1)
r − µ2(n−2)

r

n∑
j=1
j 6=c

µ2
j + · · ·+ (−1)n+1

n∏
j=1
j 6=c

µ2
j

 Λm,rΛ
−1
m,c

n∏
j=1
j 6=r

(µ2r−µ2j)

(2.18)
=

n∏
j=1
j 6=c

(
µ2
r − µ2

j

) Λm,rΛ
−1
m,c

n∏
j=1
j 6=r

(µ2r−µ2j)
=

{
02×2, c 6= r

I2, c = r.

Now, the statements can be formulated.

Proposition 3.3.3 (Pole placement for the parallelized mSOGIs and the parallelized mSOGI s).
Let x ∈ {m,m } and let v = 2n if x = m or v = 2n+ 1 if x = m . Let Nx

11 as in (3.6) or (3.9)
and cx as in (3.4) or (3.8), respectively. Let Hn be given as in (3.18) and let Λm be as in (3.73).

11The subscript �x� is also inherited by the generation parameters and variables; the model speci�c subscript
�m� is neglected in this case.
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Further let

Λ−1
m =

 c′µ Λ−1
m

n∏
j=1

µ2
j 0>2n

 ⇒ Λm =


0>2n

1
n∏
j=1

µ2j

Λm − 1
n∏
j=1

µ2j

Λmc
′
µ

 (3.74)

where c′µ :=

(
1 0

n∑
j=1

µ2
j 0 · · ·

n∑
j=1

n∏
k=1, k 6=j

µ2
k 0

)>
. (3.75)

Consider the matrix Am := N−lmc> or Am := N −lm c>, resp., with characteristic polynomial
χAx(s) :=

χω̂x,1Ax (ω̂x,1s)

ω̂2n
x,1

. Let

cµ,x :=


(

0
n∑
j=1

µ2
j . . . 0

n∏
j=1

µ2
j

)>
, x = m(

0
n∑
j=1

µ2
j . . . 0

n∏
j=1

µ2
j 0

)>
, x = m .

(3.76)

Let, for all i ∈ {1, . . . , v}, λx,i ∈ C be the prescribed roots of the desired characteristic polynomial

χAx,des(s) :=
v∏
i=1

(s− λx,i) . (3.77)

The coe�cients of χAx,des are collected in

λx :=

(
−

v∑
j=1

λx,j

v∑
j=1

λx,j

v∑
k=j+1

λx,k . . . (−1)v
v∏
j=1

λx,j

)>
.

If and only if the feedback gain vector lx is chosen as

lx = Λx (λx − cµ,x) , (3.78)

then the desired characteristic polynomial χAx,des(s) and the actual characteristic polynomial
χAx(s) have identical coe�cients and, hence, Ax is a matrix with eigenvalues λx,i.

Proof. Recall that the characteristic polynomial χAx can be deduced as follows

χω̂x,1Ax
(ω̂x,1s) := det(sω̂x,1Iv − ω̂x,1Ax) = ω̂vx,1det(sIv −Ax) =: ω̂vx,1χAx(s) (3.79)

⇒ χAx(s)

(A.9),
(A.18)

=


n∏
k=1

(
s2 + µ2

k

)
+

n∑
j=1

(
slαm,j − µjl

β
m,j

) n∏
k=1, k 6=j

(
s2 + µ2

k

)
, x = m

(s+ lm ,0)
n∏
k=1

(
s2 + µ2

k

)
+ s

n∑
j=1

(
slαm ,j − µjl

β
m ,j

) n∏
k=1, k 6=j

(
s2 + µ2

k

)
, x = m .

Collect the coe�cients of χAx(s) in the following coe�cient vector

cAx := cµ,x +



( n∑
j=1
lαm,i −

n∑
j=1
µjl

β
m,j · · ·

n∑
j=1
lαm,j

n∏
k=1
k 6=j

µ2
k −

n∑
j=1
µjl

β
m,j

n∏
k=1
k 6=j

µ2
k

)
, x = m(

lm ,0+
n∑
j=1
lαm ,i −

n∑
j=1
µjl

β
m ,j · · · −

n∑
j=1
µjl

β
m ,j

n∏
k=1
k 6=j

µ2
k lm ,0

n∏
j=1
µ2
j

)
, x = m︸ ︷︷ ︸

=: λ̃x

(3.80)
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and observe
λ̃x = Λ−1

x lx. (3.81)

The desired polynomial in (3.77) should have the same coe�cients, merged in the coe�cient
vector λx. A comparison of cAx and λx yields

λx
!

= cAx

(3.80)
= cµ,x + λ̃x

(3.81)
= cµ,x + Λ−1

x lx (3.82)

with Λ−1
x as in (3.72) or (3.74), respectively. Solving for lx proves the assertion

=⇒ lx = Λx (λx − cµ,x) . (3.83)

Remark 3.3.4. Let x ∈ {m,m } and let v = 2n if x = m or v = 2n + 1 if x = m . For all
eigenvalues λx,i ∈ CNHP, i ∈ {1, . . . , v}, the matrix Ax is a Hurwitz matrix.

Remark 3.3.5. Matlab provides the place command for pole placement. However, this com-
mand does not allow choosing eigenvalues with a multiplicity greater than rank(c) = rank(c ) = 1
(i.e. every eigenvalue must be unique). If this is desired, the manual pole placement (3.78) must
be implemented.

Remark 3.3.6. As already noted in Section 3.2.4, the dominant eigenvalue de�nes the set-
tling time of the system. This also is shown in Figure 3.1612 visualizing the in�uence of this
eigenvalue to a single mSOGI. For a comparison, its eigenvalues are chosen as (λm,1, λm,2) ∈
{(−1,−1), (−2,−2), (−3,−3)}.

Figure 3.16: In�uence of the dominant eigenvalue: Convergence of the signal estimation error for λmax ∈
{−1( ),−2( ) &− 3( )}.

Apparently, the choice of λmax = −3 leads to the fastest decrease; the normalized settling time
(similar to that de�ned in (3.54)) is obtained as tset,n = 0.333. For λmax = −2 and λmax = −1,
it is tset,n = 0.499 and tset,n = 0.997, resp.

3.3.4 The mFLL and the mFLL with o�set

With the linear observers described, now the angular frequency adaption is put into focus. As in
Section 3.2.6, it is based on quasi-steady state observations. Due to the changes in the observer

12Simulation parameters: Ts = 1 µs, y = cos(2π50t), Solver: ode4. All initial values are 0.
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gains lm and lm with respect to the former gains ls and les, it is to be expected that the
angular frequency adaption law must be adjusted accordingly. Hence, the aim of this section
is to investigate the necessary adjustments. These �rstly are observed in a general manner.
Afterwards, sub-structured into the Sections 3.3.4.1 for the mFLL and 3.3.4.2 for the mFLL ,
the respective angular frequency adaption laws are formulated.

Proposition 3.3.7 (Sign-correct adaption over one period for the mFLL and the mFLL ). Let
be x ∈ {m,m }. Let i ∈ {1, . . . , n}, ωi > 0, Ti := 2π

ωi
and νi = µi. Consider system (3.66) or

(3.69), respectively, with ω̂x,i > 0. Let the system's signals be given in quasi-steady state by

x̂αx,i =
n∞∑
j=1

ajAXαx,i(ωj) cos
(
ωjt+ φj + ΦXαx,i(ωj)

)
=:

n∞∑
j=1

x̂αx,i,j ,

x̂βx,i =
n∞∑
j=1

ajAXβx,i
(ωj) cos

(
ωjt+ φj + ΦXβx,i

(ωj)
)

=:
n∞∑
j=1

x̂βm,i,j

and ex,y =
n∞∑
j=1

ajAEx,y(ωj) cos
(
ωjt+ φj + ΦEx,y(ωj)

)
=:

n∞∑
j=1

ex,y,j


(3.84)

and let be x̂x,i,i := (x̂αx,i,i, x̂
β
x,i,i)

>. Consider the integral

∀ i ∈ {1, . . . , n} :

t+Ti∫
t

ex,y,iσ
>
x,ix̂x,i,idτ. (3.85)

Then, the following holds

∀ i ∈ {1, . . . , n} ∀σx,i ∈
{(

κ1

κ2

)
∈ R2

∣∣∣∣κ2l
α
x,i − κ1l

β
x,i < 0

}
:

t+Ti∫
t

ex,y,iσ
>
x,ix̂x,i,idτ


≥ 0, ω̂x,i < ωi

= 0, ω̂x,i = ωi

≤ 0, ω̂x,i > ωi.

(3.86)

Moreover, if σx,i = κJ̃ lx = κ(−lβx,ν , lαx,ν)> is chosen where κ ∈ R<0, then the phase angles of

ex,y,ωi and σ
>
x,ix̂x,i,i are identical.

Proof. De�ning for all i ∈ {1, . . . , n} σ>x,i := (σαx,i, σ
β
x,i)
> ∈ R2 and repeating the procedure as

in the proof of Proposition 3.2.6 yields

t+
2π
ωi∫

t

ex,y,iσ
>
x,ix̂x,i,idτ =

πa2i

(
σβx,il

α
x,i−σαx,il

β
x,i

)
ν2i ω̂

2
x,1(ω̂2

x,1−ω2
1)

n∏
k=1
k 6=i

(ω̂2
x,i−ω2

i )
2

ω1(ρ2x(ωi)+υ2x(ωi))
. (3.87)

Since ωi > 0, only ω̂2
x,1−ω2

1 can change its sign in (3.87). Thus, if and only if σβx,il
α
x,i−σαx,il

β
x,i < 0,

it holds that

∀σx,i ∈
{(

κ1

κ2

)
∈ R2

∣∣∣∣κ2l
α
x,ν − κ1l

β
x,ν < 0

}
:

t+Ti∫
t

ex,y,iσ
>
x,νx̂x,i,idτ


≥ 0, ω̂x,1 < ω1

= 0, ω̂x,1 = ω1

≤ 0, ω̂x,1 > ω1,

which proves assertion (3.86). Next, for all κ < 0 and if and only if σx,i = κ(−lβx,ν , lαx,ν)>, the

54



3.3. THE MODIFIED FREQUENCY ADAPTIVE OBSERVER AND THE MODIFIED
FREQUENCY ADAPTIVE OBSERVER WITH OFFSET

phase angle of σ>x,ix̂x,i,i is identical to the phase angle of ex,y,i since

Φσ>x,ix̂x,i,i
= arctan2

(
σβx,i

(
lαx,iω̂x,1υx(ωi)−lβx,iω1ρx(ωi)

)
−σαx,i

(
lαx,iω1ρx(ωi)+l

β
x,iω̂x,1υx(ωi)

)
−σβx,i

(
lαx,iω̂x,1ρx(ωi)+l

β
x,iω1υx(ωi)

)
−σαx,i

(
lαx,iω1υx(ωi)−lβx,iω̂x,1ρx(ωi)

)
)

σx,i=κ(−lβx,i, l
α
x,i)
>

= arctan2
(
−υx(ωi)
ρx(ωi)

)
(3.68),(3.71)

= ΦEx,y(ωi)

which completes the proof.

Remark 3.3.8. As stated in Remark 3.2.7, it is advisable to use only the fundamental compo-
nents for angular frequency adaption for the same reasons mentioned therein.

3.3.4.1 The mFLL

According to Proposition 3.3.7 and Remark 3.3.8, the adaption law for the angular frequency,
called the modi�ed Frequency Locked Loop (mFLL), is chosen with γm > 0 as follows

∀ t ∈ Ti : d
dt ω̂m,1 = γmem,yσ

>
m,1x̂m,1, ω̂m,1(ti) = ω̂m,1,ti (3.88)

Remark 3.3.9. Recall that in Remark 3.3.2, it is stated that the parallelized mSOGIs are gen-
eralized parallelized (e)sSOGIs. The same holds true for (3.88) with respect to (3.50).

In the following, aGain Normalization (GN), a sign-correct Anti Windup decision function (AW),
a Rate Limitation (RL) and a Low Pass Filter (LPF) are applied to the mFLL to improve its
stability and performance. Since the parallelized mSOGIs as well as the mFLL are generalizations
of the parallelized (e)sSOGIs & (e)sFLL, the GN is identical to the one as described in Section
3.2.7. The AW is designed to ensure stability of the parallelized mSOGIs and mFLL13. A RL is
applied to smooth the adaption. Additionally, the mFLL input signals em,y and x̂m,1 are low-pass
�ltered to damp higher harmonics. This is necessary, especially in view of the amplitude and
phase responses of the parallelized mSOGIs (3.68). A comparison of those to the responses of
the parallelized esSOGIs (3.21) is illustrated in Figure 3.1714.

Figure 3.17: The amplitude and phase response of the signals x̂αm,1, x̂
β
m,1 and em,y ( ) and x̂αes,1, x̂

β
es,1

and ees,y ( ) for Hn = H∞ = {1}.

13For the parallelized (e)sFLLs, the Output Saturation only guarantees stability of the parallelized (e)sSOGIs
but not of the (e)sFLL.

14Simulation parameters: ω1
2π
∈ {1, 1.25, . . . , 10, 12.5, . . . , 100, 125, . . . , 1000, 1250, . . . , 10000}, ω̂es,1 = ω̂m,1 =

2π50, les = (2, 0)>, lm = (6,−8)>.
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In view of the amplitude responses depicted in the top row of Figure 3.17, it gets clear that
the mSOGI ( ) is much more noise sensitive for higher (angular) frequencies than the esSOGI
( ). More precisely, in comparison to the fundamental direct signal x̂αes,1 (left column), x̂αm,1 has
a higher ampli�cation of all angular frequency components (in the observed range). Especially
in a small range (50 Hz = ω̂1

2π < ω1
2π < 200 Hz) above the angular frequency ω̂1 of the SOGIs,

the respective angular frequency components are not damped but ampli�ed. For the quadrature
signals x̂βes,1 and x̂βm,1 (middle column), in the range (1 Hz < ω1

2π < ω̂1
2π = 50 Hz), the mSOGI

has better (noise) attenuation than the esSOGI. Again, for certain angular frequencies (50 Hz =
ω̂1
2π <

ω1
2π < 325 Hz) above the SOGIs' angular frequency ω̂1, the mSOGI ampli�es the respective

components overproportionally. For all angular frequency components larger than the angular
frequency ω̂1, the esSOGI attenuates these frequencies better than the mSOGI. However, the
signal estimation error of the mSOGI (right column) has better noise attenuation for all angular
frequency components. For higher frequencies (1 kHz ≥ ω̂1

2π ), the ampli�cation of these angular
frequency components is approximately the same for esSOGI and mSOGI.
Hence, the signals x̂m,1 must be �ltered by a Low Pass Filter (LPF) (see Figure 3.18).

Σ ωlpf
∫

y
xlpf

ylpf

−

Figure 3.18: A LPF.

To maintain the relation of the amplitude and phase responses between the signal estimation
error em,y and the states x̂m,1, the signal estimation error em,y must be �ltered as well. With
ωm,lpf being the cut-o� angular frequency of the LPF, the LPF's state space representation is
given by

∀ t ∈ Ti : d
dt

(
em,lpf,y

x̂m,lpf,1

)
︸ ︷︷ ︸
=: x̂m,lpf ∈R3

= −ωm,lpf x̂m,lpf + ωm,lpf

(
em,y

x̂m,1

)
, x̂m,lpf(ti) = x̂m,lpf,ti . (3.89)

Next, the AW decision function is de�ned as

awωm
ωm

(δ1, δ2) =


0, δ1 ≥ ωm ∧ δ2 > 0

0, δ1 ≤ ωm ∧ δ2 < 0

1, else.

Therein, ωm, ωm > 0 are the lower and upper limits of the AW decision function. The last
modi�cation to the basic angular frequency adaption law (3.88) is the RL which is a saturation
of d

dt ω̂m,1 with lower and upper limits zm, zm, i.e.

satzmzm(δ) =


zm, δ > zm

δ, zm ≤ δ ≤ zm

zm, zm < δ.

Thus, the modi�ed angular frequency adaption law is given by

∀ t ∈ Ti : d
dt ω̂m,1 = satzmzm

(
Γmω̂2

m,1em,lpf,yσ
>
m,1x̂m,lpf,1

max
(
‖x̂m,lpf,1‖2,εm

)
)

︸ ︷︷ ︸
=: zm

awωm
ωm

(
ω̂m,1, zm

)
(3.90)
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wherein ω̂m,1(ti) = ω̂m,1,ti and Γm > 0. To justify these modi�cations, Figure 3.1915 shows the
in�uence of each part step by step.

Figure 3.19: The impact of single modi�cations to the frequency adaption.

The angular frequency estimation without modi�cations ( ) is very noisy. Applying an LPF
( ) results in a much smoother curve, but also comes with overshooting. The RL ( ) removes
this overshoot, which, on the other hand, results in a slower performance. Finally, the AWU
( ) speeds up the performance again.
The resulting block diagram of the mFLL is illustrated in Figure 3.20.

mFLL

LPF
σ>m,1x̂m,lpf,1

max
(
‖x̂m,lpf,1‖2,εm

) ×
zm

zm ×

AWU

∫
(·)2Γm

x̂m,1

x̂m,lpf,1

em,y
em,lpf,y

ω̂m,1

Figure 3.20: The mFLL.

3.3.4.2 The mFLL with o�set

The design of the modi�ed Frequency Locked Loop with o�set (mFLL ) is similar to the design
of the mFLL described in Section 3.3.4.1. Hence, the LPF is described as follows

∀ t ∈ Ti : d
dt

(
em ,lpf,y

x̂m ,lpf,1

)
︸ ︷︷ ︸
=: x̂m ,lpf ∈R3

= −ωm ,lpf x̂m ,lpf + ωm ,lpf

(
em ,y

x̂m ,1

)
, x̂m ,lpf(ti) = x̂m ,lpf,ti (3.91)

15Simulation parameters: Ts = 1 µs, y = cos(2π50t) + n with noise function n, Noise power= 10−6, Noise
seed= 23341, lm = (6,−8)>, σm,1 = (−8,−6)>, Γm = 0.37, ωm,lpf = 2π100, zm = −2π1000, zm = 2π1000,
ωm = 2π40, ωm = 2π60, Solver: ode4. All initial values are 0 except for ω̂m,1(0) = 2π25.
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and the angular frequency adaption law is given by

∀ t ∈ Ti : d
dt ω̂m ,1 = satzmzm

(
Γm ω̂2

m ,1em ,lpf,yσ
>
m ,1x̂m ,lpf,1

max
(
‖x̂m ,lpf,1‖2,εm

)
)

︸ ︷︷ ︸
=: zm

awωm
ωm

(
ω̂m ,1, zm

)
(3.92)

with ω̂m ,1(ti) = ω̂m ,1,ti and Γm > 0. The block diagram of the mFLL is identical to the one
of the mFLL (with m instead of m). It is depicted in Figure 3.20.

Remark 3.3.10. Instead of using a Low Pass Filter inside the mFLL or mFLL , the LPF can
be placed before the mFAO or mFAO to �lter the input signal instead. Consequently, only one
�lter is needed leading to amplitude and phase deviations of the observer input signal. As noted
in Remark 3.2.4, this requires post processing APCs (cf. (3.39)).

Remark 3.3.11. Let x ∈ {m,m }. For all σx,1 that are element of the set described in (3.86),
the adaption speed depends on the phase angle di�erence between σ>x,1x̂x,1,1 and ex,y,1. The speed
is maximized for identical phase angles, (i.e. Φσ>x,1x̂x,1,1

= ΦEx,y(ω1)) due to (2.8). This results

in the speci�c choice

σx,1 = −J̃
(
lαx,1 l

β
x,1

)>
. (3.93)

3.3.5 Summary and stability proof of the mFAO and the mFAO with o�set

This section completes the investigations on the parallelized mSOGIs with the mFLL, called the
modi�ed Frequency Adaptive Observer (mFAO) and the parallelized mSOGI s with the mFLL ,
called the modi�ed Frequency Adaptive Observer with o�set (mFAO ). In Sections 3.3.5.1 and
3.3.5.2, a complete mathematical and graphical representation for the mFAO and the mFAO ,
respectively, is shown. These are evaluated using the test signals introduced in (3.12) and shown
in Figure 3.2. Afterwards, both systems are proven in view of stability.

3.3.5.1 Summary of the mFAO

The mFAO is mathematically described as follows

∀ t ∈ Ti :

d
dt x̂m = ω̂m,1Amx̂m + ω̂m,1lmy, x̂m(ti) = x̂m,ti ,

d
dt x̂m,lpf = −ωm,lpf x̂m,lpf + ωm,lpf

(
em,y

x̂m,1

)
, x̂m,lpf(ti) = x̂m,lpf,ti

zm =
Γmω̂2

m,1em,lpf,yσ
>
m,1x̂m,lpf,1

max
(
‖x̂m,lpf,1‖2,εm

)
d
dt ω̂m,1 = satzmzm (zm) awωm

ωm
(ω̂m,1, zm), ω̂m,1(ti) = ω̂m,1,ti

ŷm = c>x̂m.


(3.94)

Its block diagram is shown in Figure 3.21.

mSOGI (3.66)

mFLL (3.90)

c>x̂m
y

x̂m

ŷm

ω̂m,1

Figure 3.21: Block diagram of the mFAO.
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Figure 3.2216 shows the evaluation of the mFAO where the test signals from (3.12) are used.

ytest,N

ytest,N

ytest,Q

ytest,Q

Figure 3.22: Continuation of Figure 3.13. O�set, amplitudes and frequencies of the test signals estimated
by the mFAO ( ).

Note that, although one estimate for each frequency is shown, the mFLL only estimates the
fundamental one. The other results from this fundamental one by multiplication (and is not
estimated). Since the mFAO cannot estimste o�set, no estimate for this value is plotted. If the
harmonic orders are assumed correctly, i.e. H∞ = Hn, and no o�set is present in the input y
(ytest,N ) the mFAO settles in 33.3 ms which was evaluated for the angular frequency by using
(3.54). Hence, it is an improvement to the esFAO. However, when o�set is included in the input y
(ytest,N ), the mFAO cannot estimate the amplitudes and frequencies anymore. In fact, frequency
estimation fails completely and is only held stable by the anti windup. If H∞ is not equal to Hn

(ytest,Q, ytest,Q ), the mFAO fails to estimate the parameters. But, if no o�set is present, it at

16Simulation parameters (in addition to Footnote 9): Hn = {1, 2}, lm = (7.5, −0.9375, −1.5, −6.28125)>,
ωm,lpf = 2π100, Γm = 0.2756, σm,1 = (−0.9375, −7.5)>, εm = 10−5, zm = −2π105, zm = 2π105, ωm = 2π35,
ωm = 2π65.
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least gives a rough estimate of the fundamental angular frequency ω1.

3.3.5.2 Summary of the mFAO with o�set

The mathematical description for the mFAO follows as

∀ t ∈ Ti :

d
dt x̂m = ω̂m ,1Am x̂m + ω̂m ,1lm y, x̂m (ti) = x̂m ,ti ,

d
dt x̂m ,lpf = −ωm ,lpf x̂m ,lpf + ωm ,lpf

(
em ,y

x̂m ,1

)
, x̂m ,lpf(ti) = x̂m ,lpf,ti

zm =
Γm ω̂2

m ,1em ,lpf,yσ
>
m ,1x̂m ,lpf,1

max
(
‖x̂m ,lpf,1‖2,εm

)
d
dt ω̂m ,1 = sat

zm
zm (zm ) awωm

ωm
(ω̂m ,1, zm ), ω̂m ,1(ti) = ω̂m ,1,ti

ŷm = c>x̂m


(3.95)

and the block diagram in Figure 3.23.

mSOGI (3.69)

mFLL (3.92)

c>x̂my
x̂m

ŷm

ω̂m ,1

Figure 3.23: Block diagram of the mFAO .

In Figure 3.2417, the evaluation of the mFAO is plotted where the test signals from (3.12) are
used.
Note that, although one estimate for each frequency is shown, the mFLL only estimates the fun-
damental component. The other results from this fundamental one by multiplication (and is not
estimated). In case of correctly assumed harmonic orders H∞ = Hn (ytest,N , ytest,N ) the mFAO
correctly estimates the amplitudes ai and the fundamental angular frequency ω1. Compared to
the mFAO, the normed settling time (obtained by evaluating the angular frequency using (3.54))
is larger for the mFAO , which is 60.2 ms (ytest,N ) and 48.1 ms (ytest,N ). Nevertheless, it still
outruns the esFAO. On the other hand, when actual harmonic orders H∞ are not equal to the
assumed ones Hn (ytest,Q, ytest,Q ), the mFAO cannot estimate the parameters anymore and the
estimation fails. However, the fundamental angular frequency ω1 can still be roughly estimated.

Theorem 3.3.12 (Bounded-input bounded-state/bounded-output stability of the dynamics of
the mFAO and mFAO ). Let be x ∈ {m,m }. Consider an essentially bounded input signal,
i.e. y ∈ L∞(R≥0;R) and assume that (i) the estimated fundamental angular frequency is con-
tinuous, bounded and uniformly bounded away from zero by εω,x > 0, i.e. ω̂x,1 ∈ L∞(R≥0;R>0),
and (ii) the system matrix Ax in (3.66) or (3.69), respectively, is a Hurwitz matrix. Then,
the time-varying system (3.66) or (3.69), respectively, is bounded-input bounded-state/bounded-
output stable, i.e.

∀ t ∈ Ti : ∃ cx, c̃x > 0: ‖x̂x‖ ≤ cx and |ŷx| ≤ c̃x.

Proof. Let tω be the rise time to the limits of the AW decision function of the mFLL or the
mFLL , respectively. Since ω̂x,1 is bounded where, for all t ≥ t0 it holds that ω̂x,1 > 0 and,

17Simulation parameters (in addition to Footnote 16): Hn = {1, 2}, lm = (7.6171875, 6.09375, −12.1875,
−6.2109375, −5.15625)>, ωm ,lpf = 2π100, Γm = 0.33, σm ,1 = (−12.1875, −6.09375)>, εm = 10−5, zm =

−2π105, zm = 2π105, ωm = 2π35, ωm = 2π65.
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ytest,N

ytest,N

ytest,Q

ytest,Q

Figure 3.24: Continuation of Figure 3.22. O�set, amplitudes and frequencies of the test signals estimated
by the mFAO ( ).

moreover, for all t ≥ tω it holds that ωx ≥ ω̂x,1 ≥ ωx, the idea described in the proof of Theorem
3.2.8 can be repeated. This completes the proof.

Theorem 3.3.13 (Boundedness and exponential decrease of the signal estimation error of the
mFAO and mFAO ). Let be x ∈ {m,m }. Let, for all t ≥ t0, ω̂x,1 > εω,x be bounded. Consider
any continuous and bounded input signal, i.e. y ∈ C(R≥0;R>0) ∩ L∞(R≥0;R) and assume that
y is fed to the parallelized mSOGIs (3.66) or the parallelized mSOGI s (3.69), respectively, with
Ax being a Hurwitz matrix. Then, the estimation error, de�ned by

∀ t ∈ Ti : ex := xx − x̂x, ex,ti = xx,ti − x̂x,ti (3.96)

with xx as in (3.4) or (3.8) and x̂x as in (3.66) or (3.69), respectively, is bounded, i.e. there
exists cx,e > 0 such that ‖ex‖ ≤ cx,e for all t ≥ ti. Moreover, if ω1 = ω̂x,1, H∞ = Hn and a0 = 0
if x = m for all t ∈ Ti, then the norm of the estimation error decreases exponentially, i.e. there
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exist constants cx,V , µx,V > 0 such that

∀ t ∈ Ti : ‖ex‖ ≤ cx,V ‖ex,ti‖ e−µx,V (t−ti).

Proof. The proof is identical to the proof of Theorem 3.2.9.

3.4 The transformation-based Frequency Adaptive Observer in
transformed frame and the transformation-based Frequency
Adaptive Observer with o�set in transformed frame

In Section 3.3, observers were constructed with the purpose of observing the generating systems
(3.4) and (3.8). However, for proper functionality, the harmonic numbers collected in Hn had to
be (at least roughly) known. Hence, the following section addresses this problem where the basic
idea, that already was published in [548], is to transform the generation system into Controllable
Canonical Form (CCF). This section's structure is as follows:

Section 3.4.1 describes the transformation of the generation systems (3.4) and (3.8) to CCF,

Section 3.4.2 brie�y restates observability,

Section 3.4.3 constructs observers for the transformed systems,

Section 3.4.4 discusses the gain selection for both systems and

Section 3.4.5 proves stability for both methods where, as an outcome, the angular frequency
adaption laws can be formulated.

3.4.1 Transformation to Controllable Canonical Form

First of all, the transformation into Controllable Canonical Form (CCF) is described. To this
end, at �rst the transformation of (3.4) is explained and, based thereon, (3.8) is transformed
afterwards.

3.4.1.1 Transformation of the generation system without o�set to Controllable

Canonical Form

The basic idea for the transformation to CCF was already reported in [548], which de�ned the
transformation of system (3.4) to CCF as

x := T (ω)x. (3.97)

where here and in the following, all symbols marked by an underline (i.e. �a�) represent an
expression in transformed coordinates. The transformation matrix T and its inverse matrix are
given by

T (ω) :=

 T 1(ω) · · · T n∞(ω)
...

. . .
...

(−ω2
1)n∞−1T 1(ω) · · · (−ω2

n∞)n∞−1T n∞(ω)

 ∈ R2n∞×2n∞ , (3.98)
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T−1(ω) =



(−1)n∞+1
n∞∏
j=1
j 6=1

ω2
j

n∞∏
j=1
j 6=1

(ω2
1−ω2

j )
T−1

1 (ω) · · · (−1)n∞+1

n∞∏
j=1
j 6=1

(ω2
1−ω2

j )
T−1

1 (ω)

...
. . .

...

(−1)n∞+1
n∞∏
j=1
j 6=n∞

ω2
j

n∞∏
j=1
j 6=n∞

(ω2
n∞−ω

2
j )
T−1
n∞(ω) · · · (−1)n∞+1

n∞∏
j=1
j 6=n∞

(ω2
n∞−ω

2
j )
T−1
n∞(ω)


(3.99)

since the product of the r-th row of T−1 and the c-th row of T yields

(−1)n∞+1
n∞∏
j=1
j 6=r

ω2
j

n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
T−1
r (ω)T c(ω) + · · · − (−1)n∞+1

n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
T−1
r (ω) (−ω2

c )n∞

ω2
c

T c(ω)

=

(−1)n∞+1
n∞∏
j=1
j 6=r

ω2
j + · · · − ω2n∞−4

c

n∞∑
j=1
j 6=r

ω2
j + ω2n∞−2

c

 T−1
r (ω)T c(ω)
n∞∏
j=1
j 6=r

(ω2
r−ω2

j )

(2.18)
=

n∞∏
j=1
j 6=r

(
ω2
c − ω2

j

) T−1
r (ω)T c(ω)
n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
=

{
02×2, c 6= r

I2, c = r.

In T , each sub matrix T i is de�ned as

∀ i ∈ {1, . . . , n∞} : T i(ω) :=

n∞∑
j=1

(−1)jω2j−2
i

[
−cαt,j(ω) −ωicβt,j(ω)

−ω2
i c
β
t,j(ω) ωic

α
t,j(ω)

]
(
n∞∑
j=1

(−1)jω2j−2
i cαt,j(ω)

)2

+

(
n∞∑
j=1

(−1)jω2j−1
i cβt,j(ω)

)2 . (3.100)

The transformation parameters cαt,i and cβt,i, i ∈ {1, . . . , n∞} are constant. Hence, since the
frequencies ωi are assumed to be constant, the time derivative of (3.97) results in

∀ t ∈ Ti :
d
dtx = T (ω)J(ω)x =

=:J(ω)︷ ︸︸ ︷
T (ω)J(ω)T−1(ω)x, x(ti) = xti = T (ω)xti

y = c>x = c>T−1(ω)︸ ︷︷ ︸
=: c>t (ω)

x.

 (3.101)

The resulting matrix J is in CCF, i.e.

J(ω) =



0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

−
n∞∏
j=1

ω2
j 0 · · · −

n∞∑
j=1

ω2
j 0


=:


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−θn∞ 0 · · · −θ1 0

 =: J(θ). (3.102)
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Due to the speci�c choice of T i, the output vector ct collects the transformation parameters

ct(ω) =
(
cαt,1(ω) cβt,1(ω) cαt,2(ω) cβt,2(ω) · · · cαt,n∞(ω) cβt,n∞(ω)

)>
. (3.103)

The transformed angular frequencies

θ1 =
n∞∑
j=1

ω2
j

θi =
n∞∑

j1<ji=1

∏
k∈j

ω2
k

θn∞ =
n∞∏
j=1

ω2
j


(3.104)

are collected in the transformed angular frequency vector

θ :=
(
θ1 θ2 · · · θn∞

)> ∈ Rn∞ . (3.105)

They refer to the matrix J via

J(θ) =


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

−


0
...
0
1


︸ ︷︷ ︸

=: b∈R2n∞

θ>


0 0 0 0 · · · 1 0
...

...
...

...
...
...

...
0 0 1 0 · · · 0 0
1 0 0 0 · · · 0 0


︸ ︷︷ ︸

=: Σ∈Rn∞×2n∞

. (3.106)

This completes the description of the transformation of (3.4) to CCF.

3.4.1.2 Transformation of the generation system with o�set to Controllable Canon-

ical Form

Similar to (3.97), the transformation for (3.8) is de�ned as

x := T (ω)x . (3.107)

The transformation matrix T uses a matrix T based on T from (3.98) and is given by

T (ω) :=

[
ts(ω) t>r (ω)

tc(ω) T (ω)

]
∈ R(2n∞+1)×(2n∞+1) (3.108)

whereas its inverse is obtained as

T−1(ω) =

 1+t>r (ω)(ts(ω)T (ω)−tc(ω)t>r (ω))
−1
tc(ω)

ts(ω) − t
>
r (ω)
ts(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1

− 1
ts(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1
tc(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1

 . (3.109)

Taking the time derivative of (3.107) yields

d
dtx = T (ω)J (ω)x = T (ω)J (ω)T−1(ω)︸ ︷︷ ︸

=:J (ω)

x
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(3.8),
(3.108),
(3.109)

=

− t>r (ω)J(ω)
ts(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1
tc(ω) t>r (ω)J(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1

−T (ω)J(ω)
ts(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1
tc(ω) T (ω)J(ω)

(
T (ω)− tc(ω)t>r (ω)

ts(ω)

)−1

x .
(3.110)

To obtain J in CCF,

tc(ω) = 02n∞ and tr(ω) = −J−1(ω)T
>

(ω)i1,2n∞

must hold. Moreover, the south-eastern sub matrix TJT
−1

must be in CCF as well. However,
this is already the case if T is chosen similar to T as in (3.98) but with

∀ i ∈ {1, . . . , n∞} : T ,i(ω) =

−
[

0
ct ,0(ω)

ωi

ct ,0(ω) 0

]
+
n∞∑
j=1

(−1)jω2j−2
i

[
−cαt ,j(ω) −ωicβt ,j(ω)

−ω2
i c
β
t ,j(ω) ωic

α
t ,j(ω)

]
(
n∞∑
j=1

(−1)jω2j−2
i cαt ,j(ω)

)2

+

(
ct ,0(ω)

ωi
+
n∞∑
j=1

(−1)jω2j−1
i cβt ,j(ω)

)2

(3.111)
instead of T i. This choice, together with

ts(ω) = 1
ct ,0(ω)

leads to a similar structure of ct like ct as in (3.103). Hence, the resulting system in CCF is
given by

∀ t ∈ Ti :

d
dtx = J (ω)x , x (ti) = x ,ti = T (ω)x ,ti

y = c>x = c>T−1(ω)︸ ︷︷ ︸
=: c>t (ω)

x

 (3.112)

where

J (θ) =


0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 1
0 −θn∞ 0 −θn∞−1 0 · · · −θ1 0

 and

ct (ω) =
(
ct ,0(ω) cαt ,1(ω) cβt ,1(ω) · · · cαt ,n∞(ω) cβt ,n∞(ω)

)>
.


(3.113)

The frequencies are collected in the transformed angular frequency vector θ as in (3.105). Thus,
the matrix J can be decomposed into

J (θ) =


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

−
(

0
b

)
︸︷︷︸

=: b ∈R2n∞+1

θ>
[
0n Σ

]︸ ︷︷ ︸
=: Σ ∈Rn∞×(2n∞+1)

. (3.114)

This completes the description of the transformation of (3.8) into CCF.
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3.4.2 Observability

Before the observer construction can be done, at �rst, the observability must be clari�ed again
since this characteristic might change with state dependent similarity transformations.

Proposition 3.4.1 (Observability of transformed generation systems (3.101) and (3.112)). Let
Jx, cx be as in (3.101) or (3.112), resp., and T x as in (3.98) or (3.108), resp. Further, let
v = 2n∞ − 1 if no o�set is considered and v = 2n∞ otherwise. Then, if and only if ω1 6= 0,
H∞ ⊆ R \ {0} where for all νi, νj ∈ H∞, i 6= j, it holds that |νi| 6= |νj | and det(T x) 6= 0, the
systems (c>t ,J) and (c>t ,J ) are observable.

Proof. According to [574, Sec. 2.3.1], investigate

Ox(ω) :=

 c>x (θ)
...

c>x (θ)Jvx(θ)

 (3.101)
=

 c>x T
−1
x (ω)
...

c>x J
v
x(ω)T−1

x (ω)

 (3.64)
= Ox(ω)T−1

x (ω) (3.115)

which must have full rank. This holds if (i) Ox has full rank (which was stated in Proposition
3.3.1) and if (ii) the transformation matrix T x is invertible. Hence, this shows the observability
of the pairs (c>t ,J) and (c>t ,J ) and completes the proof.

3.4.3 Observer construction: The parallelized tSOGIs in transformed frame
and the parallelized tSOGIs with o�set in transformed frame

The next step, similar to Section 3.3.2, is the construction of a Luenberger-based observer.
However, as in Sections 3.2.2 and 3.3.2, not the whole systems (3.101) and (3.112) with H∞ can
be observed. Instead, a reduced subsystem must be used. But, unlike the (e)sFAO, the mFAO,
and the mFAO , the reduced set of harmonic numbers is not �xed to some selected values, but is
estimated by the frequency adaptive observer and denoted as Ĥn. However, its cardinality must
be set before observer construction and is denoted by n :=

∣∣Ĥn

∣∣. This cardinality is identical
to the system order. In the following, the observer for system (3.101) is constructed in Section
3.4.3.1 and the observer for (3.112) in Section 3.4.3.2.

3.4.3.1 The parallelized tSOGIs in transformed frame

A direct construction of the observer yields, where the subscript �t� means �transformation-
based�,

∀ t ∈ Ti : d
dt x̂t =

=: Ãt(θ,θ̂t)∈R2n×2n︷ ︸︸ ︷(
J(θ̂t)− lt(θ)c>t (θ)

)
x̂t + lt(θ)y, x̂t(ti) = x̂t,ti

ŷ
t

= c>t (θ)x̂t

 (3.116)

with the state vector x̂t := (x̂αt,1, x̂
β
t,1, · · · , x̂

α
t,n, x̂

β
t,n)>. Since this system already contains the

maximal amount of degrees of freedom (collected in ct), the observer gain is not required to
allow for any further ones and thus can be selected to de�ne system characteristics. As will be
discussed in Sections 3.4.4 and 3.4.5, it is advantageous to choose lt as proposed in [548]:

lt(θ) :=
(

0 0 · · · 0 0 1

cβt,n(θ)
1
)>
∈ R2n. (3.117)
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The block diagram of the so-called parallelized transformation-based Second Order Generalized
Integrators (tSOGI) in transformed frame is illustrated in Figure 3.2518.

parallelized tSOGIs

Σ

Σθ̂
>
t Σ x̂t

∫
1

cβt,n

Σ
∫

· · ·
∫ ∫

c>t x̂t
y

et,y

θ̂t

x̂βt,n x̂αt,n x̂βt,1 x̂αt,1

x̂t

ŷ
t−

Figure 3.25: Block diagram of the parallelized tSOGIs in transformed frame.

3.4.3.2 The parallelized tSOGIs with o�set in transformed frame

For the parallelized transformation-based Second Order Generalized Integrators with o�set (tSOGI )
in transformed frame, the observer equations are obtained as follows

∀ t ∈ Ti : d
dt x̂t =

=: Ãt (θ,θ̂t )∈R2n+1×2n+1︷ ︸︸ ︷(
J (θ̂t )− lt (θ)c>t (θ)

)
x̂t + lt (θ)y, x̂t (ti) = x̂t ,ti

ŷ
t

= c>t (θ)x̂t

 (3.118)

with

x̂t := (x̂t ,0, x̂
α
t ,1, x̂

β
t ,1, · · · , x̂

α
t ,n, x̂

β
t ,n)> ∈ R2n+1

and lt (θ) :=
(

0, 0, · · · , 0, 0, 1

cβt ,n(θ)
, 1
)>
∈ R2n+1. (3.119)

The block diagram for the parallelized tSOGI s in transformed frame is similar to that in Figure
3.25.

3.4.4 Pole placement for the parallelized tSOGIs in transformed frame and
the parallelized tSOGIs with o�set in transformed frame

With the observer equations known, the gains cαt,i and cβt,i as well as ct ,0, c
α
t ,i and cβt ,i, i ∈

{1, . . . , n} must be selected for the sake of the matrices Ãt and Ãt being Hurwitz matrices.
Therefore, pole placement is used which requires the system matrices' characteristic polynomials.
Note that if a matrix is in CCF, the characteristic polynomial can be obtained directly from the
system matrix' last row [582, Sec. 6.1.2]. By an appropriate choice of the observer gain vectors
lt and lt , this structure can be achieved. In fact, that is why the observer gain vectors lt and lt
were designed as in Section 3.4.3. For example, the system matrix for the tSOGI in transformed

18Although the parallelized tSOGIs in the transformed frame do not have a parallel structure as shown, for
example, by the parallelized mSOGIs in Figure 3.14, they are called such for consistency. Their transfer functions
and the respective amplitude and phase responses are neglected since they are not needed.
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frame is given by

Ãt(θ, θ̂t) =



0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

− cαt,1(θ)

cβt,n(θ)
− cβt,1(θ)

cβt,n(θ)
· · · − cαt,n(θ)

cβt,n(θ)
0

−θ̂t,n − cαt,1(θ) −cβt,1(θ) · · · −θ̂t,1 − cαt,n(θ) −cβt,n(θ)


whose north-western sub matrix is again in CCF. According to [582, Sec. 6.1], its characteristic
polynomial and the one for Ãt can be collected as

χ
Ãt

(s,θ) =
(
s+ cβt,n(θ)

) =:χ
Ãt,red

(s,θ)︷ ︸︸ ︷(
cαt,1(θ)

cβt,n(θ)
+

cβt,1(θ)

cβt,n(θ)
s+ · · ·+ cαt,n(θ)

cβt,n(θ)
s2n−2 + s2n−1

)
χ
Ãt

(s,θ) =
(
s+ cβt ,n(θ)

)(
ct ,0(θ)

cβt ,n(θ)
+

cαt ,1(θ)

cβt ,n(θ)
s+ · · ·+ cαt ,n(θ)

cβt ,n(θ)
s2n−1 + s2n

)
︸ ︷︷ ︸

=:χ
Ãt ,red

(s,θ)

.


(3.120)

Note that these are independent of the estimated transformed angular frequencies θ̂t,i and θ̂t ,i,
respectively.

Proposition 3.4.2 (Pole placement for the parallelized tSOGIs in transformed frame and the
parallelized tSOGI s in transformed frame). Let x ∈ {t, t } and let v = 2n−1 if x = t or v = 2n if
x = t , respectively. Let J be as in (3.116) or J as in (3.118) (summarized as Jx), respectively,
and lx as in (3.117) or (3.119), respectively. Let

Λx :=


0 0 · · · 1
...

...
...
...

0 1 · · · 0
1 0 · · · 0

 = Λ>x = Λ−1
x ∈ Rv×v. (3.121)

Further let λx,i ∈ C, i ∈ {1, . . . , v + 1} be the desired eigenvalues of Ãx := Jx − lxc>x . Let

λx,red(θ) :=

(
−

v∑
i=1

λx,i(θ)
v∑
i=1

λx,i(θ)
v∑

j=i+1
λx,j(θ) · · · (−1)v

v∏
i=1

λx,i(θ)

)>
be the vector containing the coe�cients of the reduced desired characteristic polynomial

χ
Ãx,red,des

(s,θ) :=

v∏
i=1

(
s− λx,i(θ)

)
.

If and only if the output vector cx is chosen as follows

cx(θ) = −
[
Λx 0v
0>v 1

](
λx,v+1(θ)λx,red(θ)

λx,v+1(θ)

)
, (3.122)
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then the desired characteristic polynomial

χ
Ãx,des

(s,θ) :=
(
s− λx,v+1(θ)

)
χ
Ãx,red,des

(s,θ)

and the actual characteristic polynomial given in (3.120) have identical coe�cients and, hence,
Ãx is a matrix with eigenvalues λx,i.

Proof. De�ne the reduced output vector as follows

cx,red(θ) :=


(
cαt,1(θ) cβt,1(θ) . . . cαt,n(θ)

)>
∈ Rv, x = t(

ct ,0(θ) cαt ,1(θ) cβt ,1(θ) . . . cαt ,n(θ)
)>
∈ Rv, x = t

and collect the coe�cients of the reduced characteristic polynomial χ
Ãx,red

in (3.120) in

c
Ãx,red

(θ) :=


(
cαt,n(θ)

cβt,n(θ)
· · · cβt,1(θ)

cβt,n(θ)

cαt,1(θ)

cβt,n(θ)

)>
∈ Rv, x = t(

cαt,n(θ)

cβt,n(θ)
· · · cβt,1(θ)

cβt,n(θ)

cαt,1(θ)

cβt,n(θ)

ct,0(θ)

cβt,n(θ)

)>
∈ Rv, x = t .

(3.123)

Observe that the relation between cx,red and c
Ãx,red

is given by

c
Ãx,red

(θ) = 1

cβx,n(θ)
Λxcx,red(θ). (3.124)

In view of the characteristic polynomial χ
Ãx

as given in (3.120), one eigenvalue can be assigned
directly as

cβx,n(θ) = −λx,v+1(θ). (3.125)

The other elements of cx, collected in cx,red, follow by a comparison of λx,red and c
Ãx,red

as

λx,red(θ)
!

= c
Ãx,red

(θ)
(3.124)

= 1

cβx,n(θ)
Λxcx,red(θ)

=⇒ cx,red(θ)
(3.121)

= cβx,n(θ)Λxλx,red(θ)
(3.125)

= −λx,v+1(θ)Λxλx,red(θ). (3.126)

Hence, the total output vector is given by

cx(θ) =

(
cx,red(θ)

cβx,n(θ)

)
(3.125),(3.126)

=

(
−λx,v+1(θ)Λxλx,red(θ)

−λx,v+1(θ)

)
= −

[
Λx 0v
0>v 1

](
λx,v+1(θ)λx,red(θ)

λx,v+1(θ)

)
.

This completes the proof.

Remark 3.4.3. Let x ∈ {t, t }. For all eigenvalues λx,i ∈ CNHP, i ∈ {1, . . . , v}, the matrix Ãx

is a Hurwitz matrix. Moreover, note that if for any set it holds that p :=
∣∣{λx,1, . . . , λx,v

}∣∣ > 1

(p di�erent eigenvalues), the resulting matrix Ãx is not unique. Instead, there exist p matrices

Ãx with eigenvalues λx,i dependent on the choice for cβx,n which is illustrated in the following
example.
Consider x = t , n = 1 and choose the eigenvalues as λt ,1 = −a, λt ,2 = −b + c and λt ,3 =

−b− c where a, b ∈ R>0 and c ∈ R\{0}. Further consider θ̂t ,1 ∈ R. The possible output vectors
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ct follow as

ct ∈


a(b2 + c2)

2ab
a

 ,

 a(b2 + c2)
ab+ b2 + c2 − ac

b− c

 ,

 a(b2 + c2)
ab+ b2 + c2 + ac

b+ c

 .

Those lead to system matrices

Ãt ∈


 0 1 0

−a(b2+c2)
a −2ab

a 0

−a(b2 + c2) −θ̂t ,1 − 2ab −a

 ,
 0 1 0

−a(b2+c2)
b−c −ab+b2+c2−ac

b−c 0

−a(b2 + c2) −θ̂t ,1 − ab− b2 − c2 + ac −b+ c

 ,
 0 1 0

−a(b2+c2)
b+c −ab+b2+c2+ac

b+c 0

−a(b2 + c2) −θ̂t ,1 − ab− b2 − c2 − ac −b− c


 .

3.4.5 Stability proof and summary of the tFAO in transformed frame and
the tFAO with o�set in transformed frame

Although angular frequency adaption was not considered yet for the tSOGI in transformed
frame as well as the tSOGI in transformed frame, stability proofs for these systems are carried
out. However, from these proofs, angular frequency adaption laws can be deduced. Therefore,
summaries of the overall systems are given at the end of the section. In these summaries,
evaluations of the respective systems using the test signals de�ned in (3.12) are not feasible,
since this would imply a comparison of signals in α, β and transformed coordinates. But before
the proofs can be formulated, some preliminary observations are required.
For the following observations, let be x ∈ {t, t } and v = 2n − 1 if x = t or v = 2n if x = t .
De�ne the transformed angular frequency error matrix as

Ex,ω(θ, θ̂x) := Jx(θ)− Jx(θ̂x). (3.127)

Note that it only consists of the transformed angular frequency errors de�ned by and collected
in

ex,ω := θ − θ̂x, (3.128)

i.e. Ex,ω can be rewritten as
Ex,ω(θ, θ̂x) = −bxe

>
x,ωΣx (3.129)

according to (3.106) or (3.114), respectively. Next, introduce the signal estimation error as

ex := xx − x̂x. (3.130)

Its state space representation is given by

∀ t ∈ Ti : d
dtex

(3.101),(3.116)
= Jx(θ)xx −

(
Jx(θ̂x)− lx(θ)c>x (θ)

)
x̂x − lx(θ)c>x (θ)xx

(3.127),(3.130)
= Jx(θ)ex − lx(θ)c>x (θ)ex +Ex,ω(θ, θ̂x)x̂x
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(3.106),(3.116)
= Ax(θ)ex − bxe

>
x,ωΣx x̂x, ex(ti) = ex,ti (3.131)

ex,y = c>x (θ)ex = y − ŷ
x
. (3.132)

Therein, the matrix
Ax(θ) := Jx(θ)− lx(θ)c>x (θ) (3.133)

denotes the nominal system matrix. It is Ãx as introduced in (3.116) and (3.118), resp., where
for i ∈ {1, . . . , n} the estimated transformed angular frequencies θ̂x,i are replaced by the actual
frequencies θi. For example, At is given by

At(θ) =



0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

− cαt,1(θ)

cβt,n(θ)
− cβt,1(θ)

cβt,n(θ)
· · · − cαt,n(θ)

cβt,n(θ)
0

−θn − cαt,1(θ) −cβt,1(θ) · · · −θ1 − cαt,n(θ) −cβt,n(θ)


.

In view of Fact 2.16, Equation (3.131) can be made strictly positive real. This is shown in the
following.
Rewrite the matrix Ax in (3.133) as Ax =:

[
C 0v
v> −cβx,n

]
. The error transfer function with input

zx := −e>x,ωΣx x̂x

is de�ned by

Et,y(s,θ) :=
et,y(s)

zt(s)
= c>t (θ) (sI2n −At(θ))−1 b

(3.103),(3.106)
=

(
cαt,1(θ) · · · cβt,n(θ)

) (sI2n−1 −C(θ))−1 02n
v>(θ)(sI2n−1−C(θ))−1

s+cβt,n(θ)

1

s+cβt,n(θ)




0
...
0
1


=

cβt,n(θ)

s+cβt,n(θ)
(3.134)

if x = t or
Et ,y(s,θ) :=

et ,y(s)

zt (s) =
cβt ,n(θ)

s+cβt ,n(θ)
(3.135)

if x = t . It shall be tested for strict positive realness. It must ful�ll the assertions of Fact 2.16:
If and only if cβx,n ∈ R \ {0}, Ex,y is a rational function with relative degree rd (Ex,y) = 1, Ex,y

takes only real values for real s, and Ex,y is not identically zero for all s. Thus, checking the
conditions for strict positive realness of Fact 2.16 shows that Ex,y is strictly positive real.

Remark 3.4.4. The requirement cβx,n ∈ R \ {0} in�uences the allowed range and assignment of
the eigenvalues for pole placement described in Proposition 3.4.2, if the tSOGI in transformed
frame is considered. Considering the tSOGI in transformed frame instead, this requirement does
not in�uence the allowed range, since one eigenvalue must be real anyway (assuming a real-valued

implementation). On the other hand, one of the real eigenvalues must be assigned to cβt ,n, see
Remark 3.4.3.

Next, the strict positive realness of (3.131) allows to invoke theMeyer-Kalman-Yakubovich-
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Lemma 2.17

A>x (θ)P x(θ) + P x(θ)Ax(θ) = −q̃
x
(θ)q̃>

x
(θ)− q̃

x
(θ)Q̃

x
(θ)︸ ︷︷ ︸

=:−Q
x
(θ)

and cx(θ) = P x(θ)bx (3.136)

where Q̃
x

= Q̃
>
x
> 0 can be chosen arbitrarily. Note that the usual statement �for any given

Q
x

= Q>
x
> 0� does not hold anymore if additionally P xbx = cx must be ful�lled. More

precisely, Q
x
is restricted to a bounded set as shown in the following example.

Example 3.4.5. Let J =

[
0 1
−θ 0

]
, ct =

(
cαt
cβt

)
, lt =

( 1

cβt
1

)
, b =

(
0
1

)
, let At = J − ltc>t be

Hurwitz and let Et,y = c>t (sI2 −At)
−1 b be strictly positive real. Then, P t can be determined as

follows

P t
(3.136)

=

[
p cαt
cαt cβt

]
, p ∈ R

which leads to a restricted set for Q
t
given by

Q
t
∈

Q ∈ R2×2

∣∣∣∣∣∣∃ p ∈ R : Q =

2
cαt
cβt
p+ 2θcαt + 2(cαt )2 (cαt )2

cβt
+ θcβt + 2cαt c

β
t

(cαt )2

cβt
+ θcβt + 2cαt c

β
t 2(cβt )2

 > 0

 .

The eigenvalues of Q
t
, needed for the estimation bounds in stability proofs (see e.g. (3.56) or

(3.61)), are given by

λ(Q
t
) =

cαt
cβt
p+ θcαt + (cαt )2 + (cβt )2

±

√(
cαt
cβt
p+ θcαt + (cαt )2 − (cβt )2

)2

+

(
(cαt )2

cβt
+ θcβt + 2cαt c

β
t

)2

.

For the positive de�niteness of Q
t
, they are required to be positive. This implies

p >
cβt
cαt

((
(cαt )2

2(cβt )2
+

θ
2 + cαt

)2

− θcαt − (cαt )2

)

which gives a lower bound for p. Clearly, there does not exist an upper bound for p, but in view
of

lim
p→∞

λmin(Q
t
)→ 2(cβt )2

and since the eigenvalues are continuous functions of p it is obvious that there exists a maximal
λmin(Q

t
). Hence, Q

t
cannot be chosen arbitrarily.

This leads to the following assumption.

Assumption 3.4.6. Let x ∈ {t, t }. Let Jx, bx be as in (3.106) or (3.114), respectively, cx

as in (3.103) or (3.113), respectively and lx as in (3.117) or (3.119). Let Ax as in (3.133) be
a Hurwitz matrix, let Ex,y be strictly positive real and let the norm of the transformed angular
frequency error vector be bounded by

∥∥ex,ω

∥∥ ≤ cx,e,ω < ∞. Although the minimal eigenvalue of
Q

x
ful�lling (3.136) is limited to an upper bound as shown in Example 3.4.5, assume that it still

satis�es the following inequality:

∃m ≥ 1: λmin(Q
x
(θ))− 1

m − 2cx,e,ω ‖cx(θ)‖ ‖Σx‖ ≥ εx,m > 0. (3.137)
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Now, the stability proof can be formulated.

Theorem 3.4.7 (Bounded-input bounded-state/bounded-output stability of the dynamics of
the tFAO and tFAO in transformed frame). Let x ∈ {t, t } and v = 2n if x = t or v = 2n+ 1 if
x = t . Consider an essentially bounded input signal, i.e. y ∈ L∞(R≥0;R) and assume that (i) the

matrix Ax as in (3.133) is a Hurwitz matrix, (ii) cβx,n is a real scalar and (iii) angular frequency
adaption is globally asymptotic stable such that

∥∥ex,ω

∥∥ ≤ cx,e,ω < ∞. Then, the time-varying
systems (3.116) and (3.118) are bounded-input bounded-state/bounded-output stable, i.e.

∀ t ∈ Ti : ∃ cx, c̃x > 0: ‖x̂x‖ ≤ cx and
∣∣ŷ

x

∣∣ ≤ c̃x.

Proof. Firstly, since Ax is a Hurwitz matrix and cβx,n ∈ R, equation (3.136) holds. Secondly,
introduce the non-negative Lyapunov-like function

V x,x : Rv → R≥0, x̂x 7→ V x,x(x̂x,θ) := x̂>x P x(θ)x̂x.

Although the right-hand side of (3.116) or (3.118) is locally Lipschitz continuous with bounded
Lipschitz constant and bounded exogenous perturbation which implies a global solution of (3.116)
or (3.118) on R≥0, it still might diverge as t → ∞. The derivative of V x with respect to time
along the solution of (3.116) or (3.118) is, for all t ≥ ti, given and upper bounded by

d
dtV x,x(x̂t,θ) = d

dt x̂
>
x P x(θ)x̂x + x̂>x P x(θ) d

dt x̂x

(3.116)
=

(
x̂>x Ã

>
x (θ, θ̂x) + l>x (θ)y

)
P x(θ)x̂x

+x̂>x P x(θ)
(
Ãx(θ, θ̂x)x̂x + lx(θ)y

)
(3.106),(3.136)

= −x̂>xQx
(θ)x̂x + 2x̂>x cx(θ)e>t,ωΣx x̂x + 2yl>x (θ)P x(θ)x̂x

(2.16)

≤ −‖x̂x‖
2 λmin(Q

x
(θ)) + 2 ‖x̂x‖

2 ‖cx(θ)‖ cx,e,ω ‖Σx‖
+2 ‖x̂x‖︸ ︷︷ ︸

=: a

‖lx(θ)‖ ‖P x(θ)‖ ‖y‖∞︸ ︷︷ ︸
=: b

(2.15)

≤ −
(
λmin(Q

x
(θ))− 1

m − 2cx,e,ω ‖cx(θ)‖ ‖Σx‖︸ ︷︷ ︸
(3.137) : (·)≥εx,m>0

)
‖x̂x‖

2

+m ‖lx(θ)‖2 ‖P x(θ)‖2 ‖y‖2∞︸ ︷︷ ︸
=: cx,m<∞

(2.16)

≤ − εx,m
λmax(P x(θ))V x,x(x̂x,θ) + cx,m

(2.17)
=⇒ V x,x(x̂x,θ) ≤ V x,x(x̂x,ti ,θ) + 2cx,m

λmax(P x(θ))
εx,m

. (3.138)

Thus, in view of (2.16) and (3.138) and with cx as in (3.103) or (3.113), one can conclude that

∀ t ∈ Ti : ‖x̂x‖
(2.16),(3.138)

≤
√

1
λmin(P x(θ))

(
V x,x(x̂x,ti ,θ) + 2cx,m

λmax(P x(θ))
εx,m

)
=: cx <∞

and
∣∣ŷ

x

∣∣ (3.116),(3.118)≤ ‖cx(θ)‖ ‖x̂x‖ ≤ ‖cx(θ)‖ cx =: c̃x <∞.

This proves the assertion.
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Theorem 3.4.8 (Boundedness and asymptotic decrease of the signal estimation error & the
transformed angular frequency estimation error of the tFAO and tFAo in transformed frame).
Let x ∈ {t, t } and let v = 2n if x = t or v = 2n + 1 if x = t . Consider any continuous
and bounded input signal, i.e. y ∈ C(R≥0;R>0) ∩ L∞(R≥0;R) with bounded angular frequency,
i.e. θ ∈ L∞(R≥0;Rn) and assume that y is fed to the parallelized tSOGIs in transformed frame
(3.116) or the parallelized tSOGI s in transformed frame (3.118), respectively, with Ax being a

Hurwitz matrix. Let cβt,n be a real scalar. If the transformed angular frequency vector θ̂x is
adapted by the update law

∀ t ∈ Ti : d
dt θ̂x = −ex,yΓx(xx,θ)Σx x̂x, θ̂x(ti) = θ̂x,ti (3.139)

with a positive de�nite and symmetric matrix Γx, then
(i) the signal estimation error vector ex as de�ned in (3.130) is bounded, i.e. there exists cx,e > 0
such that ‖ex‖ ≤ cx,e <∞ for all t ∈ Ti and, if n∞ = n for all t ∈ Ti, it decreases asymptotically,
i.e. lim

t→∞
‖ex‖ → 0;

(ii) the transformed angular frequency error vector ex,ω is bounded, i.e. there exists cx,e,ω > 0 such
that

∥∥ex,ω

∥∥ ≤ cx,e,ω <∞ for all t ∈ Ti and, if n∞ = n for all t ∈ Ti, it decreases asymptotically,
i.e. lim

t→∞

∥∥ex,ω

∥∥→ 0;

(iii) the estimated transformed angular frequency vector θ̂x is bounded, i.e. there exists cx,ω > 0

such that
∥∥∥θ̂x

∥∥∥ ≤ cx,ω <∞ for all t ∈ Ti.

Proof. The time derivative of the Lyapunov-like function

V x(xx,θ, ex, ex,ω) := e>x P x(θ)ex︸ ︷︷ ︸
=:V x,x(ex,θ)

+ e>x,ωΓ−1
x (xx,θ)ex,ω︸ ︷︷ ︸

=:V x,ω(xx,θ,ex,ω)

(with P x as used in the proof of Theorem 3.4.7 and 0 < Γx = Γ>x ∈ Rn×n), along the solution
of (3.131) is given by

d
dtV x(xx,θ, ex, ex,ω) = d

dte
>
x P x(θ)ex + e>x P x(θ) d

dtex

+ d
dte
>
x,ωΓ−1

x (xx,θ)ex,ω + e>x,ωΓ−1
x (xx,θ) d

dtex,ω

(3.131)
= e>x

(
A>x (θ)P x(θ) + P x(θ)Ax(θ)

)
ex

−2e>x P x(θ)bxe
>
x,ωΣx x̂x + 2e>x,ωΓ−1

x (xx,θ) d
dtex,ω

(3.131),(3.136)
= −e>xQx

(θ)ex − 2e>x,ω
(
ex,yΣx x̂x − Γ−1

x (xx,θ) d
dtex,ω

)
.(3.140)

Now, by choosing
d
dtex,ω = ex,yΓx(xx,θ)Σx x̂x (3.141)

it follows that

d
dtV x(xx,θ, ex, ex,ω)

(3.140),(3.141)
= −e>xQx

(θ)ex

(2.16)

≤ −λmin(Q
x
(θ)) ‖ex‖

2

(2.16)

≤ − λmin(Q
x
(θ))

λmax(P x(θ))︸ ︷︷ ︸
=:µ

x,V
>0

V x,x(ex,θ). (3.142)

Note that these results are independent of ex,ω; hence, it might happen that
∥∥ex,ω

∥∥ → ∞ as
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t→∞. In fact, the following holds

∀ t ∈ Ti, ∀ ex ∈ Rv, ex,ω ∈ Rn : d
dtV x(xx,θ, ex, ex,ω) ≤ 0

and ∀ t ∈ Ti, ∀ ex = 0v, ex,ω ∈ Rn : d
dtV x(xx,θ, ex, ex,ω) = 0,

which allows to invoke LaSalle's invariance principle (see Fact 2.18). To verify its requirements,
�rst observe that (e>x , e

>
x,ω)> = (0>v , 0>n )> is an equilibrium, i.e.

d
dtex

∣∣∣
(e>x , e

>
x,ω)>=(0>v ,0

>
n )>

= 0v and d
dtex,ω

∣∣∣
(e>x , e

>
x,ω)>=(0>v ,0

>
n )>

= 0n.

Second, the function V x is positive de�nite whereas its time derivative is negative semi-de�nite
as shown above. The largest positive invariant subset of

Sx :=

{(
ex

ex,ω

)
∈ Rv+n

∣∣∣∣ d
dtV x(x, ex,θ, ex,ω) = 0

}
=

{(
0v
κx

) ∣∣∣∣ κx ∈ Rn
}

is given by Mx :=
{(

0>v 0>n
)>}, since otherwise the following would hold:

∀
{(

ex

ex,ω

)}
∈ Sx \Mx : d

dtex = Ax(θ)ex − bxe
>
x,ωΣx x̂x 6= 0v

which violates the equilibrium condition. Hence, the error vector (e>x , e
>
x,ω)> decreases global

asymptotically and therefore, the estimation error vector and transformed angular frequency
error vector are both bounded and converging asymptotically to zero, i.e.

∀ t ∈ Ti :

∥∥ex,ω

∥∥ ≤ cx,e,ω < ∞, and lim
t→∞

∥∥ex,ω

∥∥ → 0,

‖ex‖ ≤ cx,e < ∞ and lim
t→∞
‖ex‖ → 0.

}
(3.143)

Note this asymptotic behavior only holds true if n∞ = n. Otherwise, it converges asymptotically
to some non-zero value, since the observers are not able to estimate the input signal completely.
Moreover, in return, the boundedness and asymptotic decrease of the transformed angular fre-
quency error implies a global boundedness of the angular frequency adaption. This becomes
clear when taking into account

d
dtex,ω

(3.128)
= − d

dt θ̂x. (3.144)

Thus, it follows

=⇒ d
dt θ̂x

(3.141),(3.144)
= −ex,yΓx(xx,θ)Σx x̂x. (3.145)

Finally, observe that

∀ t ∈ Ti :
∥∥∥θ̂x

∥∥∥ (3.128)
=

∥∥θ − ex,ω

∥∥ ≤ ‖θ‖︸︷︷︸
=: cω<∞

+
∥∥ex,ω

∥∥ (3.143)

≤ cω + cx,e,ω =: cx,ω <∞

which completes the proof.
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3.4.5.1 The tFLL in transformed frame and summary of the tFAO in transformed

frame

As an outcome of Theorem 3.4.8, transformed angular frequency adaption is achieved by

∀ t ∈ Ti : d
dt θ̂t = −et,yΓt(x,θ)Σ x̂t, θ̂t(ti) = θ̂t,ti (3.146)

which is called the transformation-based Frequency Locked Loop (tFLL) in transformed frame.
Its block diagram is illustrated in Figure 3.26.

tFLL

−ΓtΣ x̂t ×
∫et,y

x̂t θ̂t

Figure 3.26: Block diagram of the tFLL in transformed frame.

Concluding, the overall system of parallelized tSOGIs in transformed frame and tFLL in trans-
formed frame, called the transformation-based Frequency Adaptive Observer (tFAO) in trans-
formed frame, is described by

∀ t ∈ Ti :

d
dt x̂t = Ãt(θ, θ̂t)x̂t + lt(θ)y, x̂t(ti) = x̂t,ti

Ãt(θ, θ̂t) =

[
02n−1 I2n−1

0 0>2n−1

]
− bθ̂

>
t Σ− lt(θ)c>t (θ)

d
dt θ̂t =

(
c>t (θ)x̂t − y

)
Γt(x,θ)Σ x̂t, θ̂t(ti) = θ̂t,ti .

 (3.147)

Its block diagram is depicted in Figure 3.27.

tSOGI
(3.116)

tFLL
(3.146)

c>t x̂t
y

x̂t

ŷ
t

θ̂t

Figure 3.27: Block diagram of the tFAO.

3.4.5.2 The tFLL with o�set in transformed frame and summary of the tFAO with

o�set in transformed frame

From Theorem 3.4.8, the transformed angular frequency update law is obtained as

∀ t ∈ Ti : d
dt θ̂t = −et ,yΓt (x ,θ)Σ x̂t , θ̂t (ti) = θ̂t ,ti (3.148)

what is denoted as the transformation-based Frequency Locked Loop with o�set (tFLL ) in trans-
formed frame. Its block diagram is similar to the one illustrated in Figure 3.26. To conclude,
the overall system is called the transformation-based Frequency Adaptive Observer with o�set
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(tFAO ) in transformed frame. It is described by

∀ t ∈ Ti :

d
dt x̂t = Ãt (θ, θ̂t )x̂t + lt (θ)y, x̂t (ti) = x̂t ,ti

Ãt (θ, θ̂t ) =

[
02n I2n

0 0>2n

]
− b θ̂

>
t Σ − lt (θ)c>t (θ)

d
dt θ̂t =

(
c>t (θ)x̂t − y

)
Γt (x ,θ)Σ x̂t , θ̂t (ti) = θ̂t ,ti

 (3.149)

and its block diagram is depicted in Figure 3.28.

tSOGI
(3.118)

tFLL
(3.148)

c>t x̂t
y

x̂t

ŷ
t

θ̂t

Figure 3.28: Block diagram of the tFAO in transformed frame.

Remark 3.4.9. Let x ∈ {t, t }. Note that the transformed angular frequency estimation vector
θ̂x does not contain the unique frequencies ω̂x,i, i ∈ {1, . . . , n} but certain combinations of them
as in (3.104), i.e.

θ̂x,1 =
n∑
j=1

ω̂2
x,j

θ̂x,i =
n∑

j1<ji=1

∏
k∈{j1,...,ji}

ω̂2
x,k

θ̂x,n =
n∏
j=1

ω̂2
x,j .


(3.150)

Inserting the θ̂x,i into each other yields

∀ i ∈ {1, . . . , n} : 0 = ω̂2n
x,i − ω̂2n−2

x,i θ̂x,1 + ω̂2n−4
x,i θ̂x,2 + · · ·+ (−1)nθ̂x,n (3.151)

where it should be noted that the ω̂x,i are unknown, i.e. they can be treated as variables whereas
the θ̂x,i are known, i.e. they are treated as coe�cients. Hence, the unique estimated angular
frequencies can be calculated as the roots of the function

f(κ) := κ2n +

∈Rn︷ ︸︸ ︷(
−κ2n−2 κ2n−4 · · · (−1)n+1κ2 (−1)n

)
θ̂x

⇒ {κ0| f(κ0) = 0} = {±ω̂x,1, . . . ,±ω̂x,n} ;

(3.152)

A proof for this assertion is provided in Appendix D. However, in view of the Theorem of Abel-
Ruffini shown in [583], the roots can only be calculated analytically for n ≤ 4.

Remark 3.4.10. Let x ∈ {t, t }. Post-processing the states collected in x̂x � that is, back-
transforming � into α, β frame is done straight forward according to (3.97) or (3.107), respec-
tively. In the inverse transformation matrix, the actual angular frequencies ωi, i ∈ {1, . . . , n}
must be replaced by the estimated angular frequencies ω̂x,i. Then, the amplitudes âx,i and phases

φ̂
x,i

are calculated as shown in (3.10).

Remark 3.4.11. Since most likely, it holds that n∞ > n and Ĥn is not prescribed but esti-
mated, the tFAO in transformed frame and the tFAO in transformed frame will detect the signal
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components with the most dominant amplitudes such that the estimation error is minimized.

3.5 The transformation-based Frequency Adaptive Observer in
α, β frame and the transformation-based Frequency Adaptive
Observer with o�set in α, β frame

In this section, the tFAO and tFAO in transformed frame introduced in Section 3.4 are back-
transformed into α, β frame. Although they do not require a prescribed set Hn but are capable of
estimating all parameters of a �xed number of components with dominant amplitude of unknown
signals, they have two signi�cant numerical disadvantages:

1. The matrices Jx are bad conditioned due to the frequency vector θ. For example, the
transformed angular frequency vector follows from the angular frequency vector in α, β
frame as

ω =
(
2π50 2π100 2π150

)>
=⇒ θ =

(
(2π)235 · 103 (2π)4306.25 · 106 (2π)6562.5 · 109

)>
.

Hence, the matrix

J =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−θ3 0 −θ2 0 θ1 0


contains elements that vary by a factor of (2π)6 ·562.5 ·109 ≈ 3.5 ·1016. On the other hand,
the matrix J or J , respectively, is better conditioned since it varies by the factor of 3 in
this example.

2. As already stated in Remark 3.4.9, the unique angular frequencies ω̂t,i are not obtainable
analytically for n > 4. In this case, numeric methods like the Newton-Raphson method
must be applied which come with high computational burden. This might endanger real-
time applicability.

Thus, the aim of the back-transformation is to maintain the advantages of the tFAO in trans-
formed frame and the tFAO in transformed frame such as the estimation of harmonic angular
frequencies and to improve the numeric characteristics. This section is structured as follows:

Section 3.5.1 discusses the back-transformation of the tFLL in transformed frame (3.146) and
tFLL in transformed frame (3.148),

Section 3.5.2 shows the back-transformation of the tSOGI in transformed frame (3.116) and
tSOGI in transformed frame (3.118),

Section 3.5.3 discusses the gain selection for both systems and

Section 3.5.4 proves the stability for both methods.
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FRAME AND THE TRANSFORMATION-BASED FREQUENCY ADAPTIVE OBSERVER
WITH OFFSET IN α, β FRAME

3.5.1 back-transformation: The tFLL in α, β frame and the tFLL with o�set
in α, β frame

This section shows the back-transformation of the angular frequency adaption law. The trans-
formed angular frequency vector θ̂t is back-transformed to a vector ω̂t containing the single
frequencies ω̂t,i in Section 3.5.1.1. The same is done for o�set in Section 3.5.1.2.

3.5.1.1 The tFLL in α, β frame

Recall the transformed angular frequency vector (3.105)

θ̂t =
(
θ̂t,1 · · · θ̂t,n

)>
=

( n∑
j=1

ω̂2
t,j · · ·

n∏
j=1

ω̂2
t,j

)>
and de�ne the angular frequency vector in α, β coordinates,

ω̂t :=
(
ω̂t,1 · · · ω̂t,n

)>
.

Calculate the time derivatives of the elements of θ̂t as follows

d
dt θ̂t,1 = d

dt

n∑
j=1

ω̂2
t,j = 2

n∑
j=1

ω̂t,j
d
dt ω̂t,j

d
dt θ̂t,i = d

dt

n∑
j1<ji=1

∏
k∈j

ω̂2
t,k = 2

n∑
j1<ji=1

∑
k∈j

ω̂t,k
d
dt ω̂t,k

∏
l∈j\k

ω̂2
t,l

d
dt θ̂t,n = d

dt

n∏
j=1

ω̂2
t,j = 2

n∑
j=1

ω̂t,j
d
dt ω̂t,j

n∏
k=1
k 6=j

ω̂2
t,k.


(3.153)

From them, deduce the transformation matrix

Ω−1(ω̂t) :=

$
′
1,1(ω̂t) · · · $′1,n(ω̂t)
...

. . .
...

$′n,1(ω̂t) · · · $′n,n(ω̂t)

 with $′i,j(ω̂t) = 2ω̂t,j

n∑
k1<ki−1=1\j

∏
l∈k

ω̂2
t,l (3.154)

such that
d
dt θ̂t = Ω−1(ω̂t)

d
dt ω̂t. (3.155)

The inverse of Ω−1 is obtained as

Ω(ω̂t) =

$1,1(ω̂t) · · · $1,n(ω̂t)
...

. . .
...

$n,1(ω̂t) · · · $n,n(ω̂t)

 with $i,j(ω̂t) =
(−1)j+1ω̂2n−2j−1

t,i

2
n∏
k=1
k 6=i

(ω̂2
t,i−ω̂2

t,k)
(3.156)

since the product of the r-th row of Ω and the c-th column of Ω−1 yields

ω̂2n−3
t,r ω̂t,c

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
−

ω̂2n−5
t,r ω̂t,c

n∑
k=1
k 6=c

ω̂2
t,k

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
+ · · · −

(−1)nω̂−1
t,r ω̂t,c

n∏
k=1
k 6=c

ω̂2
t,k

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
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=

ω̂2n−2
t,r − ω̂2n−4

t,r

n∑
k=1
k 6=c

ω̂2
t,k + · · · − (−1)n

n∏
k=1
k 6=c

ω̂2
t,k

 ω̂t,cω̂
−1
t,r

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)

(2.18)
=

n∏
k=1
k 6=c

(
ω̂2

t,r − ω̂2
t,k

) ω̂t,cω̂
−1
t,r

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
=

{
0, c 6= r

1, c = r.

Now, by introducing the back-transformation for the tSOGI in transformed frame (what will be
investigated in Section 3.5.2 in detail)

x̂t := T̃
−1

t (ω, ω̂t)x̂t (3.157)

the di�erential equation for the angular frequency estimation can be �nalized as

∀ t ∈ Ti : d
dt ω̂t

(3.146),(3.156)
= (c>t (ω)x̂t − y)Ω(ω̂t)Γt(x,ω)Σ x̂t

(3.157)
= (c>x̂t − y) Ω(ω̂t)Γt(x,ω)ΣT̃t(ω, ω̂t)︸ ︷︷ ︸

=: Γ̃t(x,ω,ω̂t)Σ̃t(x,ω,ω̂t)

x̂t, ω̂t(ti) = ω̂t,ti . (3.158)

It is called the transformation-based Frequency Locked Loop (tFLL) in α, β frame. Its block
diagram is drawn in Figure 3.29.

tFLL

c>x̂t

Σ

× Γ̃t(ω̂t)Σ̃t(ω̂t)zt

∫
y
−

x̂t

zt
ω̂t

Figure 3.29: Block diagram of the tFLL in α, β frame.

3.5.1.2 The tFLL with o�set in α, β frame

The transformation-based Frequency Locked Loop with o�set (tFLL ) in α, β frame is obtained
in an identical manner. It follows as

∀ t ∈ Ti : d
dt ω̂t = (c>x̂t − y) Ω(ω̂t )Γt (x ,ω)Σ T̃t (ω, ω̂t )︸ ︷︷ ︸

=: Γ̃t (x ,ω,ω̂t )Σ̃t (x ,ω,ω̂t )

x̂t , ω̂t (ti) = ω̂t ,ti (3.159)

where its block diagram is similar to the one shown in Figure 3.29.

3.5.2 back-transformation: The parallelized tSOGIs in α, β frame and the
parallelized tSOGIs with o�set in α, β frame

This section describes the back-transformation of the parallelized tSOGIs in transformed frame
and tSOGI s in transformed frame from transformed coordinates to α, β coordinates. More
precisely, the reverse procedure of what is shown in Sections 3.4.1.1 and 3.4.1.2 is applied to
(3.116) in Section 3.5.2.1 and to (3.118) in Section 3.5.2.2.
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3.5.2.1 The parallelized tSOGIs in α, β frame

According to (3.157), the back-transformation is achieved by

d
dt x̂t = d

dt

[
T̃
−1

t (ω, ω̂t)x̂t

]
= d

dt T̃
−1

t (ω, ω̂t)T̃t(ω, ω̂t)x̂t + T̃
−1

t (ω, ω̂t)
d
dt x̂t

(3.116)
=

(
d
dt T̃

−1

t (ω, ω̂t) + T̃
−1

t (ω, ω̂t)
(
J(ω̂t)− lt(ω)c>t (ω)

))
T̃t(ω, ω̂t)x̂t+T̃

−1

t (ω, ω̂t)lt(ω)y

(3.160)

with x̂>t := (x̂>t,1, · · · , x̂
>
t,n) and for all i ∈ {1, . . . , n} x̂t,i := (x̂αt,i, x̂

β
t,i)
>. In (3.160), the

transformation matrix T , dependent on ω and ct(ω), is substituted by T̃t depending on ω̂t and
ct(ω). Next, the expressions in the α, β coordinates are introduced, which are

(i) J(ω̂t) := T̃
−1

t (ω, ω̂t)J(ω̂t)T̃t(ω, ω̂t) = blkdiag
1,...,n

(
ω̂t,iJ̃

)
;

(ii) c = T̃
>
t (ω, ω̂t)ct(ω); and

(iii) l̃t(ω, ω̂t) := T̃
−1

t (ω, ω̂t)lt(ω) =



...
n∑
j=1

(−1)j+nω̂2j−2
t,i

(
cαt,j(ω)

cβt,n(ω)
+cβt,j(ω)

)
n∏
j=1
j 6=i

(ω̂2
t,i−ω̂2

t,j)

n∑
j=1

(−1)j+nω̂2j−3
t,i

(
ω̂2
t,ic

β
t,j(ω)

cβt,n(ω)
−cαt,j(ω)

)
n∏
j=1
j 6=i

(ω̂2
t,i−ω̂2

t,j)

...


.



(3.161)

In view of the remaining term d
dt T̃

−1

t T̃tx̂t in (3.161), the time derivative of T̃
−1

t is required.
Thus, the time derivative of its sub matrix in the r-th row and c-th column is given by

d
dt

 (−1)n+1
n∑

j1<jn−c=1\r

∏
k∈j

ω̂2
t,k

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
T̃
−1

t,r (ω, ω̂t)



=

2(−1)n+1
n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
n∑

j1<jn−c=1\r

∑
l∈j

ω̂t,l
d
dt ω̂t,l

∏
k∈j\l

ω̂2
t,k

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
2

T̃
−1

t,r (ω, ω̂t)

−

2(−1)n+1
n∑

j1<jn−c=1\r

∏
k∈j

ω̂2
t,k

n∑
l=1
l 6=r

(
ω̂t,r

d
dt ω̂t,r−ω̂t,l

d
dt ω̂t,l

) n∏
h=1
h 6=l,r

(ω̂2
t,r−ω̂2

t,h)

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
2

T̃
−1

t,r (ω, ω̂t)

+

(−1)n+1
n∑

j1<jn−c=1\r

∏
k∈j

ω̂2
t,k

n∏
h=1
h6=r

(ω̂2
t,r−ω̂2

t,h)

d
dt T̃

−1

t,r (ω, ω̂t)
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=

2(−1)n
n∑

j1<jn−c=1\r

∏
k∈j

ω̂2
t,k

 n∑
l=1
l 6=r

ω̂t,r
d
dt ω̂t,r−ω̂t,l

d
dt ω̂t,l

ω̂2
t,r−ω̂2

t,l
−
∑
l∈j

ω̂t,l
d
dt ω̂t,l

ω̂2
t,l


n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
T̃
−1

t,r (ω, ω̂t)

+

(−1)n+1
n∑

j1<jn−c=1\r

∏
k∈j

ω̂2
t,k

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)

d
dt T̃

−1

t,r (ω, ω̂t). (3.162)

The time derivative of the transformation sub matrices is obtained as follows

∀ i ∈ {1, . . . , n} :

d
dt T̃

−1

t,i (ω, ω̂t) = d
dt ω̂t,i

n∑
j=1

(−1)jω̂2j−4
t,i

[
− (2j − 2) ω̂t,ic

α
t,j(ω) − (2j − 2) ω̂t,ic

β
t,j(ω)

− (2j − 1) ω̂2
t,ic

β
t,j(ω) (2j − 3) cαt,j(ω)

]
︸ ︷︷ ︸

=: S̃
−1
t,i (ω,ω̂t)

. (3.163)

With (3.162), the matrix d
dt T̃

−1

t T̃t can be calculated, where only the sub matrix of the r-th row
and c-th column is shown, as

n∑
i=1

d
dt

 (−1)n+1
n∑

j1<jn−i=1\r

∏
k∈j

ω̂2
t,k

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
T̃
−1

t,r (ω, ω̂t)

 (−ω̂2
t,c)

i−1T̃t,c(ω, ω̂t)

(3.162)
=

n∑
i=1

2(−1)n
n∑

j1<jn−i=1\r

∏
k∈j

ω̂2
t,k

n∑
l=1
l 6=r

ω̂t,r
d
dt
ω̂t,r−ω̂t,l

d
dt
ω̂t,l

ω̂2
t,r−ω̂2

t,l
(−ω̂2

t,c)
i−1

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

−
n∑
i=1

2(−1)n
n∑

j1<jn−i=1\r

∏
k∈j

ω̂2
t,k

∑
l∈j

ω̂t,l
d
dt
ω̂t,l

ω̂2
t,l

(−ω̂2
t,c)

i−1

n∏
h=1
h6=r

(ω̂2
t,r−ω̂2

t,h)
T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

+

n∑
i=1

(−1)n+1
n∑

j1<jn−i=1\r

∏
k∈j

ω̂2
t,k(−ω̂2

t,c)
i−1

n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)

d
dt T̃

−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

(2.19),
(2.20)

=

 n∑
j=1
j 6=r

ω̂t,r
d
dt
ω̂t,r−ω̂t,j

d
dt
ω̂t,j

ω̂2
t,r−ω̂2

t,j

n∏
k=1
k 6=r

(
ω̂2

t,k − ω̂2
t,c

)

−
n∑
j=1
j 6=r

ω̂t,j
d
dt ω̂t,j

n∏
k=1
k 6=r,j

(
ω̂2

t,k − ω̂2
t,c

) 2(−1)n
n∏
h=1
h 6=r

(ω̂2
t,r−ω̂2

t,h)
T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

+

(−1)n+1
n∏
k=1
k 6=r

(ω̂2
t,k−ω̂

2
t,c)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)

d
dt T̃

−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)
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=

2
n∑
j=1
j 6=r

ω̂t,r
d
dt
ω̂t,r(ω̂2

t,j−ω̂2
t,c)−ω̂t,j

d
dt
ω̂t,j(ω̂2

t,r−ω̂2
t,c)

ω̂2
t,r−ω̂2

t,j

n∏
k=1
k 6=r,j

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

+

n∏
k=1
k 6=r

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)

d
dt T̃

−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

=



−2
n∑
j=1
j 6=r

ω̂t,r
d
dt
ω̂t,r

n∏
k=1
k 6=r,j

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
I2 + d

dt T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t), r = c

−2ω̂t,c
d
dt
ω̂t,c

n∏
k=1
k 6=r,c

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t), r 6= c

(3.164)

(3.163)
=



d
dt ω̂t,r


−2

n∑
j=1
j 6=r

ω̂t,r

n∏
k=1
k 6=r,j

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
I2 + S̃

−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t)

 , r = c

d
dt ω̂t,c

−2ω̂t,c

n∏
k=1
k 6=r,c

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
T̃
−1

t,r (ω, ω̂t)T̃t,c(ω, ω̂t), r 6= c

(3.165)

Next, since the matrix d
dt T̃

−1

t T̃t is dependent on the time derivative of the estimated angular

frequency vector ω̂t, the expression d
dt T̃

−1

t T̃tx̂t must be rearranged such that

d
dt T̃

−1

t (ω, ω̂t)T̃t(ω, ω̂t)x̂t = Ξ̃t(x̂t,ω, ω̂t)
d
dt ω̂t,

Ξ̃t(x̂t,ω, ω̂t) :=

ξt,1,1(x̂t,ω, ω̂t) · · · ξt,1,n(x̂t,ω, ω̂t)
...

. . .
...

ξt,n,1(x̂t,ω, ω̂t) · · · ξt,n,n(x̂t,ω, ω̂t)

 ∈ R2n×n. (3.166)

Therein, the sub vectors ξt,r,c are given as

ξt,r,c(x̂t,ω, ω̂t)
(3.165)

=




−2

n∑
j=1
j 6=r

ω̂t,r

n∏
k=1
k 6=r,j

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
I2 + S̃

−1

t,r (ω, ω̂t)T ,c(ω, ω̂t)

 x̂t,c, r = c

−2ω̂t,c

n∏
k=1
k 6=r,c

(ω̂2
t,c−ω̂2

t,k)

n∏
k=1
k 6=r

(ω̂2
t,r−ω̂2

t,k)
T
−1
,r (ω, ω̂t)T ,c(ω, ω̂t)x̂t,c, r 6= c.

(3.167)
Concluding, (3.160) can be rewritten as follows

∀ t ∈ Ti : x̂t(ti) = x̂t,ti ,
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d
dt x̂t

(3.160)
= d

dt T̃
−1

t (ω, ω̂t)T̃t(ω, ω̂t)x̂t + T̃
−1

t (ω, ω̂t)J(ω̂t)T̃t(ω, ω̂t)x̂t

−T̃
−1

t (ω, ω̂t)lt(ω)c>t (ω)T̃t(ω, ω̂t)x̂t + T̃
−1

t (ω, ω̂t)lt(ω)y

(3.166),
(3.161)

= Ξ̃t(x̂t,ω, ω̂t)
d
dt ω̂t

+
(
J(ω̂t)− l̃t(ω, ω̂t)c

>(ω)
)

︸ ︷︷ ︸
=: Ãt(ω,ω̂t)

x̂t + l̃t(ω, ω̂t)y

(3.158)
=

(
Ãt(ω, ω̂t) + Ξ̃t(x̂t,ω, ω̂t)Γ̃t(x,ω, ω̂t)Σ̃t(x,ω, ω̂t)x̂tc

>
)
x̂t

+
(̃
lt(ω, ω̂t)− Ξ̃t(x̂t,ω, ω̂t)Γ̃t(x,ω, ω̂t)Σ̃t(x,ω, ω̂t)x̂t

)
y,(3.168)

ŷt = c>t (ω)T̃t(ω, ω̂t)x̂t = c>x̂t.

The so called parallelized transformation-based Second Order Generalized Integrators (tSOGI) in
α, β frame and j-th tSOGI in α, β frame are illustrated in Figure 3.30.

j-th tSOGI

Σ −et,yΞ̃t(x̂t, ω̂t)Γ̃t(ω̂t)Σ̃t(ω̂t)x̂t · · ·

1-st tSOGI

n-th tSOGI

c>x̂t

y

ω̂t

et,y zt

zαt,1

zβt,1

zαt,n

zβt,n

x̂αt,1

x̂βt,1

x̂αt,n

x̂βt,n

−

x̂t

(a) Block diagram of the parallelized tSOGIs in α, β frame.

lαt,j

lβt,j

Σ
∫

∫

ω̂
t,j

Σ

ω̂
t,
j

et,y

−
x̂αt,j

x̂βt,j

zαt,j

zβt,j

(b) Construction of the j-th tSOGI in α, β frame.

Figure 3.30: (a): The parallelized structure of tSOGIs in α, β frame and (b): the j-th tSOGI in α, β
frame for estimating amplitude and phase of the j-th component.
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3.5.2.2 The parallelized tSOGIs with o�set in α, β frame

In view of (3.107), the back-transformation of the parallelized tSOGI s in transformed frame is
given by

d
dt x̂t = d

dt

[
T̃
−1

t (ω, ω̂t )x̂t

]
(3.118)

=
(

d
dt T̃

−1

t (ω, ω̂t )

+T̃
−1

t (ω, ω̂t )
(
J (ω̂t )− lt (ω)c>t (ω)

))
T̃t (ω, ω̂t )x̂t + T̃

−1

t (ω, ω̂t )lt (ω)y (3.169)

with x̂>t := (x̂t ,0, x̂t ,1, · · · , x̂t ,n) and x̂t ,i := (x̂αt ,i, x̂
β
t ,i)
>. Introduce

(i) J (ω̂t ) := T̃
−1

t (ω, ω̂t )J (ω̂t )T̃t (ω, ω̂t ) = blkdiag
(
0,J (ω̂t )

)
;

(ii) c = T̃
>
t (ω, ω̂t )ct (ω); and

(iii) l̃t (ω, ω̂t ) := T̃
−1

t (ω, ω̂t )lt (ω)

=



ct ,0(ω)
n∏
k=1

ω̂2
t ,k

...

(−1)n
ct ,0(ω)

ω̂2
t ,i

+
n∑
j=1

(−1)n+j ω̂2j−2
t ,i

(
cαt ,j(ω)

cβt ,n(ω)
+cβt ,j(ω)

)
n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)

(−1)nct ,0(ω)

ω̂t ,ic
β
t ,n(ω)

+
n∑
j=1

(−1)n+j ω̂2j−3
t ,i

(
ω̂2
t ,ic

β
t ,j(ω)

cβt ,n(ω)
−cαt ,j(ω)

)
n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)

...



.



(3.170)

Further, the time derivative of T̃
−1

t is required and given as

d
dt T̃

−1

t (ω, ω̂t )
(3.109)

=

 0 −ct ,0(ω)i>1,2n
d
dt

[
T̃t (ω, ω̂t )J−1(ω̂t )T̃

−1

t (ω, ω̂t )

]
02n

d
dt T̃

−1

t (ω, ω̂t )

 . (3.171)

The time derivative of T̃
−1

t is obtained in the same manner as for the parallelized tSOGIs in α, β
frame shown in (3.165) but with

∀ i ∈ {1, . . . , n} : d
dt T̃t i

−1(ω, ω̂t ) = d
dt ω̂t ,i

 0
2ct ,0(ω)

ω̂3
t ,i

ct ,0(ω)

ω̂2
t ,i

0


−

n∑
j=1

(−1)jω̂2j−4
t ,i

[
(2j − 2) ω̂t ,ic

α
t ,j(ω) (2j − 2) ω̂t ,ic

β
t ,j(ω)

(2j − 1) ω̂2
t ,ic

β
t ,j(ω) − (2j − 3) cαt ,j(ω)

] =: d
dt ω̂t ,iS̃

−1

t ,i(ω, ω̂t ). (3.172)

Next, the calculation of the product

d
dt T̃

−1

t (ω, ω̂t )T̃t (ω, ω̂t )=

 0 −ct ,0(ω)i>1,2n
d
dt

[
T̃t (ω, ω̂t )J−1(ω̂t )T̃

−1

t (ω, ω̂t )

]
T̃t (ω, ω̂t )

02n
d
dt T̃

−1

t (ω, ω̂t )T̃t (ω, ω̂t )


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is required wherein the south-eastern sub matrix d
dt T̃

−1

t T̃t is obtained in a similar manner as

shown in (3.165). Hence, the vector −ct ,0i
>
1,2n

d
dt

[
T̃t J

−1T̃
−1

t

]
T̃t is the only unknown expres-

sion. Its c-th sub vector follows as

−
n∑
h=1

ct ,0(ω)i>1,2
d
dt

 n∑
i=1

(−1)n+1
n∑

j1<jn−h=1\i

∏
k∈j

ω̂2
t ,kT̃t ,i(ω,ω̂t )J̃

−1
(ω̂t )T̃

−1

t ,i(ω,ω̂t )

ω̂t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)


· (−ω̂2

t ,c)
h−1T̃t ,c(ω, ω̂t )

(3.3),
(3.111)

=

n∑
h=1

ct ,0(ω) d
dt

 n∑
i=1

(−1)n+1
n∑

j1<jn−h=1\i

∏
k∈j

ω̂2
t ,k

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2

 (−ω̂2
t ,c)

h−1T̃t ,c(ω, ω̂t )

(3.162)
=

n∑
h=1

ct ,0(ω)
n∑
i=1

2(−1)n
n∑

j1<jn−h=1\i

∏
k∈j

ω̂2
t ,k

n∑
l=1
l 6=i

ω̂t ,i
d
dt
ω̂t ,i−ω̂t ,l

d
dt
ω̂t ,l

ω̂2
t ,i
−ω̂2

t ,l

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2(−ω̂2

t ,c)
h−1T̃t ,c(ω, ω̂t )

−
n∑
h=1

ct ,0(ω)

n∑
i=1

2(−1)n
n∑

j1<jn−h=1\i

∏
k∈j

ω̂2
t ,k

∑
j∈j

d
dt
ω̂t ,l
ω̂t ,l

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2(−ω̂2

t ,c)
h−1T̃t ,c(ω, ω̂t )

+

n∑
h=1

ct ,0(ω)

n∑
i=1

2(−1)n d
dt
ω̂t ,i

n∑
j1<jn−h=1\i

∏
k∈j

ω̂2
t ,k

ω̂3
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2(−ω̂2

t ,c)
h−1T̃t ,c(ω, ω̂t )

(2.19),
(2.20)

= ct ,0(ω)
n∑
i=1

2(−1)n
n∏
h=1
h 6=i

(ω̂2
t ,h−ω̂

2
t ,c)

n∑
l=1
l 6=i

ω̂t ,i
d
dt
ω̂t ,i−ω̂t ,l

d
dt
ω̂t ,l

ω̂2
t ,i
−ω̂2

t ,l

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )

−ct ,0(ω)
n∑
i=1

2(−1)n
n∑
j=1
j 6=i

ω̂t ,j
d
dt
ω̂t ,j

∏
k=1
k 6=i,j

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )

+ct ,0(ω)
n∑
i=1

2(−1)n d
dt
ω̂t ,i

∏
h=1
h 6=i

(ω̂2
t ,h−ω̂

2
t ,c)

ω̂3
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )

=ct ,0(ω)

2(−1)n
n∏
h=1
h 6=c

(ω̂2
t ,h−ω̂

2
t ,c)

n∑
l=1
l6=c

ω̂t ,c
d
dt
ω̂t ,c−ω̂t ,l

d
dt
ω̂t ,l

ω̂2t ,c−ω̂
2
t ,l

ω̂2
t ,c

n∏
k=1
k 6=c

(ω̂2
t ,c−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )

−ct ,0(ω)

2(−1)n
n∑
j=1
j 6=c

ω̂t ,j
d
dt
ω̂t ,j

∏
k=1
k 6=c,j

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂2
t ,c

n∏
k=1
k 6=c

(ω̂2
t ,c−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )
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−ct ,0(ω)
n∑
i=1
i 6=c

2(−1)nω̂t ,c
d
dt
ω̂t ,c

∏
k=1
k 6=c,i

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )− ct ,0(ω)

2 d
dt
ω̂t ,c

ω̂3
t ,c

i>2,2T̃t ,c(ω, ω̂t )

= −ct ,0(ω)

2(−1)n
n∑
l=1
l 6=c

ω̂t ,c
d
dt
ω̂t ,c

∏
k=1
k 6=c,l

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂2
t ,c

n∏
k=1
k 6=c

(ω̂2
t ,c−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )

−ct ,0(ω)
n∑
i=1
i 6=c

2(−1)nω̂t ,c
d
dt
ω̂t ,c

∏
k=1
k 6=c,i

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)
i>2,2T̃t ,c(ω, ω̂t )− ct ,0(ω)

2 d
dt
ω̂t ,c

ω̂3
t ,c

i>2,2T̃t ,c(ω, ω̂t )

=
2ct ,0(ω) d

dt
ω̂t ,c

ω̂t ,c

 n∑
i=1
i6=c

 1
ω̂2
t ,i−ω̂2

t ,c
−

ω̂2
t ,c

∏
k=1
k 6=c,i

(ω̂2
t ,c−ω̂2

t ,k)

ω̂2
t ,i

n∏
k=1
k 6=i

(ω̂2
t ,i−ω̂2

t ,k)

− 1
ω̂2
t ,c

 i>2,2T̃t ,c(ω, ω̂t )

(2.22)
= − 2ct ,0(ω) d

dt ω̂t ,c

n∏
k=1
k 6=c

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂t ,c

n∏
k=1

ω̂2
t ,k

i>2,2T̃t ,c(ω, ω̂t ). (3.173)

A rearrangement can be done as follows

d
dt T̃

−1

t (ω, ω̂t )T̃t (ω, ω̂t )x̂t = Ξ̃t (x̂t ,ω, ω̂t ) d
dt ω̂t ,

Ξ̃t (x̂t ,ω, ω̂t ) :=


ξt ,1(x̂t ,ω, ω̂t ) · · · ξt ,n(x̂t ,ω, ω̂t )
ξt ,1,1(x̂t ,ω, ω̂t ) · · · ξt ,1,n(x̂t ,ω, ω̂t )

...
. . .

...
ξt ,n,1(x̂t ,ω, ω̂t ) · · · ξt ,n,n(x̂t ,ω, ω̂t )

 ∈ R2n+1×n (3.174)

wherein the sub vectors ξt ,r,c and scalars ξt ,c are given as

ξt ,r,c(x̂t ,ω, ω̂t )
(3.165)

=



−2
n∑
j=1
j 6=r

ω̂t ,r

n∏
k=1
k 6=r,j

(ω̂2
t ,c−ω̂2

t ,k)

n∏
k=1
k 6=r

(ω̂2
t ,r−ω̂2

t ,k)
x̂t ,c

+S̃
−1

t ,r(ω, ω̂t )T̃t ,c(ω, ω̂t )x̂t ,c,


r = c

−2ω̂t ,c

n∏
k=1
k 6=r,c

(ω̂2
t ,c−ω̂2

t ,k)

n∏
k=1
k 6=r

(ω̂2
t ,r−ω̂2

t ,k)
T̃
−1

t ,r(ω, ω̂t )T̃t ,c(ω, ω̂t )x̂t ,c, r 6= c

ξt ,c(x̂t ,ω, ω̂t )
(3.173)

=

0 −

2ct ,0(ω)
n∏
k=1
k 6=c

(ω̂2
t ,k−ω̂

2
t ,c)

ω̂t ,c

n∏
k=1

ω̂2
t ,k

 T̃t ,c(ω, ω̂t )x̂t ,c.


(3.175)

Hence, the dynamics of the parallelized tSOGI s are described by

∀ t ∈ Ti : x̂t (ti) = x̂t ,ti
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d
dt x̂t

(3.159),
(3.169)

=
((
J (ω̂t )− l̃t (ω, ω̂t )c>

)︸ ︷︷ ︸
=: Ãt (ω,ω̂t )

+Ξ̃t (x̂t ,ω, ω̂t )Γ̃t (x ,ω, ω̂t )Σ̃t (x ,ω, ω̂t )x̂t c
>
)
x̂t

+
(̃
lt (ω, ω̂t )− Ξ̃t (x̂t ,ω, ω̂t )Γ̃t (x ,ω, ω̂t )Σ̃t (x ,ω, ω̂t )x̂t

)
y, (3.176)

ŷt = c>x̂t .

Figure 3.31 shows the parallelized tSOGI s.

tDCI

Σ

tDCI 1-st tSOGI · · · n-th tSOGI

−et ,yΞ̃t (x̂t , ω̂t )Γ̃t (ω̂t )Σ̃t (ω̂t )x̂t

c>x̂t

y

ω̂t
et ,y

zt

zt ,0 zαt ,1 zβt ,1 zαt ,n zβt ,n

x̂t,0 x̂αt,1 x̂βt,1 x̂αt,n x̂βt,n

−

x̂t

(a) Block diagram of the parallelized tSOGI s in α, β frame.

lt ,0 Σ
∫

et ,y x̂t ,0

zt ,0

(b) Construction of the tDCI in α, β frame.

Figure 3.31: (a): The parallelized structure of tSOGIs in α, β frame and (b): O�set estimation block in
α, β frame.

Remark 3.5.1. Comparing the parallelized tSOGIs (or tSOGI s) in α, β frame to the parallelized
mSOGIs (or mSOGI s), the parallelized tSOGIs (or parallelized tSOGI s) in α, β frame can be
understood as generalizations of the parallelized mSOGIs (or mSOGI s) with state-dependent
observer gain vector and a direct concatenation of SOGI- and FLL-dynamics.
This becomes apparent if all (estimated) angular frequencies are constant: then it holds that
d
dt ω̂t = d

dt ω̂t = 0n and the respective terms in (3.168) and (3.176) can be removed. As a result,
the parallelized mSOGIs and parallelized tSOGIs in α, β frame (or mSOGI s and tSOGI s) are
identical.

3.5.3 Gain selection for the parallelized tSOGIs in α, β frame and the paral-
lelized tSOGIs with o�set in α, β frame

Due to the equality of tFAO in transformed frame and tFAO in α, β frame or tFAO in trans-
formed frame and tFAO in α, β frame, respectively, the parameter selection for the back-
transformed systems can be inherited from Proposition 3.4.2.

Remark 3.5.2. Let x ∈ {t, t } and let v = 2n if x = t or v = 2n+ 1 if x = t . The eigenvalues
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of the matrix Ãx in α, β frame are identical to the ones of Ãx in transformed frame since

det
(
sIv − Ãx(ω, ω̂x)

)
= det

(
sT−1

x (ω, ω̂x)Tx(ω, ω̂x)− T−1
x (ω, ω̂x)Ãx(ω, ω̂x)Tx(ω, ω̂x)

)
= det

(
T−1

x (ω, ω̂x)
)

det
(
sIv − Ãx(ω, ω̂x)

)
det(Tx(ω, ω̂x)) = det

(
sIv − Ãx(ω, ω̂x)

)
.

However, it should be noted that the overall system matrix

Ax,tot(x̂x,ω, ω̂x) := Jx(ω̂x)−
(̃
lx(ω, ω̂x)− Ξ̃x (x̂x,ω, ω̂x) Γ̃x(xx,ω, ω̂x)Σ̃x(xx,ω, ω̂x)x̂x

)
c>x

has state-dependent eigenvalues. This has no impact on stability, as the following Section shows.

3.5.4 Stability proof and summary of the tFAO in α, β frame and the tFAO
with o�set in α, β frame

In this section, summaries of the presented systems are given. The parallelized tSOGIs in α, β
frame together with the tFLL in α, β frame, called the transformation-based Frequency Adaptive
Observer (tFAO) in α, β frame, is shown in Section 3.5.4.1. Afterwards, the parallelized tSOGI s
in α, β frame with the tFLL in α, β frame, denoted as the transformation-based Frequency
Adaptive Observer with o�set (tFAO ) in α, β frame, is presented in Section 3.5.4.2. In these
sections, the tFAO in α, β frame and tFAO in α, β frame are evaluated using the test signals
introduced in (3.12) and shown in Figure 3.2. Thereafter, their stability is proven.

3.5.4.1 Summary of the tFAO in α, β frame

The tFAO in α, β frame is described by the following set of di�erential equations:

∀ t ∈ Ti :

d
dt x̂t = (c>x̂t − y)Ξ̃t(x̂t,ω, ω̂t)Γ̃t(x,ω, ω̂t)Σ̃t(x,ω, ω̂t)x̂t

+
(
J(ω̂t)− l̃t(ω, ω̂t)c

>
)
x̂t + l̃t(ω, ω̂t)y, x̂t(ti) = x̂t,ti

d
dt ω̂t = (c>x̂t − y)Γ̃t(x,ω, ω̂t)Σ̃t(x,ω, ω̂t)x̂t, ω̂t(ti) = ω̂t,ti

ŷt = c>x̂t.


(3.177)

Its graphical representation is summarized in Figure 3.32.

tSOGI
(3.168)

tFLL
(3.158)

c>x̂t
y

x̂t

ŷt

ω̂t

Figure 3.32: Block diagram of the tFAO in α, β frame.

Figure 3.3319 shows the evaluation of the tFAO in α, β frame where all gains are chosen in the
transformed frame and inherited by the α, β frame. The test signals from (3.12) are used.
Recall that in the previous tests (shown in Figures 3.13, 3.22 and 3.24) only estimates for the
fundamental angular frequency were provided by the respective models. Nevertheless, �estimates�

19Simulation parameters (in addition to Footnote 17) [in transformed frame]: ct = (45703125 · (2π)4, 1453125 ·
(2π)3, 16875 · (2π)2, 75 · 2π)>, Γt =

[
1010 1010

1010 1019

]
.
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ytest,N

ytest,N

ytest,Q

ytest,Q

Figure 3.33: Continuation of Figure 3.24. O�set, amplitudes and frequencies of the test signals estimated
by the tFAO in α, β frame ( ).

for the higher frequency components were shown as well. Considering the tFAO in α, β frame,
it actually permits an additional angular frequency estimate. As can be seen in all the subplots,
the estimation of the tFAO in α, β frame is very slow. However, a faster performance was not
achieved since the model would diverge otherwise. The reasons for the possible divergence are
twofold: (i) The gains for the tFAO in α, β frame are rather high (cf. Footnote 19) which might
lead to numerical di�culties and (ii) the tFAO in α, β frame is only locally stable which will be
shown in Theorem 3.5.3.

3.5.4.2 Summary of the tFAO with o�set in α, β frame

The tFAO in α, β frame is represented as

∀ t ∈ Ti :
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d
dt x̂t = (c>x̂t − y)Ξ̃t (x̂t ,ωω̂t )Γ̃t (x ,ω, ω̂t )Σ̃t (x ,ω, ω̂t )x̂t

+
(
J (ω̂t )− l̃t (ω, ω̂t )c>

)
x̂t + l̃t (ω, ω̂t )y, x̂t (ti) = x̂t ,ti

d
dt ω̂t = (c>x̂t − y)Γ̃t (x ,ω, ω̂t )Σ̃t (x ,ω, ω̂t )x̂t , ω̂t (ti) = ω̂t ,ti

ŷt = c>x̂t

 (3.178)

and illustrated in Figure 3.34.

SOGI
(3.176)

FLL
(3.159)

c>x̂ty
x̂t

ŷt

ω̂t

Figure 3.34: Block diagram of the tFAO in α, β frame.

In Figure 3.3520, the evaluation of the tFAO with o�set in α, β frame is illustrated where the
test signals from (3.12) are used.
Although the estimation performance of the tFAO in α, β frame seems to be faster than for the
tFAO in α, β frame with respect to angular frequency estimation, the performance is still limited
and very slow.

Theorem 3.5.3 (Bounded-input bounded-state/bounded-output stability of the dynamics of the
tFAO and tFAO in α, β frame). Let x ∈ {t, t }. Consider an essentially bounded input signal,
i.e. y ∈ L∞(R≥0;R) and assume that (i) the matrix Ãx as in (3.168) or (3.176), respectively,
is a Hurwitz matrix, (ii) cβx,n is a real scalar, (iii) for all i, j ∈ {1, . . . , n} the elements ω̂x,i of

ω̂x are non-zero and there does not exist i 6= j such that ω̂t,i = ω̂t,j and (iv) the matrix T̃x is
invertible. Then, the time-varying systems (3.158), (3.159), (3.176) and (3.168) are bounded-
input bounded-state/bounded-output stable, i.e.

∀ t ∈ Ti : ∃ cx, c̃x, cx,ω > 0: ‖x̂x‖ ≤ cx,
∣∣ŷx

∣∣ ≤ c̃x and ‖ω̂x‖ ≤ cx,ω.

Proof. For the norm of the state vector in α, β frame it holds that

‖x̂x‖ =
∥∥∥T̃−1

x (ω, ω̂x)x̂x

∥∥∥ ≤ ∥∥∥T̃−1

x (ω, ω̂x)
∥∥∥ ‖x̂x‖ . (3.179)

First note that T̃x must be invertible. Concerning the boundedness, x̂x is bounded by ‖x̂x‖ ≤ cx

(cf. Theorem 3.4.7). Further, since ‖cx‖ < ∞ is bounded, the boundedness of T̃x depends on
the boundedness of the back-transformed angular frequency vector ω̂x. It might be unbounded
which is contradicted in the following.
According to Theorem 3.4.8, the transformed angular frequency vector θ̂x is upper bounded by∥∥∥θ̂x

∥∥∥ ≤ cx,ω < ∞. Consequently, this holds true for the vector's elements θ̂t,i, i ∈ {1, . . . , n}.

Hence, in view of the �rst element of θ̂x, the following holds

θ̂x,1
(3.153)

=
n∑
j=1

ω̂2
x,j <∞.

20Simulation parameters (in addition to Footnote 19) [in transformed frame]: ct = (9521484375 ·
(2π)5, 267187500 · (2π)4, 3468750 · (2π)3, 22500 · (2π)2, 75 · 2π)>, Γt =

[
1011 1015

1015 1020

]
.
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ytest,N

ytest,N

ytest,Q

ytest,Q

Figure 3.35: Continuation of Figure 3.13. O�set, amplitudes and frequencies of the test signals estimated
by the tFAO ( ).

Since for all j ∈ {1, . . . , n} it is ω̂x,j ∈ R, unbounded ω̂x,j would result in unbounded θ̂x,1. This
contradicts the statement of Theorem 3.4.8 and, hence, all ω̂x,j are bounded. Thus, the vector
ω̂x is bounded as well:

∀ t ∈ Ti : ∃ cx,ω > 0: ‖ω̂x‖ ≤ cx,ω <∞.

Thus, the matrix T̃x is bounded by cx,T <∞ and it follows

∀ t ∈ Ti : ‖x̂x‖
(3.179)

≤ cx,T cx =: cx <∞
and |ŷx| =

∣∣c>x x̂x

∣∣ ≤ ‖cx‖ ‖x̂x‖ ≤ ‖cx‖ cx =: c̃x <∞.

This completes the proof.

92



3.5. THE TRANSFORMATION-BASED FREQUENCY ADAPTIVE OBSERVER IN α, β
FRAME AND THE TRANSFORMATION-BASED FREQUENCY ADAPTIVE OBSERVER
WITH OFFSET IN α, β FRAME

Theorem 3.5.4 (Boundedness and asymptotic decrease of the signal estimation error of the
tFAO and tFAO in α, β frame). Let x ∈ {t, t }. Consider any continuous and bounded input
signal, i.e. y ∈ C(R≥0;R>0) ∩ L∞(R≥0;R) and assume that y is fed to the tFAO in α, β frame
(3.177) or the tFAO in α, β frame (3.178), respectively, with Ax being a Hurwitz matrix. Let

cβx,n be a real scalar. If the angular frequency vector ω̂x is bounded away from the set of critical
angular frequency vectors de�ned as

Wx :=
{
κ ∈ Rn | ∀ i, j ∈ {1, . . . , n} , i 6= j : i>i,nκ = 0 ∨ (ii,n ± ij,n)> κ = 0

}
,

then
(i) the estimation error ex := xx−x̂x is bounded, i.e. there exists cx,e > 0 such that ‖ex‖ ≤ cx,e <
∞ for all t ∈ Ti and, if n∞ = n for all t ∈ Ti, it decreases asymptotically, i.e. lim

t→∞
‖ex‖ → 0;

(ii) the angular frequency error ex,ω := ω − ω̂x is bounded, i.e. there exists cx,e,ω > 0 such that
‖ex,ω‖ ≤ cx,e,ω < ∞ for all t ∈ Ti and, if n∞ = n for all t ∈ Ti, it decreases asymptotically,
i.e. lim

t→∞
‖ex,ω‖ → 0.

Proof. The listed assertions are shown separately:
(i) In view of the result from Theorem 3.5.3, it follows

∀ t ∈ Ti : ‖ex‖ = ‖xx − x̂x‖ ≤
=: cx<∞︷ ︸︸ ︷
‖xx‖∞ + ‖x̂x‖ ≤ cx + ct =: cx,e <∞

what shows boundedness of ex. Note that, according to Theorem 3.5.3, this result only holds
if T̃x is invertible. Therefore, all forbidden angular frequency combinations which imply a non-
invertibility of T̃x are collected in the set Wx. Considering

c>x ex = c>x (xx − x̂x) = c>x (ω) (xx − x̂x) = c>x (ω)ex,

the asymptotic decrease of the signal estimation error is proven since according to Theorem 3.4.8,
the signal estimation error ex decreases asymptotically.
(ii) The norm of the frequency estimation error has the following bound:

‖ex,ω‖ = ‖ω − ω̂x‖ ≤ ‖ω‖∞︸ ︷︷ ︸
=: cω<∞

+ ‖ω̂x‖ ≤ cω + cx,ω =: cx,e,ω <∞

This shows boundedness of the angular frequency estimation error ex,ω. Finally, since the esti-
mation error ex decreases asymptotically, this holds true for the angular frequency error vector
ex,ω as well. This completes the proof.

Remark 3.5.5. Let x ∈ {t, t }. Let the initial angular frequency vector ω̂x(t0) be chosen as any
vector ensuring the invertibility of T̃x. Furthermore, let the initial values of tFAO in α, β and
transformed frame or tFAO in α, β and transformed frame, respectively, be chosen equivalently
(i.e. x̂x(t0) = T̃x(ω̂x(t0))x̂x(t0) and ω̂x(t0) = Tx,ω(ω̂x(t0))θ̂x(t0) with some angular frequency
transformation matrix Tx,ω). Assuming that while estimation is running, it holds that ω̂x /∈Wx

without explicit restriction, the responses of tFAO or tFAO in α, β and transformed frame,
respectively, to any input signal y are identical in view of the estimation errors ex,y and ex,y and
estimated inputs ŷ

x
and ŷx.

For x = t , an example is illustrated in Figure 3.3621.

21Simulation parameters: Ts = 100 µs, y = −0.5+cos(2π50t), Poles: (λt ,1, λt ,2, λt ,3) = (−1.5,−1.5+,−1.5−
), Γ̃t = 109, Solver: ode4. All initial values are 0 except for ω̂t,1(0) = 2π25 and θ̂t,1(0) = (2π25)2.
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Figure 3.36: Comparison between tFAO in α, β ( ) and transformed ( ) frame.

Despite the di�erences in state estimates x̂t,0 & x̂t,0, x̂
α
t,1 & x̂αt,1 and x̂βt,1 & x̂βt,1 for tFAO in α, β

frame ( ) and tFAO in transformed frame ( ), their signal estimation errors et,y and et,y and
estimated inputs ŷ

t
and ŷt are identical. Note that this also holds true for the angular frequency

estimates θ̂t,1 and ω̂t,1. For a better comparability, the manually calculated (transformed) angular

frequency values, obtained as ω̂t,1 =
√
θ̂t,1 ( ) and θ̂t,1 = ω̂2

t,1 ( ), are also drawn.
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3.6 The exponential Frequency Adaptive Observer and the expo-
nential Frequency Adaptive Observer with o�set (an idea)

So far, no FAO was developed with the possibility to analyze a completely unknown signal and
to perform this estimation in an acceptable time frame. The best options so far are:

(i) The mFAO (or mFAO ) (cf. Section 3.3). They allow for an acceptable, but still limited
estimation speed. However, they require knowledge on the harmonic orders H∞;

(ii) The tFAO (or tFAO ) in α, β frame (cf. Section 3.5). They do not require knowledge on
the harmonic orders but, on the other hand, show an unacceptably slow performance and
still have numerical problems.

The motivation for this section is to develop an idea of how to construct observers capable of
unifying the advantages of mFAO and tFAO & mFAO and tFAO and to minimize numeric
problems.
Unfortunately, the idea is un�nished. However, at the end a set of equations is obtained which
remains to be solved in future approaches. This idea relies on some assumptions, which are
justi�ed in detail when made. This section is structured as follows:

Section 3.6.1 reintroduces signal generation and discusses observability;

Section 3.6.2 shows the actual progress in development of the exponential FAO and the expo-
nential FAO with o�set; and

Section 3.6.3 gives hints for future work and summarizes unsolved problems.

3.6.1 Generation of periodic signals and observability

According to Section 3.1, the generation of any periodic signal without o�set is represented by

∀ t ∈ Ti :

d
dtx = J(ω)x, x(ti) = xti
d
dtω = 0n∞ , ω(ti) = ωti
y∼ = c>x.

 (3.180)

Thus, the overall nonlinear system is described by

∀ t ∈ Ti :
d
dt

:=x∈R3n∞︷ ︸︸ ︷(
x
ω

)
(3.180)

=

=:Jtot(ω)∈R3n∞×3n∞︷ ︸︸ ︷[
J(ω) 02n∞×n∞

0n∞×2n∞ 0n∞×n∞

]
x, x(ti) = xti

y∼ =
(
c> 0>n∞

)︸ ︷︷ ︸
=: c>tot ∈R3n∞

x.


(3.181)

If o�set is additionally considered, the overall nonlinear system is obtained in a similar manner
as

∀ t ∈ Ti :
d
dt

:=x ∈R3n∞+1︷ ︸︸ ︷(
x
ω

)
(3.180)

=

=:J ,tot(ω)∈R(3n∞+1)×(3n∞+1)︷ ︸︸ ︷[
J (ω) 0(2n∞+1)×n∞

0n∞×(2n∞+1) 0n∞×n∞

]
x , x (ti) = x ,ti

y =
(
c> 0>n∞

)︸ ︷︷ ︸
=: c>,tot ∈R3n∞+1

x.


(3.182)
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To conclude this section, observability is investigated.

Proposition 3.6.1 (Observability of generation systems (3.181) and (3.182)). Consider the
dynamical systems (3.181) and (3.182). Then, if and only if ω1 6= 0 and H∞ ⊆ R \ {0} where
for all νi, νj ∈ H∞, i 6= j, it holds that |νi| 6= |νj |, these systems are observable.

Proof. To prove the assertion, Fact 2.2 must be used. Writing out (2.2) in case of (3.181) yields


y
d
dty
...

d3n∞−2

dt3n∞−2 y
d3n∞−1

dt3n∞−1 y


(3.181)

=



c>totx

c>tot

(
J(ω)x
0n∞

)
...

c>tot

(
J3n∞−2(ω)x

0n∞

)
c>tot

(
J3n∞−1(ω)x

0n∞

)


=





∑n∞
i=1 x

α
i

−
∑n∞

i=1 ωix
β
i

...

(−1)
n∞
2

+1∑n∞
i=1 ω

3n∞−2
i xαi

(−1)
n∞
2
∑n∞

i=1 ω
3n∞−1
i xβi


, n∞ even



∑n∞
i=1 x

α
i

−
∑n∞

i=1 ωix
β
i

...

(−1)
n∞+1

2
∑n∞

i=1 ω
3n∞−2
i xβi

(−1)
n∞+1

2
∑n∞

i=1 ω
3n∞−1
i xαi


, n∞ odd

.

(3.183)
In either case, the �rst 2n∞ equations of (3.183) form a system of linear equations with observ-
ability matrix O as in (3.64). Since this matrix must be invertible, this implies that ω1 6= 0 and
H∞ ⊆ R \ {0} where for all νi, νj ∈ H∞, i 6= j, it holds that |νi| 6= |νj |. More precisely, it holds
that

x = O−1(ω)
(
y d

dty · · · d2n∞−2

dt2n∞−2 y
d2n∞−1

dt2n∞−1 y
)>

(3.184)

where the matrix O−1 follows as

O−1(ω) = (−1)n∞+1



n∞∏
j=1
j 6=1

ω2
j

n∞∏
j=1
j 6=1

(ω2
1−ω2

j )
O−1

1 (ω1) · · · 1
n∞∏
j=1
j 6=1

(ω2
1−ω2

j )
O−1

1 (ω1)

...
. . .

...
n∞∏
j=1
j 6=n∞

ω2
j

n∞∏
j=1
j 6=n∞

(ω2
n∞−ω

2
j )
O−1
n∞(ωn∞) · · · 1

n∞∏
j=1
j 6=n∞

(ω2
n∞−ω

2
j )
O−1
n∞(ωn∞)


(3.185)

since for the product of the r-th row of (3.185) and the c-th column of (3.64) yields

(−1)n∞+1

n∞∏
j=1
j 6=r

ω2
j

n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
O−1
r (ωr)Oc(ωc) + · · ·+ (−1)n∞+1 1

n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
O−1
r (ωr)

(−ω2
c )n∞

−ω2
c
Oc(ωc)

=

(−1)n∞+1
n∞∏
j=1
j 6=r

ω2
j+···+ω2n∞−2

c

n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
O−1
r (ωr)Oc(ωc)

(2.18)
=

n∞∏
j=1
j 6=r

(ω2
c−ω2

j )O
−1
r (ωr)Oc(ωc)

n∞∏
j=1
j 6=r

(ω2
r−ω2

j )
=

{
02×2, c 6= r

I2, c = r.
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EXPONENTIAL FREQUENCY ADAPTIVE OBSERVER WITH OFFSET (AN IDEA)

The last n equations of (3.183) are extracted as



d2n∞

dt2n∞ y
d2n∞+1

dt2n∞+1 y
...

d3n∞−2

dt3n∞−2 y
d3n∞−1

dt3n∞−1 y

 =




ω2n∞

1 0 · · · ω2n∞
n∞ 0

...
...

. . .
...

...

0 (−1)
n∞
2 ω3n∞−1

1 · · · 0 (−1)
n∞
2 ω3n∞−1

n∞

x, n∞ even


−ω2n∞

1 0 · · · −ω2n∞
n∞ 0

...
...

. . .
...

...

(−1)
n∞+1

2 ω3n∞−1
1 0 · · · (−1)

n∞+1
2 ω3n∞−1

n∞ 0

x, n∞ odd.

(3.186)
Inserting (3.184) with (3.185) into (3.186) yields the respective i-th equation as

0 = di−1

dti−1 y

n∞∏
k=1

ω2
k + d2+i−1

dt2+i−1 y

n∞∑
k=1

n∞∏
h=1
h6=k

ω2
h + · · ·+ d2n∞+i−3

dt2n∞+i−3 y

n∞∑
k=1

ω2
k + d2n∞+i−1

dt2n∞+i−1 y. (3.187)

Using the short notation de�ned in (3.104), (3.187) can be reduced to

− d2n∞+i−1

dt2n∞+i−1 y = d2n∞+i−3

dt2n∞+i−3 yθ1 + · · ·+ d2+i−1

dt2+i−1 yθn∞−1 + di−1

dti−1 yθn∞ . (3.188)

This consequently leads to the vector valued equation

−


d2n∞

dt2n∞ y
...

d3n∞−1

dt3n∞−1 y


︸ ︷︷ ︸

=:y ∈Rn∞

=


d2n∞−2

dt2n∞−2 y · · · y
...

. . .
...

d3n∞−3

dt3n∞−3 y · · · dn∞−1

dtn∞−1 y


︸ ︷︷ ︸

=:Y ∈Rn∞×n∞

θ ⇒ θ = −Y −1y. (3.189)

It must be noted that, although Y is not invertible for all times, the product Y −1y exists for
all times. This becomes clear when taking into account that by inserting (3.2) and its time
derivatives into (3.188), (3.188) holds independent of choices made for all ωi, i ∈ {1, . . . , n∞}
and thus the solution (3.189) must exist. Now, as stated in Remark 3.4.9, the quadratic angular
frequencies ω2

i , i ∈ {1, . . . , n∞} are obtained as the solutions of (3.152),

0 = κn∞ +
(
−κn∞−1 · · · (−1)n∞

)
θ

(3.189)
= κn∞ −

(
−κn∞−1 · · · (−1)n∞

)
Y −1y.

Finally, the quadratic angular frequencies ω2
i imply that there exist no unique solutions ωi in

R \ {0} which contradicts the requirement of Fact 2.2. However, one possible solution for each
angular frequency was already discarded for the invertibility requirement of the matrix O and
thus, the uniqueness is guaranteed.
In the case of (3.182), the procedure is carried out in a similar manner, which completes the
proof.

Remark 3.6.2. Observability only implies the existence of (stable) observers but not the exis-
tence of exponentially stable observers. Note that an asymptotically stable observer was already
constructed in Section 3.5.
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3.6.2 An idea for observer construction

Since observability was clari�ed in Section 3.6.1, a direct observer construction (unlike observer
construction in transformed frame as in Section 3.4) for the nonlinear systems (3.181) and (3.182)
is possible. The observer's parameters and states are subscribed by �e� for �exponential� or �e �
when including o�set. In the following, the development is done independent of o�set estimation,
and thus the subscript x ∈ {e, e } is used, that comes with v = 2n if x = e or v = 2n+1 if x = e .
A straight forward approach for observer construction is given by

∀ t ∈ Ti : d
dt

(
x̂x

ω̂x

)
︸ ︷︷ ︸

=: x̂x ∈Rv+n

=

(
Jx,tot(ω̂x)−

(
lx,x(x̂x)

lx,ω(x̂x)

)
︸ ︷︷ ︸

=: lx(x̂x)∈Rv+n

c>x,tot

)
x̂e + lx(x̂x)y, x̂x(ti) = x̂x,ti . (3.190)

Assumption 3.6.3 (Dependency of lx from x̂x). Firstly, it is assumed that

lx,x(x̂x) = lx,x(ω̂x) = lx,xc
>
x,ωω̂x (3.191)

with cx,ω ∈ Rn and lx,x ∈ Rv being constant vectors.
Secondly, w.l.o.g. it is assumed that

lx,ω(x̂x) = Lx,ω(x̂x)ω̂x, Lx,ω ∈ Rn×n. (3.192)

Remark 3.6.4. Without o�set estimation, a more intuitive choice would be le,x(x̂e) = le,x(ω̂e) =(
diag(ω̂e) ⊗ I2

)
le,x = (ω̂e,1l

α
e,x,1, ω̂e,1l

β
e,x,1, ω̂e,2l

α
e,x,2, ω̂e,2l

β
e,x,2, · · · )>. However, when taking o�set

into account, this choice fails.

De�ne

J(ω̂e)x =

J̃x1 · · · 02

...
. . .

...

02 · · · J̃xn


︸ ︷︷ ︸

=:J(x)∈R2n×n

ω̂e, J (ω̂e )x =


0 · · · 0

J̃x1 · · · 02

...
. . .

...

02 · · · J̃xn


︸ ︷︷ ︸
=:J (x)∈R(2n+1)×n

ω̂e , (3.193)

and

ex := xx − x̂x :=

(
ex

ex,ω

)
∈ Rv+n. (3.194)

The di�erential equations for the signal estimation and angular frequency errors then can be
written in various forms as follows

d
dtex =

=:Ax,x,1(xx,ω̂x)︷ ︸︸ ︷[
Jx(ω̂x)− lx,xc>x,ωω̂xc

>
x Jx(xx)

]
ex =

=:Ax,x,2(ω,x̂x)︷ ︸︸ ︷[
Jx(ω)− lx,xc>x,ωω̂xc

>
x Jx(x̂x)

]
ex

=

=:Ax,x,3(xx,x̂x)︷ ︸︸ ︷[
Jx(ω̂x)− lx,xc>x,ωωc>x c>x exlx,xc

>
x,ω + Jx(xx)

]
ex

d
dtee,ω=

=:Ax,ω,1(x̂x)︷ ︸︸ ︷
Lx,ω(x̂x)

[
−ω̂xc

>
x 0n×n

]
ex =

=:Ax,ω,2(xx,x̂x)︷ ︸︸ ︷
Lx,ω(x̂x)

[
−ωc>x c>x exIn

]
ex.


(3.195)
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To ease the following, the argument of all matrices is generalized as (xx, x̂x) and therefore
dropped. Nevertheless, the argument is highlighted when necessary. Thus, the most general
expression for the time derivative of the overall error ex follows with weighting matrices

Wx,x,1,Wx,x,2 ∈ Rv×v and Wx,ω ∈ Rn×n

as

∀ t ∈ Ti : d
dtex = (Wx,x,1Ax,x,1 + (Iv −Wx,x,1)(Wx,x,2Ax,x,2

+ (Iv −Wx,x,2)Ax,x,3))ex =: Ax,xex

d
dtex,ω = (Wx,ωAx,ω,1 + (In −Wx,ω)Ax,ω,2)ex =: Ax,ωex

=⇒ d
dtex =

[
Ax,x

Ax,ω

]
ex =: Axex, ex(ti) = ex,ti (3.196)

ex,y = c>x,totex = c>x ex = ex,y. (3.197)

Note that the overall error vector merges two vectors with di�erent physical units. When con-
sidering a Lyapunov candidate, this fact implies state dependent matrices P x and Qx which
consequently includes the time derivative of P x. To avoid this issue and therefore ease the
following calculations, introduce the invertible transformation matrix

ex :=

(
ex

ex,ω

)
:= Xxex, xx := Xxxx and x̂x := Xxx̂x. (3.198)

It is designed such that the vector ex only has one physical unit. Now, consider the Lyapunov
candidate

Vx(ex) = e>x P xex, P x = P>x > 0 (3.199)

and make the

Assumption 3.6.5 (Lyapunov and transformation matrix). Assume that the Lyapunov matrix
P x is constant. De�ning the transformation matrix as

Xx :=

[
Xx Ξx,ω

Ξx,x Ωx

]
, Xx ∈ Rv×v, Ωx ∈ Rn×n, (3.200)

it is assumed that Ωx is invertible.

This assumption implies that the physical units of the block matrices of the transformation
matrix must satisfy

U(Xx)
U(Ξx,ω) = U(ω)

U(y) ,
U(Xx)
U(Ξx,x) = 1, and U(Xx)

U(Ωx) = U(ω)
U(y) .

Calculate the time derivative of (3.199) as

d
dtVx(ex) = d

dte
>
x P xex + e>x P x

d
dtex

(3.196),(3.198)
= e>xX

−>
x

(
d
dtX

>
x +A>xX

>
x

)
P xex + e>x P x

(
d
dtXx +XxAx

)
X
−1
x ex

=: −e>xQx
ex. (3.201)

Thus, if and only if the matrix

Ax :=
(
d
dtXx +XxAx

)
X
−1
x (3.202)
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is a Hurwitz matrix, the system (3.190) is stable.

Remark 3.6.6. Unlike for linear time invariant systems like the mSOGI (with constant fre-
quency) (3.66), the eigenvalues of Ax only give information on stability (shown in Section 3.6.3);
they do not allow for a speci�cation of the system dynamics, which is shown in the following.
First, an additional requirement of Ax is formulated as

Ax(xx, x̂x) = V xDx(xx, x̂x)V −1
x (3.203)

with constant V x. If Ax can be decomposed into

Ax = Bx + t ddtBx, (3.204)

then, by using Observation 2.19, the following holds:

∀ t ∈ Ti : d
dtex = Axex

(3.204)
=⇒ 0v+n = e−Bxt

(
Bx + t ddtBx

)
ex − e−Bxt d

dtex
(2.25)

= − d
dt

(
e−Bxtex

)
=⇒

t∫
ti

0v+ndτ = −
t∫

ti

d
dτ

(
e−Bxτex

)
dτ = e−Bx(xx,ti ,x̂x,ti )tiex,ti − e−Bx(xx,x̂x)tex

=⇒ ex = eBx(xx,x̂x)t−Bx(xx,ti ,x̂x,ti )tiex,ti . (3.205)

This expression does not allow insight into the system dynamics. So, neither Ax nor Bx can be
manipulated such that certain speci�cations (except stability) of (3.190) are met.

Remark 3.6.7. Since it is desirable to choose the eigenvalues of Ax as only being dependent on
ω̂x, it is advised that

Ax(xx, x̂x)
!

= Ax(ω̂x) =⇒ Q
x
(xx, x̂x) = Q

x
(ω̂x).

To meet the requirement of Ax :=
[
Ax,x Ax,δ
Ax,ε Ax,ω

]
, its elements are investigated blockwise with

W x,x := (Iv −Wx,x,1)(Iv −Wx,x,2) and W x,J := (Iv −Wx,x,1)Wx,x,2

and by invoking (3.195), (3.196) and (3.200) as

Ax,x(ω̂x) =
(
Ax,1 −Ax,2Ξx,x

)(
Xx −Ξx,ωΩ−1

x Ξx,x

)−1

Ax,δ(ω̂x) =Ax,2 −
(
Ax,1 −Ax,2Ξx,x

)(
Xx −Ξx,ωΩ−1

x Ξx,x

)−1
Ξx,ωΩ−1

x

Ax,ε(ω̂x) =
(
Ax,3 −Ax,4Ξx,x

)(
Xx −Ξx,ωΩ−1

x Ξx,x

)−1

Ax,ω(ω̂x) =Ax,4 −
(
Ax,3 −Ax,4Ξx,x

)(
Xx −Ξx,ωΩ−1

x Ξx,x

)−1
Ξx,ωΩ−1

x .

 (3.206)

Therein, the substitutes

Ax,1 := d
dtXx +XxKx,1 −Ξx,ωKx,3

Ax,2 := ( d
dtΞx,ω +XxKx,2 + Ξx,ωKx,4)Ω−1

x

Ax,3 := d
dtΞx,x + Ξx,xKx,1 −ΩxKx,3

Ax,4 := ( d
dtΩx + Ξx,xKx,2 + ΩxKx,4)Ω−1

x

 (3.207)
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and

Kx,1 := Jx(ω̂x) +W x,JJx(ex,ω)−W x,xlx,xc
>
x,ωex,ωc

>
x − lx,xc>x,ωω̂xc

>
x

Kx,2 := Jx(xx)−W x,JJx(ex) + ex,yW x,xlx,xc
>
x,ω

Kx,3 := Lx,ω(x̂x)ω̂xc
>
x + (In −Wx,ω)Lx,ω(x̂x)ex,ωc

>
x

Kx,4 := ex,y(In −Wx,ω)Lx,ω(x̂x).

 (3.208)

are used.

3.6.3 Concluding remarks

In this section, some hints based on the calculations so far are given. Thereafter, all open tasks
are summarized.
First note that, since Ax must be independent of ex and ex,ω, the same must hold true for
Ax,1, . . . ,Ax,4 since in view of (3.206), it holds exemplarily that

0v×v =
(
Ax,1(ex)−Ax,2(ex)Ξx,x

)(
Xx −Ξx,ωΩ−1

x Ξx,x

)−1

0v×n =Ax,2(ex)−
(
Ax,1(ex)−Ax,2(ex)Ξx,x

)(
Xx −Ξx,ωΩ−1

x Ξx,x

)−1
Ξx,ωΩ−1

x

=⇒ Ax,1(ex) = 0v×v, Ax,2(ex) = 0v×n.

Second, the following assumption seems reasonable:

Assumption 3.6.8.

- All weighting matrices W x,x,W x,J and Wx,ω are independent of ex and ex,ω; and

- The matrix Xx is independent of ex and ex,ω.

What remains is to obtain a solution for Xx where the results shown in the previous Section
3.6.2 might help, and also the choice of Ax is a question to be answered. However, it is assumed
that the matrices Ax, Xx, W x,J , W x,x and Wx,ω are unique (besides the tuning). Note that
the matrices W x,J , W x,x and Wx,ω manipulate the matrix J̃ and the gains lx,x and Lx,ω. This
can be used to manipulate (3.208), which facilitates the existence of a solution.
Assuming a set of matrices Ax, Xx, W x,J , W x,x and Wx,ω satisfying the constraints is found,
then the �nal steps are brie�y drawn as
1. Pole placement:

A tuning rule must be derived, which outputs a tuning vector lx such that the matrix Ax has
desired eigenvalues

{
λx,1, . . . , λx,v+n

}
⊂ CNHP and therefore is Hurwitz. As stated in Remark

3.6.6, these only give information on system stability but not on system dynamics. That is, their
in�uence on system dynamics is not clear.
2. Proof of boundedness and decrease of ex:

If Ax is Hurwitz, it holds that

Vx(ex) = e>x P xex ⇒ d
dtVx(ex) = −e>xQx

(ω̂x)ex.

Thus, it follows that

∀ t ∈ Ti : d
dtVx(ex)

(2.16)

≤ −λmin(Q
x
(ω̂x)) ‖ex‖

2
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(2.16)

≤ − λmin(Q
x
(ω̂x))

λmax(P x)︸ ︷︷ ︸
=:µx,V (ω̂x)>0

Vx(ex)
(2.17)
=⇒ Vx(ex) ≤ Vx(ex,ti)e

−
t∫
ti

µx,V (ω̂x)dτ

and therefore

∀ t ∈ Ti : ‖ex‖
2
(2.16)

≤
Vx(ex,ti

)e

−
t∫
ti

µx,V (ω̂x)dτ

λmin(P x)

(2.16)

≤ λmax(P x)
λmin(P x)︸ ︷︷ ︸
=: c2x,V >0

∥∥ex,ti

∥∥2
e
−

t∫
ti

µx,V (ω̂x)dτ

.

Since µx,V > 0 for all t ∈ Ti,
∫ t
ti
µx,V dτ is a strictly monotonically increasing function. Thus, it

holds that
∀ t ∈ Ti : ‖ex‖ <∞ and lim

t→∞
‖ex‖ → 0.

Remark 3.6.9. Note that this does not prove stability of the overall error ex in α, β frame.
To be able to show this, more information on the transformation matrix is necessary. Hereby,
several methods are possible. It can be shown that

(i) the spectral norm of X
−1
x is bounded, wich implies that ‖ex‖

(3.198)

≤
∥∥∥X−1

x

∥∥∥ ‖ex‖ <∞;

(ii) every element of ex must be bounded, since every element of ‖ex‖
(3.198)

=
∥∥Xxex

∥∥ is bounded
(as it was used in Theorem 3.5.3).

If boundedness of ex can be shown, this implies boundedness of x̂x since

‖x‖∞ <∞, ‖ex‖ <∞ =⇒
∣∣∣∣x̂x

∣∣∣∣ (3.194)= ‖x− ex‖ ≤ ‖x‖∞ + ‖ex‖ <∞.
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Chapter 4

Experimental validation

Now, the theoretical results shown in Chapter 3 are investigated in terms of experimental valida-
tion. Additionally, comparisons to existing methods taken from literature are shown. Therefore,
�rstly the chosen systems from literature are shown in Section 4.1. Afterwards, in Section 4.2,
the signals to be investigated are de�ned. In Section 4.3, these signals are used for validation
and comparison purposes of proposed systems and literature.

4.1 Reference systems

As reference systems, a set of systems has been selected with the aim of covering a wide variety of
functionalities. However, these are chosen with the restriction of time-continuous implementation
and estimation in the α, β-frame. Angular frequency estimation and o�set estimation/detection
is optional. The selected systems are shown in the following, where

Section 4.1.1 shows the Multi-Magnitude Integrator Quadrature Signal Generator,

Section 4.1.2 shows the Multiple Second Order Generalized Integrators Frequency Locked Loop
and

Section 4.1.3 shows the Multi Adapted Frequency Locked Loop.

4.1.1 The Multi-Magnitude Integrator Quadrature Signal Generator

The �rst system selected is taken from [494]. It is called the Multi Magnitude Integrator Quadra-

ture Signal Generator (MMI-QSG). It is designed to extract the harmonic components xαi , x
β
i ;

estimation of frequency or o�set is not its purpose. The MMI-QSG's dynamics, marked by the
subscript �mmi�, are described by the set of di�erential equations1

∀ t ∈ Ti :
d
dt x̂mmi =

(
Jmmi − lmmic

>
mmi

)
x̂mmi + lmmiy, x̂mmi(ti) = x̂mmi,ti

ŷmmi = c>mmix̂mmi.

}
(4.1)

The system vectors and matrix are speci�ed as

Jmmi = blkdiag
1,...,n

0 −ω2
i 2lmmi

1 0 0
0 0 0

 ∈ R3n×3n,

1The system equations are obtained from Figure 3 inside [494]. Since it only shows the MMI-QSG for n = 4,
it is generically parallelized here.
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lmmi = (2lmmi, 0, lmmi
2 , · · · , 2lmmi, 0, lmmi

2 )> ∈ R3n,

cmmi = (1, 0, 0, · · · , 1, 0, 0)> ∈ R3n,

and x̂mmi = (x̂αmmi,1, x̂
β
mmi,1, x̂

γ
mmi,1, · · · , x̂

α
mmi,n, x̂

β
mmi,n, x̂

γ
mmi,n)> ∈ R3n.

The block diagram of the MMI-QSG is illustrated in Figure 4.1.

j-th MI-QSG

Σ

1-st MI-QSG · · · n-th MI-QSG

c>mmix̂mmi

y
emmi

x̂αmmi,1 x̂βmmi,1
x̂γmmi,1 x̂αmmi,n x̂βmmi,n

x̂γmmi,n

ŷmmi

−

x̂mmi

(a) Block diagram of the MMI-QSG structure.

Σ
2lmmi
ωjΣ ωj

∫
∫

ωj
∫

lmmi
2

emmi

x̂γmmi,j x̂βmmi,j

−
x̂αmmi,j

(b) Construction of the j-th MI-QSG.

Figure 4.1: (a): The parallelized structure of MI-QSGs and (b): the j-th MI-QSG for amplitude and
phase estimation of the j-th component.

4.1.2 The Multiple Second-Order Generalized Integrators-Frequency Locked
Loop

The next reference considered is selected from [492]. In the paper, it is denoted as the Multiple
Second-Order Generalized Integrators-Frequency Locked Loop (MSOGI-FLL). Its purpose is to
estimate the harmonic components xαi , x

β
i and the fundamental angular frequency ω1; o�set

estimation is not considered. Here, it is indicated by the subscript �msf�. It is a parallelization
of sSOGIs; the used SOGI structure is similar to the right block diagram shown in Figure 3.4.
Additionally, it comes with an sFLL with Gain Normalization as in (3.51). Although in [492], a
lower amplitude limitation εmsf > 0 was not used inside the FLL, it is included here. The overall
system dynamics are described by

∀ t ∈ Ti :

d
dt x̂msf =

(
Jmsf − lmsfc

>
msf

)
x̂msf + lmsfy, x̂msf(ti) = x̂msf,ti

ŷmsf = c>msf x̂msf

emsf = y − c>msf x̂msf

d
dt ω̂msf =

−lmsfΓmsf ω̂msfemsf x̂
β
msf,ν1

max
(∣∣∣∣(x̂αmsf,ν1

, x̂βmsf,ν1
)
∣∣∣∣2, εmsf

) , ω̂msf(ti) = ω̂msf,ti .

 (4.2)

The matrices and vectors are given as follows

Jmsf = blkdiag
1,...,n

([
0 −ν2

i ω̂
2
msf

1 0

])
∈ R2n×2n,

104



4.2. REFERENCE SIGNALS AND SCENARIOS

lmsf = ω̂msf(lmsf , 0, · · · , lmsf , 0)> ∈ R2n,

cmsf = (1, 0, · · · , 1, 0)> ∈ R2n,

and x̂msf = (x̂αmsf,1, x̂
β
msf,1, · · · , x̂

α
msf,n, x̂

β
msf,n) ∈ R2.

4.1.3 The multi-Adapted Frequency Locked Loop

The last reference system chosen is taken from [545]. It is called the multi-Adapted Frequency
Locked Loop (mAFLL) and subscripted by �maf�. It is designed to estimate all harmonic com-
ponents xαi , x

β
i and all angular frequencies ωi. Its mathematical representation is given as

∀ t ∈ Ti :

d
dt x̂maf =

(
Jmaf − lmafc

>
maf

)
x̂maf + lmafy, x̂maf(ti) = x̂maf,ti

ŷmaf = c>maf x̂maf

emaf = y − c>maf x̂maf
d
dt ω̂maf =

(
Lmafemaf − X̂maf

)
ΓmafΣmaf x̂maf , ω̂maf(ti) = ω̂maf,ti .

 (4.3)

The system matrices and vectors are obtained from [545] generically as

Jmaf = blkdiag
i∈{1,...,n}

ω̂maf,i

0 −1 0
1 0 0
0 0 −lmaf,i

 ∈ R3n×3n,

Lmaf = diag
i∈{1,...,n}

(
lmaf,i

)
∈ Rn×n, Σmaf = blkdiag

i∈{1,...,n}

((
0 −1 lmaf,i

))
∈ Rn×3n,

X̂maf = diag
i∈{1,...,n}

(
x̂γmaf,i

)
∈ Rn×n, Γmaf = diag

i∈{1,...,n}

(
ω̂maf,iΓmaf,i

)
∈ Rn×n,

lmaf = (ω̂maf,1l
2
maf,1, 0, ω̂maf,1l

2
maf,1, · · · , ω̂maf,nl

2
maf,n, 0, ω̂maf,nl

2
maf,n)> ∈ R3n,

cmaf = ( 1
lmaf,1

, 0, 0, · · · , 1
lmaf,n

, 0, 0)> ∈ R3n,

x̂maf = (x̂αmaf,1, x̂
β
maf,1, x̂

γ
maf,1, · · · , x̂

α
maf,n, x̂

β
maf,n, x̂

γ
maf,n)> ∈ R3n,

ω̂maf = (ω̂maf,1, · · · , ω̂maf,n)> ∈ Rn.

However, in [545], they only described their implementation for n ∈ {1, 3} with varying sets of
parameters and initial values for each of their investigated four examples. A generic tuning rule
or an allowed set of initial values guaranteeing convergence of the mAFLL was not given. Hence,
the sets of parameters and initial values showing convergence in the paper are adapted to the
examples considered in this thesis. A block diagram of the mAFLL is presented in Figure 4.2.

4.2 Reference signals and scenarios

This section introduces the reference signals used for evaluation and de�nes eight scenarios. The
evaluation is shown in the next Section 4.3.
The scenarios explained in the following list:

Scenario (S1) considers an input signal consisting of only a fundamental wave without o�set and
with a known fundamental angular frequency. The FAOs, MMI-QSG, MSOGI-FLL and
mAFLL are designed to estimate one component wherein angular frequency adaption is
implemented but turned o�. The time frame is T = [0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s]. The input
signal is designed as follows: At t = 0.1 s, the amplitude jumps, at t = 0.2 s, the phase angle
jumps and at t = 0.3 s, the amplitude and phase angle jump. The respective values for
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j-th AFLL

Σ

1-st AFLL · · · n-th AFLL

c>maf x̂maf

y
emaf

x̂αmaf,1 x̂βmaf,1
x̂γmaf,1 x̂αmaf,n x̂βmaf,n

x̂γmaf,n

ŷmaf

−

x̂maf

ω̂maf,1 ω̂maf,n

ω̂maf

(a) Block diagram of the mAFLL structure.

Σ lmaf,j ×
∫

lmaf,jlmaf,j Σ ×
∫

∫
× lmaf,j

Σ

× ΣΓmaf,j

∫

emaf

x̂αmaf,j

x̂βmaf,j

−

x̂γmaf,j−

−

−

ω̂maf,j

x̂αmaf,j

x̂βmaf,j

x̂γmaf,j

ω̂maf,j

(b) Construction of the j-th AFLL.

Figure 4.2: (a): The parallelized structure of AFLLs and (b): the j-th AFLL for amplitude, phase and
frequency estimation of the j-th component.

amplitude, phase angle, o�set, and fundamental angular frequency are collected in Table
4.1. The input signal is plotted in Figure 4.3.

Scenario (S2) considers an input signal consisting of only a fundamental wave without o�set and
with an unknown fundamental angular frequency. The FAOs, MMI-QSG, MSOGI-FLL
and mAFLL are designed to estimate one component wherein angular frequency adaption
is turned on. The time frame is T = [0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s]. The input signal is designed
as follows: At t = 0.2 s, the angular frequency jumps, at t = 0.4 s, the amplitude and phase
angle jump and at t = 0.6 s, the amplitude, phase angle and angular frequency jump. The
respective values for amplitude, phase angle, o�set, and fundamental angular frequency are
collected in Table 4.2. The input signal is plotted in Figure 4.5.

Scenario (S3) considers an input signal consisting of only a fundamental wave with o�set and
with a known fundamental angular frequency. The FAOs, MMI-QSG, MSOGI-FLL and
mAFLL are designed to estimate one component wherein angular frequency adaption is
implemented but turned o�. The time frame is T = [0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s]. The input
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signal is designed as follows: At t = 0.1 s, the amplitude and o�set jump, at t = 0.2 s,
the phase angle jumps and at t = 0.3 s, the amplitude, phase angle and o�set jump. The
respective values for amplitude, phase angle, o�set, and fundamental angular frequency are
collected in Table 4.3. The input signal is plotted in Figure 4.7.

Scenario (S4) considers an input signal consisting of only a fundamental wave with o�set and
with an unknown fundamental angular frequency. The FAOs, MMI-QSG, MSOGI-FLL and
mAFLL are designed to estimate one component wherein angular frequency adaption is
turned on. The time frame is T = [0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s]. The input signal is designed as
follows: At t = 0.2 s, the fundamental angular frequency jumps, at t = 0.4 s, the amplitude
and o�set jump and at t = 0.6 s, the amplitude, o�set and fundamental angular frequency
jump. The respective values for amplitude, phase angle, o�set, and fundamental angular
frequency are collected in Table 4.4. The input signal is plotted in Figure 4.9.

Scenario (S5) considers an input signal consisting of a fundamental wave plus nine harmonic
waves without o�set, with a known fundamental angular frequency and known harmonic
orders. The esFAO, mFAO , MMI-QSG and MSOGI-FLL are designed to estimate ten
components wherein angular frequency adaption is implemented but turned o�. The time
frame is T = [0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s]. The input signal is designed as follows: At t = 0.1 s,
all amplitudes jump, at t = 0.2 s, all phase angles jump and at t = 0.3 s, all amplitude and
phase angles jump. The respective values for amplitudes, phase angles, o�set, fundamental
angular frequency, and harmonic orders are collected in Table 4.1. The input signal is
plotted in Figure 4.4.

Scenario (S6) considers an input signal consisting of a fundamental wave plus nine harmonic
waves without o�set, with an unknown fundamental angular frequency and known har-
monic orders. The esFAO, mFAO , MMI-QSG and MSOGI-FLL are designed to estimate
ten components wherein angular frequency adaption is turned on. The time frame is
T = [0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s]. The input signal is designed as follows: At t = 0.2 s, the
fundamental angular frequency jumps, at t = 0.4 s, all amplitudes and phase angles jump
and at t = 0.6 s, all amplitudes, phase angles and the fundamental angular frequency jump.
The respective values for amplitudes, phase angles, o�set, fundamental angular frequency,
and harmonic orders are collected in Table 4.2. The input signal is plotted in Figure 4.6.

Scenario (S7) considers an input signal consisting of a fundamental wave plus nine harmonic
waves with o�set, with a known fundamental angular frequency and known harmonic or-
ders. The esFAO, mFAO , MMI-QSG and MSOGI-FLL are designed to estimate ten com-
ponents wherein angular frequency adaption is implemented but turned o�. The time frame
is T = [0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s]. The input signal is designed as follows: At t = 0.1 s, all
amplitudes and the o�set jump, at t = 0.2 s, all phase angles jump and at t = 0.3 s, all
amplitudes, phase angles and the o�set jump. The respective values for amplitudes, phase
angles, o�set, fundamental angular frequency, and harmonic orders are collected in Table
4.3. The input signal is plotted in Figure 4.8.

Scenario (S8) considers an input signal consisting of a fundamental wave plus nine harmonic
waves with o�set, with an unknown fundamental angular frequency and known harmonic
orders. The esFAO, mFAO , MMI-QSG and MSOGI-FLL are designed to estimate ten
components wherein angular frequency adaption is turned on. The time frame is T =
[0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s]. The input signal is designed as follows: At t = 0.2 s, the fun-
damental angular frequency jumps, at t = 0.4 s, all amplitudes and the o�set jump and
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at t = 0.6 s, all amplitudes, the o�set and fundamental angular frequency jump. The re-
spective values for amplitudes, phase angles, o�set, fundamental angular frequency, and
harmonic orders are collected in Table 4.4. The input signal is plotted in Figure 4.10.

i 1 2 3 4 5 6 7 8 9 10

0 s ≤ t < 0.1 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 50

0.1 s ≤ t < 0.2 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 100 17.5 35 22.5 17.5 15 15 10 12.5 10
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 50

0.2 s ≤ t < 0.3 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 100 17.5 35 22.5 17.5 15 15 10 12.5 10
Phase angles φi π

2
3π
4

27π
14

7π
10 0 5π

4
π
2

3π
2 π π

2
O�set a0/V 0
Fundamental frequency f1/Hz 50

0.3 s ≤ t ≤ 0.4 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 50

Table 4.1: Signal parameters for scenarios (S1) and (S5).

Figure 4.3: Input signal y for scenario (S1).

The system parameters for all systems involved in the experiments (esFAO, mFAO, mFAO ,
MMI-QSG, MSOGI-FLL, mAFLL) are shown in Tables 4.5 and 4.6.
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Figure 4.4: Input signal y for scenario (S5).

i 1 2 3 4 5 6 7 8 9 10

0 s ≤ t < 0.2 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 50

0.2 s ≤ t < 0.4 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 62.5

0.4 s ≤ t < 0.6 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 400 70 140 90 70 60 60 40 50 40
Phase angles φi 15π

8
π
8

73π
56

3π
40

11π
8

5π
8

15π
8

7π
8

3π
8

15π
8

O�set a0/V 0
Fundamental frequency f1/Hz 62.5

0.6 s ≤ t ≤ 0.8 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 40

Table 4.2: Signal parameters for scenarios (S2) and (S6).

4.3 Experiments

In this section, the methods proposed and taken from literature are compared to each other. But
�rst, the experimental setup is described in Section 4.3.1. Input signals with only fundamental
waves (Scenarios (S1) � (S4)) are discussed in Section 4.3.2 and in Section 4.3.3, input signals
with ten components (Scenarios (S5) � (S8)) are shown.
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Figure 4.5: Input signal y for scenario (S2).

Figure 4.6: Input signal y for scenario (S6).

Figure 4.7: Input signal y for scenario (S3).

Figure 4.8: Input signal y for scenario (S7).

4.3.1 Experimental setup

The measurements are obtained from the experimental setup described in the following:
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i 1 2 3 4 5 6 7 8 9 10

0 s ≤ t < 0.1 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 50

0.1 s ≤ t < 0.2 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 100 17.5 35 22.5 17.5 15 15 10 12.5 10
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 20
Fundamental frequency f1/Hz 50

0.2 s ≤ t < 0.3 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 100 17.5 35 22.5 17.5 15 15 10 12.5 10
Phase angles φi π

2
3π
4

27π
14

7π
10 0 5π

4
π
2

3π
2 π π

2
O�set a0/V 20
Fundamental frequency f1/Hz 50

0.3 s ≤ t ≤ 0.4 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 70
Fundamental frequency f1/Hz 50

Table 4.3: Signal parameters for scenarios (S3) and (S7).

Figure 4.9: Input signal y for scenario (S4).

• All models for signal generation or decomposition are built in Matlab/Simulink R2018b on
the host computer;

• Two models per measurement (one for generation and one for decomposition) are down-
loaded via LAN to the dPSACE Processor Board DS1007;

• The generated signal is D/A-converted by the dSPACE I/O card DS2103;
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i 1 2 3 4 5 6 7 8 9 10

0 s ≤ t < 0.2 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 50

0.2 s ≤ t < 0.4 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 0
Fundamental frequency f1/Hz 62.5

0.4 s ≤ t < 0.6 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 400 70 140 90 70 60 60 40 50 40
Phase angles φi π

2
3π
4

27π
14

7π
10 0 5π

4
π
2

3π
2 π π

2
O�set a0/V 20
Fundamental frequency f1/Hz 50

0.6 s ≤ t ≤ 0.8 s

Harmonic orders νi 1 2 3 4 5 6 7 8 9 10
Amplitudes ai/V 200 35 70 45 35 30 30 20 25 20
Phase angles φi 0 π

4
10π
7

π
5

3π
2

3π
4 0 π π

2 0
O�set a0/V 70
Fundamental frequency f1/Hz 40

Table 4.4: Signal parameters for scenarios (S4) and (S8).

Figure 4.10: Input signal y for scenario (S8).

• The generated signal is transmitted from the dSPACE system to the ampli�er via a BNC
cable with a length of 10 m;

• The generated signal is ampli�ed by a Spitzenberger Spies PAS 5000 four quadrant ampli-
�er;

• The ampli�ed signal is measured by a LEM CV 3 � 1000 voltage sensor;
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x ∈ {es,m,m } esFAO mFAO mFAO

n 1 10 1 1 10

SOGIs

lx (3.27) (3.27) (3.78) (3.78) (3.78)
resolution 10−3 10−3 7 7 7

Poles (ν∈{(0),±1, . . . ,±n}) 7 7 −3
2 + ν −3

2 + ν −3
2 + ν

Initial values 02 020 02 03 021

LPF

ωlpf 7 7 2π100 2π100 2π100
Initial values 7 7 03 03 03

HPF

ωhpf 2π500 2π500 7 7 7

Initial value 0 0 7 7 7

FLL

Γx 0.1 0.1 0.35 0.2 0.2

σx,1 J̃ les J̃ les J̃ lm J̃ lm J̃ lm
εx 10−5 10−5 10−5 10−5 10−5

zx
2π ,

zx
2π 7 7 −105, 105 −105, 105 −105, 105

ωx
2π ,

ωx
2π 35, 65 35, 65 35, 65 35, 65 35, 65

Initial value 2π25 2π25 2π25 2π25 2π25

Table 4.5: System parameters for the esFAO, mFAO and mFAO with o�set.

x ∈ {mmi,msf,maf} MMI-QSG MSOGI-FLL mAFLL

n 1 10 1 10 1

�SOGI�

lx 100 100
√

2
√

2 2
Initial values 03 030 02 020 03

�FLL�

Γx 7 7 50 50 0.02
εx 7 7 10−5 10−5 7

Initial value 7 7 2π25 2π25 2π25

Table 4.6: System parameters for the MMI-QSG, MSOGI-FLL and mAFLL.

• The measured signal is transmitted from the voltage sensor to the dSPACE system via a
BNC cable with a length of 10 m;

• The measured signal is A/D-converted by the dSPACE A/D card DS2004;

• The measured signal is decomposed in real time by the downloaded model for signal de-
composition and recorded on the host computer.

The experimental setup is illustrated in Figure 4.11.

Remark 4.3.1. Due to the length of the BNC cables, any constant is damped out and, hence,
forbids transmission of o�set. This problem is solved by splitting the generation signal into an
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voltage measurement

ADC

Amplifier

Realtime system

Host-PC
LAN

Sensor box

DAC 

Figure 4.11: The experimental setup used for the measurements.

AC signal including the fundamental and all harmonic waves and a DC signal including only the
o�set:

ygen(t) = a0︸︷︷︸
=: yDC,gen

+

n∑
j=1

aj cos(φj(t))︸ ︷︷ ︸
=: yAC,gen(t)

.

The AC signal is transmitted directly using one cable. Instead of the DC signal two pure sinusoids
are transmitted using two cables. The sinusoids have a phase angle lag of π2 with respect to each
other and their amplitudes are set as the value of the DC signal:

yDC,gen,sin(t) := a0 sin(ωDCt) , yDC,gen,cos(t) := a0 cos(ωDCt) .

The sinusoid's angular frequency is chosen as ωDC = 2π100 rad
s . Clearly, all AC signals are

damped as well. But, contrary to a constant value, the damping is negligible. By measuring these
three signals as described above, the original signal can be reconstructed by

ymeas(t) = yAC,meas(t) + sgn(yDC,gen)
√
y2

DC,meas,sin(t) + y2
DC,meas,cos(t).

Remark 4.3.2. Due to the sampling, there is a time lag of one sampling period between gener-
ation and measurement. Hence, all signals based on the measured signals are shifted backwards
by one sample to match the generation signal.

Remark 4.3.3. For all scenarios (S1) � (S8), the o�set, direct, quadrature and frequency errors
are shown. However, for the calculation of the error metricsMIAE andMITAE, only the overall
estimation error ey is taken into account since the others are not measurable.

4.3.2 Experimental results for Scenarios (S1) � (S4)

The �rst scenario (S1) compares the methods MMI-QSG, MSOGI-FLL, mAFLL, esFAO, mFAO,
and mFAO in Figure 4.12. A fundamental wave without o�set and with a known angular fre-
quency is used as a reference. Thus, angular frequency adaption is turned o� (but still imple-
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mented with correct initial angular frequency). The parameters for the input signal are shown
in Table 4.1 (where the column i = 1 is used) and the parameters for the methods are shown in
Tables 4.5 � 4.6.

Figure 4.12: Measurement results for scenario (S1). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), mAFLL ( ), esFAO ( ), mFAO ( ) and mFAO with o�set ( ). Shown

are the estimated states x̂α1 , x̂
β
1 and their estimation errors eα1 := xα1 − x̂α1 , e

β
1 := xβ1 − x̂

β
1 .

Figure 4.12 illustrates the experimental result for scenario (S1). The �rst subplot shows the di-
rect reference signal xα1 and their estimates x̂α1 (MMI-QSG: , MSOGI-FLL: , mAFLL: ,
esFAO: , mFAO: , mFAO : ) and the second shows the respective errors eα1 := xα1 − x̂α1 .
The third and fourth subplot show the quadrature reference signal xβ1 , its estimates x̂β1 and the
errors eβ1 := xβ1 − x̂

β
1 . All methods decompose the reference precisely. The fastest estimation is

achieved by the mFAO and mFAO within 10 ms followed by the esFAO being slightly slower. Al-
though the MSOGI-FLL and mAFLL estimate the direct component almost as fast as the esFAO,
they are slower in quadrature estimation (about 20 ms). The slowest method is the MMI-QSG,
which takes about 40 ms for correct estimation. In view of overshooting, the MSOGI-FLL and
mAFLL are best, followed by mFAO, MMI-QSG, esFAO and mFAO showing the highest over-
shoot. The error metricsMIAE andMITAE for the used methods, which are calculated from the
overall estimation error ey, are listed in Table 4.7.

Method MMI-QSG MSOGI-FLL mAFLL esFAO mFAO mFAO

MIAE / Vs 4.521 2.389 1.919 0.940 1.462 1.387
MITAE / Vs2 0.070 0.044 0.041 0.039 0.038 0.039

Table 4.7: IAE and ITAE for the di�erent methods used in scenario (S1).
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In view of the metrics shown in Table 4.7, the esFAO performs best; it is only slightly outper-
formed by the mFAO in view of theMITAE.
Scenario (S2) compares the methods MMI-QSG, MSOGI-FLL, mAFLL, esFAO, mFAO, and
mFAO in Figure 4.13. The reference signal is a fundamental wave without o�set and with an
unknown angular frequency. Thus, angular frequency adaption is turned on. The parameters for
the input signal are shown in Table 4.2 (where the column i = 1 is used) and the parameters for
the methods are shown in Tables 4.5 � 4.6.

Figure 4.13: Measurement results for scenario (S2). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), mAFLL ( ), esFAO ( ), mFAO ( ) and mFAO with o�set ( ). Shown

are the estimated states x̂α1 , x̂
β
1 , their estimation errors eα1 , e

β
1 , the estimated fundamental

frequency f̂1 := ω̂1

2π and its estimation error ef,1 := f1 − f̂1.

In Figure 4.13, the experimental results for scenario (S2) are depicted. The �rst and second
subplots show the direct reference signal xα1 , their estimates x̂α1 (MMI-QSG: , MSOGI-FLL:

, mAFLL: , esFAO: , mFAO: , mFAO : ) and the respective errors eα1 . In the
third and fourth subplot, the same signals for the quadrature component are shown. The last
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two subplots show the fundamental frequency f1, its estimate f̂1 and the respective estimation
error ef,1 := f1 − f̂1. Therein, no plot for the MMI-QSG is shown because no signals exist for
this model. Except for the MMI-QSG, which comes without frequency adaption, all methods are
able to decompose the reference. The fastest estimation is achieved by the mFAO and mFAO
within 30 ms. The esFAO, MSOGI-FLL and mAFLL still are able to estimate the input signal
in the observed time frames but take signi�cantly more time to reach quasi-steady state. In
the time frame with correct reference angular frequency for the MMI-QSG, it estimates the sig-
nal components correctly. However, a wrong reference angular frequency causes the MMI-QSG
estimates to deliver wrong results. Due to the OS of the esFLL and the AWU in the mFLL
and mFLL , overshooting is prevented in the frequency adaption. In contrast, MSOGI-FLL and
mAFLL show high overshooting. The overshooting characteristics of the SOGIs (or equivalent
structures in the MMI-QSG and mAFLL) are as described in scenario (S1). The error metrics
calculated for this scenario from the overall estimation error ey are listed in Table 4.8.

Method MMI-QSG MSOGI-FLL mAFLL esFAO mFAO mFAO

MIAE / Vs 62.956 8.958 6.360 3.242 4.988 4.202
MITAE / Vs2 6.149 0.350 0.299 0.268 0.267 0.261

Table 4.8: IAE and ITAE for the di�erent methods used in scenario (S2).

The metrics shown in Table 4.7 indicate that the esFAO performs best when taking theMIAE

value. In view of theMITAE value, the mFAO is the best choice.
In scenario (S3), the methods MMI-QSG, MSOGI-FLL, mAFLL, esFAO, mFAO, and mFAO
are compared in Figure 4.14. The reference signal is a fundamental wave with o�set and with a
known angular frequency. Thus, angular frequency adaption is turned o�. The parameters for
the input signal are shown in Table 4.3 (where the column i = 1 is used) and the parameters for
the methods are shown in Tables 4.5 � 4.6.
Figure 4.14 shows the experimental results for this scenario. Therein, the �rst two subplots
show the o�set x0, its estimates x̂0 and the respective estimation errors e0 := x0− x̂0. However,
only the results from the methods capable of estimating/detecting o�set (esFAO, mFAO ) are
drawn. The last four subplots show the direct and quadrature reference signals xα1 , x

β
1 , their

estimates x̂α1 , x̂
β
1 and estimation errors eα1 , e

β
1 (MMI-QSG: , MSOGI-FLL: , mAFLL: ,

esFAO: , mFAO: , mFAO : ). Fastest correct estimation is achieved by the mFAO
within 10 ms, which is closely followed by the esFAO. Although the MMI-QSG, MSOGI-FLL and
mAFLL are not capable of estimating o�set, this has no impact on the estimation of xα1 , unlike
the mFAO showing a biased estimation. Considering the quadrature estimation, all methods ex-
cept for esFAO and FAO fail to give correct estimations. More precisely, MSOGI-FLL, mAFLL
and mFAO show a biased quadrature estimate whereas the MMI-QSG even diverges linearly.
The overshooting behavior, only described for the esFAO and the mFAO , is almost identical,
which can also be seen in the error metrics shown in Table 4.9.

Method MMI-QSG MSOGI-FLL mAFLL esFAO mFAO mFAO

MIAE / Vs 12.466 11.924 11.585 0.950 4.178 1.380
MITAE / Vs2 0.526 0.561 0.562 0.039 0.184 0.039

Table 4.9: IAE and ITAE for the di�erent methods used in scenario (S3).

From Table 4.9, it can be deduced that the esFAO shows the best performance for scenario (S3).
Scenario (S4) compares the methods MMI-QSG, MSOGI-FLL, mAFLL, esFAO, mFAO, and
mFAO in Figure 4.14. A fundamental wave with o�set and with an unknown angular frequency
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Figure 4.14: Measurement results for scenario (S3). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), mAFLL ( ), esFAO ( ), mFAO ( ) and mFAO with o�set ( ). Shown

are the estimated states x̂α1 , x̂
β
1 and their estimation errors eα1 , e

β
1 .

is used as a reference. Thus, angular frequency adaption is turned on. The parameters for the
input signal are shown in Table 4.4 (where the column i = 1 is used) and the parameters for the
methods are shown in Tables 4.5 � 4.6.
Figure 4.15 shows the experimental results for scenario (S4). The subplots depict the reference
o�set x0, its estimates x̂0 and the respective errors e0 (for the esFAO and the mFAO ), the direct
and quadrature signals xα1 , x

β
1 , their estimates x̂α1 , x̂

β
1 and estimation errors eα1 , e

β
1 , and reference

frequency f1, its estimates f̂1 and estimation errors ef,1 (MMI-QSG: , MSOGI-FLL: ,
mAFLL: , esFAO: , mFAO: , mFAO : ). Similar to scenario (S3), only the esFAO
and mFAO are able to decompose the input signal appropriately. The MMI-QSG again fails
when o�set is present or when its angular frequency is wrong. Due to activated frequency adap-
tion, the esFAO now takes signi�cantly more time to settle (≥ 100 ms). The mFAO achieves
correct estimation in maximal 50 ms. The esFAO shows less overshooting than the mFAO . In
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Figure 4.15: Measurement results for scenario (S4). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), mAFLL ( ), esFAO ( ), mFAO ( ) and mFAO with o�set ( ). Shown

are the estimated states x̂α1 , x̂
β
1 , their estimation errors eα1 , e

β
1 , the estimated fundamental

frequency f̂1 and its estimation error ef,1.
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view of frequency adaption of the other methods, the mFAO and MSOGI-FLL show an oscilla-
tion due to o�set, whereas the o�set does not a�ect the functionality of frequency adaption of
the mAFLL. In the last time frame (0.6 s ≤ t ≤ 0.8 s) the MSOGI-FLL locks at f̂1 = 0 Hz and
thus sets all estimated signals to zero. The error metrics for this scenario, calculated from the
overall estimation error ey, are listed in Table 4.10.

Method MSOGI-FLL mAFLL esFAO mFAO mFAO

MIAE / Vs 34.246 21.386 3.184 10.249 4.005
MITAE / Vs2 3.235 1.925 0.265 0.846 0.257

Table 4.10: IAE and ITAE for the di�erent methods used in scenario (S4).

From Table 4.10, it can be seen that the esFAO is best when referring to the MIAE value and
the mFAO is best when referring to theMITAE value, closely followed by the esFAO.
As a conclusion from scenarios (S1) � (S4), only the esFAO and the mFAO are capable of
decomposing a signal consisting of a fundamental wave and o�set with an unknown angular
frequency, which is also indicated by the error metricsMIAE andMITAE. These show that the
mFAO is the better choice, if the frequency is to be estimated, whereas the esFAO is preferred
when not. However, it should be kept in mind that these values do not take frequency errors into
account, which emphasizes the proposed choice since the mFAO is signi�cantly faster than the
esFAO in adapting an unknown angular frequency. On the other hand, the esFAO shows lesser
overshooting. In total, both methods outperform the ones taken from literature and the mFAO.
Since the mFAO is not capable of decomposing a signal comprising o�set, it is neglected in the
following scenarios. Moreover, since no generic tuning rule was given for the mAFLL in [545], it
is also discarded.

4.3.3 Experimental results for Scenarios (S5) � (S8)

The �fth scenario (S5) compares the methods MMI-QSG, MSOGI-FLL, esFAO, and mFAO in
Figure 4.16. A signal composed of a fundamental wave and nine harmonics without o�set and
with a known angular frequency is used as a reference. Thus, angular frequency adaption is
turned o�. The parameters for the input signal are shown in Table 4.1 and the parameters for
the methods are shown in Tables 4.5 � 4.6.
Figure 4.16 depicts the actual input signal y, its quadrature signal q and their estimates ŷ, q̂
(MMI-QSG: , MSOGI-FLL: , esFAO: , mFAO : ). All methods are able to esti-
mate the input signal satisfyingly, what can be seen in the error plots. In view of estimation
speed, the mFAO performs best and needs about 20 ms, followed by the esFAO, MSOGI-FLL
and MMI-QSG. The MMI-QSG and the MSOGI-FLL show the highest overshooting, whereas
the esFAO shows the lowest. In the quadrature error plot, time frame 0.2 s ≤ t < 0.6 s, the
MMI-QSG shows very little convergence and cannot settle down within the time frame.
To give deeper insight into the single states, its estimates and errors, Figures 4.17 and 4.18
compare the estimated states x̂α1 , x̂

β
1 � x̂α10, x̂

β
10 to the references xα1 , x

β
1 � xα10, x

β
10 and show the

respective estimation errors eα1 , e
β
1 � eα10, e

β
10.

In Figures 4.17 and 4.18, all estimates of the direct and quadrature components x̂α1 , x̂
β
1 � x̂α10, x̂

β
10

and their respective errors eα1 , e
β
1 � eα10, e

β
10 are plotted. All methods are capable of decomposing

the input signal into its harmonic components. However, the higher the harmonic number is,
the noisier the respective signal is. It can be seen that the mFAO is the fastest method in
each component and estimates all components uniformly in about 20 ms. For the other methods,
estimation of components with higher order takes longer. For example, considering the perfor-
mance of the MSOGI-FLL, estimation of the fundamental signals x̂α1 , x̂

β
1 takes about 60 ms and
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Figure 4.16: Measurement results for scenario (S5). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated direct and quadra-
ture inputs ŷ, q̂ and their estimation errors ey, eq.

approximately 100 ms for x̂α10, x̂
β
10.

To give a more objective comparison, Table 4.11 lists MIAE and MITAE of the investigated
methods for scenario (S5).

Method MMI-QSG MSOGI-FLL esFAO mFAO

MIAE / Vs 6.027 4.936 2.576 1.827
MITAE / Vs2 0.131 0.138 0.098 0.092

Table 4.11: IAE and ITAE for the di�erent methods used in scenario (S5).

From Table 4.11, it can be deduce that the mFAO outruns the other methods. But, in case of
theMITAE, the esFAO is very close to the mFAO , which indicates that the mFAO comes with
higher overshooting than the esFAO.
In scenario (S6), the methods MMI-QSG, MSOGI-FLL, esFAO, and mFAO are compared in
Figure 4.19. A signal composed of a fundamental wave and nine harmonics without o�set and
with an unknown angular frequency is used as a reference. Thus, angular frequency adaption is
turned on. The parameters for the input signal are shown in Table 4.2 and the parameters for
the methods are shown in Tables 4.5 � 4.6.
In Figure 4.19, the input signal y, its �ctive quadrature signal q and their estimates ŷ, q̂ (MMI-
QSG: , MSOGI-FLL: , esFAO: , mFAO : ) are shown. Since the MMI-QSG has
no frequency adaption, it fails to decompose the input signal appropriately if the actual fre-
quency f does not match the MMI-QSG's reference frequency. The MSOGI-FLL also cannot
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(a) (b)

Figure 4.17: Measurement results for scenario (S5). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂α1 �
x̂α10 in sub�gure (a) and the estimation errors eα1 � eα10 in sub�gure (b).
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(a) (b)

Figure 4.18: Measurement results for scenario (S5). Used methods: MMI-QSG ( ), MSOGI-FLL

( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂β1 �

x̂β10 in sub�gure (a) and the estimation errors eβ1 � eβ10 in sub�gure (b).
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Figure 4.19: Measurement results for scenario (S6). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated direct and
quadrature input ŷ, q̂, their estimation errors ey, eq, the estimated fundamental frequency

f̂1 and its estimation errors ef,1.

decompose the input signal since its frequency shows a semi-stable behavior. For the esFAO and
the mFAO , the output saturation or anti windup, respectively, come to action at t ≥ 0.6 s and
thus facilitate convergence of the frequency estimation such that the correct estimate is obtained
in about 100 ms. Instead of stopping integration as the anti windup does in the mFAO , the
output saturation simply limits the angular frequency output of the esFAO, which could explain
the longer duration until these limits are left. Nevertheless, input estimation is achieved very
quickly by the mFAO as well as by the esFAO. In quadrature signal estimation, both the mFAO
and the esFAO take longer to settle down, whereas the esFAO is signi�cantly slower.
In the following Figures 4.20 and 4.21, the estimated states x̂α1 , x̂

β
1 � x̂α10, x̂

β
10 and the reference

signals xα1 , x
β
1 � xα10, x

β
10 are compared. Additionally, the respective estimation errors eα1 , e

β
1 �

eα10, e
β
10 are plotted.
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(a) (b)

Figure 4.20: Measurement results for scenario (S6). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂α1 �
x̂α10 in sub�gure (a) and the estimation errors eα1 � eα10 in sub�gure (b).
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(a) (b)

Figure 4.21: Measurement results for scenario (S6). Used methods: MMI-QSG ( ), MSOGI-FLL

( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂β1 �

x̂β10 in sub�gure (a) and the estimation errors eβ1 � eβ10 in sub�gure (b).
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As can be seen in the Figures 4.20 and 4.21, the esFAO and mFAO are able to decompose the
input signal into its components, whereas the MMI-QSG and the MSOGI-FLL fail. In contrast
to 4.19, the estimation of direct components x̂α1 , � x̂α10 takes as much time as estimation of
quadrature components x̂β1 � x̂β10.
TheMIAE andMITAE for scenario (S6) are shown in Table 4.12.

Method MMI-QSG MSOGI-FLL esFAO mFAO

MIAE / Vs 87.453 67.323 13.080 7.050
MITAE / Vs2 8.603 6.553 0.928 0.659

Table 4.12: IAE and ITAE for the di�erent methods used in scenario (S6).

These values indicate that the mFAO comes with higher overshooting and the esFAO takes
longer to settle down. Since the MMI-QSG and the MSOGI-FLL fail to converge, their metrics
are very high.
Scenario (S7) compares the methods MMI-QSG, MSOGI-FLL, esFAO, and mFAO in Figure
4.22. A signal composed of a fundamental wave and nine harmonics with o�set and with a
known angular frequency is used as a reference. Thus, angular frequency adaption is turned o�.
The parameters for the input signal are shown in Table 4.3 and the parameters for the methods
are shown in Tables 4.5 � 4.6.

Figure 4.22: Measurement results for scenario (S7). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated direct and quadra-
ture inputs ŷ, q̂ and their estimation errors ey, eq.

Figure 4.22 depicts the direct and quadrature input y, q, their estimates ŷ, q̂, the respective errors
ey, eq and the fundamental frequency f1 as well as its estimates f̂1 and errors ef,1 (MMI-QSG:
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, MSOGI-FLL: , esFAO: , mFAO : ). As in scenario (S3), the MMI-QSG diverges
in the presence of o�set in its quadrature estimation, which can be seen in the third and fourth
subplot. Moreover, its direct signal estimation error ey shown in the second subplot converges
to some wrong result. The MSOGI-FLL also shows an incorrect estimation in the case of o�set
but, contrary to the MMI-QSG, converges in both the direct and quadrature estimates. Only
the esFAO and the mFAO can accurately estimate direct and quadrature input. The mFAO
achieves correct estimation in about 20 ms, whereas the esFAO takes about 30 ms.
Figures 4.23 and 4.24 show the decomposition of the direct and quadrature input signals into its
components.
In Figure 4.24, it can be seen that every quadrature signal diverges in the MMI-QSG. Concerning
the MSOGI-FLL, every quadrature component is biased. In view of the direct signal compo-
nents, the MMI-QSG, the MSOGI-FLL, the esFAO, and the mFAO0 estimate these components
correctly. Comparing the esFAO and the mFAO0, the mFAO0 shows a faster estimation speed
in every component of the direct and quadrature signals. This can be seen especially in the
fundamental and the tenth component.
A qualitative comparison is shown in Table 4.13.

Method MMI-QSG MSOGI-FLL esFAO mFAO

MIAE / Vs 12.878 12.698 2.571 1.827
MITAE / Vs2 0.529 0.593 0.097 0.092

Table 4.13: IAE and ITAE for the di�erent methods used in scenario (S7).

In view of MITAE, Table 4.13 also indicates that the overall performances of the esFAO and
the mFAO are comparable whereby the mFAO0 shows a slightly better value. When taking the
MIAE value into account, it becomes clear that the mFAO performs better. This also indicates
that the esFAO has higher overshooting.
Scenario (S8) compares the methods MMI-QSG, MSOGI-FLL, esFAO, and mFAO in Figure
4.25. A signal composed of a fundamental wave and nine harmonics with o�set and with an
unknown angular frequency is used as a reference. Thus, angular frequency adaption is turned
on. The parameters for the input signal are shown in Table 4.4 and the parameters for the
methods are shown in Tables 4.5 � 4.6.
Figure 4.25 shows the direct and quadrature input signal y, q, their estimates ŷ, q̂, estimation
errors ey, eq, fundamental frequency f1, its estimates f̂1 and estimation errors ef,1 (MMI-QSG:

, MSOGI-FLL: , esFAO: , mFAO : ). As in scenario (S6) & (S7), the MMI-QSG
oscillates and diverges. In view of the MSOGI-FLL, frequency estimation diverges and even leads
to instability resulting in an abortion of estimation due to a missing frequency limitation, where
this guarantees stability of the esFAO and the mFAO . Hereby, the mFAO takes about 50 ms
and the esFAO 130 ms, whereas in scenario (S6) the overall estimation error ey settles down very
quickly in contrast to the overall quadrature error eq.
Figures 4.26 and 4.27 illustrate the decomposed direct and quadrature components.
From Figures 4.26 and 4.27 it becomes apparent that the esFAO and the mFAO are able to
estimate the fundamental and all harmonic components. As in scenario (S6), the component
errors of direct and quadrature signals decrease in a similar way contrary to Figure 4.25. It
remains to state that the mFAO decreases faster in every component than the esFAO.
To conclude this scenario, Table 4.14 shows theMIAE andMITAE values.
Clearly, the mFAO outruns the other methods where for the MSOGI-FLL no value can be cal-
culated due to abortion of estimation.
As a conclusion for the scenarios (S1) � (S8), the mFAO is the best choice to decompose an input
signal into its components. However, if only a fundamental wave with known angular frequency
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(a) (b)

Figure 4.23: Measurement results for scenario (S7). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂α1 �
x̂α10 in sub�gure (a) and the estimation errors eα1 � eα10 in sub�gure (b).
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(a) (b)

Figure 4.24: Measurement results for scenario (S7). Used methods: MMI-QSG ( ), MSOGI-FLL

( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂β1 �

x̂β10 in sub�gure (a) and the estimation errors eβ1 � eβ10 in sub�gure (b).

130



4.3. EXPERIMENTS

Figure 4.25: Measurement results for scenario (S8). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated direct and quadra-

ture inputs ŷ, q̂, their estimation errors ey, eq, the estimated fundamental frequency f̂1 and
its estimation errors ef,1.

Method MMI-QSG MSOGI-FLL esFAO mFAO

MIAE / Vs 86.949 7 11.843 6.950
MITAE / Vs2 8.535 7 0.851 0.652

Table 4.14: IAE and ITAE for the di�erent methods used in scenario (S8).

has to be analyzed, the esFAO is more promising.
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(a) (b)

Figure 4.26: Measurement results for scenario (S8). Used methods: MMI-QSG ( ), MSOGI-FLL
( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂α1 �
x̂α10 in sub�gure (a) and the estimation errors eα1 � eα10 in sub�gure (b).
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(a) (b)

Figure 4.27: Measurement results for scenario (S8). Used methods: MMI-QSG ( ), MSOGI-FLL

( ), esFAO ( ) and mFAO with o�set ( ). Shown are the estimated states x̂β1 �

x̂β10 in sub�gure (a) and the estimation errors eβ1 � eβ10 in sub�gure (b).
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Chapter 5

Conclusion and Outlook

In this thesis, �ve di�erent observers to decompose a periodic signal into its fundamental param-
eters, namely esFAO, mFAO, mFAO , tFAO and tFAO , were developed. The esFAO is capable
of detecting o�set, estimating a prede�ned number of harmonic components and fundamental
angular frequency. Thereafter, the mFAO was designed to accelerate the estimation process.
It comes without o�set estimation, which was covered by the mFAO . To also be capable of
estimating multiple angular frequencies and harmonic components, the tFAO was constructed,
which was extended to the tFAO to cover o�set estimation. Besides these properties, Table
5.1 summarizes the unique theoretical characteristics of each observer. These characteristics are
based on the investigations from Section 3.

Tuning Stability Decrease Frequency

esFAO without FLL limited global exponential none
esFAO with FLL limited local exponential only fundamental
mFAO without FLL unlimited global exponential none
mFAO with FLL limited local exponential only fundamental
mFAO without FLL unlimited global exponential none
mFAO with FLL limited local exponential only fundamental
tFAO (transformed) unlimited global asymptotic all (transformed)
tFAO (transformed) unlimited global asymptotic all (transformed)
tFAO (α, β) unlimited local asymptotic all (α, β)
tFAO (α, β) unlimited local asymptotic all (α, β)

Table 5.1: Theoretical characteristics of esFAO, mFAO, mFAO , tFAO in transformed frame, tFAO in
transformed frame, tFAO in α, β frame and tFAO in α, β frame.

In Section 4, these observers were tested in an experimental setup and compared to existing
observers from literature. Due to the asymptotic decrease characteristic of tFAO and tFAO ,
which was already visualized in Figures 3.33 and 3.35, it was not included in the tests. The
result of these tests, deduced from the error metrics, is the following:

(i) The esFAO is the best choice when estimating a signal that only has a fundamental com-
ponent and whose angular frequency is known;

(ii) For signals comprising more harmonics and/or with unknown angular frequency but known
harmonic orders, the mFAO is advised.

For signals that are composed of more harmonics with unknown angular frequencies and unknown
harmonic orders, so far the best choice is the tFAO in α, β frame. Unfortunately, it requires
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an unrealistic large time frame, making real-time decomposition impossible. In order to �nd a
solution for this issue, an idea for exponential frequency adaptive observers (eFAO and eFAO )
was discussed. Since it is not �nished yet, the remaining tasks as well as a few ideas for future
investigations are collected in the following.
For the eFAO, open tasks are (i) to �nd a set of matrices Ae, Xe, W e,J , W e,x and We,ω and
(ii) to derive an algorithm for the assignment of eigenvalues to Ae. Other tasks are to obtain
insight into the system dynamics and to prove stability. The same tasks must be accomplished
for the eFAO .
More generally, discretization of all observers was not considered in this thesis, so it is a topic to be
dealt with in future works. Nevertheless, some e�ort was already put into this �eld in [557�569].
As a last idea, the development of a damped Second Order Generalized Integrator is proposed.
Its bene�ts are the manipulation of amplitude and phase responses of the observer, which means
that the observer can be designed to be less sensitive to noise in a certain frequency spectrum.
Hereby, to the best knowledge of the author, the structure depicted in Figure 5.1 has not been
published yet.

ωd
∫

Σ

Σ

l0d

k0
d

lαd

lβd

kαd

kβd

Σ

Σ

Σ

Σ ωd
∫

Σωd
∫

y

x̂0
d

x̂αd
−

−

−

x̂βd

Figure 5.1: Block diagram of the dSOGI1.

This structure, called the damped Second Order Generalized Integrator of �rst order (dSOGI1)
can be understood as an advanced mSOGI (but not mFAO) as reported in Section 3.3.2.1 in
this thesis. Clearly, this system has more gains than states and, hence, has additional degrees of
freedom compared to e.g. the mSOGI. These degrees of freedom can possibly be used for di�erent
purposes, which must be investigated in the future. For now conceivable purposes are (i) output
noise reduction and (ii) speeding the frequency adaption. As a short motivation, the possibility
to reduce output noise is validated in Figure 5.21. In it, the amplitude responses A0

d, A
α
d and Aβd

of the signals x̂0
d, x̂

α
d and x̂βd , respectively, are compared to the ones from the mSOGI (see Section

3.3.2.1).
The �rst subplot of Figure 5.2 shows the amplitude response of the signal x̂0

d, which only exists
for the dSOGI1. The second and third subplots show the responses of the direct signal x̂α and
quadrature signal x̂β , respectively. It can be seen that the dSOGI1 shows a better �ltering
capability than the mSOGI, especially for higher frequencies. For frequencies lower than the
resonance frequency (located at f = 50 Hz), the quadrature signal x̂β shows a less e�ective
�ltering capability than the mSOGI. In view of the direct signal x̂α, the dSOGI1 shows a lower
�ltering capability only in a very short frequency frame above the resonance frequency.
In conclusion, Figure 5.2 motivates that further e�orts should be put into researching dSOGI1.
asd

1Simulation parameters:
(
l0 lα lβ

)
=
(
19
14

0 1
7

)
,
(
k0 kα kβ

)
=
(
−10 10 −4

)
, lm =

(
4 −4

)>
,

ω̂ = ω̂m,1 = 2π50 rad
s
.
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Figure 5.2: Comparison of the amplitude responses of dSOGI1 ( ) and mSOGI ( ).

In this context, the following ideas are developed:

(a) A Second Order Generalized Integrator of m-th order (dSOGIm) for more advanced noise
reduction, which uses a cascade of m "pre-integrators" instead of only one as in Figure 5.1;

(b) Parallelized Second Order Generalized Integrator of �rst order (pdSOGI1) comprising n
parallel SOGIs;

(c) A Second Order Generalized Integrator of �rst order with o�set (dSOGI1) including an
o�set estimation capability;

(d) And a combination of (a) - (c).
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Appendix A

Derivation of transfer functions,
amplitude and phase responses of a
SOGI

In this appendix, the general transfer functions and their amplitude and phase responses of a
SOGI are derived. But �rst, the relation between the amplitude and phase response and the
respective transfer function is shown. Consider a transfer function F(s) := n(s)

d(s) . Inserting s := ω
yields

F(ω) = n(ω)
d(ω) = <(n(ω))+=(n(ω))

<(d(ω))+=(d(ω)) = (<(n(ω))+=(n(ω)))(<(d(ω))−=(d(ω)))
(<(d(ω))+=(d(ω)))(<(d(ω))−=(d(ω)))

= <(d(ω))<(n(ω))+=(d(ω))=(n(ω))

<(d(ω))2+=(d(ω))2︸ ︷︷ ︸
=:<(F(ω))

+ <(d(ω))=(n(ω))−<(n(ω))=(d(ω))

<(d(ω))2+=(d(ω))2︸ ︷︷ ︸
=:=(F(ω))

. (A.1)

The amplitude and phase responses are obtained as

AF (ω) =

√
< (F(ω))2 + = (F(ω))2 (A.1)

=

√
<(n(ω))2+=(n(ω))2

<(d(ω))2+=(d(ω))2
(A.2)

ΦF (ω) = arctan2
(
=(F(ω))
<(F(ω))

)
(A.1)
= arctan2

(
<(d(ω))=(n(ω))−<(n(ω))=(d(ω))
<(d(ω))<(n(ω))+=(d(ω))=(n(ω))

)
. (A.3)

Now, consider the signal estimation error ey, the direct signals x̂ανi and the quadrature signals
x̂βνi given as

ey(s) = y(s)−
n∑
j=1

x̂αj (s)

x̂αi (s) = ω̂1
s

(
lαi ey(s)− νix̂

β
i (s)

)
x̂βi (s) = ω̂1

s

(
lβi ey(s) + νix̂

α
i (s)

)
.

 (A.4)

Inserting x̂βi into x̂αi yields

x̂αi (s)
(A.4)
= ω̂1

s

(
lαi ey(s)− νiω̂1

s

(
lβi ey(s) + νix̂

α
i (s)

))
⇒ x̂αi (s) =

ω̂1
s

(
lαi ey(s)−νiω̂1

s lβi ey(s)

)
1+

ν2i ω̂
2
1

s2

=
ω̂1lαi s−νiω̂2

1 l
β
i

s2+ν2i ω̂
2
1

ey(s). (A.5)
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By inserting (A.5) into ey in (A.4), the transfer function for the signal estimation error is obtained:

ey(s)

(A.4),
(A.5)
= y(s)−

n∑
j=1

ω̂1lαj s−νj ω̂2
1 l
β
j

s2+ν2j ω̂
2
1

ey(s)

⇒ Ey(s) :=
ey(s)
y(s) =

n∏
k=1

(s2+ν2kω̂
2
1)

n∏
k=1

(s2+ν2kω̂
2
1)+

n∑
j=1

(
ω̂1lαj s−νj ω̂2

1 l
β
j

) n∏
k=1
k 6=j

(s2+ν2kω̂
2
1)
. (A.6)

In a similar way, the transfer functions for the direct and quadrature signals are obtained as

Xαi (s) :=
x̂αi (s)
y(s)

(A.5),(A.6)
=

ω̂1

(
lαi s−νiω̂1l

β
i

) n∏
k=1
k 6=i

(s2+ν2kω̂
2
1)

n∏
k=1

(s2+ν2kω̂
2
1)+

n∑
j=1

(
ω̂1lαj s−νj ω̂2

1 l
β
j

) n∏
k=1
k 6=j

(s2+ν2kω̂
2
1)

(A.7)

and X βi (s) :=
x̂βi (s)
y(s)

(A.4),(A.5),(A.6)
=

ω̂1

(
lβi s+νiω̂1lαi

) n∏
k=1
k 6=i

(s2+ν2kω̂
2
1)

n∏
k=1

(s2+ν2kω̂
2
1)+

n∑
j=1

(
ω̂1lαj s−νj ω̂2

1 l
β
j

) n∏
k=1
k 6=j

(s2+ν2kω̂
2
1)
. (A.8)

The transfer functions include the characteristic polynomial of a SOGI's system matrix in their
denominators, which can be read o� as follows:

χ(s) =

n∏
k=1

(
s2 + ν2

kω̂
2
1

)
+

n∑
j=1

(
ω̂1l

α
j s− νjω̂2

1l
β
j

) n∏
k=1
k 6=j

(
s2 + ν2

kω̂
2
1

)
. (A.9)

Finally, by introducing the abbreviations

ρ :=
n∏
k=1

(
ν2
kω̂

2
1 − ω2

)
−

n∑
j=1

νjω̂
2
1l
β
j

n∏
k=1
k 6=j

(
ν2
kω̂

2
1 − ω2

)
(A.10)

υ :=
n∑
j=1

ω̂1ωl
α
j

n∏
k=1
k 6=j

(
ν2
kω̂

2
1 − ω2

)
(A.11)

the amplitude responses are obtained according to (A.2) as follows

AEy(ω)
(A.2),(A.6)

=

n∏
k=1

(ν2kω̂
2
1−ω2)

√
ρ2+υ2

(A.12)

AXανi
(ω)

(A.2),(A.7)
=

ω̂1

n∏
k=1
k 6=i

(ν2kω̂
2
1−ω2)

√
ν2i ω̂

2
1(lβi )2+ω2(lαi )2

√
ρ2+υ2

(A.13)

AXβνi
(ω)

(A.2),(A.8)
=

ω̂1

n∏
k=1
k 6=i

(ν2kω̂
2
1−ω2)

√
ν2i ω̂

2
1(lαi )2+ω2(lβi )2

√
ρ2+υ2

. (A.14)
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Using (A.3), the phase responses follow as

ΦEy(ω)
(A.3),(A.6)

= arctan2
(
−υ
ρ

)
(A.15)

ΦXανi
(ω)

(A.3),(A.7)
= arctan2

(
ωlαi ρ+νiω̂1l

β
i υ

ωlαi υ−νiω̂1l
β
i ρ

)
(A.16)

ΦXβνi
(ω)

(A.3),(A.8)
= arctan2

(
ωlβi ρ−νiω̂1lαi υ

ωlβi υ+νiω̂1lαi ρ

)
. (A.17)

If the SOGI is extended to estimate o�set, the transfer functions, abbreviations and responses
follow in a similar way as

χ (s) = (s+ ω̂ ,1l ,0)
n∏
k=1

(
s2 + ν2

kω̂
2
,1

)
+ s

n∑
j=1

(
ω̂ ,1l

α
,js− νjω̂2

,1l
β
,j

) n∏
k=1
k 6=j

(
s2 + ν2

kω̂
2
,1

)
(A.18)

ρ = ω

n∏
k=1

(
ν2
kω̂

2
,1 − ω2

)
− ω

n∑
j=1

νjω̂
2
,1l
β
,j

n∏
k=1
k 6=j

(
ν2
kω̂

2
,1 − ω2

)
(A.19)

υ = ω2
n∑
j=1

ω̂ ,1l
α
,j

n∏
k=1
k 6=j

(
ν2
kω̂

2
,1 − ω2

)
− ω̂ ,1l ,0

n∏
k=1

(
ν2
kω̂

2
,1 − ω2

)
(A.20)

AE ,y(ω) =
ω

n∏
k=1

(ν2kω̂
2
,1−ω2)

√
υ2+ρ2

(A.21)

AX ,0(ω) =
ω̂ ,1l ,0

n∏
k=1

(ν2kω̂
2
,1−ω2)

√
υ2+ρ2

(A.22)

AXα,νi
(ω) =

ωω̂ ,1

n∏
k=1
k 6=i

(ν2kω̂
2
,1−ω2)

√
ω2(lα,i)

2+ν2i ω̂
2
,1(lβ,i)

2

√
υ2+ρ2

(A.23)

AXβ,νi
(ω) =

ωω̂ ,1

n∏
k=1
k 6=i

(ν2kω̂
2
,1−ω2)

√
ν2i ω̂

2
,1(lα,i)

2+ω2(lβ,i)
2

√
υ2+ρ2

(A.24)

ΦE ,y(ω) = arctan2
(
−υ
ρ

)
(A.25)

ΦX ,0(ω) = arctan2
(
−ρ
−υ

)
(A.26)

ΦXα,νi
(ω) = arctan2

(
νiω̂ ,1l

β
,iυ +ωlα,iρ

ωlα,iυ −νiω̂ ,1l
β
,iρ

)
(A.27)

ΦXβ,νi
(ω) = arctan2

(
ωlβ,iρ −νiω̂ ,1lα,iυ

νiω̂ ,1lα,iρ +ωlβ,iυ

)
. (A.28)
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Appendix B

Matlab code for �nding the optimal
gain vector for system (3.19)

This section shows theMatlab-code for minimizing the dominant eigenvalue of Aes as in (3.19).
The choices for the system order n, the initial gain vector lvec_init, the resolution resolution

and the expected harmonic set nu_expected are exemplarily and should be adapted to the system
of interest.

function lvec = iterative_optimal_gains

%% Define parameters

% system order

n = 10;

% starting values

lvec_init = zeros(2*n,1);

% resolution

resolution = 1e-3;

step_vector = zeros(2*n,1);

step_vector(1) = resolution;

% to prevent numerical issues (should be much smaller than the resolution)

numerical_value = 0.5*resolution;

% calculate required system matrices and vectors

J = zeros(2*n);

cy = zeros(2*n,1);

nu_expected = (1:n)';

for z = 1:2*n

for y = 1:2*n

if mod(z,2) ~= 0 && y == (z+1)

J(z,y) = - nu_expected(y/2);

elseif mod(z,2) == 0 && y == (z-1)

J(z,y) = nu_expected(z/2);

end
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end

if mod(z,2) ~= 0

cy(z) = 1;

end

end

% number of directions

possible_directions = 1;

for i = 2:n

possible_directions = 2*possible_directions + 1;

end

% initialize vectors and cells

eigenvalues_cell = cell(possible_directions,1);

lvec_cell = cell(possible_directions,1);

lvec_optimal = lvec_init;

for row = 1:2*n

if mod(row,2) == 0

lvec_optimal(row) = 0;

end

end

%% Find minimum

% initialize eigenvalues

eigenvalues_optimal = eig(J-lvec_optimal*cy');

% breaking condition initialization

looping = true;

while looping

% breaking condition for each loop

count = 0;

% build new gain vectors and compute respective eigenvalues

for i = 1:possible_directions

if i == 1

lvec_cell{i} = lvec_optimal + step_vector;

else

lvec_cell{i} = lvec_cell{i-1} + step_vector;

end

for row = 1:n

if (lvec_cell{i}(2*row-1) - lvec_optimal(2*row-1)) > (resolution + numerical_value)

lvec_cell{i}(2*row-1) = lvec_cell{i}(2*row-1) - 2*resolution;

lvec_cell{i}(2*row+1) = lvec_cell{i}(2*row+1) + resolution;

end

end

eigenvalues_cell{i} = eig(J-lvec_cell{i}*cy');

end

% compare eigenvalues

for i = 1:possible_directions

if max(real(eigenvalues_cell{i})) <= max(real(eigenvalues_optimal))
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count = count + 1;

lvec_optimal = lvec_cell{i};

eigenvalues_optimal = eigenvalues_cell{i};

end

end

% breaking condition test

if count == 0

looping = false;

end

end

end
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Appendix C

Low Pass Filter and Amplitude Phase
Correction

This section describes the impact of Low Pass Filters (LPF) to any type of SOGI outputting
harmonic components (i.e. all but the tSOGI in transformed frame, see Section 3.4). Moreover,
the correction of this e�ect is proposed. Such an LPF with state space representation

∀ t ∈ Ti : d
dtxlpf = −ωlpfxlpf + ωlpfy, xlpf(0) = xlpf,ti

ylpf = xlpf ,
(C.1)

transfer function
X plpf(s) :=

xlpf(s)
y(s) =

ωlpf

s+ωlpf
(C.2)

and amplitude and phase responses

ApXlpf
(ω) =

ωlpf√
(ωlpf)2+(ω)2

, Φ(ω)pXlpf
= arctan2

(
−ω
ωlpf

)
(C.3)

is drawn in Figure C.1. Clearly, the cut-o� frequency ωlpf must be positive in view of stability.

Σ ωlpf
∫

y
xlpf

ylpf

−

Figure C.1: A Low Pass Filter.

By feeding the LPF's output signal ylpf to a SOGI system, this signal comes with damping and
shifting with respect to the actual signal y according to (C.3). Consequently, the SOGIs estimate
these modi�ed signals, so that these have to be corrected again. This is achieved by an APC for
an LPF, which is stated in the following proposition.

Proposition C.1 (Amplitude Phase Correction for LPF). Let ωlpf , ων > 0, y := a cos(ωνt+ φ)
and ylpf := aApXlpf

(ων) cos(ωνt+ φ + Φp
Xlpf

(ων)) with ApXlpf
and Φp

Xlpf
as in (C.3). Moreover, let

q and qlpf be signals having identical amplitude and a phase lag of −π
2 with respect to y and ylpf ,

respectively. Then, there exists a transformation matrix C lpf,ν ∈ R2×2 such that the amplitude-
and phase-corrected signals ỹlpf and q̃lpf have identical phase and amplitude as the input signals,
i.e. y = ỹlpf and q = q̃lpf for all t ∈ T. The correction matrix is given by

C lpf,ν :=

[
1 − ων

ωlpf
ων
ωlpf

1

]
. (C.4)
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Proof. De�ne (
ỹlpf

q̃lpf

)
:= C lpf,ν

(
ylpf

qlpf

)
, C lpf,ν :=

[
clpf,1,ν −clpf,2,ν

clpf,2,ν clpf,1,ν

]
(C.5)

and observe that(
ỹlpf

q̃lpf

)
=

[
clpf,1,ν −clpf,2,ν

clpf,2,ν clpf,1,ν

](
ylpf

qlpf

)
=

[
ylpf −qlpf

qlpf ylpf

]
︸ ︷︷ ︸

=:Slpf,ν

(
clpf,1,ν

clpf,2,ν

)
. (C.6)

Note that the matrix Slpf,ν is invertible (except for (ylpf , qlpf)
> = 0>2 ) with inverse

S−1
lpf,ν = 1

(ylpf)2+(qlpf)2

[
ylpf qlpf

−qlpf ylpf

]
def.
= 1

aApXlpf
(ων)

 cos
(
ωνt+ φ + Φp

Xlpf
(ων)

)
sin
(
ωνt+ φ + Φp

Xlpf
(ων)

)
− sin

(
ωνt+ φ + Φp

Xlpf
(ων)

)
cos
(
ωνt+ φ + Φp

Xlpf
(ων)

) . (C.7)

This allows the unique solution of the following identity for clpf,1,ν and clpf,2,ν :(
clpf,1,ν

clpf,2,ν

)
= S−1

lpf,ν

(
ỹlpf

q̃lpf

)
!

= S−1
lpf,ν

(
y
q

)
(2.3),(C.7)

= 1
ApXlpf

(ων)

(
cos
(
Φp
Xlpf

(ων)
)

− sin
(
Φp
Xlpf

(ων)
)) (C.3)

=

(
1
ων
ωlpf

)
.

(C.8)
Inserting (C.8) into (C.5) yields the matrix as in (C.4). This completes the proof.
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Proof for Assertion (3.151) (Frequency
polynomial)

Proposition D.1. Let n ∈ N, κi ∈ C, i ∈ {1, . . . , n} and

υ1 =
n∑
k=1

κk

υi =
n∑

k1,...,ki=1

∏
j∈k

κj

υn =
n∏
k=1

κk.


(D.1)

Then, the κi are obtained as the roots of the function

f(x) := xn − xn−1υ1 + · · ·+ (−1)n−1xυn−1 + (−1)nυn (D.2)

i.e.
x0 ∈ {x | f(x) = 0} = {κ1, . . . , κn} . (D.3)

Proof. The function f is rewritten as

f(x)
(D.2)
= xn − xn−1υ1 + · · ·+ (−1)n−1xυn−1 + (−1)nυn

(D.1)
= xn − xn−1

n∑
k=1

κk + · · ·+ (−1)n−1x

n∑
k=1

n∏
j=1
j 6=k

κj + (−1)n
n∏
k=1

κk

(2.18)
=

n∏
k=1

(x− κk). (D.4)

The roots of f are determined as shown in (D.3). This completes the proof.
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