
Technische Universität München
TUM School of Engineering and Design
Photogrammetrie und Fernerkundung
Prof. Dr.-Ing. U. Stilla

Evaluation of the Effect of Enriched Facade
Models on Image-Based Localization of
Vehicles

Antonia Bieringer

Bachelor’s Thesis

Submission: 01.04.2023 - 02.09.2023

Study Course: Geodesy and Geoinformation (Bachelor)

Supervisors: M.Sc. Olaf Wysocki

Dr.-Ing. Sebastian Tuttas

Prof. Dr.-Ing. habil. Ludwig Hoegner

In Cooperation with:



I confirm that this Bachelor’s Thesis is my own work and I have documented all sources
and material used.

Munich, Submission date Antonia Bieringer



Abstract

Numerous navigation applications rely on data from global navigation satellite systems
(GNSS), even though their accuracy is compromised in urban areas, posing a significant
challenge, particularly for precise autonomous car localization.

Extensive research has focused on enhancing outcomes by integrating various sensor
types to address this. This thesis introduces a novel approach for car localization,
leveraging image features that correspond with highly detailed semantic 3D building
models.

The core concept involves augmenting accuracy by incorporating prior environmen-
tal knowledge into calculations. The study assesses outcomes using Level-of-Detail 2
(LoD2) and Level-of-Detail 3 (LoD3) models, examining whether models enriched with
facades yield superior accuracy. This examination encompasses diverse methods, in-
cluding off-the-shelf feature matching and machine learning, facilitating comprehensive
analysis and discussion.

The results of the thesis have an impact for the field of navigation in areas where
GNSS is not available.
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1. Introduction

1.1. Motivation

Autonomous driving has become a significant focus for researchers and automotive
companies, raising substantial interest. One of the key challenges in this pursuit is
ensuring that vehicles can accurately determine their location. This challenge becomes
even more focused due to issues like signal reflections and blocked signals in urban
environments, which undermine the precision of GNSS.

Various methods have been developed to address this, combining different sensors
to enhance location accuracy. However, this field is still evolving; no definitive solution
has emerged.

LoD2 models, representing 3D urban environments, have gained widespread avail-
ability in German cities. These models have been integrated into research and show
potential for practical autonomous vehicle navigation. Meanwhile, the development of
more detailed LoD3 models is also progressing. This raises an important question: can
these highly detailed 3D building models significantly improve the accuracy of vehicle
localization? This inquiry highlights the ongoing exploration of this field.

1.2. Challenges

Navigating in complex urban settings can pose challenges for positioning systems,
primarily when vehicles depend on GNSS. As vehicles move through signal-obstructed
urban canyons, the effectiveness of positioning systems can diminish. Vehicles must
turn to alternative cues to determine their location in such scenarios. This leads to an
interesting question: How can existing 3D maps be used to solve where a vehicle is in
areas where signals are weak?

Commonly equipped with camera sensors, vehicles possess an avenue for supple-
mentary positioning. However, capitalizing on this data is not straightforward, as
the visual information encapsulated within images diverges from the structure of 3D
models’ non-textured surfaces. The crux of the challenge lies in harmonizing two
distinct modalities: images and building models.

The main focus of this research, described in this thesis, is to find a solution to a key
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1.3. THESIS OUTLINE

question: How can detailed LoD3 models that show building facades be effectively
matched with pictures from cameras to make it possible to accurately locate a vehicle?
This research aims to develop creative solutions that connect these two different types
of information and make them work together.

1.3. Thesis Outline

The initial segment of this thesis, as presented in chapter 2, involves a thorough
exploration of the current state-of-the-art within the domain of vehicle localization.
After this comprehensive review, chapter 3 becomes the focal point, detailing the specific
methods employed in this study. This involves generating virtual images from LoD2
and LoD3 models, identifying and matching features, and calculating the trajectory
based on these aspects.

The subsequent section is found in chapter 4, where the practical workings of vehicle
localization using images are tested and evaluated. This assessment is then compared to
GNSS data, as discussed in chapter 5, resulting in insightful conversations and analysis.

The final phase of this thesis is encapsulated in chapter 6, where the culmination of
the findings leads to conclusions. This chapter also extends its scope toward prospects,
shedding light on potential directions for subsequent research endeavors building upon
the current work.
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2. State of the Art

2.1. Localization Methods Based on Relative Positioning

2.1.1. Inertial Navigation

Intertial navigation is based on sensors that measure their specific changes during the
movement, e.g., of a vehicle. Its unique characteristic is that it does not rely on external
references. It only depends on the initial position and changes recorded by the sensor.
This method has already been used for more than 20 years. With the help of a Kalman
filter (or similar), the position in the future can be estimated [1]. Different sensors can
be used as inertial navigation systems. Four of them are described in more detail in the
following:

Accelerometers: Accelerometers measure the linear acceleration along one or more
axes. Consequently, they can detect nongravitational accelerations, especially motion,
orientation changes, and vibration [2]. The measurement is based on the principles
of Newton’s second law of motion, which states that the force applied to an object is
proportional to its mass and the acceleration it experiences.

Gyroscopes: Gyroscopes "detect and measure the angular velocity of a rotational
object, the deviation of a vehicle from its desired orientation" [3]. Therefore, gyroscopes
are widely used in autonomous navigation systems. They are based on the principle of
the conservation of angular momentum.

IMU: An IMU measures the angular velocity and the acceleration [4]. It can only
measure relative positions since no world coordinates are known. Research proved that
the accuracy of IMUs is not stable but drifting with time. Therefore, it is not used as a
single method for localization but mostly in addition to other instruments.

Wheel odometry: Wheel encoder measure the wheel rotation angle [4]. Therefore,
they are fixed on the wheels of a vehicle to estimate the distance. Electric signals
representing the movement are sent out by reading out the markings of the disc.
Sometimes the exact angle itself is saved. The number of those signals or the angle
leads to the distance traveled. The accuracy of wheel odometry is similar to IMUs and
drifting over time, which is why it is only used in combination with other methods.
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2.2. LOCALIZATION METHOD BASED ON SATELLITES

2.2. Localization Method Based on Satellites

Currently, multiple global navigation satellite systems are available, like GPS of the US,
Galileo of Europe, GLONASS of Russia, Beidou of China, and some regional ones, like
IRNSS of India. They are all based on the same idea: Localizing a receiver on Earth
by measuring the running time of a signal and calculating the receiver’s distance from
multiple satellites. With basic mathematics, this leads to the position of the receiver on
earth [5].

The accuracy can be improved when different physical effects are addressed. For
example, the ionosphere’s effect must be considered and can be almost eliminated when
the ionosphere-free linear combination is used [6]. For example, the final measurement
accuracy along the different signals of GPS can be seen in Table 2.1. Since the L1-/L2-
signal requires a lot of effort and the P-Code is only for military applications, average
receivers can work with the C/A-Code and therefore have a measurement accuracy in
the [m]-range [7].

GPS signal Measurement accuracy range

C/A-Code (PRN-Code) [m]

P-Code (PRN-Code) [dm]

L1/L2 (carrier wave) [cm]-[mm]

Table 2.1.: Measurement Accuracy of the Different GPS Signals. Source: [7]

Many problems regarding the accuracy apply during a GNSS measurement in urban
areas. For clarity, only two essential effects are described in the following.

One effect that has to be considered is multipath. Especially in urban areas, this
is a big reason why the above-stated accuracy can not be reached. Multipath means
that a signal of the transmitter on board the satellite is reflected (e.g., at walls and
windows). The intensity of the reflection depends on the material where the beam
encounters. Consequently, the GNSS antenna receives many different signals. Therefore,
the position can not be estimated with high accuracy (within the specified measurement
accuracy described in Table 2.1).

Additionally, high blocks of houses around small streets cause a smaller possible
field of view to the sky and, therefore, a worse configuration of satellites that can be
reached (non-line of sight signal reception). This leads to worse accuracy of GNSS in
urban areas.
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2.3. LOCALIZATION METHODS BASED ON IMAGES

2.3. Localization Methods Based on Images

2.3.1. Algorithms for Feature Detection

There is a handful of computer vision methods to extract features from images. In this
part of the thesis, three approaches are described closer since those are the ones that are
currently used in the field: SIFT, SURF, and ORB. The idea of all of them is to compare
two consecutive images and find similar points despite the movement of the scene. The
specifics of each method compared to the others are described in the following.

Different papers compared the performance of those three feature extractors, and
other results were presented [8]. The following provides a comparison based on the
data captured by 3D Mapping Solutions GmbH vehicle cameras. Therefore, the plotted
data is only valid for this specific dataset and application.

SIFT

Figure 2.1.: Found Features with SIFT
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2.3. LOCALIZATION METHODS BASED ON IMAGES

SIFT was one of the first feature detectors that was developed. David G. Lowe
designed an algorithm "more robust against changes in 3D viewpoint for non-planar
surfaces" [9]. This is achieved because the descriptor only reacts with small changes
even if relative feature positions move between the images [9]. To find feature points,
SIFT computes "a histogram of locally oriented gradients around the interest point"
[10].

In the used images from the dataset, 422 points were matched. The distribution of
the matched features in the image can be seen in Figure 2.1. Two consecutive images
can be seen in the figure, overlaying in one image. The first image is slightly blue, and
the second is slightly red. If the viewer uses anaglyph 3D glasses, the image would
appear 3D. The features are red-circled in the first image and green crosses in the
second image. Yellow lines show the matches between two features.

SURF

Figure 2.2.: Found Features with SURF
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2.3. LOCALIZATION METHODS BASED ON IMAGES

Compared to SIFT, SURF uses a different approach to detect possible feature points:
a fundamental hessian matrix approximation and, consequently, the usage of integral
images for image convolution [10]. Because it can be computed much faster, and the
results are more accurate. In the example data, 636 points were matched using SURF,
as seen in Figure 2.2.

ORB

Figure 2.3.: Found Features with ORB

The newest of the described feature detectors is ORB. It was developed in 2011 and
is based on the FAST keypoint detector and the BRIEF descriptor [11]. There are 11
matched points in the current example, but the matching was limited to 1000 extracted
points because otherwise, the calculating endurance is too long.
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2.3. LOCALIZATION METHODS BASED ON IMAGES

2.3.2. Algorithms for Localizing and Mapping

Structure from Motion (SfM)

Structure from Motion (SfM) is a technique to reconstruct the 3D structure of a scene
and estimate the camera poses from an unordered collection of 2D images. SfM works
by leveraging the relationships between features in different images and the scene’s
geometry to recover the scene’s 3D structure and camera poses. The main steps that
are performed to achieve this goal are "feature extraction and matching, followed by
geometric verification [...] [as well as] triangulating scene points, filtering outliers, and
refining the reconstruction using bundle adjustment (BA)" [12].

Visual Odometry (VO)

With visual odometry, a vehicle’s trajectory can be estimated using a series of camera
images [13]. It is advantageous over other methods due to its insensitivity to soil
mechanics and lower drift rates than all but the most expensive IMUs [13]. Additionally,
it works well in places where a satellite connection fails, e.g., indoors or on narrow
streets. Therefore, visual odometry can be used indoors and in remote areas like
other planets. It has already been used in NASA’s Mars Exploration Rover Mission to
"maintain an accurate onboard position estimate" [14] because IMU and wheel encoder-
based odometry are insufficient in an environment like Mars. But also here on earth,
VO can contribute to a full 6DOF movement estimation [13] with higher accuracy.

The trajectories estimated by visual odometry tend to drift along with increasing
distance from the start point. Consequently, researchers tried to improve the concept
by expanding VO ideas to another image-based localization method called SLAM [4].

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is another, more advanced technique
to reconstruct reality from images. In comparison to SfM and VO, it computes the
trajectory in real time and, at the same time, draws a map around the vehicle [4]. This
information is then used to localize the vehicle during the rest of the journey. There-
fore, SLAM achieves higher accuracies, especially for round trips. The actual values
substantially deviate since the accuracy accumulates over time [15]. Consequently, a
round trip’s start and end points are far away, and the system is not perceiving the
connection. Since SLAM is simultaneously mapping the environment and updating the
map during driving, the current point is automatically corrected by the data from the
positions that were already calculated before. The system automatically optimizes the
trajectory on-the-fly.
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2.4. LOCALIZATION METHODS BASED ON LOD2 MODELS

2.4. Localization Methods Based on LoD2 Models

A 3D city model can be used to georeference the vehicle properly. For this, geometrical
information from the buildings surrounding the vehicle is extracted and matched with
points in the images to scale, localize and correctly map the trajectory. In LoD2, this
geometrical information includes the edges of the buildings. In LoD3, facade details
and edges of windows can be helpful references. There are a few papers which already
tested the usage of LoD-1 and LoD2 models for vehicle localization:

Vogel et al. work on localizing objects in "complex indoor as well as inner-city outdoor
environments" [16]. For this, they modify an iterated extended Kalman filter (IEKF)
to be able to integrate additional information into it. This information is observed by
an IMU, a laser scanner, and primary structural conditions (e.g., walls). Due to the
"use[age] of geometric circumstances in the direct environment of the MSS [...] [they
can] provide a more precise and reliable georeferencing" [16]. Their idea is refined in
later papers.

In 2021, Moftizadeh et al. study the possible applications of 3D city models for UAVs
[17]. They aim to improve the iterative extended Kalman filter, developed by [16] to
their needs. Points generated by a laser scanner are assigned to a plane of the 3D city
model or a cell of the digital terrain model to optimize the localization by calculating
the 2D Euclidean distance [17]. This technique creates points in the same coordinate
system and therefore helps to estimate the UAV’s position in the real world.

Lucks et al. introduce a similar approach for improving a vehicle’s trajectory on the
ground [18]. They match the point cloud with an LoD-1 using a point-to-plane iterative
closest point method. With the result, they can optimize the trajectory which GNSS
measured. Their idea is to only use 3D-City models publicly available via geo-web
services [18].

9



3. Methodology

3.1. Overview of the Final Workflow

The workflow of the developed method can be seen in Figure 3.1. This workflow is
used on the LoD2 and the LoD3 model to compare both results.

Figure 3.1.: Workflow

The project is divided into four main parts. First, virtual pictures of the LoD models
are created. The resulting images are then used to find features in the corresponding
image taken from reality. For this, the ORB detector is used. The generated 2D-image
coordinates are correlated with a 3D coordinate by benefiting from the LoD model.
In the end, these coordinates are needed to estimate the camera position for every
single image with spatial resection. A trajectory can be calculated and compared with
the GNSS data. The code to run the developed method can be found in the GitHub
repository "LoD3ForLocalization"; see [19].

10



3.2. CREATING VIRTUAL IMAGES OF THE LOD3 MODEL

3.2. Creating Virtual Images of the LoD3 Model

For the first step, the virtual images are created using ray casting. To work with
the ray casting algorithm, a mesh is generated from the .obj file of the LoD models
since all results are based on the hit of a triangle by virtual rays. The algorithm
creates those virtual rays and sends them through a virtual camera, preferably in the
direction of the model. Every time a ray hits a point, the corresponding triangle and the
barycentric coordinates of the exact hit point (in the triangle) are saved. Therefore, the
3D coordinates in the real world can be calculated by only knowing the 2D coordinates
of the virtual image. The calculation is described in section 3.4.

Moreover, the virtual camera’s positioning point and viewing direction are needed
(see Figure 3.2). As an approximation solution, the position is taken from the GNSS
data of the current corresponding real-world image. On top, the camera’s height above
the GNSS antenna must be considered, leading to GNSS values adapted to the camera
position. The camera is pointing to the adapted GNSS position of the consecutive
image. Afterward, the orientation of the camera needs to be adjusted. For this, the
calibration file is used: The angles for roll, pitch, and yaw are required to approximate
the point close to the GNSS position in consideration of the tilt of the camera. A visual
example of pitch can be seen in Figure 3.2. The approximation is calculated as follows:

dy[m] = rGNSS · dy[◦] · π

180◦
(3.1)

All in all, an overview of the above-described virtual setup can be seen in Figure 3.2:

Figure 3.2.: Virtual Setup for Ray Casting

11



3.2. CREATING VIRTUAL IMAGES OF THE LOD3 MODEL

After applying the Ray Casting algorithm, the results are available in a tensor.
There are four results: the distance (’t_hit’), the geometry IDs, the primitive IDs, the
primitive normals, and the barycentric coordinates (’primitive _uvs’), for an example,
see Figure 3.3.

Figure 3.3.: Ray Casting Results for LoD2

The virtual images are generated on the images, which include an adjustment of
the primitive normals (’primitive_normals) because then the differences between two
buildings are visible. Otherwise, both buildings would have the same color and blur
into each other since the building in front would hide the building behind it. Therefore,
some information regarding this important edge would get lost for feature matching.
The adjustment (absolute value, no negative values of the normals allowed) is applied
since the exact value is unimportant for the virtual images. This is necessary so that
every side of the building has a unique color. This will optimize the found features
and, therefore, the results.

An example for the LoD3 models is visualized in Figure 3.4. The LoD3 ray casting
images are more detailed, due to the additional information on the model, especially
regarding windows and roof eaves. The underpass of the model causes the colorful
triangles in the example. The methods in chapter 4 test whether the color coding is
confusing for the method.

12



3.3. FEATURE MATCHING

Figure 3.4.: Ray Casting Results for LoD3

3.3. Feature Matching

The feature matching is performed on images with fewer details. Therefore, the images
become more abstract and only focus on important information. For this, the images
are matched against themselves (the virtual and the image from reality).

The next step is done for the image of the real world, as well as for the one of the
virtual camera. First, another abstract, virtual feature image is created and implemented
as a matrix with the same values for every pixel. If features were found in matching
the images against themselves, this pixel is colored differently. This is realized by
assigning a different value to this pixel in the matrix. The image, therefore, only
contains information about the essential points of the image before.

Afterward, these newly created feature images are matched with an ORB-feature
detector again. An overview of the idea is visualized in Figure 3.5.

13



3.3. FEATURE MATCHING

Figure 3.5.: Workflow of the Generation of the Feature Images

14



3.4. CORRELATING THE FEATURES WITH A 3D-COORDINATE

3.4. Correlating the Features with a 3D-Coordinate

This part of the thesis describes how the 3D coordinates of a feature point are extracted
from the LoD models. In the beginning, the triangle IDs the rays hit are saved. Then,
the corresponding triangles in the mesh are found. With this, it is possible to see
which vertices belong to a triangle that was hit. From the IDs of those vertices, the
3D coordinates from the vertex positions can be read out in the mesh. Finally, the
exact point needs to be weighted by the vertices of its triangle because only the
relative positions from the vertices are known. The results only return two barycentric
coordinates for each hit point. This is because the sum of the three coordinates is 1:

1 = u + v + s (3.2)

This means that s can be directly derived from u and v. The weighting to receive the
final coordinates is calculated as follows:

P = u ∗ Pvertex1 + v ∗ Pvertex2 + s ∗ Pvertex3 (3.3)

3.5. Calculating the Trajectory

The vehicle’s trajectory is simultaneously calculated by driving and reading the gener-
ated images. This is possible with the usage of spatial resection. Spatial resection is a
set of statistical formulas to compute the accuracy of observations by finding a model
that fits them best. Consequently, the accuracy of the observations and related values
can be calculated afterward. In this case, the camera position is estimated while the
observations are optimized at the same time. The position calculation is performed
with the help of the photogrammetrical co-linearity equations, which can be seen in
Equation 3.4 and Equation 3.5.

x = x̂0 + z
( ˆr11(X − X̂0) + ˆr21(Y − Ŷ0) + ˆr31(Z − Ẑ0)

( ˆr13(X − X̂0) + ˆr23(Y − Ŷ0) + ˆr33(Z − Ẑ0)
(3.4)

y = ŷ0 + z
( ˆr12(X − X̂0) + ˆr22(Y − Ŷ0) + ˆr32(Z − Ẑ0)

( ˆr13(X − X̂0) + ˆr23(Y − Ŷ0) + ˆr33(Z − Ẑ0)
(3.5)

For the calculation, are six values to be determined, representing the camera’s
position and orientation: X0, Y0, Z0, ω, ϕ, κ. Consequently, for the solution, at least six
corresponding points are needed. To get even better accuracy, more corresponding
points are preferred. The spatial resection is performed as follows. First, the image
coordinates of the features are transformed from [pixel] to [m].

15



3.5. CALCULATING THE TRAJECTORY

A direct linear transformation generates the approximate camera orientation values.
Input parameters are at least six corresponding points. The approximate camera
position is taken from the corresponding GNSS point. The approximate values are
needed because the spatial resection needs starting points to optimize. Otherwise, the
algorithm might run into a local minimum and keeps iterating in an infinite loop.

In the optimization loop, the derivations of the A-matrix are computed. This is
necessary because the refinements of the observations for the best-fitting model are
calculated with the help of this matrix. The A-matrix has the size of [n x m], while n is
the number of observations and m is the number of values to be determined.

The values that are to be determined are estimated in every iteration by calculating
the following:

δx̂ =
(AT ∗ Pbb ∗ A)

(AT ∗ Pbb ∗ w)
(3.6)

Where A is the already described A-matrix. Pbb is a matrix that contains weights. Those
weights decide how important an observation is, e.g., if the measurement is probably
more precise than others because of the geometrical position. The w-vector contains the
current errors between the approximated δx̂ and the actual observations. The optimized
observation values are computed by:

δv̂ = A ∗ δx̂ − w (3.7)
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4. Experiments

4.1. Dataset

The experiments are conducted on the datasets depicting the TUM campus in Munich,
Germany. The image data was received from 3D Mapping Solutions GmbH. The camera
has the following characteristics:

camera detail value

camera on the vehicle 9

field of view 54.686033 ◦

width 2464

height 2056

Table 4.1.: Camera Details

For Ray Casting these camera details are needed. The field of view along the width
is calculated by using the camera constant c:

f or[m] = arctan(
width

2
c

· 2 · 180◦) (4.1)

Since the LoD2 models are freely available for Munich, they are downloaded through
the Geodata portal of Bavaria [20]. The LoD3 models are developed by the Chair of
Photogrammetry and Remote Sensing and the Chair of Geoinformatics at the Technical
University of Munich [21]. Different areas where all models and images are available
are tested in this thesis (Theresienstraße 90-100, Arcisstraße 21, Gabelsbergerstraße
39-55). Consequently, it was focused on the streets around the campus in the city center
of the Technical University of Munich.

In Figure 4.1, the used buildings and the three testing routes can be seen. The
numbers are coding for the last two digits of the GML IDs by the Landesamt für
Digitalisierung, Breitband und Vermessung (LDBV). The buildings with numbers are
the ones that are available as LoD3 and LoD2 models. All other buildings visible in the
image are additionally available as LoD2 models.
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4.2. DIFFERENT APPROACHES FOR FEATURE MATCHING

Figure 4.1.: Testing Area. Adopted from: [22]

As LoD3 models are not available for the entirety of the testing area, a hybrid
approach involving a combination of LoD2 and LoD3 models is adopted in this
scenario. This hybrid approach ensures a balanced distribution of potential points and
promotes an effective configuration; for a more detailed description, see section 5.1.
Notably, there are no instances in the testing area where LoD3 models are present on
both sides of the street nearby. The missing LoD3 models are supplemented from the
LoD2 dataset as a solution. Notably, the same models from the LoD2 dataset are used
for experiments involving solely LoD2 models. This allows a direct evaluation of the
influence of the LoD3 compared to the usage of only LoD2 models.

4.2. Different Approaches for Feature Matching

The feature matching was performed on five different pillars. Each approach is de-
scribed in more detail in the following.

18



4.2. DIFFERENT APPROACHES FOR FEATURE MATCHING

4.2.1. Corresponding Image-Pairs of Different Types

The idea of this approach is to find features from image pairs that are not the same
type. This means that one virtual image is matched with one image of reality. Both
images are taken from the same GNSS point. The results show only a median of 9-18
suitable feature matches for each image pair. Furthermore, most do not belong to the
same point on the facade point on the model, as seen in Figure 4.2.

Figure 4.2.: Found Features in a) Virtual Generated Image b) Real Image

In Figure 4.2, the matches found in the images are drawn in circles. A line is
connecting the features which are matched with each other. It is visible that the
matched points do refer to different points since the lines connecting the features in
both images do not have approximately the same orientation. In an ideal situation,
they would be almost parallel and have the same length. In this case, their angles are
different, indicating they do not connect the same points.

4.2.2. Segmented Images with Machine Learning

Matching real images with virtual images presents a challenge due to the presence
of disruptive elements that are not shared between the two image types. To mitigate
this issue, the approach involves segmenting the real images. To achieve this, an
algorithm sourced from 3D Mapping Solutions GmbH is employed. It is built on the
segformer-network, which is available through the mmsegmentation framework [23].
This algorithm generates an output image where distinct elements such as buildings,
cars, and pedestrians are each assigned a unique color, see Figure 4.3.
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4.2. DIFFERENT APPROACHES FOR FEATURE MATCHING

Figure 4.3.: Output of the Segmentation

However, direct matching of these segmented images with the unprocessed real
images is not feasible. The uniform coloration of buildings in the segmented images
blurs the corner edges between two buildings, rendering them indistinct and thus
less visible. To address this, a method is devised wherein the segmented images
act as masks for the real images. This process involves isolating the building areas
from the real images using the segmented images as guides. Consequently, only the
building-related parts of the real image are retained and matched with their virtual
counterparts.

This strategic approach effectively eliminates any potential disruptions from extrane-
ous objects that could potentially result in erroneous matches.

4.2.3. Sobel-Filter and Canny Edge Detection

The optimal approach to feature matching focuses solely on features along building
edges, including structures like building facades and window edges. A combination of
techniques is employed to achieve this, including using Sobel filters and Canny edge
detection.

In instances where it is desirable to exclusively match buildings, applying a bounding
box to actual images proves effective. These filters are harmonized with the segmented
images detailed in subsection 4.2.2 to ensure precision. This strategic combination
prevents the extraction of excessive edges from real images, ensuring that only relevant
objects for vehicle localization are considered. Additionally, the results for Sobel-X and
Sobel-Y are combined to one image including both. The resultant Sobel-filtered and
Canny-edge-detected images exhibit the following characteristics:
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4.2. DIFFERENT APPROACHES FOR FEATURE MATCHING

Figure 4.4.: a) Sobel-Filter and b) Canny Edge Detection on the Images
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4.3. Results

4.3.1. Number of Features

The different approaches lead to different results regarding the number of found
features. These features represent those that can be successfully matched between two
images while simultaneously being positioned on the appropriate LoD model rather
than the background. A comprehensive comparison for each model, namely LoD2 and
LoD3, is presented across different testing areas in Table 4.2, Table 4.3, and Table 4.4.
Within each testing area, the selection pertains to the median of all tested images. The
best result, comparing LoD2 and LoD3 for each experiment is written in bold. The
complete evaluation of every single image is enclosed in Appendix A in the Appendix.

LoD2 LoD3

Corresponding images 17 18

Feature images 20 50

Sobel-filter 14 13

Canny edge detection 21 21

Mask 18 18

Mask and Sobel-filter 21 11

Mask and Canny edge detection 34 22

Table 4.2.: Number of Found Features (Median) in the Testing Area 1

LoD2 LoD3

Corresponding images 12 9

Feature images 20 65

Sobel-filter 10 10

Canny edge detection 8 14

Mask 15 12

Mask and Sobel-filter 13 14

Mask and Canny edge detection 21 27

Table 4.3.: Number of Found Features (Median) in the Testing Area 2
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LoD2 LoD3

Corresponding images 15 18

Feature images 20 47

Sobel-filter 13 15

Canny edge detection 14 20

Mask 13 20

Mask and Sobel-filter 15 17

Mask and Canny edge detection 26 21

Table 4.4.: Number of Found Features (Median) in the Testing Area 3

4.3.2. Deviation from the Trajectory

Additionally, the deviation between the trajectory and the corresponding GNSS point
is compared. By this, the exactness of the calculated camera point and, therefore, the
correctness of the feature matching is evaluated. Again, the accuracy differences for
LoD2 and LoD3 are in focus; the best value is highlighted bold.

LoD2 LoD3

Corresponding images 105.69m 85.19m

Feature images 210.56m 188.18m

Sobel-filter 158.74m 75.55m

Canny edge detection 120.17m 103.65m

Mask 105.47m 110.42m

Mask and Sobel-filter 106.95m 46.29m

Mask and Canny edge detection 129.40m 98.08m

Table 4.5.: Deviation from the Corresponding GNSS Point (Median) in Testing Area 1
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4.3. RESULTS

LoD2 LoD3

Corresponding images 151.79m 141.95m

Feature images 321.76m 229.25m

Sobel-filter 139.46m 118.80m

Canny edge detection 133.99m 66.50m

Mask 135.54m 87.13m

Mask and Sobel-filter 126.72m 101.28m

Mask and Canny edge detection 171.89m 88.00m

Table 4.6.: Deviation from the Corresponding GNSS Point (Median) in Testing Area 2

LoD2 LoD3

Corresponding images 142.32m 178.76m

Feature images 329.25m 169.13m

Sobel-filter 72.00m 171.05m

Canny edge detection 67.62m 193.97m

Mask 60.44m 215.65m

Mask and Sobel-filter 93.67m 239.06m

Mask and Canny edge detection 214.45m 183.57m

Table 4.7.: Deviation from the Corresponding GNSS Point (Median) in Testing Area 3
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4.3.3. Accuracies of the Calculated Camera Position

The accuracy of the calculated camera position is presented in the following tables. The
accuracies per cell are structured as [σX | σY | σZ].

LoD2 LoD3

Corresponding images
35.81m
36.39m
44.25m

15.26m
46.10m
21.11m

Feature images
81.72m
50.40m
74.92m

111.87m
152.39m
94.45m

Sobel-filter
66.13m
67.34m
65.85m

51.23m
58.56m
31.64m

Canny edge detection
48.71m
50.27m
52.06m

35.82m
47.18m
27.31m

Mask
19.93m
32.32m
29.15m

56.26m
44.57m
48.74m

Mask and sobel-filter
55.96m
74.12m
59.12m

65.78m
23.43m
42.22m

Mask and canny edge detection
59.45m
92.93m
50.31m

38.27m
55.16m
42.67m

Table 4.8.: Standard Deviation of the Camera Position (Median) in Testing Area 1
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LoD2 LoD3

Corresponding images
48.02m
44.22m
58.98m

17.49m
41.67m
49.33m

Feature images
130.94m
191.27m
194.87m

168.78m
169.88m
158.22m

Sobel-filter
93.47m
76.02m
51.87m

21.96m
26.54m
15.89m

Canny edge detection
43.62m
24.39m
38.84m

48.33m
52.87m
33.06m

Mask
9.62m

13.59m
14.63m

13.77m
25.69m
10.12m

Mask and sobel-filter
67.45m
91.99m
96.01m

94.36m
85.56m
80.71m

Mask and canny edge detection
37.74m
40.91m
40.69m

42.08m
58.02m
27.19m

Table 4.9.: Standard Deviation of the Camera Position (Median) in Testing Area 2
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LoD2 LoD3

Corresponding images
71.37m
76.23m
80.26m

40.05m
66.23m
77.21m

Feature images
171.01m
127.70m
104.11m

21.14m
38.17m
21.44m

Sobel-filter
59.78m
43.54m
42.67m

40.71m
65.81m
35.07m

Canny edge detection
24.98m
33.31m
19.12m

9.35m
11.62m
6.07m

Mask
38.90m
33.51m
40.14m

20.10m
60.34m
27.97m

Mask and sobel-filter
21.05m
23.25m
19.21m

33.62m
47.88m
44.98m

Mask and canny edge detection
159.73m
168.19m
180.55m

7.83m
13.24m
5.19m

Table 4.10.: Standard Deviation of the Camera Position (Median) in Testing Area 3
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5. Discussion

5.1. Evaluation of the Developed Methodology

The developed method performes well. The method needs images, semantic building
models, and GNSS information for the initial location as inputs and returns a trajectory,
including its accuracy. The steps of the performed actions that have to be performed
are implemented successfully.

First, virtual images were created via ray casting. Then, features were found in
and matched between the virtual and real images. Since the 3D coordinate of every
pixel in the virtual images can be computed from the ray casting results, every feature
match correlates with a real-world coordinate. Ultimately, these correlations are used
to calculate the trajectory using spatial resection. The most reliable method for feature
matching, using the feature images, was chosen from those tested in chapter 4.

No complete SLAM approach is implemented since this is beyond the scope of this
thesis. This means that two consecutive images are only compared against each other,
like in VO. The developed map of the environment is not updated during the drive.

Finding an algorithm in digital image processing that matches features with a
reliability of around 100% was challenging. As described in chapter 4, different
approaches, including basic and innovative image processing tools, were tested to get
the best results in feature matching. The results are similar: Many features are found
between the two images, but the matching was complex. The situation is especially
challenging for LoD3, which was unexpected: More features can be found in LoD3
than LoD2, but this also increases the false matching.

As seen in Figure 5.1, many features were found in the image pairs, which are visible
as circles. The matches between two features are shown by connecting lines. In an
ideal situation, those lines will nearly have a similar angle and length since the scene’s
configuration is approximately the same in both images. However, this does not apply
to the example: In this case, the connections point in the same direction, but features
from the left side of one image are matched with the right side of the other image. This
is the reason for bad accuracies, described in more detail in section 5.2.
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5.2. EVALUATION OF THE ACHIEVED ACCURACIES

Figure 5.1.: Found Features in a) Real Images b) LoD3

5.2. Evaluation of the Achieved Accuracies

Three testing areas were chosen to compare different situations that can occur during
driving. The first testing area includes an underpass. The remarkable thing about this
is that underpasses are not visualized in a LoD2 model. Instead, the vertical wall is
drawn down to the floor; see Figure 5.2. This is a huge problem when those models are
used for localizing autonomous cars.

Figure 5.2.: Underpasses in a) Reality b) LoD2

The second testing area includes a different challenge in localization based on 3D
city models and images: Buildings are only visible on one side of the street. The other
side is occupied by trees or other vegetation. This leads to a bad configuration for
estimating the trajectory because possible features can only be found on one side of the
trajectory, as seen in Figure 5.3.
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5.2. EVALUATION OF THE ACHIEVED ACCURACIES

Figure 5.3.: Visualization of the Configurations

The angles of the features to the camera in the configuration of the left are similar,
which causes a more unreliable positioning. In the configuration on the right, the
features are distributed over the viewing area. By this, the positioning error can be
reduced. Nevertheless, the right configuration can not be assured during the journey of
an autonomous vehicle. Therefore, the different testing areas will show how well the
idea of using images and 3D city models for localization performs in other situations.

Testing area 3 seems to be the best case for building-based trajectory calculations,
since buildings with clear facade patterns cover both sides of the streets.

Analyzing the tables in chapter 4, the tests are showing that the method is, on
average, resulting the same or more features for LoD3, a smaller deviation from the
corresponding GNSS point and a smaller standard deviation.

In testing area 1, LoD3 works better for positioning because the underpasses lead to
great problems for LoD2. Close to the underpass, the localization with images is failing
since no features can be found anymore.

More features lead to a more reliable estimation of the trajectory point, which can
especially be seen in testing area 2. Only one side is covered by buildings, but the LoD3
model still results in a smaller deviation from the GNSS point. The reason for this is
that it is important in this area to have more features on the walls, since only one side
of the street can be used for positioning. LoD3 reaches a higher number of features,
which is why the standard deviation of the camera point is better. The deviation from
the corresponding GNSS point is worse compared to the other testing areas due to the
bad configuration, as described above.

In testing area 3, the deviation from GNSS is smaller for LoD2 than for LoD3. This is
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because more features also cause more incorrect allocations, as described above. At the
same time, more found features provide a better distribution in the image and therefore
create a better standard deviation. Considering the standard deviation of the camera
position for the evaluation, LoD3 is favorable in testing area 3.

In general, the deviation of the calculated camera position looks slightly better in
LoD3 compared to LoD2. A reason for the deviation from the GNSS point is an
imprecise calculation of the 3D coordinates. The exact coordinates are weighted by
the barycentric coordinates in the triangle. Consequently, each triangle vertex belongs
to exactly one of the barycentric coordinates u, v, s. This depends on the sequence in
which the triangle coordinates are saved in the mesh. The order of the vertices is a
requirement that is currently under great research for LoD2 and LoD3 models. The
topology for such models has to be consistent in every model, e.g., in the right-hand
view.

A colored visualization of the underpasses can also be caused by this problem since
the normals of the triangles can show to the other direction, compared to the triangle
next to it, depending on the triangle’s topology. The method developed in this thesis
works under the assumption that the models are correct and the vertices are saved in
the right-hand view.

The calculation of the 3D coordinates and the problem of precise feature matching
need to be improved to achieve accuracies that can be applied in real autonomous
vehicles.

5.3. Comparison with GNSS Data

The program works best in situations, where buildings cover both sides of the street. The
higher the buildings, the more details can be found for feature matching. Additionally,
narrow streets are advantageous, because the buildings are closer to the camera and
can be captured in more detail.

In contrast, GNSS data is most accurate in urban environments when surrounded
by only low buildings. Narrow streets lead to position errors. Consequently, the
localization with images and LoD3 models is advantageous over the usage of GNSS in
urban areas.

The developed algorithm fails in urban areas when buildings are only available on
only one side of the street. In this case, GNSS is working more precisely.
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6. Conclusions and Outlook

6.1. Key Findings

Overall, positioning with GNSS and based on images and 3D city models are like
counterparts: where one method fails, the other method has advantages. For example,
locating in narrow streets with high buildings is beneficial using the method developed
in this thesis.

The combination of both methods thus shall reach in the best results.

6.2. Real-World Applications and Implications

Reliable navigation in urban areas is a prerequisite for the economy, safety, efficiency,
and quality of life. Another milestone for using autonomous vehicles is achieved if this
condition is met.

Image-based localization combined with 3D city models can also bring many ad-
vantages in other areas: drones, which may deliver our packages in the future, also
require secure positioning between canyons of houses. It is essential to secure safety in
navigation to fulfill the requirements of drone regulations.

Helicopters must be able to land in cities in the case of emergencies. The developed
method can help them land safely between hospital buildings without positioning
errors due to the lost GNSS signal.

Additionally, for many applications using robots, localization without GNSS is
needed. Robots often work inside buildings where no GNSS signal is reachable.
Navigating with images is really helpful to estimate a right and reliable position.
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6.3. Future Research Directions

The basic idea of image-based localization in combination with enhanced 3D city
models is interesting for the future of navigation in urban environments and must be
continued. The biggest challenge is the sufficient matching of features between the two
distinct modalities: images and building models. Further research should optimize
the matching process to ensure the corresponding features are matched as well as
the topology of these models. A universal way to structure the saved vertices has to
establish e.g., the right-hand view.

Additionally, the best solution will be to combine images from different methods to
achieve the most promising result. Future research can work on the approach to train a
neuronal network for recognizing windows and doors. The resulting images can then
be combined with the output of a Sobel filter so that the edges of the buildings will be
visible.

LoD3 models produce more features. Once the challenge to match those features
correctly is faced, the positioning accuracy will most likely be enhanced compared to
LoD2.
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