
1 

 

 Graph-based Learning for Automated Code Checking – Exploring the 

application of Graph Neural Networks for design review1 

Tanya Bloch1 , André Borrmann2 ,Pieter Pauwels3  

1
Faculty of Civil and Environmental Engineering, Technion Israel Institute of Technology, Israel 

bloch@technion.ac.il  

2
 Chair of Computational Modeling and Simulation, Technical University of Munich, Munich, Germany 

andre.borrmann@tum.de 

3 Faculty of Built Environment, Eindhoven University of Technology, the Netherlands p.pauwels@tue.nl 

Corresponding author – Tanya Bloch bloch@technion.ac.il 

ABSTRACT 1 

Although automated code checking (ACC) has been a subject of interest for many years, we have 2 

not yet seen significant breakthroughs in the field that may lead to the development of generic, 3 

comprehensive tools for ACC. Hard-coded rules are the backbone of all emerging platforms for 4 

ACC. These rules require a significant amount of engineering, which often requires manual labor; 5 

and the resulting rule sets are strict and difficult to scale to other building models. On the other 6 

hand, approaches relying purely on classic machine learning (e.g. SVM) are too coarse and unable 7 

to accurately express building information. In our hope to come up with a more scalable solution, 8 

we investigate here a novel workflow that relies on graph-based learning algorithms instead of 9 

processing rule sets. We illustrate the suggested workflow by checking accessibility requirements 10 

in residential houses, which we believe is one of the more promising rule sets that can be checked 11 

using graph-based learning methods. The high accuracy of the obtained results is encouraging to 12 

continue exploring Graph Neural Networks (GNN) for this type of ACC, yet rule-based and classic 13 

ML-based approaches show other advantages as well (rigor and speed, respectively). The main 14 

contribution of this work is therefore its identification of meaningful limitations and directions for 15 

future research, including alternative graph structures and GNN architectures.   16 

 
1 Published as / Please cite as: Bloch, T., Borrmann, A., & Pauwels, P. (2023). Graph-based learning for automated 
code checking – Exploring the application of graph neural networks for design review. Advanced Engineering 
Informatics, 58, 102137. https://doi.org/10.1016/j.aei.2023.102137  

mailto:bloch@technion.ac.il
mailto:andre.borrmann@tum.de
mailto:p.pauwels@tue.nl
mailto:bloch@technion.ac.il
https://doi.org/10.1016/j.aei.2023.102137


2 

 

Keywords: Automated Code Compliance, Graph Neural Network (GNN), Machine Learning 17 

(ML), Rule-based checking, Building Information Modeling (BIM) 18 

1. INTRODUCTION 19 

1.1. Challenges in Code Compliance Checking 20 

Any new building is designed to fulfill user requirements in a way that ensures the functionality 21 

of the building, public safety and welfare of the occupants. A variety of requirements and 22 

constraints are important to consider during the design phase, and designers and engineers are now 23 

concerned not only with safety requirements but also with constraints regarding accessibility, 24 

durability, sustainability, security, energetic efficiency and much more (Meijer et al. 2002).  The 25 

result is a large number of laws, codes and regulations that any new design must comply with 26 

before construction can begin. Checking whether a proposed design conforms to all relevant 27 

regulatory requirements is a difficult task that demands a lot of knowledge and expertise and it is 28 

therefore performed by qualified and experienced engineers or architects.  Although automating 29 

the design review process has been a subject of research for several decades (Amor and Dimyadi 30 

2021), a fully automated checking platform that covers a wide range of regulations remains a 31 

distant goal. 32 

The most important breakthrough in the field of Automated Code Checking (ACC) has been the 33 

development of Building Information Modeling (BIM). As the checking process is concerned with 34 

comparing a proposed design to the relevant regulations, BIM provides one part of the equation 35 

(the design) in a computer readable format. The second part of this equation, computer readable 36 

representation of the regulations, remains a bottleneck in the further development of ACC (Nawari 37 

2012b). Codes and regulations are text documents written in natural language for the 38 

understanding, interpretation and use of human experts.  Enabling an automated assessment of the 39 

design based on the regulations involves the conversion of hundreds of such text documents to a 40 

computable form. Furthermore, many of these documents have subjective statements, statements 41 

that are open to interpretation, and relatively complex geometric computations (e.g. “the hallway 42 

shall be wide enough for 3 persons to pass”). 43 

A lot of research has focused on processing regulatory documents in terms of classification of 44 

rules, representation of rules and organization of rules. However, the rule interpretation process 45 



3 

 

remains mostly manual as it requires contextual knowledge and comprehensive understanding of 46 

the regulations (Zhang and El-Gohary 2017; Zhang et al. 2022). Although the engineering domain 47 

is governed by well-defined principles and accurate calculations, many of the building regulations 48 

are ambiguous, subjective or vague, and therefore not suitable to be computerized (Nawari 2019) . 49 

When considering the creation of computer-readable rules specifically, a few approaches are 50 

available. Many ACC approaches rely on manually processing the natural language used in 51 

regulations, namely reading text and writing rules manually. This can also be augmented by using 52 

automatic Natural Language Processing (NLP) tools (Zhang and El-Gohary 2016, 2017). Machine 53 

Learning (ML) based approaches on the other hand rely on input models, and the eventually 54 

obtained tags or classifications (compliant; non-compliant), and hence do not require elaborate 55 

processing of human-readable text. 56 

The hard-coded rule sets, which are the core of all existing efforts for ACC, are often too strict to 57 

facilitate the flexibility required to capture building regulations. As a result, the existing platforms 58 

for ACC are limited in the scope of regulations that can be checked. As stated by (Nawari 2012a) 59 

“The computable model for code representation must possess enough elasticity and expressiveness 60 

to capture most of the provisions…”. This suggests a necessary shift to a more flexible form of 61 

Artificial Intelligence (AI) than the symbolic AI which is usually practiced in the existing 62 

applications for ACC. Indeed, classic ML approaches have been considered, aiming to train a 63 

model (e.g. neural network model) that can immediately evaluate whether a building model is 64 

compliant to certain regulations or not. The performance of these ML-based checkers is highly 65 

reliant on the quality of data they have been trained with. Full accuracy is not available in this case, 66 

and the level of reliability then becomes uncertain, which is often highly needed in the case of 67 

regulation compliance checking. Furthermore, the black-box nature of these classic ML 68 

approaches takes away the proof and explainability behind a certain regulation check. These 69 

models can however provide indicative results for clauses that cannot be automated using rules.  70 

For some of the prescriptive regulatory requirements, both the regulations and the design can be 71 

presented in a computer-readable form (rule-based ACC), usually involving some extent of manual 72 

work. Still, the comparison between the two is not straightforward. Matching of building concepts’ 73 

representations (e.g. width, accessible route) in regulatory documents to those represented in the 74 

BIM model (e.g. IfcSpace) remains a challenging task. This typically requires difficult alignment 75 



4 

 

and mapping processes between two different ontologies or vocabularies, which is nearly always 76 

incomplete because their semantics simply do not overlap sufficiently well (Figure 1).   77 

 78 

Figure 1 The semantics within the regulatory documents and the BIM model do not sufficiently 79 

overlap, hence a difficult and incomplete mapping process is required to match both to a 80 
satisfactory degree. 81 

Moreover, because of this significant semantic mismatch of domains and models, a considerable 82 

mapping needs to occur, which involves plenty of interpretation of meanings and intentions. Such 83 

a mapping nearly always requires a human coder to make this interpretation and mapping step. As 84 

a result, the rule-based ACC process is a semi-automatic workflow at best, not only because of the 85 

building code that needs to be transposed into machine-readable rules, but also because the 86 

mapping of the building model with the hard-coded rules needs to be manually created.  87 

1.2. Graph-based learning as a semi-flexible solution 88 

Based on all the above, this research aims to look at alternative approaches for ACC that have the 89 

needed flexibility, yet also achieve sufficiently fine-grained and reliable results. In this search, it 90 

is necessary to adopt a holistic perspective on ACC which is concerned with the entire checking 91 

process instead of separately dealing with the regulations and the design model. In this perspective, 92 

we aim to capture and leverage expert knowledge and past experience, instead of interoperating 93 

regulations and forcing them to rigidly defined constructs (flexibility as a requirement). 94 

Specifically, we aim to implement a Machine Leaning routine for the entire checking process, in 95 

a way that allows us to represent the codes and regulations implicitly through the data set used for 96 

training, while also still having a means to trace proofs and explain ACC outcomes (explainability 97 

as a requirement). Training an ML model to classify design models as “compliant” or “not 98 

compliant” to a specific code provision, has the potential to overcome the barriers described above 99 

and thus lead to a wider range of regulations that can be checked automatically.  100 

Regulatory 
documents 
vocabulary 

Building 
design 

ontology



5 

 

 101 

Previous work that implemented a similar perspective to code checking (Bloch et al. 2019) 102 

illustrates an ML-based checking process where indeed an in-depth code analysis becomes more 103 

superfluous. However, their work also demonstrates the limited ability of ML to deal with the 104 

complex relationships between building elements. Code requirements that involve restrictions on 105 

the geometry of building elements as well as restrictions on the possible topological relationships 106 

between them are difficult to represent for the “classic” ML models (SVM, decision trees, neural 107 

networks, etc.). With the development of Graph Neural Networks (GNN), which are ML models 108 

that operate directly on graphs, we hypothesize that this data representation limitation can be 109 

overcome as well: topological relationships can be represented in graphs, and flexible as well as 110 

explainable training procedures are still available. As GNNs are a relatively new development that 111 

has rarely been used in the AEC domain, and since there are only few studies on implementing 112 

ML to the entire ACC process, an initial investigation of the feasibility and practicality of the 113 

suggested approach is needed in order to establish the application of GNNs to ACC as a viable 114 

research direction. Furthermore, its applicability in relation to rule-based ACC as well as classic 115 

ML-based ACC needs to be clarified. 116 

Therefore, this exploratory work aims to investigate the applicability of GNNs to code checking 117 

and its potential to alleviate the need for explicitly compiling rule sets. Since graphs have the 118 

expressive power to deal with the complex topologies represented in building design and 119 

regulations, we see a potential to overcome the data representation limitation previously identified 120 

during the application of "classic" ML to code checking. Nevertheless, we do not suggest to replace 121 

the existing achievements in rule-based code checking, nor any of the NLP procedures to process 122 

regulations into computable rules. 123 

There are two underlying hypotheses behind this work. First, we hypothesize that graph-based 124 

learning is applicable to problems from the ACC domain, and that it is particularly useful for 125 

dealing with regulations that address not only geometric aspects of the design but relational aspects 126 

as well. The second hypothesis is that a GNN model trained on a completely synthetic data set can 127 

produce a well performing classifier that can provide accurate checking results for real design. 128 

This work is designed to illustrate an initial proof of concept for the proposed workflow and thus 129 



6 

 

serve as the basis for further development of GNN-based ACC. In addition, we expect to begin 130 

investigating the differences between the various approaches to ACC. 131 

The rest of the paper is structured as follows: Section 2 provides background on current research 132 

and state of the art in ACC, and presents the logic behind applying graph-based learning to BIM 133 

models. The aims of this work and research methodology are described in Section 3. Section 4 134 

provides a detailed description of the proposed GNN-based workflow. This includes more details 135 

about the way in which the synthetic data is generated, what its quality is, and how this training 136 

data is labelled. Section 5 illustrates the suggested workflow on a specific problem. Discussion 137 

and conclusions are provided in Sections 6 and 7 respectively.   138 

2. BACKGROUND 139 

A visionary paper written by Eastman (1975) illustrates a future Building Description System 140 

(BDS) and its applications, one of them being automated code compliance checking. As a 141 

comprehensive generic system for Automated Code Checking (ACC) that covers the full range of 142 

regulations in the AEC industry has not been developed yet, this remains a relevant and active 143 

research area today (Amor and Dimyadi 2021). In this research area, the rule-based approach is 144 

most commonly investigated and used to build the backbone of ACC platforms. However, this 145 

approach has a number of inherent limitations. Namely, a lot of manual engineering work is needed 146 

that consists of (1) interpreting building codes, (2) writing machine-readable rules, (3) defining 147 

semantic mappings between rules and building models. This situation is explained in more detail 148 

in Section 2.1, including relevant literature references. Alternatively, supervised ML-based 149 

methods for ACC can be deployed, and those approaches have been previously demonstrated. 150 

Earlier research on such ML-based methods is documented in Section 2.2, including few examples 151 

of implemented procedures. The logic behind representing a building model as a graph is explained 152 

in section 2.3 which also explains what kinds of graphs can be made available to graph-based 153 

learning techniques, including Resource Description Framework graphs (RDF), graph data model 154 

graphs (GDM), straightforward topology graphs, and labeled property graphs (LPG). Section 2.4 155 

finally illustrates how this graph-based learning procedure works. 156 



7 

 

2.1. Automated Code Compliance Checking 157 

Amongst the earliest efforts for ACC is the development of decision tables (Fenves 1966) and 158 

mechanisms for representing design constraints so that they can later be used to determine whether 159 

those constraints are satisfied by a given design or not (Fenves and Rasdorf 1982). In 1997, Han 160 

et al. (1997) describe the use of automated design checking tools, emphasizing that the use of such 161 

tools in the industry is feasible only after the development of a standard model that provides more 162 

information than a collection of drawings. This ‘standard model’ for building data has by now 163 

been achieved, to a reasonable extent, in the form of Building Information Models (BIM) and its 164 

associated data serialization standards. BIM, together with the introduction of the Industry 165 

Foundation Classes data model (IFC) for information sharing, holds the potential to provide the 166 

required information thus enabling the automation of compliance checking (Dimyadi and Amor 167 

2013). The work of Pauwels et al. (2017) identifies three critical components in a rule-based 168 

checking system: a schema, a set of instances, and a set of rules. This is a continuation of the earlier 169 

work in Pauwels et al. (2011), where the semantic mapping between building model and regulation 170 

was suggested to happen using dedicated conversion rule sets. This is of course only possible with 171 

stable, standard and complete enough schemas, both for the building model and regulation.  172 

With IFC as an industry-wide standard, such stable schema is seemingly available (right side in 173 

Figure 1). However, even implementing open BIM standards that provide better building data 174 

sharing and collaboration opportunities (Amor and Dimyadi 2021) is not sufficient for ACC, as  175 

data quality and completeness need to be high enough. ACC processes require high quality and 176 

complete information stored in the BIM models, which is usually not achieved. A BIM model 177 

created in the design phase of a project may contain inaccurate or false information provided by 178 

the user, or may lack the information required for ACC (Borrmann et al. 2018; Preidel and 179 

Borrmann 2015). Therefore, a model that is not pre-processed before the checking can often lead 180 

to inaccurate or false checking results. Such insufficient data quality currently prevents ACC from 181 

reaching its full potential, as it leads to plenty of manual pre-processing steps and therefore 182 

insufficient scalability. 183 

Systems designed for ACC generally include four stages: interpretation of rules, pre-processing of 184 

BIM models, rule execution and reporting (Eastman et al. 2009). Reviews of previous work in the 185 

field (Amor and Dimyadi 2021; Dimyadi and Amor 2013; Eastman et al. 2009) indicate that the 186 



8 

 

first two stages (generating proper rule sets and obtaining the required representation of BIM 187 

elements) remain major challenges of the process, which aligns with what is indicated above. 188 

Translating the massive amount of written codes and regulatory documents into logical statements 189 

is considered to be one of the main barriers to comprehensive automation of ACC systems, in 190 

particular because human-written regulations are often ambiguous and require contextual 191 

knowledge and interpretation (Zhang and El-Gohary 2017). The use of Natural Language 192 

Processing (NLP) does not solve that problem. Even manually processing the human-written 193 

regulations into machine-readable code seldom deals with such ambiguities, except for simply 194 

making an approximation of the original building code text with a lot of implicit assumptions. In 195 

this paper, we suggest a radically different and holistic way of addressing ACC by applying ML 196 

methods that leverage experts’ knowledge and previous experience instead of compiling 197 

regulations as rules.  198 

 199 

2.2. ML-based approaches for ACC 200 

Previous research suggests that using a Machine Learning (ML) approach instead of relying on 201 

hard -coded rules for code checking might lead to a greater degree of automation in the process. 202 

In addition to eliminating the need to compile rule sets, it is assumed that ML models for code 203 

checking can be implemented even if some information remains in an implicit form(Sacks et al. 204 

2019). An experiment described in (Bloch et al. 2018) is focused on code provisions that restrict 205 

the geometrical features of security rooms like minimal wall thicknesses, window size and location 206 

etc. This experiment illustrates a checking routine that does not require rule compilation. The data 207 

set for the experiment was synthesized through a random number generator that populates 11 208 

parameters with values within reasonable ranges. The result of this process is 10,000 models of 209 

security rooms that were evaluated based on the relevant code and labelled ‘pass’ or ‘fail’ 210 

accordingly. A binary classifier was trained using the created data set as input, which resulted in 211 

99.8% precision and 100% recall on the validation set (subset of the 10,000 models). This indicates 212 

that the machine learning approach holds great promise as a solution for code-compliance checking 213 

and that there is much value in continuing to explore the capabilities of ML for code-compliance 214 

checking.  215 



9 

 

The major benefit of the ML approach is that the regulations are implicitly represented within the 216 

computer readable representation of the design. As the features selected for representing each 217 

building element in the data set are chosen based on key values from the codes, they are an implicit 218 

expression of the regulations themselves. For example, a code requirement for a minimal space 219 

area can be represented by a binary feature indicating if the space is greater or smaller from the 220 

value stated in the code. Most importantly, the labels that are assigned to each instance in the data 221 

set are also an expression of the regulations. Given a data set that consists of previously checked 222 

design, the labels actually express the experts’ interpretation and understanding of the regulations. 223 

In other words, training a ML model to distinguish between design that is compliant to a specific 224 

code and design that is not compliant, is possible without compiling rule sets.  225 

Exploring the range of required preprocessing of BIM models by semantic enrichment to enable 226 

ACC, the work of  (Bloch et al. 2019) is focused on a single code requirement for security rooms 227 

to be stacked one on top of the other in such a way that at least 70% of any given security room’s 228 

walls are continuously supported through the height of the building and reach the structural 229 

foundations (Home Front Command 2010). The code requirement at hand involves information 230 

about the topological relationships between various building elements, as do many regulatory 231 

requirements. This points to one of the major limitations of using ML with building data. 232 

Relationships between entities are difficult to represent for ML learning algorithms as they require 233 

rigidly structured data for learning.  For example, a description of the most primitive functional 234 

building element, a space, in a fixed rigid structure is not straightforward. Spaces can be defined 235 

by any number of walls. However, in some cases, not all space boundaries are defined by physical 236 

walls at all but by some virtual boundary lines. A single space has relationships to all elements that 237 

define the space but also to other spaces next to it, above and below it. Much like in the security 238 

rooms experiment, we cannot pre-define a single data structure that is able to express information 239 

about all spaces in a model. To learn from building data, we must apply learning algorithms to a 240 

more flexible data representation. 241 

2.3. The building as a graph 242 

A building model describes a complex physical system composed of large amounts of instances 243 

that are related to each other by different types of topological or functional relationships. This type 244 



10 

 

of geometric data is irregular and randomly distributed, making it difficult to identify patterns and 245 

fixed structures. A graph representation can support different information structures providing 246 

flexible representations of attributes for every instance. Graphs are extremely useful for describing 247 

physical systems by representing objects as nodes and relationships as edges (Zhou et al. 2018).  248 

It has been previously demonstrated that graphs are a suitable way for describing information 249 

represented by BIM models, including representation of complex geometries and relationships 250 

(Gan 2022; Ismail et al. 2017, 2018; Pauwels and Terkaj 2016; Skandhakumar et al. 2016; Zhi et 251 

al. 2003). Information stored in a BIM model can be captured in various types of graphs, thus it is 252 

important to obtain the representation most suitable for the problem at hand. In fact, the IFC data 253 

model, with its plethora of interconnections and inverse relationships in the EXPRESS information 254 

modelling language can easily be expressed as or understood as a graph. The RDF graph (Pauwels 255 

and Terkaj 2016) is a more common example of a graph structure able to capture BIM data. While 256 

the RDF graph data model enables representation of any data in a web-based graph, ACC does 257 

need standardization and stability in those data models. Therefore, several OWL ontologies were 258 

developed for describing the concepts of a building, such as the Building Topology Ontology 259 

(BOT) (Rasmussen et al. 2021), BRICK (Balaji et al. 2016), Real Estate Core (Erikoskarwallin et 260 

al. 2019), etc. For rule-based ACC to work and potentially scale, it is critical that these vocabularies 261 

are stable and reliable. 262 

Another example of a graph representation is the graph data model (GDM) developed in (Khalili 263 

and Chua 2015), which is a semantically enhanced, 3D topological data model, that represents the 264 

topological relationships among 3D objects in buildings. Their method exploits the IFC geometric 265 

and topological representation of building elements and transforms the relationships between the 266 

elements to the node-edge structure of the graph. The semantic information is then added as 267 

weights to nodes and edges. Many other proposals for representing BIM models as graphs exist, 268 

several of which consider the use of the simpler and more comprehensive labelled property graphs 269 

(LPGs, e.g. Neo4J – see (Donkers et al. 2021) for a comparison). 270 

While the above examples show the merit of a semantic graph, several other graph types exist as 271 

well, the most important one being here the topology graph. In fact, graph theory is a widely used 272 

approach for indoor and outdoor navigation applications. Spaces and the connections between 273 



11 

 

them are the core elements needed for path finding and can easily be translated from a BIM model 274 

to nodes and edges in a graph (de Koning et al. 2021; Skandhakumar et al. 2016). To obtain the 275 

graph representation, the IFC file is parsed (XML, JSON, SPF format) to identify all spatial 276 

elements (rooms) and all the portals or interfaces between them (like doors) so they can later be 277 

translated to nodes and edges in a graph. Then, the relevant attributes are associated with the nodes 278 

and edges based on each element’s property set. In the work of Skandhakumar et al. (2016), several 279 

applications of BIM graphs were mathematically defined. One of the presented algorithms is the 280 

“path finding” algorithm. In De Koning et al. (2021), the above approach was used to generate a 281 

BOT-based topology graph that can then be queried using the A* algorithm for robot path-finding 282 

within a building. 283 

Jin et al. (2018) exploit the fact that building spaces interact with each other according to their 284 

function. Thus, feature extraction is based on the relationship between spaces, specifically 285 

accessibility and adjacency. In this work, two separate graph representations are constructed; one 286 

is the accessibility graph which represents all the spaces one can access from every space in the 287 

model. The other is the adjacency graph that takes into account only direct neighbors of every 288 

space. In both dimensions the nodes of the graph represent the spaces and their properties are 289 

propagated through the edges. The properties assigned to the edges are space area, space 290 

circumference, space height and floor level. In addition to those simple features, some complex 291 

features are calculated that represent the number of boundaries between the spaces. Through an 292 

experiment, they explored the typical spatial functions in an office building.  293 

A graph representation of a building model was used by (Ismail et al. 2018) as a basis for querying 294 

the model to find the escape routes from a building. An IFC file was converted to a LPG database 295 

(Neo4J) by using an automatic workflow as suggested in Ismail et al. (2017). The graph does not 296 

contain information about the geometry of the objects, but it does represent the spatial relationship 297 

of a space to other objects in the model. The graph consists of connected entities (nodes) that can 298 

hold any number of attributes, and the edges convey the type of relationship between the nodes. 299 

In a labelled property graph (LPG) dataset, the edges have a direction, meaning that there is a start 300 

node and an end node, and they can also hold any number of attributes. In this work, nodes 301 

represent spaces, and the edges convey the relations between them, in terms of accessibility and 302 

adjacency, which is similar to the above outlined examples that rely on other graph technologies. 303 



12 

 

Using this approach, it is possible(Ismail et al. 2017) to query the graph database to retrieve the 304 

emergency escape routes for a two-storey office building (Ismail et al. 2017). 305 

2.4. Graph-based learning 306 

Graph-based learning is one way of dealing with data that cannot appropriately be structured in a 307 

tabular or hierarchical form (Bronstein et al. 2017), such as the data in the BIM domain. This type 308 

of learning is highly specific to the structure of graphs, and gains its merit primarily by finding 309 

specific patterns in graphs and using these for computations, either statistically (e.g. ML-oriented 310 

graph-based learning) or semantically (e.g. rule and query languages). The use of the latter 311 

(semantics-based) is documented in Section 2.3, and in this section and the remainder of this paper, 312 

we will instead focus on the first type of graph-based learning: statistical graph-based learning 313 

(ML-based).  314 

The basic goal of graph-based learning is to learn a vectorized representation of every node (node 315 

embedding) that encapsulates the attribute-based information available for nodes and edges, 316 

combined with topological information represented in the graph. In other words, this vectorized 317 

representation embeds all spatially relevant data for each node separately into multiple node 318 

vectors (right in Figure 2). So nodes are encoded as vectors that reflect their position in the graph 319 

and the structure of their local graph neighborhood (Hamilton et al. 2017). This approach relies on 320 

a function that maps a graph G to a d-dimensional space. Given a graph with m nodes, this results 321 

in a 𝑅𝑚𝑥𝑑 matrix, where each row is the embedding of the node (Figure 2).  322 



13 

 

 323 

Figure 2 Mapping the input graph to d dimensional embedding space 324 

To learn the mappings, these approaches operate directly on the graph by sampling a fixed size 325 

neighborhood for each node. The neighborhood graph consists of the node’s neighbors up until k 326 

hops away from the node (denoting the number of GNN layers). The basic idea of Graph Neural 327 

Networks is that we use the computational graph for every node to propagate the information from 328 

all its neighboring nodes across all the graph layers and compute a node embedding. Propagating 329 

the information across all layers in a neighborhood graph is a process that is referred to as message 330 

passing, which yields new vectorized node representations that should preserve information about 331 

the graph’s topology (Wu et al. 2020). This approach is useful for tasks such as node classification, 332 

graph classification or link prediction(Wu et al. 2020). 333 

Different GNN architectures are defined, amongst others, by different aggregation operators for 334 

propagating messages from all neighboring nodes in a single layer. Figure 3 illustrates an input 335 

graph and the single-layer neighborhood graph for node A. In this example, the attribute 336 

information from all three neighbors is transformed and aggregated into a single message to pass 337 

it to the target node A. The aggregator and transformation operators are parametrized and passed 338 

through a small neural network to introduce non-linearity.  339 



14 

 

 340 

Figure 3 Representation of the local neighborhood of node A and the message passing process in 341 
that local neighborhood. Corresponds to a single layer in a Graph Neural Network 342 

Averaging the neighbor messages is the most basic aggregation approach as illustrated in the set 343 

of equations below. Given a vector of features assigned to node A, denoted as 𝑥𝐴 , the initial 344 

embedding of node A in the layer k=0 is simply the vector of feature assigned to that node ℎ𝐴
0 =345 

𝑥𝐴. In every subsequent layer, the following process is performed (Eq. 1 based on (Hamilton 346 

2020)): (1) compute the messages from the neighboring nodes by sending them through a linear 347 

transformation (𝑊𝑘); (2) aggregate the messages across all the neighbors by averaging the 348 

neighbor’s previous layer embeddings  
ℎ𝑢

(𝑘)

|𝑁(𝐴)|
; (3) add the computed messages to the embedding of 349 

node A in the previous layer with a bias 𝐵𝑘. This is then sent through a neural network to introduce 350 

non-linearity (𝜎). The final embedding of node A after 𝐾 layers is given by Eq. 2. The goal is to 351 

use these embeddings to learn the best weight matrices 𝑊𝑘 and 𝐵𝑘 which are the trainable 352 

parameters in a GNN. The fact that these parameters are shared across all nodes makes it possible 353 

to generalize to unseen nodes, thus enabling classifications of new instances. 354 

 355 

1. ℎ𝐴
(𝑘+1)

= 𝜎 (𝑊𝑘 ∑
ℎ𝑢

(𝑘)

|𝑁(𝐴)|
+ 𝐵𝑘ℎ𝐴

(𝑘)
) 356 

2. 𝑍𝐴 = ℎ𝐴
(𝐾)

 357 

The aggregation operator can be any order-invariant operator like mean or sum. In Graph 358 

Convolutional Networks (GCN) for example (Kipf and Welling 2016), an element-wise mean 359 

operation is performed in the aggregation stage. As illustrated in Eq. 2, all the messages from the 360 



15 

 

neighboring nodes are normalized by the degree of the target node, namely all messages are equally 361 

important. By contrast, in the Graph Attention Network (GAT), the normalization factor is learned 362 

for every neighbor separately. GAT (Veličković et al. 2017) introduces the attention mechanism 363 

which assumes that not all messages are equally important. The attention mechanism is popular 364 

for sequence-based tasks, such as learning sentence representations (Lin et al. 2017), since it 365 

identifies the most relevant parts of the inputs to make decisions. When the attention mechanism 366 

is applied for graph learning, an attention coefficient αij is computed for every pair of connected 367 

nodes. This coefficient is an indication of the importance of every node's features for the message 368 

passed to the target node i. The attention coefficient is used at the transformation stage of the 369 

message passing (see Figure 3). Considering several neighbors for a target node, the coefficient is 370 

normalized across all the neighbors.    371 

In general, different GNN architectures have been suggested and demonstrated for various 372 

applications (Zhou et al. 2020), and the expressive power of different GNNs has been explored 373 

(Xu et al. 2018). Recently, GNNs were applied for point cloud data processing by performing node 374 

classification on induced graph structures (Collins 2020). In addition to node classification, GNNs 375 

can be applied for graph classification problems, link prediction etc. For example, graphs can be 376 

used to predict molecular properties, classify diseases, predict drug side effects, perform text or 377 

image classification etc. (Zhou et al. 2018). In the construction domain, node classification with 378 

GNN algorithms was performed for room type classification in residential buildings (Wang et al. 379 

2022). 380 

2.5. Summary 381 

Based on the above, we believe that GNNs are applicable to ACC, and in particular algorithms for 382 

graph classification and node classification (e.g. GCNs, GATs) can be powerful tools for 383 

classifying elements in BIM models. Given recent developments in the field of graph data science 384 

and graph learning (Cao et al. 2020), we conclude that the representation of building information 385 

as a graph (Section 2.3) can contribute to the development of an automated process for design 386 

review. While RDF graphs may be deployed for this purpose as well, the remainder of this article 387 

will primarily consider the use of labelled property graphs (LPGs), which are more compact and 388 



16 

 

more closely aligned to available ML techniques (e.g. representation of object properties using 389 

feature vectors). 390 

3. AIMS AND METHODOLOGY 391 

This research suggests shifting the focus from the individual challenges that hinder further 392 

developments of the ACC process to the overall approach applied for automated code checking. 393 

We propose a novel workflow for automated code checking illustrated in Figure 4, supported by 394 

the application of graph-based ML techniques as an alternative to the commonly used hard-coded 395 

rules. We hypothesize that graph-based learning techniques are applicable as the checking 396 

mechanisms for problems from the ACC domain. We assume that it is possible to train a GNN 397 

model by a large number of positive/negative examples such that it is capable to correctly classify 398 

an unknown building design into pass / fail results regarding the building code investigated.  399 

3.1. Aims and Research Scope 400 

The major difference between the suggested approach and classic ACC, is that we are not 401 

concerned with translating the regulations to a computer-readable format.  In fact, the LPG 402 

represents both the design and the regulations using the same data structure (implicitly, represented 403 

by the provided labels). As a result, we no longer need to look for the overlap between the 404 

regulatory document’s vocabulary and the building design ontology (as depicted in Figure 1), 405 

since the regulations are embedded within the graph representation of the buildings. Using a graph 406 

representation of the building information as input for a learning model presents an opportunity to 407 

leverage the benefits of applying ML for code checking (as explained in section 2.2), while 408 

overcoming the major limitation of addressing regulations that are concerned with the relationships 409 

between the building elements represented in the design. To validate our approach, we aim to show 410 

that (1) we have a sufficient amount of data available of sufficient quality, and (2) the GNN 411 

algorithms lead to sufficiently reliable results in a scalable manner. 412 

Data availability: Representation of a BIM model as a training set for a machine learning 413 

algorithm is a difficult task. Recent developments in graph data science and the possibility to 414 

perform learning directly on graph-based data provides an opportunity to overcome the existing 415 

problems in the ACC process. In our work, we therefore indicate how such graph-based data can 416 

be made available sufficiently abundantly. 417 



17 

 

Applicability and scalability of GNN algorithms: Since GNNs have not been applied for ACC 418 

before, there is no pre-existing knowledge on this subject. Hence, we suggest revisiting the well-419 

established pipeline for ACC and explore a GNN-based workflow, based on the recommended 420 

practice that is documented already to some extent in Section 2.4. The scope of this paper is limited 421 

to an initial feasibility check for a small-scale problem in the domain that expresses regulations 422 

that address geometric and topological aspects of the design. Through this small-scale problem, 423 

we aim to demonstrate the initial feasibility and explore the performance of a novel GNN-based 424 

procedure for ACC. 425 

3.2. Methodology 426 

Graph-based learning, as any supervised ML algorithm, is reliant on a large data set of examples 427 

for training. In this case, the input for the ML algorithm is a set of models represented as graphs, 428 

where every BIM object is labeled as compliant or not compliant with a specific code requirement 429 

(“pass” or “fail”). Since a large set of labeled models is not available, we propose to implement 430 

the training stage on a synthetic data set and explore its applicability to make predictions on real 431 

BIM models. The underlying hypothesis in this work is therefore that a GNN trained and validated 432 

on a synthetic data set can be used for classification of models obtained from the industry. To 433 

confirm this assumption, we must first generate a synthetic training set, test the performance of 434 

trained GNNs for compliance checking, and validate the results using design documents obtained 435 

from the industry.  436 

 437 



18 

 

 438 

Figure 4 Suggested GNN-based workflow for ACC 439 

 440 

To achieve the set goal, we follow the 4-step procedure illustrated in Figure 5.  We begin by 441 

selecting a code provision to define a test case for application of GNN. There are two main criteria 442 

to selecting the test case for demonstrating the applicability of GNNs to ACC:  443 

a) The chosen test case should involve both geometric aspects as well as topological aspects 444 

represented in the code requirements. We assume that GNNs will not be beneficial for 445 

checking simple prescriptive clauses that involve only geometric restrictions, and that the 446 

strength of GNNs is in checking clauses that combine topological and geometric 447 

requirements. 448 

b) To ensure that we are able to generate and label a large data set, we aim to find a test case 449 

for which the data set can be automatically labeled using other procedures.  450 

We therefore choose a test case based on the requirements in the American National Standard for 451 

Accessible and Usable Buildings and Facilities  (International Code Council and American 452 

National Standards Institute 2010).  We define a small problem from the domain of accessibility 453 

requirements that is the basis for generation and labeling of a data set for training using an initial 454 

graph structure. Since we aim to represent BIM models as graphs, we do not generate the 3D 455 

geometry, but instead directly a data set of graphs. A detailed description of the test case, data 456 

generation and labeling process is provided in the next section of this paper. In short, data is 457 

generated (step 1 in Figure 5) by creating LPG graphs from scratch, instead of relying on input 458 

BIM models and extracting the graph representation from them. Labelling of these graphs (Step 2 459 



19 

 

of Figure 5) is performed using the procedure explained in Section 4.3., namely the creation of 460 

feature vectors for the individual nodes of the graph combined with path finding algorithms. It is 461 

important to note that the chosen test case is not designed to examine the performance of GNNs in 462 

comparison with the existing methods. This would be meaningful only after proving that GNNs 463 

are even a feasible solution to problems from the code checking domain, which is the main goal 464 

of this work. Thus, we purposely choose a test case where an automated solution for checking is 465 

available so that it can be used for labeling of a large synthetic data set. A demonstration of the 466 

suggested workflow for this simple problem with satisfactory results will be the foundation for 467 

further implementation of the same workflow for regulations that cannot be checked by other 468 

means, which will require manual checking and labeling of a data set by experts. 469 

Once the data is labeled, we develop a GNN model architecture using the StellarGraph machine 470 

learning library for graphs and networks (Data61 2018), which is trained, validated and tested 471 

using the synthetic data set generated in the previous stage (Step 3 in our 4-step procedure). The 472 

accuracy of classification results on the test set (which at this point is a portion of the generated 473 

data set) are an indication of the overall initial feasibility of applying GNN to ACC. The fourth 474 

and last stage of the workflow as illustrated in the lower part of Figure 5 consists of checking the 475 

ability of a GNN trained on the synthetic data set to classify real BIM models. To do so, we present 476 

the classification results of three building designs obtained from local Israeli architecture firms. A 477 

more detailed performance evaluation of the obtained classifier on “real-world” data is the subject 478 

of ongoing work and will be reported at a later time. As explained above, this paper is focused on 479 

a demonstration and feasibility proof of the proposed ACC workflow. Hence, revision of the initial 480 

graph structure and the chosen GNN algorithm and architecture is outside the scope of this work.  481 



20 

 

 482 

Figure 5 Research method 483 



21 

 

4. DATA GENERATION AND LABELING 484 

As a first case study, this paper focuses on the geometric requirements for accessible spaces as 485 

defined in the American National Standard for Accessible and Usable Buildings and Facilities  486 

(International Code Council and American National Standards Institute 2010). As stated in the 487 

previous section, we aim to explore the applicability of GNNs to problems from the ACC domain.  488 

We do that by defining a small-scale problem of accessibility requirements check in single-family 489 

houses. In the sense of a feasibility study, we hypothesize that if the small-scale problem is 490 

adequately handled, we see the fundamental chance to successfully apply the GNN-approach also 491 

to large-scale problems. We demonstrate the ability to train a GNN model for code checking based 492 

on a synthetically generated data set. This section provides a detailed description of the process 493 

for generating a synthetic, labeled, training set that consists of graph representations of single-494 

family houses. 495 

4.1. Challenges in generating synthetic data 496 

Obtaining a large enough set of building models of a specific type (in this case residential houses), 497 

is a difficult task. In addition to the fact that not all design and construction companies adopt BIM 498 

technology, those who do are rarely willing to make their models public. As GNNs are applied 499 

directly to graphs, collecting simple drawings will not be sufficient as they would have to be 500 

manually translated to their corresponding graph representation. A BIM model on the other hand, 501 

is a structured database where every represented building element is assigned with a set of 502 

attributes. These can be automatically extracted from BIM software, for example by using 503 

computational design tools such as Dynamo (“Dynamo” 2022)or plain C# (e.g. Revit plug-in), and 504 

arranged in the form of a graph.  505 

Since a suitable set of models is not available to the authors, we suggest an approach for creating 506 

directly the graph representation of buildings. The line of thought is similar to that of generative 507 

design, except we define parameters that allow us to generate graphs and not 3D geometry. This 508 

will also allow us to generate a much bigger dataset, which is needed for a reliable GNN method. 509 

That is, we generate a list of elements and assign each element with a list of attributes. Each entity 510 

in the list represents a building element. Labeled property graphs consist of a set of nodes and 511 

edges, the labels usually represent the node types. In this case, the list of elements translates to 512 



22 

 

graph nodes. For the edges, we generate a list of connections that represents the topological 513 

relationships between the elements. In this case, since we are concerned with accessibility 514 

requirements, the only type of relationship represented by the edges is the ability to access one 515 

element from another. The labels would be the result of compliance checking, in the most general 516 

case that is a “pass” or “fail” for every node. A detailed description of the procedure to label the 517 

generated graphs is presented in Section 4.3 of this paper. 518 

The main challenge of the presented approach is that the resulting graphs cannot be arbitrary and 519 

must represent feasible buildings since the end goal is to be able to check the compliance of real 520 

buildings to specific code requirements. Hence, in order to maintain topological integrity, we 521 

randomly modify the geometry of real, publicly available, floor plans while keeping the topology 522 

of every floor plan unchanged. The modifications are also restricted to a certain range to maintain 523 

feasible geometry of different building elements and avoid contradictions, as explained further in 524 

this section. The procedure of generating a single variation of one basic floor plan is illustrated in 525 

Figure 6. 526 

Theoretically all building elements can be represented as nodes in a property graph and the 527 

relationship between the elements can be represented as edges (Ismail et al. 2018). However, this 528 

would result in a complex graph with a large number of nodes and edges. Since every building 529 

element has various types of relationships to multiple other building elements, the nodes in the 530 

graph would have a high degree, making the neighborhood graph of every node large and complex 531 

and the GNN computationally expensive. Also, since we limit this work to a small-scale problem, 532 

many of the entities are irrelevant as they do not carry relevant information for the code provision 533 

we focus on. Hence, we focus here on the elements and the corresponding graphs that are relevant 534 

to the learning problem at hand. In the case of a building accessibility check, these are mainly 535 

spaces, doors or doorways, stairs and ramps. As described in Table 1, each element in the list is 536 

defined by two parameters that reflect some geometric restrictions (restrictions on the sizing of the 537 

elements) specified in the code.  538 

For this initial feasibility test, we focus on simple requirements such as the minimum width of 539 

doors (as defined in section 404 of the code), corridors, ramps and ramps slope (as defined in 540 

section 405 of the code).  Hence, for spaces we consider the minimal width of the space and we 541 



23 

 

differentiate between two main space types, one that requires an available turning space (such as 542 

bedrooms and bathrooms and other functional areas) and another that defines the circulation path 543 

and requires a minimal width (such as a corridor). For doors we also consider the door width, and 544 

differentiate between door types like hinged doors, sliding doors and doorways. For stairs we 545 

consider the width and the number of stairs to get a complete representation of the building. Since 546 

only the existence of stairs influences accessibility to the adjacent spaces, these geometric 547 

parameters are meaningless for checking accessibility in the given design. They were used merely 548 

as “place holders” in the data generation stage, for keeping a uniform data structure for all 549 

elements, but they were not introduced to the GNN model (see section 4.2). At this point, other 550 

permitted changes in level (such as thresholds) are not considered. Ramps are restricted both in 551 

the minimal required width and in the range of ramp slope. Note that the variations are applied to 552 

Parameter 1 for all node types, whereas the only value we change in Parameter 2 is the slope of 553 

the ramps. 554 

Since this is an initial feasibility check, we examine the code requirements with several 555 

simplifications to ease the data preparation stage. We do not check for available turning spaces in 556 

rooms, but instead require that the narrowest part of any room is at least as wide as the required 557 

turning space. Explicitly checking for available free turning spaces requires information about 558 

fixtures and furniture which are currently not represented in the explored graph structure.  559 

 560 



24 

 

 561 

Figure 6 The procedure for generating a single variation of a basic floor plan. 562 

 563 

 564 

 565 



25 

 

Table 1 Parameters defined for every building element described in the graph 566 

Symbol Node type 

 

Parameter 1 Parameter 2 

  Space 0 Min Width Class 

  Door 1 Clear Width Type 

  Stairs 2 Width Num. of stairs 

  Ramp 3 Width Slope % 

  567 

As stated before, we aim to obtain graph representations of feasible buildings to serve as the 568 

"ground truth" data for training, hence the variations for the geometry of every element are 569 

restricted to values from a predefined range. For example, the parameter that represents the slope 570 

of a ramp is a random value within the range 3-12%. The parameter that represents the width of 571 

functional spaces that are of the class ‘corridor’ is a random value within the range 80-110 cm. 572 

The width values of other functional spaces are not fixed to a specific range, the exact range of 573 

values is determined based on the examination of every individual basic floor plan to ensure that 574 

the variations will not cause any contradictions in topology. In general, the goal is to define a range 575 

of feasible values for the parameters for every type of element. It is unlikely for example for 576 

corridors to be 60 cm wide or less. On the other hand, the range has been defined so that it contains 577 

some values that do not satisfy the accessibility code requirements and some that do. This will lead 578 

to a training set ("ground truth" cases) with both examples of elements labeled “pass”, and 579 

elements that do not satisfy code requirements that would be labeled “fail”.  580 

To sum up, we aim to create a synthetic "ground truth" data set for training the ML model. During 581 

this process we define a specific graph structure to represent this "ground truth" (at the training 582 

stage), and the exact same structure needs to be kept when extracting data from BIM models to be 583 

classified (at the prediction stage). This means that some processing of the BIM models still needs 584 

to happen during the prediction stage in order to retrieve the same representation of building 585 

 1 

1 

  1 

1 



26 

 

information as used for training. Investigating the extent of required processing of the BIM models 586 

to be checked is outside the scope of this work. 587 

 588 

4.2. Graph representation and features extraction 589 

The lists of elements and lists of connections are transformed into undirected, unweighted graphs, 590 

and used as the training set for GNN. The quality of the generated graphs will be evaluated by the 591 

results of training and later by the ability of the trained GNN to make predictions on real design. 592 

Therefore, as stated before, although we do not directly generate 3D geometry, we aim to generate 593 

graph representations of feasible buildings.  To ensure that, data generation begins with a random 594 

collection of floor plans from the publicly available floor plans on the internet. For this work, we 595 

collect 10 floor plans of single-family houses. Each basic floor plan is modified 100 times, which 596 

results in 100 graphs with the same topology but different geometry. Namely, the 100 graphs are 597 

represented by the same list of connections, but different parameters are assigned to every node. 598 

Overall, the obtained data set contains 1,000 graphs, each representing a single residential house.  599 

We then further process the parameters to define feature vectors for every node. All parameters 600 

created in the element list are transformed to numeric features by mapping the categories to 601 

numeric values using predefined unique values in accordance with key values from the 602 

accessibility code. For example, the "space" feature is populated with value 1 for every element 603 

that represents a space in the building and 0 for other element types. Instead of using the specific 604 

dimensions of spaces, we extract the key values from the code requirements and use them as 605 

categorical features. For example, corridors are required to be at least 91.5 cm wide to be 606 

accessible. Hence the value of the corresponding feature is set to 1 if the width of the element is 607 

greater than 91.5 cm, and 0 otherwise. This results in a feature vector of length nine assigned to 608 

every node. The final list of features contains the categorical values described in Table 2 below. 609 

 610 

Table 2 List of features and their possible values 611 

# Feature Possible values 



27 

 

1 Space 
1- If the element is a space 

0- For all other elements 

2 Door 
1- If the element is a door 

0- For all other elements 

3 Stairs 
1- If the element is a stair 

0- For all other elements 

4 Ramp 
1- If the element is a ramp 

0- For all other elements 

5 Is width greater than 170 
1- If the width of the element is greater than 170 cm 

0- Otherwise 

6 Is width greater than 91.5 
0- If the width of the element is greater than 91.5 cm 

1- Otherwise 

7 Is width greater than 81.5 
0- If the width of the element is greater than 81.5 cm 

1- Otherwise 

8 Accessible route 
1- If the element is a space that is part of the circulation 

path (such as a corridor)  

0- For all other elements 

9 Slope 
1- If the element is a ramp and its slope is within the 

range of 5-8.3% 

0- Otherwise 

An example of a basic floor plan and a single variation of that floor plan is illustrated in Figure 6. 612 

The corresponding graph for the basic floor plan is represented in Figure 7 (a) and the variation is 613 

represented in Figure 7 (b). Note that the topology of both floor plans is the same.  However, in 614 

every variation the set of feature vectors assigned to each node is different. As illustrated in Figure 615 

7, slight differences in the features may also affect the true labels of each node. We can see for 616 

example that the change in the dimensions of space 8 changed the true label of the node from “not 617 

compliant” to “compliant but not accessible”. The meaning of the given node labels is explained 618 

in detail in the following section. 619 



28 

 

 620 

(a)                                                                                    (b) 621 

Figure 7 Graph representation of a basic floor plan and a single variation of that floor plan (a) 622 
represents the topology and the node features of the original base floor plan, (b) represents the 623 

topology and the node features of a floor plan variation 624 

 625 

4.3. Labeling the data  626 

The "ground truth" labels for the created data are the targets for the ML model. Developing this 627 

labeled "ground truth" dataset often requires manual labeling by experts. Through these labels we 628 

are able to leverage the knowledge of human experts in the field without trying to hard code it. 629 

Graph-based learning provides algorithms for graph classification as well as node classification. 630 



29 

 

Since the goal here is to check compliance of residential houses to the requirements of the 631 

accessibility code, both algorithms may be useful. However, graph classification will provide only 632 

a broad indication of a problem without specifying what the problem is or where it occurs. That 633 

is, if the graph is classified as “pass” that means that the entire house corresponds to the code 634 

requirements making it accessible. However, if the graph is classified as “fail”, we know that at 635 

least one space in the house is not accessible, but we have no indication which space and what 636 

design requirement are not satisfied. Therefore, the chosen approach in this case is node 637 

classification. 638 

Since the graph structure includes nodes that represent spaces, doors, stairs and ramps, each of 639 

those elements will be classified as compliant or not compliant to the code. Hence, we will have 640 

an indication of where the problem occurs. To also receive an indication of what the problem is, 641 

we extend the problem to a multi-class classification problem where the possible labels are:  642 

a) compliant and accessible – for elements that satisfy the geometric requirements of the 643 

accessibility code and can be reached through a path that consists of other compliant 644 

elements.  645 

b) compliant but not accessible – for elements that satisfy the geometric requirements of 646 

the accessibility code but cannot be reached through a path that consists of other compliant 647 

elements. 648 

c) not compliant – for elements that do not satisfy the geometric requirements of the 649 

accessibility code. 650 

The possible labels indicate that the labeling process needs to be performed in two stages. First, 651 

we must check all individual elements’ compliance against the geometric requirements from the 652 

accessibility code. This includes simple geometric requirements such as the minimum width of a 653 

door, minimum width of a corridor, restricted range of ramp slope, etc. This stage is performed 654 

with a set of IF – THEN statements. Once all the individual elements are classified and assigned 655 

with a temporary "pass" or "fail" label, we search for all possible paths from the entrance to the 656 

house to every space to determine if it is accessible. For example, to determine the final label of 657 

the bedroom on the South East corner of the floor plan presented in Figure 6, it is not enough to 658 



30 

 

check if the space itself is compliant with the geometric requirements from the code; we must also 659 

check the compliance of all the elements that generate a path to that space. To access this bedroom, 660 

we must enter the house (element 14), go through the foyer (element 1), then another door (element 661 

16) to the corridor (element 6), through another door (element 17) and finally to the bedroom 662 

(element 3). In this case the only possible path from the source (entrance to the house), to the target 663 

is as follows: 14,1,16,6,17,3.  To determine the final label of element 3 we look at the initial labels 664 

assigned to every element in the path. If the initial label assigned to the target node (space 3 in this 665 

case) is “fail”, then the final label of node 3 would be “not compliant”.  Otherwise, we look at the 666 

rest of the elements in the path. If all of them are initially assigned with a “pass” label, then node 667 

3 would be “compliant and accessible”. If any of the element in the path are assigned with an initial 668 

“fail”, then node 3 would be labeled “compliant but not accessible”. 669 

The second stage of labeling is entirely based on the topology of the floor plan. This emphasizes 670 

the weakness of “classic” ML learning algorithms and the strength of graph-based algorithms. ML 671 

algorithms are limited in expressing the topological relationships between entities; a GNN is 672 

expected to overcome this limitation.  673 

5. EXPERIMENT AND RESULTS 674 

The small scale problem designed for proof of concept of a GNN-based code checking consists of 675 

checking several design requirements presented in the accessibility code (International Code 676 

Council and American National Standards Institute 2010). The test case is focused on checking 677 

single family residential houses for compliance with the basic geometric requirements, such as 678 

minimum width, defined for an accessible space. We also consider the existence of accessible 679 

paths in individual buildings. We use the synthetic data set described in the previous section to 680 

train, validate and test a GNN model.  681 

Specifically, a Graph Attention Network (GAT) model was trained in a full batch mode containing 682 

28,400 nodes and 27,900 edges, as illustrated in Figure 8 which consists of 1,000 unconnected 683 

subgraphs, each representing a single-family house. The data is randomly split to three parts: 684 

training, validation and testing. In this experiment, 60% of the data was used as a training set, the 685 

remaining data was split to 30% as the validation set and the remaining 10% were used for testing. 686 

Training and validation sets are iteratively used to optimize the model’s hyper-parameters. The 687 



31 

 

test set (a portion of the synthetic data) is kept out until the model is finalized and used to check 688 

the final performance of the model. 689 

 690 

Figure 8 Graph generation of the synthetic data set as an undirected graph with 28,400 nodes 691 

and 27,900 edges  692 

When dealing with accessibility requirements, the geometric representation of the spaces, doors 693 

and ramps is as significant for compliance checking as the topology of the building. Namely, when 694 

propagating the messages to a target node, we need to keep in mind that if a neighboring node is 695 

not accessible based on the geometric features assigned to it (such as width, slope, etc.), it might 696 

directly influence the target node making it not accessible even if the target node is compliant to 697 

the basic geometric requirements. We assume that the GAT model has the expressive ability in 698 

terms of propagating node features, therefore we implement a GAT model for node classification 699 

and compare the models' performance to the performance of the basic GCN model. Based on the 700 

work of (Veličković et al. 2017), it is beneficial to extend the attention mechanism and employ a 701 

multi-head attention mechanism for every node. Namely, the attention mechanism is performed 702 

several times for every pair of nodes. To obtain the new feature representation of the target node 703 

all the attention coefficients can be averaged. 704 

The final GNN model architecture consists of four layers and 5 attention heads implemented in 705 

each layer. The rectified linear function (Relu) was used as the activation function for all hidden 706 

layers. Learning rate was set to 0.01 and the dropout value to 0.1. The training was performed in 707 

300 epochs and took 12.58 minutes on a personal computer with Intel(R) Core(TM) i7-4790 CPU 708 

(3.60GHz) and 8.00 GB RAM. 709 



32 

 

Accuracy of predictions made on the test set while using the best trained model was 0.868, namely 710 

86.8% of the nodes were classified correctly. Nevertheless, the accuracy score is not always a good 711 

indication of the predictive power of a GNN model. In particular, when the training set is not well 712 

balanced, high accuracy scores may be obtained for poor quality classifiers. One of the limitations 713 

of the generated data set is that it is not balanced. Table 3 presents the label counts for the overall 714 

synthetic data set.  715 

 716 

Table 3 Label count for the overall synthetic data set and for the portion of the synthetic data set 717 
used for training the model. The rest of the data was used for validation and testing. 718 

Label Total label count Training set label count 

Compliant and accessible 13,991 8,395 

Compliant but not accessible 7,972 4,783 

Not compliant 6,437 3,862 

To evaluate the predictive power of the obtained model, we extract the confusion matrix and 719 

calculate the F1 score based on the precision and recall of the test results. The confusion matrix is 720 

illustrated in Figure 9 (a). The F1 score is calculated as the harmonic mean of precision and recall 721 

and reaches its optimum 1 only if precision and recall are both at 100%. The obtained F1 score in 722 

this case is 0.86 which indicates the obtained classifier performs well on unseen data. 723 

The performance was also compared to a Graph Convolutional Network (GCN) to begin exploring 724 

the influence of a chosen GNN model on the results.  The architecture of the GCN is similar to the 725 

architecture of the GAT mode, it contains four layers with a Relu activation function and a learning 726 

rate of 0.01.  Figure 9 presents the confusion matrix for predictions made on the test set based on 727 

a GAT model (a) and on the GCN model (b). The F1 score obtained from the GCN model is 0.734 728 

which indicates that the GAT model performs significantly better.   729 

 730 

 731 

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)


33 

 

Predicted (GAT)  Predicted (GCN) 

True Label C
o

m
_A

cc
 

C
o

m
_n

o
t_

A
cc

 

N
o

t_
C

o
m

 

 

True Label C
o

m
_A

cc
 

C
o

m
_n

o
t_

A
cc

 

N
o

t_
C

o
m

 

Com_Acc 3735 67 115  Com_Acc 3717 83 117 

Com_not_Acc 599 1531 102  Com_not_Acc 1114 1007 111 

Not_Com 167 19 1617  Not_Com 257 181 1365 

(a)  (b) 

 732 

Figure 9 Confusion matrix based on predictions on test data. (a) is the confusion matrix obtained 733 
from the GAT model and (b) is the confusion matrix obtained from the GCN model 734 

To validate the applicability of the proposed approach to "real world" data, the obtained classifier 735 

was used to check accessibility of three floor plans obtained from local architectural firms in Israel. 736 

The obtained floor plans were translated to a graph representation manually, following the same 737 

structure as the training data set. Table 4 provides a general description of the floor plans. Figure 738 

10 illustrates floor plan 1 and its representative graph topology as an example. Overall, 88% of 739 

nodes (across all three floor plans) were classified correctly using the obtained classifiers.  The 740 

presented results are an indication that the suggested workflow for implementing GNNs trained 741 

on synthetic data for ACC has great potential to overcome the existing challenges in the ACC 742 

process. We can clearly see that this is a valid research direction that can greatly contribute to 743 

further develop the ACC field. A deeper analysis of the performance capabilities and limitations 744 

of the obtained classifier for “real-world” data is now a subject of ongoing work.   745 

 746 

 747 



34 

 

Table 4 Description of floor plans obtained from local architectural firms 748 

Floor 

plan General description 

Number 

of 

levels 

Number of 

Bedrooms 

Number of 

graph 

nodes 

Number of 

correctly 

classified 

nodes 

1 Private single family 

house 

1 3 23 20 

2 Private house with a 

connected independent 

dwelling unit 

2 4 in main 

house +2  in 

dwelling 

unit 

46 38 

3 Private single family 

house 

1 4 24 22 

Total percentage of correctly classified nodes in all three 

floor plans  

88% 

Total percentage of correctly classified nodes in the test 

case which is a portion of the synthetic data 

86.8% 

 749 

Figure 10 Floor plan 1 obtained from the industry overlaid with its representative topology 750 
graph 751 



35 

 

Although these are promising results, we assume that they can be further improved through a more 752 

thorough and detailed examination of the data, the graph structure and the model. A good 753 

indication of that is the difference in performance of GAT and GCN models. It has been previously 754 

shown that different architectures of popular GNNs vary in their expressive power (Xu et al. 2018). 755 

To obtain the best results for the problem at hand, the combination between the graph 756 

representation of a building and the GNN model needs to be further explored. 757 

For example, a different possible graph structure for this work can consist of nodes that represent 758 

only spaces. Information about the doors, stairs or ramps leading to every space can be assigned 759 

to the nodes as attributes. This will lead to a lower number of data points but longer feature vectors. 760 

Adding other code requirements to the classification can also lead to more node attributes and 761 

more defined classes, yet this likely increases complexity and is expected to lower the values of 762 

precision and recall. Nevertheless, adding more code requirements can also be beneficial in terms 763 

of the code checking algorithm since it will enable a simulation check of many code requirements. 764 

Every option discussed above can have a significant effect on the performance of the GNN model 765 

and eventually on the accuracy and efficiency of the code compliance checking. This work 766 

illustrates a new approach for the code checking problem and demonstrates promising initial 767 

implementation results. This points to a valid future research direction of GNN-based ACC. 768 

6. DISCUSSION 769 

Constructing safe and efficient buildings is of high societal interest. The regulatory codes and 770 

standards in effect ensure safety and usability of the buildings. However, their manual checking 771 

costs valuable time and labor resources, especially in the field of highly skilled building engineers. 772 

Although commercial applications for code checking are available, they provide a limited solution 773 

and are not widely adopted in the industry. Moreover, because they tend to rely on hard-coded 774 

rules, either declarative logic statements or procedural code, the development of such applications 775 

is a long and costly process that requires much effort and relies on a large amount of manual 776 

operations.  777 

This research applies a novel approach to automated code checking and has the potential to make 778 

a significant breakthrough in the field. For a proof of concept, we demonstrate the proposed 779 



36 

 

approach through a small-scale problem of compliance checking of single family houses to several 780 

requirements from the code for accessible and usable buildings and facilities (International Code 781 

Council and American National Standards Institute 2010).  The chosen regulations concern both 782 

geometric restrictions as well as topological constraints. While the considered regulations are 783 

relatively simple, simplifying the process for generating and labeling a large synthetic data set, 784 

they allow us to demonstrate that GNNs can indeed be useful to leverage topological information 785 

for ACC and thus can contribute to automated code checking of regulations that involve both 786 

geometric and topological requirements. We do not suggest to replace the workflow of code 787 

checking for simple prescriptive regulations that can be translated to logical statements. Instead, 788 

we propose to expand the scope of regulations that can be addressed automatically with ML, and 789 

to supplement the abilities of ML approach for ACC with graph-based learning to target 790 

regulations that involve relational concerns (either topological or any other type of relationships). 791 

The ability to deal with different types of regulations needs further investigation. The results 792 

indicate that the application of GNNs to automated code checking is a valid direction for further 793 

research in hopes of achieving highly automated ACC systems that cover a wider range of code 794 

requirements. However, as all ML algorithms, GNNs provide probabilistic results that may not 795 

always be correct. A further investigation into the performance of GNNs under different 796 

constraints is required to fully understand the strengths, weaknesses and boundary conditions of 797 

the investigated approach.  798 

6.1. Comparison with existing ACC approaches 799 

Previous research on ACC indicates that, while the rule-based approach provides reliable results, 800 

it is limited in scope and requires a lot of manual processing both for rule compilation and for 801 

building information extraction. As many of the existing regulations are performance-based, they 802 

are difficult to express by rigid rules. In those cases, training with examples of design models that 803 

are assessed by human plan checkers allows the ML models to learn and mimic the way that human 804 

checkers assess the design, without relying on explicitly defined rigid conditions.  The ML 805 

approach can overcome the problem of rule compilation, but the representation of building 806 

information as input to classic ML algorithms remains problematic. Furthermore, the results of 807 

compliance checking by ML cannot reach the same accuracy as rule-based checking since results 808 



37 

 

obtained with ML are probabilistic. Nevertheless, previous research on the subject demonstrates 809 

good performance of classic ML for ACC in terms of accuracy.  810 

Application of GNN to ACC can overcome some of the limitations of the classic ML algorithms. 811 

Graphs are a suitable way to represent building information and they have been numerously used 812 

for various applications in the construction domain. Since GNNs are implemented directly on 813 

graphs, application of learning algorithms to complex problems such as code compliance checking 814 

becomes possible. This work illustrates such an implementation and demonstrates that GNNs 815 

perform well in this domain. In addition, the presented results can be further improved by an in-816 

depth investigation into the most suitable graph structures and GNN model architectures. We can 817 

conclude that although applications of GNN to ACC can contribute to widening the scope of 818 

regulations that can be checked automatically, the knowledge base on the subject is mostly lacking. 819 

Based on the presented work, a comparison between the different approaches to ACC, and the 820 

existing body of knowledge required for further development of each approach is presented in 821 

Table 5 below.  822 

Table 5 Comparison between rule-based ACC, ML-based ACC and GNN-based ACC based on 823 
existing work  824 

Comparison 

criteria 

Rule-based ACC Classic ML for ACC GNN-based ACC 

Rule 

compilation 

Required Not required Not Required 

Data collection Does not require 

data besides the 

design to be 

checked. 

Needs to be collected, 

arranged and managed. 

Needs to be collected, 

arranged and managed. 

Data extraction  Mostly automated, 

requires some data 

to be manually 

supplemented 

during the 

checking. 

Manual in all existing 

work. Automation is 

possible but has not 

been demonstrated in 

previous work.  

Graph generation is 

manual in this work. 

Automation is possible 

but has not been 

demonstrated yet. 

Data 

representation 

Data is acquired 

from the commonly 

used data formats 

Requires feature 

extraction. A structured 

feature representation is 

All building data can be 

represented. 



38 

 

such as the IFC. 

Additional data is 

manually 

supplemented 

through a user 

interface. 

not suitable for complex 

topologies. 

Accuracy Very high. Very high based on 

existing test cases.   

High based on an initial 

test. 

Scope Limited by the 

ability to compile 

hard-coded rule 

sets. 

Limited, difficult to deal 

with topologically 

complex requirements. 

Applicable to 

regulations that address 

both the geometry and 

the topology of the 

design. 

Simultaneous 

check of several 

code clauses and 

report details 

Works with 

individual code 

requirements. Able 

to report the 

specific building 

elements that 

violate the code 

clause at hand.  

Can check compliance 

to several code 

requirements 

simultaneously.  There 

is no indication of what 

code requirement is 

violated unless it is 

expresses as a possible 

label in the classification 

problem. 

Can check compliance 

to several code 

requirements 

simultaneously.  There 

is no indication of what 

code requirement is 

violated unless it is 

expresses as a possible 

label in the classification 

problem. 

Existing 

knowledge in the 

field 

Very high. Has 

been a subject of 

research for over 50 

years. 

Limited. ML has been 

applied and explored as 

the checking mechanism 

only a few times before. 

Very limited. 

 

 

6.2. Limitations 825 

This is an exploratory work designed to test the hypothesis that graph-based learning can be 826 

implemented as the checking mechanism for ACC. As such, the obtained results are limited to an 827 

initial proof of concept for the application of GNN to automated accessibility checking in 828 

residential buildings. Based on the results, we can conclude that the application of GNNs for ACC 829 

is a valid research direction that needs to be further explored. However, we cannot claim that the 830 

proposed approach is feasible for all problems from the ACC domain. Nor can we claim that GNNs 831 

outperform other approaches for ACC.   832 



39 

 

Since all learning models, including GNNs, provide probabilistic results, they are less reliable than 833 

results obtained by the application of rule sets. Dealing with design review, we must consider the 834 

issue of liability in case the obtained results are false. False positives obtained in the checking 835 

process may carry significant safety issues in the designed buildings that will be ignored. Hence, 836 

it is possible that the final conformance should be left to the human checker. Nevertheless, 837 

additional research and development of the graphs, learning models and training sets can lead to 838 

well-performing classifiers that provide sufficiently accurate results. Considering the large volume 839 

of work that plan checkers deal with, often not the entire design is processed and random spot 840 

checks are performed instead. In addition, making mistakes is an inevitable part of being human, 841 

we can assume that domain experts make mistakes too. Therefore, extensive further development 842 

of ML-based workflows for ACC can result in reliable models that are able to quickly and 843 

efficiently process the full design with a similar accuracy to that of a domain expert. 844 

One of the drawbacks of this research is that it was performed on a synthetically generated data 845 

set. The workflow for preparing the data set is designed to generate graphs that represent realistic 846 

layouts of residential buildings. To be able to label the generated data, modifications of the basic 847 

floor plans were introduced to the geometric features of the relevant building elements, however 848 

no modifications to the topology were introduced. It is possible that using a more diverse data set 849 

for training can lead to a different performance of the GNN.  850 

6.3. Further work 851 

Currently, there is no pre-existing knowledge on application of graph-based learning to ACC. This 852 

work is designed to explore the possibility of using GNNs as the checking mechanism for 853 

automated code checking. The obtained results from this study are encouraging to establish this as 854 

a valid research direction in the domain of ACC. The demonstrated initial feasibility of applying 855 

a GAT model for an accessibility check raises several directions for needed further research. First, 856 

the hypothesis that a classifier trained on synthetic data can provide sufficiently precise predictions 857 

of “real world” data needs to be further tested. Hence, validation of the proposed approach using 858 

several case studies from the industry is a subject of ongoing work.   859 

Additionally, more complex application scenarios need to be explored in order to understand the 860 

capabilities and limitations of GNNs in the ACC domain. Specifically, test cases that deal with 861 



40 

 

regulations that cannot be properly translated to rules should be investigated either by collecting a 862 

labeled data set, or by involving experts to label a synthetic data set. Currently, many regulations 863 

can be checked automatically using existing, rule-based applications. Although full automation is 864 

rarely achieved, there is a great benefit to the existing method as it provides accurate and reliable 865 

results. We believe that not all code clauses should be translated to classification tasks as there 866 

may be regulations that would not benefit from the application of learning methods. Prescriptive 867 

requirements written without ambiguities are better solved deterministically. ML is useful to deal 868 

with other requirements that maybe vaguely defined, within those the application of graph-based 869 

learning should be considered when complex relationships between a large set of building elements 870 

need to be examined. The combination of different approaches to code checking can contribute to 871 

widening the scope of regulations that can be checked automatically. Investigation into the 872 

different types of regulations to match them with the best approach for a solution is a valid 873 

direction for future research.  874 

As described in Section 4 of the paper, the considered graph structure only contains representations 875 

of elements that are relevant to the regulation being checked. We can refer to these graphs as sub-876 

graphs of the graphs that represent complete BIM models. This means that every regulation will 877 

define its own requirements for graph representations. The workflows for extracting such graphs 878 

need to be developed. The possibility to combine larger sets of requirements while using different 879 

graph structures to represent the buildings needs to be investigated as well.  880 

6.4. Data in the ACC domain 881 

In the world of data that we are currently living in, we need to find ways to leverage the available 882 

data in the construction domain and strive to enable data-driven decision-making. Every 883 

construction project produces vast amounts of data through its life cycle, beginning with 884 

programming documents, design documents, digitalized models, data collected during 885 

construction and during the buildings’ operation. With rapidly advancing technologies such as 886 

sensors and IoT and the adoption of such technologies in the AEC industry, the amount of available 887 

data is expected to increase even more. Yet, currently this data is not properly collected, organized 888 

and analyzed and we miss out on opportunities to harness the existing data for various applications. 889 

This work presents such a possible application by relying on a synthetically generated data set. 890 



41 

 

Code compliance checking has been a subject of interest for many researchers for over 50 years. 891 

This work suggests adopting a new perspective on the subject and revisiting this well-established 892 

process as a whole to explore the possibility of bigger and more meaningful progress. 893 

7. CONCLUSIONS 894 

Exploiting building information stored in a graph for various purposes is not a new field of 895 

research. This work suggests taking one step forward and extending the previously explored graph-896 

based algorithms to learning algorithms. This work aims to explore two hypotheses; one is that 897 

GNNs are applicable to problems from the code-checking domain; another is that models trained 898 

on a completely synthetic data set can be implemented for code compliance checking of design 899 

obtained from the industry. We demonstrate the application of GNN to check code compliance of 900 

single-family houses to the requirements of an accessibility code. Since obtaining a large set of 901 

BIM models of specific building types is a difficult task, we suggest exploring the possibility of 902 

training the GNN on synthetic data, assuming a GNN trained on synthetic data will perform well 903 

on BIM models obtained from the industry.  904 

In this work, we provide a detailed description of synthetic graph data generation where every 905 

graph represents a single-family house. The graph representation of every house includes spaces, 906 

doors, stairs and ramps as these are the main elements to determine accessibility.  To maintain 907 

topological integrity and ensure that the generated graphs represent feasible buildings, the data is 908 

generated based on random variations of floor plans collected from the internet. Each node in a 909 

graph is labeled based on the code requirements to be checked. Since accessibility is determined 910 

both by the geometry of every individual element and by the existence of an accessible path leading 911 

to that element, the nodes are divided to three classes: compliant and accessible, compliant but not 912 

accessible and not compliant. The generated training set is one of the contributions of this work, 913 

as we expect the created knowledge on generating and labeling synthetic data sets to be exploited 914 

for applications other than code checking in future research. 915 

A GAT model is trained and evaluated based on the generated data. It is then tested using a portion 916 

of the data that is held out from the training process. The accuracy of testing results is 86.8% and 917 

the obtained F1 score is 0.86 indicating that the trained model performs well on unseen data. The 918 

trained classifier was further tested for classifying design obtained from the industry. Applying the 919 



42 

 

trained classifier to three different floor plans, 88% of building elements across the three floor 920 

plans were classified correctly. Based on the obtained results, we conclude that the application of 921 

GNN to ACC is a valid direction for future. We can see a trade-off between the accuracy obtained 922 

by the different approaches to ACC to the range of regulations that can be checked automatically. 923 

While the rule-based approach provides accurate results, it is limited to regulations that can be 924 

computerized. ML on the other hand is probabilistic and therefore cannot reach 100% accuracy. 925 

Nevertheless, it is much more flexible and can be applied to a wide range of regulations, even 926 

those that cannot be directly computerized. GNNs contribute by expanding the ability of "classic" 927 

ML to regulations that address the relational aspect between the building elements.  928 

The ability to deal with the checking process as a whole, without dividing it to "processing 929 

regulations" and then "processing the design" is a benefit of implementing ML for ACC. 930 

Furthermore, we do not need to be concerned with translating the regulations to rules, but instead 931 

develop representations that encapsulate both the design and the regulations (implicitly) using the 932 

same data structure.  However, as the existing knowledge on the subject is limited, further research 933 

is needed to understand the abilities, strengths and weaknesses of ML models in the ACC domain 934 

(including both "classic" models and graph based models).  Further investigation of possible graph 935 

structures, possible GNN architectures, and the combination between the two is needed to fully 936 

understand the abilities, strengths, weaknesses and boundary conditions of applying GNN to ACC. 937 

As this work is focused on a simplified problem for an initial feasibility test, the application of the 938 

workflow for more complicated regulations, specifically regulations that cannot be directly 939 

computerized (either because of complexity or ambiguity) needs to be tested. Also, a hybrid 940 

approach, combination between the different approaches to ACC (rules, classic learning, graph 941 

based learning) can be explored to cover a wider range of regulations with sufficient accuracy. 942 

These can determine future research directions in the field. 943 

 944 

 945 

References 946 

Amor, R., and J. Dimyadi. 2021. “The promise of automated compliance checking.” Developments 947 
in the Built Environment, 5: 100039. https://doi.org/10.1016/j.dibe.2020.100039. 948 



43 

 

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh, J. Ploennigs, 949 
Y. Agarwal, and others. 2016. “Brick: Towards a unified metadata schema for buildings.” 950 

Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient 951 
Built Environments, 41–50. 952 

Bloch, T., M. Katz, and R. Sacks. 2018. “Machine learning approach for automated code 953 
compliance checking.” Tampere. 954 

Bloch, T., M. Katz, R. Yosef, and R. Sacks. 2019. “Automated model checking for topologically 955 

complex code requirements – security room case study.” Proceedings of the 2019 956 
European Conference for Computing in Construction. University College Dublin. 957 

Borrmann, A., M. König, C. Koch, and J. Beetz. 2018. Building information modeling: technology 958 

foundations and industry practice. New York, NY: Springer Berlin Heidelberg. 959 

Bronstein, M. M., J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017. “Geometric deep 960 
learning: going beyond euclidean data.” IEEE Signal Processing Magazine, 34 (4): 18–42. 961 
IEEE. 962 

Cao, W., Z. Yan, Z. He, and Z. He. 2020. “A Comprehensive Survey on Geometric Deep 963 
Learning.” IEEE Access, 1–1. https://doi.org/10.1109/ACCESS.2020.2975067. 964 

Collins, F. 2020. “Encoding of geometric shapes from Building Information Modeling (BIM) 965 
using graph neural networks.” 966 

Data61, C. 2018. “StellarGraph Machine Learning Library.” GitHub Repository. GitHub. 967 

Dimyadi, J., and R. Amor. 2013. “Automated Building Code Compliance Checking–Where is it 968 

at.” Proceedings of CIB WBC, 172–185. 969 

Donkers, A., D. Yang, B. de Vries, and N. Baken. 2021. “Real-Time Building Performance 970 
Monitoring using Semantic Digital Twins.” Proceedings of the 9th Linked Data in 971 

Architecture and Construction Workshop, CEUR Workshop Proceedings, Luxembourg, 972 
Luxembourg. 973 

“Dynamo.” 2022. Accessed February 17, 2022. http://dynamobim.org/. 974 

Eastman, C. 1975. “The use of computers instead of drawings in building design.” AIA Journal, 975 
63 (3): 46–50. 976 

Eastman, C., J. Lee, Y. Jeong, and J. Lee. 2009. “Automatic rule-based checking of building 977 
designs.” Automation in construction, 18 (8): 1011–1033. 978 
https://doi.org/10.1016/j.autcon.2009.07.002. 979 

Erikoskarwallin, K. Hammar, Perkarlberg, Leifsundbom, and Wotifi. 2019. “RealEstateCore/rec: 980 
V3.0 -- Usability and maintainability refactoring.” Zenodo. 981 



44 

 

Fenves, S. J. 1966. “Tabular Decision Logic for Structural Design.” J. Struct. Div., 92 (6): 473–982 
490. https://doi.org/10.1061/JSDEAG.0001567. 983 

Fenves, S. J., and W. J. Rasdorf. 1982. “Treatment of engineering design constraints in a relational 984 
database.” Carnegie Mellon University. 985 

Gan, V. J. L. 2022. “BIM-based graph data model for automatic generative design of modular 986 
buildings.” Automation in Construction, 134: 104062. 987 
https://doi.org/10.1016/j.autcon.2021.104062. 988 

Hamilton, W. L. 2020. “The Graph Neural Network Model.” Graph Representation Learning, 51–989 
70. Cham: Springer International Publishing. 990 

Hamilton, W. L., R. Ying, and J. Leskovec. 2017. “Representation Learning on Graphs: Methods 991 

and Applications.” CoRR, abs/1709.05584. 992 

Han, C. S., J. Kunz, and K. H. Law. 1997. “Making automated building code checking a reality.” 993 
Facility Management Journal, 22–28. 994 

Home Front Command. 2010. Specifications for Building Shelters. Ramle, Israel: Protective 995 

structures department, Home Front Command. 996 

International Code Council, and American National Standards Institute (Eds.). 2010. Accessible 997 

and usable buildings and facilities: ICC A117.1-2009: American National Standard. 998 
Washington, DC: International Code Council. 999 

Ismail, A., A. Nahar, and R. Scherer. 2017. “Application of graph databases and graph theory 1000 
concepts for advanced analysing of BIM models based on IFC standard.” Proceedings of 1001 

EGICE. 1002 

Ismail, A., B. Strug, and G. zyna Ślusarczyk. 2018. “Building Knowledge Extraction from 1003 
BIM/IFC Data for Analysis in Graph Databases.” Artificial Intelligence and Soft 1004 

Computing, L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and 1005 
J. M. Zurada, eds., 652–664. Cham: Springer International Publishing. 1006 

Jin, C., M. Xu, L. Lin, and X. Zhou. 2018. “Exploring BIM Data by Graph-based Unsupervised 1007 

Learning.” ICPRAM, 582–589. 1008 

Khalili, A., and D. K. H. Chua. 2015. “IFC-Based Graph Data Model for Topological Queries on 1009 

Building Elements.” J. Comput. Civ. Eng., 29 (3): 04014046. 1010 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000331. 1011 

Kipf, T. N., and M. Welling. 2016. “Semi-supervised classification with graph convolutional 1012 
networks.” arXiv preprint arXiv:1609.02907. 1013 

de Koning, R., E. Torta, P. Pauwels, R. W. M. Hendrikx, and M. J. G. van de Molengraft. 2021. 1014 
“Queries on Semantic Building Digital Twins for Robot Navigation.” 9th Linked Data in 1015 



45 

 

Architecture and Construction Workshop, CEUR Workshop Proceedings, 32–42. CEUR-1016 
WS.org. 1017 

Lin, Z., M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. 2017. “A structured 1018 
self-attentive sentence embedding.” arXiv preprint arXiv:1703.03130. 1019 

Meijer, F., H. Visscher, and L. Sheridan. 2002. Building regulations in Europe. Housing and urban 1020 
policy studies. Delft: DUP Science. 1021 

Nawari. 2019. “A Generalized Adaptive Framework (GAF) for Automating Code Compliance 1022 

Checking.” Buildings, 9 (4): 86. https://doi.org/10.3390/buildings9040086. 1023 

Nawari, N. 2012a. “The Challenge of Computerizing Building Codes in a BIM Environment.” 1024 

Computing in Civil Engineering (2012), 285–292. Clearwater Beach, Florida, United 1025 

States: American Society of Civil Engineers. 1026 

Nawari, N. O. 2012b. “BIM-Model Checking in Building Design.” Structures Congress 2012, 1027 
941–952. Chicago, Illinois, United States: American Society of Civil Engineers. 1028 

Pauwels, P., T. M. de Farias, C. Zhang, A. Roxin, J. Beetz, J. De Roo, and C. Nicolle. 2017. “A 1029 

performance benchmark over semantic rule checking approaches in construction industry.” 1030 
Advanced Engineering Informatics, 33: 68–88. https://doi.org/10.1016/j.aei.2017.05.001. 1031 

Pauwels, P., and W. Terkaj. 2016. “EXPRESS to OWL for construction industry: Towards a 1032 
recommendable and usable ifcOWL ontology.” Automation in Construction, 63: 100–133. 1033 
Elsevier. 1034 

Preidel, C., and A. Borrmann. 2015. “Automated Code Compliance Checking Based on a Visual 1035 

Language and Building Information Modeling.” ISARC. Proceedings of the International 1036 
Symposium on Automation and Robotics in Construction, 1. Vilnius Gediminas Technical 1037 
University, Department of Construction Economics & Property. 1038 

Rasmussen, M. H., M. Lefrançois, G. F. Schneider, and P. Pauwels. 2021. “BOT: the building 1039 
topology ontology of the W3C linked building data group.” Semantic Web, 12 (1): 143–1040 
161. IOS Press. 1041 

Sacks, R., T. Bloch, M. Katz, and R. Yosef. 2019. “Automating Design Review with Artificial 1042 
Intelligence and BIM: State of the Art and Research Framework.” Computing in Civil 1043 
Engineering 2019, 353–360. Atlanta, Georgia: American Society of Civil Engineers. 1044 

Skandhakumar, N., F. Salim, J. Reid, R. Drogemuller, and E. Dawson. 2016. “Graph theory based 1045 
representation of building information models for access control applications.” Automation 1046 
in Construction, 68: 44–51. https://doi.org/10.1016/j.autcon.2016.04.001. 1047 

Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. 2017. “Graph 1048 

attention networks.” arXiv preprint arXiv:1710.10903. 1049 



46 

 

Wang, Z., R. Sacks, and T. Yeung. 2022. “Exploring graph neural networks for semantic 1050 
enrichment: Room type classification.” Automation in Construction, 134: 104039. 1051 

https://doi.org/10.1016/j.autcon.2021.104039. 1052 

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. 2020. “A comprehensive survey on 1053 
graph neural networks.” IEEE transactions on neural networks and learning systems, 32 1054 
(1): 4–24. IEEE. 1055 

Xu, K., W. Hu, J. Leskovec, and S. Jegelka. 2018. “How Powerful are Graph Neural Networks?” 1056 

CoRR, abs/1810.00826. 1057 

Zhang, J., and N. M. El-Gohary. 2016. “Semantic NLP-Based Information Extraction from 1058 
Construction Regulatory Documents for Automated Compliance Checking.” J. Comput. 1059 

Civ. Eng., 30 (2): 04015014. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000346. 1060 

Zhang, J., and N. M. El-Gohary. 2017. “Integrating semantic NLP and logic reasoning into a 1061 
unified system for fully-automated code checking.” Automation in Construction, 73: 45–1062 
57. https://doi.org/10.1016/j.autcon.2016.08.027. 1063 

Zhang, Z., L. Ma, and T. Broyd. 2022. “Towards fully-automated code compliance checking of 1064 
building regulations: challenges for rule interpretation and representation.” 1065 

EC$^3$ (European Conference on Computing in Construction). 1066 

Zhi, G. S., S. M. Lo, and Z. Fang. 2003. “A graph-based algorithm for extracting units and loops 1067 
from architectural floor plans for a building evacuation model.” Computer-Aided Design, 1068 

35 (1): 1–14. https://doi.org/10.1016/S0010-4485(01)00171-3. 1069 

Zhou, J., G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. 2020. “Graph 1070 
neural networks: A review of methods and applications.” AI Open, 1: 57–81. 1071 
https://doi.org/10.1016/j.aiopen.2021.01.001. 1072 

Zhou, J., G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. 2018. “Graph neural 1073 
networks: A review of methods and applications.” arXiv preprint arXiv:1812.08434. 1074 

 1075 

 1076 


