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Abstract 

Automating the driving process, leading to self-driving cars, has remained a 

prominent human aspiration. In fact, this goal is currently achievable: substantial 

advancements have been achieved in realising the necessary vehicle technologies 

promising an increase in traffic safety, efficiency, and driving comfort. However, 

introducing automation into other domains has shown that anticipated benefits may 

also be accompanied by unexpected, adverse effects, causing as many problems as 

solved. The evidence of the safety of highly automated driving is still lacking, a situation 

often termed the "approval trap", thus necessitating the development of novel testing 

approaches. These approaches must consider that automated vehicles face mixed 

traffic, representing at least a long transition phase up to autonomous driving, 

acknowledging the complex and intractable adaptations in the socio-technical system 

that traffic represents. Thus, a differentiated understanding of the patterns in road 

traffic leading to accident development and avoidance is required to prevent adverse 

automation surprises, which is currently lacking.  

This thesis investigates the potential benefit of a resilience engineering approach 

and its reasoning for enhancing road safety in the context of automated vehicle 

introduction by taking a systems thinking mindset using the functional resonance 

analysis method (FRAM) and a safety-II perspective. First, the Sections 1-4 provide 

the foundational reasoning for that. The body mainly has a publication-based structure. 

A literature review combined with a case study, Article 1 (Section 5), identifies and 

methodologically evaluates FRAM as a suitable method for differentiating patterns to 

assess road safety related to human and automated driving. In Article 2 (Section 6), 

relevant test scenarios are deduced based on reasonable criteria for scenario selection 

in the safety assessment of automated driving in which FRAM should be applied. 

Article 3 (Section 7) uses FRAM in an overtaking scenario to create a model 

understanding the patterns of accident development and accident avoidance to give 

system design recommendations and essential insights for the validation process of 

automated vehicles. Article 4 (Section 8) evaluates the model and method in terms of 

validity to assess the credibility of the results and the applicability, respectively. In 

Section 9, the research findings of Articles 3 and 4 are revisited using a pure function-

based validation approach differentiating instantiations to get an enhanced 

comprehension with regard to the FRAM model's credibility and to identify enhanced 
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patterns that can be used for system improvement. Ultimately, Section 10 discusses 

the results concerning system design and validation, method evaluation, and industrial 

application.  

The research findings demonstrate that resilience engineering, including FRAM 

and safety-II, is an invaluable and essential missing approach to assessing the safety 

of automated driving in road traffic, mainly by studying interactions in view of 

emergentisms. FRAM is a promising approach addressing the nitty-gritty - to identify 

the patterns that facilitate the system’s adaptive capacity inevitable for safe and 

efficient performance in socio-technical systems. A solid foundation on a small-scale 

addressing the right problem is laid where enhancements and extensions have to be 

researched in the future of how to deploy the approach in the industry on a large-scale.  
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Zusammenfassung 

Die Automatisierung des Fahrens, die zu selbstfahrenden Autos führt, ist nach wie 

vor ein wichtiges Bestreben der Menschheit. Tatsächlich ist dieses Ziel derzeit 

erreichbar: bei der Realisierung der erforderlichen Fahrzeugtechnologien, die eine 

Erhöhung der Verkehrssicherheit, der Effizienz und des Fahrkomforts versprechen, 

wurden bereits erhebliche Fortschritte erzielt. Die Einführung der Automatisierung in 

anderen Bereichen hat jedoch gezeigt, dass die erwarteten Vorteile auch von 

unerwarteten, negativen Auswirkungen begleitet sein können, die ebenso viele 

Probleme verursachen wie lösen. Die Sicherheit des hochautomatisierten Fahrens ist 

nach wie vor nicht nachgewiesen, eine Situation, die oft als "Zulassungsfalle" 

bezeichnet wird und die Entwicklung neuartiger Absicherungskonzepte erforderlich 

macht. Diese Ansätze müssen berücksichtigen, dass automatisierte Fahrzeuge mit 

gemischtem Verkehr konfrontiert sind, was zumindest eine lange Übergangsphase bis 

zum autonomen Fahren darstellt, wobei die komplexen und flüchtigen Anpassungen 

im soziotechnischen System, das der Verkehr darstellt, zu berücksichtigen sind. Daher 

ist ein differenziertes Verständnis der Muster im Straßenverkehr, die zur 

Unfallentstehung und -vermeidung führen, erforderlich, um negative Überraschungen 

durch die Automatisierung zu vermeiden, was derzeit fehlt.  

 Diese Arbeit untersucht den potenziellen Nutzen eines Resilience-Engineering-

Ansatzes und dessen Schlussfolgerungen für die Erhöhung der Verkehrssicherheit im 

Zusammenhang mit der Einführung automatisierter Fahrzeuge, indem sie eine 

systemorientierte Denkweise unter Verwendung der funktionalen 

Resonanzanalysemethode (FRAM) und einer Safety-II-Perspektive einnimmt. 

Zunächst werden in den Abschnitten 1-4 die grundlegenden Schlüsse und Argumente 

zu diesem Thema dargelegt. Der Hauptteil ist hauptsächlich auf der Grundlage von 

Veröffentlichungen aufgebaut. In Artikel 1 (Abschnitt 5) wird anhand eines 

Literaturüberblicks und einer Fallstudie FRAM als geeignete Methode zur 

Unterscheidung von Mustern für die Bewertung der Verkehrssicherheit in Bezug auf 

menschliches und automatisiertes Fahren identifiziert und methodisch bewertet. In 

Artikel 2 (Abschnitt 6) werden auf der Grundlage sinnvoller Kriterien für die Auswahl 

von Szenarien für die Sicherheitsbewertung des automatisierten Fahrens relevante 

Testszenarien abgeleitet, in denen FRAM angewendet werden sollte. Artikel 3 

(Abschnitt 7) verwendet FRAM in einem Überholszenario, um ein Modell zu erstellen, 
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das die Muster der Unfallentwicklung und Unfallvermeidung versteht, um 

Empfehlungen für die Systemauslegung und wesentliche Erkenntnisse für den 

Validierungsprozess von automatisierten Fahrzeugen zu liefern. Artikel 4 (Abschnitt 8) 

bewertet das Modell und die Methode im Hinblick auf Validität, um die Glaubwürdigkeit 

der Ergebnisse bzw. die Anwendbarkeit zu beurteilen. In Abschnitt 9 werden die 

Forschungsergebnisse der Artikel 3 und 4 unter Verwendung eines rein 

funktionsbasierten Validierungsansatzes wieder aufgegriffen, um ein besseres 

Verständnis für die Glaubwürdigkeit des FRAM-Modells zu erlangen und erweiterte 

Muster zu identifizieren, die zur Systemverbesserung genutzt werden können. 

Schließlich werden in Abschnitt 10 die Ergebnisse in Bezug auf Systemdesign und -

validierung, Methodenevaluierung und industrielle Anwendung diskutiert. 

Die Forschungsergebnisse zeigen, dass Resilience Engineering, einschließlich 

FRAM und Safety-II, ein unschätzbarer und wesentlicher fehlender Ansatz für die 

Bewertung der Sicherheit des automatisierten Fahrens im Straßenverkehr ist, vor 

allem durch die Untersuchung von Interaktionen im Hinblick auf Emergentismen. 

FRAM ist ein vielversprechender Ansatz, der auf das Wesentliche abzielt - auf die 

Identifizierung der Muster, die die Anpassungsfähigkeit des Systems erleichtern, die 

für eine sichere und effiziente Leistung in soziotechnischen Systemen unverzichtbar 

ist. Ein solides Fundament in kleinem Maßstab, das sich mit dem richtigen Problem 

befasst, ist gelegt, wobei Verbesserungen und Erweiterungen in der Zukunft erforscht 

werden müssen, wie der Ansatz in der Industrie in großem Maßstab eingesetzt werden 

kann.
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1 Introduction 

 

“The question is no longer whether one or another function 

can be automated but, rather, whether it should be.” 

– Wiener & Curry, 1980, p. 995 – 

 

The vision from the automation of the driving task up to autonomous driving has 

always been a well-known human dream. Actually, it is now within reach: significant 

progress in the technical realisation of such vehicles is made, and numerous promises 

and positive marketing regarding an imminent market launch are usually reported. The 

first fully automated vehicles are predicted to be on roads by 2030 (Ertrac, 2017). 

The automation of driving started in the 1950s. The General Motors Research Lab 

developed ideas on how driving on highways could initially be automated, whereby a 

combination of vehicle technology and infrastructure measures (e.g., the vehicle 

detects magnets inserted in the roadway) was considered promising due to the limiting 

computer performance at that time. (Fenton, 1970) In the 1970s and 1980s, Japanese 

groups researched the detection of lanes and objects with imaging cameras, which led 

to automated vehicle guidance (Tsugawa, 1994). According to today's standards, the 

results of that time correspond to an adaptive cruise control system (ACC) and a lane-

keeping assistant (LKA) at very low speeds (Matthaei et al., 2015). In the USA, a step 

forward was crossing the USA by the test vehicle NavLab 5 in 1995. The assistance 

system took over the lateral guidance for 4.500 of the 4.587 kilometers driven on 

American highways (Pomerleau & Jochem, 1996). The PROMETHEUS project 

(PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety, 

1987-1994), funded by the European Union, developed similar systems that led to very 

efficient vehicles. This project culminated in a journey from Munich to Odense by the 

test vehicle travelling successfully 95% of the total of 1.758 kilometres at speeds up to 

180 km/h through automation of both longitudinal and lateral guidance in 1995 

(Matthaei et al., 2015). In addition, lane changes were initiated by the safety driver and 

then carried out automatically (Maurer, 2000). However, none of the previous vehicle 

prototypes corresponds to high or full automation (SAE J3016, 2021) due to a safety 

driver and a limited operational design domain (ODD) (Matthaei et al., 2015). 

Therefore, the USA's Defense Advanced Research Projects Agency (DARPA) aimed 
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to develop driverless, autonomous vehicles (AVs) for military use at the beginning of 

the 2000s. To this end, the first DARPA Grand Challenge was held in 2004, in which 

driverless vehicles had to complete a course in the Nevada desert. Finally, the 

competition concept was expanded by DARPA 2007. Instead of driving through a 

desert, the driving missions were completed in a suburban-like environment with other 

road users to increase society's benefit. After initial difficulties, the competitions were 

considered a success because some teams were able to solve the set of tasks, giving 

the entire research community a boost that resulted in many vehicle automation 

projects (Matthaei et al., 2015): e.g., HAVE-it (2008-2011) (Hoeger et al., 2008), 

UR:BAN (2013-2016) (Bengler et al., 2018), AdaptIVe (2014-2017) (Langenberg et al., 

2014),  KoHAF (2015-2018) (ZENTEC Zentrum für Technologie, Existenzgründung 

und Cooperation GmbH), PEGASUS (2016– 2019) (German Aerospace Center 

[DLR]), interACT (2016-2020) (German Aerospace Center [DLR]), L3Pilot (2017–

2021) (L3Pilot consortium), @City (2018-2022) ((At)City consortium), UNICARagil 

(2018-2023) (RWTH Aachen), and VVM (Verification Validation Methods) (2019-2023) 

(VVM consortium). 

Today, according to the SAE J3016 (2021), we already have Level 2 functions in 

serial production, and in 2021 and 2022, the first vehicles with Level 3 functions for 

traffic jams on motorways by Honda and Mercedes entered the market (Slovik, 2021; 

Götze, 2021). It is an actual arms race between individual vehicle manufacturers 

competing with software companies. For instance, a robotaxi service called Waymo 

One in Phoenix and San Francisco offers fully autonomous rides in a limited urban 

area without any safety drivers physically on board but with monitoring operators who 

can intervene per teleoperation (Waymo LLC). Furthermore, in California, autonomous 

prototypes have been tested with safety drivers on various road types in recent years. 

Their incidents and experiences are reported annually in disengagement (a situation 

in which a driver takes over the control of the vehicle that can be initiated by the driver 

her/himself or by the system in case of system limits or malfunctions) and accident 

reports (cf. DMV California). They reported that between 2014 and 2017, twelve 

manufacturers tested 144 AVs, driving a cumulative 1.116.605 autonomous miles, and 

reported 5.328 disengagements and 42 accidents involving AVs on public roads 

(Banerjee et al., 2018). Banerjee et al. (2018) found that compared to drivers, AVs 

perform 15 - 22 times worse in accidents per mile, and 64% of disengagements 

resulted from problems in decisions made by the machine learning system. However, 
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there is still much to optimise, as current accident rates and disengagement issues 

show (Dixit et al., 2016; Favaro et al., 2018, 2017). Especially, rather the entire AV 

system, which is still in a “burn-in” phase (Banerjee et al., 2018), and not the individual 

components must be safe.  

The historical outline to the present day shows that the technical development of 

automated vehicles is well advanced, which is reflected in real hype. However, a valid 

concept for approval of such vehicles is still missing, which could slow down further 

development and initial euphoria. According to Winner (2016), the broad use of AVs in 

public road traffic will not be achieved until this problem is solved in an accepted form. 

Due to recent events of automated vehicles, such as the fatal accidents of a Tesla in 

2016 (Boudette, 2017) or an Uber vehicle in 2018 (Griggs &  Wakabayashi, 2018), the 

question of the safety of highly automated vehicle systems is more important than ever. 

Experience from other industries, such as aviation, shows that automation may 

cause as many problems as it solves (Kyriakidis et al., 2019). Also, there is 

considerable knowledge about the promises and problems that can be extrapolated 

from the aviation domain to automated driving (Billings, 1993; Stanton & Marsden, 

1996; Wiener & Curry, 1980). According to Walker et al. (2015), the following four 

potential issues for the automation of road vehicles can be anticipated based on hard-

won lessons learned from automation in aviation: shortfalls in expected benefits, 

problems with equipment reliability, training and skills maintenance, and error inducing 

equipment designs. Based on this, Müller (2018) pointed out to the automotive industry 

that automation in aviation has been researched and used for decades and, in addition 

to positive effects, repeatedly leads to many problems. Therefore, Müller's advice to 

the automotive industry is the following: not to automate mindlessly and substitute the 

driver, but rather to support her/him, not to increase complexity unnecessarily, and to 

take more account of human and machine strengths and weaknesses and reasonably 

integrate them. However, is it possible to compare these two different transport 

systems and thus transfer the aviation automation challenges to road vehicle 

automation?  

The air transport system and flying an aircraft fundamentally differ from the road 

transport system and vehicle driving. Despite these differences, it is assumed that the 

main findings concerning challenges of automation can be transferred between these 

transport systems due to similarities in terms of purpose (mobility and transport), 

physical and mental modes of operation (e.g., steering, monitoring), and relevant 
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societal risks (Papadimitriou et al. 2020). First, the air traffic system is much more 

restricted than the road system due to separated and externally monitored airspaces. 

In addition, there are fewer concurrent traffic users in a much larger space, except in 

proximity to a terminal on the ground. There is, therefore, literally more collision-free 

space available in the airspace. Moreover, the diversity between air traffic participants 

is much smaller than in road traffic. Additionally, the tasks of a pilot are less time-critical 

due to a more significant time window for reaction time than when driving a car. Based 

on the aspects above, the air traffic system is less complex overall. Second, the 

quantity and quality of training required for operators also differ. Pilots are specially 

trained and highly skilled people for piloting an aircraft, whose handling of automation 

can be precisely controlled and trained. In contrast, driving a road vehicle is carried out 

by many different people with various degrees of training and skills, whereby targeted 

and comprehensive training for handling automation is impossible. (Papadimitriou et 

al. 2020; Ständer, 2010; Wachenfeld & Winner, 2016) 

In this context, when considering that the transport system in which an aircraft 

operates is less complex than the road system and that automation is currently 

reaching its limits even in aviation, it becomes clear what a huge challenge we face 

regarding safe, highly automated vehicles (HAVs). 

1.1 What is automated driving? 

In general, automation refers to the full or partial replacement of a function by a 

machine previously carried out by the human operator (Parasuraman et al., 2000). 

Therefore, automation is not all or none but somewhat varies across a continuum of 

types and levels of automation according to the classification by Parasuraman et al. 

(2000)  (see Figure 1). The type of automation (ToA) can be attributed to the simple 

four stages of human information processing: sensory processing, perception/working 

memory, response selection, and response execution. Parasuraman et al. (2000) 

translate these stages into four ToA or classes of functions that can be automated: 

information acquisition, information analysis, decision selection, and action 

implementation, respectively. The generic levels of automation (LoA) represent the 

extent to how much of a function or ToA is automated based on ten levels describing 

the allocation of the task from no allocation as manual control towards full allocation 

as complete autonomous control by automation (Sheridan, 1992). A specific system 

can involve automation of the ToA at different levels. For example, system A could be 
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designed to have high LoA at all four ToA. In contrast, system B shows moderate 

acquisition automation, moderate to low analysis automation and decision automation, 

and low action automation (see Figure 1).  

 

Figure 1 The model of different types of automation by Parasuraman et al. (2000) combined with the levels of 
automation by Sheridan (1992). Examples of two systems with different automation levels across the four 
information processing stages are also shown. 

In terms of automated driving, we have to examine the driving task itself closely. 

According to Geiser (1985), the primary, secondary, and tertiary driving tasks can be 

distinguished. The primary driving task requires the driver to keep the vehicle on the 

course at a specific speed. Here, three hierarchical levels of the driving task must be 

considered: navigation (strategic selection of driving route), guidance (tactical selection 

of maneuvers and trajectories, and stabilisation (operational control of the vehicle in 

the form of acceleration and steering). On a temporal scale, these levels take place at 

several seconds to hours, 2-15s, and 100-300ms, respectively (Bubb, 2015). 

Additionally, secondary driving tasks support the primary driving task and are 

necessary for dependency on the traffic and environment situation, e.g., the driver 

informs other road users about her/his intentions using the indicators or the lights, and 

windshield wipers are activated in reaction to lightning or weather conditions. 

Furthermore, the driver can optionally engage in tertiary driving tasks which do not 

relate to the actual driving task but rather enable an increase in comfort (e.g., seat 

position and air condition) or serve as information, communication, and entertainment 

purposes, such as taking a call or turning on the radio. According to Bubb (2015), the 
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relationship between the different driving tasks and the dynamic interaction between 

the driver, vehicle, and environment can be described as a simplified closed feedback 

loop, as illustrated in Figure 2. The starting point is the driving task ending in a driving 

result. In terms of the terminology of control engineering, these are associated with a 

command signal and a tracking signal, respectively. The transfer process of the 

command to the tracking signal is accomplished by the controller (i.e., the driver) and 

the controlled system (i.e., the vehicle). The goal is to minimise the difference between 

the command and tracking signal. The difference is calculated at sum points, 

represented as circles, where command signals with a positive sign and tracking 

signals with a negative sign are fed in. Finally, the feedback of the result closes the 

loop characterising the control cycle. External influences, e.g., environmental 

conditions like road layout, other road users, or weather, can disturb the control 

process. Further disturbing variables could be driver-related factors, such as fatigue or 

workload, or vehicle-related factors, e.g., a burst tyre or an engine failure.       

 

Figure 2 The driving tasks in the driver-vehicle environment feedback loop adapted from Bubb (2015). 

In order to define and differentiate the responsibilities between the driver and the 

automation with regard to the primary driving task, the Society of Automotive Engineers 

(SAE) introduced six levels of driving automation (LoDA) (SAE J3016, 2021) which are 

commonly accepted and used in the industry. These LoDA are distinguished as 

depicted in Figure 3. At LoDA 0, the driver executes steering and acceleration of the 

vehicle, monitors the environment, and is the fallback solution for all driving modes. By 

further increasing the level of automation, the system performs more tasks of the driver 
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and even in more driving modes. Systems up to LoDA 2 are already in serial 

production, and their safety has been successfully tested. These systems always 

support the driver in longitudinal and lateral control but do not replace her/him since 

the driver ultimately monitors the technical system and the traffic, serving as a fallback 

level. The decisive difference starts at LoDA 3, where the automation monitors the 

environment itself without drivers as supervisors, but as the last fallback level with a 

corresponding takeover request in case of system limits or malfunctions. The next 

major step follows in LoDA 4, where the machine itself acts as a fallback level, and the 

driver is completely removed from the driving task in limited driving modes. The only 

difference between LoDA 4 and 5 is the number of driving modes.  

 

Figure 3. Level of driving automation for road vehicles adapted from SAE J3016 (2021). 

Besides, a special case exists concerning teleoperation where a remotely located 

human assists or operates an automated vehicle. The main idea is to overcome the 

potential limits of automated vehicles by providing a remote operator in case of system 

malfunctions or the system’s incapability to cope with unknown or tricky situations 

when no driver is available inside the vehicle or no passenger is fallback-ready. The 

SAEJ3016 (2021) defined the terms remote assistance and remote driver. Remote 
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assistance refers to the strategic and tactical level of the driving task. It provides 

information or advice (including pathways, revised goals, or classification of objects 

(Bogdoll et al., 2022) by a remotely located human to an automated vehicle operating 

in driverless mode to support trip continuation. Instead, in remote driving, a remote 

driver performs parts or all of the dynamic driving task in real-time, which belongs to 

the operational control, such as steering and acceleration.     

Systems of LoDA 3 and above have not yet been successfully tested and do not 

exist as serial vehicles on public roads for a broad ODD, except narrowed ODDs such 

as parking, Waymo’s robotaxi service in a limited urban area, or the limited functions 

by Honda and Mercedes, which are only used for traffic jams on motorways up to 

speeds of 60km/h (Götze, 2021; Slovik, 2021). In particular, LoDA 4 and 5 cause great 

difficulties regarding the proof of safety and are the focus of this thesis. These will 

therefore be referred to in the following as highly automated driving (HAD). The 

difficulties concerning the safety validation of HAD are explained in more detail in 

Section 2. 

The introduction of driving automation cannot be considered in isolation from the 

driver due to mixed traffic, representing a long transition phase during which automated 

vehicles with varying degrees of automation and manually driven vehicles share the 

road (Bansal & Kockelman, 2017). In particular, the driver will still play a relevant role 

even in HAD (Christoffersen & Woods, 2002; Gasser et al., 2015). Alternatively, in 

other words, automated driving is not an “all or nothing” approach to human control, as 

implied by the LoDA (Steckhan et al., 2022). In fact, the LoDA are quite technology-

driven and do not represent a driver-centric perspective (Noy et al., 2018). Rather user 

interventions have to be considered as well, which is also in line with the LoA and ToA. 

Thus, the concept of function allocation, which is closely related to the automation 

issue, must also be introduced. Function allocation refers to the design choice of 

assigning specific functions or tasks to humans or machines to accomplish a system 

objective (Inagaki, 2003). Traditional strategies of function allocation include a) 

comparison-driven assigning the function to the most capable agent (either human or 

machine), b) technology-driven allocating to machines every function that can be 

automated, and c) economy-driven finding an allocation ensuring the most economical 

efficiency (Inagaki, 2003). However, these traditional strategies are static, meaning 

that a given function allocation exists at all times and occasions and lacks a 

comprehensive human factors viewpoint. In order to tackle these criticisms, two types 
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of human-automation collaboration and cooperation can be differentiated: shared 

control and traded control (Sheridan, 1992; see Figure 4).  

 

Figure 4. Conceptual control loops for traded and shared control adapted by Sheridan (1991). 

Shared control means that the human and the automation work in a congruent 

collaboration simultaneously to achieve a single function (Sheridan, 1992). Two main 

types of shared control can be distinguished (Abbink et al., 2012): shared control 

involving a physically coupled interaction between an input device and vehicle or robot 

(called haptic shared control) and shared control involving a physically decoupled 

interaction (also called: blending, indirect, or input-mixing shared control). H-Mode is 

one example of a haptic shared control concept in driving inspired by the cooperation 

between rider and horse (Flemisch et al., 2014). The result of this approach is vehicle 

control on the stabilisation driving level in the form of a multi-modal combination of the 

driving automation system’s intent and driver input via an active interface and fluid 

transitions between two levels of automation: tight rein (assisted) and loose rein (highly 

automated) (Flemisch et al., 2014; Kienle et al., 2009). In principle, according to the 

design and effect space of shared control and human-machine cooperation 

conceptualised by Flemisch et al. (2019), shared control is also possible on the 

guidance and navigation level, e.g., by maneuver-based driver-vehicle cooperation 

(Franz et al., 2012; Kauer et al., 2010; Walch et al., 2016; 2019). In contrast to shared 

control, traded control means that either the driver or the automation is responsible for 

a function, and their role can occasionally alter in time (Sheridan, 1992). The LoA 
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combined with the ToA, and the LoDA, align with the concept of traded control but lack 

the concept of shared control. However, the LoDA only cover “who does what”, 

whereas the LoA and ToA also reveal “who does what and how”. One missing 

perspective is the adaptive function allocation, also called adaptive automation, 

enhancing a “when” (Inagaki, 2003). Adaptive function allocation is dynamic in nature 

but assumes explicit criteria to determine which functions should be reallocated, when, 

and how. The criteria involve various factors, such as environmental changes, task 

saturation of operators, and performance of operators (Inagaki, 2003).    

1.2 Why automated driving? 

Common reasons to automate a task or function formerly executed by a human 

can be found in the literature. These reasons can be classified into two main groups: 

typical reasons in practice and reasons related to a human factors perspective. 

According to Wickens et al. (2003), possible reasons from a human factors point could 

be: 

• when a task is dangerous, e.g., teleoperated robots can be used when 

operating in hazardous environments or with hazardous materials like locating 

land mines 

• when a task is impossible in the way that human capabilities are 

exceeded at both physiological and cognitive levels, e.g., disabled 

people/gravity conditions or complex mathematic calculations 

• when a task is tedious and thus a burden for the human operator, e.g., 

repetitive tasks like assembly line works or vigilant monitoring 

• when a task is error-prone, e.g., performing repetitive tasks under time 

pressure or stressors 

• to aid by combining human and machine strengths, e.g., using the HABA-

MABA (humans-are-better-at/machines-are-better-at) list by Fitts (1951) or its 

updated version by De Winter & Dodou (2014) 

Instead, typical reasons in practice are associated with technology-driven and 

economic reasons (Wickens et al., 2003), among others: 

• simply a solution to automate if technically feasible 

• efficiency and cost reduction by reducing human resources and 

increasing the production rate 
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• a reliable and repetitive output by eliminating human variability 

Unfortunately, the typical reasons in practice are usually preferred over the human 

factors-related reasons in an inappropriate proportion, which probably results in safety 

issues.  

In particular, the introduction of automated driving to road traffic is motivated by 

several expected, beneficial outcomes (Maurer et al., 2015; Watzenig & Horn, 2017b): 

First, traffic safety was improved by three major safety strategies, including 

engineering, enforcement, education (Hughes et al., 2016), and their intertwinings. 

However, over 1.2 million people die each year on the world’s roads, and between 20 

and 50 million suffer non-fatal injuries (World Health Organisation, 2020). These are 

still high numbers that need to be improved. The human in his role as a driver is 

frequently assumed as the leading cause of accidents, claiming that human error 

causes approximately 90% of road crashes, e.g., (Dingus et al., 2016; Hendricks et al., 

2001; Otte et al., 2009; Singh, 2015). Even though driver assistance systems have 

already mitigated human error (Golias et al., 2002), it is assumed that the automation 

of the driver’s tasks will alleviate it further still because primary causes of accidents, 

such as speeding, misjudgment of distances, or distraction (Dingus et al., 2016; Klauer 

et al., 2006; Reichart, 2000), may be eliminated. Second, the act of driving can induce 

stress (Matthews et al., 1996) and has been linked to adverse effects on the driver's 

well-being and mood, particularly during routine drives like commuting (Roberts et al., 

2011). Instances of frustration and aggression, commonly known as "road rage," can 

arise as a result (Dollard et al., 1939; Joint, 1995; Parker et al., 1998; Shinar, 1998). 

Automating this activity can potentially improve individuals' overall comfort and well-

being. Additionally, it would allow drivers to utilise their travel time more efficiently by 

engaging in non-driving-related tasks, such as reading, watching movies, sleeping, or 

using electronic devices like laptops, tablets, and phones (Feldhütter et al., 2016; Gold 

et al., 2016; Hecht et al., 2019). Apart from enhancing comfort, automated driving also 

aims to enhance the mobility of individuals with physical impairments and age-related 

mobility limitations, granting them independence and fostering inclusivity in their daily 

lives (Shergold et al., 2016). Third, as the capacity of the traffic system can only be 

expanded to a certain extent, increasing traffic efficiency and optimising capacity 

utilisation become crucial goals. Thus, automated and connected vehicles could help 

to achieve this goal by reducing speed variability, route planning according to the 
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current traffic, and more efficient driving (Friedrich, 2015; Tientrakool & Maxemchuk, 

2011; Wagner, 2015). Furthermore, fewer traffic jams through increased traffic flow 

could reduce fuel consumption (Khondaker & Kattan, 2015; Wu et al., 2011) and air 

pollution (Bose & Ioannou, 2001).  

Bengler et al. (2017) state that interdependencies between safety, efficiency, and 

comfort occur. For example, the increase in safety can also be based on the technical 

system's compliance with maximum speeds and speed-dependent minimum 

distances, which, however, can lead to a reduction in traffic flow in return (Shladover 

et al., 2012; Van Arem et al., 2006). However, Popiv et al. (2010) show that the driver 

can balance safety, efficiency, and comfort. Therefore, the positive expectations only 

represent potentials and hoped-for assumptions that must be explicitly demonstrated. 

1.3 Basic technology of automated driving 

The following briefly overviews the underlying technology and technical 

architecture of automated driving. A comprehensive description of the technical 

components of automated vehicles is beyond the scope of this thesis. Hence, a more 

detailed overview can be found, for example, in Watzenig & Horn (2017a), Winner et 

al. (2016), or Yeong et al. (2021). According to Velasco-Hernandez et al. (2020), in 

order to realise automated driving in road traffic, two main viewpoints can be 

considered: a technical perspective (see Figure 5), which incorporates the hardware 

and software components of the automated vehicle, and a functional perspective (see 

Figure 6), that describes the information processing stages as functional blocks and 

the flow of information from data collection to the control of the vehicle. 

 

Figure 5 Technical architecture for an automated driving system adapted by Velasco-Hernandez et al. (2020). 
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In the following, the technical view is described. The automated vehicle is 

equipped with several sensors used for internal and external monitoring to generate 

data as information. This information coming from the sensors is further gathered and 

processed by processing units. In addition to the data created by the vehicle, external 

data from the internet, other road users, or infrastructure are also available, known as 

vehicle-to-anything communication (V2X), expanding the coverage of vehicle sensors 

to exchange enhanced information. The hardware part also consists of the vehicle as 

a mobile platform and actuators. Finally, each hardware subsystem can exchange 

information through the internal networking interfaces. The software components 

include frameworks, libraries, and modules that support Machine Learning (ML), 

Artificial Intelligence (AI), and Deep Learning (DL) algorithms required for processing 

and understanding the data, drivers for data collection from the sensors, user 

interfacing (UI) and user experience (UX) through the infotainment system, and real-

time and critical software for controlling actuators and monitoring the status of the 

vehicle. The software parts are inherently complex, requiring software frameworks and 

standards to enable such systems' successful development, management, and 

deployment. One example of software guidelines and frameworks is the AUTomotive 

Open System ARchitecture, AUTOSAR (see Staron & Durisic, 2017). Velasco-

Hernandez et al. (2020) 

 

Figure 6 Functional architecture for an automated driving system adapted by Velasco-Hernandez et al. (2020). 

Regarding the functional view, four main functional blocks can be distinguished: 

perception, planning and decision, motion vehicle control, and system supervision. In 

the perception stage, data is received and fused from sensors or other sources, e.g., 
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maps, to represent the vehicle status and the environment, mainly used for localisation, 

mapping, and object detection. Typically, sensors are categorised into proprioceptive 

and exteroceptive sensors. Proprioceptive sensors (e.g., Global Navigation Satellite 

Systems (GNSS) or Inertial Measurement Units (IMUs) are used as vehicle state 

sensing to get position, movement, and odometry information of the platform. 

Additionally, in-vehicle sensors can be used to determine the driver's or passenger's 

status and intention. Instead, exteroceptive sensors (e.g., Radar (Radio detection and 

ranging), LiDARs (LIght Detection And Ranging), cameras, and ultrasonic) monitor the 

environment to obtain data, e.g., the terrain, the road layout, and external objects. 

Velasco-Hernandez et al. (2020)  

 

Figure 7 An example sensor configuration of an automated vehicle adapted from Aeberhard et al. (2015) and Wendt 
& Cook (2018). 

Figure 7 shows an exemplary exteroceptive sensor configuration of four different 

sensor types following the redundancy principle. This means that most areas are 

covered by multiple sensor types in order to ensure robust and reliable sensory data 

because no sensor type works well for all tasks in all conditions. In the following, the 

basic functioning and application of the different and most common sensor types are 

described:  

• Radar: Radar sensors operate on the principle of radiating 

electromagnetic waves, which are received as reflections by objects to establish 

a range information about target objects (Skolnik, 1962). In particular, the 

Doppler effect is used to determine the relative speed and relative position of 
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detected obstacles (Shahian Jahromi et al., 2019). Long-range systems 

(77GHz) and short-range systems (24GHz) can be differentiated. Overall, radar 

is independent of light and weather conditions. In particular, long-range radars 

can detect objects up to 250m with a small spread in very adverse conditions 

where no other sensor works (Marti et al., 2019). Instead, short-range radars 

have a lower range but a higher spread. Potential difficulties of radar sensors 

are the sensible target reflectivity due to the heterogeneous reflectivity of 

different materials (Marti et al., 2019). 

• LiDAR: These sensors are based on the principle of emitting pulses of 

infrared beams or laser light, which reflect off target objects (Li & Ibanez-

Guzman, 2020). This is used for estimating object distances at relatively low 

distances compared to Radar but also generating a 3D representation of the 

surroundings as a point cloud providing a 360-degree detailed and accurate 

image (Campbell et al., 2018). However, LiDAR sensors are challenged by 

small and specular objects and are affected by adverse weather conditions like 

rain and fog (Marti et al., 2019).  

• Camera: A camera works on the principle of detecting lights emitted from 

the surroundings on a photosensitive surface through a camera lens to create 

high-resolution images of the surroundings (Campbell et al., 2018). This 

enables the system, in addition to spatial and kinematic information, to identify 

semantic and qualitative information, e.g., road signs, traffic lights, road lane 

markings, gestures by humans, and shapes of other road users to distinguish, 

e.g., pedestrians, cyclists, motorcyclists, passenger car and trucks. Potential 

drawbacks are varying light and visibility conditions (Marti et al., 2019). In 

principle, monocular or binocular (stereo) cameras can be distinguished. When 

using stereo cameras, depth of field can be included. Infrared systems can be 

used for night vision (Punke et al., 2016).  

• Ultrasonic: These sensors use ultrasonic waves to calculate the distance 

between the vehicle and the object, typically placed around the vehicle, for a 

redundant detection of very close objects ranging from 50 to 400cm (Paulweber, 

2017). A typical application is assisted or autonomous valet parking.  

A more detailed review of the advantages, drawbacks, and challenges of sensor 

technologies in terms of exteroceptive perception can be found in Marti et al. (2019). 
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Based on the perception stage, the planning and decision stage derives a driving 

strategy as the best possible trajectory that moves the vehicle safely, efficiently, and 

comfortably based on the current traffic situation and the goals or travel mission, 

including long-term plans (navigation from place A to place B on a global journey map) 

and short-term plans (guidance from waypoint to waypoint on a dynamic local map). 

This stage also includes information on external sources like traffic rules, map updates, 

user interventions, or speed limits. Finally, the motion and vehicle control stage is about 

sending the trajectory as movement commands to the platform and actuators for 

execution, considering their characteristics and limitations. These commands are on a 

stabilisation level, e.g., longitudinal speed, steering, and braking. Another functional 

block is a supervision system that monitors all automation system components, i.e., 

the hardware and software. The task is to ensure as a safety-critical system that 

possible malfunctions of hardware or software components do not harm humans, 

vehicles, or the environment. This is, for example, addressed by ISO 26262:2018 as a 

standard for functional safety in road vehicles. Velasco-Hernandez et al. (2020) 

1.4 Idiosyncrasies of the safety argumentation of automated driving 

Three main safety strategies or tools, including engineering, enforcement, and 

education, can be applied to the traffic system components to enhance road safety. 

Engineering includes actions to prevent an accident (primary safety, e.g., ACC) or 

mitigate the severity of an accident (secondary safety, e.g., airbags). A distinction 

should be made between measures concerning the vehicle or the infrastructure (e.g., 

road layout or crash barriers). Enforcement is about informing traffic participants of 

compliance with traffic rules and punishing their violations. For example, radar controls 

are used for speed measurements, resulting in potential financial penalties or 

disqualification from driving. Education describes interventions (e.g., safety training or 

targeted public campaigns) to improve the knowledge of necessary rules and their 

respective context, assessing the traffic situation, and skills for passive and active 

traffic participation. (Bubb, 2015). 

These safety strategies were applied in the past to improve road safety. 

Consequently, traffic fatalities dropped from over 21,000 in 1970 to almost 3,000 a 

year today despite the huge increase in the number of motor vehicles registered in 

Germany (see Figure 8). Figure 8 illustrates the safety measures by the horizontal 

grey, blue, and green boxes, for example, the mandatory seat belt use in 1976, the 
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front airbag in 1980, and electronic stability control (ESC) in 1995. It should be noted 

that the statistics for Germany only exemplify the subsequent explanations and 

arguments. Hence, it is also relevant for the settings of other countries. Unfortunately, 

the number of fatalities has reached a low plateau since 2012. The current approach 

and the stated countermeasure to further decrease the fatalities lie in automating the 

driving task with the long-term goal of fully automated driving, thus eliminating the 

driver. This approach follows the safety strategy of engineering, specifically with the 

vehicle's primary safety. It can also be attributed to infrastructure if V2X communication 

is considered, which, however, is useless in mixed traffic, including, for example, 

vulnerable road users and vehicles with different automation levels.  

 

Figure 8. Drop in traffic fatalities (orange line) due to safety improvements (horizontal boxes) despite the increase 
in registered motor vehicles (blue line) in Germany. The safety improvements belong to other activities (grey), 
secondary safety (blue), and primary safety (green), according to Grabbe et al. (2020b). 

The argument for increased automation in the driving task is often accompanied 

by the reasoning that the human in her/his role as a driver and the main cause of 

accidents could be removed from the system. Consequently, the number of accidents 

would fall sharply, assuming that human error is entirely an inappropriate behavior on 

the driver's part and that technology is error-free (Noy et al., 2018). However, this 

thinking pattern represents a persistent oversimplification fallacy called substitution 

myth (Woods & Dekker, 2000; cf. Drösler, 1965). Here, the concept of cause falsely 

links the logic of a clear causal link (Bengler et al., 2017; Grabbe et al., 2020b): 

The driver causes an accident. 
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If the cause driver is removed, then the effect accident disappears. However, this 

cause-effect relationship only applies to mono-causal and resultant events (see Figure 

9). A road accident is a rare, poisson-distributed, multi-causal, and emergent event. 

Therefore, it is crucial to keep in mind that the driver is involved in a road traffic accident 

as one of several interacting factors (e.g., other road user, road layout, environment 

conditions, or vehicle components) and has not prevented this accident at the last 

moment (see Figure 9): 

The driver is involved in an accident in addition to other interdepending factors. 

If the driver is removed, the other factors still apply to the remaining participants 

and elements in the system. Removing the driver would eliminate the negative and 

positive contributions that the driver brings into traffic (see Figure 9). This results in a 

differentiated consideration of the mechanisms of accident development. Above all, 

this also addresses the mechanisms of accident prevention. In addition, the fact that 

not only is the driver removed from the system but is replaced by the introduction of an 

automated vehicle with currently unknown system consequences has to be 

considered. All in all, the driver is both an active or passive participant in an accident 

and an accident avoidance and compensation element in the same system (Bengler 

et al., 2017). 

 

Figure 9. Simplified scheme of cause-effect relationships distinguishing between mono-causal and multi-causal 
events applied to the road traffic system. 

Ultimately, the automation system must have acceptable performance in situations 

where the driver is error-prone, but especially in situations where the driver usually 
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performs well (Bengler et al., 2017). Therefore, recent accidents must be prevented, 

and no new accidents must be caused. There is no doubt that automation systems, 

which can compute fastly, consistently, and precisely, can eliminate accidents related 

to typical driver errors, such as speeding, misjudgment of distances, or distraction 

(Dingus et al., 2016; Klauer et al., 2006; Reichart, 2000). However, the current 

characteristic of drivers to adapt to changing system conditions to compensate for 

adverse road behaviors and conditions and to prevent accidents constitutes the more 

challenging task for automation. For example, the work of Reichart (2000) shows that 

human errors occur with very low probabilities of 10-3 to 10-4 in obscuring objects, 

interpretation, or steering errors. Moreover, based on the facts that drivers have a fatal 

accident every 90 million km, make 125 observations, and make 12 decisions on 

average per driven kilometre, Fastenmeier (2015) reasoned that a wrong driver 

decision leading to a fatal accident would be taken after about 10 billion observations 

and 1 billion decisions. Shladover & Nowakowski (2019) made similar calculations for 

road traffic in the USA. These numbers give an idea of the human's high performance 

in the driving task subtasks, demonstrating the huge challenge for automation to 

achieve or even exceed the human driving performance.  

In fact, it is not clear that HAD will ever be safer than an experienced middle-aged 

driver representing the baseline (Sivak & Schoettle, 2015) as neither eliminating driver 

errors necessarily eliminate other factors contributing to accidents (Noy et al., 2018) 

nor automation systems are undoubtedly safe and reliable (Martens & van den Beukel, 

2013; Schoettle & Sivak, 2015). Thus, it is claimed that fully automated vehicles may 

never operate at acceptable levels. Hence, automation should be used on specific 

routes, under specific conditions, and for target applications (Kyriakidis et al., 2019). 

Nevertheless, it is certain that the attribution of driver, vehicle, and environmental 

causes will significantly change (Noy et al., 2018). Thus, probably not the frequency of 

accidents but rather the quality of accidents and their black spots will alter because 

human accidents will be partly prevented (Gasser et al., 2012). However, new 

automation risks arise, and the distribution of different severity classes is unknown 

(Wachenfeld & Winner, 2016). Additionally, accidents are assumed to be emergent 

features of the road system, which is why accidents will inherently occur even without 

driver involvement (Bengler et al., 2017). Further, it is almost neglected that every 

scenario offers different potentials for automation as accident black spots (Maier, 2013; 

Gründl, 2005) can show, and drivers benefit unequally from automation and deal with 
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potential side effects of automation in various ways as accident-prone drivers indicate 

(Das et al., 2015; Visser et al., 2007). 

As we have previously seen, the expected safety benefits of automated vehicles 

are highly questionable. When not considering the safety aspect of automated vehicles 

from a more differentiated view, i.e., a more human-centric as well as systemic 

perspective, adverse automation surprises, as happened in other domains such as 

aviation, e.g., (Billings, 1993; Stanton & Marsden, 1996; Wiener & Curry, 1980), will 

probably occur due to safety blind spots (Noy et al., 2018) and could ultimately develop 

into a “showstopper”. The safety blind spots mainly constitute ironies and pitfalls of 

automation, acceptance issues from different stakeholders and ethical considerations, 

and a systemic consideration of automated vehicles in the context of socio-technical 

systems (STSs) or even in a cyber-physical world. These safety blind spots are 

explained in the following.  

Ironies and pitfalls of automation can be seen as unintended system 

consequences of introducing automation. This manifests in the phenomenon that the 

demands on the driver are exaggerated rather than decreasing or resolving driver 

workload and vigilance. This is due to the paradox that the more advanced an 

automation system is (except full automation), the more crucial may be the role of the 

driver because routine tasks that the driver accomplishes typically well are automated, 

but the complex and challenging tasks are still left over to the driver. Several papers 

addressed these ironies and pitfalls (e.g., Bainbridge, 1983; Hancock, 2019; Fitts, 

1951). As the driver is still needed, e.g., for supervision and as a fallback, technological 

changes lead to dynamics and adaptations by the driver collaborating with automation. 

This may result in negative side-effects, such as risk adaptation in the form of risk or 

task difficulty homeostasis (Wilde, 1982; Fuller, 2005), automation surprises (e.g., 

Sarter et al., 1997), or the out‐of‐the‐loop performance problem (e.g., Endsley & Kiris, 

1995) resulting in deskilling due to a lack of practice (e.g., Wiener & Curry, 1980), loss 

of situational awareness and mode confusion (e.g., Sarter & Woods, 1995; Wickens, 

1995), complacency or overtrust and mistrust leading to misuse/abuse and disuse 

(e.g., Lee & See, 2004; Parasuraman & Riley, 1997), and vigilance problems or 

boredom leading to frequent non-driving-related activity engagement which in turn 

causes distraction (e.g., Carsten et al., 2012; Saffarian et al., 2012). 

In addition, the acceptance of automated vehicles in public transport by different 

stakeholders is a critical element in the form of a risk-benefit relationship (Starr, 1969) 
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to define an acceptable level of risk or safety (e.g., Liu et al., 2019; Shariff et al., 2021). 

This results in a social risk constellation as different groups like decision-makers, 

regulators, politicians, drivers/passengers, and other road users are affected and profit 

differently from automated driving. Overall, an active and passive confrontation with 

risks have to be distinguished (Grunwald, 2016): active users as drivers/passengers 

who can decide whether or not to take the risk arising from automated vehicles, and 

passive road users are exposed to risks that they cannot avoid or only avoid with 

considerable effort and drawbacks. Active users will have a higher risk level than 

passive road users as they have higher exposure as long as the number of automated 

vehicles is low. However, they probably benefit most from a functionality perspective 

(Wachenfeld, 2017). In addition to benefits and risks, acceptance also depends on 

people's values, which are influenced by, e.g., age, gender, or culture. Furthermore, a 

particular concern in terms of acceptance is ethical trade-offs. An issue is an algorithm 

deciding between affecting the passenger or others when facing an inevitable crash. 

This is generally defined as the trolley problem (Foot, 1967) or, more specifically, 

labeled as a social dilemma of AVs (Bonnefon et al., 2016). For example, in 2017 and 

2020, the German Ethics Commission for Automated and Connected Driving and the 

EU Commission Expert Group, respectively, released 20 ethical guidelines (Bonnefon 

et al., 2020; Di Fabio et al., 2017) which serve as a guidance for basic ethical behavior 

of AVs. In order to make this debate more specific, Bonnefon et al. (2019) transformed 

the trolley problem into a statistical thought experiment adopting the theory ethics of 

risk. Building on this, Geisslinger et al. (2021; 2023) presented an ethical trajectory 

planning of AVs based on a risk-cost function. The aforementioned social risk 

constellation must be considered in this calculation process in the future.  

Ultimately, current safety analyses primarily focus on the automated vehicle itself. 

However, Grabbe et al. (2020b) argue to broaden the focus more on a systemic level 

and view automated vehicles in an integrated STS or even within a cyber-physical 

world (Noy et al., 2018). In this context, the automated vehicle is just one element 

interacting with various elements in the entire system, influencing overall performance. 

For example, research by Preuk et al. (2016) and Ma & Zhang (2022) implies that in 

mixed traffic, manual drivers adapt their driving behaviour when encountering 

automated vehicles because those vehicles do not behave like regular drivers. For 

instance, drivers show more aggressive behaviour as bullying HAVs (Liu et al., 2020), 

exploit the HAV's defensive programming in time-critical situations (Trende et al., 
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2019), or accept shorter headway gaps for increased HAV penetration levels (Chityala 

et al., 2020). Safety is thus an emergent and complex system property resulting from 

the interactions among system components (Leveson, 2011) rather than the individual 

performance of system components following the traditional reductionist approach. 

These two fundamental concepts concerning safety are explained in more detail in 

Sections 2.5 and  3. 

This systemic view can help identify potential conflicts in the flow of interactions 

and analyse trade-offs to reveal unforeseen adverse consequences to optimise the 

overall system design. According to Noy et al. (2018), the safety of automated vehicles 

is not just about the driver, designing the human-machine interface, and the driving 

task itself, it is more about all people in the system, creating value and the right level 

of trust and acceptance, and mobility within a cyber-physical world, respectively.  

1.5  Thesis Outline 

Sections 5 - 8 are based on a publication. They are attached in their original format in 

the Appendix B-E of this thesis. 

As previously indicated, the safety of automated vehicles is controversial, and no 

proof of HAD has yet been provided. Therefore, Section 2 describes the challenges to 

assessing the safety of HAD. It begins with presenting the current test concept in 

automotive and shows HAD's differences and unique features. Further, the resulting 

approval trap (Winner, 2016) and associated common approaches to solving this 

problem are explained. Finally, a naive fallacy in these common approaches is pointed 

out, and a new perspective on safety, almost neglected, is presented. 

Section 3 illustrates the historical development of the scientific study of safety and 

risk following different “ages”. This overview synthesises the evolution from traditional 

reductionist reasoning towards a complexity‐oriented systemic approach based on 

resilience engineering.  

Section 4 presents the research goals and questions that result from the new 

perspective regarding the safety assessment of automated vehicles. In addition, a 

structural overview of the research process is given, and how the objectives and 

research questions are answered in the publications and beyond. 

Section 5 introduces the need for a systems approach, with particular attention to 

Safety-II, to address the safety assessment of automated driving. Especially the 
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application of the functional resonance analysis method (FRAM, Hollnagel, 2012a)  is 

discussed in a case study. 

Section 6 addresses the scenario-based approach to overcome the approval trap 

by focusing on road safety mechanisms to facilitate the reduction of relevant scenarios 

for testing. Relevant scenarios are deduced based on reasonable criteria for scenario 

selection, classified in an abstract form, and presented using a systemic analysis 

method.  

Section 7 analyses the contribution of automated driving to road traffic safety 

compared to a driver in an overtaking manoeuvre on a rural road using FRAM. 

Therefore, an in‐depth instantiated FRAM model was developed and enhanced by a 

semi‐quantitative approach combined with a Space‐Time/Agency framework. Finally, 

general and specific system design recommendations and essential insights for the 

validation process are given.  

Section 8 provides a formal approach to achieve and demonstrate the reliability 

and validity of an instantiated FRAM model. In particular, the predictive validity of the 

former developed FRAM model and its applicability are evaluated to assess the 

performance and value of the FRAM method with regard to the safety assessment of 

automated driving. 

Section 9 revisits the research findings of Sections 7 and 8 using a pure function-

based validation approach differentiating instantiations to get an enhanced 

comprehension with regard to the FRAM model's credibility and to identify enhanced 

patterns that can be used for system improvement. 

Finally, the main results and conclusions, including limitations, recommendations, 

and future research, are discussed in Section 10. In particular, the individual research 

results are discussed on an abstract level across three dimensions: system design and 

validation, method evaluation, and industrial application. The main goal is to elucidate 

the potential benefit of FRAM and its reasoning for enhancing road safety in the context 

of automated vehicle introduction.
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2 Safety Assessment C allenges of Automated  ri ing 

 

“We cannot solve problems by using the same kind of thinking we used when we 

created them." 

– Albert Einstein – 

 

In general, the transition of a technical system from the development phase to 

serial production requires the release of this system (Felkai & Beiderwieden, 2011). 

The release only takes place when this technical system fulfils the previously defined 

requirements. In particular, the safety of people in road traffic must be met, the increase 

of which is one of the major drivers of vehicle automation. This results in the minimum 

requirement that the proposed long-term substitution of drivers in road traffic by 

automation does not reduce road safety. This objective should apply to the occupants 

and the entire transport system in which the automated vehicle operates. However, 

these requirements pose a great challenge with regard to the proof of safety for HAD. 

Why this is the case is discussed in the following subsections. 

First, the current test concept and its premises for the argumentation of a safety 

validation are presented. Then, the differences and peculiarities caused by HAD are 

shown, which makes the current test concept unusable. Consequently, this results in 

the so-called approval trap, which is explained in more detail. Afterwards, common 

approaches to solve this problem are presented. Finally, a fallacy in all these common 

approaches is pointed out, and a new perspective on safety, almost neglected, is 

presented. 

2.1 Current test concepts in the automotive industry 

The following contents in Subsections 2.1 to 2.3 are essentially based on the 

statements of Wachenfeld & Winner (2016).  

Current systems in serial production can be assigned to LoDA 0 to 2. In all these 

systems, the release concept is based on controllability by the driver: either to enable 

the driver to control the system or to restore controllability for her/him. According to 

ISO 26262:2018, controllability refers to the entire automation system-driver-

environment interaction comprising: 
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• normal system use within system limits,  

• usage at and beyond exceeding system limits,  

• and usage during and after a system failure. 

 

The driver as the fallback level is thus the basis for approving current vehicles. It 

must also be shown that the vehicle components do not exceed a specified maximum 

failure rate. The development and proof of the controllability for the driver are carried 

out according to the V-model (see Figure 10), whereby a distinction is made between 

the left descending branch of product development and the right ascending branch of 

verification and validation as a means of quality assurance. (cf. Wachenfeld & Winner, 

2016) For quality assurance, a test concept is followed, which, according to Schuldt et 

al. (2013), includes the analysis of the test object, the test case generation, the test 

execution, and the test evaluation. The analysis and test case generation are carried 

out in the product development phase, whereas test execution and evaluation take 

place in the validation phase. 

 

Figure 10. The current process of the development and proof of safety in a V-Model based on Weitzel et al. (2014), 
adapted from Wachenfeld & Winner (2016). 

Early in the development process, tests are carried out in virtual test environments 

in previously defined test cases (e.g., software-in-the-loop). The further the 

development progresses, the more real components can be tested (e.g., hardware-in-

the-loop, driver-in-the-loop, or vehicle-in-the-loop). However, simulation models are 
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still needed to test the entire vehicle system. Ultimately, these simulation models 

always represent a simplification of reality and cannot fully reproduce it. For this 

reason, current systems are always tested with real vehicles, people, and 

environments at the end of product development. This procedure follows a track 

distance and statistical approach covering a required test distance under 

representative conditions in real traffic without accidents. (cf. Wachenfeld & Winner, 

2016) For example, using real driving required a total of 36 million test kilometres 

before the Mercedes Benz E-Class (W212) was released (Daimer AG, 2009). 

According to Fach et al. (2010), the release of a current driver assistance system alone 

requires up to two million test kilometers. These examples show that even for current 

driver assistance systems, approval based on real driving in road traffic represents an 

economic challenge, growing given the increasing automation and variety of functions. 

2.2 Special features of highly automated driving 

As already described above, the focus for the approval of current systems is on 

the vehicle and especially its controllability by the driver. In the combined 

representation of the three-level model for human target-oriented behavior based on 

Rasmussen (1983) and the three-level hierarchy of the driving task based on Donges 

(2015) in Figure 11, this approval corresponds to the elements highlighted in blue. The 

vehicle and its behaviour in longitudinal and lateral directions are tested; however, not 

the behaviour or the abilities of the future driver, but only the possibility for the test 

driver to control the vehicle in the test cases by steering and acceleration interventions. 

Therefore, the blue box only slightly cuts the area that represents the driver. 

Additionally assumed, but not tested, is the reliability of the driver. 

For HAD, the driver's skills are no longer required, and she/he no longer functions 

as a fallback level. Automation takes over the driving task, i.e., navigation, guidance, 

and stabilisation. The previously assumed and untested reliability of the driver 

disappears, is replaced by automation, and must be tested for the automated system. 

When proving the autonomous system, safety results only from the technically 

automated system and the vehicle (orange box of Figure 11). It can be seen that, 

compared to current systems, both the number of tasks in the form of more ODDs and 

the quality of tasks (in addition to stabilising tasks, there are also tasks in guidance, 

navigation, and independent monitoring) increase. (cf. Wachenfeld & Winner, 2016)  
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Figure 11. Three-level model for human target-oriented behavior based on Rasmussen (1983) and the three-level 
hierarchy of the driving task based on Donges (2015), adapted from Wachenfeld & Winner (2016). 

Thus, function of HAD as a test object differs fundamentally from current road 

vehicles. The test concept consisting of test case generation and test execution, as 

mentioned previously, no longer applies directly to HAD, as described below. First, the 

test case generation is based on the assumption of the driver's driving capability. 

Whether a driver can control the test object is linked to the legally required driving 

licence. According to the Road Traffic Act (§ 2 Abs. 2 StVG), this driver’s license is 

only issued if the applicant, among other things: 

• has attained a minimum age, 

• is suitable for driving a motor vehicle (§ 2 Abs. 4 StVG), meaning to fulfill 

necessary physical and mental requirements as well as compliance with traffic 

regulations or criminal laws, 

• has received training, 

• and has passed theoretical and practical tests. 

Due to these requirements, test case generation is limited to test cases, assuming 

that if the test driver is able to cope with these exemplary situations, any other driver 

with a driving license will also be able to cope with the other untested relevant 

situations in the field. These include situations in which the driver is driving manually 

and in which the driver monitors and overtakes direct control of the system if 

necessary. Thus, the test cases, in combination with the driver's license test, provide 

a metric that allows us to conclude regarding the safety of the driver-vehicle system. 

(Wachenfeld & Winner, 2016) 
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Due to the omission of the driver, the currently accepted metric is no longer 

applicable for HAD, and thus, the reduction of test cases is no longer permitted. 

Instead, the test case generation for HAD must cover the driving skills that the driver 

has previously brought into the driver-vehicle system. These capabilities are fulfilled 

by the human, among other things, by the fact that she/he: 

• has experienced hundreds of thousands of kilometres as a road user,  

• has experienced social behaviour as part of society,  

• has learned cognitive skills  

• and has trained sensorimotor skills. 

This means that the driver does not only acquire her/his driving ability with the 

driving licence and its underlying tests, but it represents a complex process of different 

experiences and acquired knowledge in society since birth. Therefore, it is impossible 

to introduce a simple driving licence for automation as the performance of the driving 

task is a complex construct. In fact, we have to measure the entire performance of the 

automation system in terms of the three simplified information processing stages in 

relation to the driving task (Winner, 2016): perception, cognition, and action. 

Unfortunately, no valid metric or method has been proven so far. Thus, the commonly 

accepted metric and the reduction of test cases are invalid. (Wachenfeld & Winner, 

2016) 

Secondly, as mentioned in Subsection 2.1, in terms of test execution, real driving 

is currently the most crucial method for release due to validity and economic feasibility. 

In addition, a test driver is available for driving on public roads to drive or monitor the 

vehicle in every situation according to the task of the vehicle user. In terms of HAD, 

using the test driver would not be a real component of the vehicle as the driver does 

not have to supervise or intervene anymore. (cf. Wachenfeld & Winner, 2016) 

Therefore, in addition to the test case generation, the current test execution is not 

directly transferable to HAD. 

2.3 Current approval trap  

Despite the differences between partial automation and HAD regarding safety 

approval shown above, the current test concept could still be theoretically retained. 

Therefore, after theoretical and statistical considerations, Wachenfeld & Winner (2016) 

have shown what this means for HAD. They conclude that, for example, for a motorway 
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pilot without reducing the test cases, 6.62 billion test kilometres without an accident 

occurrence would have to be completed on the public motorway to provide statistical 

proof of safety through real driving. This is economically and practically not feasible for 

HAD. Thus, the release becomes a great challenge or the so-called approval trap for 

HAD (Wachenfeld & Winner, 2016) because the release of serial production of 

prototypes cannot take place. Thus, a broad use of HAD in public road traffic is not 

achieved (see Figure 12). Additionally, other factors can increase the number of test 

kilometers. For example, a system variation would lead to the test kilometres being 

driven again. Winner (2016) details how the different parameters such as area of 

application, type of accident consequences, cause of an accident, and comparison 

vehicles affect the necessary kilometres determined.  

 

Figure 12. Visualisation of the approval trap. 

Finally, the test dilemma can only be overcome by significantly shortening the 

required driving distance when still using the current approach or using a completely 

new approach and perspective. Thus, new test methods and approaches have to be 

developed. (Winner, 2016) 

2.4 Common approaches to overcome the approval trap  

In general, safety is commonly defined as the freedom from unacceptable risks 

and dangers in the change of location of persons or material assets (traffic objects) 

that are transported, for example, utilising transportation from A to B. This includes the 

transport infrastructure and transport organisation. (Schnieder & Schnieder, 2013, p. 

74) A basic distinction has to be made between two points of view in terms of safety 

(Schnieder & Schnieder, 2013, p. 67): 

• protection of the environment from system impacts, which is referred to 

as safety 
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• protecting a system from external influences, which is called security 

Currently, the automotive industry addresses safety mainly by the safety of the 

intended functionality (SOTIF; ISO 21448:2022), functional safety (ISO 26262:2018), 

and security (e.g., cyber attacks) based on the SAE J3061 (2016). This thesis only 

deals with the aspect of safety and not security. SOTIF ensures an intended function 

by preventing hazards due to functional deficiencies in the absence of technical system 

failures (ISO 21448:2022). The intended function is related to the object and event 

detection and response (OEDR), including monitoring the driving environment and 

executing an appropriate response to objects and events in a specific ODD. In contrast, 

functional safety ensures that the intended function does not induce further hazards 

caused by technical malfunctions due to random or systematic faults in the system’s 

hardware or software (ISO 26262:2018).  

Two primary methodologies have to be distinguished for designing and assessing 

the functional safety- and SOTIF-related capabilities of automated vehicles: risk 

identification and evaluation methods which serve to deliver system requirements and 

system design recommendations, ensuring a system is as safe as possible and safety 

validation methods to prove that the safety requirements are actually fulfilled (see 

Figure 10). Both types of methodologies contribute to the safety of automated vehicles. 

However, the approval trap primarily arises due to an unsolved safety approval 

belonging to safety validation methods focused in the following. Research, e.g., in the 

form of frameworks and toolchains such as developed in PEGASUS (German 

Aerospace Center [DLR]) and VVM (VVM consortium), standardisation like the UL 

4600 (Koopmann, 2022), and a code of practice created in L3Pilot (Cao et al., 2022), 

is being carried out around a combination of various existing methods enabling the 

soundest evidence concerning safety in order to overcome the approval issue.  

In the following, based on Riedmaier et al. (2020) and Junietz et al. (2018), a brief 

overview of frequently suggested or used validation methods is given, which can be 

differentiated into macroscopic and microscopic assessment, i.e., a statistical 

statement about the overall system effect or evaluations of individual scenarios, 

respectively, as defined by (Junietz, 2019) (see Figure 13):  

• Formal verification: formal proof on an abstract mathematical model of 

the system depending on assumptions and formalised rules that have to hold 
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true. Currently, this approach lacks scalability for complex systems. (e.g., 

Shalev-Shwartz et al., 2017) 

• Performance metric: the basic idea is to define a performance metric, i.e., 

a quantitative measurement of the extent of a property a system has. Therefore, 

Winner (2016) suggests defining a metric that compares the general driving task 

performance between drivers and automation, distinguishing the perception-, 

cognition-, and action performance. Currently, how to construct and 

operationalise such a metric is unknown, especially due to the cognitive 

processes. (Winner, 2016) 

• Traffic simulation-based: shifting the safety assessment from the real 

world into traffic simulation of the whole road network with hundreds of road 

users (so-called agents) increases the validation efficiency, assuming that the 

simulation model is valid to represent the real world but is quite challenging.  

(e.g., Kitajima et al., 2019; Roesener et al., 2018) 

• Shadow mode: running an automated driving function passively in the 

background of a manually driven vehicle. The function is provided with sensory 

inputs but cannot access the vehicle actuators. Ultimately, the function’s 

decisions are evaluated. One major disadvantage is that the behavior of the 

other interacting road users is unrealistic, as the automation can decide 

differently than the driver. Thus, other road users would have acted differently 

than the actual behavior, resulting in other interactions. (Wang & Winner, 2019) 

• Staged introduction and decomposition: the concept is to limit the ODD 

and thus reduce the validation effort by real-world testing to an economically 

feasible way and then gradually increase the ODD and only validate the new 

ODD-related functions following the principle of functional decomposition. 

(Amersbach & Winner, 2019; Wachenfeld, 2017) 

• Real-world testing: as represented by the approval-trap, real-world 

testing is not feasible. However, the extreme value theory can be used to apply 

surrogate metrics like time-to-collision (TTC), which can be extrapolated to 

predict rare events such as an accident. The assumption is that critical events, 

i.e., incidents, happen more frequently, reducing required data collection milage 

and that the incidents’ frequency can point to the likelihood of an accident. (e.g., 

Asljung et al., 2017) 
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• Function-based: specific system functions are tested in a few fixed and 

limited tests on a test track or in a simulation. A pre-requirement is the definition 

of system functionalities, which is impossible for every possible situation due to 

the open parameter space for HAD comprising an inherent uncertainty. (e.g., 

UN ECE R131, 2013)  

• Scenario-based: the aim is to reduce the test scope by only addressing 

relevant scenarios based on critical events. However, the challenge is defining 

a representative but efficient set of scenarios. Two different selection processes 

that follow the ground scientific reasoning principles of induction and deduction 

can be differentiated: testing-based to cover the parameter space with finite test 

cases or falsification-based by focusing on challenging edge cases to find 

counterexamples. Even if all test cases are successfully passed, and no 

counterexamples can be found, safety still cannot be guaranteed entirely 

because both procedures are microscopic assessments, and conclusions 

cannot be drawn for the entire system. Thus, an additional macroscopic 

assessment method, e.g., formal verification, can be used. (e.g., Riedmaier et 

al., 2020)  

 

Figure 13. Overview of safety validation approaches frequently suggested or used in automotive, adapted by 
Riedmaier et al. (2020).  

According to Junietz et al. (2018), the mentioned validation methods differ in three 

basic dimensions: the object under test (OuT), meaning what is tested; the stimulus 

used to trigger a reaction of the OuT, meaning how it is tested; and the assessment 

criterion defining how is assessed. For example, the methods have differences in the 

                 
          

                      

                  

                 

                
     

           

                 

             

                                



SAFETY ASSESSMENT CHALLENGES OF AUTOMATED DRIVING 

33 

abstraction level in which parts of the system are evaluated, in the accuracy level to 

represent the real world and entities, and in the direct or indirect (surrogate) 

measurement of the interested aspect.  

Nevertheless, every approach faces disadvantages, which is why a combination 

of different approaches is recommended to decrease the residual risk to an acceptable 

level (Junietz et al., 2018), e.g., the integration of the scenario-based approach with 

the formal verification seems to be promising (Riedmaier et al., 2018).  

2.5 The naive fallacy and a new perspective  

Traditionally, road safety issues are addressed by adopting a deterministic and 

reductionist approach which involves decomposing the system into its component 

parts, examining the parts and improving their performance in isolation, and 

reintroducing them back into the system (Read et al., 2017). This approach produced 

successful measures resulting in positive outcomes (see Figure 8). However, only 

parts of the road system were improved, not considering the inherent complexity of the 

system or the full range of factors shaping the behaviour (e.g., Cornelissen et al., 2015; 

Larsson et al., 2010; Salmon et al., 2012; Salmon & Lenne, 2015) to understand how 

these parts interact together and how the entire system works (Read et al., 2017). The 

safety trends are plateauing as the traditional approach reaches its effectiveness limit 

(Salmon et al., 2017). Therefore, a shift to address road safety issues by a systems 

thinking approach is needed (e.g., Hughes et al., 2015; Larsson et al., 2010) to 

understand that supposed causes like driver errors, in fact, mostly represent the effects 

of system-wide issues as symptoms, rather than the primary cause of accidents (Read 

et al., 2017).  

These two contrasting safety approaches can also be related to the historical 

development of the scientific study of safety, pointing out two fundamental concepts 

concerning safety: safety-I and safety-II (Hollnagel, 2014). Safety-I is described as a 

situation where as few things as possible go wrong. The common assumptions are 

(Hollnagel, 2019b): 

• the system can be decomposed into meaningful elements 

• the function of each element is bimodal (true/false, work/fail); success 

and failure are seen as separate states due to system functioning (work-as-

imagined) and malfunctioning (non-compliance error) 
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• the failure probability of elements can be analysed individually 

• the order of events is deterministic 

• systems are well-designed, and designers have anticipated every 

contingency and thus provided complete, correct, and appropriate response 

measures  

• operators behave as expected and have been trained to 

This point of view assumes that adverse outcomes are caused by technical, 

human, or organisational failures and malfunctions, which must be eliminated or 

prevented by proper barriers. The human is seen as a liability, and performance 

variability should be prevented. This perspective evolved in the 1920s when systems 

were loosely coupled, linear, and stable, and system functions were easy to 

understand and well-understood (Hollnagel, 2014). However, most current systems 

are tightly coupled, increasingly non-linear, less stable, and system functions are hard 

to understand due to their complexity. Those systems are intractable, and outcomes 

cannot be totally controlled or predicted. Thus, the perspective changed to safety-II. 

Safety-II is seen as a situation where as many things as possible go right. The purpose 

is to understand how things usually go right to explain how things rarely go wrong. This 

perspective regards humans as an inevitable resource for system flexibility and 

resilience, whereby performance variability should be monitored and managed. The 

basic assumptions are (Hollnagel, 2019b): 

• systems cannot be understood by decomposing them 

• functions are not bimodal; in fact, performance is always variable 

• this performance variability is a source of success as well as failure 

• the functions must be flexible to fit the conditions, which is noticeable as 

work-as-done instead of work-as-imagined 

• most events emerge due to complex interactions among system 

elements and their interdependent performance variabilities and rarely result 

from clear cause-effect relationships 

As we can see, the analyzed system's characteristics and the analysis's 

granularity level are essential when choosing approaches or methods to manage 

safety issues. Salmon et al. (2012) concluded that the road system, which connects 

technical, psychological, and social elements to transport people and goods from one 
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place to another, is of a socio-technical nature. Additionally, these authors 

demonstrated that the road traffic system is complex based on the prerequisite 

properties of complexity presented by Dekker et al. (2011). Consequently, the road 

transport system is a complex STS. It thus could be embedded in the systemic 

quadrant of the system interaction-coupling matrix adapted from Perrow (1984) when 

combined with the accident analysis methods classification by Wienen et al. (2017) 

(see Figure 14). This assignment implies that systemic methods are best suited to 

represent safety assessments in road traffic in general. It should be noted that the 

assignment of systems as well as model categories is rather notional than such distinct 

in reality depending on the changing operating conditions of a respective system, 

which is why the respective placements are debatable as no reliable and valid 

measurement of the dimensions exists (Perrow, 1984). For example, Hollnagel & 

Speziali (2008) applied the assignment slightly differently, positioning epidemiological 

methods differently.  

 

Figure 14. System interaction-coupling matrix combined with accident analysis methods classification and 
assignment of several systems, especially the road system, adapted from Perrow (1984), Wienen et al. (2017, p. 
22), and Grabbe et al. (2020b). 

A critical perspective on the two safety views in relation to automated driving and 

road safety unveils one interesting fact: the point of view of safety-I supports the 

argumentation of the substitution of the driver by automation, and on the opposite, the 
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point of view of safety-II argues in favour that the driver is still necessary for at least 

some situations due to system flexibility and that current automated systems probably 

are not able to cope with this flexibility (cf. De Winter and Hancock, 2015) in any 

situation. This indicates that the common motivation of full automation and the 

associated goal of increased traffic safety is essentially safety-I driven, and the safety-

II perspective is almost neglected. In fact, this is also reflected in the aforementioned 

definition of traffic safety in Section 2.4, which is largely safety-I oriented.  

In particular, the common approaches to overcome the approval trap, presented 

in Section 2.4, have in common that they still follow the traditional reductionist 

approach and a safety-I perspective because they only shift and optimise rather than 

solve the problem. This is consistent with the insight by Salmon et al. (2012) that the 

whole approach to understanding and enhancing behaviour and safety in road 

transport is entrenched within the reductionist philosophy as the mainstream 

reasoning. This also aligns with Zhang et al. (2021), who recognised that functional 

safety by ISO 262622:2018 and SOTIF by ISO 21448:2022 are logically rooted in a 

Newtonian mechanistic world and do not include systemic techniques. For example, 

the underlying processes are built upon the assumption that the system is completely 

specifiable and methods predominantly used for risk assessment like the failure mode 

and effects analysis (FMEA, Kirwan and Ainsworth, 1992) and failure or event tree 

analysis (FTA, Watson, 1961) rely upon the reductionist causality credo based on the 

event chain model of failure development (Leveson, 2011; Thomas et al., 2015). Even 

though a systemic method by the system-theoretic process analysis (STPA, Leveson 

& Thomas, 2018) based on systems-theoretic accident model and processes (STAMP, 

Leveson, 2004) was added as a tool to the ISO 26262:2018 in recent years, this 

method still mainly follows a safety-I thinking as it is based on control theory and not 

complexity theory (Grabbe et al., 2020b). Ultimately, Zhang et al. (2021) criticise that 

the current methodologies used in automotive safety evaluations lack the 

understanding of human-automation interactions claiming to promote system-thinking 

tools from the human factors discipline which acknowledge that road traffic is a 

complex STS that shapes the behaviour of drivers and other road users (Lintern, 2020). 

Even the standards by the International Organisation for Standardisation (ISO) related 

to the area of risk analysis and risk management in general do not fit to identify risks 

arising from complex interactions and emergent behaviour (Björnsdottir et al., 2022). 
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It can be argued that all approaches to overcome the approval trap commonly 

following the safety-I perspective only evolutionarily optimise the problem but do not 

completely solve the problem in the sense of a revolution because they are rooted in 

a naive fallacy. This means that potential solutions addressing the approval trap follow 

the same kind of thinking that already created the approval trap. In other words, the 

problem has to be thought of differently by finding the right problem rather than creating 

the right solutions for the wrong problem. The naive fallacy can be seen as an 

enhancement of the oversimplification fallacy mentioned in Section 1.4. This 

phenomenon is also in line with Hollnagel’s (2019a, last slide) general statement 

regarding safety management that “it is an unavoidable dilemma that we inadvertently 

create the challenges of tomorrow by trying to solve the problems of today with the 

mindset (models, theories & methods) of yesterday”. 

Here comes the safety-II perspective and the systemic approach into play. Their 

application seems urgently required (Grabbe et al., 2020a, b; Papadimitriou et al., 

2022). Apparently, there is no “one‐size‐fits‐all” solution to safety, especially for 

complex and dynamic STSs. Thus, overall, we need combinations of different views, 

approaches, and measures, including the use of safety‐I and safety‐II in a 

complementary manner. However, a significant perspective, that is a complexity‐

oriented holistic approach based on resilience engineering (RE) (Hollnagel et al., 2006) 

which considers interactions, processes, and patterns within a complex system that 

form the adaptive capacity to be resilient, is currently lacking and inevitable as a 

fundamental basis for the safety assessment of automated driving. This potentially 

helps to reveal hidden risks or safety blind spots of automated driving in relation to the 

overall traffic system performance. In particular, this approach could be the answer to 

the outstanding issue of what can be opposed to the previous thinking in terms of the 

bimodality “right or wrong” (Winner, 2016) to overcome the approval-trap and the 

statistical approach which is based on track distance that currently focuses only on the 

counting of rare, adverse events. 
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3 Systems   inking  ersus Reductionism 

 

“94% of problems in business are systems driven by only 6% are people driven.” 

– W. Edwards Deming – 

 

As we have seen above, the safety assessment of automated driving can benefit 

from a systemic approach based on RE. Therefore, this chapter provides a solid 

foundation about the historical development of the scientific study of safety due to 

changes in the nature of systems, illustrating the transition from newtonian 

reductionism towards systems thinking and today’s RE.  

3.1 Traditional risk and safety management: Newtonian 

reductionism 

Newtonian logic or reductionism (Dekker, 2011) allows describing any 

phenomenon by decomposing systems down to their component parts and their 

analysis, assuming that the overall system behaviour can be fully understood if the 

individual components can be understood taken separately (Walker et al., 2010). This 

follows reductionism and a mechanistic functioning of the world (Heylighen, 1989) 

which is strongly rooted in Western culture (Hollnagel, 2012a; Sacks et al., 2014): see, 

for example, Leucippus of Miletus (c.480–c.420 BC) – a greek physicist and 

philosopher who developed the atomic theory – who said: “nothing happens in vain, 

but everything from reason and by necessity“ (cf. Taylor, 1999). This is similar to 

Newton's third law of motion, saying “action equals reaction”. For safety and risk 

management, this reasoning implies thinking in bimodality which is about the 

functioning and non-functioning of a system as a result of functioning and non-

functioning states of its individual parts, claiming that acceptable and unacceptable 

outcomes happen due to distinct modes of functioning (Braithwaite et al., 2015). 

Accidents occur as a result of one or more failures in various components, such as 

machine malfunctions, human errors, or non-compliance with procedures. The 

Newtonian approach to explaining accidents adheres to a causality credo, examining 

linear cause-and-effect relationships that underlie an accident. It assumes that every 

phenomenon arises from deterministic and identifiable causes, leading to definitive and 

identifiable effects, such as A causing B. This framework allows for identifying a causal 
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chain that can be traced back to a root cause responsible for an adverse event. 

Consequently, in reactive risk assessments like accident analyses, the critical task is 

to identify these root causes and eliminate or prevent them to avoid similar adverse 

events occurring in the future. Likewise, in proactive risk assessments, it becomes 

possible to predict outcomes with absolute certainty and accuracy by understanding 

the system's initial conditions, enabling anticipation of future adverse events with 

harmful consequences. 

3.2 The three ages of the scientific study of safety 

Reductionism’s legacy became pervasive in traditional safety science in the sense 

that newtonian reasoning is equated with the scientific study of safety (Patriarca, 

2017). It can be seen as the underlying foundation for initial activities concerning safety 

and risk in the early 1900s, summarised as scientific management by Taylor (1911), 

including, e.g., the systematical recording of accidents and providing workers with 

protection from equipment in order to improve the working places and their 

environment. As the reductionist approach may have been adequate for the systems 

that existed at the time, i.e., simple and closed systems (Dekker, 2011), it has become 

more and more inadequate over time until today for present systems due to changes 

in the characteristics of the systems (Leveson, 2011). This is reflected in the historical 

development of the scientific study of safety, where many different models, methods, 

and paradigms evolved, as Dekker's (2019) comprehensive overview of the theoretical 

foundations of safety science has shown.  

According to Hale & Hovden (1998), three common “ages” can be separated 

where each theory’s, method’s, or model’s perspective on safety and risk corresponds 

to one more or less. Notably, these different perspectives supplement, rather than 

substitute, each other (Hovden et al., 2010). The first age of technology covers the 

period from the early 1900s up to the Second World War, involving technical measures 

to prevent the occurrence of technical and mechanical breakdowns. Then, the second 

age of human factors integrated the impact of human performance, mainly considered 

as a limitation in safety and risk management. Lastly, up from the 1990s, the age of 

safety management, coping with complex STSs, arose acknowledging systems’ 

complexity by shifting away from an exclusive focus on individual error towards the role 

of multiple actors on all levels of a system and understanding complex system success 

and failure as emergent properties of interdependent system elements shaped by 
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socio-technical factors. These ages can also be partly mapped to the three types of 

accident models proposed by Hollnagel (2002): sequential, epidemiological, and 

systemic analysis techniques. As shown in Figure 15, sequential techniques are by far 

the oldest, while systemic approaches only appeared 20 years ago. Another 

classification option for the accident analysis and risk assessment methods is to break 

these down into technical, human factors, organisational and systemic methods 

(Eurocontrol, 2009), see Figure 15.  

 

Figure 15. Overview of the development of common accident analysis techniques and important accident analysis 
and risk assessment methods adapted from Underwood (2013, pp. 18-19, 27) and Eurocontrol (2009), adapted 
from Grabbe et al. (2020b). 

The basic principles of the sequential, epidemiological, and systemic analysis 

methods are shown below. Sequential accident models describe the accident as 

resulting from a chain of discrete events occurring in a particular time sequence. Here, 

losses are caused by technical failures or human error, assuming that the cause‐and‐

effect relationship is linear and deterministic (Qureshi, 2007). These methods follow 

the Domino Theory introduced by Heinrich (1941), including, among others, the FTA 

and FMEA. In the mid-1980s, further factors or conditions and explanations were 

needed to understand the disaster at the Chernobyl nuclear power plant or the loss of 

the space shuttle Challenger. Thus, the focus changed from human factor to 

organisation leading to epidemiological techniques (Hollnagel, 2012a). New concepts 

and theories, such as Reason's (1990) swiss cheese model or the cognitive reliability 

and error analysis method (CREAM) of Hollnagel (1998), were thus developed to 

explain accidents as a result of a combination of different interacting, active and latent 

factors on different hierarchical levels (Qureshi, 2007). This improved the 
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understanding of accidents regarding complexity. However, the focus was primarily on 

the “sharp end” factors (Dallat et al., 2017), and the causality is still linear with links 

between states that are loosely coupled, which does not adequately represent the 

dynamics of a system (Hollnagel, 2004). Thus, systemic models arose, seeing the 

accident process as a complex and interwoven event that cannot be broken down into 

individual parts (Wienen et al., 2017) and rather analysing interactions within the whole 

system. New accident models had to be developed based on system theory (Leveson, 

2004). The most widely-used systemic models are Leveson's (2004) STAMP and 

Hollnagel's (2004) first proposal of the functional resonance accident model (FRAM) 

and later adapted to the functional resonance analysis method (Hollnagel, 2012a). 

As the historical development of safety management illustrates, humans have an 

intrinsic desire to understand the world around them to satisfy their need for certainty 

and to feel in control, which is accomplished by using theories, models, principles, and 

methods which must be in accordance with reality. These concepts have changed over 

time as the world is not constant and stable but rather dynamic. At first, this progress 

was slow, not posing a problem, but since the 1950s, the changes have been rapidly 

speeding up, so humans can no longer keep pace. This is because we build larger and 

larger systems following the credo for faster, better, and cheaper systems, resulting in 

complex STSs where the assumptions of reductionism or safety-I are increasingly less 

representative of understanding them. (Hollnagel, 2012a)  

This led to systems theory trying to understand the behaviour of STSs and their 

inherent complexity. Before introducing the concept of systems theory, further attention 

has to be devoted to STSs and complexity, which represent the core features of 

systems thinking.  

3.3 Features of socio-technical systems and complexity 

Socio-technical systems theory appeared in the 1950s when Trist & Bamforth 

(1951) argued to focus on optimising both technical work processes and the social 

systems operating within the work environment to improve organisational performance. 

An STS comprises interconnected social and technical elements that mutually 

influence each other, either directly or indirectly, to sustain their functioning and ensure 

the system's continued existence to achieve its objectives. In addition, these elements 

are affected by environmental conditions, which they impact in return (Pasmore et al., 

1982). Figure 16 schematically depicts the features of an STS. The social system 
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consists of human beings who work in the organisation at different levels and the 

relationships among them. The technical system comprises technological artefacts 

designed to transform inputs into outputs in a task-based manner. The 

interdependencies are as follows: occupational roles indicate the relationship between 

people and tasks; the organisation defines work processes of how technology is used 

to produce outputs, while specifying procedures of how a task should be performed; 

artefacts are related to the skills and capabilities of people. Moreover, the social system 

affects the technical sub-system based on allocated resources, determined goals, 

cognitive capabilities, and work constraints. The technical system influences the social 

sub-system through technological functionalities, capabilities, and constraints. Both 

systems are constrained by the environment, e.g., through the operation conditions, or 

influence the environment. It should be noted that STSs progressively include 

interconnected cyber-technical artefacts, thus becoming cyber-socio-technical 

systems (CSTSs) (Patriarca et al., 2021). However, in this thesis, the term STS is used 

more broadly, where artefacts can be both physical-technical and cyber-technical. 

 

Figure 16. Schematic representation of a socio-technical system, adapted from Patriarca (2017) based on Bostrom 
& Heinen (1977) and Di Maio (2014). 
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The interaction of these social and technical elements comprises partly linear 

cause-effect relationships and partly non-linear and complex ones creating emergent 

behaviour leading to successful or unsuccessful system performance (Walker et al., 

2009). A key tenet for safe and efficient performance in STSs is the adaptive capacity 

(Read et al., 2017) which is primarily achieved by joint optimisation (Emery, 1972) in 

the sense of coagency in a joint cognitive system (JCS) (Hollnagel & Woods, 2005) 

taking into account the functional entanglement of the two sub-systems as opposed to 

the isolated optimisation of technical and social elements. Underpinned by systems 

theory, STSs align with open-systems principles formulated by Skyttner (2001) mainly 

based on von Bertalanffy’s (1950) work regarding the general systems theory. 

According to Underwood (2013), the open-systems principles can be differentiated into 

three groups: system structure, system component relationships, and system 

behaviour (see Figure 17).  

 

Figure 17. Overview of open-systems principles by Skyttner (2001), adapted from Underwood (2013). 

Systems comprise sub-systems nested within one another, also called system of 

systems (Von Bertalanffy, 1968), following a hierarchical structure. The sub-systems 

are formed to perform specific functions, known as differentiation. In order to specify a 

system’s hierarchy, the boundary of a system has to be determined, i.e., distinguishing 

between what is part of the system and part of the environment (Vicente, 1999). 
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System components are interrelated and interdependent, meaning that one 

component influences the other parts or is affected by them directly or indirectly. 

Therefore, the interaction of system components produces emergent, rather than 

resultant, properties. Hence, the whole is more than the sum of its parts. Consequently, 

a system must be studied holistically and not analysing the parts in isolation. Inputs 

are received from the environment and transformed into outputs transferred to the 

environment to achieve the system's goals. The system behaves as goal-seeking as 

the interactions result in some goals, a final state, or some equilibrium to be 

approached. To obtain these desired goals, the interrelated components must be 

regulated through control and feedback loops in an adaptive way where the 

transformation processes are adjusted to fit the input-output relation. The system's 

level of entropy, i.e., the disorder or randomness in a system, tends to increase without 

intervention. These former principles result in dynamic system behaviour that can 

achieve a goal from various initial starting conditions (equifinality), or systems can 

produce a range of outputs or different and mutually exclusive objectives from the 

same initial starting point (multifinality).  

A particular challenge of STSs is to comprehend the inherent complexity arising 

from the interactions between multiple system artefacts and social agents distributed 

in time and space while engaged together to ensure the system's goals (Harvey & 

Stanton, 2014). Following a broader perspective, STSs can be seen as a special case 

of a complex adaptive system in which the structural and dynamic properties adaptively 

adjust in response to internal and external perturbations (Miller & Page, 2007). Here, 

complexity theory needs to be applied to understand how STSs function in order to 

develop design changes that might improve their functioning (Pavard & Dugdale, 

2006). In general, the word complex comes from the Latin complexus which means 

“what is woven together”. Research on complexity has in common to be interested in 

systems where multiple interacting and intertwined elements create hardly-identifiable 

patterns to which they are able to adapt or react, causing non-linear and unpredictable 

propagations through the system (Arthur, 1999). These complex interactions may lead 

to dynamic events characterised by processes that vary asymmetrically and irregularly 

with non-trivial functioning principles rather than controlled by simple cause-effect 

relationships (Feltovich et al., 2004).  

In an epistemological view, an important distinction has to be made between 

“complicated” and “complex” systems (Dekker et al., 2013). Both systems have in 
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common to comprise a multitude of interacting components, but that is where their 

commonality ends (Cilliers, 1998; Heylighen et al., 2007). According to Dekker et al. 

(2013), complicated systems are ultimately knowably affording a complete, exhaustive 

description by a set of rules that can fully capture their workings in a linear way. This 

makes complicated systems predictable and controllable, similar to a machine. The 

whole is equal to the sum of its parts. For example, a jet airliner or a passenger car are 

complicated systems. They contain thousands of mechanical parts, and understanding 

how they work might be difficult for a single person; nevertheless, they are 

understandable and describable in principle (Dekker et al., 2011). In contrast, complex 

systems are neither fully knowable with the impossibility of attaining a complete, 

exhaustive description (Cilliers, 2002) nor a set of rules can be defined that can fully 

capture their functioning due to intractability (Page, 2008). The whole is more than the 

sum of its parts. Complex systems are open systems changing in interaction with their 

environment, where complexity emerges from a network of local interactions. This 

means that each component has a limited horizon concerning the consequences of 

their local behaviour up to the level of global system behaviour, resulting in the 

phenomenon that any agent’s action controls very little but influences almost 

everything (Dekker et al., 2013). Hence, looking at micro-macro connections, local 

behaviour can produce global effects which are unpredictable at a local level (Dekker 

et al., 2008). Thus, more than one description of complex systems is always possible 

and even necessary due to dynamic, unpredictable, and multidimensional problems - 

no intelligent designer or governor has overall control over any non-trivial complex STS 

(Dekker et al., 2013). Returning to the above example of the passenger car, identified 

as a complicated system, and deciding to perform some maintenance on that vehicle, 

we create a new system, “ vehicle maintenance,” which becomes complex. The reason 

is that technical elements are interrelated to human, social, and organisational parts 

(e.g., policies, procedures, culture), where the system is opened to influences beyond 

engineering specifications and reliability predictions (Dekker et al., 2011).  

Adapted from Goldratt (2008), the differences between complicated and complex 

can be schematically described as the following (see Figure 18): system A, whose fixed 

and actual couplings make it a complicated system (under the hypothesis that no more 

hidden links are present among the system’s components); and system B, whose 

complexity is defined by multiple degrees of freedom illustrated through both potential 

couplings between system’s components and hidden couplings between known 
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system’s components or unknown components in the system or environment. Even if 

the formerly mentioned hypothesis is not verified, system A is less complex than 

system B because some degrees of freedom of system A are constrained. In system 

A, outcomes are resultant due to clear causality where causes are as real as the effect. 

Instead, in system B, outcomes are emergent due to transient combinations of 

conditions only present at a particular point in space and time, making causes elusive 

rather than real (Hollnagel, 2012a).  

 

Figure 18. Complicated system A versus complex system B, adapted from Goldratt (2008).  

Complexity is difficult to define (Cilliers, 1998), and various authors have outlined 

characteristics present in complex systems (Cilliers, 1998; Holland, 2014; Skyttner, 

2001; Von Bertalanffy, 1968). However, a complex system is more defined by its 

relationships than by its constituent parts because many components are connected 

by non-obvious relationships, which makes up complexity (Hollnagel, 2012b). 

Furthermore, Rasmussen (1979) acknowledges that complexity is not considered a 

thing per se, rather, it is a situation to be investigated. The implication for safety 

management is thus that safety in complex systems is not a permanent property of 

what a system has but rather what it does, i.e., a dynamic non-event (Hollnagel, 2014). 

Nevertheless, it is possible to define a set – not necessarily complete and unique – of 

common characteristics of the complexity of interest for driving in the road system 

(Salmon et al., 2012) analysed in this thesis (Cilliers, 1998):  

• complex systems are open systems in that they are open to influences 

from the environment in which they operate and also influence the environment 

in return  
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• each system’s component is ignorant of the system's behavior as a whole 

and does not comprehend their actions’ effects on the behaviour of the overall 

system 

• it is the system that is complex rather than the components themselves, 

meaning that the system as a whole exhibits emergent properties that none of 

the components have, e.g., in a simplified view - only the combination of a 

vehicle, driver, and road can drive from A to B but not the parts itself  

• components must continuously make inputs to keep the system 

functioning, which is why complex systems are dynamic and do not operate in 

a state of equilibrium  

• complex systems have a history or path dependence manifesting in the 

influence of previous decisions and actions on the present time  

• interactions in complex systems have recurrent loops, meaning that the 

effect of activities can feed back onto itself, directly or indirectly, which results 

in positive (amplifying) or negative (dampening) feedback loops 

• interactions within complex systems are non-linear, characterised by an 

asymmetry between input and output, which is why small events can result in 

large effects or vice versa 

3.4 Modern risk and safety management: Systems theory and 

resilience engineering 

The term systems thinking describes a way of thinking about the reality based on 

systems theory aiming to understand and improve the performance and safety of 

systems and their surrounding environment humans are living in (Kim, 1999). It is a 

philosophy responding to the limitation of a reductionist and mechanistic ideology to 

comprehend social, socio-technical, and biological phenomena (Skyttner, 2005) by 

acknowledging the features of STSs and their inherent complexity, as mentioned 

above. In a nutshell, systems thinking looks at relationships, interactions, processes, 

patterns, dynamics, context, and the whole rather than isolated and decomposed parts, 

structures, outcomes, and statics. This requires multiple and different perspectives 

rather than a single one. The systems theory approach started to emerge from the 

1950s onwards, by contributions of several researchers, for example, von Bertalanffy 

(1965), Wiener (1965), Ackoff (1971) or Checkland (1981), to deal with the increased 
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complexity of the systems being built after world war II. However, von Bertalanffy is 

credited as the founder and pioneer of the entire systems thinking approach of what 

he called general systems theory (Leveson & Thomas, 2018). Some unique aspects 

of systems theory are: 

• The focus is on the whole, i.e., the system, and not on its parts individually 

(e.g., Ottino, 2003). Here, a system can be viewed as a differentiated group of 

interacting elements jointly forming a complex and unified whole in the form of 

patterns that produce a behaviour to accomplish a specific purpose (Meadows, 

2008).   

• System properties like safety are not constant or resultant (Carayon et 

al., 2015). In fact, they are emergent, continuously arising from non-linear 

relationships among multiple parts of the system (e.g., Rasmussen, 1997; 

Leveson, 2004), which is defined by how the elements interact and fit together 

(Ackoff, 1971). 

Therefore, a system state of safety cannot be achieved by studying the 

components taken separately, so optimisation of individual parts will not generally lead 

to system optimum. In fact, it may even worsen the system performance due to 

unintended and unexpected side-effects arising from complex and non-linear 

interactions, a phenomenon - “never change a running system” - which often has 

proven to be true over the long term (Leveson, 2002). Instead, a safe state is the 

emergent result of complex system flows from agents adapting their functioning to 

cope with changing conditions (Dekker, 2011; Dekker et al., 2011). For example, 

advanced driver assistance systems (ADASs) (e.g., ACC or LKA) are assumed to have 

a vast potential to improve road safety (Golias et al., 2002). However, individuals 

usually adjust their behaviour (e.g., increasing driving speeds, reducing the distance 

to a lead vehicle, paying less attention to the driving task) in response to changes in 

perceived risk due to the introduction of supporting technology which describes a 

phenomenon commonly known as risk compensation/risk homeostasis (e.g., Wilde, 

1982; Fuller, 2005) or behavioural adaptation (OECD, 1990). That is also the reason 

why past success does not guarantee future success, as every system is unique and 

requires renewed evaluation of the whole system after the introduction of new 

elements, such as automation, because an evaluation just on the new sub-system level 

is not sufficient as other established sub-systems can change their behaviour. In 
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addition, the obtuse introduction of automation makes a system more complex and 

intractable, leading to increased adaptations by people, leading to more unintended 

consequences and, in turn, even higher demand for automation, etc. – a circulus 

vitiosus (Hollnagel, 2016). Overall, the agents made local adjustments in their activities 

based on limited knowledge and resources to deal with the current situation, which can 

generate an unforeseen system evolution over time under normal or abnormal 

circumstances (Cooke & Rohleder, 2006). Thus, normal as well as adverse events 

emerge from the interdependencies among performance adjustments, which usually 

go well but rarely can fail, following normal functioning under normal circumstances 

(Pidgeon, 2010). For these reasons, the system properties have to be examined in a 

synthesised view, considering the multidimensional relationships between elements 

and the system in its entirety on a global level. Thus, it is commonly stated: “the whole 

is not the sum of its parts, it is the product of their interactions” (Awal street journal).  

Various systems-based safety and risk management models have emerged over 

the past three decades (e.g., Hollnagel, 2004; Leveson, 2004; Rasmussen, 1997; 

Svedung & Rasmussen, 2002), which can be summarised based on a common set of 

systems thinking tenets (Grant et al., 2018) including 15 characteristics of complex 

work systems that are assumed to generate both safe and unsafe performance. 

Rasmussen’s risk management framework is one popular systems theory-based 

model that started to be applied in road safety research (e.g., Newnam & Goode, 2015; 

Salmon et al., 2013; Scott-Parker et al., 2015; Young & Salmon, 2015). This framework 

describes a system as different hierarchical levels (e.g., government, regulators, 

company, management, staff, and work/activity), where each organisational level 

contains actors (individuals, organisations, or technology) contributing to production 

and safety management (see Figure 19).  

Safety is seen as a control problem of hazardous processes where control is 

imposed on many levels, from the operational to the managerial (Leveson, 2002). For 

systems to function safely, a control-feedback loop is required where on the one hand, 

decisions at higher levels propagate top-down in the form of laws, rules, and 

instructions to be reflected in the decisions and actions at the lower levels, and on the 

other hand information at the lower levels is transferred bottom-up through 

observations, reports, and reviews to inform about the system status influencing the 

decisions and actions taken at the higher levels (Salmon et al., 2012). This vertical 

integration rather than horizontal orientation supports a system to control the 
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processes it is designed to control (Rasmussen, 1997). The framework argues that 

decisions and actions at all system levels interact, shaping the system's performance. 

A key implication is that accidents are caused by multiple contributing factors, not just 

a single factor at the sharp end (e.g., an individual operator to be blamed) but multiple 

factors also involving the blunt end (e.g., managers or engineers). Accordingly, front-

line workers in an accident usually represent symptoms rather than root causes, 

meaning latent failures at the blunt end are revealed by active failures at the sharp 

end. Thus, in most cases, it can be argued that the operator, immediate to the adverse 

event, as the final entity of different factors, could not prevent the accident. Therefore, 

Leveson (2004) claimed that the management's commitment to safety through a basic 

safety culture in the organisation is the crucial factor in the occurrence of accidents.  

 

Figure 19. Rasmussen’s risk management framework adapted for road systems, adapted from Rasmussen (1997) 
and Read et al. (2017). 

In addition, Rasmussen (1997) created the dynamic safety model (see Figure 20), 

arguing that work activities at all system levels are shaped by different objectives and 

constraints which actors must consider for successful work performance by adapting 

their behaviour which finally leads to a natural migration of activities over time toward 

the boundary of acceptable performance. The different targets and constraints (e.g., 
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workload, cost-effectiveness, and safety represented as an “effort gradient”, “efficiency 

gradient,” or “safety counter gradient”, respectively) define a “space of possibilities” in 

which individual actors navigate by resolving many degrees of freedom adjusting their 

performance. In addition, the objective and constraints are dynamic, so the space of 

possibilities continuously changes, making the required adjustments intractable.  

 

Figure 20. Rasmussen’s dynamic safety model, where the performance is migrating or drifting toward the boundary 
of acceptable performance, adapted from Rasmussen (1997) and Salmon et al. (2012). 

In terms of road safety, this modelling approach is also related to the concept of 

“space of safe driving” by Gibson & Crooks (1938) or its revisited conceptual framework 

by Papakostopoulos et al. (2017). The performance adjustments are, among other 

external and internal performance shaping factors (Eurocontrol, 2009; Miller & Swain, 

1987), conceptually guided by the principle of Efficiency-Thoroughness Trade-off 

(ETTO) (Hollnagel, 2009a). One explanation for these trade-offs is compensation, 

which means the need to absorb the effects of the everyday performance variabilities 

made by the system's remaining actors (Hollnagel, 2012a p.31). The local variations 

induced by situational conditions show a great performance variability calling in mind 

“brownian movements of the molecules of a gas” (Rasmussen, 1997). Hollnagel (2004) 

emphasises that these variabilities are quite normal, especially locally, rather than 

inherently bad or abnormal. In fact, they are necessary for a system to match current 

demands and resources, which are dynamic and not entirely predictable, to fulfill its 

purpose. Unfortunately, under certain conditions, these variabilities can rarely evolve 

in a manner that leads to a crossed functional safety boundary, which is irreversible, 
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and an error or accident might occur. The real, functional safety boundary is dynamic 

and invisible, resulting in a flexible error margin that makes it challenging to operate at 

the limits of safe states or acceptable performance.  

Like Rasmussen’s work, Dekker (2011) proposed the drift into failure model, 

describing how multiple decisions and actions over time in different dimensions with 

limited knowledge of system-wide effects gradually shift the complex system 

performance, often unnoticed, towards harmed safety or adverse events. According to 

Rasmussen (1997), accidents are typically “waiting of release”. This means that a 

stage of accidental course is being set through time by routine activities in the daily 

work context where a normal variation in behaviour then might release the accident. 

That is the reason why the traditional approach explaining accidents as deterministic 

cause-effect relationships in terms of events or errors is not expedient to design 

improved systems because avoiding supposed root-causes, such as individual 

behaviour deviations, by additional safety measures would likely release an accident 

by another cause at another point in time and space (Rasmussen, 1997). Similarly, 

Perrow (1984) argues that accidents are inevitable and unavoidable in highly complex 

systems, calling it the “normal accident theory”. In line with that, Rasmussen (1997) 

claimed that for a general understanding of system behaviour, we do not have to focus 

on structural decomposition but rather on functional abstraction and mechanisms 

shaping the behaviour in the system embedded in the actual, dynamic work context 

within the degrees of freedom.  

However, safety management usually takes a retrospective approach focusing 

only on adverse events like accidents. In particular, accident investigations suffer a 

“hindsight bias” by knowing all consequences and thus more than the actual actors 

involved in the accident, which leads to looking at certain things and limiting an open 

mind during the analysis (Lundberg et al., 2009). This reasoning is associated with the 

so-called What-You-Look-For-Is-What-You-Find (WYLFIWYF) principle (Hollnagel, 

2008), leading to the What-You-Find-Is-What-You-Fix (WYFIWYF) principle (Lundberg 

et al., 2009). Hence, causes are not found but rather constructed and selected (Dekker 

et al., 2011) following the credo to control behaviour by tackling deviations from 

prescribed instructions or plans (Rasmussen, 1997), also called work-as-imagined 

(WAI) (cf. Dekker, 2006; Ombredane & Faverge, 1955) which is inherently flawed. 

Instead, the focus should be to understand why a specific action or decision taken at 

a particular space-time continuum made sense to the person who has taken this action 
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or decision (Dekker et al., 2011) acknowledging work-as-done (WAD) (cf. Dekker, 

2006; Ombredane & Faverge, 1955) affected by inevitable performance adjustments 

due to the complexity and then helping people to develop skills for coping with 

processes within or at boundaries (Rasmussen, 1997). The most closest “truth” about 

an accident may only become visible by considering multiple narratives from different 

perspectives rather than a single one (Dekker et al., 2011).  

This relates to the concept of resilience, which has been defined as “the intrinsic 

ability of a system to adjust its functioning prior to, during, or following changes and 

disturbances to continue working in the face of continuous stresses or major mishaps” 

(Hollnagel et al., 2006; Nemeth et al., 2008). Hence, RE, since the first Resilience 

Engineering Association (REA) symposium held in 2004 (Dekker, 2006), constitutes a 

paradigm shift in safety management by focusing on “guided adaptability” (Cook et al., 

1998; Hollnagel, 2014) in contrast to “centralised control” (Provan et al., 2017). The 

concept of adaptation is based on four cornerstones: responding (knowing what to do), 

monitoring (knowing what to look for), anticipating (knowing what to expect), and 

learning (knowing what has happened) (Hollnagel, 2009b). Furthermore, RE provides 

means to manage risks proactively (Woods, 2003) and thus enhance the system’s 

capability to cope with complexity due to balancing productivity with safety in everyday 

work in response to normal and abnormal operating conditions (Dekker et al., 2008; 

Hollnagel, 2006a).  

 

Figure 21. The set of possible outcomes adapted from Eurocontrol (2009). 

RE is based on the purpose and assumptions of safety-II, as mentioned in Section 

2.5. Hence, safety becomes a positive and productive meaning covering the whole set 
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of outcomes distinguishing between the two dimensions of predictability and outcome 

ranging from low to high and negative to positive, respectively (Eurocontrol, 2009) (see 

Figure 21). Moreover, the database, which we can learn from, is much broader when 

assuming a normal distribution of outcomes (Shorrock, 2022) (see Figure 22Figure 21). 

However, the distribution may vary (e.g., skew or kurtosis) due to different conditions 

and changes over time, but only with a marginal decrease of data related to everyday 

performance (Shorrock, 2022). According to Hollnagel (2014), it makes more sense to 

analyse small but frequent events (everyday performance) instead of large but rare 

events (accidents) because the former are easier to understand and manage and also 

have more impact on the safety of the overall system. It must be emphasised that bad 

and exceptional performance are not opposites but rather closely related (Shorrock, 

2022). In terms of the dynamic safety model, this means that, in case of exceptional 

performance, the operating state is close to the boundary of acceptable performance 

but still within the safe space of operation, i.e., normal everyday performance. When 

crossing the boundary of acceptable performance, the outcome becomes bad 

performance showing up as a near miss or incident, ultimately resulting in accidents 

when crossing the functional safety boundary.  

 

Figure 22. The theoretical normal distribution of outcomes/performances adapted from Shorrock (2022). 

As we can see, RE aims to comprehend why a system mostly works in order to 

understand how it can rarely fail. In order to achieve this, the focus is to fully understand 

the adaptive capacity of the qualities of mechanisms enhancing the system’s resilience 

(Patriarca, 2017). Ultimately, RE may play a pivotal role in an era of increasingly more 

complex systems (Patriarca, 2017).  
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4 Researc  Objecti e 

 

“Successful problem solving requires finding the right solution to the right problem. 

We fail more often because we solve the wrong problem than because we get the 

wrong solution to the right problem.” 

– Russel Ackoff – 

4.1 Problem definition and objective 

Automated driving promises great possibilities for traffic safety advancement. 

However, as we have seen in the previous sections, the safety of automated vehicles 

is the subject of controversial discussion, and no safety proof of HAD has yet been 

provided due to challenges in the approval process resulting in the approval trap 

(Winner, 2016). Therefore, new test methods and risk evaluation methods must be 

developed. However, as previously indicated, the commonly used methods heavily rely 

on reductionist and mechanistic reasoning, which are limited useful and increasingly 

inadequate to assess the safety of HAD in road traffic. Rather a systemic and 

complexity-oriented, holistic approach must also be applied, which is almost neglected. 

In particular, a more differentiated view is lacking that tries to understand the inherent 

adaptation processes in complex STSs, i.e., the road traffic system. This view also 

requires improving the safety of the entire road system by focusing on the efficient 

interaction between humans, machines, and other road users (Bengler et al., 2017). 

Overall, the processes in the road system leading to accident development and 

accident avoidance have to be differentiated, including the interdependencies between 

each element in the system. According to Rasmussen (1997) and Patriarca (2017), 

this belongs to the comprehension of the mechanisms characterised by adaptive 

capacity in the system which shapes the behaviour to create resilience. However, as 

the word “mechanism” could be misleading as implying a newtonian, mechanistic 

reasoning which represents a paradox to the safety argumentation and goal of this 

thesis, it should be replaced by the word “pattern”.  

Patterns represent how sharp-end, as well as blunt-end agents, adapt their 

behaviour to cope with the complexity of the work (Eurocontrol, 2021a; Hollnagel & 

Woods, 1983), i.e., how activities or functions in a system are carried out (Shorrock, 

2016). To express it more formally, a pattern captures a set of relationships between 
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elements where the pattern emerges from these interactions representing emergent 

properties not present in the elements (Eurocontrol, 2021b). If we recognise and 

understand those patterns, we can use them to understand what happens and 

anticipate what may happen in the future (Hollnagel, 2016). In general, adaptations 

make a system function but hide its weaknesses, so they are often overseen 

(Eurocontrol, 2021b). This leads to the distinction between strong and weak signals 

(Eurocontrol, 2021a). Strong signals are distinctive and well-defined events such as 

incidents or accidents which are difficult to miss as they are clearly visible as a signal 

located significantly above a detection threshold. In contrast, weak signals seem to be 

disconnected pieces of information comprising small, subliminal events that usually 

keep unreported and recurrent performance patterns over time, e.g., habits, routines, 

and trade-offs, usually resulting in expected outcomes but seldomly unwanted 

outcomes. This is similar to the dynamic non-events that are the foundation of reliable 

performance (Weick, 2011). A key insight by the “pattern-centered inquiry” from 

Alexander et al. (1977) is that a pattern is rather general but expressed in many 

different situations and settings, meaning that if the weaknesses in a system, revealed 

by pattern identification, are correctly addressed through system design measures, 

then a huge positive impact on the system performance can be expected. In particular, 

RE is based on the pattern approach by identifying how adaptations in a system work 

and what drives these adaptation processes (Patterson et al., 2007) in order to develop 

empirical patterns of adaptive behaviour (see, e.g., Woods, 2019; Woods & Branlat, 

2017).  

In formal terms, this approach refers to the data, information, knowledge, and 

wisdom (DIKW)-pyramid for knowledge management (Ackoff, 1989) (see Figure 23). 

This framework represents a hierarchy of knowledge gain starting from data collection 

and then enriching data with context, meaning, and insight so that data is converted 

upwards into information, knowledge, and wisdom. Each level is a step forward in 

understanding and connectedness, which supports decision-makers to make better 

decisions, e.g., in safety management to enhance safety. At the bottom level of 

knowledge management, the analysis takes place by decomposing systems into 

separated parts characterised through hindsight. In contrast, at the top level, a 

synthesised view is taken by holistic studying of joint systems, which is then used 

proactively for the future. Wisdom can only be reached by increasing pattern 

identification. This means that fragmented knowledge, evolved by conversions of tacit 
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and explicit knowledge in the form of socialisation, externalisation, combination, and 

internalisation (SECI-model) (Nonaka et al., 2000), is elicited, jointly studied and 

combined into a multifaceted perspective to capture nuances of work that guides 

system improvements and redesigns (Eurocontrol, 2022). 

 

Figure 23. The DIKW-pyramid for knowledge management adapted from Ackoff (1989), Cannas et al. (2019), 
Eurocontrol (2022), and Flood et al. (2016). 

Ultimately, the word “pattern” can be used more broadly, including mechanisms 

and emergentisms, which Walker et al. (2009) argued are contributing both to an STS's 

performance. A mechanism can be defined as a process or system of elements 

interacting in a fixed, predictable way following linear cause-effect relationships 

resulting in a resultant behaviour. In contrast, emergentisms represent the opposite 

and are defined in this thesis as a pattern or system of elements interacting in a 

complex and dynamic way following non-linear and elusive cause-effect relationships 

resulting in emergent behaviour. In particular, the emergentisms in road traffic are in 

focus as they represent the added value that is currently lacking compared to 

mechanisms analysed by the traditional approaches, such as Heinrich’s domino 

model, Ishikawa diagrams, Reason’s swiss cheese model, and Leveson’s STAMP.  
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4.2 Research questions, assumptions, and further outline 

Therefore, the final aim of this thesis is to create a differentiated understanding of 

the patterns in road traffic leading to accident development and accident avoidance 

(see Figure 24). This goal will be exemplified by one scenario to demonstrate the 

methodological approach on a small-scale, which has to be applied on a large-scale in 

the future. Based on this, the contribution of both the driver and the automation to the 

system performance can be assessed to derive design recommendations for the 

system and validation process within one scenario, especially in terms of safety-II. 

Before these patterns can be identified, first, a suitable method, i.e., FRAM, has to be 

identified and methodologically evaluated, which can reveal patterns assessing road 

safety related to human and automated driving, and second, reasonable test scenarios 

have to be defined for the safety assessment of automated driving in which FRAM 

should be applied. Then, in a third step, FRAM is used in a specific scenario by creating 

a model to understand the patterns of accident development and accident avoidance 

to give system design recommendations and essential insights for the validation 

process. In a fourth and final step, the model and method are evaluated in terms of 

validity to assess the credibility of the results and the applicability, respectively.  

These four research steps are described in Sections 5-9. The research questions 

are based on the following assumptions: safety is assessed in terms of safety-II, and 

the assessment compares manual drivers (LoDA 0) with HAD (LoDA 4/5) in mixed 

traffic. In this thesis, mixed traffic means a mix of manual drivers and HAD but no other 

levels of automation and no complete penetration by HAD.  

Ultimately, the results of this research process are integrated into the overall 

discussion of this thesis (Section 10) to:  

• derive system design and validation recommendations, including 

possible technical implementations as well as criticism of the current LoDA, 

• arguing unique features of FRAM but also methodological limitations to 

demonstrate its value compared to other methods in the product development 

cycle of automated vehicles, 

• and illustrating a potential application in the field or industry. 
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Figure 24. Overview of the research outline. 
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“The way the parts fit together determines the performance of the system and not on 

how they perform taken separately.” 

– Russel Ackoff – 

Summary  

This article illustrates the challenges of assessing the safety of automated 

vehicles, represented as the approval trap (Winner, 2016), and provides a brief 

overview of idiosyncrasies in the safety argumentation of automated driving. 

Obviously, new test methods must be developed focusing on the differentiated 

understanding of the mechanisms and emergentisms of road traffic leading to accident 

development and avoidance. In particular, the method should facilitate identifying the 

driver's and automation's contributions to road safety. Therefore, the authors argue in 

favour of FRAM as a risk assessment method in the early stage of the development 

process of highly-automated vehicles (see Figure 10), primarily to derive system 

design recommendations and secondly to provide essential insights into reducing the 

validation work.  

It begins with a systematic derivation of the benefits and suitability of FRAM. Here, 

from a theoretical standpoint, systemic methods and models are best suited to assess 
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road safety against the background from introduced HAD because road traffic is a 

complex STS, as also comprehensively discussed in Sections 2.5 and 3. Thus, the 

most common systemic methods, Accimap (Svedung & Rasmussen, 2002), STAMP 

(Leveson, 2004), and FRAM (Hollnagel, 2012a), are methodologically compared 

against several aspects, e.g., systems-based characteristics.  

FRAM is then applied to an overtaking manoeuvre on a rural road in a road traffic 

illustrative case study to evaluate its suitability and applicability in more detail, following 

the typical four steps of FRAM, i.e., functions identification, functions’ performance 

variability manifestation,  aggregation of variability, and management of variability. It 

should be noted that functions in FRAM describe activities or processes whose 

produced outputs are coupled to achieve a system goal. It is explicitly described for 

each function in the form of "production rules" (internal processes) of how these 

outputs are generated. This enables to create a white-box model to understand the 

inner workings of a system rather than a black-box model focusing on the outcome of 

the input-output relation.  

The situational analysis of the behavioural requirements of driving tasks (SAFE) 

(Fastenmeier & Gstalter, 2007) and the functional decomposition of the road system 

(Kuzminski et al., 1995) were applied as the fundamental basis to identify and define 

the functions for the driving tasks (WAI) or activities (WAD) in FRAM. Then, the 

functions and their couplings were integrated iteratively into an instantiated model 

using the software Functional Model Visualiser (FMV) (Hill & Hollnagel, 2016). It should 

be noted that instantiation means the transfer of the relational organisation between 

functions from a potential to an actual sequence (upstream-downstream coupling) and 

type of relationship (e.g., output–input coupling), i.e., temporal and causal relations 

that might occur in a different way each time (Hollnagel, 2012a) which is why 

instantiations change depending to the conditions. In this thesis, for the sake of 

simplicity, we use the term “FRAM model” as an “instantiation of an FRAM model”. In 

the second step, the manifestation of variability was determined subjectively. 

Afterwards, the aggregation of the variability was implemented using an enhanced 

semi-quantitative approach by adapting Patriarca’s framework based on Monte-Carlo 

simulation (2017b) due to high complexity which is difficult to handle when applying 

FRAM in its traditional, qualitative way. Finally, in the fourth step, the functional 

resonance between the driver and automation is compared by analysing how the 
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variability may propagate through the system, creating functional resonance using 

exemplary calculations and critical paths.  

Ultimately, a discussion of the first application of FRAM to the road system follows, 

presenting FRAM’s strengths and limitations (see Table 1). FRAM enables identifying 

critical functions and their consequences for the entire system and visualising 

mechanisms and emergentisms illustrating interaction patterns in road traffic. The 

article concludes that FRAM supports decision-makers in enhancing safety enriched 

by identifying non-linear and complex risks rather than the linear cause–effect-related 

risks that are frequently the sole focus of safety and risk assessments at present. 

Finally, the conclusions consider FRAM as a missing piece in the puzzle for a proactive 

risk assessment of automated driving and its system design, illustrating the need for 

further research due to limitations.  

Table 1. Overview of methodological strengths and limitations of FRAM. 

Strengths Limitations 

• Flexible and agnostic method 

without limited model assumptions 

(method-sine-model), WAD 

• Oppenness, “toy-model” 

• Guidance material 

• Software (standardisation) 

• Graphical representation 

• Integration of qualitative as well as 

quantitative data  

• Facilitation to comprehend the 

complexity 

• Elaborate, intensive training and 

much previous knowledge 

• Qualitative representation quickly 

overwhelming but compensated 

through semi-quantitative 

approaches 

• Unclear strategies to identify 

functions and their variability 

• (Subjective) modeling, calibration 

instead of validation 
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“Sometimes a change of perspective is all it takes to see the light.” 

– Dan Brown – 

Summary  

This article addresses the scenario-based approach to solve the approval trap 

(Winner, 2016) by reducing the test scope toward relevant or crucial scenarios based 

on reasonable criteria for scenario selection. Unfortunately, the current approach still 

results in a huge number of test cases (Amersbach & Winner, 2019). The challenge is 

to find a set of representative but still efficient scenarios suitable for scenario-based 

approval. Riedmaier et al. (2020) provide a comprehensive overview of several 

approaches to identify and select these scenarios. Two main selection processes that 

follow the ground scientific reasoning principles of induction and deduction can be 

differentiated: testing-based to cover the parameter space with finite test-cases or 

falsification-based by focusing on challenging edge-cases to find counterexamples. 

However, even if all test-cases are successfully passed, and no counterexamples can 

be found, safety still cannot be guaranteed entirely because both procedures are 

microscopic assessments by using key performance indicators (KPIs), such as TTC, 

applied to specific cases, and conclusions cannot be drawn on a macroscopic level for 

the entire system. One possible way out is to show the current, incorrect path in the 
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argumentation and strategy of vehicle automation, as described in Sections 2.5 and 3, 

and rather focus on the systemic patterns of road traffic safety. Therefore, this paper 

argues the case for defining relevant, abstract scenarios in mixed traffic and analysing 

them systemically in terms of safety-II rather than following reductionism in terms of 

safety-I to reduce the test cases ultimately. Thus, a microscopic and macroscopic 

assessment are jointly combined into one approach.  

The relevant scenarios are knowledge-driven and based on the drivers' and 

automation's strengths and weaknesses in the driving task. Two different types of 

scenarios are distinguished following the suggestions by Bengler et al. (2017). Based 

on accident statistics, type-I describes scenarios that offer great potential for significant 

safety improvement through automation because humans have proven highly likely to 

contribute to accident occurrence, i.e., accident black spots and risk groups of drivers. 

Type-II comprises scenarios that represent either the unique strengths of the driver in 

uncritical and accident-free situations or supposed challenges for automation. This is 

based on a succinct synthesis of literature as well as expert interviews.  

Finally, abstract, basic rather than explicit, concrete scenarios as criteria for 

exclusion, like a falsification-based approach, are being proposed to systemically 

assess the contribution of the driver and automation to road safety. According to the 

abstraction levels of scenarios (Menzel et al., 2018), the scenarios represent rather 

functional than concrete scenarios. The “clever trick” is not to vary specific parameters 

systematically and derive concrete scenarios, and then test each specific scenario by 

analysing KPIs concerning events but instead gather everyday performance data of 

several driving activity-related functions in varying conditions in real traffic within one 

abstract scenario resulting in a distribution function for each function which then has 

to be studied systemically and holistically by FRAM analysing resilience indicators or 

metrics of the entire system performance. Thus, it is less important to pay attention to 

critical events such as errors or accidents than to focus on the variability in the 

performance of the individual driving activities in uncritical and normal driving and 

predict their potential propagation effects in the system.  

This also means that significantly fewer test kilometres must be covered since data 

can be gathered immediately (see Figure 25). For safety-I, we have a huge test 

distance but only one data point or a bimodal event distinguishing an accident and no 

accident. Instead, for safety-II, we have a significantly reduced test distance but a 

massive increase in data amount and quality. Thus, there is no need to wait for an 
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accident to occur or something bad to happen because anything can be measured at 

any time. Rather, we have to understand what actually happens in situations where 

nothing out of the ordinary seems to take place, such as dynamic non-events or weak 

signals, and to compare this between the driver and the automated vehicle. Hence, it 

is sufficient to develop a description of the daily activity and its expected variability, 

which means one generic case instead of many specific ones. Therefore, it makes 

more sense to analyse small but frequent events (everyday performance) instead of 

large but rare events (accidents) because the former are easier to understand and 

manage and also have more impact on the safety of the overall system (cf. Hollnagel, 

2014). Clearly, this will result in a large amount of data that must be analysed 

automatically. Fortunately, this problem should be solvable compared to the 

extrapolated lots of test kilometres by Wachenfeld & Winner (2016), based on track 

distance that currently focuses only on accidents or incidents. 

 

Figure 25. Comparison between the safety-I and safety-II view on road safety testing based on the two parameters 
test distance and data amount. The test distance in the safety-I approach is based on the calculations by 
Wachenfeld & Winner (2016) for driving on average. 

Ultimately, it is concluded that the derived scenarios do not claim to be complete. 

However, with the presented relevant scenarios as decisive factors, a solid foundation 

to systemically analyse these scenarios is set in order to build an understanding of the 

system’s interrelationships and its actual patterns that are needed as key insights to 

support the design of safe automated vehicles proactively and to reduce the validation 

work. 
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„ We should work on our process, not the outcome of our processes.” 

– W. Edwards Deming – 

Summary  

This article continues the research of article one in Section 5 (Grabbe et al., 2020b) 

to reduce the research gap in the safety assessment of automated vehicles regarding 

the safety-II perspective. The aim is to identify road traffic patterns contributing to 

safety in an overtaking scenario that represents a huge potential to increase safety 

through automation in a complex setting (cf. Grabbe et al., 2020a) using FRAM. The 

contributions between the driver and automation are compared to derive system 

design recommendations. Finally, this demonstrates how FRAM can be used for a 

systemic function allocation for the driving task between humans and automation. 

Thus, an in-depth, instantiated FRAM model was developed for both agents based 

on document knowledge elicitation and observations and interviews in a driving 

simulator, which was validated by a focus group with peers. Further, the performance 

variabilities were identified by structured interviews with drivers, automation experts, 
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and observations in the driving simulator. Then, the aggregation and propagation of 

variability were analysed, focusing on the interaction and complexity in the system by 

an extended semi-quantitative approach combined with a Space-Time/Agency 

framework and enhanced analysis metrics. Finally, design recommendations for 

managing performance variability were proposed through a well‐reasoned function 

allocation to enhance system safety. To achieve this, the performance variability of the 

entire system is analysed by comparing the contributions between driver and 

automation to road safety based on patterns on both an abstract global level and a 

fine-grain level regarding the individual functions. 

The design recommendations for function allocation between driver and 

automation can be seen as a JCS (Hollnagel & Woods, 2005) that regards human and 

machine as equal partners collaborating in the sense of a human‐machine coagency 

which is expressed in terms of function‐centeredness (Hollnagel, 2006b) where system 

functions needed to accomplish the overtaking manoeuvre are distributed between the 

driver and/or the automation in consideration of the interactions and dynamics in a 

space‐time continuum within and between agents in the system reflected by system 

resonance and the functional variabilities. The outcomes show that the current 

automation strategy should focus on adaptive automation based on a human-

automation collaboration rather than full automation. In conclusion, RE, in particular, 

FRAM, can be applied to the road traffic system to proactively and holistically design 

automated driving functions as a joint driver‐vehicle system that supports decision-

makers in enhancing safety enriched by identifying non-linear and complex risks. 



ARTICLE 4: “ASSESSING THE RELIABILITY AND VALIDITY OF AN FRAM MODEL: THE CASE OF DRIVING IN AN 

OVERTAKING SCENARIO” 

68 

8 Article  : “Assessing t e reliability and  alidity of an 

FRA  model: t e case of dri ing in an o ertaking 

scenario” 

 

Grabbe, N., Arifagic, A., & Bengler, K. (2022). Assessing the reliability and validity of an FRAM 

model: the case of driving in an overtaking scenario. Cognition, Technology & Work, 24(3), 

483-508. https://doi.org/10.1007/s10111-022-00701-7 

 

Author Contributions: Conceptualisation, N.G., A.A.; methodology, N.G., A.A.; software, 

N.G., A.A.; validation, N.G., A.A.; formal analysis, N.G., A.A.; investigation, N.G., A.A.; 

resources, N.G.; data curation, N.G., A.A.; writing—original draft preparation, N.G.; writing—

review and editing, N.G.; visualisation, project administration, N.G.; N.G.; supervision, K.B. All 

authors have read and agreed to the published version of the manuscript. 

 

„All models are wrong, but some are useful.” 

– George E.P. Box – 

Summary 

This article contributes to the current lack of any formal testing of the reliability and 

validity of FRAM, which applies to Human Factors and Ergonomics (HFE) research as 

a whole, where validation is both a particularly challenging issue and an ongoing 

concern. The goal is to define a more formal approach to achieving and demonstrating 

the reliability and validity of an FRAM model, as well as to apply this formal approach 

partly to the instantiated FRAM model created in article three in Section 7 (Grabbe et 

al., 2022b) to prove its validity. At the same time, it hopes to evaluate the general 

applicability of this approach to improve the performance and value of the FRAM 

method.  

Thus, a formal approach or framework was derived by transferring the general 

understanding and definitions of reliability and validity and concrete methods and 

techniques to the concept of FRAM. Consequently, predictive validity, the highest 

validation maxim, was assessed for the specific FRAM model in a driving simulator 

study using a mixture of outcome-based and function-based validation, including the 

signal detection theory combined with a what-if-analysis. In particular, two functions of 
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the model were manipulated in varying environments and human factors conditions to 

see if the predicted changes and non-changes in performance variability of other 

affected functions can be observed in reality.   

It is concluded that the FRAM model's predictive validity is limited, particularly in 

its specificity, indicating deficiencies in the credibility of the examined FRAM model. 

Moreover, the generalisation with changing system conditions is impossible without 

some adaptations of the model. However, this is not surprising as an FRAM model can 

only be validated for specific instantiations, and if the conditions change, the 

instantiation will change. The model must then be adapted, and no generalisation will 

be possible. Overall, the developed framework provides a good foundation to evaluate 

the reliability and validity of an FRAM model, especially helping analysts compare 

FRAM's cost-effectiveness with other HFE methods. Ultimately, the applicability of the 

approach is diminished because of several methodological limitations. Therefore, the 

reliability and validity framework can be utilised to calibrate rather than validate an 

FRAM model. 
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9 Articles   and   re isited: an en anced  attern 

identification combined wit  a function-based  alidation 

a  roac  

 

“Wisdom consists of the anticipation of consequences.” 

– Norman Cousins – 

9.1 Introduction 

As we have seen previously in Section 8 (Grabbe et al., 2022a), the outcome-

based validation to evaluate the predictive validity of the examined FRAM model is 

limited. Therefore, a pure function-based validation approach is applied by a sensitivity 

analysis with deliberate and controlled variations in the model as a falsification 

approach. Specifically, the response mode of the model is checked for plausibility to 

get an enhanced comprehension of the model's credibility. These variations represent 

a changing automation of different agents and functions in the FRAM model, extending 

the overtaking scenario used in Grabbe et al. (2022b). In principle, different 

instantiations of the FRAM model are compared in the sense of scenario-based 

envisioned systems. Moreover, apart from an improved cost-effectiveness trade-off, 

the function-based validation has the benefit of evaluating the predictive validity of the 

entire FRAM model rather than one part of the model when merely using the outcome-

based validation approach. However, it should be emphasised that FRAM is not 

comparable with the better-performing HFE methods which typically achieve validity 

statistics above 0.8 (cf. Stanton et al., 2022). The reason is that FRAM, compared to 

other HFE methods, depending on the chosen granularity level of modelling, 

predominantly covers the prediction of system behaviour more extensively and for a 

more abstract and holistic system view. Instead, typical HFE methods are pretty 

special, applied to narrowed cases offering limited insights on a decompositional level. 

Thus, FRAM has the inherent property to have a higher chance or risk of false 

predictions but is compensated through a high potential for insights concerning the 

holistic system level that are correctly predicted.  

The theoretical backdrop is as follows. It is frequently assumed that the safety of 

the whole traffic system is improved by automated vehicles if the HAV and other traffic 
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participants are driving compliant. However, this is an unrealistic assumption, 

especially in situations with much interaction, as the road system is an open system, 

including deviations from the norm with required adaptations. Thus, the theory above 

would only be valid for a closed system consisting of merely HAVs. It is therefore 

hypothesised that introducing HAVs into mixed traffic in an overtaking scenario will 

destabilise the overall system functioning. Thus, the system is more stable with only 

manual drivers or a joint collaboration between humans and automation. The 

assumptions are as follows:  

• the system remains the same, independent from automation levels, 

which is why the functional structure of the FRAM model remains the same; 

hence, only performance variability values will change 

• no V2X communication is implemented, and the capabilities of HAD 

represent the current state-of-the-art 

• mixed traffic is set as a condition meaning a mix of manual drivers and 

HAVs but no other levels of automation and no complete penetration by HAD  

• the HAV drives are compliant but have problems with sensor range and 

drive obtusely with little adjustment and compensation (late reactions and no 

proactive behaviour) 

• the driver tends to drive less compliant but adapts and compensates 

better (usually early and on-time reactions and proactive acting in terms of 

anticipation) 

9.2 Methods 

The independent variable is the change in automation of different agents and 

functions and, thus, performance variability deviations in the system that represents 

the input for the model. Here, the driver and automation data is taken from Grabbe et 

al. (2022b), which is based on interviews, surveys, and simulator observation. This 

results in five different overtaking scenarios (see Figure 26). In general, each scenario 

represents overtaking on a rural road, including the four agents: ego vehicle (EV), lead 

vehicle (LV), rear vehicle (RV), and oncoming vehicle (OV). The EV is following LV and 

wants to overtake it, RV is following EV, and OV is driving free on the oncoming lane 

representing a platoon of OVs. Additionally, the scenario can be divided into five 

stages: follow, swerve, pass, merge, and get-in-lane. In the first scenario, only manual 
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drivers exist. In the second and third scenarios, EV or OV are replaced by HAD, 

respectively. The fourth scenario combines scenarios two and three, where HAD 

replaces both EV and OV. In the fifth scenario,  EV is removed by shared & traded 

control between the driver and automation following the recommendations by Grabbe 

et al. (2022b). 

 

Figure 26. Overview of the differently automated overtaking scenarios. 
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The reasons for these five scenarios are as follows. Scenario one is the baseline, 

and it is interesting to compare the systemic affects and effects when changing the EV 

or/and OV by automation as these two agents are more critical for the successful 

outcome to overtake safely than LV and RV. Furthermore, it is interesting to analyse 

the system behaviour in the case of the shared & traded control concept, which is the 

system design recommendation in Grabbe et al. (2022b). However, scenario five is 

just a theoretical consideration as the FRAM model has to be adapted, meaning that 

new functions and couplings will probably arise combined with changing performance 

variability values.  

The dependent variables depict the system/model behaviour on a global and 

functional level based on Grabbe et al. (2022b). On the global level, the global system 

variability (GSV) is used to show the accumulated variability of all functions and their 

interactions with the whole system for one specific condition/scenario. On the 

functional level, the overall functional coupling variability (OFCV) is applied to identify 

critical functions with high potential for functional resonance, offering functional 

prioritisation of their impact on the system. For example, a high value means that the 

function has a large systemic effect and/or is largely systemically affected, and/or a 

high variability accumulates in and around the function. The OFCV represents a 

complex combination of functional variability (FV) and system resonance (SR). The FV 

illustrates the variability that a function directly receives (represented by the uplink 

functional coupling variability (ULFCV)) and transfers (represented by the downlink 

functional coupling variability (DLFCV)) without considering their interaction and effect 

in the system sufficiently. The SR reflects the interaction and complexity of a function 

in the system, incorporating non‐linearity, emergence, and dynamic of the system by 

weighting the system-wide impact (represented by the weight as upstream (WaU)) and 

affectedness (represented by the weight as downstream (WaD)) of a function.  

The expected results in terms of the predictive validity of the FRAM model 

concerning the five scenarios are: 

• differences in overall, stagewise, agentwise, and function type-wise GSV 

(different spots of high destabilisation in the system) 

• differences in OFCV, FV, and SR for respective functions and thus 

different spots of high destabilisation on the functional level, whereas the 

differences in SR are less compared to OFCV and FV because the system and 
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the basic scenario are the same, which is why the FRAM model with its 

functions’ and couplings’ structure remains the same 

• differences in patterns to strongly destabilise the system 

Moreover, the aim is to identify potential differences between the scenarios based 

on the previously mentioned metrics to derive design recommendations in order to 

improve system safety. 

9.3 Results 

It has to be pointed out that the results are only analysed on a descriptive level, not 

using inferential statistics. 

9.3.1 Global level 

On the global level, the GSV is evaluated overall, stagewise, agentwise, and 

function type-wise. It has to be noted that the GSV here is a relative rather than 

absolute value meaning that, for example, the stagewise GSV shows the GSV in 

relation to the number of functions within a respective stage. We can see significant 

differences between the scenarios concerning the overall and the stagewise GSV (see 

Figure 27). Scenario five is the most stable. Instead, scenario four is the most unstable 

one. However, the order from stable to unstable between the five scenarios is in 

accordance with the expectations. In the Follow stage, scenarios two and four are 

significantly more unstable than the others. In the Swerve stage, scenarios three and 

four are significantly more unstable than the others. In the Pass and Merge stage, 

scenario four is significantly more unstable than the other scenarios. Scenarios one 

and three are significantly more unstable in the Get-in-lane stage than in the other 

scenarios. Furthermore, in the Swerve, Pass, and Merge stage, scenarios three and 

four are significantly more unstable than the other scenarios, indicating that the other 

agents (LV and RV), as well as OV itself, are more negatively influenced by the OV 

Automation and EV & OV Automation. Interestingly, the proportions between the 

stages are almost the same for each scenario. For example, the Pass stage shows the 

highest GSV, and the Get-in-lane stage shows the lowest GSV within each scenario. 

Thus, it should be pointed out that the Pass stage is the most critical in every scenario. 

Moreover, it becomes evident how the interactions and interdependencies lead to 

different consequences regarding the GSV, e.g., the automation of OV in addition to 
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EV’s automation leads to a significant increase of GSV in the Pass stage. However, 

the single automation of either EV or OV only leads to a slight increase in GSV 

compared to scenario one. Instead, in the Follow stage, the automation of OV in 

addition to EV’s automation leads to a significant decrease of GSV compared to the 

single automation of EV. These two examples clearly show how OV automation, in 

addition to EV automation, can have both a positive and negative contribution to the 

functional resonance in the system. 

A potential for LoDA 4 can only be seen for the EV in the Merge and Get-in-Lane 

stages and for the EV functions related to the performance of LV, RV, and OV in the 

Swerve, Pass, and Merge stage. Otherwise, a shared & traded control concept for EV 

should be preferred. Overall, the model responses for the overall and stagewise GSV 

can be described as plausible. 

 

Figure 27. Comparison of the global system variability for the overall system and per stage between each scenario. 

Figure 28 depicts the GSV per agent. For scenarios two and four, the system is 

highly destabilised by the EV compared to the other scenarios. Whereas, for scenarios 

three and four, the system is highly destabilised by the OV compared to the other 

scenarios. This matches the expectations. In both cases, it is noticeable that the 

additional automation of a second vehicle compared to a single automation leads to a 

slight decrease in GSV related to the respective agent rather than an increase. 

However, this positive effect is outweighed by negative impacts on the other agents. 

This illustrates why a systemic approach with the perspective of all involved agents is 

essential compared to a one-sided view for only one agent. Furthermore, the changing 

scenarios do not affect LV and RV stability. However, the automation of EV, EV & OV, 
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and the shared & traded control concept for EV led to improved stability for RV. Overall, 

the agentwise GSV analysis shows plausible responses. 

 

Figure 28. Comparison of the global system variability per agent between each scenario. 

Significant differences between the scenarios can be found for the function type-

wise GSV for cognitive and perception functions (see Figure 29). This is not surprising 

as automation frequently shows high performance variability outputs concerning these 

types of functions compared to drivers. Especially scenarios two and four have a highly 

destabilising character concerning perception and cognitive functions. Scenario five 

leads to a significantly decreased GSV in all four function types. The function type-

wise GSV response behaviour comes out as plausible.  

 

Figure 29. Comparison of the global system variability over the function types between each scenario. 
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9.3.2 Functional level 

It is impossible to compare all 210 foreground functions in the examined FRAM 

model. Therefore, a selection has to be made which is based on risk or critical functions 

identified for each scenario. Note that this analysis defines the priority of intervention 

to start the investigation from the most critical functions, which is why different and 

further priorities and analyses are possible and even necessary. The reason is that the 

critical functions have the highest potential to propagate functional resonance within 

the system, leading to emerging events. In particular, the OFCV of each function was 

prioritised and ranked for each scenario using the scree test following the approach by 

Grabbe et al. (2022b). This leads to the following risk functions concerning the different 

agents for each scenario (see Table 2). The risk functions which represent critical paths 

are highlighted in green. These critical paths will be explained below in Section 9.3.3.  

Table 2.Overview of risk functions per agent and scenario. 

Function Agent 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 
Scenario 

5 

follow LV (EV) 

EV 

x x x x x 

maintain headway separation (EV) x   x     

perform overtaking (EV) x x x x x 
assess opportunity to overtake 
safely (EV) x x x x x 

adopt overtaking position (EV) x   x   x 

keep in lane (EV) x   x   x 
assess any new info for safety of 
manoeuvre again (EV) x x x x x 

merge back into starting lane (EV) x x x x x 

assess situation to enter safely (EV) x x x x x 

increase speed (EV) x   x     
assess any new info for safety of 
manoeuvre (EV) x x x x x 

abandon manoeuvre (EV) x x   x x 

glance in nearside wing-mirror (EV) x         

observe oncoming traffic (EV)   x   x x 
check LV is not about to change 
speed (EV)   x   x   

assess road conditions (EV)   x   x   

assess gap ahead of LV (EV)   x   x   

recheck road ahead (EV)   x   x   

continue observing road ahead (EV)   x   x   
assess availability of safety margin 
in case of abort (EV)   x   x   

re-recheck road ahead (EV)   x   x   

anticipate course of LV (EV)   x   x   
assess overtaking opportunity again 
(EV)   x   x   
watch for hazards located at road 
side environment (EV)   x   x   

driving free (OV) OV x   x   x 
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keep in lane (OV) x   x   x 

respond to EV's passing problems 
(OV) x   x x x 

react to overtaking EV (OV) x   x x x 

recognise overtaking EV (OV)     x x   

determine whether EV's overtaking 
can be safely completed (OV)     x x   

observe for overtaking oncoming 
vehicles (OV)     x x   

detect EV's swerving into oncoming 
lane to pass (OV)     x     

recognise EV's experiencing 
problems to pass (OV)     x   x 

anticipate required speed 
adjustments (OV)     x     

follow EV (RV) 

LV & 
RV 

x x x x x 

react to being passed (LV) x x x x x 

keep in lane (LV) x x x x x 

respond to EV's passing problems 
(LV) x   x   x 

adjust to adequate speed (LV) x   x   x 

respond to EV's passing problems 
(RV) x   x   x 

driving free (LV) x   x   x 

react to EV's overtaking (RV) x   x   x 

recognise EV's experiencing 
problems to pass (LV) x   x   x 

recognise EV's experiencing 
problems to pass (RV) x   x   x 

 

When comparing the OFCVs for EV’s risk functions in each scenario, different spots 

of high destabilisation on the functional level can be identified (see Figure 30 part A). 

However, if significant differences exist, two scenarios show nearly similar values in 

each case. Thus, it is not unique to just one scenario. There are three functions where 

scenarios one and three each show a significantly higher destabilising manifestation 

(blue-shaded areas). The function "maintain headway separation", in particular, shows 

huge differences. On the other hand, there are 18 functions where scenarios two and 

four each show a significantly higher destabilising character (orange shaded areas). 

Here, the functions "observe oncoming traffic" and "assess opportunity to overtake 

safely" stand out. When comparing the OFCVs for OV’s risk functions in each scenario, 

different spots of high destabilisation on the functional level can also be identified (see 

Figure 30 part B). However, large differences can only be found concerning seven 

functions where scenarios three and four each show a significantly higher destabilising 

character (grey-shaded areas). No differences can be identified concerning LV’s and 

RV’s risk functions. The results in terms of the OFCV for EV, LV, RV, and OV are 

plausible, especially against the background of the GSV results mentioned previously. 
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Figure 30.  Risk functions for EV (a) and OV (b) based on the overall functional coupling variability between each scenario.

A

B
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In the following, the FV and SR are compared in order to get a deeper 

vice versa, or both. Figures 31 and  32 illustrate the two dimensions FV

understanding to distinguish the interaction and variability of risk functions as well as 

to consider whether these functions are rather affected than having a strong impact, 

 

(DLFCV+ULFCV, blue and orange stacked columns) on the left y-axis and SR 

(WaU+WaD, blue and orange stacked lines) on the right y-axis for the risk functions of 

EV and OV (x-axis), respectively, for each scenario. Furthermore, the blue, orange, 

and grey shaded areas (here called columns) with Roman numerals illustrate the 

differences between the three scenario classes of one and three, two and four, and 

three and four, respectively. The letters within the columns represent functions with 

different characters that must be distinguished.  

For the risk functions of EV, it can be seen that the SRs are nearly the same for 

every scenario, as assumed. Only slight differences exist. The three highly 

destabilising functions (blue columns I and III) in scenarios one and three have a high 

SR and DLFCV, indicating their high influencing potential to propagate much variability 

through the system. This potential is significantly dampened in the other three 

scenarios. For scenarios two and four, the following applies. The functions in column 

II and column IV part B have a high SR and ULFCV, indicating their high potential to 

be affected and receive much variability. This incoming variability is significantly 

reduced in the other three scenarios. Instead, the functions in column IV, part A, 

column V, and the first function in column VI, part A have a high SR and DLFCV, 

indicating their high influencing potential to propagate much variability through the 

system. This potential is significantly dampened in the other three scenarios. Here, the 

function “observe oncoming traffic” also has a high ULFCV, making it highly critical. 

The three remaining functions in column VI, part A, have a moderate SR and a high 

DLFCV and ULFCV. Thus, they are also critical but with a reduced propagating effect 

through the system. This criticality is decreased in the other three scenarios. The five 

functions in column VI part B have a moderate SR and a high ULFCV, indicating their 

moderate potential to be affected and receive much variability. This incoming variability 

is strongly reduced in the other three scenarios. Finally, the two functions in column VI 

part C have a moderate to slight SR and a high DLFCV, making them variability‐prone 

but usually remain without adverse consequences. This variability-proneness is 

reduced in the other three scenarios. Scenario five unifies all previously mentioned 

variability dampening potentials and also shows no further increased functional 
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resonance in the three functions in the white-shaded areas compared to the other 

scenarios.  

Regarding the risk functions of OV, it can be seen that the SRs are nearly the 

same for every scenario, as assumed. Only slight differences exist. One exception has 

to be made for the function “observe for overtaking oncoming vehicles (OV)” in column 

I, part D. Here, the SR is decreased by 40% in scenarios three and four compared to 

the other three scenarios. For scenarios three and four, the following applies. The 

functions in column I, parts A, C, and E have both a high DLFCV and ULFCV, as well 

as high (in case of A) to moderate SR, which makes the function in part A highly critical 

and the remaining functions in part C and E critical due to reduced system propagation. 

This criticality is greatly reduced in the other three scenarios. The function in column I, 

part D, has a high DLFCV and moderate SR, indicating its moderate influencing 

potential to propagate much variability through the system. This potential is 

significantly dampened in the other three scenarios, whereas the propagating effect is 

higher in the other three scenarios in the case of induced variability. The functions in 

column I, part B, and column II have a high ULFCV and moderate SR, indicating their 

medium potential to be affected and receiving much variability. This incoming variability 

is greatly reduced in the other three scenarios. Interestingly, a noticeable difference 

exists for the function “keep in lane (OV)” which was not seen in terms of the OFCV in 

Figure 30 part B. This function has a high ULFCV and SR in scenarios three and four, 

indicating its high potential to be affected and receive much variability. Again, this 

incoming variability is largely reduced in the other three scenarios. Scenarios one, two, 

and five unify all previously mentioned variability dampening potentials and also show 

no further increased functional resonance in the three functions in the white-shaded 

areas compared to scenarios three and four. 

For the risk functions of LV and RV, it can be seen that the SRs are nearly the 

same for every scenario, as assumed. Only slight differences exist. In particular, no 

apparent differences can be found for the FVs in the five scenarios for both DLFCV 

and ULFCV. 

Ultimately, the risk functions are considered in terms of the Functional Variability‐

System Resonance Matrix (FVSRM) (Grabbe et al., 2022b) to represent the criticality 

of functions and their potential for functional resonance (see Figure 33 and Figure 34). 

The following colour scheme applies: green for uncritical functions, blue for high 

variable functions with low system resonance, yellow for medium variable functions 
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with medium system resonance that are between uncritical and critical functions, 

orange for low variable functions with high system resonance, and red for critical 

functions. Here, the orange and blue areas refer to functions that must be viewed 

cautiously due to their special features. Functions in the blue area are typically 

variability-prone but usually remain without adverse consequences (i.e., accidents) 

because they have a low systemic resonance. Functions in the orange area are 

functions where variability rarely occurs, but when it happens, a strong systemic effect 

(destabilisation of the system) and, consequently, a high probability of accidents must 

be expected. Moreover, it can be argued that these functions are success factors 

demonstrating resilience because they have little variability despite their strong 

affectedness and provide stability with a system-wide effect. In general, the functions 

in the orange area pose a greater hazard than the blue ones if performed 

inappropriately and are, therefore, to be assessed as more critical. 

In terms of EV’s risk functions and their criticality, differences between the 

scenarios can be seen (see Figure 33). Here, scenarios two and four show more critical 

functions than scenarios one and three, which are further reduced in scenario five. In 

addition, the criticality of several functions switches between the scenarios, for 

example, the function “maintain headway separation” is critical in scenarios one and 

three, which is reduced in the other scenarios, changing to a success factor. 

Nevertheless, some functions exist which are critical for all scenarios but with a 

different degree of functional resonance, e.g., “perform overtaking (EV)” and “merge 

back into starting lane (EV)”. Furthermore, scenarios one, three, and five show more 

uncritical functions but still consist of some functions with a high SR despite a low FV 

posing still a risk, e.g., the function “abandon manoeuvre (EV)”. Moreover, different 

variability-prone functions usually remaining without adverse consequences exist: 

“glance in nearside wing-mirror (EV)” for scenarios one and three, and “watch for 

hazards located at road side environment (EV)” for scenarios two and four.  

Similar differences between the scenarios can be observed for the risk functions 

of OV and their criticality (see Figure 34). In contrast, scenarios three and four show 

considerably more critical functions than the others.
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Figure 31. EV’s risk functions composed of functional variability and system resonance between each scenario. 
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Figure 32. OV’s risk functions composed of functional variability and system resonance between each scenario. 
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Figure 33. EV’s risk functions composed of functional variability and system resonance between each scenario, 
representing their criticality according to the FVSRM.     
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Figure 34. OV’s risk functions composed of functional variability and system resonance between each scenario, 
representing their criticality according to the FVSRM.  
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9.3.3 Patterns 

The quantitative evaluations on the global and functional level shown previously 

enabled a systematic and structured analysis even for largely complex FRAM models 

ensuring comprehensive results where a simple visual discussion would not be 

sufficient or overwhelming. In principle, the quantifications were used to obtain an 

overview of the influence and affectedness of system functions and their variabilities 

and interactions in the system in comparison between the five scenarios to identify 

spots with high potential of functional resonance representing leverage points for 

system design. Finally, this information has to be qualitatively reflected in the model to 

enable the patterns to be fully understood. According to Meadows (1999), leverage 

points are places within a complex system where small shifts or adjustments in one or 

a few element(s) (e.g., functions) can produce significant changes in the system and 

thus represent points most effectively to intervene in the system. It should be 

emphasised that the illustrative results do not aim to represent a complete risk or safety 

analysis but rather show FRAM's potential for a complex safety analysis based on 

selected results. In the following, this is exemplified by a maximum of three critical 

paths for both agents EV and OV for each scenario. Only EV and OV are considered, 

as there are large differences between the scenarios for these two agents. In addition, 

it is limited to a maximum of three critical paths each, otherwise, it goes beyond the 

scope. The three functions with the highest OFCV were selected, whereby at least a 

score of 250,000 had to be fulfilled. Otherwise, it does not represent a critical path with 

a strong destabilising system character. This results in three critical paths for scenarios 

one and two each, six for scenarios three and four, and one for scenario five. The risk 

functions representing these critical paths are highlighted in green in Table 2.  

In this work, a critical path is defined as the direct couplings between a risk function 

and its upstream and downstream functions, so all indirect couplings are not 

considered to avoid confusing the analysis. Here, in the sense of the Pareto principle, 

the direct couplings of a risk function represent the interactions with the highest 

leverage to improve the resilience of the system in comparison to the indirect 

couplings, which also can positively contribute to improved system resilience but to a 

significantly lower extent such as fine-tuning. In the following, a critical path is 

exemplified using the risk function “follow LV (EV)” in scenario one which will be 

referred to in the following as function in focus (FiF) (see Figure 35). The remaining 
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referred to in the following as function in focus (FiF) (see Figure 35). The remaining 

critical paths of the other risk functions can be taken from Appendix A. The FiF is 

highlighted in light blue (filled-in hexagon), and the upstream and downstream 

couplings are highlighted by orange and blue lines, respectively. Additionally, the types 

of functions are labelled by the respective colours: yellow for perception functions, blue 

for cognition functions, and green for action functions. Furthermore, the associated 

agents and stages are illustrated through dashed lines. Finally, every function’s 

hexagon has coloured dots at the top left and right, and bottom left and right marking 

the degree of ULFCV and DLFCV, and WaD and WaU, respectively. The following 

colour scheme applies for the respective metric: green means lower than 5%, orange 

means above 5% but lower than 30%, and red means higher than 30%, according to 

the FVSRM. 

 

Figure 35. The critical path of the function “follow LV (EV)” in scenario one. It is the same for scenario three but 
with different values of the metrics ULFCV, DLFCV, WaD, and WaU.  

The FiF has five uplinks with moderate incoming variability coming from four EV’s 

functions and one LV’s function solely in the Follow stage, which are three action- and 

two cognition functions. The incoming variability mainly comes from action functions, 

especially the function “maintain headway separation”. Overall,  the FiF is 

predominantly influenced by the same agent EV and slightly through the driving 

behaviour of LV. Moreover, the FiF has 15 downlinks transferring a high variability 
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output, mainly in the Follow stage (14) and one function of OV in the Swerve stage, 

which are six cognition-,  four action-, and three perception functions. It impacts its 

cognition functions related to the overtaking decision process forming a mutual 

interaction. It also influences the driving performance of the other three agents and 

potential anticipations by OV and RV. In particular, the downstream couplings to the 

functions “assess opportunity to overtake safely (EV)”, “driving free (OV)”, “observe for 

overtaking oncoming vehicles (OV)”, and “follow EV (RV)” are critical as the coupled 

downstream functions have a high SR indicating their high potential for functional 

resonance in turn. In summary, the FiF has a high potential to destabilise the system 

in the Follow stage. 

 

Figure 36. Overview of identified patterns between scenarios. 
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Based on the critical paths, five different patterns (A-E) could be identified (see 

Figure 36). Figure 36 shows the affectedness by upstream functions (orange cells) and 

the impact by downstream functions (blue cells) for the patterns on a stage and agent 

level. The intensity of colour represents the extent of affectedness or impact: the more 

intense, the higher the affect or effect. The location of the respective risk function(s) is 

visualised through black-framed cells. The patterns generally represent leverage 

points in system design to improve resilience due to their huge system affectedness 

and/or impact. In principle, the upstream functions can adapt to facilitate the 

performance of the risk function. In contrast, the downstream functions can adapt to 

compensate for potential bad influences of the risk function. In turn, the risk function 

can facilitate the performance of its downstream functions, which may provide much 

system stability. These patterns represent two sides of the same coin as providing a 

positive or negative contribution to road safety. If the adaptations are coordinated 

appropriately, the system works safely, and a potential accident will be avoided; if not, 

an accident might develop and probably occur. So, the patterns have a strong 

stabilising or destabilising character which depends on the fitting of performance 

variability. That is also the reason why an activity performed in two different contexts 

with the same variability can lead, in one case, to an acceptable system performance 

but, in the other case, to an accident. Thus, context and the interactions in the whole 

system matter. 

Pattern A has a high interrelatedness but a low intrarelatedness. The system can 

be strongly destabilised in the Follow stage, based on the following behaviour of EV. It 

is mainly influenced by EV and slightly through LV within the Follow stage, and it 

impacts the overtaking decision process of EV and the driving performance of the other 

three agents, especially RV, within the Follow stage. It can be argued that pattern A 

sets the starting situation for a successful overtaking manoeuvre as it affects the 

information gathering concerning the overtaking decision. In particular, assessing the 

opportunity to overtake safely can directly affect the following process in turn, creating 

a tight coupling. EV itself can primarily influence the initial situation, whereas the other 

three agents can compensate for potential bad influences to provide stability and 

resilience within the Follow stage.  

Pattern B has both a high interrelatedness and intrarelatedness. The system can 

be strongly destabilised in the Swerve, Pass, and Merge stages. This process is based 

on the EV's overtaking performance in passing the LV. It is mainly affected by EV in 
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the Swerve, Pass, and Merge stages consisting of operational tasks like overtaking 

position preparations, swerving to the oncoming lane, passing LV or abandoning the 

manoeuvre, and merging into the starting lane or tactical tasks such as iterative safety 

checks. Moreover, it is moderately affected by the operational driving performance of 

the other three agents in the Follow stage. In addition, it impacts the reactive driving 

behaviour of the other three agents in the Swerve, Pass, and Merge stage. Thus, there 

is a strong interdependence between the three other agents with simultaneous affects 

(Follow stage) and effects (Swerve, Pass, and Merge stage), creating a high degree 

of “cascading process” which can be amplifying or dampening depending on the 

variability behaviour. Furthermore, it has a slight effect on evaluating the safety of 

manoeuvre in the Merge stage as well as on the overtaking completion in the Get-in-

lane stage of EV. Due to the strong interdepending character of pattern B, the situation 

can quickly resonate during the actual overtaking process with system-wide 

propagations if only one agent destabilises the system due to mutual resonance 

between every agent. Concurrently, this pattern also has the potential of high resilience 

as every agent can compensate to prevent an adverse event.  

Pattern C has a low interrelatedness but a moderate intrarelatedness. Here, the 

system can be strongly destabilised in the Follow stage, based on observing the 

oncoming traffic and assessing the opportunity to overtake safely by EV. It is mainly 

influenced by EV and slightly through OV within the Follow stage, and it only affects 

EV, especially information acquisition concerning the safe overtaking opportunity, and 

EV’s following behaviour as well as overtaking decision quality representing two spots 

of mutual resonance within the Follow stage. Pattern C primarily determines the 

overtaking decision quality, which can mainly be influenced by the EV itself and 

compensated only by the EV. Thus, the system resilience at this point is relatively 

small. Similar to pattern A, the following process can directly affect the assessment of 

the opportunity to overtake safely in turn, creating a tight coupling.  

Pattern D has a high interrelatedness as well as intrarelatedness. The system can 

be strongly destabilised in the Swerve, Pass, and Merge stages, based on OV’s 

recognising that EV is overtaking as well as OV’s response to EV’s potential passing 

problems. It is predominantly affected by OV and slightly through EV within the Swerve, 

Pass, and Merge stages. It has an impact on EV’s iterative safety of manoeuvre 

checking during the overtaking process as well as LV’s, OV’s, and RV’s recognising of 

EV’s potential problems to pass and their reactions to it and thus critically influence the 
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cascading process during the actual overtaking manoeuvre in pattern B. Pattern D can 

be seen as one counterpart of pattern B heavily influencing the overtaking performance 

of EV in the form of the reaction by OV.  

Pattern E has moderate interrelatedness and intrarelatedness. The system can be 

strongly destabilised in the Get-in-lane stage, based on the reaction performance of 

OV to the overtaking EV. It is mainly influenced by OV within the Swerve and Pass 

stages and slightly through EV allocated over all stages. The only impact is on the 

driving-free performance of OV after the overtaking of EV is finished. Therefore, the 

impact is relatively small, but the affectedness is very high. A potential conflict exists 

between OV and LV or RV when they pass after the overtaking or for the OV alone in 

case of leaving the road.  

Table 3. Assignment of scenarios and patterns. 

Pattern 
Scenario 

1 2 3 4 5 

A x  x   

B x x x x x 

C  x  x  

D   x x  

E   x x  

 

Each scenario can be assigned to different patterns but also show similarities (see 

Table 3). It can be seen that each pattern can be assigned to two scenarios each, 

except pattern B which applies to every scenario. In particular, scenarios three and 

four show the most patterns (4), followed by scenarios one and two (2) and then 

scenario five (1). Furthermore, pattern A only exists for manual EV drivers, whereas 

pattern C-E only exists for HAVs replacing EV or OV. Scenario four is special as it 

exacerbates the destabilisation of the cascading process in pattern B from EV’s as well 

as OV’s perspective due to adverse resonance between OV’s and EV’s performance 

by combining pattern B and D. Instead, scenario five eases the cascading process due 

to decreased overall variability. Nevertheless, it still poses a risk for adverse events 

due to high system resonance. Also, scenarios two and three exacerbate pattern B 

through EV's actions and cognitive processes during overtaking and anticipations and 

reactions by OV, respectively. Moreover, pattern A is exacerbated in scenario three by 

a decreased anticipation performance of OV. As pattern B occurs in all five scenarios, 
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the function “perform overtaking” and its up- and downstreams have the highest 

potential to generally dampen the functional resonance in as many scenarios as 

possible. However, the other patterns should also be addressed by interventions to 

improve the system resilience as they significantly impact system stability and 

resilience. Netherveless, as just a few risk functions were analysed more precisely, 

further important patterns still exist. However, the five presented patterns represent 

leverage points in the system with the highest impact on resilience.  

9.4 Conclusions 

In the following, the results are discussed in two terms: predictive validity of the 

FRAM model and design recommendations to improve system resilience and safety.  

Different global and functional spots of high destabilisation in the system between 

the scenarios could be found. In addition, plausible differences and similarities in 

patterns with strong destabilising character were found. For example, differences exist 

in how a critical function can be strongly affected through the system and can strongly 

influence the system. Overall, the response mode of the model on the global and 

functional level and its consequent strongly destabilising patterns could not be falsified 

concerning plausibility. Thus, we can assume increased evidence for the value and 

trustworthiness of the developed FRAM model. Furthermore, the analysis has proven 

that it is possible to implement a function-based validation to evaluate the predictive 

validity of a FRAM model when using a quantification approach to falsify the model 

behaviour on plausibility.  

From a content-wise perspective, the shared and traded control concept of EV 

shows the best performance in terms of the GSV analysis, followed by the manual 

driver of EV. Interestingly, the automation of OV would merely lead to a slight increase 

in GSV compared to scenarios one and five. However, the automation of EV or EV and 

OV would significantly destabilise the system. Therefore, automation of the entire 

scenario is not recommended, but individual stages may be automated in the sense of 

an authority transfer. A major potential for LoDA 4 can just be seen for the EV in the 

Merge and Get-in-Lane stages and for the functions of EV which are related to the 

performance of LV, RV, and OV in the Swerve, Pass, and Merge stage. Otherwise, a 

shared & traded control concept for EV should be preferred. Furthermore, even 

individual functions could be automated, e.g., the following process of EV should be 

supported at least by an ACC system which can also be helpful to adopt a proper 
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overtaking position. Hence, the critical path within pattern A could be mitigated. 

Concurrently, the tight coupling between the following process and the cognitive 

evaluation process regarding a safe overtaking opportunity by EV will be decoupled, 

probably supporting system resilience. Concerning pattern B, the use of automation is 

not reasonable to support the driver of EV while overtaking except for the adoption of 

a proper overtaking position. However, opportunities for automation of the other agents 

exist either to facilitate the good overtaking performance of EV or to mitigate potential 

bad influences of EV’s overtaking manoeuvre. For instance, LV and OV could be 

equipped with an L2 system ensuring a stable drive and preventing abrupt brakings or 

accelerations and overspeeding, which especially belongs to OV. Additionally, the RV 

could be equipped with an ACC system to hold a sufficient gap to the LV in case EV 

has to abandon the manoeuvre and merge back. Moreover, the L2 systems can ensure 

that the LV is maintaining or even reducing its speed while being overtaken and that 

the OV is braking and even evading to the road side if the EV is still on the oncoming 

lane within a time-critical distance. Patterns C-E do not represent critical paths for 

scenarios one or five. Nevertheless, these patterns should also be addressed to 

promote resilience if something goes wrong due to high system resonance. Regarding 

pattern C, automation can be used to support the driver in determining whether 

overtaking is reasonable and permitted, increasing the probability of a positive 

outcome concerning the decision of whether an opportunity to overtake is safe. In 

addition, the available passing time or, rather, the required space to overtake the LV 

independently from the OV could be highlighted using augmented reality (e.g., 

visualising a green carpet on the oncoming lane). However, it should be emphasised 

that this helps drivers to recognise where the merging process in relation to LV ends. 

Nevertheless, the hazard of misjudgments concerning safe completions of passing in 

dependency to OV still exists. Potential interventions for patterns D and E were already 

mentioned by pattern B.  

In the future, the proposed design interventions must be analysed iteratively using 

the FRAM model to check potential adverse consequences due to unexpected 

interaction effects. In addition, more extensive what-if analyses in the form of various 

instantiations of the FRAM model should be executed to check how the system 

behaves under changing scenario conditions (e.g., weather and time pressure) or in 

dynamic performance changes over time (e.g., fatigue and distraction). Furthermore, 

as indicated in Section 9.2, the FRAM model has to be adapted for scenarios two to 
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five as the interaction between drivers and HAVs or a driver and automation in 

collaboration will probably lead to new functions with new couplings and changing 

performance variability values. Nevertheless, the results are still usable as they show 

probable critical paths of functional resonance in the system when introducing 

automation in an overtaking scenario in mixed traffic in different constellations.  
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10   e way a ead -  eneral discussion, limitations, and 

future work 

 

“Every beginning has an end and every end is a new beginning.” 

– Santosh Kalwar – 

 

This chapter presents a broader analysis of the research findings, the utilisation of 

the FRAM method, and potential areas for future research by following the previously 

outlined research process. The results are integrated and discussed across three 

dimensions: system design and validation, method evaluation, and industrial 

application. The primary objective is to outline how RE, specifically FRAM, can 

contribute to road safety in light of the introduction of automated vehicles. 

10.1 Recommendations concerning system design and validation 

10.1.1 System design and validation 

It has to be emphasised that the following design recommendations are based on 

the FRAM analysis based on performance data for driver and automation in current 

road traffic without already introduced HAV. Therefore, the recommendations have to 

be understood as potential measures that have to be iteratively tested in the future 

mixed traffic adapting the FRAM model.  

While automating the entire overtaking scenario is not recommended, individual 

stages of the process may be automated through authority transfer. Specifically, in the 

context of the EV, drivers could handle the Follow and Pass stages, while automation 

could take care of the Swerve, Merge, and Get-in-lane stages. However, a more 

differentiated approach considering specific functions per stage is recommended for 

better automation design based on the compensatory design principle proposed by 

Fitts (1951). Therefore, a shared & traded control concept for EV, as presented by 

Grabbe et al. (2022b), should be preferred. It should be pointed out that the proposed 

concept currently does not consider any driver monitoring systems (DMS) or driver 

readiness, which is briefly discussed in Sections 10.1.2 and 10.1.3. Based on the 

proposed design concept, it is noticeable that humans mostly perform the Follow and 

Pass stages, while automation handles the Swerve, Merge, and Get-in-lane stages, 
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with complete automation in the last stage. Only 12% of functions are carried out in 

shared control, which can take place at all three information processing or driving levels 

(cf. Abbink et al., 2018). It is not only essential to have a suitable human-machine 

interface (HMI) by displays and controls from the automation towards the human (e.g., 

H-Mode (Flemisch et al., 2014)) so that the driver can collaborate optimally with the 

automation, but also vice versa in the direction of the automation using DMS (cf. 

Begum, 2013) to capture the state of the driver and anticipate the driver’s behaviour 

and actions. An application for cooperative overtaking at the tactical driving level is 

shown by Walch et al. (2019). Besides, drivers are responsible for most perception and 

cognitive functions, except for the Swerve and Get-in-lane stages. At the same time, 

automation carries out more action functions at the operational driving level. Two of 

the five main manoeuvre functions (decision to overtake and overtake manoeuvre) are 

primarily carried out by the driver, while the other three (following the lead vehicle, 

adopting overtaking position, and completing the manoeuvre) are primarily automated. 

In addition, based on enhanced pattern identification in Section 9, leverage points 

in the system could be identified as posing the most efficient and effective way to 

improve the system’s resilience concerning the overtaking scenario by using 

automation or technology support. Concerning the EV, automation should be used to 

support the following process, as well as the adoption of a proper overtaking position. 

Moreover, information regarding the reasonableness and permission for overtaking 

should be provided. Also, the predicted spot of merging in front of the LV independently 

from OV should be spatially visualised, helping drivers to prevent misjudgments 

concerning safe completions. It becomes evident that automation opportunities exist 

for the other agents to facilitate a good overtaking performance of EV or mitigate 

potential bad influences of EV’s overtaking manoeuvre. In the case of the former 

intention, a stable drive of LV and OV must be ensured to prevent abrupt brakings or 

accelerations and overspeeding. In the sense of the latter purpose, automation should 

be used to ensure that the LV is maintaining or even reducing its speed while being 

overtaken, the OV is braking and even evading to the road side if the EV is still on the 

oncoming lane within a time critical distance, and the RV is holding a sufficient gap to 

LV for the case if EV has to abandon the manoeuvre and merging back. 

Grabbe et al. (2022b) compared the FRAM analysis results with a focus on the 

EV, represented as positive and negative contributions of the driver and automation to 

system safety, with state-of-the-art knowledge regarding this issue. The comparison 
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predominantly focused on the negative contributions of the driver, as past data 

analyses have focused mainly on the negative contributions of drivers, such as rare or 

critical accidents (Bengler et al., 2017). That is also why little or no knowledge about 

the positive contributions of drivers exists. Furthermore, no comparison can be made 

for automation because LoDA 4 vehicles have not been approved yet, and data 

collected during test drives in California is analysed on an abstract level without a 

specific task-level analysis that would be required. 

Grabbe et al. (2022b) concluded that the FRAM model reflects the most common 

causes and contributing factors of overtaking accidents by drivers. However, some of 

these known accident black spots cannot currently be improved by the automation of 

EV. However, as mentioned above, the automation of specific functions of other agents 

can enhance the system's overall resilience during overtaking scenarios, potentially 

mitigating or preventing the potential functional resonance caused by EV’s impact. 

Overall, the results and system design recommendations in this research provide 

the following new insights concerning overtaking safety in road traffic compared to 

previous and less system-oriented approaches in the past (e.g., Hegemann et al., 

2005; Näätänen & Summala, 1976; Reichart, 2000; Summala & Näätänen, 1988): 

• Positive contributions of drivers and automation indicating spots of 

system resilience instead of the sole focus on negative contributions of drivers 

• Additional automation risks by its negative contribution rather than mere 

automation benefits 

• Leverage points in overtaking most effective to intervene in the system 

by automation interventions 

• Systemic perspective including all agents and their interactions rather 

than just the EV in isolation  

• Functional perspective rather than a structural component one for both 

to support decision-makers through a systemic function allocation between 

drivers and automation and to not predetermine any design or structure of a 

physical system 

In terms of validation, the following applies. With the assumption of automating the 

whole scenario and its associated functions, particular attention should be paid to the 

risk functions for automation (see Table 2). This especially applies to functions of EV 

in the Follow and Pass stages, as well as those declared perceptual and cognitive 
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tasks. In addition, the validation focus can be expanded to include the critical functions 

in the red and orange areas of the FVSRM in scenarios including automation. The 

validation process can likely be reduced to testing these functions, such as criteria for 

exclusion, to reduce the test effort. This has to be fulfilled by HAVs. Otherwise, we do 

not even need to carry out further tests. Further, the function allocation concept by 

Grabbe et al. (2022b) could be used to validate merely the functions in which 

automation is responsible alone or together with humans, and thus, in turn, reduce the 

validation effort to a level similar to the current ADASs of LoDA 2 vehicles, where 

humans are entirely responsible for the safety of the driving task. The only difference 

is that humans are not responsible for all functions, but only those allocated to them, 

and thus, automation takes responsibility for several other functions. The results for 

the validation process of HAD reveal insights for the potential reduction of test effort in 

two ways: First, by assuming full automation, the identified risk functions for automation 

can be used as criteria for exclusion. Secondly, allocating functions between humans 

and automation can limit the validation process to the functions allocated to automation 

alone or combined with the driver. Based on safety-II and RE analysis, this perspective 

shift offers new opportunities for resolving the approval trap. 

10.1.2 Criticism of level of driving automation 

The presented design recommendations for function allocation between driver and 

automation should be seen as a JCS (i.e., the driver-automation-vehicle system) that 

regards human and machine as equal partners collaborating in the sense of a human-

machine coagency “by shifting the focus from human and machine as two separate 

units to the JCS as a single unit” (Hollnagel & Woods, 2005 p. 67). This coagency is 

viewed in terms of function-centeredness (Hollnagel, 2006b), where system functions 

of the EV needed to accomplish the overtaking manoeuvre are distributed between the 

driver and/or the automation, taking into account the interactions and dynamics in the 

system (reflected by system resonance) and the functional variabilities. In terms of 

SAE J3016, the resulting concept may even be realised as a highly assisted driving 

system instead of automated driving. 

As mentioned earlier, full automation of overtaking scenarios is currently 

unrealistic and inadvisable as a general concept. Instead, humans must be actively 

involved in the driving task to a certain degree, especially perception and cognitive 

functions, until reliable full automation is achieved. This was also reported by Zhang et 
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al. (2021), suggesting exploring other opportunities and roles for drivers, such as a 

"commander role" at strategic and tactical levels (e.g., Franz et al., 2012; Kauer et al., 

2010; Walch et al. 2016, 2019), rather than limiting their role to that of a passenger or 

fallback operator. This approach is consistent with the design and effect space of 

shared control and human-machine cooperation conceptualised by Flemisch et al. 

(2019) or the multi-level cooperation proposed by Pacaux-Lemoine & Flemisch (2019). 

However, teleoperated driving or remote assistance/driving (SAEJ3016:2021) is not 

helpful concerning this issue since a remote operator would only intervene if the vehicle 

had already transferred itself to a safe state (minimal risk condition) or issued a 

takeover request with sufficient lead time. In fact, the active and continuous integration 

of a remote operator into the driving task in collaboration with the automation to 

supervise and perform the dynamic driving task would be necessary, which is, 

however, currently not planned and does not appear to be realistic or advisable 

because of the challenges of teleoperation (e.g., telepresence, latency, situation 

awareness (Tener & Lanir, 2022). 

Therefore, the short- and mid-term strategy for automation to improve traffic safety 

in overtaking scenarios on rural roads should be to adopt the JCS approach for the 

traffic system (Inagaki, 2010) to realise driver-automation collaboration and coagency 

throughout the driving scenario to achieve their common goal of safe overtaking. Thus, 

a differentiated, function-centric approach must be taken, where the functions of the 

JCS are divided according to different function types (Parasuraman et al., 2000). Then 

functions are assigned to the agents, based on an FRAM analysis, in the sense of “who 

does what and how”. This contrasts the six rigid LoDA of SAE and its “all or nothing” 

approach, and as a design decision for automation, prefers considering the ten LoA 

according to Sheridan (1992) combined with the four function types of Parasuraman 

et al. (2000). This is also in line with Inagaki and Sheridan's (2019) criticism of SAE's 

LoDA definition, especially conditional driving automation. A further extension of the 

LoDA of SAE is suggested by Steckhan et al. (2022) to include optional driver 

interventions in the form of decisions on movement and dynamics in terms of driving 

parameters and driving maneuvers to fulfill the currently underestimated functional 

purpose of driver satisfaction besides safety, time efficiency, and ecology.  

Nonetheless, at the current stage, the design recommendations in the form of a 

function allocation are rather static, and the agents’ roles do not change from one 

occasion to another or in different scenario conditions. This does not fit the actual 
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system behaviour perfectly since technological advancements cause performance 

changes in the functions performed by drivers in cooperation with automation, leading 

to adaptations and dynamics. These adaptations sometimes result in adverse effects, 

such as the out-of-the-loop performance problem, loss of situational awareness, 

complacency or overtrust, or automation surprises (e.g., Endsley & Kiris, 1995; Inagaki 

& Stahre, 2004; Parasuraman & Riley, 1997; Sarter et al., 1997; Wickens, 1995). An 

example of this phenomenon can be seen when better brakes are introduced in 

vehicles to enhance road safety. Falsely assuming that the driver will continue driving 

in the same way, actually led to a change in driver behavior, where the driver tends to 

drive faster since he or she can now brake harder (Hollnagel & Woods, 2005). This 

effect can be explained by the concept of risk homeostasis proposed by Wilde (1982).  

A more suitable approach for the future would be to implement an adaptive 

automation system (Inagaki , 2003)  or function-congruence (Hollnagel, 2018a), which 

determines "who does what, how and when," and allows functions to be shared or 

traded between humans and automation in response to changes in situations or human 

performance (Inagaki, 2003) also considering the instantaneous driver status or 

availability. This is even more important as safety is not a permanent system condition 

but rather what a system continuously does. In fact, it is a dynamic global state that 

emerged by locally interacting and adapting elements. Each agent requires flexibility 

or adaptation to fit and optimise the global system dynamics. However, it must be taken 

into account that drivers are often not well trained, and such a complex function 

allocation could cause confusion despite its benefits. Furthermore, too much 

fragmentation of functions may not be sensible since individual functions must be 

carried out as a whole, sometimes by a single agent who has been well trained, as too 

little information or ineffective and inefficient transfer of information can happen at the 

interface between drivers and automation. 

10.1.3 Research outlook 

In future research, following an adaptive automation approach, the FRAM model 

for the overtaking scenario and the current design recommendations should be 

checked by extended “what-if analyses” (MacKinnon et al., 2021; Hill et al., 2020) in 

the form of various instantiations of the FRAM model under changing scenario 

conditions (e.g., weather and time pressure) on the one hand, and on the other hand 

for dynamic performance changes over time (e.g., fatigue and distraction), such as by 
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Hirose et al. (2021). Furthermore, not only the performance variability that can change 

but also new functions will emerge through the collaboration between humans and 

automation, which is why adapting the FRAM model in relation to the context conditions 

is necessary. For this purpose, the performance indicators per function must also be 

recalculated for the system with the new allocation of functions and iteratively adjusted 

because of the effect of contextual factors. In particular, the FRAM model has to be 

explicitly extended by the effect of performance-shaping factors due to the scenario 

conditions. In particular, behavioural adaptations of the driver in response to 

automation (e.g., Feldhütter, 2021; Ma & Zhang, 2022; OECD, 1990; Preuk et al., 

2016) have to be analysed more systemically by the FRAM model. Overall, the current 

design concept fits the basic scenario analysed well and is a good starting point. 

However, it is not generally applicable and must be adapted in further iterative 

analyses, both in theory and practice. 

10.2 Method evaluation – Benefits and limitations 

10.2.1 Benefits 

FRAM is a generic, agnostic method-sine-model that allows for straightforward 

augmentation and changes in granularity without limitations to apply and use the 

method of how to model a system, making it easy for users to modify without starting 

from scratch. This implies that the method does not propose any specific assumptions 

about the design or structure of the system being studied and the potential causes and 

relationships between causes and consequences (Hollnagel, 2012a). The “openness” 

and flexibility also provide opportunities for combining FRAM analysis with other tools 

and approaches (e.g., agent-based modelling, Petri Nets, system dynamics) for 

expansion and differentiation (Patriarca et al., 2018; Patriarca et al. 2017a,b; Tian et 

al. 2016, among others), enabling analysis of specific problems while maintaining an 

overall socio-technical system perspective (Ferreira & Canas, 2019). Therefore, FRAM 

can be used for different purposes and from different perspectives, which results in 

asking different questions to gain additional insights into how a complex system works 

depending on the aim of analysis and the epistemological positions modellers take 

(Sujan et al., 2023). However, it has to be assured that such combined approaches do 

not fall back into the traps of reductionist mathematical assumptions (Patriarca et al., 

2020). Overall, a FRAM model is intended as a "toy-model" facilitating to model a 
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system as WAD instead of WAI, which results from complex adaptation and interaction 

processes in the system caused by pursuing success in a knowledge and resource-

constrained, goal-conflicted world (Vaughan 1996; Woods et al. 2010). 

In addition, the model produced can be visualised graphically, providing a "map" 

of the relationships between input and output and how inputs are transformed into 

specific outputs, rather than just presenting the inputs and outputs themselves. A 

FRAM model can be seen as a white-box model to understand the inner workings of a 

system rather than a black-box model to focus on the outcome of the input-output 

relation. Therefore, qualitative and quantitative data can be integrated into one model. 

A benefit of using a graphical representation is that the human brain can quickly 

comprehend and identify patterns. Moreover, a FRAM model captures multiple n:1 

rather than 1:1 couplings, also discerning their quality by using different aspects.  

Furthermore, practitioners have access to various guidance materials, including 

Hollnagel's (2012a) book on the fundamental theory of FRAM, a concise guide on how 

to use FRAM (Hollnagel, 2018b), and a practical handbook (Hollnagel et al., 2014). 

Additionally, the use of FRAM is facilitated by software such as basic tools like FMV 

(Hill & Hollnagel, 2016) and Functional Model Interpreter (FMI) (Hollnagel, 2020a) or 

advanced pre- and post-processing tools like myFRAM (Patriarca et al., 2017c) and 

DynaFRAM (Salehi et al., 2021a) which promotes standardisation, systematic 

implementation, and structured analysis. 

In addition to the original qualitative approach of FRAM, a quantitative risk or safety 

assessment is possible (e.g., Falegnami et al., 2020; Grabbe et al., 2022b; Hirose & 

Sawaragi, 2020; Patriarca et al., 2017b) integrating qualitative and quantitative data, 

allowing for results to be presented more easily to a wider audience. While 

quantification is not mandatory or recommended (Hollnagel, 2012a, p. 94), it can aid 

with specific issues such as promoting more reliable and valid “answers” derived by 

the analysis once a FRAM model was built, particularly in interpreting FRAM models 

related to large-scale complex systems such as the road system by preventing 

overwhelming qualitative representations, as noted by Ferreira & Canas (2019). 

Nevertheless, the quantitative results are relative rather than absolute metrics and thus 

represent indicators of where to look and must be reviewed qualitatively by the model, 

requiring careful interrogation to comprehend and anticipate potential useful 

interventions.  
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In addition to the previous benefits, FRAM and its approach in this work offer new 

features and unique benefits compared to other methods and models used in safety 

research and practice concerning the road system. In an abstract and general sense, 

these are the following: 

• First, creating a semantically rich network or multi-digraph of functions, 

considering all agents and their interactions required to achieve a system goal 

exemplified by the overtaking scenario. This functional approach explicitly 

represents how the system performance, e.g., safety,  emerges due to complex 

interactions of variabilities, which shows what a system does rather than what 

it is, as illustrated by structural component representations.  

• Second, focussing the process and its complexity, including non-linear, 

dynamic interactions resulting in identifying emergentisms and paths of 

functional resonance on understanding how systems can be quickly stabilised 

or destabilised over time and space due to potentially cascading variabilities 

transitioning the global system state. This phenomenon is not measurable per 

se and is often assessed as a surprise in case of unwanted outcomes such as 

accidents in particular. The FRAM model visualises where and how multiple, 

mixed weak signals in a system can evolve into a strong signal meaning that 

local optimisations (locally acceptable performance) do not lead to global 

optimisation (globally unacceptable performance) due to adverse interactions. 

Therefore, it becomes possible to intervene at the right spots in the system, i.e., 

functions and especially their couplings, to improve overall system performance. 

However, usually, the focus is solely on the strong signals or outcomes 

themselves, in particular unwanted ones, rather than the process behind it (e.g., 

FTA, Bayesian networks, or the traffic simulation software PTV “Verkehr In 

Städten – SimulationsModell” (VISSIM)) which can predict outcomes or effects 

comparing different scenarios or system designs but unable to comprehend why 

such outcomes occur which does not help to understand and improve overall 

system performance especially if these predicted outcomes are negative.  

• Third, indicating spots of resilience or vulnerability represented as 

leverage points or tipping points, which can be stabilising or destabilising 

depending on the performance variabilities. These spots can be considered for 
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interventions to better cope with unforeseen events or system behaviour, which 

improve the systems’ adaptive capacity.  

• Fourth, considering success as well as failure with a particular emphasis 

on success as generic insights significantly improves the learning rate because 

the rate at which successes occur is much higher than the rate at which failures 

or accidents occur.  

• Fifth, providing a design space or function allocation acknowledging 

complexity, which anticipates the impact of new technology involving human 

factors at the beginning rather than the tail of the research and development 

(R&D) process, which often is the usual approach. Thereby, this thesis shows 

how FRAM can be used for a systemic function allocation between humans and 

automation, considering the interactions and complex dynamics of functional 

variabilities in a space-time continuum within and between agents in the system 

based on an enhancement of quantitative outputs. 

This directly leads to the features related to improvements in the FRAM 

methodology itself:  

• First, the introduced Space-Time/Agency framework combined with 

different function types according to the levels of information processing makes 

it possible to structure the system following different dimensions of analysis with 

different resolutions and perspectives which, according to Rasmussen & Lind 

(1981), makes it easier to analyse the inherent complexity in STSs effectively. 

Similar approaches are shown by the Abstraction/Agency framework (Patriarca 

et al., 2017a) or the JCS framework (Adriaensen et al., 2022).  

• Second, new metrics concerning complexity and interaction were 

derived, making the notions of couplings and complexity to characterise STSs 

by Perrow (1984) more explicit or quantifiable. In addition, these metrics were 

intertwined with metrics for variability rather than set in isolation, resulting in 

OFCV and GSV comprehending complex and emergent behaviour representing 

safety as a system property that emerges from how elements interact and fit 

together (cf. Ackoff, 1971).  

• Third, these new metrics allow us to calculate a global system variability 

to compare the stability or resilience and adaptive capacity of different scenarios 

or system designs, which provides quantitative indicators for safety as a positive 
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meaning in terms of safety-II and RE. Furthermore, the separation of FV and 

SR enables a weighting factor of a function's variability, making it possible to 

define tipping or leverage points in the system, as mentioned previously.  

Overall, the approach of FRAM in this work makes a closer step to explicitly show 

the critical paths in a system that potentially lead to functional resonance, i.e., the 

adverse combination of the “regular” performance variability of multiple functions over 

time and over space which is the primary goal of FRAM (Hollnagel, 2012, p.8).  

10.2.2 Limitations and required improvements 

FRAM is an elaborate method requiring extensive knowledge of the domain and 

human factors (Hollnagel & Speziali, 2008) for modeling and analysis. Even with a 

simple model, a significant amount of time is required. More complex models and 

empirical data collection will require even more time and resources. Adriaensen et al. 

(2019) suggest limiting the model's scope to essential investigation questions to make 

it manageable. 

Furthermore, when using FRAM to analyze highly complex systems, the graphical 

representation can become overwhelming and difficult to interpret due to its messy 

appearance, like “spaghetti models”. However, it can still provide insight into potential 

system dynamics. As mentioned, quantitative approaches can overcome this limitation 

to ensure a systematic and structured analysis. 

One of the more critical limitations of FRAM is identifying system functions and 

their interdependencies, as well as their variabilities. Currently, these functions and 

variabilities are identified by studying reports, procedures, design specifications, 

storytelling, and conducting field observations or interviews. An experienced team of 

experts is required to analyse and model the system (Accou and Reniers 2019; Jensen 

& Aven 2018; Pereira 2013), where the quality of the output in FRAM directly depends 

on the team of experts and the information they provide as input for the functions and 

their variability (Salehi et al. 2021b). Some practical guidance material exists in 

Hollnagel et al. (2014), but no explicit standard for determining how much information 

should be included in the analytical process to define the objective, scope, and 

granularity of the model, as highlighted by Anvarifar et al. (2017), Grabbe et al. (2020b), 

Li et al. (2019), and Patriarca et al. (2017a). It is obvious that a FRAM model cannot 

be declared as right or wrong per se due to multiple purposes and dimensions. 
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However, it would be necessary to demonstrate formally how different strategies can 

be used for various purposes and perspectives to ensure a more guided and structured 

modelling process. It is apparent that the flexibility of FRAM is a blessing, as mentioned 

above, and a curse at the same time. Due to the low limitations or regulations regarding 

modelling and the strong dependency between model outputs and the competence of 

the modeller team, a subjective component ultimately plays a significant role in a FRAM 

model. Modelers have to “work” with the method and its fundamental principles, 

making some reasonable adaptations depending on the objective and context of 

application – a procedure according to a pattern or taxonomy does not exist. Using 

mixed methods and multiple data sources can help to ease this issue by integrating 

multiple limited perspectives and dimensions, adhering to verification strategies such 

as those proposed by Creswell & Miller (2000), and complying with the four qualitative 

terms of credibility, transferability, dependability, and confirmability, as suggested by 

Anfara et al. (2002). This can ultimately improve the quality of the FRAM model. 

Nevertheless, identifying functions and their variability, particularly perceptual and 

cognitive processes, must be improved in further research, which must include more 

objective and empirical measures. In terms of road safety, researchers may need to 

use specific interview techniques (such as card-sorting or cognitive walkthroughs), 

eye-tracking methods (cf. Arenius, 2017), or a neuro-ergonomics approach 

(Parasuraman, 2011). Especially, data from sensor technologies can support the 

traditional qualitative inputs concerning the following aspects: temporal resolution, 

gradual differences, time-stamped data, and continuous recording, coverage, and 

calibration (Arenius, 2017). In addition, existing literature, such as the Driver 

Performance Data Book (Henderson et al., 1987), can be referred to identify sources 

of variability. In contrast, these approaches cannot be used for automation, so experts' 

assessments are currently the only option. This is due to the lack of publicly available 

data, although it is generally easier to identify cognitive functions in automation due to 

the physical architecture of software and hardware. However, using deep learning and 

its self-learning algorithms would hinder understanding. As a result, there is a 

discrepancy between WAD and WAI, as generating a model for WAD is almost feasible 

for drivers but remains challenging for automation. Ultimately, in this research work, a 

combination of literature, driving simulator studies, and interviews, each addressing 

different dimensions,  has proven successful in integrating WAI and WAD. It should be 

mentioned that while driving simulators are useful for assessing operational action 
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functions like lane-keeping or maintaining safe distances, it is challenging to assess 

perception and cognitive functions even with the help of eye-tracking. Structured 

interviews are more suitable for this, but humans' limited self-awareness and potential 

biases about their performance can limit the effectiveness of this approach. Overall, 

using multiple data to integrate these multiple limited perspectives as a mixture of 

qualitative and quantitative inputs is recommended.  In the future, it could also be 

interesting to use cross-linked driving simulator studies to explicitly observe the 

interactions between multiple drivers, automation, and/or joint driver-automation and 

their resulting variabilities and adaptations within one simulation.  

Lastly, validating a FRAM model is a challenging issue and ongoing concern. In 

line with that, Grabbe et al. (2022a) developed a framework that provides a good 

foundation to evaluate and increase the reliability and validity of an FRAM model, 

especially helping analysts to assess the cost-effectiveness of FRAM. The authors 

emphasised that validation in terms of FRAM is always model-individual, gradual, the 

result of a negotiation process, and continuous and iterative, meaning that the validity 

of a FRAM model and its analysis is relative rather than absolute. In particular, they 

distinguish between two purposes of the FRAM method, an analytic and an evaluative 

one which are addressed by different types of validity. Further, they stated that 

predictive validity is the highest maxim of validity concerning FRAM. The conclusion 

was that the validity and usefulness of the FRAM model by Grabbe et al. (2022b) are 

limited due to low specificity despite high sensitivity. However, it can be argued that 

sensitivity is more important than specificity in terms of FRAM because the main 

intention of the evaluative part of FRAM is to predict performance variability and its 

potential resonance. Thus, the consequence of missing a performance variability effect 

is significant as this could be an overlooked, crucial success or risk factor compared 

to the minor consequences of having false positive predictions. Nevertheless, a FRAM 

model should strive for an appropriate balance between both.  

Besides, methodological issues exist to prove the predictive validity of a FRAM 

model. The main reason is that FRAM has an inherent, at least partly tautological 

character meaning that model results are only partly falsifiable for two reasons: 

interacting variables (i.e., functions) difficult to prove empirically, and no measurability 

of single absolute final outputs but multiple relative outputs. Thus, Grabbe et al. 

(2022a) concluded that an FRAM model could rather be calibrated than validated, 

meaning that a few interesting functions (e.g., the critical path of functions representing 
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leverage points for system design) in the model are selected to refine their modelling 

for a better understanding of their potential affectedness and effects in the system with 

regard to specific system conditions. However, the results of the pure function-based 

validation approach opposed to a mere outcome-based validation approach, in Section 

9, show that increased evidence for the value and trustworthiness of the developed 

FRAM model can be assumed. As a result, while the approach is useful for improving 

the fundamental understanding of system patterns as elucidated by the FRAM model, 

it is unsuitable for making conclusive judgments regarding the safety certification of 

designs in critical systems. 

10.2.3 Research-practice gap 

The benefits and limitations of FRAM and its application and advancement in this 

thesis must be reflected according to the research-practice gap (RPG). 

There is a disparity between research and practice in applying systemic models 

and methods, particularly FRAM, as Underwood & Waterson (2012) noted. While 

researchers are utilising systemic methods per the latest advancements, practitioners 

tend to favor more traditional, linear methods that are easier to use or more popular, 

despite their recognised limitations, as Grabbe et al. (2022b) pointed out. Also, in 

everyday practice, the efficiency of a method often outweighs the drawback of reduced 

thoroughness (Hollnagel, 2009a p.132), which probably results in “probative blindness” 

(Rae & Alexander, 2017), i.e., a safety activity is believed as effective providing 

stakeholders with subjective confidence in safety while it does not provide the actual 

knowledge about real problems. This can lead to false assurance about the result of a 

safety analysis which may further lead to erroneous decisions. Frequently mentioned 

reasons for the RPG are a difficult, resource and time‐consuming application (Salmon 

et al., 2022), reduced model validation and usability, and a potential analyst bias 

(Underwood & Waterson, 2012). Given these circumstances, it is crucial to establish a 

correlation between validation outcomes and usability, weighing FRAM's cost-

effectiveness to assess its overall usefulness (cf. Stanton & Young, 2003). 

The effectiveness hereby represents a trade-off consisting of the validity of the 

FRAM model to explain performance variability in a system and the output value of 

such a model represented as the potential of insights and knowledge gain. The costs 

are related to the resources and time used by the method. FRAM has high costs since 

the model development by function identification and variability data collection is time‐ 
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and resource‐consuming (see Section 10.2.2). However, these can be outweighed by 

the high potential for new and unique insights (see Section 10.2.1) which may save 

considerable costs if adverse effects of supposedly effective interventions introduced 

into a system have to be straightened out. The predictive validity is acceptable but 

limited due to methodological issues. Nevertheless, the framework by Grabbe et al. 

(2022a) provides tools to demonstrate and increase the reliability and validity of an 

FRAM model, differentiating distinct types of validity for different purposes. The utility 

of the analysed FRAM model is limited in terms of predictive validity if it is used as an 

evaluative method. Instead, the utility of the FRAM model as an analytical method is 

high and invaluable. 

It can be concluded that the RPG in terms of FRAM could be bridged and reduced 

in terms of validity and reliability as well as potential analyst bias in the past and in this 

thesis due to advancements in guidance and software tools (e.g., FMV, FMI, myFRAM, 

DynaFRAM), quantification and its related approaches combined with qualitative 

analysis facilitating a structured analysis and derivation of implications of how to 

manage variability  (e.g., Falegnami et al., 2020; Grabbe et al., 2022b; Hirose & 

Sawaragi, 2020; Patriarca et al., 2017b), and tools and approaches concerning 

reliability and validity (e.g., FMI, Grabbe et al., 2022a, see Section 9). Nevertheless, 

the function identification process and the creation of the FRAM model, as well as the 

gathering of variability data, is very time- and resource-consuming. One solution to 

overcome this could be the information technology framework for sharp-end operators’ 

WAD data gathering through a mobile app that Constantino et al. (2020) proposed. 

Furthermore, the fourth step of FRAM to manage variability can be enhanced by a 

standardised report delivering basic evaluations in the spirit of FRAM, which would 

facilitate the communication between decision-makers and the modelers and analysts 

by telling a reasonable and useful “system story” through the lens of FRAM (Sujan et 

al., 2023). These structured reports could be created in Microsoft Power BI, enabling, 

e.g.,  interactive and dynamic visualisations if doing what-if analyses. 

Ultimately, in any safety analysis, a trade-off must be made between the 

thoroughness of the analysis and the efficiency of completing it. This requires expertise 

in both the theory or applied method and model and in the application domain, which 

is pursued by a robust reality-based safety science research, i.e., a science where 

theory is grounded in rigorous observations of existing practice and practice is based 

on established theory (Rae et al., 2020). In terms of FRAM, the thoroughness is high 
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despite limited validity and, at the same time, improved efficiency to a satisfying 

degree, resulting in an appropriate balance. This fact should foster the application of 

FRAM by practitioners in the industry. However, the practical applicability of FRAM in 

its ease of use has to be researched and improved further, as Farooqi et al. (2022) 

claimed. Nevertheless, it is crucial to keep the spirit of FRAM meaningful by preventing 

it from falling back into the traps of reductionism because systems thinking and 

complex systems will always require some level of thinking and comprehension by 

analysts, which requires extensive time and resources.   

10.2.4 Research outlook 

In future research, the following methodological enhancements are fruitful. First, 

based on Steckhan et al. (2022), it becomes apparent that a FRAM analysis of road 

traffic should not only systemically focus on safety issues but also systemically 

consider multiple functional purposes and demands and their intertwinings. For 

example, the goal of HAD extends beyond safety to enhance efficiency and comfort 

(Maurer et al., 2015). Additionally, for AD to be widely accepted, passengers inside the 

vehicle and individuals interacting with the vehicle externally must trust the automation 

and embrace the new technology. Unfortunately, these various aspects of system 

performance are often considered separately, resulting in a fragmented understanding, 

also known as siloed thinking, where only partial insights are gained (Hollnagel, 

2020b). However, these different perspectives are interconnected, necessitating a 

future synthesis of their analysis based on the concept of Synesis (Hollnagel, 2020b) 

which involves integrating multiple viewpoints into a comprehensive analysis. A 

promising approach to implement this in FRAM could be causal loop diagrams 

(Sterman, 2000) showing reinforcing or balancing effects between different purposes 

for every function, potentially revealing conflicting goals. Furthermore, multilayer 

networks (cf. Falegnami et al., 2020) distinguishing different purposes or the 

Abstraction/Agency framework (Patriarca et al., 2017a) could also be helpful.  

Second, estimating the impact of certain conditional factors, including sources of 

external variability or even internal variability, within the same functional scenario could 

be valuable (cf. Patriarca et al., 2017b). This could be achieved by determining an 

influence factor of the respective conditional factor on each function within the model. 

For example, this could be used to understand the potential impact of weather-related 

factors such as fog, sudden events such as wildlife traversal, or human factors such 



THE WAY AHEAD - GENERAL DISCUSSION, LIMITATIONS, AND FUTURE WORK 

112 

as time pressure in the whole system. Thus, one can determine how many functions 

would be affected and how the GSV behaves. Ultimately, the criticality of these 

conditional factors in the overall system can be considered for different system 

designs. However, it must be emphasised that this probably changes not only the 

variability parameterisation of the model but also the model itself, including functions 

and their couplings.  

Third, the FRAM model implicitly includes dynamics but depicts the system 

behaviour as relatively static, like a snapshot. However, it is required to explicitly 

capture the dynamic and continuous behaviour, including reciprocity over time which 

would be more realistic as conceptually supported by Steen et al. (2021). For example, 

simulating multiple aborted overtakings and their effects would be interesting. 

DynaFRAM (Salehi et al., 2021a) or the approach by Hirose et al. (2021) using fuzzy 

reasoning and cellular automaton can investigate such dynamics. In addition, as 

applied by Patriarca et al. (2017b), Monte-Carlo simulation could be used to show the 

dynamic effect of different combinations of performance variabilities distinguishing 

instantiations within one scenario.  

Fourth, the new metrics implemented in the semi-quantitative approach have 

successfully enhanced the calculation and visualisation of interactivity between 

functions within the system. They have also effectively captured the complex 

emergence effects of each function. These metrics have served their intended purpose 

by indicating a function's weight and robustness or tolerance in relation to variability. 

However, their significance as an influencing parameter, particularly concerning the 

composition of weighting factors WaU and WaD, remains a theoretical concept that 

requires empirical validation in the future. Furthermore, although the calculations 

currently treat various aspects of couplings equally, except for the propagation factor, 

it is worth considering a more nuanced approach in the future. This differentiated 

approach could reveal potential distinct effects resulting from aspects not only 

qualitatively but also quantitatively. 

Lastly, following a many model systems ergonomics approach (Salmon & Read, 

2019), it would be reasonable to compare FRAM with other systems ergonomics 

methods such as Accimap (Svedung & Rasmussen, 2002), cognitive work analysis 

(CWA, Vicente, 1999), event analysis of systemic teamwork (EAST, Stanton et al., 

2013), STAMP (Leveson, 2004), or networked hazard analysis and risk management 

system (Net-HARMS, Dallat et al., 2018). The comparison should be illustrated through 
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case studies concerning the prospective and holistic safety assessment of automated 

vehicles. The goal is to create a fruitful toolbox of methods and models that produce 

diverse but complementary insights to understand the complexity. 

10.3 Application in industry 

The following describes how FRAM should be integrated into the standardised 

system engineering V-model (see Figure 10) to develop and prove automated vehicles' 

safety. FRAM should be mainly used right at the beginning of the earliest stage of 

concept development as the fundamental basic method providing an analytical tool to 

derive systems designs or shaping targeted empirical tests. Any model obtained 

through the FRAM can be used as a basis, either knowledge or integration tool, for 

other analysis approaches (e.g., FTA, FMEA, HAZOP, STPA). With regard to this, 

FRAM presents the functional level analysis needed, which, combined with the 

physical level of analysis, provides the multi-abstraction levels required to overcome 

the envisioned world problem (Woods & Christoffersen, 2000; Woods & Dekker, 2000). 

This approach delivers various generic insights for improvement fed back by a cycle 

to the physical level, which feeds back the consequences (Hirose, 2020). Abstractly, 

FRAM has the potential to generate bookends where multiple stories can be told 

(Dekker, 2016;  Patriarca et al., 2020) incorporating the learning from all operations 

(see Figure 21) in order to understand the different ways a system works, i.e., how 

similar outcomes happen due to different causes and how different outcomes happen 

due to similar causes. This is required to anticipate what may happen in the future.  

More concretely, FRAM can be used to analyse the systemic and holistic 

functional requirements HAD must fulfill in a specific scenario when entering the road 

system by identifying the critical functions (i.e., activities) and their interdependencies 

to produce a desired outcome. This is achieved by functional resonance analysis and 

its evoking patterns.  

Furthermore, FRAM can analytically guide the system design space by assisting 

in identifying and allocating functions to different agents, i.e., driver or automation, 

considering emergentisms in order to support a targeted system design. This design 

space refinement can indirectly reduce the validation effort as the FRAM can provide 

key insights into the functional dependencies and the impact of variability within the 

system. This allows for the developing of appropriate and efficient test scenarios that 

capture potential resonances and evaluate the system's behavior in varying conditions. 
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Hence, the validation work could be reduced to a reasonable effort by minimising the 

possible parameter space. 

In particular, FRAM should represent the method of choice to analyse STS's 

complex behaviour, including predominantly scenarios characterised by much 

interaction between different agents. This predominantly comprises so-called in-traffic 

and in-vehicle interactions. In this thesis, in-traffic interactions are defined as 

“situations where the behaviour of at least two road users can be interpreted as being 

influenced by the possibility that they are both intending to occupy the same region of 

space at the same time in the near future” (Markkula et al., 2020, p. 737). According 

to Markkula et al. (2020), interactions in traffic can be distinguished into five distinct 

prototypical space-sharing conflicts: 

• obstructed path 

• merging paths  

• crossing paths 

• constrained and unconstrained head-on paths 

Note that when a conflict arises involving more than two road users sharing the 

same space, the situation may involve multiple prototypes. The following scenarios 

represent typical examples: mergings between two vehicles as cut-in or cut-out, 

crossings between vulnerable road users at crosswalks or intersections, crossings 

between other motorised vehicles at intersections, overtaking, and bottlenecks. It 

should be emphasised that these scenarios have to be analysed in two ways, i.e., the 

HAV has an active (inducing) and a passive (involved) role. Instead, in-vehicle 

interaction contains the driver's and automation's collaboration as shared and traded 

control to operate the vehicle. Examples are ADASs as LoDA 1 or 2 systems, LoDA 3 

in case of takeovers and transitions between different LoDAs in general, or even the 

level of haptic authority (Abbink et al., 2012) in case of requests to intervene (cf. Inagaki 

& Sheridan, 2019) exemplifying adaptive automation. Moreover, the H-mode concept 

(Flemisch et al., 2014) or maneuver-based driver-vehicle cooperation (Franz et al., 

2012; Kauer et al., 2010; Walch et al., 2016; 2019), following the LoA and ToA, would 

also be worth it to be investigated by FRAM. Further, FRAM would be useful to analyse 

scenarios, including remote assistance or remote driving, helping to identify potential 

conflicts in the flow of interactions in such complex systems. 
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Moreover, FRAM and the concept of safety-II could even be used directly for 

validation following the approach in Section 6. The problem has to be thought of from 

a different perspective. The current approach to safety approval is based on track 

distance that focuses on severity, such as accidents. Unfortunately, these events are 

very unfrequent. This results in the necessity to drive an unfeasible amount of test 

kilometres – the approval trap.  As already discussed comprehensively in Section 2.5, 

all the common approaches to overcome this issue, e.g., developed in large German 

or European research projects like PEGASUS (German Aerospace Center [DLR]), 

VVM (VVM consortium), and L3Pilot (L3Pilot consortium), are still rooted in 

reductionism focusing on severity, not solving the actual problem, shifting the problem 

from reality to virtuality (i.e., simulation). This may solve the problem of test kilometres, 

but a new validity problem occurs. However, if we focus on frequency, we have a 

proper solution to reduce the test kilometres significantly but still have tests in reality. 

We need a description of the daily activity of driving and its expected variability, which 

means one generic case instead of many specific ones that can be used for 

generalisation.  

The data for performance variability of the driver can be obtained one-time, similar 

to the 100-car study (Dingus et al., 2006), through large-scale data campaigns using 

monitoring systems in the vehicle such as flight data recorders and tracking 

technologies of the infrastructure to capture the performance mainly of action functions 

and simulator studies and interviews to capture the performance of perception and 

cognitive functions. This data then has to be studied systemically and holistically by 

FRAM, analysing how the variabilities can propagate through the system using 

resilience indicators or metrics of the entire system performance. One generic model 

covers several instantiations. The same can be done for automation. The GSV has the 

potential to provide a system-wide performance metric, i.e., adaptive capacity, making 

it ultimately possible to compare the driver and automation by one metric, as claimed 

by Winner (2016). This metric not only compares the driving performance of the driver 

or the automation in isolation to the rest of the system but also provides a holistic 

system’s driving performance considering the interactions in the entire system.  

10.4 Conclusion  

The research in this thesis demonstrates that RE, including FRAM and safety-II, 

is an invaluable approach to assessing the safety of automated driving in road traffic, 
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mainly by studying interactions in view of emergentisms, which are currently neglected 

by existing approaches but inevitable. In particular, FRAM offers a white-box modelling 

to facilitate the understanding of how a system usually works in order to comprehend 

why it can rarely fail. This knowledge can be used to implement targeted interventions 

to amplify what drivers currently do well in coping with complexity. FRAM argues for 

more analytical research as a starting point rather than innumerable, indiscriminate 

empirical testing. However, the current trend of increasing utilisation of AI leads to 

solutionism or solutioneering (Morozov, 2013; Hollnagel, 2021) which heavily relies on 

black-box models used for safety-critical safety management resembling a dangerous 

blind flight by trial-and-error. In general, a FRAM model gives insights where to look in 

a system by better defining what the problem actually is and to ask better questions 

but it does not provide explicit solutions per se. 

FRAM offers various opportunities and unique benefits that should be used 

complementary to existing approaches to tackle the multidimensional road safety 

problem. An one-size-fits-all solution does not exist. Instead, we need an enriched 

toolbox synthesising different perspectives and approaches. According to Nemeth 

(2013): “rather than a destination, FRAM is the most recent step […] in understanding 

complex socio-technical systems”. Thus, FRAM is a promising approach addressing 

the nitty-gritty - to identify the patterns that facilitate the system’s adaptive capacity 

inevitable for safe and efficient performance in STSs (Hollnagel, 2016). Therefore, 

FRAM constitutes an essential missing piece of the puzzle for managing some of the 

current and future challenges in assessing the safety of automated driving in the 

complex, dynamic, socio-technical road system. 

The primary objective should be enhancing the safety of the entire system by 

promoting efficient interaction among drivers, machines, and road users. Instead of 

focusing on ensuring the safety of vehicle automation and providing proof of its safety, 

the key question becomes how we can utilise automation to design a traffic system 

that optimises several conflicting goals such as safety, efficiency, and comfort. This 

research shows possible solutions using FRAM and the perspective of RE in order to 

tackle the key question. However, due to its high complexity, this work cannot provide 

complete solutions to the upcoming challenges of introducing automated vehicles in 

public road transport. Nevertheless, a solid foundation addressing the right problem is 

laid where enhancements and extensions have to be researched in the future of how 

to deploy the approach in the industry on a large-scale.  



THE WAY AHEAD - GENERAL DISCUSSION, LIMITATIONS, AND FUTURE WORK 

117 

To conclude, a system analysis and design process supported by FRAM with a 

systems thinking mindset inherently cannot generate final solutions or end-states due 

to constant changes in the system. Rather it can provide continuous and iterative 

interventions in the form of different leverage points within the system which may have 

positive or negative effects. These interventions strive to increase the system’s 

adaptive capacity, i.e., the capability to cope with complexity in normal and abnormal 

operating conditions. We never fully know the consequences over time and space in 

the whole system; it depends on the perspective and constraints one might take: 

“Once upon a time, there was a Chinese farmer who lost a horse. It ran away. And 

all the neighbors came around that evening and said, “that’s too bad.” 

And he said, “maybe.” 

The next day, the horse came back and brought seven wild horses with it. And all 

the neighbors came around and said, “why that’s great, isn’t it?” 

And he said, “maybe.” 

The next day his son attempted to tame one of these horses, and was riding it, 

and was thrown and broke his leg. And all the neighbors came around in the evening 

and they said, “well, that’s too bad, isn’t it?” 

And the farmer said, “maybe.” 

The next day conscription officers came around looking for people to join the army 

and they rejected his son because he had a broken leg. And all the neighbors came 

around that evening and they said, “well, isn’t that wonderful?” 

And the farmer said, “maybe.”” 

– Alan Watts – 
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A  endi  

A Overview of remaining critical paths 

 

Figure B1. The critical path of the function “maintain headway separation (EV)” in scenario one. It is the same for scenario three but with different values of the metrics.  
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Figure B2.  The critical path of the function “perform overtaking (EV)” in scenario five. It is the same for all other scenarios but with different values of the metrics. 
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Figure B3. The critical path of the function “assess opportunity to overtake safely (EV)” in scenario two. It is the same for scenario four but with different values of the metrics. 
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Figure B4. The critical path of the function “observe oncoming traffic (EV)” in scenario two. It is the same for scenario four but with different values of the metrics. 
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Figure B5. The critical path of the function “respond to EV’s passing problems (OV)” in scenario three. It is the same for scenario four but with different values of the metrics. 
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Figure B6. The critical path of the function “react to overtaking EV (OV)” in scenario four. It is the same for scenario three but with different values of the metrics. 
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Figure B7. The critical path of the function “recognise overtaking EV (OV)” in scenario three. It is the same for scenario four but with different values of the metrics. 
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A B S T R A C T

Automated driving is technically advanced but proof of its safety is required for a successful market launch.
Unfortunately, this evidence cannot be provided by current approval methods, something that is referred to as
the so-called approval trap (Winner, 2015) and new test methods must be developed. This paper therefore argues
in favour of the functional resonance analysis method (FRAM) as a risk assessment method in the development
process of highly-automated vehicles, primarily to derive system design recommendations and secondly to
provide essential insights into reducing the validation work. It begins with a systematic derivation of the benefits
and suitability of FRAM. FRAM is then applied to an overtaking manoeuvre on a rural road in a road traffic case
study to evaluate its suitability in more detail, followed by a discussion of the first application of FRAM to the
road system and a presentation of its strengths as well as limitations. Finally, the conclusions consider the
importance of the FRAM method in assessing risk and safety proactively for automated driving, also illustrating
the need for further research.

1. Introduction

Traffic safety can be defined as the freedom from unacceptable risks
and dangers in the change of location of persons or material assets
(traffic objects) that are transported, for example, by the means of
transportation from A to B. It includes the transport infrastructure and
transport organisation (Schnieder & Schnieder, 2013, p. 74).

A basic distinction has to be made between two points of view in
terms of safety (Schnieder & Schnieder, 2013, p. 67):

• protection of the environment from system impacts, which is re-
ferred to as safety
• protecting a system from external influences, which is called se-
curity

This paper only deals with the aspect of safety and not security.
According to Hughes et al. (2016), there are three main safety

strategies or tools that can be applied to the traffic system components
to enhance road safety. These are engineering, enforcement and edu-
cation.

Engineering includes actions to avoid an accident or mitigate the
damage of an accident. A distinction should be made between measures
for the vehicle and for the infrastructure. Furthermore, counter-
measures for the vehicle can differ with respect to primary safety and

secondary safety. Primary safety comprises technical actions to avoid
an accident. For instance, automated systems such as antilock braking
system (ABS), electronic stability control (ESC) and adaptive cruise
control (ACC) help the driver to cope with difficult driving situations.
Secondary safety includes technical solutions to reduce the damage of
unavoidable accidents. Examples are safety elements such as the
crumple zone, safety belts and airbags. Design measures for the infra-
structure can be the organisation of traffic through the layout of traffic
roads, the presentation of information by road markings and traffic
signs as well as protective functions such as crash barriers and the
quality of the roads (Bubb et al., 2015, p. 57).

Enforcement is realised by traffic controls under the supervision by
various institutions. The purpose is to make traffic participants aware of
compliance with traffic rules and thus to bring this about and to punish
their violation. Examples are speed measurements by radar, financial
penalties or disqualification from driving.

Education describes interventions to improve the knowledge of
necessary rules and their respective context, the ability to assess the
traffic situation and skills for passive and active traffic participation.
Examples are driving lessons, road safety education in school, driver
safety training or targeted public campaigns (Schnieder & Schnieder,
2013, p. 446).

A further aspect could be the rescue chain in case of accident oc-
currence to reduce personal injuries and to save lives (Hughes et al.,
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2016). The rescue chain means the idealized sequence in the treatment
of accident victims in the context of first aid.

These safety strategies are combined in the past to improve the road
safety and consequently the number of traffic fatalities dropped from
over 21,000 in 1970 to almost 3000 a year today despite the huge in-
crease in the number of motor vehicles registered in Germany (see
Fig. 1). Fig. 1 illustrates the safety measures by the horizontal grey, blue
and green boxes, for example the standardized emergency call 112 in
1973, the front airbag in 1980 or the ABS in 1978. It should be noted
that the statistics for Germany only serves as an example for the sub-
sequent explanations and arguments. Thus, it is also relevant for the
settings of other countries.

Unfortunately, the number of fatalities has stagnated over the past
years since 2012. The current approach and the stated countermeasure
lie in the automation of the driving task with the long-term goal of fully
automated driving. Thus, in the next years and decades, vehicles with
SAE-level 3 or higher (HAD) according to SAE J3016 (2014) will be
introduced. The underlying concept of the automation is in accordance
with the safety strategy of engineering, specifically with the primary
safety of the vehicle. It can also be attributed to infrastructure, if car-to-
x communication (C2X) is taken into account. C2X is the radio-based
exchange of information between vehicles, as well as between vehicles
and other road users or in particular traffic infrastructure. This expands
the coverage of vehicle sensors, such as radar or camera systems, by
sharing the information of the sensors of other vehicles or the infra-
structure.

The ACATech study (Lemmer, 2016) states that the introduction of
automated vehicle guidance in addition to new mobility concepts can
also lead to greater efficiency and safety. In general, automated driving
should be safer, more efficient and comfortable (Maurer et al., 2016).
The argument for increased automation in the driving task is often
accompanied by the argument that the human in his role as a driver and
main cause of accidents could be removed from the system. Conse-
quently, the number of accidents would fall sharply. Similar quantifi-
cations of the safety potential of different advanced driver assistance
systems (ADAS) can be found in Maier (2013).

However, this pattern of thinking follows a logic that is too sim-
plistic. The concept of cause falsely links the logic of a clear causal link:

A causes B.

Thus, the driver would be the cause of the accident. If cause A is
removed, then effect B disappears.

This relationship only applies to monocausal events. But a road
accident is a rare, poisson-distributed and multi-causal event.
Therefore, it is important to remember that the driver is involved in a
road traffic accident as one of a number of factors and has not pre-
vented this accident at the last moment:

A is involved in B in addition to other factors.

If A is removed, the other factors still apply for the remaining par-
ticipants. Removing A would eliminate both the negative and positive
effects that the human driver has on traffic. This results in a differ-
entiated consideration of the mechanisms of accident development.
Above all, is also addressed the mechanisms of accident prevention, in
which drivers are as well involved in critical situations. In addition, the
fact that not only is A (the driver) removed from the system but is re-
placed by X (the automated vehicle) with currently unknown effects,
has to be considered.

All in all, the human driver is both an active or passive participant
in an accident, as well as an accident avoidance and compensation
element in the same system (Bengler et al., 2017).

Ultimately, technical solution must have an acceptable performance
in situations that are critical for the human driver, but especially in
situations that are not critical for the human driver. The work of
Reichart (2000) gives an idea of a human's high performance in the
subtasks of the driving task and shows that human errors occur with
very low probabilities of 10-3 to 10-4 in the area of obscuring objects,
interpretation or steering errors. These capabilities must be consistently
achieved by the technical systems in the various traffic situations and
constellations. Furthermore, Fastenmeier (2015) calculated that the
human driver has a fatal accident every 90 million km. Considering that
an average of 125 observations are made and 12 decisions taken every
kilometre that is driven, these numbers show that a wrong decision
leading to a fatal accident will be taken after about 10 billion ob-
servations and 1 billion decisions (cf. Huß, 1999). Shladover &
Nowakowski (2017) made similar calculations for road traffic in the
USA. One thing should have become clear from the calculation ex-
amples: it is a huge challenge for automation to achieve or even exceed
the human driving performance.

We should also bear in mind the fact that not everyone benefits
equally from automation. Both risk groups (Das et al., 2015; Visser
et al., 2007) and accident black spots (Maier, 2013; Gründl, 2005),
which represent a potential for automation, have been identified in
literature. More recently, however, features relating to comfort in

Fig. 1. Drop in traffic fatalities (orange line) due to safety improvements (horizontal boxes) despite the increase in registered motor vehicles (blue line) in Germany.
The safety improvements belong to other activities (grey), secondary safety (blue) and primary safety (green), adapted from Winkle (2016a, p. 345). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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relatively safe scenarios (e.g. highways) are primarily addressed in the
context of a market introduction and no orientation to specific groups
of drivers or to human strengths and weaknesses is visible. Thus, in the
worst case, we run the risk that the effect of automation will be zero and
there will be no change in the accidents that occur (Bengler et al.,
2017). Consequently, the technology could be without effect right at
the beginning.

Finally, it can be concluded that valid proof of safety through au-
tomation is still pending due to the fact that current test methods are
not economically and practically feasible for automated driving. This is
the so-called approval-trap. Therefore, we have to create new test
methods (Winner, 2015; Wachenfeld & Winner, 2016).

These new test methods should consider that the main goal must be
to improve the safety of the entire system through the efficient inter-
action between humans, machines and other road users. Thus, the
purpose of this paper is to identify and define an analysis method that
can differentiate between the mechanisms of road traffic and identify
the interdependencies between each element in the system. Besides, the
method should be applied to specific and reasonable traffic scenarios so
as to identify the contribution of the human driver to road traffic safety
in these situations and to derive requirements for the automation and
the potential of automation with its accompanying factors in these si-
tuations. Finally, if we place the method to be developed within the
entire development process, we may be able to derive requirements and
recommendations for the design of automated driving systems. Also, we
can gain some useful information for the main emphasis of the vali-
dation process, such as criteria for exclusion, so as to reduce the vali-
dation effort (see Fig. 2). Here, Fig. 2 shows the development process
for highly-automated vehicles as a V-Model. Over the course of devel-
opment, the degree of abstraction of the system properties to be tested
with the respective test method first decreases and then increases again.
At the same time, the objective shifts from system design issues (left
branch) to validation of intended properties (right branch). The method
to be developed is located in the initial stage of the concept phase
(orange oval), primarily to derive system design recommendations and
secondarily to draw conclusions for the validation.

The paper is structured as follows. The second section argues why
FRAM should be used to assess automated driving risk. This includes an
overview of the development of accident analysis methods and models,
safety perspectives as well as a description of the road traffic system.
The third section defines the application of FRAM to the road system. It
begins with an explanation of the structure of FRAM. This includes the
basic principles as well as the various steps that must be taken in FRAM.
The methodology of the application study as well as the results are then
presented. The fourth section discusses the suitability of FRAM for a
safety assessment of the road traffic system, especially regarding the
effects of automated driving. Particularly, strengths and limitations are
outlined. Finally, the conclusions anticipate the importance of the
FRAM method to assess risk and safety proactively for automated
driving, thus also illustrating the need for further research.

2. Finding a suitable method – Why FRAM?

In order to find a suitable method for the aim of this paper, the
following subsections presents a brief overview of the historical de-
velopment of accident and risk analysis methods as well as their un-
derlying models and theories. Additionally, different safety perspectives
are introduced and the properties of the road traffic system and asso-
ciated requirements for analysis methods are described. Finally, an
overview of the main systemic methods is provided and their suitability
is discussed.

2.1. Development of accident causation theories and analysis techniques

A large number of accidents and incidents are analysed to gain new
insights into the errors and their effects, often using a strict framework,
such as a method, on which a model can be built or vice versa (Wienen
et al., 2017).

There are several ways to classify these methods and models. The
most commonly used classification system is into sequential, epide-
miological and systemic analysis techniques (Qureshi, 2007; Wienen
et al., 2017). As can be seen in Fig. 3, sequential techniques are by far

Fig. 2. Development process for highly-automated vehicles as a V-Model, adapted from Winkle (2016b, p. 608). The method to be developed is located in the top left
corner (orange oval). Design recommendations should primarily be derived and secondary conclusions could be drawn for the validation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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the oldest, while systemic approaches only appeared 20 years ago.
Another classification option for the accident analysis and risk assess-
ment methods is to break these down into technical, human factors,
organisational and systemic methods (Eurocontrol, 2009), see Fig. 3.
Thus, the technical and systemic methods correspond to the sequential
and systemic techniques of Underwood, whereas the organisational
methods and approaches from the human factors are a mixture of se-
quential and epidemiological accident analyses.

The basic principles of the sequential, epidemiological and systemic
analysis methods are shown below.

2.1.1. Sequential accident analysis methods
One of the first accident analysis theories, the Domino Theory, was

introduced by Heinrich (1941). It describes an accident as a chain of
discrete events occurring in a particular time sequence. The accident
factors are arranged like dominoes one behind the other, in other
words, each factor is dependent on the previous factors and accidents
can be avoided by removing one of the preceding factors. This theory
can be classified as one of the sequential accident analysis techniques,
which include, among others, the failure or event tree analysis (FTA)
and the failure mode and effects analysis (FMEA) (Leveson, 1995).
These methods are only suitable for simple systems where losses are
caused by failures or human error. They assume that the cause and
effect relationship is linear and deterministic (Qureshi, 2007), where
the causal network of events and states contains no feedback loops
(Wienen et al., 2017). The advantage of these methods, however, is that
they are already relatively old, and therefore mature, and they also
provide an easily understandable, sequential picture of the events that
lead to the accident (Wienen et al., 2017).

2.1.2. Epidemiological accident analysis methods
In the mid 1980′s, further factors or conditions and explanations

were needed to understand the disaster at Chernobyl nuclear power
plant or the loss of the space shuttle Challenger. The focus changed
from human factor to organisation (Hollnagel, 2017).

New concepts and theories, such as Reasons (1990) Swiss cheese
model, were thus developed. This model represents the different levels
of safety as concatenated, rotating cheese slices, where the holes re-
present vulnerable points. In an unfavourable combination of these
slices, for instance an interaction of several harmful factors, all holes
fall in the same place and an accident occurs. However, if one layer is in
the way, the hazard cannot develop into an accident. The cognitive
reliability and error analysis method (CREAM) of Hollnagel (1998) for

example, can also be listed here.
Overall, the epidemiological methods and their underlying models

regard accidents as the result of a combination of different interacting
factors, analogous to the spread of a disease (Qureshi, 2007). These
factors are partly manifest and partly latent. Latent states are those that
are present in the system long before the accident occurs, but are only
recognized after the accident (Hollnagel, 1999).

The introduction of these factors improves an understanding of
accidents, which contributes to the analysis of complex systems, but the
causality is still linear and the links between states are loose, something
that does not adequately represent the dynamics of a system (Hollnagel,
2004).

2.1.3. Systemic accident analysis methods
Since neither sequential nor epidemiological accident methods re-

present the dynamics and nonlinear interactions of complex socio-
technical systems and focus primarily on the “sharp end” factors (Dallat
et al., 2017), new accident models had to be developed based on system
theory (Leveson, 2004). The most widely-used systemic models are
Leveson's (2004) systems-theoretical accident and process model
(STAMP) and Hollnagel's (2004) first proposal of the functional re-
sonance analysis model (FRAM). The strong connections between the
various components of the system, which influence each other directly,
are characteristic of systemic models and their derived methods. The
methods try to describe performance at the level of the entire system
and see the accident process as a complex, networked event that cannot
be broken down into its individual components. Emerging events
caused by complex interactions between the various system compo-
nents can affect the performance of the system and cause an accident
(Laaraj & Jawab, 2018; Qureshi, 2007; Wienen et al., 2017).

Since the systemic approach is of great relevance for the further
course of this paper, the most important characteristics are summarized
below (Laaraj & Jawab, 2018):

• emergence of a combination of interconnected and complex events
• macroscopic view of the system
• focus on the overall picture
• consideration of the effects of nonlinear interactions
• consideration of the complexity of the system
• consideration of the dynamics of the system.

Fig. 3. Overview of the development of accident analysis techniques and important accident analysis and risk assessment methods, adapted from Underwood (2013,
p. 18-19, 27) and Eurocontrol (2009). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2. Safety-I and Safety-II

Having considered the historical development of accident causation
theories and analysis methods, we should also take a look at our
comprehension of safety. The pertinent literature basically identifies
two different ways of thinking about safety: the perspective of safety-I
and safety-II.

Safety-I is described as a situation in which as few things as possible
go wrong. The common assumptions are (Hollnagel, 2019):

• the system can be decomposed into meaningful elements
• the function of each element is bimodal (true/false, work/fail)
• the failure probability of elements can be analysed individually
• the order of events is predetermined and fixed
This point of view evolved in the 1920s, where systems were loosely

coupled, linear and stable and system functions were easy to under-
stand and completely describable (Hollnagel, 2018). Finally, the whole
system is seen as equal to the sum of its parts. However, most of current
systems are tightly coupled, increasingly non-linear, less stable and
system functions are hard to understand due to their complexity. In
such complex systems the whole is greater than the sum of its parts and
outcomes cannot be totally controlled or predicted. Thus, the perspec-
tive changed to safety-II.

Safety-II can be seen as a situation in which as many things as
possible go right. The basic assumptions are (Hollnagel, 2019):

• systems cannot be understood by decomposing them
• functions are not bimodal, in fact performance is always variable
• this performance variability is a source of success as well as of
failure
• the functions must be flexible to fit the conditions
Finally, from the point of view of safety-I, the human is seen as a

hazard and performance variability should be prevented, whereas the
safety-II perspective regards humans as an inevitable resource for
system flexibility and resilience and performance variability should be
monitored and managed. Here, a critical perspective on the two safety
views in relation to automated driving and road safety unveils one in-
teresting fact: the point of view of safety-I supports the argumentation
of the replacement of the human driver by automation and on the op-
posite the point of view of safety-II argues in favour that the human
driver is still necessary in at least some situations due to system flex-
ibility and that current automated systems probably are not able to
cope with this flexibility (cf. De Winter and Hancock, 2015) in any si-
tuation. This indicates that the motivation of full automation and the
associated goal of increased traffic safety is largely safety-I driven and
the safety-II perspective is almost neglected. In fact, this is also reflected
in the aforementioned definition of traffic safety in the introduction,
which is largely safety-I oriented. Thus, the application of the safety-II
perspective on automated driving seems urgently required. In parti-
cular, this approach could be the answer to the outstanding issue of
what can be opposed to the previous thinking in terms of the bimodality
“right or wrong” (Winner, 2015) to overcome the approval-trap and the
statistical approach which is based on track distance that currently
focuses only on accidents.

However, adopting the safety-II perspective does not mean that the
safety-I approaches and techniques used up to now have to be com-
pletely replaced: rather we should look at what is happening differ-
ently. Although the two perspectives differ in many respects, they re-
present two complementary views of safety and underlying methods
can also include both perspectives, not only one (Hollnagel, 2018).

Which methods and models are suitable ultimately depends on the
system and events being analysed. Thus, one should first become aware
of the system under examination and the aim of the analysis.

2.3. Road traffic system as a complex socio-technical system

The way we think about systems and their behaviour influences the
methods and models we choose to manage safety and in more general to
solve problems they pose. Thus, the system to be analysed, in other
words the road system, has to be described, before we can trust a sui-
table type of automated driving risk assessment method or model. A
closer look should be taken at the definition of a socio-technical system
as well as the properties of complex systems for a better understanding
of the road traffic system.

Socio-technical systems can be defined as the increasingly common
classification of large systems that have a combination of technological
systems (hardware and software), human interfaces, and organisational
systems (Jackson, 2009). In such systems, requirements arise from in-
teraction with the external environment as well as social, organisa-
tional, and individual factors within the system. These requirements
must be met with limited resources. Variability in system performance
is a feature of large socio-technical systems and makes a complete de-
scription of the work system confusing or impossible (Frost & Mo, 2014;
Hollnagel, 2017).

According to Vicente (1999), a system comprising technical, psy-
chological and social elements can be termed socio-technical. In this
sense, Salmon et al. (2012) conclude that the road system, which
connects all three elements for the purpose of transporting people and
goods from one place to another, is of a socio-technical nature.

According to Dekker et al. (2011), the properties of complexity can
be summarized as follows: complex systems are only held together by
local relationships. No component is aware of the behaviour of the
system as a whole and no one knows the full impact of their actions.
The components react locally to the information available to them. The
complexity comes from the huge networks of relationships and inter-
actions that result from these local actions. The boundaries of what
makes up the system become blurred, and the interdependencies and
interactions multiply and spread quickly.

Salmon et al. (2012) demonstrated that the road traffic system is
just such a complex system because it fulfils all of the aforementioned
prerequisite properties. Specifically, these are the following factors:

• road systems are open systems due to influences from the environ-
ment, but also influences on the environment in return
• components are ignorant of the behaviour of the system as a whole
• no component achieves the level of complexity of the entire road
system
• inputs need to be made by components at all times in order to keep
the system functioning
• path dependence: previous decisions and actions influence the pre-
sent time
• non-linear interactions: asymmetry between input and output
Consequently, the road transport system is a complex socio-tech-

nical system and could be embedded in the systemic quadrant of the
system interaction-coupling matrix adapted from Perrow (1984), see
Fig. 4. This means that sequential and epidemiological analysis tech-
niques are inadequate and that an approach based on systemic methods
should be used to best represent a risk assessment of automated driving.
This is also confirmed by Larsson et al. (2010), who describe system
theory as an important basis for safety work in complex socio-technical
systems, such as the road traffic system. In addition, Hughes et al.
(2015) examined 121 different models relevant for road safety in their
work, divided them into seven different types and then evaluated them.
They conclude that systemic models are best suited in both research and
practice for application to the traffic system. Furthermore, Reichart
(2000) investigated human reliability in driving motor vehicles and
concluded that only a systemic view of the driver, vehicle and driving
environment can capture the interaction of the traffic elements and
effects in the traffic system adequately.
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Although researchers believe that the new system approach can
overcome many of the limitations of traditional methods, only a few
results are found in a literature review of system theory and traffic
safety (Larsson et al., 2010), which emphasise the importance of this
paper.

2.4. Comparison of systemic methods

As the systemic accident analysis and risk assessment methods seem
to be the most appropriate to map the effects of road traffic automation
in comparison with the human driver, an overview of the most com-
monly used systemic accident analysis methods, AcciMap, STAMP and
FRAM, (Underwood, 2013) will be provided. The most important basics
of these methods are explained and existing applications for road traffic
are briefly described. Finally, we discuss their suitability for application
to the road traffic system regarding a safety evaluation of automation.

2.4.1. AcciMap
AcciMap is an extension of the Risk Management Framework

(Rasmussen, 1997) of Svedung & Rasmussen (2002) that is based on the
idea that safety can be influenced by various decisions at all levels of
the system hierarchy. The tool has therefore been designed to perform a
vertical analysis of a socio-technical system for a given accident, and
thus includes a study of events, actions, agents, and decisions that
contributed to the accident (Underwood, 2013).

Traditionally, AcciMap is intended as use after accident occurrence.
The authors do not think that this necessarily excludes the use of
AcciMap for proactive risk assessment since a risk assessment can in-
clude data of both accidents and accident-free driving.

AcciMap has already been used to model the transport system:
Young and Salmon (2015) used the Risk Management Framework to
analyse the distractions of driving with regard to the responsible actors
at different levels of the road system. Scott-Parker et al. (2015) used an
AcciMap to demonstrate knowledge about the safety of young drivers in
terms of the various actors, contributing factors and countermeasures.
McIlroy et al. (2018) present a holistic view of the British road traffic
system, illustrating the complexity of such a system in an ActorMap.
Finally, Stanton et al. (2019) presented an AcciMap of the Uber colli-
sion with a pedestrian and recommend it as an appropriate approach to
support road traffic collision investigations.

However, the limited availability of accident analysis data, espe-
cially as regards the influences of higher hierarchy levels and the degree
of subjectivity in the categorisation, is generally criticised.

2.4.2. STAMP
STAMP (Leveson, 2004) is an accident model in which safety is

treated as a dynamic control problem, not as a reliability and failure
problem. Safety is controlled by a control structure embedded in an
adaptive socio-technical system. The control structure model views
systems as interconnected components that maintain a state of dynamic
equilibrium through feedback loops of control and information. An
accident is the result of a loss of control or inadequate enforcement of
safety-related restrictions in the development, design or operation of
the system (Leveson, 2004; Leveson, 2011).

In addition, there are two methods that are based on STAMP: on the
one hand the Systems-Theoretic Process Analysis (STPA) method,
which is used in hazard analysis to analyse possible causes of future
accidents, and on the other hand the Causal Analysis based on STAMP
(CAST) which is used to describe and understand an accident (Leveson,
2011).

STPA uses a feedback loop safety control structure diagram to
identify unsafe scenarios and develop detailed safety constraints. STPA
can be performed within four main steps: to define the purpose of
analysis, to build a model of the system as a control structure, to define
unsafe control actions and to identify possible reasons for unsafe con-
trol which is done by creating scenarios (Leveson & Thomas, 2018).

Some examples for the application of STPA in the context of auto-
mated driving can be found in Abdulkhaleq et al. (2018, 2017). They
conclude that STPA is a useful approach for identifying more types of
detailed requirements in addition to the safety-in-use (SIU) require-
ments. SIU is defined complementary to functional safety as absence of
unreasonable risk due to hazards not caused by malfunctioning. Also,
STAMP has already been applied in road safety to identify the gap in the
control structure of the road network (Salmon et al., 2016). The goal of
the analysis was to explore the range of actors and organisations within
the road system in Queensland and their key relationships. Here, the
STAMP methodology has certain limitations. A number of the identified
mechanisms are not controls but can be described as influencing me-
chanisms. Such an extension of the method would allow not only the
development of a control structure but also the creation of an influence
structure. Moreover, STAMP is unable to adequately represent the
broader societal impact on road users and the behaviour of the trans-
port system. This argument is consistent with the observation that
STAMP often cannot adequately account for the environmental condi-
tions of the system. Furthermore, one criticism is that control and
feedback loops can only be described between different levels and not
within one level. In addition, Alvarez (2017) analysed the safety ben-
efits of automated driving using a STAMP-based approach. The author
concluded that the conceptual framework is suitable, but that other
system theory approaches such as the Risk Management Framework or
FRAM may also provide an appropriate conceptual framework. Un-
fortunately, a comparison between the three approaches was beyond
the objectives of their work, so the question remains unanswered as to
what the differences are between these methods in terms of safety as-
sessment of automated driving.

2.4.3. FRAM
FRAM (Hollnagel, 2017) began as a qualitative method for risk as-

sessment and accident analysis. It allows the modelling of complex
socio-technical factors, including their interfaces between human and
technology, coupling and dependency effects, nonlinear dependencies
between subsystems, and functional variability (Woltjer & Hollnagel,
2008). FRAM is a method to analyse how something happens or how a
system works and to generate a model of that. The objective is to de-
scribe and understand socio-technical systems in terms of functions
rather than in terms of components. A FRAM model represents the
functions as work-as-done and focus on adjustments of everyday per-
formance which usually contributes to things going right. If these per-
formance adjustments aggregate in unexpected ways, functional re-
sonance will occur and accidents are the result. The final purpose is not
to eliminate performance variability but to investigate and to monitor
what is necessary for everyday performance to go right, trying to

Fig. 4. System interaction-coupling matrix combined with accident analysis
methods classification and assignment of the road system, adapted from Perrow
(1984) and Wienen et al. (2017, p. 22).
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dampen variability in order to reduce resonance effects and unwanted
outcomes (Hollnagel, 2017). The basic principle is that you need to
understand how work is done when it goes well in order to understand
what happened when it failed.

FRAM has been used in many different fields, including aerospace
(Hollnagel et al, 2008; De Carvalho, 2011), nuclear power (Lundblad
et al., 2008), the oil industry (Shirali, et al., 2013) and rail transport
(Steen and Aven, 2011; Belmonte et al., 2011). Ferreira and Cañas
(2019) in particular investigated the potential impacts of automation on
air traffic control operations by exploring how the interactions between
human operators and technology may change if new automation fea-
tures are introduced into the system. This represents a similar appli-
cation compared to the background of this paper (the automation of the
driving task).

However, to the best of our knowledge, a FRAM analysis of the road
system has not yet been published by other researchers. Smoczyński
et al. (2018) noted that the published papers and the description of
FRAM in other fields of application, particularly traffic-related appli-
cations such as maritime (Patriarca & Bergström, 2017) or air transport
(Yang, Tian & Zhao, 2017), indicate the possibility of applying the
method to the road traffic system.

In general, FRAM is seen as a useful tool to build an understanding
of a system actual mechanisms and workings that are needed to initiate
a learning process and to support the risk management activities con-
cerning the proactive assessment of technological changes and their
impacts (Ferreira and Cañas, 2019). Typical results of a FRAM analysis
are that it contributes to the understanding of real work and unveils
unsafe functional interactions within one agent and between different
agents that are often underestimated by traditional methods and design
approaches (Patriarca & Bergström, 2017; Ferreira and Cañas, 2019).

This applies to the road system which has in particular many non-
linear dependencies between vehicles, drivers, vulnerable road users,
infrastructure elements and environmental conditions. Despite this high
level of complexity and the occasionally simultaneous high-risk beha-
viour of some road users, accidents are rarely the result due to high
adaptability or resilience of the system. Therefore, it is expected that
FRAM can identify these resilience mechanisms of the road system and
even assess the impact of introduced automation.

2.4.4. Discussion of the suitability of systemic methods
Underwood (2013) compares the three methods in terms of their

fulfilment of criteria of the system approach. Fig. 5 shows this com-
parison and the first thing that becomes clear is that FRAM is the only
method that fulfils all criteria, STAMP cannot fulfil equi- and multi-
finality, and AcciMap cannot fulfil goal seeking and equi- and multi-
finality. However, equi- and multifinality play an important role in the
road system because the interaction of different human components
with their behavioural variations leads to many different outcomes with
the same inputs or many different developmental paths may have a
similar result. Furthermore, it can be seen that FRAM is the method that
explicitly identifies most features. Thus, FRAM offers the greatest po-
tential for safety analysis in road traffic according to Underwood's as-
sessment criteria.

Additionally, considering the recent developments of these methods
over the last decade, STAMP and Accimap have remained methodolo-
gically the same, while the traditional approach of FRAM has recently
been significantly supplemented by numerous extensions. The most
important research and extensions are listed below: the use of FRAM in
combination with Rasmussen's abstraction hierarchy by Patriarca et al.
(2017a) enables on the one hand in addition to the functional system
description a representation of the system structure and its hierarchies
and on the other hand a better handling of the complexity. Another
opportunity to reduce the complexity is shown through the transfor-
mation of a FRAM model into a matrix representation by Patriarca et al.
(2018). In particular, the quantification approach of Patriarca et al.
(2017b) significantly enhances the basically qualitative and subjective

nature of analysis. A further example to support and enhance the tra-
ditional qualitative inputs by objective inputs from data of sensor
technologies is represented by Arenius (2017). Moreover, the in-
troduction of the new software tool myFRAM (Patriarca et al., 2017c)
contributes to a more standardised and systematic implementation of a
FRAM analysis and also offers an interface for combining FRAM with
many other methods. Last but not least, the suggestion of Belmonte
et al. (2011), that predictive models can be calibrated by inputting data
from real-world or simulated scenarios to test the internal validity of a
FRAM model, could be facilitated by the approaches of Tian et al.
(2016) and Slater (2016). The aforementioned examples emphasise the
great potential of FRAM.

It should also be pointed out that AcciMap and STAMP are model-
cum-method approaches. This means that these approaches have an
underlying model that defines a set of relations and that the associated
methods offer an interpretation of events in terms of these relations.
This imposes an a priori knowledge of the structure of an event. Thus,
the assumptions of a model must be correct, otherwise the results of an
analysis will be useless. This does not match the perspective of safety-II
(but this is required, cf. Section 2.2), which implies that complex socio-
technical systems are not fully understandable. Instead, FRAM can best
be described as doing the opposite. FRAM describes systems in terms of
functions without any predefinition of specific functions or assumptions
of organisational structure. In addition, relations between functions are
defined by empirically determined functional dependencies rather than
by hypotheses of the underlying model. Moreover, FRAM does not
belong to any model or any assumptions about possible causes and
cause-effect relationships. Hence, FRAM is a method-sine-model ap-
proach due to the use of a method to produce a model and not vice
versa (Hollnagel, 2017).

Furthermore, FRAM is scale invariant, whereas model-cum-methods
are scale variant. The advantage of scale invariance is the simplicity of
the method. It needs no large taxonomies or explanations that can be
cumbersome to use or constrain the depth and breadth of an analysis
(Hollnagel, 2017).

Finally, we should also bear in mind the fact that FRAM models the
system at functional level, whereas STAMP provides a view at compo-
nent structure level. This means that STAMP needs a complete system
architecture for risk identification, which makes assumptions about the
system and its mechanisms. Instead, FRAM does not make any as-
sumptions about the processes and the involved components. Thus, the
principle of STAMP contradicts with the stated goal of this work, where
the mechanisms of the system must first be revealed and understood.
Here FRAM is significantly more appropriate because it contributes to
what a system does and not what it is. We therefore recommend the use
of FRAM at the very beginning of a product development cycle (see
Fig. 2) and STAMP at a subsequent position, for instance when a so-
lution has been identified and implemented for the system, to especially
derive risks at the component level. Another opportunity is the mean-
ingful combination of both methods, for example the integration of
components in a FRAM model, which could be done by the use of the
abstraction/agency framework presented by Patriarca et al. (2017a).

In the end, it can be concluded that FRAM is the most promising
method to achieve the goal of the paper as explained in the introduction
in Section 1: to find an analysis method that can differentiate between
the mechanisms of road traffic and identify the interdependencies be-
tween each system element. This method should be applied to specific
and reasonable traffic scenarios in particular to identify the contribu-
tion of the human driver to road traffic safety within these situations
and to derive requirements for the automation and the potential of
automation in these situations with its accompanying factors. Thus, the
next section deals with the applicability of FRAM in a case illustration.
Nevertheless, it would be reasonable also to investigate other systemic
methods, especially STAMP/STPA, in a similar case study in future
research in order to allow the best possible comparison of the methods
in terms of safety assessment of automated driving. However, this is
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beyond the scope of this paper.

3. Application of the Functional Resonance Analysis Method

In a next step, FRAM was applied to road traffic in a case study to
assess the suitability of FRAM in more detail. We will begin by ex-
plaining the structure of FRAM. This includes the basic principles as
well as the various steps that must be taken in FRAM. Finally, the
methodology of the application study as well as the results are pre-
sented.

3.1. The FRAM structure

3.1.1. Basic principles
The original FRAM relies on four principles, which can be seen as a

summary of the experiences gained in safety management in the past
and is also associated with the disability of traditional safety methods to
cope with the properties of complex socio-technical systems (Hollnagel,
2017):

• Equivalence of failures and successes:
Failure and success spring from the same source, i.e. everyday work
variability. This leads both to things going right, as they should, but
sometimes also causes things to go wrong. Thus, success and failure
are not of a different nature, indeed things go right and wrong for
the same reasons.
• Approximate adjustments:
Socio-technical systems are partly intractable and work conditions
are underspecified. Thus, resources and time are usually limited and
sometimes insufficient. Therefore, humans, individually or collec-
tively, and organisations adjust their everyday performance to
match the situation. This is also called the Efficiency-Thoroughness
Trade-Off (ETTO) principle (Hollnagel, 2009). Moreover, this is an
additional argument for the principle of equivalence described
above.
• Emergence:
However, it is not possible to explain things that are going happen as
resultant for an increasing number of systems or events. In fact, the
outcome is said to be emergent. This means that causes cannot be

explained by principles of decomposition and causality, but rather
outcomes may be due to a particular combination of transient
conditions that only were present at a particular point in time and
space without leaving any traces. This means that effects are non-
linear and causes have to be reconstructed rather than found. A
more powerful explanation for emergent outcomes is ultimately
required that leads to the fourth principle.
• Functional resonance:
Functional resonance is the detectable signal that emerges from the
unintended combination of the variability of many signals. This
resonance is not stochastic or random, but rather more systematic
due to certain regularities which are characteristic for different
functions. Therefore, functional resonance explains both emergent
and non-linear outcomes to enable their predictability and control.
Thus, safety analyses can be based on the presence of variability.

3.1.2. Step 0: Recognise the purpose of analysis
In a first step 0, before the actual method begins, practitioners of

FRAM have to make the purpose of using FRAM clear. A FRAM model
can be used to understand how an event happened (retrospective event
analysis), to assess how something may happen (prospective risk as-
sessment) or evaluate the effects of measures to improve system design
(new or redesigned systems).

3.1.3. Step 1: Identification and description of a system’s functions
The first step in FRAM is to identify the functions that are essential

for the success of everyday work. A function refers to the tasks (work-
as-imagined, WAI) or activities (work-as-done, WAD) that have to be
done to produce a certain outcome. Each function is characterised by
six different aspects (Hollnagel, 2017):

• Input (I): energy, matter or information which is used or trans-
formed by the function to produce an output or what activates or
starts a function.
• Output (O): the result of what a function does, either an entity or
state change.
• Precondition (P): conditions that must be fulfilled to carry out a
function, but a precondition itself does not work as a signal that
starts a function.

Fig. 5. Evaluation of systems approach characteristics of STAMP, FRAM and AcciMap (Underwood, 2013, p. 71).
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• Resource (R): is what a function needs or consumes while the
function is carried out (e.g. matter, energy, information, software,
tools and operators).
• Control (C): is what monitors or regulates a function to produce a
desired outcome (e.g. plans, procedures, guidelines or a software
program)
• Time (T): temporal constraints of the function in terms of both
duration and time of execution

A FRAM function with the six aspects is traditionally represented
graphically by a hexagon (see Fig. 6). The software Functional Model
Visualiser (FMV) (Hill & Hollnagel, 2016), available at http://
functionalresonance.com/support/software%20development.html, or
its pro-version designated as FMV Pro, available at http://www.
zerprize.co.nz/FRAM/index.html, should be used to describe the func-
tions and to generate a graphical model.

Furthermore, it is helpful to divide the functions into two classes:
foreground and background functions. Foreground functions are the
core of the analysis and may vary significantly during an instantiation
of the model. Background functions represent common conditions that
are relevant for and used by foreground functions. They are outside the
scope of analysis and do not vary significantly. Background functions
can be seen as the boundary of the model.

Event reports, procedures, design specifications, story-telling, field
observations or interviews can be used to start making a list of essential
functions. Any function can be used to start the FRAM model before
proceeding in an iterative manner to identify the remaining functions
and their couplings. These couplings represent a specific instantiation
of a model. In this process, functions have temporal and causal re-
lationships, thus functions that happen before other functions and affect
them are called upstream functions whereas, functions that happen
after other functions and are affected by them are called downstream
functions.

The model can be refined through discussions and iterations, and it
is completed if no aspect occurs for one function only, so that all aspects
defined for one function have to be included in the aspects of other
functions. The stop rule for system boundary is semi-explicit, namely
that the analysis should stop if no unexplained variability of functions
remains (Hollnagel, 2017, p. 59-60). Finally, the model can be cali-
brated using so-called subject matter experts (SME’s).

3.1.4. Step 2: Identification of performance variability
In a second step, the objective is to identify and characterise the

variability of functions. The identification of variability is crucial to
understand potential as well as actual couplings between functions,
which can lead to unwanted outcomes.

One can differentiate between three sources of variability: internal
variability due to the character of the function itself, external varia-
bility due to factors of the work environment, and aggregated varia-
bility due to functional upstream-downstream couplings.

After it has been identified, the performance variability has to be
characterised using different variability manifestations, the phenotypes.
There are two solutions: the simple one, which is efficient but not so
thorough and considers only two phenotypes, i.e. timing and precision,
and the elaborate approach that is not efficient but thorough and in-
cludes multiple phenotypes, i.e. speed, distance, sequence, object, force,
duration, direction and timing. If we take a closer look at the simple
solution, the output in terms of timing can occur too early, on time, too
late or not at all. In terms of precision, the output can be precise, ac-
ceptable or imprecise (Hollnagel, 2017, p. 69-73).

3.1.5. Step 3: Aggregation of variability
However, it is not enough to simply know the variability of in-

dividual functions in isolation. In fact, the combination effects of sev-
eral function variabilities has to be understood to know where func-
tional resonance emerges. This is done by using the concept of
aggregated variability to define upstream-downstream couplings. The
variability can be caused by couplings of upstream functions, when the
output used as input, precondition, resource, control or time is variable
and thus affects the variability of downstream functions.

This impact can have three different expressions: variability is likely
to increase (amplifying effect), variability is likely to decrease (damping
effect) and variability is likely to stay unchanged (no effect). Table 1
illustrates this variability propagation for the combination of the
variability phenotypes timing and precision and the five functional
aspects.

3.1.6. Step 4: Management of variability
The final and last step includes the monitoring and management of

the performance variability that was identified in the previous steps.
The performance variability can lead to positive and negative effects.
Positive effects should therefore be amplified by facilitating their oc-
currence without losing control, and negative effects should be dam-
pened through elimination and prevention, though care should be taken
not to eliminate the variability completely, since variability is essential
for the safety and performance of the system (Hollnagel, 2017, p. 89).

FRAM only can offer pointers as to where to look but give no precise
solutions. Thus, once the critical aspects and weaknesses have been
identified, proper solutions have to be found and performance in-
dicators should be established to monitor processes and developments
to regulate the activities in a system. Therefore, variability can be
dampened to a level where no unwanted outcomes arise – instead only
desirable outcomes occur – and a safe and efficient working of the
system is ensured.

Fig. 6. Example of a graphical representation of a FRAM function.

Table 1
Upstream/downstream propagation of variability (Patriarca et al., 2018).

Upstream output variability Input Precondition Resource Control Time

Timing Variability of Output Too early Amplifying/No Effect Amplifying No Effect/Damping Amplifying Amplifying
On time Damping Damping Damping Damping Damping
Too late Amplifying Amplifying Amplifying Amplifying Amplifying
Not at all Amplifying Amplifying Amplifying Amplifying Amplifying

Precision Variability of Output Imprecise Amplifying Amplifying Amplifying Amplifying Amplifying
Acceptable No Effect No Effect No Effect No Effect No Effect
Precise Damping Damping Damping Damping Damping
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3.2. Case study: Overtaking manoeuvre on rural road

In this subsection, FRAM is applied to a concrete scenario in road
traffic. First of all, it is important to define a reasonable scenario before
executing the individual steps of FRAM. This process describes the
underlying methodology and finally the results of each step.

3.2.1. Selection and description of scenario
The scenario is generally intended to represent a potential for au-

tomation, i.e. an accident black spot, and to provide sufficient material
for a FRAM analysis and its evaluation. It should be noted, that the
presented statistics for Germany below only serves as an example for
the subsequent explanations, arguments and especially the scenario to
be analysed. Thus, the scenario and the resulting FRAM-model can also
be relevant for the settings of other countries.

Generally, the scenario has to fulfil the following requirements:

• the chosen accident location and cause of the accident should have a
high number of people killed in traffic accidents
• the selected cause of the accident should consist of several different
elementary driving tasks that serve the applicability or usefulness of
the FRAM method
• the chosen cause of the accident has to ensure the interaction of the
ego vehicle (own vehicle from the perspective of the driver) with at
least one other road user

In order to meet the first criterion, a driving scenario has to be se-
lected that takes place on rural roads. 58% of all fatal accidents in 2015
in Germany occurred on rural roads. The proportions for urban roads
and highways are 30% and 12%, respectively (Destatis, 2016). Next,
the contribution of the cause of the accident to the consequences of a
fatal accident plays a role. On rural roads, the majority of accidents are
driving accidents (38%) and accidents in longitudinal traffic (24%).

A driving accident is defined as a loss of control over the vehicle
without any contribution from other road users. However, one result of
uncontrolled vehicle movements may be a collision with other road users.
Accidents in longitudinal traffic are conflicts between road users moving
in the same or opposite direction (Destatis, 2017). These accidents are not
related to a turn. That two conflict situations account for around three
quarters (74%) of the fatalities in rural road accidents (Heinrich et al.,
2010). In this respect, the main reasons are excessive speed, incorrect
road use and poor overtaking opportunities (Destatis, 2016).

Overall, overtaking is the cause of a significant share of the accident
types driving accident and accident in longitudinal traffic.

In addition, the overtaking task involves several different subtasks
such as swerve, adjust the speed, merge, etc., so the second criterion is
met. Meanwhile, the ego vehicle is in interaction with at least one other
road user whose driving behaviour must be continuously considered by
the driver of the ego vehicle, thus the third and last requirement is
fulfilled. For these reasons, overtaking on a rural road was chosen as an
adequate driving scenario for the investigation of this work.

In the scenario, the ego vehicle is on a long, flat straight section of a
country road with one lane for each direction and a slower vehicle is
driving in front. The rear and oncoming traffic is relatively far away and
represents no immediate hazard. The aim of the ego vehicle is to over-
take the vehicle in front. The weather is sunny, the road is in perfect
condition, overtaking is permitted and no obstructions exist. The ego
vehicle is driven once by a human driver and once by an automated
system (SAE-level 4) according to SAE J3016 (2014) without any C2X.
The vehicle in front is always driven by a human driver in both cases.
Overall, this scenario represents a simple overtaking manoeuvre.

To get a better overview, the scenario can be divided into five
segments (see Fig. 7): follow a vehicle in front, swerve into the on-
coming lane, pass the leading vehicle, merge back into the starting lane
and get in lane again. The entire scenario is a temporal sequence of
actions (edges) and scenes (nodes) according to Ulbrich et al. (2015).

3.2.2. Applying step 1: Road system functions related to an overtaking
manoeuvre

Initially, the situational analysis of the behavioural requirements of
driving tasks (SAFE) in Fastenmeier & Gstalter (2007) was applied as a
fundamental basis to identify and define the functions for the driving tasks
later in FRAM. SAFE is a procedure for driving task analysis and driver
requirement assessment. According the SAFE method, first the scenario
under investigation is initially precisely defined and classified. Basic
driving tasks are then derived and further subtasks are defined and seg-
mented in time and space. These subtasks are further analysed based on a
model of human information processing to compile all of the requirements
that have to be fulfilled by the driver to correctly cope with the given task.
Finally, these requirements are transformed into functions for FRAM.

In a second step, the functional decomposition of the road system
(Kuzminski et al., 1995) was used to define further functions for the
human driver that are missing if only SAFE is used, and especially to
derive functions that relate to the vehicle or environment, which are in
most cases background functions that are relevant for foreground
functions. The use of the functional definition of the road system should
ensure that as many functions as possible are identified and defined, or
at least the most important ones.

After the two first steps, the functions and their couplings were in-
tegrated iteratively into a model using FMV, as shown in Figs. 8, 9 and
10. A total of three FRAM models had to be created, to keep an overview
and facilitate the comprehension of the model. It should be noted that,
basically, the three figures must be seen like three fundamental FRAM
models for the overtaking manoeuvre and in the future different in-
stantiations can be derived based on this to investigate several issues, for
example various conditions of the environment by the weather or traffic
density. So, they are rather toy-models and not different instantiations,
even if, according to the respective terminology, this is an improper use
of the wordings of model and instantiation. Fig. 8 shows the first FRAM
model for the segments one and two, Fig. 9 the second FRAM model for
segments three and four, and finally Fig. 10 presents the third FRAM

Fig. 7. The scenario “overtaking on a rural road” (dashed in blue) as a temporal
sequence of actions/events (edges) and scenes (nodes) according to Ulbrich
et al. (2015). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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model for segment five. The hexagons indicate foreground functions and
the rectangles stand for background functions. The different colours
specify the various agents that perform the functions: human driver or
automation driving the ego vehicle in blue, technology features of the
vehicle in green, characteristics of the infrastructure in red, information
by the policy in yellow and actions of the human driver of the leading

vehicle in purple. In order to ensure that the three models are connected,
and thus an entire and not a decomposed model will be created, the last
foreground function of the preceding model is the first background
function of the subsequent model and the first foreground function of the
subsequent model is the last background function of the preceding model
in each case as regards the temporal sequence. It should be noted that the

Fig. 8. FRAM model 1 for following and swerving in the overtaking manoeuvre scenario (segment 1 and 2). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. FRAM model 2 for passing and merging in the overtaking manoeuvre scenario (segment 3 and 4). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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models are the same for the human driver or the automation due to the
assumption that there is no change in the functions of the system that
have to be accomplished by the human driver or the automation. The
difference between the two agents is only the variable performance of
each function.

Tables 2 and 3 list the foreground- and background functions in-
volved in the analysis, detailing the agent performing them. There are a
total of 26 foreground and 27 background functions, whereby some
functions are repeated during the overall overtaking manoeuvre.

3.2.3. Applying step 2: Identification of performance variability for the
driving task

In the second step according to FRAM, the actual variability of each
foreground function is characterised individually based on internal and
external variability sources following Hollnagel’s (2017) simple solu-
tion, i.e. in terms of timing and precision. The authors assigned the
manifestation of variability subjectively based on their experience in
the field as well as knowledge about the current state of driving assis-
tance systems and automated driving systems. Consequently, the data
was not obtained empirically, but it did not have to be because this
work is not aimed at content-related results but at methodological re-
sults regarding the applicability of FRAM. It does not matter if the
variability is realistic. Table 4 shows the assigned manifestations of
variability for timing and precision in both cases, driving by a human
and automation. It is assumed that the variability of the functions re-
lated to the vehicle in front or passed vehicle is the same in both cases.

In addition, the semi-quantitative approach according to Patriarca

et al. (2017b) was applied to enhance the graphical and qualitative
approach of the traditional use of FRAM which is difficult to read for
highly complex systems. Thus, a numerical score was assigned to each
performance variability state in a first step (see Table 5). The higher the
score, the more variable the output. The variability of the upstream
output j, OVj is the product of these two scores (1):

=OV V Vj j
T

j
P (1)

where

VjT represents the upstream output j score in terms of timing
VjP represents the upstream output j score in terms of precision

3.2.4. Applying step 3: Aggregating the performance variability
quantitatively for the road system

Once assigned the variability score for the upstream output, the
coupling variability (CV) of the upstream output j and the downstream
function i (2) as well as associated variability propagation factors aijT

and aijP have to be specified according to Patriarca et al. (2017b) (3):

=CV OV a a· ·ij j ij
T

ij
P (2)

where

aijT represents the propagation factor for the upstream output j and
the downstream function i in terms of timing
aijP represents the propagation factor for the upstream output j and
the downstream function i in terms of precision

Fig. 10. FRAM model 3 for getting into starting lane again in the overtaking manoeuvre scenario (segment 5). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Note that aijT or aijP may assume the following values:

2 if the upstream output has an amplifying effect on the
downstream function

1 if the upstream output has no effect on the downstream
function

0.5 if the upstream output has a damping effect on the
downstream function

(3)

The specification of the propagation factor is based on Table 1.
The downlink (DL) and uplink (UL) coupling variability of one

foreground function (downlink functional coupling variability, DLFCV
and uplink functional coupling variability ULFCV) should be calculated
in the next step. The DLFCV is used to understand the implications of
the coupling variabilities of one entire upstream function j to associated
downstream functions i and the ULFCV is used to comprehend the im-
pact of the variability of a downstream function i through its incoming
coupling variabilities of upstream functions j. The calculation formula
for DLFCV and ULFCV can be seen in (4) and (5), respectively:

=
=

DLFCV CVij
i

j

ij
1 (4)

=
=

ULFCV CVji
j

i

ij
1 (5)

Additionally, the number (N) of downlinks of an upstream function j
(NDLj) and the number of uplinks of a downstream function i (NULi) have
to be determined. This allows the number of links of an upstream
function to downstream functions or vice versa to be specified. NDLj is
the sum of downlinks of an upstream function (6) and NULi is the sum of
uplinks of a downstream function (7):

Table 2
List of foreground functions related to the performing agent.

Foreground function Agent

to keep safety distance human driver/automation (ego vehicle)
to keep lane human driver/automation (ego vehicle)
to monitor traffic area human driver/automation (ego vehicle)
to control speed of ego vehicle human driver/automation (ego vehicle)
to guide ego vehicle safely human driver/automation (ego vehicle)
front vehicle: to keep lane human driver (front vehicle)
front vehicle: to keep speed constant human driver (front vehicle)
to control speed deviation between velocity of front vehicle and speed limit human driver/automation (ego vehicle)
to check permission to overtake human driver/automation (ego vehicle)
to judge speed of front vehicle human driver/automation (ego vehicle)
to decide to overtake human driver/automation (ego vehicle)
to ensure rear approaching traffic human driver/automation (ego vehicle)
to ensure lateral traffic human driver/automation (ego vehicle)
to ensure front approaching traffic human driver/automation (ego vehicle)
to set indicator to the left human driver/automation (ego vehicle)
to swerve into oncoming lane human driver/automation (ego vehicle)
to get into oncoming lane human driver/automation (ego vehicle)
to turn off indicator human driver/automation (ego vehicle)
passed vehicle: to keep speed constant human driver (front vehicle)
passed vehicle: to keep in lane human driver (front vehicle)
to define distance to passed vehicle human driver/automation (ego vehicle)
to decide to merge human driver/automation (ego vehicle)
to set indicator the right human driver/automation (ego vehicle)
to merge into starting lane human driver/automation (ego vehicle)
passed vehicle: to keep safety distance human driver (front vehicle)
to get into starting lane human driver/automation (ego vehicle)

Table 3
List of background functions related to the performing agent.

Background function Agent

to define safety distance policy
to detect front vehicle human driver/automation (ego

vehicle)
to inform about road section length infrastructure
to scan road layout human driver/automation (ego

vehicle)
to scan road user human driver/automation (ego

vehicle)
to scan surroundings of the road human driver/automation (ego

vehicle)
to warn in case of illegal speed deviation technology
front vehicle: to enable positive

acceleration
human driver (front vehicle)

front vehicle: to enable negative
acceleration

human driver (front vehicle)

to inform about speed of front vehicle technology
to enable pos. acceleration technology
to enable negative acceleration technology
to provide speed limit infrastructure
to inform about speed of ego vehicle technology
to provide rear view technology
to execute shoulder check human driver/automation (ego

vehicle)
to provide lateral view technology
to provide front view technology
to communicate turn intention technology
to enable steering technology
to inform about overtaking permission infrastructure
to provide lane markings infrastructure
front vehicle: to enable steering technology
to assist by LCA technology
to assist by ACC technology
to keep safety distance to merged vehicle human driver (front vehicle)
to inform about merging intention technology
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=
=

N DLDL
j

i

j

ij
1 (6)

=
=

N ULUL
i

j

i

ji
1 (7)

It should be mentioned that only the downlinks or uplinks between
two foreground functions and not between two background functions or
between a foreground and a background function are counted.

In the final step, a global system variability (GSV) can be calculated
that is the product of n functions within the whole system consisting of
the multiplication of each associated DLFCV with the respective number
of downlinks (8):

=
=

GSV DLFCV N
j

n

ij DL j
1

,
(8)

The number of downlinks functions as a kind of weighting factor
related to the impact of the associated DLFCV. The variability is
quantified with the help of the software myFRAM (Patriarca et al.,
2017c), which was developed in Visual Basic for Applications (VBA)
and interfaced with Microsoft Excel and FMV. The main purpose of
myFRAM is to develop and explore a FRAM model in a systematic way
and to enhance FRAM for further analyses, such as the semi-

quantitative approach in Patriarca et al. (2017b) described above.
The quantified data of the formulas can be visualised in diagrams

that are created in Excel. Two diagrams can be seen in Figs. 11 and 12
as an example of the functional coupling variability outputs with regard
to the first FRAM model (in Fig. 8). Similarly, this is also possible for the
second and third FRAM model. Fig. 11 shows the functional coupling
variabilities and number of links for the human driver and Fig. 12 for
the automation. The number of downlinks (blue columns) and uplinks
(orange columns) is shown on the left y-axis. The DLFCV (transparent
area in blue) and ULFCV (transparent area in orange) are presented on
the right y-axis and the different functions are on the x-axis. It should be
noted that the diagrams represent a static state of the model and must
be calculated repeatedly step by step for dynamic progressions, which is
more realistic. Furthermore, the number of links is the same for the
human driver and automation due to the assumption that there is no
change in the functions of the system that have to be accomplished by
the human driver or the automation as described above in Section
3.2.2. The only difference between the two agents that can be seen is in
the functional coupling variabilities. These figures can be used to argue
that, on the one hand, the higher the DLFCV and the greater the number
of downlinks of one upstream function, the more critical the variable
output of this function will be, and on the other hand, the higher the
ULFCV and the greater the number of uplinks of one downstream
function, the more likely it is that the output of this function will be
highly variable, thus more critical. Or another interpretation example
could be if the ULFCV is high and the DLFCV is low of the same function
then this could mean that the incoming variability is tolerated and has
no significant impact on the output variability. Overall, these figures
should be used to gain a better and quick idea of where the critical
functions in the system lie and then to delve deeper into understanding
why and how this criticality occurs using the graphical illustration in
FMV. Finally, countermeasures have to be considered to reduce this
criticality by dampening the variability.

The GSV is illustrated in Fig. 13, where the GSV is defined for each
single FRAM model (F1, F2, F3) and in a combination of the first two
FRAM models (F1*F2) or all three (F1*F2*F3). Additionally, this figure
shows a comparison between the human driver (blue) and the

Table 4
Variability manifestations for each function in a comparison of the human driver and automation.

Foreground function Timing of human
driver

Precision of human driver Timing of automation Precision of automation

to keep safety distance too late acceptable on time precise
to keep lane too late acceptable on time precise
to monitor traffic area on time precise on time imprecise
to control speed of ego vehicle too late acceptable on time precise
to guide ego vehicle safely too late acceptable on time acceptable
front vehicle: to keep lane on time acceptable – –
front vehicle: to keep speed constant on time acceptable – –
to control speed deviation between velocity of front vehicle and speed

limit
on time precise on time precise

to check permission to overtake on time precise on time acceptable
to judge speed of front vehicle on time imprecise on time precise
to decide to overtake on time precise Too late acceptable
to ensure rear approaching traffic on time precise on time acceptable
to ensure lateral traffic on time precise on time acceptable
to ensure front approaching traffic on time precise on time acceptable
to set indicator to the left too late precise on time precise
to swerve into oncoming lane too early acceptable on time precise
to get into oncoming lane too late acceptable on time precise
to turn off indicator on time precise on time precise
passed vehicle: to keep speed constant too late acceptable – –
passed vehicle: to keep lane too late acceptable – –
to define distance to passed vehicle too late acceptable on time precise
to decide to merge on time precise on time acceptable
to set indicator the right too late precise on time precise
to merge into starting lane too early acceptable on time precise
passed vehicle: to keep safety distance too late acceptable – –
to get into starting lane too late acceptable on time precise

Table 5
Assignment of numerical values to the linguistic description of variability
manifestation of the phenotypes timing and precision.

Variability phenotype Variability manifestation VjT or VjP

Timing too early 2
on time 1
too late 4
not at all 5

Precision imprecise 5
acceptable 3
precise 1
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automation (orange). The value of GSV is outlined on a logarithmic
scale on the x-axis. On the whole, this diagram could be used to illus-
trate the overall variability within the system for one instantiation or
scenario in a comparison of two different system designs. By means of
this illustration, it can be concluded that the higher the variability, the
less safe the system will be.

3.2.5. Applying step 4: Monitoring and managing the variability in the road
context

Once created, the graphical FRAM models and the different quan-
tified outputs have to be interpreted and results derived from them. If
we take a closer look at Figs. 11 and 12, we can see that the DLFCV
increases moderately for the function to keep safety distance with two
downlinks and slightly for the functions to control speed of ego vehicle, to
keep in lane and to guide ego vehicle safely, each with one downlink, for
the human driver. On the other hand, the DLFCV increases significantly
for the function to decide to overtake and slightly for the function to
monitor traffic area, each with four downlinks, for the automation. This

shows that the human driver has more trouble coping with driving tasks
related to stabilisation of the vehicle on the road, but that these func-
tions have a low potential impact on other downstream functions due to
the small number of downlinks. In contrast, the automation is riddled
with decision-making tasks for overtaking or sensing tasks such as
monitoring the traffic, and these functions have a great potential effect
on other downstream functions due to the relatively high number of
downlinks.

Thus, one interpretation could be that the effects of the automation
are more critical than those of the human driver and that full auto-
mation is unreasonable. Alternatively, you could simply follow an
ADAS approach and say that the functions with increased DLFCV for the
human driver should be automated and the functions with increased
DLFCV for the automation should continue to be performed by human
drivers.

Further on, it can be seen that the ULFCV is slightly higher for the
functions to control speed deviation between ego- and vehicle in front and to
keep speed constant by vehicle in front, with two or one uplinks, and much

Fig. 11. FRAM model 1 for the human driver - Functional coupling variabilities and number of links. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. FRAMmodel 1 for the automation - Functional coupling variabilities and number of links. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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higher for the function to guide ego vehicle safely, with four uplinks, for
the human driver. In return, the ULFCV is slightly higher for the func-
tions to ensure lateral traffic, to set indicator to left and to ensure front
approaching traffic, with one, four or one uplinks, for the automation.

Therefore, one interpretation may be that incoming variabilities are
collectively more critical for the human driver than for automation, for
example to guide the ego vehicle safely. This is why the upstream
functions of this function, namely to keep safety distance, to keep in lane,
to monitor traffic area and to control speed of ego vehicle, should be au-
tomated. This could be regarded as a confirmation of the previous in-
terpretation of results from DLFCV.

After the functional coupling variabilities and number of links have
been interpreted, providing a good overview of where to look in more
detail, the critical functions and related aspects need to be differentiated
and explored in the graphical model using FMV. Let us take the function
to guide the ego vehicle safely,which is referred to in the following text as a
function in the focus (FiF), as an example. The mechanisms for the
comparison of the human driver and the automation are illustrated in the
Figs. 14 and 15, which show an excerpt from the FRAM model 1 with a
focus on the dependencies between the upstream and downstream
functions related to the function FiF. These couplings are highlighted in
purple. The value for ULFCV is shown above the hexagon of the FiF and
the value for DLFCV below this. The respective value of CV is displayed
on each purple line. This information visualises the composition of the
ULFCV and you can see where so much variability comes from. Fur-
thermore, each hexagon has an upper and lower coloured line according
to the new feature of FMV Pro 2.0 to trace the variability in a simple
form. The upper line and lower line represent the variability score for
timing and precision, respectively. The resulting colours on the functions
are not fixed like the assigned variability manifestations in Table 4. They
are in fact rendered as continuous effects of upstream and downstream
couplings and the scale varies between blue and red (with green as the
mid or neutral point). Specifically, the colour coding is as follows: too
early (orange), on time (blue), too late (orange), not at all (red), precise
(blue), acceptable (green) and imprecise (red).

We can see that the FiF has four potential sources of incoming
variability, whereby, the FiF has three main sources for the human
driver and only one major origin for the automation. In addition, the
main variability source of the automation is not included in the three
roots of variability for the human driver. So, there is a difference. The
human driver is more variable in terms of stabilisation tasks such as
keeping in lane or the safety distance, whereas the automation is more
variable in sensing tasks like monitoring the road to identify the road
layout or other road users. One reason for FiF's higher DLFCV for the
human driver compared to the automation may be that FiF’s output is

affected by three increased CV’s and not just one which is less variable.
It can also be seen that the function to monitor traffic area also affects

the other functions that directly influence the FiF, so that this function
has a potentially high impact and is thus critical in terms of automation.
This case is shown in Fig. 16 as “what happens if”. If we set the timing
variability of the function to monitor traffic area from on time to too late,
this leads to an increased timing variability in six other functions,
highlighted in green in Fig. 16. Actually, this change indirectly affects
the speed keeping of vehicle in front as there is a feedback loop between
the ego vehicle keeping the safety distance that is directly influenced by
monitoring the traffic area. Hence, this is a good example to show
emergent effects in the road system. However, it is not obvious that the
sensing task of the driver to monitor the traffic can affect the speed
behaviour of the leading vehicle.

There are many more things to be analysed, but the previous in-
terpretation examples should be sufficient to show the applicability of
FRAM to road traffic.

Last but not least, the comparison of the GSV for the human driver
and the automation in Fig. 13 can be interpreted as follows: the GSV
related to the human driver is significantly higher than that related to
the automation in both cases for every single FRAM model and for the
models in common consideration. Thus, the overall scenario is more
variable, i.e. unsafe, if the vehicle is driven by the human rather than by
the automation. Consequently, this scenario, which is based on the
predefined instantiation and associating assumptions should be auto-
mated. But we have to bear in mind two aspects that take a critical look
at the GSV. First of all, a higher variability is per se not more unsafe. As
already mentioned, a complex system needs variability to emerge
safety, so the sources and reasons for this variability have to be dif-
ferentiated. For example, at one point in time and space, this supposed
negative variability seems to be reasonable and thus leads to a safe
outcome, whereas the variability results in an accident at another point
in time and space. Secondly, the calculation of GSV does not seem to fit
the real system behaviour because there could be upstream functions
that have a greater effect on downstream functions than others. In other
words, some functions make a more critical contribution to accidents
than others. This cannot be mapped solely by the product of the DLFCV
and the number of downlinks. Therefore, an additional weighting factor
has to be considered for each output of a downstream function and
maybe specified empirically. Moreover, each downstream function has
a certain robustness or tolerance factor towards the incoming varia-
bility. This too is not reflected in the current calculation of the GSV.

All in all, the consideration of the GSV is to be treated with caution
and should be seen as a relative tendency rather than an absolute and
valid fact. It is thus crucial to delve deeper into the model and

Fig. 13. Global system variability (GSV) for each single FRAM model and as a combination of these in a comparison between the human driver and the automation.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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understand the mechanisms and emergent and non-linear effects such
as those shown above, and to not simply trust the global system
variability.

4. Discussion

The aim of this paper, as mentioned in the introduction, is to
identify or define a method that should be applied to specific and
reasonable traffic scenarios so as to identify the contribution of the
human driver to road traffic safety within these situations and to derive
requirements for the automation and the potential of automation in
these situations with its accompanying factors. For this purpose, the
method has to differentiate between the mechanisms of road traffic and
identify the interdependencies between each system element.
Ultimately, design recommendations for automation as well as sup-
porting material to reduce the validation effort should be provided
using this method. Finally, the applicability of this method has to be
evaluated in a case study.

First of all, the derivation of an adequate method was shown in
great detail by a description of the development of safety thinking and
risk assessment methods, the properties of the road traffic system, and
last but not least, an explanation of why systemic methods, and in
particular FRAM, should be used. The result was that FRAM has the
highest potential to be the method we are searching for.

In the second part of the paper, FRAM was applied to an overtaking
scenario to describe how this method can be used and to assess the
suitability of FRAM for the underlying objective of this paper. Thus, the

strengths as well as limitations of FRAM have to be discussed.
First, the strengths are explained. FRAM is very flexible to use since

it is a method-sine-model. This also means that a FRAM model can be
augmented or changed every time in terms of its granularity and has no
limitations regarding modelling so that further users do not have to
start from scratch. The “openness” of FRAM provides extensive op-
portunities for the combination of a FRAM analysis with various other
tools and approaches (Patriarca et al. 2017a,b; Patriarca et al., 2018;
Tian et al. 2016, among others), thus paving the way for an analysis of
specific problems whilst maintaining an overall socio-technical system
perspective (Ferreira and Cañas, 2019). Moreover, a generated model
can be represented in a graphical form, so one does not simply see the
input and output but rather a “map” between the input and output and
how inputs are transferred into the specific outputs. Besides, practi-
tioners have guidance material in form of the fundamental theory book
of FRAM by Hollnagel (2017), a brief guide on how to use the FRAM
(Hollnagel, 2018b) and a practical guideline or handbook (Hollnagel
et al., 2014). In addition, the use of FRAM is supported by software, i.e.
FMV and myFRAM, thus ensuring a kind of standardisation and sys-
tematic implementation. Besides, add-ons of the currently available
software and also new software (EZ-FRAM) were announced at the
FRAMily workshop 2019 in Malaga. The new software should support
the simulation of how variability propagate through a FRAM model as
well as considering the dynamics in a system or model. Additionally, to
the pure and original qualitative approach of FRAM, a quantitative risk
or safety assessment is also possible (Patriarca et al., 2017b) which is
supported by myFRAM. Thus, the results of FRAM can be presented to a

Fig. 14. One excerpt from the FRAM model 1 to show a critical path (purple) for the human driver related to the function to guide the ego vehicle safely. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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wider audience more easily and the inevitable need of traditional risk
approaches to describe risk and safety in terms of numerical values or
statistical outputs is satisfied. Although, a quantification of FRAM is not
mandatory or reasonable (Hollnagel, 2017, p. 94), it may be able to
help with specific issues, in particular facilitating the interpretation of
FRAM models related to large-scale complex systems such as the road
system, as stated also by Ferreira and Cañas (2019). Finally, FRAM
helps to identify the critical functions and their consequences for the
entire system, and to visualise the mechanisms and emergence of
events, specifically equi- and multifinality.

Next, the limitations are presented. FRAM is a very elaborate
method and intense introductory work coupled with extensive domain
and human factors knowledge (Hollnagel & Speziali, 2008) is needed
before a FRAM analysis can begin. Actually, even with this relatively
simple toy-model the FRAM model requires a lot of time resources of
the researcher (approximately 40h). So, this will again increase sig-
nificantly for more differentiated models and a methodological ap-
proach, whereby empirical data are collected. Similar observations
were made by Adriaensen et al. (2019), while suggesting a limitation of
the scope of a model to the essential questions under investigation to
ensure a manageable model. But this worthwhile for a safety assessment
of high-risk systems such as an automated vehicle. Furthermore, the
illustration of a FRAM analysis in a graphical form for highly complex
systems quickly becomes confusing due to its messy appearance. A
sensible interpretation is therefore difficult, if not impossible, but a
better understanding of the potential system dynamics is possible.
Fortunately, this limitation can be eased by the approaches of Patriarca

et al. (2017a,b) or Patriarca et al. (2018) and also through the use of
myFRAM. The more critical aspects of limitation are the identification
of system functions and their interdependencies as well as their vari-
abilities. The current approach to identify functions and their vari-
abilities is to study reports, procedures, design specifications, story-
telling or to conduct field observations or interviews. Some practical
guidance material exists in Hollnagel et al. (2014), but this is ultimately
subject to a very strong subjective assessment of SME’s. Regarding the
objective of this paper and application of FRAM to assess the safety of
automated driving, the identification of functions and their variability
have to be improved in further research, which must include more
objective and empirical measures. In addition, the validation of a FRAM
model is impossible and calibration can only be achieved in the form of
face validity (Bridges et al., 2018). Calibration means that a FRAM
model is developed and evaluated iteratively by a group of SMEs’ until
every SME agrees with completeness and precision of the created
model. Since the objective target of FRAM in this paper is to derive
requirements for automated system design and to offer hints for its
validation, but not to validate or approve the automated system based
on the FRAM model per se (see also Fig. 2), this validation limitation is
irrelevant. Nevertheless, for the future research it should be the ambi-
tion to calibrate a FRAM model by SME’s to ensure the reliability of the
results based on a FRAM analysis. Besides, this process should be en-
hanced by more objective, empirical and analytical approaches.
Thereby, the transformation of a FRAM model into a Bayesian Belief
Net (Slater, 2016) may be an appropriate approach. Also, against the
background of the qualitative nature of the FRAM method the proposal

Fig. 15. One excerpt from the FRAM model 1 to show a critical path (purple) for the automation related to the function to guide the ego vehicle safely. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of Anfara et al. (2002) could be a promising approach in assessing the
validity of a FRAM model.

Last but not least, the application of FRAM to the overtaking sce-
nario per se is discussed in detail. The functions and their variabilities
were identified more or less subjectively. This will have to be based on
more objective and empirical research in future to obtain more realistic
results. The functional decomposition of the road system by Kuzminski
et al. (1995) and the application of SAFE (Fastenmeier & Gstalter, 2007)
in particular did not provide sufficient material as a basis to start with
FRAM. In future, this should be enhanced using the driving task de-
scriptions in McKnight & Adams (1970) or the reworked and adapted
version in Walker & Stanton (2017). Moreover, the graphical re-
presentation of the FRAM model in Section 3.2.2 shows that it is in fact
possible to visualise the mechanisms of a complex process like the
overtaking scenario in road traffic on a functional level. Apart from
that, the quantified outputs in Section 3.2.4 (see Figs. 11 and 12) de-
monstrate their potential to illustrate the critical functions and also to
compare these functions for two different performing agents. Besides,
the numerical figures provide a quick and comprehensive overview of
complex processes within the system. They show the critical functions
that then have to be analysed in more detail in the qualitative mapping
of the system in a combination of statistical outputs to explore the
different mechanisms and emergent processes (see Figs. 14 to 16). The
representation of the GSV in Fig. 13 has to be treated with caution, as
mentioned above: the single weighting and robustness factors of each
function in particular will have to be defined in empirical manner in

future research.
There are also some general issues regarding the modelling by

FRAM in this paper. First of all, the question arises as to whether the
complete overtaking manoeuvre can be divided up into three individual
models because, for example, functions from model 2 can have a direct
influence on other functions from model 3, but this is not shown in this
work. An entire model may have to be created in future or the functions
with cross-model dependencies may also have to be included in the
individual models. The second aspect belongs to the modelling focus.
The input used to identify the functions is rather oriented to action
sequences of the driving scenario. This has lead that the modelling
focus is more on the actions and less on the processes of information
processing and decision-making which underlying the actions. The
analysis in Sections 3.2.5 shows that these processes are the foundation
for safe vehicle guidance and often the most critical aspects dealing
with variability and uncertainty. This can be interpreted as a call to
shift the modelling focus but at least to consider this in the FRAM model
in future research. In general, this would be applicable to both the
human driver and automated control system. Regarding the applic-
ability of FRAM, this has the following consequences: these functions
are the mechanisms of the inner workings of a human being and au-
tomation system and this complicates their access (observability) as
Hutchins (1995) emphasising that researchers have easier access to the
external representations in a system than to the internal representations
resulting from processes within individual actors. Hence, Henriqson
et al. (2011) concluded that from a co-agency perspective, human or

Fig. 16. Example of potential effects of the function to monitor traffic area, if the timing variability is changed in comparison to the scenario in Fig. 15. The affected
functions are highlighted in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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even artificial cognition can only be comprehend through emergent
phenomena of local interactions. Further, Adriaensen et al. (2019) ba-
sically discussed that in a joint cognitive system perspective it is better
to avoid unnecessary mental constructs, rather focusing on agency even
in terms of technical artefacts. Additionally, Adriaensen et al. (2017)
suggest being mindful to use FRAM functions that would represent
possible opaque cognitive processes. The reason is that these opaque
cognitive processes can lead to non-events (nothing observable hap-
pens) but there is still a hidden process. For example, in the case of
judging the distance to a lead vehicle there can be a possible set of
reactions that the driver undertakes, such as braking, going of the
throttle, accelerating or steering. Another possible reaction is that the
driver does nothing and this could be either because there is no need to
react or due to an error of judgement. This “no-reaction” should be
modelled by a FRAM function enabling to assess the absence of a signal.
In the future, the aim should be to eliminate as many opaque constructs
as possible by observable effects, whereby this requires caution with
regard to the cause-effect relationships.

However, it would be challenging to define the variability of these
functions by more objective and empirical measures. Maybe this re-
quires thought-out interview techniques, eye-tracking as a “window to
the mind” or even a neuro-ergonomics approach (Parasuraman, 2011).
The eye-mind assumption means that the eye fixates objects whose
internal representations are also being processed (Just & Carpenter,
1976). So, the distribution of visual attention can be used as an in-
dicator for cognitive processes. Additionally, specifications in the lit-
erature of such processes for the human driver can be used to derive the
variability. In contrast, these approaches cannot be applied for the
automation and here there seems to be no alternative than SME’s. The
reason for this is a general data poverty or its public access, although it
is generally easier to determine cognitive functions in an automated
system than in humans due to the physical architecture in software and
hardware terms. Whereas, deep learning and their self-learning algo-
rithms would impair understanding again. In the end, this means a
discrepancy between WAD and WAI, since the generation of a model in
terms of WAD is almost possible for the human driver but at this mo-
ment nearly impossible for the automation. All in all, this shift in
modelling focus reveals new methodological issues which exacerbate
the problem as mentioned above to identify system functions and their
interdependencies as well as their variabilities.

Furthermore, the models or maps created by FRAM are the same for
the human driver and the automation, assuming that there is no change
in the functions of the system that have to be accomplished by the
human driver or the automation. The only difference between the two
agents is the variable performance of each function. The reason is that a
FRAM model should treat humans and automation systems as equiva-
lent producers of functions to compare the joint performance of both
systems as the net result of the functional resonances as depicted by the
GSV. This may apply to most functions, especially the foreground
functions, but there may be other functions, especially background
functions, that differ and should be mapped accordingly. According to
the authors, the differences depend largely on the abstraction of the
functions. The more detailed and specific the description of functions,
the more differences arise in the functional models between human
drivers and automation. This may have to be considered in future FRAM
modelling to understand the real qualitative differences between
human drivers and automation.

Moreover, FRAM was applied to a relatively simple overtaking
manoeuvre on a rural road in this work, but it is nevertheless complex
enough to analyse the interaction between traffic participants and
technical systems. However, the question arises as to whether FRAM is
applicable for large-scale complex scenarios such as busy city inter-
sections, where vulnerable road users are also brought into the equa-
tion. According to Hollnagel (2017), this should be possible because
FRAM is basically capable of describing any type of activity or system,
be it ever so extraordinary or complex. Even the FRAM method itself

can be described by means of FRAM.
Finally, it should be mentioned that the resulting FRAM models do

not claim to be complete or highly concretised. Only the most im-
portant functions should be presented in order to evaluate FRAM in a
purely methodical way and no substantive results regarding the safety
contribution of the human driver or automation should be derived.
Also, the rating of FRAM functions which was done by the authors
should be iterated by further experts. However, the model is a very
good starting point and needs to be further specified in the future.
Overall, the created FRAM model is intended as a “toy-model”, which
offers a lot of opportunities for expansion and differentiation.

It can be concluded that the first application of FRAM in the context
of the road system demonstrates its suitability to provide information
for designing automated driving systems, namely which functions or
sequences regarding driving tasks should be automated or not and how
these systems should be designed to be safe and effective. FRAM can
also be used to reduce the validation effort by providing exclusion
criteria, highlighting the critical functions that have to be validated
before all other. Especially, FRAM offers a deep understanding of the
road system mechanisms which helps to reveal hidden risks of auto-
mated driving. Nevertheless, there are some methodological issues that
will have to be improved in future research and are summarised in the
outlook.

5. Conclusion and outlook

This paper reveals that FRAM is a suitable method to differentiate
between the mechanisms of road traffic and to identify the inter-
dependencies between each system element so as to finally identify the
contribution of the human driver to road traffic safety within specific
situations and to derive requirements for the automation and the po-
tential of automation in these situations with its accompanying factors.

Thus, FRAM should be used as a supporting tool to deliver re-
commendations for the design of automated driving systems and, in
addition, to reduce the validation effort. It should even be mentioned
that not only can the mechanisms in road traffic be represented sepa-
rately for the human driver or the automation, but also the interaction
or cooperation between both agents in FRAM. Therefore, the use of
FRAM is as well recommended to evaluate ADAS, see also for example
the assessment of operational impacts of automation in air traffic by
Ferreira and Cañas (2019).

Additionally, the application of FRAM in this paper offers an op-
portunity to compare this method with the already to road traffic ap-
plied STAMP/STPA and AcciMap approaches mentioned in Sections
2.4.1 and 2.4.2. This closes a small research gap regarding the com-
parison of these methods in terms of safety assessment of automated
driving.

Nevertheless, there are some issues that need improvement in future
research. The identification of functions and their variability have to be
improved in further research, including more objective and empirical
measures. This could be based on driving simulator studies, including
driving data such as speed, acceleration or distances to other road users,
eye-tracking data to observe scanning behaviour and cognitive pro-
cesses (cf. Arenius, 2017), and interviews for subjective and additional
data. Especially, data from sensor technologies can support the tradi-
tional qualitative inputs with regard to the following aspects: temporal
resolution, gradual differences, time-stamped data and continues re-
cording, coverage and calibration (Arenius, 2017). This is particularly
interesting in the context of the very dynamic and complex driving task
in road traffic. Otherwise, this will certainly create large amounts of
data that require the use of automated data analysis. Additionally,
traffic data related to accident black spots or near misses with respect to
both the human driver and the automation can be used to provide in-
formation for variability identification as well as definition. Moreover,
obtained driver performance data such as the compiled data in the
Driver Performance Data Book from Henderson et al. (1987) could be
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used. Overall, it is recommendable to use multiple data in order to
integrate these multiple limited perspectives as a mixture of qualitative
and quantitative inputs to understand more in-depth the mechanisms
and workings of a system. It is relatively easy to apply this approach to
generate new data or use existing data related to the human driver.
Unfortunately, gathering data related to the automation is complicated
for two reasons. Firstly, there are only a few automated vehicles with
SAE level 3 or higher on the road for test purposes, so there is little test
data. Additionally, much of the data that is generated is kept internally
and is not published. Furthermore, when data or information is pub-
lished, such as the annual Autonomous Vehicle Disengagement Reports
from DMV California, this is often not sufficient to draw adequate and
meaningful conclusions. The second aspect concerns testing a system
directly in a simulation. This requires a complete system on the part of
the software and hardware, which is not available. One solution could
be to investigate the state-of-the-art of assistance systems and autono-
mous systems and to collect the performance data from all system
components, such as Lidar, cameras or image processing algorithms, in
an overview for certain scenario parameters.

Another opportunity for future research, after creating a model with
its functions and variabilities for a specific scenario, is to estimate the
influence of certain conditional factors (sources of external variability)
within the same scenario. This could be achieved by determining an
influence factor of the respective conditional factor on each function
within the model. For example, this could be used to understand the
potential impact of weather-related factors such as fog or sudden events
such as wildlife traversal in the whole system. Thus, one can determine
how many functions would be affected, and how does the GSV behave.
Ultimately, the criticality of these conditional factors in the overall
system can be considered for different system designs.

Following these methodological improvements, the objective will be
to apply FRAM to specific traffic scenarios and to derive results that
allow a proactive assessment of the consequences of automation. The
resulting recommendations for automated system design and effective
measures should enable greater safety in the overall road system.

In conclusion, the safety challenge as a result of automated driving
requires tools that take into account high variability and uncertainty. In
particular, we will need a safety-II perspective and data of everyday
performance of the driving task to understand why things usually go
right and sometimes wrong. Additionally, the required tools should
enable to study the interactions and mechanisms of a system and
practitioners have to consider safety holistically due to the complex and
dynamic nature of the road system. FRAM considers these issues and
could be the missing piece in the puzzle for a risk assessment of auto-
mated driving as well as its system design, and thus according to
Ferreira and Cañas (2019):

“Focus must shift from the streamlining of processes, towards re-
cognising the inevitable need to cope with variability and un-
certainty, as they are the means through which complex human
endeavours can be achieved. No other element in a system copes
better with variability and uncertainty than the human. Technology
should, therefore, be addressed as additional resources to cope with
increased system capacity, as opposed to a replacement of human
resources.”
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Technical University of Munich – Chair of Ergonomics 

 

Automated driving offers great possibilities in traffic safety advancement. However, evidence of safety 

cannot be provided by current validation methods. One promising solution to overcome the approval trap 

(Winner, 2015) could be the scenario-based approach. Unfortunately, this approach still results in a huge 

number of test cases. One possible way out is to show the current, incorrect path in the argumentation and 

strategy of vehicle automation, and focus on the systemic mechanisms of road traffic safety. This paper 

therefore argues the case for defining relevant scenarios and analysing them systemically in order to 

ultimately reduce the test cases. The relevant scenarios are based on the strengths and weaknesses, in terms 

of the driving task, for both the human driver and automation. Finally, scenarios as criteria for exclusion 

are being proposed in order to systemically assess the contribution of the human driver and automation to 

road safety. 

 

INTRODUCTION 

 

The current test concept for safety approval of motor 

vehicles is based on a track distance and statistical approach. 

This means that the vehicle must cover a required test distance 

under representative conditions in real traffic without 

accidents. If we keep this test concept for vehicles with SAE-

level 3 or higher (automated driving, AD) according to SAE 

J3016 (2018), then according to Wachenfeld & Winner (2016) 

about 6.6 billion test kilometres would have to be covered. 

Thus, the current test methods are not suitable as proof of 

safety for economical and practical reasons. Therefore, 

research is being done on alternative approval methods.  

One promising solution could be the scenario-based 

approach. The assumption is that the long test-driving 

distances needed for statistical validation could be 

significantly reduced by identifying crucial scenarios that can 

be reproduced in simulation or in test fields. Unfortunately, 

this approach leads to a parameter space explosion due to the 

level of scenario abstraction (Amersbach et al., 2019), which 

still results in a huge number of test cases. 

The scenario generation represents a sensitive step for 

the safety reasoning of the scenario-based approach. So, what 

can we do to facilitate this approach and reduce the approval 

effort? If we take a closer look at the frequent argumentation 

and strategy of automation, then we can reveal a fallacy which 

still contains a possible way out as a solution.  

 

Current fallacy and a new perspective 

 

The argument for increased automation in the driving 

task is often accompanied by the argument that humans, in 

their role as drivers and the main cause of accidents, could be 

removed from the system. Consequently, the number of 

accidents would fall sharply. This argumentation does not take 

into account that accidents are rare, Poisson-distributed and 

multi-causal events. Thus, the human driver is not the only 

cause; in fact in many situations he or she is the essential 

accident avoidance and compensation element in the system, 

which also has to be considered. Additionally, the current 

approach to automating vehicle guidance is a selective 

strategy. For certain traffic situations and the associated tasks, 

a classic human driver-vehicle system is still selected due to 

the lack of automation, for other situations in which this is 

technically feasible, a human-machine system is based on 

automation. For this assignment, there should be a correlation 

between the selection of the respective system characteristic of 

the automated system and the success criterion "accident-free 

driving". For example, accident black spots for urban 

intersections, especially left turns or rural roads, can be 

identified (Maier, 2013; Gründl, 2005). In addition, certain 

groups are at increased risk due to misconduct (Das et al., 

2015). However, current approaches to vehicle automation 

address relatively safe traffic situations, such as highway 

scenarios, and are not directed at risk groups of human drivers. 

Two aspects are therefore erroneously assumed: the potential 

for automation is the same in every scenario, and all drivers 

profit equally from automation and deal with potential side 

effects of automation in the same way. In fact, above all, the 

mechanisms of accident development and accident avoidance 

should be understood in order to assess the driver's 

contribution in the corresponding situations and thus to derive 

requirements for automation and the potential of automation 

with its accompanying factors. (Bengler et al., 2017)  

Grabbe et al. (2020) support this statement by 

recommending a systemic approach to the design and safety  

assessment of AD (cf. Larsson et al., 2010; Hughes et al., 

2015), and in particular the authors revealed that the 

functional resonance analysis method by Hollnagel (2012) is a 

suitable method for differentiating between the mechanisms of 

road traffic. Ultimately, the test cases could be reduced based 

on key insights from this systemic analysis in crucial 

scenarios. Before these mechanisms can be analysed, the 

essential scenarios to be examined must be defined. To select 

these scenarios, according to Bengler et al. (2017) we establish 

that scenarios should not only refer to rarely critical events or 

even more rarely occurring accidents, but that uncritical and 

accident-free situations must be considered. This is also in 

accordance to a safety-II perspective (Hollnagel, 2018) that 

seems urgently required to overcome the approval trap 

(Grabbe et al., 2020). In addition, scenarios must be 

considered that seem likely to be critical against the 
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background of the technical characteristics of automation. 

These are, for example, situations with strong cooperation 

behaviour, situations in which the errors of other road users 

have to be compensated for and situations in which events 

occur outside the sensor range and actions must be anticipated 

(Bengler et al., 2017). 

 

Objective 

 

The purpose of this paper is to derive basic scenarios as 

criteria for exclusion, based on the strengths and weaknesses, 

in terms of the driving task, for both the human driver and 

automation in order to systemically assess the contribution of 

the human driver and the automation to road safety.  

 

METHOD 

 

The basic aim is to test scenarios that enable comparison 

between a purely manual human driver and a fully automated 

system in a mixed traffic situation including different levels of 

automation and traffic participants. This means that scenarios 

in which an interaction between driver and automation takes 

place, for example in a takeover situation or during assisted 

driving, are not considered. Rather, scenarios are selected and 

divided into two different types following the aforementioned 

suggestions by Bengler et al. (2017).  

Type I describes scenarios that offer great potential for a 

significant safety improvement through automation because 

humans have proven highly likely to contribute to accident 

occurrence. In order to identify these scenarios, accident 

statistics from Germany from 2018 (Destatis, 2019) were 

analysed to derive accident black spots and risk groups of 

human drivers. Accidents with material damage are not 

considered as part of this, but only injuries or fatalities, since 

these are the most serious in terms of safety. Furthermore, it is 

assumed that the accident statistics for Germany are also 

comparable to many other countries and thus the results can be 

transferred.  

Type II comprises scenarios that represent either unique 

strengths of the human driver in uncritical and accident-free 

situations, or supposed challenges for automation. To identify 

these scenarios, a succinct synthesis of literature was 

performed, and due to the lack of data on accidents or 

disengagements involving automated vehicles from the 

department of motor vehicles in California (DMV California), 

as well as their superficial reporting, semi-structured 

interviews were held with six experts from the field of driver 

assistance and vehicle automation in the German automotive 

industry. The first part of the interviews covered performance 

limits of the current systems in vehicle automation with regard 

to information processing. The second part of the interview 

dealt with the derivation of scenarios regarding the strengths 

and weaknesses of vehicle automation on highways, in the city 

and on rural roads. In addition, the experts were asked which 

scenarios offer the greatest potential for a significant increase 

in traffic safety through automation and which scenarios 

represent the supposedly most relevant test scenarios for 

comparison between vehicle automation and the human driver. 

The interviews were evaluated using qualitative content 

analysis through systematic category formation and 

quantification. 

 

SCENARIOS OF TYPE I 

 

Considering the accidents according to their location in 

relation to frequency and severity, accidents in the city and on 

rural roads are by far the most critical. In addition, young 

drivers up to the age of 25 and older drivers above the age of 

65 make up a significantly greater proportion than middle-

aged drivers of those causing accidents than those merely 

involved. (Destatis, 2019) Thus, scenarios in the city, on rural 

roads and also for risk groups should be highlighted. 

 

Accident black spots on city roads 

 

In the city, collisions with another vehicle that turns or 

crosses and collisions between vehicles and pedestrians are by 

far the most common types of accidents. (Destatis, 2019) 

Since the former type of accident inevitably occurs at a node 

and a large part of the latter type of accident is also 

attributable to a nodal area, scenarios in urban areas at 

intersections or junctions represent the greatest risk factor.  

At intersections, the largest proportion of accidents with 

oncoming vehicles occur when the vehicle is turning left. 

Other focal points at intersections are conflicts with crossing 

vehicles from the right and left. In contrast, accidents at 

junctions are dominated by collisions between vehicles and 

cyclists or pedestrians crossing on the right. Also, vehicles 

crossing from the left represent a further focus. A look at the 

right-of-way rule shows that almost two thirds of all 

intersection accidents occur at traffic light systems, and 

instead in the case of accidents at junctions, a significant 

number of accidents occur at sign-regulated junctions. The 

proportion of accident sites with "right before left" regulation 

is approximately twice as large in intersection accidents than 

in accidents at junctions. (Gerstenberger, 2015)  

Finally, type I scenarios should include urban scenarios 

at a traffic light-controlled intersection with a left turn and 

oncoming traffic, at an intersection with right before left and 

at a sign-regulated junction with vulnerable road users 

crossing from the right or a vehicle crossing from the left. 

 

Accident black spots on rural roads 

 

On rural roads, collisions with oncoming vehicles and 

leaving the carriageway pose the greatest danger (Destatis, 

2019). By far the largest proportion of collisions with 

oncoming vehicles is caused by overtaking manoeuvres 

(Richter & Ruhl, 2014). Overtaking manoeuvres also account 

for an increased proportion of accidents when vehicles leave 

the carriageway, since dangerous evasive manoeuvres in 

overtaking situations often cause vehicles to leave the 

carriageway. However, the main reasons for accidents that 

result in vehicles leaving the carriageway are excessive speed 

and neglecting the safety distance. Nevertheless, with regard 

to the former reasons, overtaking scenarios on rural roads 

should be emphasised.  
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The majority of overtaking drivers collide with 

oncoming traffic; the main reasons for this are overtaking 

despite oncoming traffic and unclear traffic conditions. Most 

overtaking accidents occur on straight roads, followed by 

overtaking accidents on winding road areas, especially in 

right-hand bends due to poor visibility of this bend in right-

hand traffic. Additionally, overtaking accidents increase with a 

decreasing curve radius. Furthermore, many overtaking 

accidents occur in the immediate vicinity of hilltops. Lastly, 

weather influences are of minor importance in overtaking 

accidents, since most overtaking accidents occur in daylight 

and on dry roads, all in all under good external conditions. 

(Richter & Ruhl, 2014)  

In summary, scenarios of type I should incorporate rural 

scenarios with overtaking manoeuvres on a straight road, at a 

hilltop and in a tight bend to the right, all with oncoming 

traffic and in good external conditions. 

 

Risk groups 

 

In rural overtaking scenarios, young drivers should be 

considered due to excessive speed (Destatis, 2019) and  

driving accident black spots due to their vehicles leaving the 

carriageway (Gründl, 2005) and overtaking (Richter & Ruhl, 

2004). Older drivers should be the focus in urban scenarios at 

intersections because they are more likely to make right-of-

way mistakes (Destatis, 2019) and they have showed greater 

weaknesses when turning and crossing (Gründl, 2005).  

 

SCENARIOS OF TYPE II 

 

All experts noted that motorways are by far the easiest 

scenarios to implement, relatively speaking, because the 

environment is very clear and reproducible due to the highly 

regulated infrastructure with few different types of road user. 

On the other hand, city roads and rural roads are currently the 

greatest flaw in vehicle autonomy. In addition, the unique 

strengths of human drivers are more likely to be put to use in 

urban or rural scenarios. Therefore, type II scenarios focus on 

these two locations. Also, according to experts, the most 

relevant test scenarios for approval of autonomous vehicles 

should deal with the following areas: interaction with other 

road users, complex scenarios with little model structural 

information involving strong use of knowledge-based 

behaviour as well as unexpected special situations, different 

weather and road conditions and overtaking manoeuvres and 

particularities on rural roads. Thus, the scenarios are classified 

into five different categories. 

 

Communication and interaction 

 

Färber (2016) describes human beings as multi-sensory, 

adaptive systems that can understand and interpret various, 

weak and ambiguous signals. In contrast, machines are 

restricted to strict rules and cannot understand the informal 

rules of humans. In road traffic, people communicate not only 

via prescribed signals such as indicators, brake lights and 

horns, but also through informal communication channels. 

According to Merten (1977), various options are available for 

communication: schema formation, anticipatory behaviour, 

non-verbal communication, facial expressions, eye contact, 

gestures and body movements. The automation must also be 

able to perceive all of these informal signs and interpret them 

in the environmental context in order to predict the behaviour 

of others. Based on this, the automation can adopt an adapted 

behaviour, which must also be understood by other road users. 

Similarly, the experts expect the automation to exhibit 

shortcomings on city roads when interacting with vulnerable 

road users and other motor vehicles due to high complexity, 

diverse road users and masking objects.  

Thus, urban scenarios of type II should include an 

interaction with a pedestrian or cyclist, an interaction with a 

motorised vehicle at a two-sided bottleneck, a simultaneous 

lane change of two vehicles and a zip-merge.  

 

Complexity and anticipation  

 

The human driver is very flexible and strong in heuristic 

thinking. This means that complex scenarios that cannot be 

fully described, and those in which not all information is 

available, are easier to master for humans than for automation. 

Situations in which rules are broken, errors have to be 

compensated for and events have to be anticipated are also a 

strength of the human driver (cf. MABA-MABA list by Fitts, 

1951; Winter and Hancock, 2015). Here, the experts see a real 

bottleneck in current automated systems: generally, driving 

per se (control of the vehicle) is not the problem, rather it is 

troublesome when decisions are being made or when 

information is incomplete, and when something unexpected 

happens. Thus, the biggest problem currently lies in the level 

of cognition. This means that the autonomous vehicle has 

problems interpreting and recognising relationships between 

individual objects and their meaning. A limited scope for 

action is particularly difficult due to the highly rule-based 

design of automation and less through self-learning neural 

networks. It is difficult to use incomplete knowledge 

associatively and through heuristic thinking for good 

interpretation, anticipation and interaction. 

Further, the anticipation performance of human drivers 

in road traffic should be analysed, especially against the 

background of a limited range of sensors. Above all, for good 

anticipation performance it is necessary to observe distant 

characteristics, consider the history of the driving scene and 

make assumptions about the intentions of other drivers. The 

anticipation is negatively affected by masking, less salient 

features and features that are in an area in which no 

particularly relevant stimuli are expected. (Sommer, 2013) 

In summary, type II scenarios should include a complex 

urban intersection, an anticipation scenario on a city road (e.g. 

a vehicle in front of the leading vehicle is parking on the right-

hand side of the road) and a scenario with failure 

compensation (e.g. a left bend on a rural road in which an 

overtaking vehicle has to be avoided). 

 

Special situations 

 

The experts currently see flaws in the recognition of 

special objects by sensors. Moreover, special situations such 
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as construction sites, accident sites or situations in which rules 

are not followed by others also represent a shortcoming for 

vehicle automation, as the autonomous system acts in a very 

rule-based manner, and therefore has problems with decision 

logic in situations in which people rely on their intuition, 

experience and general knowledge.  

Thus, urban scenarios of type II should include a 

construction site, an accident site especially with an 

emergency lane, and a deliberate violation of the traffic rules 

by crossing a solid lane onto the oncoming lane due to a 

broken-down vehicle in its own lane and then interacting with 

oncoming traffic. 

 

Environmental conditions 

 

Dixit et al. (2016) showed that road infrastructure 

problems are a common reason for disengagements of AD. 

Also, the experts see flaws in poor weather conditions. 

Therefore, rural scenarios of type II with respect to different 

road/weather conditions and road damage have to be 

considered. These could encompass a slippery, winding road 

due to snow and frost and a rural bend with unpaved roadside, 

interrupted lane markings, potholes and dangerous small parts 

on the road. 

 

Rural road and overtaking 

 

The experts see a huge problem for autonomous vehicles 

on rural road especially with regard to the high number of 

sight obscurations, tight bends, narrow roads, unseparated 

directional lanes, missing lane and roadside markings and 

difficult weather conditions. Also, the overtaking manoeuvre 

in combination of some of these factors should be considered. 

Thus, type II scenarios could include a winding rural road at 

night with much masking, without lane markings and a narrow 

lane, and an overtaking on a straight rural road with oncoming 

traffic and a turning truck from a junction. 

 

CLASSIFICATION AND ANALYSIS OF 

RELEVANT SCENARIOS 

 

The relevant scenarios are classified in Table 1 for a 

better overview with an assignment to the scenario types, 

categories and important key features. The scenarios currently 

represent only abstract and basic situations and, regarding the 

subsequent systemic analysis, the following parameters 

especially concerning urban scenarios, according to Nambuusi 

et al. (2008), should be varied: traffic volume, 

pedestrian/cyclist traffic, lighting conditions, type of right-of-

way rule, junction or road geometry, environmental 

conditions, and vehicle types. Accordingly, conceivable 

parameters to be varied on rural roads are the following: speed 

of the vehicle ahead, vehicle speed on the opposite lane, traffic 

volume and surroundings, speed limit, routing, bends and 

gradients, weather conditions and visibility, time pressure. 

Also, the demonstrated risk groups should be analysed in the 

corresponding scenarios. For a future consistent description of 

the derived scenarios, it is recommended to use the definitions 

and terms of Ulbrich et al. (2015). 

When analysing the scenarios, it is less important to pay 

attention to critical events such as errors or accidents than it is 

to focus on the variability in the performance and the 

qualitative execution of the individual driving tasks in 

uncritical and normal driving. This should be assessed in 

terms of a safety-II perspective and a systemic approach (cf. 

Grabbe et al., 2020), which also means that significantly fewer 

test kilometres have to be covered since data can be gathered 

immediately. There is no need to wait for the accident to occur 

or something bad to happen, because you can measure 

anything at any time. Rather, we have to understand what 

actually happens in situations where nothing out of the 

ordinary seems to take place and to compare this between the 

human driver and the automated vehicle. Thus, it is sufficient 

to develop a description of the daily activity and its expected 

variability, which means one generic case instead of many 

specific ones. Therefore, it makes more sense to analyse small 

but frequent events (everyday performance) instead of large 

but rare events (accidents), because the former are easier to 

understand and manage, and also have more impact on the 

safety of the overall system (cf. Hollnagel, 2018). Clearly this 

will result in a large amount of data that has to be analysed 

automatically. Fortunately, this problem should be solvable 

compared to the extrapolated lots of test kilometres by 

Wachenfeld & Winner (2016), which is based on track 

distance that currently focuses only on accidents. 

 

DISCUSSION 

 

This paper presents a new perspective on the scenario-

based approach to overcoming the current approval trap 

Table 1.Classification of the relevant scenarios 

 Scenarios of type I Scenarios of type II 

A B C A B C D E 

Category 

Accident 

black spots in 

the city 

Accident black 

spots on rural 

roads 

Risk groups 
Communication 

and interaction 

Complexity 

and 

anticipation 

Special 

situations 

Environmental 

conditions 

Rural road and 

overtaking 

Key 

features 

Turning and 

crossing at 

urban 

intersection 

and junctions 

Overtaking on 

rural straight 

roads, at 

hilltops or in 

tight bends 

Overtaking on 

rural roads; 

turning and 

crossing at 

urban 

intersections 

and junctions 

Interacting with 

vulnerable road 

users or with a 

motorised 

vehicle; 

simultaneous lane 

change of two 

vehicles;  

zip-merge 

Complex 

urban nodal 

areas; 

anticipation 

in urban and 

rural areas; 

failure 

compensation 

in urban or 

rural areas 

Urban 

construction 

sites;  

urban accident 

sites; 

deliberate 

violation of 

traffic rules on 

a city road 

Winding rural 

road in poor 

weather 

conditions; 

rural bend with 

poor road 

conditions and 

damage  

Winding rural 

road at night 

with much 

masking, 

without lane 

markings and a 

narrow lane; 

complex 

overtaking 

manoeuvre  
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(Winner, 2015) of automated vehicles. Current approaches and 

projects for the safety assessment of AD are strongly 

technology driven, pursue a clear safety-I perspective in the 

safety argumentation and focus too much on the vehicle itself. 

Instead, the new perspective in this paper strongly argues for a 

safety-II perspective and a systemic approach. In particular, 

relevant scenarios as criteria for exclusion are derived in order 

to systemically assess (Grabbe et al., 2020) the contribution of 

human drivers and automation to road safety. Finally, based 

on the key insights from the subsequent systemic analysis in 

relevant scenarios, the validation work could be reduced to a 

reasonable effort by minimising the possible parameter space. 

Despite the fact that critical accident scenarios and risk 

groups among human drivers can be shown very effectively, a 

methodological limitation is the derivation of human driver’s 

strengths. Past and current data analysis almost always focuses 

on errors and accidents, but does not consider accident 

avoidance or, in particular, what went right. In addition, it was 

difficult to derive the required scenarios with respect to 

automation, since little data on failures and accidents or the 

driving behaviour of automation is public. In the case of the 

data collected by the DMV California, the reports are 

inadequate and superficial, so no meaningful knowledge can 

be gained from them. Therefore, in the future, it will be 

necessary, on one hand, to consider broad-based data 

collection for human drivers in uncritical and accident-free 

situations (c.f. Bengler et al., 2017) and, on the other, to make 

the reporting of disengagements and accidents by automated 

vehicles significantly more in-depth. 

Nevertheless, it is not possible to prove that all relevant 

scenarios have been captured completely, and the derived 

scenarios do not claim to be complete. For example, local and 

cultural characteristics may not all be considered. But with the 

presented relevant scenarios as decisive factors, we have a 

strong foundation to systemically analyse these scenarios in 

order to build an understanding of a system actual mechanisms 

that are needed to support the design of safe automated 

vehicles proactively and to reduce the validation work. 

In future work, we propose analysing the derived 

scenarios using the novel approach by Grabbe et al. (2020) in 

order to reduce the approval effort by a scenario-based 

approach based on the pre-selection of relevant scenarios and 

their systemic analysis. This would give us increased 

knowledge of the systemic interrelationships, which offers 

great potential to ensure safe automation as well as to reduce 

the validation effort. The main goal must be to improve the 

safety of the overall system through the efficient interaction of 

human drivers, machines and road users among themselves. 

The question, therefore, is not how can we make vehicle 

automation safe and prove that it is safe, but instead how can 

we use automation in order to design a safe traffic system. 
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Abstract: Automated driving promises great possibilities in traffic safety advancement, frequently
assuming that human error is the main cause of accidents, and promising a significant decrease
in road accidents through automation. However, this assumption is too simplistic and does not
consider potential side effects and adaptations in the socio-technical system that traffic represents.
Thus, a differentiated analysis, including the understanding of road system mechanisms regarding
accident development and accident avoidance, is required to avoid adverse automation surprises,
which is currently lacking. This paper, therefore, argues in favour of Resilience Engineering using the
functional resonance analysis method (FRAM) to reveal these mechanisms in an overtaking scenario
on a rural road to compare the contributions between the human driver and potential automation,
in order to derive system design recommendations. Finally, this serves to demonstrate how FRAM
can be used for a systemic function allocation for the driving task between humans and automation.
Thus, an in-depth FRAM model was developed for both agents based on document knowledge
elicitation and observations and interviews in a driving simulator, which was validated by a focus
group with peers. Further, the performance variabilities were identified by structured interviews with
human drivers as well as automation experts and observations in the driving simulator. Then, the
aggregation and propagation of variability were analysed focusing on the interaction and complexity
in the system by a semi-quantitative approach combined with a Space-Time/Agency framework.
Finally, design recommendations for managing performance variability were proposed in order
to enhance system safety. The outcomes show that the current automation strategy should focus
on adaptive automation based on a human-automation collaboration, rather than full automation.
In conclusion, the FRAM analysis supports decision-makers in enhancing safety enriched by the
identification of non-linear and complex risks.

Keywords: automated driving; human driving; risk assessment; resilience engineering; systems
thinking; overtaking manoeuvre

1. Introduction

In the past, traffic safety was improved by three major safety strategies including
engineering, enforcement, education [1], and their intertwinings. Nevertheless, according
to the World Health Organisation [2], over 1.2 million people die each year on the world’s
roads, and between 20 and 50 million suffer non-fatal injuries. These are still high numbers
that need to be improved. A promising countermeasure seems to be a technology advance-
ment by automated driving (AD, Level 3 and higher, according to SAE J3016 [3]), which
offers great possibilities in traffic safety enhancement. A frequent argumentation for this
assumption is that the human in his role as a driver is the main cause of accidents, claiming
that human error causes approximately 90% of road crashes, e.g., [4–7]. Consequently, it
is frequently recommended that the human driver be removed from the system and road
accidents will probably decrease by 90%. The common idea behind this is that technology
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can be introduced into a system by simply substituting machines for people so that the
system as a whole improves and there are no negative side effects. Unfortunately, this is a
persistent oversimplification fallacy, also called substitution myth [8,9].

This is in accordance with Rasmussen [10], who claimed that for a general understand-
ing of system behaviour, we do not have to focus on human errors, rather on mechanisms
shaping the behaviour in the system and its context. This is also in line with Woods and
Dekker [8], who stated that it is not sufficient to build a new mature system or technology
and then to test and assess its performance at the tail of the design process. Rather a
proactive approach at the beginning has to steer the design into a direction that considers
the usefulness of a potential new system given the possibilities new technology provides
and anticipates how technology transforms the nature of practice. Probably, this would
facilitate a system performance enhancement. Moreover, this is consistent with insights
by Ackoff [11], who stated that in any system, when one improves the performance of the
parts taken separately, the performance of the whole does not necessarily get improved
because the way the parts fit together determines the performance of the system and not on
how they perform taken separately. Thus, a system is not the sum of the behaviour of its
parts, it is a product of their interactions. Further, Grabbe et al. [12] designate the frequent
argumentation of AD as too simplistic thinking that falsely links the logic of a clear causal
link. Rather, according to Bengler et al. [13], the human driver is both an active and passive
participant in an accident, as well as accident avoidance and compensation element in the
same system. Consequently, a more differentiated view is required to improve the safety of
the entire road system through the efficient interaction between humans, machines, and
other road users.

Therefore, according to Grabbe et al. [12], the very first step in the development process
of automated vehicles is to understand the mechanisms of accident development and
accident avoidance in road traffic. Hence, the driver’s contribution in the corresponding
situations can be assessed to derive requirements for automation and the potential of
automation with its accompanying factors. Thus, the understanding of the mechanisms
of the road system is essential. Otherwise, adverse automation surprises, as happened
in other domains such as aviation, e.g., [14–17], will probably occur due to safety blind
spots [18] and could ultimately develop into a “showstopper”. This raises the question of:
which methods are best suited to reveal the safety mechanisms in road traffic? To clarify
the question, Grabbe et al. [12] reviewed the historical development of accident analysis
models, the properties of the road system, and a common understanding of safety. In the
following, a brief overview of their analysis and main conclusions is given.

According to Hollnagel [19], three different and major accident models can be distin-
guished: sequential, epidemiological, and systemic. Sequential accident models describe
the accident as the result of a chain of discrete events occurring in a particular time se-
quence. Here, losses are caused by technical failures or human error, assuming that the
cause-and-effect relationship is linear and deterministic [20]. Then, the focus changed with
introducing the epidemiological models to an organisational level, where accidents result
from a combination of different interacting factors [20]. This improved the understanding
of accidents regarding complexity, but the causality is still linear and the links between
states are loose, which that does not adequately represent the dynamics of a system [21].
Thus, systemic models arose seeing the accident process as a complex and interwoven event
that cannot be broken down into its individual parts [22] and rather analysing interactions
within the whole system. Salmon et al. [23] concluded that the road system, which connects
technical, human, and social elements to transport people and goods from one place to
another, is of a socio-technical nature. Additionally, they also argued in favour of a complex
system based on the prerequisite properties of complexity presented by Dekker et al. [24].
Further, Perrow [25] defined a framework called interaction-coupling matrix to classify sys-
tems based on their system characteristics. Here, systems can be generally distinguished by
the two dimensions of interaction and coupling. The interactions can be linear or complex
and the couplings are loose or tight, which results in four quadrants of system assignments.
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In particular, a socio-technical system (STS) can be described by an increasing number of
tight couplings and complex and non-linear interactions [25]. Wienen et al. [22] extended
this framework by combining it with the three types of accident models mentioned above.
Based upon this, Grabbe et al. [12] classified the road system as a system with highly
complex interactions and tight couplings assigning it to the systemic quadrant within the
matrix. Consequently, they concluded systemic methods are best suited to represent a
safety assessment of AD and especially reveal mechanisms in road traffic. This is also
confirmed by the analyses of Larsson et al. [26] and Hughes et al. [27] claiming that system
theory and systemic models are an important and major basis for safety work in road traffic.
Furthermore, safety is a complex issue, and many different views exist, providing a variety
of measures giving a reasonable description. So, every view captures some elements of
safety but not the entire picture [28]. Thus, safety cannot be defined by one clear definition
or construct. However, the historical development of the scientific study of safety points out
two fundamental concepts where safety is concerned: the traditional thinking about safety,
also called safety-I [29], which is based on the Newtonian and reductionist approach [30],
and the modern view of risk and safety management, also called safety-II [29], which fol-
lows a complexity-oriented holistic approach [31] based on Resilience Engineering (RE) [32].
A critical perspective on the two safety perspectives concerning AD and road safety by
Grabbe et al. [12,33] unveiled that the safety argumentation, as well as the safety assess-
ment of AD, is largely safety-I driven, and the safety-II perspective is strongly neglected.
Thus, they requested an urgent application of this safety view. This is also in line with
Hollnagel’s [34] (last slide) general statement regarding safety management that “it is an
unavoidable dilemma that we inadvertently create the challenges of tomorrow by trying to
solve the problems of today with the mindset (models, theories & methods) of yesterday”.

Since systemic analysis methods, as well as a safety-II perspective, seem best suited to iden-
tifying the safety mechanisms in road traffic against the background of AD, Grabbe et al. [12]
extensively compared the major systemic methods and discussed their benefits and limitations.
The authors recommended using the functional resonance analysis method (FRAM) at the
very beginning of a product development cycle, concluding that FRAM is the most adequate
method to reveal the safety mechanisms in road traffic. This is also supported by Ferreira and
Cañas [35], who see FRAM as a useful tool to build an understanding of the actual system
mechanisms and workings that are needed to support the risk management concerning the
proactive assessment of technological changes and their impacts. Apparently, there is no
“one-size-fits-all” solution to safety, which is especially true for complex and dynamic STS.
Thus, overall, we need combinations of different views, approaches, and measures including
safety-I and safety-II. However, a significant perspective, that is RE, is currently lacking and
inevitable as a fundamental basis for the safety assessment of AD. Here, FRAM, which is
based on RE, is the most recent and promising step to understanding STS [36]. Therefore,
Grabbe et al. [12] investigated the applicability of FRAM in a case study to evaluate its suitabil-
ity in more detail with regard to a purely methodical process. They discussed several strengths
and limitations. Ultimately, the authors concluded that the safety challenge of AD requires the
study of interactions and mechanisms of the road system where FRAM adequately addresses
these issues considering this method a “missing piece in the puzzle” for a risk assessment of
AD, which potentially helps to reveal hidden risks or safety blind spots of AD.

To continue this research and to reduce the research gap in the safety assessment of
automated vehicles regarding the aforementioned perspective, this paper aims to identify
the mechanisms of road traffic in one specific scenario, that represents a huge potential to
increase safety through automation in a complex setting, by using FRAM. Hence, these
mechanisms can be compared between a human driver and a highly automated vehicle,
which allows us to evaluate the contributions of the human driver and the automation.
Finally, system design recommendations for AD, considering potential accompanying
factors as well as insights for the validation process, reducing its effort, can be delivered in
order to show how FRAM can be used for a systemic function allocation for the driving
task between humans and automation.
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The remainder of this paper is structured as follows. Section 2 summarises the the-
oretical foundations and individual analysing steps of FRAM, as well as its applications.
Section 3 describes the implementation of the overall methodological research process and
its individual steps in detail. In Section 4, the results are presented including the FRAM
model of the analysed scenario, the identification of the contributions by the human driver
and the automation to the safety of the system, and recommendations for system design as
well as the validation process of AD. Then, Section 5 discusses the results with respect to
the research goals and also outlines methodological issues. Finally, a brief conclusion and
outlook for future research are given in Section 6.

2. Functional Resonance Analysis Method

FRAM [37] is basically a qualitative method for risk assessment and accident analysis.
It allows the modelling of mechanisms within a complex STS, including their interfaces
between humans and technology, coupling and dependency effects, nonlinear interactions
between elements, and functional variability [38]. The purpose of the resulting model is
to analyse how something happens or how a system works as work-as-done (WAD). In
particular, the description and understanding of the STS are given in terms of functions
rather than components. A FRAM model focuses on adjustments to everyday performance,
which usually contribute to things going right. Rarely, these performance adjustments
aggregate in unexpected ways, functional resonance will occur, and accidents are the most
extreme result. The ultimate objective is not to eliminate performance variability but to
investigate and monitor what is necessary for everyday performance to go right, trying to
dampen variability in order to reduce resonance effects and unwanted outcomes [37]. In
general, the results of a FRAM analysis contribute to the understanding of real work and
unveil unsafe functional interactions within one agent and between different agents that
are often underestimated by traditional methods and design approaches [35,39].

FRAM follows four principles (i.e., the equivalence of success and failures, approxi-
mate adjustments, emergence, and functional resonance), and four steps (i.e., modelling the
system through identifying its functions, identifying the function’s performance variability,
aggregating the variability, and managing the variability) are required for its analysis as
detailed in Hollnagel [37]. The steps are briefly described in the following. In the first step,
the essential functions of the system ensuring the success of everyday work are identified
to build a model. These functions produce a certain outcome referring to tasks as work-
as-imagined (WAI) or activities as WAD. Each function is characterised by six aspects (i.e.,
input, output, precondition, resource, control, and time), which couple each function with
several other functions representing a specific instantiation of the model. The resulting
model is traditionally represented graphically by hexagons depicting each function with
its six aspects. Furthermore, the functions can be divided into two classes: foreground
and background functions. Foreground functions are the focus of the analysis and may
vary significantly during an instantiation of the model. In contrast, background functions
are stable and represent common conditions as system boundary that are relevant for and
used by foreground functions. The second step is to identify and specify the performance
variability of each function. This is crucial to understand how the variability can propagate
through the system by the couplings between functions, which can lead to unwanted
outcomes. After the identification process, the variability has to be characterised using
different variability manifestations, the phenotypes. The simple solution considers two
phenotypes, these are timing and precision, where the function’s output in terms of timing
can occur too early, on time, too late or not at all, and in terms of precision, the output can
be precise, acceptable, or imprecise [37]. As it is not enough to simply know the variability
of individual functions in isolation, the third step in FRAM is to aggregate the variability to
know where functional resonance emerges. This is done by defining upstream-downstream
couplings where variability can be caused through couplings of upstream functions, when
the output used as, for example, input or precondition is variable and thus affects the vari-
ability of downstream functions. This impact is likely to lead to an increase in variability
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(amplifying effect), a decrease in variability (damping effect) and to maintain variability
(no effect). The last and fourth step consists of the monitoring and management of the
performance variability that was identified in the previous steps. This step aims to manage
or dampen variability to a level where no unwanted outcomes arise, rather than eliminating
variability since this is inevitable for things going well in complex STS. Finally, this ensures
the safety and performance of the system. The implementation of each step is more detailed
in Section 3.

In the past, FRAM has been widely used, applied, and enhanced methodologically
in a variety of domains for retrospective as well as prospective analyses, as detailed in a
comprehensive review by Patriarca et al. [40]. Hence, FRAM has been progressively evolved
since its starting point in 2004. The main application fields include aviation, e.g., [41–43],
healthcare, e.g., [44–46], industrial operations in plants, e.g., [47–49], the oil and gas industry,
e.g., [50,51], and maritime, e.g., [39,52,53] and rail transport, e.g., [54,55]. However, the
context of road safety has seldom been addressed by FRAM. Here, applications refer to
road safety management in a case study in Myanmar [56], a comprehensive comparison
of FRAM with other systemic methods regarding the safety mechanisms in road traffic,
as well as a thorough investigation of FRAM’s applicability in a case study evaluating its
suitability with regard to a purely methodical way against the background of the impact
of introduced automation [12], and a safety analysis of conditional automated driving
including the human-machine collaboration in the event of an authority transfer from the
automated system to the human driver in time-critical situations [57].

3. Research Method
3.1. Overall Methodology

As mentioned above, FRAM is a qualitative research method, which implies that
classical statistical procedures applied to quantitative methods are not adequate to meet the
three quality criteria in quantitative terms of internal and external validity, reliability, and
objectivity. To overcome this issue, we applied the approach of Anfara et al. [58], translating
the quality criteria in qualitative terms into credibility, transferability, dependability, and
confirmability in order to better assess the research quality and rigour in this study and
thus to improve their trustworthiness. Additionally, Creswell and Miller [59] identified
several verification strategies to comply with the four qualitative terms, where Creswell
and Poth [60] recommended that at least two of these strategies be used in any qualitative
study. The assignment of the quality criteria in quantitative and qualitative terms, as well
as their verification procedures, can be taken from Table 1. Here, the verification strategies
underlined boldly are implemented in this study to fulfil the four qualitative terms.

Table 1. Assignment of the quality criteria in quantitative and qualitative terms as well as their
verification procedures based on Anfara et al. [58] and Creswell and Miller [59].

Quantitative Term Qualitative Term Verification Strategies

Internal validity Credibility
Prolonged engagement in field; Use of peer debriefing; Triangulation;

Member checks; Time sampling; Persistent observation;
Clarifying researcher bias

External validity Transferability Provide a thick description; Purposive sampling

Reliability Dependability Create an audit trail; Code-recode strategy;
Triangulation; Peer examination; Stepwise replication

Objectivity Confirmability Triangulation; Practice reflexivity

As described in Section 2, the FRAM method comprises four main methodological
steps. These steps and their underlying substeps are shown in Figure 1. The aforementioned
quality criteria and verification strategies are intertwined in these steps. The following
subchapters will explain the respective steps in detail.
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3.2. Step 0: Selection and Description of Scenario: Setting the Objective and Scope of Analysis

In this work, FRAM was used as a method for a qualitative/quantitative proactive risk
assessment. Thus, the scope of analysis and the degree of resolution have to be described
to set the scene and system boundary for the four steps that follow. In particular, a scenario-
based analysis was conducted to compare the contributions between a human driver and
AD and to evaluate their potential effects in order to improve the system design. The
scenario is described below.

The scenario selected was an overtaking manoeuvre on a rural road. The main reasons
are as follows. First, accidents in the city and on rural roads are by far the most critical,
considering the accidents according to their location concerning frequency and severity
in Germany. Furthermore, 58% of all fatal accidents in 2018 in Germany occurred on
rural roads. Second, on rural roads, collisions with oncoming vehicles and leaving the
carriageway pose the greatest danger [61]. By far the largest proportion of collisions
with oncoming vehicles is caused by overtaking manoeuvres [62]. Therefore, overtaking
situations represent accident black spots on rural roads, offering great potential for road
safety improvement. Additionally, overtaking situations are classified as a relevant scenario
category for a scenario-based validation of AD [33]. Third, according to Netzer [63],
overtaking is a very complex traffic process with a variety of influencing factors involving
several different subtasks, such as swerving, adjusting speed, merging, and the interaction
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of at least two drivers. Thus, this scenario offers a great potential to highlight the interaction
and complexity of road traffic, including the systemic interdependencies between different
road agents and the environment. In addition, results might be transferred to other road
traffic scenarios because overtaking situations make up a large part of everyday driving
tasks. Overall, the overtaking situation on rural roads is a good starting point for a socio-
technical analysis under the lens of RE.

Figure 2 schematically depicts the overtaking scenario. This consists of four road
users or agents: the ego vehicle (EV), the lead vehicle (LV), the rear vehicle (RV), and the
oncoming vehicle (OV). Behind the OV, identified by the second orange and unlabelled
vehicle, other vehicles form a line of cars. However, these vehicles and drivers are not
considered agents for the modelling and scope of analysis and are therefore out of system
boundary. To get a better overview, the scenario can be divided into five temporal and
spatial stages from EV’s point of view (see Figure 2): following a vehicle in front, swerving
into the oncoming lane, passing the leading vehicle, merging back into the starting lane,
and getting in the lane again.
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Figure 2. Schematic illustration of the overtaking scenario comprising different road users/agents
and divided into five temporal and spatial stages. EV = ego vehicle, LV = lead vehicle, RV = rear
vehicle, OV = oncoming vehicle.

The four agents are driving on a straight rural road for a distance of 1500 m with no
vertical elevation, on which the maximum speed limit is 100 km/h, overtaking is permitted
and no obstructions exist. One lane runs in each direction and the median is dashed. The
total width of the road is 6 m. The road is well constructed and all necessary road markings
are in place. On the side of the road, there is light vegetation. The weather conditions are
sunny and dry.

The EV is following the LV and at the same time followed by RV. The LV is driving
at a speed of 80 km/h. In the oncoming traffic, a vehicle OV and following vehicles are
coming towards at 100 km/h with different time gaps. In principle, the OV represents the
oncoming traffic. All agents always keep the necessary safety distance to their vehicle in
front and comply with the traffic regulations. The EV is under time pressure and wants
to reach its destination quickly, and since LV is travelling below the speed limit, it starts
an overtaking manoeuvre. The other agents are reacting to the overtaking manoeuvre
of EV. In general, the EV is driven once by a human driver and once by an automated
system (SAE-level 4) according to SAE J3016 [3] with no car-to-x communication. The
other vehicles are always driven by a human driver in both cases. Overall, the overtaking
scenario should represent a simple and everyday overtaking manoeuvre on a rural road, in
which four road users are interacting primarily with one other. This represents a scenario
in which most overtaking accidents occur, that is a straight flat section in daylight and on a
dry rural road, all in all, under good external conditions [62].

3.3. Step 1: Identification and Description of the System’s Functions
3.3.1. Develop the WAI Model

The WAI model is based on a comprehensive and detailed hierarchical task analysis of
driving developed by Walker et al. [64]. This work is created on a task analysis conducted
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by McKnight and Adams [65] in 1970, the UK Highway Code, several driving standards
and manuals, input by subject matter experts (SMEs), and numerous on-road observation
studies. The tasks and plans are constructed using logical operators such as And, Or,
If, Then, Else, While, and so on. The list of tasks and plans, which are essential for the
overtaking scenario, were translated into functions where the logical operators were used
to define couplings between each function through their aspects. First, a WAI model
was created for each agent, followed by a WAI model combining all agents in one model
assigned to the five temporal stages of the scenario. In addition, the functions were labelled
and distinguished by different information processing levels.

3.3.2. Develop the WAD Model

Since it is not sufficient to know only the theoretical mechanisms of the overtaking
process, the next step is to create a WAD model using observations and interviews imple-
mented in a driving simulator study which serves to update and enhance the WAI model
into a more realistic overall model.

Driving Simulator

Here, a static driving simulator (see Figure 3) was used. The environment is simulated
by three flat screens with a resolution of 4K covering the space from the left-side window
to the right-side window of the car, which ensures a 120◦ viewpoint in front. Additionally,
the rear-view mirror is virtually displayed at the top of the centre screen. The side mirrors
are displayed via two small monitors placed to the left and right of the subject. The driver,
seated on a default automobile seat that is adjustable in height and longitudinal direction,
has a steering wheel for lateral control that can be adjusted along the axis, as well as
an accelerator and brake pedal for longitudinal control. The use of a turn signal and a
shoulder view to the rear are not possible. Behind the steering wheel is a combination
display that shows the engine speed and the current speed of the vehicle. Further, the
driving simulator is equipped with automatic transmission and sound, consisting of engine,
environmental, and vehicle noises that are reproduced via two speakers placed next to
the pedals. During a test drive, the room was darkened to increase the immersion for the
driver. SILAB 6.0 of the Würzburg Institute for Traffic Sciences GmbH in Germany was
used as the simulation software.
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Sample

A total of 10 participants took part in the study. Of these, seven were men and
three were women with an average age of 28 years (SD = 2.26 years), ranging from
24–31 years. All owned a valid driving licence and drive an average of 18,000 km a year
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(SD = 10,055 km/year), which shows a solid experience in road traffic. Furthermore, all
subjects have already participated in a driving simulator test and were well acquainted
with the driving simulator, which is why it can be assumed that their real driving behaviour
has not changed much in the driving simulator. This is consistent with the indication that
80% would perform similar driving manoeuvres and overtaking manoeuvres in reality.
The driving styles were heterogeneous, ranging from safe and leisurely to slightly risky
and fast-paced, which was surveyed using a 5-point Likert scale.

Procedure

First, the subjects were informed about the goals and content of the study and signed
an informed consent. Afterwards, the subjects took a seven-minute test drive, which
included everyday driving scenarios on rural roads, to learn about steering, braking, and
the driving simulator system. Then the actual test drive began. Here, the driving data,
as well as the audio track and the subject’s behaviour, were recorded for evaluation. In
total, the experiment lasted 30 min, and each subject experienced the scenario from the
perspective of each of the four agents, in which the order of perspectives was as follows: EV,
LV, RV, OV. The subject passed through each perspective three times. The first pass of the
overtaking manoeuvre was used for familiarisation, during the second the subjects were
asked to think aloud and explain their actions over the following few seconds, and during
the third pass, the simulation was stopped five times (which represented the five stages of
the scenario, see Figure 2) whereupon the subjects were asked to explain in detail which
functions they would perform over the next few seconds. The functions refer to the three
information processing levels of perception, cognition, and action. Between the actual test
scenarios, that is the overtaking manoeuvre on the straight rural road, the test subjects each
drove a small winding course through a wooded area so that the entire scenario would
appear as natural as possible. After the test drive, subjects completed a short questionnaire
to collect demographic data. Additionally, driver type data, as well as perceptions in the
driving simulator test, were surveyed. Finally, a semi-structured interview was conducted.
The interview queried specific aspects of the overtaking process from the perspective of all
four agents that had not been considered before. The interview consisted of ten questions.
The first six questions related to the execution of the overtaking manoeuvre regarding the
five stages. The subject described, for example, the information on which their decision to
start an overtaking manoeuvre was based, as well as its concrete execution. In addition,
it was asked how the driver determines whether a current overtaking manoeuvre is at
risk, how he/she reacts, and how a manoeuvre is successfully completed. The last four
questions were general in nature (e.g., perception of environmental influences, the influence
due to time pressure, or factors that can trigger a critical situation).

Measures and Analysis

In the evaluation to identify and describe the system’s functions, the interviews, as well
as the audio track and the driving and behavioural driver data, were used. The responses in
the interviews, as well as the audio track during the experiment, were collected, categorised,
and assigned frequencies. From this processed interview data, as well as the objective
data streams such as the longitudinal and lateral driving behaviour in response to scenario
objects or the behaviour of other drivers, activities for driving tasks were identified and
subsequently translated into functions. This finally led to the WAD model, where the
individual functions were linked based on the observations.

3.3.3. Develop the Overall Model

As a first step, each of the two researchers compared the WAI and WAD models they
had created individually and tried to unify them into an overall model. The procedure was
such that the WAI model formed the basis and newly discovered functions and couplings
were added by the WAD model. After this, the two individually generated overall models
were combined using a joint comparison and discussion by the two researchers. In a final
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step, the researchers refined the complete overall model in iterative steps by going through
the model using an in-depth cognitive walkthrough to recognise potential missing functions
or couplings and falsely linked functions. The overall model, as well as the WAI and WAD
models, were produced using the software FRAM Model Visualiser (FMV) [66] Pro 2.1,
available at http://www.zerprize.co.nz/FRAM/index.html (accessed on 25 August 2021).

3.3.4. Validate the Overall Model

In the last step, the overall model was calibrated and validated through a focus group
within a peer review workshop to ensure objective, reliable, and valid analysis results
based on the FRAM model. The peers were seven experts (5 male, 2 female) with strong
knowledge and broad experience of human factors in the automotive area. The experts were
educated about the FRAM model and its creation process one week before the workshop
through a 90-min recorded video. In addition, general background information about
FRAM was given to familiarise the peers with the method, and participants were divided
into three groups (EV; LV; RV & OV) to provide comments on the specific agents. In the
workshop, the overall model was then discussed step by step for each agent. However,
it turned out that the planned format was inefficient. Therefore, in three separate two-
and-a-half-hour meetings, the model was explained and discussed again in detail for the
respective three groups, and the experts then gave their feedback and the models were
iteratively adapted. At a follow-up meeting, the overall model was finally iteratively
calibrated and fine-tuned again with all seven peers in a joint two-hour session. To validate
the overall model, the peer group reflected on their personal experience and human factors
knowledge of driving a car, including manual driving as well as automated driving. This
contained additions, modifications, or deletions regarding functions and their couplings,
as well as the assignment of agents, temporal stages, and information processing levels.
Having agreed that the overall model accurately reflects the essential mechanisms of the
overtaking scenario, the last step was a formal validation. Here, the model has been
checked and adjusted for consistency and completeness, using another software facility, the
FRAM Model Interpreter [66,67], which is incorporated into the FMV Pro. It was a stepwise
automatic interpretation of the syntactical and logical correctness of the overall model.

3.4. Step 2: Identification of Performance Variability
3.4.1. Identify Performance Variability for the Human Driver

The identification of the performance variability for the human driver was twofold
and was based on objective as well as subjective data, as described below.

Driving Simulator Study

First, a second driving simulator study was conducted. The simulator environment
and the setting were the same as mentioned in Section 3.3.2.

Sample

Overall, 30 subjects (20 males, 10 females) including German students and scientific
employees, aged between 21–30 years (M = 24.84 years; SD = 2.96 years), took part in
the study. All had a valid driving licence and drive an average of 11,724 km a year
(SD = 7742 km/year). Furthermore, half of all subjects had already participated in a
driving simulator test. Additionally, 80% would perform similar driving manoeuvres and
overtaking manoeuvres in reality. All subjects had experienced driving skills, with 76%
driving daily to weekly. The driving styles were heterogeneous, ranging from safe and
leisurely to slightly risky and fast-paced.

Procedure

Overall, the experimental track was the same as mentioned in Section 3.3.2. Before
the test drive, the subjects were informed about the goals and content of the study and
signed an informed consent. Afterwards, they took a 15-min test drive on a rural road
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for familiarisation. According to the Wiener driving test [68], an observation period of
about 15 min is necessary before drivers show their everyday normal driving behaviour
and fall into their regular habits, which should ensure a valid investigation of everyday
performance variability. Then the actual test drive began. Besides the recording of driving
data, audio track, and the subject’s behaviour, the glance behaviour was tracked with a
head-mounted eye-tracking system via Dikablis Glasses 3 from Ergoneers in Germany.
This ensured insights, especially into the drivers’ perceptual behaviour, in addition to
executive activities, and to record cognitive processes. The participants drove the four
agent perspectives three times in permutated order, intending to reproduce their everyday
driving behaviour and complete overtaking manoeuvres and driving tasks as quickly as
possible, but as safely as necessary.

Measures and Analysis

To determine performance variability, the driving data and glance behaviour were
evaluated for each run (a total of 90 data sets per agent and function), with each run then
assigned to the different characteristics of the timing and precision phenotypes based on
previously established definitions of the characteristics of the phenotypes per function.
Here, Table 2 exemplifies this for the lane-keeping function.

Table 2. Definition of the timing and precision characteristics using the lane-keeping function as an
example.

Phenotype Characteristic Definition

Timing

Too early If the driver already countersteers although the vehicle is driving in the middle of
the lane.

On time If the driver countersteers in time (the vehicle is approaching the left or right of
the lane boundary) to keep the vehicle in the lane.

Too late If the driver countersteers too late (vehicle has already left the lane) to keep the
vehicle in the lane.

Not at all If the driver does not countersteer at all to keep the vehicle in the lane.

Precision
Precise If the car always drives perfectly along the centre line between the left or right of

the lane boundary.
Acceptable If the car always drives between the left or right of the lane boundary.
Imprecise If the car crosses the left or right of the lane boundary.

Finally, this resulted in a frequency distribution of performance variability for each
function as an average over all runs (e.g., for timing 90% on time and 10% too late and
precision 20% precisely and 80% acceptably). The reason for specifying performance
variability via a frequency distribution is to create as realistic as possible a representation
of actual everyday performance.

Interviews and Survey

Unfortunately, only a few functions’ performance variabilities (mainly functions refer-
ring to actions) could be objectively and reliably determined by observation in the driving
simulator, and a large part of the perceptual and cognitive processes could not be assessed.
Thus, large-scale structured interviews combined with a survey were conducted in a second
step. In general, the following rule applied to determine the variability of performance
per function: If the variability of a function could be objectively recorded in the simulator
study, then these values were used, if not, then the values from the interviews were used.
Since most of the functional variability could only be captured subjectively through the
interviews, the drivers’ self-assessment had a primary role.

Sample

Overall, 30 subjects, who are a mixture of students, scientific employees, and peo-
ple with completely different educational and occupational backgrounds from Germany,
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took part in the interviews. The participants (21 male; 9 female) have an average age of
32.33 years (SD = 12.35 years), with an age range of 21–61 years. All owned a valid driving
licence and drive an average of 17,166 km a year (SD = 8971 km/year). All subjects had
experienced driving skills, with 83% driving daily to weekly. Their driving styles were
heterogeneous, ranging from safe and leisurely to slightly risky and fast-paced.

Structure of Questionnaire and Analysis

Because of the high number of functions, two questionnaires were created using the
online survey tool LimeSurvey. They cover 100 functions and were gone through step by
step in an interview so that queries could be clarified. The first questionnaire determined
all driving tasks of LV, RV, and OV, the second one determined the variability for driving
tasks performed only by EV, with each questionnaire being completed by 15 participants.
Both questionnaires were already reduced by redundant functions, which means functions
that are executed several times, that are in different stages, or by several agents. The
structure of the questions is described in the following, which was inspired by the approach
of Patriarca et al. [45], who conducted the determination of performance variability in
a neuro-surgery healthcare setting via an online survey. The driving tasks were always
queried according to the stages of the scenario and the subjects were informed of the stage
in which the driving task was performed. For each driving task, the name of the driving
task, which agent performs it, a description of the task of the function, and the output of
the same were given. This was followed by the evaluation of variability in timing and
precision. Here, the subjects stated in per cent how often they perform a driving task
in everyday life: too early, on time, too late, or not at all. For this purpose, each of the
sliders was moved in five per cent increments. For better orientation, value ranges were
defined for the frequency categories: never (0%), rarely (1–25%), sometimes (26–50%), often
(51–75%), usually (76–99%) and always (100%). The evaluation of precision was carried
out in the same way, except that here the subjects indicated how precisely they perform
the driving task in everyday life: precisely, acceptably, or unacceptably. The sum of the
individual responses had to add up to 100 per cent in each case. Finally, the performance
variability distribution ratings for each function were averaged for each characteristic over
all participants.

Procedure

The procedure of the interview and the structure of the questionnaires were as follows.
The subjects are first informed about the theme and procedure of the study and signed an
informed consent. The interview lasted about 60 min. After that, the scenario, agents, stages,
and structure of the questionnaire were explained. This was followed by a demographic
questionnaire and a test question so that the subjects could familiarise themselves with the
structure of the questions. Before the actual survey began, the subjects watched a video
that visualised the scenario in real-time. During the survey, questions could be asked to
eliminate misunderstandings.

3.4.2. Identify Performance Variability for Automation

Due to a lack of public data on AD performance and driving behaviour, structured
interviews combined with a survey were also conducted to determine performance variabil-
ity for automation as a generic concept based on the current state-of-the-art of automation
systems and short-term developments.

Sample

Here, twelve experts (10 male, 2 female) participated in the interviews. Most of the
experts came from suppliers or original equipment manufacturers (OEMs) in the German
automotive industry, a few from German universities, and one from an OEM in the USA.
The experts held various positions within the development of automated driving functions
and had extensive practical and theoretical knowledge regarding the performance of
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current series and prototype functions. On average, the experts had been working in their
current function for 5.83 years (SD = 5.34 years) and had already gained experience in
the field of driver assistance or vehicle automation for an average of 8.33 years (SD = 4.79
years). Seven described their general attitude towards vehicle automation as consistently
positive, four as positive but with reserved euphoria because of a clear necessary increase
in reliability, and one was ambivalent, especially about implementing higher levels with
broad application areas.

Procedure and Analysis

The procedure of the interviews as well as the structure of the questionnaires were the
same as for the case of the human driver, as mentioned above. The functions for the EV were
split up into two questionnaires due to the high number, each of which covered 41 driving
tasks or functions. Each survey was completed by six experts. The only difference in the
individual questions was that no frequency distribution concerning the characteristics for
timing and precision had to be given, but only one characteristic per phenotype (single
choice) was to be selected. That was considered the most probable in the analysed scenario
for AD against the background of short-term automation developments. All ratings of
every expert were then combined into a frequency distribution of performance variability
for each function.

3.5. Step 3: Aggregation of Variability

The purpose of the third step is to look at how the variability of the functions aggregate
and propagate through the system in a specific instantiation of the model to determine
potential functional resonance leading to unexpected outcomes arising through interaction
and complexity in the system. Because of the complex scenario and the fact that its qualita-
tive modelling by FRAM was quickly becoming overwhelming, we enhanced the research
by a semi-quantitative approach according to Patriarca et al. [69] and Grabbe et al. [12]. This
was implemented with the help of the software myFRAM 1.0.4 [70], which was developed
in Visual Basic for Applications and interfaced with Microsoft Excel and FMV, enabling the
FRAM model to be converted into a matrix so that a quantitative or numerical calculation
is possible. The structure of the defined metrics is shown in Figure 4. Here, the nodes
represent the respective metrics, and the structure, that is which metrics are composed how,
is marked by arrows and their direction from right to left. The green nodes will later be
used as the main analysis metrics in Section 4.2. In general, the metrics can be divided
into three categories: functional variability, system resonance, and system propagational
variability. The functional variability represents the variability that a function directly
receives and transfers without considering their interaction and effect in the system suf-
ficiently. Therefore, the system resonance tries to reflect the interaction and complexity
of a function in the system, incorporating non-linearity, emergence, and dynamic of the
system. It is a kind of weighting of the impact and affectedness of a function to evaluate
the effect of a function variability system-wide. Combining functional variability and
system resonance results in system propagational variability, which shows the systemwide
impact and affectedness of each function’s variability up to a global system variability
level. The definition and calculation of each metric within the three categories, which were
implemented with myFRAM and MATLAB 2020, are described below.
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3.5.1. Metrics for Functional Variability

The final calculation of functional variability is based on the downlink (DL) and uplink
(UL) coupling variability (CV) of one foreground function (downlink functional coupling
variability DLFCV and uplink functional coupling variability ULFCV). The DLFCV was
used to understand the implications of the coupling variabilities of one entire upstream
function j to associated downstream functions i and the ULFCV was used to comprehend
the impact of the variability of a downstream function i through its incoming coupling
variabilities of upstream functions j. The calculation formula for DLFCV and ULFCV can
be seen in (1) and (2), respectively:

DLFCVj = ∑j
i=1 CVij (1)

ULFCVi = ∑j
i=1 CVij (2)

To keep the paper readable, the formulas of the remaining metrics on which the DLFCV
and ULFCV are based can be found in Appendix A.

3.5.2. Metrics for System Resonance

The performance of the overall system, in this case the FRAM model, is more than
the sum of its function’s variabilities, and rather is determined by the interaction and fit of
the individual subsystems (within and between agents as well as between agents and the
environment). However, the metrics mentioned above did not adequately represent this
and are only considered as taken separately without interactions (except for the variability
propagation factors). Therefore, we further defined several metrics, categorised into an
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interaction and complexity dimension, which should represent this inherent complexity,
which incorporates non-linearity, emergence, and dynamic of the system. On the one hand,
the connectivity/interaction of functions was determined with the following metrics in
order to calculate the degree to which a function interacts with other functions or agents in
the system:

• Number of downlinks and uplinks (NDL and NUL) which show how many functions
a function can directly influence and how many functions it is directly influenced
by, respectively.

• Intrarelatedness expresses how many functions a function is linked to within an agent
(e.g., EV) and within the same stage (e.g., Follow) or in different stages (e.g., Follow
and Pass).

• Interrelatedness presents how many functions of other agents (e.g., LV and OV) a
function is linked to and weights it with the number of different agents.

• Feedback loop factor reflects the extent to which a function’s output can influence its
input through direct and indirect feedback loops.

On the other hand, centrality measures from graph theory were used to represent
the complexity of the system. The reason for this choice is that graph theory proved
to be well suited to investigate some emergent non-linear characteristics of systems to
express by other approaches and their used metrics have been already proven to succeed
in explaining many features of complexity [71]. The translation of a FRAM model into a
network by graph theory was already applied by Bellini et al. [72] and Falegnami et al. [71],
showing general good integrability of these approaches to prioritise key functions in a
FRAM model adopting centrality measures in order to reflect a combination of couplings’
weights and connectivity. However, the studies also implied that several centrality indices,
representing the importance of a node/function, exist and that it is difficult for a centrality
measure to be considered the most representative of FRAM characteristics since peripheral
nodes/functions can also be important. Thus, the most appropriate centrality measures
should be identified on a case-by-case basis [73]. Therefore, the authors of this paper
chose a mix of the following three different centrality indices and one own defined metric,
assuming this would be the best way to represent this complexity:

• Katz-centrality depicts the relative degree of influence of a function within the system,
showing the extent of indirect impact.

• Incloseness- and Outcloseness-centrality measure how central a function is located in a
system and thus the more central a function is, the closer it is to all other functions
and therefore has a high potential for functional resonance.

• Betweenness-centrality shows the degree of a function to bridge functions with other
functions, which makes it a critical function for system success.

• Clustered Variability (CTV) shows how much upstream and downstream variability
accumulates around a function to depict where groups of functions with high variabil-
ities exist that are directly coupled.

To keep the paper readable, the formulas of the metrics for the interaction and com-
plexity dimensions can be found in Appendix B. Below the calculation and meaning of the
two main indicators of system resonance, the Weight as Upstream (WaU) and Weight as
Downstream (WaD) of a function f, are explained. The WaU and WaD reflect the system
effect of a function as an upstream and downstream function, respectively. This should
simulate the interaction and fit between functions and their inherent complex interdepen-
dencies. The respective metrics are included in the calculation in a weighted manner. The
assignment of these weighting factors with numerical values was subjective and is reflected
in Table 3. The assignment follows the logic that some metrics weigh more heavily than
others. For example, interrelatedness weighs more heavily than intrarelatedness, since this
considers that influencing other agents has a higher system effect than only influencing
one’s own agent. The WaU and WaD are determined as follows (3) and (4):
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WaU f = β1 ∗ Nrelative
DL f + β2 ∗ Intrarelatednessrelative

f + β3 ∗ Interrelatednessrelative
f + β4

∗FeedackLoopFactorrelative
f + β5 ∗ CTVrelative

f + β6 ∗ Katz− centralityrelative
f + β7

∗ Outcloseness− centralityrelative
f + β8 ∗ Betweenness− centralityrelative

f

(3)

WaD f = β1 ∗ Nrelative
UL f + β2 ∗ Intrarelatednessrelative

f + β3 ∗ Interrelatednessrelative
f + β4

∗FeedackLoopFactorrelative
f + β5 ∗ CTVrelative

f + β6 ∗ Katz− centralityrelative
f + β7

∗ Incloseness− centralityrelative
f + β8 ∗ Betweenness− centralityrelative

f

(4)

Table 3. Allocation of numerical values of the weighting factors for the calculation of WaU and WaD.

Weighting Factor Numerical Score

β1 (NDL/NUL) 4
β2 (Intrarelatedness) 2
β3 (Interrelatedness) 2.5

β4 (FeedbackLoopFactor) 1
β5 (CTV) 1

β6 (Katz− centrality) 4
β7 (In− /Outclosenness− centrality) 2.5

β8 (Betweeness− centrality) 2.5

3.5.3. Metrics for System Propagational Variability

In the final step, the WaU and WaD are offset against the CV values of each function,
resulting in a relative DLFCV (5) and relative ULFCV (6) considering the interaction of one
function’s down- and uplink coupling variability within the whole system, showing how a
function affects the system and is affected by the system, respectively:

DLFCVrelative
j =

j

∑
i=1

CVij ∗WaUj ∗WaDi (5)

ULFCVrelative
i =

i

∑
j=1

CVij ∗WaUj ∗WaDi (6)

Finally, the overall functional coupling variability (OFCV) of a function f could be
determined from this (7):

OFCVf = ULFCVrelative
i + DLFCVrelative

j (7)

This metric identifies critical functions with high potential for functional resonance
offering functional prioritisation of their impact into the system in that, for example, a high
value means that the function has a large systemic effect and/or is largely systemically
affected and/or a high variability accumulates in and around the function.

In the last step, a global system variability (GSV) could be calculated to show the
accumulated variability of all functions and their interactions of the whole system for
one specific condition. This enables, for example, a comparison of system performance
between a system where purely human drivers operate and one where an automated
system operates with human drivers. The GSV is the sum of the OFCVs of n functions
within the whole system (8):

GSV =
n

∑
f=1

OFCVf (8)

3.6. Step 4: Management of Variability

The final step proposes ways to manage performance variability, especially possible
conditions of functional resonance, that have been found by the preceding steps. In this
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work, we proceeded as follows. In general, we are aiming to improve the performance
variability of the entire system for the given scenario by deriving system design recommen-
dations through a well-reasoned function allocation, which will be shown in Section 4.3.
To achieve this, the performance variability of the entire system is analysed by comparing
the contributions between human driver and automation to road safety based on systemic
mechanisms on both an abstract global level (see Sections 4.2.1 and 4.2.2) and a fine grain
level regarding the individual functions (see Sections 4.2.3 and 4.2.4).

4. Results

In this section, the results are presented. First, the resulting overall FRAM model
is described. Further, critical functions are identified and analysed in-depth to compare
the positive and negative contributions of the human driver and automation to system
behaviour. Finally, recommendations for system design as well as the validation process of
AD are derived.

4.1. The Overall FRAM Model

The overall model comprises 285 functions (210 foreground functions (hexagons) and
75 background functions (rectangles)) with 799 couplings and is shown graphically in
Figure 5. All functions within an agent exist only once and are then executed several
times by other functions at different stages of the manoeuvre. The functions are assigned
respectively to the four different agents (EV, LV, RV, and OV) and five temporal stages
during the scenario (Follow, Swerve, Pass, Merge and Get in lane). This is a modification
of the Abstraction/Agency framework by Patriarca et al. [74] into a Space-Time/Agency
framework, which should ensure enhanced knowledge representation combined with a
multi-dimensional approach that is two dimensions: the temporal-spatial levels and the
agency levels. Since it is not effective to analyse an STS according to only one level [74],
this approach makes it easier to with complexity that requires a system to be structured
following different levels of analysis with different resolutions and perspectives [75]. This
is shown by the interactions within an agent and between different agents at different
temporal and spatial occurrences. The stages always refer to the perspective of the EV,
which is the focus of analysis. The functions can only be executed within the assigned
agent and the assigned temporal stage(s) but can be coupled with functions of all other
agents and stages.

To make the model clearer, the functions have also been colour-coded according to the
following pattern to specify the type of functions in more detail:

• Driving functions:

# Yellow→ perception driving tasks (e.g., to monitor road layout ahead of LV)
# Blue→ cognition driving tasks (e.g., to assess the opportunity to overtake safely)
# Green→ action driving tasks (e.g., to decrease speed)
# Orange→main manoeuvre tasks (e.g., to follow LV)

• Functions affecting driving:

# Red→ characteristics of the infrastructure (e.g., to provide road signs)
# White→ characteristics of the environment (e.g., to enable clear view on the

road ahead (weather conditions, etc.)
# Grey→ technical functions of the vehicle (e.g., to provide steering wheel)
# Purple→ information by the policy (e.g., to provide safe braking distances by

Highway Code)

The driving functions are classified into three levels of information processing (i.e., per-
ception, cognition, and action) adopting the framework of types and levels of automation
regarding the four-stage model of human information processing provided by Parasura-
man et al. [76]. This facilitates function allocation between humans and automation, that is,
the design decision of which system functions are to be performed by humans and which
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should be automated and to what extent to improve system safety. Thereby, main manoeu-
vre functions bundle several driving functions, which are intended to improve clarity.
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It should be noted that the model is the same for the human driver or the automation
because of the assumption that there is no change in the functions of the system that have to
be accomplished by the human driver or the automation. This is ensured by an appropriate
resolution or abstraction of the functions. The difference between the two agents is only
the variable performance of each function. The reason is that a FRAM model should treat
humans and automation systems as equivalent producers of functions to compare the joint
performance of both systems as the net result of the functional resonances as depicted by
the GSV.

Due to the complexity of the model, we cannot represent and describe the actual
structure and content of the whole model (the entire model can be viewed as an FMV data
file in the Supplementary Materials S1). Therefore, we roughly describe the major functions
per each agent and stage represented by the main manoeuvre functions in Appendix C
in Table A3. Additionally, the driving behaviour of to follow by EV in the Follow stage



Safety 2022, 8, 3 19 of 44

(see Appendix C in Figure A1) is explained in detail to improve the comprehension of the
remaining parts of the model.

4.2. Comparison of the Contributions between Human Driver and Automation to Road Safety
Based on Systemic Mechanisms

In this subsection, the analysis process follows the hierarchical structure of the metrics
depicted in Figure 4, moving from the abstract (left) to the detailed (right) focussing
primarily on the main analysis metrics (green nodes). First, the abstract global analysis is
accomplished through prioritising risk functions and analysing them in comparison across
stages and function types between human driver and automation. Additionally, the global
system variability is investigated. Second, the individual functional analysis is represented
by distinguishing the interaction and variability of system functions to identify potential
critical functional resonance, but also success factors, and finally analysing critical paths
and their interactions in the system.

In general, a comparison of all system functions cannot be presented, so the following
is an analysis of essential functions serving as examples to assist with comprehension of
the derivation of system design recommendations in Section 4.3.

4.2.1. Prioritisation and Analysis of Risk Functions

The risk functions for human drivers and automation were identified through the
analysis of the OFCV since this metric shows the criticality of a function measured by the
system-wide impact of the function’s variability. Here, the OFCV of each function was
prioritised and ranked using the scree test (see Figure 6) according to Falegnami et al. [71].
Usually, the first knee is chosen to prioritise functions that lie left to the curve knee (that
in our case filters only five functions, which are largely more critical than the following
ones). However, as we are interested in focusing on a larger portion of risk functions, we
needed a tool to help us decide which curve knee to use. Thus, we enhanced the scree
test by a regression line. The rightmost curve knee, which lies above the first intersection
point of the regression line (i.e., functions that lie above the average linear slope and
thus differ significantly from functions below the average linear slope), is ultimately
used as the decision criterion. Thus, we selected the third knee, allowing us to consider
23 risk functions for the human driver. The selection process for the automation was the
same, resulting in 22 risk functions. A list of risk functions is shown in Appendix D in
Table A4. The risk functions are not only related to the agent EV, but also the other agents.
Considering a function allocation for the system design (which will be explained in more
detail in Section 4.3.1), the following should be taken into account. If a function is only an
automation risk, it is recommended that it should be performed by humans, and vice versa.
However, if a function poses a risk to both, it is necessary to analyse thoroughly which
control mode seems to be the best.

As seen in Figure 7, the most risk functions are in the Follow stage, which also includes
significantly more functions, however. In the other stages, the distribution is about the
same, except for the Swerve/pass/merge stage, in which humans have six times more risk
functions than automation. However, the risk functions in this stage are all performed by
other agents than EV, so it can be interpreted that the other agents are more negatively
influenced by the human driver of EV than by the automation. However, this would need
to be verified since the other agents are only influenced by action functions and these are
predominantly performed worse by the human. Furthermore, the data from other agents
are only based on experiences with human drivers and not with automation. Moreover, the
Get in lane stage is the only stage without a risk function.

Figure 8 shows that the risk functions for automation are mainly loaded by perception
and cognition. Merely one third relates to action and main manoeuvre functions. In
humans, on the other hand, mainly action functions and the main manoeuvre functions
are considered risk functions, whereby the main manoeuvre functions are predominantly
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action-intensive. Only one fifth is accounted for by cognition functions, and perceptual
functions do not pose any risks at all.
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4.2.2. Analysis of Global System Variability

Finally, the GSV of each stage between human and automation is compared, as well as
the function types for the EV in each stage. Figure 9 shows the comparison of GSV between
humans and automation, where the variability is calculated in relation to the number of
functions in the stage so that they can be compared relatively. The highest variability for
both is found in the Pass stage and the largest difference between humans and automation
occurs in the Follow stage, where the automation’s variability is much larger than for
humans. The other stages are relatively balanced, although the variability in automation is
slightly lower. In general, automation has a higher overall variability.
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4.2.3. Distinguishing the Interaction and Variability of System Functions for Potential
Critical Functional Resonance

The previous analysis was very focused on the OFCV of risk functions and the GSV,
which reflect the criticality of the functional variabilities in the system in an aggregated,
abstract and simplified form. However, this criticality is composed of two dimensions:
the variability a function receives (ULFCV) and transfers (DLFCV), which represent the
functional variability, and the system resonance of a function, which reflects the interaction
in the system, is how the functional variability is affected by the system (WaD) and how
it influences the system itself (WaU). Therefore, these two dimensions were analysed sep-
arately for the system functions as well as risk functions in the following to get a deeper
understanding. This is proposed by a matrix that represents the criticality of functions and
their potential for functional resonance along the two dimensions functional variability
and system resonance, which make up Functional Variability-System Resonance Matrix
(FVSRM) (see Figure 10), a modification of the Variability Impact Matrix presented by
Patriarca et al. [45]. For each function, the FVSRM considers in the system resonance
dimension the sum of the WaU and WaD: low system resonance if it is lower than 5% of
the maximum of the sum of WaU and WaD, medium system resonance if it is between
5%-30% of the maximum, and high system resonance if it is higher than 30% of the maxi-
mum. The functional variability dimension is considered by the sum of the DLFCV and
ULFCV, where the three thresholds are analogous to the first dimension. The thresholds
for both dimensions were determined subjectively by SMEs, inspired by the procedure of
Patriarca et al. [45].
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Figure 10. The Functional Variability-System Resonance Matrix (FVSRM), left for the human driver
and right for the automation.

The FVSRM shows different areas: green (C-C, C-B, B-C) for uncritical functions, blue
(A-C) for high variable functions with low system resonance, yellow (B-B) for medium
variable functions with medium system resonance that are between uncritical and critical
functions, orange (C-A) for low variable functions with high system resonance and red
(B-A, A-A, A-B) for critical functions. Here, the orange and blue areas refer to functions that
must be viewed with caution due to their special features. Functions in the blue area are
functions that are typically error-prone but usually remain without adverse consequences
(i.e., accidents) because they have a low systemic resonance. Functions in the orange area
are functions where errors rarely occur, but when they happen, a strong systemic effect and
consequently a high probability of accidents must be expected. In general, the functions
in the orange area pose a greater hazard than the blue ones and are thus to be assessed as
more critical. Below the FVSRM, the sum of functions per area is presented. Furthermore,
the sum of functions per row and column is given to reflect the number of functions per
dimension category.

The distribution of the functions in the FVSRM in Figure 10 shows that the system for
the human driver is generally stable in terms of variability as five functions are above 30%
functional variability but is affected by several interrelated functions with great system
resonance impacts as 40 functions are above 30% system resonance. Instead, the distribution
of the functions in the FVSRM for the automation is significantly more unstable in terms of
variability as 25 functions have a functional variability of greater than 30%. Overall, the
automation shows higher variable and medium system resonance functions. The number
of uncritical functions is nearly the same for both at about 40%, with critical functions
outweighing humans (19%) for automation (26%).

The risk functions for human drivers and automation were also analysed in a more
differentiated way concerning the two dimensions of functional variability and system
resonance, see Figures 11 and 12. Figure 11 shows the functional variability (DLFCV and
ULFCV as stacked columns, left y-axis) and system resonance (WaU and WaD as stacked
line markers, right y-axis) of risk functions (x-axis) for the human driver and Figure 12 for
automation. Additionally, the thresholds for high functional variability and high system
resonance are marked by the two dashed red lines. Some risk functions for the human
driver are highlighted and explained below. The red highlighted functions are most critical
because they have a high functional variability combined with high system resonance.
Here, < maintain headway separation (EV) > and < follow LV (EV) >, in particular, stand
out, with high variability and system resonance values, whereby they transfer variability
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for the most part and receive very little. In addition, each critical risk function is an action
task. The orange highlighted functions are risk functions that have relatively low variability
but combined with a strong system resonance. It can be argued that these functions are
success factors demonstrating resilience because, despite their strong system effect and
affectedness, they have little variability and are therefore stable. In particular, < driving
free (OV) > and < driving free (LV) > with very high system resonances are noteworthy
here. These functions must nevertheless be viewed with caution, especially under different
scenario conditions, as a sudden increase in variability in these functions may have a large
systemic effect. The function < assess opportunity to overtake safely (EV) > is also special
because it is strongly influenced by the system and receives a relatively large amount of
variability, but transfers very little variability into the system. Further, the functions < assess
opportunity to overtake safely (EV) > and < merge back into starting lane (EV) > exhibit
fairly high system resonances, but with relatively low variability. So, errors rarely occur
here, but if they do, then they often result in accidents. Risk functions, either high variability
combined with low system resonance or low variability joined with low system resonance,
do not exist. By contrast, the latter is logical, otherwise, they would not be considered as
risk functions.

Compared to the automation in Figure 12, it can be seen that humans have significantly
lower variability values and that overall, significantly more risk functions in automation
have high functional variability. However, the values of the system resonance are slightly
higher for the human risk functions than for automation ones.
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Several risk functions are also colour-coded in the automation (see Figure 12). This
results in seven critical functions (red), with < observe oncoming traffic (EV) > standing
out. Conspicuous compared to the human driver is the distribution of critical functions
among the function types: five cognitive tasks, one perceptual task, and only two action
tasks. Furthermore, four risk functions can be identified as success factors (orange), for
example < follow LV (EV) > and < keep in lane (LV) >, each with high systemic resonance
and low variability. In addition, there are risk functions in automation that have a relatively
low systemic impact but are highly variable (blue), especially < watch for hazards located
at roadside environment (EV) > or < assess road conditions (EV) >. It can be argued that
these high functional variabilities are somewhat irrelevant because of their low system
resonance, and therefore, they rarely lead to adverse events. Nevertheless, this variability
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should not be underestimated, especially if the scenario conditions change and thus the
system resonance may change.
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4.2.4. Analysis of Critical Paths

The quantitative evaluations shown previously were used to obtain an overview of
the influence of system functions and their variabilities and interactions in the system
in comparison between human driver and automation. Finally, this information was
qualitatively reflected in the model to enable the mechanisms to be fully understood. In
the following, this is exemplified by one critical path each for the human driver and the
automation. In this work, a critical path is defined as the direct couplings between a risk
function and its upstream and downstream functions, which is why all indirect couplings
are hidden, except the couplings between the direct upstream and downstream functions.

Figure 13 shows the critical path of the function < maintain headway separation (EV)
>, which is highlighted in light blue and will be referred to in the following as function
in focus 1 (FiF1), for the human driver with respective agents and stages. The upstream
couplings are highlighted in orange and the downstream couplings in blue. Additionally,
every function’s hexagon belonging to the orange or red area according to the FVSRM is
marked with a sine curve indicating critical functions. Additionally, the types of functions
are labelled by the respective colours, as mentioned in Section 4.1.

The FiF1 has five uplinks with little incoming variability and twelve downlinks trans-
ferring a high variability output, solely in the Follow stage. The uplinks come from four EV
functions and one LV function, which are all action functions. Interestingly, four of the five
upstream functions are critical, since they receive a relatively large amount of variability,
which, however, is not transferred to very much. In addition, it is noticeable that < keep in
lane (EV) > is temporally connected with FiF1 and thus two critical functions are executed
simultaneously, inducing a potential higher workload. The downlinks go predominantly
to RV (9), so RV is strongly influenced by FiF1. Otherwise, this offers great potential for
resilient system behaviour, in that RV can dampen the received variability through adapted
behaviour. Only one downlink goes to LV and two to EV itself, whereby a direct feedback
loop between < increase speed (EV) > and FiF1 is created, so the two functions can mutually
resonate. Moreover, the downlinks are predominantly associated with action functions
(7) and few with perceptual (3) or cognitive functions (2). In general, the FiF1 has low
intrarelatedness but high interrelatedness (3rd highest); in particular, the upstream function
< keep in lane (EV) > and downstream function < follow LV (EV) > also have very high
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interrelatedness, so they form a “strongly interacting function triangle” here. It can be said
that overall, the critical path of FiF1 is very action-heavy, has high interaction with other
agents, a lot of variability accumulates in and around FiF1 (due to high CTV), and FiF1 has
a strong system effect but is relatively little affected.
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Figure 14 depicts the critical path of the function < observe oncoming traffic (EV)
>, which is highlighted in light blue and will be referred to in the following as function
in focus 2 (FiF2), for the automation with respective agents and stages. The FiF2 has six
uplinks with high incoming variability and eleven downlinks transferring a high variability
output, mostly in the Follow stage and less in the swerve and merge stages. The uplinks
come from five EV functions and one OV function, which are four cognitive functions, one
perception, and one action function. Interestingly, the distribution of upstream variability
is very different with 60% coming from < determine pass can be completed (EV) > and
< observe for lurkers behind OV (EV) > (30% each), and the rest coming from < judge
available passing time (EV) > (18%), < judge LV’s relative speed to OV (EV) > (11%), <
judge distance from first OV (EV) > (10%), and < driving free (OV) > (1%). The downlinks
go merely to EV’s functions and predominantly to the Follow stage (7), only two downlinks
go to each of the swerve and merge stages. In particular, the FiF2 is temporally coupled
with five downstream functions, that is < assess road conditions (EV) >, < check LV is
not about to change speed (EV) >, < assess gap ahead of LV (EV) >, < anticipate course
of LV (EV) >, and < judge speed and performance of EV (EV) >, and thus six functions
are executed simultaneously. In particular, most of these downstream functions also have
a highly variable output and they are all received as an input in < assess opportunity
to overtake safely (EV) >, which in total offers great potential for functional resonance.
Moreover, the downlinks are predominantly associated with cognition functions (8) and
few with perceptual functions (3). In general, the FiF2 is mainly connected to critical
functions (except two functions) with high intrarelatedness but low interrelatedness. It can be
said that overall, the critical path of FiF2 is very cognition- and perception-heavy, has high
interaction within an agent over different stages, a lot of variability accumulates in and
around FiF2 (due to high CTV), and FiF2 has a strong system effect and also high system
affectedness, making it a highly critical function within EV’s operations by automation.
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4.3. Recommendations for System Design and Validation

Based on the previous analyses, this subsection deals with recommendations for
system design concerning the EV functions to improve the safety of the overall traffic
system, as well as for validation focus of automation to reduce the test effort. First, a
function allocation between human driver and automation is presented, followed by
recommendations for automation’s validation process.

4.3.1. Function Allocation between Human Driver and Automation

Automation of the entire scenario is not recommended, as automation is significantly
more variable than humans in global system variability. However, the individual stages
where automation is less variable could be automated in the sense of an authority transfer.
The Follow and Pass stages would then be carried out by humans, and the Swerve, Merge
and Get in lane stages by automation. With this approach, however, the individual functions
are not considered and the automation of certain functions per stage would represent a
more differentiated approach based on the compensatory design principle for automation
according to Fitts [77], see Figure 15. Here, the function allocation for EV between humans
and automation is shown. The driving tasks are divided according to stages and function
types within the stages. The driving tasks are performed by the human (blue), by the
automation (orange), or by both in the sense of shared control (grey), which is depicted
both as a percentage and as an absolute value. In this paper, shared control means that
the human and the automation work in collaboration simultaneously to achieve a single
function [78] as an extension, that is, the capabilities of the human are extended by the
automation or vice versa [79].
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The decision about the assignment of the functions is based on the previous quantita-
tive as well as qualitative analyses and the comparison of the functional variability and
system resonance of each EV’s function between humans and automation. If there was
no clear and significant difference regarding the main performance indicators in a specific
function between the human and automation, further metrics from Section 3.5, as well as
the interaction with other functions and their performance indicators (see Section 4.2.4),
were used.

First of all, it is noticeable that in the Follow and Pass stage, most of the functions
are executed by humans and in the other three stages, the majority are executed by au-
tomation. The last stage in particular is performed exclusively by automation. Only 12%
of all functions are executed as shared control, whereby this can take place at all three
information processing levels. With the types of function, it is noticeable that humans
perform significantly more perception and cognitive functions than automation, except
in the Swerve or Get in lane stage, respectively. Action functions, on the other hand, are
carried out significantly more by automation. Two of the five main manoeuvre functions
should primarily be carried out by the human driver. These are the decision to overtake
and the overtaking manoeuvre itself. The other three (following the lead vehicle, adopting
the overtaking position, and completing the overtaking manoeuvre) are primarily related
to automation.

The presented design recommendations for function allocation between human driver
and automation can be seen as a joint cognitive system (JCS) [80] that regards human and
machine as equal partners collaborating in the sense of a human-machine coagency “by
shifting the focus from human and machine as two separate units to the JCS as a single
unit” [80] (p. 67). This coagency is expressed in terms of function-centeredness [81] where
system functions of the EV needed to accomplish the overtaking manoeuvre are distributed
between the human driver and/or the automation in consideration of the interactions and
dynamics in the system (reflected by system resonance) and the functional variabilities. In
terms of SAE 3016, the resulting concept could also be realised as a highly assisted driving
system instead of automated driving.
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4.3.2. Validation Focus of AD

For the automation validation process of AD with the assumption of automating the
whole scenario and its associated functions, particular attention should be paid to the risk
functions for automation (see Appendix D in Table A4). This especially applies to functions
in the Follow and Pass stages, as well as those that are declared perceptual and cognitive
tasks. In addition, the validation focus can be expanded to include the critical functions
in the red and orange areas of the FVSRM in Figure 10. The validation process can likely
be reduced to the testing of these functions, such as criteria for exclusion, to reduce the
test effort. This has to be fulfilled by AD. Otherwise, we do not even need to carry out
further tests.

Otherwise, the function allocation shown in Figure 15 could be used to validate merely
the functions in which automation is responsible alone or together with humans, and thus
in turn reduce the validation effort to a level similar to current advanced driver assistance
systems or SAE-Level 2 vehicles, where humans are completely responsible for the safety
of the driving task. The only difference is that humans are not responsible for all functions,
but only those allocated to them, and thus, automation takes responsibility for several
other functions.

5. Discussion

This paper aims to identify and compare road traffic mechanisms in an overtaking
scenario between a human driver and a highly automated vehicle, using FRAM. Based
on this, the contributions of both agents regarding the safety of the overall system can be
evaluated in order to derive system design recommendations for AD and insights to reduce
the effort involved in the validation process. Thus, the results have to be interpreted and
reflected upon, and the methodological application of FRAM must be discussed.

The results of the system design recommendations, including the function allocation
between human driver and automation, suggest that complete automation of the overtaking
scenario as a generic concept is currently unrealistic and inadvisable. Rather, humans
must be more or less engaged in the driving task, especially for perception and cognition
functions, until reliable full automation is implemented. This recognition is emphasised by
Zhang et al. [82], who recommend not pursuing a narrow role for the human driver as a
passenger or, at most, a fallback at an operational level according to the three control levels
of driving by Michon [83], but rather holistically exploring other opportunities and roles
for human drivers such, as a “commander role” at strategic and tactical levels, e.g., [84–87].
This is also in line with the design and effect space of shared control and human-machine
cooperation conceptualised by Flemisch et al. [88], or the multi-level cooperation proposed
by Pacaux-Lemoine and Flemisch [89]. Therefore, the short- and midterm strategy for
automation in the overtaking scenario on rural roads to improve traffic safety should
be to pursue a JCS approach for the traffic system [90] realising a human-automation
collaboration and coagency throughout the driving scenario to achieve their common goal,
which is to overtake safely. Thus, a differentiated approach must be taken that is centred on
functions [81], whereby the functions of the JCS are divided according to different function
types [76] and then functions are allocated to the agents, based on the FRAM analysis in
Section 4, in the sense of “who does what”. This is in contrast to the six rigid levels of
driving automation (LoDA) of the SAE and rather prefers as design decision of automation
the view of the ten levels of automation (LoA) according to Sheridan [78] in combination
with the four functional types by Parasuraman et al. [76]. This is also in line with the critique
of the SAE’s LoDA definitions, especially conditional driving automation, by Inagaki and
Sheridan [91]. In this paper, the function allocation between the two agents is a mix of
shared control [78] and “static” trading of control [78], where static trading of control means
that either the human or the automation is responsible for a function, and their role does
not change from one occasion to another, or in different scenario conditions. Additionally,
for reasons of simplicity, the extent of automation according to the LoAs is not considered.
Unfortunately, this does not fit the real system behaviour perfectly, as technological changes
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lead to dynamics and adaptations in the functions by the human in collaboration with
the automation. This can sometimes result in negative effects, such as the out-of-the-
loop performance problem, loss of situational awareness, complacency or overtrust, or
automation surprises, e.g., [92–96], so that there are eventually no positive changes as a
net effect. A good example of this is the introduction of better brakes in the vehicle to
increase road safety, assuming that the driver continues to drive as usual. However, his
or her driving behaviour changes with the better brakes in that the driver drives faster
because he/she can brake harder [80], which can be explained by the risk homeostasis of
Wilde [97]. Maybe too strong an allocation or fragmentation of the functions makes little
sense, since individual functions have to be carried out as a whole, sometimes well trained
unit by one agent, otherwise too much information is missing or the information cannot
be efficiently and effectively transferred at the interface between humans and automation.
Thus, for the future, it would be more appropriate to implement an adaptive automation
system [79] or a function-congruence [98] in the sense of “who does what and when”,
where functions can be shared or traded between humans and automation in response to
changes in situations or human performance [79]. However, it must also be considered
that drivers are usually not well trained, and such a complex function allocation could
lead to confusion besides advantages. Therefore, in future research, the FRAM model for
the overtaking scenario and the current design recommendations should be checked by
“what-if analyses” [99,100] as various instantiations of the FRAM model in other scenarios
(for example in curves or bad weather conditions) on the one hand, and on the other hand
for dynamic performance changes over time, such as by Hirose et al. [57]. Furthermore, it
is not only the performance variability that can change but also new functions will emerge
through the collaboration between humans and automation, which is why an adaptation
of the FRAM model in relation to the context conditions is necessary. For this purpose,
in the future, the performance indicators per function must also be recalculated for the
system with the new allocation of functions and iteratively adjusted because of the effect of
contextual factors. Overall, the current design concept fits the basic scenario analysed well
and is a good starting point but is not generally applicable and has to be adapted in further
iterative analyses, both in theory and in practice.

Furthermore, the results as positive and negative contributions of the human driver
and automation to system safety, as described in Section 4.2, need a comparison with the
state-of-the-art knowledge regarding this issue. A thorough review would go beyond
the scope of this paper, which is why only a comparison of the fundamental facts is
described below. Unfortunately, the comparison will predominantly focus on the negative
contributions of the human driver, as this is where large data have been analysed in the
past. Whereas no substantial knowledge about the positive contributions of the human
driver exists because data collections in the past and also currently focus on rare, critical,
or even more rarely occurring accidents [13]. Therefore, the total number of successfully
completed situations and the accidents currently successfully prevented by drivers is
unknown, which is why ultimately information on uncritical situations cannot be found in
the literature. This also coincides with the strong focus of the safety-I perspective in road
traffic, as mentioned in the introduction. No comparison can be made for the automation
either, as Level 4 vehicles have not been approved yet and only test drives are carried
out in California. The data collected during the test drives have already been analysed,
e.g., [101–103], but only on a relatively abstract level in the sense of defining causal reasons
for disengagements or accidents such as system failures, road infrastructure, other road
users, weather, etc., but not on a specific task level that would be required. Regarding the
negative contributions of the human driver, the following can be found in the literature.
According to Durth and Habermehl [104], most overtaking accidents occur in the Pass
stage, with a proportion of 48%. This is in line with the calculated GSV, since the Pass
stage has the highest variability and, therefore the greatest risk of accidents. According to
Richter and Ruhl [62], the most common cause of overtaking accidents on rural roads in
terms of fatalities is overtaking despite oncoming traffic, at 42%. The second most common
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cause of accidents is overtaking despite unclear traffic conditions (19%) and the third
most common cause is errors when re-joining the right lane (14%). Interestingly, the first
and third common causes of accidents can be identified by the critical functions < assess
opportunity to overtake safely (EV) >, and < merge back into starting lane (EV) > which
exhibit fairly high system resonances, but with relatively low variability. So, errors rarely
occur here, but if they do, then they often result in accidents. The second most common
cause of accidents could not be acknowledged by the results as < observe oncoming traffic
(EV) > or < assess road conditions (EV) > do not pose a high risk for the human driver in the
FRAM model. In addition, inappropriate speed, insufficient distances, and lack of attention
are often contributing factors to accidents [13,105]. These factors can also be reflected by
the critical functions < maintain headway separation (EV) > and < follow LV (EV) > which
represent a mix of high speeds and low distances. However, the lack of attention cannot
be confirmed because it is not explicitly stored as a function in the model and is rather
implicitly included in other functions. These examples predominantly provide further
evidence of the confirmability of the study by practising reflexivity, which in part increases
the confidence in the validity of the FRAM model. If we set the former comparisons in
relation to the results for the contributions of automation in this work, the following is
noticeable. First, the high variability in the Pass stage also applies to the automation, even
to a greater extent, which is why the automation does not provide support in this case.
Second, the common accident causes of overtaking despite oncoming traffic or unclear
traffic conditions, and errors when re-joining the right lane cannot be addressed by the
automation either because of high variabilities in the functions < assess opportunity to
overtake safely (EV) >, < observe oncoming traffic (EV) > or < assess road conditions
(EV) >, and < merge back into starting lane (EV) >. Instead, the problem of inappropriate
speeds and insufficient distances can be effectively tackled through automation, as the
corresponding functions show low variability for the automation. As a result, it can be
concluded that some known accident black spots are reflected in the results of the negative
contributions by the human driver, many of which, however, cannot currently be improved
by automation.

The results for the validation process of AD reveal insights for the potential reduction
of test effort in two directions: First, assuming full automation, the identified risk functions
for automation can be used as criteria for exclusion, or second, assuming a function
allocation between human and automation, the validation process can be reduced to the
allocated functions for automation. This change of perspective based on a safety-II and RE
analysis opens up completely new possibilities for solving the approval trap [106]. This
approval trap arose since current test methods are not economically or practically feasible
for AD [107]. Here, research is being undertaken to create new test methods, paradoxically
the safety assessment of common alternative approaches, e.g., [108,109] follows solely a
safety-I perspective. This view, which is currently too one-sided, will probably lead to
automation surprises, as already mentioned in the introduction. However, it is precisely
here that this paper uses the safety II perspective with a holistic socio-technical approach
to show solutions for identifying as many additional automation risks as possible in order
to avoid this issue.

Ultimately, the methodological application of FRAM and potential limitations are
discussed. The resulting FRAM model confirms both the large-scale complexity of the
overtaking scenario and its interwoven interactions, as well as the inherent overwhelming
complexity of the traditional FRAM. Here, the application of the Space-Time/Agency
framework and the semi-quantitative approach supports the complex safety analysis and
facilitates the identification of criticalities based on functional variability and their systemic
interactions highlighting the contributions of human drivers and potential automation in
order to derive system design recommendations for systemic corrective measures. More-
over, the FRAM model enhances the understanding of the systemic mechanisms by, for
example, explicitly showing the space-time structure with which specific agent or agents
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interact and how they behave, as well as how this can ultimately result in positive and
negative consequences.

The FRAM model is very profound, based on various sources and a calibration by
peers, which makes a reliable behavioural model of the socio-technical system of the
overtaking scenario for the intended analytical purposes. Nonetheless, the model does
not claim to be complete, especially not for other analysis purposes, but it is a good basic
model to use when further analysing, for instance, the influence of other environmental
and scenario conditions or changes over time.

The peer workshop for the validation of the FRAM model generally works well, but
lessons learned for future research include that the calibration process can be enhanced by
the peers developing a FRAM model themselves and comparing it with the original one to
achieve a deeper understanding. In addition, real accidents could be modelled as “Mini
FRAMs” according to Bridges et al. [110], based on accident reports that also serve as a
comparison about the logic of the overall model.

The variability was also determined based on two different sources to map reality as
closely as possible. It should be noted regarding the human driver that the driving simulator
study is well suited to assessing action functions at the operational level, such as lane-
keeping or keeping safety distances, but that perception and cognitive functions are difficult
to determine even with the support of eye-tracking. Structured interviews, as in Section 3.4,
are more appropriate for this. Nevertheless, given the limited self-awareness of humans
about their performance limits the usefulness of this approach. Further, the narrowed
sample does not represent the entire driver population, which is why the comparison of
performance variability between humans and automation in the paper is only valid to a
limited extent. Whereby the sample size is generally sufficient for the narrower population,
since, for example, a sample size of 20 test drivers is sufficient for testing the controllability
of driver assistance systems according to ISO 26262 [111]. Concerning automation, too little
data is currently available, which is why there are no alternatives to expert assessment.
In the future, it could also be interesting to use cross-linked driving simulator studies to
explicitly observe the interactions between multiple human drivers, automation, and/or
joint human-automation and their resulting variabilities within one simulation.

The function identification process and the creation of the FRAM model, as well
as the gathering of variability data, is very time- and resource-consuming. This raises
some practical limitations for FRAM, which must definitely be improved in the future in
order to overcome the current research-practice gap of systemic models and methods [112],
especially FRAM. Here, on the one hand, researchers are currently applying systemic
methods due to the current state-of-the-art and, on the other hand, many practitioners
continue to apply sequential or epidemiological methods because of their ease of use
or popularity despite known limitations. Frequently mentioned reasons for this are a
difficult and time-consuming application [113], reduced model validation and usability,
and a potential analyst bias [112]. One solution could be the IT framework for sharp-end
operators’ WAD data gathering through a mobile app proposed by Constantino et al. [114].
Overall, the practical applicability of FRAM, in general, has to be researched and improved,
as claimed by [115]. Instead, the analysis of results runs relatively quickly due to matured
software support.

The new metrics for the semi-quantitative approach introduced in Section 3.5 to better
calculate and visualise each function’s interactivity in the system, as well as its complex
emergence effects in the system, served their purpose. However, their significance as an
influencing parameter, especially concerning the composition of the weighting factors WaU
and WaD, is currently a theoretical concept that has to be empirically validated in the
future. Thus, their usefulness as a weight for system influence of functional variabilities to
incorporate complex and dynamic behaviour is limited.

Moreover, the various aspects of the couplings were currently treated in the same
way in the calculations, except for the propagation factor in Appendix A in Table A2. For
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the future, a more differentiated approach can be considered, showing potential different
effects because of aspects not only qualitatively but also quantitatively.

6. Conclusions

This paper shows how FRAM can be used for a systemic function allocation between
humans and automation considering the interactions and complex dynamics of functional
variabilities in a space-time continuum within and between agents in the system based on
an enhancement of quantitative outputs of FRAM. The analysis reveals that human drivers
currently make a better overall contribution to the safety of the overall system in the simple
overtaking scenario on a rural road than AD could. However, individual functions are
emerging at each overtaking stage that offer great potential for increasing safety through
automation, collaboration, or assistance. In particular, as long as no reliable full automation
has been implemented, this means that the future automation strategy of the vehicle aiming
to improve traffic safety should be more differentiated based on a JCS approach combined
with function-centeredness aiming to incorporate the strengths of both the human driver
and the automation according to adaptive automation of human-automation coagency.
This contrasts with the current, inflexible approach to automate everything as much as
feasible based on the six LoDAs by the SAE. In particular, this change in perspective may
also simplify the validation problems of AD.

In the future, however, more research will have to be undertaken on how the results
can be transferred to other driving scenarios and situations, how adaptive automation
for overtaking can be explicitly implemented in practice, and what potential effects result
from changes in scenario conditions or performance over time. Additionally, in this
work, the traffic system in the overtaking situation and its performance are analysed
from a single perspective, which is safety. However, AD should help to make driving
not only safer but also more efficient and comfortable [116]. In addition, people as active
passengers in the vehicle or passive interaction partners outside with the vehicle must be
able to trust the automation and accept the new technology. Unfortunately, these different
perspectives of the system performance are frequently viewed in isolation, also called siloed
thinking, revealing only a part of what goes on [117]. However, these different views are
mutually dependent, so in the future, their analysis will have to be synthesised according
to Synesis [117], which involves the unification of different perspectives (safety, efficiency,
and comfort, among others) into one analysis.

In conclusion, this paper confirms that RE, in particular FRAM, can be applied to
the road traffic system to design automated driving functions proactively and holisti-
cally, or rather the joint driver-vehicle system, demonstrating the potential for supporting
decision-makers to enhance safety enriched by the identification of non-linear, complex,
and emergent risks rather than the linear cause–effect-related risks that are frequently the
sole focus of safety and risk assessments at present.
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Appendix A

In the following, the formulas for the remaining metrics from Section 3.5.1 are provided:
In the first step, a numerical score was assigned to each performance variability

characteristic (see Table A1). The higher the score, the more variable the output. The
variability of the upstream output j, OVj was the product of these two scores (A1):

OVj = VT
j ·VP

j (A1)

where:
VT

j represents the upstream output j score in terms of timing

VP
j represents the upstream output j score in terms of precision

Table A1. Assignment of numerical values to the linguistic description of variability manifestation of
the phenotypes timing and precision.

Variability Phenotype Variability Manifestation VT
j or VP

j

Timing

Too early 2
On time 1
Too late 4

Not at all 5

Precision
Imprecise 5

Acceptable 3
Precise 1

However, the upstream outputs VT
j and VP

j must be calculated as a frequency distri-
bution since they were collected as a distribution in the study. The reason for this is that
a static behaviour of a system function does not adequately reflect a real case, and thus
should rather be dynamic. Therefore, PTE, POT , PTL, PNAA, PPR, PA and PI represent the
percentage distribution of subjects of the variability values too early (TE), on time (OT),
too late (TL), not at all (NAA), precise (PR), acceptable (A), and imprecise (I), respectively.
The percentage values are between 0 and 1. These are then weighted by the numerical
variability values from Table A1. The calculation was thus as follows (A2) and (A3):

VT
j = PTE·VT

j ( TE) + POT ·VT
j (OT) + PTL·VT

j (TL) + PNAA· VT
j (NAA) (A2)

VP
j = PPR·VP

j (PR) + PA·VP
j (A) + PI ·VP

j (I) (A3)

Once assigned the variability score for the upstream output, the coupling variability
(CV) of the upstream output j and the downstream function i (A4) as well as associated
variability propagation factors aT

ij and aP
ij had to be specified (A5):

CVij = OVj·aT
ij ·aP

ij (A4)

where:
aT

ij represents the propagation factor for the upstream output j and the downstream
function i in terms of timing
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aP
ij represents the propagation factor for the upstream output j and the downstream

function i in terms of precision
Note that aT

ij or aP
ij may assume the following values:

2 if the upstream output has an amplifying effect on the downstream function
1 if the upstream output does not affect the downstream function

0.5 if the upstream output has a damping effect on the downstream function
(A5)

The specification of the propagation factor was based on Table A2. As before, for
upstream output, percentage distributions were also considered for propagation factors aT

ij

and aP
ij. The calculation was thus as follows (A6) and (A7):

aT
ij = PTE ∗ aT

ij(TE) + POT ∗ aT
ij(OT) + PTL ∗ aT

ij(TL) + PNAA ∗ aT
ij(NAA) (A6)

aP
ij = PPR ∗ aP

ij(PR) + PA ∗ aP
ij(A) + PI ∗ aP

ij(I) (A7)

Table A2. Upstream/downstream propagation of variability, according to Patriarca et al. [118].

Upstream Output Variability Input Precondition Resource Control Time

Timing
variability of

output

Too early A/NE A NE/D A A
On time D D D D D
Too late A A A A A

Not at all A A A A A

Precision
variability of

output

Imprecise A A A A A
Acceptable NE NE NE NE NE

Precise D D D D D
A = Amplifying, NE = No Effect, D = Damping.

Appendix B

In the following, the formulas for the remaining metrics from Section 3.5.2 are pro-
vided:

The number of downlinks of an upstream function j (N j
DL) and the number of uplinks

of a downstream function i (Ni
UL) specifies the number of links of an upstream function to

downstream functions or vice versa. N j
DL is the sum of downlinks of an upstream function

j (A8) and Ni
UL is the sum of uplinks of a downstream function i (A9):

N j
DL = ∑j

i=1 DLij (A8)

Ni
UL = ∑i

j=1 DLji (A9)

It should be mentioned that only the downlinks or uplinks between two foreground
functions and not between two background functions or between a foreground and a
background function were counted, as background functions are stable and not variable
and represent the system boundary, which are therefore not included in the analysis.

Intra-stage links calculates the number of downlinks and uplinks of a function f where
the linked upstream j and downstream functions i are in the same stage St and executed by
the same agent Ag (A10):

Intra− stage links f = [∑
f
i=1 i f ((Ag f = Agi && St f = Sti) then 1, else 0)+

∑
f
j=1 i f ((Ag f = Agj && St f = Stj) then 1, else 0)]

(A10)
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Intra-agent links calculates the number of downlinks and uplinks of a function f where
the linked upstream j and downstream functions i are in different stages St but executed by
the same agent Ag (A11):

Intra− agent links f = [∑
f
i=1 i f ((Ag f = Agi && St f 6= Sti) then 1, else 0)+

∑
f
j=1 i f ((Ag f = Agj && St f 6= Stj) then 1, else 0)]

(A11)

Intrarelatedness calculates the interaction within an agent and results from the sum of
the intra-stage links and the intra-agent links of a function f (A12):

Intrarelatedness f = Intra− stage links f + ss·Intra− agent links f (A12)

where the intra-agent links were additionally weighted by a factor β, since a link of a function
to another stage has a higher system effect, and thus must be weighted more heavily. The
chosen value for β in this work is 2.

Inter-agent links calculates the number of downlinks and uplinks of a function f where
the linked upstream j and downstream functions i are executed by different agents Ag
(A13):

Inter− agent links f = [∑ f
i=1 i f ((Ag f 6= Agi) then 1, else 0) + ∑ f

j=1 i f ((Ag f 6= Agj) then 1, else 0)] (A13)

Moreover, the sum of the intra-stage links, intra-agent links, and inter-agent links is equal
to the sum of the N j

DL and Ni
UL for each function.

Different-linked agents calculates with how many different agents k a function f is
directly connected through its upstream j and downstream functions i (A14):

Di f f erent linked agents f = [∑4
k=1 i f (∑

f
i=1 i f ((Ag f 6= Agi && Agi = Agk) then 1, else 0))+

(∑
f
j=1 i f ((Ag f 6= Agj && Agj = Agk) then 1, else 0))]

(A14)

The interrelatedness of a function f calculates the interaction between agents and is the
result of the product of inter-agent links and different linked agents (A15):

Interrelatedness f = Inter− agent links f ·Di f f erent linked agents f (A15)

Direct feedback loops mean that a downstream function i of a function f is also an
upstream function j of the function f and vice versa. This results in a loop between these
two functions, in which only two functions are involved. The calculation is as follows (A16):

Direct f eedback loops f = [∑
f
i=1 i f (Coupling( f , i) && Coupling(i, f )) then 1, else 0)+

∑
f
j=1 i f (Coupling( f , j) && Coupling(j, f )) then 1, else 0)]

(A16)

where Coupling is a function that gives as result 1 if there is a direct connection between
function f and its upstream function j or its downstream function i.

Indirect feedback loops involve more than two functions. For example, function A calls
function B, which in turn is connected to function C, which again calls function A, closing
the loop. The function (Loops calculates all cycles in the model that contain the function f
and are not direct (feedback loops of function f (A17):

Indirect f eedback loops f = ∑ Loops f (A17)

Mean feedback loops indicates how many functions occur in the mean of the indirect
feedback loops from the function f and is calculated as follows (A18):

Mean f eedback loops f =
∑ Length (Loops f )

Indirect f eedback loops f
(A18)
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where Length calculates the number of functions per cycle, that is, the length of the cycle of
function f.

The last three metrics mentioned are then integrated into the feedback loop factor (A19):

Feedback loop f actor f = Direct f eedback loops f + Indirect f eedback loops f · Mean f eedback loops f (A19)

The CTV was used to calculate how much variability accumulates around a function
f. To do this, the ULFCV of the coupled upstream functions j, the DLFCV of the cou-
pled downstream functions i, and the DLFCV and ULFCV of the function f were added
together (A20):

CTVf = DLFCVf + ULFCVf + ∑ f
i=1 DLFCVi + ∑ f

j=1 ULFCVj (A20)

The Katz-centrality calculates the relative influence of a function. According to Faleg-
nami et al. [71], this metric is the most suitable metric for function prioritisation in a FRAM
model analysis. For all connections that are reachable both upstream and downstream by
the function f, the CVs of the upstream function of the respective connections are added
together. To mitigate the indirect influence of the functions, that is the farther away a
function is located, the lower its influence, the distances to the individual couplings are
considered and weighted with a factor α. It should be noted here that a direct connection
has zero distance. The diif gives the distance of a downstream connection to function f,
where ii denotes direct and indirect downstream functions. The djjf reflects the distance
of an upstream connection to function f, where jj denotes direct and indirect upstream
functions. The weight factor α and Katz-centrality are calculated as follows (A21)–(A23):

αii f =
1

dii f + 1
(A21)

αjj f =
1

djj f + 1
(A22)

Katz− centrality f =
f

∑
ii=1

CVij ∗ αii f +
f

∑
jj=1

CVij ∗ αjj f (A23)

Incloseness- and Outcloseness-centrality indicate how centrally a node (i.e., a function) is
located within a network. They each form the sum of the reciprocal distances to reachable
functions, weighted by the CV of the respective upstream functions. Incloseness-Centrality
only considers upstream functions j of function f. The number of upstream functions
reachable from function f are represented by n. Incloseness-Centrality was calculated as
follows (A24):

Incloseness− centrality f =
n− 1

∑
f
jj=1 (CVij × djj f )

(A24)

In contrast, the Outcloseness-centrality only considers downstream functions i of func-
tion f and is calculated as follows (A25):

Outcloseness− centrality f =
n− 1

∑
f
ii=1 (CVij × dii f )

(A25)

Betweenness-centrality shows how often a function f occurs as the shortest distance
between two other functions in the model (A26):

Betweenness− centrality f = ∑
ii 6=jj 6= f∈V

σiijj( f )
σiijj

(A26)
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where σiijj and σiijj( f ) represent the number of the shortest distances between a function i
and j and the number of the shortest distances between a function i and j, in which function
f occurs, respectively. The V indicates the quantity of all functions in the model, and ii and
jj define that indirect downstream and upstream functions were also considered.

The metrics N j
DL , Ni

UL , Intrarelatedness, Interrelatedness, Feedback loop factor, CTV,
Katz-, Incloseness-, Outcloseness- and Betweenness-centrality were then transformed into
relative metrics (Metrelative), which reflect the effect of a function compared to all other
functions within a metric in percentage. This ensures that all metrics can be used as an
equal weight in further calculations. Here, Metf, a specific value of one metric of a function
f, is divided by the sum of all values of one metric for all functions k. However, this would
lead to values below 1. This is problematic because, with further calculations, comprising
multiplications, the amount would decrease. For this reason, the percentage values are
divided by the inverse of all functions N in the model in order to always ensure a value
above 1. This ensures that the values are magnified in further calculations and the influence
of a function thus becomes apparent. The calculation for Metrelative was the following (A27):

Metrelative
f =

Met f

∑N
k=1 Metk

1
N

(A27)

Finally, these relative metrics were integrated into the Weight as Upstream (WaU) and
Weight as Downstream (WaD) as shown in Section 3.5.2.

Appendix C

Table A3. A rough description of the main functions of the overall FRAM model per each agent
and stage.

Stage EV LV RV OV

Follow

to follow LV through recognising the
following situation, keeping the lane, and

maintaining headway separation;
to decide to overtake or not, which is

mainly based on assessing the opportunity
to overtake safely, judging whether

overtaking is permitted, and evaluating the
reasonableness for overtaking

to drive free by keeping the lane
and adjusting adequate speed;

to react to being followed by EV
through observing EV’s intention

to overtake as well as its following
distance

to follow EV through
recognising the following

situation, keeping the lane,
and maintaining headway

separation

to drive free by keeping the
lane and adjusting

adequate speed

Swerve

to adopt the overtaking position by lane
keeping, reducing headway from the

normal following, and adjusting the speed
to that of LV;

to swerve completely to the oncoming lane
afterwards checking any hazards behind or

in front, assessing the overtaking
opportunity is still safe and using the left

indicator

to detect EV’s swerving into the
oncoming lane;

to maintain speed;
to react to being passed by

responding to potential passing
problems of EV (optional)

to detect EV’s swerving into
the oncoming lane;

to react to being passed by
responding to potential
passing problems of EV

(optional)

to detect EV’s swerving
into the oncoming lane;

to maintain speed;
to react to being passed by

responding to potential
passing problems of EV

(optional)

Pass

to perform the overtaking through
accelerating LV decisively or merging back

into starting lane if the manoeuvre is unsafe
and abandoning the manoeuvre

to detect the passing vehicle in
peripheral vision;

to react to being passed by
responding to potential passing

problems of EV (optional)

to react to being passed by
responding to potential
passing problems of EV

(optional)

to react to being passed by
responding to potential
passing problems of EV

(optional)

Merge

to merge progressively into the starting lane
by adjusting EV’s speed in relation to other
traffic, assessing the situation to enter safely,

and using the right indicator

to prepare to provide a larger
opening for EV to merge back;

to react to being passed by
responding to potential passing

problems of EV (optional)

to prepare to provide larger
space to LV in case of EV’s

manoeuvre abandoning or to
catch up to LV;

to react to being passed by
responding to potential
passing problems of EV

(optional)

to prepare for braking;
to react to being passed by

responding to potential
passing problems of EV

(optional)

Get in lane

to complete the overtaking through
positioning into the starting lane evaluating
the driving situation, and resuming at the

desired speed

to follow EV;
to react to being followed by RV to follow LV to drive free

The wording “(optional)” means that this function or task is not necessarily fixed to the assigned stage and rather
can be executed in the Swerve, Pass, or Merge stage or not at all if not required.
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Figure A1. Illustration of the following process of EV in the Follow stage of the overall FRAM model. 

In Figure A1, the driving behaviour of to follow by EV in the Follow stage is ex-
plained in detail. Only foreground functions, as well as the couplings between the func-
tions within EV and within the Follow stage, are explained and not connections to func-
tions in other stages or agents. The explanation follows a reading of Figure A1 from right 
to left. The EV has to follow LV through recognising the following situation and keeping 
the lane and maintaining headway separation simultaneously. The headway separation 
is ensured by decreasing, maintaining, or increasing the speed, which are also regulated 
in compliance with the speed limit and headway separation. The driver complies with the 
speed limit by monitoring the speed limit as well as checking the speedometer. The speed 
regulation is further influenced by watching for hazards located at the road side, antici-
pating changes in LV velocity (based on monitoring traffic rules, road layout ahead and 
junctions ahead, and checking for vehicles in front of LV), checking indications of the re-
duced speed of LV (based on observing LV’s brake lights and indicators as well as gauging 
the closure of headway) and estimating a safe following distance (based on using 
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tance beyond 2 s that is enabled by checking vehicles in front stopping frequently or 
whether LV is driving erratically). Furthermore, some functions are coupled with other 
agents or stages (not depicted in Figure A1). For example, keeping the lane or maintaining 
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Figure A1. Illustration of the following process of EV in the Follow stage of the overall FRAM model.

In Figure A1, the driving behaviour of to follow by EV in the Follow stage is explained
in detail. Only foreground functions, as well as the couplings between the functions within
EV and within the Follow stage, are explained and not connections to functions in other
stages or agents. The explanation follows a reading of Figure A1 from right to left. The
EV has to follow LV through recognising the following situation and keeping the lane and
maintaining headway separation simultaneously. The headway separation is ensured by
decreasing, maintaining, or increasing the speed, which are also regulated in compliance
with the speed limit and headway separation. The driver complies with the speed limit by
monitoring the speed limit as well as checking the speedometer. The speed regulation is
further influenced by watching for hazards located at the road side, anticipating changes
in LV velocity (based on monitoring traffic rules, road layout ahead and junctions ahead,
and checking for vehicles in front of LV), checking indications of the reduced speed of
LV (based on observing LV’s brake lights and indicators as well as gauging the closure
of headway) and estimating a safe following distance (based on using knowledge of safe
braking distances and evaluating a required increase in separation distance beyond 2 s
that is enabled by checking vehicles in front stopping frequently or whether LV is driving
erratically). Furthermore, some functions are coupled with other agents or stages (not
depicted in Figure A1). For example, keeping the lane or maintaining headway separation
are influenced by the longitudinal and lateral driving behaviour of LV, and following LV
is affected by LV’s driving free performance or can also be influenced in the way if the
assessment to overtake safely was judged as unsafe, then the following performance can be
worsened through impatience.
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Appendix D

Table A4. Risk functions for human driver and automation.

Risk Function Human Automation

Follow LV (EV) x x

Maintain headway separation (EV) x

Perform overtaking (EV) x x

Assess opportunity to overtake safely (EV) x x

Check LV is not about to change speed (EV) x

Follow EV (RV) x x

React to being passed (LV) x x

Assess road conditions (EV) x

Adopt overtaking position (EV) x

Assess gap ahead of LV (EV) x

Driving free (OV) x

Keep in lane (LV) x x

Keep in lane (EV) x

Recheck road ahead (EV) x

Abandon manoeuvre (EV) x

Assess any new info for safety of manoeuvre again (EV) x x

Respond to EV’s passing problems (LV) x

Adjust to adequate speed (LV) x

Respond to EV’s passing problems (RV) x

Merge back into starting lane (EV) x x

Assess situation to enter safely (EV) x x

Continue observing road ahead (EV) x

Driving free (LV) x

Keep in lane (OV) x

Respond to EV’s passing problems (OV) x

Assess availability of safety margin in case of abort (EV) x

Re-recheck road ahead (EV) x

React to EV’s overtaking (RV) x

Anticipate course of LV (EV) x

Recognise that EV is experiencing problems passing (LV) x

Increase speed (EV) x

Assess overtaking opportunity again (EV) x

Assess any new info for safety of manoeuvre (EV) x x

Watch for hazards located at roadside environment (EV) x
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Abstract
Over the past two decades, systemic-based risk assessment methods have garnered more attention, and their use and popu-
larity are growing. In particular, the functional resonance analysis method (FRAM) is one of the most widely used systemic 
methods for risk assessment and accident analysis. FRAM has been progressively evolved since its starting point and is 
considered to be the most recent and promising step in understanding socio-technical systems. However, there is currently 
a lack of any formal testing of the reliability and validity of FRAM, something which applies to Human Factors and Ergo-
nomics research as a whole, where validation is both a particularly challenging issue and an ongoing concern. Therefore, 
this paper aims to define a more formal approach to achieving and demonstrating the reliability and validity of an FRAM 
model, as well as to apply this formal approach partly to an existing FRAM model so as to prove its validity. At the same 
time, it hopes to evaluate the general applicability of this approach to potentially improve the performance and value of the 
FRAM method. Thus, a formal approach was derived by transferring both the general understanding and definitions of reli-
ability and validity as well as concrete methods and techniques to the concept of FRAM. Consequently, predictive validity, 
which is the highest maxim of validation, was assessed for a specific FRAM model in a driving simulator study using the 
signal detection theory. The results showed that the predictive validity of the FRAM model is limited and a generalisation 
with changing system conditions is impossible without some adaptations of the model. The applicability of the approach is 
diminished because of several methodological limitations. Therefore, the reliability and validity framework can be utilised 
to calibrate rather than validate an FRAM model.

Keywords FRAM · Validation · Driving · Overtaking manoeuvre

1 Introduction

Risk assessment is a crucial aspect of Human Factors and 
Ergonomics (HFE) research. Instead of the reactive approach 
taken in accident analyses, which looks at a particular erro-
neous scenario, risk assessment adopts a proactive approach, 
trying to identify hazards or looking for what could happen 
in the future to prevent or mitigate adverse events or to facili-
tate desirable outcomes. Over the past 20 years, systemic 
based risk assessment methods have garnered more atten-
tion and their use and popularity are growing (e.g., Dal-
lat et al. 2017; Hollnagel 2012; Hughes et al. 2015; Hulme 
et al. 2019; Larsson et al. 2010; Leveson 2004; Salmon et al. 

2012). These methods try to describe performance at the 
level of the overall system and see the accident process as a 
complex and interwoven event that cannot be broken down 
into its individual parts. Emerging events caused by complex 
and non-linear interactions between the various system parts 
can affect the performance of the system and cause an acci-
dent (Laaraj and Jawab 2018; Qureshi 2007; Wienen et al. 
2017). In general, systemic models acknowledge the com-
plexity and socio-technical nature of systems, and further 
emphasise the need for an understanding of the functional 
abstraction of the system, rather than structural decomposi-
tion (Rasmussen 1997).

In particular, the functional resonance analysis method 
(FRAM) (Hollnagel 2012) is one of the most widely used 
systemic methods for risk assessment and accident analy-
sis. It allows the modelling of mechanisms within complex 
socio-technical systems (STS), including their interfaces 
between humans and technology, coupling and dependency 
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effects, nonlinear interactions between elements, and func-
tional variability (Woltjer and Hollnagel 2008). In general, 
the results of an FRAM analysis contribute to an under-
standing of real work and reveal unsafe functional interac-
tions within one agent and between different agents; these 
are needed to assist risk management as regards the proac-
tive assessment of technological changes and their impacts 
(Ferreira and Cañas 2019; Patriarca and Bergström 2017). 
In addition, FRAM should form the basis for systemic risk 
assessments in complex STS, for example for contempo-
rary applications, such as automated driving in road traffic 
(Grabbe et al. 2020, 2022). These authors do so by provid-
ing a useful understanding of the actual system mechanisms 
and interactions that are needed to assist the system design, 
enhanced by considering non-linear, complex, and emergent 
system behaviour (Grabbe et al. 2022). In the past, FRAM 
has been widely used and enhanced methodologically in a 
variety of domains for retrospective as well as prospective 
analyses, as detailed in a comprehensive review by Patri-
arca et al. (2020). Hence, FRAM has been progressively 
evolved since its starting point in 2004 (Hollnagel 2004) 
and is considered to be the most recent and promising step 
in understanding STS (Nemeth 2013).

However, there is currently a lack of any formal testing 
of the reliability and validity of FRAM. This applies to the 
HFE research as a whole, where validation is both a par-
ticularly challenging issue and an ongoing concern (Stan-
ton and Young 1999a, 2003; Stanton 2016). In fact, Stanton 
and Young (1999a) stated that practitioners often assume 
validity, but seldom test and prove it empirically. Further-
more, methods are often chosen by practitioners that are 
based on familiarity and ease of use rather than on reliability 
and validity evidence (Stanton et al. 2013). Thus, findings 
from the application of HFE methods suffer from an objec-
tive evaluation, making the research findings questionable. 
However, HFE methods must prove that these methods can 
intentionally work in their applied domains (Stanton 2014) 
and to promote the credibility of HFE methods and their 
whole community (Stanton 2016). In this context, and since 
FRAM should form the basis for systemic risk assessments 
in complex STS (Grabbe et al. 2020, 2022), validation is an 
absolute priority and a compulsory aspect in engineering 
disciplines (where HFE is part of it), especially in the afore-
mentioned field of automated driving, due to the enormous 
societal impact which benefits FRAM by providing a clear 
evaluation of its performance and value.

Thus, this paper aims to first define a more formal 
approach to achieving and demonstrating the reliability 
and validity of an FRAM model that forms the basis for 
risk identification and design recommendations within the 
FRAM method, and second, to apply this formal approach 
partly to an existing FRAM model so as to prove its validity, 
and to evaluate the general applicability of this approach.

The remainder of this paper is structured as follows. Sec-
tion 1.1 summarises the theoretical foundations and individ-
ual analytical steps of FRAM, as well as previous validation 
approaches. Following on from this, Sect. 1.2 summarises 
approaches for testing the reliability and validity of HFE 
methods. Section 2 outlines the understanding and defini-
tions of reliability and validity in literature and transfers 
these to the context of FRAM to define a framework that 
addresses the reliability and validity of FRAM models. In 
Sect. 3, we describe the methodology for the evaluation of 
predictive validity in a driving simulator experiment. Sec-
tion 4 presents the results, including the evaluation of the 
predictive validity of the analysed FRAM model according 
to the three different research questions of the study. Sec-
tion 5 then discusses the results with respect to the research 
goals of this paper and also outlines methodological limi-
tations. Finally, a brief conclusion and outlook for future 
research are provided in Sect. 6.

1.1  Basics of FRAM and previous validation 
approaches

The purpose of the model produced by the FRAM method 
is to describe and understand what is happening in an STS 
in terms of functions rather than components. An FRAM 
model focuses on adjustments to everyday performance, 
which usually contribute to things going right. In rare cases, 
these performance adjustments aggregate in unexpected 
ways, leading to functional resonance, with accidents being 
the most extreme result.

FRAM relies on four principles (the equivalence of suc-
cess and failures, approximate adjustments, emergence, and 
functional resonance), and follows four steps (modelling the 
system by identifying its functions, identifying the function’s 
performance variability, aggregating the variability, and 
managing the variability), as detailed in Hollnagel (2012). 
The steps are briefly described in the following. In the first 
step, the essential functions of a system are identified to 
build a model. Basically, each function is characterised 
by six aspects (i.e., input, output, precondition, resource, 
control, and time), which couple each function with sev-
eral other functions representing a specific instantiation of 
the model that traditionally is represented graphically by 
hexagons. Furthermore, the functions can be divided into 
two classes: foreground and background functions. Fore-
ground functions are the core of the analysis and may vary 
significantly during an instantiation of the model. In con-
trast, background functions are stable and represent common 
conditions as a system boundary that are used by foreground 
functions. The second step is to specify the performance 
variability of each function that can be characterised in its 
simple form using two phenotypes, namely, timing and pre-
cision. Here, the function’s output in terms of timing can 
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occur too early, on time, too late, or not at all, whereas for 
precision, the output can be precise, acceptable, or impre-
cise (Hollnagel 2012). In the third step, the variability is 
aggregated to understand how the variability can propagate 
through the system and where functional resonance emerges 
leading to adverse outcomes. This is done by defining 
upstream–downstream couplings, where variability can be 
caused through couplings of upstream functions, when the 
output used as input or resource, for example, is variable 
and thus affects the variability of downstream functions. The 
fourth and final step consists of the monitoring and manage-
ment of the previously identified performance variability to 
ensure the safety and performance of the system.

In the past, some attempts were made to formally verify 
an FRAM model. The first attempt at formal verification 
was the FRAM model-based safety assessment that used 
model checking and theorem proving to verify the FRAM 
model so as to determine whether pre-set safety require-
ments can be observed (Yang and Tian 2015). The same 
authors enhanced this approach using the Simple Promela 
Interpreter (SPIN) tool and applied it to develop an air traffic 
management system. The analysis demonstrated that FRAM 
can benefit from a formal verification with the aid of model 
checking through more rigorous computation that improves 
its efficiency and accuracy (Yang et al. 2017). In addition, 
the software tool FRAM Model Interpreter (FMI) (Hollnagel 
2020) has recently become available, which is a stepwise 
automatic interpretation of the syntactical and logical cor-
rectness of an FRAM model to formally check and adjust 
its consistency and completeness. With regard to valida-
tion, subjective evaluation through interviews with experts, 
workshops, and discussions was mainly used to improve the 
face validity of developed FRAM models, as pointed out 
by Bridges et al. (2018), Kaya et al. (2019), and Ross et al. 
(2018). The reason may be associated with an experts' deep 
knowledge of the work system and daily operations, which 
can help to enrich developed FRAM models and to provide 
more reliable models (Salehi et al. 2021). However, a more 
formal approach for validation is still lacking.

1.2  Previous approaches to testing the reliability 
and validity of HFE methods

On the whole, studies are rarely conducted that report the 
reliability or validity of HFE methods. However, some exam-
ples can be found and are summarised in the following. The 
reliability of ergonomics methods is often assessed using a 
test–retest paradigm (Baysari et al. 2011). Examples of the 
measures used here include percentage agreement (Baber 
and Stanton 1996; Baysari et al. 2011; O'Connor 2008), 
Pearson’s correlation (Harris et al. 2005; Stanton and Young 
2003), the index of concordance (e.g., Olsen and Shorrock 
2010), and Cohen’s kappa (e.g., Makeham et al. 2008).

Studies assessing the validity of ergonomics methods 
can also be found in literature (Baber and Stanton 1996; 
Stanton et al. 2009; Stanton and Young 2003). Many of 
these have focussed on human reliability and error pre-
diction methods in general (Baysari et al. 2011; Kirwan 
et al. 1997; Stanton and Young 2003) or more specifically 
on the systematic human error reduction and prediction 
approach (SHERPA) (Stanton and Stevenage 1998) and 
task analysis for error identification (TAFEI) (Stanton and 
Baber 2005). In these studies, the validity of methods was 
assessed by comparing a method’s results (e.g., errors pre-
dicted) against actual observations (e.g., errors observed). 
More recently, system analysis methods, such as the cogni-
tive work analysis (Cornelissen et al. 2014), a factor clas-
sification scheme for Rasmussen's Accimap (Goode et al. 
2017), the networked hazard analysis and risk manage-
ment system (Net-HARMS) (Hulme et al. 2021a), and the 
operator event sequence diagrams (Stanton et al. 2021a, 
b, c, d) have also been empirically validated. Furthermore, 
there has been a thorough comparison of intra-rater relia-
bility and criterion-referenced concurrent validity between 
three systems-based risk assessment approaches: the sys-
tems-theoretic process analysis (STPA) method, the event 
analysis of systemic teamwork broken links (EAST-BL) 
method, and the Net-HARMS method (Hulme et al. 2021b; 
see also Hulme et al. 2021c). In general, quantitative meth-
ods to compare expert results versus novice results (or 
predicted versus actual outcomes) are often based on the 
use of signal detection theory (SDT) to calculate the sen-
sitivity of the method under analysis (Baber and Stanton 
1994; Stanton et al. 2009; Stanton and Young 2003). The 
SDT and its metrics are commonly used to assess the reli-
ability and validity of ergonomics methods, such as human 
error prediction (Stanton et al. 2009). This was pioneered 
in particular by Stanton and Young (1999a, b) as a means 
of establishing empirical validity of methods.

A comparison of the reliability and validity of a range of 
HFE methods has been undertaken by Stanton and Young 
(1999a, b, 2003), which showed that the methods vary 
quite considerably in their performance. This demonstrates 
the urgent need for more reliability and validation studies 
of other HFE methods, and in particular FRAM. Moreover, 
FRAM follows a safety-II perspective (Hollnagel 2014) 
for which validity is seldomly addressed instead of safety-
I (Hollnagel 2014) based methods as, e.g., human error 
analysis methods as mentioned previously.
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2  Proposed reliability and validity 
framework

2.1  Understanding and definitions of reliability 
and validity

According to Stanton and Young (1999a), reliability and 
validity are interrelated, where a method can only be valid 
if it is reliable but may be reliable and not valid. Thus, 
these two criteria have to be evaluated mutually.

Reliability is a measure of the stability of the method 
over time and across analysts, ideally demonstrating that the 
application of an ergonomics method will result in the same 
results if it is used by different people (inter-rater) or at dif-
ferent points in time by the same people (intra-rater) (Stan-
ton et al. 2016). This is often assessed using a test–retest 
paradigm between experts and novices, including measures, 
such as percentage agreement and Cohen’s Kappa (e.g., Bay-
sari et al. 2011; Hulme et al. 2021a; Makeham et al. 2008).

When considering validity, we have to distinguish 
between the following two main terms: verification and vali-
dation. According to Balci (1998), verification determines 
whether the formal implementation of a model is correct, 
which deals with building the model correctly. On the other 
hand, validation determines whether a model can be sub-
stituted for the real system for the intended purposes and 
objectives in the applied domain, which deals with building 
the right model. Overall, a model must be useful with regard 
to its objective, which means providing a reasonably accu-
rate answer to the question to be answered (Liebl 2018, p. 
203). Consequently, the concept of validity has to be guided 
by this requirement and should not be regarded as absolute 
(Schrank and Holt 1967). This has various implications for 
the nature of validation (Liebl 2018, pp. 203–205):

• model-individual, meaning that it is impossible to 
postulate a standardised validation procedure due to 
various forms and applications of models. Rather, the 
required validity criteria and their weighting change 
depending on the problem (Banks et al. 1987).

• gradual, showing how good or bad a model is in fulfill-
ing its purpose and describing the validation process as 
a trade-off between additional costs/effort and the added 
information value of increased validity (Van Horn 1971).

• result of a negotiation process, according to which the 
validity of a model largely equates to the question of 
credibility and acceptance. Within this process, it is 
negotiated when the model is considered sufficiently 
valid and which validity criteria and methods should 
be applied (cf. Sargent 1984).

• continuous and iterative, meaning that validation takes 
place during the entire development process and “con-

fidence is built into the model as the study proceeds” 
(Bulgren 1982, p. 126) rather than depicting a separate 
section at the end as an end state.

Furthermore, different categories of validation can be 
found in literature. For instance, Liebl (2018) distinguishes 
between outcome-based, function-based, and theory-based 
validation. Outcome-based validation aims to compare 
results, checking the extent to which the model produces 
results that match those of the real system. Function-based 
validation comes into play when the real system is not fully 
observable, so one has to validate exclusively on the model 
itself. Here, the reaction mode of the model is checked for 
plausibility, hence validity ultimately presents itself as a 
failed falsification of the model (Hanssmann 2018, p. 93). 
Theory-based validation compares the model results with 
theoretically expected results, which usually come from ana-
lytical models or literature.

As for HFE methods, Stanton and Young (1999b) pro-
posed four types of validity for ergonomics methods: con-
struct, content, concurrent and predictive. Construct valid-
ity concerns the underlying theoretical basis of a method. 
Content validity relates to the credibility that a method can 
achieve with its users, which can also be referred to as face 
validity. Finally, concurrent and predictive validity address 
the extent to which an analysed performance is representa-
tive of the performance that might have been analysed, 
where concurrent validity describes the current performance 
sampled, and predictive validity (i.e., criterion-referenced 
empirical validity) concerns the performance in the future. 
Furthermore, HFE methods should possess a certain level of 
concurrent or predictive validity suitable for their applica-
tion (Stanton 2016). However, it is debatable as to whether 
all ergonomics methods have to fulfil all four types of valida-
tion, as shown by a distinction between analytic and evalu-
ative methods, assuming that construct and content validity 
might be sufficient for analytic methods, whereas predictive 
validity might be required for evaluative methods (Annett 
2002).

Finally, various concrete techniques can be used to test 
the aforementioned validation and verification types. Balci 
(1998, p. 355) presented an overview of more than 75 tech-
niques, placing them into four categories: informal, static, 
dynamic, and formal. The use of mathematical and logic 
formalism by the techniques increases from informal to for-
mal. Informal techniques are the most commonly used and 
rely heavily on subjectivity. Examples include audits, face 
validation, turing tests, and walkthroughs. Static techniques 
assess the model’s accuracy based on the characteristics 
of the static model design, including, for example, control 
analysis, semantic and syntax analysis as well as structural 
analysis. Dynamic models, on the other hand, evaluate the 
model based on its execution behaviour, including, among 
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others, predictive validation, sensitivity analysis, and statisti-
cal techniques. Last but not least, the formal techniques are 
quite objective and are based on a mathematical proof of 
correctness, for instance, induction and logical deduction.

2.2  Transfer and applicability to FRAM

As we have seen before, validity is not an absolute concept, 
but rather a relative one. Thus, there is no standard approach 
to validity. Instead, an approach to prove validity and reli-
ability has to be developed for each method itself according 
to the features and context of the application. Therefore, 
the aforementioned knowledge will be transferred to the 
concept of FRAM to define one potential approach to dem-
onstrate reliability and validity for an FRAM model in the 
following (see Fig. 1). It should be pointed out that we have 
to distinguish between an FRAM model and a particular 
instantiation of the model when trying to define a validation 
approach for the FRAM method. According to Hollnagel 
(2012), the functions are potentially coupled in an FRAM 
model, meaning that there is no predetermined a priori order 
or fixed sequence of the functions, whereby the functions 
actually become coupled in an instantiation for a specific 
set of conditions, resulting in temporal and causal relations. 
Against this background, validation is only possible for a 
particular instantiation of an FRAM model, but not for an 
FRAM model in general. For the sake of simplicity, we use 

the term “FRAM model” as meaning an “instantiation of an 
FRAM model” in this paper.

Basically, FRAM is a qualitative modelling method that 
offers great flexibility in terms of how it is applied and used, 
since it is a method-sine-model which means that FRAM 
is used as a method to produce a model and not vice versa 
(Hollnagel 2012, pp. 127–133). In addition, an experienced 
team of experts is required to analyse and model the system 
(Accou and Reniers 2019; Jensen and Aven 2018; Pereira 
2013), where the quality of the output in FRAM directly 
depends on the team of experts and the information they pro-
vide as input for the functions and their variability (Salehi 
et al. 2021). Although some practical guidance material 
exists in Hollnagel et al. (2014), there is no explicit standard 
for determining how much information should be included 
in the analytical process to define the objective, scope, and 
granularity of the model, as highlighted by Anvarifar et al. 
(2017), Grabbe et al. (2020), Li et al. (2019), and Patri-
arca et al. (2017). Due to these low limitations or regula-
tions regarding modelling, as well as the strong dependency 
between model outputs and the competence of the modeller 
team, an FRAM model is ultimately subject to a very strong 
subjective component. This means that when applied to the 
same work context and using the method traditionally, an 
FRAM model and its risk derivation are unlikely to be con-
gruent between different users and even with the same user 
on a different occasion. For this reason, the classic test–retest 

Fig. 1  Validation approach for an FRAM model
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paradigm, which is often used to assess the reliability of 
HFE methods as mentioned in Sect. 2.1, seems inappropri-
ate in the context of FRAM, particularly for largely com-
plex FRAM models. Therefore, the reliability for an FRAM 
model cannot be proven but it can be achieved and increased 
using mixed methods and multiple data sources, such as doc-
ument reviews, interviews, observations and simulations, as 
well as workshops and focus groups (see Fig. 1). These help 
to integrate multiple limited perspectives and dimensions 
that adhere to the verification strategies of Creswell and 
Miller (2000), complying with the four qualitative terms of 
credibility, transferability, dependability, and confirmability 
(Anfara et al. 2002) to improve the quality, scientific rigour, 
and trustworthiness of the model. One application of this 
can be found in Adriaensen et al. (2019) and Grabbe et al. 
(2022) in the context of aircraft cockpits and automated driv-
ing, respectively.

In addition, an FRAM model can be simply verified 
through the already established FMI (Hollnagel 2020) soft-
ware that automatically interprets and parses the syntactical 
and logical correctness of an FRAM model step-by-step to 
formally check and adjust its structure with regard to con-
sistency and completeness while obeying the FRAM “rules” 
(see Fig. 1). An important part of this is the identification 
of orphans or potential auto-loops as well as the question of 
whether relations between functions are mutually consistent, 
thus allowing an event to develop as intended. The use of 
FMI can be enhanced by other tools, such as model checking 
and theorem proving, as described in Sect. 1.1.

Validity should be divided into construct, content, and 
predictive validity according to Stanton and Young (1999b), 
since FRAM is an ergonomics method. In this case, concur-
rent validity is omitted, because an FRAM model does not 
generate absolute outputs; the outputs can only be evalu-
ated relatively if something is changed in the model. This 
means that only future performance and not current per-
formance can be validated. However, this is not a problem, 
since predictive validity is the higher maxim of the two 
anyway. Furthermore, FRAM is both an analytic and evalu-
ative method. The analytic part is used through the quali-
tative and traditional application to gain an understanding 
of the mechanisms that underlie the functional interactions 
between system elements by modelling to comprehend what 
is happening, for example, to facilitate design decisions or 
to identify sources of performance failures and successes. 
In contrast to this, the evaluative part is used more in a 
semi-quantitative approach to measure and predict a certain 
parameter, such as performance variability, which is the fun-
damental factor explaining system behaviour in the FRAM 
method with its core principles of performance adjustments, 
emergence, and functional resonance. The analytic and eval-
uative parts are covered by construct and content validity, 
and predictive validity, respectively (cf. Annett 2002) (see 

Fig. 1). Construct validity should be ensured through the 
strong and sound systems theory basis of FRAM, as well as 
the tremendous credibility that the method gained amongst 
users over the last decade (cf. Patriarca et al 2020), which 
is also an argument for the content validity. Thus, construct 
validity can be generally assumed for an FRAM model as 
long as the method and its principles were correctly and 
comprehensively used, once again emphasising the strong 
dependency between an FRAM model’s output quality and 
the experience and training of the user and modeller as 
mentioned above. Content validity can mainly be proved by 
face validity using subjective evaluation through interviews, 
workshops, and discussions with experts who have a deep 
knowledge of normal work systems and daily operations, as 
already applied by Bridges et al. (2018), Kaya et al. (2019), 
and Ross et al. (2018). In addition, a theory-based valida-
tion could be used to further increase the content validity 
by comparing the FRAM model’s outputs with both other 
models or indicators in literature or incident and accident 
reports (including contributory factors and reasons) regard-
ing the same application context. For instance, Bridges et al. 
(2018) modelled real accidents as "Mini FRAMs" based on 
accident reports that served as a comparison for the logic of 
the overall FRAM model.

Finally, predictive validity could be demonstrated by a 
mixture of function- and outcome-based validation. The rea-
son for the combination is that an outcome-based validation 
alone is not possible, because an FRAM model does not gen-
erate absolute, observable outputs as a final product of the 
entire model. Instead, it must be linked to a function-based 
validation to produce relative, observable outputs through 
controlled variations in the model. The function-based vali-
dation can be realised by a sensitivity analysis with delib-
erate and controlled variations in the model to evaluate 
responses in the model for plausibility, which can also be 
called a “structured what-if analysis” (SWI-FRAM) (cf. Hill 
et al. 2020; MacKinnon et al. 2021). Here, one upstream 
function will be manipulated to vary its output to understand 
its impact on the system as well as how this variability can 
propagate through the system. In terms of predictive vali-
dation, this can be used to check whether the variation in 
the output of the upstream function actually influences the 
output of the coupled downstream functions while keeping 
all other functions constant at the same time. This process 
must be carried out for all direct upstream–downstream cou-
plings of foreground functions in an FRAM model to fully 
test its predictive validity. This is exemplified in Fig. 2 and 
Table 1, which will be described in the following. Function 
A, highlighted in green, is initially manipulated to test the 
couplings AB, AC, and AD and to see if these couplings 
actually lead to a change in the output of functions B, C, 
and D. In the next steps, this procedure is also carried out for 
the other upstream–downstream couplings of the remaining 
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functions (see Table 1) up to the end function H, highlighted 
in red. The proof of all direct couplings is sufficient as this 
automatically explains the indirect effects too, for example, 
if function A has a direct impact on function D and D in 

turn on function F, then A also has an indirect effect on F. 
If the expected effect for one coupling can actually be con-
firmed, it is valid and if not, the coupling is not relevant and, 
therefore, invalid. However, this only validates the predictive 
performance for one instantiation and thus for one specific 
scenario, which does not mean that the model will be gener-
ally valid or invalid for other situations.

The final comparison between expected and actual 
effect then corresponds to an outcome-based validation, 
where the predictions of the FRAM model are matched 
with actual observations in reality. This is where the 
SDT comes into play, which was pioneered by Stanton 
and Young (1999a, b) to establish the empirical validity 
of ergonomics methods as mentioned in Sect. 1.2. This 
technique divides the method’s outputs up into hits (H), 
misses (M), false alarms (FA), and correct rejections (CR). 
In the context of FRAM, it provides a method to compare 
the predicted variability effect of an upstream function to 
its coupled downstream functions, illustrated through the 
FRAM model, with the actual observed variability effect 
in simulator or field tests. In this work, the four events in 
Fig. 3 are defined as follows:

• Hits: predicted variability effect in a downstream func-
tion’s output through the manipulation of its upstream 

Fig. 2  Fictitious instantiation of an FRAM model with nine functions and thirteen couplings marked through letters. Function A is the start 
function and function H is the end function, as highlighted in green and red, respectively

Table 1  Assignment of upstream functions, downstream function, 
and their related couplings with regard to the fictive FRAM model in 
Fig. 2

Upstream function Couplings Down-
stream 
functions

A-> AB -> B
AC -> C
AD -> D

B-> BE -> E
C-> CE ->E

CG -> G
D-> DF -> F
E-> EH -> H
F-> FE -> E

FG -> G
FI -> I

G-> GH -> H
I-> IC -> C
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function’s output by the FRAM model and observed vari-
ability effect in a simulator or field test.

• Misses: no predicted variability effect in a downstream 
function’s output through the manipulation of its 
upstream function’s output by the FRAM model, but 
observed variability effect in a simulator or field test.

• False alarms: predicted variability effect in a down-
stream function’s output through the manipulation of its 
upstream function’s output by the FRAM model, but no 
observed variability effect in a simulator or field test.

• Correct rejections: no predicted variability effect in a 
downstream function’s output through the manipulation 
of its upstream function’s output by the FRAM model 
and no observed variability effect in a simulator or field 
test.

In the following, the four events mentioned above will 
be explained using examples with the fictive FRAM model 
in Fig. 2. For instance, we will manipulate the output of 
function C to test the predictive validity. Potential hits or 
false alarms could be the couplings CE and CG to its direct 
downstream functions E and G, with one potential result 
being that coupling CE is a hit and CG a false alarm. The 
couplings EH and GH are indirect downstream effects of 
function C to function H and, therefore, out of the scope as 
we only measure direct downstream effects. Potential misses 
or correct rejections could be all the remaining functions 
that are not indirectly influenced by function C, and where 
no direct downstream couplings currently exist with func-
tion C and thus no variability effects are expected. It has 
to be proven whether the manipulation of function C has 

a variability effect on the outputs of the functions A, B, D, 
F, and I. Potential results could be that the “potential” cou-
pling to function B is a miss and the potential couplings to 
the functions A, D, F, and I are correct rejections. Several 
metrics comprising the four events can now be used for the 
subsequent and concrete evaluation of predictive validity, 
which will be explained in more detail in Sect. 3.6.

All of the methods described above to demonstrate or 
increase the reliability, verification, and validity either influ-
ence or improve the performance and value of an FRAM 
model to increase the objective evaluation of research find-
ings by FRAM as depicted in Fig. 1. In the next step, the 
process of predictive validity will be exemplified through an 
FRAM model for human and automated driving by Grabbe 
et al. (2022) to show its credibility as well as the appli-
cability of the previously described predictive validation 
approach. This is because first, predictive validity represents 
the highest maxim of validation, and second, reliability, veri-
fication, and content validity for the analytical part of the 
validation have already been implemented by Grabbe et al. 
(2022) for the model to be examined. Therefore, the evalu-
ative part of the validation is still open and thus addressed 
in the methods section.

3  Methods

3.1  FRAM model

The FRAM model to be validated in this paper is the FRAM 
model for overtaking in road traffic created by Grabbe et al. 
(2022). This model is very large and detailed, comprising 
285 functions and including 210 foreground functions, all of 
which theoretically have to be analysed individually to test 
the predictive validity of the entire model. This is practically 
impossible and would go beyond the scope of this work. 
We, therefore, selected the two functions ‘driving free’ (lead 
vehicle, LV) and ‘driving free’ (oncoming vehicle, OV) to 
demonstrate the predictive validity. Both functions have a 
major impact on the system or rather the model and basically 
represent the longitudinal and lateral driving behaviour of 
LV and OV. The two functions and their couplings as well 
as their context will be described in more detail in Sects. 3.5 
and 3.7.1, and 3.4.2, respectively.

3.2  Research questions

The analysis of the predictive validity of the FRAM model 
by Grabbe et al. (2022) pursues three research questions:

1) Is the model predictively valid for the basic scenario?

Fig. 3  Signal detection theory (SDT) matrix
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2) Is the model predictively valid for changing environmen-
tal conditions?

3) Is the model predictively valid for changing human fac-
tors conditions?

3.3  Sample

Forty German participants with valid driving licences took 
part in this experiment. This sample was divided into two 
subgroups with twenty participants each for the between-
subjects factor levels of time pressure or no time pressure. 
The mean (M) age of the time pressure group was 29.4 years 
(SD = 14.5 years) with a range from 19 to 75 years, and that 
of the no time pressure group was 31 years (SD = 14.2 years) 
ranging from 21 to 72 years. The time pressure group con-
sisted of twelve (60%) men and eight (40%) women, while 
the no time pressure group consisted of eleven (55%) men 
and nine (45%) women. In addition, Table 2 gives an over-
view of a comparison between the no time pressure and time 
pressure group as regards driving experience and driving 
style. Based on this data, the two samples can be considered 
as comparable.

3.4  Apparatus

3.4.1  Driving simulator

The experiment was carried out in the static driving simula-
tor of the Chair of Ergonomics at the Technical University 
of Munich (see Fig. 4). The simulator consisted of a BMW 
E64 vehicle mock-up. A high-quality, 6-channel projection 
system provided a realistic driving environment. Three pro-
jectors were used for the front and back view each. The front 
field of view is approx. 180°. The back view through the 
mirrors is realised through three separate canvases. SILAB 
6.5 of the Würzburg Institute for Traffic Sciences GmbH, 
with a refresh rate of 60 Hz, was used as the driving simula-
tion software. An additional sound system provided vehicle 
and environmental sounds.

3.4.2  Scenario and experimental track

The scenario of the analysed FRAM model was an overtak-
ing manoeuvre on a rural road as detailed in Grabbe et al. 
(2022). An ego vehicle (EV) driven by the participant wants 
to overtake an LV travelling at a speed of 80 km/h on a 
straight rural road for a distance of 2500 m with no vertical 
elevation. The maximum speed limit is 100 km/h, overtaking 
is permitted and no obstructions exist. A rear vehicle (RV) is 
following the EV, and a line of cars are approaching on the 
oncoming lane at 100 km/h with different fixed time gaps. 
There were a total of ten gaps on the straight, with the first 
four time gaps being 10 s and for the last six gaps 12 s, corre-
sponding to critical and uncritical time gaps according to the 
mean of 11.5 s (Crawford 1963) and median of 9.9 s (Tapio 
2003) found in literature regarding accepted gaps when over-
taking passenger cars. The road is 6 m wide, with one lane 
in each direction and a dotted line in the middle. The road 
is well constructed and all necessary road markings are in 
place. There is light vegetation on the side of the road. The 
weather conditions are sunny and dry. All simulation-con-
trolled vehicles, which are passenger cars, always keep the 
necessary safety distance to their vehicle in front and comply 
with the traffic regulations. Before the actual test scenario, 

Table 2  Comparison between the no time pressure and time pressure group regarding driving experience and driving style

Measurement No time pressure group Time pressure group

Participation in driving simulator studies M = 7.7 (SD = 8.5) M = 10.3 (SD = 24.3)
Mileage [km/year] M = 12,272 (SD = 5,054) M = 12,777 (SD = 5,995)
Driving regularity [daily, weekly, monthly, annually] Daily 40%

Weekly 45%
Monthly 15%

Daily 50%
Weekly 40%
Monthly 10%

Driving style [5-Likert scale: from (1) very safe to very risky (5)] M = 2.5 (SD = 0.8) M = 2.5 (SD = 0.9)
Driving pace [5-Likert scale: from (1) very leisurely to very rapid (5)] M = 3.3 (SD = 0.6) M = 3.4 (SD = 0.9)
Driving capability [5-Likert scale: from (1) very inexperienced to very experi-

enced (5)]
M = 4.0 (SD = 0.8) M = 4.1 (SD = 0.9)

Fig. 4  Static driving simulator
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the overtaking manoeuvre on the straight rural road, each of 
the test subjects drove a small winding course for a distance 
of 2,000 m through a wooded area so that the entire scenario 
would appear as natural as possible. To get a better overview, 
the scenario can be divided into five temporal and spatial 
stages from the EV’s point of view (see Fig. 5): following a 
vehicle in front, swerving into the oncoming lane, passing 
the leading vehicle, merging back into the starting lane, and 
getting in the lane again.

3.5  Experimental design

We used a 2 × 3 × 3 mixed factorial design for this experi-
ment. The human factors condition (no time pressure or time 
pressure) was the between-subject factor, while the environ-
mental condition (basic, truck, fog and rain) and the function 
manipulation (no manipulation, manipulation of driving free 
LV, manipulation of driving free OV) were within-subject 

factors (see Fig. 6). Half of the participants experienced time 
pressure as realised by an expiring time counter in the head-
up display, forcing them to overtake as early as possible. The 
timer was set to expire as soon as the fourth gap had passed, 
forcing the test persons to overtake in the gaps with the 
smaller and critical time gaps described in Sect. 3.4.2. The 
reason for this is that impatient drivers under time pressure 
tend to reduce the accepted gaps during passing manoeuvres 
(Pollatschek and Polus 2005). Each test subject drove all 
nine scenarios, comprising the three different environmen-
tal conditions as well as function manipulations, where the 
scenarios were permuted to mitigate potential sequence and 
learning effects. The basic condition corresponded to the 
standard scope of the examined FRAM model, whereas the 
LV, which was basically a passenger car, was substituted 
through a truck in the truck condition, and the weather con-
ditions, that were basically sunny and dry, were changed to 
fog and rain in the third condition. The first three scenarios, 

Fig. 5  Schematic illustration of the overtaking scenario comprising different road users/agents and divided into five temporal and spatial stages. 
EV ego vehicle, LV lead vehicle, RV rear vehicle, OV oncoming vehicle, according to Grabbe et al. (2022)

Fig. 6  Illustration of the mixed factorial design
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in which no manipulation was implemented, served as refer-
ences for the three environmental conditions to analyse the 
predictive validity for the function manipulation of driving 
free for both the LV and the OV. The manipulation of driv-
ing free was realised for the LV by multiple abrupt braking 
and acceleration as well as repeated lateral offsets, such as 
"weaving around ", and for the OV by increasing the speed 
from 100 to 120 km/h, which reduced the time gaps of the 
first four gaps to 8.33 s and for the last six gaps to 9.99 s, 
resulting in even more critical time gaps. Finally, scenarios 
4 and 7 must be compared with scenario 1, scenarios 5 and 
8 with scenario 2, and scenarios 6 and 9 with scenario 3 
(see Fig. 6).

3.6  Procedure

Participants were welcomed and informed about the study 
goals and the procedure. After risks such as nausea and the 
option of withdrawing from the study without needing to 
cite reasons were outlined, written consent was obtained. 
Participants filled out a demographic questionnaire, which 
also asked for details of their driving experience and driv-
ing style. They then drove in the driving simulator for about 
10 min to familiarise themselves with the steering, braking, 
and the driving simulator system. Afterwards, the partici-
pants drove a modified basic scenario with no oncoming 
vehicles and just the LV, with the goal of overtaking this. 
They were then asked to fill out a questionnaire to rate the 
timing and precision variability performance of some sub-
jective functions on a 7-Likert scale, as will be more detailed 
in Sect. 3.7.1. This initial trial run served as a familiari-
sation for the participants with the basic procedure of the 
subsequent nine test drives as well as the non-trivial subjec-
tive rating of the functions. The actual nine test runs then 
began, each followed by completing the questionnaire on 
the subjective functions. Finally, the participants filled out 
five follow-up questions to rate the perception of the simu-
lated drive. In general, the test subjects were instructed to 
overtake the LV before the end of the straight by obeying the 
traffic regulations but also showing her or his most natural 
and everyday driving behaviour. No restrictions were given 
regarding overtaking behaviour to ensure idiosyncratic and 
diverse driving styles. However, an exception exists for the 
subjects in the group with time pressure who were intention-
ally instructed to overtake the LV before the timer expires.

3.7  Measures and analysis

3.7.1  Independent and dependent variables

The overall study consisted of three independent variables 
comprising the function manipulation, environmental con-
dition, and the human factors condition. Moreover, the 

dependent variables were the performance variability values 
of several subjective and objective functions in which the 
performance variability of their outputs, if driving free LV or 
OV are manipulated, should either change (expected direct 
downstream effects) or should not change (no expected 
direct downstream effects) according to the FRAM model 
by Grabbe et al. (2022) (see Table 3). It should be empha-
sised that the variability of the outcome or output from a 
function was measured and not the variability of the func-
tion itself. This work only investigated the expected and 
unexpected downstream couplings of the two manipulated 
functions to the functions of the agent EV and not to the 
other agents to test for predictive validity. In the case of 
expected direct downstream effects, the corresponding func-
tions were assigned to the H/FA category, and in case of 
no expected direct downstream effects, the corresponding 
functions were assigned to the M/CR category, according to 
the application of SDT to FRAM as described basically at 
the end of Sect. 2.2. Furthermore, in the case of the M/CR 
category, these functions do not represent all of the potential 
functions that have to be tested, but only a selection of func-
tions, as otherwise there would be far too many functions 
for any practical test. Theoretically, these would be all of the 
remaining functions of the entire model that are not expected 
to be directly or indirectly influenced by the manipulated 
functions.

The performance variability of the subjective functions 
was based on the rating of the timing and precision vari-
ability performance in the questionnaire on a 7-Likert scale. 
Here, the timing was coded as 1 for too early, 3 for on time, 
5 for too late, and 7 for not at all, whereas precision was 
coded as 1 for precise, 4 for acceptable, and 7 for imprecise. 
The subjects were asked when (timing) or how (precision) 
they, for example, estimated the distance to OV until they 
swerved. Finally, the two values for timing and precision 
were multiplied into one representative value for the perfor-
mance variability of the subjective functions. By contrast, 
the performance variability of the objective functions was 
based on driving data (e.g., speed, lane deviation, and dis-
tance between cars) gathered in the driving simulator. For 
the sake of simplicity, we gathered the performance vari-
ability of the objective functions either in terms of timing 
or precision but not both. An overview of the measurement 
definitions of each objective function is given in Table 4.

3.7.2  Statistical analysis

To evaluate the predictive validity, the performance variabil-
ity had to be reduced into the four events of SDT, namely, 
hits, false alarms, misses, and correct rejections, by compar-
ing the predictions of the model with the observations in the 
simulator.
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First, the mean and standard deviation of the performance 
values were calculated for the scenarios 1–3 (as these form 
the respective reference for testing for differences in perfor-
mance variability as described in Sect. 3.5) for each analysed 

function per between-subject factor group, from which the 
95% confidence interval was calculated to define a "normal" 
everyday variability range. In medicine, one also speaks of 
normal ranges, which are defined for blood pressure or blood 

Table 3  Assignment of 
manipulated functions and 
analysed functions of EV, and 
their allocation to the type of 
rating and SDT event category

Manipulated function Analysed functions of EV Type of rating SDT 
event 
category

Driving free LV Check vehicles in front of LV Subjective H/FA
Check LV is not about to change speed H/FA
Gauge future driving actions of LV H/FA
Check LV is not indicating or about to turn H/FA
Maintain an adequate view of the road ahead H/FA
Evaluate reasonableness for overtaking H/FA
Assess the situation to enter safely H/FA
Judge LV's relative speed to OV H/FA
Judge LV's speed H/FA
Judge available passing time H/FA
Determine pass can be completed H/FA
Observe road behind M/CR
Check for safe distance to merge M/CR
Judge first OV's speed M/CR
Judge distance from first OV M/CR
Maintain headway separation Objective H/FA
Keep in lane H/FA
Position car to the right H/FA
Position car to the left H/FA
Reduce headway from normal following H/FA
Avoid tailgating and intimidating LV H/FA
Adjust speed to that of LV H/FA
Adopt overtaking position H/FA
Swerve completely to the oncoming lane H/FA
Accelerate LV decisively H/FA
Merge back into starting lane H/FA
Merge progressively into starting lane H/FA
Comply with the speed limit M/CR

Driving free OV Judge first OV's speed Subjective H/FA
Judge LV's relative speed to OV H/FA
Judge available passing time H/FA
Determine pass can be completed H/FA
Assess the situation to enter safely H/FA
Judge distance from first OV M/CR
Judge LV's speed M/CR
Observe road behind M/CR
Check for safe distance to merge M/CR
Accelerate LV decisively Objective H/FA
Merge back into starting lane H/FA
Merge progressively into starting lane H/FA
Comply with the speed limit M/CR
Maintain headway separation M/CR
Keep in lane M/CR
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sugar, for example, to distinguish healthy patients from sick 
patients. Afterwards, the difference between the upper/lower 
limit of the confidence interval and the mean was calculated, 
which reflects a maximum positive or negative everyday 
fluctuation in performance that is normal and thus should 
not be regarded as a significant performance variability.

We then calculated the absolute differences between the 
intraindividual performance values of scenario 4 and 7 to 
1, scenario 5 and 8 to 2, and scenario 6 and 9 to 3 for each 
analysed function as we were interested in both the posi-
tive and negative direction of the performance variability. 
In the next step, one-sided one-sample t tests with a p-value 
of 5% were used to determine whether the sample mean 
of the absolute differences in performance of, for example, 
scenario 4 to 1 was statistically greater than the respective 
maximum value of everyday fluctuation in performance. The 
Wilcoxon signed-rank test was used as an alternative when 
the statistical requirements for the one-sample t-test were 
not met. If the p-value was lower than 5%, then a signifi-
cant performance variability in the analysed function in the 
respective scenario was assumed, otherwise not.

From this, it was possible to finally assess which of the 
four events according to SDT applies per analysed function, 
group and scenario. Subsequently, the number of the four 
events per manipulated function (driving free LV and OV), 
human factors condition (time pressure, no time pressure) 
and environmental condition (basic, truck, rain and fog) 
were calculated. Based on this, the accuracy, H-rate (HR), 
and CR-rate (CRR) were calculated to be able to prove the 
predictive validity. We decided to use the accuracy and not 
the Matthews (1975) correlation coefficient (MCC), which 
is generally recommended by Stanton and Young (1999a, 
2003) and successfully applied, for example, by Stanton 
et al. (2021a; b, c, d) and Hulme et al. (2021a; b, c), as 
an appropriate statistical metric to validate human factors 
methods in binary classification problems. The reasons are 
twofold. First, the analysed FRAM model is clearly com-
plex with a wide scope, and according to Stanton and Young 
(2003), the wider the scope of the method or model, the 
more difficult it is to obtain favourable data on validity per-
formance, so it would be detrimental to use a harsh metric 
like the MCC. Second, the true positive results should be 
favoured over the true negative results as considerably more 

Table 4  Overview of the measurement definitions of each objective function

Objective function Stage Phenotype Definition

Maintain headway separation Follow Precision The average distance between EV and LV in the period, where the straight 
begins and the driver of EV starts to swerve, indicated by the left activated 
indicator or the steering angle

Keep in lane Follow Precision The average absolute lane deviation between of EV in the period, where the 
straight begins and the driver of EV starts to swerve

Position car to right/left Follow Precision The average gap to the left/right lane edge of in the period, where the straight 
begins and the driver of EV starts to swerve

Reduce headway from normal following Swerve Precision The average distance between EV and LV in the period, where the driver of EV 
starts to swerve and driving completely in the oncoming lane, indicated by the 
left activated indicator or the steering angle, and the lane index showing in 
which lane EV is driving, respectively

Avoid tailgating and intimidating LV Swerve Precision The distance between EV and LV at the last point, where the driver of EV is 
driving in the starting lane and already has started to swerve

Adjust speed to that of LV Swerve Precision The average speed difference between EV and LV in the period, where the 
straight begins and the driver of EV starts to swerve

Adopt overtaking position Swerve Precision The sum of the speed of EV, absolute lane deviation of EV, and the distance 
between EV and LV at the point, where the driver of EV starts to swerve

Swerve completely to oncoming lane Swerve Timing The time difference between starting to swerve and driving completely in the 
oncoming lane

Accelerate LV decisively Pass Precision The average speed of EV in the period, where the driver of EV starts to drive 
completely in the oncoming lane and starts to merge, indicated by the lane 
index showing in which lane EV is driving, and the right activated indicator 
or the steering angle, respectively

Merge back into starting lane Pass Precision The number of times the driver of EV merged back into the starting lane even 
though the driver has already swerved into the oncoming lane to overtake

Merge progressively into starting lane Merge Timing The time difference between starting to merge and driving completely in the 
starting lane

Comply with the speed limit All Precision The average speed difference between EV’s speed and the speed limit in the 
period, where the straight begins and the driver of EV is driving completely in 
the starting lane again after passing LV
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H than CR can be identified in an FRAM model validation 
due to the practical limitations mentioned in Sect. 3.7.1. The 
accuracy score tends to favour positive cases (Baber and 
Young 2022). With this in mind, accuracy seemed to be 
more appropriate than MCC to obtain a high validity score, 
because it is quite difficult to obtain a high score through 
good prediction results in only all four of the confusion 
matrix categories. Nevertheless, as using the accuracy alone 
as a single value to prove predictive validity could be mis-
leading in the case of imbalanced classification data sets 
(cf. Chicco and Jurman 2020), we also considered the HR, 
and especially CRR, to achieve a broader and more detailed 
analysis.

The numerical value of accuracy represents the propor-
tion of true or expected results (both true positive (H) and 
true negative (CR)) and was calculated as follows (1):

HR or sensitivity represents the proportion of true posi-
tives or expected and observed results and was calculated 
as follows (2):

CRR or specificity represents the proportion of true nega-
tives or not expected and not observed results and was cal-
culated as follows (3):

All three metrics are expressed along a percentage scale 
ranging from 0 to 100. Ultimately, a criterion for acceptable 
levels of predictive validity has to be considered, as there 
is no universally accepted measure. A review of reliability 
and validity levels found that, across 25 studies, the average 
value used to indicate acceptable percentage agreement was 
76%, with a range of 70–88% (Olsen 2013). As described 
in Sect. 2.1, validation is gradual rather than binary. Thus, a 
single value indicating that an FRAM model is predictively 
valid or not seems to be inappropriate. Rather, a more dif-
ferentiated approach was used in this work, defining different 
levels for predictive validity from poor to almost perfect 
according to the reliability result levels applied to SDT by 
Olsen (2013) (see Table 5). However, to answer the research 
questions in Sect. 3.2, we additionally defined a value for 
sufficient predictive validity, which was set at 70%. We have 
chosen this value, because it defines first, the minimum of 
acceptable percentage agreement (Olsen 2013), and second, 
the median of the category of substantial predictive valid-
ity, which should be the minimum category to aim for (see 
Table 5).

(1)Accuracy =
H + CR

H + FA +M + CR

(2)HR =
H

H +M

(3)CRR =
CR

FA + CR

4  Results

This section presents the results according to the three dif-
ferent research questions defined in Sect. 3.2. An overview 
of the results of the SDT event category for every analysed 
function per manipulated function, with a differentiation 
between human factors and environmental conditions, is 
shown in Table 6.

4.1  Predictive validity for the basic scenario

Figure 7 shows the comparison of the accuracy, HR and 
CRR associated with the predictive validity levels (see 
Table 5) between the environmental and human factor con-
ditions with the manipulated function of driving free LV. 
Furthermore, the 70% threshold as the value for sufficient 
predictive validity is indicated by a horizontal dashed red 
line. For the basic scenario in the no time pressure group, 
the accuracy, HR, and CRR account for 79%, 81% and 0%, 
respectively. The accuracy and HR lie above the sufficient 
predictive validity, reaching a substantial and almost perfect 
predictive validity level, respectively. However, the predic-
tive validity level of the CRR is poor. In total, there are six 
(21%) functions that do not meet expectations: ‘observe road 
behind’, ‘check for safe distance to merge’, ‘judge first OV's 
speed’, ‘judge distance from first OV’ (all are M instead of 
CR) as subjective functions and ‘merge back into starting 
lane’ (FA instead of H) and ‘comply with the speed limit’ as 
objective functions (M instead of CR). It is noticeable that 
the false predictions are mainly based on misses.

Figure 8 is the same as Fig. 7, but for the manipulated 
function of driving free OV. Here, the accuracy, HR, and 
CRR account for 53%, 56% and 50%, respectively, for the 
basic scenario in the no time pressure group. Therefore, all 
three metrics lie below the sufficient predictive validity and 
achieve a moderate predictive validity level. In total, there 
are seven (47%) functions that do not meet expectations: 
‘judge LV's relative speed to OV’ (FA instead of H), ‘judge 
distance from first OV’, ‘judge LV's speed’, and ‘observe 
road behind’ (all are M instead of CR) as subjective 

Table 5  Levels for predictive validity associated with percentages of 
selected metrics according to Olsen (2013)

Predictive validity level Percentage of 
accuracy, HR, and 
CRR 

Poor 0
Slight  > 0–20
Fair 21–40
Moderate 41–60
Substantial 61–80
Almost perfect 81–100
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Table 6  Assignment of manipulated functions and analysed functions of EV, and their respective results of SDT event category, with a differen-
tiation between human factors and environmental conditions

Manipulated function Analysed functions of EV No time pressure Time pressure

Basic Truck Rain/fog Basic Truck Rain/fog

Driving free LV Check vehicles in front of LV H H FA H H H
Check LV is not about to change speed H H H H H H
Gauge future driving actions of LV H H H H H H
Check LV is not indicating or about to turn H H H H H H
Maintain an adequate view of the road ahead H H H H H H
Evaluate reasonableness for overtaking H FA H H H H
Assess the situation to enter safely H H H FA FA FA
Judge LV's relative speed to OV H H H H H H
Judge LV's speed H H H H H H
Judge available passing time H H H H H H
Determine pass can be completed H H H H H H
Observe road behind M CR M M M M
Check for safe distance to merge M CR M M M CR
Judge first OV's speed M M M M M M
Judge distance from first OV M M M CR CR CR
Maintain headway separation H H FA H H FA
Keep in lane H H H H H FA
Position car to the right H FA FA H H H
Position car to the left H FA FA H H H
Reduce headway from normal following H H H H H H
Avoid tailgating and intimidating LV H H H H H H
Adjust speed to that of LV H H H H H FA
Adopt overtaking position H H H H H H
Swerve completely to the oncoming lane H H H H H FA
Accelerate LV decisively H H H H H H
Merge back into starting lane FA FA FA FA FA FA
Merge progressively into starting lane H H H H H H
Comply with the speed limit M M M M M M

Driving free OV Judge first OV's speed H FA H H H FA
Judge LV's relative speed to OV FA H H H H FA
Judge available passing time H FA H H H H
Determine pass can be completed H H H H H H
Assess the situation to enter safely H FA H FA H FA
Judge distance from first OV M M M CR CR CR
Judge LV's speed M M M CR CR M
Observe road behind M M M M M CR
Check for safe distance to merge CR M M M M M
Accelerate LV decisively FA FA H FA H FA
Merge back into starting lane FA FA FA FA FA FA
Merge progressively into starting lane H FA H FA H H
Comply with the speed limit CR M M M CR CR
Maintain headway separation CR CR CR CR M CR
Keep in lane M CR M M M CR
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Fig. 7  Comparison of the accuracy, HR, and CRR associated with the predictive validity levels between the environmental and human factors 
conditions for the manipulated function of driving free LV

Fig. 8  Comparison of the accuracy, HR, and CRR associated with the predictive validity levels between the environmental and human factors 
conditions for the manipulated function of driving free OV
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functions and ‘accelerate LV decisively’, ‘merge back into 
starting lane’ (both are FA instead of H) and ‘keep in lane’ 
(M instead of CR) as objective functions. There is a roughly 
equal distribution of false alarms and misses here.

Besides, a comparison of the accuracy, HR, and CRR 
between objective and subjective functions shows no clear 
differences in terms of the type of rating (see Fig. 9). In most 
cases, the differences amount to a maximum of 10% and 
alternate, so that sometimes the objective functions achieve 
a higher value than the subjective functions and vice versa.

4.2  Predictive validity for other environmental 
conditions

The accuracy, HR, and CRR account for 75%, 86% and 33%, 
respectively, for the truck scenario in the no time pressure 
group with the manipulated function of driving free LV (see 
Fig. 7). Thus, the accuracy and HR lie above the sufficient 
predictive validity, reaching a substantial and almost perfect 
predictive validity level, respectively. However, the predic-
tive validity level of the CRR is fair. These results are similar 
to the ones of the basic scenario. For the rain/fog scenario 
in the no time pressure group with the manipulated function 
of driving free LV, the accuracy, HR, and CRR account for 
64%, 78% and 0%, respectively (see Fig. 7). Therefore, the 
accuracy lies below and the HR lies above the sufficient 
predictive validity, both reaching a substantial predictive 

validity level, respectively. However, the predictive valid-
ity level of the CRR is poor. Slight differences can thus be 
determined compared to the basic scenario.

For the truck scenario in the no time pressure group with 
the manipulated function of driving free OV, the accuracy, 
HR, and CRR account for 27%, 29% and 25%, respectively 
(see Fig. 8). This means that all three metrics lie below the 
sufficient predictive validity, reaching a fair predictive valid-
ity level. Compared to the basic scenario, this is one level 
lower. In contrast, the accuracy, HR, and CRR account for 
53%, 54% and 50%, respectively, for the rain/fog scenario 
in the no time pressure group with the manipulated function 
of driving free OV (see Fig. 8). Thus, all three metrics lie 
below the sufficient predictive validity, reaching a moderate 
predictive validity level. These results are similar to those 
for the basic scenario.

If we consider the functional level of each analysed 
function and respective changes to the SDT event category 
between the environmental conditions in relation to the basic 
scenario for the no time pressure group in Fig. 10, we see 
that in the truck scenario, 18% of the analysed functions 
for the manipulated function of driving free LV and 53% 
of the analysed functions for the manipulated function of 
driving free OV deviate relative to the SDT event category. 
In the rain/fog scenario, 14% of the analysed functions for 
the manipulated function of driving free LV and 33% of the 
analysed functions for the manipulated function of driving 

Fig. 9  Comparison of the accuracy, HR, and CRR between the subjective and objective type of rating, with a differentiation between the envi-
ronmental conditions and manipulated function
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free OV deviate relative to the SDT event category. Hence, 
we can see far greater differences in the predictive validity 
on the functional level when the environmental condition 
changes compared to the results of the three metrics shown 
above, especially with the manipulated function of driving 
free OV. The number of deviations between the two environ-
mental conditions are similar in the case of the manipulation 
of driving free LV and different in the case of the manipu-
lation of driving free OV, where the truck scenario shows 
considerably more deviations than the rain/fog scenario.

4.3  Predictive validity for other human factors 
conditions

First, we present the results for the manipulated function 
of driving free LV. For the basic scenario in the time pres-
sure group, the accuracy, HR, and CRR account for 79%, 
84% and 33%, respectively (see Fig. 7). Thus, the accuracy 
and HR lie above the sufficient predictive validity, reach-
ing a substantial and almost perfect predictive validity level, 
respectively. However, the predictive validity level of the 
CRR is fair. These results are similar to those for the basic 
scenario in the no time pressure group, except for the CRR, 
which is two levels higher. The accuracy, HR, and CRR 
account for 79%, 84% and 33%, respectively, for the truck 
scenario in the time pressure group (see Fig. 7). Therefore, 
the accuracy and HR lie above the sufficient predictive valid-
ity, reaching a substantial and almost perfect predictive 
validity level, respectively. However, the predictive validity 
level of the CRR is fair. These results are similar to those 
for the truck scenario in the no time pressure group. The 
accuracy, HR, and CRR account for 68%, 85% and 25%, 
respectively, for the rain/fog scenario in the time pressure 
group (see Fig. 7). Hence, only the HR lies above the suf-
ficient predictive validity, reaching an almost perfect predic-
tive validity level. However, the predictive validity levels of 

the accuracy and CRR are substantial and fair, respectively. 
These results are similar to those for the rain/fog scenario 
in the no time pressure group, except for the CRR, which is 
two levels higher.

The results for the manipulated function of driving free 
OV are presented below. The accuracy, HR, and CRR 
account for 47%, 50% and 43%, respectively, for the basic 
scenario in the time pressure group (see Fig. 8). This means 
that all three metrics lie below the sufficient predictive valid-
ity level, reaching a moderate predictive validity level. These 
results are similar to those for the basic scenario in the no 
time pressure group. The accuracy, HR, and CRR account 
for 67%, 64% and 75%, respectively, for the truck scenario 
in the time pressure group (see Fig. 8). Therefore, all three 
metrics reach a substantial predictive validity level, but only 
the CRR achieves the sufficient predictive validity thresh-
old. These results differ from those for the truck scenario in 
the no time pressure group, since all three metrics are one 
predictive validity level higher. The accuracy, HR, and CRR 
account for 53%, 60% and 50%, respectively, for the rain/
fog scenario in the time pressure group (see Fig. 8). Thus, 
all three metrics lie below the sufficient predictive validity, 
reaching a moderate predictive validity level. These results 
are similar to those for the rain/fog scenario in the no time 
pressure group.

On the functional level of each analysed function and 
their possible respective changes to the SDT event category 
between the human factors conditions relative to each envi-
ronmental condition in Fig. 11, we can see a trend of increas-
ing deviations for the manipulated function of driving free 
LV, starting from the basic scenario (7%), via the truck sce-
nario (25%) to the rain/fog scenario (32%). In contrast, the 
deviations for the basic scenario (47%), the truck scenario 
(67%) and the rain/fog scenario (53%) are similar in the 
basic and rain/fog scenario, whereas the truck scenario has 
a clearly greater deviation in the case of the manipulation of 

Fig. 10  Relative frequencies 
of deviations in the SDT event 
categories within the analysed 
functions between the manipu-
lated function of driving free 
LV and OV for the no time 
pressure group in the truck, and 
fog and rain scenario, each com-
pared to the basic scenario
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driving free OV. Moreover, the number of deviations is con-
siderably higher than for driving free LV. We can see much 
greater differences in predictive validity on the functional 
level when the human factors condition changes compared 
to the results of the three metrics shown above, the same as 
with the environmental conditions. However, the number 
of deviations is below 10% in the case of the manipulation 
of driving free LV for the basic scenario, which should be 
acceptable, whereas the remaining cases represent clearly 
higher deviations.

5  Discussion

The aim of this paper is first, to define a more formal 
approach to achieving and demonstrating the reliability and 
validity of an FRAM model, and second, to apply this formal 
approach partly to an existing FRAM model so as to prove 
its validity and to evaluate the applicability of this approach. 
In the first part of the paper, a formal approach was derived 
by transferring both the general understanding and defini-
tions of reliability and validity along with concrete meth-
ods and techniques that have been applied in other research 
areas, or specifically to HFE methods, to the concept of 
FRAM. In the second part, the predictive validity, which is 
one part of the formal approach to demonstrate the evalua-
tive part of the validity of an FRAM model, was assessed for 
a specific FRAM model by Grabbe et al. (2022) in a driving 
simulator study. Predictive validity represents the highest 
maxim of validation and the remaining parts of the formal 
approach had already been applied by Grabbe et al. (2022). 
Finally, the results of the study have to be discussed so as to 
prove the credibility of the analysed FRAM model, to cover 

methodological limitations and to evaluate the utility and 
applicability of the approach in general.

5.1  Predictive validity of the analysed FRAM model

The research questions from Sect. 3.2 have to be answered in 
the following to assess the predictive validity of the analysed 
FRAM model. The following rule applies here: if both the 
accuracy and HR are sufficient, then predictive validity can 
be assumed as the true positive results are favoured over the 
true negative results.

The FRAM model is predictively valid for the basic sce-
nario in the case of the manipulation of driving free LV, 
because the accuracy and HR are sufficient and reach at least 
a substantial predictive validity level with high sensitivity. 
However, the CRR is poor due to several misses, indicat-
ing a low specificity. In contrast, the FRAM model is not 
enough predictively valid for the basic scenario in case of 
the manipulation of driving free OV, because all three evalu-
ation criteria are insufficient and only reach a moderate level 
of predictive validity. Overall, the results show that the pre-
dictive validity of the FRAM model for the basic scenario is 
limited, in particular in its specificity, indicating deficiencies 
in the credibility of the examined FRAM model. In total, the 
couplings to 13 functions have to be updated. The valida-
tion performance of the FRAM model is comparable with 
the better performing HFE methods in terms of validation 
(Stanton and Young 1999a; Stanton et al. 2013) only in case 
of the manipulation of driving free LV, except for the low 
specificity. Some of the best methods in the field, for exam-
ple, are associated with the prediction of human error (Baber 
and Stanton 1996; Harris et al. 2005; Stanton et al. 2009). 

Fig. 11  Relative frequen-
cies of deviations in the SDT 
event categories within the 
analysed functions between the 
manipulated function of driving 
free LV and OV, comparing 
each environmental condition 
between the no time/time pres-
sure groups
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These better-performing methods typically achieve validity 
statistics above 0.8 (Stanton et al. 2021b).

When comparing the differences between the environ-
mental conditions, the results show that the predictive valid-
ity is comparable between the three different conditions for 
both manipulation cases, apart from the truck condition for 
manipulation of driving free OV, though the deviations in 
the SDT event categories within each analysed function are 
clearly high. Therefore, the FRAM model is not predictively 
valid for other environmental conditions. When the human 
factors condition is changed, the results indicate that the 
predictive validity is similar for the two conditions with 
every environmental condition and both manipulation cases, 
except the truck condition for manipulation of driving free 
OV. However, the deviations in the SDT event categories 
within each analysed function are once again clearly high, 
except the basic condition for manipulation of driving free 
LV, which shows low deviations. Hence, the FRAM model 
is predictively valid for other human factors conditions in the 
case of the basic scenario with the manipulation of driving 
free LV, but not for the remaining cases. Consequently, it 
can be said that a generalisation of the predictive validity of 
an FRAM model is greatly limited so that an FRAM model 
has to be adapted to changes in both the environmental as 
well as human factors conditions, especially if conditions 
are combined. This is not surprising as an FRAM model can 
only be validated for specific instantiations, and if the con-
ditions change, the instantiation will change and the model 
will then have to be adapted and no generalisation will be 
possible. Against this background, it can also be assumed 
that the effects of shared and traded control (Sheridan 1992) 
between the driver and an automation system by enhanc-
ing the scenario through an interaction of the driver with 
an advanced driver assistance system (ADAS), e.g., lane-
keeping assist (LKA) and adaptive cruise control (ACC), 
cannot be validly predicted without adapting the FRAM 
model. Here, the effects and their prediction of conflict or 
confusion situations between the two agents would be of 
particular interest. For example, a dangerous situation can 
occur when the driver performs a lane change without acti-
vating the turn signal, which the LKA could then interpret 
as an unintentional drift and decide to return the car to the 
main lane. In addition, this could lead to a decrease in trust 
or an increased stress level which in turn degrade the driv-
ing performance or potentially result in a deactivation of the 
ADAS by the driver. Such conflicting decisions are called 
human–machine dissonance when contradictory information 
exists between humans’ and autonomous systems’ knowl-
edge, from information processing to actions on a controlled 
process (Vanderhaegen 2021), and these discrepancies can 
affect human factors and produce, e.g., discomfort, over-
load, or stress (Vanderhaegen 2014, 2016). In the FRAM 
model examined, these conflicts are already present in the 

form of human–human dissonances, e.g., the manipulation 
of driving free for the LV by multiple abrupt braking and 
acceleration could be interpreted by the driver of EV in two 
main aspects: either that LV is reacting to an obstacle or 
leading vehicle or that the driver of LV is drunk. Here, the 
result of the interpretation probably leads to two different 
reactions of the driver of EV which can lead to dangerous 
situations. For instance, the EV’s driver gauges future driv-
ing actions of LV which is significantly facilitated when LV 
is reacting to the traffic in front and the EV’s driver has a 
clear sight compared to the situation when LV’s driver is 
drunk as her/his driving behaviour is random. In addition, 
the strange driving behaviour of LV may affect human fac-
tors by causing anxiety or increased stress for the driver of 
EV. This could be a possible reason for false expectations in 
the FRAM model. Thus, various behavioural changes can 
be triggered in the system, which primarily affects human 
factors, which in turn cause behavioural adaptations in the 
system through interdependencies (cf. Wege et al. 2014). 
As previously described, changing human factors conditions 
and their effects cannot be fully predicted with the FRAM 
model. It would, therefore, be relevant in the future to adapt 
the FRAM model in this direction and to prove whether the 
FRAM model is valid in the context of interaction between 
drivers and ADAS. This appears to be especially impor-
tant given the increasing introduction of such automation 
systems into the road system and their risk assessment. In 
principle, possible conflicts in the sense of dissonance can 
be represented and identified in an FRAM model via the 
couplings between the functions when analysing them in 
the form of “what‐if analyses” (Hill et al. 2020; MacKin-
non et al. 2021) to understand how a potential conflicting 
coupling affects several downstream functions and how this 
propagates through the system.

5.2  Limitations

Some methodological limitations are discussed in the fol-
lowing, including the sample, the driving simulator valid-
ity as well as the test setup, the statistical analysis, and the 
theoretical concept of the predictive validation approach.

The participant characteristics play a role in a driving 
simulator study (Blana 1996). The narrower sample here 
might not represent the entire driver population, which is 
why the evaluation of predictive validity based on perfor-
mance variability is only valid to a limited extent. Neverthe-
less, the sample size can be considered as sufficient for the 
narrower population, since a sample size of 20 test drivers, 
for example, is sufficient to test the controllability of driver 
assistance systems according to ISO 26262 (2018).

If we take a closer look at the perceptions in the simula-
tor and compare these between the two different groups (see 
Table 7), we see that the feeling of time pressure cannot be 
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assumed for the time pressure group as the value is even 
higher than in the no time pressure group. Furthermore, 
there are no clear differences in the efficiency/safety trade-
off between both groups, which is in contrast to the expecta-
tion that the no time pressure group should drive as safely as 
possible, and the pressure group more efficiently. Thus, it is 
questionable whether the measures to generate time pressure 
actually worked. According to Rastegary and Landy (1993), 
time constraints such as those used in this study may be 
insufficient for eliciting time pressure per se. These authors 
attested that not having enough time creates a feeling of time 
pressure only if the time limit is compulsory and if violating 
the time limit leads to a sanction. Although the time limit 
was compulsory, it did not lead to any sanctions. Never-
theless, almost all the drivers in the group with time pres-
sure tried to overtake seriously before the time expired and 
actually overtook. Therefore, it can be argued that the main 
intention, to simulate impatient drivers under time pressure 
who tend to reduce the accepted gaps while performing pass-
ing manoeuvres, was accomplished.

According to Grabbe et al. (2022), a driving simulator 
is an appropriate tool for assessing performance variabil-
ity in terms of action functions at the operational level, but 
not for perception and cognitive functions, where we have 
chosen a mix of objective and subjective measurement of 
performance variability. This leaves room for criticism, as 
the variables selected to measure performance and the data 
collection measures affect the driving simulator validity 
(Blana 1996; Kaptein et al. 1996). In particular, the vari-
ability measured subjectively could be limited in represent-
ing the real performance variability as the self‐awareness 
of humans about their performance may be biased. How-
ever, this does not appear justified, since no great differ-
ences could be found between the type of rating and level 
of validity. Another issue is the definition of performance 
variability for the objective functions. For the sake of sim-
plicity, their variability was based either on a timing or a 
precision metric, but not both. Furthermore, the variability 
measurement of each objective function was subjectively 
defined. Thus, it is uncertain whether the variability that is 

measured objectively completely fits the real performance 
of a respective function.

The driving simulator could, on the whole, have a great 
impact on the validity results as the validity of driving simu-
lators is an ongoing concern. Typically, they are valuable 
tools in road safety and human factors research and have 
been used to assess a variety of driving performances (Mul-
len et al. 2011) by providing a safe and controllable environ-
ment to investigate driver behaviour ethically, effectively, 
and efficiently (Larue et al. 2018). However, simulators 
will never reproduce reality accurately and tend to compro-
mise real-life situations (Espié et al. 2005). For instance, 
participants will probably not drive normally, because they 
perceive the driving task as a game, experience motion sick-
ness, or find the driving task unrealistic (Larue et al. 2018). 
In particular, simulator validity depends on the simulator 
fidelity (Hoskins and El-Gindy 2006; Nilsson 1993), the 
specific driving task, and the realism of its implementation 
(Kaptein et al. 1996). Ultimately, literature shows that rela-
tive validity for driving simulators can be assumed, but abso-
lute validity is limited (Mullen et al. 2011). This means that 
the validation results of the FRAM model are valid within 
the simulator environment but cannot be completely trans-
ferred to real on-road behaviour.

The calculation of the normal range of everyday variabil-
ity per analysed function could be improved in the future by 
performing the reference scenarios 1–3 at least twice to dis-
cover which deviations in variability are normal, even if the 
participants are driving the same scenario again. However, 
this would increase the number of scenarios as well as the 
time needed, which was already high for the test subjects. 
This makes it a cost–benefit question, where we think that 
our simplified approach should be acceptable and sufficient.

In addition, the purely descriptive evaluation of the pre-
dictive validity can be criticised. It should be remembered 
that the focus of the predictive validity assessment was to 
analyse those functions, and how many functions, for which 
the predictions about performance variability through the 
FRAM model are valid or invalid rather than to know the 
number of test subjects for which the predictions are valid 
or not. The reason for this function focus is that potential 

Table 7  Comparison of the no time pressure and time pressure group with regard to perception in the driving simulator

Measurement No time pressure group Time pressure group

Realistic simulation behavior [5-Likert scale: from (1) very realistic to very unrealistic (5)] M = 2.5 (SD = 1.0) M = 2.6 (SD = 1.1)
Realistic driving behaviour of other road users [5-Likert scale: from (1) very realistic to very 

unrealistic (5)]
M = 2.8 (SD = 1.1) M = 2.6 (SD = 0.9)

Equivalent overtaking manoeuvers in real life [5-Likert scale: from (1) very equal to very 
unequal (5)]

M = 3.1 (SD = 1.4) M = 3.0 (SD = 1.2)

The feeling of time pressure [5-Likert scale: from (1) very strong to very weak (5)] M = 3.2 (SD = 1.0) M = 3.5 (SD = 1.0)
Efficiency/safety trade-off of overtaking manoeuver [5-Likert scale: from (1) efficient to safe (5)] M = 2.3 (SD = 1.0) M = 2.2 (SD = 1.1)
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invalid predictions could subsequently be refined to calibrate 
the model, which would otherwise be impossible. Therefore, 
it was not possible to calculate a distribution of the evalu-
ation metrics per scenario, but only a single value in each 
case. This is why no inferential statistical analysis could be 
applied to evaluate the potential effects of changing environ-
mental or human factors conditions.

Furthermore, scientific researchers can employ several 
statistical rates to evaluate binary classifications and their 
confusion matrices. In this work, the accuracy, HR, and 
CRR are used to evaluate the predictive validity in contrast 
to the MCC. This contradicts the general recommendation 
of Stanton and Young (1999a, 2003) to use the MCC as 
an appropriate statistic for the validation of human factors 
methods using the SDT, as well as the conclusion of Chicco 
and Jurman (2020) that the MCC is the most informative 
score for evaluating binary classification tasks and should 
be given preference over accuracy and F1 score by all sci-
entific communities. However, the findings of Zhu (2020) 
challenge this general statement. Finally, there is no clear 
recommendation that just one specific metric should be 
used; this depends to a large extent on the context of the use 
and objective of the validation. Rather, a mix of different 
metrics, as applied in this paper, should be used to avoid 
misleading interpretations.

Last but not least, some methodological issues concerning 
the theoretical concept of the predictive validation approach 
can be identified. First, it is impossible to validate the whole 
FRAM model due to the overwhelming number of func-
tions that have to be tested in a large and complex FRAM 
model. Only a few functions and their expected, as well as 
unexpected effects can be examined. Second, when manipu-
lating one function, it is difficult to actually keep all of the 
remaining functions constant that were supposed to be con-
stant, since the type of manipulation measure can potentially 
affect the performance of other functions. This problem is 
exacerbated by the fact that it is not even possible to check 
which functions this applies to, as it is impossible to analyse 
the performance variability for all functions. This results in 
interaction effects, whereby observed effects can no longer 
be fully attributed to the manipulated function. Furthermore, 
it might be difficult to find a targeted manipulation measure 
for each function in the model, e.g., for cognitive functions, 
since either no targeted manipulation is possible or several 
functions would be manipulated at the same time. Moreo-
ver, the extent and manner in which a manipulation has to 
be carried out to achieve the desired effect are generally 
unclear. Thus, following the method of constant stimuli from 
psychophysics (Fechner 1860), different stimulus intensi-
ties or types would have to be varied per manipulated func-
tion to see to which extent or manner a manipulation of 
an upstream function has to be carried out that results in 
a significant change in the performance variability of the 

individual downstream functions. Naturally, the extent and 
manner of the stimulus required vary between the individual 
downstream functions. Third, the performance variability 
of a downstream function may only change when several 
upstream inputs are varied instead of just the one manipu-
lated function. Thus, an expected coupling could make sense 
and be valid even if no effect was observed in isolation. Con-
sequently, all what-if combinations would have to be taken 
into account to be able to represent the complexity, which is 
simply impractical. Fourth, it is impossible to test whether 
there is also a direct influence for the functions that are 
indirectly influenced by the manipulated function. In addi-
tion, some functions are tested, where a direct influence by 
the manipulated function can be expected, and at the same 
time other functions that are also directly influenced by the 
manipulated function provide upstream inputs for the tested 
function. Hence, in these cases, there is always a degree of 
uncertainty as to whether the effect is direct or indirect.

5.3  Utility and applicability of the formal approach 
to assess predictive validity in FRAM

A research‐practice gap of systemic models and methods 
(Underwood and Waterson 2012), especially FRAM, cur-
rently exists in literature, which means that researchers are 
presently applying systemic methods due to the current state‐
of‐the‐art and, in contrast, many practitioners press ahead 
with more traditional methods because of their ease of use 
or popularity despite known limitations (Grabbe et al 2022). 
Frequently mentioned reasons for this are a difficult and 
time‐consuming application (Salmon et al. 2020), reduced 
model validation and usability, and a potential analyst bias 
(Underwood and Waterson 2012). Against this background, 
the results of the validation must be correlated to usability 
as a cost-effectiveness trade-off to be able to evaluate the 
utility benefit of the predictive validation approach in gen-
eral (cf. Stanton and Young 2003). The effectiveness hereby 
represents the validity of the FRAM model to explain per-
formance variability in an overtaking scenario, and the costs 
are related to the resources and time used by the method. As 
shown in Sect. 5.1, the validity is limited and can only be 
partly assumed. In contrast, the costs of using the method are 
high, since the model development by function identification 
and variability data collection was very time‐ and resource‐
consuming (Grabbe et al. 2022), something that also applies 
to the validation process. It should be noted that only two 
and not all of the functions of the model could be validated 
by this great effort. Therefore, the utility of the analysed 
FRAM model is questionable in terms of predictive validity 
if it is used as an evaluative method. On the other hand, the 
utility of the FRAM model as an analytical method is still 
an open question and difficult to demonstrate objectively.



505Cognition, Technology & Work (2022) 24:483–508 

1 3

In addition, and as shown in Sect. 5.2, there are several 
methodological issues related to the theoretical concept of 
the predictive validation approach for an FRAM model due 
to high complexity, leading to the conclusion that a complete 
validation of an FRAM model is impossible. Rather, the pre-
dictive validation approach developed in this paper should 
be applied to calibrate and not validate an FRAM model. 
This means that it can be used to select a few interesting 
functions in the model and to refine their modelling for a 
better understanding of their potential effects on the system 
behaviour with regard to specific system conditions, but not 
to prove that an FRAM model is valid or not. Consequently, 
the approach is appropriate to enhance any basic knowledge 
about system mechanisms gained by the FRAM model, but 
inappropriate to reach any final decisions concerning the 
approval of designs in safety–critical systems.

6  Conclusions and outlook

This paper developed a framework for evaluating the reli-
ability and validity of an FRAM model, assessed the pre-
dictive validity of one specific FRAM model, and evalu-
ated the applicability of this validation approach. The study 
shows that the validity and usefulness of the FRAM model 
by Grabbe et al. (2022) is limited and that the model results 
cannot be generalised to changing system conditions without 
any model adaptations. However, it is not clear whether this 
arises from the FRAM method itself or from the manner 
in which it was applied (cf. Stanton et al. 2013). Also, the 
applicability of the approach to demonstrate predictive valid-
ity is greatly reduced on account of several methodological 
limitations.

In future, the formal reliability and validity frame-
work, and especially the predictive validation approach, 
should also be applied to other FRAM models in different 
application contexts so as to determine the reliability and 
validity generalisation of the FRAM method. Especially, 
human–machine dissonances and their predicted effects 
through an FRAM model should be validated. Moreover, 
the test–retest paradigm should be applied to rather small 
FRAM models to evaluate the reliability of the FRAM 
method and potential training effects in this context.

In conclusion, this paper contributes to making up for the 
lack of a formal validity approach for the FRAM method as 
well as to the research-practice gap of systemic HFE mod-
els and methods and their associated ongoing concerns of 
reliability and validity. In particular, this work helps ana-
lysts compare the cost-effectiveness of FRAM with other 
HFE methods. Overall, the developed framework provides a 
good foundation to evaluate the reliability and validity of an 
FRAM model. However, there is still potential for improve-
ment and extension, especially against the background of 

the methodological advancement of FRAM and integration 
with other methods offering new opportunities for valida-
tion. Indeed, the reliability and validity framework can be 
used to calibrate rather than validate an FRAM model.
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