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Zusammenfassung
Diese Arbeit beschäftigt sich mit der Herausforderung, Roboter in die mensch-roboterische
Zusammenarbeit in gemeinsamen Arbeitsbereichen zu integrieren und konzentriert sich auf
zwei Hauptziele: die Generierung vorhersehbarer Roboterbewegungen während der Interak-
tion mit Menschen und die Gestaltung eines schnellen, optimalen Controllers, der in der
Lage ist, gegebene Bewegungen auszuführen und sich dabei an Umgebungsänderungen und
Aufgaben anzupassen. Die wachsende Nachfrage in der Industrie erfordert, dass Roboter als
gleichwertige Teammitglieder neben Menschen arbeiten und sie in denselben Arbeitsbereichen
unterstützen. Infolgedessen müssen die Bewegungen des Roboters vorhersehbar sein, um eine
reibungslose Zusammenarbeit zu ermöglichen und gleichzeitig die Sicherheit der Menschen
in allen Phasen der Planung und Ausführung zu gewährleisten. Frühere Forschungsergeb-
nisse haben hauptsächlich die Vorhersagbarkeit von Bewegungen in isolierten Fällen ohne
mensch-roboterische Interaktion untersucht, weshalb es entscheidend ist, einen Rahmen zu
entwickeln, der die Vorhersagbarkeit von Bewegungen durch Interaktion ermöglicht. Die Aus-
führungsphase erfordert, dass der Roboter gegebene Trajektorien optimal ausführt und dabei
Genauigkeits-, Kosten- und Einschränkungskriterien erfüllt, während er schnell auf Umge-
bungsänderungen reagiert, um die Sicherheit der Menschen zu gewährleisten. Ein Controller,
der all diese Bedingungen vollständig erfüllt, ist jedoch in der aktuellen Literatur noch nicht
ausreichend erforscht. Diese Arbeit zielt darauf ab, diese Forschungslücke zu schließen, in-
dem sie verschiedene Ansätze vorstellt, die die Anwesenheit von Robotern in kollaborativen
Umgebungen erleichtern, die Vorhersagbarkeit verbessern und effiziente und sichere mensch-
roboterische Interaktionen in gemeinsamen Arbeitsbereichen gewährleisten.

Die Arbeit beginnt mit der Einführung eines Ansatzes in Kapitel 2, um die Vorhersage
der menschlichen Bewegung in das Ausweichverhalten des Roboters zu integrieren und damit
dessen Reaktionsfähigkeit in beengten Arbeitsbereichen zu verbessern. Die Auswirkungen
dieses Ansatzes werden durch reale Experimente und Fallstudien mit Menschen bewertet
(Kapitel 2.5). Aufbauend auf diesen Ergebnissen wird ein Framework vorgestellt, um vorherse-
hbare Roboterbewegungen durch Interaktion zu generieren und dabei das verbesserte Auswe-
ichverhalten zu nutzen (Kapitel 3). Das vorgeschlagene Framework wird gründlich getestet
und verifiziert, sowohl in virtuellen als auch in realen Szenarien, ergänzt durch verschiedene
Fallstudien mit Menschen, die verschiedene Aspekte der mensch-roboterischen Interaktion
untersuchen, um die Wirksamkeit zu validieren (Kapitel 3.5). Um die Anpassungsfähigkeit
und Anwendbarkeit des Frameworks weiter zu verbessern, wird eine Methode zur Aufgaben-
verallgemeinerung vorgestellt, die den Transfer gelernter vorhersehbarer Bewegungspolicies
von einer Aufgabe auf eine andere ermöglicht (Kapitel 3.4). Dies erhöht die Vielseitigkeit des
Ansatzes und ermöglicht eine breitere Palette von Aufgaben und Anwendungen. Abschließend
wird der TC-SAC Controller eingeführt, ein schneller und nahezu optimaler Ansatz, der en-
twickelt wurde, um gegebene Robotertrajektorien ab der Planungsphase auszuführen (Kapitel
4). Der TC-SAC Controller wird eingehend bewertet und mit dem ursprünglichen SAC sowie
anderen indirekten optimalen Steuerungsmethoden verglichen, um Einblicke in seine Wirk-
samkeit und Leistungsfähigkeit zu liefern (Kapitel 4.5). Ein umfassender Stabilitätsbeweis für
TC-SAC wird ebenfalls vorgelegt, um dessen Robustheit und Zuverlässigkeit zu gewährleisten
(Kapitel 4.6). Diese kombinierten Bemühungen tragen dazu bei, die Herausforderungen in
der mensch-roboterischen Zusammenarbeit und der Bewegungssteuerung zu bewältigen und
eine effizientere, sicherere und intuitivere Interaktion zwischen Menschen und Robotern in
gemeinsamen Arbeitsbereichen zu fördern.
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Abstract
This thesis addresses the challenge of integrating robots into human-robot collaboration within
shared workspaces, focusing on two main objectives: generating predictable robot motion
during interactions with humans and designing a fast, optimal controller capable of executing
given motions while adapting to environmental changes and tasks. The growing demand in
industry necessitates robots to work alongside humans as equal team members, supporting
them in the same workspace. Consequently, the motions of the robot must be predictable
to facilitate seamless teamwork while ensuring human safety throughout both the planning
and execution phases. Previous research has mainly explored predictable motion in isolated
cases without human-robot interactions, making it crucial to develop a framework capable of
generating predictable motion through interaction. The execution phase requires the robot
to perform given trajectories optimally, meeting accuracy, cost, and constraint criteria, while
responding quickly to environmental changes to maintain human safety. However, such a
controller that fully satisfies all these conditions remains underexplored in the current litera-
ture. This thesis aims to fill this research gap by presenting diverse approaches that facilitate
robot presence in collaborative settings, enhance predictability, and ensure efficient and safe
human-robot interactions in shared workspaces.

The thesis begins by introducing an approach in Chapter 2 to integrate human motion pre-
diction into the obstacle avoidance behavior of the robot, thereby enhancing its responsiveness
in confined workspaces. The impact of this approach is assessed through real experiments and
human case studies (Chapter 2.5). Building upon these findings, a framework is introduced
to generate predictable robot motion through interaction, leveraging the improved obstacle
avoidance behavior (Chapter 3). The proposed framework is rigorously tested and verified
through a series of experiments in both virtual reality and real-world scenarios, complemented
by various human case studies that explore different aspects of human-robot interactions to
validate its effectiveness (Chapter 3.5). To further enhance the adaptability and applicability
of the framework, a task generalization method is presented, enabling the transfer of learned
predictable motion policies from one task to another (Chapter 3.4). This enhances the ver-
satility of the approach, allowing it to accommodate a wider range of tasks and applications.
Finally, the thesis introduces the TC-SAC controller, a fast and close-to-optimal method de-
signed to execute given robot trajectories from the planning phase (Chapter 4). The TC-SAC
controller is rigorously evaluated, being compared to the original SAC as well as other indirect
optimal control methods, providing insights into its effectiveness and performance (Chapter
4.5). A comprehensive stability proof of TC-SAC is also presented to ensure its robustness
and reliability (Chapter 4.6). These combined efforts contribute to addressing the challenges
in human-robot collaboration and motion control, fostering a more efficient, safe, and intuitive
interaction between humans and robots within shared workspaces.
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1
Introduction

Robots have been successfully employed in various industries for several decades. Within
these environments, robots are primarily assigned to perform dangerous and repetitive tasks
or operate in hazardous areas. Their role is to enhance productivity and carry out work that
poses risks to humans. The success of robots in the current industrial landscape is evident in
the substantial increase in their utilization across different sectors. This can be attributed to
the numerous advantages they offer

• Robots excel in producing accurate and high-quality work. They demonstrate a remark-
able level of precision and rarely make mistakes, surpassing human workers in terms of
reliability. Moreover, robots exhibit the ability to generate a greater quantity of output
within a shorter time frame. They operate at a consistent speed without breaks, days
off, or holidays. Additionally, robots possess superior repeatability compared to humans
when it comes to performing tasks.

• Robots play a pivotal role in safeguarding workers by alleviating them from engaging in
perilous tasks. They can operate effectively in hazardous conditions, such as environ-
ments with poor lighting, toxic chemicals, or confined spaces. Furthermore, robots are
capable of lifting heavy loads without risking injury or fatigue. By assuming these risky
responsibilities, robots significantly enhance worker safety by minimizing the occurrence
of accidents caused by humans engaging in dangerous jobs.

• Robots contribute to time savings through their capacity to produce a larger volume
of products. Additionally, their accuracy reduces the amount of wasted materials. In
the long run, companies benefit financially from using robots due to quick return on
investment (ROI), reduced worker injuries, and decreased material consumption. These
cost-saving measures positively impact the overall profitability of businesses.

The increased utilization of robots in various industries has led to a significant surge in
their numbers, owing to the multitude of benefits they offer. In manufacturing, for instance,
robots are extensively employed to execute monotonous tasks such as material handling,
processing operations, assembly, and inspection. Similarly, in the realm of agriculture, robots
are harnessed to automate a diverse range of operations, including pruning, thinning, mowing,
spraying, and weed removal. Moreover, within warehouse environments, robots play a crucial
role in facilitating the pick-up, placement, and transportation of products between staging
areas. Figure 1.1 provides a visual representation of several applications wherein robots find
utility within the industrial domain.

However, as factories and plants experience rapid development, robots are confronted with
increasingly sophisticated demands and requirements. Traditional robots, in particular, are
approaching their limitations due to the disadvantages and drawbacks they encounter. One of
the primary challenges lies in the high investment costs associated with establishing a robotic
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1 Introduction

assembly line, coupled with limited flexibility in its applications. These costs encompass
installation, maintenance, additional components, programming, and more. Furthermore,
each assembly line is typically designed for a specific set of tasks, necessitating a complete
overhaul of the line if tasks need to be changed. Consequently, the cost of replacements and
the time investment required for new tasks substantially inflate overall expenses.

(a) Assembly&Dispensing robots (b) Handling&Picking robots (c) Machining&Cutting robots

(d) Welding&Soldering robots (e) Casting&Molding robots (f) Painting robots

(g) Cleaning robots (h) Warehouse&Delivery robots (i) Harvesting robots

Figure 1.1: Applications of robots in industry1

Moreover, robots are confined to performing simple and repetitive tasks, rendering them
unsuitable for more complex endeavors that demand high dexterity or on-the-fly adaptability.
For instance, tasks such as sewing, which require intricate hand movements, or tasks involving
object manipulation that necessitate real-time adjustments, are still beyond the capabilities
of robots. In essence, robots are most effective in specific, narrowly defined tasks aimed at
saving time and reducing labor, but their capabilities are limited in broader contexts. Ad-
ditionally, robots have long been viewed as potential sources of danger on the factory floor.
Given their substantial size and bulkiness, coupled with their ability to move at high speeds,
robots pose inherent risks. Moreover, their limited sensory capabilities often render them inca-
pable of detecting nearby humans, making them prone to hazardous collisions and accidents.
Consequently, many manufacturers resort to implementing physical barriers or partitions to
segregate robots from their human co-workers, ensuring safety within the workplace.

In light of the aforementioned challenges, it becomes increasingly evident that traditional
1Source: https://www.howtorobot.com/expert-insight/industrial-robot-applications
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robots face formidable obstacles in meeting the evolving demands of modern factories and
plants. The limitations related to cost, task complexity, and safety concerns highlight the
urgent need for innovative approaches and advancements in robotic technology to effectively
address these shortcomings. Consequently, there has been a recent shift in focus towards
exploring the potential of robots to collaborate and work alongside human partners within
a shared workspace. This transition is driven by the rapidly changing landscape of produc-
tion automation, fueled by the growing demand for increased product variations and shorter
product life cycles across multiple industries.

As the industry moves away from mass production towards individualized manufacturing
tailored to specific customer requirements, a new and challenging research field emerges: the
development of a new breed of robots capable of safely operating alongside humans as equal
partners within a shared environment. This concept, often referred to as Human-Robot Col-
laboration (HRC) or Human-Robot Team (HRT), envisions a scenario where humans and
robots seamlessly collaborate, combining their respective strengths to achieve optimal pro-
ductivity and efficiency.

The concept of HRC stems from the recognition that both robots and humans possess
different capabilities and limitations that can complement each other. Robots excel in ex-
ecuting fast, precise, repetitive, and heavy-duty tasks in manufacturing, but they lack the
flexibility and adaptability exhibited by humans. Consequently, robots are often confined to
specific tasks and require costly reconfiguration when transitioning to new ones. On the other
hand, humans are highly flexible, capable of quickly adapting to different situations, and can
collaborate with others to accomplish more complex tasks. However, humans have physical
limitations and are prone to errors in repetitive tasks, which restricts the range of tasks they
can perform. Therefore, the concept of HRC aims to integrate the repeatability and accuracy
of robots with the flexibility and adaptability of humans. By combining the strengths of both
entities, HRC endeavors to meet the new demands of the industry, resulting in enhanced pro-
ductivity, improved task variety, and optimized utilization of human and robotic capabilities
in industrial settings.

Several recent research studies have been conducted on various aspects of HRC. One early
survey by Bauer et al. [BWB08] provides valuable insights into the concept of HRC and
identifies the necessary components for its successful implementation. The survey compre-
hensively discusses classical robots, cognitive sciences, and psychology as essential components
for HRC, highlighting their roles in facilitating effective collaboration. Moreover, the survey
explores various methods, including intention estimation, action planning, joint action, and
machine learning, which are considered crucial for the development of collaborative robots.
The authors also address the significance of designing robot appearance to enhance human
comfort, emphasizing the importance of creating a conducive and ergonomic environment for
collaboration. Additionally, the paper acknowledges the vital aspect of safety in HRC and
examines different techniques and approaches for ensuring safe physical interaction between
humans and robots. It covers topics such as collision avoidance, force control, and compliant
behavior, emphasizing the need for robust safety measures to prevent accidents and injuries
throughout the HRC process.

In addition to Bauer et al., other literature presents different viewpoints and categoriza-
tions of human-robot collaboration (HRC). Hentout et al. [HAMA19] propose categorizing
HRC into human-robot coexistence, human-robot cooperation, and human-robot collabora-
tion, further dividing them into physical collaborations and contact-less collaborations. They
provide distinct categories that capture the range of interactions between humans and robots.
Zaatari et al. [EZMLU19] categorize HRC into independent, simultaneous, sequential, and
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supportive levels, illustrating the evolving behaviors of the robot as it transitions from work-
ing independently alongside the human to actively supporting the human in the same task.
Their categorization emphasizes the different modes of collaboration and the varying de-
grees of robot involvement. Adding to this discussion, Wang et al. [WLLW20] offer a more
recent analysis that examines the relationship between humans and robots from five perspec-
tives: workspace, direct contact, working task, simultaneous process, and sequential process.
Through this analysis, they classify the levels of collaboration between humans and robots,
spanning from mere coexistence to deeper collaboration levels, where joint activities and a
shared working environment become essential to accomplish common tasks. Furthermore,
these papers explore various characteristics required for successful HRC, such as flexibility
and adaptability in configuration, the capability to support and assist human co-workers,
intuitive interfaces for human-robot interaction or multimodal communication, and ensuring
safety for human partners.

On one hand, Haddadin et al. [HC16] support a categorization based on the physical
proximity between humans and robots. According to their interpretation, cooperative robot
interactions occur in closer proximity compared to collaborative robot interactions. Therefore,
human-robot cooperation is characterized by the closest possible distance between a robot and
a human, while human-robot coexistence occurs when they are farthest apart. On the other
hand, Kolbeinsson et al. [KLL19] emphasize that HRC is determined by how humans and
robots share their workspace and tasks. They view HRC as more immersive than human-robot
cooperation, highlighting the level of integration between humans and robots in their shared
environment. Furthermore, Villani et al. [VPLS18] conducted a survey specifically focused on
safety aspects and user interfaces in industrial robotic applications. They introduce various
ISO safety standards that correspond to different operative modes of robots, reflecting the
levels of collaboration between humans and robots. These modes range from monitoring,
where either the human or the robot operates in the shared workspace at a time, to hand
guiding, where humans physically teach robot positions without the need for an intermediate
interface, and finally to the highest level known as power and force limiting. In the power
and force limiting mode, the motor power and force of the robots are restricted to ensure safe
coexistence with humans. The paper provides an overview of risk assessment methodologies,
safety monitoring systems, and collision detection and avoidance techniques. It underscores
the importance of advanced safety measures, including the use of force and torque sensors, to
enhance the ability of robots to detect and respond to the presence of humans.

Regarding the safety aspect in HRC, the authors in [HASH07] delve into the topic of
ensuring safe physical interaction between humans and robots. The authors emphasize the
significance of accurately measuring and analyzing forces and contacts during collaborative
tasks to ensure the safety of humans involved. They present novel measurement techniques
and analysis methods that enable a comprehensive understanding of the physical interactions.
By gaining insights into the forces exerted by humans and robots, the paper explores the
development of control strategies that allow robots to actively respond and adapt to these
forces, minimizing the risk of injuries. The authors also propose the concept of "soft robotics"
as a means to design robots with compliant and safe physical properties. In another work
by De Luca and Flacco [DLF12], the focus is on the integrated control of physical human-
robot interaction (pHRI). The paper addresses multiple aspects of pHRI, including collision
avoidance, detection, reaction, and collaboration, which are crucial for ensuring safe and
efficient interactions between humans and robots. The authors propose control strategies
and algorithms that enable robots to actively detect and avoid collisions with humans, react
appropriately to unexpected interactions, and collaborate effectively in shared workspaces.
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They emphasize the importance of integrating these control aspects to achieve seamless and
safe human-robot collaboration.

In [BLOD17], the authors approach the topic of human-robot interaction from a differ-
ent perspective, highlighting the intentional and informative nature of physical interaction
during collaboration. They propose a framework that enables a human user to physically
interact with a robot, demonstrating desired behaviors. The robot then learns from these
interactions and infers the objectives the human intends to achieve. The paper addresses the
challenge of accurately inferring human objectives and presents an algorithm that combines
inverse reinforcement learning and reinforcement learning to learn from physical demonstra-
tions. Building upon this work, the subsequent paper in [LBOD22] extends the framework
by utilizing physical interaction as a form of communication to refine robot objectives. By
incorporating corrections provided by the human, the robot can learn and adapt its objectives
in an iterative manner.

Another recent survey in [HC22] discusses different key components necessary for a safe and
successful implementation of HRC in the assembly and disassembly process. The authors focus
on two main components: control strategies and human-robot communication techniques.
Control strategies are divided into pre-collision and post-collision categories. Pre-collision
control strategies aim to prevent harmful contact between the robot and its surrounding
environment and can be referred to as obstacle avoidance [SNB19, CS18]. Post-collision
control strategies aim to limit the contact force and energy exchange between the human
and the robot to a safe level [YC16, LLH09, GS17, AAG+19]. Human-robot communication
represents the ways in which humans communicate with robots on the production floor. It
is further divided into verbal communication, where voice and speech recognition play key
roles, and non-verbal communication, which includes gesture recognition, human pose and
skeleton tracking, gaze detection, intention recognition, and more. The paper also discusses
task sequences related to different states of a product and how to distribute tasks between
humans and robots to achieve optimal collaboration.

In addition to the aforementioned works, there are several other studies that approach
HRC from different perspectives depending on the specific applications in which robots are
integrated. Nevertheless, it can be concluded that the primary objective of HRC is to trans-
form outdated and unresponsive robots into collaborative robots, commonly referred to as
cobots. The aim is to enable efficient and intuitive human-robot collaboration within shared
workspaces. To illustrate this goal further, consider a scenario in which humans and robots
collaborate on joint assembly tasks, such as constructing a LEGO bridge as depicted in Figure
1.2. In such cases, various questions arise that require further investigation:

• How to distribute tasks in human-robot teams?

• How to control and monitor the task execution?

• How to mutually understand and interpret movements and how to derive symbolic in-
tentions?

• How to achieve reactive behavior of the robot, in particular to inconsistencies and errors?

Under cooperation, humans and robots can coordinate their actions effectively, functioning
as a cohesive team. To achieve this, robots must possess decision-making capabilities that
enable them to choose cooperative actions from a set of ongoing tasks. However, several
challenges arise in this context due to information uncertainties and rapidly increasing problem
complexity in real-world scenarios. Information uncertainties stem from the lack of precise
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Figure 1.2: An example of Human-Robot Collaboration in shared workspace

knowledge about the current state of the environment, including the spatial position of task-
relevant objects. This uncertainty arises from residual errors in sensor evaluation and the
inability to fully observe the activities of human team members. Monitoring progress and
handling errors during collaborative human-robot assembly are also crucial. Observing human
actions and assigning them to individual elementary actions facilitates progress monitoring,
and in the event of discrepancies or errors, action distribution among the agents can be
recalculated, leading to the selection of a new action sequence.

Furthermore, the movements of robots need to be observed and planned to ensure safety
and comfort for human partners during collaboration. Safety entails avoiding collisions be-
tween robots and humans while performing tasks. However, in shared workspaces, encounters
between humans and robots are likely, requiring robots to dynamically adapt their motions
while maintaining task efficiency. Additionally, robots need to move in a manner that instills
comfort in human partners, encouraging them to approach and collaborate. This enhances
the effectiveness of collaboration and increases success in joint tasks. Achieving this level
of comfort requires the robot to understand and interpret human movements and actions in
order to plan accordingly. Additionally, the robot must perform movements that allow for
appropriate human interpretation.

Considering all the aforementioned challenges, we propose a comprehensive framework for
joint collaboration between humans and robots, as illustrated in Figure 1.3. The framework
consists of five major interdependent components categorized into two levels: the cognitive
reflection level, which includes perception & understanding and autonomous task allocation,
and the execution level, comprising adaptive motion planning and versatile manipulation.

Starting from the high-level concept of cognitive reflection, the autonomous task allocation
component is responsible for the high-level interpretation of tasks and the autonomous decision
making process in which tasks are efficiently allocated among the robot and human partners.
This task allocation process faces challenges as it needs to adapt to changes in the environment
and dynamically respond to human partners. The outcome of this component is the selection
of actions by the robot that leads to the best collaborative performance.

The perception & understanding component focuses on the human side of HRC. To design
robot co-workers that are accepted by humans, it is vital for the robot to comprehend human
motion behavior in different settings. This component is responsible for modeling and learn-
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Figure 1.3: HRC framework in joint collaboration scenarios

ing human motion, their interaction with the robot and the surrounding environment, and
integrating these factors to predict human motion behaviors in various HRC contexts. The
outcome of this component facilitates a faster and more intuitive task allocation process and
enables comfortable movements of the robot.

The adaptive motion planning component belongs to the execution level of the proposed
HRC framework. Its objective is to develop a trajectory planner for the robot that not only
ensures proper task execution but also provides comfort and acceptance to human collabora-
tors. To achieve this, the planner considers the dynamics of the environment, task variations,
and predictions of human motion to adapt the trajectories of the robot in real-time. This
adaptation ensures safety for human partners during task execution and makes the move-
ments of the robot predictable and understandable, facilitating a sense of collaboration and
partnership between humans and the robot.

The versatile manipulation component aims to equip the robot with a diverse range of
manipulation skills, enabling it to work effectively alongside human co-workers. In addition
to standard tasks like picking and placing objects, the robot requires other cooperative skills
such as guidance and handover, etc. These skills enhance the capabilities of the robot and
broaden its range of tasks. A smooth and natural handover movement by the robot further
enhances the comfort of human partners.

The social norm & safety component focuses on fault handling and addressing violations
of social norms in joint assembly scenarios. Faults or errors occur when the robot deviates
from the normal routine and behaves unexpectedly, leading to disruptions in the production
process. This component explores strategies for handling faults, errors, and collisions that
may occur during human-robot collaboration.

All five components are vital for enabling human-robot collaboration in industrial assem-
bly and encompass a wide range of research topics currently under investigation by scientists
and researchers. Within the proposed framework, this thesis primarily focuses on the adap-
tive motion planning component within the execution level of robots in HRC environments.
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Specifically, the study aims to investigate how robot motions can be planned and controlled to
execute tasks in dynamic environments following task distribution from the cognitive reflec-
tion level. The motivation, focus, and contributions of this thesis will be discussed in detail
in the following sections.

1.1 Motivation and Focus of the Thesis
The areas of motion planning and control have long been subjects of research and exploration
in both academia and industry within the field of robotics. These components are crucial
for enabling robots to operate effectively in industrial settings and various other applications.
Although there is some overlapping between them, they are usually categorized into two
separated problems

1. Motion planning: refers to path planning and trajectory planning which involve the pro-
cedure of finding a collision-free path/trajectory for the robots. This process operates
at the kinematic level, generating outputs such as position, velocity, acceleration, and
jerk. A path represents a geometric representation, while a trajectory includes addi-
tional information on velocities, accelerations, and jerk along the path. When a path is
provided, trajectory planning is often used to generate trajectories that enable robots
to follow the given path while satisfying specific criteria, such as maximum velocities,
accelerations, or minimum execution time.

2. Motion control: refers to the procedure of designing a controller such that the robots
can execute the given path/trajectory properly without violating any requirements or
constraints. This is done at the dynamic level, providing outputs in the form of force
or torque that can be directly applied to the robot.

Both motion planning and motion control problems can be further classified into two types
of algorithms: offline and online. Offline methods produce static results, and the calculations
are performed prior to execution. In contrast, online methods allow for the recalculation of
the path, trajectory, or controller in real-time, enabling the motion of the robot to be adjusted
dynamically to react and adapt to changing environments.

In the context of this thesis, the focus lies on the adaptive motion planning component
within the execution level of the proposed HRC framework. Consequently, both motion plan-
ning and motion control problems need to be explored, particularly in the online scenario.
Therefore, we will first provide a brief overview of the current state-of-the-art in these two
areas. Subsequently, we will discuss the motivation and specific focus of this thesis.

Path planning is a foundational problem within the field of motion planning, as it involves
finding a geometric representation of a plan to move from a starting pose to a target pose.
It is a computational process aimed at determining a collision-free path for a robot, allowing
it to navigate from its initial configuration to a goal configuration while avoiding obstacles,
static objects, as well as other robots or humans in the environment. The exploration of path
planning began in the 1970s and has since evolved to address various challenges, ranging from
simple 2-dimensional route planning for mobile robots to complex movements for articulated
robots.

One of the early methods in this domain is the Dijkstra algorithm [Dij59] and its variants,
which have found applications in diverse fields, including traffic routing systems like Google
Maps [ZTC12]. The Dijkstra algorithm searches for the shortest path in an acyclic environ-
ment between two points. It selects the unvisited vertex with the lowest distance, calculates
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the distance through it to each unvisited neighbor, and updates the neighbor’s distance if it
is smaller. The algorithm maintains newly discovered vertices in a priority-min queue, re-
sulting in the determination of a single shortest path. Various modified versions of Dijkstra’s
algorithm have been developed to address different use cases and applications.

Despite its usefulness, the Dijkstra algorithm has certain limitations. It is memory-intensive
[FJ09], as it needs to search through all possible outcomes to identify the shortest path, and
it cannot handle negative edges. Consequently, alternative memory schemes [FAMJ15] and
solutions to handle significant cost factors [GA20] have been proposed. Overall, the Dijkstra
algorithm is best suited for static environments and global path planning, where most of the
required data can be computed in advance.

Alternative approaches such as A* [HNR68] and its variants have been introduced in order
to tackle the computational burden of Dijkstra’s algorithm. A* follows a similar approach
to Dijkstra’s algorithm by constructing a lowest-cost path tree from the start to the end
point. However, A* improves upon Dijkstra’s algorithm by guiding its search towards the
most promising direction, thereby significantly reducing computation time [FLS05]. A* is
commonly employed in applications with available data sets or nodes, particularly in static
environments. A variant of A* that incorporates moving obstacles into its calculations is
the dynamic A* algorithm, also known as D* [HBA14]. D* generates optimal traverses in
real-time by considering a graph with dynamically changing or updated arc costs. It takes
advantage of the fact that most arc cost corrections occur near the vicinity of the robot,
allowing for re-planning of only the portion of the path from these corrections to the current
location. D* maintains a partial, optimal cost map focused on locations relevant to the robot,
minimizing the need for extensive repairs. The conditions for determining when repairs can be
halted are established by D*, whether it be due to finding a new optimal path or confirming
that the old one remains optimal. Consequently, D* exhibits high computational and memory
efficiency, and it is capable of operating in unbounded environments. However, one drawback
of D* is that the simulation time increases as the complexity of the problem grows.

For robots with high degrees-of-freedom (DOF), such as articulated robots (typically more
than six DOFs, like KUKA robots) and humanoid robots with over twenty DOFs, sampling-
based algorithms have revolutionized the field of motion planning. Two well-known approaches
in this regard are probabilistic roadmap (PRM) [KSLO96] and rapidly exploring random trees
(RRT) [LaV98]. RRTs employ a dynamic expansion strategy wherein the tree grows incremen-
tally from the starting point towards the goal point. In each iteration, a randomly generated
vertex is selected and the tree expands towards its nearest vertex based on a specified dis-
tance metric. Notably, RRTs exhibit a bias towards unexplored regions of the configuration
space, as they heavily expand in these uncharted territories. The vertices of an RRT follow
a uniform distribution, ensuring a relatively simple algorithmic structure while maintaining
connectivity, even with a minimal number of edges. Alternatively, PRM explores the config-
uration space using a distinct approach. It involves randomly sampling configurations within
the space and testing them for collision with obstacles. These collision-free configurations
are then connected to nearby configurations using a local planner. By adding the starting
and goal configurations, a graph is constructed to represent feasible motions within the envi-
ronment. The PRM planner consists of two distinct phases: the construction phase and the
query phase. During the construction phase, the roadmap (graph) is incrementally built by
adding configurations and establishing connections until the graph achieves the desired level
of density. In the subsequent query phase, the start and goal configurations are connected to
the graph, and a Dijkstra’s shortest path query is employed to determine the optimal path
between them.
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These methods have been proven to be highly effective in overcoming the curse of di-
mensionality. The curse of dimensionality refers to the exponential increase in computa-
tion time as the number of DOFs of the robots increases, making traditional methods like
Dijkstra’s algorithm and A* impractical for higher-dimensional environments. In contrast,
sampling-based algorithms rely on a collision checking module to evaluate the feasibility of
sampled paths/trajectories and connect them to form a graph-like roadmap of viable trajec-
tories. Although these methods do not fully represent the environment, they offer a relaxed
guarantee known as probabilistic completeness, ensuring that a solution, if it exists, will be
found as the number of samples approaches infinity. As a result, sampling-based methods
have demonstrated great effectiveness in high-dimensional motion planning and have con-
tinued to attract the attention of researchers, leading to recent variants and improvements
[KWP+11, KFT+08, WvdB13, BOvdS99, SLCS04].

The early works in motion planning, as discussed previously, primarily focused on find-
ing paths or trajectories that adhere to environmental constraints. However, these methods
faced inherent limitations that hindered their further extension. One major challenge was
the difficulty in considering complex constraints imposed by robot dynamics, although some
approaches were capable of handling simple kinodynamic constraints such as velocity or ac-
celeration bounds [CRR91, LJJK01]. Another significant limitation of most sampling-based
methods, including RRT and its variants, was their lack of consistency. Consistency refers
to the ability to produce the same trajectories for two queries with identical start and goal
states. Sampling-based planning, known for its lack of consistency, restricts its application in
scenarios where trajectory predictability is crucial. Furthermore, evolving industrial require-
ments demanded more than just feasible solutions; the quality of the generated solution also
became crucial. In many industrial applications, users sought solution paths that minimized
execution time to maximize productivity. This gave rise to the challenging problem of opti-
mizing the motion of the robot, which involves computing motion plans that minimize a given
cost functional, such as path length or energy consumption. Even in basic cases, this problem
has proven to be highly challenging to traditional approaches [CR87].

Trajectory optimal motion planning (TOMP) emerged as a subsequent solution to generate
optimal paths or trajectories, aimed at enhancing overall performance. TOMP serves different
purposes depending on the objectives of the problem. For instance, in scenarios where an
initial trajectory is provided, TOMP is employed as a post-processing phase to optimize the
given trajectory or removing dynamically infeasible segments. Conversely, in cases where no
path or trajectory is provided, TOMP acts as an optimal planner, searching for collision-
free trajectories while simultaneously optimizing them according to a given objective. The
latter case presents additional challenges that require solving an extra problem. Extensive
research has been conducted employing diverse optimization and optimal control techniques
to effectively address the multitude of challenges that arise from the evolving demands in
the fields of robotics and industry. Minimizing jerk, energy consumption, and execution time
are commonly used as design objectives, while the joint configurations and motor torques of
the robot serve as frequently employed design variables [YPW19]. If motor torques are used
as design variables, the problem falls under the category of optimal control, which will be
discussed in detail later.

In general, TOMP works by solving a constrained non-convex optimization problem within
the trajectory space, treating the trajectory as a sequence of states. As mentioned earlier,
the typical design objectives in TOMP involve minimizing jerk for smooth trajectory execu-
tion, as well as reducing energy consumption and execution time to enhance efficiency. One
of the key advantages of TOMP over traditional motion planning methods lies in its ability
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to incorporate constraints into the optimization process. This capability allows TOMP to
tackle high-level complex problems that traditional approaches struggle to handle effectively.
Inequality constraints commonly encountered in TOMP include obstacle avoidance, joint lim-
its, and inverse singularity, while equality constraints encompass aspects such as end-effector
positions and orientations, as well as the kinematics and dynamics of the controlled system.

Several TOMP approaches adopt a waypoint-based representation for trajectories, where
each waypoint corresponds to a specific robot configuration. These methods leverage cost-
gradient information to drive the minimization process. Notable examples of such techniques
include CHOMP (Covariant Hamilton Optimization Motion Planning) [ZRD+13], STOMP
(Stochastic Trajectory Optimization for Motion Planning) [KCT+11], and Trajopt (Trajectory
Optimization) [SDH+14]. CHOMP begins by creating an initial path from the start to the
end position, which is then optimized using gradient descent to obtain a smooth and collision-
free trajectory. While CHOMP efficiently handles high-dimensional cases, it requires the cost
function to be differentiable, which limits its applicability to a narrower range of scenarios.
STOMP takes a different approach to address the limitations of CHOMP. It explores the
space around an initial trajectory by generating noisy trajectories and combines them to
produce an updated trajectory with a lower cost. The cost function in STOMP encompasses
both obstacle and smoothness costs, without the requirement of gradient information. This
characteristic allows STOMP to accommodate more general cost functions, including cases
where derivatives may not be available, such as those involving motor torque constraints.
Trajopt formulates trajectory planning as an optimization problem and employs sequential
convex optimization techniques to solve it. A notable strength of Trajopt lies in its efficient
formulation of the no-collision constraint, which accounts for continuous time safety. This
formulation enables Trajopt to reliably solve motion planning problems, even in scenarios
involving thin and complex obstacles. These methods, including their variants, have garnered
significant attention, finding application and extensions in numerous scenarios and domains
[BBSF14, LL22, DMDB16, MHB15]. They excel at planning smooth and optimal trajectories
in high-dimensional spaces, such as six degrees of freedom or more, while still considering
various constraints.

However, it is important to note that these methods do not explicitly consider the physical
body or dynamical model of the controlled system. The output of CHOMP, STOMP, Trajopt,
and similar techniques consists solely of a sequence of waypoints, providing information such
as position, velocity, acceleration, jerk, etc. Consequently, when applying these approaches to
real robots, an additional controller is required to guide the robot in following this sequence
of waypoints effectively.

In the domain of optimal control, extensive and closely related work exists, which primarily
focuses on systems with complex dynamical properties. In these approaches, the dynamical
system is treated as equality constraints within the optimal control problem, and the outputs
are forces or torques directly applied to the robot. Such methods fall under the category of
motion control. It is worth noting that solving an optimal control problem generally demands
more computational effort compared to the optimization procedure of TOMP, particularly
when dealing with high DOF robots. This increased computational complexity arises due to
the quadratic scaling of the dynamic model with the number of DOFs of the robot. Conse-
quently, a key challenge in this area revolves around efficiently solving the optimal control
problem to reduce computation time for the algorithms.

The two most common methods employed to tackle the optimal control problem are known
as indirect and direct methods [VSB92]. Indirect methods, pioneered by Pontryagin, have
played a significant role in the applications of space manufacturing, largely due to their high
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precision. These methods rely on the first-order necessary conditions summarized in Pon-
tryagin’s minimum principle and strive to identify control and state trajectories that satisfy
these conditions. Direct methods, introduced later, apply numerical analysis to discretize the
cost function and constraints directly, thereby transforming the optimal control problem into
a nonlinear programming problem. Both indirect and direct methods have been successfully
applied and integrated into various robotic systems and applications.

For instance, in [ADRVM13], indirect methods were utilized to minimize the execution time
between two configurations, and the approach was tested on a PUMA 560 robot. Gregory et
al. [GOS12] also employed an indirect method to solve an optimal control problem, result-
ing in an optimal energy-consumption trajectory for a two-revolute planar manipulator. In
[PDE+14], the authors aimed to improve the energy efficiency of a robot using direct meth-
ods through the ACADO toolkit [HFD11] for trajectory optimization. The experiments were
conducted on a real IRB1600 industrial ABB robot. Through the optimal control approach,
they achieved up to a 5% energy improvement compared to most trajectories generated by
the ABB software. In [KNGD02], a different direct method called SNOPT was employed to
calculate trajectories for four-wheeled omnidirectional vehicles. Optimal control has also been
utilized in various other applications, such as finding smooth trajectories for each foot of a
service robot [MPMK17], minimizing energy and jerk in controlling a 6-DOF chain manip-
ulator [GZ07], optimizing gaits for a 1.5m-tall and 39kg-weight bipedal robot [CEA16], and
minimizing fuel consumption in space robots [CMW+17].

Recently, learning-based methods have been integrated into the optimization procedures for
solving optimal control problems. These methods include particle swarm optimization using
population-based stochastic approaches [K.17, CSZT16, MCTK17, DBP16, AS17], artificial
bee colonization inspired by the foraging behavior of bee swarms [GSK15], ant colony optimiza-
tion built upon the foraging performance of ant colonies [BEL17], as well as hybrid methods
combining genetic algorithms with traditional direct methods [EMA17, SSD14, SD15], among
others. However, a major drawback of learning-based methods is the lack of stability proof
due to their probabilistic nature. Despite numerous modifications and improvements, optimal
control methods, in general, still require a significant amount of computational effort, lim-
iting their applicability to offline planning or applications that do not necessitate on-the-fly
trajectory recalculations.

Model Predictive Control (MPC) [DBDW07] has emerged as a highly sought-after approach
in dealing with optimal control problems in online scenarios. Stemming from the optimal
control background, MPC treats trajectory planning as an optimal control problem. However,
it differs from traditional methods by focusing on finding a close-to-optimal solution within
a short horizon. The optimal control inputs are applied to the system, and the process
is iteratively repeated by updating the state estimate, predicting future states, optimizing
control inputs, and applying them to the system.

MPC exhibits two key advantages over optimal control methods. Firstly, it offers fast com-
putation times due to the shortened horizon and relaxed optimality requirements. Secondly,
it enables online trajectory recalculations, allowing for the consideration of new constraints
or changes in the environment at each iteration. While the optimality of the solution may be
compromised to some extent, the significant benefits provided by MPC outweigh this draw-
back. Surveys have summarized key works and developments in this area [Lee11, May14]. In
the domain of motion planning, MPC has garnered significant attention, leading to advance-
ments in online motion planning methods [NdCF+16, FJS+17].

For instance, in [LVS20], the authors propose a distributed MPC approach for multi-robot
motion planning, decentralizing trajectory generation among multiple robots to optimize their
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trajectories while considering inter-robot interactions. Experimental validation with a swarm
of up to 20 drones demonstrates the successful generation of collision-free trajectories aligned
with global mission objectives. In [FFLS18], a Perception-Aware MPC method is introduced
for quadrotor UAVs, which integrates perception-based information into the control framework
to enhance performance in dynamic environments. This approach outperforms traditional
MPC methods by incorporating perceptual cues, resulting in improved trajectory tracking
accuracy, obstacle avoidance capabilities, and overall flight performance. In [NSG+18], a
comprehensive approach is presented for controlling the motion of quadrupedal robots using
whole-body nonlinear MPC techniques with contact constraints. This method enables agile
and dynamic movements, as demonstrated through simulations and real-world experiments on
challenging surfaces. Similarly, in [KK22], a method called model hierarchy predictive control
(MHPC) is developed to enhance balance and disturbance recovery in humanoid robots by
leveraging arm motions. The MHPC formulation combines a full-body kino-dynamic model
and a single rigid body model, allowing for the generation of ground wrenches while main-
taining stability within the support polygon. Furthermore, a more recent work in [MSV+23]
introduces the BiConMP framework, a nonlinear MPC approach for online planning of whole-
body motions in legged robots. By efficiently utilizing the structure of the robot dynamics,
BiConMP generates real-time whole-body trajectories. Its performance is evaluated on a
physical quadruped robot, highlighting its capability to generate cyclic gaits on different
terrains, withstand unforeseen disturbances, and seamlessly transition between gaits during
online operation.

Another branch of MPC is Learning-based MPC [HWMZ20], which has emerged as a
promising approach for enhancing control performance by integrating learning techniques
into the MPC framework. This advancement encompasses three main directions. Firstly,
learning the system dynamics focuses on adapting the system model during operation or be-
tween instances, enabling the MPC controller to continually improve its understanding of
the system [SMTA18, TFFS19, TFG19]. This adaptive modeling approach enhances the ac-
curacy and predictive capabilities of the MPC controller. Secondly, learning the controller
design involves optimizing the MPC formulation, including the cost function, constraints, and
terminal components, to ensure favorable closed-loop control behavior [FKDZ19, RB20]. By
leveraging learning algorithms, the controller can adapt and optimize its parameters to achieve
desired control objectives effectively. Lastly, MPC for safe learning utilizes MPC techniques
to provide safety guarantees for learning-based controllers by addressing constraint satisfac-
tion [KBTK18, WHCZ21]. This ensures that the learning-based controller operates within
predefined safety bounds, mitigating risks and improving system reliability. The integration
of learning techniques into the MPC framework expands its capabilities and allows for more
adaptive, optimized, and safe control in various applications.

Up to this point, humans have not been extensively involved in the industrial pipeline. They
mainly serve as supervisors who control, operate, and maintain robotic systems to perform
assigned tasks. However, with the increasing demands in robotics and the emergence of
challenges where robots have to collaborate with humans in shared workspaces, robot motion
planning in these scenarios has reached a new level of complexity. In addition to fulfilling
given tasks with considerations for smoothness, low energy consumption, and environmental
constraints, the presence of humans in the same workspace as robots introduces new challenges
for trajectory motion planning.

• It is essential to plan and adapt robot motions in coordination with human motions
to ensure the safety of human partners working in the same environment as the robot.
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Simply avoiding humans passively when they come close is no longer sufficient due to
the confined workspace shared by both the robot and human partners. Instead, the
robot needs to proactively understand and predict human motions, integrating this
information into the planning process. By incorporating human motion prediction, the
robot can take preemptive action, such as avoiding human partners even before they
reach the safety margin around the robot. This proactive approach enhances the safety
aspect and improves the overall comfort level for human partners when collaborating
with the robot.

• Robot motions must be readable to human partners. In this context, readable means
that by observing a portion of robot motion, the human partner is able to understand
the intentions of the robot, and the motion or behavior of the robot should meet the
expectations of the human partner. Terms such as predictable motion or legible motion
are used to describe this type of robot motion. Achieving readable motions increases
the comfort of human partners and fosters trust, enabling more efficient collaboration
between humans and robots.

• The robot needs to be able to adapt to the highly dynamic environment and adjust its
tasks or goals while in motion. This requires the controller of the robot to have fast
computation capabilities and the ability to recalculate trajectories on-the-fly, ensuring
responsiveness and adaptability in real-time scenarios.

While motion planning has been a topic of research for several decades, there is a limited
number of studies that specifically address the emerging challenges in HRC. In the domain
of human motion prediction, considerable research has been conducted, as highlighted in the
survey by Aggarwal et al. [AC99] and Rudenko et al. [RPH+20]. In [LFS17a], the authors
provide a comprehensive overview of how human motion prediction is harnessed to facilitate
safe interaction between humans and robots across various robotic systems. They categorize
the techniques into two main approaches: goal intent and motion characteristic-based meth-
ods. Goal intent techniques focus on inferring human intentions and predicting trajectories,
employing methods such as the early prediction approach proposed by Ryoo [Ryo11] and the
mixed observability Markov decision process developed by Nikolaidis et al. [NRGS15]. On the
other hand, motion characteristic-based approaches concentrate on observing natural human
motion patterns, exemplified by Takano et al.’s predictive model [TIN11] that utilizes motion
capture data, as well as Xiao et al.’s approach [XWF15] that incorporates support vector
machine classifiers. However, it is important to note that these methods primarily explore
human motion in isolation, rather than in the specific context of human-robot collaboration
within the same workspace.

In addition to human motion prediction, the ability of human agents to anticipate the ac-
tions and movements of robots is also crucial for enhancing collaboration in HRC, and this
aspect has only recently gained attention. One approach to making robot behavior more pre-
dictable to human teammates is through explicit communication of intent, where the robot
conveys its planned actions and motions using visual and auditory cues [SCM15, LHS+13,
VWE13]. However, a more intuitive and natural way for humans to understand the intentions
of the robot is by observing its motion, akin to how humans collaborate with each other. This
implicit communication fosters cooperation between humans and robots, creating a sense of
partnership. Building on this concept, the authors in [TDJ11] used animation principles to
enhance robot intent readability. Participants interpreted actions in simulated robot scenar-
ios, with forethought, such as height adjustments and directed gaze, increasing confidence.
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Forethought also led to participants perceiving the robot as more approachable and appealing.
Furthermore, when the robot exhibited reactions to the success or failure of the task it was
performing, participants regarded it as more intelligent. Dragan et al. [DLS13] investigated
how robot motion can convey intent through mathematical definitions of predictability and
legibility. They conducted experiments where participants predicted the goals of robots and
humans using predictable and legible motions. In a subsequent study [Dra15], they exam-
ined the impact of legible and predictable motion on human-robot collaboration. Participants
had to infer robot intent for efficient task completion, and the results showed that legible
motion, despite having longer trajectories, facilitated more efficient interaction in terms of
coordination time compared to functional motion alone. Other related works exist, such
as [KTS+10, DWK+05, LK16, BBB13], exploring predictable motion in different scenarios.
However, these studies typically involve the robot performing tasks alone or separate human-
robot tasks without interaction. Limited recent works have started to apply these concepts
in real-life HRC scenarios, although industrial use-cases have not been extensively considered
yet, as seen in works such as [BHFK+19, FKBF+20, FPM+23].

Therefore, there is a pressing need for in-depth research on the integration of human motion
prediction within the collaborative framework of HRC to enhance the behaviors of the robot.
The ability to accurately anticipate human motions and intentions is crucial for the robot to
effectively collaborate with its human partners. Current research in human motion predic-
tion has primarily focused on analyzing patterns in human behavior and utilizing machine
learning techniques, such as deep learning models, to forecast future motions based on past
observations. However, the challenge lies in incorporating these predictive capabilities into
the context of HRC, where the robot needs to react responsively to its human partner as well
as changes of the environment.

Moreover, the generation of readable robot motions represents another critical area that ne-
cessitates further investigation and validation within the framework of effective collaboration.
Readability refers to the ability of the robot’s motions to convey its intentions and actions
in a clear and understandable manner to human partners. Achieving readability in robot
motions is vital for establishing a shared understanding and facilitating efficient coordination
between humans and robots. However, it is imperative to explore and validate the effective-
ness of readable robot motions in real HRC scenarios and actual collaborative tasks, rather
than solely relying on observations of human observers from outside the working area.

While significant progress has been made in laboratory settings, there is a scarcity of real-life
applications and scenarios that explore the dynamics of human and robot motions and their
interaction during collaborative tasks. Understanding the challenges and dynamics of human-
robot collaboration in real-world environments is essential for designing robust and adaptable
systems. Additionally, the complexity and highly dynamic nature of HRC environments pose
challenges for motion control. Although MPC has shown promise in generating optimal robot
motions, its computational demands and response times may hinder its applicability in fast-
paced collaborative scenarios. Therefore, there is a need for motion control methods that not
only ensure accurate execution of trajectories but also exhibit fast computation to adapt to
the changing demands of the environment and human partners.

As the demand for collaborative robots or cobots continues to rise across various industries,
addressing these research challenges becomes paramount in establishing cobots as equal team
members alongside humans. To tackle these issues comprehensively, this thesis focuses on
the development of a cohesive framework. This framework encompasses a motion generation
approach that incorporates human motions and intentions, enabling faster response times and
improved synchronization between human and robot actions. Additionally, online adaptive
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motion planning methods will be explored to generate robot motions that are both readable
and responsive to the expectations and preferences of human partners. Furthermore, advanced
motion control methods will be developed to ensure the precise execution of trajectories,
taking into account environmental conditions and safety constraints while maintaining fast
computation capabilities to adapt to the dynamic nature of the surrounding environment.
The contributions of this thesis can be summarized as follows

• In Chapter 2, an approach is proposed to enhance the performance of robots in close
collaboration with humans by integrating human motion prediction into local obstacle
avoidance. This integration allows the robots to anticipate and respond to human
motions in real-time while avoiding obstacles, ensuring safer and more efficient human-
robot interaction.

• Building upon the integration of human motion prediction, Chapter 3 presents a novel
approach for generating readable robot motions and adapting motion policies based
on task requirements and human preferences. Machine learning techniques and human
demonstrations are leveraged to enable the robot to learn and generalize motion policies,
promoting flexibility and adaptability in human-robot interaction.

• Finally, in Chapter 4, a novel receding horizon controller scheme is developed to execute
given trajectories precisely at the force/torque level. This controller scheme addresses
the challenges of limited computation time and on-the-fly trajectory adaptation, enhanc-
ing the capabilities of robots in terms of speed and accuracy during reaching motions.
This contribution is particularly valuable in close human-robot collaboration scenarios,
ensuring smooth and safe cooperation.

16



Part I

Obstacle Avoidance and Predictable
Motion Generation
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Nomenclature of Part I

Scalars are written in plain lower case, vectors in bold-face lower case. Matrices are bold-face
upper case, while plain upper case symbols refer to coordinate frames, mathematical spaces
and sets. Subscript annotations are reserved for index notation of multi-dimensional variables,
whereas superscript annotations are part of the variable specification.

Also note that we omit explicit listing of function parameters whenever it is clear from the
context, to not unnecessarily clutter the notation. A list of the most frequently used variables
in this work is given.

ϵt exploration noise
T subset
D damping matrix
F force
g task
J jacobian
K stiffness matrix
M mass matrix
∥ · ∥ 2-norm of a vector
ωi modifiable weight of DMP
πθ policy with parameters θ
ψi(x) Gaussian basis functions
τ time constant
amax maximum acceleration
f(t) function
H(x) Heaviside function
jmax maximum jerk
P Probabilities
u one-dimensional time-scaling factor
vmax maximum velocity
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2
An Approach to Integrate Human Motion
Prediction into Local Obstacle Avoidance

in Close Human-Robot Collaboration
This chapter was previously published in [HDOH+15].

Within the field of HRC, ensuring safety is of utmost importance during collaborative tasks.
In confined workspaces where humans and robots work together, the risk of collisions and
potential injuries is high. These unintended collisions can lead to a loss of trust in the robot
by the human partners. Therefore, it is crucial to prevent collisions in a Human-Robot-Team
(HRT) setting. Additionally, the comfort of human partners must be taken into consideration.
Balancing the behaviors of the robot between task performance and avoiding human inter-
ference is a challenge. If the robot avoids humans too early, task efficiency is compromised
as it spends more time evading them. Conversely, if the robot reacts late and humans get
too close, discomfort may arise, resulting in unwillingness to cooperate. Addressing this chal-
lenge, this chapter proposes an approach to enhance robot avoidance behavior by integrating
human motion prediction into the obstacle avoidance strategy. The collision avoidance al-
gorithm incorporates compliance control to enable fast reactions to dynamic obstacles, such
as humans, without requiring extensive computational resources. The human motion predic-
tion algorithm is based on the minimum-jerk model. Experimental analysis conducted on a
case-study involving collecting LEGO-bricks on a table with various subjects investigates the
impact of integrating human motion prediction on the reaction time of the robot and the
human’s perception of the robot as a co-worker. The study concludes by analyzing subjective
human feedback questionnaires to assess the comfort and acceptance of the robot colleague
by the human collaborator.

2.1 Introduction

To enable the collaboration between human and robot, one of the goals is to overcome the
still very commonly separated workspaces of robots and humans in industrial assembly lines
and form a new joint collaboration space instead. In order to achieve that, one of the key
aspect is to guarantee safety for the human collaborators. And the most fundamental action
is that the robot should avoid the human at all time to prevent any collisions. Here we mainly
focuses on obstacle avoidance behaviors of the robot and how to generate comprehensive and
efficient motions for the robot in a shared and confined workspace such that the tasks are
carried effectively and the human feels comfortable when working with the robots.

In order to avoid the human, the robot should be able to sense the environment au-
tonomously, and respond according to its human coworker. One of the fundamental sensory
information for the robot can be acquired by observing human motions during the task execu-
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tion. By knowing where the human is, collision can be avoided. This can be easily achieved by
sufficient hardware setups i.e. cameras, tracking system, etc. And with the acquired sensory
information, the basic obstacle avoidance strategy [Kha90] is to setup a bounded threshold
around the robot such that whenever the human goes over it, the robot will perform move-
ments to avoid the human. This strategy is simple in calculation to be applied in real-time
and hence it becomes a very common approach being used for obstacle avoidance. However,
in the context of HRC, this original obstacle avoidance strategy becomes less efficient in the
sense of task completion due to the increasing of time spend for the robot to avoid the human.
The reason for this is because of the high probability of interference between the human and
robot in their shared workspace. As the consequence, it leads to the high chance of collisions
that might happen during the collaboration, which means that the robot has to spend more
time in pending until the human moves out of the predefined safety area to continue his tasks.
In particular, there are cases where the actual current task of the human does not interfere
with the task of the robot, but on the way performing the task, the human crosses over the
boundary which also triggers the avoidance action. As the result, the time needed for the
robot to complete his own tasks increases and the efficiency of the collaboration between the
human and robot decreases as well. One might come up with an idea of reducing the safety
area around the robot to reduce the spending time. However this solution only works to a
certain extend as if the distance between the human and robot is too small, the human will
naturally feel uncomfortable even if there is no collision happen.

Building upon the aforementioned considerations, we propose an approach that integrates
human motion prediction into local obstacle avoidance for HRC in a shared workspace. By
leveraging human motion models, the robot can proactively interpret and respond to the
anticipated actions of its human coworkers. This integration of human motion prediction
with obstacle avoidance allows the robot to react faster, enhancing the overall efficiency and
safety of the collaboration. To facilitate collision avoidance, we employ compliance control
as it enables the robot to avoid dynamic obstacles, such as its human collaborator, without
requiring complete trajectory replanning. The human motion models are based on a minimum-
jerk model, which provides valuable insights into the kinematic and dynamic properties of
human movement.

To evaluate the effectiveness of our proposed approach, a typical manipulation task is con-
sidered for this study. A specific scenario in which the workspace of the robot and the human
overlap distinctly and collisions are provoked is explored: Sorting LEGO-bricks together in
confined space (Fig. 2.1). Within this experiment, the effect of the motion prediction algorithm
is analyzed by investigating the behavior of the robot within a HRT. We also examine the
acceptance and comfort levels of the overall system by analyzing the feedback questionnaires
provided by the 16 participants involved in the experiment.

In Section 2.2, we discuss related research projects and highlight the results achieved in the
field. Section 2.3 provides an explanation of the collision avoidance and intention prediction
algorithms employed in our approach. The overall system setup is outlined in Section 2.4,
and finally, the experiment itself is described and evaluated in Section 2.5.

2.2 Related Work

Safety within a HRT has been studied extensively in [BPC08] and[HHK+12]. They proved the
importance of safety for the human team members at any time, independent of the resulting
use-case. For trajectory generation, numerical optimal control methods as a direct solution
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to generate collision free trajectories are proposed in [vSS94]. As these methods compute the
entire trajectory from start- to end-point they are computationally expensive and result in
slow convergences. In [PNS+15], this method is used to generate motion trajectories offline
while only deforming them online. In [PCN13], the computational effort is reduced by enabling
the kinodynamic planning in the configuration space. Thus, reducing the search dimension
distinctly.

In [ZRD+13], a functional gradient technique is applied to iteratively improve the conver-
gence as well as the trade-off between obstacle avoidance and trajectory smoothness. It uses
Hamilton Monte Carlo method to overcome the problem of infeasible solutions due to conver-
gences in high-cost local minima, which numerical optimal control methods tend to converge
in. Even though this technique reduces the computation time and the resulting trajectory
distinctively, the computational costs of this algorithm are still respectively high.

Besides these optimization methods, online motion adaption algorithms with high compu-
tational efficiency have been introduced. In [LRS14] a generic collision avoidance approach is
presented. It proposes the idea of altering the velocity of each joint adaptively to the current
distance of the human hand and the robot end-effector independent of the used robot hard-
ware and sensors. Furthermore, it highlights the impact of communication delays within the
proposed system to the real-time capability of the overall system.

For obstacle avoidance, the potential field theory has been introduced by Khatib [Kha90]
and outlined more in detail in [Qui95] and [BK02]. Within this approach, objects and targets
are represented as virtual repulsive force fields to generate a collision free motion trajectory
without the need of heavy computations in terms of online optimization. In [FKDLK12] and
[DLF12] a collision avoidance algorithm based on this method is proposed. It uses virtual
spring and damper elements as it was previously proposed in [HUP+10] to model the virtual
force of dynamic objects.

While the proposed collision avoidance algorithm in [FKDLK12] and [DLF12] is based on
altering the desired velocity, in order to avoid collisions during execution, our approach is
based on changing the the overall desired position. As it will be shown in Sec. 2.3.3, the robot
is not exceeding a maximum modification of the actual desired position, while providing safety
at the same time. This solution assures the ability to guarantee a collision free motion of the
robot over all time without the expensive pay-off of the high computational cost of numerical
online optimization.

Regarding the human motion prediction, there are several mathematical models for hu-
man hand motion such as minimum-jerk [FH85], minimum-torque change [KMUS90] and
minimum-variance [HW98]. Those models have been shown to match the experimental data
on various conditions, with some variances on velocity and acceleration profile depending on
the optimization criterion in use. The HRC scenario presented in this paper usually consists
of point-to-point movements, and requires a fast motion trajectory computation for avoiding
contact with the human partners proactively. Hence, we use a minimum-jerk model for our
trajectory estimation calculations since it provides a good compromise between accuracy and
mathematical simplicity.

2.3 Design of the system architecture

In order to create a realistic and challenging environment for human-robot collaboration, we
carefully construct an HRC scenario as depicted in Figure 2.1. The scenario involves placing
the human and robot on opposite sides of a table, with a shared center area as their workspace.
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The human’s task is to pick up the blue bricks, while the task of the robot is to pick up the
red bricks. By positioning the bricks in opposite directions, the human and robot are required
to cross the common area, leading to a high probability of interference and collisions. To
ensure the human’s continued participation until the robot completes its task, the number of
blue bricks is set to 15, while only 3 red bricks are provided. This discrepancy accounts for
the human’s typically faster speed and necessitates the robot to temporarily pause its task to
avoid collisions with the human.

Given the HRC scenario and the specific requirements, the collaborated robot must satisfy
the following requirements

• The robot has to be able to perform point-to-point motions repetitive for the pick and
place task.

• The movements of the robot should be smooth and its speed should be limited to ensure
the human’s comfort during the collaboration.

• The robot must prevent collision with its human partner at all times.

Figure 2.1: Illustrative setup of the experiment

To meet these requirements, we have designed a comprehensive control system architecture
for the robot. The architecture consists of multiple components: a way-point trajectory
generation module responsible for generating smooth trajectories, a compliance control module
for tracking the generated trajectories, and a potential field approach for collision avoidance.
Additionally, the avoidance strategy is further supported by a model-based human motion
estimation method. In the following sections, each component of the control architecture will
be outlined in detail, providing a clear understanding of the functionality and effectiveness of
the proposed system.
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2.3.1 Way-point trajectory generation

Point-to-point motions play a crucial role in various mechatronic applications such as machine
tools, CNCs, and robots, where high speed and smooth motion are essential. The objective
is to determine a trajectory profile that consists of position, velocity, acceleration, jerk, and
other parameters at each timestamp. This profile enables the robot to accurately navigate
through all the specified way-points in the correct order. However, it is equally important to
ensure that the trajectory profile satisfies certain conditions:

(i) While operating at high speeds, the velocity, acceleration, and jerk must adhere to the
limitations of the robot. This constraint helps reduce wear and tear, prolonging the life
of the machine and its tools.

(ii) To minimize tracking errors and prevent jerky motions that could lead to a lack of trust
from human collaborators, the trajectory profile must exhibit continuous derivatives,
particularly in acceleration and jerk. This ensures smooth and seamless movements
throughout the path of the robot.

(iii) The trajectory computation process needs to be simple and efficient to facilitate real-
time execution. This requirement allows for on-the-fly trajectory generation, enabling
the robot to quickly adapt to dynamic changes in its environment.

There are several methods that have been proposed to address all of the requirements of this
point-to-point motion generation task. For example, in [HWR08] a trapezoidal velocity profile,
also known as Linear Segments with Parabolic Blends (LSPB) was proposed to minimize
motion time while respecting the maximum actuator accelerations. However, this method
is not suitable for our application as it results in abrupt changes in acceleration, leading to
discomfort and roughness in velocity. Another approach is the S-curve velocity profile based on
third-order polynomial trajectory planning [HMH09]. By generating continuous acceleration
profiles that respect jerk limitations, this method achieves smoother velocity profiles with
higher accuracy. A notable contribution in this field is the Reflexxes libraries developed by T.
Kroeger [KW10], which provide algorithms for deterministic and instantaneous computation
of motion trajectories.

In our work, we have implemented an exponential function-based trajectory generation
method [RIS13]. This approach offers several advantages over the aforementioned methods.
It provides a smoother approximation of the trapezoidal velocity profile, ensuring continuity
up to the third derivative (jerk). As a result, the intermediate points of the trajectory can be
tracked more accurately compared to other methods. Additionally, the exponential function
takes into account the limitations of the velocity, acceleration, and jerk, guaranteeing safety
and prolonging the lifespan of the actuators. Moreover, this method offers reduced compu-
tational effort due to its simpler formulation, and the calculation of the exponential function
can be performed offline, requiring only one-time computation.

According to [RIS13] a third order exponential function

f(t) = vmax
(
1− exp

(
−u3)) , (2.1)

with u as a one-dimensional time-scaling factor

u = αt, (2.2)

is used as the velocity profile. The first and second derivative of (2.1) are then the represen-
tations of the acceleration and jerk profiles respectively

ḟ(t) = 3αvmaxu
2e−u3 (2.3)
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f̈(t) = α2vmax(6u− 9u4)e−u3 (2.4)

The exponential function exhibits a crucial characteristic that makes it suitable for generat-
ing smooth velocity, acceleration, and jerk profiles. Its smooth shape allows it to maintain the
same exponential form through differentiation, resulting in continuous and smooth profiles, as
depicted in Fig. 2.2. The steepness of the exponential function is determined by the tuning
factor α. A higher value of α leads to greater acceleration generated by the function. Con-
sequently, the selection of this tuning factor is essential and should be appropriately chosen
to meet the specific requirements of the application, as further discussed later in this work.
These profiles guarantee the smoothness of the robot motion which is the reason why it is
chosen as the trajectory generation method for our point-to-point motion.

0.2

Normalised Time [u]
0 1 2 3 4

0.4

0.6

0.8

1

α = 1(normalised)
α = 0.5
α = 2

Ve
lo

ci
ty

Normalised Time [u] Normalised Time [u]

N
or

m
al

is
ed

A
cc

el
er

at
io

n

N
or

m
al

is
ed

Je
rk

0 1 2 3
0 0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3

−2

−1

0

1

2

Figure 2.2: Exponential characteristics of the velocity f(u) on the left, acceleration ḟ(u) in the middle
and jerk f̈(u) on the right

The next problem is how to bound the maximum values of the velocity, acceleration and
jerk within the given thresholds. The maximum velocity can be set with vmax in Eq. (2.1).
For the maximum velocity and jerk, they are defined by analyzing the maximum points of the
functions in Eq. (2.3) and (2.4). They occur at

tamax = 1
α

3

…
2
3 ≈

0.8736
α

(2.5)

tjmax = 1
α

3

 
3−
√

7
3 ≈ 0.4906

α
(2.6)

where tamax and tjmax are the times at which the maximum acceleration and jerk happens
respectively. Substituting these values into Eq. (2.3), (2.4) we found

|amax| = |0.3918vmaxα| (2.7)

|jmax| =
∣∣∣0.7652vmaxα

2
∣∣∣ (2.8)

where amax and jmax represent the maximum values of acceleration and jerk respectively.
Thus, given the actuator velocity, acceleration and jerk limits, we can find the maximum
value of α that allows the fastest possible motion within the limits, as follow

26



2.3 Design of the system architecture

αmax = min
®
|amax|
λ|vmax|

;
 
|jmax|
µ|vmax|

´
, (2.9)

with λ = 1.1754 and µ = 2.1524, regarding the maximum velocity vmax, acceleration amax
and jerk jmax.

Time [s]

Time [s]

Time [s]

Ve
lo

ci
ty

[m
/
s]

A
cc

el
er

at
io

n
[ m

/
s2

]
Je

rk
[ m

/
s3

]

0

1

0.5

0

1

0

−1

2

0

−2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 2.3: Velocity, acceleration and jerk for one point-to-point motion

Note that the expression presented in Eq. (2.1) and illustrated in Fig. 2.2a only shows the
increment part of the velocity profile. To complete the trapezoidal velocity profile between
two points with a given time interval Td, two of the velocity profile defined in Eq. (2.1) are
used in sequence

v(t) = f(t)− f(t− Td) ·H(t− Td). (2.10)

with H(x) is a Heaviside function, defined as

H(x) =
®

0 for x < 0
1 for x ≥ 0 ,

(2.11)

The complete velocity, acceleration and jerk profiles for one point-to-point motion are il-
lustrated in Fig. 2.3. Finally, in order to generate a trajectory via several points, the velocity
profile of the next step overlaps with the profile of the current step to keep the velocity always
non-zero until the motion is finished.
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2.3.2 Compliance control

The subsequent component of the system architecture focuses on designing a controller that
can effectively track the trajectories generated in Section 2.3.1 while also being responsive to
the changing environment surrounding the robot. Specifically, our objective is for the robot
to avoid collisions with its human partners whenever they come into close proximity. For
simplicity and ease of verification, we narrow our focus to collisions between the human arm
and the end-effector of the robot, even though collisions could potentially occur at different
parts of the robot (e.g., elbow). This selective consideration aligns with our aim of enhancing
the reaction behavior of the robot. The scenario depicted in Fig. 2.1 is also tailored towards
these types of collisions, where the robot and human partner are positioned on opposite sides
of the table, and the human only utilizes their hand to perform tasks. Thus, by default, the
potential collision occurs between the end-effector of the robot and the human’s hand.

To follow the generated trajectories as well as to react to the dynamic of the environment, we
implemented a compliance controller based on the concept introduced by N. Hogan [Hog85].
This controller enables the robot to emulate the behavior of a mass-spring-damper system in
response to external forces. Since our focus is primarily on the collision occurring around the
end-effector of the robot, the compliance controller is calculated in Cartesian space as follows

Fext = M(ẍ− ẍd) + D(ẋ− ẋd) + K(x− xd). (2.12)

The environmental reaction force Fext ∈ R3 represents both attraction towards the desired
trajectory as well as repulsion from obstacles within the environment (its composition is
discussed in Sec. 2.4.2). As a result, the robot can react to uncertainties and changes in the
environment without computing a new trajectory from current position x ∈ R6 to the desired
end-pose xd ∈ R6. In (2.12) M, D, K ∈ R3×3 are positive definite matrices that represent
the mass, damping and stiffness. As a consequence, the introduced error dynamics guarantee
stability and robustness. In the proposed setup M is chosen as the identity matrix, K and D
are diagonal matrices chosen to adapt the desired reaction to virtual forces. Increasing the
damping results in a slower reaction but smoother movement of the robot. This is outlined
in more detail in Sec. 2.4.1.

2.3.3 Local collision avoidance

The idea of the presented obstacle avoidance is based on potential fields w.r.t. the distance
between the end-effector of the robot and obstacles. Whenever an obstacle is inside a threshold
region of the end-effector, a virtual force vector is generated and added to Fext in (2.12) of
the compliance control to push the end-effector away. A simple but effective function based
on the same idea of repulsive vectors in [FKDLK12] is used to generate a smooth reaction
force

Freact = Fmax
1 + exp ((∥d(E,O)∥ (2/ρ)− 1)α) , (2.13)

where Fmax is the maximum force applied, ∥d(E,O)∥ is the distance between obstacle and
end-effector, ρ is the threshold distance that defines the collision region around the end-effector
and α is a shape factor. The force reaches its maximum if the distance equals zero, and zero
if the obstacle is outside the region respectively. The steepness of the force profile within the
threshold region regarding the distance can be adjusted by the shape factor α. An example of
the virtual force profile is shown in Fig. 2.4. In our experiment, Fmax is chosen to guarantee
the end-effector of the robot does not collide with the human arm while working in the same
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workspace. As mentioned in Sec. 2.2, the approach presented alters the desired trajectory
on position level rather than velocity level (see [FKDLK12]). This yields in a saturation of
the position alteration, proportional to Fmax. This effect is preferred in this use-case, as it
results in a more human like behavior. As a consequence, the robot stays closer to its planned
trajectory, rather than letting it being chased around by the human.
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Figure 2.4: Repulsive force profile from (2.13), with Fmax = 5N , ρ = 0.4m, and α = 6

2.3.4 Human motion prediction

In order to enhance the collision avoidance behavior of the robot, we aim to integrate the
prediction of the human motion to provide additional information for the robot to react faster.
Given a part of a human motion trajectory as an input, we need to predict how this motion
is expanded in the future and extract this information for the robot. In general, predicting
human motion is a complex task, intricately dependent on various tasks and necessitating a
comprehensive analysis of the human body’s movements [AC99]. Moreover, in our specific
context, real-time prediction is imperative, demanding computational efficiency that matches
the speed of human motion. Nevertheless, by leveraging specific known conditions within
our scenario, we can simplify the problem and reduce computational overhead. Since the
assigned task for the human involves seated object manipulation, the majority of the human
body remains constrained, leaving the wrist as the primary agent of motion. Hence, our
focus narrows to capturing the point-to-point motion of the human wrist as a singular entity,
disregarding the influence of the upper body and the elbow. Given these assumptions, the
minimum-jerk model emerges as the optimal candidate for representing human wrist motion
in our scenario. Consequently, we proceed to introduce the minimum-jerk model and outline
our method for estimating human motion using this model.

Flash and Hogan [FH85] hypothesized that humans follow a smooth trajectory for point-
to-point movements by minimizing the jerk. For a trajectory x(t), that starts at time ts and
ends at time tf , the minimum-jerk criterion G can be expressed by

G(x) = 1
2

tf∫
ts

Å
d3x
dt3

ãT Å
d3x
dt3

ã
dt. (2.14)

The optimization criterion can be solved for given start time ts, final time tf , and boundary
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conditions for xs = x(ts) and xf = x(tf ). The solution to this optimization problem is a fifth-
order polynomial [FH85], and for point-to-point movements, where start and final velocities
and accelerations are equal 0, the solution takes the following form:

x = xs + (xf − xs)
Å

10 τ
3

T 3 − 15 τ
4

T 4 + 6 τ
5

T 5

ã
, (2.15)

where τ = t− tf and T = tf − ts. Thus, the trajectory, i.e. the spatial as well as the temporal
course of the movement, can be calculated exactly with given coefficients.

However, as mentioned earlier, the motion estimation demands the solution of the inverse
problem: Given a part of a human motion trajectory, find the coefficients of the model which
would result in the trajectory that best matches the observed one. In essence, the human
motion estimation process can be described as a curve-fitting problem.

The physical trajectory point xi is sampled by the camera tracking system at discrete time
instants ti. Hence, the observed trajectory can be represented as

xi = f(ti), ts ≤ ti < tf . (2.16)

As stated earlier, the function for the model which is used to approximate the data, is a
fifth-order polynomial with coefficient vector q

x̂i(q) = h(ti, q). (2.17)

A sequence of n time stamps ti and corresponding positions xi, with i = 1, . . . n, which
represents the observed movement, is the input to the estimation procedure. Finally, the
motion prediction algorithm optimizes the cost function G(q) in order to find the parameters
q of the model function in (2.17):

G(q) = 1
2

∑
∥x̂i(q)− xi∥2 = 1

2
∑
∥h(ti, q)− xi∥2 (2.18)

Solving this optimization procedure would yield in unreliable results without any constraints.
However, due to the nature of the task, several constraints can be imposed. As the human
needs to pick up and then place an object, final velocity and acceleration should be zero, i.e.
ẋ(tf ) = 0, ẍ(tf ) = 0 respectively. Moreover, we can approximately identify the object that
the human is going to pick up (see Sec. 2.4.2). The position of that object, i.e. x(tf ) = xf ,
can also be used as a constraint for the optimization. Then, the cost function is minimized
only to find the final time tf that the motion would end at. As a result, the full trajectory
of the human can be estimated with just a given part of the trajectory. Additionally, our
proposed method is fast enough to be executed online. It means that every time the human
starts to move, our approach starts to publish the estimated trajectory and adjust it on-the-fly
based on the change of the human motion. An illustrated example of the proposed approach
is shown in Fig. 2.6 where the green line is the trajectory of the human up to current time
and the magenta line is the predicted motion generated by the algorithm.

2.4 Implementation
In this section, we provide a comprehensive overview of the implementation of the system
architecture proposed in Section 2.3. All the components of the control scheme are summarized
in Fig. 2.5. To begin, we delve into the selection process for the parameters of the compliance
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control, as discussed in Section 2.4.1. This section outlines the rationale behind our parameter
choices, which are crucial for achieving effective collision avoidance. Moving forward, in
Section 2.4.2, we delve into the utilization and integration of human motion prediction within
the compliance control framework, emphasizing how this integration enhances the avoidance
behavior of the robot.

Way-point
Trajectory

Compliance
Control

Inverse
Kinematic

KUKA
Robot

Human Motion
Prediction

Local Obstacle Avoidance

Qualisys Tracking
System

Virtual Force

pd pc qc

Human wrist

wrist

qa

Fpre1 Fpre2 Fpre3 Fwrist

pre1 pre2 pre3

Fext

Force calculation

Figure 2.5: Proposed system architecture. The point-to-point motion pd is generated by the way-
point trajectory and served as one of the inputs of the compliance control. The human wrist is tracked
using the Qualisys tracking system and the data is stored for prediction. For every human motion,
three prediction points pre1, pre2 and pre3 in 0.1s, 0.2s and 0.3s ahead are used in combination with
the current human wrist position to form the corresponding repulsive forces Fpre1, Fpre2, Fpre3, and
Fwrist for obstacle avoidance. The total virtual force Fext is then normalized from these repulsive forces
and added into the compliance control to generate the actual motion pc for the robot.

2.4.1 Damping factors of the compliance control

For the compliance control, the stiffness factor for every coordinate is set to Ki,i = 100 N/m.
The damping factor is chosen dependent on the position of the human wrist. When the
human wrist is outside of the predefined safety region the damping factor is set to the critical
damping value

Di,i =
√

4 ·Ki,i. (2.19)
This results in the maximum possible reaction speed without oscillation. Upon the human
entering the safety region, defined by a radius of ρ = 15 cm, the damping value is amplified by
a factor of 10. This amplification serves the purpose of generating smoother robot reactions.
Consequently, the heightened damping value reduces the sensitivity to virtual forces that
represent human motions, preventing abrupt and jerky responses during collision avoidance,
thereby enhancing safety. Nonetheless, this amplification results in a trade-off with reaction
speed, as the response of the robot becomes relatively slower. This limitation prompted
the integration of the motion prediction method outlined in Section 2.3.4 into the collision
avoidance strategy. By incorporating the prediction into the calculation of virtual forces,
the robot can anticipate potential collisions at an earlier stage. As a result, this approach
mitigates the drawback of reduced reaction speed caused by increased damping, effectively
enhancing the overall performance of the robot in collision avoidance scenarios.
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2.4.2 Integration of human motion prediction into the compliance control

The human motion prediction strategy, as discussed in Section 2.3.4, utilizes tracking data
from the motion tracking system. To ensure avoidance of the human’s hand, a tracking marker
patch is attached to each participant’s wrist for accurate hand position tracking (refer to Fig.
2.6).

Figure 2.6: Illustrative setup of the experiment with an example of a predicted motion. Robot bricks
(red), human bricks (blue), human home base (yellow), tracked motion (green line), predicted motion
(red line), prediction points {0.1, 0.2, 0.3} s ahead (magenta)

As explained in Section 2.3.4, the human motion prediction involves solving the optimization
problem described in Eq. (2.18). An essential piece of information required for solving this
problem is the starting and ending points of the human motion. Considering that the human’s
task involves picking up objects and placing them at a designated location, the prediction
algorithm sets the starting point at the base location and resets it whenever the tracked
velocity falls below a specified threshold. The end position of the target is determined by
identifying the closest LEGO brick to the current velocity vector. By analyzing the collected
tracked points, the minimum jerk trajectory is obtained, as detailed in Sec.2.3.4. Three future
points from this predicted trajectory are utilized for obstacle avoidance. To ensure meaningful
integration of the avoidance strategy without prediction, both the wrist point and its three
predictions are normalized in terms of their weight for potential field calculations within the
compliance control discussed in Sec.2.3.3. The setup and utilization of the prediction are
shown in Fig. 2.6.

To calculate the total virtual force considering the prediction, the current position of the
human wrist and three arbitrary prediction points at intervals of 0.1s, 0.2s, and 0.3s ahead
are employed. To avoid collisions with the table, only the virtual forces in the X- and Y -
dimensions are calculated in (2.13), while the force in the Z-direction is disregarded. The
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three prediction points, along with the current wrist position, are weighted based on their
prediction time in the future and subsequently normalized. This weighting accounts for the
increasing uncertainty associated with human motion prediction over time. As a result, the
total virtual force then is summed up as

Fvirtual = k1Fwrist + k2Fpre1 + k3Fpre2 + k4Fpre3∑4
i=1 ki

, (2.20)

with k1 > k2 > k3 > k4. Finally, this virtual force is incorporated as an input to the external
force within the compliance control, as mentioned in (2.12).
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Figure 2.7: The compliance response to an obstacle within the range of avoidance

The improvement in terms of responsiveness can be observed in Fig. 2.7, where the upper
plot illustrates the response without prediction and the lower plot demonstrates the response
with prediction. To enable an intuitive visual comparison, both plots utilize Euclidean dis-
tances in the XY -plane. In these plots, the blue line represents the alteration of the desired
position in response to an obstacle within the avoidance range. The red line indicates the
distance between the end-effector of the robot and the wrist, while the green line represents
the distance to the third prediction point (0.3s ahead). It is important to note that the plot
depicts the extent to which the tracking/prediction enters the avoidance area of the robot,
rather than directly displaying the Euclidean distance. This allows for a more accurate visual
verification of the reaction of the robot.

Upon analysis, it becomes evident that by incorporating the prediction, the robot initiates
its reaction approximately 0.25s to 0.5s before the obstacle actually enters the avoidance
range. Consequently, the performance of the system is enhanced, particularly when facing
communication delays between the motion tracking system and the robot.
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2.5 Evaluation of the proposed framework in HRC scenario

In the experimental setup, a collaborative scenario is created using a 7-DOF KUKA-LBR4+
arm with a WSG 50 gripper from Schunk interacting with a human participant. The human
participant exclusively utilizes one arm, which is tracked using a Qualisys motion capture
system comprising of four cameras. The strategic arrangement of these cameras ensures
comprehensive coverage of the joint workspace, accounting for a wide range of possible robot-
human positions. To induce collisions during the experiment, the task of the robot involves
iterative reordering of two red LEGO bricks positioned at three predetermined locations within
the middle of the workspace. The role of the human participant is to pick up 15 blue bricks
situated behind the workspace of the robot and systematically collect them on his home base
located in front of him. This task results in point-to-point movements of the human, thereby
justifying the utilization of the minimum-jerk model. The experimental setup is visually
depicted in Fig. 2.6.

2.5.1 Safety Aspects

The experimental setup prioritizes safety by incorporating measures to minimize occlusion
and prevent accidents. The camera redundancy of the tracking system greatly reduces the
occurrence of occlusions, and in the rare event of an occlusion, the last tracked position is
utilized. To ensure the safety of the human participant, the setup is designed to keep the
human body out of reach of the robot, except for the participant’s arm, which is tracked
using markers on the wrist and elbow. However, since the elbow never enters the avoidance
region of the robot, its position is not taken into account for obstacle avoidance purposes.
Reactive movements of the robot towards the human are also disabled. This prevents any
potential accidents or collisions between the robot and the human participant. Additionally,
in addition to the KUKA internal impedance control, safety measures such as a maximum
velocity threshold for the robot arm and collision detection using the joint torque sensors of
the robot are implemented. If any emergency situations arise, these safety measures trigger
the activation of the emergency brakes.

2.5.2 Case Study

Each participant in the experiment was asked to perform two separate runs: one utilizing
the plain obstacle avoidance based solely on wrist position, and the other incorporating the
proposed prediction strategy. The order of the runs was randomized for each person and
conducted on different days, effectively eliminating any potential learning effects or biases.
Further, to eliminate any perceptual issues related to the robot and the prediction strategy, the
experiment was designed with predefined positions for the LEGO bricks and predetermined
tasks conducted in a specific order. This ensured that the position of the bricks and the tasks
were known beforehand, allowing participants to focus solely on evaluating the behavior of
the robot and performance.

Both runs involved global path planning based on the positions of the bricks and boxes,
utilizing the exponential trajectory generation method mentioned in Section 2.3.1. Addition-
ally, the local obstacle avoidance technique described in Section 2.3.3 was implemented in
both runs. The key difference between the runs was the enabling or disabling of the motion
prediction from Section 2.3.4.

Following each experiment, participants were asked to complete a brief questionnaire. The
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questionnaire aimed to gather their impressions regarding various aspects of the behavior of
the robot, including safety, comfort in working with the robot, responsiveness, smoothness
of movements, and whether they perceived the robot as a co-worker or more as an obstacle.
The questionnaire utilized a 4-level Likert scale without a neutral position, avoiding the issue
of acquiescence bias. The response options included strongly agree, agree, disagree, strongly
disagree. This approach ensured that participants could provide their opinions without being
influenced by a middle or neutral position.

2.5.3 Results

A total of 16 individuals participated in the experiment, carrying out both runs with and
without the prediction strategy. The participants’ responses to the questionnaire after each
experiment are visualized in a boxplot presented in Fig. 2.8. The median of each group is
indicated by the mark, while the box represents 50% of all responses, reflecting the variance.
The whiskers indicate the most extreme answers.

Regarding the feeling of safety in close proximity to the robot, the majority of participants
state either agreement or strong agreement for both runs. However, when the human motion
prediction is employed, the median of all responses improves to strongly agree, indicating a
clear enhancement in perceived safety. An improvement was observed in terms of comfort, in
which the prediction strategy leads to a reduction in variance, with responses predominantly
falling in the agreement category. Without prediction, the boxplot displays a wider spread
between agree and disagree.

with prediction
without prediction

strongly agree

agree

disagree

strongly disagree

safe comfort responsive smooth co-worker

Figure 2.8: Boxplot of the questionnaire

The responsiveness of the robot was also enhanced in the case with the prediction strategy.
As the robot reacted promptly when the human’s motion intersected the avoidance range,
most of the participants agree that the robot was responsive. The assessment of smoothness
did not yield a clear distinction as it primarily resulted from the high damping factor men-
tioned in Section 2.5.2. However, it is worth noting that the focus of the experiment was on
collision avoidance behavior, and the perception of smoothness might not have been a primary
concern. Further, no higher acceptance rate of the robot being seen as a co-worker could be
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achieved. This outcome is not surprising considering that the scenario did not involve genuine
collaboration. The two tasks were chosen individually to provoke collisions and study obstacle
avoidance behavior.

with without with without

45

50

55

60

65

70

75

80
To

ta
lt

im
e

[s
]

3

4

5

6

7

8

9

R
ob

ot
ite

ra
tio

ns
Figure 2.9: Comparison of total experiment time and number of iterations of the robot

In addition to the participants’ perceptions, Fig. 2.9 illustrates the overall duration of the
experiments and the number of iterations performed by the robot. No definitive conclusion
can be drawn regarding the duration, as the variance in the total time of the subjects does not
provide a significant trend. However, the decreased number of block reordering iterations by
the robot indicates that, due to its increased responsiveness, the robot switches to avoidance
mode earlier and more frequently.

2.6 Discussion and Conclusion

In this chapter, we have introduced a simple yet efficient approach for enhancing the safety
and performance of robots operating in close proximity to humans. By incorporating human
motion prediction into the local obstacle avoidance algorithm, we have improved the capability
of the robot to anticipate and react to human movements, ultimately reducing the risk of
collisions and enhancing overall collaboration. The case study we presented, although specific
to one scenario, involved a considerable number of participants and demonstrated the potential
effectiveness of our approach in human-robot collaboration.

One of the major advantages of our approach lies in its ability to enhance safety in close
proximity human-robot collaboration. By integrating human motion prediction, our approach
enables the robot to proactively avoid potential collisions, thereby reducing the likelihood of
accidental impacts and injuries. Moreover, our approach improves the responsiveness of the
robot. By predicting the future positions of the human, the robot can adjust its trajectory
and avoid potential conflicts before they occur. This results in improved responsiveness and
smoother interactions, enhancing the overall user experience and increasing the efficiency of
collaborative tasks, as evidenced by our case study where human participants reported feeling
more comfortable when working with the robot.

The improved safety and responsiveness achieved through our approach also lead to better
task coordination. By aligning its movements with the intended actions of the human, the
robot can effectively coordinate tasks and adapt its trajectory accordingly. This facilitates
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seamless collaboration and enhances the synchronization between the robot and the human
participant, leading to more effective and efficient task execution. Additionally, our approach
offers the advantage of mitigating communication delays. By utilizing human motion pre-
diction, the robot can compensate for potential communication delays between the motion
tracking system and itself. Predicting the future positions of the human allows the robot
to start reacting in advance, bridging the gap caused by delays. This mitigates the impact
of communication latency, ensuring timely and appropriate responses from the robot and
improving the overall performance of the system.

Despite implementing known assumptions and restrictions on human movement to facilitate
human motion prediction and improve accuracy, inherent uncertainty persists in predicting
human behavior. Factors such as sudden changes in movement patterns, unpredictability, and
external influences can introduce errors and inaccuracies in the predictions. This uncertainty
can lead to false positives or false negatives in the obstacle avoidance decisions of the robot,
potentially affecting the overall performance and reliability of the system. The dependency
on accurate tracking is also one of the problems that affect not only our experiment but most
of the HRC scenarios. Any inaccuracies or limitations in the tracking system can directly
impact the quality of the predictions and subsequently affect the performance of the obstacle
avoidance algorithm. The reliability and precision of the tracking system become critical
factors in the success of integrating human motion prediction into local obstacle avoidance.

Another limitation of the experiment presented in this chapter is the lack of diversity in
the scenarios tested. The experiment presents currently focus on a specific and rather simple
pick and place scenario and there are restrictions on the movements of the human as well
as the robot. The trajectories of the robot in the experiment is predefined as point-to-point
motion. While such setups allow for precise evaluation, they may not adequately represent
the dynamic and complex nature of real-world human-robot collaboration. Incorporating a
broader range of scenarios, including crowded or cluttered environments, varying speeds, and
unpredictable human behaviors, would enhance the external validity of the results.

With the successful integration of human motion prediction into obstacle avoidance, an
important next step in advancing the field of human-robot collaboration (HRC) is to explore
how to generate robot motions that foster seamless interaction and establish a sense of comfort
and trust between humans and robots. By leveraging the insights gained from predicting
human behavior, we can delve deeper into developing sophisticated algorithms and techniques
to dynamically adapt the motion of the robot in real-time, considering both responsiveness
and naturalness. While this chapter has primarily focused on enhancing the capability of the
robot to anticipate and react to human movements, the generation of robot motions has been
omitted, leaving room for further investigation.

To ensure a harmonious collaboration, it is crucial to consider how the movements of the
robot can be synchronized with the human’s actions. This involves designing robot motion
policies that not only align with human intentions but also adapt to changing circumstances,
maintaining a level of fluidity and naturalness in their execution. Additionally, incorporating
human feedback into the adaptation process is essential. By allowing humans to provide
feedback on the behavior of the robot, the system can iteratively refine its motion policies,
tailoring them to the specific preferences and requirements of the human partner. Various
machine learning techniques, such as reinforcement learning algorithms or other adaptive
strategies, can be employed to utilize this feedback and continuously improve the behavior of
the robot over time, leading to a more personalized and optimized human-robot interaction
experience.

However, integrating human feedback in real-time presents a challenge. The robot needs
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to consider human feedback on-the-fly and promptly adapt its motions to maintain a smooth
and natural collaboration, similar to human-to-human interactions. This requires developing
efficient algorithms and mechanisms that allow for real-time processing of human feedback
and seamless integration into the motion generation process. By addressing all aspects and
challenges that we have just mentioned, the next chapter will present a comprehensive solution
and approach that enables the robot to generate and adapt its motions based on the feed-
back of its human partner in real-time, fostering a highly interactive and mutually beneficial
collaboration in close proximity HRC scenarios.
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3
Adaptation and Transfer of Robot Motion
Policies for close Proximity Human-Robot

Interaction
This chapter was previously published in [HDOEW19]

In the context of human-robot collaboration in close proximity, ensuring safety and comfort
is crucial for efficient task execution. Building upon the findings of Chapter 2, which investi-
gated the integration of human motion prediction into robot actions, particularly focusing on
obstacle avoidance behaviors, we recognize the importance of enhancing safety and comfort
in HRC scenarios. The results obtained in Chapter 2 underscored the potential of improving
the understanding of the robot in human behavior, enabling it to plan and react in a more
natural and intuitive manner. From the human perspective, when the behaviors of the robot
align with their expectations, trust in the robot increases, fostering a greater sense of comfort
and willingness to collaborate. This mutual trust and cooperation are essential for achieving
efficient joint tasks.

To establish effective collaboration, the behaviors of the robot must be comprehensive and
easily interpretable by humans, allowing them to reliably predict its intentions. For instance,
in a scenario involving the selection of different objects, the motion of the robot should
clearly indicate which object it intends to pick, enabling humans to anticipate its actions
by observing specific parts of its movements. However, determining how the robot should
execute its motions to convey its objectives, especially in the presence of multiple objects,
poses a challenging question. Furthermore, each individual may have their own unique way of
predicting robot motions, implying that the predictability of robot behavior may vary among
different people.

Continuing from the previous work, this chapter explores various aspects of robot motions
in HRC and addresses the generation of such motions for the robot. Our focus lies in de-
termining how the robot should execute its motions when interacting with humans in close
proximity to ensure their safety and comfort. For safety, the robot must possess reliable and
efficient capabilities to avoid dynamic obstacles, including human arms. In terms of comfort,
it is essential for the the trajectories and avoidance behavior of the robot to be predictable
to humans. To address these requirements, we present a framework that utilizes policy im-
provement methods to generate predictable motions with dynamic obstacle avoidance for the
robot in human-robot interaction scenarios.

In our framework, trajectories are generated using Dynamic Motion Primitives, augmented
with a potential field term that penalizes trajectories that may lead to collisions with obstacles.
Additionally, we employ a data-driven approach to predict human movements, facilitating
proactive avoidance strategies. To ensure comfort and predictability for human co-workers,
we define a cost function that considers various factors such as human response time and
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joint jerk. During human-robot interaction, this cost function is minimized using policy
improvement through black-box optimization, resulting in robot trajectories that adapt to
human preferences while avoiding obstacles.

To evaluate the effectiveness of our approach, user studies are conducted to assess the
trust and comfort experienced by human co-workers when collaborating with the robot. Fur-
thermore, these studies are extended to various scenarios and different users to analyze the
transferability of tasks, enhancing the learning performance of the robot when switching to
new tasks or adapting to different co-workers. By comprehensively investigating safety, com-
fort, and task transferability, this chapter contributes to the development of more advanced
and adaptive human-robot interaction systems.

3.1 Introduction

The new generation of robots are no longer industrial machines behind fences but rather being
integrated more in our daily lives as well as in collaborative manufacturing scenarios. They are
expected to assist elderly people in daily tasks, to support customers in markets, to work as a
partner with humans in factories, etc. For all of these tasks, the robots are required to interact
with the human. Especially in collaborative scenarios, where robots work with humans as co-
partners in joint tasks, they need to interact more efficiently since it will increase the overall
performance. Looking at the case when two humans perform a joint task as an example, the
humans can anticipate each others’ movements and perform a complementary action without
the need of verbal communication. This facilitates teamwork and increases the efficiency of
joint tasks [EMCB07]. Similarly, robots are expected to move in a natural way, similar to
human-human interaction. To achieve such an interaction between humans and robots, the
first requirement is the motion of the robot must be readable to the human [KTS+10], which
means the human partner is able to understand its intentions and the motion/behavior of
the robot has to meet the expectations of the human partner. In the work of [LK16], this
is defined as legible robot behavior. Another requirement is that the robot has to be aware
of its surroundings to provide a safe environment, while still being efficient in performing its
task. Legibility and safety are therefore the two important criteria that increase the efficiency
of joint collaboration between human and robot.

In order for humans to feel comfortable working with robots, especially in close proximity,
they have to understand the behavior of the robot and be able to infer their actions or in
other words, the behavior of the robot must be legible to the human partner. Identifying
the factors that contribute to these natural movements is not trivial. According to a study
conducted by [DWK+05], participants want robots assisting at home to be predictable, con-
trollable and have human-like communication. Another study [KSS+07] that investigated the
subjective effects of direction of approach and distance of robots when handing an object over
to humans, came to the conclusion that the frontal approach is subjectively preferred most
by the participants since it is the most predictable. In addition, [BBB13] discovered that
understanding and predicting the behavior of the robot increases the well-being of humans.

As such, the next question arises is how such legible robot motion can be generated. [DLS13]
tried to find one mathematical metric for legibility. However, this is insufficient as robot mo-
tion gets perceived differently by individual humans and depends on several factors including
the configuration of tasks, robot positions and human positions. It is therefore necessary to
have a framework in which the robot is able to learn legible motions by interacting directly
with the human. In this way, all possible influencing factors will indirectly be included.
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In addition to legibility, ensuring the safety of humans in close proximity scenarios and
facilitating joint collaboration require the robot to be aware of the human’s position and
potentially predict their motion ([OSHDW17]). This information allows the robot to modify
its trajectories in real-time, effectively avoiding collisions with humans and ensuring a safe
interaction. By combining this safe behavior with legibility, the robot can enhance human
comfort and foster natural collaboration.

It is also important to address that the main drawback of many learning approaches is the
training time.The iterative nature of the learning process and the need for repeated training
for each new task and human partner are time-consuming. In practical scenarios, having a
flexible algorithm that can adapt to parameter changes, such as variations in robot position,
task configuration, and human perspective, without the need for retraining would be highly
beneficial. This flexibility enables the algorithm to extend to different scenarios and tasks,
saving valuable training time.

In this work, we present a framework that tackles the interdependency between legibility,
safety, and efficiency to achieve natural human-robot interaction. Our approach employs a
reinforcement learning methodology to generate legible robot motion that is transferable to
different tasks and enables safe collaboration in close proximity. The framework involves
a joint scenario where both the human and robot are engaged in reaching similar objects.
Over time, the robot adapts its motions based on the reactions and predictions of the human
partner. Through training, the robot becomes more efficient and predictable in performing
its tasks, thereby increasing human comfort and enhancing the effectiveness of collaboration.
Furthermore, our framework is designed to be generalizable to similar tasks using learned
policies, reducing the need for extensive training time.

3.2 Related Work

The investigation of safety and legibility in robot motion in close proximity has traditionally
been conducted separately. Some methods have focused on generating real-time obstacle-
avoiding trajectories, while others have developed optimization-based algorithms for legible
robot motions.

Legible (or predictable) robot motion was first introduced in [DWK+05]. The result from
their survey confirms the necessity of predictable behaviors in future robot companions. How-
ever, the paper does not focus on how to generate predictable behaviors for the robot. In
the works from the Robotics and Artificial Intelligence Group at LAAS/CNRS [ACM+05,
SMAS07, SCAR08, SMUB+10, SA12], they developed a human aware motion and manipula-
tion framework which is able to generate safe, comfortable and socially acceptable motions.
The framework is verified on a mobile robot manipulator in simulated environment and in
a hand-over scenario on real setup. The safety criterion introduced in their works, however,
is based on the distance between the robot and the human, i.e. the robot should keep its
distance from the human when performing tasks. While their framework achieves safe and
legible motion, it does not support interaction between humans and robots in joint tasks con-
ducted in close proximity. The absence of collaboration between human and robot is evident
in their results, where only the robot performs the tasks.

The work from [DLS13] focuses explicitly on generating predictable and legible robot mo-
tion. In their work, the authors differentiate between legibility and predictability and provide
a mathematical model to produce and evaluate such motions. They assume that humans
expect robots to be efficient in their movements and compare all possible goals in the scene
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to determine the most probable one. This probability is formulated mathematically and is
being maximized for the targeted goal. This approach has some limitations. The algorithm
was tested only with two goals for the robot, which the human had to predict when pausing
a video which showed the robot moving to one of the two. This setup was very simple as
the probability of selecting a goal (randomly) is already 50%. Another limitation is that the
subjective evaluation of robot efficiency differs from one individual to another and the algo-
rithm does not allow to adjust the movements of the robot to individual preferences of each
participant.

In the work of [SGBL15], the team generates robot motions that learn from the observation
of a human participant and iteratively reduce the human’s reaction time. Here, Dynamic
Motion Primitives (DMPs) are used for motion planning. Policy Improvement through Black
Box Optimization (PIBBO) [SS12] is applied to improve the legibility of the robot to the
human iteratively. This is done by only optimizing human guessing time about the action of
the robot and the correctness of the prediction without defining formal criteria about legibility.
This approach provides flexibility in choosing the relevant parameters to be optimized to
obtain legible motion.

Recently, [BGLS17] showed that transferring the learned policy to other individuals leads
to better prediction in the beginning and can thus lead to shorter adaptation times for new
subjects. However, in this work, no close interaction scenarios were considered as no necessary
collision avoidance methods were integrated and only the policy transfer to other subjects was
investigated, not the policy transfer to new tasks.

Safety for humans during interaction with the robot, in general, involves several aspects
and criteria [RBL+17]. There are also different categories of methods to ensure safety for the
human partner [LFS17b] i.e. safety through control, motion planning, consideration of psy-
chological factors, etc. Within this work, we limit the safety aspect to the obstacle avoidance
behavior of the robot and therefore only mention about methods that are able to provide this
functionality to the robot. In this aspect, potential field [Kha90] is a very popular and widely
used approach due to its simplicity and real-time capability. [FKDLK12] and [HDOH+15]
utilize the potential field idea in their works to provide obstacle avoidance behavior on the
end-effector of an articulated robot. In the work of [PHPS08], the authors introduce the
dynamic potential field to adapt robot trajectories while avoiding obstacles in mid-motion.
This dynamic potential field is used with the inverse kinematics with null-space constraints to
further ensure collision avoidance between the human and robot’s links. However, the aim of
these approaches was not to enable the robot to interact with humans, but rather to perform
desired movements in the presence of obstacles.

In a recent study by [OSHDW17], a stochastic motion planning algorithm is introduced
that predicts human motions and adjusts the robot’s trajectories on-line to avoid the pre-
dicted region. For the prediction of the human movement, Probabilistic Movement Primitives
(ProMPs) were used, which were first introduced by [PDPN13]. This method learns the
distribution of the motion during training and allows prediction of human motion in the on-
line phase. This allows close interaction between humans and robots, but does not examine
predictable or legible motion.

Inspired by the work of [SGBL15] and considering the requirements of joint human-robot
collaboration in close proximity, in this Chapter, we extend the learning approach in [SGBL15]
with the potential field method. Our contribution is therefore a learning framework incor-
porating real-time obstacle avoidance to allow humans and robots working together in close
proximity and therefore both legibility and safety aspects are tackled within our framework.
The human partner no longer remains outside the workspace of the robot as a passive observer
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but actively cooperates with the robot in joint tasks within the same workspace. Addition-
ally, we develop a task generalization method that facilitates the generation of policies for
new tasks based on previously learned tasks. This approach enables the robot to adapt more
quickly to new tasks, reducing training time. We evaluate our approach using an articulated
KUKA robot in both virtual reality (VR) and real robot experiments, and complement our
evaluation with a human study.

In the following sections, we introduce our legible motion framework in Section 3.3 and
present our task generalization method in Section 3.4. We then evaluate the improvement of
our framework and task generalization approach through experiments in Section 3.5. Finally,
we provide further discussion and conclude our work in Section 3.6.

3.3 Legible Motion Framework in HRC in Close Proximity
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Figure 3.1: Overview of the human-guided policy improvement framework. In each iteration, DMPs
generate Cartesian trajectories x, which are converted to joint angles q using inverse kinematics.
During interaction, potential field force is added to modify the trajectories online to provide safety
when the human gets close to the robot. After execution, a cost function C is evaluated to update the
policy Θ of the DMPs using PIBBO for the next iteration.

A general overview of our framework is depicted in Figure 3.1, illustrating the key steps
involved. The primary objective of our framework is to facilitate the generation of legible robot
motion through direct interaction between the human and the robot. Both entities collaborate
in a joint scenario, such as the task of reaching similar objects. The robot will adapt its motions
over time corresponding to the reaction/prediction of the human partner. Through training,
the robot acquires the ability to perform tasks more efficiently and predictably. This not only
enhances human comfort but also improves the overall effectiveness of the collaboration. In
summary, the framework can be described in three essential steps as outlined below

1. Firstly, Dynamic Movement Primitives (DMPs) are used to generate smooth trajectories
with modifiable parameters. These trajectories are generated in Cartesian space and
converted into the joint space of the robot using inverse kinematics.

2. DMP trajectories are then executed by the robot in the online phase where the robot
collaborates with the human in a joint task. During execution, a potential field force is
added to modify the DMP trajectories to ensure safety of the human.
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3. A cost function which evaluates how the human partner perceives each trajectory is
computed. These costs are then used to update the policy, which comprises the param-
eters of the DMPs in our framework. In the next iteration, new trajectories are sampled
based on the updated policy and the procedure repeats until it converges to an optimal
predictable trajectory or the maximum number of iterations is reached.

DMP trajectories are the trials/samples that the robot performs to understand how his
human partner perceives a legible motion. By changing the parameters of the DMPs, the
robot is able to exploit the working area and approach the goal from different angles. The
human reacts to the robot by moving to his corresponding task. Each trajectory performed
by the robot is then evaluated based on the human reaction formulated in a predefined cost
function. This cost function reflects the perception of the human on how legible this trajectory
is. Base on the evaluation of the cost function of each trajectory, the DMP parameters will
be modified in favor of the ones that are more predictable to the human (smaller costs).
This is done by the policy update method called Policy Improvement through Black Box
Optimization (PIBBO). After the DMP parameters (policies) are updated, the robot rolls out
new samples from these parameters for the next iteration. The procedure is then repeated
until the trajectories converge or the maximum number of iterations is reached. Note that all
of these computations are done at the beginning of each iteration.

To prevent collision between human and robot during execution (online phase), the DMP
trajectories are modified using a potential field force. This potential field force is proportional
to the relative distance between the human and robot and returns an error vector that is added
into the current DMP trajectory. As a result, the robot will move away when the human
comes close, and recovers his task when the area is free. Additionally, in order to increase
safety in close proximity, human motion is predicted using Probabilistic Movement Primitives
(ProMPs) [PDPN13] and serves as supplementary information added into the potential field
force. ProMPs is a recent approach that is able to generate/represent movement from a given
trajectory distribution. After training with a set of human motion observations, we used
ProMPs in the online phase to predict the movement of the human hand and incorporate
this information into the potential field. This helps the robot react faster and can avoid the
human more actively.

In Section 3.3.1, we provide a concise introduction to DMPs and outline how they gener-
ate smooth trajectories. The policy update method, PIBBO, is subsequently introduced and
explained in Section 3.3.2. We then proceed to clarify how safety for the human partner is en-
sured through the potential field force in collaboration with ProMPs in Section 3.3.3. Finally,
we delve into the detailed explanation of the cost function, which evaluates the performance
of each trajectory with a specific emphasis on collaboration effectiveness, in Section 3.3.4.

3.3.1 Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) were initially introduced by Stefan Schaal’s group
[Sch06] and later updated by Auke Ijspeert [INH+13]. The motivation behind DMPs stemmed
from the need to represent complex motor actions that could be easily adjusted without
manual parameter tuning or concerns about instability.

One key advantage of DMPs is their ability to modify trajectories online without the need
for complete recalculation. This feature proves particularly beneficial in scenarios where the
environment undergoes frequent changes, such as in HRC scenarios. In these cases, robot
trajectories often require constant online modifications based on the interaction between the
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robot and the human. Therefore, the ability to generate modulated trajectories online becomes
a critical component for enabling the robot to effectively participate in HRC scenarios. It is
worth noting that, aside from DMPs, classical spline methods [MMM00] can also generate
robot motions by imitating pre-defined or observed trajectories. However, due to the time-
based nature of splines, they are not easily modulated online by external variables, making
DMPs more suitable for scenarios with dynamic changes.

In DMPs, complex movements are considered as sequences or parallel sets of primitive ac-
tions, and DMPs serve as a mathematical formalization of these primitives. The fundamental
concept behind DMPs is the combination of two systems: the first system defines a dynam-
ical system with well-specified and stable behavior, while the second system introduces an
additional forcing term that enables the dynamical system to follow desired trajectories on
demand.

The dynamical system is a closed loop spring-damper system

τ ÿ = α(β(yg − y)− ẏ) (3.1)

that converges to the defined attractor state yg where τ is the time constant, α and β are
positive constants. By setting β to α/4 we get a critically damped system. The variables
y, ẏ and ÿ are the position, velocity and acceleration, respectively. The benefit of having a
second-order dynamical system is that it can be applied to motor control problems which are
usually described by second order differential equations and require knowledge of position,
velocity and acceleration for control. A controller would convert them into motor commands,
which account for non-linearities in the dynamics of the system.

The forcing term, which forms the second part of the DMPs, deforms the trajectory to
match a desired shape. Thus, the spring-damper system is modulated to

τ ÿ = α(β(yg − y)− ẏ) + f(x), (3.2)

where f(x) is the forcing term consisting of a weighted sum of Gaussian basis functions
multiplied by a canonical dynamical system, denoted as x. The canonical system x is obtained
by

ẋ = −αxx, (3.3)

where αx is a constant. The canonical system state x in (3.3) starts at some arbitrary value
and goes to 0 as time goes to infinity. This ensures convergence to the goal while keeping the
forcing term not directly dependent on time. The forcing function f(x) hence has the form

f(x) =
∑N

i=1 ψi(x)ωi∑N
i=1 ψi(x)

x, (3.4)

where
ψi(x) = exp

Å
− 1

2σ2
i

(x− ci)2
ã

(3.5)

defines the Gaussian basis functions with means ci and variances σi. In (3.4), N is the number
of basis functions and ωi are modifiable weights, which are adjusted to match the desired
trajectory. They are optimized by the policy improvement method explained in Section 3.3.2.

Since the mass spring-damper system leads to high initial accelerations, which is not de-
sirable for robots, we use a goal system, which moves the attractor state of the system from
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the initial state y0 to the goal state yg during the movement. This delayed goal attractor ygd

itself is given as an exponential dynamical system that starts at y0 and converges to yg.

ẏgd = −αg(yg − ygd) (3.6)

Thus the equation for the DMPs resolves to

τ ÿ = α(β(ygd − y)− ẏ) + f(x) (3.7)

The DMPs has several advantages, which make it suitable for our framework:

• It is guaranteed to converge to the goal, since the canonical system is 0 at the end of
every movement.

• The weights ωi can be adapted to generate any desired trajectory. In our case this is
especially relevant, since we want to learn the optimal trajectory and adjust the weights
online with each interaction.

• As there is no time-dependency, the duration of the movement can simply be altered by
adjusting τ .

3.3.2 Policy Improvement through Black-box Optimization

In the proposed framework depicted in Figure 3.1, the DMP trajectories generated in Section
3.3.1 play a crucial role in the online phase, where they are executed by the robot during
joint tasks with the human partner. The parameters of the DMPs are continuously updated
based on the collaboration and reactions of the human. Specifically, the weight factors of the
Gaussian basis functions, which serve as the deformation term in the trajectory (as explained
in Section 3.3.1), are the parameters subject to modification. Typically, this update process
involves solving an optimization problem using methods like gradient descent or policy im-
provement. However, given that the update procedure relies on trial and error with respect
to a utility function, policy improvement methods prove to be more suitable for addressing
this specific problem.

Policy improvement methods seek to optimize the parameters of a policy w.r.t. a utility
function and in general, have two basic steps:

1. Exploration by perturbation: The exploration noise ϵt can be either added to the actions,
i.e. the output of the policy (πθ(x)+ϵt), or directly to the input parameters of the policy
(πθ+ϵt(x)).

2. Policy update: Here, the parameters of the policy are updated in order to minimize a
predefined cost metric C. Usually, gradient descent is applied to iteratively converge to
a local minimum. Another method is the reward-weighted averaging, which is used in
our application.

Reward-weighted averaging does not require differentiability of the cost function, which makes
it more stable than gradient descent if the cost function is not continuous.

Specifically for this work, we choose Policy Improvement through Black-box Optimization
(PIBBO) as our policy improvement method [SS12]. PIBBO treats the whole control trajec-
tory as a black-box, i.e. no assumptions are made about the search space or the cost function.
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An important property of PIBBO is that the search is done in the space of policy parameters,
thus it is a parameter perturbing approach. The output ut of the policy is computed as:

uk = πθ+ϵk
(x), with ϵt ∼ N (0,Σ) (3.8)

In our case the policy πθ, is the DMP and θ are the corresponding weights for the Gaussians.
The parameter update is done using reward-weighted averaging. First, the cost Ck for each

trajectory roll-out is computed. Then we assign higher probabilities Pk to trajectories with a
lower cost and vice versa.

Pk = e−1/λCk∑K
k=1 e

−1/λCk
(3.9)

k is the number of roll-outs and λ is the decay factor that varies between 0 and 1. Small value
in the decay factor results in the decreased covariance matrix in the exploration step which
then increase the convergence speed of the algorithm.

The parameter update is then given as

δθ =
K∑

k=1
Pkϵk (3.10)

θ ← θ + δθ. (3.11)

After taking the weighted average of all roll-outs, the new DMP with updated parameters
θ follows the trend of trajectories with high probabilities (i.e. low costs). This process of
perturbing and updating is repeated until the desired cost value is achieved or the maximum
number of updates is reached. Here is a brief summary for the steps of policy improvement
with black box optimization:

1. Exploration
a) Get θinit

b) Get k samples from Gaussian distribution, θk ∼ N(θinit,Σ)
c) Execute the trajectories generated by DMP parameters θk to get Ck for each exe-

cution.

2. Parameter Update
a) Convert the costs Ck into weights Pk using (3.9)
b) Update the parameters using reward weighted averaging in (3.10), (3.11) to get
θnew

c) Decrease the covariance matrix, Σ ⇐ λΣ with a decay factor 0 < λ ≤ 1
d) Return to the exploration step with θnew instead of θinit

In our proposed framework, we assign a dedicated DMP to each goal, and these DMPs
are constructed with a fixed number of radial basis functions. During the training phase,
the robot executes various trajectories by perturbing the parameters of the DMPs. These
trajectories are then evaluated based on the cost values obtained from the interaction with
the human partner. Trajectories that yield lower costs are associated with higher rewards,
influencing the exploration behavior of the PIBBO algorithm in subsequent updates. This
iterative process continues until the trajectories converge or a predefined number of iterations
is reached.
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The result of this training process is the identification of optimal trajectories for each goal
with respect to the evaluated cost function. These trajectories exhibit desirable characteristics
in terms of legibility and collaboration effectiveness. However, before delving into the detailed
explanation of the cost function, it is essential to address the safety aspect concerning the
human partner during close proximity interactions. By considering safety measures, we ensure
the well-being of the human partner throughout the collaboration process.

3.3.3 Safety Aspect in Close Proximity

As the human works together with the robot in close proximity, safety of the human needs
to be considered. It is crucial to implement measures that allow the robot to avoid physical
collisions with the human. In our previous work, we introduced an obstacle avoidance method
that serves this purpose. In this study, we build upon the ideas presented in Chapter 2 but
with some modifications. In order to prevent collisions, we adopt the concept of creating an
artificial repulsive force that pushes the robot away from potential obstacles, including the
human partner. However, instead of relying solely on the minimum-jerk model to improve
the reactivity of the robot, we employ a different approach known as Probabilistic Movement
Primitives (ProMPs). By leveraging ProMPs, we can predict the motion of the human and
incorporate its anticipated effects into the repulsive force. In Section 3.3.3.1, we will introduce
our method for generating the repulsive force, which facilitates obstacle avoidance. Subse-
quently, in Section 3.3.3.2, we will provide an overview of ProMPs and explain how we extract
predictions of human motion using this approach.

3.3.3.1 Repulsive Force with Artificial Potential Field

The robot trajectory is generated by the DMP at the beginning of every update. We want to
modify this trajectory to avoid the human partner while still generating smooth motions and
following the original DMP trajectory when the human is out of reach. As the DMP trajectory
is already smooth based on its formulation (see 3.3.1), the artificial repulsive force also has to
generate a smooth transition on the robot. This is important for the human partner to feel
comfortable when working with the robot. This kind of behavior can be achieved by using
the concept of a virtual mass-spring-damper system regarding to external forces as presented
is Chapter 2

Fext = Më+Dė+Ke, (3.12)

where Fext ∈ R3 represents an external virtual force, which is excited whenever the human
enters the safety area around the end-effector of the robot. This virtual mass-spring-damper
system results in a smooth transition in the vector e ∈ R3 regardless Fext. This vector
indicates the modification length and direction to be added to the DMP. M ,D,K ∈ R3×3

are positive definite matrices that represent the mass, damping and stiffness of the virtual
system. In our proposed setup, M is chosen as the identity matrix, K and D are diagonal
matrices chosen to adapt the desired reaction to virtual forces. Increasing the damping results
in a slower reaction but smoother movement of the robot. The external virtual force Fext is
computed based on potential fields w.r.t the distance between the end-effector of the robot
and obstacles.

For the external forces Fext, we use the same idea as in Chapter 2 to generate a smooth
profile

Fext = Fmax
1 + exp ((∥d(E,O)∥ (2/ρ)− 1)γ) , (3.13)
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where Fmax is the maximum force applied, ∥d(E,O)∥ is the distance between obstacle O
and end-effector E, ρ is the threshold distance that defines the collision region around the
end-effector and γ is a shape factor. The force reaches its maximum if the distance equals
zero, and zero if the obstacle is outside the region, respectively. The steepness of the force
profile within the threshold region regarding the distance can be adjusted by the shape factor
γ. With Fext, the error vector e is obtained from (3.12) which return in the deviation needs
to be added into the DMP to avoid the obstacle. Note that the approach presented alters the
desired trajectory on position level rather than velocity level (see [FKDLK12]). This yields in
a saturation of the position alteration, proportional to Fmax. This effect is preferred in this
use-case, as it results in a more human like behavior. As a consequence, the robot stays closer
to its planned trajectory, rather than letting it being chased around by the human.

3.3.3.2 Human Motion Prediction with ProMP

Although the robot is able to avoid the human with the repulsive force generated from the
potential field, its reaction time is an important factor that needs to be considered. In a
confined workspace where the human usually interferes with the robot, the robot might not
have enough time to react and fail to avoid the human partner. Increasing the safety region
around the robot can improve the reaction time but results in a smaller workspace. Thus, in
our framework, we estimate and predict the human motion and add this additional information
into the repulsive force to increase the responsiveness of the robot.

In general, human motion estimation requires a specialized prediction method due to the
inter- and intra-personal movement variations [Tod04]. To imitate such behavior online, we use
Probabilistic movement primitives (ProMPs) and learn a distribution of a motion behavior by
training with multiple trajectories performed for a specific task [PDPN13]. ProMPs represent
a discrete trajectory X = {xn}, n = 0 . . . N defined by states xn over time N with the
formulation

yn = [xn, ẋn]⊤ = Φ⊤
nω + ϵy, (3.14)

where ω ∈ Rk×2 is the weighting matrix over the k × 2 dimensional time-dependent basis
matrix Φn = [ϕn, ϕ̇n] with k being the number of basis functions and ϵy ∼ N (0,Σy) is zero-
mean independent Gaussian noise, while Φ⊤

nω gives the mean of the trajectory. Introducing
a Gaussian distribution to also represent variance p(ω;θ) = N (ω|µω,Σω) over the weighting
vector ω results in the following distribution for the trajectory:

p(yn;θ) =
∫
N (yn|Φ⊤

nµω,Σy)N (ω|µω,Σω)dω

= N (yn|Φ⊤
nµω,Φ⊤

nΣωΦn +Σy).
(3.15)

Using a set of motion observations, the parameters µω, Σω can be computed by maximum
likelihood estimation [LG10].

By using this formulation, an online human motion prediction, where a trajectory along
with the variance for each discretized time point is generated. This predicted trajectory can
be used in different ways within our framework. An intuitive way is to select some predictions
at different time points along the trajectory. These predictions represent the points in space
where the human might occlude in the future and thus are treated as incoming obstacles
that the robot has to avoid. This triggers the reaction of the robot even if the human is not
currently within the safety region, which in turn increases the responsiveness of the robot. In
case the human does not move toward the robot, these incoming obstacles do not create any
disturbance, thus do not alter the robot desired position.
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3.3.4 Cost Computation

In this section, we will explain how the cost function in our framework (Fig. 3.4) is defined.
There are different aspects that we want to evaluate through the cost function:

• First is the legibility of the robot trajectories. There are different methods to measure
this aspect. In the works of [DSAC11] and [LLK11], they show the participants robot
motions and afterwards ask them to rate how legible the motions were perceived. In
a quantitative level, [DLS13], [BGLS17] show the participants robot motions through
videos/experiments and ask them to indicate immediately or press a button when they
feel certain about the intention of the robot. Time and correctness of the prediction
are used as the indicators for legibility in their works. Using the same approach as
in [BGLS17], we also use the human prediction time and accuracy to form the cost of
legibility.

• Second is the smoothness of the trajectories. This helps the human partners feel com-
fortable when working with the robot and be more confident approaching their goals.
Smoothness also contributes in the legibility aspect since a jerky motion does not meet
the expectation of the human. In our framework, we use the third derivative of the
trajectories to form the cost of smoothness.

From the two aspects that we want to evaluate, several components are identified and also
mixed up depending on the experimental setup. Here, we list all the costs used in this work:

• End-effector jerk Vej: the sum of the third derivative of the end-effector position of the
robot at each sample along trajectory.

• Angular jerk Vθ: the sum of the third derivative of the angular positions of the controlled
joints of the robot at each sample along trajectory.

• Human prediction time Vpred: the time taken by the human to make a prediction about
the robot’s target. It starts when the robot starts moving and ends when the human
reaches one of the targets.

• Accuracy Vtask: whether the human prediction was correct, translating to 0 cost (Vtask =
0), or if the prediction was wrong which results to a cost of 1 (Vtask = 1).

• Human duration Vdur: the duration of the human movement between when the human
starts moving and reaches the goal. It is a measurement of human’s confidence in the
presence of the robot.

• The weighted distance between the robot trajectories, Vδ, which measures how distinct
the trajectory to the targeted goal is in comparison to the trajectories to the other goals.
This cost is calculated using the following equation:

Vδ =
Å G∑

g=1

T∑
t=0

1
t
∥pt, qt∥2

ã−1
(3.16)

where G is the number of the goals excluding the targeted goal, g is the other goal whose
trajectory is compared to the targeted goal trajectory, t is the time step at which we
calculate the distance, T is the total time of the trajectory, pt is the point at t in the
trajectory to the targeted goal, qt is the position at t in the trajectory to the goal g and
∥pt, qt∥2 is the Euclidean distance between pt and qt.
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In summary, the cost function has the form

V = λejVej + λθVθ + λpredVpred + λtaskVtask + λdurVdur + λδVδ (3.17)

where each cost component is weighted differently. In general, λpred,λtask > λej,λθ,λdur,λδ

as we want to have a high reward for trajectories that are more predictable to the human
partner.

3.4 Task Generalization

While our framework produces policies that exhibit predictability, it is important to acknowl-
edge that the learning process demands a significant amount of data and time to achieve
convergence. Additionally, the trained policies are inherently tied to specific setups. Conse-
quently, when the environment undergoes changes, such as alterations in the start and goal
positions of the robot, or variations in the relative position of the human with respect to the
robot, the robot must adapt to these new configurations.

To address this challenge, we can leverage the existing knowledge acquired from a fixed
number of policies trained on specific settings. By doing so, we can exploit this knowledge
to facilitate the adaptation to similar task variations, even when limited data is available.
In essence, the previously learned policies already capture certain preferences of human per-
ception. Therefore, they can be utilized to enhance the convergence rate of learning in cases
where the robot has not been explicitly trained. We propose an approach to incorporate
this generalization capability into the policy improvement framework within the context of
HRC settings. This approach allows the robot to adapt more efficiently to new or modified
scenarios, capitalizing on the insights gained from previous training.

Suppose that the set of tasks for the robot is defined as

Φ = {g1, g2, · · · , gM |M ∈ N} , (3.18)

where M is the number of available tasks. Within the scope of this work, a task is defined as a
reaching motion, where the starting position is the same for all of the tasks and g1, g2, · · · , gM

are M different goal positions. Learning via PIBBO is done by selecting a subset T i out of
Φ and training trajectories for each goal in T i, where

T i = {gi1, gi2, · · · , giS} ⊂ Φ,S ∈ N, gij ̸= gik, ∀j ̸= k (3.19)

with a predefined S < M . The result of PIBBO is S policies that generate predictable
trajectories for each gij over T i. Each policy is parameterized by Θij

T i
, e.g. in our case

given as the weighted basis functions of the DMP. Note that the policy of gij depends on the
remaining goals in T i, which means a similar task will have different policies if it belongs to
a different subset. We then denote the generated policy for a goal gij from T i as

πT i
(gij | gi\j) = πT i

(gij) = π(Θij
T i

) (3.20)

where gi\j is an abbreviation of all tasks in T i except j. This can be interpreted as the policy
that generates the most predictable motion for goal gij given the remaining tasks in T i.

Given a training set T = {T 1, T 2, · · · , T k} consisting of k batches of S elements from Φ

each, a new ‹T /∈ T is drawn from Φ. The objective here is to find a new policy for a goal
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gm ⊂ ‹T such that the DMPs initialized using this policy improve the convergence rate of the
learning procedure of gm afterwards. This requires finding a mapping

π‹T (gm) = h (πT 1(g11), . . . ,πT 1(g1S), . . . ,πT k
(gkS)) (3.21)

with h(·) is a function of all policies obtained from the training set T. In fact, solving (3.21)
is equivalent to finding the parameterized vector Θm‹T in Eq. (3.20) for goal gm in the new
subset ‹T .

We claim that a predictable trajectory for each goal in T i depends on a set of features
χ. These features characterize the interrelation between gij and gi\j in the subset T i. They
can be relative distances, angles, etc, depending on how the set of tasks Φ is defined. These
features vary for each goal in each subset. Given a predefined set of p features for goal
gij in T i, we denote the resulting feature vector for each goal as χT i

(gij) ∈ Rp. We now
want to establish a relation between χT i

(gij) and vector Θij
T i

, which is the policy of gij in
T i. Furthermore, the weighted basis functions of the DMP in Θij

T i
are independent from

each other, hence can be evaluated individually. Therefore, we propose an approximation to
initialize each individual weight Θ ∈ Θij

T i
as follow

Θ = β0 +
p∑

k=1
βkχk(gij), (3.22)

where χk ∈ χT i represents a single feature in the set of p features for goal gij . Given the
trained policies from T and a predefined set of features χ, β = {β0,βk} in (3.22) is obtained
by solving the linear regression problem. Assuming Θij

T i
has N basis functions, then N linear

regression problems of (3.22) are solved individually to obtain N sets of β, denoted as βi

where i denotes the according basis function index.
From there, given the new subset ‹T , the generalized policy for a goal gm in ‹T is initialized

by the approximate value as

Θm‹T =

β1
...
βN

χ‹T (gm), (3.23)

where χ‹T (gm) is the features of gm in ‹T . We then use this policy as an initialization for the
DMP when learning predictable motion for the new subset ‹T . Details about our implemen-
tation and results are outlined in Section 3.5.3.

3.5 Results
This section encompasses a series of experiments designed to assess the effectiveness of our
framework and task generalization method. We begin by outlining the experimental setup in
virtual reality (VR) in Section 3.5.1, providing crucial context for the subsequent evaluations.
To evaluate the legibility of the generated motions, we present the corresponding results in
Section 3.5.2. Following that, in Section 3.5.3, we analyze the outcomes of our task general-
ization approach, which aims to extend the capabilities of the framework to new tasks based
on prior training. Furthermore, we address the safety aspect of our approach by conducting
an experiment involving the physical implementation of a KUKA robot. The results of this
real-world experiment are detailed in Section 3.5.4. Through these experiments, we aim to
provide comprehensive insights into the performance and versatility of our framework, along
with its potential applications in practical scenarios.
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Figure 3.2: Experiment setup with different configurations: a) Human and robot are on the same
side, b) Robot is on the opposite side of the human

3.5.1 Experimental Setup in Virtual Reality

Our main experiments are conducted within a VR environment, as depicted in Fig. 3.2. VR
offers several advantages that greatly facilitate our work. Firstly, it provides a high degree
of flexibility, allowing us to easily modify the environment or switch between different robot
configurations. This flexibility is crucial for exploring various scenarios and assessing the
adaptability of our framework. Secondly, VR provides a first-person perspective, closely
resembling how humans perceive their surroundings. This immersive experience aligns well
with the objectives of our work, making VR an ideal platform for our experiments.

During the experiment, the participant wears a VIVE Pro headset and stands in front of a
table, upon which the robot is mounted within the VR environment. To enhance the realism
and interaction, we incorporate a physical table that precisely matches its virtual counterpart.
The positioning of the robot varies depending on the specific experiment. We consider two
configurations: (i) the robot is mounted on the same side as the participant, and (ii) the
robot is mounted on the opposite side of the participant, relative to the collaborative task
area. The first configuration emphasizes the side-by-side perspective of the human observer,
while the second configuration simulates a direct viewpoint of the motions of the robot as
seen by the human. By comparing these two perspectives, we aim to investigate whether the
observer’s position influences the predictable motion of the robot. To facilitate collaboration
between the human and the robot, we design tasks in which both parties are required to reach
designated goals. The goals of the robot are visualized as cylinders, while the human’s goals
are represented as spheres. Each goal of the robot corresponds to a goal of the human, with
matching colors. The close proximity of these goals allows us to evaluate the effectiveness of
obstacle avoidance behavior, as illustrated in Fig. 3.2.

For each experiment, there are three different goals for the robot and three corresponding
goals for the human. The robot starts first by moving to one randomly chosen goal and the
participant has to predict which one the robot is aiming at and moves the VR controller
to the corresponding goal with same color when they feel confident about the target of the
robot. After that, both the participant and robot move back to their starting positions and
the procedure repeats. The participant is informed that this is a collaborative task, therefore
they are expected to find a balance between making a correct prediction or being fast and
reacting early. For example, making many wrong predictions results in failing the tasks,
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whereas having long prediction time increases the total amount of time for both to finish their
tasks. Both cases reduce the efficiency of the collaboration.

Each experiment consists of a habituation phase and an evaluation phase. The purpose
of the habituation phase is to get the participants acquainted to the VR environment and
the used equipment as well as familiarized to the robot motions and their own task. This
habituation phase reduces the learning effect during the main evaluation phase. During the
evaluation phase, the participants are asked to answer a questionnaire. The answers are scaled
onto 5 different levels: strongly disagree, disagree, neutral, agree, strongly agree. There are 11
questions in total, that are classified into 5 categories:

• How does the participant feel about the smoothness of the trajectories?

• Does the participant feel safe when working with the robot?

• Are the robot trajectories predictable?

• How natural and comfortable the participant feel about the robot trajectories?

• How does the participant like and want to work with the robot again?

For all experiments, if not mentioned specifically, we use configurations and parameters
described as follow:

• For DMP, we use three goal systems for the three Cartesian goal positions of the end-
effector. These goal systems are first initialized with straight lines. The DMP has 5
equally spaced Gaussian radial basis functions and there are 5 samples per update for
each goal. In the sampling phase, we add perturbations with the covariance size as 200
to the DMP parameters and run the policy for each sample. With each iteration, we let
the variance factor for the perturbations decay as it helps reducing the search space for
the parameters over time.

• For obstacle avoidance, we use a motion capture system to detect the position of the
human (and the velocity), which are then used to compute the repulsive force. The
maximum force Fmax is set to 300N and the obstacle threshold is 20cm around the
end-effector of the robot.

• The weights of cost components used in the experiment are: λej = 1, λθ = 2, λpred = 8,
λtask = 10, λdur = 1, λδ = 3. The weights of the human prediction time and accuracy
costs are relatively higher than the others.

Over time, the policy of the robot is updated to adapt to the preferences of the human and
produces more predictable movements to the human partner. The results of this adaptation
are presented in the following section.

In order to convert the Cartesian trajectory produced by the DMP into joint positions, we
use traditional inverse differential kinematics:

θ̇ = J+ẋ (3.24)

with J+ being the pseudo inverse of the Jacobian J of the end-effector ([Pen55]), θ ∈ R7 is
joint configuration and x ∈ R3 is Cartesian position. The pseudo inverse gives the least square
approximation to the real inverse. In our case only the pseudo inverse is applicable, as we
map three Cartesian values to seven joint positions, which makes the Jacobian not quadratic
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and thus not regular. We constrain the covariance size of the DMPs to avoid generating
trajectories out of the range of the robot. In addition, the joint configuration corresponding
to the starting position is fixed for all trajectories. In this way, the elbow position of the
robot resulting from joint redundancy does not change significantly during the experiment.
Hence, the adaptation effect is mainly visible on the end-effector movement. The motion of
the end-effector is formed based on the DMPs trajectories and the potential field force applied
to it and it is the major factor for the human partner to differentiate between different robot
motions.

3.5.2 Predictable Robot Motion for a specific Setup

Given a specific setup, which in our case comprises the goals of the human and the robot in ad-
dition to the robot mounting position (either in the same side or opposite side of the human),
the predictable trajectories are obtained through the learning framework. We conduct exper-
iments with different participants on different configurations to evaluate overall performance.
To quantify the performance of our framework, we look at the following criteria:

• The total cost V and human prediction time cost Vpred (Section 3.3.4) for each update.
Vpred is used to quantify the legibility of the robot motion while V shows the overall
efficiency of the learning framework.

• The opinion of the subject about how legible robot motions are after each phase.

• The converged trajectory for each goal after learning w.r.t each subject.

The first two criteria will be discussed in Section 3.5.2.1 and 3.5.2.2 while the last one will be
analyzed in Section 3.5.2.3.

3.5.2.1 Evaluation of the learning framework

Fifteen participants took part in this study. As mentioned, each experiment consists of a
habituation phase and an evaluation phase. In the habituation phase, 30 trials are executed
using invariable DMP trajectories. After its completion, the evaluation phase starts, which
consists of 10 updates with 5 trials per update for each of the three goals, resulting in 150
trials in total. This number is comparable to [SGBL15, BGLS17]. To evaluate the partici-
pants’ perception during the experiment, this phase is divided in three blocks with two breaks
after the 4th and 7th update respectively, in which the participants are asked to fill a short
questionnaire (see results in Fig. 3.3).

The prediction time and accuracy from all participants is collected using a motion capturing
system after each trial to update the cost function and evaluate the framework over time. The
human prediction time is calculated by measuring the time between the start of the robot’s
motion until the participant reaches their goal. Since each human being has a different
inherent reaction speed, we normalize the measurement of the human prediction time of each
participant by their responses on the first update, which is computed as the average of 15
values of the human prediction time.

Both total cost V and human prediction time cost Vpred for all subjects are presented in
Fig. 3.4. For each update, there are 225 data points (15 trials per update for 15 participants),
each data point represents the measurement of one single movement of the participants. The
red line depicts the mean while the blue area illustrates the 95% confidence interval. As shown,
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Figure 3.3: a) Predictability evaluation from all subjects for each phase. The evaluation of partici-
pants for the first 4 updates, then the next 3 updates and the last 3 ones are shown in phase 1, phase
2 and phase 3 respectively. The mark shows the median of each group. The box contains 50% of the
middle half of all given answers thus representing the interquartile range of the data. The whiskers
mark the most extreme answers. b) Robot trajectories learned for each goal every update. The first
updates (straight lines) and last updates are marked thicker than the others.
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Figure 3.4: The mean and confidence interval of the total cost and human prediction time cost for
all subjects.

both cost values decrease over time. The human prediction time cost Vpred drops around 13%,
while the total cost V drop is around 24%. Comparing the data between the first and the
last update, a pair-sampled t-test indicates that they are both significantly different from
each other (t = 7.142, p < .001 for V and t = 7.437, p < .001 for Vpred). The decrease of
human prediction time indicates that the subjects are able to predict and react faster to the
robot motions while the reduction of total cost also implies that the subjects predict more
accurately over time (accuracy cost has the highest weight).

The subjective legibility of robot trajectories is measured by the questionnaire during the
breaks and after the last update. Here, we asked the participants’ opinion on two statements:
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the robot’s intention was clear and it was easy to predict which goal the robot is targeting. We
get the average of the two answers as the measurement of legibility aspect from the human
perspective. The trajectories become more predictable as the median increases over time
(Fig. 3.3a). An interesting result that can be observed here is that the interquartile range is
reduced from phase 1 to phase 2, however it slightly increases from phase 2 to phase 3. This
means the improvement from phase 2 to phase 3 is not very clear as the mean increase but
the data spread is also larger. One reason for this is due to the trajectories of the robot start
to get close to the converged one after a few updates and the updated trajectories of phase
2 and phase 3 are quite close together. An example of this behavior is shown in Fig. 3.3b,
where the trajectories start as a straight line toward the goals and after a few updates, get
close to the converged trajectories depicted as the bold and dark curves for each goal.

Overall, it can be concluded that, given a specific setup, human prediction time and subjec-
tive legibility can be improved through our framework and therefore can boost the efficiency
of the collaboration between human and robot. However, the question arises here whether the
learning effect of the participants plays a significant role in the improvement of the results,
since the experiment is designed as a repetitive task. This will be discussed further in the
next section.

3.5.2.2 Comparison with non-adaptive robot

In this section, we compare our method with a non-adaptive baseline. Even though we
reduce the learning effect from the participants through the habituation phase, there is still
probability that the human adapts to the motions of the robot over time. Therefore, the goal
of this section is to investigate if the prediction of the human is improved due to the legible
motions of the robot or because of human adaption. We design two experiments with the
same environment setup, i.e. the tasks and the positioning of human and robot are the same.
We use the counterbalanced ABBA design and define the following two groups:

• Group I: Subjects within this control group first interact with the non-adaptive robot,
then with the adaptive robot subsequently.

• Group II: Subjects within this control group first interact with the adaptive robot, then
with the non-adaptive robot subsequently.

In the case of non-adaptive robot, we also use our framework, but the policies (the param-
eters of the DMP) will not be updated. Therefore, the non-adaptive robot will always follow
a straight line from the start toward the goal in every motion. As there is no adaption from
the robot, the results from the non-adaptive robot solely reflect the learning capability of
the human over time. This configuration also guarantees that the trajectory of the robot is
smooth based on the DMP formulation (Section 3.3.1) and the avoidance behavior is identical
to the adaptive robot. The only difference between the two robots is the method to generate
their motions which can be evaluated by comparing the results from the two experiments.

The experiments are then conducted on 14 new subjects, divided into 2 groups of 7 partic-
ipants each. The procedure for each experiment is identical to the experiment described in
Section 3.5.2.1.

The total cost and human prediction time for both cases, adaptive and non-adaptive robot,
are shown in Fig. 3.5. The error bar represents the mean value and standard deviation for
each update. For the adaptive robot, there is a clear tendency for decreasing in both total cost
and human time cost over the course of iterative updates. On average, the total cost deceases
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Figure 3.5: Comparison of the total cost and human prediction time between adaptive robot and
non-adaptive robot

around 22% and human time cost decreases around 10%. In the case of non-adaptive robot,
these values are 3.8% and 4.5%, respectively. It can also be seen that for the first few updates,
the subjects collaborate better with the non-adaptive robot as both of the costs are lower.
This is due to the fact that the adaptive robot uses a trial and error method to understand
how the human perceives legibility by exploiting different motions. Motions that are harder
to predict result in a higher cost, as shown in the slightly increasing in the human time cost
on the second and third updates of the adaptive robot. But overtime, its motions become
more predictable and easier for the subjects to predict compared to the non-adaptive robot,
as indicated by the better performance in both cost values from the sixth update and after.

We also perform pair-sampled t-test to evaluate how significantly different is the perfor-
mance between the adaptive and non-adaptive robot. On the first update, the performance
between both robots is not significantly different (t = −2.464, p > .001 for the total cost V
and t = −0.266, p > .001 for the human prediction time cost Vpred). In contrast, on the last
update, the t-test results in t = 4.139, p < .001 for V and t = 3.185, p < .001 for Vpred, which
indicates that the difference is significant. Overall, our conclusion drawn from this section is
that the improvement in the human prediction time and the overall performance is mainly
from the legible behavior of the robot. The learning effect from the human partner, while
also reducing the human time and cost, does not have a significant contribution within our
framework.

3.5.2.3 Predictable Trajectory Evaluation

To analyze the converged trajectories from the policy improvement framework, we first pick
three different configurations: 3 goals in a horizontal line, 3 goals in a vertical line and 3
goals in a diagonal line. These configurations are illustrated in Fig. 3.6. Combined with two
different mounting positions of the robot (same or opposite to the human), we have 6 cases
in total. The experiments are conducted with several participants for each case. In Fig. 3.7
we representatively show 3 converged robot trajectories for each goal configuration.

For the horizontal configuration, a and b are with the robot on the same side and c is with

58



3.5 Results

G1

G2

G3

G1

G2

G3

0.5 0.5
90
o

G1

G2

G3

45
o

-135
o

a) b) c)

G1

G2

G3

d)

Figure 3.6: Different configurations of the robot goals: a, b, c are used for training, d is used for
testing the task generalization approach.

the robot on the opposite side. The robot tends to bend more on the left or right for the blue
or red goal, respectively, while for the green goal, the robot tries to keep the trajectory in the
middle with a small variance, i.e. the green line diverges slightly to the left side in a. Another
variance is the length of the trajectories, e,g. the red line is the shortest in a and longest in
b. All trajectories tend to go downward for all three results.

The vertical configuration is one of the most interesting case as the trajectories converge
quite differently. For example, the green line curves to the left in d and e but keeps in the
middle-left in f. The red line is the only one bending to the left in all three results. However,
we observe the same pattern for all three results. For each case, one trajectory bends to the
left side, one to the right side and one stays in the middle. This creates a divergence between
the three trajectories and makes them easier to predict. The difference in trajectory shape
toward each goal comes from the random sampling of DMPs during the rollout phase. For
example, if there are more rollouts for the green goal to the left side and being predicted
correctly by the human, these rollouts will be rewarded more and push the next update to
the left. Another reason is the personal preference of each participant, i.e. for the blue goal,
it is easier for one participant to predict if it bends to the left side, but for another the right
side is favorable. Hence, these trajectories are rewarded differently.

For the diagonal configuration, we observe similar behaviors as in the horizontal one. The
green line stays in the middle while the two others diverge to the corresponding directions.
Also in this configuration, the distance between two goals is larger than previous cases, there-
fore it is easier for the human to predict in this configuration. The blue line is one example
as it tends to go straight toward the goal in h.

For all configurations, we observed slightly different trajectories w.r.t the mounting position
of the robot. It seems the perspective affects the shape, but it’s not always significant. This
is probably because from the human point of view, the shape of trajectories does not change
a lot, therefore it does not affect the predictability too much.

In summary, there are differences between trajectories w.r.t different subjects and config-
urations i.e. length, bending angle, etc. However, we also observed several similarities and
patterns in the robot trajectories that make them become more predictable to the human.
This motivates us to learn these patterns such that they can be generalized to other cases.

3.5.3 Task Generalization Evaluation

As learning a policy for each task and each configuration requires considerable amount of time,
it is preferable to take advantage of the knowledge of the prior polices as it already encodes
some preference of human perception. In this section, we evaluate our task generalization
presented in Section 3.4. To generalize the policy for task gm in a new set ‹T , we have to
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Figure 3.7: Converged trajectories from different subjects and configurations, top: horizontal, middle:
vertical, bottom: diagonal configurations.

find a set of features χ‹T (gm) (see Section 3.4). From our observation and from the results in
Section 3.5.2.3, we identified some critical features that a predictable trajectory depends on:

• The relative distances from the target goal gm to other goals in ‹T .

• The angles between the target goal gm to other goals in ‹T w.r.t the horizontal line.

• The relative angle between the human and the robot.

Without loss of generality, we illustrate our idea for the case ‹T consisting of 3 goals as depicted
in Fig. 3.6. The workspace of the robot is divided into a 3× 3 lattice where robot goals can
be located in 9 different positions. For the sake of simplicity, the height of the workspace is
normalized as 1. Fig. 3.6 depicts some possible configurations and how χ‹T (gm) is calculated.
For example, for G1 in a, the relative distances to G2 and G3 are 0.5 and 1 respectively,
the angles to G2 and G3 are both 0o. For G2 in b, the angles are 90o and −90o while for
the same G2 in c, these values are 45o and −135o. The relative angles between the human
and robot is set 0o if the robot in mounted on the same side with the human and 180o if the
robot is mounted on the opposite side of the human. Within the scope of this work, we only
investigate these two mounted positions of the robot, but it can be extended to other cases,
e.g. the robot is positioned on one side of the table such that the perspectives of the human
and robot are orthogonal.

To verify our task generalization approach, three configurations a, b and c in Fig. 3.6
combined with two different robot positions are used for the training phase (6 different cases
in total). The training phase consists of 18 subjects, equally distributed for all cases. For
each experiment, we obtain the policy w.r.t each subject for each case. The weights of the
converged trajectories are extracted to construct a regression model. Then, we use a new
setup depicted in Fig. 3.6d with the robot mounted on the same side with the human as a
testing sample. Using the corresponding features for the new setup as the input, we initialize
the DMP with the output of the regression function in Eq. (3.23).
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Figure 3.8: Robot trajectories in the task generalization experiment. The trajectories were initialized
by the weights generated from the regression model.

The robot trajectories in the first and final update are depicted in Fig. 3.8. The trajectories
are initialized as curves toward the three goals in the first update instead of straight lines
in the non-trained case. For G1, the curve bends upward while for G2 and G3, the curves
deviate downward, more to the left and right from the human point of view respectively. These
behaviors match the expectation that we observed in Section 3.5.2.3. During the updates,
the robot continues exploring new motions around the initial ones. The covariance size of
the DMP perturbation is set to half of the value of the non-trained case so that the rollout
trajectories are sampled in a smaller area. The converged trajectories for each goal are shown
in the final update in Fig. 3.8. Compared to the first update, the shape of the trajectories
does not change a lot, which indicates that the learning algorithm stays close to the minimum
from the beginning.

Next, we analyze the outcome of the total cost and the human prediction time. Our goal
here is to compare the performance of the learning method to the non-trained case. Therefore,
we establish two groups with 6 new participants each:

• Group A: Subjects within this control group interact with the untrained robot on a
specific experimental setup different from the ones used for training the data.

• Group B: Subjects interact with the robot, whose trajectories are initialized by the
regression model. The experimental setup is identical to the one of Group A.

The experiment procedure is the same as described in Section 3.5.2.1. The human pre-
diction time cost of each subject is also normalized for cross comparison. The means and
standard deviations of the total cost and human prediction time cost from both groups are
plotted together for comparison (Fig. 3.9). A clear improvement of the trained robot can be
observed directly from the result as both the total cost and the human prediction time cost
are lower than the untrained robot. In addition, the cost values of the trained robot start
decreasing from the start while in the case of untrained robot, they start increasing at first
then decrease due to high exploration in the beginning. As the experiment is designed exactly
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Figure 3.9: Cost plots that show the difference between the control group that interacted with the
untrained robot and the results for the interaction with the trained robot

the same between both groups, the improvement of the trained robot comes from the initial-
ized trajectories derived from our task generation approach. Instead of exploring the whole
area, the trained robot only needs to search around the given trajectories, which inherit the
properties of legibility from training data. As a result, the human predicts easier and faster
over time, i.e. the human time cost drops substantially 20% in the case of the trained robot
compare to 10% of the untrained robot after 10 updates.

As a conclusion, the task generalization approach that we proposed increases the efficiency
of the learning framework. Starting from an initial trajectory generated from the approach,
the robot trajectory converges quickly to the predictable one, which is also close to the initial
trajectory. This helps to reduce the number of updates and the number of sampled trajectories
per update, which in turn reduces the amount of time needed for training.

3.5.4 Experimental Results on a Real Robot

As demonstrated in the previous sections, our approach proves effective in learning predictable
robot motions through interaction in a VR environment. To further advance our framework,
we take a significant stride by implementing it on a real robot. While conducting experiments
in VR allows us to evaluate our hypotheses across various setups and configurations without
being limited by system constraints or safety concerns, it becomes challenging to assess the
safety aspect from the human perspective due to the absence of real collision possibilities.
Hence, in this section, we provide additional evaluation of the safety aspect.

In order to evaluate safety, we design an experiment as depicted in Fig. 3.10, with the robot
positioned opposite the human. In this experiment, we utilize the KUKA LWR 4+ robot,
which possesses 7 DOFs. We employ the same inverse kinematics methodology introduced
in Section 3.5.1 to convert Cartesian positions into joint configurations for the robot. The
trajectories generated by our framework are then transmitted to the robot using ROS (Robot
Operating System) at a frequency of 100Hz. The KUKA robot internally employs joint
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Figure 3.10: Real experiment setup on a KUKA LWR 4+ robot

position control to execute the provided trajectories.
Slightly deviating from the VR setup, in this real robot experiment, we use identical goals for

both the human and the robot. The goals are represented by three LEGO blocks, distinguished
by their colors (red, blue, and yellow). Consequently, the human is required to enter the
workspace of the robot to reach these goals, thereby introducing a potential collision risk with
every movement. To ensure safety during the experiment, both the human hand and the
end-effector of the robot are equipped with passive retroreflective markers, which are tracked
by a Qualisys tracking system [Qua19]. This tracking information is utilized by the robot to
avoid collision with the human, thereby guaranteeing a safe working environment.

The experiment procedure follows the same structure as described in the previous sections,
comprising a habituation phase and three main blocks in the evaluation phase. The first block
consists of 4 updates, while the second and third blocks each consist of 3 updates. Following
each block, a short break is provided for the subjects to complete a questionnaire. The ques-
tionnaire includes the same legibility-related questions as presented in Section 3.5.2.1, aiming
to assess the perceived legibility of the robot motions. In addition to the existing questions,
new inquiries are included to evaluate the safety aspect and the participants’ comfort.

Regarding safety, the participants are asked to provide their opinions on three statements:
The robot is responsive to my movement, The robot does not hit me while moving, and I feel
safe working with the robot. The first two statements specifically focus on the avoidance be-
havior of the robot, as it is a crucial feature for ensuring the safety of the human partner.
The third statement directly gauges the participants’ overall perception of safety when collab-
orating with the robot. The average of the responses to these three statements is used as the
measurement for evaluating the safety aspect. Similarly, for assessing comfort, two statements
are included: The motion of the robot is natural to me and I feel comfortable working with the
robot. These statements aim to evaluate whether our framework also provides a comfortable
working experience for the human partner.

The entire experiment duration is approximately 30 minutes. Throughout the experiment,
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participants are instructed to wear headphones playing concentration music to minimize po-
tential distractions from the surrounding environment.
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Figure 3.11: Results of the real experiment on a KUKA LWR 4+ robot. The top side of the figure
shows the total cost and human prediction time cost while the bottom side shows the human evaluation
in the safety and comfort aspects when working with the real robot

We gathered data from a group of 10 new participants who had no prior knowledge or
experience with the VR experiments. Consequently, the results solely reflect the performance
of the real robot, offering insights into its behavior. We observe similar patterns in the total
cost V and the human prediction time cost Vpred as in the VR experiments. Both cost values
exhibit a gradual decrease over time (Fig. 3.11). Specifically, the total cost V decreases by
approximately 20%, while the human prediction time cost Vpred sees a reduction of around
19%. These improvements in cost values indicate that the trajectories of the KUKA robot
became increasingly predictable over time.

The lower section of Fig. 3.11 presents the box-plots illustrating the evaluation of safety
and comfort aspects. Concerning safety, the data distribution shows almost no negative
responses from the participants. The responses range from neutral to strongly agree in all
three phases of the experiment. The boxes, representing 50% of the answers, mainly spread
around the agree level in phase 1 and phase 2. In phase 3, there is a larger variation, with the
box extending from above neutral to strongly agree. Overall, the data demonstrates positive
feedback, indicating that the participants were confident that the robot would not collide with
them during its movements, fostering a sense of safety when working with the robot. During
the experiment, we even observed some participants expressing interest in the behavior of the
robot by repeatedly interacting with it after completing their tasks, deliberately moving their
hand toward the robot to observe its reactions.

Regarding comfort, the participants provide predominantly positive feedback, with most
answers surpassing the neutral level. Only in phase 2, one of the whiskers extends below
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the neutral level. However, this is an isolated case, representing a single participant out of
the 10 subjects, highlighting individual differences in personal preferences. Overall, we can
conclude that our framework is capable of providing a safe and comfortable environment for
human-robot interaction during the learning process.

3.6 Discussion and conclusion

3.6.1 Discussion

Our learning framework represents a significant advancement in integrating learning and in-
teraction, thereby transitioning from a passive "learning from observation" approach to an
active "learning through interaction" paradigm. The findings presented in Sections 3.5.2.1
and 3.5.2.2 provide compelling evidence that our framework enables the generation of legible
robot motions during human-robot interaction. Notably, the improvement observed in com-
parison to the non-adaptive baseline highlights the inherent adaptability of the robot motion
over time, with the own adaptive capabilities of the robot playing a pivotal role, while the
learning effect from human diminishes throughout the learning process. Furthermore, our
investigation into task generalization has yielded promising preliminary results. By initially
learning the policies of three sampled tasks and subsequently utilizing our approach to gen-
erate policies for new tasks, we have demonstrated the potential for successful policy transfer
and task generalization. The results discussed in Section 3.5.3 validate our hypothesis that
legibility can indeed be effectively transferred to similar tasks, reinforcing the generalizability
of our framework through the application of our task generalization method. We also verified
our framework in a real experiment setup, affirming its capacity to create a safe and secure
environment for human-robot interaction. While the presented results substantiate the effec-
tiveness of our framework, it is important to acknowledge that there are additional aspects
warranting detailed consideration and further exploration.

In our study, we not only evaluate and verify various hypotheses, as detailed in Section
3.5, but we also recognize the importance of exploring additional case studies through further
experimentation. One intriguing avenue for investigation lies in understanding how the pre-
dictable trajectories learned from our framework are influenced by the relative perspective of
the human and robot. This particular case study stems from the recognition that the human
partner is unlikely to remain stationary during interactions, often moving around the robot.
Consequently, the trajectories of the robot are perceived differently from the human’s vantage
point. While our work has examined two distinct mounting positions for the robot and yielded
preliminary results, it is imperative to explore additional positions to fully substantiate this
proposition. Another compelling case study centers on examining the variations in perception
among participants with different backgrounds. For instance, participants with a robotics
background may exhibit distinct behaviors and reactions when collaborating with the robot,
as compared to those without prior experience in robotics. By comparing the outcomes of
the learning framework across these participant groups, we can gain deeper insights into the
interplay between individual backgrounds and the effectiveness of the framework.

Task generalization is a concept that allows us to estimate the policy for a new task by
leveraging the existing policies of previously trained tasks and considering the relationship
between human perception, specifically in terms of predicting robot trajectories, and task
specifications. By starting from a trajectory that is more predictable to the human for a new
task, our approach enhances the convergence rate of the learning framework. We have demon-
strated the effectiveness of this idea in a 3× 3 lattice environment, implementing three tasks

65



3 Adaptation and Transfer of Robot Motion Policies for close Proximity Human-Robot
Interaction

per configuration, and showcasing the positive outcomes of our approach. The advantages of
our method are noteworthy. Firstly, it does not necessitate precise task positions but instead
relies on the relative positions between tasks, estimating the basis functions of the DMP. This
characteristic enhances the flexibility and adaptability of our approach. Secondly, our method
can be easily extended to an n× n case, accommodating a larger number of tasks per config-
uration without requiring extensive modifications. This scalability ensures its applicability to
complex scenarios with numerous tasks. However, it is essential to acknowledge the limita-
tions associated with the current formulation of our approach. Since the features that capture
task differences are defined at the outset and remain unchanged during the learning phase,
the range of new tasks that can be estimated using our approach is somewhat restricted.
This constraint arises from the requirement that these new tasks must be described using the
same features. For instance, in our work, all robot tasks involve reaching a goal on a vertical
plane. Consequently, tasks with fundamentally different features or characteristics may not
be effectively addressed using our current task generalization method.

The promising outcome of the task generalization method poses several intriguing questions
that warrant further investigation. Firstly, we need to explore how to identify the relevant
features and determine the influence of each feature on the trajectories of the robot. Although
we have primarily relied on observations from a limited number of participants to identify
critical features, a more extensive dataset is necessary to adequately validate and establish
the significance of these features. Secondly, it is important to determine the optimal number of
training cases required during the training phase of the task generalization approach. Finding
the right balance is crucial, as too many training cases can significantly increase training
time and diminish the efficiency of the approach. Conversely, too few training cases may
lack the necessary variation to capture the interrelation between tasks effectively, potentially
impacting the outcome of the generalization method.

Finally, the experiment conducted on the KUKA LWR 4+ robot is our first step to bring
our framework to real-world applications. The avoidance behavior of the robot is reliable such
that the human feels safe and confident to cooperate with the robot. The implementation of
avoidance behavior in the robot plays a crucial role in ensuring the safety and building trust
between the human and the robot during their collaborative interactions. The reliability of
the avoidance behavior is instrumental in fostering a sense of security and confidence in the
human partner. It allows for a smooth and consistent behavior from the human, both in terms
of prediction and hand movement coordination. It is worth emphasizing the significance of
this avoidance behavior and its contribution to the overall success of the learning process. A
seamless interaction between the human and the robot is essential for accurate measurement
of human prediction time. For instance, in the event of a collision during the experiment, the
human may feel uncomfortable and hesitant to proceed with subsequent movements. Such
interruptions can potentially introduce inconsistencies and inaccuracies in the measurement
of human prediction time, underscoring the importance of reliable avoidance behavior.

However, our setup with the KUKA LWR 4+ robot does have certain limitations, primarily
related to the working area of the robot. Due to joint limits, especially the elbow joint, as well
as the chosen mounting position and configuration to avoid singularities, the workspace of the
robot is relatively small. As a result, we were constrained to setting up only three goals with
a distance of approximately 20cm between them. This limited workspace presents challenges
in extending the framework to different tasks and evaluating the effectiveness of the task
generalization method in a real-world setup. In order to overcome this limitation, alternative
solutions can be explored. One possible approach is to change the mounting position of the
robot, such as mounting it on the ceiling, which would provide a larger range of motion for
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the elbow joint of the robot. Alternatively, employing a different robot with a larger working
space could also address this constraint and enable the evaluation of the task generalization
method in a more diverse set of tasks and scenarios.

3.6.2 Conclusion

In this work, we have developed a comprehensive framework that integrates human motion
prediction with our learning framework to generate predictable robot motions that can adapt
to human preferences and avoid collisions. We have successfully verified the effectiveness of our
framework through extensive experiments in both VR and real-world scenarios. The results
obtained from these experiments demonstrate the ability of robots to adapt their behavior
based on human preferences while ensuring a safe and comfortable working environment. The
humans involved in the experiments showed increased confidence and improved prediction
capabilities, leading to faster and more accurate responses. Furthermore, our task generaliza-
tion approach has proven to be successful, as evidenced by the improved performance of the
robot when executing a new task using the learned policy. This confirms our hypothesis that
the policies learned through our framework are transferable to similar tasks. This adaptabil-
ity and transferability highlight the versatility and efficacy of our framework for generating
predictable robot motion in both offline and online cases.

Building upon these advancements in trajectory generation and adaptation, the next cru-
cial challenge is the control of the robot to effectively execute the generated motions and
swiftly adapt to changes in the environment or task requirements. While our framework
successfully generates trajectory profiles comprising position, velocity, and jerk information,
the execution of these trajectories by the robot remains an open question that needs to be
addressed. To execute the generated trajectories, a force/torque profile must be generated
to serve as the control input for the robot. This aspect falls under the domain of motion
control, which was previously discussed in Chapter 1.1. Motion control plays a critical role in
achieving optimal robot performance, particularly for high degree-of-freedom articulated or
humanoid robots that are commonly utilized in close proximity HRC scenarios. The motion
control system must take into account various physical properties of the robot, including its
mass, inertia, and dynamic characteristics. Additionally, it needs to consider optimization re-
quirements such as energy consumption, smoothness of motion, and adherence to user-defined
constraints. While the existing internal controllers of the robot may enable basic functional-
ity, they often lack the necessary adaptability, flexibility, and optimality required for complex
HRC tasks. Manual configuration of controller parameters for each experiment or scenario
is time-consuming and inefficient. Furthermore, the use of high DOF robots with complex
kinematic structures and physical models introduces additional challenges. These robots often
require computationally intensive algorithms to generate optimal control solutions. Fast and
efficient motion control algorithms are crucial to ensure optimal robot performance, enable
swift adaptation to changing task requirements and environmental conditions, and maintain
smooth and predictable trajectories that prioritize the safety and comfort of human partners.

In the upcoming chapter, we will delve deeper into the topic of motion control and explore
novel techniques and strategies to address these challenges. By considering the intricate
dynamics of the robots and the dynamic nature of the environment, our goal is to design
fast and efficient control methods that can generate and execute precise trajectories on the
robot while quickly adapting to changes in real-time, ultimately facilitating more productive
and harmonious interactions between humans and robots in close proximity collaboration
scenarios.
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Nomenclature of Part II

Scalars are written in plain lower case, vectors in bold-face lower case. Matrices are bold-face
upper case, while plain upper case symbols refer to coordinate frames, mathematical spaces
and sets. Subscript annotations are reserved for index notation of multi-dimensional variables,
whereas superscript annotations are part of the variable specification.

Also note that we omit explicit listing of function parameters whenever it is clear from the
context, to not unnecessarily clutter the notation. A list of the most frequently used variables
in this work is given.

ν Lagrange multiplier vector
Φ set of terminal constraints
ρ co-state, Lagrange multiplier vector
f dynamic system
R matrix of influence functions
S,Q positive definite matrix
u control input
W weighting matrix
x state
V̂ optimal cost
λ duration
H Hamiltonian
∥ · ∥ 2-norm of a vector
τ sampling time
J ,V cost functional
l,L performance cost
mf terminal cost
TP prediction horizon

71





4
Fast and Close to Optimal Receding

Horizon Controller For Articulated Robots
in Reaching Motions

This chapter was previously published in [HDWLW17, HDLW22]

One of the fundamental aspects of the discussed HRC scheme in Chapter 1 is the development
of a controller for the robot that can effectively execute commands generated by high-level
task allocation or trajectories generated by motion planning, while taking into account various
factors and challenges specific to HRC environments. It is important to note that the controller
operates at the force/torque level, thereby considering the dynamic behavior of the robot. In
the context of HRC, especially with the presence of humans as collaborative partners, the
controller must exhibit adaptability and real-time responsiveness to changing situations. This
adaptability is crucial throughout the HRC framework and has been addressed to some extent
in the motion planning frameworks presented in Chapter 2 and Chapter 3. For instance,
the obstacle avoidance framework (discussed in Chapter 2) incorporates a simple waypoint
trajectory generation method [RIS13], facilitating easy trajectory replanning, while a potential
field approach enables rapid response to obstacles that may hinder the actions of the robot.
Similarly, the motion generation framework in Chapter 3 leverages DMPs to generate versatile
trajectories by adjusting the DMP goal. However, up until this point, our previous works have
primarily focused on the kinematic level of the robot. The outputs of the motion planning
frameworks presented in previous chapters are trajectories, represented as sets of waypoints
with timestamps. Each waypoint contains kinematic information such as position, velocity,
acceleration, jerk, etc., that the robot is expected to follow.

In essence, the motion planners in these works assume that the robot will execute the
trajectories flawlessly and precisely adhere to the provided instructions. However, due to the
inherent dynamic behavior of the robot, it is generally impossible for the robot to accurately
track the given trajectories without a dedicated controller. Thus, the connection between
the planning and execution components is currently lacking. The aim of this chapter is
to address this issue by proposing a control approach that enables the robot to track the
given trajectories while considering the diverse requirements of HRC environments. Given
the challenges of HRC, the designed robot controller needs to fulfill the following properties

• The controller should enable the robot to precisely follow the given trajectories, while
ensuring the overall stability of the system. Achieving precise tracking and stability is
essential in order to fulfill the intended task objectives.

• Given the dynamic nature of HRC environments, the controller needs to be capable of
recalculating and adapting in real time. The ability to dynamically adjust the control in-
puts and adapt to changes in goals or environmental conditions is crucial for maintaining
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optimal performance and safety.

• In addition to trajectory tracking, it is desirable for the controller to incorporate obstacle
avoidance capabilities. Although high-level planning techniques, as discussed in Chapter
3, may also address this issue, having a dedicated controller that accounts for obstacle
avoidance adds an extra layer of safety and ensures smooth and secure collaboration
between humans and robots within the same workspace.

• Beside tracking, different aspects need to be considered such as optimizing energy con-
sumption, human comfort, etc. Hence, the designed controller requires the capability of
coupling these terms.

• Finally, it is crucial for the controller to achieve fast computation times to meet the
demands of real-life applications.

Designing a controller that satisfies all the aforementioned requirements is not a trivial task.
One intuitive approach is to formulate an optimal control problem (OCP) that incorporates
the desired properties through an objective function. By solving the OCP, an optimally
calculated controller can be obtained. However, the computational effort required for most
optimal control approaches is a significant challenge, limiting their usage to offline cases and
static environments. Extensive research has been conducted to reduce the computation time
of the OCP, with model predictive control (MPC) emerging as an effective approach that
can solve the OCP in a shorter time frame. Despite its advantages, the computation time
of MPC, particularly for complex systems, remains a limitation, restricting its application in
online scenarios and HRC settings.

To address the computational challenges while considering all the essential properties, this
work presents a novel approach for fast and optimal trajectory planning of nonlinear systems in
dynamic environments. Given the start and end goals with an objective function, the problem
is to find an optimal trajectory from start to end that minimizes the objective while taking into
account the changes of the environment. The main challenge here is that the optimal control
sequence needs to be computed in a limited amount of time and needs to be adapted on-the-fly.
The proposed control method consists of two stages: an initial phase that utilizes a first-order
gradient algorithm to compute an initial guess of the control sequence satisfying constraints
but not yet optimal, and a sequential action control phase that optimizes the control sequence
for the portion to be applied in the next iteration. This approach reduces the computational
effort while maintaining optimality w.r.t. the objective function, making it suitable for online
computation and dynamic environment scenarios. Moreover, the proposed controller is proven
to be asymptotically stable under mild conditions. Simulated results demonstrate the efficacy
of the controller in solving various tracking problems for different systems in the presence
of dynamic obstacles. A comparison with related indirect optimal control approaches and
sequential action control is conducted in terms of cost and computation time to evaluate the
superiority of the proposed method.

4.1 Introduction

In recent years, trajectory planning and control in robotics and automation has garnered sig-
nificant attention due to emerging demands in various applications. In addition to reaching
a goal, it is crucial for controlled robots to respond to highly dynamic environments, such as
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avoiding vehicles and pedestrians in autonomous driving scenarios or ensuring safety by avoid-
ing collisions with human co-workers in close proximity collaborations. This necessitates the
ability of the robot to adapt rapidly to changing situations. Furthermore, in addition to safety
considerations, there is a growing need to optimize energy consumption and enhance human
comfort. Optimal control methods offer a suitable approach as they enable the definition of
these requirements as cost functions or constraints. However, the extensive computational
effort required by these methods limits their use to offline trajectory computation, rendering
them unable to effectively handle dynamic environments [Rao10].

Among the few optimal-based methods capable of addressing dynamic scenarios, MPC
[RMD17] stands out. By utilizing the concept of a receding horizon, MPC computes a sub-
optimal solution over a finite horizon, implementing only the first portion of the trajectory and
waiting for the next measurement before proceeding. This approach offers two key advantages.
First, MPC significantly reduces the computation time compared to purely optimal control
approaches, as it solves the optimal control problem for a short horizon rather than the
entire trajectory. Second, MPC can effectively respond to changes in the environment by
incorporating them as additional costs and constraints at the beginning of each iteration.
However, the trade-off is the optimality of the solution, as MPC provides a sub-optimal
solution. Nevertheless, MPC still struggles with nonlinear systems due to their complexity,
resulting in increased computation time. As a result, MPC is primarily applicable to simple
or slow systems. For instance, in the case of ground vehicles, point-mass or kinematic models
are commonly used, which overlook many of the physical behaviors of actual cars.

Sequential Action Control (SAC) offers a promising alternative to traditional optimal con-
trol methods for trajectory planning. Introduced in [AM16], SAC employs a receding horizon
approach but focuses on finding the optimal control signal for a single interval rather than
the entire horizon. By utilizing theoretical foundations from switching systems [EWA06], the
author derives an analytical solution that allows for faster execution compared to numerical
approaches. The potential of SAC for online applications is demonstrated through various
examples presented in the work. However, SAC has limitations when it comes to incorporat-
ing constraints from the optimal control problem. The neglect of these constraints in favor
of a more efficient analytical solution restricts the applicability of SAC to trajectory planning
tasks that require the fulfillment of additional constraints, such as target or final constraints.

Building upon the effectiveness of SAC, the contribution of this work is a development
of an optimal-based control algorithm called Target Constraint Sequential Action Control
(TC-SAC) for the trajectory planning tasks. TC-SAC combines two steps to handle target
constraints effectively while maintaining computational efficiency. In the first step, a first-
order gradient approach is employed to address the target constraints and generate an initial
guess for the trajectory planning problem. Then, SAC is utilized to further refine the initial
guess w.r.t. the cost function. A notable contribution of this work is the extension of the
original SAC algorithm to derive a new analytical solution that ensures target constraints are
not violated. By integrating the first-order gradient approach with SAC, TC-SAC achieves
a balance between constraint fulfillment and computational speed. Comparative evaluations
between TC-SAC, SAC, and indirect optimal control methods are conducted to highlight the
advantages of the proposed method. Furthermore, we demonstrate the versatility of TC-SAC
by applying it to different systems and applications with minimal modifications required.

The remaining sections of this work are organized as follows: Section 4.2 provides an
overview of related works in the field, while Section 4.3 formulates the general problem that
serves as the foundation for this research. In Section 4.4, we present the fundamental concept
of TC-SAC along with a comprehensive mathematical formulation of the algorithm. Subse-
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quently, Section 4.5 presents the simulation results obtained using TC-SAC, highlighting the
trajectory tracking performance and conducting comparative analyses. The stability proof of
TC-SAC is discussed in Section 4.6, providing a rigorous assessment of the stability properties
of the algorithm. Finally, Section 4.7 concludes our work with a thorough discussion and an
outlook on future directions for research and development in this field.

4.2 Related Work

Optimal control approaches play a crucial role in trajectory planning and control, enabling
robots and autonomous systems to generate trajectories that optimize certain performance
criteria. By formulating the problem as an optimization task, optimal control methods aim to
find the control inputs that minimize a given cost function while satisfying system dynamics
and constraints. These approaches provide a systematic framework to handle complex system
behaviors, and address various objectives such as energy efficiency, smoothness, and obstacle
avoidance. With advancements in computational techniques and algorithm design, optimal
control has become a prominent approach in achieving precise and efficient trajectory planning
and control for a wide range of applications in robotics, automation, and autonomous systems.

There are two main categories of optimal control methods: indirect methods [VSB92] and
direct methods [DBDW07]. Indirect methods focus on deriving a boundary value problem
(BVP) in ordinary differential equations (ODE) by considering the necessary conditions of
optimality for the infinite OCP. On the other hand, direct methods transform the infinite
OCP into a finite nonlinear programming problem, which can then be solved numerically.
However, due to the computational complexity associated with these methods, their online
applicability is limited. To address this challenge, modifications have been proposed to per-
form offline pre-computations and reduce online computation time. For instance, some studies
[LNTC+11] compute a finite number of global optimal solutions offline and generalize them
using techniques such as Support Vector Machines or Gaussian process regression, which are
then used as training data for online adaptation. Additionally, machine learning and motion
primitives [WTLL15, ALB16] have been employed to learn precomputed optimal trajectories.
However, these approaches have limitations in dynamic environments where an infinite num-
ber of scenarios can arise, making it difficult to cover all possibilities with a finite number of
precomputed solutions. Dynamic Motion Primitives (DMPs) [WHHAS13] have emerged as
an alternative, allowing online adaptation of DMP parameters to respond to dynamic envi-
ronments. However, in this method, the optimality is lost due to the deformation process and
therefore the trajectory is not optimal.

Recently, MPC [All05] has garnered considerable attention and found applications in vari-
ous domains [QB00, VZQD16, OUT16, MNK+13, LSZL14]. The popularity of MPC can be
attributed to the development of efficient numerical toolboxes and the availability of powerful
CPUs that enable rapid solution of optimal control problems. MPC operates as a feedback op-
timal control framework by solving an optimal control problem over a finite receding horizon.
The control input for the first interval is applied until new state measurements are obtained, at
which point the horizon is shifted forward and the process is repeated. The key advantages of
MPC include its computational efficiency compared to traditional optimal control approaches
[VSB92] and its ability to account for dynamic environments. Consequently, MPC has gained
significant attraction in the past decade, with notable advancements in algorithms and soft-
ware implementations that substantially reduce computation time. Some approaches, such as
those presented in [Oht04] and [FE16], employ limited iterations to approximate the solution,
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leading to reduced computation time at the expense of suboptimal solutions. Additionally,
the ACADO toolkit [HFD11] has emerged as a robust numerical solver for nonlinear MPC,
capable of handling a wide range of applications and problems, as demonstrated in various
research studies [KAAS15, ZHFD18]. Despite these developments, the computation time
of MPC remains significant, particularly for nonlinear and complex models like articulated
robots or car-like systems. As a result, most existing works focus on simple or slow systems
in static environments to achieve computational feasibility.

SAC, introduced in [AM16], is a model-based algorithm that computes a sub-optimal control
signal for nonlinear systems. Unlike NMPC, SAC derives a closed-form expression for a single
interval of the control signal, which is applied for a short duration. This analytical solution,
obtained without the need for numerical solvers, makes SAC faster than NMPC and other
optimal control approaches, positioning it as a promising candidate for online applications.
However, the analytical solution of SAC is only feasible when there are no constraints in the
control problem. SAC employs the mode insert gradient method [EWA06], which measures the
first-order sensitivity of the cost function with respect to the control signal applied for a short
duration. An auxiliary cost function is cleverly formulated using this sensitivity, enabling
the derivation of the analytical solution. Nevertheless, this approach inherently neglects the
consideration of constraints, rendering SAC unsuitable for tasks that require hard constraints
such as tracking tasks.

Motivated by SAC, this work proposes the Target Constrained Sequential Action Control
(TC-SAC) method, which not only computes an optimal solution quickly but also handles
target constraints in trajectory planning tasks. TC-SAC presents a promising solution for
real-time optimal control in dynamic environments. Furthermore, we extend the original
SAC algorithm in this work to address scenarios where target constraints may be violated,
broadening its applicability to a wider range of applications. We perform comprehensive com-
parisons to demonstrate the effectiveness of the proposed TC-SAC method. Additionally, we
showcase the capability of TC-SAC to handle dynamic environments, specifically addressing
the challenge of avoiding moving obstacles. The stability analysis of the proposed method is
also discussed in Section 4.6.

4.3 Problem Formulation

In general, trajectory tracking task can be formulated as an OCP in the receding horizon
where the terminal constraints is used to for trajectory generation task. For the OCP, a
dynamic system with n states and m control inputs is considered and described by a set of
ordinary differential equations

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 (4.1)

with f : Rn+m+1 → Rn being nonlinear in state x ∈ Rn and control input u ∈ Rm. The initial
state of the system is denoted by x0 and the target configuration xd(t) denotes the final goal.
The cost functional

J1 = mf(x(tf)) +
∫ tf

t0
l1(t, x(t), u(t))dt (4.2)

with the performance cost l1(·) and the terminal cost mf(·) being used to measure the perfor-
mance in the horizon [t0, tf]. The optimal control problem over a receding prediction horizon
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TP is given by

min
u

J1 = mf(x(tf)) +
∫ tf

t0
l1dt (4.3a)

s.t. ẋ = f(t, x(t), u(t)), x(t0) = x0, x ∈ Rn (4.3b)

Φ =

Ö
x1(tf)− xd,1(tf)

...
xq(tf)− xd,q(tf)

è
= 0, q ≤ n, (4.3c)

where t0 = tcur denotes the current time, tf = tcur + TP is the final time at the end of the
prediction horizon and (xd,1(tf), ...,xd,q(tf)), defines q constrained states at the end of the
prediction horizon tf. Φ is then the set of terminal constraints at tf.

In this paper, the dynamic system in (4.1) is assumed to be given in control-affine form,
i.e.

ẋ = f (t, x(t), u(t)) = g (t, x(t)) + h (t, x(t)) u(t) (4.4)

with f being non-linear with respect to state x and linear in control input u.

4.4 Target Constrained Sequential Action Control
This section outlines the proposed approach called Target Constrained Sequential Action
Control (TC-SAC) [HDWLW17] for trajectory planning tasks. The idea of TC-SAC is utilizing
the advantage of SAC in term of fast computation time and extending the original method
with an additional controller to tackle constraints. The overall structure of TC-SAC is given
in Fig. 4.1.

Nominal
Controller

Optimal
Controller Selection System

Full state feedback

u1

u∗
2

Figure 4.1: Overview of the controller scheme. First, a nominal control input is computed with the
first order gradient algorithm (green box). After this, the first portion of the control input is updated
with SAC (red box)

The proposed method consists of two parts:

1. A nominal controller based on first-order gradient algorithm (FOGA) [BHS79]

2. An optimal controller based on Sequential Action Control (SAC)

In TC-SAC, an initial guess is first computed by an indirect optimal control method, which
is FOGA in our case in order to consider terminal constraints. Due to time limitation, FOGA
is only run for one iteration to obtain the nominal control u1. Obviously, with one iteration,
u1 is not yet close to the optimal solution. The first interval of u1 is then improved by SAC
since it will be applied on the system in the next iteration. As mentioned, SAC utilizes the
concept of mode insert gradient [EWA06] and a proper selection of an additional auxiliary
cost function to derive an analytical solution for the optimal control u∗

2, which improves the
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performance over u1. Note that u∗
2 differs from u1 only by the first portion while the rest

remains the same. Then in the Selection step (see Fig. 4.1), u∗
2 is compared to u1 in term of

performance and terminal constraint costs. If the comparison shows the improvement of u∗
2,

then it is applied to the system for the next iteration.
Looking in depth into the difference between TC-SAC and SAC, our method has a better

choice of the nominal controller u1. To be precise, the original SAC only computes one
interval of the control signal u∗

2 per iteration while assuming u1 ≡ 0. In the case of TC-SAC
instead, u1 is updated every iteration. Therefore, TC-SAC always improve the optimality of
the control signal over time while SAC does not. The update of u1 also plays a crucial role
for TC-SAC to incorporate target constraints for trajectory tracking tasks and is part of the
stability proof that will be discussed later in Section 4.6. Clearly this update requires more
computational effort than SAC, but it is negligible compare to the benefits that it provides.
Next, both parts of our approach will be outlined and explained in detail.

4.4.1 First-order gradient algorithm (FOGA)

The first part of the controller serves the purpose of incorporating constraints i.e. target con-
straints into the OCP which are crucial for trajectory generation tasks. Since the theoretical
background of SAC uses the co-state equation from the Pontryagin’s principle[Pon87] as part
of the calculation (see Section 4.4.2 for more detail), FOGA is selected as the solver here to
utilize this equation to reduce the amount of steps needed for implementation. FOGA then
solves problem (4.3) for one iteration to find an initial guess. Since this is an optimal control
problem with equality constraints at the final state, the idea from [BHS79] is used. First, the
dynamic constraint is adjoined to the performance equation l1 by introducing time-varying
Lagrange multiplier vector ρ, whose elements are called the co-states of the system. This
constructs the Hamiltonian H ∈ R1 defined for all t ∈ [t0, tf]:

H(x, u,ρ, t) = ρTf(x, u) + l1(x, u) (4.5)

Follow the Pontryagin’s maximum principle[Pon87], the co-state equation

ρ̇ = −
Å
∂H
∂x

ãT
= −

Å
∂l1
∂x

ãT
−
Å
∂f1
∂x

ãT
ρ (4.6)

must be satisfied. Solving (4.6) requires a terminal condition, which is usually chosen as
ρ(tf) =

Ä
∂mf
∂x (tf)

äT
if the state x is not fixed at tf. In our case, this terminal condition is

slightly modified to consider the terminal constraints in (4.3c):

ρi(tf) =

0, i = 1, · · · , q,Ä
∂mf
∂xi

äT

t=tf
, i = q + 1, · · · ,n,

(4.7)

with n and q as defined above. Next, the matrix of influence functions R ∈ Rn×q is introduced

Ṙ =
Å
∂f
∂x

ãT
R, (4.8)

where
Rij(tf) =

ß
1, i = j, i = 1, · · · ,n,
0, i ̸= j, j = 1, · · · , q. (4.9)
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By defining the matrix R, it is able to predict how changes in the control input, δu(t), affect
the cost function J1 and the q terminal constraints in Φ by the following, check [BHS79] for
more details

δJ1 =
∫ tf

t0

Å
ρT ∂f
∂u + ∂l1

∂u

ã
δu(t)dt (4.10)

δΦ ≜

δx1
...
δxq


t=tf

=
∫ tf

t0
RT ∂f

∂uδu(t)dt (4.11)

Now we want to minimize (4.10) s.t. constraints (4.11). However, both have linearized
relations w.r.t δu so there is no minimum for δJ1. A simple way to create a minimum is to
add a quadratic integral penalty function in δu to (4.10)

δJex = δJ1 + 1
2

∫ tf

t0
(δu)T Wδu dt, (4.12)

where W(t) ∈ Rm×m is an arbitrary positive-definite weighting matrix. The problem then
becomes a minimization problem of δJex subject to (4.11). Adjoining (4.11) to (4.12) with
another constant Lagrange multiplier ν, one obtains

δJ̄ = δJex + νT
ï∫ tf

t0
RT ∂f

∂uδu(t)dt− δΦ
ò

. (4.13)

If we neglect the change in coefficients, the first derivative of (4.13) is given by

δ(δJ̄) =
∫ tf

t0

ï
∂l1
∂u + (ρ+ Rν)T ∂f

∂u + (δu)TW
ò
δ(δu)dt (4.14)

Set (4.14) to be zero, one can find a solution of

δu = −W−1
ï
∂l1
∂u + (ρ+ Rν)T ∂f

∂u

òT
(4.15)

that minimizes (4.13). Substitute this into (4.11), we find that

δΦ = −IΦJ − IΦΦν (4.16)

where IΦΦ ∈ Rn×n and IΦJ ∈ R1×n are computed by

IΦΦ =
∫ tf

t0
RT ∂f

∂uW−1
Å
∂f
∂u

ãT
Rdt (4.17)

and
IJΦ = IT

ΦJ =
∫ tf

t0

Å
ρ
∂f
∂u

+ ∂l1
∂u

ã
W−1

Å
∂f
∂u

ãT
Rdt (4.18)

Assuming that IΦΦ is non-singular, we can solve (4.16) for the value of ν

ν = −I−1
ΦΦ(δΦ+ IΦJ) (4.19)

with δΦ = −ϵΦ[x(tf)] and a constant ϵ ∈ (0, 1]. Finally the new control u1 is updated to

u1 = u1,old + δu (4.20)
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with the old control input u1,old and the update δu from (4.15).

In summary, the procedure of FOGA follows these steps:

1. Initialize a set of control input u(t).

2. Forward integrate (4.4) with the initial conditions x(t0) and the initial guess of the
control input from step 1.

3. Determine the co-state vector ρ and the matrix of influence functions R by backward
integration through (4.6) and (4.8) with the terminal conditions (4.7) and (4.9).

4. Calculate IΦΦ, IΦJ through the integrals (4.17), (4.18) simultaneously with step 3.

5. Determine ν from (4.19) and compute and estimation of δu via (4.15).

6. Update the control input u1 using (4.20)

Remark: In the standard OCP, step (2)-(6) are repeated until the optimal solution is
found. However, since we pursue fast computation and real-time capability, these steps are
only performed once. Obviously, u1 is not yet close to the optimal solution. SAC is then used
to further improve the performance without trading much of the computation time.

4.4.2 Sequential Action Control

The motivation of using Sequential Action Control (SAC) is that, instead of computing the
control input for the whole prediction horizon, it is more crucial to consider the next interval
since it will be applied to the system first. On the other hand, in dynamic environments, the
predicted controller is affected by moving obstacles or might be completely changed if the final
goals changes on-the-fly. SAC therefore aims to improve the control input for only the next
interval, but still uses the same prediction horizon [t0, tf] for the performance cost evaluation.

Assuming that the nominal controller u1 is obtained using FOGA described in 4.4.1, we
want to find a control u∗

2, denoted as the optimal control, that further improves the cost
function (4.2) w.r.t the dynamic system (4.4). SAC then computes a triplet consisting of the
control value u∗

2, its application time τm and the application duration λ. This triplet is called
an action and the control signal can be written as

u(t) =
®

u1, t /∈
[
τm − λ

2 , τm − λ
2
]

u∗
2, t ∈

[
τm − λ

2 , τm − λ
2
] (4.21)

with the nominal controller u1 and the optimal controller u∗
2. This can be interpreted as a

switching controller where SAC switches between two modes. These two modes are given by

f1(t) ∧= f(x(t), u1(t)) (4.22)

for the nominal controller u1 and

f2(t, τm) ∧= f(x(t), u∗
2(τm)) (4.23)

for the optimal controller u∗
2. In this paper, the application time τm is deterministic with

τm = tcur + τsample/2 where tcur denotes the current time and τsample denotes the sampling
time. Now remember that our aim is to improve the cost function (4.2) with the new controller
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u∗
2 applied within the duration λ. We then rely on the mode insert gradient[EWA06], which

evaluates the first-order sensitivity of the cost (4.2)

dJ1
dλ+ (τm) = ρ(τm)T(f2(·, τm)− f1(·, τm)) (4.24)

This equation measures how the cost is influenced from varying the length λ of the application
of the optimal control u∗

2. The co-state ρ in (4.24) is computed based on (4.6) and (4.7). To
reduce the cost J1, (4.24) should be driven to a desired negative value αd ∈ R−. This can be
done by simply introducing an auxiliary cost function

l2(s) = l2(x(s), u1(s), u2(s),ρ(s))

= 1
2

ï dJ1
dλ+ − αd

ò2
+ 1

2∥u2(s)∥2S
(4.25)

with S > 0 and ∥u2(s)∥2S = u2(s)T Su2(s). Solving the minimization problem of (4.25)
results in a control that achieves the desired sensitivity αd. For models in control-affine form
(4.4), the solution for this minimization is given analytically by

u∗
2 = (Λ + ST)−1[Λu1 + h(x)Tραd] (4.26)

with Λ = h(x)TρρTh(x).

4.4.3 Extended Sequential Action Control with target constraints

One problem arises from the theoretical background of SAC presented in Section 4.4.2 is that
it cannot handle constraints and hence using SAC solely in the next step can lead to the
violation of the constraint (4.3c). To prevent this happen, we extend the the original SAC
method by using the knowledge from FOGA. Re-define the auxiliary cost function in (4.25)
into

lext
2 (s) = l2(x(s), u1(s), u2(s),ρ(s))

= 1
2

ï dJ1
dλ+ − αd

ò2
+ 1

2

ï
dlc
dλ+ − αc

ò2
+ 1

2∥u2(s)∥2S
(4.27)

where lc = 1
2Φ

TQcΦ, Qc ∈ Rq×q is a positive definite matrix and Φ is the vector of target
constraints defined in (4.3c). lc can be interpreted as the additional constraint cost and
therefore dlc

dλ+ measures how this constraint cost is influenced from varying the length λ of the
optimal control u∗

2. Hence solving the new minimization problem of (4.27) also drives this
sensitivity to a negative value αc ∈ R−. This leads to the reduction of lc which then helps
SAC prevent the constraints from being violated.

The only problem now is the evaluation of dlc
dλ+ . We have

dlc
dλ+ (τm) = dlc

dx(tf)
dx(tf)
dλ+ (τm) = ΦTQc

dx(tf)
dλ+ (τm) (4.28)

From (4.11), we have

δΦ = δx(tf) =
∫ tf

t0
RT ∂f

∂uδu(t)dt

=
∫ τm+δλ

τm

RT ∂f
∂u(u2 − u1)dt

(4.29)
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with [τm, τm + δλ] is the infinitesimal duration where u2 is applied. As δλ→ 0, (4.29) can be
written as

dx(tf) = RT df
du(τm)(u2 − u1)dλ (4.30)

or
dx(tf)
dλ+ (τm) = RTh(τm)(u2 − u1) (4.31)

Substitute this into (4.28) and solve the minimization problem of (4.27) the same way as
in Section 4.4.2, we obtain a new analytical solution of u∗

2

u∗
2 = (Λ1 +Λ2 + S)−1(Λ1u1 +Λ2u1 + hTραd + hTRT

c αc) (4.32)

with Λ1 = hTρρTh, Λ2 = hTRT
c Rch, Rc = ΦTQcRT.

Algorithm 1: TC-SAC

Initialize x0, xd, current time tcurr, prediction horizon TP, sampling time τsample, end time
Tend , initial guess for nominal control u1.

while tcurr < Tend do
if tcurr ≥ τm then
τm = tcurr + τsample/2
Simulate (x,ρ, R) using u1 for t ∈ [t0, tf]
Compute Iψψ, IJψ as in (4.17) and (4.18), ν by (4.19), change in control δu by (4.15)
Update u1 ← u1 + δu
Saturate u1 to [umin,umax]
Simulate (x,ρ) using new u1 for t ∈ [t0, tf ]
Compute new costs J1,init, lc,init
Specify αd

Compute u∗
2 from (4.26) and saturate it to [umin,umax]

Initialize k = 0, J1,min ← J1,init, J1,SAC ←∞, lc,min ← lc,init, lc,SAC ←∞
while k < kmax do
λ = τsample
(τ0, τf ) = (τm − λ

2 , τm + λ
2 )

Re-simulate (x,ρ) applying control (4.21)
Compute new cost J1,SAC, lc,SAC
k = k + 1
if J1,SAC < J1,init and lc,SAC < lc,init then
J1,min ← J1,SAC, lc,min ← lc,SAC

end if
end while
if J1,SAC < J1,init and lc,SAC < lc,init then

u1 ← u∗
2 for t ∈ (τm − λ

2 , τm + λ
2 )

end if
else

Apply control u1
end if
(t0, tf ) = (t0 + τsample, t0 + Tpre + τsample)

end while
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In this work, the application time λ is set to be equal to τsample such that u∗
2 is applied

for one interval. Additionally, u∗
2 is just applied if it results smaller in both performance cost

J1 and terminal constraint cost lc over the prediction horizon TP compared to the nominal
control u1. This is considered as the Selection procedure in the control scheme as illustrated
in Fig. 4.1.

In order to obtain a feasible solution, a boundary of control signals is given by box-
constraints, i.e. U = [umin,umax]m, by simply saturating the control output computed above.
Overall, Algorithm 1 outlines the general structure of the proposed method.

4.5 Trajectory Tracking Simulation and Comparison to
Optimal Control

In this section, we provide several examples to demonstrate the effectiveness of the proposed
approach. Specifically, we apply our method to the reaching task and trajectory tracking task
for a 2DOF robotic arm, comparing the results with the original SAC. From a theoretical
standpoint, an intriguing question arises regarding the impact of the extended SAC presented
in Section 4.4.3 on system performance. To address this, we introduce two additional con-
trollers for comparison purposes. Firstly, we compare the performance of the extended SAC
with target constraints to the original SAC. Secondly, we evaluate the performance of FOGA
with multi-steps in comparison to TC-SAC. Additionally, we extend our analysis to include
a car-like system, highlighting the versatility of TC-SAC in handling diverse and complex
systems with minimal modifications. By conducting these extensive evaluations, we aim to
provide comprehensive evidence of the efficacy and applicability of our proposed approach in
a variety of practical scenarios.

4.5.1 Comparison of the proposed approach to other optimal-based control
approaches

a2

θ1

θ2

l2
Il1

(-)

(+)

x

y

g

Figure 4.2: Setup of the two degrees of freedom robot used for the simulation.

In this Section, we consider a basic reaching motion task and evaluate the performance of
the proposed approach on a 2DOF robotic arm in vertical plane as shown in Fig. 4.2. The
full dynamics of the robot are considered, including friction and gravitation. The task of the
robot is to reach a pre-defined position. The performance cost is chosen to penalize the error
between the current and desired states

l1(t) = (x(t)− xd)T Q(x(t)− xd), (4.33)

with Q ⪰ 0. The target constraint is also set to be the desired position. The prediction
horizon is chosen Tp = 0.3s and the sampling rate is set to 1kHz. The initial position of the
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robot is x0 = (−π
2 , 0, 0, 0) and the control u is bounded by u ∈ [−50, 50]Nm. The sensitivity

αd was chosen proportional to the cost J1, αd = ωαd
J1 with ωαd

= −10. Similarly, the
sensitivity αc is set to be αc = ωαc lc with ωαc = −5.

4.5.1.1 Upright as Desired Position
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Figure 4.3: States of 2DOF robotic arm when the designed position is upright

First, the results are evaluated in the case of xd being the upright position, xd = (π
2 , 0, 0, 0).

The weighting matrix for the performance cost (4.33) is Q = diag([100, 50, 0.0001, 0.0001]).
Having the first two values of Q much higher than the latter means that the position errors
are penalized more heavily than the velocity errors, which is necessary for tracking tasks. The
weighting matrix for lc in (4.27) is Qc = diag([10, 1000, 10, 10]). For FOGA, we run in two
iterations to have a fair comparison to TC-SAC, in term of cost improvement and computation
time. The simulation is run for 1.5s and the result is shown in Fig. 4.3. All methods succeed
in controlling and stabilizing the robot. However, TC-SAC and FOGA needs only 0.5s to
converge to xd, while SAC and the extended SAC take more than 1s to be converged. The
overall cost is shown in Table 4.1. Further more, each method is run for 100 times to obtain
the average computation time. Note that the code is run on Matlab environment so the
computation time is only used to evaluate the speed of these methods relatively.

Table 4.1: Total cost and computation time.
SAC Extended SAC TC-SAC FOGA

Total cost 316.74 291.02 152.21 150.60
Computation time 18.18s 19.60s 89.82s 124.63s

When comparing SAC to the extended SAC, it is evident that the incorporation of the new
sensitivity term improves the constraint satisfaction in the states of the robot. This is partic-
ularly noticeable in the case of θ2, where the extended SAC minimizes the deviation between
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the current and desired states to a greater extent than SAC. This observation highlights the
enhanced performance of the extended SAC in terms of tightening the target constraints.

In the comparison between TC-SAC and FOGA, both approaches exhibit similar perfor-
mance outcomes. However, it is worth noting that TC-SAC demonstrates a computational
advantage, with a computation time that is 34s shorter than that of FOGA with 2 iterations.
This discrepancy in computation time can be attributed to the fact that each iteration of SAC
is considerably faster than each iteration of FOGA, as SAC benefits from a direct analytical
solution. Consequently, TC-SAC emerges as the preferable choice, as it achieves comparable
performance in a shorter time frame.

4.5.1.2 Arbitrary position

In this section, we want to analyze the performance of the methods in the case of any arbitrary
desired position. In this case, the controller has to compensate the gravitational force, which
is zero if the robot is at the upright position (equilibrium point). This highlights the role of the
target constraint in TC-SAC and FOGA in term of convergence. The desired position is set to
be xd = (3π

4 , −3π
4 , 0, 0) and other parameters are set to be the same as the case of the upright

position. The simulation is run for 2s and the result is shown in Fig. 4.4. It can be seen that
TC-SAC and FOGA quickly converges to the desired position in approximately 0.5s while
both SAC and the extended SAC methods can not converge to the desired position in θ1 and
θ2. These offsets appear in any desired position that is not the equilibrium point. Therefore,
TC-SAC and FOGA is preferable for reaching/tracking tasks even though the computation
time is larger.
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Figure 4.4: States of 2DOF robotic arm in the case of arbitrary desired position

4.5.1.3 Tracking an ellipse trajectory

Taking one step further, we evaluate the methods in trajectory tracking task. Since SAC and
the extended SAC are incapable of reaching arbitrary position, they are excluded from this
task. The trajectory is set to be an ellipse with the radii along x-axis and y-axis are 0.3m and
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0.18m respectively. For the sake of simplicity, the robot follows the ellipse with a constant
velocity and the whole ellipse takes 3s to finish. The starting position is set to be upright.
In this simulation, the weighting matrices Q, Qc are set to be Q = diag([100, 50, 10, 10]) and
Qc = diag([10, 100, 0.1, 0.1]). Other parameters remain the same. Fig. 4.5 shows the tracking
performance between TC-SAC and FOGA in XY graph while Fig. 4.6 shows it in each state
of the robot. Fig. 4.5 also illustrates the configuration of the robot at different positions along
the ellipse.
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Figure 4.5: Tracking performance of TC-SAC and FOGA
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Figure 4.6: States of 2DOF robotic arm in case of tracking an ellipse trajectory

Both TC-SAC and FOGA demonstrate successful tracking of the given trajectory. However,
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TC-SAC outperforms FOGA in this task, particularly on the right side of the ellipse. From a
mathematical perspective, TC-SAC can be viewed as a combination of one iteration of FOGA
followed by an update from SAC. Therefore, it can be inferred that the SAC step in TC-
SAC improves the cost function further compared to the second iteration step of FOGA, all
while being executed in a significantly shorter timeframe. This emphasizes the advantage of
TC-SAC in scenarios where the controller computation must be fast due to time restrictions,
such as in dynamic environments. TC-SAC effectively enhances the overall cost performance
without incurring excessive computational overhead. Fig. 4.7 also shows the control signal of
TC-SAC on the first and second joint of the robot. The final graph in Fig. 4.7 indicates the
time steps at which SAC is activated (denoted as 1), signifying instances when the control
signal computed by SAC contributes to cost reduction. By observing the frequency at which
SAC takes over FOGA (u∗

2 is applied instead of u1), we can justify the effectiveness of the
additional SAC step in TC-SAC. It can be seen that u∗

2 is used most of the time which
means SAC often improves the solution of FOGA (u1). This proves the effectiveness of this
additional SAC step, benefiting from its fast computation. In conclusion, TC-SAC is the
preferred choice for applications that require rapid computation of an optimal controller. Its
ability to swiftly generate superior solutions makes it well-suited for time-sensitive scenarios,
effectively striking a balance between computational speed and optimality.
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Figure 4.7: Control signal of the 2DOF robotic arm

4.5.1.4 Validation of Obstacle Avoidance

In this section, we focus on validating the obstacle avoidance capability of the 2DOF robot
discussed earlier. Here, we examine the capability of the robot to avoid obstacles in a static
scenario. Specifically, the robot is tasked with tracking an ellipse trajectory from the bottom to
an upright position while encountering a rounded object placed in its path. This setup allows
us to assess the effectiveness of the obstacle avoidance behavior and evaluate its performance.

The cost function has the form

l1(t) = l1,track(t) + l1,limit(t) + l1,avoid(t) (4.34)
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Figure 4.8: States of 2DOF robotic arm when considering obstacle avoidance cost is applied on the
right. On the left is the movement of the end-effector with or without obstacle avoidance cost.

in which each component has its own role. Since the main task of the robot is moving toward
a desired configuration, a tracking cost in a quadratic form

l1,track(t) = (x(t)− xd)T Q(x(t)− xd), (4.35)

with Q ⪰ 0, is chosen. Thus, an error between current state x and desired one xd is penalized.
In addition, to prevent the robot violating its physical joint limits, an additional cost function
l1,limit is defined as follows:

1. This cost increases whenever the system is close to its joint limit constraints xi,max and
xi,min within a given tolerance xi,tol.

2. The cost is zero if the system is not close to its joint limit constraints.

The joint limit cost function then e.g. have the form

l1,limit,i =


C[xi − (xi,tol, min)]2, xi ≤ xi,tol, min

0, otherwise
C[xi − (xi,tol, max)]2, xi ≥ xi,tol, max

, (4.36)

with xi being the i-th component of state x, xi,tol, min = xi,min+xi,tol, xi,tol, max = xi,max−xi,tol
and a shape parameter C > 0. Thus, l1,limit =

∑
l1,limit,i is smooth and satisfies all the

demanded properties.
The third component l1,avoid represents the obstacle avoidance cost and it is considered

similar to the case of a joint limit cost as the requirements concerning the cost function are
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the same. Furthermore, considering only spherical obstacles suffices as any object can be
approximated by spheres. Therefore, l1,avoid is defined as

l1,avoid =
®
C̃[dist(o, l)− d]2, dist(o, l) < d

0, dist(o, l) > d
, (4.37)

with parameters C̃ and d to be chosen. Here, dist(o, ·) denotes the distance between the center
o of an object and the robot. This distance can be measured by discretizing the setup of the
robot and evaluating the distance w.r.t these discrete points.

Specifically, the chosen parameters for tracking cost (4.35), the cost for joint limit con-
straints (4.36) and the cost for obstacle avoidance (4.37) are: Q = diag([100, 50, 1, 1]),
C = 1 × 109, C̃ = 1 × 108. Fig. 4.8 presents simulation results and the movement of the
robotic arm. The movement of the robot shows that it successfully prevents collisions with
the obstacle. This validation strengthens our confidence in the obstacle avoidance capabil-
ity of the controller. Moving forward, the next section will demonstrate the versatility and
applicability of TC-SAC in various other applications, highlighting its potential in diverse
scenarios.

4.5.2 Trajectory tracking in dynamic environment of a car-like system

In recent years, autonomous driving has emerged as a prominent field of interest for both
industry and researchers. In the realm of autonomous cars, it is crucial for the controlled
vehicle to effectively respond to highly dynamic environments. Given the unpredictability of
other participants in traffic, the car must rapidly adapt to changing situations. This section
focuses on the implementation of TC-SAC for trajectory tracking tasks, with a particular
emphasis on obstacle avoidance in both static and dynamic scenarios. To represent vehicles,
we employ the widely used single-track model, also referred to as the bicycle model [RNH10,
RA13, PCY+16, LLLW17, VZQD16]. The single-track model, depicted in Fig. 4.9, serves as
an effective representation in capturing the essential dynamics of vehicles.

l

center of mass
Y

X

lr f

fr

Figure 4.9: Schematic Diagram of the Single Track Model used in this work

The single track model is used in this work is nonlinear with 7 states and 2 control input

x =
[
X,Y ,Ψc, v,α, Ψ̇c, δ

]
(4.38)

u =
ï
δ̇input
M

ò
(4.39)

90



4.5 Trajectory Tracking Simulation and Comparison to Optimal Control

with
δ̇ = δ̇input (4.40)

with the x and y-coordinates X and Y , the orientation Ψc, the velocity v, the side slip
angle α, the change in orientation Ψ̇c, the steering angle δ and the applied torque M . The
last state in x is the additional state added so that the single track model is in control-affine
form. Further details about this car model are in Appendix A. We first present the trajectory
tracking task for the car-like system with different prediction horizons in Section 4.5.2.1 to
quantify the effectiveness of the prediction lengths side by side with the computational effort.
Then the static obstacle avoidance and dynamic obstacle avoidance scenarios will be presented
in Section 4.5.2.2 and 4.5.2.3 respectively.

4.5.2.1 Trajectory Tracking Task with Different Prediction Horizons
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Figure 4.10: Comparison of different prediction horizons (0.5s,1.0s and 3.0s) for TC-SAC for tracking
a square reference trajectory

In this Section, we assess the effectiveness of TC-SAC in a fundamental trajectory tracking
task. Furthermore, we investigate the impact of varying receding horizons on the performance
of TC-SAC. Specifically, we compare the results obtained with three different prediction hori-
zons: 0.5s, 1.0s, and 3.0s. By examining the influence of prediction horizon length on the
performance of TC-SAC, we aim to gain insights into the trade-off between optimality and
computational effort. Typically, longer prediction horizons yield superior results in terms of
optimality but require increased computational resources. Therefore, our objective is to find
a balance that minimizes computational burden while maintaining satisfactory performance.
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The sample time Tsample is set to 20ms in all scenarios if not mentioned differently. The same
tracking cost l1,track is used

l1,track(t) = (x(t)− xd)T Q(x(t)− xd), (4.41)

with the weighting matrix Q ≥ 0 with q1,1 = q2,2 = 1 and q4,4 = 0.1 and all other elements
equal to 0, thus only the distance to the x− and y− coordinates and the velocity at each
time step influence the tracking cost while the other states are not considered. Furthermore,
a final cost m is

m = (xtf
(t)− xd)T P(xtf

(t)− xd), (4.42)

with the weighting matrix P ≥ 0 with p5,5 = 10 and all other elements equal 0 just the side
slip angle will be considered. This is due to the characteristic of the car in which a large side
slip angle would result in a state of the car which is much more difficult to control compared
to having a small side slip angle. Thus (4.42) guarantees that more opportunities to follow
the reference trajectory are left for the car at the end of the prediction horizon. As previously
mentioned, the prediction horizon is set to be 0.5s, 1.0s and 3.0s. Setting the prediction
horizon as short as possible is generally desirable to minimize computation time. However, it
is important to maintain a minimum prediction horizon to ensure stable trajectory tracking
and allow sufficient time for the car to react to potential obstacles.

A square shaped path with the length of each side equal 250m is chosen for this tracking
task. This reference trajectory has the straight parts of the square which is easy to control the
car and also has the corner parts where the dynamics of the car are violated by the reference
trajectory which returns to be a more difficult case for the car to be optimally controlled.

The results of TC-SAC for the three prediction horizon cases are presented in Figure 4.10.
It is observed that the cost in the straight segments is close to zero for all prediction hori-
zons, indicating effective tracking. However, the cost increases in the corner segments as the
prediction horizon decreases. This behavior is expected, as a longer prediction horizon allows
the car more time to react and adjust its trajectory.

To evaluate the computation time of TC-SAC for each prediction horizon, simulations are
conducted for a duration of 100s on an i7-7700k computer. The corresponding computation
times are summarized in Table 4.2. As anticipated, the computation time increases with
the prediction horizon. Notably, for a prediction horizon of 0.5s, the computation time is
faster than the simulation time, demonstrating the real-time capability of TC-SAC. Even
for a prediction horizon of 1.0s, the computation time remains close to real-time, while a
prediction horizon of 3.0s exceeds real-time requirements. Thus, a trade-off is necessary to
balance tracking accuracy and computation time. In this case, a prediction horizon of 1.0s is
deemed the optimal choice. This prediction horizon is used for further evaluations of TC-SAC
on a car-like system in this work, unless otherwise stated.

Table 4.2: Computation time of TC-SAC with different prediction horizons.

Prediction horizon Computation time

0.5s 79s
1.0s 159s
3.0s 563s
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4.5.2.2 Static Obstacle Avoidance

In this part, the performance of TC-SAC in an environment with static obstacle blocking the
reference trajectories and in further scenarios which might occur in real world situations such
as overtaking and frontal crash avoidance is evaluated.
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Figure 4.11: Performance of TC-SAC on a Lissajous curve as reference trajectory with avoidance of
static obstacles

A Lissajous curve with a ratio of the frequencies of 2
3 and a phase shift of π

2 is used for this
tracking task.

xref(t) = 50 sin(0.05πt)
yref(t) = 50 cos(0.075πt)

vref(t) =
»
ẋ2

ref(t) + ẏ2
ref(t)

(4.43)

This reference trajectory is chosen since it results in different curvature and velocity at every
point which makes it challenging for tracking. The velocity varies between about 3.65m

s and
14.16m

s , which does not exceed the limit of the dynamic of the car.
In order to avoid the obstacles, an additional term is added into the cost function, which is

defined as

l1,avoid =
®
Cobstacle · (dist(·)− r)2, dist(·) < r

0, dist(·) > r
(4.44)

with the distance between the car from the center to an obstacle dist(·) = dist(x, y,xc, yc) =
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√
(x− xc)2 + (y − yc)2, the weighting factor Cobstacle and the obstacle radius r. The overall

performance cost l1 is than given by l1 = l1,track + l1,avoid. Since obstacle avoidance is most
crucial for the safety of passengers and other traffic participants, Cobstacle is set to 106 and
therefore it is considered with a much higher weighting factor than the tracking task. It
is assumed that the obstacle are 2m in diameter, which is close to the width of real cars.
However, since avoidance cannot completely be guaranteed with soft constraints, a safety
margin of 1m around the obstacle is added which leads to an obstacle radius r = 2m to
increase safety. The position of the obstacles is given in Fig. 4.11 and marked by the circles.
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Figure 4.12: Other states of the single track model on a Lissajous curve as reference trajectory with
avoidance of static obstacles

The results clearly demonstrate that the car successfully avoids all obstacles while accu-
rately tracking the reference trajectory. Analyzing the cost measurements, we observe two
peaks at around 51s and 91s, corresponding to the obstacles located in the top right and
bottom right sections of the curve. Although there are no collisions, these peaks indicate that
the obstacles affected the safety margin around the car. This highlights the significance of
selecting an appropriate safety margin to ensure the safety of the car during trajectory track-
ing. Additionally, Figure 4.12 presents the other states of the single-track model, providing a
comprehensive view of the behavior of the car during the obstacle avoidance task.
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4.5.2.3 Dynamic Obstacle Avoidance

In the dynamic obstacle avoidance scenario, we once again utilize the Lissajous curve as the
reference trajectory. To tackle the more challenging task of dynamic obstacle avoidance, the
prediction horizon is increased to 2s. The scenario includes a total of 13 obstacles: one static
obstacle positioned at the center, six obstacles moving on a circular trajectory with a radius
of 40m, and six obstacles moving on a circular trajectory with a radius of 50m. Both circles
share the same center as the Lissajous curve. The obstacles are evenly distributed along these
two circular paths and complete a full lap in 20s. It is assumed that the car has knowledge of
the future paths of the obstacles, allowing TC-SAC to precisely account for their movements.
To ensure safety, a safety margin of 4m is maintained around the obstacles.
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Figure 4.13: Dynamic obstacle avoidance. The position at different time steps is labeled by the
number

Figure 4.13 provides a snapshot of the dynamic behavior between 7s and 10s, with each
frame representing a 1s interval. It is evident that the car successfully navigates around the
obstacles, ultimately returning to the reference trajectory. To further support the validity
of the simulation results, a video demonstrating the scenario has been uploaded at https:
//github.com/khoilsr/tcsac_trajectory_generation. It is important to note that while
this scenario may not perfectly reflect real-world situations, it encompasses a variety of ob-
stacle avoidance scenarios, including obstacles approaching from different directions and con-
secutive obstacle avoidance situations. This serves as a proof of concept, showcasing the
effectiveness of TC-SAC in efficiently solving optimal control problems in diverse applica-
tions.
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4.6 Stability Analysis
It is crucial for any controller to have its stability verified and proven. Thus, in this Section,
the stability of our control method TC-SAC is outlined and discussed. We consider the class
of systems to be controlled by the following general nonlinear set of ODEs

ẋ(t) = f(x(t), u(t)), x(0) = x0 (4.45)

with state vector x(t) ∈ Rn, input vector u(t) ∈ Rm. We also assume that

1. f : Rn × Rm → Rn is twice continuously differentiable and f(0, 0) = 0. Thus, 0 ∈ Rn is
an equilibrium of the system,

2. system (4.45) has a unique solution for any initial condition x0 ∈ Rn and any piecewise
continuous u(·) ∈ Rm.

For the sake of simplicity, we consider the stability of the system around the origin x = 0.
The stability of an arbitrary position is achieved similarly by shifting the state and control
signals such that this arbitrary position becomes the origin. In addition, to keep the notation
the same as in literature, the objective cost function is denoted as V , which is equivalent to
the notation J1 presented in previous Sections. Recall the OCP with target constraints

min
u

V (x, t; u) =
∫ T

0
L(x, u, t)dt (4.46a)

s.t. ẋ = f(t, x(t), u(t)), x(0) = x0, (4.46b)
x(T ) = 0 (4.46c)

where L has a quadratic form:

L(x, u, t) = 1
2
î
xT(t)Qx(t) + uT(t)Ru(t)

ó
(4.47)

Here let x(·; x0, 0) denote the corresponding trajectory of (4.45) with initial condition
x(0) = x0 and û(·; x0, 0) denote the optimal control sequence that minimizes the objec-
tive function V (x0, 0; u). From the methodology point of view, TC-SAC is a combination of
FOGA in the first step and the extended SAC in the consequence. Hence, an intuitive way to
analyze the stability of TC-SAC is to establish the stability conditions for FOGA first, then
the stability of TC-SAC can be concluded after that. Further more, TC-SAC uses the same
concept of receding horizon as MPC, therefore, it is straightforward to derive the stability
conditions of TC-SAC from the stability literature of MPC. In the following, we first look at
the stability conditions of FOGA in the absence of the extended SAC in Section 4.6.1. Then
we will discuss about the stability of TC-SAC in Section 4.6.2.

4.6.1 Stability of FOGA

There have been several works that investigate and deploy sufficient conditions for the closed-
loop MPC system to be stable. An overview about most of the works in this area can be
found in [MRRS00]. Specifically for our problem in (4.46), we are seeking for the stability
conditions of a receding horizon control with terminal constraint for nonlinear continuous
system. The constraint imposed at terminal time T provides a relatively simple procedure
to establish the stability of the closed-loop system. In fact, Chen and Shaw [CS82] derived
sufficient conditions for the closed-loop receding horizon control of (4.46) to be asymptotically
stable. Such these conditions are described by the following assumptions:
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Assumption 1. There exists an optimal control function û(·; x0, 0) which gives the minimal
cost V̂ (x0, 0; u) and satisfies the terminal constraint (4.46c).

Assumption 2. The optimal cost V̂ (x0, 0; u) satisfies the following conditions for any T > 0

• V̂ (x0, 0; u) = 0 and V̂ (x, t; u) > 0 for x ̸= 0

• V̂ (x, t; u)→∞ when ∥x∥ → ∞

• ∂V̂ (x,t;u)
∂x exists for any x

Theorem 1. Suppose that Assumption 1 and 2 are satisfied, then for any fixed T > 0, the
closed-loop system is asymptotically stable at the origin.

Proof. See the Appendix A.

Assumption 2 can be fulfilled easily by having the cost function in quadratic form i.e.

V (x, t; u) = 1
2

∫ t+T

t

Ä
∥x(τ)∥2Q + ∥u(τ)∥2R

ä
dτ (4.48)

Assumption 1 is however more difficult to be satisfied. It requires the optimal solution
of (4.46) in which the terminal constraint (4.46c) also has to be satisfied for each receding
horizon. We will first prove that, there exists an optimal solution that satisfies the terminal
constraint when using FOGA as the solver.

Recall the changes in the cost function J1 and the terminal constraints Φ

δJ1 =
∫ tf

t0

Å
ρT ∂f
∂u + ∂l1

∂u

ã
δu(t)dt (4.49)

δΦ ≜

δx1
...
δxq


t=tf

=
∫ tf

t0
RT ∂f

∂uδu(t)dt (4.50)

and adjoin (4.50) into (4.49), we obtain

δJ1 + νδΦ =
∫ tf

t0

ï
∂l1
∂u + (ρ+ Rν)T ∂f

∂u

ò
δu(t)dt (4.51)

where ν is also a Lagrange multiplier. The equation (4.51) represents the addjoin cost of the
OCP. With the solution of δu(t) in (4.15), we have

δJ1 + νδΦ = −W−1
∫ tf

t0

∥∥∥∥∂l1∂u + (ρ+ Rν)T ∂f
∂u

∥∥∥∥2
dt < 0 (4.52)

which is negative unless the integrand vanishes over the whole integration interval. The
Lagrange multiplier ν is computed as

ν = −I−1
ΦΦ(δΦ+ IΦJ) (4.53)

with δΦ = −ϵΦ[x(tf)] and a constant ϵ ∈ (0, 1]. The choice of δΦ guarantees that the
constructed control signal u(t) drives the system close to the desired states at the final time
tf . Thus the terminal constraints can be satisfied after a finite amount of iterations. Since
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the system is fully controllable, I−1
ΦΦ exists thus there always exists ν and δu such that the

cost function is decreased and the terminal constraints are satisfied. As the optimal solution
is approached and δΦ = 0, it is clear that

ν → −I−1
ΦΦIΦJ (4.54)

∂l1
∂u + (ρ+ Rν)T ∂f

∂u → 0 (4.55)

FOGA is therefore able to construct an optimal control signal u(t) that minimizes the cost
and satisfies terminal constraints. Hence, Assumption 1 is satisfied.

A problem arises here is that Assumption 2 uses the optimal cost V̂ (x;T ) as the Lyapunov
function to establish the closed-loop stability. This requires FOGA to be performed repeatedly
until the optimal solution is found, which is not practical in our case since we want to have fast
computation for online capability. However, this optimal solution is actually not necessary.
Indeed, we will show that, with a proper "warm start", the closed-loop system is still stable
even the cost is not optimal.

Definition 1. (Warm start) An admissible warm start ũ, must steer the current state x
to the origin, i.e. satisfy terminal constraint x(T ) = 0.

A warm start needs to satisfy the constraints but does not have to be optimal, hence can
be acquired much faster. Further more, warm start only need to be computed once and can
be done offline. In our approach, warm start is achieved by performing FOGA a couple of
iterations. The process can be speed up with a proper choice of ϵ to calculate the Lagrange
multiplier ν in (4.53). A controller algorithm using warm start is as follow

Controller algorithm with warm start
Data: x0 ∈ Rn, δ ∈ (0,∞) where δ is the sampling interval
Initialization: At time t0 = 0, if x0 is at the origin, i.e. x0 = 0, meaning the system is

already at the equilibrium then employ u = 0 to maintain the current state. Else, perform
FOGA a couple of iterations to compute a feasible warm start u0 for the OCP problem in
(4.46). Apply the control u0 to the real system over the interval [t0, t0 + δ].

Repeat:
1. At any time t, if x(t) = 0, meaning the system reaches the origin, employ u = 0. Else:

2. At any time ti ≜ iδ, i ∈ N:
• Obtain an admissible control u′

i as an initial guess

u′
i =
ß
ui−1 for t ∈ [ti, ti + T − δ]
0 for t ∈ [ti + T − δ, ti + T ] (4.56)

• Compute an admissible control horizon which is better than the preceding control
horizon in the sense that

V (xi, ti,ui) ≤ V (xi, ti,u′
i) (4.57)

• Apply the control ui to the real system over the interval [ti, ti + δ]
The stability proof of MPC with warm start is presented in [MM93]. With a choice of

admissible warm start, the controller is asymptotically stable. The terminal constraints are
satisfied from the beginning and the cost is improved over time. Even in the situation where
the cost increases due to numerical errors, we simply just go back to the warm start of the
previous iteration and continue from there.
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4.6.2 Stability of TC-SAC

As mentioned, TC-SAC can be interpreted as a combination of FOGA in the first step and
the extended SAC in the consequence. Since FOGA is proven to be stable in Section 4.6.1, we
only need to confirm that the extended SAC in the second step does not violate the stability
property of FOGA. In other words, we need to fulfill two conditions: 1) the performance cost
(4.46a) is decreased when applying the extended SAC and 2) the terminal constraints (4.46c)
is not violated.

It can be easily seen that both of the conditions are guaranteed naturally by the procedure
of TC-SAC presented in Section 4.4. From the methodology point of view, TC-SAC only
apply the control signal computed by the extended SAC if it results in a smaller value in both
performance cost V (x, t; u) and terminal cost lc = 1

2Φ
TQcΦ, when comparing to FOGA. The

reduction in V (x, t; u) guarantees that condition 1 is satisfied. Similarly, the reduction in
terminal cost lc means that the extended SAC drives the system closer to the origin at time
T , thus fulfills condition 2. If any of the conditions is not met, the control signal computed by
FOGA is used instead. In both cases, we assure that TC-SAC inherits the stability property
of FOGA and therefore, we can conclude that TC-SAC is asymptotically stable.

4.7 Discussion

In this Chapter, we have presented the TC-SAC method as a fast and close to optimal control
approach for trajectory generation in dynamic environments. The evaluation of the proposed
method in various scenarios has highlighted its advantages in terms of computational efficiency,
constraint handling, and real-time applicability.

One of the significant advantages of the TC-SAC method is its ability to generate near-
optimal trajectories while maintaining fast computation times. By combining a first-order
gradient approach with the sequential action control, TC-SAC achieves a balance between
optimality and computational efficiency. The first-order gradient approach provides an initial
guess for the control sequence, while the subsequent sequential action control step refines the
trajectory based on the cost function. This combination allows TC-SAC to generate trajecto-
ries that closely approximate the optimal solution, making it suitable for real-time applications
where quick and efficient trajectory planning is essential. The results obtained in this study
demonstrate the remarkable performance of TC-SAC in fulfilling reaching/tracking tasks,
even in challenging scenarios like the Lissajous trajectory. TC-SAC exhibits higher precision
and faster computation times compared to other related methods, underscoring its potential
for real-life applications and scenarios that demand optimal control input calculations.

Another advantage of TC-SAC is its capability to handle target constraints effectively. The
method incorporates target constraints into the trajectory planning process, ensuring that
the generated trajectories satisfy the specified constraints. This is a crucial feature in many
practical scenarios where the motion of the robot needs to adhere to certain constraints, such
as avoiding obstacles, maintaining safety margins, or achieving specific target positions. By
considering these constraints during trajectory generation, TC-SAC provides a reliable solu-
tion that guarantees the adherence of the robot to the desired behavior while optimizing the
performance criteria. The experimental results demonstrate the efficient obstacle avoidance
capabilities of TC-SAC, indicating its ability to handle the highly dynamic nature of the
environment.

Furthermore, TC-SAC demonstrates versatility in its application to different systems and
tasks. The method has been successfully deployed in diverse contexts, including robotic arms
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and car-like systems, showcasing its adaptability to different linear and nonlinear systems be-
yond the applications presented in this paper. This adaptability highlights the broad potential
of TC-SAC in addressing trajectory planning and control challenges across different domains.
Whether it is in robotic manipulation tasks, autonomous driving scenarios, or human-robot
interaction settings, TC-SAC can be tailored to suit the specific requirements and constraints
of the system under consideration.

Moreover, the stability proof presented in this work contributes to the robustness and
reliability of the TC-SAC method, particularly in terms of safety considerations. The stability
proof establishes that the TC-SAC controller guarantees asymptotic stability, ensuring that
the state of the system converge to a desired equilibrium point or a desired trajectory over time.
The combination of computational efficiency, constraint handling, versatility, and stability
makes TC-SAC a promising trajectory planning and control algorithm that can enhance the
safety and reliability of robots and other dynamic systems in trajectory tracking tasks.

It is important to note that TC-SAC does not explicitly handle inequality constraints like
MPC does. This limitation means that TC-SAC may not be suitable for systems that heavily
rely on strict inequality constraints. However, it is possible to incorporate these constraints
as soft constraints in TC-SAC by introducing additional terms in the objective function that
penalize violations of these constraints. This allows for some consideration of inequality
constraints such as joint angles, velocity limits, or force/torque limits, although not as strictly
enforced as in MPC. By balancing the penalty terms, the importance of these constraints can
be adjusted in the optimization process, offering a flexible approach to handling inequality
constraints in TC-SAC.

Although HRC scenarios have not been explicitly evaluated in the experiments conducted
thus far, the evaluation of TC-SAC in this work suggests its high potential for integration and
performance in HRC experiments. First and foremost, TC-SAC demonstrates its capability
to accurately track the given trajectories with high precision. This is a crucial requirement in
HRC scenarios where robots need to closely follow predefined trajectories while collaborating
with human operators. Additionally, TC-SAC exhibits remarkable adaptability to dynamic
changes in the environment and trajectory deviations. For example, in HRC settings where
tasks may need to be switched or the environment may undergo unexpected changes, TC-
SAC can update the trajectory input in the next iteration of the control sequence, ensuring
smooth and responsive robot behavior. While the results presented in this work are based
on simulations, we are confident in the transferability of TC-SAC to real systems and HRC
scenarios due to its inherent potential. The real-time execution capability of TC-SAC is
partially demonstrated in the experiments conducted with car-like robots, represented by a
complex single-track model with 7 states and 2 control inputs. Notably, the computation
time of TC-SAC is found to be smaller than the simulation time allocated for the experiment
when an appropriate prediction horizon is chosen. This indicates that the computation time
required for each step of TC-SAC is shorter than the duration of a single interval. It is
important to note that the code used in these experiments has not been fully optimized for
execution time, leaving room for further improvements. With proper implementation in a
system-level programming language such as C, we anticipate that the computation time of
TC-SAC can be further reduced. Thus, TC-SAC possesses the potential to be applied in
real-time scenarios and integrated into the motion planning framework developed in Chapter
3, serving as the controller that executes given trajectories for the robot while being able to
adapt to changes in tasks or environments on-the-fly.
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Conclusion and Outlook

In this concluding chapter, we undertake a comprehensive exploration to synthesize the main
findings, implications, and contributions of this thesis. We also discuss on the limitations of
the research, discuss the broader implications of the findings, and outline possible directions
for future research as well as address unresolved questions.

5.1 Summary and Discussion

In this thesis, our primary objective was to enhance human-robot collaboration in shared
workspaces through the development of novel motion planning and control methods. We pur-
sued three specific research directions to achieve this goal. Firstly, we devised a method to
improve the responsiveness of the robot when operating in close proximity to human part-
ners. By incorporating human motion prediction into the behavior of the robot, we enable it
to anticipate the future movements of humans and adjust its behavior accordingly, ensuring
a safe and efficient collaboration. Secondly, we introduced a new framework that leverages
the feedback from human partners to generate predictable robot motion. This framework
enables the robot to adapt its movements based on the intentions and actions of the human,
fostering a more intuitive and coordinated collaboration. Moreover, we explored the trans-
ferability of the learned motion properties to new scenarios and tasks, allowing the robot to
generalize its behavior and seamlessly adapt to different collaborative contexts. Lastly, we
developed a fast and optimal-based controller that enables the robot to execute the generated
trajectories precisely, even in highly dynamic environments. By efficiently solving the optimal
control problem, the controller ensures that the movements of the robot align with the desired
trajectories, enhancing its performance in complex collaborative tasks.

In Chapter 2, we proposed an innovative approach that integrated human motion pre-
diction into the obstacle avoidance behavior of the robot to enhance its responsiveness and
improve safety during close human-robot collaborations, particularly in confined workspaces.
Our method utilized a minimum-jerk model for human motion prediction, and we developed
an efficient online optimization procedure to solve the reverse problem of predicting the full
trajectory based on a given set of current human motion. This enabled real-time implemen-
tation of the human prediction method, making it suitable for highly dynamic human-robot
collaboration scenarios that require fast computation. The obstacle avoidance behavior was
designed based on a potential field approach that created a repulsive force between the robot
and human, leveraging the predicted human motion to effectively push the robot away when
the human approached. Our extensive verification through real-world human-robot collabora-
tive experiments demonstrated the efficacy of our approach, as the robot successfully avoided
collisions with the human partner in all cases and exhibited greater responsiveness compared
to scenarios without prediction. The results of our case study highlighted the potential of
our method for enhancing human-robot collaboration, as the human partners reported feeling

103



5 Conclusion and Outlook

more comfortable working with the robot. Furthermore, the simplicity of our method facili-
tated easy integration into different applications without requiring significant modifications.
We also extended the applicability of our approach by integrating it into our developed frame-
work in Chapter 3, which aimed to enhance safety and facilitate interaction between humans
and robots. In this subsequent chapter, we adopted a slight deviation approach to human mo-
tion prediction by utilizing probabilistic movement primitives to represent individual-specific
motion characteristics, allowing us to capture the variations in how different individuals per-
form tasks. Although we did not reiterate the results regarding the responsiveness and avoid-
ance behaviors of the robot in Chapter 3, they were found to be similar to those reported in
Chapter 2. Overall, our approach enables the robot to avoid potential collisions and maintain
a safe distance from humans more effectively, reducing the risk of accidents or injuries during
close interactions. The integration of human motion prediction also enhances the naturalness
of the movements of the robot, as it can better adapt to the anticipated motions of humans,
thereby fostering smoother and more intuitive human-robot collaboration.

Despite the strengths of our approach, such as its simplicity and suitability for online sce-
narios, there are limitations that hinder its applicability to a broader range of HRC scenarios.
The human motion prediction approach employed in our work was specifically designed for
point-to-point motions of the human arm, making it most effective for tasks that predomi-
nantly involve this type of motion, such as pick-and-place tasks. This limitation restricts the
ability of our method to accurately predict a wide variety of human actions. For instance,
when the human partner changes the manner in which they use their arm during collabora-
tion or incorporates whole-body movements for task execution, the prediction strategy may
become less effective and require further investigation to address these types of human ac-
tions. Additionally, while the prediction strategy can account for regular patterns, it may
struggle to handle unexpected or erratic human movements. Unforeseen changes in human
behavior or sudden deviations from anticipated trajectories can lead to incorrect predictions.
Therefore, further research is needed to enhance the prediction capability of the robot in such
cases. It is important to note that even when the prediction is not as effective, the robot can
still rely on the potential field to avoid the human partner, thereby ensuring safety. However,
the reduced responsiveness of the robot may diminish the comfort experienced by the human
partner during the collaborative task.

Another important aspect to consider is the expanding scope of collaboration between hu-
mans and robots. Currently, our approach treats the crossing between humans and robots as
interference that the robot needs to avoid to ensure the safety of the human partner. How-
ever, collaboration can extend beyond this notion. In real-life scenarios, there are situations
where the human partner intentionally approaches the robot to engage in collaborative tasks.
For instance, the human may approach the robot with the intention of teaching or guiding it
through specific motions, or assisting the robot in handling tools or objects. In such cases,
the robot should not actively avoid the human; instead, it should respond with corresponding
actions to indicate its understanding of the human’s intention and readiness to cooperate.
Recognizing these intentional human motions and distinguishing them from previous interfer-
ing motions present an interesting challenge that merits further investigation. By developing
methods to differentiate intentional collaborative gestures from unintentional interference, we
can enhance the fluidity and effectiveness of human-robot collaboration in various scenarios.

In Chapter 3, we presented a comprehensive framework for generating predictable motion
in human-robot collaboration (HRC) scenarios. Our framework addresses the challenge of
improving the predictability of robot trajectories and enhancing the safety and comfort levels
of human partners during close interactions. The advantage of our framework, which is our
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main contribution, lies in the integration of learning and interaction into a unified approach.
By incorporating the approach presented in Chapter 2, we ensure the safety of the human
partner while enabling the robot to learn and adapt its motion based on the feedback received
from the human partner. In our framework, we utilize DMPs to generate robot trajectories
that can be modified through a set of parameters. These parameters play a crucial role in
adapting the motion of the robot to be more predictable and natural to the human partner.
By allowing different parameter settings, we can represent a variety of trajectories while
maintaining the same start and goal positions. To optimize these parameters, we introduce a
learning process that involves direct collaboration between the robot and the human partner.
The human partner’s perception of the robots trajectory is evaluated using a cost function that
considers predictability and smoothness. Through an iterative process, the framework updates
the DMP parameters based on the human partner’s feedback, favoring trajectories that result
in lower cost. This adaptive learning process enables the robot to gradually converge towards
more predictable and human-friendly motions. One of the key contributions of our work
is the development of a task generalization method within the framework. This method
allows the policies learned from specific tasks to be transferred and applied to new tasks. By
leveraging the knowledge gained from previous tasks, the robot can accelerate the convergence
process and reduce the training time required for new tasks. This aspect of our framework
demonstrates its versatility and scalability, as it enables the robot to quickly adapt to new
collaborative scenarios without extensive retraining. We conducted extensive experiments
in both VR simulations and real-world HRC scenarios to validate the effectiveness of our
framework. In the VR experiments, we observed significant improvements in the predictability
of trajectories of the robot over time. The ability to generate more predictable motions
enhanced the overall collaboration experience and fostered a sense of trust and comfort in
the human partners. Additionally, we compared our method with a non-adaptive robot that
performs the same motion repeatedly for each task. The comparison highlights that the
predictability of the motions improves due to the adaptability of the robot and not solely
due to the human’s adaptation. Furthermore, we implemented our framework on a physical
KUKA 7-DOF robot in a real HRC scenario. The results from these experiments reinforced the
findings from the VR simulations, demonstrating that the trajectories of the robot remained
predictable over time. Importantly, we conducted a case study to assess the safety and
comfort levels experienced by the human partner when collaborating with the physical robot.
The feedback received from the human partners indicated a positive perception of safety and
comfort during the collaborative tasks, further affirming the effectiveness of our framework in
real-world applications.

While our framework has demonstrated promising results, there are areas that warrant
further investigation.Firstly, it is important to expand the range of tasks and scenarios in
which the framework is evaluated. The current experiments focused on a limited set of
tasks, which provided a simple and intuitive environment for the human partner to predict
the motions of the robot. However, to fully assess the capabilities and limitations of the
framework, it would be valuable to explore more complex and diverse tasks. This would allow
for a comprehensive understanding of how the predictability of robot motions varies across
different types of tasks, such as reaching, grasping, or object manipulation. Additionally,
the mounting position of our setup, with the base on the table, resulted in a robot shape
that does not exactly mimic the movement patterns of a human arm. While the framework
successfully incorporated human feedback and generated predictable robot motions, it would
be interesting to investigate how the framework performs when the configuration of the robot
more closely resembles that of a human arm. For example, conducting experiments with the
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base of the robot suspended above, allowing for elbow movements, could provide insights
into the impact of additional degrees of freedom on the predictability of robot motions. This
configuration would better capture the natural movement characteristics of a human arm
and could potentially improve the human partner’s ability to anticipate and interact with
the robot. Furthermore, investigating how the task generation method can be extended in
this scenario would provide valuable insights into adapting the framework to different robot
designs and configurations, opening up new possibilities for motion policy adaptation and
transfer.

In Chapter 4, we proposed the TC-SAC approach, which offers a fast and close to optimal
motion control solution for generating and executing robot motion. TC-SAC addresses the
need for adaptive and responsive control in dynamic environments by combining the receding
horizon concept of MPC with the analytical solution provided by the SAC method. By lever-
aging the analytical solution of SAC, TC-SAC achieves fast computation times compared to
traditional optimal control approaches. This computational efficiency is crucial for real-time
applications where quick decision-making is essential. Furthermore, TC-SAC integrates the
ability to handle target constraints, enabling the robot to perform given tasks accurately.
Our TC-SAC approach consists of two main components: the FOGA controller and the SAC-
based optimal controller. The FOGA controller takes into account the target constraints and
computes an initial control input. This step ensures that the motion of the robot adheres
to the specified targets. The optimal controller, based on SAC, further refines the control
input obtained from FOGA. The combination of these two controllers allows TC-SAC to gen-
erate trajectories that closely approximate the optimal solution while satisfying the target
constraints. We conducted simulations with a 2-DOF robot and a car-like system to evaluate
the performance of TC-SAC. The results demonstrate the efficacy of TC-SAC in trajectory
tracking and obstacle avoidance tasks. The robot successfully achieves high accuracy in fol-
lowing reference trajectories while effectively avoiding both static and dynamic obstacles. The
computational time of TC-SAC was found to be faster than FOGA, demonstrating its effi-
ciency in generating control inputs. Although slightly slower than SAC, the computational
time difference is negligible considering the advantage of TC-SAC in reaching arbitrary po-
sitions. Additionally, TC-SAC offers stability guarantees. We provided a complete stability
proof for TC-SAC, ensuring that the controller leads to asymptotic stability, where the state
of the system converges to a desired equilibrium or trajectory over time. This stability proof
enhances the reliability and robustness of TC-SAC, providing confidence in its application in
various motion control scenarios.

As a continuation of this work, one potential direction for further improvement is the
optimization of the prediction horizon used in TC-SAC. The prediction horizon determines the
time window over which the optimal control problem is solved. Currently, TC-SAC employs a
fixed prediction horizon based on trial and error. However, different scenarios may benefit from
varying prediction horizons. For example, in dynamic environments or systems with rapidly
changing dynamics, a shorter prediction horizon may be necessary for quick responsiveness.
Conversely, in more predictable and stable environments, a longer prediction horizon may
yield more optimal trajectories. Future research could explore adaptive or online methods
to dynamically adjust the prediction horizon based on the real-time context, optimizing the
trade-off between computation time and optimality. Alternatively, learning-based approaches
could be employed to determine the most suitable prediction horizon for TC-SAC, taking into
account the specific characteristics of the system and the environment.

Furthermore, there are opportunities to explore parallelization, approximation methods, or
model reduction techniques to address the computational complexity of TC-SAC for nonlinear
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and high-dimensional systems. These techniques can help reduce the computational burden
and enable real-time implementation of TC-SAC for more complex systems. Additionally, it
would be valuable to investigate the impact of model inaccuracies and mismatches between
the simulated model and the real system on the performance of TC-SAC. Understanding the
effects of model discrepancies on controller performance and exploring methods to mitigate
these effects would contribute to the robustness and applicability of TC-SAC in practical
settings. Moreover, investigating the robustness of TC-SAC in the presence of uncertainties,
noise, and disturbances would provide insights into its performance under realistic operating
conditions.

Overall, this thesis has contributed to the body of knowledge on motion planning and control
for human-robot collaboration. The developed methods and frameworks offer valuable tools
for enhancing safety, responsiveness, and adaptability in shared workspaces. By addressing
current challenges and identifying future research directions, this work lays the foundation
for further advancements in human-robot collaboration, ultimately promoting the successful
integration of robots into various collaborative scenarios.

5.2 Outlook

In our approach to integrate human motion prediction into local obstacle avoidance, we ex-
plored two methods, namely the minimum-jerk model and probabilistic motion primitives, to
predict human motion. While these methods showed promising results, there are opportunities
for improvement and expansion. More complex arm models, such as the minimum commanded
torque change model [NIO+99] and minimum variance curvature [FS11], could be studied and
integrated to enhance prediction accuracy and increase the flexibility of human motion. Ad-
ditionally, we can investigate modeling assembly tasks as sequences of human motions and
using hidden Markov models for prediction [LW17]. Moreover, predicting human intentions to
expand collaboration contexts is an important topic that warrants further study. Approaches
like the teaching-learning-prediction model [WLCJ18] and human intention-driven learning
[RTD19] can be explored to verify their capability, especially in online HRC scenarios.

In the predictable motion generation framework, an intriguing area to explore is how the
relative perspective of the human and robot affects the learned predictable trajectories. Con-
sidering that the human’s position is typically not fixed in HRC scenarios, understanding this
aspect can lead to more adaptive and intuitive robot behavior. For collaborative and complex
tasks, utilizing data-driven imitation learning systems [VSG+17] to enable the robot to learn
from human-human demonstrations presents an exciting avenue for investigation. The use of
DMPs as trajectory generation [Ior23] for these tasks is also worth exploring. Additionally,
familiarizing the human with the robot to improve the learning process [DS14] can further
enhance the collaboration experience, as humans also learn and adapt during interactions.
The task generalization method requires further investigation to identify relevant features
and their influence on robot trajectories, enabling the framework to handle a wider range of
tasks [SCGHRA22, LLLK20].

For our proposed TC-SAC controller to be applicable in real-time applications, optimiza-
tions at the system programming level, such as C programming, are necessary to ensure fast
computation. The selection of the prediction horizon should be carefully considered to achieve
good results in terms of optimality without sacrificing computational efficiency. Leveraging
learning-based approaches [HWMZ20] can be explored to fine-tune the prediction horizon.
For complex systems with high degrees of freedom or humanoid robots, simplifying the model
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[SSAP12, WLA14] may be necessary to reduce computation time while maintaining ade-
quate control performance. In cases with unknown parameters, an identification procedure
[JGJ14, SAS17] should be performed first to estimate the system parameters accurately. Fur-
thermore, investigating the robustness of TC-SAC in the presence of noise, disturbances, and
inaccuracies between real system models and simulated ones [GLNR18, AH20] is essential to
ensure reliable performance in dynamic and uncertain environments.
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Vehicle Dynamic Model

For car-like systems, a wide range of model complexities exists. One of the most complex
representations of a car-like system is the multi-body model which can very accurately describe
the overall physical behavior of the car [AKM17]. However, this level of complexity does
not suite the requirements for online application due to the excessive computational load.
The model presented in this work is a simplified single track model [MDRMAF16], which is
commonly used in studies of different controllers/methods related to car-like systems due to
its simplicity and accurate representation of the dynamic behaviors of a car. The state-space
model is as followed:

ẋ =


Ẋ

Ẏ

Ψ̇c

v̇
α̇

Ψ̈c

 =


vcos(α+ Ψc)
vsin(α+ Ψc)

Ψ̇c

aave
save
ωave

 (A.1)

with the x and y-coordinates X and Y , the orientation Ψc, the velocity v, the side slip angle α

and the change in orientation Ψ̇c. The control input is given by u =
ï
δ
M

ò
, with the steering

angle δ and the applied torque M . aave, save and ωave are given by:

aave = 1
m

(Ff ,Xcos(α− δ) + Fr,Xcos(α) + Ff ,Y sin(α− δ)

+ Fr,Y sin(α)− 0.5cwρLAv
2)

(A.2)

save = 1
mv

(−Ff ,Xsin(α− δ)− Fr,Xsin(α)

+ Ff ,Y cos(α− δ) + Fr,Y cos(α)−mvΨ̇c)
(A.3)

ωave = Ff ,X lf sin(δ) + Ff ,Y lf cos(δ)− Fr,Y lr
ΘZ

(A.4)

with the drag coefficient cw, the density of the air ρL and the front surface A of the car and
the inertia ΘZ of the car. Ff/r,Y in (A.2) - (A.4) are the lateral tire forces obtained by using
the Pacejka’s magic tire formula

Ff/r,Y = DY sin
(
CY atan

(
BY αf/r − EY

(
BY αf/r − atan

(
BY αf/r

))))
(A.5)

with BY = KY Ff/r,Z
CY DY

, DY = µY Ff/r,Z and CY , EY , KY are the constants. µY is the friction
coefficient in lateral direction, Ff/r,Z is the tire load on the front and rear axis and αf/r is
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the side slip angle on the front and rear axis. Ff/r,Z is given by

Ff/r,Z = mcg
lr/f

lf + lr
(A.6)

For the longitudinal forces Ff ,X in (A.2) - (A.4), they are simplified as

Ff ,X = Fr,X = M

r
(A.7)

with the torque M as the control input for the system and r as the radius of the tires.

Model Modification: The single track model presented above is not linearly with respect to
δ, the steering angle, where it is used in trigonometrical functions as in (A.4). Since TC-SAC
requires the system to be in control-affine form as described in (4.4), a simple way to correct
it is to change the steering angle from a control input to a state and introduce the derivative
of it δ̇input as the new control input.
After these changes are applied, the state space model changes to:

x =



X
Y
Ψc

v
α

Ψ̇c

δ


; ẋ =



Ẋ

Ẏ

Ψ̇c

v̇
α̇

Ψ̈c

δ̇


(A.8)

with the control input

u =
ï
δ̇input
M

ò
(A.9)

with
δ̇ = δ̇input (A.10)

and the steering angle δ still can be controlled directly. All other equations of the state-space
model remain the same.

With these changes, ẋ = f(t, x, u) can be written in a control-affine form with:

h(t, x(t)) =



0 0
0 0
0 0
0 cos(α)+cos(α−δ)

mr

0 −sin(α)+sin(α−δ)
mrv

0 lf sin(δ)
rΘ

1 0


(A.11)

and

g(t, x(t)) =

vcos(Ψc + α)
...
0

 (A.12)
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Although the input δ̇ serves mainly for the reason of control-affine form, it also improves the
smoothness of the steering angle i.e. a jump in the derivative results into a linear change in
the signal. This makes the controller become more realistic when applying on real system,
since the steering angle will be applied, not the derivative of it. However, the drawback of
the modification is, since the steering angle is not a control input, it cannot be saturated
afterwards. In detail, it cannot be limited to realistic values,i.e. 35◦ − 45◦. To overcome this
problem, uδ is changed as follows:

δ̇ = uδ − kδ (A.13)

with the constant k ∈ R+. Note that now uδ has no direct physical meaning anymore.
Through this change, h(t, x(t)) is not affected, while g(t, x(t)) changes to:

g(t, x(t)) =

vcos(Ψc + α)
...
−k

 (A.14)

and the control input u to:

u =
ï
uδ

M

ò
(A.15)

For the maximum and minimum steering angle δmax = −δmin holds, as for the maximum
and minimum control input uδ,max = −uδ,min holds. k therefore, has to be chosen depending
on the desired maximum steering angle δmax and the maximum control input uδ,max for it. So
k is determined with:

k = uδ,max
δmax

(A.16)

Proof of Theorem 1
Here we summarize the proof given in [MM90] for the case of nonlinear systems with terminal
constraints. The idea is to show that the optimal cost function V̂ (x, t; u) can be used as
a Lyapunov function for the receding horizon control. Let x∗ and u∗ denote the receding
horizon strategy when the initial state is x0 at t = 0. We wish to evaluate (d/dt)V̂ (x∗(t)) at
an arbitrary, fixed instant of time. By definition,

V̂ (x∗(t)) = 1
2

∫ t+∆t

t

î
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

ó
dτ

+ 1
2

∫ t+T

t+∆t

î
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

ó
dτ (A.17)

where x̂(τ) ≜ x̂(τ ; x∗(t), t) and û(τ) ≜ û(τ ; x∗(t), t) are the optimal solution for the OCP
in (4.46). Consider a control ũ : [t+∆t, t+ T +∆t] defined as follows:

û(τ) ≜
ß

û(τ ; x∗(t), t) for τ ∈ [t+∆t, t+ T ]
0 for τ ∈ (t+ T , t+ T +∆t] . (A.18)

Let x̃(·) = x̃(·; x̂(t+∆t), t+∆t) denote the corresponding trajectory with initial condition
x̃(t+∆t) = x̂(t+∆t; x∗(t), t). Clearly,

x̃(τ) =
ß

x̃(τ ; x∗(t), t) for τ ∈ [t+∆t, t+ T ]
0 for τ ∈ (t+ T , t+ T +∆t) (A.19)
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because x̃(t+ T ; x̂(t+∆t), t+∆t) = x̂(t+ T ; x∗(t), t) = 0 and ũ = 0 for τ > t+ T . Since ũ
is not necessarily optimal, it follows that

V̂ (x∗(t)) = 1
2

∫ t+∆t

t

î
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

ó
dτ + V (x̂(t+∆t), t+∆t; ũ)

≥ 1
2

∫ t+∆t

t

î
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

ó
dτ + V̂ (x̂(t+∆t)) (A.20)

so that

V̂ (x̂(t+∆t))− V̂ (x∗(t)) ≤ −1
2

∫ t+∆t

t

î
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

ó
dτ (A.21)

Since V̂ is continuously differentiable, it follows from the Mean Value Theorem that

V̂ (x̂(t+∆t))− V̂ (x∗(t))
∆t

= ∇xV̂ (x∗(t)

+ θ(∆t)(x̂(t+∆t)− x∗(t)))(x̂(t+∆t)− x∗(t))
∆t

(A.22)

for θ(∆t) ∈ (0, 1). Since

x∗(t) = x̂(t; x∗(t), t) = x̂(t), u∗(t) = û(t; u∗(t), t) = û(t) (A.23)

and û is continuous at t, we have that

lim
∆t→0+

x̂(t+∆t)− x∗(t)
∆t

= f(x̂(t), û(t)) = f(x∗(t), u∗(t)). (A.24)

Since ∇xV̂ and x are continuous, then from (A.20), (A.23) and (A.24), it follows that

lim
∆t→0+

V̂ (x̂(t+∆t))− V̂ (x∗(t))
∆t

= ∇xV̂ (x∗(t))f(x∗(t), u∗(t)). (A.25)

By continuity of x̂ and û and the Mean Value Theorem for integrals,we also have

lim
∆t→0+

− 1
2∆t

∫ t+∆t

t

î
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

ó
dτ

≤ lim
∆t→0+

− 1
2∆t

∫ t+∆t

t

î
x̂T(τ)Qx̂(τ)

ó
dτ = −1

2
î
x∗(t)TQx∗(t)

ó
. (A.26)

Dividing both sides of (A.21) by ∆t > 0 and taking the limit as ∆t→ 0+ yields

∇xV̂ (x∗(t))f(x∗(t), u∗(t)) ≤ −1
2
î
x∗(t)TQx∗(t)

ó
< 0. (A.27)

Hence,
(d/dt)V̂ (x∗(t)) = ∇xV̂ (x∗(t))f(x∗(t), u∗(t)) < 0 (A.28)

unless x∗(t) = 0. Hence, the system is asymptotically stable.
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