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ABSTRACT 

Drug discovery and design aims to devise compounds with the ability to precisely 

regulate the activity of specific target biomolecules. Insufficient selectivity of drugs 

presents a substantial challenge in the process, leading to many side effects, including 

severe toxicity. Allosteric drugs have emerged as a promising approach to address 

difficult protein targets. In contrast to conventional drugs binding directly to protein 

active sites, allosteric drugs bind to separate effector sites, modulating protein function 

at the active site indirectly over long distances. However, the location of these effector 

sites and their mechanism of action is a priori unknown for many proteins, impeding 

targeted drug design workflows. Various computational methods aimed at predicting 

allosteric effector sites have been developed, but so far, no definite approach has been 

established. This work investigates the effects of ligand binding on the dynamics of 

four protein systems, as observed during molecular dynamics simulations. Analysis of 

ligand binding patterns in two nucleotide binding pockets of UHRF1 revealed 

conformational coupling between distant protein regions, which could be captured 

effectively using a protein structure network model. This specific form of network 

follows the formation and dissolution of atom interactions during simulations, like 

hydrogen bonds or hydrophobic contacts, allowing to correlate protein conformations 

by the dynamics of their interaction states. The concept was further developed on 

PDZ2, a commonly used protein system for testing computational methods aimed at 

predicting conformational coupling and allostery, and formalized into the SenseNet 

analysis framework. Two novel scores are proposed for prediction of allosteric regions, 

based on mutual information between interaction timelines obtained from molecular 

dynamics simulations, and evaluated using a validation set assembled from NMR data. 

Comparing these results with other published predictions for the PDZ2 system 

revealed systematic problems with current approaches, emphasizing the need for 

larger studies and unbiased evaluation standards. Within these limitations, the 

proposed scores showed good agreement with known allosteric protein regions. 

Finally, the SenseNet model was applied to study the differential effects of ligand 

binding in two Hsp70 chaperones, DnaK and BiP, using networks generated from 
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molecular dynamics simulations approximating different phases of the chaperone 

conformational cycle. This revealed a conserved structural core of residues with 

allosteric roles, complemented by variant specific residues in marginal regions, which 

may help explain biochemical differences between these related proteins. Beyond 

providing a single prediction model, SenseNet serves as an open-source platform 

integrating different network analysis approaches. Based on this foundation, future 

developments could yield advanced techniques for more accurate prediction of 

allosteric communication and improving the sampling efficiency of molecular dynamics 

simulations. 
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ZUSAMMENFASSUNG 

Drug discovery und -design zielt darauf ab, Medikamente zu entwickeln welche die 

Aktivität von Zielmolekülen präzise regulieren. Eine unzureichende Selektivität von 

Wirkstoffen kann zu einer Vielfalt von Nebenwirkungen führen, bis hin zu schwerer 

Toxizität, und stellt deshalb eine erhebliche Herausforderung dar. Allosterische 

Medikamente haben sich als ein vielversprechender Ansatz für besonders schwierige 

Zielproteine herauskristallisiert. Im Gegensatz zu konventionellen Medikamenten, die 

direkt an das aktive Zentrum von Proteinen binden, zielen allosterische Wirkstoffe auf 

separate Effektor-Bindetaschen, welche die Funktion des Proteins indirekt und über 

große Distanzen modulieren. Die genaue Lage der Effektorregionen und ihr 

Wirkmechanismus sind jedoch für viele Proteine a priori unbekannt, was eine gezielte 

Wirkstoffentwicklung erschwert. Unter den verschiedenen bioinformatischen 

Methoden zur Vorhersage von allosterischen Effektorregionen hat sich noch kein klar 

überlegener Ansatz etabliert. Im Rahmen dieser Arbeit wurden die Auswirkungen der 

Ligandenbindung auf die Dynamik von vier Proteinsystemen mittels 

Molekulardynamik-Simulationen untersucht. Eine Analyse der Interaktionsmuster in 

zwei Nukleotid-Bindetaschen von UHRF1 zeigte eine Konformationskopplung 

zwischen den Aminosäuren zweier getrennter Proteinregionen, welche effektiv durch 

ein Proteinstrukturnetzwerk dargestellt werden kann. Das entwickelte Netzwerkmodell 

kodiert die Bildung und Auflösung von Atominteraktionen während der Simulationen, 

wie zum Beispiel Wasserstoffbrückenbindungen oder hydrophobe Kontakte; hierdurch 

wird es ermöglicht, Proteinkonformationen basierend auf der Dynamik ihrer 

Interaktionszustände zu korrelieren. Eine Folgestudie nutzte PDZ2, ein beliebtes 

Testsystem für bioinformatische Methoden zur Vorhersage von 

Konformationskopplung und Allosterie, um diese Idee weiterzuentwickeln und 

schlussendlich als SenseNet Analyseframework zu formalisieren. Es werden zwei 

neue Scores zur Vorhersage von allosterischen Regionen vorgeschlagen, basierend 

auf der Mutual Information zwischen Interaktions-Timelines während 

Molekulardynamik-Simulationen; dieser Ansatz wurde mithilfe eines NMR-

Datensatzes gegen experimentelle Daten validiert. Ein Vergleich dieser Ergebnisse 
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mit anderen publizierten Vorhersagen für das PDZ2-System deutet auf systematische 

Probleme in aktuellen Modellen hin. Diese Beobachtungen unterstreichen die 

Notwendigkeit weitreichenderer Studien sowie besserer Standards für Daten und 

Implementationen, um Modelle vergleichbarer zu machen. Trotz dieser Limitationen 

zeigen die vorgeschlagenen Scores eine gute Übereinstimmung mit bekannten 

allosterischen Proteinregionen. Schlussendlich wurde das SenseNet Modell auf zwei 

Hsp70 Chaperon Varianten, DnaK und BiP, angewandt, um die differentiellen 

Auswirkungen von Ligandenbindung in diesen Systemen zu untersuchen. Hierzu 

wurden Proteinstrukturnetzwerke eingesetzt, welche aus Molekulardynamik-

Simulationen generiert wurden und verschiedene Phasen des Chaperon-

Konformationszyklus approximieren. Die Netzwerke zeigten einen konservierten 

strukturellen Kern von Aminosäuren mit allosterischen Funktionen, der durch 

variantenspezifische Randregionen ergänzt wird. Zusätzlich zur Bereitstellung seines 

Vorhersagemodells öffnet SenseNet die Möglichkeit, als Open-Source Plattform 

verschiedene Ansätze zur Netzwerkanalyse zu integrieren. Möglichkeiten zur weiteren 

Entwicklung dieser Plattform beinhalten neue Methoden zur präziseren Vorhersage 

allosterischer Kommunikation und Verbesserung der Effizienz von Molekulardynamik-

Simulationen. 
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1. INTRODUCTION 

1.1. Motivation for predicting long range 
conformational coupling between protein 
regions 

Protein structure analysis can be used to identify key regions regulating biochemical 

functions. Insights gained from structure-based approaches have various applications 

in protein engineering (1-5) and drug design (6-8). Conventional drugs are typically 

optimized to bind specific active sites, also known as orthosteric sites, within proteins. 

Within such sites, drug binding competes with endogenous ligands to block a specific 

aspect of protein function (6, 9). Ensuring that custom designed ligands bind 

specifically to the targeted active sites, but not other structurally similar proteins, 

remains a major challenge for drug development. As an emerging alternative 

approach, allosteric drugs forego the orthosteric site by targeting instead a spatially 

distinct effector site. Regulation of protein function is thus achieved by long range 

allosteric effects between the effector site and the orthosteric site (9-11). Effector sites 

associated with allostery have been observed to be less evolutionary conserved than 

active sites (12), which opens possibilities for difficult protein targets as this could 

reduce off-target binding to structurally similar binding pockets. There are numerous 

potential advantages to allosteric drugs, including increased specificity, fewer side 

effects and lower toxicity than orthosteric drugs (10, 11). In practice, the search for 

allosteric drugs has proven challenging, with only 19 FDA approved allosteric drugs as 

of 2020 (13). While some of the emerging difficulties are readily identified, such as 

higher hydrophobicity and lower binding affinities of allosteric modulators (14), 

progress is also impeded by our incomplete understanding of the nature and 

mechanism of allosteric interactions (13). Establishing an accurate model for the 

prediction of effector regions associated with allosteric control could greatly increase 

the efficiency of allosteric drug development (9, 11, 13, 15).  
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Allostery encompasses the conditions by which the activity of a protein’s functional site 

is regulated via perturbation of a separate effector site in the same protein. Models 

attempting to link this functional coupling to a structural mechanism have evolved 

drastically over the sixty years since the concept was introduced (15-18). The mid-

1960’s Monod–Wyman–Changeux (MWC) (19) and Koshland–Nemethy–Filmer (KNF) 

(20) models explained allostery as a structural change between two functionally distinct 

protein states, induced by binding of an effector molecule. To understand the 

underlying allosteric mechanism, crystallographic structures of different protein states 

are commonly analyzed with the goal of tracking the conformational changes of key 

residues. This approach became well known for its application to explaining 

cooperative binding in hemoglobin (21-23) and has been successful in explaining the 

allosteric behavior of many proteins (24). However, reports of allostery without 

apparent conformational changes (25-28), which may only be traceable through 

transient intermediate structures (29-31), are challenging to unify with an approach 

focusing solely on a limited number of energetically favorable protein conformations. 

Based on a model of energy landscapes used for investigation of protein folding, in 

1999 the Nussinov group proposed a mechanism of “conformational selection” (32). In 

this view, perturbation of a protein at the effector binding site shifts the balance of 

populated conformations within the structure ensemble; this shift can influence the 

functional site, like a ligand binding site, by increasing or decreasing the free energy of 

the binding competent state (Figure 1). This constitutes a notable shift in perspective, 

from observation of conformational changes between individual protein structures, 

towards focusing on an ensemble encompassing a variety of stable and transient 

conformations. While the revision and refinement of allosteric paradigms is still a very 

active process, most recent efforts concur on the essential role of the protein’s 

conformational ensemble (15, 17, 33). 
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Computational methods in conventional drug design workflows are commonly used to 

select the most promising leads from a large list of drug candidates, reducing the 

required number of in vitro experiments to be performed in high throughput screening 

(34). Techniques employed for this purpose are often based on molecular docking (8, 

35) or MMGBSA/MMPBSA (36, 37), with a focus on optimizing the interactions 

between an orthosteric functional site in the protein and one or more candidate ligands. 

In contrast to orthosteric binding sites which are already known from endogenous 

ligands, the location of allosteric sites and the structure of its ligands are rarely 

 

Figure 1. Conformational selection and population shift 

model of allostery. In this model, binding of an allosteric 

ligand (orange) shifts the conformational ensemble of a protein 

(blue) to enhance binding of an orthosteric ligand (grey). In the 

presence of an allosteric ligand, proteins shift from the 

unbound conformation (red) towards a complex with the 

allosteric ligand bound (yellow). This complex has 

conformational overlap with the light blue conformation, 

shifting the conformational equilibrium towards binding of the 

orthosteric ligand. Figure recreated and adapted from ref. (18). 
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observed in crystal structures (13). This problem is compounded when considering 

hidden, or cryptic allosteric sites, which have been shown to form under specific 

conditions like the presence of stabilizing compounds (13, 38, 39). Such sites are thus 

difficult to detect by investigating a limited number of structures, which represent only 

the most probable conformations. With no previous knowledge of the location of the 

effector site or its structure, methods designed to evaluate the strength of protein-

ligand binding tend to lack an effective starting point for allosteric sites and ligands. 

Various methods have been developed (13) to detect allosteric sites based on 

scanning for cavities within a protein structure, such as AlloSite (40), AlloPred (41), 

PARS (42, 43), AlloSigMA (44), CavityPlus (45), DynOmics (46), SPACER (47) and 

STRESS (48). The common approach pursued by these methods is a combination of 

extracting geometric features from a single protein structure, as in binding pocket 

detection, combined with an approximate modelling of correlated modes using normal 

mode analysis (NMA) and elastic network models (ENM). These choices emphasize 

that simply detecting a possible binding pocket is not sufficient to find effective 

allosteric ligands, as any putative effector site must be able to effectively influence 

activity at the targeted protein active site. While computationally inexpensive, NMA and 

ENM models offer only a greatly simplified and incomplete view of protein dynamics. 

With increasing protein size and distance between functional and putative effector 

sites, conformational coupling becomes more difficult to predict, due to the inherent 

complexity of conformational shifts underlying allostery (15, 49). It seems likely that 

adequate modelling of long-range allosteric effects requires accounting for complex 

protein dynamics, specifically determining residues which can sense conformational 

perturbations at a distance. To make use of these opportunities, established 

approaches used for protein and drug design can be supplemented by methods 

describing complex forms of conformational coupling between distant protein regions. 

Molecular Dynamics (MD) simulations represent a viable approach for sampling 

conformations of a protein more accurately than NMA and ENM, but are much more 

expensive to calculate to sufficient statistical precision, which limits the accuracy of 

observations and conclusions based on them (50, 51).  
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Accounting for a large ensemble of protein conformations, including combinations of 

different conformations at allosteric and functional sites, complicates a mechanistic 

understanding of allostery. Observation of conformational coupling presents one 

possible strategy to make this problem more tractable: Instead of enumerating the 

conformational details of individual protein conformations, one can ask which residues 

have the largest conformational impact on their environment. This approach can be 

inferred from the conformational selection model (24), which proposes that allosteric 

effects arise when the conformational shift of binding an effector to the allosteric site 

impacts the conformational equilibrium at the protein’s functional site. In this view, 

conformational coupling becomes a prerequisite to allostery, and thus has the potential 

to be a useful predictor. Furthermore, tracking the interdependence of residue 

conformations allows to include information about both the energetically favored 

states, equivalent or close to structures obtained via crystallography, and the hidden 

transient structures contributing to the structure ensemble. This view does not consider 

conformational coupling and allostery as fully equivalent; while allostery implies 

conformational coupling, the reverse is not necessarily true. A true allosteric effect 

requires a functional component that is observable via experiments. Therefore, any 

predictions of allostery must be carefully analyzed in the context of available 

experimental data, and ideally should always be complemented with follow up 

experiments, which may be informed by predictions. 

1.2. Computational methods to estimate 
conformational coupling 

A sizable number of tools have been developed to predict conformational coupling and 

protein allostery (11, 13, 33, 52-54). Although this variety may appear redundant at 

first glance, prediction models are still in an early stage (52) as their relative strengths 

and limitations are not yet fully realized. The following section outlines a selection of 

key methods demonstrating common principles and how their specific tradeoffs affect 

their applicability to certain systems and problems. To date, it is often difficult to 

comprehensively compare the performances of individual algorithms and determine 



  INTRODUCTION 

 

14 

 

their accuracy for predicting experimental data. The challenges begin with choosing 

an experimental dataset for validating predictions; for example, NMR measurements 

are among the most popular data sources for this purpose. However, Fuglestad et al. 

(55) showed that different computational prediction methods can match different sets 

of NMR-derived parameters, depending on the timescales of investigated dynamics. 

Evaluating accuracy of a computational prediction model must therefore consider the 

specific nature of experimental data it was designed to predict. In turn, the appropriate 

prediction method must be chosen with respect to the timescales of relevant 

conformational coupling, which may differ between proteins or even between different 

modes of motion within the same protein (55). 

Observing the underlying ideas of notable prediction methods can explain how they 

may be able to probe different timescales and dynamics. Methods relying on individual 

single protein structures include structure networks utilizing shortest paths and 

centrality measures (56-58), pathway tracing through alternative conformations in 

crystallography structures (59), pairwise energetic contribution of residue pairs 

compared to mutated variants (“frustration”) (60) and conformational rearrangements 

between multiple structures (61). Due to their limitation to a few or even just one 

structure, these methods only describe conformational coupling indirectly and through 

extrapolation from a static network topology. Their accuracy in predicting allostery 

depends on the validity of their topological assumptions, e.g., that allosteric 

communication follows the shortest path in a network, or the availability of multiple 

structures with relevant conformational changes. The discovery of hidden (“cryptic”) 

allosteric sites, forming only sporadically in high energy states and invisible in crystal 

structures, highlights the limitations of static structure analysis (38, 39).  

The class of coevolution methods is distinguished by their emphasis on protein 

sequences rather than structures (13, 53, 62). Given a sufficiently deep, high-quality 

Multiple Sequence Alignment (MSA), these methods extract coevolution patterns and 

score the strength of evolutionary coupling between residues. Residues with strong 

coevolution are predicted to have a functional role in the protein, as the preservation 

of function constrains viable mutations. Different variants of this analysis have been 

developed (62), among them statistical coupling analysis (63, 64) (SCA), corrected MI 
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(65) (MIp), observed minus expected squared (OMES) (66), direct coupling analysis 

(DI) (67) and Protein Sparse Inverse COVariance (PSICOV) (68). Among many 

applications, coevolution couplings have been shown to be connected to protein 

folding (69), protein dynamics involving allostery (70), and allosteric effects in protein 

complexes (71). Their unique use of sequence data is particularly attractive as they 

can be combined with structural methods like Molecular Dynamics for a 

complementary approach (70, 72). However, it has been noted that coevolution signals 

bear a strong correlation to protein contact networks (62, 67), which may put an 

effective upper limit to the gains of combined sequence and structure approaches. 

Beyond analyses of protein sequences and individual structures, Elastic Network 

Models (ENMs) offer an efficient way to explore simple protein dynamics (33, 41, 43, 

73, 74). In an ENM, the protein structure is treated as a three-dimensional network of 

coarse-grained nodes, commonly representing the Cα atom of each residue, which are 

pairwise connected by elastic springs. This simplified physical model can then be 

subjected to by Normal Mode Analysis (NMA) (33, 41, 43, 73, 74), which diagonalizes 

the (simplified harmonic) potential energy landscape and yields the (linearly) 

independent low frequency motions (“modes”) of the system. From these modes, 

residues with coupled motion are extracted to predict allosteric effects. Low 

computational cost makes analyses based on ENM and NMA attractive for high-

throughput workflows, albeit subject to the requirement that the relevant dynamics are 

captured by harmonic fluctuations around an energy minimum. This assumption 

neglects more complex unfolding or rigid-body motions, as the approximation breaks 

down once even minor conformational changes away from the original structure are 

considered (33).  

The limitations imposed by ENM methods emphasize the attractivity of Molecular 

Dynamics (MD), as conformational coupling can be observed directly, extracting 

correlations from the motions observed during simulation (75-78). Conventional, or 

equilibrium MD aims to imitate the motions of a protein by modelling relevant forces 

between atoms and allowing the atom positions to move according to these forces, 

recording the visited conformations after discrete time steps. Given a sufficient number 
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of simulation steps, the trajectory of sampled conformation snapshots is expected to 

correspond to the conformational states of a system under the simulated conditions. 

MD simulations allow to estimate the timings of the observed conformational coupling, 

enabling comparison with experimental data of similar time scales. However, in order 

to obtain sufficient statistical precision, the timescale of observed coupling should be 

100 – 1000 times faster than the total simulation time. The now widespread use of 

GPUs in MD has greatly increased achievable simulation time scales, and there are 

ongoing efforts to improve computational efficacy. Notable developments in the field 

include coarse grained models (79-81), which replace atomistic systems with lower 

resolution models that are easier to sample, and advanced sampling methods (82-84) 

aiming to exploit more cost-effective algorithms to evolve a system given a set of 

starting conformations. Despite significant advances in the field in recent years, for the 

time being conventional MD remains the standard method for probing complex motions 

in proteins. With current standard simulation times in the µs – ms range, analyses 

based on conventional MD are largely limited to coupling events occurring in 

magnitudes between ~ 100 ns – 1 ms. Consequently, investigation of conformational 

coupling using MD simulations places a requirement on analysis methods which can 

extrapolate within the constraints of high statistical noise caused by limited simulation 

times. Whereas conventional MD and advanced sampling variants focus on obtaining 

a comprehensive structure ensemble describing all relevant protein conformations, 

specialized MD variants have been developed to trace the propagation of artificial 

dynamics through the system. In Pump-probe MD, an oscillating force is added to 

excite a specific protein region (85). The simulation is then given time to propagate 

these fluctuations, which are subsequently analyzed by extracting the fluctuation 

power spectrum from the atomic coordinates. Finally, this power spectrum is compared 

to spectra obtained from baseline simulations or simulations with modified forces; 

residues affected by the propagation of the oscillating forces are highlighted as 

conformationally coupled. Perturbation Response Scanning follows a similar strategy 

by applying random forces to individual residues and measuring the magnitude and 

direction of atomic displacements of the whole protein (86). A correlation consensus is 

then formed to measure the influence of applying force on each residue on the rest of 

the structure (13). Other forms of specialized simulation protocols are available, though 
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generally they share the same principle of trading generalizability of simulations, which 

target the full dynamics of the system and can be subjected to different analyses, in 

exchange for potentially higher prediction specificity. 

Given the complexity of analyzing correlated motion in MD trajectories between pairs 

of thousands of atoms, network models have received increased attention in recent 

years. A well-chosen network model can help to abstract away irrelevant atomistic 

details, reduce noise, and allow an intuitive exploration of the essential motions 

observed during MD simulation. Common models can be broadly categorized into two 

classes, depending on whether nodes in the network represent topological features 

within the protein (protein structure networks) or distinct conformational states in the 

structure ensemble, as for example in Markov State Models (MSM). Protein structure 

networks consist of nodes, representing atoms or residues, which are connected by 

edges corresponding to interactions between atoms (57, 58, 87-94). Interactions are 

most often defined by inter-residue contacts within a distance cutoff chosen at any limit 

between 4 and 8 Å, i.e., the edges represent short-range interactions in the 

approximate range of noncovalent forces between atoms (87-89). If a residue pair in 

the structure fulfills the selected criteria for an interaction, an edge is drawn between 

the corresponding nodes; otherwise, they are considered unconnected. The resulting 

network of nodes and edges can then be subjected to analysis methods inspired by 

graph theory, in order to determine interactions and residues with noteworthy 

characteristics with respect to their role in the network (56, 57, 88, 89). In their original 

and most widely used form, protein structure networks are based on single structures 

obtained by crystallography, but some extensions to molecular dynamics trajectories 

have been proposed (see section 1.5 for an overview). The second kind of network 

model does not map atoms to nodes, but instead uses nodes to represent a distinct 

conformational state of the protein, with connecting edges indicating transition 

probabilities between these states. Markov State Models use this approach to detect 

patterns within the dynamic transitions of the system and provide an intuitive model for 

interpretation based on states and transition rates, akin to reaction equations 

commonly utilized in biochemistry (13, 95). The proposal offered by MSMs make them 

applicable for a variety of tasks, including the modelling of protein folding, MD 
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advanced sampling, and allosteric regulation (38, 96-98). However, in practice the 

creation of MSMs can be quite challenging, as it involves several nontrivial tasks, such 

as the appropriate way of defining appropriate metastable protein states which 

captures the relevant kinetics of the protein (95, 99, 100) or the selection of appropriate 

lag times during coarse graining (101). 

Among available methods for investigating conformational coupling, choosing an 

appropriate approach for a specific problem requires a detailed understanding of the 

respective advantages and drawbacks of each method, including an analysis of the 

aspects of (i) accuracy for predicting a particular type of experimental data, (ii) 

computational cost, (iii) opportunity cost of performing specialized simulations versus 

nonbiased simulations that can be reused for other purposes. Over the course of this 

dissertation, the need for detailed analyses of strongly localized protein-ligand 

interaction patterns drove us towards a protein structure network model, which was 

adapted for MD simulations to account for ligand induced flexibility. Noting both the 

intuitive strength of this approach and its apparent connection to conformational 

coupling, we found that the integration of MD data in protein structure networks still 

had not been explored in the same depth as, for example, Markov state models. 

1.3. Prediction of conformational coupling using 
topological features from protein structure 
networks 

Protein structures obtained by crystallography or NMR provide information about the 

most dominant conformations of the system. Given only a small number of structures, 

it is difficult to measure conformational coupling directly by observing correlated 

motion. Instead, a model must be provided to predict conformational coupling from the 

static topology of atoms and residues within the system. The most common 

assumption is that residue conformations, in the context of a stable folded protein, are 

most effectively modulated by their direct environment. This is justified by the short 

effective range of the dominant inter-atomic forces, i.e., hydrophobic contacts, 



MARKUS SCHNEIDER 

 

19 

 

hydrogen bonds and salt bridges (102). Most structure network models follow this 

premise by analyzing the neighborhood topology of residues and their connections 

formed by short-range interactions. In this model, conformational coupling can be 

predicted by determining residues located on “shortest paths” between protein regions 

of interest. 

Within the domain of predicting functional residues in proteins, the concept of analyzing 

the shortest paths in a network has been applied extensively (54, 56, 77, 78, 87, 88, 

103-108). In this context, the shortest path is the one that requires the least steps when 

traversing between two nodes along the edges of the network. This approach views 

long range conformational coupling as a signal transmitted via chains of connected 

residues in the protein (56). This signal is sometimes visualized as a cascade of 

residues flipping between well- defined conformations, where each residue the chain 

triggers the next like a series of switches, although the statistical nature of allostery 

should serve as warning against assuming an overly simplistic view (17). Other 

possible forms of signaling include modulation of frequencies and amplitudes of 

residue-level fluctuations, rotation and packing, or even domain-level oscillations and 

hinge-bending motions (27). Shortest path models do not explicitly presume a specific 

mechanism of action, suggesting instead that the signal is likely to travel along the 

shortest, and thus most effective, path through the protein structure. 

There is no agreement on a singular measure used to quantify nodes and edges 

relevant to shortest paths, with variations of “Betweenness Centrality” (BC) and 

“Characteristic Path Length Centrality” (CPLC) among the most widely used (56-58, 

87). Betweenness Centrality (57, 109) evaluates the fraction of shortest paths passing 

through a specific node, with respect to the total number of shortest paths connecting 

all possible node pairs. It can be expressed as 

𝐵𝐶(𝑖) =  ∑
𝜎𝑗𝑘|𝑖

𝜎𝑗𝑘
𝑗,𝑘 ∈ 𝑁,   𝑖≠𝑗≠𝑘

 (1.1) 

where 𝑖, 𝑗, 𝑘 are part of the set of nodes 𝑁, 𝜎𝑗𝑘 is the number of shortest paths between 

𝑗 and 𝑘, and 𝜎𝑗𝑘|𝑖 is the number of shortest paths between 𝑗 and 𝑘 passing through 𝑖. 
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Residues located on many shortest paths receive the highest scores, as they represent 

bottlenecks in the topology of the network (Figure 2) and are thus presumed to play an 

important role in communicating signals. In contrast, Characteristic Path Length 

Centrality (CPLC) investigates the robustness of the shortest paths in the network with 

respect to the removal of individual nodes (56). It is calculated by evaluating how the 

characteristic path length, i.e., the average length 𝐿 of shortest paths in the networks 

changes when a specific node is removed, expressed as 

𝐶𝑃𝐿𝐶(𝑖) =  |𝐿 − 𝐿𝑖| (1.2) 

where  𝐿𝑖 is the characteristic path length of the network after removal of node 𝑖. The 

characteristic path length can be calculated as 

𝐿 =  
1

𝑁𝑝
 ∑ 𝑑(𝑖, 𝑗)

𝑖,𝑗 ∈ 𝑁,   𝑖 >𝑗

 (1.3) 

where 𝑁 is the set of nodes, 𝑁𝑝 is the number of node pairs in the network and 𝑑(𝑖, 𝑗) 

is the shortest path between 𝑖 and 𝑗. Taken together, residues which cause substantial 

growth in the average length of shortest paths after removal from the network show 

the highest CPLC scores. 

 

Figure 2. Effect of spurious edges on centrality measures. Networks (a) and (b) 

show changes in Node Betweenness Centrality before and after removal of a single 

edge. 
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Due to their tendency to attribute high scores to bottlenecks within networks, centrality 

scores are highly sensitive to the presence of individual edges. This poses a 

substantial problem for application of centrality methods to networks determined from 

structure ensembles. The introduction of transient residue interactions leads to a large 

number of spurious edges, even if they are only present in a tiny fraction of the 

ensemble. Generally, algorithms can be adapted to add appropriate weights to 

interactions (110). However, it is not obvious how the stability of an interaction should 

scale the shortest path measures as shown in eqs. 1.1 to 1.3. For example, simply 

scaling the length of a path by the stability of interactions would favor routing of signals 

through rigid secondary structures or hydrophobic cores over residues with – arguably 

more interesting - semi-stable “switch-like” conformational changes. These problems 

are commonly avoided by applying centrality algorithms only to individual structures, 

usually those obtained either by X-Ray crystallography or NMR. 
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1.4. Conformational coupling in structure 
ensembles 

Having access to a representative portion of the protein’s structure ensemble allows 

direct observation of conformational coupling between residues. Such an ensemble 

can be provided by NMR or calculated by Molecular Dynamics simulations. Once a 

representative subset of the ensemble is obtained, conformational coupling is 

determined by evaluating which residues change their conformation in a pattern that 

suggests systemic positional interdependence. One of the most straightforward 

strategies to quantify such a pattern is the Pearson correlation coefficient between 

atom coordinates (commonly one atom per residue, e.g. Cα or Cβ atoms) as 

𝐶𝑖𝑗 = 
〈∆𝑟𝑖⃗⃗ (𝑡) ∙ ∆𝑟�⃗⃗� (𝑡)〉

√〈∆𝑟𝑖⃗⃗ (𝑡)2〉〈∆𝑟�⃗⃗� (𝑡)2〉

(1.4)
 

where angle brackets denote the average over all structures in the ensemble and 

∆𝑟𝑖⃗⃗ (𝑡) =  𝑟𝑖⃗⃗ (𝑡) − 〈 𝑟𝑖⃗⃗ (𝑡)〉 is the deviation of the residue’s center of mass coordinate 

vector from its average (77, 78). The 𝐶𝑖𝑗 values can then be analyzed in a matrix or in 

a network-based approach, e.g. tracing a path of strongly correlated residues using 

shortest path methods (78). However, in these applications the Pearson coefficient 

suffers from two weaknesses (75): First, as is evident from the dot product in eq. 1.4, 

it only works for collinear vectors, which means that the coefficient is effectively blind 

to any correlated lateral motion between two residues (111). Second, Pearson’s 

coefficient measures the strength of a linear relationship between variables and may 

give misleading results for non-linear correlations (75). To address both problems, 

correlation measures based on Mutual Information (MI) have been suggested as 

alternatives (75, 76). The MI is defined as 

𝐼(𝑋, 𝑌) = ∬𝑑𝑥𝑑𝑦 𝑝(𝑥, 𝑦) log (
𝑝(𝑥, 𝑦)

𝑝𝑥(𝑥)𝑝𝑦(𝑦)
) (1.5) 
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with 𝑋, 𝑌 as random variables realized by the observations 𝑥, 𝑦 with joint probability 

density 𝑝(𝑥, 𝑦) and marginal densities 𝑝𝑥 and 𝑝𝑦. The densities are generally unknown 

and must be estimated from the sets of observed values. Applied to atom coordinate 

vectors of eq. 1.4, the densities would correspond to the estimated probability 

distributions of ∆𝑟𝑖⃗⃗  and ∆𝑟�⃗⃗� . MI does not impose a specific model to the relationship 

between the two variables, thus avoiding the collinearity issue while capturing both 

linear and non-linear correlation (75). The fundamental challenge for calculating 

correlation using MI is to obtain reliable estimates for the probability distributions, which 

is a nontrivial task (112, 113). However, as an initial starting point for developing 

prediction models, a substantially simplified form can be used. Instead of calculating 

correlation between raw atom coordinates, one can attempt to find high-level structural 

features in the trajectory that encode the conformational interdependence between 

residues. These features offer several advantages: First, they can be chosen to tailor 

the correlation to intuitively meaningful interaction states. For example, if hydrogen 

bonds or hydrophobic interactions are chosen as features, correlation can then be 

measured between high-level interaction instead of low-level atom coordinates. This 

makes it easier to develop and evaluate scoring algorithms based on correlation, since 

the resulting scores are can be reasoned about more easily. Second, high-level 

interaction representations can be chosen to be easily discretized, which allows a 

simplified calculation of mutual information (MI)  

𝐼(𝑋, 𝑌) = ∑  ∑ 𝑝(𝑥, 𝑦) log (
𝑝(𝑥, 𝑦)

𝑝𝑥(𝑥)𝑝𝑦(𝑦)
)

𝑦 ∈ 𝑌

 

𝑥 ∈ 𝑋

(1.6) 

with 𝑝 now representing the probability distributions of discrete conformations 𝑥 and 𝑦. 

These distributions can be straightforwardly estimated by counting the frequency of 

each conformation occurring in the structure ensemble. This can be illustrated with a 

simple example: Suppose that 𝑋 and 𝑌 each represent a hydrogen bond between 

atoms belonging to different residues in the structure ensemble. In each structure, a 

hydrogen bond may either be in conformation 0 (absent) or conformation 1 (present), 

which can vary between structures as residues move and engage in different 

interaction patterns. The first term of the MI would evaluate the probability of both 
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hydrogen bonds occurring together in the same structure 𝑝(1,1) in relation to the 

expected probability if both were to occur independently from each other, i.e. 

𝑝𝑥(1)𝑝𝑦(1). The remaining terms cover the remaining cases of 𝑝(0,1),𝑝(1,0) and 

𝑝(0,0). The probabilities can be obtained simply by counting the structures in the 

ensemble for which the hydrogen bonds are present. Considering these advantages, 

we saw potential for investigating conformational coupling by combining discrete 

Mutual Information with the previously described structure networks, as a way of 

quantifying the interdependence of distinct structural conformations encoded by short-

range physical interactions. 

1.5. Available software for analysis of protein 
structure networks obtained from MD 
simulations 

Several tools have been published for analysis of structure ensembles, most often in 

the form of MD trajectories, using protein structure networks. The most common 

strategy is to evaluate one or more types of inter-atom contacts (hydrophobic, 

hydrogen bonds or salt bridges) for each frame of the trajectory and create a time-

averaged protein structure network. In this type of network, an edge between nodes 

(atoms) represents a contact within a predefined cutoff distance, usually between 4 

and 8 Å, occurring for a minimum fraction of the total simulation time. The MD-TASK 

package (114) offers a set of python scripts to create protein structure networks, 

calculate various centrality measures and correlation between atom coordinates. 

Wordom (115) is a general purpose MD analysis tool for the command line, which also 

offers creation of average protein structure networks and network path analysis. NAPS 

(116), RINalyzer (117), PyInteraph and RIP-MD (118) similarly transform MD 

trajectories into an averaged network of contacts (hydrophobic, hydrogen bonds or salt 

bridges) for analyses and provide visualization as well as analysis tools centered 

around centrality measures. MDN (119) generates a network from pairwise residue 

interaction energies and predicts allosteric coupling using a centrality based measure. 

The gRINN tool (120) has similar capabilities to those mentioned, but adds functions 



MARKUS SCHNEIDER 

 

25 

 

to analyze correlations between pairwise residue energies. Another category of tools 

focuses on networks in which edges are not defined by direct contacts; instead, an 

edge is defined between any two atoms showing substantial cross-correlation between 

atom coordinates of the corresponding nodes. In this network variant, edges can occur 

between distant protein regions, if their atoms move in a correlated pattern. As in 

networks based on interactions, centrality measures are the most dominant approach 

to detect pathways of conformationally coupled residues. Methods based on cross-

correlation networks include NetworkView (121) and xPyder (122). The COMMA (123) 

and COMMA2 (124) tools use a mix of atom coordinate correlation, minimum inter-

atom distances, distance variance, non-covalent interaction strengths, and secondary 

structures to identify coupled cliques and communication pathways. 

Despite the abundance of computational tools, their underlying principles are very 

similar. MD trajectories are transformed into a time-averaged network, with residues 

as nodes and edges representing either atom-atom contacts or the cross-correlation 

of atom coordinates. In most cases, this is followed by calculation of network centrality 

measures to predict conformationally coupled residues, which are proposed to act as 

regulators of allostery. Based on the available tools, we identified three specific 

shortcomings of conventional approaches to analyse protein structure networks from 

MD simulations: First, the use of centrality methods with their high sensitivity to 

spurious edges, which occur frequently in networks obtained from structure 

ensembles. Second, the correlation measures employed are severely limited in their 

ability to accurately reflect conformational dynamics, most notably by their restriction 

to a linear model and blindness to lateral motion. Third, network resolution of available 

tools was rigid, as they focused either on residue or single atom level, with little support 

to treat certain protein regions as residues while zooming into specific regions of 

interest, e.g., individual atoms of small molecule ligands 
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1.6. Investigated protein systems 

1.6.1. PDZ2 

PDZ domains are a ubiquitous class of protein domains involved in the formation of 

protein complexes (125-127). They recognize C-terminal or short internal peptides 

(128, 129), which activates recruitment of other proteins and mediates complex 

assembly (125-127). In contrast to classical models of allostery, ligand-induced 

activation of PDZ2 does not lead to substantial conformational differences observed in 

crystal structures (130). The PDZ2 domain is a commonly used benchmark system to 

evaluate allosteric prediction models using a comprehensive set of experimental data. 

The dataset was the result of a series of studies performed by Lee and coworkers, who 

investigated the effects of ligand binding and residue mutations on backbone and 

sidechain dynamics of individual residues, as measured by NMR spin relaxation (130-

132). As the dataset contains mainly residues containing methyl groups, insights 

derived from it remains open for expansion by computational predictions. However, a 

review comparing the results of several prediction models, reported by separate 

publications, found substantial disagreement between those methods (133). This 

problem was exacerbated by the fact that many of these methods reported only lists of 

predicted residues instead of raw prediction scores, making a direct comparison 

difficult, since each method was set to a different sensitivity. Moreover, most of the 

compared methods only described algorithms while lacking readily available 

implementations, impeding repetition of the same prediction with different thresholds 

or on other protein systems. The open questions concerning PDZ2 biology, divergence 

of previous prediction results and the lack of systematic comparative analyses between 

models justified further investigations into PDZ2. The PDZ2 system was therefore 

chosen as the first system to evaluate the network-based allosteric prediction models 

in this thesis, with particular attention given to establishing a clear connection between 

predictions and experimental data, as well as consolidating our results with previous 

models.  
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1.6.2. UHRF1 

The protein UHRF1 is a regulator of DNA methylation maintenance, acting as a probe 

for hemi-methylated CpG sites (134-136). It is composed of a ubiquitin-like domain, a 

Tandem-Tudor domain, a PHD domain, a SRA domain, and a RING domain (Figure 

3). After binding to a hemi-methylated CpG site, i.e., a site where one DNA strand is 

methylated but the other is unmodified, the SRA domain of UHRF1 recruits the 

methyltransferase DNMT1, which subsequently methylates the second strand (134-

136). In addition to its role in targeting DNMT1 action, UHRF1 recognizes specific 

patterns of post-translational histone modifications and acts as an E3 ubiquitin ligase 

(137). Its multitude of functions highlight the central role UHRF1 plays in cell 

maintenance, DNA damage repair and genetic regulation (138). 

The DNA modification pattern is the result of a dynamic balance between methylation 

and demethylation processes. Proteins of the TET family (TET1, TET2 and TET3) are 

able to remove the methyl group of 5-methylcytosine (5mC) via step-wise oxidation 

with the intermediates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (139). However, it has been suggested that these 

intermediates may also serve a functional role as specialized epigenetic markers (140). 

Genome mapping studies found detectable levels and accumulation of intermediates 

in distinct DNA regions (141-143), whereas specific cell types and conditions could be 

associated with increased concentrations of these modifications, such as hmC in 

neuronal cells (144) and caC in tumor cells (145). The subtle chemical differences 

between the mC and its oxidized derivatives hmC, fC and caC raised the question 

whether UHRF1, as an established mC reader, would be able to recognize those 

variants as well. 

Investigations into the specific recognition mechanism showed that UHRF1 binds to 

the DNA helix and flips the hemi-methylated DNA base out of its strand, pushing it into 

a deep-seated binding pocket (135). In parallel, UHRF1 inserts a flexible loop called 

the NKR finger into the major groove of the DNA, forming hydrogen bonds with the 

DNA backbone. The NKR finger is in direct contact to the CpG site’s cytosine on the 
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opposite strand, i.e., the position that is methylated after DNMT1 recruitment. A CpG 

site in which both strands are methylated leads to a steric clash with the NKR finger, 

and binding studies have demonstrated that UHRF1 shows greatly diminished binding 

affinity to these fully methylated CpG sites (146, 147). Allosteric effects were reported 

for the UHRF1 system in connection to its histone binding activity, but not within the 

limited context of the single SRA domain (148-150). We had received preliminary 

experimental data that showed an intriguing increase of binding affinity for a fully 

carboxylated CpG site. This prompted further investigations, during which we detected 

signs of conformational coupling between the DNA base binding pocket and the NKR 

finger. The analyses we performed would form the basis for the network models 

developed in this thesis. An earlier analysis as part of the author’s Master’s Thesis 

(151) had shown promising trends indicating potential for a network-based analysis; 

however, attempts to replicate these results failed. A follow-up investigation showed 

flaws in the original models and simulation setup. Hence, the project was started 

completely from scratch, with no models or data shared with the originally reported 

results. The new setup used newly derived computational models, force field 

parameter sets, a different simulation engine, much more extensive simulations, 

multiple replicas, and substantially improved analysis methods. All results presented 

here are derived from the new setup. 
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Figure 3. Structure of the UHRF1—DNA complex. Molecular dynamics 

structure of the SRA domain of UHRF1 bound to hemi-methylated DNA. Insets 

show a magnification of the nucleotide binding pocket and NKR finger regions. 

Figure cropped from ref. (193). 
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1.6.3. Hsp70 chaperones 

Hsp70 (Heat shock protein 70 kDa) chaperones are a protein class whose function 

relies on a complex conformational cycle, regulated by an extensive allosteric network 

(152-157). Advancement of the conformational cycle is achieved by binding different 

ligands and cochaperones, which is sensed and communicated through the protein by 

a network of allosteric residues. As chaperones, Hsp70’s fulfill many roles, including 

the support of correct protein folding, regulation of apoptosis, as well as supporting 

membrane translocation and de-aggregation of misfolded complexes (153, 154, 157-

160). The Hsp70 chaperone achieves this by binding hydrophobic stretches within 

proteins, which are exposed when a protein is partially or fully unfolded. The binding 

of the chaperones prevents further folding at those protein stretches until they are 

released. In concert with its cochaperones, Hsp70 activity can guide its protein 

 

Figure 4. Structural organization and conformations of Hsp70 chaperones. (a) 

Simplified representation of the Hsp70 conformational cycle. (b,c) Representative 

structures of DnaK-ATP (b) and DnaK-ADP (c) extracted from molecular dynamics 

simulations. Figure adapted from ref. (195). 
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substrates towards different processes, from refolding to degradation (154). Due to 

their ubiquity, including several isoforms in humans, and their association with cell 

repair and neurogenerative diseases, Hsp70s have been proposed as potential 

therapeutic targets (153, 159, 161-163).  

The conformational cycle of Hsp70s is characterized by a series of major domain 

rearrangements, most strikingly the complete docking and undocking of its nucleotide 

binding (NBD) and substrate binding (SBD) domains (152-155, 164). The NBD is 

further subdivided into two rotatable lobes (NBD-I and NBD-II), while the SBD consists 

of a core subdomain housing the substrate binding pocket (SBDβ) and an α-helical lid 

domain that can close over the binding pocket, locking a bound substrate in place 

(SBDα). In Hsp70’s “open” conformation, the NBD lobes envelop an ATP molecule and 

the SBDβ binding pocket is empty (Figure 4). The NBD and SBDβ domains are docked 

onto each other, with the SBDα lid open and bound to the NBD-I lobe. The binding of 

a substrate, either a peptide or short internal protein stretch, to the SBDβ binding 

pocket triggers a partial undocking of the NBD-SBDβ interface (165). This allows the 

NBD lobes to rotate into a conformation favoring hydrolysis of the ATP molecule, 

followed by completion of the NBD-SBD undocking and closing of the SBDα lid over 

the SBDβ binding pocket. This stable, closed conformation features a fully undocked 

NBD-SBD, ADP bound to the NBD, and a peptide substrate bound to the SBDβ. The 

cycle is completed by release of the substrate, exchange of ADP to ATP and domain 

re-docking (152-156). The conformational changes are facilitated through a network of 

allosteric residues, which have been studied primarily through mutation of individual 

residues and detecting associated effects on protein activity in the E.coli Hsp70 variant 

DnaK (155). These residues sense and adapt their conformations both as a response 

to the different ligand binding states, but also due to binding and interactions with a 

number of cochaperones, e.g. DnaJ and the nucleotide exchange factor grpE for DnaK 

(152-154, 156, 166-168). However, due to the large size of Hsp70 proteins (over 600 

amino acids), assembling a complete description of the allosteric network by individual 

mutations is a laborious and unfinished process. Furthermore, evolutionary adaptation 

of Hsp70 variants to different organisms or organelles has led to a high sequential 
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variance within the protein family, and it is unclear how insights obtained for the well-

studied E. coli chaperone DnaK are transferable to these specialized variants. 

The Hsp70 BiP is a human chaperone variant native to the endoplasmatic reticulum, 

specialized to folding proteins passing through membranes and the secretion pathway 

(169, 170). In addition, cellular surface BiP (csBiP) can be detected in some cell types 

under stress conditions, along with proliferation of BiP to the cytosol, nucleus and 

mitochondria (171-173). The occurrence of csBiP in tumor cells opens the possibility 

for applications in cancer treatment (174-178) or as an antiviral target, notably including 

for the SARS-CoV-2 virus (179-182). As is typical for Hsp70’s, DnaK and BiP share a 

highly similar structure, but their sequence homology is below 50 %. While the proteins 

fulfill similar core functions, a number of differences have been reported with respect 

to their biochemical behavior: BiP interacts with a different and more expansive set of 

cochaperones, important for allosteric regulation, and showed substantial differences 

in NBD-SBD docking and SBDα lid dynamics (168, 183) as well as their functional 

behavior (184).  

Binding of the peptide substrate is an essential step in the conformational cycle of 

Hsp70 and its allosteric regulation. In accordance to its wide-ranging chaperone 

functions, Hsp70s can bind to a large variety of peptides, with a notable bias towards 

sequences containing hydrophobic residues. The substrate binding site, located in the 

SBDβ subdomain, can fit a peptide stretch of five to seven amino acids (185-188). 

Extensive studies revealed that Hsp70 variants showed different preferences in 

substrate recognition (189, 190). The residue located in the center of this binding 

pattern is the one most deeply enveloped by the binding pocket. For example, it was 

observed that while DnaK favored hydrophobic but smaller residues, BiP would also 

accept more bulky aromatic amino acids like tryptophane in its binding pocket (191). 

This indicates substantial differences in the binding pocket structure between DnaK 

and BiP, with potential implications for the mechanisms of allosteric activation. As the 

development of small molecule Hsp70 allosteric modulators progresses (162), 

applications targeting specific proteins like BiP will require a detailed understanding of 

the allosteric mechanisms and the evolutionary differences between Hsp70 variants. 

Despite the reported differences between DnaK and BiP with respect to substrate 
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recognition, dynamics and function, the underlying residue mutations giving rise to 

these behaviors are not well explored, aspects which could prove important for 

potential therapeutic applications. 

1.7. Objectives and thesis structure 

The goal of this thesis was to accurately predict and characterize protein regions 

associated with conformational coupling and allosteric regulation within Hsp70 

chaperones. Relevant structural and dynamical differences between two members of 

the Hsp70 family, DnaK and BiP, were to be analyzed to deepen understanding of the 

influence of individual mutations on biochemical function and the effects of evolutional 

divergence. Insights gained from these investigations were expected to help elucidate 

the mechanisms of conformational coupling and ligand induced conformational 

changes, enabling applications in protein engineering and allosteric drug design. In the 

following, we describe in detail the three phases of the project: Exploratory analyses 

of Hsp70 chaperone systems including characterization of their structural differences 

enabling specific ligand binding preferences, development and validation of a novel 

allosteric prediction model based on protein structure networks, and finally application 

of this model to investigate evolutionary differences in Hsp70 allosteric regulation 

following ligand binding. The results of our investigations were reported in four 

published manuscripts. In the first publication, we combined experimental peptide 

array data, molecular docking, and statistical learning to predict peptide sequences 

recognized by the human Hsp70 chaperone BiP. Our structural analysis distinguished 

the binding pockets of BiP in contrast to the E. coli variant DnaK and provided a 

quantitative model to predict likely BiP-binding regions in proteins (192). Next, we 

investigated the structural coupling between two key protein regions in UHRF1, 

employing network analyses of ligand interaction patterns to explain the observed 

conformational rearrangements (193). These ideas were further developed in the third 

publication, which formalized our network model and provided a comparative analysis 

of different algorithms for allosteric prediction, while evaluating their accuracy using 

the PDZ2 benchmark system (194). Finally, we utilized our previously established 
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network models to investigate the transmission of ligand binding signals and 

subsequent allosteric regulation in the Hsp70 chaperones DnaK and BiP (195). We 

detect pathways of conformationally coupled residues in alignment to experimentally 

verified allosteric residues, and predict several new allosteric candidates. Comparing 

prediction results of DnaK and BiP, we were able to suggest several specific residues 

with specific roles in either Hsp70 variant, including a secondary allosteric pathway 

unique to BiP. Our predictions have the potential to contribute to the understanding of 

evolutionary adaptation of proteins to specific environments and the development of 

allosteric drugs targeting specific protein variants. The ability to use our reference 

implementation SenseNet together with a variety of data sources, including NMR 

ensembles and existing MD simulations, allows for easy application of our prediction 

models on other protein systems. 
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2. GENERAL METHODS 

2.1. Conformational sampling using Molecular 
Dynamics 

Molecular Dynamics (MD) encompasses a set of simulation techniques to generate 

structural ensembles of a molecular system by iterative calculation of new 

conformations based on the forces acting on its atoms. The forces between atoms are 

described using a force field, a parameterized function to calculate the potential energy 

of a system. The force field combines energy functions and parameters aimed at 

reproducing quantum mechanical potentials and/or experimental observations from 

small molecules. Popular force fields for all-atom simulations of proteins include the 

most recent iterations of the AMBER force field family Amber-ff14SB (196) and Amber-

ff19SB (197), CHARMM36 (198), or OPLS-AA (199) with the updated parameter sets 

OPLS-AA/L (200) and OPLS-AA/M (201). In a typical force field (202), covalent bonds 

are represented as harmonic spring potentials, with a sinusoidal function term 

modelling the torsion potential (eq. 2.1). The noncovalent interactions are composed 

of an electrostatic term and a Lennard-Jones potential term. Further terms can be 

added for correction (e.g., enforcing planar aromatic rings) or to reflect different 

dynamics (e.g., hydrogen bonding terms). Given a starting structure of atom positions 

and a force field as in eq. 2.1, the potential energy of the system can be determined 

as 

𝐸𝑝𝑜𝑡(𝑟𝑖⃗⃗ ) =  ∑ 𝑘𝑑(𝑑 − 𝑑0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑉𝑛(1 + cos(𝑛𝜙 −  𝛾))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

+ ∑ ∑ [
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 ]

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

  + ∑ ∑ [
𝑞𝑖𝑞𝑗

𝜀𝑙𝑟𝑖𝑗
]

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

  (2.1) 

where 𝑟𝑖⃗⃗  is the configuration vector of atom coordinates, 𝑑, 𝜃, 𝜙 are bond length, bond 

angle and dihedral angles of the current configuration and the zero subscripts denote 

respective reference parameters. Furthermore, 𝑘𝑑 , 𝑘𝜃, 𝑉𝑛 are force constants for bonds, 
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angles, and dihedrals, while 𝑛, 𝛾 parameterize the shape of the dihedral potential. The 

first three terms represent the covalent interactions of the potential, while the fourth 

and fifth term corresponds to the non-bonded Lennard-Jones (LJ) and electrostatic 

interactions, respectively. The 𝐴𝑖𝑗 , 𝐵𝑖𝑗 parameters determine the strength of LJ 

interactions, 𝑟𝑖𝑗 corresponds to the distance between atoms 𝑖 and 𝑗, 𝑞𝑖 is the partial 

atomic charge of atom 𝑖, and 𝜀𝑙 is the effective dielectric constant. 

The equations of motion used to model the dynamics of the system require a vector of 

atom coordinates and at least its first two derivatives, namely velocity and acceleration. 

The force field equation (eq. 2.1) yields the acceleration via Newton’s second law 

𝐹𝑖⃗⃗ = −
𝑑𝐸𝑝𝑜𝑡

𝑑𝑟𝑖⃗⃗ 
=  

𝑑𝑝𝑖⃗⃗⃗  

𝑑𝑡
=  𝑚𝑖

𝑑2𝑟𝑖⃗⃗ (𝑡)

𝑑𝑡2
 (2.2) 

which, given a snapshot of current atom coordinates and velocities, is sufficient for 

numerical simulation. To obtain the next snapshot of the simulation, corresponding to 

advancing the simulation by a small timestep, the equations of motion are integrated 

numerically. Common options include for example the Leapfrog or Verlet integrators 

(203).  

The environment of a protein is an essential factor during simulation. In our simulations, 

protein and DNA molecules were placed into a cubic box of water molecules and ions 

to achieve a predefined salt concentration chosen to match experimental buffer 

conditions. To avoid creating a border region between solvent and what would 

effectively constitute effective vacuum at the faces of the box, the entire system was 

mirrored into all directions (periodic boundary conditions). The simulation of an 

approximately infinite environment significantly increases the computational cost as 

many more atom interactions must be considered. For interaction terms with a short 

range, i.e., LJ interactions, cutoffs are used to minimize the number of required 

calculations. On the other hand, electrostatic interactions have longer range and affect 

protein stability. Direct summation of these interactions with cutoffs is error prone and 

suffers from convergence issues. Therefore, electrostatic interactions were treated 

using particle mesh Ewald (PME) summation, which allows efficient computation of 
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interactions in infinite periodic systems. In PME, the interatomic potential energies are 

separated in a short-range part, which is calculated in real space, and a long-range 

part calculated in Fourier space (204). It can be shown that in their respective domains, 

both the real and Fourier contributions converge quickly and can therefore be truncated 

without loss of accuracy. In addition, Fast Fourier transformation is used for even more 

efficient computation of the Fourier term (205). 

MD simulations which evolve solely based on the equations of motion approximate the 

NVE (or “microcanonical”) ensemble, that is a structure ensemble in which the number 

of particles N, the volume V and the total Energy E are conserved within algorithmic 

and numerical limits. However, this allows both the temperature T and pressure P of 

the system to fluctuate, which are constant in typical experimental conditions. 

Therefore, simulations typically use the NVT (“canonical”) ensemble, in which 

temperature is controlled using a thermostat, or the NPT (“isobaric-isothermal”) 

ensemble, which uses a thermostat in addition to a barostat regulating pressure. Within 

this thesis, two different thermostats were used. The Langevin thermostat is a popular 

option as it is straightforward and can help overcoming small energy barriers which 

improves efficiency of the simulation. The equations of motion are modified to  

𝑚𝑖

𝑑2𝑟𝑖⃗⃗ 

𝑑𝑡2
= 𝐹𝑖⃗⃗ (𝑟𝑖⃗⃗ ) −  𝜉

𝑑𝑟𝑖⃗⃗ 

𝑑𝑡
+ 𝑅𝑖

⃗⃗  ⃗(𝑡) (2.3) 

Where 𝐹𝑖⃗⃗  is the inter-atomic force according to eq. 2.2, 𝜉 is a frictional coefficient, and 

𝑅 is a random force which averages to 0. The targeted temperature can be maintained 

by adjusting 𝜉 (slowing down atoms) and 𝑅 (accelerating atoms) accordingly. The 

second thermostat used in our simulations is the Berendsen or “weak coupling” 

thermostat. It is one of the oldest strategies for temperature control, based on rescaling 

the temperature of the system gradually using 

𝑑𝑇

𝑑𝑡
=  

𝑇0 − 𝑇(𝑡)

𝜏
(2.4) 

where 𝑇0 is the reference temperature, and 𝜏 is the weak time coupling constant. A 

known weakness of this thermostat is that it does not strictly generate the canonical 
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ensemble, although this error is expected to be small in large systems, i.e., proteins 

including a solvent box. More substantially, it has been noted that the thermostat may 

unphysically shift kinetic energy towards slowly fluctuating degrees of freedom, leading 

to the “flying ice cube” effect (206). This has led to sometimes very strong 

recommendations against the use of the Berendsen thermostat (207), as other 

alternatives are often favored. While the problems of the Berendsen thermostat are 

plentiful and well appreciated, it should be noted that it is unclear whether they have a 

significant impact on systems of average protein size (207). Lagging availability of 

modern thermostats in MD software still make the Berendsen thermostat a possible 

(though hopefully soon obsolete) choice, especially since alternative implementations 

are not always fully understood and come with their own drawbacks. In contrast to e.g., 

the popular Langevin thermostat, the Berendsen thermostat does not introduce a 

random force component, which makes it in principle better suited for studies of 

correlated motion. It was reported that the flying icecube effect can be partially 

counteracted by setting a large time constant in eq. 2.4, which gives the system more 

time to equilibrate and prevents the detrimental accumulation of kinetic energy (207). 

To control pressure during simulations, an analogue of Berendsen’s thermostat was 

used, which rescales the volume of the box to set the desired pressure using the 

formula  

𝑑𝑝

𝑑𝑡
=  

𝑝0 − 𝑝(𝑡)

𝜏𝑝

(2.5) 

where 𝑝0 and 𝜏𝑝 are the pressure equivalents to eq. 2.4. In practice, volume 

fluctuations due to pressure control tend to be very small for protein systems. For this 

reason, it is not expected that the Berendsen barostat suffers from the same problems 

as its thermostat equivalent, leaving it a viable option for simulations for the time being. 
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2.2. Combined Sequence- and Structure Based 
Prediction of Ligand Binding 

Hsp70 chaperones are promiscuous binders which recognize a wide range of protein 

substrates (189, 190). Despite this flexibility, high-throughput peptide binding 

experiments have been able to discern characteristic binding motifs. As Hsp70s are 

known to bind an elongated, unfolded peptide stretch of about 5 to 7 amino acids, many 

prediction models have been built on the premise that the binding affinity can be 

approximated by combining the contributions of individual independent subpockets 

(208). These methods commonly start from a set of strongly binding substrate 

peptides, determined by experiments, followed by generating a Position-specific 

scoring matrices (PSSM). A PSSM encodes the probability of finding each amino acid 

(rows) in each of the subpockets (columns) among the strong binders. Predictions for 

peptides are performed from the sequence of the candidate peptide, looking up the 

scores for the matching amino acids from the PSSM columns, and summing them to 

obtain a final score. 

In our work, we diverge from this approach, by instead calculating a PSSM based on 

structures of the protein-substrate complex. This structure-based position-specific 

scoring matrix (SB-PSSM) uses interaction energies calculated from a force field to 

estimate the contributions of each position to the overall binding affinity. First, a 

structure model of the Hsp70 protein bound to a seven amino-acid substrate was 

created, providing a template for the peptide backbone. In our study, we chose a 

homology model of BiP created using MODELLER (209) from a structure of DnaK 

bound to the HTFPAVL peptide. Then, the substrate peptide was mutated in silico 

using IRECS (210) to the AAAPAAA peptide as the baseline structure. Next, we used 

this baseline structure to create variants placing each of the 20 canonical amino acids 

at each of the 7 positions using IRECS, while keeping the other positions constant. 

This systematic amino acid scan corresponded to a mutation pattern of [XAAPAAA, 

AXAPAAA, AAXPAAA, …], where X was the position to be mutated. After creating a 

total of 20 x 7 structures, where each amino acid was placed once into each position, 

an energy minimization was performed to ensure that the interaction energies were 
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obtained from a relaxed state. Finally, individual energy terms between protein and 

substrate are extracted from the minimized structure. Energy minimization and 

interaction energy calculations are based on the OPLS-AA force field (199) in order to 

allow for the use of Pepscore coefficients (211). The Pepscore was designed as a 

scoring function for molecular docking, providing weighting coefficients for 

transforming force field energy terms into a composite score to rank docking 

conformations. For each position in the SB-PSSM matrix, the structure with the 

corresponding protein-substrate mutant was prepared, energy minimized and the 

score obtained as the Pepscore-weighted sum of the Coulomb and Lennard-Jones 

interaction energy terms.  

During our studies, it was found that the SB-PSSM required corrections for certain 

edge cases, for example when a residue was not placed properly in the sub-pocket 

due to limited space. In such cases, values were adjusted manually following an 

analysis of the binding pocket. As a method to improve the predictive performance of 

the SB-PSSM, we implemented an integrated approach combining aspects of 

sequence-based und structure-based prediction. It was apparent from the pattern of 

strongly binding sequences that central residues of the substrate peptide were stronger 

predictors than those at the termini of the peptide; however, this was not well reflected 

by taking the unweighted sum of SB-PSSM column values. We therefore set out to 

optimize the coefficients of the SB-PSSM column scores using logistic regression. 

First, we obtained a set of experimental binding data, based on Fluorescence 

Anisotropy Spectroscopy measurements of peptide arrays and literature sources (183, 

191, 212, 213). Based on these measurements, the peptides were categorized as 

binders/non-binders and collected in the dataset (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝑙 where 𝑙 is the total 

number of peptides. Each peptide 𝑖 in the dataset is described by a training vector 𝑥𝑖  ∈

 𝑅𝑛 (the SB-PSSM scores for each position within the peptide) and a binder/non-binder 

class label 𝑦𝑖 = [1,−1]. The prediction model is then given by the logistic function 

𝑝(𝑥𝑖) =  
1

1 + 𝑒−𝑤𝑇𝑥𝑖
(2.6) 
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as the vector of weight coefficients 𝑤 ∈  𝑅𝑛, which is determined numerically by 

minimizing 

min
𝑤

1

2
𝑤𝑇𝑤 + 𝐶 ∑log(1 + 𝑒−𝑦𝑖𝑤

𝑇𝑥𝑖)

𝑙

𝑖=1

(2.7) 

where 𝐶 > 0 is a cost parameter and the first term providing for L2 regularization. 

Implementation details for solving eq. 2.7 can be found in ref. (214); in our work, the 

implementation provided by the python package scikit-learn (215) (version 0.16.1) was 

used . The regularization cost parameter 𝐶 was optimized separately by three-fold 

cross-validation for the best area-under-curve (AUC) value in the corresponding 

receiver operating characteristic (ROC) curve. 
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2.3. Analysis of conformational coupling in protein 
structure networks 

The SenseNet network model was designed to extend on previous implementations of 

protein structure networks by including data from structure ensembles obtained from 

MD trajectories. The most common strategy to define a protein structure network is to 

map protein residues to nodes and to connect these nodes with edges representing 

close range interactions, such has hydrophobic contacts or hydrogen bonds. As we 

intended to investigate conformational coupling using protein structure networks, we 

considered several programs which allow network analyses of MD trajectories (see 

section 1.5). However, our evaluation revealed that they lacked one or more 

capabilities which we required for our project: First, an improved measure of correlation 

over Pearson’s coefficient; second, avoiding reliance on centrality measures due to 

their instability problems when applied to networks obtained from MD trajectories; third, 

the model should allow analyses on different levels of resolution, from residues to 

atoms; and finally, the software should be publicly available and open source to be 

readily reproducible. As none of the available tools provided all desired features, we 

decided to define a custom model and implementation (Figure 5). 

The fundamental building block of the SenseNet network model is provided by the 

interaction timeline. For each structure in the ensemble, all pairs of atoms are scanned 

to determine whether an interaction is present in that structure (e.g., a hydrogen bond, 

salt bridge or a contact between nonpolar atoms). An interaction is counted if the atom 

pair fulfills a set of criteria, e.g., specific atom types and/or within a maximum distance. 

If the criteria are fulfilled, the timeline will show a 1 at the structure’s position in the 

trajectory; otherwise, it will be 0. The full atomistic interaction timeline is then given as  

𝑿𝜶𝜷𝒌 = [{
1 if 𝛼 and 𝛽 interact as type k  in trajectory frame 𝑡 
 0 otherwise

]
𝑡
 (2.8) 
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where 𝛼, 𝛽 are atom nodes, 𝑘 is an interaction type and 𝑡 is a simulation snapshot at a 

given timepoint (trajectory frame). At the atom level, the resolution of interactions is 

very high but too fine-grained for intuitive analyses. Thus, timelines can be combined 

to represent a coarser but more intuitive description of the system, e.g., in terms of 

interactions between residues. To obtain a combined timeline, the atomistic timelines 

are summed element-wise as 

𝑿𝒊𝒋𝒌 = ∑ ∑ 𝑿𝜶𝜷𝒌

𝛽 ∈ 𝑗𝛼 ∈ 𝑖

(2.9) 

with 𝑖, 𝑗 as nodes representing residues encompassing one or more atoms. Multiple 

edges can connect the same node pair if they represent different interaction types, 

e.g., carbon-carbon contacts and hydrogen bonds. The connectivity between node 

pairs is described for each interaction type by the symmetric adjacency matrix 

𝑨𝒌 = [{
1 if 𝑖 and 𝑗 are connected by an edge of type k 
 0 otherwise

]
𝑖𝑗

(2.10) 
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for each interaction type 𝑘. These structures are the central feature of the network 

model and offer a wide range of possibilities for further analyses. In contrast to 

networks where edges are based on correlation coefficients, the SenseNet method 

treats structure ensembles as a natural extension of a single structure model. This can 

be easily verified by observing that the timeline-based model reduces to the 

conventional single structure network if the length of the timeline is one. This allows to 

use algorithms established for single structure networks by applying them on individual 

 

Figure 5. The SenseNet network model. (a) Networks are extracted from protein 

structure ensembles obtained from molecular dynamics. Residues make up the 

nodes of the network, while atom interactions, like hydrogen bonds, are modelled 

as edges. (b) Dynamic time- and spatial resolution in structure ensemble networks. 

Residue nodes can be split up into individual atom nodes, whereas timelines track 

the dynamic evolution of interactions within the structure ensemble. 
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trajectory frames of the timeline. Alternatively, network analyses can be performed on 

a network representing the average of all structures. In this form, timelines are 

commonly weighted by their time average 

𝑎𝑣𝑔(𝑋𝛼𝛽𝑘) =  
1

𝑇
∑𝑋𝛼𝛽𝑘

𝑡

(𝑡) (2.11) 

where 𝑇 is the total number of frames in the timeline. This value corresponds to the 

average number of interactions between two residues or atoms in the structure 

ensemble. Due to the flexibility of residues, ensembles generated by molecular 

dynamics contain many spurious interactions which continuously form and dissolve 

during simulation. A common approach to minimize the effect of those spurious 

interactions is to limit analyses to interactions which were present for a minimum 

fraction of the simulation 

𝑜𝑐𝑐(𝑋𝛼𝛽𝑘) =  
1

𝑇
∑min (1, 𝑋𝛼𝛽𝑘

𝑡

(𝑡)) (2.12) 

which we call the occurrence of an interaction.  

The network model can be understood as a low-resolution description of the structure 

ensemble, transforming atom coordinates into distinct interaction states. For example, 

in a network consisting entirely of hydrogen bond edges, the conformations of the 

ensemble are distinguished by the number of hydrogen bonds between the residues 

at any snapshot of the trajectory. Focusing analyses on these interactions allows for 

an intuitive encoding of conformational state and more sophisticated methods of 

quantifying correlation, avoiding the collinearity limitations of measures based on atom 

coordinates and Pearson’s coefficient. In addition, interaction timelines (eqs. 2.8 and 

2.9) can be used with arbitrary network resolution, i.e., from atom to residue level, or a 

mix between the two. The remainder of this section elaborates on how this network 

model can be applied to measure conformational correlation in MD trajectories. 

Using the discrete mutual information from eq. 1.6 as I(𝑿𝒊𝒋𝒌; 𝑿𝒏𝒎𝒍), we define an edge 

correlation factor (ECF) as 
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ECF(𝑖, 𝑗, 𝑘) = (𝑨𝒌)𝑖𝑗 ∙ ∑ ∑ I(𝑿𝒊𝒋𝒌; 𝑿𝒏𝒎𝒍)

𝑛,𝑚 ∈ 𝑁𝑙 ∈ 𝐾

 ∙ (𝑨𝒍)𝑛𝑚 ∙ 𝜒𝑖𝑗𝑘(𝑛,𝑚, 𝑙) (2.13) 

where 𝑘 and 𝑙 are interaction types, 𝑖, 𝑗, 𝑛,𝑚 are elements of the node set 𝑁, and 𝜒 is 

an indicator function which yields 1 if the edge corresponding to timeline 𝑋𝑛𝑚𝑙 is 

adjacent to the edge of 𝑋𝑖𝑗𝑘 in the network, and 0 otherwise. The concept is intuitively 

visualized in Figure 6.  
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Limiting evaluated correlation to adjacent edges in the network emphasizes the local 

effects of interactions on their immediate network, where long range effects are 

propagated consecutively through clusters or chains of localized conformational 

changes. This ensures that the contributions to the ECF are dominated by local 

motions, remaining unaffected by spurious correlation between distant protein regions, 

most of which are unlikely to be coupled in a functional manner. On the downside, 

should any coupling between distant residues occur that does not manifest in any way 

 

Figure 6. Example network demonstrating the calculation of edge correlation 

factor (ECF) and node correlation factor (NCF) scores. The ECF score of edge 

i, j, k (blue) is obtained by summing the mutual information of timeline Xijk shared 

with the timelines of neighboring edges (green). The self-information I(Xijk, Xijk) is 

excluded. Subsequently, the NCF score of node i is calculated as the sum of ECF 

scores of all edges connected to i. Figure from ref. (194). 
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within the conformations of intermediate residues, it would not be detectable with this 

approach. High ECF scores indicate strong correlation of an interaction with other 

interactions in its direct environment; it is assumed in the model that a change in the 

interaction pattern, for example by binding of a ligand, would then cause 

conformational changes in these interactions due to conformational coupling. In other 

words, the ECF score conveys how much information an interaction provides about 

the interaction states in its environment. For the purpose of computational predictions, 

scoring residues is usually more desirable than individual interactions. This description 

corresponds more closely to commonly reported residue-based experimental data, like 

mutagenesis experiments or NMR spin couplings. In our work, we achieved this by 

summing ECF scores of each node’s adjacent edges to node correlation factors (NCF) 

NCF(𝑖) = ∑ ∑ ECF(𝑖, 𝑗, 𝑘)

𝑗 ∈ 𝑁𝑘 ∈ 𝐾

(2.14) 

Where 𝐾 represents the set of interaction types in the network. 

ECF and NCF scores provide a model of conformational correlation between residues 

within a single structure ensemble, as obtained e.g., from a MD simulation. It is a well 

appreciated limitation of conventional MD simulations that they tend to cover only a 

limited set of possible system states. For example, simulating the dynamic binding and 

unbinding of ligand molecules requires prohibitively large computational effort using 

conventional MD. To address this problem, we modified the definition of the ECF (eq 

2.13) so it could account for the differences observed from two simulations 

representing different states of the protein. First, one of the simulations was assigned 

as the reference system. The mutual information term of eq. 2.13 was then replaced 

by 

I(𝑿; 𝒀) =  ∑ ∑ |𝑝(𝑥, 𝑦) ∙ log2 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦 ∈ ∪(𝒀,�̂�)𝑥 ∈ ∪(𝑿,�̂�)

− �̂�(𝑥, 𝑦) ∙ log2 (
�̂�(𝑥, 𝑦)

�̂�(𝑥)�̂�(𝑦)
)| (2.15) 

where 𝑿, 𝒀, 𝑝 correspond to a timeline in the analyzed network (e.g., a protein bound 

to an allosteric ligand), and �̂�, �̂�, �̂� correspond to the equivalent timeline of the 

reference simulation (e.g., the same protein without a ligand). Eq. 2.15 calculates the 
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composite score by subtracting the pointwise mutual information of co-occurring 

timeline states. In contrast to the base ECF score, which is based on a single 

simulation, the updated formula tracks the differences between the two structural 

ensembles. In structural terms, this could occur for example when the binding of an 

allosteric ligand causes rigidification of a protein region or otherwise changes the 

dynamics of involved residues. To distinguish scores calculated with the modified 

formula eq. 2.15, we define them as “difference edge correlation factor” (DECF) and 

“difference node correlation factor” (DNCF) for the NCF analogue, respectively. 

Due to the limited time scale of MD simulations, differences in residue dynamics 

induced by ligands are strongest close to binding sites, but may not be detectable at 

longer distances. As an alternative to performing more and longer simulations, we 

developed a variant combining the DNCF method with ideas from shortest path 

centralities (see section 1.3). The centrality model presumes that information travels 

along the shortest, i.e., the most efficient path along the network. This idea can be 

implemented by performing a random walk through the network. In addition, the DNCF 

scores give an estimate for the strength of conformational coupling between 

neighboring residues. Combining these approaches yields a random walk directed by 

DNCF weighted probabilities 

𝑝(𝑖) =  
𝐷𝑁𝐶𝐹(𝑖)

∑ 𝐷𝑁𝐶𝐹(𝑛)𝑛 ∈ 𝑁
 (2.16) 

where 𝑁 is the set of neighbors of the currently visited node, and 𝑝 is the probability 

for candidate node 𝑖 ∊ 𝑁 to be picked for the next step of the random walk. To sample 

different paths, the random walk is repeated several thousand times with different 

random seeds and results accumulated. The final score of the DNCF-RW (“DNCF 

random walk”) is given by the number of times each node was visited during the walks. 

This analysis can be performed untargeted, that is for a specified number of steps after 

choosing a starting node, simulating the diffusion of a signal through the network. In 

the targeted variant, the random walk is stopped and counted only when it arrives at a 

predefined target node. This allows to scan two network regions for connecting 

pathways of conformationally coupled residues. To improve the efficiency of 
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calculations and limit the influence of random walks getting lost in distant parts in the 

network, a probability to restart the random walks at each step can be set. This 

probability should be chosen to allow a substantial fraction for paths longer than the 

shortest path between source and target nodes. While conceptually similar to 

centralities, the DNCF-RW method focuses on the transmission of signals between 

individual nodes, instead of an average signal between all possible node pairs. This 

feature allows to investigate specific processes, like the spreading of a signal from a 

ligand binding pocket or the communication between two selected protein regions.  

It must be noted that in the context of these models, the notions of signaling, 

information transfer or communication pathway does not imply a literal transfer of bits 

or necessarily require a “switch-like” sequence of orchestrated conformational 

changes. Instead, the DNCF and DNCF-RW scores respond to adjacent residues 

whose conformations affect each other as observed from correlation in their interaction 

states, without suggesting a specific mechanism. These could manifest in various 

ways, from switch type conformational changes to complex modulation of protein 

flexibility, which can be visualized like “breathing” motions of the protein (216). 

Consequently, our models do not presume pathways as a minimal chain of residues, 

but rather a diffuse and plastic cluster of interconnected residues connecting key 

protein regions. This mirrors views that have been expressed when discussing 

allosteric mechanisms, which reject the simplistic model of allostery as defined 

sequences of conformational changes along minimalistic pathways, suggesting 

instead an ensemble model of multiple contributing allosteric pathways (15, 17, 33) . 

2.4. Implementation of the SenseNet framework  
for analysis of protein structure networks 

We released the network analysis implementations used in this thesis as the SenseNet 

software (194), a plugin for the network analysis and visualization tool Cytoscape 3 

(217). Both SenseNet and Cytoscape 3 are open-source and freely available from 

www.bioinformatics.wzw.tum.de and www.cytoscape.org. The plugin is written in Java 

8 and released under the GNU Lesser General Public License (LGPL), with source 

http://www.bioinformatics.wzw.tum.de/
http://www.cytoscape.org/
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code distributed in the JAR archive files used to run the program, and at 

https://gitlab.com/sensenet-md/sensenet. 

SenseNet constructs networks from lists of atom-atom interaction timelines. These 

timelines contain the number or strength of different interactions, like carbon contacts, 

hydrogen bonds, or salt bridges, for each frame of the trajectory. These data can be 

readily calculated by many tools designed for analyses of MD trajectories, such as 

CPPTRAJ (218). Once interaction timeline data has been imported, nodes of atoms 

and residues are automatically inferred from atoms participating in interactions. To 

provide an alternative to reading CPPTRAJ output directly, we defined the custom AIF 

file format as a standardized data format for SenseNet input. Each line in the UTF-8 

encoded AIF file corresponds to a data record with multiple comma-separated fields. 

The first field defines the type of record, determining how the rest of the line is parsed. 

A list of records and their associated data fields (for the relevant TIMELINE and 

DIFFERENCE_TIMELINE records) is given in Table 1. 

  

https://gitlab.com/sensenet-md/sensenet
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Table 1. Structure of the AIF file format for creating protein structure networks 

using SenseNet. 

Field index Field name Type 

0 record typea String 

1 Source atom name String 

2 Target atom name String 

3 Source residue index Integer 

4 Target residue index Integer 

5 Source residue name String 

6 Source residue insert String 

7 Target residue insert String 

8 Source alternative location String 

9 Target alternative location String 

10 Source chain String 

11 Target chain String 
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12 Bridge atom names String listb 

13 Timeline Float listb 

a Field structure differs between records. The table represents the TIMELINE and 

DIFFERENCE_TIMELINE record types. 

b List elements delimited by whitespace 

AIF files can be generated using our command line tool AIFgen, which is distributed 

alongside SenseNet. AIFgen calculates contacts, hydrogen bonds or salt bridges from 

PDB files or read analysis outputs from the MD analysis software CPPTRAJ (218). In 

addition, SenseNet includes AIFgen to import from any valid data source on the fly.  
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Figure 7. Example of parallel network and structure visualization using 

SenseNet. (a) Parallel representation of networks, data tables and molecular 

structures. (b) Example session showing the SenseNet GUI in Cytoscape. Figure 

from ref. (194) 
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After reading a dataset of interaction timelines, SenseNet creates a new network and 

fills it with nodes and edges representing the atoms and atom-atom interactions from 

the dataset. Next, nodes are created for each unique residue position, each 

corresponding to a group of atoms (“group node”). When a residue node is added to 

the network, the corresponding atom nodes of the group are removed. At any point of 

an analysis session, the user can contract atom nodes into a single residue node, or 

expand a residue node into its individual atom nodes. This allows to dynamically 

change the network topology between residue and atom levels. For example, a 

network can be analyzed in which the protein is represented by residue nodes, but with 

nodes for each individual ligand atom. SenseNet automatically keeps track of 

interactions between group nodes, creating combined timelines as necessary (eq. 2.9) 

to represent interactions between atoms and residues (Figure 7). 

In addition to standard analysis methods such as network centralities, SenseNet 

provides implementations of the ECF, NCF, DECF and DNCF methods as outlined in 

section 2.3. ECF scores are calculated by using SenseNet’s “Correlation” function set 

to the “Neighbour” and “Mutual Information” modes. The “Frame Weight” option is set 

to “Sum” for these calculations, which causes atom-atom interactions to be combined 

into residue-level interactions by summing its elements. In the next step, the NCF score 

is obtained by using the “Degree” analysis function, which allows calculation of 

weighted node degree scores (110). In the analysis’ settings, the “Degree weight” is 

set to “Edge weight sum” to calculate a weighted score according to values from an 

edge table column, and the “sen/correlation” column (containing the previously 

calculated ECF scores) is selected for the “Weight column” option. The NCF scores 

are automatically written into the “sen/degree” node table column. Similarly, DECF 

scores were calculated with the same settings as ECF, but using the “Mutual 

Information Difference” mode and selecting a previously imported reference network 

as required by eq. 2.15. The “Edge mapping mode”, controlling how equivalent edges 

are determined between the active and the reference networks, was set to “Match 

Location”; in this setting, edges are considered equivalent if all residue attributes 

(index, insert, alternative location, as per the RCSB PDB standard) and all interaction 

attributes (interaction type, bridge atoms) match, with the only exception of residue 
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names, which may differ. This option allows to calculate DECF scores of mutated 

residues. Once DECF scores are calculated, the DNCF calculation proceeds with the 

“Degree” function the same as for NCF. The ”Centrality” function of SenseNet is used 

to calculate of BC and CPLC centralities, which implement Dijkstra’s algorithm (219) 

using pseudocode of Brandes (220) and modifications of del Sol et al. (56). A full 

description of all algorithms implemented in SenseNet is provided in the manual (see 

Appendix).  
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3. RESULTS 
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Summary 

Hsp70 chaperones are marked by their promiscuous binding of many protein 

substrates. This chaperone family of chaperones is ubiquitous in a wide range of cell 

types and organisms, fulfilling critical roles in protein folding and preventing 

aggregation. The pattern of preferentially bound protein regions, a generally 

hydrophobic peptide stretch between five to seven amino acids in length, differs 

between Hsp70 variants. Wanting to understand the evolutionary differences between 

these variants, we developed BiPPred to predict peptide binders for the Hsp70 

chaperone BiP from their amino acid sequence, based on a multi-scale pipeline 

integrating experimental data, molecular docking and MMPBSA calculations. The 

experimental dataset was assembled from both literature and peptide array 

fluorescence anisotropy assays. We encountered difficulties detecting strongly binding 

7mers using peptide arrays, which measured 15meric peptides, and all attempts at 

mapping down to smaller subsequences showed high signal variance. However, as 

we found several 7meric subsequences which never elicited a strong fluorescence 

signal, we decided to use this data for the nonbinding class of the dataset, while the 

binder class was composed of literature data. A structural model of BiP was created 

using homology modelling with a AAAAAAA peptide placed in the binding pocket as a 

baseline ligand. Then, each position of the peptide was systematically mutated to the 

other 19 canonical amino acids, using a combination of IRECS and energy 

minimization to predict the lowest energy conformation of the mutant. The interaction 

energy of this conformation was extracted and transformed into Pepscores, yielding a 

7x20 matrix of interaction energy scores for all position and amino acid combinations. 

This structure-based position specific scoring matrix (SB-PSSM) formed the basis of 

our predictions. Although the matrix alone was not very predictive of peptide binding, 

additional statistical learning of the 7 matrix column weights using logistic regression, 

based on the collected experimental and literature data, yielded a model with decent 

capability to separate peptide binders and nonbinders. We further performed molecular 

dynamics simulations of the 7x20 conformations used to create the matrix, analysing 

the stability of modelled conformations. We found several instances for which the 

docking generated conformation proved unstable or otherwise inappropriate, for 
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example when the residue could not be placed in the binding pocket. After adjusting 

the SB-PSSM to correctly reflect these cases, predictive performance of the matrix 

improved even further to a rocAUC (receiver operator characteristic area under the 

curve) of 0.85 after training. To validate our model, we followed up on a selection of 

peptides using DynaDock, MMPBSA simulations and experiments to calculate binding 

affinities. We found that using this pipeline, binding peptides could not only be correctly 

identified, but we were also able to predict the correct orientation of the bound peptide. 

Our results showed that, under the constraints of limited experimental data, sequence 

prediction models could be generated for specific Hsp70 variants using an integrated 

approach of statistical learning and structural modelling. 

  



  RESULTS 

 

60 
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different methyl- and carboxylcytosine 
modification patterns at CpG dyads 

Markus Schneider1, Carina Trummer1, Andreas Stengl, Peng Zhang, Aleksandra 

Szwagierczak, M. Cristina Cardoso, Heinrich Leonhardt, Christina Bauer, Iris Antes 

1 contributed equally 

This study was first published online on February 21, 2020 in the peer reviewed journal 

PLOS ONE. 

Citation 

Schneider, M., Trummer, C., Stengl, A., Zhang, P., Szwagierczak, A., Cardoso, M. C., 

Leonhardt, H., Bauer, C., & Antes, I. (2020). Systematic analysis of the binding 

behaviour of UHRF1 towards different methyl- and carboxylcytosine modification 

patterns at CpG dyads. PloS one, 15(2), e0229144. 

https://doi.org/10.1371/journal.pone.0229144 

Contributions of the author 

Conceptualization, Data curation, Formal analysis, Investigation (computational), 

Method development (computational), Software, Validation, Visualization, Manuscript 

preparation and editing 

Summary 

In this study, we investigated the binding of UHRF1, an essential protein for 

maintaining DNA methylation pattern, to DNA carrying different epigenetic 

modifications. Using electrophoretic mobility shift assays (EMSAs) and Microscale 

Thermophoresis (MST), we measured binding affinities of UHRF1 to CpG sites 

containing combinations of 5-methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-
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formylcytosine (fC) or 5-carboxylcytosine (caC). UHRF1 binds to DNA by flipping one 

cytosine (which carries one epigenetic modification, either mC, hmC, fC, or caC) out 

of its helix and enveloping it in its nucleotide binding pocket. In parallel, UHRF1 places 

the NKR finger into the major groove of the DNA, where it is in contact with a second 

potentially modified cytosine; if only the flipped base carries a modification, the 

configuration is termed hemi-modified, whereas if both carry one, it is called fully 

modified. In addition to its well-known role as a selective binder of hemi-methylated 

CpG sites, these experiments revealed that UHRF1 strongly bound to fully 

carboxylated or hybrid methylated-carboxylated CpG sites. We performed a series of 

Molecular Dynamics simulations to analyse the binding modes of the UHRF1-DNA 

complex in different modification contexts. Modification configurations were 

distinguished based on the modifications present on the flipped-out DNA strand (xC) 

or on the distal strand contacting the NKR finger (xC’); for example, caC-caC’ indicated 

a fully carboxylated configuration. Conformational changes close to the two sites 

harboring DNA modifications were tracked by extracting the pattern of polar 

interactions, i.e., hydrogen bonds and salt bridges, from the MD trajectories. These 

patterns were visualized as protein structure networks, using in-house software 

package that would later become SenseNet. The networks showed that the presence 

of carboxylcytosine instead of methylcytosine lead to substantial conformational 

changes in two protein regions involved in DNA binding, namely the nucleotide binding 

pocket and the NKR finger. While the hemi-modified mC-C’ configuration was overall 

stable in the nucleotide binding pocket, the caC-C’ configuration showed strong salt 

bridges between the carboxylated site and and the R489 residue. This caused the caC 

base to rotate partially out of the binding pocket, as indicated by the weakening of its 

surrounding hydrogen bonding pattern. On the other hand, on the distal DNA strand, 

our networks indicated that mC’ configurations pushed the NKR finger out of the major 

groove by steric repulsion, whereas caC’ was able to bind to the NKR finger via salt 

bridges. Notably, whereas the hemi-carboxylated caC’-C’ and fully methylated mC-mC’ 

configurations were instable, the combined caC-caC’ and mC-caC’ modification 

configurations showed a strong and stable binding pattern. We investigated this 

apparent conformational coupling in detail, tracing its different manifestations within 

interaction networks, protein-DNA distances, DNA flexibility, and DNA groove 
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dynamics. Our computational analyses provided a rationale for our experimental 

observations, showing how certain modification configurations could stabilize or 

destabilize UHRF1-DNA binding by conformational changes between coupled regions. 

This work contributed both as an integrated experimental-computational investigation 

of unexplored aspects of UHRF1, and as a pioneering application of the future 

SenseNet analysis framework. 

  



MARKUS SCHNEIDER 

 

63 

 

3.3. Publication 3: SenseNet, a tool for analysis of 
protein structure networks obtained from 
molecular dynamics simulations 

Markus Schneider and Iris Antes 

This study was first published online on March 17, 2022 in the peer reviewed journal 

PLOS ONE. 

Citation 

Schneider, M., & Antes, I. (2022). SenseNet, a tool for analysis of protein structure 

networks obtained from molecular dynamics simulations. PloS one, 17(3), e0265194. 

https://doi.org/10.1371/journal.pone.0265194 

Contributions of the author 

Conceptualization, Data curation, Formal analysis, Investigation, Method 

development, Software, Validation, Visualization, Manuscript preparation and editing 

Follow-up and related publications 

Dultz, G., Shimakami, T., Schneider, M., Murai, K., Yamane, D., Marion, A., Zeitler, T. 

M., Stross, C., Grimm, C., Richter, R. M., Bäumer, K., Yi, M., Biondi, R. M., Zeuzem, 

S., Tampé, R., Antes, I., Lange, C. M., & Welsch, C. (2020). Extended interaction 

networks with HCV protease NS3-4A substrates explain the lack of adaptive capability 

against protease inhibitors. The Journal of biological chemistry, 295(40), 13862–

13874. https://doi.org/10.1074/jbc.RA120.013898 

Zheng, C., Schneider, M., Marion, A., & Antes, I. (2022). The Q41R mutation in the 

HCV-protease enhances the reactivity towards MAVS by suppressing non-reactive 

pathways. Physical chemistry chemical physics : PCCP, 24(4), 2126–2138. 

https://doi.org/10.1039/d1cp05002h 

 

https://doi.org/10.1074/jbc.RA120.013898


  RESULTS 

 

64 

 

Summary 

Building on our previous work utilizing protein structure networks to trace the dynamics 

of conformationally coupled protein regions, we aimed for a deeper exploration of the 

potential within this approach. In this study, we presented the SenseNet analysis 

framework and software as a general-purpose tool for studying protein structure 

networks obtained from structure ensembles, for example a molecular dynamics 

trajectory. Whereas earlier iterations of this model had been focusing on establishing 

the fundamental network model, network visualization and basic statistics, we now 

turned our focus towards finding quantitative measures of computational coupling, with 

potential applications connected to biochemical features like protein allostery. 

SenseNet takes an abstract view of a protein, describing its conformations in terms of 

interaction states between atoms. These interaction states are encoded in a binary 

timeline, where each frame denotes whether two atoms interact in this particular time 

frame of the structure ensemble. An interaction is defined according to geometric 

criteria, i.e., distances or angles, to model hydrophobic interactions or hydrogen bonds. 

Together, these interactions make up the protein structure network, wherein nodes 

correspond to atoms or residues and edges represent interactions, each associated 

with its timeline of states. Based on the network of interaction timelines, we developed 

two models of conformational coupling, termed the node correlation factor (NCF) and 

difference node correlation factor (DNCF). To calculate the NCF of a residue, all 

interactions of that residue are collected and their mutual information with respect to 

its surrounding interactions in the network calculated; the NCF is then obtained as the 

sum of all these contributions. Thus, the NCF is a measure of the amount of information 

revealed by knowing the conformation of a residue, indicating conformational coupling 

in the local environment. The DNCF score is a variant of the NCF, designed to evaluate 

how conformational coupling changes between two simulations of different system 

configurations, for example with and without a bound ligand. To validate our approach, 

we predicted residues with known allosteric roles in the PDZ2 domain of hPTP1e, a 

well-known reference system for testing this class of prediction models. Compared with 

predictions published previously for this system, our model was more accurate than 

network approaches based on individual structures, and performed on par with the top 
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performing models using NMR data. We further compared our models to network 

centrality methods, the most common approach to predict conformational coupling in 

networks, showing that our approach was both more accurate and reliable over a wide 

range of network parameters. Our results complement available experimental data and 

consolidates the efforts of previously published predictions by establishing a 

consensus model. Together, these results suggest two distinct residue clusters in 

PDZ2 with potential allosteric roles. We present this model concurrently with the 

release of SenseNet as a plugin for the free network analysis software Cytoscape, 

demonstrating its functions, capabilities, and potential as a comprehensive and flexible 

tool for protein structure network analysis and visualization. 
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Summary 

The ubiquity of Hsp70 chaperones, prevalent in many pro- and eukaryotic organisms, 

highlights their essential role in protein folding and homeostasis. While the general 

structure of Hsp70 is well conserved, i.e., its domain organization including a 

nucleotide binding (NBD), substrate binding (SBDβ) and lid domain (SBDα), protein 

homologues can show substantial differences in terms of sequence identity and 

allosteric regulation. One of the most important mechanisms of Hsp70 function is the 

allosteric activation of ATP hydrolysis after binding of a protein substrate, facilitated by 

a network of conformationally coupled residues. The human Hsp70 homologue BiP 

has been considered a potential target for various medical applications, including in 

the fields of cancer research, neurodegenerative diseases, and viral infection. 

However, most knowledge of allosteric control in Hsp70 is based on the E. coli variant 
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DnaK, a protein with lower than 50 % sequence homolgy to BiP. Using the SenseNet 

analysis framework we established before, we predicted residues with potential roles 

in allosteric control in DnaK and BiP, specifically with focus on the coupling between 

protein substrate binding and ATP hydrolysis. Based on crystal structures of DnaK and 

BiP, we created structural models representing different phases of the Hsp70 

conformational cycle. The modelled phases were Hsp70-ATP with an empty substrate 

binding pocket, Hsp70-ATP with a bound peptide substrate, and Hsp70-ATP-to-ADP 

approximating the conformation directly after hydrolysis. We performed Molecular 

Dynamics simulations of these configurations for DnaK and BiP, extracted protein 

structure networks from atom interactions, and used the DNCF method to analyze the 

effect of ligand binding and ATP hydrolysis on the conformational coupling between 

residues. Comparing the DNCF scores with a list of residues known to fulfill allosteric 

roles in DnaK; we observed strong agreement between our predictions and 

experiments, with several new allosteric candidates predicted by the model. Mapping 

predictions to structures revealed that these candidates were loosely associated with 

three clusters, collocating with the NBD-SBD domain interface and the binding sites of 

the DnaJ/ERdJ3 and GrpE cochaperones. In addition to structural clusters, predicted 

candidates also show a tendency to collocate in the protein sequence, indicating 

organization of allosteric roles into sequential and structural modules. Comparing 

results between simulated Hsp70 variants, although most predictions overlapped 

between DnaK and BiP, we observed unique candidates in either protein variant, which 

were in 40 % of cases directly related to differences in the amino acid sequence. 

Structural mapping of these differences indicated underlying mechanisms for 

previously known trends in BiP, particularly rigidification of the NBD-SBD interface, 

increased SBD flexibility, and differing modes of action between the grpE/BAP 

cochaperone class of nucleotide exchange factors. Finally, by combining the DNCF 

scores with a search for shortest network paths, we predicted a BiP specific pathway 

of conformationally coupled residues, with a potential role in regulating allosteric 

effects between substrate binding and nucleotide hydrolysis. Our study shows 

substantial differences in allosteric regulation between Hsp70 homologues, 

highlighting potential to engineer therapeutics tailored towards specific variants. 
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4. DISCUSSION 

We conducted several studies investigating conformational coupling in proteins, 

focusing on the consequences of ligand binding, from short range adaptation in binding 

pockets to long range allosteric effects. All these processes occur and act in concert 

in Hsp70 chaperones, which were therefore of major interest for our work. Deepening 

insights into the intricate mechanisms of Hsp70 could aid discoveries in wider areas 

such as allosteric drug design, fine tuning protein activity, and evolution of protein 

function to specific organisms or organelles. 

4.1. BiPPred: Combined sequence- and 
structure-based prediction of peptide binding 
to the Hsp70 chaperone BiP 

Our first study was aimed towards an understanding of evolutionary differences in 

substrate recognition and development of a prediction model for high-throughput 

detection of BiP-binding protein regions (192). We chose a prediction model based on 

logistic regression, using both sequence and structure derived features to compensate 

for a limited number of data points. We attempted to train on experimental data from 

fluorescence anisotropy peptide arrays, but encountered difficulties with respect to the 

reproducibility of peptide array intensities and verification fluorescence anisotropy 

spectroscopy experiments in solution. The suspected reasons were artifacts induced 

by peptide mobilization on the array and the possibility of interfering formation of short 

helical secondary structures on the 15-meric peptides, which may reduce the binding 

propensity of these regions (221). The technical limitation of peptide arrays to longer 

peptides than the substrate recognition pattern, estimated between five to seven amino 

acids, has been an ongoing challenge in creating accurate prediction models (188, 

191, 208, 212, 222). Despite the low reproducibility of peptide sequences with strong 

fluorescence, indicating strong binding to BiP, we determined that the data was still 

useful to provide negative data, i.e., peptide regions which never evoked a strong 
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binding signal in the peptide array. We composed our training data set from literature 

data of known BiP binding sequences and added non-binding sequences from peptide 

array data. Our observations have implications for the use of peptide array data, 

particularly in the context of statistical learning, as those are commonly applied for such 

purposes (208). It is not clear whether the problems were within our specific setup or 

reflect general issues of using peptide arrays in this specific manner; however, we 

recommend that for applications sufficiently similar to ours, such data should be 

validated using an orthogonal method. 

The difficulties encountered with respect to the experimental dataset motivated us to 

attempt to minimize the impact of statistical learning on the prediction model. It had 

been demonstrated that binder/non-binder sequence motifs extracted from 

experimental binding assays could be effectively complemented by structural models, 

which could make up for biases or gaps in experimental datasets (208, 223, 224). 

Contrasting to these previous approaches, our prediction model did not use sequence 

motifs as an input feature for training. Instead, all training features were based 

exclusively on the structure based position-specific scoring matrix (SB-PSSM) 

obtained from force field derived interaction scores within our structural models. 

Experimental data was used exclusively for determining the relative weights of each 

amino acid position in the matrix, i.e., one weight for each matrix column for a total of 

five weights. The process still required manual adjustments, as we observed that the 

interaction scores in the SB-PSSM were not able to effectively penalize sterically 

implausible protein-peptide complex models, for example when a peptide amino acid 

could not be placed inside its respecting binding subpocket due to its shape. In such 

cases, the amino acid was placed close to the protein surface, but in a superficial 

position outside the binding pocket that did not confer specific binding. Using a series 

of molecular dynamics simulations, we investigated problematic amino acid – 

subpocket combinations and modified selected SB-PSSM positions to reflect their 

apparent binding stability in the trajectories. Using this strategy, we were able to derive 

a SB-PSSM that showed, without training, the same prediction performance as the 

unmodified SB-PSSM after training. Furthermore, additional training could not further 

improve the prediction accuracy of this new SB-PSSM. 
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We successfully derived a structure-based model for high throughput prediction of BiP 

binding sequences in proteins. By combining statistical learning on experimental 

binding data with a workflow based on molecular docking and molecular dynamics, we 

obtained a model that could obtain accurate results despite having too few datapoints 

for large scale machine learning approaches, which have been successful for 

predicting MHC binding peptides (223). Our results highlighted that despite the overall 

conservation of Hsp70 structure, the detailed structural differences between the well-

studied DnaK and specific variants like BiP had functional implications, like different 

substrate recognition preferences. General representations of Hsp70 cycles and 

function are often based primarily on the few most well studied model proteins like 

DnaK. While this is currently a necessary simplification, it should be noted that 

differential behavior of specific protein variants is not negligible in the context of specific 

application like drug design, for which BiP has been identified as a promising target 

(153, 159, 161-163). Consequently, we became interested in studying how differences 

in protein sequence and structure could affect other functional aspects of Hsp70 

proteins, like the network of allosteric control that had been proposed to regulate and 

advance the chaperone’s conformational cycle (155). 

Following our publication of BiPPred, recent studies have reported advanced 

strategies of integrating structural data and statistical learning based on peptide arrays 

(225-227). ChaperISM (227) closely followed the earlier LIMBO approach (208) using 

DnaK peptide arrays and FoldX interaction energies, but diverged by building a 

position independent scoring matrix (PISM) which showed a modest increase in 

accuracy compared to previous models targeting DnaK. Interestingly, they performed 

also slightly more accurately than BiPPred on the BiPPred dataset. This indicates 

potential in PISM models for building more transferable models covering multiple 

Hsp70 variants; however, it should be noted that large parts of the BiPPred dataset 

were assembled from DnaK data, which may partly explain the apparent transferability 

of ChaperISM. Overall, PSSMs like BiPPred or LIMBO were shown to perform strongly, 

but in each case were strictly limited to the proteins they were trained on. A recent 

DnaK-specific model called Paladin (226) begins with a similar premise to BiPPred. 

The authors calculate a PSSM from interaction energies based on short MD 
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simulations, but elect to train a custom linear model for weighting these energy terms 

instead of general-purpose interaction scores such as the PepScore used by BiPPred. 

Although Paladin did not report higher overall model accuracy than previous models, 

it is the first DnaK model to predict forward and reverse binding orientations, a feature 

that had so far been only explicitly considered by BiPPred. In total, these studies have 

drawn similar conclusions with respect to the binding motifs of Hsp70 chaperones, and 

by necessity use simple linear models in combination with structural analysis to make 

up for the lack of high-quality binding data. Notably, the accuracy of models has not 

been shown to improve significantly in recent iterations, indicating that a performance 

ceiling may have been reached with current approaches. Lacking the abundance of 

binding data that has been crucial to the analogous problem of binder predicting in 

MHC (223), increasing prediction accuracy in Hsp70 systems may necessitate to look 

for alternative solutions. 

4.2. Systematic analysis of the binding behaviour 
of UHRF1 towards different methyl- and 
carboxylcytosine modification patterns at 
CpG dyads 

In this study, we investigated differences in the binding of UHRF1 to DNA carrying 

different epigenetic modifications, namely methyl- and carboxylcytosine. Our network-

based analysis of interaction patterns in the nucleotide binding pocket UHRF1, 

combined with the propagation of conformational changes from and towards the NKR 

finger, would later grow into the SenseNet analysis framework. Our work expanded the 

picture of UHRF1, initially regarded as an exclusive reader of hemi-methylated CpG 

sites, towards a more multi-faceted protein able to recognize different combinations of 

modifications, specifically fully carboxylated and hybrid methylated-carboxylated DNA. 

We further showed that binding constants of UHRF1-DNA complexes as reported in 

literature and by us depend on the length of the respective DNA constructs used, 

presumably because other groups used constructs with a higher density of methylated 

sites (134, 147, 148, 228-230). Our observation that fully carboxylated DNA was a 
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preferred binder to UHRF1 compared to hemi-methylated DNA was surprising due to 

the well-established steric clashes, found in crystal structures and molecular dynamics 

simulations, that prevented binding of fully methylated DNA (134, 135, 146, 147, 231). 

This motivated an in-depth structural study as an additional line of evidence and to find 

an explanation for this divergent behavior. 

Our molecular dynamics simulations of UHRF1, bound to different combinations of 

methylated and carboxylated CpG sites, revealed a substantial effect of these 

modifications on interactions within the UHRF1 binding pocket. Due to the high number 

of interactions within the binding pocket, we chose to represent the interaction pattern 

as a protein structure network, with the atoms of the bound DNA base as a set of nodes 

which interacted with its surrounding protein residue nodes via hydrogen bonds and 

salt bridges. While the methyl group acted like a hydrophobic anchor to stabilize the 

flipped-out modified base in its canonical conformation, the carboxyl group engaged in 

hydrogen bonds and salt bridges in a different part of the binding pocket, causing the 

whole base to shift into an alternative binding conformation. Interestingly, this 

alternative conformation was observed to be instable if it occurred in a hemi-

carboxylated context, but stable if the CpG site on the opposite DNA strand was 

carboxylated as well. The reason for this behavior became clear when we observed 

the protein structure network of the NKR finger, which was in contact with the CpG site 

on the opposite DNA strand. If the opposite DNA strand featured a methylated CpG 

site, the NKR finger was pushed away by steric repulsion. However, a carboxylated 

CpG site was able to establish salt bridges with the NKR finger, which consequently 

shifted, but was stabilized by the attractive electrostatic forces. The observation that 

the modification on the opposite DNA strand was able to influence the conformation of 

the nucleotide binding pocket indicated the presence of conformational coupling, 

mediated via the NKR finger. Using simulations of different combinations of DNA 

modifications, both in the binding pocket and at the opposite DNA strand, we were thus 

able to explain the molecular mechanism for the binding preference of UHRF1 to fully 

carboxylated CpG sites. 
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The analysis strategy of UHRF1 binding to DNA modifications using protein structure 

networks proved to be insightful and efficient in describing the conformational shifts 

between the simulated systems. Focusing on the interaction pattern of hydrogen bonds 

and salt bridges to visualize conformations allowed for intuitive reasoning about the 

differential conformational effects of additional methylated and carboxylated groups. 

By calculating the number of average interactions from a molecular dynamics 

trajectory, we were better able to assess the stability of interactions in the structure 

ensemble, compared to static structures. However, in this form our analysis approach 

was difficult to transfer generally to other protein systems. The differences in charge 

and polarity between methylated and carboxylated CpG sites allowed to limit analyses 

to a relatively low number of hydrogen bonds and salt bridges and neglect hydrophobic 

interactions. While hydrogen bonds and salt bridges are readily evaluated, due to their 

localization to individual polar atoms and strong electrostatic forces, hydrophobic 

interactions are more difficult to capture accurately. In addition, the larger number of 

apolar atoms and thus potential interaction partners leads to a significant increase in 

network complexity, making direct visual analyses of networks unfeasible. Finally, 

though in this work we were able to trace conformational coupling using these 

networks, it had to be inferred based on comparing conformations which were readily 

apparent from inspecting the trajectory. The same approach, however, was unlikely to 

succeed in cases with more subtle coupling. Therefore, in order to apply the same 

ideas to different systems, it was clear that the network model required an automated 

analysis and scoring approach to determine conformationally coupled residues. 

The observed binding preference of UHRF1 for fully carboxylated CpG was 

unexpected, though well reproduced using different binding assays and was suggested 

as a possibility in earlier DNA pull-down experiments (232). Both our experiments and 

simulations detected this preference, although strictly in an in vitro context. The low 

abundance of detected carboxylcytosine in most cell types suggests that it may be 

unlikely for UHRF1 to encounter it, much less on both DNA strands at once (233). 

However, elevated levels of carboxylated DNA were observed in neuronal and tumor 

cells, indicating that its regulation is dynamic and dependent on the cellular context 

(144, 145). Furthermore, the dioxygenase TET3, facilitating demethylation of 
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methylcytosine via a carboxylcytosine intermediate, has also been shown to recognize 

fully carboxylated CpG sites (234-236). The biological role of carboxylcytosine has not 

yet been explored comprehensively, though mounting evidence suggests that it may 

play a role in genome maintenance and and regulation (141-143, 237-239). In this 

context, an expanded picture of UHRF1 as a more universal reader of epigenetic 

marker combinations appears attractive, especially considering its importance for 

activating DNA damage repair processes (240, 241). 

4.3. SenseNet, a tool for analysis of protein 
structure networks obtained from molecular 
dynamics simulations 

The results of our previous work indicated a relationship between conformationally 

coupled protein regions and our analyses based on protein structure networks. This 

motivated us to improve on our approach to expand its applicability, most notably by 

including hydrophobic interactions in our networks and evaluating different scoring 

functions to quantify conformational coupling between residues. We chose a simple 

model to approximate hydrophobic interactions by counting the contacts between 

nonpolar, i.e. carbon atoms within a short range, generally between 4 – 6 Å. This range 

aligns with common choices for protein structure networks (26, 88, 242-244) and 

corresponds to the effective upper limit of Van-der-Waals interactions. The attraction 

of this model is derived from its analogy to the definition of hydrogen bonds or salt 

bridges, and its accessibility for calculation and visualization. For scoring, we first 

evaluated the widely used node centrality approach, specifically betweenness 

centrality (eq. 1.1) and central path length centrality (eq. 1.2). These methods are often 

reported to yield good results for finding essential residues, such as catalytic sites or 

residues with presumed allosteric roles (56-58, 87, 103). We conducted molecular 

dynamics simulations of the PDZ2 domain, a common model system for evaluating 

algorithms designed for prediction of residues associated with allostery (133). From 

the MD trajectories, as well as crystallographic and NMR structures, we constructed 

protein structure networks and performed several analyses to predict residues with 
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known allosteric roles. However, we as well as others found that centrality-based 

analyses of protein structure networks could not reliably predict allosteric residues in 

the PDZ2 domain (242). This was verified using a systematic evaluation of parameters 

used for network construction, including the cutoff for nonpolar interactions, the 

evaluation of all interactions versus only sidechain interactions, and different (crystal 

or NMR) structures used for network analysis. Most critically, centrality-based methods 

exhibited a large variance in model performance dependent on the network 

parameters, with some combinations dropping to random model performance. We did 

not present centrality calculations based on networks generated from molecular 

dynamics trajectories, as in our hands their predictive performance was generally 

inferior to single structure equivalents (data not shown). We attributed this behavior 

primarily to the addition of many edges corresponding to spurious interactions, which 

substantially altered the shortest paths of the network despite their low overall 

occurrence (see chapter 1.3). Similarly, simply removing edges below a certain cutoff 

of overall occurrence in the simulation, led to highly divergent results depending on the 

lower occurrence limit. In total, centrality methods for analysis of protein structure 

networks failed to produce reliable predictions of conformational coupling, regardless 

of whether they were based on individual structures or molecular dynamics trajectories. 

Moreover, it is doubtful whether the information of a structure ensemble can be 

reasonably included into the framework of shortest paths, due to the problem of edges 

introduced through spurious interactions. 

Interaction timelines represent a natural extension for protein structure networks from 

individual structures to structure ensembles. Each frame of the timeline corresponds 

to the protein structure network created from the matching snapshot of the trajectory. 

This model translates atom coordinates into intuitively tractable conformation states 

(e.g., the number of contacts between residues), while preserving more information 

about the underlying conformational changes than creating a single network from 

conventional correlation coefficients. We then proceeded to build on that model by 

evaluating whether the Mutual Information between interaction timelines , 

corresponding to edges in the network, was predictive of conformational coupling. We 

evaluated two MI-based scores in our work: The first, termed Node Correlation Factor 
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(NCF), represents the aggregated mutual information the interactions of a network 

node convey about their closely neighboring interactions. Atom or residue nodes with 

high NCF scores show high interdependence of their conformation with their 

environment. One easily visualized example would be a “switch”-type conformational 

change of a residue with a bulky sidechain, modulating the conformations of 

surrounding residues depending on its position. However, in contrast to models based 

on Pearson’s coefficient, there is no assumed geometry or linearity in the model, as 

the generality of MI can accurately reflect arbitrarily complex relationships. Our 

approach distinguishes itself from alternative approaches using MI in several aspects. 

Protein structure networks combined with MI provides a consistent and intuitive model 

for capturing residue dynamics in the context of the surrounding residues; in other 

words, it allows to distinguish residues located in central positions of interest as 

reflected by the topology of the network. The resulting implicit locality of effects is a 

unique characteristic of the NCF score, as only correlation between neighboring 

residues in the network are considered. This provides a natural filtering of functionally 

relevant correlation, as opposed to calculating full pairwise residue matrices where 

most residue pairs are too distant to impact each other meaningfully (245, 246). Our 

data model proposes that MI based on atom interaction timelines may align more 

closely to biochemical function than MI models calculated from conformational entropy 

from atom coordinate covariance (76, 106, 247) or dihedral angles (242, 245, 248-

250). However, this claim has yet to be verified in comparative studies, and it seems 

possible that different encodings of residue conformations could be used in a 

complementary fashion, e.g., by calculating MI from interactions and dihedrals. Finally, 

many models of conformational coupling are focused on analysis of a single 

biochemical system, whereas often researchers are interested in the differences 

between two related systems, e.g., two homologous proteins or the same protein in 

different ligand configurations. For these purposes, we developed the Difference Node 

Correlation Factor (DNCF), which further expands on the NCF by allowing to measure 

how information transfer between interactions changes when comparing two different 

simulations, for example one simulation of a protein-ligand complex and another of an 

unbound protein. This serves to shift the focus of analysis from correlated motion 

towards the modulation of correlations. 
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We evaluated the capacity of our NCF and DNCF scores to predict conformational 

coupling in the PDZ2 domain, using a dataset derived from NMR spin relaxation (130-

132) to verify our analysis. Both scores achieved superior prediction accuracy 

compared to common centrality-based approaches while being much less sensitive to 

the set of network parameters used. The DNCF score, capturing the conformational 

shifts between ligand bound and unbound states in addition to conformational coupling, 

performed better over a wide range of network parameters than NCF. We further 

compared our results with previously published predictions by other groups using 

different computational methods, including one study based on Rigid Residue Scan 

(251), another on network centralities weighted by relative entropy of simulated Cα 

distances (252), and finally a network approach based on mutual information between 

simulated side chain rotamers (242). Among the methods published with sufficient data 

to be amenable to quantitative comparison, the NCF and DNCF models were among 

the most accurate. Interestingly, the only other method showing comparable 

performance was the conceptually closest, namely the model utilizing mutual 

information between side chain rotamers by Cilia et al. (242). However, there are 

notable differences which make our network model more widely applicable: First, the 

Cilia et al. model relies on Monte Carlo simulations in NMR structure ensembles, which 

are relatively rare compared to structures from other sources. In contrast, our model 

uses standard molecular dynamics simulations which can be based on any structure 

obtained from crystallography or NMR experiments, or even from a computational 

model like AlphaFold (253, 254). Second, while the Cilia et al. model is based on side-

chain dihedrals of protein residues and thus unable to analyze alanine and glycine, our 

model is applicable to all protein residues and can even be used for non-protein 

ligands. Moreover, due to the ability of SenseNet to dynamically switch between 

different levels of structural resolution, the influence of non-protein compounds can be 

traced down to its individual atoms. Thus, the SenseNet framework provides a general 

approach to analyze structure ensembles which is not limited to proteins, enabling 

applications for all classes of chemical structures. 

The NCF and DNCF scores are two of numerous methods to predict conformational 

coupling and allostery in proteins. Based on our results for PDZ2, we expect NCF and 
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DNCF to provide higher accuracy of predictions than centrality-based methods, while 

not requiring specialized simulation setups as necessary e.g. for Rigid Residue Scan 

(251, 255) or pump-probe MD (85) approaches. While the predictions accuracies we 

have determined for our methods are promising, they still need to be re-evaluated on 

a much larger dataset including a variety of different proteins and allosteric 

mechanisms. Initiatives like the Allosteric Database (256, 257) could be used to 

generate a set of proteins with allosteric residues to validate predictions. However, a 

comprehensive study of more than ten proteins will require substantial effort, even 

accounting only for the simulations required for SenseNet. Our analysis revealed that 

a minimum simulation time of 3 µs was required, spread over multiple replicas, in order 

to obtain accurate predictions. Furthermore, as prediction algorithms tend to allow a 

variety of tunable parameters, particularly when specialized simulations are involved, 

it is arguably difficult to compare prediction algorithms fairly unless one is an expert in 

applying all tested algorithms. This problem is compounded by the fact that published 

prediction algorithms often do not provide a reference implementation. Consequently, 

cases like PDZ2 with substantial divergence of published predictions make it difficult 

to reconcile models with what can be observed in experiments (133). Similar 

challenges have been encountered in prediction of protein structures, which have led 

to competitions like the biannual Critical Assessment of Methods of Protein Structure 

Prediction (CASP) (258). An analogous initiative, in which different groups compete 

with predictions on a dataset while being blind to the true solution beforehand, may 

become necessary for the field of allosteric predictions. This could serve to reduce the 

risk of over tuning parameters, while allowing an equal playing field for competing 

algorithms. 

4.4. Comparison of allosteric signaling in DnaK 
and BiP using mutual information between 
simulated residue conformations 

Having established a novel method to predict conformational coupling using protein 

structure networks, we proceeded to apply this knowledge to study allosteric regulation 
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in Hsp70 chaperones. In our earlier investigations, we analysed how structural 

differences between the binding pockets of DnaK and BiP translated to different 

preferences in protein substrates (192). Considering the extent of functional and 

regulatory differences between these two homologues (168, 183, 184), we wondered 

to which degree the mechanisms of allosteric regulation would be conserved between 

DnaK and BiP. 

We performed MD simulations of DnaK and BiP, extracted protein structure networks 

using SenseNet and determined conformationally coupled residues by calculating 

DNCF scores from different nucleotide and substrate binding states. Residues with 

known roles in allosteric regulation, as determined by mutagenesis experiments in 

DnaK, were found to be associated with high DNCF scores. On this basis, we predicted 

several additional residues with potential allosteric function in DnaK and BiP, the 

majority of which collocated to known allosteric sites. These sites, both previously 

known and newly predicted, cluster into three distinct regions in the protein structure: 

The shortest path between the nucleotide and protein substrate binding pockets, the 

cochaperone binding site of DnaJ/ErdJ3, and the binding site of the GrpE 

cochaperone. These regions form clusters or pathways of conformationally coupled 

residues, in which each residue is thought to be a link within a chain, with the 

proposition that perturbations may ripple through the chain via a cascade of localized 

movements. The initiating motion of this cascade is provided by a conformational 

trigger, i.e., ATP hydrolysis or binding of ligands and cochaperones. This view is 

compatible with the commonly invoked idea of signaling pathways in Hsp70 (155, 259), 

although we use the term “signal” not in a literal manner, but implying conformational 

coupling in a strictly statistical sense. While it is possible that the transmission of a 

signal through the pathway may manifest itself as a series of switch-like conformational 

changes, e.g., a series of residues rotating from one to another conformation, the 

motions captured by the DNCF score may be arbitrarily complex. For example, protein 

regions may rigidify or relax upon ligand binding (260) or perform “breathing” type 

motions (216) manifesting changes in residue fluctuations instead of easily identifiable 

conformation switches. As the DNCF score is purely derived from conformational 

coupling statistics, i.e., the changes of joint probabilities of residue conformations 
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occurring together, it can pick up changes in coupling strength regardless of the shape 

of the underlying motion. In other words, if it is observed in MD simulations that residue 

1 in state A correlates to state B in residue 2, the DNCF score only reflects how the 

strength of this relation changes between different simulations (e.g., with and without 

a ligand); the nature of the motion that leads to this change is undefined. This statistical 

view of signaling pathways thus aligns with modern descriptions of allostery by 

emphasizing the statistical relations between conformations in the ensemble (15, 17, 

32, 33). 

Most residues with high DNCF scores were found within close range to the nucleotide 

and substrate binding sites. This is expected, as the simulations compared for the 

mutual information differences induced structural changes in exactly these regions, 

i.e., ATP exchanged to ADP and bound vs. unbound NRLLLTG peptide in the substrate 

binding pocket. It is important to note that these structural changes were introduced 

artificially, as no experimental structures of these states were available. Due to the 

limited time range of MD simulations, structural changes are unlikely to have 

propagated through the entire structure; thus, the accuracy of predictions is likely to 

decline with increasing distance from the sites where structural changes were induced. 

In other words, the DNCF scores for DnaK and BiP are likely to be lower for residues 

if they are further away from the nucleotide and substrate binding sites. Potential 

allosteric candidates could thus be missed if residue scores are considered in isolation. 

However, by adding more context, additional candidates can be inferred by their 

position relative to other high-scoring residues. In our work, we achieved this by 

performing random walks in the networks, weighted by residue DNCF scores, to find 

pathways between the nucleotide and protein substrate binding site (DNCF with 

random walk, or “DNCF-RW”). Intuitively, this approach models how a conformational 

change originating from a source site, if it propagated between nodes with a probability 

proportional to the residue’s DNCF score, would travel through the network until it 

reached the target site. This way, residues which are located on the path between 

allosteric sites and have high DNCF scores relative to their surroundings are 

highlighted, even if their absolute DNCF scores are low due to insufficient simulation 

time. Combining DNCF with random walks combines two orthogonal ideas, namely the 
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localized coupling between residue conformations and the detection of shortest 

network paths, which is the essence of prediction methods based on network 

centralities (56-58, 87). Using the DNCF-RW method, we were able to detect residues 

which were not within the top bracket of individual DNCF scores, but which could be 

inferred to play an allosteric role from their topological context, i.e., bottlenecks 

connecting clusters of high DNCF residues. 

By comparing the differences between residues with top DNCF and DNCF-RW scores, 

we were able to predict residues with specific roles in DnaK and BiP. While the majority 

of predicted allosteric residues in both proteins were conserved, we found significant 

differences, about 40 % of which were directly related to mutations in the protein 

sequences. We found that these differences aligned with phenomena observed in 

previous experiments, like the increase of SBD dynamics in BiP (261) or the 

fundamental differences in GrpE/BAP cochaperone mechanisms (262). Most of our 

current knowledge of Hsp70 mechanism is based on DnaK as the most accessible 

model system (155). Our data highlights how individual protein regions were shaped 

by evolution to fulfill protein functions in the different environments encountered by 

DnaK and BiP, respectively. Particularly in the development and application of 

allosteric drugs or biomarkers, small differences between evolutionary variants have 

the potential to prove highly significant.  
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5. OUTLOOK 

In this work, we developed a framework to analyze conformational coupling using 

timelines of atom interactions in structure ensembles, based on protein structure 

networks. Initially designed for investigation of interactions in ligand binding pockets, 

which had served as the foundation of our BiPPred algorithm, we expanded the 

methodology in a study involving the binding of UHRF1 to DNA modifications, and 

finally established the final model including two mutual information-based analysis 

algorithms with SenseNet. We then applied these prediction algorithms to determine 

additional candidates with allosteric roles in Hsp70 proteins, focusing specifically on 

residues with specific roles in the Hsp70 variants DnaK and BiP. Our results 

demonstrate the potential of our SenseNet model in two areas: First, it can be used for 

characterization and visualization of interactions in structural regions of interest, such 

as binding pockets and interfaces associated with ligand binding, in the context of 

structure ensembles. Second, we showed that the NCF and DNCF scores, based on 

mutual information between interaction timelines obtained from structure ensembles, 

can accurately predict residues playing regulatory roles in protein allostery. We have 

provided case studies for successful applications covering both aspects; still, much 

work remains to be done to improve on weak points and ensure that the method is 

generalizable to a wide range of systems. 

Novel computational methods for prediction of allosteric residues are often presented 

and evaluated on just a handful of systems, at least in their initial publication; our own 

work is no exception (248, 252, 255, 263-269). Going forward, extensive efforts are 

required to compare different prediction approaches while minimizing bias towards 

specific datasets. First and foremost, there is a great need for a commonly accepted 

gold standard dataset for validating predictions of allosteric residues, spanning a 

comprehensive range of protein systems. Ideally, a similar initiative to the CASP 

competition (258), adapted for allosteric prediction, could help to produce high quality 

and unbiased evaluations of methods; however, as long as datasets high quality 

annotations of allosteric residues cannot be produced with similar efficacy as protein 
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structures, comparisons against gold standard datasets are the next viable option. As 

of 2023, the Allosteric Database (256, 257) features annotations of short of 2000 

allosteric proteins, which could provide the basis for generating a curated validation 

standard. Additional though smaller datasets have been brought forward by Greener 

et al. (41) and Panjkovich et al. (43); nevertheless, assembly and curation of these 

datasets remains laborious and limited to small scale. Publication of novel prediction 

methods should be accompanied with well documented and easy to use reference 

software implementations, as we have attempted by publishing the SenseNet software. 

This not only serves to make the prediction accessible to the wider research 

community, but also allows to set up studies comparing a range of different methods 

to learn about the specific strengths and weaknesses of each. In addition, there is 

potential for consensus predictions combining different methods to increase the overall 

accuracy. Even when a gold standard evaluation set for allosteric residue prediction is 

chosen and reference implementations are provided, the computational cost even for 

a modest set of about ten proteins could be substantial. Still, when faced with situations 

as the glaring divergence of computational predictions for allostery in PDZ domains 

(133), the importance of better method validation efforts cannot be overstated, 

justifying their significant cost. 

With the SenseNet framework, we have provided an extensible foundation for easy to 

use and effective application of protein structure networks based on structure 

ensembles. Implemented as a plugin for the free network analysis software Cytoscape 

(217), it is accessible to a broad audience of researchers and can be easily combined 

with complementary network analyses available from Cytoscape’s ecosystem of user-

contributed plugins. The advantages of this approach become apparent when 

considering the most common distribution channels for network analysis tools, which 

are dominated by stand-alone webservers or libraries for Python and R programming 

languages. These implementations, while appropriate for batch analysis, commonly 

offer only basic visualization features and are difficult to use for exploratory analyses. 

In contrast, the modular plugin architecture of the Cytoscape platform allows 

independent but interoperable tools within a single GUI environment, providing 

extensive support for interactive network visualization. SenseNet is published under 
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the and published open source under the lesser GNU General Public License (LGPL) 

and is designed to be easily extensible even without source code modifications; for 

example, the flexibility of the AIF input format can easily accommodate different types 

of interactions or even timelines of continuous values, like interaction energies or atom 

distances. 

The full potential of the data model underlying SenseNet, namely the distinction of 

conformations in a structure ensemble in terms of interaction timelines, is not yet fully 

explored. In our work, interaction timelines were generated by simple geometric 

criteria, i.e., carbon-carbon contacts to model hydrophobic interactions and combined 

distance/angle constraints for hydrogen bonds. Additional interactions might be 

considered, like π-π interactions, cation–π interactions, or dihedral configurations as 

used in other methods (242, 250). Further improvements may involve the discretization 

of interaction states in residue – residue interactions: Whereas currently the count of 

interactions between atoms of both residues is used to provide an aggregate timeline, 

this approach can suffer when some interaction states (i.e., interaction counts) are 

underrepresented in the structure ensemble. This makes obtaining accurate statistics 

for mutual information more difficult, and several proposed strategies for obtaining 

unbiased estimators could be evaluated (112, 113). We expect that any improvements 

in interactions statistics would straightforwardly improve the accuracy and precision of 

allosteric predictions. 

Existing applications of SenseNet have so far focused on analysis and visualization of 

simple interaction statistics and a mutual-information based prediction of residues 

associated with allosteric control. Alternative analyses could make use of the timeline 

data model: For example, convergence of network statistics between simulation 

replicas could be useful to determine whether a MD simulation is undersampled. 

Conventional MD simulations have a well-documented tendency to get stuck in locally 

optimal potential energy minima, necessitating long simulations and the usage of 

independent replicas to compensate. It is notoriously difficult to determine whether a 

MD simulation has run long enough to sample the relevant configuration space 

sufficiently (50, 51). Generally, this requires an informed decision on both the number 
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of replicas (independent runs of the same simulation diverging due to stochastic 

elements in the dynamics or numerical inaccuracies) and the simulation time of each 

individual replica. How to determine these parameters to ensure reproducibility and 

accuracy for an arbitrary simulation setup, i.e., absolute convergence, is a matter of 

active discussion (50, 51). However, it is commonly agreed that as a minimum, the 

results of MD analyses should be consistent both between replicas and between time 

slices of an individual simulation (relative convergence) (50). SenseNet already 

implements several functions which can help to determine relative convergence of 

interaction timelines, such as calculation of timeline autocorrelation or blocked 

averages (50, 270). Both methods implement a different approach to estimate the true 

number of statistical samples within a MD trajectory. We have also performed initial 

work to compare the distribution of interaction timeline elements, tracking distribution 

differences between timeline blocks using e.g. Jensen-Shannon and Kullback-Leibler 

divergences (271, 272). Interestingly, initial unpublished results indicate that the 

divergence between replicas decays exponentially with increasing simulation length 

per replica, suggesting possibilities to optimize the tradeoff of simulating more replicas 

vs. individually longer replica simulations. As problems from undersampling belong to 

the most critical concerns for the accuracy of any simulation, the potential of SenseNet 

to provide sanity checking and mitigation strategies should be explored. Due to the 

inherent inefficiencies of sampling by conventional Molecular Dynamics, there are 

ongoing efforts to improve sampling using alternative dynamics and force fields. 

Alternative schemes for generating structure ensembles, commonly subsumed under 

term “Advanced Sampling”, implement acceleration strategies for a simulation to 

escape locally optimal potential energy wells (83, 273, 274). As a complementary 

strategy, coarse-grained force fields have been developed to reduce the number of 

possible conformations, effectively blurring out atomistic details in order to simplify 

exploration of the relevant configuration space during simulation (79, 80). Both 

approaches are orthogonal, can be combined with each other, and even intersect or 

be supplemented by modern Machine Learning approaches like Deep Neural 

Networks (275). As the SenseNet data model was designed to be as agnostic as 

possible with respect to its input data, we expect that our analysis methods can be 

applied straightforwardly to all kinds of advanced sampling methods for detection of 
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highly coupled system modes and conformational barriers. Once identified, protein 

regions stuck in long-lived conformations could be specifically targeted during 

advanced sampling, forcing the system out of stale conformations by adding forces 

driving exploration based on Collective Variables (CV). Combined with tracking of 

relative simulation convergence, an iterative scheme of CV selection and exploitation 

could prove a useful tool to increase sampling efficiencies in molecular dynamics. 

The relationship between molecular simulation and experiment has both synergistic 

and competitive aspects. While there are numerous examples where simulation and 

experiment have been used to complement each other in a true interdisciplinary 

fashion, computational methods are under pressure to ensure that their predictions 

align with what is observed in biochemical experiments. Due to the significant cost of 

simulations in researcher expertise, computational resources and time, computations 

requiring complex workflows can end up being less efficient than upscaling 

experiments in the lab. This pressure is felt even in areas where computational 

methods were originally thought to have an advantage, like drug design and binding 

optimization. This work, among others, is tailored towards a problem for which 

computational methods are poised to play a unique role, namely the study of protein 

allostery and its applications in drug design. As a priori unknown binding sites are 

difficult to probe experimentally, detection of potential binding pockets for allosteric 

drugs would greatly benefit from accurate computational prediction of conformational 

coupling. Even more than for ligand binding in orthosteric pockets, detailed 

mechanistic understanding of the underlying molecular mechanisms will be 

indispensable to understand the subtleties of allosteric effects and evolutional 

divergence of function between homologous variants of protein drug targets. 

Numerous computational approaches have been presented which could contribute to 

this effort, including our own; what is needed going forward, will be to evaluate these 

methods to understand their strengths and flaws, to consolidate and refine them, and 

to investigate combined theoretical and experimental approaches to deepen the 

application interface between in silico and in vitro domains. 
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Abstract

The multi-domain protein UHRF1 is essential for DNA methylation maintenance and binds

DNA via a base-flipping mechanism with a preference for hemi-methylated CpG sites. We

investigated its binding to hemi- and symmetrically modified DNA containing either 5-

methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), or 5-carboxyl-

cytosine (caC). Our experimental results indicate that UHRF1 binds symmetrically carboxyl-

ated and hybrid methylated/carboxylated CpG dyads in addition to its previously reported

substrates. Complementary molecular dynamics simulations provide a possible mechanistic

explanation of how the protein could differentiate between modification patterns. First, we

observe different local binding modes in the nucleotide binding pocket as well as the pro-

tein’s NKR finger. Second, both DNA modification sites are coupled through key residues

within the NKR finger, suggesting a communication pathway affecting protein-DNA binding

for carboxylcytosine modifications. Our results suggest a possible additional function of the

hemi-methylation reader UHRF1 through binding of carboxylated CpG sites. This opens the

possibility of new biological roles of UHRF1 beyond DNA methylation maintenance and of

oxidised methylcytosine derivates in epigenetic regulation.

Introduction

UHRF1 (also referred to as Np95) is an essential protein for DNA methylation maintenance

in mammals. It consists of 5 domains: A ubiquitin-like domain, a Tandem-Tudor domain, a

PHD domain, a DNA-binding SRA domain, and a RING domain with E3 ubiquitin ligase

activity (Fig 1a) [1–3]. UHRF1 was originally reported to preferentially bind to hemi-
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Fig 1. Structure of the UHRF1—DNA complex. (a) Schematic structure of UHRF1. The Tudor-like domains and the

PHD-type zinc finger recognize the histone marks H3K9me2/3 and H3R2me0, respectively, while the SRA domain (in

green, also referred to as YDG domain) is important for DNA binding. (b) Chemical structure and atom names of the

modified DNA bases methylcytosine (mC) and carboxylcytosine (caC). (c) Schematic illustration of possible cytosine

modification configurations on CpG dyads. (d) Representative molecular dynamics structure of the SRA domain of

UHRF1 bound to hemi-methylated DNA. Insets show a magnification of the nucleotide binding pocket and NKR

finger regions. DNA base pairs (bp) are numbered based on the strand binding the flipped-out base.

https://doi.org/10.1371/journal.pone.0229144.g001
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methylated DNA, i.e. DNA harbouring 5-methylcytosine (mC) only on one strand. Upon

binding of the methylated strand, UHRF1 recruits DNA methyltransferase 1 (DNMT1) for

additional methylation of the second strand, yielding a symmetrically methylated CpG site [1–

3]. This recruitment depends on specific histone ubiquitination, set by the RING domain of

UHRF1 and recognized by a ubiquitin interaction motif of DNMT1 [4–6].

Besides mC, three other cytosine (C) modifications exist in mammalian cells, i.e. 5-hydro-

xymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC) [7–9]. These

variants are generated by the family of TET proteins through step-wise oxidation of mC and

are discussed to be either intermediates in active DNA demethylation or independent epige-

netic marks [10]. Their overall abundance in vivo is normally magnitudes lower than that of

methylated sites [11], but the ratio increases under certain conditions. Higher hmC concentra-

tions were observed in neuronal cells [12], while a study investigating breast and glioma

tumour tissues found that a substantial portion of the samples exhibited increased caC levels

[13]. Efforts to map mC, hmC, fC, and caC modifications in the genome showed that they

accumulate at functionally distinct regions of transcription regulation [14–16]. One common

conclusion of these studies was that methylation/demethylation of CpG sites is a highly

dynamic and genome-wide process. In this light, low concentrations of some DNA modifica-

tions could represent a transient state in a high turnover process, while the accumulation at

functionally diverse sites suggests that some variants might have a biological role beyond being

demethylation intermediates. It has been demonstrated that several proteins recognize some

oxidised variants with similar or even greater affinity than mC. The UHRF family member

UHRF2, which features a highly similar domain architecture to UHRF1 [17, 18], is a reader

with increased affinity for hmC in neuronal progenitor cells [19]. Other examples include

SUVH5, which binds both mC and hmC with similar strength [20], while POL II, WT1 and

TET3 specifically recognize caC [21–23]. It is currently unclear how frequent certain CpG

modification patterns occur in vivo. DNA replication during S-phase will generally result in

hemi-modified CpG sites. In case of mC, the subsequent restoration of the DNA modification

to symmetry is well studied and described [24]. Nevertheless, the degree of persistent hemi-

methylation varies between cell types and genomic elements [25]. For hmC, fC, and caC, no

maintenance pathways have been described so far. In vitro, TET proteins predominantly gen-

erate symmetric fC sites [26], whereas genomic mapping approaches suggest the existence of

hmC and fC/caC in hemi-modified form [15, 27]. The occurrence of hybrid modifications

with mC on one and an oxidised cytosine derivative on the other strand is also likely (Fig 1c).

Structural analysis revealed that the SRA domain of UHRF1 flips the methylated cytosine

out of the DNA strand and envelopes it within its binding pocket. In addition, the protein

binds to the DNA by inserting its thumb region into the minor groove and its NKR finger

region into the major groove [2, 28, 29]. In a previous work, our groups showed by a combina-

tion of in vitro experiments and molecular dynamics (MD) simulations that UHRF1 binds

hemi-modified hmC with similar affinity as hemi-mC [30]. Although subsequent studies

revealed that UHRF1 binds hmC with lower affinity than mC, it still binds hmC with 1.3 to

3-fold higher affinity than unmodified C [19, 31, 32]. These results are in line with an unbiased

mass spectrometry screen for epigenetic readers in embryonic stem cells, which demonstrated

UHRF1 binds to all modified cytosines, but in particular to mC and hmC [19]. Experiments

with UHRF1 and symmetrically modified mC sites, i.e. CpG sites in which both DNA strands

feature methylcytosine, consistently show reduced binding affinity [1, 2, 28, 29]. This selectiv-

ity is commonly explained by a hydrogen bond between N494 at the tip of the NKR finger and

the C’ cytosine, i.e. the base that potentially carries the symmetric modification (Fig 1d) [29].

Throughout the manuscript we use a terminal apostrophe to mark bases on the distal DNA

strand (e.g. C’). Bianchi et al. observed in a computational study that the presence of mC on
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both strands sterically impairs binding of the NKR finger of UHRF1 to the major groove [33].

In contrast to mC and hmC, the structural effects of fC and caC variants on UHRF1-DNA

binding are still not well elucidated. Investigations of several SRA domains by Rajakumara

et al. suggest a reduced affinity of UHRF1 towards hemi-hmC, -fC and–caC containing DNA

[20]. Crystal structures of POL II and TDG, which exhibit specific activity towards caC, show

that the caC carboxyl group participates in specific hydrogen bond networks, which are crucial

for binding key recognition residues in the protein [21, 34].

It was recently shown that UHRF1 allosterically regulates its activity and binding properties

through intramolecular conformational changes [35–38]. The formation of these extensive

inter-domain interactions illustrates an inherent flexibility of UHRF1 and allows the protein

to adapt to different substrates. As we already observed solid binding of UHRF1 to hemi-hmC,

we sought to systematically analyse the binding behaviour of UHRF1 towards CpG sites con-

taining C, mC, hmC, fC, and caC either in a hemi-, hybrid or symmetrically modified state.

The highest binding affinities are observed for hemi-mC, symmetric caC, and the caC-mC’

hybrid. To understand the differences in recognition of these modifications, we performed

molecular dynamics simulations of mC- and caC-modified DNA in complex with the SRA

domain of UHRF1 (see Fig 1d).

Materials & methods

Electrophoretic mobility shift assays (EMSAs)

Expression constructs for GFP-mUHRF1 and mUHRF2-GFP have been described previously

[18, 39]. In general, protein purification and EMSAs were performed as reported in Spruijt

et al. [19]. Briefly, a 2-fold serial dilution of protein (300 nM to 4.69 nM) in binding buffer

(including 100 ng/μl BSA final concentration) was incubated with a 1:1 mixture of two fluores-

cently labelled 42 bp oligonucleotides (Eurofins Genomics) at a stable concentration of 250

nM each. After 30 min of incubation on ice, reactions were run over a 6% native PAGE in 0.5x

TBE buffer (45 mM Tris-borate, 1 mM EDTA). ATTO647N-labelled DNA (“C647") served as

internal control and reference whereas ATTO550-labelled DNA carried one of the following

cytosine variants at the central CG site: canonical C, mC, hmC, fC, or caC (“xC550”). Fluores-

cent signal was detected with a Typhoon Trio+ scanner (GE Healthcare Life Sciences). Signal

of bound and unbound fractions were quantified with ImageJ by plotting the mean grey values

per lane and measuring the area under the selected peaks. Before quantitation, gel pictures

were assigned random names to blind the experimenter during analysis. Box plots show
ATTO550 bound fraction
ATTO647 bound fraction�

ATTO647 total signal
ATTO 550 total signal with the C550/C647 experiment as control. All raw gel image

scans with annotations are provided as S1 Fig.

Microscale Thermophoresis (MST)

For MST, the SRA domain of mouse UHRF1 (residues 419–628) was cloned into a hexahisti-

dine-tagged construct and protein was expressed in Escherichia coli BL21(DE3)-Gold cells

(Stratagene). The purified SRA domain was labelled with a NT-647 dye using the Monolith

NT™ His-Tag Labelling Kit RED-tris-NTA (NanoTemper Technologies) according to the

manufacturer’s instructions and 50 nM of the labelled protein was incubated for 20 min at

room temperature with increasing concentrations of the corresponding DNA oligonucleotide

(C-C’, mC-C’, caC-C’, caC-caC’, mC-caC’) in PBS-T (0.05% Tween-20). The solutions were

then aspirated into NT.115 Standard Treated Capillaries (NanoTemper Technologies) and

placed into the Monolith NT.115 instrument (NanoTemper Technologies). Experiments were

conducted with 60% LED power and 80% MST power. Obtained fluorescence signals were
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normalized (Fnorm) and the change in Fnorm was plotted as a function of the concentration of

the titrated binding partner using the MO. Affinity Analysis software version 2.3 (NanoTem-

per Technologies). For fluorescence normalization (Fnorm = FHot/Fcold), the manual analysis

mode was selected and cursors were set as follows: Fcold = -1 to 0, Fhot = 9 to 10 (see S2 Fig).

Data of four to five independent measurements were analysed and means were fitted to obtain

the respective KD values. More detailed information and additional experimental procedures

can be found in S1 Text.

Force field parameterization of modified cytosine bases

We generated parameters for the parmbsc1 force field [40] for both deoxy-5-methylcytosine

(mC) and deoxy-5-carboxylcytosine (caC) using the mC structure and bonded parameters

template from Lankas et al. [41], which was originally derived for parmbsc0 [42]. The atom

type of the C3’ atom was changed from CT to CE to adjust the template to parmbsc1. Fixed

point atom charges were derived for both mC and caC following the procedure in ref. [43]

using the R.E.D Dev webserver [44–48]. Atom types were assigned and final parameter files

prepared using the programs antechamber and prepgen of the AmberTools17 package [49].

The final parameter files are provided in S1 File.

Molecular dynamics simulations

Molecular dynamics simulations were performed with the Amber16/AmberTools17 software

suite [49] using the Amber14SB force field for protein and parmbsc1 for nucleic acid parame-

ters [40, 50]. All systems were based on the crystal structure of a mouse UHRF1 SRA domain

bound to DNA featuring a single mC (PDB-ID: 3FDE). The same structure had been used in

our previous work analysing the binding of 5-hydroxymethylcytosine [30] and featured the

best resolution (1.41 Å) of published UHRF1 structures at the time of this study. Cytosine mod-

ifications were modelled and topologies prepared using leap (AmberTools). Each system was

solvated in a box of TIP3P water [51] with a minimum face distance of 15 Å and 150 mM

NaCl. A direct space cutoff of 12 Å was used for nonbonded potentials and PME summation

was applied for electrostatic interactions. Energy minimization was performed until conver-

gence to 0.01 kcal � mol-1 � Å-1 using the XMIN minimizer. Then, the volume of the solvent

box was modified such that the density increased in 0.02 kg � m3 steps and energy minimiza-

tion was repeated for each step until a target density of 1.00 kg � m3 was reached. For all molec-

ular dynamics simulations hereafter, a time step of 1 fs and SHAKE [52] for bonds connected

to hydrogens were used. The system was gradually heated from 0 to 300 K over 1.7 ns, applying

a variation of the step-wise heatup protocol established within our group [53]. Within these

steps, restraints of 2.39 kcal � mol-1 � Å-2 were applied to all heavy atoms until 20 K and on pro-

tein/DNA backbone atoms until 200 K. For heatup, a Langevin thermostat was used with a col-

lision frequency of 4 ps-1, and for the last 0.5 ns a Berendsen barostat was employed with a

relaxation time of 2 ps. During the following simulations at 300 K, a slow coupling Berendsen

thermostat with a coupling time of 10 ps was used in combination with a Berendsen barostat

and a respective relaxation time of 5 ps. Backbone phosphates and oxygens of terminal DNA

residues were harmonically restrained with a constant of 2.39 kcal � mol-1 � Å-2 while resetting

target coordinates in 500 ps intervals. For all replicas, different initial velocities and random

seeds for the Langevin thermostat were generated at the beginning of each step of the heatup

protocol (i.e. for each temperature simulated). Each replicon was simulated for 200 ns, yielding

a total simulation time of 1 μs per system (5 replicas). In two out of thirty simulations (caC-

caC’_r2 and mC-caC’_r2), the DNA structure diverged notably from the others (RMSD> 4 Å;

see S3 and S4 Figs). In the case of caC-caC’_r2, the distortion correlates with an interaction
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between the protein’s free C-terminal helix and the DNA strand, bending it out of position,

which is clearly an artefact due to the use of the isolated SRA domain. Therefore, and as it is in

general difficult to determine whether such diverging trajectories show a rare but physically rel-

evant conformational change or a simulation artefact, we excluded these two replicas from our

analysis. The remaining simulations showed stable RMSD curves after about 20 ns. To allow

for proper equilibration and to minimize any bias towards the initial structure, we extracted

only the last 100 ns of each trajectory and afterwards merged the trajectories of all five replicas

into a single system-specific trajectory that was used for all computational analyses.

Trajectory post-processing was performed with CPPTRAJ [54] version 17.00 unless otherwise

indicated. Salt bridges were calculated using the “nativecontacts” command and a cutoff of 5 Å,

saving both native and non-native time series and selecting interactions with opposite formal

charges involving Arg, Lys, Glu, Asp and nucleotide residues. Hydrogen bonds were extracted

using the “hbond” command, a cutoff distance of 4 Å and an angle cutoff of 120˚. CPPTRAJ out-

puts were merged and converted into networks using our analysis tools AIFGen and CONAN

(manuscript in preparation). Root mean square deviation (RMSD) and root mean square fluctu-

ation (RMSF) calculations were performed for non-hydrogen atoms using the CPPTRAJ “rmsd”

and “atomicfluct” commands after aligning each simulation frame to the protein’s Cα atoms

without the terminal regions (residues 432 to 586). For RMSD, the reference frame was the

simulation’s initial structure, while for RMSF the protein was aligned to its simulation average.

DNA major and minor groove widths were calculated using the method of El Hassan and Calla-

dine [55] as implemented in the “nastruct” command in CPPTRAJ (version 18.01). Figures of

protein and DNA structures were prepared using VMD 1.9.3 [56]. Plots and supporting calcula-

tions (e.g. gaussian kernel estimates) were generated with matplotlib 2.0.0 [57].

Results

Experimental investigation of the binding behaviour of UHRF1 towards

different cytosine variants

For systematic analysis of the binding specificities of UHRF1 towards the five known cytosine

variants, we performed EMSA experiments with full-length UHRF1 in complex with 42 bp

oligonucleotides harbouring C, mC, hmC, fC, or caC at a central CpG site (Fig 2a). To correct

for general DNA binding affinity, two DNA fragments were used in direct competition in each

EMSA experiment: A 647-labeled unmodified oligonucleotide and a 550-labeled oligonucleo-

tide carrying the modification of interest in either hemi-modified (xC-C’) or symmetric (xC-

xC’) state. 647-labeled unmodified DNA is used as internal control and reference for quantifi-

cation. This allows direct comparison of UHRF1 binding affinity to all modifications without

the need for pair-wise competition assays. Generally, EMSAs showed binding of UHRF1 to all

studied DNA variants (example gel pictures are shown in Fig 2b). However, quantitation of

the shifted fractions reveals a 1.5-fold preference for hemi-mC and a statistically significant

2-fold preference for symmetric caC (Fig 2c). All other modification variants, including hemi-

caC, were bound with comparable strength to unmodified DNA. Similarly, we observed a

2-fold preference of UHRF2 for symmetric caC (S5 Fig).

Upon UHRF1 binding, the melting temperature of CpG-containing DNA is slightly

reduced compared to its unbound state or a non-CpG-control, indicating a destabilization of

the DNA duplex (S6a Fig). Complementary to our EMSA results, the SRA domain of UHRF1

substantially shifted the melting temperature of symmetrically carboxylated DNA to lower

temperatures, whereas a weaker shift was observed for unmodified and hemi-methylated DNA

(S6 Fig). To rule out that the thermal shift observed for symmetrically carboxylated DNA is

due to different binding stoichiometries, we examined DNA-protein complex formation by
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Fig 2. Binding of UHRF1 to differentially modified CpG sites. (a) DNA used in EMSA experiments. The

550-labelled DNA contains a central CG site harbouring different cytosine modifications: Unmodified C, mC, hmC,

fC, or caC. The modification resides either on one strand (hemi-modification) or on both strands (symmetric

modification). The 647-labelled oligonucleotide is always unmodified and serves as an internal control and reference.

Grey boxes indicate sequences of the shorter DNA fragments used in Fig 3. (b) Representative images of EMSAs.

Fluorescently labelled DNA oligonucleotides of 42 bp are incubated with GFP-UHRF1 at increasing protein

concentrations. Black arrowheads indicate the DNA-protein complex (bound fraction); white arrowheads show free

DNA. Dashed blue lines indicate empty gel lanes that have been removed for presentation purposes. (c) Quantitation

of the bound fraction of symmetric and hemi-modified DNA incubated with wild type UHRF1, p value of two-tailed

student’s t-test.

https://doi.org/10.1371/journal.pone.0229144.g002
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size-exclusion chromatography. Binding of the SRA domain to the modified DNA oligonucle-

otides led to a comparable shift in retention time for all modifications tested (S7 Fig), indicat-

ing a uniform binding stoichiometry for UHRF1 independent of the DNA’s modification

state.

To better characterize the binding of UHRF1 to hemi-mC, hemi-caC and symmetric caC,

we determined the respective dissociation constants (KD) with Microscale Thermophoresis

[58] (MST) experiments (Fig 3a). We observed slightly stronger binding of hemi-mC (KD =

0.75±0.11 μM vs. 1.10±0.15 μM for unmodified DNA) and considerably enhanced binding of

symmetric caC (KD = 0.23±0.05 μM). In agreement with the EMSA results, hemi-carboxylated

DNA (KD = 1.10±0.29 μM) is bound with similar affinity as unmodified DNA. Taken together,

we performed three independent experimental assays, i.e. EMSAs, melting temperature analy-

sis and MST, which consistently confirm a binding preference of UHRF1 towards symmetric

caC.

Additionally, as the enzymatic reactions involved in generation of mC and caC modifica-

tions suggest the potential existence of hybrid mC-caC’ sites, we determined the KD of the

SRA domain of UHRF1 and a mC-caC’ oligonucleotide and observed binding comparable to

symmetric caC (KD = 0.39±0.11 μM vs. 0.23±0.05 μM). In summary, UHRF1 exhibits a bind-

ing preference for caC modifications opposite of mC or caC, but not C.

Since the difference in KD between unmodified and hemi-methylated DNA was smaller

than expected from the literature [1, 32, 36, 59, 60], we repeated the MST experiments with

shorter DNA oligonucleotides of 24 bp to reduce the number of unspecific binding sites (Fig

3c). With this new setup we observed a 3.6-fold preference of the SRA domain of UHRF1

towards hemi-methylated CpG sites (KD = 0.28±0.06 μM for mC-C’ vs. 1.01±0.20 μM for

C-C’). This ratio is in very good agreement with data by Greiner et al. [60] and Zhou et al. [32]

(Table 1), who reported a 3.5 or 3.4-fold smaller KD for hemi-methylated CpGs for a 12 bp oli-

gonucleotide, respectively, compared to unmodified DNA. Generally, caution is advised when

published KD values of UHRF1 and differentially modified DNA are compared, since applied

methods, DNA substrates and protein constructs used vary greatly among studies, resulting in

a broad range of KD values from 1.8 nM to 9.23 μM (Table 1). Nonetheless, previous studies

and our results not only demonstrate the sensitivity of UHRF1 to different types of cytosine

modification, but also the dependency of measured binding affinities on modification density,

i.e. the number of DNA modifications compared to unmodified DNA stretches.

Fig 3. Microscale Thermophoresis experiments of UHRF1-SRA bound to DNA with modified CpG sites. (a,b) Dissociation constants of UHRF1

bound to a 42 bp DNA oligonucleotide: 1.10±0.15 μM for C-C’, 0.75±0.11 μM for mC-C’, 1.10±0.29 μM for caC-C’, 0.23±0.05 μM for caC-caC’, and

0.39±0.11 μM for mC-caC’. (c) Dissociation constants of UHRF1 bound to a 24 bp oligonucleotide; 1.01±0.20 μM for C-C’ and 0.28±0.06 μM for

mC-C’. Curves show the fitted average values of 4–5 independent experiments.

https://doi.org/10.1371/journal.pone.0229144.g003
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Molecular dynamics simulations of the UHRF1-SRA domain bound to

CpG sites with mC and caC modifications

For methylated CpG sites, UHRF1 binds stronger to mC-C’ modified DNA than to the sym-

metric modification variant mC-mC’ (Table 1) [1, 60]. As discussed above, in our experiments

the opposite was observed for caC modifications, as caC-caC’ DNA was preferred over caC-C’.

To understand this behaviour, we performed MD simulations of UHRF1-DNA complexes

with different nucleotide modifications, i.e. hemi-modified and symmetrically modified mC

and caC as well as the hybrid modification variants mC-caC’ and caC-mC’. As simulation of

the full binding process for all variants was not feasible due to the high complexity and compu-

tational cost of such simulations, we focused on studying the complex with the flipped-out

modified base bound in the protein’s binding pocket, based on the experimental structure of

mC-C’ bound to UHRF1 (PDB-ID: 3FDE). Various experimental data indicate that this is the

most relevant state for recognition: Fluorescence kinetics experiments [61] showed that the

stability of the DNA flipped state is correlated to the lifetime of the flipped state bound to

protein. Regarding flipping propensity, previous simulation studies showed no substantial

intrinsic difference between mC and caC [62] and furthermore, NMR experiments of Dicker-

son–Drew dodecamers showed that both mC and caC bases were slightly less likely to flip

compared to unmodified cytosines [63]. Finally, in a study of another base-flipping protein,

bacterial cytosine-5-methyltransferase, it was found that specific protein-base interactions

were responsible for facilitating and stabilizing the flipped out state [64]. We chose to simulate

the second potentially modified base on the distal strand in the flipped-in state, motivated by

Table 1. Published KD values for UHRF1 and DNA with differentially modified CpG sites.

Citation Method Affinity DNA substrate protein construct

Bostick, M. et al., 2007, 10.1126/science.

1147939

EMSA KD(mC-C’) = 1.8 nM 39mer, 13 modification

sites

murine SRA

KD(mC-mC’) = 12.1 nM

Fang, J., 2016, 10.1038/ncomms11197 Fluorescence

Polarization

KD(UHRF1) = 0.35 μM 12mer, 1 modification

site

human UHRF1, different constructs with

mC-C’KD(SRA) = 9.23 μM

KD(SRA+Spacera) =

0.49 μM

Greiner, V. J., 2015, 10.1021/acs.biochem.

5b00419

FRET KD(mC-C’) = 0.08 μM 12mer, 1 modification

site

human SRA

KD(mC-mC’) = 0.25 μM

KD(C-C‘) = 0.28 μM

KD(T-C‘) = 0.55 μM

Qian, C., 2008, 10.1074/jbc.C800169200 Fluorescence

Polarization

KD(mC-C’) = 0.2 μM 13mer, 1 modification

site

human SRA

Zhou, T., 2014, 10.1016/j.molcel.2014.04.

003

Fluorescence

Polarization

KD(C-C’) = 8.61 μM 12mer, 1 modification

site

human SRA

KD(mC-C’) = 2.56 μM

KD(hmC-hmC’) =

7.97 μM

Schneider, Trummer et al., 2019 MST KD(C-C’) = 1.01 μM 24mer, 1 modification

site

murine SRA

KD(mC-C’) = 0.28 μM

Schneider, Trummer et al., 2019 MST KD(C-C’) = 1.10 μM 42mer, 1 modification

site

murine SRA

KD(mC-C’) = 0.75 μM

KD(caC-C’) = 1.10 μM

KD(caC-caC’) = 0.23 μM

KD(mC-caC’) = 0.39 μM

a Spacer: amino acid stretch C-terminal of SRA domain

https://doi.org/10.1371/journal.pone.0229144.t001
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the following observations: First, stable flipping of the distal base has only been observed for

proteins which can bind in a 2:1 protein-DNA ratio to the same CpG site, like UHRF2 or

SUVH5, but not UHRF1 [2, 28, 29, 32, 65]. Second, the NKR finger can recognize modifica-

tions on the distal strand directly, as demonstrated by the crystal structure contacts of N494 [2,

29, 66] and third, it was observed that a single mutation of this residue abolishes the selectivity

of UHRF1 between mC-C’ and mC-mC’ [29]. Finally, computational studies reported that the

first stable intermediate in the flipping process requires a flip angle of at least 50˚ [62, 67]. It is

difficult to imagine how direct interactions of the NKR finger could be sustained with the

modified base in this position. For these reasons, we consider the complex conformation with

a flipped-out pocket bound base and a flipped-in base on the distal DNA strand as the most

relevant for explaining the selectivity of UHRF1.

Therefore, we did not aim at the simulation and analysis of the binding process itself and its

related binding affinities, but rather at identifying similarities and differences in the binding

modes of the different DNA modifications, i.e. which regions of the protein are likely to sense

the chemical differences of these modification types and how this influences their interaction

patterns. In contrast to mC, the caC modification contains an additional carboxyl group,

which can form additional salt bridges and hydrogen bonds. Thus, we analysed whether this

difference in interaction capacity could affect the polar interaction network and the local con-

formations of the binding pocket and NKR finger regions, which are in direct contact with the

two modification sites.

Analysis of mC and caC recognition in the UHRF1-SRA nucleotide binding pocket. In Fig

4 we provide the interaction networks of the flipped base in the nucleotide binding pocket as

derived from our MD simulations. Nodes represent residues of the protein and atoms of the

modified DNA bases (see naming conventions in Fig 1b), while edges show the average num-

ber of hydrogen bonds (black lines) and salt bridges (red lines) between two nodes during the

simulation. The canonical binding mode of mC-C’ (Fig 4a) is characterized by strong hydro-

gen bonds between the mC atom N4 to T484 and D474 (1.84 and 1.04 hydrogen bonds on

average per analysed simulation frame, respectively) and between the pyrimidine oxygen O2

and G470 and A468 (1.0 and 0.98 hydrogen bonds on average). Thus, the base is effectively

locked at these two positions with the N4 and O2 atoms acting as handles. In addition, the mC

backbone atom OP1 (phosphate oxygen 1) forms one stable hydrogen bond with G453 and the

adjacent OP2 forms approximately two (1.86) salt bridges with R489, the latter being located at

the beginning of the NKR finger. Overall, the binding pocket of the mC-C’ simulation shows a

regular and stable polar interaction pattern. This pattern is nearly identical to the one observed

in the mC-mC’ and mC-caC’ simulations (Fig 4c and 4e), indicating that modifications on the

distal strand have little effect on the conformation and interactions of the nucleotide binding

pocket containing flipped mC.

Analysis of the binding mode of the hemi-modified caC-C’ system (Fig 4b) shows that this

modification leads to a very different interaction pattern: The previously observed hydrogen

bonds of the nucleotide N4 atom are substantially weakened (-1.87 hydrogen bonds), while

interactions of O2 are dispersed from two to three amino acids (-0.2 hydrogen bonds total).

Although several hydrogen bond donors such as S486, N509, and the backbone atoms of I454

and G453 are available in the binding pocket, the carboxyl atoms O51 and O52 of caC predom-

inantly interact with R489, forming very strong interactions (1.92 salt bridges on average) with

this residue. This interaction pattern is unexpected, since the caC modification is located

within the binding site, whereas R489 is located at its edge, usually interacting only with the

DNA backbone. This may cause a force pulling the base out of position and could explain the

weaker hydrogen bonds formed by the base’s N4 nitrogen. The NKR finger region consisting

of residues 488 to 502 is a flexible loop important for DNA binding with residues N494, K495,
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and R496 at its tip. Observing that R489 is involved directly in interactions with the carboxyl

oxygens establishes a direct link between the flipped-out base and the NKR finger, which pre-

dominantly interacts with the distal DNA strand. The interaction pattern of the caC-caC’ sys-

tem (Fig 4d) is consistent with this observation. In this system, the caC N4 and O2 atoms show

an overall similar interaction pattern to the hemi-modified variant. However, distinct differ-

ences are seen in the interaction with R489: The salt bridges between the carboxyl oxygens and

R489 are much weaker (only 0.5), whereas the residue forms very strong interactions (3.03)

with the backbone atoms OP1 and OP2 (+ 0.96 compared to mC-C’). To compensate for the

weaker R489 interactions, O51 and O52 form fluctuating weak (� 0.5) hydrogen bonds with

S486 and G453 in the binding pocket. The caC-mC’ system (Fig 4f) shows a mixture between

these patterns, as R489 establishes 1.17 salt bridges to O51 and O52 of caC and 2.64 salt bridges

to the caC backbone. The hydrogen bonds of the carboxyl oxygens are more dispersed com-

pared to the caC-caC’ system, interacting weakly (< 0.5) with S486, N509, and I454 and mod-

erately strong (0.74) with G453. In turn, O2 establishes only 0.7 hydrogen bonds to G470,

G469, and A468, which is 1 less than in caC-caC’. The differences we observed in the binding

modes of caC-C’, caC-caC’ and caC-mC’ indicate that the caC carboxyl oxygens have several

possible interaction partners in the nucleotide binding pocket and the interaction networks

are more heterogenous compared to bound mC. In addition to interactions within the binding

Fig 4. Interaction networks of the nucleotide binding pocket based on molecular dynamics simulations of UHRF1-SRA. Structures show

representative conformations of the flipped-out modified DNA base within the binding pocket as observed during MD simulations. To the right of each

structure a corresponding network of hydrogen bonds (black lines) and salt bridges (red lines) averaged over the course of the simulation is shown.

Numbers next to edges show the average number of interactions per time frame. Edges representing interactions occurring in� 15% of simulation time

are omitted for clarity. For node pairs featuring both hydrogen bonds and salt bridges, only salt bridges are displayed.

https://doi.org/10.1371/journal.pone.0229144.g004
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pocket (S486, N509, I454, G453), caC oxygens O51/O52 can establish alternative interactions

outside of the main pocket, particularly with the NKR finger residue R489. In combination

with our observation that the overall interaction pattern of R489 is strongly dependent on the

xC’ modification on the distal strand, this suggests that the binding mode is influenced by the

NKR finger, which senses that modification.

Another notable difference between the interaction networks is the hydrogen bond of the

Y471 hydroxyl atom to the OP2 atom of the modified base, which is absent in the carboxylated

variants (Fig 4). As Y471 has been described previously to form a hydrophobic cage, closing like

a lid over the modified base [2], we analysed whether the distances between the tyrosine and

pyrimidine rings were influenced by the nucleotide modification. S8 Fig shows that for both

mC-C’ and mC-mC’ the distances cluster in two close narrow peaks with tyrosine being stabi-

lized in its position, while for the carboxylated variants the distances fluctuate between multiple

distinct conformations due to changes in the nucleotide binding mode. The distance histograms

tend to differ more between replicas than during a single simulation, indicating that Y471 flips

between distinct conformations with characteristic transition times roughly in the ~ 10–100 ns

range or longer. Interestingly, the distribution of mC-caC’ shows a similar pattern to the other

methylated variants, but an additional small peak at 8–9 Å, indicating a partial destabilization of

the Y471 lid. In summary, carboxylation of the flipped base leads to a different local conforma-

tion of the binding pocket compared to methylation. While during the simulations of complexes

featuring a flipped mC base very similar binding modes were observed, strong differences were

found in the binding modes of complexes containing a flipped caC depending on the xC’ modi-

fication on the distal strand. These differences suggest potential conformational long-range cor-

relations between the binding pocket and the NKR finger, in particular R489, which can

interact directly with the carboxyl modification of the flipped-out base.

Analysis of mC and caC recognition on the distal DNA strand by the UHRF1-SRA NKR

finger. Our observations so far indicated that the NKR finger could play an important role

for UHRF1 to differentiate between carboxylated and methylated CpG sites. As for the binding

pocket, we analysed the interaction networks between the finger residues and the second mod-

ification site on the distal DNA strand (Fig 5). In the native binding conformation represented

by the mC-C’ simulation (Fig 5a), N494 forms 0.76 hydrogen bonds with the OP2 atom of the

unmodified DNA base backbone. This interaction has been described previously as one of the

key features for differentiating between hemi-methylated and symmetrically methylated DNA

[29, 33]. This is in line with our simulation of mC-mC’ in which this interaction is not

observed (Fig 5c), as N494 is pushed away from its native position by steric repulsion of the

additional methyl group. Interestingly, a similar trend is observed for caC-C’ (Fig 5b), for

which the N494-OP2 hydrogen bond is also much weaker (0.13) compared to mC-C’ despite

the lack of any modification on the distal DNA strand. This indicates a shift in the conforma-

tion of the NKR finger similar to the mC-mC’ system, only that in this case the cause is not the

modified base on the distal strand, but it appears that the shift might be mediated by the con-

formations of R489 as described above. Investigating the interaction pattern of the caC-caC’

system (Fig 5d), we observed additional strong salt bridges (3.32) between R496 and the caC’

O51/O52 atoms. No interactions are formed between the modified base and N494, likely

related to steric repulsion similar to the methyl group as in mC-mC’. The interaction pattern

of mC-caC’ (Fig 5e) is similar to caC-caC’, but with slightly weaker individual interactions as

R496 forms only 1.74 salt bridges to the carboxyl oxygens (- 1.58), albeit with support from

spurious interactions of K495 (0.61). In contrast, the interaction pattern of caC-mC’ (Fig 5f)

resembles mC-mC’ with an additional loss of 0.51 hydrogen bonds between N494 and the N4

base atom of mC’, with nearly no polar interactions remaining between the NKR finger and

the modified base.
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R496 is generally a strong interaction partner for the DNA in all simulated systems, partak-

ing in hydrogen bonds with adjacent bases and stacking interactions with the modified base.

The interactions of the carboxyl group seem to modulate this role, either directly through salt

bridges or by influencing stacking, although stacking effects are not quantifiable using classical

force fields. As our analyses showed that only mC-C’ retained the native interaction pattern of

the NKR finger, we were interested in whether there was any effect on the flexibility of the fin-

ger. To quantify this, we compared the Root Mean Square Fluctuation (RMSF) for all protein

residues (Fig 6a). Overall, very similar residue flexibility is observed for most regions of the

protein independent of DNA modifications. Only two regions show substantial differences:

The first is located in the region between residues 468 and 475, which corresponds to the con-

formational flexibility of Y471 discussed above. The second region featuring pronounced dif-

ferences is located between residues 488 and 502 forming the NKR finger (Fig 6b). Although

the NKR finger shows a different conformation in the mC-mC’ simulation, the flexibility of

the finger is comparable to the mC-C’ reference system. In contrast, for the caC-C’, caC-caC’,

and mC-caC’ systems, the finger shows increased flexibility with a slightly different pattern:

Fig 5. Interaction networks of the NKR finger based on molecular dynamics simulations of UHRF1-SRA. Structures show representative

conformations of the NKR finger close to the distal (symmetrical) DNA modification site as observed during the MD simulations. To the right of each

structure a corresponding network of hydrogen bonds (black lines) and salt bridges (red lines) over the course of the simulation is shown. Numbers

next to edges show the average number of interactions per time frame. Edges representing interactions occurring in� 10% of simulation time are

omitted for clarity. For node pairs featuring both hydrogen bonds and salt bridges, only salt bridges are displayed.

https://doi.org/10.1371/journal.pone.0229144.g005
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The hemi-modified variant being more flexible in the 495–499 region and both the caC-caC’

and mC-caC’ variants more flexible between residues 490 and 494. Finally, the largest finger

flexibility of all systems is observed for caC-mC’, in line with the previously observed loss of

interactions of the NKR finger.

UHRF1 encloses the flipped base by inserting a thumb into the minor groove and the NKR

finger into the major groove of the DNA strands. Having observed differences in interaction

pattern and flexibility of the NKR finger depending on the CpG modification pattern, we

asked how the DNA structure around the modified sites was affected. Fig 6c shows that overall

flexibility of the bound strand increases if caC is in the binding pocket, including particularly

strong differences at the flipped xC base in position 6. For the distal strand, flexibility com-

pared to mC-C’ increases in all systems around the modified base 7’ (Fig 6d), likely reflecting

the loss of the stabilizing hydrogen bond between N494 and the DNA backbone. For a more

detailed analysis, we examined how the modified bases affected the minor and major grooves,

as they are strongly influenced by shifts in the DNA backbone. A small but consistent increase

of minor groove width by about 1–2 Å is observed between base pairs 3 to 5 in all simulations

containing caC in the binding pocket, while widths decrease by roughly the same amount

between base pairs 7 and 9 (S9 Fig; locations of base pairs are shown in Fig 1d). The major

groove follows a similar but weaker trend due to the large variances within replicas (S10 Fig).

Although individual effects are small, their consistency and anti-symmetry with respect to the

modified bases 6 and 7’ is notable. Therefore, the flipped base appears to be important for the

local flexibility of the DNA backbone, which is more rigid for mC and more flexible for caC.

This could potentially contribute to the increased flexibility of NKR finger residues,

Fig 6. Root Mean Square Fluctuation (RMSF) of protein and DNA regions in molecular dynamics trajectories of

UHRF1-SRA. (a) Full protein. (b) NKR finger. (c) DNA strand containing the flipped xC base bound by the protein.

(d) Distal DNA strand containing the modified xC’ base. Red dashed lines show the xC/xC’ modification sites.

https://doi.org/10.1371/journal.pone.0229144.g006
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particularly R489, which is in a prime position to sense distortions due to its strong salt bridges

with the phosphate backbone of the flipped base. These observations agree with our interaction

network analyses, showing that binding of a flipped caC base leads to conformational rear-

rangements including the DNA strands in locations close to the modification sites.

In summary, our simulations reveal that all DNA modifications investigated lead to differ-

ences in the conformation and binding pattern of the nucleotide binding pocket and NKR finger

compared to the native conformation of the mC-C’ system. Interestingly, in the hemi-carboxyl-

ated variant caC-C’, local conformational changes in the binding pocket are transmitted to the

NKR finger via R489, which in turn becomes more flexible and thus compromises the essential

N494 hydrogen bond to the C’ backbone on the distal strand [29]. The symmetrically carboxyl-

ated variant caC-caC’ also shows increased NKR finger flexibility, but different interaction pat-

terns, particularly for R489 and R496. The latter forms strong salt bridges with the caC’ modified

base, possibly compensating for the loss of the N494 hydrogen bond. This is in strong contrast to

the recognition of hemi- and symmetrically methylated CpG sites, which show much smaller

differences. Our additional analysis of the hybrid modification variant mC-caC’ suggests that the

NKR finger can recognize and interact with the caC’ modification without large changes in the

binding pocket containing a flipped mC. In the opposite case of caC-mC’, a heterogeneous bind-

ing pocket conformation is met with an almost complete loss of NKR finger interactions with the

mC’ base. Based on this simulation data, we formulate the hypothesis that UHRF1 binding of a

flipped-out caC base leads to conformational changes in the protein, which can propagate to and

induce shifts in the protein’s NKR finger and the DNA backbone. In turn, modification of the

distal DNA strand can influence the overall binding mode via steric repulsion or attractive inter-

actions with the NKR finger, coupling recognition of both modification sites.

Discussion

The role of UHRF1 as a specific hemi-mC reader is well established [1, 3]. Reported dissocia-

tion constants range from 1.8 nM to 9.23 μM depending on the protein construct and DNA

substrate [1, 32, 36, 59, 60] (Table 1). Here, we use a relatively long DNA fragment (42 bp) with

a single modified CpG site, whereas other studies have used either oligonucleotides with multi-

ple methylated sites [1] or shorter DNA fragments with one modification site [29, 32]. We

observe a relatively low preference of hemi-methylated over unmodified DNA compared to

published data [1, 19, 29, 32], which we explain by the lower density of methylated sites in our

experiments. To verify this relation, we also measured binding of a shorter DNA fragment

which increased the affinity of UHRF1 for hemi-mC to the order of what has been reported

in literature [32, 60]. A possible explanation can be given by the proposed “sliding” mechanism

of UHRF1 [60, 61, 68, 69]: In this model, fast unspecific binding occurs between the protein

and DNA, followed by a sliding “scan” for a modified base. Thus, the relative differences in

apparent binding affinities would decrease with the length of the DNA fragments, which corre-

sponds to our observations. In three independent assays, we observe that UHRF1 prefers bind-

ing symmetrically carboxylated CpG sites over the hemi-carboxylated variant, which is the

opposite behaviour as observed for methylcytosine. Interestingly, we also measure increased

affinity of UHRF1 towards hybrid mC-caC’ sites. To find a possible explanation for the

underlying molecular mechanisms of these differences, we performed MD simulations of the

UHRF1-SRA domain in complex with hemi-, hybrid, and symmetrically modified DNA based

on the crystal structure of mC-C’, which features the flipped-out base in the protein’s binding

pocket and the second potentially modified base on the distal strand in the flipped-in state. As

discussed in the results section, we preferred this approach over simulating the entire flipping

process.
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Our simulations revealed substantial differences in the conformations and binding patterns

of the nucleotide binding pocket and the NKR finger between caC and mC modifications. If

caC is bound in the binding pocket, these two regions appear to be coupled and able to influ-

ence each other in a more pronounced manner than for mC. In the caC-C’ system, this coupling

leads to reduced hydrogen bonding between N494 and the DNA backbone, which is an essential

interaction for binding [29]. The same interaction is interrupted by steric repulsion when mC’

and caC’ modifications are present on the distal strand, sterically pushing the NKR finger out of

its native binding position. The simulations provide no indication that the mC’ modification

could be beneficial to overall binding, but the caC’ modification forms stable salt bridges to the

NKR finger, which might compensate for the loss of the N494-DNA hydrogen bond. Thus, the

caC’ oxygens push the NKR finger away from its hydrogen bond with the DNA backbone and

at the same time offer salt bridges to bind the finger in its new position. In this light, we propose

that the carboxyl group of both, the caC and caC’ bases, has a strong influence on their local

interaction network partners in UHRF1, leading to conformational changes in which R489,

N494, and R496 play key roles in differentiating DNA modifications. Other proteins are already

known to recognize caC’ modifications using finger regions: TET3, one of the three dioxy-

genases that generate hmC, fC, and caC, was also shown to specifically bind symmetrically car-

boxylated CpG sites with a finger-like structure containing a NRRT sequence [23]. Comparing

the NKRT sequence of UHRF1 to the NRRT sequence of TET3, it is intriguing to speculate that

such a flexible stretch of basic amino acids facilitates the binding of distant carboxyl groups.

The biological role of UHRF1 binding to symmetrically carboxylated DNA remains to be

determined, considering the low abundance of this modification in cells. For this reason, it is

likely that the majority of UHRF1 in a proliferating cell population interacts with hemi-meth-

ylated CpG sites, but a certain fraction may encounter and bind mC-caC’ and caC-caC’

depending on the cell type and cell cycle phase. Carboxylcytosine has been suggested to be an

intermediate of active DNA demethylation and is detected at gene regulatory elements and

promoters of actively transcribed genes, indicating dynamic DNA methylation turnover [14–

16]. Several DNA repair mechanisms have been associated with this demethylation [70–72],

most prominently removal of fC and caC by TDG and the base excision repair pathway [8, 73–

75]. Interestingly, both UHRF1 and UHRF2 have been shown to play a role in DNA damage

response [76–78]. Additionally, the bona fide UHRF1 interaction partner DNMT1 has been

described to change its genomic localization upon oxidative stress [79, 80]. Furthermore,

besides being demethylation intermediates, fC and caC are thought to influence DNA replica-

tion and genome stability [81, 82]. By transiently pausing RNA polymerases, fC and caC may

lead to precise fine-tuning of gene expression [21]. Accordingly, the binding of UHRF1 to caC

as demonstrated in our study could also represent a way of locus-specific gene expression reg-

ulation in addition to its well-established role in recognizing hemi-mC sites and initiating

DNA maintenance methylation. Last but not least, UHRF1 has recently been described as a

regulator of bivalent promoters and an interactor of SETD1A [83]. Interestingly, both func-

tions have been attributed to TET proteins as well [84, 85]. This raises the intriguing possibility

that UHRF1 integrates several epigenetic marks at bivalent domains and that caC, generated

by TET proteins, is one of these marks involved in maintenance of the bivalent state. However,

further work is needed to determine whether and where exactly UHRF1 binds caC sites in vivo

and what implications this might have on epigenetic gene regulation.

Supporting information

S1 Fig. Raw gel images of EMSA experiments. All raw gel scans that have been used to gener-

ate the EMSA results presented in Fig 2b/2c and S5 Fig. An overview of all individual
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quantitative values and the corresponding statistics is provided on page 1.

(PDF)

S2 Fig. Normalized MST traces of UHRF1 bound to C-C’, mC-C’, mC-caC’ and caC-caC’.

Fluorescence traces that have been used to generate the binding curves in Fig 3. Traces are

shown individually for all modifications and are coloured by experimental replicate. Blue and

red bars indicate the time points that were used for the analysis; blue: tcold (pre infra-red laser),

red: thot (post infra-red laser).

(TIF)

S3 Fig. Root Mean Squared Deviation (RMSD) of DNA atoms in molecular dynamics tra-

jectories of UHRF1-SRA. Coordinates were fitted to the initial crystal structure using the Cα
atoms of protein residues 432 to 586. Only the last 1000 frames of each trajectory were used for

analysis (vertical lines). Horizontal lines were added at 4 Å to highlight trajectories with strong

structural distortions.

(TIF)

S4 Fig. Root Mean Squared Deviation (RMSD) of protein atoms in molecular dynamics

trajectories of UHRF1-SRA. Coordinates were fitted to the initial crystal structure using the

Cα atoms of protein residues 432 to 586. Only the last 1000 frames of each trajectory were

used for analysis (vertical lines). Horizontal lines were added at 4 Å to highlight trajectories

with strong structural distortions.

(TIF)

S5 Fig. EMSAs of UHRF2 with differentially modified DNA. Quantitation of the bound

fraction of EMSAs of wild type UHRF2-GFP with 42 bp DNA oligonucleotides carrying differ-

ent cytosine modifications. Experiments and analyses have been performed as in Fig 2.

(TIF)

S6 Fig. Melting temperatures of modified DNA in presence of UHRF1-SRA. (a) The melt-

ing temperature of double-stranded DNA containing C-C’ in a CpG context (red) or no CpG

site (black) with (solid lines) or without (dotted lines) a 5-fold excess of the SRA domain of

UHRF1, measured using high resolution melting temperature (HRM) analysis. As control,

proteins were digested by proteinase K before HRM analysis (right panel). Experiments were

performed independently three times; one representative experiment is depicted as average of

three technical replicates. (b) Melting temperatures as in (a) with DNA harbouring symmetric

caC (green) or hemi-mC (gray) at the central CpG site.

(TIF)

S7 Fig. Size exclusion chromatograms of differentially modified DNA in the presence or

absence of UHRF1-SRA. To test for different binding stoichiometries of the SRA domain

towards differentially modified DNA, ATTO550-labeled DNA oligonucleotides were incu-

bated with a 10-fold excess of SRA. Size exclusion chromatograms of analyzed DNA oligonu-

cleotides at an absorbance of 554 nm (a) and 260nm/280nm (b) show a clear and comparable

shift in retention time for the SRA-bound DNA (left peaks) compared to free DNA (right

peaks).

(TIF)

S8 Fig. Histograms of distances between Y471 and the flipped-out DNA base in molecular

dynamics trajectories of UHRF1-SRA. Individual replicas are shown as separate bars stacked

on top of each other. Distances were measured between the geometric centres of the phenyl

and pyrimidine rings. Red lines show a gaussian kernel estimate of the probability density

UHRF1 recognizes differences in methyl- and carboxylcytosine modification patterns at CpG dyads

PLOS ONE | https://doi.org/10.1371/journal.pone.0229144 February 21, 2020 17 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229144.s008
https://doi.org/10.1371/journal.pone.0229144


function (pdf). The estimated pdf of the mC-C’ system is shown as black dashed lines.

(TIF)

S9 Fig. Distribution of DNA minor groove widths in molecular dynamics trajectories of

UHRF1-SRA. Blue faces represent gaussian kernel estimates of the underlying values. Black

bars show distribution means and standard deviations.

(TIF)

S10 Fig. Distribution of DNA major groove widths in molecular dynamics trajectories of

UHRF1-SRA. Blue faces represent gaussian kernel estimates of the underlying values. Black

bars show distribution means and standard deviations.

(TIF)

S1 Text. Additional experimental procedures.

(DOCX)

S1 File. Parameter files for mC/caC used during molecular dynamics simulations.

(ZIP)
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Amino Group on Structure, Dynamics, and Elasticity of DNA Polypurine Tracts. Biophysical Journal.

2002; 82(5):2592–609. https://doi.org/10.1016/s0006-3495(02)75601-4 PMID: 11964246

UHRF1 recognizes differences in methyl- and carboxylcytosine modification patterns at CpG dyads

PLOS ONE | https://doi.org/10.1371/journal.pone.0229144 February 21, 2020 20 / 23

https://doi.org/10.1101/gad.250746.114
https://doi.org/10.1101/gad.250746.114
http://www.ncbi.nlm.nih.gov/pubmed/25258363
https://doi.org/10.1016/j.celrep.2015.12.044
http://www.ncbi.nlm.nih.gov/pubmed/26774490
https://doi.org/10.1042/BST20170574
http://www.ncbi.nlm.nih.gov/pubmed/30154093
https://doi.org/10.1371/journal.pgen.1002750
https://doi.org/10.1371/journal.pgen.1002750
http://www.ncbi.nlm.nih.gov/pubmed/22761581
https://doi.org/10.1002/anie.201406220
http://www.ncbi.nlm.nih.gov/pubmed/25159856
https://doi.org/10.1016/j.cell.2012.04.027
https://doi.org/10.1016/j.cell.2012.04.027
http://www.ncbi.nlm.nih.gov/pubmed/22608086
https://doi.org/10.1038/nature07249
https://doi.org/10.1038/nature07249
http://www.ncbi.nlm.nih.gov/pubmed/18772891
https://doi.org/10.1038/nature07273
https://doi.org/10.1038/nature07273
http://www.ncbi.nlm.nih.gov/pubmed/18772889
https://doi.org/10.1371/journal.pone.0021306
https://doi.org/10.1371/journal.pone.0021306
http://www.ncbi.nlm.nih.gov/pubmed/21731699
https://doi.org/10.1093/nar/gks155
http://www.ncbi.nlm.nih.gov/pubmed/22362737
https://doi.org/10.1016/j.molcel.2014.04.003
https://doi.org/10.1016/j.molcel.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24813944
https://doi.org/10.1016/j.bpc.2012.10.002
http://www.ncbi.nlm.nih.gov/pubmed/23245651
https://doi.org/10.1016/j.dnarep.2013.04.003
https://doi.org/10.1016/j.dnarep.2013.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23680598
https://doi.org/10.1016/j.molcel.2014.04.004
http://www.ncbi.nlm.nih.gov/pubmed/24813945
https://doi.org/10.1038/ncomms11197
https://doi.org/10.1038/ncomms11197
http://www.ncbi.nlm.nih.gov/pubmed/27045799
https://doi.org/10.7554/eLife.17101
http://www.ncbi.nlm.nih.gov/pubmed/27595565
https://doi.org/10.1073/pnas.1806373115
http://www.ncbi.nlm.nih.gov/pubmed/30104358
https://doi.org/10.1093/nar/gkp1152
https://doi.org/10.1093/nar/gkp1152
http://www.ncbi.nlm.nih.gov/pubmed/20026581
https://doi.org/10.1038/nmeth.3658
http://www.ncbi.nlm.nih.gov/pubmed/26569599
https://doi.org/10.1016/s0006-3495(02)75601-4
http://www.ncbi.nlm.nih.gov/pubmed/11964246
https://doi.org/10.1371/journal.pone.0229144


42. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE 3rd, Laughton CA, et al. Refinement of the

AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J.

2007; 92(11):3817–29. https://doi.org/10.1529/biophysj.106.097782 PMID: 17351000.

43. Cieplak P, Cornell Wendy D, Bayly C, Kollman Peter A. Application of the multimolecule and multicon-

formational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. Journal

of Computational Chemistry. 1995; 16(11):1357–77. https://doi.org/10.1002/jcc.540161106

44. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, et al. R.E.D. Server: a web ser-

vice for deriving RESP and ESP charges and building force field libraries for new molecules and molec-

ular fragments. Nucleic Acids Res. 2011; 39(Web Server issue):W511–7. https://doi.org/10.1093/nar/

gkr288 PMID: 21609950.

45. Wang F, Becker J-P, Cieplak P, Dupradeau F-Y. R.E.D. Python: Object oriented programming for
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Abstract

Computational methods play a key role for investigating allosteric mechanisms in proteins,

with the potential of generating valuable insights for innovative drug design. Here we present

the SenseNet (“Structure ENSEmble NETworks”) framework for analysis of protein struc-

ture networks, which differs from established network models by focusing on interaction

timelines obtained by molecular dynamics simulations. This approach is evaluated by pre-

dicting allosteric residues reported by NMR experiments in the PDZ2 domain of hPTP1e, a

reference system for which previous computational predictions have shown considerable

variance. We applied two models based on the mutual information between interaction time-

lines to estimate the conformational influence of each residue on its local environment. In

terms of accuracy our prediction model is comparable to the top performing model published

for this system, but by contrast benefits from its independence from NMR structures. Our

results are complementary to experimental data and the consensus of previous predictions,

demonstrating the potential of our new analysis tool SenseNet. Biochemical interpretation of

our model suggests that allosteric residues in the PDZ2 domain form two distinct clusters of

contiguous sidechain surfaces. SenseNet is provided as a plugin for the network analysis

software Cytoscape, allowing for ease of future application and contributing to a system of

compatible tools bridging the fields of system and structural biology.

Introduction

Protein structure networks map atoms from a protein structure to nodes and define edges to

represent atom interactions, e.g. contacts and hydrogen bonds. The resulting networks may be

used to predict e.g. allosteric communication pathways [1–3] with potential applications in

innovative drug design [4–8]. Most commonly, such analyses are based on individual crystal

structures and rely on centrality measures such as betweenness centrality (BC) or characteristic

path length centrality (CPLC) to identify functionally important residues [1–3,9]. However,

application of these algorithms to experimental structures of e.g. the PDZ domain did not
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provide results consistent with experiment [10]. It has been generally recognized that highly

dynamic effects such as allostery, which are not always associated with stable conformations,

are difficult to study solely on the basis of individual experimentally obtained structures [5,11–

13]. Computational methods for analyzing structure ensembles obtained from e.g. molecular

dynamics simulations (MD), which capture the dynamic behavior of proteins, are therefore

attractive for allosteric prediction [11,14–20]. Several tools exist for analysis of structure

ensemble networks, among them xPyder [21], PyInteraph [22], MD-TASK [23], gRINN [24],

PSN-Ensemble [25], NAPS [26,27], RIP-MD [28], Bio3D [29], MDN [30] and the Cytoscape

plugin RINalyzer [31]. A common approach for network analysis of MD data is to define

edges by correlation analysis of atomistic motions, which comes at the cost of losing structural

and conformational details of the underlying interactions. In addition, many approaches use a

rigid mapping of one node per residue, preventing the combination of different levels of reso-

lution, e.g. to separate information flow between backbone and sidechain atoms. Finally, the

majority of tools are provided as standalone programs or webservers, making it difficult to

combine different algorithms within a single analysis session. To address these limitations, we

developed SenseNet, a plugin for the free network analysis software Cytoscape [32]. SenseNet

is based on an alternative strategy to scalar correlation coefficients, namely associating edges

with MD-based timelines, which allow to track the evolution of interactions during a simula-

tion by checking their existence at predefined timeslots. This representation allows for a larger

variety of analyses than correlation-based approaches, like e.g. interaction averages, lifetime

analysis, frame clustering, or shared information between timelines.

Ligand binding often modulates protein function by triggering conformational changes dis-

tant from the binding site. A major goal of computational allosteric prediction is to identify

key residues sensing ligand binding events over long intramolecular distances; in the context

of computational predictions, these residues are commonly labeled as “allosteric”. For the pur-

pose of evaluating these methods, PDZ domains are a well-established reference system. Mem-

bers of this abundant domain class commonly bind C-terminal or short internal peptide

sequences and participate in allosteric interactions with other domains [33,34], serving as initi-

ators and mediators of protein assembly processes [35–37]. Although the domain is allosteri-

cally modulated by its peptide ligands, crystal and solution NMR structures of the PDZ2

domain of hPTP1e (human Protein-Tyrosine Phosphatase 1e) show no substantial conforma-

tional changes between apo and ligand bound states [38]. Therefore, the relationship between

structure, dynamics, and allostery in the PDZ2 domain of hPTP1e was explored by Lee and

coworkers, who identified a number of allosteric residues by probing the effects of ligand bind-

ing and point mutations on NMR backbone and methyl side chain dynamics [38–40]. How-

ever, open questions remain concerning the contribution of residues lacking methyl groups

and how individual residues act together to form allosteric pathways, motivating structure-

based computational prediction as a complementary strategy [41]. Methods previously applied

to the PDZ2 system include interaction energy and correlation networks [42,43], elastic net-

work models [44], hydrogen bond heat diffusion pathways [45], relative entropy networks of

distance distributions (REDAN) [46], and coordinate fluctuations [47,48]. Furthermore, spe-

cialized simulation techniques were employed such as perturbation response scanning [49],

rigid residue scan (RRS) [50], and NMR guided simulations [10,51]. However, results reported

by computational studies have shown considerable variance, warranting efforts to consolidate

and improve prediction models [41].

In this work, we present our network analysis software SenseNet and evaluate two of

therein implemented, timeline-focused algorithms to find pathways of allosteric informa-

tion transfer in the PDZ2 domain. By quantifying how much information the timelines of

physical interactions provide about their environment, we obtained accurate models for
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predicting allosteric residues in PDZ2. Finally, we propose a consolidated allosteric model

combining our results with experimental data and the consensus of previous predictions,

which suggests that PDZ2 contains two allosteric pathways formed by clusters of contiguous

sidechain surfaces.

Materials & methods

Algorithms

Protein structure networks based on interaction timelines. In a structure network as

implemented in SenseNet, each node (which together form the set of nodes N) represents a

single atom or a group of atoms while edges represent interactions between nodes. If several

interaction types (e.g. contacts or hydrogen bonds) are present, a node pair may be connected

by more than one edge. Every interaction is associated with a timeline, representing the differ-

ent states of the interaction in the analyzed ensemble of structures, e.g. simulation frames from

an MD trajectory. We define an atomistic timeline as the vector

Xαβk ¼
1 if a and b interact as type k in frame t

0 otherwise

( #

t

ð1Þ

"

where α, β are nodes representing single atoms, k is an interaction type and t is a simulation

time frame (bold type face denotes matrices and vectors). Timelines of edges connecting two

atom groups (e. g. residues) are calculated as

Xijk ¼
X

a 2 i

X

b 2j

Xαβk ð2Þ

in which i, j are nodes representing atom groups. The connectivity between nodes is given by

the symmetric adjacency matrix

Ak ¼
1 if i and j are connected by an edge of type k

0 otherwise

( #

ij

ð3Þ

2

4

for each interaction type k. In combination, the sets of nodes and edges form a network

which encodes both the structural topology of the protein system and the fluctuations

between different conformational states through its interaction timelines. Those features

can then be subjected to further analyses in order to gain insights into the dynamic behavior

of the protein system. Note that in cases where the network is based on a single structure

instead of an ensemble of structures, the network model reduces to a simple form where

each timeline has a length of one and corresponds to the number of interactions between

the connected nodes.

Allosteric prediction based on correlation between interaction timelines. We propose

two novel algorithms, the node correlation factor (NCF) and difference node correlation factor

(DNCF), to predict residues associated with allosteric function in proteins. Our model presup-

poses that in order for a residue to have an observable allosteric function, its conformations

must be correlated to conformational changes in its immediate environment. The conforma-

tional states of all residues are encoded within the interaction timelines in the network. We

define the immediate environment as the interactions represented by neighboring edges, i.e.

edges which are separated by at most a single node. Hence, we begin by considering how each

interaction is correlated to interactions in its immediate environment. By applying this
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definition, we obtain the edge neighbor correlation factor (ECF) as

ECF i; j; kð Þ ¼ Akð Þij �
X

l 2 K

X

n;m 2 N

I Xijk;Xnml

� �
� Alð Þnm � wijk n;m; lð Þ ð4Þ

with i, j belonging to the node set N, k and l being part of the interaction type set K, and I is the

mutual information function

I X;Yð Þ ¼
X

x2X

X

y 2 Y

p x; yð Þ � log
2

p x; yð Þ

p xð Þp yð Þ

� �

ð5Þ

in which p(x, y) represents the joint probability of values x and y and p(x) corresponds to the

marginal probability of state x in timeline X. The mutual information function is a non-linear

measure of correlation quantifying the information shared between timelines, i.e. the increase

of predictability of the states in timeline X if the other timeline Y is observed [52]. Further-

more, χ represents an indicator function selecting the neighboring edges of i, j, k and is defined

as

wijk n;m; lð Þ ¼ din þ djm � dindjm dkl þ 1ð Þ ð6Þ

where d is the Kronecker delta and the δkl term serves to exclude the self-information of edge i,
j, k. The definition ECF score is intuitively illustrated using the network shown in Fig 1. The

ECF score of the blue edge is calculated as the sum of mutual information contributions

between the blue edge and all its neighboring edges, shown in green. Each contributing mutual

information term indicates the strength of correlation between the interaction represented by

Fig 1. Example network demonstrating the calculation of edge correlation factor (ECF) and node correlation

factor (NCF) scores. The ECF score of edge i, j, k (blue) is obtained by summing the mutual information of timeline

Xijk shared with the timelines of neighboring edges (green). The self-information I(Xijk, Xijk) is excluded. Subsequently,

the NCF score of node i is calculated as the sum of ECF scores of all edges connected to i.

https://doi.org/10.1371/journal.pone.0265194.g001
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the blue edge and the respective neighboring interaction. If the interaction states represented

in the timeline of the blue edge are strongly correlated to the interaction states of its surround-

ing edges, it will lead to a high ECF score, suggesting that changes in one interaction may affect

its immediate environment; In other words, information about conformational states could

then potentially be transmitted via these strongly coupled interactions. Summing up the ECF

scores of a node’s adjacent edges gives the node correlation factor (NCF) which can be

expressed as

NCF ið Þ ¼
X

k 2 K

X

j 2 N

ECF i; j; kð Þ ð7Þ

and highlights residues with strong conformational coupling. These residues, as they partici-

pate in interactions that may transfer information to their environment, are thus likely candi-

dates for showing behavior associated with protein allostery.

As an extension to the model, another aspect can be considered for the prediction of alloste-

ric residues, namely the conformational differences between two states of a protein system, e.g.

ligand bound and ligand free. The difference node correlation factor (DNCF) quantifies

changes in timeline coupling between two networks, each created from a different MD trajec-

tory simulating either the ligand bound or the ligand free state. After selecting one trajectory

as the reference and the other as the target, the definition of Eq 5 is adjusted to

I X;Yð Þ ¼
X

x 2 [ X;X̂ð Þ

X

y 2[ Y;Ŷð Þ

p x; yð Þ � log
2

p x; yð Þ

p xð Þp yð Þ

� �

� p̂ x; yð Þ � log
2

p̂ x; yð Þ

p̂ xð Þp̂ yð Þ

� ��
�
�
�
�

�
�
�
�
�
ð8Þ

with X^; Y^denoting the timelines from the reference simulation matching the locations of X
and Y of the target simulation and p̂ representing the probabilities of the reference timelines.

Note that edges which exist solely in the reference network do not contribute, therefore the

score is not symmetric with respect to interchanging target and reference networks. Substitu-

tion of Eq 8 in Eq 4 yields the DNCF score. The DNCF score measures the change in shared

information between equivalent interaction timelines in the target and reference systems. This

can be illustrated with the following example: Suppose there are two neighboring interactions

obtained from MD simulations of the system, and the timelines show that they are strongly

correlated. Then the same system is simulated again, but now including a ligand bound to an

allosteric site, which are sensed by residues associated with allosteric function. The binding of

a ligand to an allosteric binding pocket is likely to change the nature and efficacy of informa-

tion transfer within the protein, which can manifest stronger or weaker coupling between

interaction timelines. The DNCF score is composed of the pointwise mutual information con-

tributions of the allosterically activated system as encoded in timelines X and Y, from which

the contributions of the equivalent reference timelines X^ and Y^ are subtracted. Thus, high

DNCF scores are expected from residues for which the coupling of interactions changes

between the target and reference network, i.e. before and after binding of a ligand to an alloste-

ric site.

An essential feature of our model emerges from the definitions of the ECF, NCF and DNCF

scores, namely the explicit locality of network effects. By limiting our analysis on the shared

information between adjacent residues in the network, the influence of spurious correlation is

reduced. To illustrate, consider that any pair of residues in a protein, no matter how far apart,

would be compared. This would lead to a drastic increase of evaluated correlation terms, and

thus more residue pairs showing high correlation by pure chance. At the same time, the proba-

bility that two residues influence each other directly in a substantial manner (i.e. without
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detectable changes in the residues between them) is lower if they are far apart, especially as the

physical interactions included in our analysis, i.e. hydrogen bonds and carbon contacts, are of

limited range. Adding up contributions of distant residues would thus substantially increase

the noise introduced in the analysis. Instead, we propose that in most cases it is more produc-

tive to focus on the identification of neighboring residues directly exchanging information,

and to analyze how they build chains of signaling residues. However, in instances of allosteric

communication lacking this locality of effects, other methods may be more accurate.

Network node centrality methods for allosteric prediction. Measures of node centrality

are commonly used to detect functional residues using protein structure networks [1,2,9].

When applying these methods to prediction of allosteric residues, it is postulated that residues

important to transferring signals between functional sites are related to the most central nodes

in the structure network, i.e. nodes that are essential when walking the shortest path between

nodes along network edges. SenseNet implements two centrality functions for this purpose:

Betweenness centrality (BC) finds those nodes which are located on the largest number of

shortest paths over all possible node pairs [1,53]. It is defined as

BC ið Þ ¼
X

j;k 2 N; i6¼j6¼k

sjkji

sjk
ð9Þ

where i, j, k belong to the set of nodes N, σjk is the number of shortest paths between j and k,

and σjk|i is the number of shortest paths between j and k passing through i. The second method

implemented in SenseNet is characteristic path length centrality (CPLC) [9]. For this method,

nodes that are crucial for maintaining the shortest paths are presumed to be key to communi-

cation, as measured by the robustness of shortest paths to the removal of individual nodes [9].

In order to determine the robustness of the network, the characteristic path length, i.e. the

average length of shortest paths in the network is considered as

L ¼
1

Np

X

i;j 2N; i >j

d i; jð Þ ð10Þ

where N is the set of nodes, Np is the number of node pairs in the network and d(i, j) is the

minimum number of edges to be traversed between i and j. The CPLC score corresponds to

the effect of removing a node on the characteristic path length of the network, which can be

expressed as

CPLC ið Þ ¼ jL � Lij ð11Þ

where Li is the characteristic path length of the network after removal of node i.
The BC and CPLC algorithms are commonly applied to individual (crystal or NMR) struc-

tures and do not trivially transfer to structure ensembles from MD simulations. This is because

the networks obtained from MD simulations contain a large number of additional spurious

interactions in the network compared to a crystal structure. Since Eqs 9 and 10 utilize the

shortest paths between nodes along a chain of edges without accounting for the stability of the

interaction, an interaction present only in a tiny fraction of the simulation could be considered

with the same importance as more long-lived, substantial interactions. In contrast, NCF and

DNCF methods intrinsically limit the influence of spurious interactions due to the explicit

locality of contributing interactions and by definition through the mutual information func-

tion. For this reason and the fact that BC and CPLC are most commonly used with individual

structures, we applied these methods only to networks obtained from crystal and NMR

structures.
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Molecular dynamics simulations

MD simulations in this work are based on the crystal structures of hPTP1E-PDZ2 in the apo

state (PDB-ID: 3LNX) and bound to the C-terminal peptide of RA-GEF-2 (PDB-ID: 3LNY) as

well as the corresponding solution NMR structures 3PDZ and 1D5G, using the first model

provided in the files. These NMR structures were chosen to allow for direct comparison with

previous studies [10,39]. Protein and ligand residues missing in the crystal structures were

added based on their NMR structure analogues using Modeller 9.18 [54], creating 100 candi-

date structures and selecting the model with the best DOPE score for simulations and network

analyses. MD simulations were performed using the Amber16-AmberTools17 software suite

[55] with the Amber14SB force field [56] and TIP3P water [57]. The system was solvated in a

cubic water box using a minimum solute-face distance of 12 Å and 150 mM NaCl. For the

nonbonded interactions a 12 Å direct space cutoff and PME summation for electrostatic inter-

actions were applied. Energy minimization was performed until convergence to 0.01 kcal �

mol-1 � Å-1 was reached using the XMIN minimizer. Afterwards, the volume of the solvent

box was adjusted to a solvent density of 1.00 kg � m3. For all simulations a time step of 1 fs was

applied and SHAKE [58] was used for hydrogen-containing bonds. Systems were gradually

heated from 0 to 300 K over 1.7 ns using a variant of our published heatup protocol [59],

restraining all heavy atoms by 2.39 kcal � mol-1 � Å-2 until 20 K and all backbone atoms until

200 K. For the first 1.2 ns of the heatup a Langevin thermostat was used with a collision fre-

quency of 4 ps-1 and for the last 0.5 ns a Berendsen barostat was employed with a relaxation

time of 2 ps. Afterwards the NPT ensemble was used with a slow coupling Berendsen thermo-

stat at 300 K (coupling time: 10 ps) in combination with a Berendsen barostat (relaxation time:

5 ps). For each system, ten independent simulations were performed for 1 μs each (based on

separate heatup runs and different randomized Langevin seeds). The initial 100 ns of each rep-

licon were removed before analysis to reduce bias towards initial structures. Trajectory post-

processing was performed with CPPTRAJ [60], using the “nativecontacts” command for con-

tact timelines of carbon atoms (saving both native and nonnative time series), and the

“hbond” command for hydrogen bonds (distance cutoff 3.5 Å; angle cutoff 135˚). The data

generated by CPPTRAJ provided the interaction timelines for all network analyses based on

MD trajectories, i.e. for the NCF and DNCF methods. Interaction data for BC and CPLC anal-

yses were extracted directly from the corresponding PDB files using AIFgen with equivalent

settings for interactions and distance/angle cutoffs as detailed for CPPTRAJ (see example

script in S2 File).

Protein structure networks

For analyses of protein structure networks and related quantities we used the SenseNet plugin

(version 1.0.0) for Cytoscape (version 3.6.1) [32]. In order to create a network, SenseNet

requires a list of atom-atom interaction timelines, where each interaction is defined by a mini-

mum of one source atom, one target atom, an interaction type (e.g. hydrogen bond), and a

timeline represented as a list of interaction values corresponding to each time frame (e.g. a list

where 1 indicates presence of an interaction, while 0 indicates absence in each given frame).

As a general input data format for SenseNet, we defined the AIF file format, which provides a

list of interaction timelines as a structured text file that can be easily created, inspected and

modified using a text editor (see S2 File for an example of the format). SenseNet provides tools

for automatic generation of AIF files from multiple sources. Lists of interaction timelines as

created by the CPPTRAJ “hbond” and “nativecontacts” analyses can be directly converted into

AIF format using the SenseNet GUI or AIFgen, which provides a command line interface to

the GUI functions available in SenseNet. Alternatively, SenseNet and AIFgen can extract
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timelines of pairwise contacts or hydrogen bonds directly from PDB files using the same crite-

ria as implemented in CPPTRAJ. Example scripts demonstrating the workflow for AIFgen for

converting CPPTRAJ outputs and extraction of interactions from PDB files are given in S2

File. For this work, we converted CPPTRAJ outputs of contact and hydrogen bond analyses

into AIF files using AIFgen (version 1.0.4).

ECF scores were calculated with SenseNet using the therein implemented “Correlation”

function set to the “Mutual information” mode. Then, the “Degree” function was used to sum

over the ECF scores calculated in the previous step. DNCF scores were calculated after import-

ing first the reference and target systems (see Eq 8) as separate networks. As references in the

context of DNCF calculations, we selected the network generated from the corresponding

ligand bound simulation for the analysis of the network of the free protein, and vice versa. The

DNCF scores were calculated using the “Correlation” function set to “Mutual information dif-

ference”. The obtained edge scores were then summed up using the “Degree” function. Edges

of the two networks were considered equivalent if they connected the same residues and were

of the same interaction type (Edge mapping in SenseNet set to “Match Location”). Contact

betweenness centralities (BC) [53] and characteristic path length centralities (CPLC) [9] were

calculated using the respective modes within the “Centrality” function and normalized using

the min-max procedure. For high throughput analyses, we used the CyREST interface of

Cytoscape to call the corresponding SenseNet functions. Plots were generated using matplotlib

(version 3.0.3) [61] with pictures of molecular structures by VMD (1.9.3) [62] and open-source

PyMOL (version 1.8.4.0) [63].

Prediction of allosteric residues

Predictions were verified against methyl sidechain dynamics data [39], using classifications as

allosterically active and inactive as defined by Cilia et al. (“NMR dataset”, n = 25, see S1 Table)

[10]. In that study, backbones of NMR structures and Monte Carlo sampling were used to find

correlated side chain torsions. As this method was not applicable to alanine residues, the

authors evaluated prediction performance using either the complete NMR dataset or a variant

excluding alanine residues (“NMR-Ala dataset”, n = 21). To be consistent with these former

studies, we chose to adopt this scheme in this work. Receiver Operating Characteristic (ROC)

curves were generated by plotting, for various prediction score thresholds, the corresponding

False Positive Rates (FPR) and True Positive Rates (TPR) with False Positives (FP), True Posi-

tives (TP), False Negatives (FN) and True Negatives (TN) according to the NMR datasets. In

addition, we generated Precision-Recall (PR) curves based on Precision (PPV) and Recall

(equivalent to TPR) scores. The overall prediction performance was evaluated by calculating

the area under the curve for both ROC (rocAUC) and PR plots (prAUC) using trapezoidal

integration.

Results

Features and Implementation of SenseNet

SenseNet reads interaction data from structure ensemble files in PDB format or MD trajectory

analysis outputs generated by CPPTRAJ [60]. By default, each node corresponds to a single

amino acid and edges represent interactions on the amino acid level. SenseNet automatically

determines the network topology from these timelines (Fig 2A), offering different adjustment

options from removing rare interactions to considering only certain interaction types. Differ-

ent levels of timeline analyses are possible, as users can either scroll through single time frames

to investigate e.g. network evolution or time-dependent interactions, or analyze time-averaged

networks. At any point during a running session, residue level nodes and associated
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interactions can be split into individual atoms, allowing for system specific tailoring of differ-

ent resolution levels. As an example application providing a detailed demonstration of this

concept, we refer to our previous study analyzing the recognition of different DNA modifica-

tions by the protein UHRF1 [64]. SenseNet’s user interface is separated into the main network

and three control areas (Fig 2B). The left panel allows access to implemented analysis functions

and displays visualization status information, such as the selected edge weighting scheme or a

bar to scroll through different time frames of the network. Whenever an analysis is performed,

a summary of obtained results appears on the right panel, either as tables or plots. In addition,

results are written into the node and edge data tables in the bottom region, from where they

can be utilized by other analysis functions, either by SenseNet or other tools. This workflow, in

Fig 2. Example of parallel network and structure visualization using SenseNet. (a) Data representation, workflow

and parallel representation of networks and molecular structures. (b) Example session showing the SenseNet GUI in

Cytoscape.

https://doi.org/10.1371/journal.pone.0265194.g002
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combination with side-by-side network and structure visualization, allows for a rapid explor-

ative cycle of performing quantitative analyses and intuitive exploration of the underlying

structural details.

For quantitative analysis of timeline data, SenseNet offers functions for calculating timeline

correlation, entropy, autocorrelation, lifetime, clustering, and network comparison. In addi-

tion, search algorithms for shortest paths as well as centrality measures are provided. Analysis

results are presented as tables or plots and can be exported as raw data or images. For large

scale workflows, analyses can be automated via batch script files or the CyREST interface. Net-

work and structure visualization can be carried out in parallel by connecting SenseNet to the

PyMOL [63], VMD [62], or UCSF Chimera [65] structure viewers, automatically highlighting

selected nodes and edges from the network in the protein structure.

Evaluation of allosteric prediction methods using the PDZ2 domain

First, we reinvestigated the allosteric prediction performance of betweenness centralities (BC)

and characteristic path length centralities (CPLC) based on networks generated from NMR

and crystal structures, which had previously shown poor prediction performance for the PDZ2

system with CPLC as the best performing centrality model [10]. This allowed us to verify our

implementation and to compare different network methods based on the same dataset. In line

with the aforementioned work, we determined ROC and PR curves measuring the prediction

accuracy of tested models with respect to the NMR dataset, which is composed of allosteric

and non-allosteric residues based on methyl sidechain dynamics, and the corresponding

NMR-Ala dataset variant excluding alanines [10,39] (S1 Table). In an attempt to replicate the

network centrality predictions from Cilia et al. (NMR: 0.54, NMR-Ala: 0.59) [10], we calcu-

lated CPLC scores based on the crystal and NMR structures of the PDZ2-RA-GEF-2 complex

using a carbon contact distance cutoff of 5 Å. For the NMR structure, resulting rocAUC scores

were very close to the previously reported values (NMR: 0.55, NMR-Ala: 0.56) and only mod-

estly higher for the crystal structure (NMR: 0.65, NMR-Ala: 0.69), indicating that the differ-

ences are only due to subtly differing details in network implementations.

In contrast to the centrality approach, interaction timelines generated from structure

ensembles allow to additionally analyze the correlation between interactions, as quantified by

the NCF and DNCF scores (see Materials & Methods). In general, residues with high NCF

scores provide information, through linear and nonlinear correlation, about the interaction

state of their environment. While the NCF estimates the information of residues within a sin-

gle simulation, the DNCF score models the corresponding differences between two simula-

tions, e.g. with and without a ligand. In order to obtain the structure ensembles necessary for

calculation of these scores, we performed ten 1 μs MD simulations of the free PDZ2 domain

and the PDZ2-RA-GEF-2 peptide complex. Timelines of contacts and hydrogen bonds were

extracted and converted into protein structure networks using AIFgen and analyzed using

SenseNet. First, we systematically evaluated all compared network methods (BC, CPLC, NCF,

DNCF) using a grid search of 48 parameter combinations (S2 Table). These combinations

were obtained by varying the contact distance cutoff from 4 to 9 Å, the interaction subset set-

tings (all or only inter-sidechain interactions), and networks generated from different sources

(apo- or peptide-bound structures; NMR or crystal structures). To understand which parame-

ters are most important for prediction performance, we grouped all data points according to

these categories followed by analysis of the obtained rocAUC score distributions. In the follow-

ing, we focus predominantly on the results obtained for the NMR-Ala dataset, as alanine resi-

dues proved to be particularly difficult to predict for all methods tested here as well as those

previously published. Fig 3A shows that average rocAUC scores over all combinations were
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consistently highest for the DNCF method, followed by NCF and finally CPLC and BC, which

registered 8–11% lower average AUC scores compared to the former methods. In a more

detailed view (Fig 3B), we observed that on average, prediction performances improved if apo

PDZ2 was used as starting structure compared to peptide bound systems, with relatively small

differences for CPLC, BC, and DNCF (up to 5%), but more substantial improvements for NCF

Fig 3. Influence of network parameters on prediction model performance based on the NMR-Ala reference set. Shaded areas show distribution estimates based on

a gaussian kernel with added labels for mean and standard deviation. (a) Distributions including all parameter combinations. (b) Source of analyzed network data:

Crystal structures (apo, pep) or NMR based structures (apo-NMR, pep-NMR). (c) Interaction subset: All interactions or sidechain-exclusive networks. (d) Distance

cutoff for carbon-carbon contacts in the network.

https://doi.org/10.1371/journal.pone.0265194.g003
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(up to 9%). Interestingly, the NCF prediction performance based on the apo systems was

almost as high as the DNCF scores although, in contrast to DNCF, they do not contain any

information about the ligand. Regarding the set of included interactions in the network (Fig

3C), rocAUC scores increased on average by 2–4% if only inter-sidechain interactions were

considered. Finally, analysis of contact cutoff distances shows that BC and CPLC method per-

formances appear to peak at 6 Å, whereas a 4 to 5 Å cutoff worked best for the DNCF and

NCF methods (Fig 3D). Observing the shape of rocAUC distributions and the lower perfor-

mance limit for worst-case parameters can give an indication about the sensitivity of a method

to choosing inappropriate network parameters. For BC and CPLC methods, several parameter

combinations led to essentially random prediction performance (rocAUC ~ 0.5) (Fig 3), indi-

cating a high sensitivity to parameter choices in order to achieve good accuracy. In contrast,

NCF and even more so DNCF were consistently more robust, as they showed better perfor-

mances even for suboptimal parameters over all categories (Fig 3). Many of the observed

trends are reflected, to a lesser degree, on the full NMR reference set which includes alanine

residues (S1 Fig). In conclusion, we first observe that all parameter categories follow consistent

trends, highlighting the importance of parameter choice for prediction quality, which is partic-

ularly true for methods based on centrality. Second, this consistency is also observed if the dif-

ferent methods are compared, i.e. the favorable performances of NCF and DNCF models

relative to centralities are reflected throughout all parameter settings.

The best performing CPLC model was obtained for the apo PDZ2 crystal structure and a

carbon contact cutoff of 6 Å in a sidechain exclusive network, interestingly differing from the

original evaluation discussed above (5 Å and including backbone interactions) [10]. Using the

optimized parameters, the rocAUC score for the NMR-Ala dataset increased by 5% to 0.74,

while performance for the NMR dataset degraded by 1% to 0.64, respectively (Table 1). The

corresponding prAUC scores increased by 2% for the NMR dataset (0.75 to 0.77) and 5% for

NMR-Ala (0.78 to 0.83). The BC method performed optimally with the same parameter set as

CPLC, but with about 3 to 4% lower rocAUC scores (Table 1). Overall, only modest perfor-

mance improvements could be achieved for the BC and CPLC methods by variation of net-

work parameters.

For both DNCF and NCF models, the optimal parameter set consisted of a 4 Å contact cut-

off in a sidechain exclusive network using simulations of the apo-NMR PDZ2 structure. Of all

settings tested in the parameter search, DNCF was found to be the best overall predictor,

achieving a rocAUC of 0.71 and prAUC of 0.82 on the full NMR set, which corresponds to a 5

to 7% improvement compared to the CPLC model. Accordingly, the performance on the

NMR-Ala set was also higher than for the centrality methods with a rocAUC of 0.81 and a

prAUC of 0.88. The best NCF model showed similar overall trends, but individual AUC scores

were 1–5% lower (Table 1). In line with most published methods, rocAUC scores were

Table 1. Allosteric prediction performance of network-based models.

Reference set Method rocAUC prAUC

NMR NCF 0.66 0.79

NMR DNCF 0.71 0.82

NMR BC 0.61 0.74

NMR CPLC 0.64 0.77

NMR-Ala NCF 0.78 0.86

NMR-Ala DNCF 0.81 0.88

NMR-Ala BC 0.70 0.80

NMR-Ala CPLC 0.74 0.83

https://doi.org/10.1371/journal.pone.0265194.t001
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consistently 7–10% lower for the NMR dataset compared to NMR-Ala, which highlights the

general difficulty for predicting this residue type (Table 2).

In order to obtain sufficient statistical sampling for the determination of optimal model

parameters, we performed a total of 10 μs of simulations, which constitutes an increasingly

common but still substantial computational effort at this time for a system the size of PDZ2.

While such an effort is justified for evaluation studies, for practical and effective application a

guideline as to what amounts to a reasonable simulation time should be established. To gain a

rough estimate of this and the convergence of our model, we repeated our analysis using the

DNCF model with optimal parameters, but with truncated trajectories for each replica. The

first analysis was performed on trajectories shortened to contain only the first 100 ns (after

removing the initial 100 ns to reduce replica bias towards the initial structure, as detailed

above), yielding a cumulative simulation time of 1 μs (10 x 100 ns). Then, subsequent analyses

were performed on the first 200 ns yielding a cumulative time of 2 μs, then 300 ns for 3 μs, and

so on. This approach was chosen since it shows directly how our results would have changed

had we chosen a shorter simulation time for our analysis. The obtained DNCF scores were

compared to the NMR-Ala and NMR datasets and rocAUC and prAUC calculated accordingly

(Fig 4A and 4C). These data indicate an improvement of prediction performance up until

about 3 μs of cumulative simulation time, and remaining approximately constant past that

point. Taking those 3 μs as the target time, we proceeded to determine whether it was more

beneficial to use fewer replicas with longer individual simulations, or to use more replicas in

combination with shorter simulation times. Thus, we compared predictions using between

four and ten replicas, taking the appropriate amount of simulation frames from each replica to

reach a total simulation time of 3 μs. For example, when using four replicas, each replica trajec-

tory contributed 0.75 μs (total 3 μs from 4 x 0.75 μs), whereas for five replicas each contributed

0.6 μs, and so on. This analysis was performed for each possible combination of replicas, e.g.

for four replicas we considered all ways to pick four replicas out of the total of ten replicas.

Judging from both the means and standard deviations of rocAUC/prAUC results (Fig 4B and

4D), it is clearly beneficial to use up to 8 replicas, corresponding to 8 replica simulations of 375

ns each, to obtain a cumulative simulation time of 3 μs. With only two data points following

after, it is unclear whether this trend would persist further, though we do not expect substantial

improvements considering that the values observed at 9 and 10 replicas seem to indicate that a

plateau was reached. Based on the totality of the data, we conclude that our DNCF model is

adequately converged for the purpose of this study. It should be noted that our analysis consti-

tutes a very rough estimate that is specifically limited to the PDZ2 system, whose allostery does

not involve substantial conformational changes.

It has been pointed out that the allosteric residue sets from published computational predic-

tions differ substantially for the PDZ2 system [41], fueling our interest determining how well

Table 2. Comparison of DNCF prediction performance with other published computational methods.

Reference set Method rocAUC prAUC

NMR DNCF 0.71 0.82

NMR NMR/MC 0.74 0.82

NMR RRS 0.65 0.75

NMR REDAN 0.67 0.65

NMR-Ala DNCF 0.81 0.88

NMR-Ala NMR/MC 0.81 0.87

NMR-Ala RRS 0.72 0.80

NMR-Ala REDAN 0.62 0.61

https://doi.org/10.1371/journal.pone.0265194.t002
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these models agree with the NMR datasets. However, comparing models based on binary clas-

sifications alone can be misleading, since each classification relies on an implicit sensitivity

threshold which might differ drastically between models. ROC and PR curves are more suit-

able for this task since they evaluate prediction performances at all possible thresholds, but

require raw prediction scores, which are not always available. Fig 5 shows the ROC and PR

curves for the models described above and those for which accompanying literature included

the necessary scores. We observed comparably high performances for the DNCF and NMR/

MC [10] models (Table 2, differences within 1–2%), followed by RRS [50] and REDAN [46].

As the NMR/MC model requires NMR structure data, the DNCF method offers a substantial

advantage as the necessary simulations can be based on much more commonly available crys-

tal structures. Thus, although these two methods show comparable accuracy, we expect that

the DNCF method can applied to a wider range of systems. We also believe that the method

has the potential to show improved results for systems for which induced fit phenomena are

important, i.e. for which the conformational ensembles of the apo- and holo-structures differ

considerably.

Application of allosteric predictions to the PDZ2 domain

Having established good agreement between DNCF scores and allosteric residues, we investi-

gated the usefulness of these additional features for the biochemical interpretation of our pre-

dictions in the PDZ2 structure. Integrating the DNCF scores of the model described above

into the structure network (Fig 6A and 6B) reveals two high scoring clusters of residues

Fig 4. Effect of simulation time and number of replicas on prediction performance of the final DNCF model. (a,c) Timelines of all ten

replicas were truncated, merged to the specified cumulative simulation time and analyzed successively. 1 μs of cumulative simulation time

corresponds to a simulation time of 100 ns per replica (10 x 100 ns) after equilibration. (b,d) Cumulative simulation time of 3 μs was

obtained from combining the appropriate amount for frames from the specified number of replicas. In the case of four replicas, each

replica trajectory contributed 0.75 μs (total 3 μs from 4 x 0.75 μs), for five replicas each contributed 0.6 μs, and so on. Circles and bar

handles represent the mean and standard deviation calculated over all possible replica combinations.

https://doi.org/10.1371/journal.pone.0265194.g004
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(clusters I and II). The majority of allosteric residues of the NMR dataset are located in cluster

I, which stretches from the top region of the binding pocket towards helix α1 and sheet β1 (Fig

6B–6D). On the other hand, cluster II encompasses the lower part of the binding pocket sur-

rounding the flexible loop L1 (residues 24–33), including the allosteric residues V26 and V30,

furthermore its interaction partners R57, Y36, and finally the C-terminal region.

Comparing these observations to other network scoring methods, the NCF model shows a

very similar cluster structure (Fig 7A), whereas for CPLC we observed increased scores for res-

idues located next to the peptide binding groove, e.g. V22, L66, H71, A74, V75 and L78 (Fig

7B–7D). This can be explained directly by the definition of CPLC (see Algorithms section),

which attributes high scores to residues bridging structural modules, e.g. binding grooves. On

the other hand, centrality scores for loop L1 (specifically residues 30 to 32) in cluster II are sub-

stantially lower than in the timeline-based NCF and DNCF methods, which might be

explained by the difficulties of a single structure network to represent the switching contacts of

flexible regions. This indicates that centrality methods may fail to account for regions with

intrinsic flexibility like the L1 loop, for which methods based on structure ensembles are

potentially more appropriate.

Consensus model of allosteric information flow in PDZ2

Finally, we defined a new consensus model of allosteric information flow consolidating our

and previous prediction models. For this we first determined a “consensus set” composed of

residues predicted as allosteric in� 50% from a selection of published studies (S3 Table)

[10,42–45,47–51,66]. Next, we obtained a core set of allosteric candidates from our DNCF

model, using the score threshold closest to the top left corner in Fig 5B (6.17 bits in S4 Table;

TPR: 0.75; FPR: 0.11). This core prediction set (Fig 8 and S5 Table) contains 9 out of 14 resi-

dues from the NMR dataset and 11 of the 18 from the consensus set, while 14 residues are

Fig 5. ROC and PR curves of selected prediction models. (a) ROC curve based on the NMR reference set. (b) ROC

curve based on the NMR-Ala reference set. (c) PR curve based on the NMR reference set. (d) PR curve based on the

NMR-Ala reference set.

https://doi.org/10.1371/journal.pone.0265194.g005
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complementary predictions. Of these infrequently predicted residues, three form a contiguous

surface located on the sheet β1 (F7, V9, L11), connected via L18, V85, and L87 to the peptide

binding pocket (Fig 6D). In NMR experiments, V9 was shown to respond to the binding

pocket I20F mutation with L11 and L87 as presumed linker residues [40], an interpretation

supported by our model. Notably, the clusters surrounding V9 and Y36 agree very well with

the DS3 and DS4 regions described previously [10]. Predictions of the C-terminal tail residues

Fig 6. Allosteric predictions of the final DNCF model mapped to PDZ2 structures. For visual clarity, only edges occurring in�0.1% of simulation time are

shown. (a) Network representation of DNCF predictions. Nodes are colored from low (white) to high (red) DNCF scores. (b) DNCF scores mapped to the apo

PDZ2 structure (PDB-ID: 3PDZ). (c) Network showing experimentally determined allosteric residues (red) from the NMR dataset. (d) Allosteric clusters

mapped to the RA-GEF-2 bound PDZ2 structure (PDB-ID: 1D5G): Cluster I (yellow surface) and Cluster II (purple surface). Specific residues discussed in the

text are additionally shown as sticks.

https://doi.org/10.1371/journal.pone.0265194.g006
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(93 to 96) are difficult to assess as the high flexibility of free chain termini might not properly

represent the common biological state, i.e. PDZ2 embedded in a multi-domain protein. Previ-

ous studies have formulated the idea of up to four separate distal sites (DS1—DS4) identified

by following the interconnected surfaces of allosteric residues [10,39,66]. Our results suggest

the existence of at least two allosteric clusters: Cluster I which encompasses DS1, DS2, and

DS3, while cluster II corresponds to DS4.

Discussion

Integration of interaction timelines from molecular dynamics simulations into protein struc-

ture networks provides a promising framework for investigating dynamic effects in proteins

Fig 7. Allosteric predictions of the final NCF and CPLC models mapped to PDZ2 structures. Nodes colored from low (white) to high (red) scores. (a)

Network representation of NCF predictions. For visual clarity, only edges occurring in�0.1% of simulation time are shown. (b) Network representation of

CPLC predictions. Edge colors are shown in light grey to increase clarity. (c) CPLC scores mapped to the apo PDZ2 structure (PDB-ID: 3PDZ). (d) Notable

residues predicted by CPLC mapped to the RA-GEF-2 bound PDZ2 structure (PDB-ID: 1D5G).

https://doi.org/10.1371/journal.pone.0265194.g007

PLOS ONE SenseNet, a Cytoscape 3 plugin for analysis of MD-based interaction networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0265194 March 17, 2022 17 / 24

https://doi.org/10.1371/journal.pone.0265194.g007
https://doi.org/10.1371/journal.pone.0265194


such as allostery. In this work, we introduce our network analysis tool SenseNet which builds

on this theoretical foundation. Using the PDZ2 domain as a reference system, we evaluated

four allosteric prediction models implemented in SenseNet, i.e. BC, CPLC, NCF and DNCF,

and determined a set of network parameters optimizing their accuracy. Our results are consis-

tent with literature data, as structure networks frequently use carbon contact cutoff distances

between 4–6 Å [10,19,47,67,68], which corresponds approximately to the upper limit of attrac-

tive Van-der-Waals interactions. The trend for better prediction results using apo protein

states might reflect the observed rigidification of the ligand binding site after binding [39] and

is in line with previous suggestions that allosteric mechanisms may be intrinsic properties of

apo structures [42,69]. Finally, the improvements observed in sidechain exclusive networks

mirror the origins of the NMR dataset, which was obtained from methyl sidechain dynamics

[39]. This also highlights an important caveat for comparing prediction models, as some meth-

ods might by design match certain types of experimental data more closely than others. Meth-

ods based on interaction timelines, i.e. NCF and DNCF, were consistently more accurate than

the BC and CPLC methods based on network centrality. This highlights the benefits of using

MD simulations to include protein dynamics in protein structure networks, which is achieved

by application of methods utilizing interaction timelines. In contrast, centrality-based methods

offer the advantage of requiring only a single structure, which makes them uniquely inexpen-

sive in a situation where MD simulations are not feasible. Our data indicate that both BC and

CPLC methods could achieve good prediction performances, but were sensitive to the choice

of parameters used for network construction. For these in particular, further evaluation studies

spanning multiple systems are needed to determine an optimal parameter set that performs

well in a wide range of proteins. Of the methods tested, DNCF proved to be the most accurate

and robust to changes in network parameters, followed by NCF. This reflects the DNCF meth-

od’s ability to capture effects from two simulations representing different system states by

comparing the changes in shared information. However, the NCF method appears to have

Fig 8. Intersection of the DNCF allosteric core set, NMR reference set, and the computational prediction

consensus set.

https://doi.org/10.1371/journal.pone.0265194.g008
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potential on its own for predictions based on apo structures alone, for example when there is

no known structure of the investigated protein bound to the allosteric ligand.

The final allosteric model, based on the DNCF method, was found to be one of the models

aligning most closely to experimental data out of those reported in literature, alongside NMR/

MC. However, the DNCF approach offers three distinct advantages to NMR/MC: First, MD

simulations for DNCF analyses can be started from only a single, e.g. X-ray, structure, while

NMR/MC needs an NMR structure ensemble, which are far rarer and more limited to small

proteins. Second, the DNCF method includes all residue types, while NMR/MC by definition

cannot predict alanine residues. Third, the DNCF method has the potential to detect induced

fit-based conformational changes, which are often not directly detectable in the structural

ensembles of the apo-state alone. We determined that 3 μs of total simulation time, spread

across 8 replicas and corresponding to 375 ns of simulation for each replica, approximated

optimal prediction performance using the DNCF method in the PDZ2 system. These numbers

are likely specific to the protein system under investigation and thus can only serve as a guide-

line for proteins of comparable size and with allosteric effects in the absence of large conforma-

tional changes. It should be noted, that fewer replicas and shorter simulation times could still

achieve solid performance, which may be relevant when investigating larger proteins for

which generating a comparable amount of simulation data may be infeasible. In these cases,

additional validation with experimental data is indicated. Our numbers are in agreement with

a previous study investigating the reproducibility between replicas in a 10 residue system as

well as a 827 residue TCR-p-MHC complex, which recommended using between 5 to 10 repli-

cas for simulations as a rule of thumb [70].

Mapping the results of our DNCF model to the structure of PDZ2 suggests the protein con-

tains two distinct allosteric sites. Most of the experimentally verified allosteric residues from

the NMR dataset are located in cluster I, while cluster II has little support from the experimen-

tal dataset as the region encompasses only four residues with methyl groups. To fill this gap,

alternative experiments may be necessary such as mutational studies connected to changes in

PDZ mediated activation. The locations of our observed clusters are matched by several other

computational predictions [42,43,45]. Nevertheless, our data contrasts with studies reporting

up to four distinct allosteric sites [10,39,66] by suggesting that these four sites are partially

overlapping, leaving only two clearly separated allosteric regions. The variance in published

allosteric predictions in the PDZ2 domain may be explained by the fact that the experimentally

verified data in a single protein are naturally sparse, leading to potentially large error margins

for validation. In addition, for many cases quantitative scores are not reported along binary

classifications, impeding direct comparison of predictions. To improve prediction models,

large scale studies including multiple proteins, computational methods, and experimental data

sources will be necessary. With SenseNet we provide a network analysis tool offering consider-

able advantages over existing implementations: First, by defining edges via interaction time-

lines, all conformational states of a simulation are readily available for analysis, which is not

possible if interactions are reduced to correlation coefficients. Second, adopting a multi-reso-

lution approach via mapping of sub-structures of varying sizes to nodes (from atoms to resi-

dues) allows the creation of application-specific network topologies that reduce the underlying

structural differences to the most informative level of details. Finally, integration of our tool

into Cytoscape allows users to complement their analyses with the community driven ecosys-

tem of biological network analysis plugins, e.g. by connecting structural analysis with system

biological or sequence/evolutionary information. Based on these concepts, SenseNet provides

an analysis platform implementing a range of well tested analysis algorithms, an easy-to-use

UI driven implementation, and interactive side-by-side structure visualization. Together, these

features serve as a potential foundation for wide application of timeline-based protein
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structure networks, paving the way for comparative studies to improve model accuracies and

aid experiments in unveiling detailed mechanisms of dynamic processes in biomolecules.
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Abstract

The heat shock protein 70 kDa (Hsp70) chaperone system serves as a critical

component of protein quality control across a wide range of prokaryotic and

eukaryotic organisms. Divergent evolution and specialization to particular organ-

elles have produced numerous Hsp70 variants which share similarities in structure

and general function, but differ substantially in regulatory aspects, including con-

formational dynamics and activity modulation by cochaperones. The human

Hsp70 variant BiP (also known as GRP78 or HSPA5) is of therapeutic interest in

the context of cancer, neurodegenerative diseases, and viral infection, including

for treatment of the pandemic virus SARS-CoV-2. Due to the complex conforma-

tional rearrangements and high sequential variance within the Hsp70 protein fam-

ily, it is in many cases poorly understood which amino acid mutations are

responsible for biochemical differences between protein variants. In this study,

we predicted residues associated with conformational regulation of human BiP

and Escherichia coli DnaK. Based on protein structure networks obtained from

molecular dynamics simulations, we analyzed the shared information between

interaction timelines to highlight residue positions with strong conformational

coupling to their environment. Our predictions, which focus on the binding pro-

cesses of the chaperone's substrate and cochaperones, indicate residues filling

potential signaling roles specific to either DnaK or BiP. By combining predictions

of individual residues into conformationally coupled chains connecting ligand

binding sites, we predict a BiP specific secondary signaling pathway associated

with substrate binding. Our study sheds light on mechanistic differences in signal-

ing and regulation between Hsp70 variants, which provide insights relevant to

therapeutic applications of these proteins.
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1 | INTRODUCTION

The heat shock protein 70 kDa (Hsp70) molecular chaperone is a class

of proteins found across a wide range of prokaryotic and eukaryotic

organisms, with no fewer than 13 isoforms in humans alone.1–3 Their

functional roles include protein (re-)folding, membrane translocation,

regulation of apoptosis, and disaggregation of denatured proteins in

cooperation with other chaperone systems.1–7 Being both ubiquitous

and critical to cell damage mitigation, they are also of therapeutic

interest for a variety of conditions such as cancer and neurodegenera-

tive disorders.2,3,7–12 The ATP-driven conformational cycle allows

Hsp70s to transiently bind exposed hydrophobic stretches of sub-

strate proteins and selectively modulate their folding process. Struc-

turally, a Hsp70 protein is divided into a number of distinct modular

domains: The nucleotide-binding domain (NBD) is an actin-like

ATPase with two rotatable lobes (NBD-I and NBD-II), connected to

the substrate binding domain (SBD) via a flexible linker region (NBD–

SBD linker). The SBD is further divided into a β-sandwich core form-

ing a cleft for binding of target peptides or proteins (SBDβ) and an

α-helical lid which can dynamically open and close over the binding

cleft (SBDα), followed by an unstructured C-terminal tail.2,6,7,11,13,14 In

the ATP-bound state of the conformational cycle, the NBD and SBDβ

are predominantly docked onto each other, with the SBDα lid in the

“open” conformation and stabilized by contacts with the NBD

(Figure 1). In this docked conformation, the NBD–SBD linker is nes-

tled in a cleft formed on the surface of NBD-II. Upon binding of a sub-

strate polypeptide in the SBDβ binding cleft, the NBD–SBD interface

partially undocks, allowing the NBD lobes to rotate into a position

activating ATP hydrolysis. This leads to complete undocking of the

NBD–SBD domains, freeing the NBD–SBD linker and stabilizing

Hsp70 in a conformation with two separate domains, the NBD bind-

ing ADP and the SBD binding the substrate. The cycle is finally

F IGURE 1 Structural organization and conformations of heat shock protein 70 kDa (Hsp70) chaperones. (A) Simplified representation of the
Hsp70 conformational cycle. (B) Protein structure network of DnaK-ATP bound to the NRLLLTG peptide. (C,D) Representative structures of
DnaK-ATP (C) and DnaK-ADP (D) extracted from molecular dynamics simulations with subdomain coloring. ATP/ADP nucleotides are shown in
brown. NBD, nucleotide-binding domain; SBD, substrate binding domain.
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completed by nucleotide exchange of ADP to ATP and subsequent re-

docking of the NBD and SBD domains.2,6,7,11,14–17 This complex

orchestration is achieved through multiple pathways transmitting con-

formational changes and fluctuations throughout the protein, with the

nucleotide and protein substrate ligands acting in concert to advance

the conformational cycle.2,6,7,11,13,14,16,18,19 In addition, co-chaperones

like J-domain proteins (JDPs) or nucleotide exchange factors (NEF)

accelerate these processes by forming transient complexes with

Hsp70 and modulating its functional and conformational

cycle.2,6,7,11,15,20–23

Of the diverse family of Hsp70 proteins, the Escherichia coli var-

iant DnaK is by far the most extensively studied. A comprehensive

series of biochemical experiments has investigated effects of point

mutations on protein activity,13 gradually assembling a model for

understanding the underlying allosteric mechanisms advancing the

conformational cycle. While Hsp70s from other organisms generally

share the same structural architecture, it has been noted that they

can differ substantially in substrate recognition, allosteric signaling,

and co-chaperone interactions.1,2,7,15,16,24–29 The human Hsp70 iso-

form binding immunoglobulin protein (BiP; also known as GRP78 or

HSPA5) is usually found in the endoplasmatic reticulum, where it

folds membrane and secretes proteins.30,31 However, under specific

conditions BiP or its isoforms can appear in certain cell types within

the cytosol, nucleus, mitochondria, and on the cell surface

(csBiP).32–34 Tumors and cells under stress show elevated levels of

csBiP compared to normal cells, which has prompted investigations

into applications for cancer detection and therapy.35–39 Moreover,

csBiP is implicated as a coreceptor promoting host cell entry for

several coronaviruses, including the pandemic virus SARS-CoV-

2,40–44 and has been suggested as a therapeutic factor for severe

COVID-19 cases.41,44 Elucidating the evolutionary differences dis-

tinguishing Hsp70 variants could deepen our understanding of this

important protein class and help to tailor drugs to the specific prop-

erties of the targeted protein. The sequence homology between BiP

and DnaK is below 50%, while several functional differences have

been reported between the two variants, such as propensity of

NBD–SBD docking, post-translational modifications or interactions

with cochaperones modulating allosteric signaling.7,16,24,31,45–47 It is

mostly unknown which mutations are responsible for the observed

functional and regulatory differences,48 which are difficult to pin-

point due to the large size of Hsp70s (>600 amino acids), high

sequential variance within the family and the complexity of the con-

formational cycle. In this work, we investigated residues associated

with conformational control in the Hsp70 proteins DnaK and BiP

using our recently developed difference node correlation factor

(DNCF) method, which is based on estimating the shared informa-

tion between interaction timelines obtained from molecular dynam-

ics (MD) simulations and evaluating how this shared information is

modulated by, for example, binding of a ligand.49 This method

implements a new variant within the class of graph-based allosteric

prediction frameworks, which have been applied with success to a

diverse range of proteins such as CFTR,50 GPCRs,51 myoglobins,51

Hsp90,52 and others.

Although there have been a number of studies reporting compu-

tational predictions of allostery in Hsp70s,53–60 there is limited infor-

mation on how evolutionary differences affect transferability of

allosteric models between DnaK and BiP. Our predictions comple-

ment the set of experimentally determined individual residues by pre-

dicting pathways of conformationally coupled residues, which we

presume to be involved in the initiation of conformational changes

and allostery following a ligand binding event. On this basis, we sug-

gest a number of residue positions which might explain the functional

differences between DnaK and BiP.

2 | MATERIALS AND METHODS

2.1 | Protein structures

Structures for full length DnaK-ATP (PDB-ID: 4B9Q), BiP-ATP (PDB-

ID: 5E84), and DnaK-ADP (PDB-ID: 2KHO; first model in file was

used) were acquired from the RCSB PDB web site. Protein models

were adjusted to reflect the sequences in Text S1 using IRECS61 to

mutate side chains in 4B9Q and MODELLER (v 9.18)62 to mutate and

add missing residues in 5E84, selecting the model with the best DOPE

score out of 100 candidates. Structures containing only the NBD were

derived from the full-length structures by cutting at the N-terminal

side of the NBD–SBD linker. For DnaK-NBD-ADP, the structure of

full-length DnaK-ADP was cut at the linker and ADP/Mg2+ was added

based on the 4B9Q structure. The structure for BiP–NBD–ADP was

created as a homology model using MOD based on a template of

yeast BiP (PDB-ID: 3QFU), using the same procedure as described

above. For all systems, ATP-to-ADP variants were obtained by cutting

the terminal ATP phosphate from the corresponding ATP-bound

structures. Ions present in crystal structures were removed with the

exception of magnesium located in the nucleotide binding pocket. The

NRLLLTG peptide was added to relevant systems based on the con-

formation found in the DnaK–peptide complex (PDB-ID: 1DKX). To

allow for easier comparison between systems, indices describing resi-

due positions were adjusted in all systems to reflect the DnaK

sequence (UniProt-ID: P0A6Y8), adding PDB residue insertion codes

as needed (see full sequence alignment in Text S2). Furthermore, a

complete mapping of the DnaK residue indices to the UniProt

sequence numbering of BiP (UniProt-ID: P11021) is provided in

Table S1. Protein regions were defined by the following residue index

ranges, based on DnaK: NBD-I from 1 to 177, NBD-II from 178 to

383, SBDβ from 384 to 506, and SBDα from 507 to 603.

2.2 | MD simulations

MD simulations were performed using the

Amber16-AmberTools16/17 software suite63 with the Amber14SB

force field,64 and TIP3P water65 using ATP/ADP parameters from

Meagher et al.66 The system was solvated in a cubic water box using a

minimum solute-face distance of 12 Å and neutralized with NaCl. For

SCHNEIDER AND ANTES 239

 10970134, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26425 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [22/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the nonbonded interactions a 12 Å direct space cutoff and particle

mesh Ewald (PME) summation for long-ranged electrostatic interac-

tions were applied. Energy minimization was performed until conver-

gence to 0.01 kcal mol�1 Å�1 was reached using the XMIN minimizer.

Afterwards, the volume of the solvent box was adjusted to a density

of 1.00 kg m3. Systems were gradually heated from 0 to 300 K over

1.5 ns using a variant of our published heatup protocol,67 restraining

all heavy atoms with a force constant of 3.00 kcal mol�1 Å�2 until

20 K and all protein backbone atoms until 200 K. SHAKE68 was

applied to all bonds involving hydrogen and an integration time step

of 1 fs was used during heatup, increasing to 2 fs for subsequent pro-

duction runs. For heating and temperature control, a Langevin ther-

mostat was used with a collision frequency of 4 ps�1, and beginning

from the final 0.5 ns of the heatup, a Berendsen barostat was

employed with a relaxation time of 1 ps. For each system, three inde-

pendent replica runs were simulated for 400 ns each, starting from

separate heatup runs and with randomized Langevin seeds. The initial

100 ns of each run were removed before analysis to reduce bias

toward initial structures. Atom interactions were extracted from MD

trajectories with CPPTRAJ,69 using the “nativecontacts” command for

contact timelines (distance cutoff 5 Å; saving both native and nonna-

tive time series), and the “hbond” command for hydrogen bonds (dis-

tance cutoff 3.5 Å; angle cutoff 135�).

2.3 | Protein structure networks

For analyses of protein structure networks and related quantities we

used our network analysis tool SenseNet (version 1.1.0),49 a plugin for

Cytocape 3 (version 3.6.1).70 CPPTRAJ outputs of contact and hydro-

gen bond timelines were processed using AIFgen49 and loaded into

SenseNet. Edges representing interactions occurring in less than 10%

of the total simulation time were removed from the networks to mini-

mize the influence of spurious interactions. DNCF scores were calcu-

lated in SenseNet as described before,49 using the “Correlation”
function set to the “Neighbor” and “Mutual information difference”
modes. The obtained edge scores were then summed up using the

“Degree” function. Edges of the two networks were considered

equivalent if they connected the same residues and were of the same

interaction type (edge mapping set to “Match Location”). As reference
for DNCF calculations, we selected the corresponding networks from

Hsp70-ATP (for analyses of the full-length protein) or Hsp70-NBD-

ATP (for analyses of the isolated NBD domain). The DNCF method

evaluates the changes in conformational coupling in neighboring inter-

actions between a target and a reference simulation, for example,

between Hsp70-ATP and Hsp70-ATP-to-ADP. Contacts and hydro-

gen bonds between residues are described as a timeline encoding the

number of interactions in each time frame of the MD trajectory. The

DNCF score is calculated as follows: Each carbon–carbon contact and

each hydrogen bond in the network is represented by a separate edge

X in the network. Another edge Y is said to be neighboring if it shares

at least one node with X. In other words, the neighboring interactions

represented by X and Y share at least one common residue (e.g., two

different hydrogen bonds formed by one residue to different interac-

tion partners). For each pair of neighboring interactions X and Y in the

target simulation, the equivalent interactions bX and bY are obtained

from the reference simulation. Then, the change in shared information

of the selected interaction pair between timelines from the target and

reference simulation is evaluated using the difference in pointwise

mutual information as

I X;Yð Þ¼
X

x∈[ X,bX

� �

X

y∈[ Y,bY

� �

p x, yð Þ � log2
p x, yð Þ
p xð Þp yð Þ

� �

�bp x, yð Þ
�

�

�

�

� log2

bp x, yð Þ
bp xð Þbp yð Þ

� ��

�

�

�

�

�

�

�

,

ð1Þ

with bX, bY denoting the timelines from the reference simulation match-

ing the locations of X and Y of the target simulation, and p,bp repre-

senting the probabilities of interaction states within the target and

reference timelines. Finally, the DNCF score for each residue is

obtained by summing the contributions of Equation (1) for all interac-

tions that residue is participating in. More methodological details,

including an extensive discussion on network parameters and simula-

tion setups, can be found in our previous work.49

Random walks weighted by DNCF scores (“DNCF-RW”) were

performed using the “Random Walk” function of SenseNet in “Tar-
geted Symmetric” mode, starting from the node representing the cen-

tral leucine of the NRLLLTG peptide substrate and stopping the

search when the ATP node was reached (or vice versa). Given a start-

ing (“current”) node for the random walk, the next node to be visited

is selected from the list of connected neighbor nodes with the proba-

bility distribution

p ið Þ¼ DNCF ið Þ
P

n∈N
DNCF nð Þ , ð2Þ

where the candidate node i is part of the set of neighbors N, that is,

nodes connected to the current node. Revisiting nodes was permitted,

but their contribution was only counted once. The search was

restarted if the target node was not found after 1000 steps, and in

addition with a probability of 0.1 at each step, ensuring that the

search rejected pathways substantially longer than the shortest possi-

ble path (see Section 3). Shortest paths between two nodes were cal-

culated using Dijkstra's algorithm, as implemented by the “Shortest
path” function of SenseNet. Plots were generated using matplotlib

(version 3.0.3)71 with pictures of molecular structures by VMD (ver-

sion 1.9.3)72 and open-source PyMOL (Schrodinger, LLC. 2010. The

PyMOL Molecular Graphics System, Version 1.8.4.0).

2.4 | Analysis of NBD lobe rotation

All clustering analyses were performed with the “cluster” command of

CPPTRAJ. First, trajectories were aligned to the Cα atoms of NBD-I.
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Following this alignment, root mean square deviations (RMSD) calcu-

lations of the NBD lobe rotation state were performed by calculating

the RMSD values of Cα atoms in NBD-II. Next, trajectory frames were

hierarchically clustered by their pairwise RMSD (using complete link-

age) until two clusters remained. The centroid structures of each clus-

ter were chosen as representatives. Rotational (screw) axes describing

the relative lobe motion was calculated with CPPTRAJ in a two-step

process: First, the representative cluster structures obtained before

were aligned to the Cα atoms of NBD-I of a reference structure, that

is, clusters of Hsp70-NBD-ATP-to-ADP trajectories were aligned to

the crystal structures to Hsp70-NBD-ATP. Next, structures were

aligned to NBD-II of the reference, extracting the corresponding rota-

tional and translational matrices of that motion, from which the axes

and angles of lobe rotation were subsequently calculated. An analo-

gous procedure was applied to calculate the screw axes for all individ-

ual trajectory frames in order to yield the distribution of rotation

angles during simulation.

3 | RESULTS AND DISCUSSION

We set out to predict protein residues responding to different ligand

configurations in the Hsp70 proteins DnaK and BiP using the DNCF

analysis,49 which is based on evaluating the mutual information

between the timelines of residue interactions in a protein structure

network. First, we performed MD simulations of DnaK and BiP in dif-

ferent configurations, that is, bound to ADP, ATP, and the peptide

substrate NRLLLTG (Table S2). The set of simulated systems includes

Hsp70 in the ATP bound conformation (“Hsp70-ATP”) and an in-silico

modeled conformation bound to ATP and the NRLLLTG peptide

(“Hsp70-ATP-pep”), which was chosen to approximate the substrate

binding phase of the conformational cycle (Figure 1A). The process of

substrate binding leading up to ATP hydrolysis involves an intermedi-

ate structure characterized by partial undocking of the NBD–SBD

interface, which is not easily accessible to experimental methods of

structure determination. A structure of DnaK-ATP-pep was reported

recently, though only after the production of our simulations and our

analyses had concluded, and no corresponding structure is currently

available for BiP.73 In the absence of this intermediate structure at the

time of this work, we created variants based on the Hsp70-ATP struc-

tures, replacing ATP with ADP in silico (“Hsp70-ATP-to-ADP” and

“Hsp70-ATP-to-ADP-pep”), which represents an artificial conforma-

tion for investigating the ability of protein residues to sense the ATP

terminal phosphate. Each system was simulated for a total length of

1.2 μs, distributed over three independent runs of 400 ns each. The

trajectories appear stable within expected variance as observed from

the evolution of RMSD and force field energy terms (Figures S1–S6).

A detailed discussion of these analyses can be found in Text S3.

From these trajectories, interaction timelines of carbon contacts

and hydrogen bonds were extracted, transformed into networks and

subsequently analyzed with SenseNet as described in our previous

publication.49 In these networks, residues are represented as nodes,

which are connected by edges corresponding to residue–residue

interactions. A residue pair can be connected by either a carbon con-

tact interaction, a hydrogen bond interaction or both (using two sepa-

rate edges). Furthermore, each interaction is associated with a

timeline encoding the interactions state, that is, number of interac-

tions, between two residues at different snapshots of the simulation.

For example, a timeline of “1023” associated with a hydrogen bond

between residues A and B indicates the presence of 1, 0, 2, and

3 hydrogen bonds at different timeslots of the simulation. Conforma-

tional correlation can then be measured by analyzing the correlation

between timelines of different interactions. In the DNCF analysis,49

this correlation is modeled by evaluating the mutual information

between the timelines of neighboring interactions in the network (see

Section 2). The DNCF score can be intuitively understood as the

answer to the following question: Provided that we observe 0/1/2/3

or any larger number of hydrogen bonds (or carbon contacts) between

residues A and B at a particular time frame of the simulation; does this

influence the likelihood of observing a specific number of hydrogen

bonds (or carbon contacts) in its close environment? If there is a corre-

lation, we quantify the amount of shared information between inter-

action timelines. In the final step, the DNCF score calculates by how

much this shared information between timelines (of its interactions)

changes between two simulations. For example, the DNCF score of

DnaK-ATP-pep (with DnaK-ATP as reference) indicates whether the

shared information between specific interaction timelines changes

due to the introduction of the peptide ligand. The DNCF score of resi-

due A thus corresponds to the difference of shared information

(in bits) between two simulations summed over all interactions (hydro-

gen bonds and carbon contacts) involving residue A.

By calculating the mutual information between interaction time-

lines of neighboring nodes in the network, residues with strong con-

formational coupling to their local environment can be predicted. In

this context, the term “information” should not be understood as flow

of bits through the protein but as contact transfer indicating routes of

correlated conformations between adjacent residues. This information

is summarized into a DNCF score for each residue, which corresponds

to the change in shared information encoded in the interactions

between two different system configurations. It is important to note

that the mutual information between residues depends not only on

the residues itself but on the rigidity or packing of the environment.

For example, a binding event may rigidify a protein region and in turn

alter the mutual information transfer and coupling of contacts

between residues. Hence, it can open new routes or pathways of

mutual interaction transfer between neighboring residues. Our DNCF

analysis aims at predicting residues contributing to the Hsp70 alloste-

ric network by assessing differences in the conformational coupling of

residue interactions between different Hsp70 configurations, that is,

either when bound to ATP, ADP, or the NRLLLTG peptide substrate.

After performing MD simulations for the selected Hsp70 configu-

rations, hydrophobic contacts and hydrogen bonds were extracted

from the trajectories and transformed into structure networks

(Figure 1B). The layout of nodes in these networks was chosen to

approximate the structural organization of the protein, which allows

to inspect the interfaces between subdomains and trace pathways
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between key regions. In the ATP bound form of DnaK, both NBD

lobes form an interface to the SBD, but only NBD-I has direct contact

to the SBDα lid region (Figure 1B–D). The same structural organiza-

tion is observed in the network of BiP. Using Dijkstra's algorithm, we

determined that depending on the system, a minimum of six to seven

edges need to be traversed to reach the central leucine of the

NRLLLTG peptide starting from the ATP/ADP node (Table S3). This

indicates a substantial distance over which a conformational signal

has to be transmitted between the nucleotide and the substrate pep-

tide binding site located within the SBD. In order to predict which res-

idues might respond to this process in DnaK, we first calculated

DNCF scores for networks based on simulations of three different

configurations, that is, DnaK-ATP-to-ADP, DnaK-ATP-pep and DnaK-

ATP-to-ADP-pep. As reference configuration for the DNCF calcula-

tions, we chose the network generated from the trajectory of DnaK

bound to ATP (“DnaK-ATP”). Using this setup, the DNCF scores of

the DnaK-ATP-to-ADP system, using DnaK-ATP as a reference, are

elevated by the conformational differences induced by the in-silico

exchange of ATP to ADP. In order to evaluate the agreement of our

predictions with experimental data, we compared the resulting DNCF

scores (Table S4) to a set of experimentally verified residues associ-

ated with allosteric effects, as found predominantly in DnaK. This

dataset is composed of residue positions for which mutations affected

the coupling between binding of the polypeptide substrate, nucleotide

binding at the NBD, ATP hydrolysis, and NBD–SBD dock-

ing8,13,19,22,74–84 (Table S5). As there is no comparable dataset avail-

able for specifically “non-allosteric” residues in this system, for the

purpose of evaluation we categorized all residues not present in the

experimental dataset as “non-allosteric”; assuming that the majority

of relevant allosteric residues are already known (in DnaK), the error

induced by misallocating a presumably low number of unknown allo-

steric residues is expected to be limited. The vast majority of experi-

mentally verified residues were determined in DnaK as the most

frequently investigated Hsp70 representative, whereas available data

for other Hsp70 variants was too limited to allow for quantitative vali-

dation. In addition, we were careful to exclude functional mutants

with no clear relation to an allosteric effect, that is, a mutation that

was more likely to influence ligand binding affinities than communica-

tion. We began our evaluation by observing the distribution of DNCF

scores within the networks, finding that all systems diverged

substantially from the hypothetical normal distribution, with a notable

tendency toward a log-normal shape (Figure S7). Therefore, we used

the nonparametric Mann–Whitney-U (MWU) test to evaluate

whether known allosteric residues exhibited higher DNCF scores, and

found a significant (p < .01) increase in all tested systems (Table 1).

Next, the difference between these two groups was quantified using

the area under the receiver operating characteristic curve (rocAUC).

The DNCF scores of all DnaK systems achieved rocAUC values of

≥ 0.84, with DnaK-ATP-to-ADP-pep yielding the top rocAUC of 0.86

(Table 1, Figure S8). Substantial association of DNCF scores with the

experimental set of allosteric residues is also observed for the corre-

sponding BiP simulations, although rocAUC scores are reduced by

0.02–0.08. Intuitively, the rocAUC indicates the probability of a ran-

domly selected allosteric residue having a higher DNCF score than a

randomly selected non-allosteric residue; the observed rocAUC

decrease in BiP systems thus corresponds to a lower probability of

correctly ranked residue pairs by 2%–8%. This decrease might be

caused by subtle differences between the allosteric networks of BiP

and DnaK, as the latter was the primary source for the experimental

dataset. Thus, the rocAUC rankings do not necessarily indicate a dif-

ference in prediction quality between the system, but rather reflect

the biases of the experimental dataset. Nevertheless, DNCF scores of

BiP systems are still strongly correlated with known allosteric residues

in DnaK, as prediction performance remains much higher than for a

random model (rocAUC = 0.5). Overall, due to the consistently strong

agreement of DNCF scores with experimental data in all systems, we

conclude that our analysis is able to detect known allosteric residues

in DnaK/BiP, which are important for the conformational coupling

between the nucleotide binding region and the substrate binding

region. From this basis we proceeded to predict additional candidates

with potential coupling function, particularly those which may fulfill

specific roles in either protein. As DnaK/BiP-ATP-to-ADP-pep consis-

tently showed the best agreement with experimental data, we chose

to focus on these configurations for further in-depth analyses.

We next investigated the structural distribution of DNCF scores

within Hsp70-ATP-to-ADP-pep networks (Figure 2). The highest scor-

ing residues, that is, within the top 10% of the network distribution,

were extracted (Table 2) and mapped to the protein structures

(Figure 3). Beginning with the DnaK network, Figure 2A,C shows that

high-scoring residues are organized into localized clusters. The major-

ity of residues with high DNCF scores are located in proximity to the

shortest network path between the ATP/ADP nucleotide and

NRLLLTG peptide (Figure 3A,B). This aligns with the experimental

dataset of allosteric residues (Table S5), which were primarily deter-

mined by investigating the coupling between ATP hydrolysis and pep-

tide binding. An additional cluster extends from the direct NBD–SBD

pathway into a separate region, close to the NBD–SBD linker region

and the binding site of the J-Protein cochaperone DnaJ85 (Figures 2A,

3B). The linker itself (residues 388–394) exhibits slightly higher than

average DNCF scores, less than expected considering the linker's

well-established importance for controlling the NBD–SBD docking

dynamics.18,56 However, several of the adjacent high scoring residues

are involved in the interface between DnaK and DnaJ (Figures 2A and

TABLE 1 Mann–Whitney-U tests for association of DNCF scores
with a dataset of experimentally verified allosteric residues

System MWU p-value rocAUC

DnaK-ATP-to-ADP 1.26 � 10�11 0.84

DnaK-ATP-pep 1.28 � 10�11 0.84

DnaK-ATP-to-ADP-pep 4.09 � 10�13 0.86

BiP-ATP-to-ADP 1.50 � 10�7 0.76

BiP-ATP-pep 1.82 � 10�10 0.82

BiP-ATP-to-ADP-pep 7.37 � 10�12 0.84

Abbreviation: rocAUC, receiver operating characteristic.
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3B), which plays a substantial role in initiating the undocking of the

NBD–SBD domain preceding ATP hydrolysis.16,85 The observation

that residues surrounding the linker have higher scores than the linker

itself suggests that DnaJ binding may trigger a cascade of conforma-

tional changes involving residues such as R167, I168, I169, I207,

K214, T395, and D481 (Figure 3B), leading to subsequent unbinding

of the actual linker residues. Residues R167, I168, I169, and D481 are

known to affect ATP hydrolysis and/or its stimulation by DnaJ,19

while I207 was found to co-evolve strongly with SBD residues.86 Dur-

ing the preparation of this manuscript, a structure of DnaK-ATP-pep

was published in the suggested allosterically active conformation,73

which is characterized by partial undocking of NBD and SBD domains.

The conformational differences, compared to previous crystal struc-

tures of full length DnaK, were found to be concentrated in the

protein region between residues 220 and 231.73 This corroborates

with a large cluster in our predictions, namely T221, N222, T225,

H226, L227, and D231 (Figure 3A,B). We expect that it should be

interesting to include MD simulations based on this conformation in

future analyses, provided the corresponding structure can be obtained

for BiP. In summary, we were able to find several localized clusters of

predicted allosteric residues in DnaK, of which a substantial number

are supported by previously established experimental evidence.

In addition to clusters characterized by distinct structural regions,

DNCF scores also show a tendency to cluster within the protein

sequence (Figure 4A). Both the SBDβ and NBD domains (including the

NBD-I and NBD-II lobes) contribute high DNCF scores (Figure S9),

and only the SBDα domain appears to lack any pronounced residues.

Analyzing the localization of high scoring residues in more detail, we

F IGURE 2 Structures and residue interaction network of heat shock protein 70 kDa proteins. (A,B) Protein structure networks obtained from
molecular dynamics simulations of DnaK-ATP-to-ADP-pep (A) and BiP-ATP-to-ADP-pep (B). Nodes are colored according to the z-score
normalized DNCF scores of their associated residues. Cochaperones DnaJ and grpE are indicated as colored shapes to visualize the location of
their DnaK binding sites as observed from PDB structures (PDB-IDs: 5NRO, 1DKG), but were not present during simulations. Corresponding
locations for the BiP cochaperones are estimated by homology: BAP from yeast Sil1 (PDB-ID: 3QML) and ERdJ3 from Escherichia coli DnaJ (PDB-
ID: 5NRO). (C,D) Representative structures extracted from molecular dynamics simulations of DnaK-ATP-to-ADP-pep (C) and BiP-ATP-to-ADP-
pep (D) with residues colored according to their z-score normalized DNCF scores
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find particular enrichment at the subdomain interfaces between

NBD-I, NBD-II, and SBDβ, while residues in the protein core and the

NBD–SBDα interface trend toward lower scores (Figure S10). These

observations suggest that the extensive subdomain interfaces formed

in DnaK play a key role for conformational control, potentially by

modulating residue packing and flexibility (e.g., NBD lobes) and

changes in the equilibrium of interdomain binding (e.g., NBD–SBD

docking). Comparing the DNCF score distributions between DnaK

and BiP, we find that the trends for the NBD–SBD interface and its

linker region are highly similar between these related proteins

(Figures 2B,D, 3C,D, 4B, S11, and S12). However, while the rough

structural locations of allosteric regions seemed well preserved in gen-

eral, the sets of predicted residues in the top 10% percentile diverge

substantially (Table 2), and in addition include residues which are

unique to either protein variant, such as K214 in DnaK and Q384b in

BiP. Therefore, we next focused our efforts on investigating the dif-

ferences between the predicted sets of allosteric residues for DnaK

and BiP.

Having observed similar DNCF score distributions between

DnaK and BiP simulations, we set out to determine which residues

were shared between both proteins or specific to either protein

variant. The correlation between DNCF scores of DnaK-ATP-to-

ADP-pep and BiP-ATP-to-ADP-pep (Figure 4C) is lower than the

average between different configurations of the same protein

(Spearman's r: 0.74 vs. average of simulations involving BiP: 0.87

± 0.02 or DnaK: 0.9 ± 0.02) (Table 3), which suggests systematic

differences between DnaK and BiP. Based on these differences, we

created residue sets of predictions specific to each Hsp70 variant,

that is, likely to contribute to allosteric signaling in one system but

not in the other. For this, we selected residues which were specific

to DnaK or BiP, that is, residues which were (i) within the top 15%

of the DNCF scores in DnaK-ATP-to-ADP-pep as well as

(ii) concurrently in the lower 15% of the log-normal DNCF score

distribution estimated for the experimentally determined allosteric

set in BiP-ATP-to-ADP-pep, and vice versa. In addition, we selected

the residues which occurred in the top 10% of both systems as the

“common” set of conserved allosteric residues (Table 4). The

regions containing conserved allosteric residues (Figure 5) resemble

the clusters of top scoring residues detected before (Figure 3). Out

of the 30 allosteric candidates predicted specifically in either DnaK

or BiP, 13 are related to amino acid mutations or insertions

(Table 4). Residue positions with specific differences between

DnaK and BiP are found in several regions: The first cluster, which

is specific to DnaK, (Figure 5A,B) contains residues which contrib-

ute to the NBD–SBDβ interface (N147, D148, Q150, D481). Muta-

tional studies have shown that these residues are important for

stabilizing the NBD–SBDβ interface as well as allosteric signaling in

DnaK.19 The fact that these residue positions do not feature as

prominently in BiP in our predictions suggests diminished dynamics

at these locations compared to DnaK. This interpretation is backed

by experimental data: Introduction of the D481N point mutation in

DnaK, which is the wild type residue variant for BiP, is capable of

disturbing the equilibrium of docked–undocked conformations at

the NBD–SBDβ interface.16 A similar trend toward rigidification of

the same interface has been reported in multiple instances for BiP

compared to DnaK.24,31,87 In DnaK, D148 contacts the SBD via

Q442 and is an essential residue for communication of the peptide

binding signal from the SBD to the NBD in DnaK.19 However, in

BiP the corresponding position on the SBD side harbors a nega-

tively charged residue (Q442E), creating electrostatic repulsion to

D148. In combination, these data point toward substantial changes

in the interaction pattern of the N147N-D148D-Q150Q-D481N-

Q442E cluster between DnaK and BiP, which may explain differ-

ences in the dynamics of the NBD–SBD interface and allosteric

communication. The second cluster is composed of residues spe-

cific to either DnaK or BiP (Figure 5B,D) and is found in the vicinity

of the NBD–SBD linker (G180G, G184R, K214�, �[384b]Q,

V386T, T395C), indicating another potential key region for differ-

ential regulation of NBD–SBDβ docking in these two protein vari-

ants. As it is this region that binds the J-domain in DnaK,85 the

characteristic domain shared between BiP's ERdJ1–ERdJ7 cocha-

perone families,31 it appears likely that differences in the linker

environment reflect evolutionary specialization to different sets of

cochaperones. Another cluster, which is specific to BiP, is formed

by residues located in the SBD loops (T428T, E430S, A435T,

P470P, K491K, S493T, G494G, K498K, I501I). Residues 428 and

430 are part of the SBDβ's L1,2 loop and Residues 491–501 are

part of the β8 sheet, two structural elements which have been

shown to assume multiple distinct conformations in BiP.88 In our

data, these residues showed high DNCF scores exclusively for BiP,

which might indicate increased conformational flexibility of the

SBD in BiP compared to DnaK. Finally, positions 61, 62, and 65 are

located close to the binding interface of NEF grpE (Figures 2A and

S13) and one can speculate that these residues may be utilized to

facilitate opening of the NBD loops. It is not surprising that this

TABLE 2 Prediction of residues which contribute to the coupling
between substrate and nucleotide binding in DnaK/BiP according to
DNCF scores

System Residues

DnaK-ATP-to-

ADP-pep

L9 A58 F67 K70 R71 R75 E81 R84 T141 V142

P143 A144 Y145 F146 N147 D148 R151 I168

I169 N170 E171 P172 Y193 L195 T199 F200

D201 I202 I207 K214 T221 N222 T225 H226

L227 D231 L320 V340 T395 L397 L399 I401

T437 I438 Q442 L454 Q456 F457 N458 L459

I472 F476 D481 D490 Q497

BiP-ATP-to-

ADP-pep

L9 F42 K70 R71 R75 K100 V142 A144 Y145 I169

N170 E171 T173 I177 Y179 G180 L181 R184

F193 D194 L195 T199 F200 D201 V202 L205

I207 F216 T221 N222 T225 L227 E230 F232

V340 Q384B T386 L389 L391 D393 L399 I401

E402 M408 L411 T428 T435 V436 I438 E442

F457 L459 T460 I462 P470 Q471 I472 F476

D490 T493 N497 K498

Note: Residue positions corroborated by the set of experimentally verified

residues are marked in bold font.
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region lacks high-scoring residues in our BiP simulations

(Figure 2B), as NEFs of eukaryotic organisms including BiP

(e.g., BAP89,90) are thought to have evolved independently from

grpE and might thus utilize a different mechanism.91

Communication of the peptide binding signal through the protein

to induce ATP hydrolysis is an essential step in the conformational

cycle of Hsp70, which aligns with our observations of predicted allo-

steric residues clustering along the shortest path between the nucleo-

tide binding site in the NBD and peptide binding pocket in SBDβ.

However, the DNCF predictions, in isolation, account only for the

conformational influence of individual residues, particularly those

close to the nucleotide and substrate binding sites as these adapt fast-

est to the different configurations probed in our simulations, that is,

in-silico exchange of ATP to ADP and the NRLLLTG peptide. Thus,

conformationally coupled residues located in the intermediate region

between the NBD and SBD may be overlooked within the limited

ns–μs timescale of our simulations, which is much shorter than the

estimated ms–s timescale characteristic for processes within the

Hsp70 conformational cycle.15,84 To address this problem, we set out

to combine our predictions of individual residues into a chain of con-

formationally coupled residues, focusing specifically on the process of

protein activation triggered by binding of the peptide substrate. We

chose to perform our analyses on the Hsp70-ATP-pep systems as

the configuration representing the closest approximation to that

step of the conformational cycle. Starting from the node represent-

ing the central leucine of the NRLLLTG peptide in the network, we

performed a weighted random walk traversing edges until the ATP

node was reached, while keeping track of the visited nodes. The

probability of jumping from one node to a neighboring node was

chosen to be proportional to their relative DNCF scores, such that a

node with twice the score than its alternative was two times as likely

to be chosen for the next step (see Section 2). The procedure was

then repeated after interchanging source and target nodes, that is,

starting from ATP and finishing at the central leucine of the peptide.

These runs, both in the forward and backward direction, were per-

formed 10 000 times each and summed to yield the final result. This

approach combines the advantages of two strategies: First, the

DNCF method provides information about the conformational cou-

pling of individual residues to their environment, and how this cou-

pling is affected by different ligand binding states. Then, this

information is supplemented with a search for the shortest paths

connecting two regions, that is, nucleotide and peptide binding

pockets, a technique that serves as the foundation for the class of

centrality-based methods to predict functional residues in

F IGURE 3 Residues showing strong conformational coupling with the nucleotide and peptide substrate according to their DNCF scores.
Residues marked in blue are part of both the predicted set and the set of experimentally verified residues. The shortest inter-residue path

between ADP and the central leucine of the NRLLLTG peptide is shown in black. The nucleotide-binding domain–substrate binding domain linker
is indicated as red spheres. (A,B) Residues within the top 10% of DNCF scores mapped onto DnaK (blue, green). The location of the J-domain of
the DnaJ cochaperone in the complex (PDB-ID: 5NRO) is indicated as an orange cartoon, though it was not present during simulation. (C,D)
Residues within the top 10% of DNCF scores mapped onto BiP (blue, red)
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proteins.92–94 Our combined approach yields a score that accounts

both for the conformational coupling of individual residues and their

interconnectivity, that is, their closeness to the regions of interest

and other residues with high DNCF scores. Figure 6 shows the sig-

naling pathways predicted by this score, denoted as DNCF-RW

(“DNCF Random Walk”; raw scores reported in Table S6).

F IGURE 4 Correlation of
DNCF scores obtained from
molecular dynamics simulations
of DnaK and BiP. Residues with
experimentally verified allosteric
roles are shown in orange. (A,B)
Normalized DNCF scores of
(A) DnaK-ATP-to-ADP-pep and
(B) BiP-ATP-to-ADP-pep plotted

over the protein sequence.
(C) Scatterplot showing the
correlation between DNCF scores
of DnaK-ATP-to-ADP-pep and
BiP-ATP-to-ADP-pep. NBD,
nucleotide-binding domain; SBD,
substrate binding domain.

TABLE 3 Spearman's correlation coefficients for DNCF scores obtained from network analysis of molecular dynamics trajectories

DnaK-ATP-to-ADP-pep DnaK-ATP-pep DnaK-ATP-to-ADP BiP-ATP-to-ADP-pep BiP-ATP-pep

DnaK-ATP-to-ADP-pep

DnaK-ATP-pep 0.93

DnaK-ATP-to-ADP 0.89 0.88

BiP-ATP-to-ADP-pep 0.74 0.72 0.61

BiP-ATP-pep 0.76 0.74 0.65 0.89

BiP-ATP-to-ADP 0.68 0.62 0.59 0.85 0.87

Note: System combinations featuring the same protein are highlighted in green.
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As described above, we selected sets of shared and specific resi-

dues defined by the highest and lowest score percentiles, that is, resi-

dues which are both within the top 15% of the evaluated score in one

system and within the lower 15% percentile of distribution obtained

from the set of experimentally verified allosteric residues in the other

system. The set of residues common to both systems consists of

TABLE 4 Prediction of residues with specific signaling properties to either DnaK or BiP according to DNCF and DNCF-RW scores

System Method Residues

DnaK/BiP commona DNCF L9L, K70K, R71R, R75R, V142V, A144A, Y145Y, I169I, N170N, E171E, Y193F, L195L, T199T, F200F,

D201D, I202V, I207I, T221T, N222N, T225T, L227L, V340V, L399L, I401I, I438I, Q442E, F457F,
L459L, I472I, F476F, D490D, Q497N

BiPb DNCF -(106a)I, G180G, G184R, E267E, K270K, V365I, �(384b)Q, V386T, T428T, E430S, A435T, N451N,

D460T, P470P, K491K, S493T, G494G, K498K, I501I

DnaKb DNCF N61N, P62P, T65T, N147N, D148D, Q150Q, T185E, K214-, F357F, T395C, D481N

DnaK/BiP commona DNCF-RW K70K, R71R, I73I, R75R, P143P, A144A, Y145Y, F146F, N147N, D148D, Q150Q, R151R, N170N,

L195L, G196G, G198G, T199T, F200F, D201D, T225T, L227L, E230E, L397L, S398T, L399L, I401I,
E402E, M408M, L411L, F426F, V436V, T437T, I438I, V440V, L441Y, Q442E, L454L, Q456T,

F457F, N458D, L459L, I472I, V474V, F476F, L484L

BiPb DNCF-RW P37P, P113E, D156D, E430S, �(506a)R, L507L

DnaKb DNCF-RW R84Q

Note: Residue codes at the beginning/end mark the DnaK/BiP sequence variants, respectively. Missing residues are indicated by a dash and insertion

codes by lower case letters and parentheses. Residue positions differing between DnaK and BiP are highlighted in bold.
aResidues with increased scores in both systems.
bResidues with increased scores only in the denoted system.

F IGURE 5 Residues showing strong conformational coupling with the nucleotide and peptide substrate specific to either DnaK or BiP as
predicted by their DNCF scores. Yellow residues mark residues with increased scores in both proteins. The shortest inter-residue path between
ADP and the central leucine of the NRLLLTG peptide is shown in black. The nucleotide-binding domain–substrate binding domain(NBD–SBD)
linker is indicated as red spheres. (A,B) Residues with specifically increased DNCF scores in DnaK-ATP-to-ADP-pep compared to BiP (green). The
location of the DnaJ cochaperone in the complex (PDB-ID: 5NRO) is indicated as an orange cartoon, though it was not present during simulation.
(C,D) Residues with specifically increased DNCF scores in BiP-ATP-to-ADP-pep compared to DnaK (red)
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45 residues, describing a contiguous surface of conformationally

coupled residues between the nucleotide and substrate binding

pockets (Table 4, Figure 6). R84 is the single residue found to contrib-

ute specifically to DnaK (Figure 6A,B), with the difference in scores

arising from the R84Q mutation present in BiP. In contrast, the net-

work of BiP shows a specific cluster of residues with increased scores

close to the R(�506a) insertion. This residue insertion does not occur

in DnaK, but is highly conserved in eukaryotes25 and is a prominent

interaction partner forming hydrogen bonds with D148, Q152, and

D156 at the interface between the SBDβ core, SBDα, and NBD

domains (Figure 6C,D). The R(-506a) residue has also been found to

adapt to the binding of peptide substrates28 and plays an important

role in stabilizing the docking of NBD–SBD domains.25 The cluster

furthermore consists of residues P37P, P113E, D156D, and L507L,

TABLE 6 Predicted residues with specific roles in nucleotide-
binding domain (NBD) lobe rotation compared to the full-length
protein

System Method Residues

BiP-NBD DNCF V4, N64, A69

DnaK-NBD DNCF G229, D233, E267, K270

BiP-NBD/full

length

common

DNCF L9, F42, K70, R71, R75, E171, Y179,

L181, F193, D194, L195, T199,

F200, D201, V202, L205, I207,

F216, T225, L227, E230, F232,

V340

DnaK-NBD/full

length

common

DNCF L9, F67, K70, R71, R75, E81, R84,

T141, Y145, Y193, L195, T199,

F200, D201, I207, H226, L227,

V340

F IGURE 6 Cluster of conformationally coupled residues between the substrate and nucleotide binding sites in heat shock protein 70 kDa
predicted by a targeted random walk weighted by DNCF scores (DNCF-RW). Node colors in the networks indicate the number of times each
node was visited during the DNCF-RW random walk. Stick representations mark residues predicted as specific to DnaK (green), specific to BiP
(red) or shared between DnaK and BiP (yellow). The shortest pathway between ADP and the NRLLLTG peptide is indicated in black. Within
networks, solid edges denote carbon contacts and dashed edges indicate hydrogen bonds. (A,B) Structure and network of DnaK-ATP-pep. (C,D)
Structure and network of BiP-ATP-pep
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which together form an alternative pathway between NBD and SBD

in addition to the main pathway present in both DnaK and BiP. In

summary, our observations using the DNCF and the DNCF-RW

methods suggest a high degree of conservation between DnaK and

BiP with respect to the major conformationally coupled regions

located between the binding pockets of the nucleotide and peptide

substrate. However, differences were found in the marginal regions of

the clusters, which could be the result of adaptation to their specific

organism or organelle contexts. In particular, we detected three

regions showing differences, which might be the result of evolution-

ary adaptation in DnaK and BiP: First, the NBD–SBD linker and its

surrounding residues; second, the peptide binding pocket; and third,

the linker region connecting the SBDβ with the SBDα Lid domain via

the -(506a)R residue insert.

After investigating substrate dependent signaling in Hsp70s, we

were interested in addressing the conformational effects of ATP

hydrolysis on NBD lobe dynamics, particularly whether this process

was controlled by the same set of residues as determined above. The

partial undocking of NBD and SBD after binding a substrate peptide is

the prerequisite step to prime the NBD for ATP hydrolysis. Following

cleavage of the nucleotide's terminal phosphate, the NBD lobe subdo-

mains rotate by �17.5�, as observed by comparing ATP-bound crystal

structure and ADP- bound crystal structure of DnaK (only NBD

domain; Figure S14).84,95 In order to study the rotation of the NBD

lobes, we performed simulations of the isolated DnaK/BiP NBD as an

approximation to the undocked SBD state, in which both NBD and

SBD are separated and only connected by the NBD–SBD linker. Three

nucleotide configurations were simulated, namely Hsp70-NBD-ATP,

Hsp70-NBD-ADP, and Hsp70-NBD-ATP-to-ADP. Using the RMSD of

NBD-II to track the rotation state of simulations, we observed that

the NBD lobes of DnaK-ATP-to-ADP rotated toward the ADP con-

former in 2 out of 3 simulation replicas, while they did not rotate sub-

stantially in DnaK-ATP (Figure 7A,B). To determine whether the axis

of rotation observed in the simulation matched what was expected

from the crystal structures, we conducted a hierarchical clustering of

trajectory frames on NBD-II until only two clusters remained. The first

cluster corresponded to trajectory frames close to the initial structure,

while structures showing substantial rotation to come closer to the

F IGURE 7 Root mean square deviations (RMSD) of nucleotide-binding domain-II (NBD-II) during molecular dynamics simulations of the
isolated NBD domain of DnaK/BiP. The lobe conformation associated with bound ADP was used as reference for RMSD calculation. Trajectory
frames shown in blue and red indicate membership to the two top clusters remaining after hierarchical clustering. Each column shows values
obtained from replicas r1–r3 for the different systems: (A) DnaK-NBD-ATP; (B) DnaK-NBD-ATP-to-ADP; (C) BiP-NBD-ATP; (D) BiP-NBD-ATP-
to-ADP
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DnaK-NBD-ADP conformation formed the second cluster

(Figure 7A,B). The average NBD rotation during simulations, com-

pared to the starting structure, was 14.4 ± 4.83� for DnaK-NBD-ATP-

to-ADP and only 4.34 ± 2.05� for DnaK-NBD-ATP, indicating a clear

increase in conformational dynamics (Figure 8A). We determined the

median representative of the second cluster and calculated the rota-

tion axis of NBD lobes compared to the initial structure as the “princi-
pal rotation” of the simulation. As reference, we calculated the

rotation axis from the crystal structures of DnaK-NBD-ATP and

DnaK-NBD-ADP. The principal rotation axis of DnaK-NBD-ATP-to-

ADP was shifted compared to the reference axis by 18.40�, showing a

much closer alignment to the reference axis than the shift of 78.4� of

the DnaK-NBD-ATP system (Table 5). We performed the same analy-

sis for BiP-NBD-ATP-to-ADP and BiP-NBD-ATP, revealing similar

trends: The NBD lobes of BiP-NBD-ATP-to-ADP rotated by 10.4

± 3.79�, while in BiP-NBD-ATP they rotated by 7.97 ± 2.36�

(Figure 8B). Again, the principal rotation axis of BiP-NBD-ATP-to-

ADP was much closer to the reference axis, with a shift of only

26.12�, compared to BiP-NBD-ATP with a shift of 83.33� (Table 5).

This reduction in the average rotation angle of BiP compared to DnaK

is explained by observing that only one out of three BiP-NBD-ATP-

to-ADP replicas showed a substantial rotation toward the ADP state

(Figure 7C,D). In summary, the in-silico exchange of ATP to ADP was

sufficient to trigger rotation of NBD lobes toward the expected

F IGURE 8 Simulation of
nucleotide-binding domain (NBD)
lobe rotation using molecular
dynamic simulations of DnaK and
BiP. (A, B) Histograms of NBD
lobe rotation angles obtained
from molecular dynamics
trajectories of (A) BiP-NBD and
(B) DnaK-NBD. The orange

histograms show Hsp70-NBD-
ATP while the blue histograms
show the Hsp70-NBD-ATP-to-
ADP variant. (C,D) Residues with
specifically increased DNCF
scores in the trajectories of NBD
versus full length proteins in
(C) DnaK (green) and (D) BiP (red)

TABLE 5 Rotation of nucleotide-binding domain (NBD) lobes during molecular dynamics simulations

System Angle meana (degree) Angle standard deviationa (degree) Angle to reference axisb (degree)

DnaK-NBD-ATP 4.34 2.05 78.40

DnaK-NBD-ATP-to-ADP 14.4 4.83 18.40

BiP-NBD-ATP 7.97 2.36 83.33

BiP-NBD-ATP-to-ADP 10.4 3.79 26.12

aMean and standard deviation of the NBD lobe rotation angle compared to the starting conformation during molecular dynamics.
bAngle between the principal rotation axis of the simulation and the reference rotation axis obtained from the ATP-bound crystal structure and ADP-

bound crystal structure.
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conformers in some of our simulations. Note that we do not use this

data to make a quantitative prediction of the propensity of this rota-

tion in DnaK and BiP proteins, for which the analyzed number of rep-

licas is too small. Instead, we utilize these simulations qualitatively to

gain insight into the rough timescale on which this rotation can occur

and detect candidates for residues which are specifically associated

with NBD lobe rotation.

Next, we extracted interaction networks from the simulations and

applied the DNCF method to determine changes in residue dynamics.

Comparing the DNCF scores of DnaK-NBD-ATP-to-ADP to its corre-

sponding full-length protein, we observe solid but not perfect correla-

tion (Spearman's r: 0.82). We repeated the analyses detailed above to

determine residues with specifically increased DNCF scores compar-

ing the NBD and full-length protein simulations. Total 18 residues are

found to be shared in the top 10% DNCF percentiles of DnaK-NBD-

ATP-to-ADP and its full-length variant, whereas 23 residues are

shared for the corresponding BiP systems (Table 6). Four residues

close to the nucleotide were detected with high scores specifically in

the NBD simulations, with three of them acting as direct interaction

partners (G229, E267, and K270) and one located in the close vicinity

(D233) (Figure 8C). This location puts them in a prime position to

sense the nucleotide and provide flexibility to the NBD lobes depend-

ing on DnaK's ATP/ADP state.58,96 In addition, G229 is located adja-

cent to G228, another glycine for which mutations exhibit defective

chaperone function.97 In BiP-NBD, residues V4, N64, and A69 were

detected as specific for NBD lobe rotation (Figure 8D). A69 is adja-

cent to K70, a residue essential to ATP hydrolysis in Hsp70s,75 indi-

cating an association of NBD lobe rotation with conformational

changes close to residues regulating catalysis. In contrast, the other

two residues V4 and N64 are located far away from the axis of lobe

rotation. It is possible that these observations are influenced by statis-

tical noise, as only one out of three simulations of BiP-NBD showed

NBD lobe rotation (Figure S14). Overall, the signaling properties of

the isolated NBD domains appear to be very similar to the full-length

protein, however with a number of residues arising with potentially

specific functions for the rotational motion.

4 | CONCLUSION

In this study, we performed MD simulations of the Hsp70 chaper-

ones DnaK and BiP, extracted networks of hydrophobic and hydro-

gen bond interactions and performed DNCF and DNCF-RW

analyses to predict residues exchanging information about their

conformational states with their environment, prompted by differ-

ent ligand configurations. These residues are presumed to be asso-

ciated with allosteric pathways of the Hsp70 system, that is,

residues for which mutation has a notable effect on the coupling

between the processes of peptide substrate binding, cochaperone-

mediated activation and ATP hydrolysis. Our predictions based on

the DNCF method were found to be in quantitative agreement with

a set of experimentally verified allosteric residues. As the experi-

mental dataset is limited by the number of tested mutants and

reliance on DnaK as the predominant model, our predictions can

aid by potentially filling gaps in our understanding of Hsp70 allo-

stery and by pinpointing signaling differences between related pro-

tein variants, such as between DnaK and BiP. The strong

agreement with experimental data further indicates that the artifi-

cial Hsp70 conformations constructed for our analysis are able to

provide useful insights, despite reflecting only a part of the com-

plete biological picture. As more and more structures of different

states within the Hsp70 conformational cycle become available,

like the recent publication of the partially undocked DnaK-ATP-pep

conformation,73 further MD simulations based on these novel

structures will be useful for further refinement of analyses. The

structures we investigated in this work—and thus the pathways we

predict—correspond to one specific phase of the conformational

cycle, namely the substrate mediated activation of ATP hydrolysis

and subsequent undocking of the NBD–SBD interface. All simu-

lated systems are conformationally related to the Hsp70-ATP con-

formation with relatively limited structural differences, that is,

binding of a peptide or exchange of the nucleotide to ADP. The

DNCF analysis is thus primed toward the propagation of conforma-

tional changes arising from these signal triggers. However, compar-

ing too divergent conformations using the DNCF method, for

example, the domain-docked Hsp70-ATP and the fully undocked

Hsp70-ADP conformation would not yield as much useful informa-

tion, as the DNCF method would simply pick up these dramatic but

self-evident conformational differences. Investigating for example,

the re-docking of the Hsp70-ADP conformation will require a dif-

ferent set of simulations, where the fully undocked Hsp70-ADP

conformation is simulated alongside conformationally related vari-

ants that are more likely to initiate re-docking. Clusters formed by

our predictions aligned with regions already known to be important

for mediating Hsp70 conformational changes and function: The

interfaces between NBD and SBD subdomains and the binding site

of the JDP DnaJ. Investigated in more detail, we detected a number

of residues which were predicted to be specific to either DnaK and

BiP. About 40% of these differences arise directly from mutations,

while others point to inherent differences between the dynamics of

DnaK and BiP, such as the stability of (sub)-domain interfaces and

substrate binding pocket conformational plasticity, which have

been described previously on a biochemical level. By combining

DNCF scores with a targeted random walk, we were able to inte-

grate predictions of individual residues into a proposed pathway

responsible for communicating binding of a substrate in the SBD to

the NBD. This pathway corresponds to a series of residues whose

neighboring interactions are substantially coupled and modulated

by substrate and/or nucleotide binding. In this context, communi-

cation within this pathway would manifest through the possibility

of subtle conformational changes or correlated fluctuations that

can occur along the proposed chains of interactions. Our data

revealed an alternative pathway existing in BiP but not DnaK, cen-

tered around the –(506a)R residue, which is a highly conserved

position in eukaryotic Hsp70 variants.25 Finally, we investigated

the conformational control exerted by ATP/ADP over the NBD
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lobes by simulating the isolated NBD domain in different configura-

tions. We observe that the in-silico transformation of ATP to ADP

is sufficient to trigger spontaneous lobe rotation during simulation

toward the conformations expected from crystal structures, indi-

cating that the terminal ATP phosphate acts as a strong mechanical

wedge locking the lobes in place. Given the relatively short simula-

tion times necessary to observe these rotations in some replicas,

there appears to be a relatively low kinetic barrier to rotation after

ATP hydrolysis, suggesting that this specific process does not

require external assistance by cochaperones, provided that the

SBDβ domain is completely undocked from the NBD. Furthermore,

we identified a number of residues in DnaK which are in direct con-

tact with the ATP/ADP nucleotide and can thus act as sensors for

the nucleotide hydrolysis state, acting as focal points for initiating

NBD lobe rotation. In total, our findings shed light on the pathways

of allosteric communication in Hsp70s, suggesting the involvement

of additional residues beyond what has been experimentally veri-

fied. We found that while many signaling residues are conserved

between DnaK and BiP, there are also specific differences reflect-

ing the divergent evolution of the two proteins. These specific resi-

dues may contribute to an explanation of the differences in

biochemical behavior between Hsp70s found in different organisms

and organelles. Studies elucidating differential mechanisms within a

protein family provide important insights into the regulatory fine-

tuning of the system, which are essential for development of tar-

geted orthosteric or allosteric inhibitors. A possible avenue for

application is indicated by a study series creating specific allosteric

inhibitors for Hsp90, targeting the TRAP1 mitochondrial paralog

but with no effect on cytoscolic Hsp90.98–101 Our observations

deepen our understanding of allosteric communication in the

Hsp70 system and how a ubiquitous but diverse protein class has

adapted to different cellular environments and cochaperone inter-

action partners. As Hsp70 have also been suggested to be promis-

ing therapeutic factors in a range of contexts, among them

neurodegenerative diseases2,3,7–12 and csBiP as a coreceptor of the

pandemic SARS-CoV-2 virus,40–44 investigating such evolutionary

differences in further detail may become a key step in developing

medical applications.
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1 Introduction

SenseNet (“Structure ENSEmble NETworks”) maps structure ensembles of
biomolecules to atom interaction networks and provides functions for their anal-
ysis and visualization. It is available as a plugin for the free network visualiza-
tion software Cytoscape [1].

Protein structures are frequently analysed to gain insights into the effects of
ligand binding, residue mutations or conformational changes. In contrast to
isolated structures generated by crystallography or other experimental sources,
ensembles obtained from Molecular Dynamics (MD) provide additional informa-
tion such as interaction lifetimes or correlation between conformations, allowing
to investigate dynamic properties of biomolecules. In a structure ensemble net-
work, each node represents one or a group of atoms while edges correspond to
the interactions between these atoms (e.g. hydrophobic contacts or hydrogen
bonds). Each edge is associated with a ’timeline’ which indicates the pres-
ence of an interaction for each structure in the ensemble. Analysis functions
are provided to extract information from these timelines and map results to net-
work nodes and edges. Finally, SenseNet offers comprehensive visualization
functions for side-by-side analyses of networks and 3D structures.

2 Installation

The recommended method for obtaining SenseNet is the Cytoscape App Store
or alternatively from our website at https://bioinformatics.wzw.tum.de. The
latter option requires you to install the plugin manually. To do this, place
the ’SenseNet’ .jar file into the ’CytoscapeConfiguration/3/apps/installed’ folder.
Make sure to remove any old version of SenseNet from this folder before start-
ing Cytoscape.

3 Data model

SenseNet maps protein or other macromolecular structures to a network of
nodes, which correspond to individual atoms or groups of atoms, and edges,
representing interactions between atoms. Atoms may be grouped into a ’meta-
node’; the individual atom nodes that are contained in this group are hence
called its ’subnodes’. In a network, either a metanode or its subnodes may be
’active’ (i.e. present) at a given time. This is achieved by expanding (replacing a
metanode by its subnodes) or collapsing (replacing all subnodes by their meta-
node). The metanodes of a network can be expanded or collapsed by a double
click, and all analysis methods which act on the ’active’ set of nodes and edges
take the current state of the network into account. For example, an analysis can
be performed while some selected residues are expanded into individual atom
nodes, while other residues are represented by a single node. When collaps-
ing subnodes, all edges connecting to these nodes are replaced by metaedges
which represent the cumulative interactions of the replaced edges. Separate
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metaedges are created for each interaction type (e.g. contacts or hydrogen
bonds). A detailed description of edge sets and how they change can be found
in section 5.3.

In order to model a structure ensemble, each edge is associated with a timeline
represented as either a vector of integer values (e.g. presence or absence of
contacts in each time frame) or a vector of real numbers (e.g. interaction ener-
gies). The timeline of a metaedge is called a ’metatimeline’ and is calculated
from its subedge timelines. The ’Sum’ and ’Occurrence’ frame weight methods
yield two different metatimeline variants

Xijk,sum =
∑
α∈i

∑
β∈j

Xαβk

Xijk,occ = min(1, Xijk,sum)

(1)

in which X corresponds to a timeline, i, j are metanodes, k is an interaction
type and α, β are subnodes of i, j.

The weight of an edge describes the strength of an interaction. It is determined
by the ’Timeline weight method’, which is by default the average over all time
frames. Alternatively, users can set the network to any single time frame or use
averages of time blocks, e.g. as obtained from clustering.

Difference networks can be used to compare networks of two similar, but differ-
ent ensembles (e.g. structures with one or more point mutations). A difference
network is created by mapping interactions between equivalent atoms of two
networks onto each other. Two atoms are considered equivalent if they have
the same chain name, residue index, residue inset, residue alternative location
and atom name (see PDB specification [2]). Notably, the residue name is not
compared in order to allow comparisons for residue point mutations. All interac-
tions between two equivalent atoms which have the same interaction type are
considered equivalent. Interactions for which no equivalent can be found are
compared to an empty timeline of all zeroes. Once all equivalent interactions
are mapped, the timeline vectors are subtracted element-wise

Xαβk,diff = Xαβk −Xαβk,ref (2)

where Xαβk is the timeline of the compared network, and Xαβk,ref is the time-
line of the reference network. Metatimelines are calculated analogously to eq.
1.
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4 User Guide

All plugin functions can be accessed via the Cytoscape GUI. The controlling
elements can be found either in the ’SenseNet’ tab on in the control panel or in
the top menu within ’Apps - SenseNet’.

4.1 General

Import network Parameters

• Import networks Choose one or more input sources to import. Use the
plus and minus buttons to add/remove fields. See also section 5.4 for
more details on some of the file formats.

– Input type

∗ AIF file Import network from an AIF (Atom Interaction Format)
.aif/.zaif file.

· .aif/.zaif file Input file: Either in AIF or compressed ZAIF
format.

· Frame sieve Read only every nth frame. Useful to save
memory.

· Skip timelines Skip timeline depending on a threshold. For
example the ’Skip timelines < 0.05 avg.’ option does not
import a timeline if its average is below 0.05.

∗ CPPTRAJ H-bonds Import network from CPPTRAJ [3] hbond
command output.

· H-bond file Generated by ’avgout’.

· Timeline file Generated by ’uuseries’.

· Interaction type Interaction type name.

· Ignore backbone Choose to ignore contacts involving back-
bone atoms (atom names C,O,N,CA).

· Frame sieve Same as for ’AIF file’.

· Skip timelines Same as for ’AIF file’.

∗ CPPTRAJ nativecontacts Import network from CPPTRAJ na-
tivecontacts output.

· Contacts file Generated by ’writecontacts’.

· Native timeline file Generated by ’seriesout’.

· Nonnative timeline file Generated by ’seriesnnout’.

· Contacts .pdb file Generated by ’contactpdb’.

· Interaction type Interaction type name.
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· Ignore backbone Choose to ignore contacts involving back-
bone atoms (atom names C,O,N,CA).

· Ignore intra-residue Choose to ignore contacts within the
same residue.

· Frame sieve Same as for ’AIF file’.

· Skip timelines Same as for ’AIF file’.

∗ PDB structure H-bonds Import network from H-bonds found in
a PDB file. Hydrogens are required to find H-bonds. All atoms
in the PDB file whose names start with ’H’ are considered hy-
drogens.

· PDB file Select .pdb file to load.

· Distance cut-off Maximum donor-acceptor distance.

· Angle cut-off Minimum donor-hydrogen-acceptor angle.

· Donor mask Atom mask for donor atoms (see mask refer-
ence in section 5.2).

· Acceptor mask Atom mask for acceptor atoms (see mask
reference in section 5.2).

· Interaction type Interaction type name.

∗ PDB structure contacts Import network from contacts found in
a PDB file.

· PDB file Select .pdb file to load.

· Distance cut-off Maximum contact distance.

· Atom mask Atom name mask to calculate contacts for (see
mask reference in section 5.2).

· Interaction type Interaction type name.

· Ignore backbone Choose to ignore contacts involving back-
bone atoms (atom names C,O,N,CA).

· Ignore intra-residue Choose to ignore contacts within the
same residue.

∗ DSSP secondary structure Import network of secondary struc-
ture elements. All residues belonging to the same secondary
structure element (helix/sheet) are connected sequentially.

∗ DSSP file Select .dssp file to load.

∗ Interaction type Interaction type name.

• Difference network Check box to select input files for creating a differ-
ence network. When checked, the ’Import reference networks’ panel will
appear. The differences are calculated by subtracting the timelines of
equivalent interactions of the reference network from the network loaded
in the top import panel (Import networks).
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• Metanode definition Choose how atom nodes are grouped together.

– Group definition Grouping settings.

∗ Amino acids Group atoms by their respective amino acids

∗ Backbone/Sidechain Group atoms by their respective amino
acids, but create seperate nodes for the backbone/sidechain
portions. The Backbone atom names text field contains all
atom names that will be categorized as backbone, separated by
commas.

• Network options

– Create visual style Check to automatically create a new visual style
for the network.

– Network name Displayed name of the network. Automatically filled
when imported files are chosen. Can also be set manually.

– Remove edges Setting to remove (deactivate) edges below a cer-
tain threshold. Equivalent to the setting with the same name in the
’Interaction weights’ tab. Can be changed at any time.

Show log Show task logs.

Parameters

• Log category Select log category to display.

– Global Continuous list of task logs since session start.

– Task Last log of task type selected in the Log type box.

Export network Export current network in AIF format. The exported file can
e.g. be used for importing a multisource network as a single file containing the
combined information of all original import files.

4.2 Shown interactions

Only interaction types with checked boxes are shown in the network. The in-
teraction type of each edge is read from the shared interaction column.

4.3 Interaction weights

This panel controls how individual atom timelines are combined into metatime-
lines. The radio buttons on the left chooses how each frame of the metatimeline
is determined (’Frame weight method’; see eq. 1). The buttons on the right se-
lect how to determine the total weight of the metatimeline (’Timeline weight
method’):

• Average weight Average over all frames in the timeline
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• Single frame Select and show the network state at an individual time
frame

• Clusters Show average of frames within a cluster. Requires previous
clustering analysis

Weighting is performed on all imported edges (see section 5.3 for an explana-
tion of edge sets). For metaedges, all subedges of the same interaction type
are considered. Whenever weighting is performed, the results are written into
the ’weight’ and ’standard deviation’ edge columns.

4.4 Analysis

4.4.1 Network interactions

The analysis functions in this panel act on the whole network. Results are
usually presented as tables/plots in the result panel on the right.

Timeline Shows the timelines for all imported edges. For metaedges, the
metatimeline is calculated according to the selected weight method.

Parameters

• Frame weight Method for determining metatimelines. See section 4.3

Degree Calculates weighted degree for active edges. Results are written into
the ’degree’ node table column.

Parameters

• Degree weight Method for calculating weights for adjacent edges.

– Edge weight sum Sum values of edge columns.

• Weight column Source column for edge weights.

• Negative weights Method to treat negative edge weights.

– abs(x) Use absolute value of x.

Centrality Calculate weighted centrality measures for active nodes, based
on shortest paths. The algorithms are implemented as described in refs. [4, 5].
If two nodes are connected by multiple edges, they are treated as one, using
one of several merging methods. Results are written into the ’centrality’ node
table column.

Parameters

• Centrality type Centrality measures to compute. A transformation func-
tion maps edge weights to determine the distance between nodes (see
algorithm 10 in ref. [4])
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• Multiple edges weights Method for merging parallel edges between two
nodes.

– Sum/Min/Max Use the weight sum/average/min/max of parallel edges
as total weight.

– Edge count Use the number of edges between two node pairs as
total weight.

– Uniform All edges are assigned an uniform weight. Parallel edges
are ignored. This option effectively gives the centralities of an un-
weighted network.

• Weight column Column of edge weights.

• Distance transformation Function to transform edge weights to dis-
tances. The function is commonly chosen such that a high weight cor-
responds to a low distance.

• Negative weights Method to treat negative edge weights.

• Normalization Type of normalization to apply to centrality values.

– None Do not perform normalization.

– Min-max range Subtract the minimum centrality of the network from
each value and divide by the range of values. The normalized value
is limited between 0 (lowest centrality) and 1 (highest centrality).

– Max node pairs Divide each node’s centrality by the theoretical
maximum number of node pairs, excluding that node, in an undi-
rected network: (N−1)(N−2)

2 , where N is the total number of active
nodes.

Correlation Determine correlation between active edges. The edge neigh-
bour correlation factor ECF is calculated as

ECF(i) =
∑
j∈A
|c(i, j)| (3)

where i, j are network edges, c(i, j) is a correlation function of edges i and j,
and A is the set of edges that i is compared to. Correlation factor types may
use different edge sets for A.

Parameters

• Correlation factor type

– Neighbour Edge neighbour correlation factor. Here, A is the set of
edges adjacent to i (i.e. separated by at most one node)

• Correlation method Correlation measure to use (see text below).

• Frame weight Method for determining metatimelines. See section 4.3.

• Reference network For methods calculating correlation differences.
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• Edge mapping Determine how edges are matched between active and
reference networks.

– Shared name Match edges with identical ’shared name’ entries in
the edge table.

– Match location Require that the ’shared name’ entries of source
and target nodes approximately match between networks. The ap-
proximation is that only the ’residue name’ is allowed to differ. The
’altloc’ and ’residue insert’ identifiers are not considered part of the
residue name and thus still have to be identical. This option is in-
tended for comparing two networks differing e.g. in point mutations
of single residues in order to match edges representing conserved
interactions.

The ’Mutual information’ correlation method determines correlation as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(4)

in which, X and Y are integer timelines, p(x, y) is the joint probability function
of values x, y, and p(x), p(y) are marginal probability functions of x, y. This
method should be used when the timeline contains discrete values, such as
the count of interactions. The unit for mutual information results is ’bits’.

’Mutual information difference’ calculates the sum of absolute changes in ex-
pected pointwise mutual information for each event

I(X;Y ) =
∑

x∈(X
⋃
X̂)

∑
y∈(Y

⋃
Ŷ )

∣∣∣ p(x, y) log2( p(x, y)

p(x)p(y)

)

−p̂(x, y) log2
(
p̂(x, y)

p̂(x)p̂(y)

) ∣∣∣ (5)

where the X̂, Ŷ denote timelines in the reference network corresponding to
X,Y . Edges are considered equivalent if their ’shared name’ columns match.
If no match can be found for an edge, the reference timeline is replaced by a
vector of zeroes. This measure is useful for determining differences in dynamic
behaviours between simulations, f.e. a protein with and without a ligand.

Alternatively, choosing the ’Pearson’ correlation method will calculate the Pear-
son correlation coefficient between interaction timelines

r =

∑
i(X(i)− µx)(Y (i)− µy)

σxσy
(6)

where i is a discrete time frame, X(i), Y (i) are functions yielding the corre-
sponding timeline value at position i, with associated sample means µ and
standard deviations σ. This method is recommended when the timeline con-
tains continuous values like interaction energies.
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The resulting correlation factors for each edge are written into the ’correlation
factor’ column.

Lifetime Calculates estimates for the interaction lifetimes. These are calcu-
lated from the intermittent autocorrelation function

CL(k) =
1

N

N−k∑
i=0

Xocc(i)Xocc(i+ k)

Xocc(i)2
(7)

in which k is the discrete lag step, N is the total number of time frames and
Xocc(i) is the occurrence weighted metatimeline function. The calculated life-
time is intermittent, i.e. the interaction may break and reform between the
compared time frames. The average lifetime is estimated from the autocorre-
lations following the same protocol as for the autocorrelation time during error
estimation.

If the ’Replicas’ setting is set to n > 1, the timeline is divided into n equal sized
blocks, which are analyzed separately. The average of block lifetimes is written
to the ’lifetime’ edge column.

Weight error Calculates weight error estimates for all imported edges. These
functions aim at approximating the standard error of the timeline weight.

Parameters

• Error method Method for calculating the error. Currently, only ’Autocor-
relation’ is available.

• Frame weight Method for determining metatimelines. See section 4.3.

• Replica weight Method to merge errors from multiple replicas.

– Max/Avg/Min Use maximum, average or minimum of replicas as
final error value.

The autocorrelation method is based on the approach outlined in ref. [6]. The
timeline autocorrelation for different discrete lag steps is calculated as

C(k) =
1

Nσ2

N−k∑
i=0

(X(i)− µ)(X(i+ k)− µ) (8)

with k as the discrete lag step, N as the total number of time frames, X(i) as
the timeline function at each discrete time frame, µ as the mean ofX, and σ2 as
the variance of X. A single exponential of the form A∗ eBx is fitted by weighted
linear regression in log space with weights 1

k+1 . To reduce the influence of
noisy function tails, only autocorrelation values above 0.1 are considered for
fitting. The integral of the fitted exponential is calculated analytically and serves
as estimate for the autocorrelation time τ . The estimate for the independent
sample size is then determined as
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Nind =
N

τ
(9)

which is used to estimate the standard error of independent samples

σe,ind =
σ√
Nind

(10)

If the ’Replicas’ setting is set to n > 1, the timeline is divided into n equal sized
blocks, which are analyzed separately. The final error is determined as by the
’Replica weight method’.

The results of this analysis are written into the ’error estimate’, ’autocorrelation
sample size’, and ’autocorrelation time’ edge columns.

Entropy For each network edge, determine Shannon’s information entropy

H(X) = −
∑
x∈X

p(x) log2(p(x)) (11)

where X is the edge’s integer interaction timeline. Results are written into the
’entropy’ edge column. The unit of reported results is ’bits’.

Parameters

• Frame weight Method for determining metatimelines. See section 4.3.

Random Walk Perform a random walk through the network. At each step,
the next visited node is selected randomly from the list of nodes connected to
the current node via one or more edges (neighbors). Multiple edges between
node pairs do not affect the selection probability.

Parameters

• Walk mode

– Default Regular random walk starting from the specified node and
finishing after the specified number of steps, tracking visited nodes
along the way. Restarts do not reset the list of visited nodes.

– Targeted Random walk starting and finishing at the specified nodes.
If the target node is not reached after the specified number of steps,
the run is restarted. Restarts always reset the list of visited nodes.

– Targeted-Symmetric Like ’Targeted’, but each run is performed an
additional second time after exchanging start and target nodes. The
total number of runs is doubled.

• Weighting mode

– Unweighted The next node is selected from the list of neighbors
using a uniform probability distribution.
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– Weighted The next node is selected using a weighted probability
factor obtained from a node table value specified by ’Weight Col-
umn’. The probability of a node neighbor to be selected for the next
step is then

p(i) =
w(i)∑

n∈N w(n)
(12)

where i is the neighbor candidate from the node neighbor list N and
w(i) is the weight obtained from the ’Weight Column’ for node i.

– Weight column Column used for obtaining weights and calculate
weighted probabilities.

– Max steps Maximum number of walk steps in a single run.

– Restart probability Probability of restarting the run at each step.
The list of visited nodes may be retained or cleared, depending on
the ’Walk mode’.

– Num runs Number of independent runs to be performed. Nodes
visited multipled times during one individual run are counted only
once. Individual runs are added up to yield the final result.

– Random seed Seed value for random generator. Choosing the
same seed guruantees reproduction of a specific analysis outcome,
provided that the network and all other parameters are the same.

The number of random walk visits for each node are written into the ’visited’
edge column.

4.4.2 Selected interactions

Show detailed analyses for one or more selected edges.

Timeline Equivalent to the corresponding function in section 4.4.1, but shows
a plot of the timeline using the currently active frame weight method.

Correlation Calculates correlation measures between a single selected edge
and all other imported edges (see section 4.4.1).

Autocorrelation Equivalent to the corresponding function in section 4.4.1.
Uses the currently active frame weight method and plots autocorrelation func-
tions for each selected edge.

Blocked error Plots the blocked standard errors following a procedure from
ref. [6]. Uses the currently active frame weight method.

In essence, the standard error (see eq. 10) is calculated multiple times be-
tween blocks of time frames. For the minimum block size of 1, the result is the
conventional standard error. For a block size of 2, each time frame is averaged
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with its successor yielding n
2 non-overlapping ’block averages’, where n is the

total number of time frames. The standard error is then calculated between
these block averages as if each was an independent data point. This is re-
peated for increasing block sizes. The maximum block size is set as n

4r , where
n is the total number of time frames and r is the number of replicas. The total
standard error can be estimated from the plot as the value to which the blocked
standard errors converge.

4.4.3 Network matrix

These functions allow plotting and exporting networks in matrix form.

Show Display matrix of active network edges as a dotplot.

Parameters

• Weight column Select column to use for weighting.

• Node index column Select column to use as indices for the X and Y
axes of the plot. Only columns of integers are allowed.

• Min/Max value Set min and max value for weight color scale.

Export Export matrix of active network edges.

Parameters

• Weight column Select column to use for weighting.

• Node name column Select column to use as names for the X and Y axes
of the plot.

• Output file File to write matrix to.

4.4.4 Paths

The following functions provide functions for the identification of pathways be-
tween two selected nodes.

Shortest paths Find all shortest paths by traversing active edges between
two selected nodes, starting from the node that was selected first. Edges are
considered to represent equal distances, and parallel edges are ignored. The
paths are presented in a table in the result panel. In addition, two measures of
interaction strength are shown: The ’timeline sum’ is the sum of average inter-
actions of edges contributing to the pathway. In contrast, ’timeline occurrence’
gives the average occurrence weights along that path. If multiple edges are
present between two nodes, they are treated as if their timelines were merged.
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Suboptimal paths Find all paths of a fixed length range between two nodes.
Only active edges are considered and all edges are assumed to represent the
same distance. Minimum and maximum path lengths can be set as parame-
ters. Otherwise, output is equivalent to the ’Shortest paths’ function.

4.4.5 Clustering

From this panel, functions for clustering of time frames can be accessed.

Cluster Start a new clustering run, grouping time frames with similar network
states until a limit is reached. For this purpose, each time frame in the network
is represented by an interaction matrix of dimension N × N , where N is the
number of nodes. Each entry in the matrix corresponds to the selected weight.
If multiple edges are present between two nodes, their weights are summed.
The distance between two time frames is calculated as the Frobenius norm of
their matrix differences. This set of distances is then used for clustering.

Parameters

• Clustering method

– Agglomerative Hierarchical agglomerative clustering.

– Linkage Select linkage mode for agglomerative clustering.

• Target cluster count/Epsilon Select to stop clustering either at N clus-
ters or when the minimum intercluster distance drops below a certain
limit.

• Sieve Select to use only every Nth frame for clustering.

• Frame weight Select weight mode for the frame interaction matrix. See
section 4.3.

4.5 Structure visualization

This panel contains functions to connect Cytoscape to a 3D structure viewer
session. Networks can be linked to structures or trajectories loaded in the
viewer. Node and edge selections in a linked network are highlighted in the
structure.

Connect viewer Start a structure viewer and connect to it.

Parameters

• Viewer Select one of the available viewers to start (VMD, PyMOL or
UCSF Chimera). See section 2 for viewer installation requirements.

• Load session Select a session file for the viewer to load after starting.
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Model link Shows whether the currently focused network is linked to a struc-
ture.

Link network Link current network to a structure in the connected viewer.

Parameters

• Single structure Load a single structure into the viewer and link the net-
work to it.

– Structure file Select file to load structure from.

– Format Automatically determined by structure file extension. Can
be set manually. Available options depend on the connected viewer.

– Model name Model name to use for the structure. Must be unique.

• Trajectory Load a trajectory of structures into the viewer and link the
network to it.

– Structure file Select file to load structure or topology from.

– Format same as in ’Single structure’. Depending on the connected
viewer, topology formats are accepted as well.

– Model name same as in ’Single structure’.

– Trajectory file Select file to load trajectory from.

– Trajectory format same as ’Format’, but for trajectories.

• Preloaded Link network to a structure already present in the viewer

– Model name Select model name in structure viewer to link network
to.

Unlink network Remove structure link of the current network. An option is
given to remove the structure from the viewer as well.

Pause link Temporarily disable structure link of the current network. Until
the link is unpaused, selection changes are not updated between network and
structure viewer.

Transfer colors Color linked structure according to node colors in the net-
work. For VMD and UCSF Chimera, the visually closest color of the defined
color set is used. For PyMOL, the colors are transferred exactly as shown in
the network.
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4.6 Style

4.6.1 Node style

Auto style Map continuous node attributes to visual style. Creates a copy of
the current style with a ’ auto’ suffix. If a style with that name already exists, it
will be overridden.

Parameters

• Style property Select visual property to map values to. Different style
settings are available for each property.

– Color Map node attribute to fill color.

∗ Min/Mid/Max value Minimum/Middle/Maximum value to map.
Default values are determined automatically according the range
of values in the network for the selected column.

∗ Low/Mid/High color Color gradient from low to high.

– Size Map node attribute to node size.

– Min/Max value see ’Color’.

– Min/Max size Minimum/Maximum node size.

• Column Column to map values from. All columns containing ’Double’
values can be chosen.

Label format Select node label style. See section 5.1 for an explanation of
naming conventions.

Renumber Renumber residue indices in labels.

Parameters

• Chain Chain(s) to renumber. Select one character (’A’,’B’, etc.) or ’*’ to
select all chains.

• First residue index First residue index to renumber.

• Last residue index Last residue index to renumber or ’-1’ to select up
until and including the last residue index of selected chain(s).

• Offset Offset to add to the selected residues. Can be positive or negative.

Note that renumbering always acts on the original residue numbering. There-
fore, if you renumbered residue 1 to become residue 100, you would have to
select residue index 1 again to renumber it a second time. In order to return all
numberings to the original imported state, you can use the ’Reset numbering’
button in the dialog.

Labeling and renumbering never changes the ’shared name’ or ’residue index’
columns. Instead, results are written into the ’label’ and ’residue index label’
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columns in the node table. This is done to avoid accidental ambiguity and loss
of data. See section 5.1 for an explanation of the underlying concepts.

4.6.2 Edge style

Auto style Analogous to the corresponding function in section 4.6.1.

4.7 Settings

Structure viewer Configuration for structure viewers

• PyMOL/VMD/UCSF Chimera location Location to search for respective
executables. If no location is given, the plugin will attempt to run the
displayed command from the operating system’s PATH variable

• Max shown residues Maximum number of residues to show as sticks
before an error is thrown

• Max shown interactions Maximum number of interactions highlighted
before an error is thrown

• Selected interaction color Highlight color for selected interactions

• Selected residue color Highlight color for selected residues

• Zoom to selection Check to enable auto-zoom to selected residues

5 Concepts

5.1 Labels and identifiers

Within the plugin, certain naming conventions are used to map nodes and
edges to their structural counterparts. The standard naming style for nodes
is

<Chain>/<Altloc><Residue name><Residue insert>
-<Residue index>(-<Mutated residue name>)(:<Atom name>)
(#<Group tag>)

The standard naming style for edges is

<Node name 1> <Bridge name> <Node name 2>
<Interaction type>

The data fields correspond to the RCSB PDB [2] standard1. ’Group tag’ is used
when a non-amino acid metanode definition is used (such as backbone / side-
chain). ’Bridge name’ is used for interactions that involve more than two atoms,
for example the name of the hydrogen in a hydrogen bond interaction. For
amino acids, three-letter codes are used for residue names, but longer names

1http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
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are possible. Empty fields are allowed. Field separators enclosed in parenthe-
ses will only appear if the corresponding field is filled. For edges with a bridge
atom, node names 1 and 2 are the source and target nodes, respectively. If
no bridge atom is present (e.g. in metaedges), the node names appear in al-
phabetical order. This is done to ensure that edge names are predictable for
symmetric interactions. the An example for a standard node label is ’A/TYR-
290’, and for a standard edge label it is ’A/TYR-290 A/VAL-80 H-bond’.

A node or edge ’name’ (as found in the ’shared name’ or ’name’ columns)
always follows the standard naming style, is assigned at import and is never
changed. ’Names’ are meant to identify edges as uniquely as possible, but
there is no guarantee that a name is unique in the network. Node label
customization functions create ’labels’, which are allowed to omit information
(such as chain names). Edge labels are automatically updated accordingly to
the node labels. Labeling functions always write into separate ’label’ columns.

5.2 Atom masks

When importing networks using the plugin, sometimes a selection of atom
names is needed. Whenever an ’atom mask’ is required, a Java regular ex-
pression2 needs to be provided. For most purposes, a tiny subset of the regu-
lar expression language is sufficient for a proper selection. Examples of often
used patterns are

• .* All atom names (. = any character, * = zero or more repetitions of the
preceding character)

• C.* Atom names starting with C

• F.*|O.*|N.* Atom names starting with F,O, or N (| = ’or’)

5.3 Network operations

The number of nodes and edges currently present can change due to filtering
or expanding/collapsing of metanodes. Hence, it is important for each function
that deals with edges to define on which set it operates. The sets are defined
as follows:

• Active nodes/edges All edges that are currently present in the network.
This includes nodes that are present, but hidden from view (f.e. using
Cytoscape’s ’hide nodes’ feature). A node or edge that becomes inactive
is temporarily deleted from the network. When an inactive node/edge
becomes active, it is restored.

• Imported nodes/edges All nodes/edges from the original import, regard-
less of whether they are active or not.

The following operations can render a node/edge active or inactive:
2https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
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• Expanding/Collapsing a metanode The metanode and associated meta-
edges are deactivated. Subnodes and associated edges are activated.

• Edge weight filtering Edges which are filtered out due to low weights
are deactivated.

• Subnetwork creation When subnetworks are created from selected nodes,
the selected nodes become the active node set for that network.

• Manual deletion Manually deleting nodes/edges f.e. using the ’DEL’ key
are deactivated, but can be reactivated f.e. when weight filtering is up-
dated or a metanode is expanded/collapsed.

Generally, the set of active nodes and edges is equivalent to the currently
visible network. Nodes and edges that are only hidden due to visualization
(such as using Cytoscape’s ’hide nodes/edges’ feature) are still considered ’ac-
tive’ and part of the network. Inactive nodes are temporarily deleted from the
network and are hence invisible both in the presentation and for network analy-
sis algorithms. Hence, tools like NetworkAnalyzer or other analysis plugins can
be used normally.

5.4 AIF file format

The AIF (Atom Interaction Format) was created as a convenient way to de-
fine interaction networks based on timeline data. All lines start with a record
indicator, followed by one or more comma-separated data fields. Interaction
data may be given as TIMELINE and DIFFERENCE TIMELINE records, which
define the following fields

• interaction type (string)

• source atomname (string)

• target atomname (string)

• source residue index (int)

• target residue index (int)

• source residue name (string)

• target residue name (string)

• source residue insert (string)

• target residue insert (string)

• source altloc (string)

• target altloc (string)

• source chain (string)

• target chain (string)

• bridge names (whitespace delimited list of strings)

• timeline (whitespace delimited list of ints/floats)
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An AIF file must have the following properties:

• Lines are separated by Unix style newline (’Linefeed’) characters.

• A line consists of one or more fields, which are separated by a comma.
Leading and trailing whitespace are ignored for each field. Fields may be
empty.

• The first field of each line denotes the record type. The record type de-
fines how many fields follow in the same line and what their field data
types are. The record type is case insensitive.

• Lines starting with a ’#’ character indicate comment lines and should be
ignored by parsers.

• Empty lines or lines that contain only whitespace should be ignored by
parsers.

• Tabs count as regular characters (not whitespace) and should be avoided
entirely.

In order to save disk space, AIF files may be zipped (.zaif).

6 External tools guide

The SenseNet plugin can interact with a number of programs. This section
gives details on how to set up and use those programs together with the plugin.

6.1 Command line interface

In order to allow automatized workflows, SenseNet allows some of its functions
to be called either via the Cytoscape automation console, script files or the
CyREST interface. They fulfill the same purpose as their equally named GUI
counterparts and are called by preceding them with the “sensenet” namespace
tag (e.g. “senseset importAif”). In addition, functions provide documentation
by using the “help” command (e.g. “help sensenet importAif”). Validity of input
is checked after parsing the command and corresponding error messages will
appear, spelling out problems and allowed input options.

6.2 Structure viewers

The plugin can interact with several structure viewers (PyMOL, VMD and UCSF
Chimera) in order to map the network onto a molecule structure. In order to use
the plugin together with one of these viewers, it is only necessary that the plugin
can start the viewer. By default, it will attempt to look up the installation location
from the operating system’s PATH variable (equivalent to typing ’pymol’,’vmd’ or
’chimera’ on the command line). Alternatively, the installation location can be
set manually in the ’Settings’ menu. The viewer needs to be started using the
’Connect viewer’ button in order to link a network.
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The plugin was tested in combination with PyMOL 2.1.0, VMD 1.9.2 and UCSF
Chimera 1.12.

6.3 CPPTRAJ

CPPTRAJ [3] is part of the AmberTools program suite and can be used to
process and analyze molecular dynamics trajectories. The following sections
describe how to use CPPTRAJ to write interaction timeline data, which can be
used to create interaction networks. The scripts were tested with the CPPTRAJ
version contained in AmberTools17.

6.3.1 nativecontacts

The following output files of the CPPTRAJ nativecontacts command are nec-
essary for network import:

• contacts.out Contact table

• contacts.series Timeline series for native contacts

• contacts.nonnative.series Timeline series for non-native contacts

• contacts.pdb PDB file as output by nativecontacts

These files can be created using the following CPPTRAJ commands (adjust
bold arguments as necessary)

parm md.prmtop
trajin md.nc
nativecontacts @C* distance 5.0 \

writecontacts contacts.out contactpdb contacts.pdb \
series seriesout contacts.series \
savenonnative seriesnnout contacts.nonnative.series

run

6.3.2 hbond

The following output files of the CPPTRAJ hbond command are needed for
importing a network:

• hbonds.out Interaction table

• hbonds.series Interaction timeline series

These files can be generated by the following CPPTRAJ commands (adjust
bold arguments as necessary)
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parm md.prmtop
trajin md.nc
hbond !(:WAT,Na+,Cl-) dist 3.5 angle 135 \

avgout hbonds.out \
series uuseries hbonds.series

run

7 Troubleshooting

7.1 Installation

• Could not find plugin for installation Make sure that your current working
directory contains the .jar file found in the zip archive

• Could not find Cytoscape app directory Check whether Cytoscape is in-
stalled on your system. If you never started Cytoscape on your machine,
try starting it once before installing the plugin. The CytoscapeConfigura-
tion directory will be created on its first start.

7.2 Session files

Cytoscape offers to save the current working state in a .cys session file. The
plugin is fully compatible with this function. However, reading session files
generated with older versions of the plugin may fail. In general, you can expect
session to work if the first two digits of the plugin version are identical. For
example, a session created with version 1.2.0 is guaranteed to be readable by
plugins of version 1.2.X, but not by version 1.1.0.

7.3 Slow analyses and ’out of memory’ errors

Keeping the full timelines of long trajectories consumes a lot of memory, espe-
cially for large systems. Reducing the amount of analysed time frames, e.g. by
using the ’sieve’ option in CPPTRAJ or during import, can accelerate analyses
substantially. For a workstation with 8 GB RAM and a protein of about 200
amino acids, we found a number of 5000 frames to work well.

7.4 Subnetworks and changes in node/edge tables

It is often useful to create one or more subnetworks to analyze specific regions
in the protein. It is important to remember that the node and edge data tables
are shared between the network and all subnetworks. This means that an
analysis performed in a subnetwork also changes the data tables in all other
networks belonging to the same group.
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