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Abstract

The success of Autonomous Vehicles (AVs) depends on the proof of their safety through
validation, besides the development of the autonomous driving functionalities. For the
validation of AVs, scenario-based testing is considered as one of the feasible approaches,
where an AV is tested only in relevant traffic scenarios. One of the challenges that remain,
is to identify such relevant traffic scenarios. In this work, relevant traffic scenarios are
categorized into representative, unknown and critical traffic scenarios. Identifying repre-
sentative traffic scenarios is realized by clustering, detecting unknown traffic scenarios is
realized by novelty detection, and critical scenarios are identified with criticality detection.
Each of those tasks is addressed in this work, to identify relevant traffic scenarios.

This work presents three novel representation learning methods to improve the clus-
tering and novelty detection of traffic scenarios. Each of the three representation learning
methods is guided with domain knowledge leading to a superior performance in terms of
clustering and novelty detection. Two of the methods utilize a graph representation of
the traffic scenarios. In order to find similar traffic scenarios, the database is analyzed
with respect to similar graph representations. This way it is possible to embed domain
knowledge specific objectives into the representation space formed by the representation
learning methods. The third introduced approach proposes a domain knowledge guided
transformation to generate two similar traffic scenarios given an origin traffic scenario. All
three domain knowledge guided representation learning methods are evaluated thoroughly
and are compared to alternative approaches. The three domain knowledge guided repre-
sentation learning methods enable high clustering and novelty detection performance for
traffic scenarios, and hence to find representative and unknown traffic scenarios.

To motivate the necessity of the scenario-based testing approach, a statistical analysis
for random field tests of AVs with German highway accident statistics is provided. A novel
novelty detection method is presented and it is applied to detect unknown infrastructures.
Also, alternative novelty detection methods are applied to the problem of detecting novel
infrastructures. As a fallback strategy, an approach is introduced, relying only on domain
knowledge to detect representative and novel traffic scenarios based on their graph rep-
resentation. In order to detect critical scenarios, the implementation of well-established
methods in a computationally efficient framework is presented. Furthermore, the back-
ground for all used machine learning methods is explained in detail.
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Chapter 1

Introduction

Autonomous driving is considered to be the next revolution of transportation. The po-
tential improvements are many, such as increased driving comfort, optimized traffic flow
and increased vehicle safety. Besides the required development of the autonomous driving
functions, it is necessary to ensure the safety of Autonomous Vehicles (AVs). The confi-
dence of the consumers and the public in AVs will be crucial for the further progress of
autonomous driving [FBBA18].

Proofing that an AV performs significantly safer than the average human driver through
a simple statistical testing approach, would require more than 8 billion kilometers to be
driven1 (see Section 3.1). As an alternative testing method, the scenario-based approach is
commonly applied to demonstrate the safety of AVs [PEG]. In scenario-based testing the
safety of an AV is demonstrated only on relevant scenarios. However, for this approach, it
is crucial that the relevant scenarios are known. Accordingly, identifying relevant scenarios
is required [JWKW18] for the scenario-based validation approach. Besides handcrafted
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Figure 1.1: Methodological overview of this work and its embedding in the validation
process of AVs. : Representation Learning component is only used in Chapter 4.

1Given a confidence of 95 % and an improvement of 20 % over the average human driver in terms of
fatal accidents.
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1. Introduction

scenarios, real-world data should be taken into consideration, since the variety of situations
and sensor inputs are hard to model in advance. In this work, relevant traffic scenarios
are either

• representative traffic scenarios, which represent a group of traffic scenarios well,

• unknown traffic scenarios, which are potentially untested, or

• critical traffic scenarios.

This is also illustrated on the left side of Figure 1.1.
Finding representative traffic scenarios in real-world data can be achieved with clus-

tering. Clusters of similar traffic scenarios are represented by one or some representative
traffic scenarios from that group. Therefore, many recent works focus on clustering meth-
ods for traffic scenarios. Another important component for the scenario-based validation
is to identify if an observed scenario is covered by the validation data. Detecting such un-
known traffic scenarios is typically addressed through novelty or outlier detection. Besides
unknown, also critical and potentially hazardous scenarios should be detected and tested
thoroughly, since such scenarios should definitely be avoided by an AV. In summary, detect-
ing representative, unknown, and critical scenarios from real-world data are key enablers
for the scenario-based validation of AVs. Furthermore, the ISO 21448 [ISO21] requires
a deployed AV to be monitored to enable continues validation, which can be partially
realized by detecting representative, unknown, and critical scenarios. This work addresses
all three aspects by introducing novel methods and concepts to detect and process such
traffic scenarios. In Figure 1.1, the three detection methods, one for each scenario type,
is shown. They lead to the dataset consisting of the detected relevant traffic scenarios,
which can be used for the validation of an AV.

The before mentioned tasks can be addressed with numerous of methods, specialized
for the specific problem. Those methods can either be data-driven or mainly defined
through domain knowledge. However, as analyzed in Chapter 3, most of the methods
either fail to handle such complex data like a traffic scenario, or are not designed for the
specific needs in this field of research. This work focuses on transforming a traffic scenario
into a meaningful representation which can be used for clustering, novelty detection, and
further analysis. As illustrated in Figure 1.1, transforming the traffic scenarios into such
representations is realized with representation learning methods in this dissertation. The
aim of representation learning is to train models which realize the transformation from
the input space to the representation space. In this work the focus is on methods whose
resulting representation spaces are suited for the tasks of clustering and novelty detec-
tion of traffic scenarios. In order for the representation learning methods to satisfy the
representation space requirements, domain knowledge is used to guide the representation
learning methods. This domain knowledge guidance is conceptually realized by defining
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1.1. Outline

the similarity of traffic scenario. Three approaches for domain knowledge guided represen-
tation learning are presented. Two of the methods define a similarity for existing traffic
scenarios. The third method enhances similarity by defining how to artificially create
similar traffic scenarios.

As demonstrated by the results of this work, representation learning which relies on
carefully designed domain knowledge outperforms approaches without domain knowledge.
Moreover, the results show that the performance for tasks like novelty detection and clus-
tering improves significantly when applied on the representations of such domain knowl-
edge guided representation learning methods. The introduced representation learning
methods contribute to the research on the validation of AVs, since the representations
of traffic scenarios formed by these methods are better suited for clustering and novelty
detection, the tasks required for the validation of AVs.

1.1 Outline

This work is split into three main parts. First, Chapter 2 summarizes the background
from the field of machine learning with focus on representation learning. Second, existing
approaches are discussed and novel concepts are introduced to identify relevant traffic
scenarios in Chapter 3. Third, novel methods for transforming the traffic scenarios by
means of representation learning guided by domain knowledge are presented in Chapter 4.
In the following, the content of each chapter is briefly summarized.

Chapter 2 provides the necessary background from the field of machine learning with
a focus on representation learning. Various neural network architectures, which are used
in this work, are summarized in Section 2.1. This is followed by dimensionality reduction
techniques which are used throughout the work (Section 2.2). The different applied outlier
detection methods are explained in Section 2.3. Next, clustering methods are briefly
discussed (Section 2.4). The methods from the field of reconstruction-based representation
learning, metric learning, and self-supervised learning are covered in Section 2.5.

In Chapter 3, various aspects and methods for identifying relevant traffic scenarios are
discussed. It is motivated in detail why scenario-based testing and hence the identifica-
tion of relevant scenarios is necessary. Novel approaches for the identification of unknown
traffic scenarios are introduced and analyzed. Besides, some recent alternative approaches
are summarized. In detail Chapter 3 is structured as follows. A statistical motivation for
the scenario-based validation approach is provided by showing the infeasibility of random
field test to proof an AVs safety (Section 3.1). State-of-the-art approaches that target
either clustering or novelty detection for traffic scenarios are summarized in Section 3.2.
Since the infrastructure is one of the core elements of a traffic scenario, in Section 3.3 a
novel method to detect unknown road infrastructures is introduced, which was presented
in [WFBU20] as part of this work. The problem of detecting unknown road infrastruc-
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1. Introduction

tures is further explored by applying other outlier detection techniques in Section 3.4. In
Section 3.5, model-based methods, which do not utilize machine learning, are presented.
First, methods to identify critical scenario with various amount of available information
are shown. Also, an automatic domain knowledge driven method to categorize traffic sce-
narios is introduced. In conclusion, the discussion in Chapter 3 highlights the need for the
representation learning methods as introduced in Chapter 4.

The novel domain knowledge guided representation learning methods, the core contri-
bution of this work, are introduced in Chapter 4. In total three approaches are presented
and thoroughly analyzed with respect to traffic scenario clustering, novelty detection, and
feature stability. The results show that applying the representation learning methods
improves the performance for those tasks. In Chapter 4, each method is explained and
analyzed separately, leading to the following overall structure. In Section 4.1, an autoen-
coder is combined with triplet learning [WBBU21]. This way, a latent space is formed
which enables basic outlier detection methods to detect unknown road infrastructures.
The triplet loss is used to embedded domain knowledge into the latent space. The method
is extended to a quadruplet autoencoder (Section 4.2), such that besides the infrastruc-
ture also dynamic information is used [WBBU22]. Here, the domain knowledge is applied
through the quadruplet loss. The representation space formed in this way is analyzed
thoroughly with respect to various characteristics. An alternative approach for domain
knowledge guided representation learning is presented in Section 4.3 [BWE+22]. There,
domain knowledge guided augmentations for existing self-supervised learning approaches
are presented.

In Chapter 5 the work is concluded and possible further research directions emerging
from the presented methods are discussed.

1.2 Contribution

This work contributes to the area of AV validation, with methods that enable the identi-
fication of relevant traffic scenarios. The contributions of this work can be summarized as
follows.

Section 3.3 A novel outlier detection method is presented which is applied to road in-
frastructure images [WFBU20].

Section 3.4 Alternative methods for the detection of unknown road infrastructures are
explored.

Section 3.5 Methods based only on domain knowledge to identify critical traffic scenarios
and to automatically categorize traffic scenarios are introduced.

Section 4.1 A domain knowledge guided triplet autoencoder is introduced which projects
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1.3. Publications

road infrastructures into a representation that is better suited for novelty detection
[WBBU21].

Section 4.2 The quadruplet autoencoder guided by domain knowledge is presented
[WBBU22]. It extends the triplet autoencoder method so that dynamic informa-
tion is used in addition. Its traffic scenarios representations can be used for novelty
detection and clustering.

Section 4.3 Domain knowledge guided augmentations to be used in self-supervised learn-
ing for traffic scenarios are introduced [BWE+22].

1.3 Publications

Core Publications As part of this dissertation, some methods have been published.
The core publications for this work are:

[WFBU20] Jonas Wurst, Alberto Flores Fernández, Michael Botsch and Wolfgang
Utschick. An Entropy Based Outlier Score and its Application to Novelty Detection
for Road Infrastructure Images. 2020 IEEE Intelligent Vehicles Symposium (IV),
2020.

[WBBU21] Jonas Wurst, Lakshman Balasubramanian, Michael Botsch and Wolfgang
Utschick. Novelty Detection and Analysis of Traffic Scenario Infrastructures in the
Latent Space of a Vision Transformer-Based Triplet Autoencoder. 2021 IEEE Intel-
ligent Vehicles Symposium (IV), 2021.

[WBBU22] Jonas Wurst, Lakshman Balasubramanian, Michael Botsch and Wolfgang
Utschick. Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenar-
ios. 2022 IEEE Intelligent Vehicles Symposium (IV), 2022.

[BWE+22] Lakshman Balasubramanian*, Jonas Wurst*, Robin Egolf, Michael Botsch,
Wolfgang Utschick and Ke Deng. ExAgt: Expert-guided Augmentation for Represen-
tation Learning of Traffic Scenarios. 2022 25th International Conference on Intelli-
gent Transportation Systems (ITSC), 2022. *: equal contribution

Other Publications Other publications of the author in the field of traffic scenario
clustering and analysis are:

[KWB18] Friedrich Kruber, Jonas Wurst and Michael Botsch. An Unsupervised Ran-
dom Forest Clustering Technique for Automatic Traffic Scenario Categorization.
2018 21st International Conference on Intelligent Transportation Systems (ITSC),
2018.
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[KWM+19] Friedrich Kruber, Jonas Wurst, Eduardo Sánchez Morales, Samarjit
Chakraborty and Michael Botsch. Unsupervised and Supervised Learning with the
Random Forest Algorithm for Traffic Scenario Clustering and Classification. 2019
IEEE Intelligent Vehicles Symposium (IV), 2019.

[BKBD21] Lakshman Balasubramanian, Jonas Wurst, Michael Botsch and Ke Deng.
Traffic Scenario Clustering by Iterative Optimisation of Self-Supervised Networks Us-
ing a Random Forest Activation Pattern Similarity. 2021 IEEE Intelligent Vehicles
Symposium (IV), 2021.

[FFWSM+22] Alberto Flores Fernández, Jonas Wurst, Eduardo Sánchez Morales,
Michael Botsch, Christian Facchi and Andrés García Higuera. Probabilistic Traffic
Motion Labeling for Multi-Modal Vehicle Route Prediction. MDPI Sensors Journal
Volume 22 Issue 12, 2022.

[KME+22] Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst,
Samarjit Chakraborty and Michael Botsch. Micro- and Macroscopic Road Traffic
Analysis using Drone Image Data. Leibniz Transactions on Embedded Systems,
Volume 8, Issue 1, 2022.

[KWBC23] Friedrich Kruber, Jonas Wurst, Michael Botsch and Samarjit Chakraborty.
Unsupervised Random Forest Learning for Traffic Scenario Categorization. Chapter
in: Machine Learning and Optimization Techniques for Automotive Cyber-Physical
Systems, 2023

[BWE+23] Lakshman Balasubramanian*, Jonas Wurst*, Robin Egolf, Michael Botsch,
Wolfgang Utschick and Ke Deng. SceneDiffusion: Conditioned Latent Diffusion
Models for Traffic Scene Prediction. 2023 26th International Conference on Intelli-
gent Transportation Systems (ITSC), 2023.

1.4 Repositories and Websites

For some methods presented in this dissertation, implementations have been made publicly
available. Moreover, some results are additionally presented in publicly accessible websites.
The published repositories are:

openDRIVE-Matlab Tool to parse and plot OpenDRIVE format in MATLAB. https:

//github.com/JWTHI/openDRIVE-Matlab

ULEF Implementation for the ULEF outlier detection score as presented in Section 3.3.
https://github.com/JWTHI/ULEF

ViTAL-SCENE Implementation of the triplet autoencoder as presented in Section 4.1.
https://github.com/JWTHI/ViTAL-SCENE
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1.4. Repositories and Websites

Expert-LaSTS Implementation of the quadruplet autoencoder as presented in the
method Expert-LaSTS in Section 4.2. https://github.com/JWTHI/Expert-LaSTS

and the published websites are:

SCENATLAS Interactive visualization of the representation space when applying the
triplet autoencoder as presented in Section 4.1 and additional dimensionality reduc-
tion. https://jwthi.github.io/SCENATLAS/

Expert-LaSTS Interactive visualization of the representation space when applying the
method Expert-LaSTS (c. f. Section 4.2) and additional dimensionality reduction.
https://jwthi.github.io/Expert-LaSTS/
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Chapter 2

Data-Driven Methods and
Representation Learning

The methods proposed in this work require background knowledge about various machine
learning concepts and methods. In this chapter, those concepts and methods as well as
the necessary background is summarized. Figure 2.1 recaps the overall framework of this
work and highlights some components and the related sections in this chapter. As one
important element of this work, applied in outlier detection and representation learning,
various neural network architectures and basic components are explained. Specifically,
the concepts of the MultiLayer Perceptron (MLP), Convolutional Neural Network (CNN),
deep Residual Network (ResNet), Long Short-Term Memory (LSTM), transformers, and
Vision Transformer (ViT) are summarized. The dimensionality reduction methods Uni-
form Manifold Approximation and Projection (UMAP), t-Stochastic Neighbor Embedding
(t-SNE), and Principal Component Analysis (PCA) are discussed. Neighborhood-based
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Figure 2.1: Methodological overview of this work and its embedding in the validation
process of AVs. The background for the highlighted components is provided in the corre-
sponding sections.
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2. Data-Driven Methods and Representation Learning

and reconstruction-based outlier detection methods, as well as the isolation forest and
the one-class support vector machine are described. Clustering with Hierarchical Cluster-
ing (HC) and K-means is presented. Methods and architectures to realize representation
learning are summarized. Three branches of representation learning are considered. First,
reconstruction-based methods. Second, methods related to metric learning, such as con-
trastive, triplet, and cross entropy-based contrastive learning. Third, from the field of
self-supervised learning the methods Barlow Twins, Swapping Assignments between Views
(SwAV), and Variance-Invariance-Covariance Regularization (VICReg) are explained.

Machine learning methods, aim to identify statistical relations and patterns in data.
Therefore, machine learning is often termed as pattern recognition or statistical learning
as well. To find those relations and patterns in a data set D, optimization techniques are
applied. A set D consists of M data points xm ∈ RN . Typically, machine learning methods
are grouped with respect to the task they aim to solve, e. g., classification, regression,
clustering, representation learning. Furthermore, it is distinguished between supervised
and unsupervised tasks, meaning either a ground truth for the respective task is available
or not. Various models can be used to fulfill the tasks, while the objective of a task is
usually defined through the loss L, which is the learning objective.

2.1 Neural Networks

Artificial neural networks play a key role in the success of nowadays machine learning
methods. Typically, artificial neural networks consist of multiple layers, thereby realizing
deep architectures – coined the term deep learning. In this section, various network archi-
tectures are discussed. The different architectures are used to realize trainable mapping
f : x 7→ y, such that learning objective can be fulfilled. Each architecture is specifically
designed for a certain type of input data, as vectors, images, and sequences, corresponding
architectures are shown in the following. Therefore, architectures for inputs as: vectors,
images, and sequences are shown in the following.

The MLP is explained first, which is basic building block in more complex architectures.
Networks suited for image-like inputs, such as vanilla CNNs, ResNets, and their layers
are discussed next. In order to process sequence data, architectures like LSTMs and
transformers are commonly used, which are covered as well. The ViT, a special variant of
the transformer suited for images is described last.

Artificial neural networks are trainable mathematical models, which can be used to
solve various training objectives. Those architectures typically consist of multiple artificial
neurons, which can be connected in multiple ways. An artificial neuron generates an output

10



2.1. Neural Networks

y based on the weighted sum of the N inputs x = [xi]N1 , as

y = ϕ

(
N∑

i=1
wixi + b

)
, (2.1)

= ϕ
(
wTx + b

)
, (2.2)

with wi the weight for the i-th input, the bias b, and the activation function ϕ of the neuron.
During training of neural networks, the weights w and bias values b are optimized to realize
the learning objective. Activation functions typically used are non-linear e. g., the sigmoid
function, the hyperbolic tangent function, and the Rectified Linear Unit (ReLU) function.

2.1.1 Multi-Layer Perceptron

The MLP is a widely used artificial neural network topology, in which multiple layers
of artificial neurons are connected in a feed-forward way. This architecture is used for
various tasks and is utilized within other architectures as well. The MLP is suited for
inputs represented as vectors.

Let one layer in the MLP be a group of N l artificial neurons, here the neurons within
a layer are not connected. A MLP consists of L + 2 layers, with one input layer and
one output layer. Between the input and the output layer, L so-called hidden layers are
used. All neurons of one layer are connected with all neurons of the consecutive layer –
fully-connected. The output y(l) ∈ RN l of the N l neurons in the l-th layer is defined as

y(l) = ϕ
(
W (l)y(l−1) + b(l)

)
, (2.3)

where the input is the output of the previous layer y(l−1) ∈ RN l−1 . The matrix W (l) ∈
RN l×N l−1 contains the weights for each connection from layer l − 1 to layer l. The bias
values for the N l neurons are represented by b(l) ∈ RN l . The outputs of the neurons in
the last layer can be determined by applying Equation (2.3) for each layer successively.
In Figure 2.2, the architecture of a MLP is depicted. The circles symbolize the neurons
and the edges the weighted connections between the neurons. The bias values are not
separately shown, they are assumed to be included in the neurons. During the training
process, the weight matrices W and the bias values b for each layer are learned. The
number of neurons per layer, the number of layers as well as the used activation functions
are hyperparameters.
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Figure 2.2: Multilayer Perceptron with L hidden layers and N ... neurons per layer.

2.1.2 Convolutional Neural Networks

The training of neural networks on tasks that include image data are typically solved with
other architectures than the MLP1. For this purpose, the CNNs are introduced [LBD+90],
which are well suited for processing image data. Due to the convolution operation, CNNs
are able to encode visual features and achieve remarkable results with fewer parameters
when compared to a MLP. Typically, a CNN consists of multiple layers, where this stacking
enables the learning of complex image features. The building blocks commonly used in a
CNN are the convolution, activation function, pooling operation, and residual connection.
In this section, first the building blocks are discussed, then some widely used architectures
are summarized.

2.1.2.1 Layer Types

Convolution The core element of a CNN is the convolution operation. Within a con-
volution layer, the l-th layer input X(l) ∈ RN

(l)
H ×N(l)

W ×N(l)
C , also called input feature maps,

is convolved with the N (l+1)
C weight matrices W (l) ∈ RN

(l)
HW

×N(l)
WW

×N(l)
C ×N(l+1)

C , adding the
bias b(l) ∈ RN

(l+1)
C leads to the output feature maps Y (l) ∈ RN

(l+1)
H ×N(l+1)

W ×N(l+1)
C as

Y (l)
:,:,m = b(l)

m +
N

(l)
C∑

c=1
W (l)

:,:,c,m ∗ X(l)
:,:,c, (2.4)

Y
(l)
i,j,m = b(l)

m +
N

(l)
C∑

c=1

∑

h

∑

w

W
(l)
h,w,c,m · X

(l)
i−h,j−w,m, (2.5)

1Using a MLP for image input would require a huge amount of parameters what is omitted by the
CNNs due to the shared parameter concept. Moreover, CNNs in contrast to MLPs are specifically designed
to consider spatial relations of the input. Nevertheless, CNNs can be interpreted as a special case of MLPs
using weight sharing and the spatial concept.
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Figure 2.3: Convolution with zero-padding.3

with m = 1, . . . , N (l+1)
C creating N (l+1)

C channels in the output. However, in deep learning
the convolution operation is typically realized through a cross correlation2. Therefore, the
operation is defined as,

Y (l)
:,:,m = b(l)

m +
N

(l)
C∑

c=1
W (l)

:,:,c,m ⋆X(l)
:,:,c, (2.6)

Y
(l)
i,j,m = b(l)

m +
N

(l)
C∑

c=1

N
(l)
HW∑

h=1

N
(l)
WW∑

w=1
W

(l)
h,w,c,m · X

(l)
i−1+h,j−1+w,m. (2.7)

The only difference between the cross correlation and the convolution is that the weight
matrices are not flipped along both axes. In the following, the term convolution is used
with respect to CNNs, even though it is actually a cross correlation. The Equation (2.7),
describes the operation performed by one convolution layer. The number of weight ma-
trices N (l+1)

C , their width N
(l)
WW

, and height N (l)
HW

are the hyperparameters of this layer.
The weight matrices W (l) and the bias vector b(l) for each layer are learned during the
training process. The weight matrices are also known as so-called shared weights, since in
contrast to MLPs, the same weights are used for multiple parts of the input.

The convolution operation reduces the height NH and width NW of the input feature
maps. This can be prevented by applying padding at the edges of the feature maps. The
height and width of the feature maps are increased by attaching columns and rows at the
outer border of the input, NH +NH0 and NW +NW0 , called as padding. Typically, those
columns and rows are filled with zeros – zero-padding. The NH0 , NW0 , and location of
padded rows and columns are hyperparameters. A common strategy is to select the values
such that the height and width is maintained between the input and the output feature
maps.

In Figure 2.3, an example of a convolution between a weight matrix W and a feature
map X is shown, where NC = 1. In this example, zero-padding is applied such that the

2For example in the framework PyTorch, the convolution is realized through a cross correlation https:
//pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

3Inspired from https://tex.stackexchange.com/questions/437007/drawing-a-convolution-
with-tikz
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Figure 2.4: Convolution with zero-padding and stride of 2.

resulting feature map has the same height and width as the input.
On the contrary, reducing the size of the output can be achieved by changing the

hyperparameter stride S of the convolution operation,

Y
(l)
i,j,m = b(l)

m +
N

(l)
C∑

c=1

N
(l)
HW∑

h=1

N
(l)
WW∑

w=1
W

(l)
h,w,c,m · X

(l)
S(i−1)+h,S(j−1)+w,m. (2.8)

When combined with the zero-padding, the size of the output feature maps can be ad-
justed. In Figure 2.4, a convolution with NC = 1, zero-padding and a stride of 2 is shown,
leading to an output with half width and half height of the input.

When setting the weight matrix height NHW = 1 and width NWW = 1 and having an
input X(l) ∈ R1×1×N(l)

C , the convolution layer becomes similar to a layer in a MLP, except
the activation function.

The convolution operation can be formulated as a matrix multiplication. For this,
the input feature maps X(l) is vectorized to x(l) ∈ RN

(l)
W N

(l)
H N

(l)
C in row-major order4.

The weight matrices are converted into the convolution operation realizing matrices
W ∈ R(N(l+1)

W N
(l+1)
H )×(N(l)

W N
(l)
H N

(l)
C )×N(l+1)

C , such that

reshape
(
W(l)

:,:,mx(l)
)

=
N

(l)
C∑

c=1

N
(l)
HW∑

h=1

N
(l)
WW∑

w=1
W

(l)
h,w,c,m · X

(l)
S(i−1)+h,S(j−1)+w,m (2.9)

holds. For example, the W for a convolution without padding and NHW = 2, NWW = 2,
N

(l)
H = 3, N (l)

W = 3, N (l)
C = 1, N (l+1)

C = 1 and S = 1 is defined as,

W =




W1,1 W1,2 0 W2,1 W2,2 0 0 0 0

0 W1,1 W1,2 0 W2,1 W2,2 0 0 0

0 0 0 W1,1 W1,2 0 W2,1 W2,2 0

0 0 0 0 W1,1 W1,2 0 W2,1 W2,2



. (2.10)

4Row-major order: attaching each row of the first feature map. Then attaching each row of the first
feature map and so forth.
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Reshaping the resulting vector of Wx into a matrix with shape (N (l+1)
H = 4 ×N

(l)
W = 3),

yields the same result as the normal convolution operation.

Transpose Convolution In some architectures, e. g., convolutional autoencoders, an
up-sampling layer is required, which increases the size of the feature maps. This is usually
realized through the so-called transpose convolution operation. As shown before, the
convolution operation can be expressed through Wx. Considering the case were an up-
sampling should be performed on X such that it increases the size of the feature map to
the size of some input feature map X̄. This can be achieved by the transposed convolution
operation,

Y (l)
:,:,m = b(l)

m + reshape
{
W(l)T

:,:,mx(l)
}

(2.11)

where Y has the same shape as X̄. Therefore, the transposed convolution can be seen as a
learnable up-sampling process, reverting the size of a hypothetical convolution. Typically,
the W underlying the WT per transposed convolution layer is learned independently of
the convolution layers. In deep learning frameworks (e. g., PyTorch), the settings of the
stride and padding of the transposed convolution have to be given as if parameterizing the
convolution operation to be transposed. For example, if the up-sampling corresponds to a
hypothetical convolution of 3×3 weights, stride of one, and no padding, this is the setting
to be used in the transposed layer definition. Intuitive illustrations of the transposed
convolution can be found in [DV16].

The transposed convolution can also be formulated as [GBC16]

Y
(l)
i,j,m = b(l)

m +
∑

c

∑

k,h
s.t

S(k−1)+h=i

∑

n,w
s.t

S(n−1)+w=j

W
(l)
h,w,c,m · X

(l)
S(i−1)+h,S(j−1)+w,m. (2.12)

The transposed convolution is also performed when back propagating the error through a
normal convolutional layer while training.

Activation Function Another frequently applied operation in CNNs are activation
functions. This is realized by applying the activation function to each element of the
corresponding feature maps. Let X be the input to the activation function, then the
output can be formulated as

Y = ϕ(X). (2.13)

As in the MLP, an activation function is typically applied after each convolution layer.
The definition of the convolution layer Equation (2.8) combined with the activation func-
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Figure 2.5: Average-pooling with zero-padding and stride of 2.

tion is given by

Y
(l)
i,j,m = ϕ


b

(l)
m +

N
(l)
C∑

c=1

N
(l)
HW∑

h=1

NWWh(l)
∑

w=1
W

(l)
h,w,c,m · X

(l)
S(i−1)+h,S(j−1)+w,m


. (2.14)

Pooling In contrast to changing the stride, an alternative approach to reduce the size of
the feature maps is to use pooling. As in the convolution, a region of interest with height
NHP and width NWP is slid with stride SP over the feature map as,

Y
(l)
i,j,m = pooling

h=1,...,NHP
w=1,...,NWP

(
X

(l)
SP(i−1)+h,SP(j−1)+w,m

)
. (2.15)

The function pooling(. . . ), takes the values of the region specified by SP(i− 1) +h, SP(j−
1) + w with h = 1, . . . , NHP , w = 1, . . . , NWP and returns a single value. The pooling
can be realized by various functions. Typically, max-pooling or average-pooling is used,
returning the maximum and the average value, respectively. Figure 2.5 depicts an example
of an average-pooling with a stride of 2 on a padded feature map.

Fully-Connected The Fully-Connected FC layer as used in MLPs is also utilized in
CNNs. If the input is a feature map, it is vectorized, such that it suits the definition.
Hence, the output of the FC layer is also a vector. As in the MLP, the weights and biases
are the learnable parameters for this layer type.

Softmax For classification tasks, the output of CNNs are typically converted into one-
hot-encoded vectors. For a 10 class problem, this would lead to a vector of dimensionality
10, where the vector is zero expect at the position of the actual class. This encoding is
achieved by the softmax layer, which is attached at the end of classification architectures.
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Figure 2.6: Vanilla CNN: parts of VGG-19. CONV: feature map size maintaining convo-
lution followed by activation (dimensions specify the kernel size); POOL: pooling with /2
to reduce size by the half; FC: fully connected layer with output dimension as specified.

The softmax is realized as,

y = softmax(x), (2.16)

yi = exi
∑Ny

j=1 e
xj

(2.17)

where Ny is the number of classes and the size of the input vector x.

2.1.2.2 Vanilla CNN

The vanilla version of a CNN can have arbitrary architectures, which consists only of
the before described layers, connected in a successive feed-forward manner. The VGG-19
[SZ14] is such an architecture and is designed for image classification. In Figure 2.6, the
parts of the VGG-19 architecture are used to show the typical structure in vanilla CNNs.
Various layers are successively stacked, yielding a deep architecture. The convolution
blocks shown in the figure already include the activation functions and are set up to
maintain the size of the feature maps. The pooling block is parameterized to reduce the
size of the feature map by half, as indicated by the /2. The end of the network is formed
by FC layers and a final softmax layer.

2.1.2.3 Residual CNN

In contrast to the vanilla CNN, in the residual CNN (ResNet) the layers are not only
connected in a successive manner. This is realized by "shortcut connections", which are
connections between two layers, but skipping one or more successive layer. The intuition
behind the shortcut connections is the so-called residual learning. It is motivated from the
degradation problem which occurs for deep architecture without residual learning. One
architecture using such a residual setup is the ResNet-18 [HZRS16]. Parts of a ResNet-18
are depicted in Figure 2.7 in order to illustrate the shortcut connections. As before, in the
CONV blocks, the convolution is always followed by an activation and setup such that the
size of feature maps stays the same. In the CONV+ block, the second input is added to
the convolution result before fed to the activation. The CONV /2 block is a convolution
with activation but setup to halve the feature map size. The solid shortcut connection is
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Figure 2.7: Residual CNN: parts of ResNet-18. CONV: feature map size maintaining
convolution followed by activation function (dimensions specify the kernel size); CONV
/2: feature map size halving convolution followed by activation function; CONV+: fea-
ture map size maintaining convolution followed by summation of the shortcut connection
followed by activation function; POOL: pooling with /2 to reduce size by the half; FC:
fully connected layer with output dimension as specified.

realized as an identity mapping. The dashed shortcut connection increases the depth of
the feature map through a linear projection and reduces the width and height by stride of
2.

2.1.3 LSTM

The LSTM [HS97] belongs to the group of Recurrent Neural Networks (RNNs), which
are specifically suited for sequential data. One characteristic of RNNs are the feedback
connections, which feed back outputs of the model to the model itself [GBC16]. In contrast
to CNNs, where parameter sharing is realized spatially, in RNNs, the parameter sharing
is realized across the sequence, and hence temporal. The LSTM is able to learn long-term
dependencies.

Let (x)NS
= (x1, . . . ,xNS) with xt ∈ RN be an input sequence of length NS. The

LSTM iterates over the sequence, producing the hidden states (h)NS = (h1, . . . ,hNS) for
each element in the sequence. The hidden state ht ∈ RNh for the t-th element in (x)NS

is
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Figure 2.8: LSTM cell. W...: learnable weight matrix; c...: cell state; h...: hidden state;
x...: input; : concatenation; ◦: Hadamard product.5

calculated as,

ht = ot ◦ tanh(ct), with (2.18)

ct = ft ◦ ct−1 + it ◦ gt, (2.19)

ot = sig


Wo


ht−1

xt


+ bo


, (2.20)

ft = sig


Wf


ht−1

xt


+ bf


, (2.21)

it = sig


Wi


ht−1

xt


+ bi


 and (2.22)

gt = tanh


Wg


ht−1

xt


+ bg


. (2.23)

(2.24)

With sig the sigmoid function, the bias vectors b... ∈ RNh , and the weight matrices

W... ∈ RNh×(Nh+N), such that the classical LSTM formulation sig


W...


ht−1

xt


+ b...


 =

sig(Wh...ht−1 + Wx...xt + b...) is achieved, respectively for ft, ot, it, and gt. The overall
calculation flow in the LSTM is also shown in Figure 2.8.

The LSTM consists of the so-called cell state ct ∈ RNh , which is updated during the

5Inspired from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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above described process. Hence, the cell state is recursively fed to the network, where
ct is the current cell state and ct−1 the cell state for the previous sequence element. To
update the cell state, first the forget gate ft controls what and how much to forget from
the previous cell state ct−1 by ft ◦ ct−1 (multiply with low values for forgetting). Then,
the cell state is updated, given the current input xt and the previous hidden state ht−1

with it ◦ gt, where it is the input gate, selecting what and how much of the values to use
for the update. The update value is determined by gt. Therefore, updating the cell state
is realized with ft ◦ ct−1 + it ◦ gt. The current hidden state ht is based on the current cell
state through tanh(ct), controlled by the output gate ot which determines what to output
from the projected cell state.

The weight matrices W... and the bias vectors b... are learned during the training
process. The initial hidden state h0 and initial cell state c0 are typically set to 0.

2.1.4 Transformer

A more recent architecture suited for sequences is the transformer network [VSP+17]. In
the base variant, it is designed for sequence to sequence modeling, such as translation tasks.
There are a lot of successful applications of transformer variants for example: autore-
gressive language models (GPT-3 [BMR+20]), natural language processing pre-training
(BERT [DCLT19]), object detection in images (DETR [CMS+20]), image classification
(ViT [DBK+21]) and image generation from text (DALL-E [RPG+21])

The base transformer was introduced as an encoder-decoder structure. Here, the en-
coder processes the input data first, then the decoder is generating the output given
another input and the encoder output. Transformers can handle sequences of varying
length, like LSTMs. Different to LSTMs, the sequence elements are processed in one step,
where the processing of each element can use information of any other element. In some
cases it might be necessary to allow the transformer to only access information from the
previous elements, this is realized through causal masking. On of the key component
of transformers is the so-called attention mechanism, which provides the possibility to
combine the information of any element. In the following, the attention mechanism, the
layer-norm, and the complete architecture of the transformer are explained.

2.1.4.1 Attention

The attention mechanism provides the possibility to access all the information of the
different sequence elements, depended on their actual states. For this, the three inputs:
value V , key K, and query Q are generated. The result of the attention mechanism is
the weighted sum of the values V . The weights – how much to attend to what – are
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determined based on the queries and keys. The attention mechanism is defined as,

Attention(Q,K,V ) = softmax
(

QKT
√
Nk

)
V , (2.25)

with

Q = XQW Q,with Q ∈ RNSQ ×NK ,XQ ∈ RNSQ ×N
,WQ ∈ RN×NK ,

K = XKWK,with K ∈ RNSK ×NK ,XK ∈ RNSK ×N ,WK ∈ RN×NK ,

V = XVWV,with V ∈ RNSK ×NV ,XV ∈ RNSK ×N ,WV ∈ RN×NV and

Z = Attention(Q,K,V )with Z ∈ RNSQ ×NV .

The inputs X ... are sequences of length NSQ and NSK in matrix form
[
x1, . . . ,xNS...

]
T.

The attention mechanism is discussed in more detail in the following. Two special cases
of the attention mechanisms are used typically: self-attention and cross-attention. In
self-attention the inputs are chosen as XQ = XK = XV = X, therefore, the output is
determined by attending to the input X itself. Whereas in cross-attention, the inputs are
chosen as XK = XV = X and XQ = Ỹ . The output for the input Ỹ is determined
by attending to the other input X. In the remainder of this explanation, sequence are
expressed through their matrix representation.

Self-Attention Given the input sequence X =
[
x1, . . . ,xNSQ

]
T, the output sequence

with the same length Z =
[
z1, . . . ,zNSQ

]
is determined through self-attention f : X 7→

Z. For self-attention, the inputs are selected as XQ = XK = XV = X. Each x is
linearly projected by W V leading to the values v1, . . . ,vNSQ

∈ RNV . The output elements
z1, . . . ,zNSQ

are the weighted sums of all values v1, . . . ,vNSQ
, where the weights depend

on the input sequence X itself. Considering the first output element z1, the weights or
attention values w(x1,X) depend on the complete input sequence X and the first input
element x1. The first input element x1 is used to determine the query q1 for the first
output element z1 and the sequence X to generate the keys K. The attention att(x1,X)
is determined by the softmax of [q1KT]. Hence, for the ranking of the attention values
att(x1,X) it holds: the larger the projection of ki in the direction of q1 (∥ki∥ cos θ) the
higher the rank of the corresponding attention value. Since the ranking is preserved by
the softmax, the closer a key ki to the query q1, the more the generation of z1 attends to
the corresponding value vi. In Figure 2.9, the previous explanation is illustrated.

Cross-Attention The output sequence Z =
[
z1, . . . ,zNSQ

]
is determined using X =[

x1, . . . ,xNSK

]
in dependency of Ỹ =

[
ỹ1, . . . , ỹNSQ

]
as f : X|Ỹ 7→ Z. In contrast to

the self-attention, the outputs for each element in Ỹ are generated by cross-attending to
X =

[
x1, . . . ,xNSK

]
. The output Z is the weighted sum of the values V of X, dependent
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Figure 2.9: Illustration of self-attention mechanism. Upper part depicts the calculation of
the attention values att(x1,X) for the output z1. •: dot product between all keys k and
the query q1; W...: learnable matrix.

on the second input sequence Ỹ , therefore Ỹ and Z are of the same length NSQ . For
example, the weights att(ỹ1,X) for the first output element dependent on the sequence
X and ỹ1. Here, X is used to generate the keys K and ỹ1 to generate the first query q1.
The cross-attention is also illustrated in Figure 2.10.

The matrices W V, W K, and W Q are shared across the sequence, hence varying length
sequences can be fed to the attention mechanism. The learnables of an attention layer are
W V, W K, and W Q.

The attention mechanism flexibility is limited as the size of QKT grows quadratic
with the sequence length for self-attention (NS × NS). Various approaches attempt
to solve this bottleneck [TDBM20] for example through: limiting the attendance area
[HKWS19, BPC20], low-Rank approximations [WLK+20, XZC+21] or kernelization
[KVPF20, CLD+21].

Typically, in attention layers h instances of the attention mechanism are applied in
parallel, called multi-head attention, leading to h different versions of the matrices W V,
W K, and W Q. The h results are concatenated and linearly projected by the learnable
matrix W O ∈ RhNV×N . Since none of the learnable matrices depends on the input
sequence length, the attention mechanism can be applied to arbitrary sequence lengths.

2.1.4.2 Layer-Norm

Another component used in the transformer is the layer normalization [BKH16]. In this
layer, the inputs are normalized and transformed as,

y = x − µx

σx
◦ g + b, (2.26)
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Figure 2.10: Illustration of self-attention mechanism. Upper part depicts the calculation
of the attention values att(y1,X) for the output z1. •: dot product between all keys k
and the query q1; W...: learnable matrix.

with the mean µx = 1
N l

∑
nl
xnl , the standard deviation σx =

√
1
N l

∑
nl

(xnl − µx)2, and
the learnable parameters g ∈ RN l and b ∈ RN l .

2.1.4.3 Positional Encoding

Compared to classical RNNs, the transformer does not process the data sequentially,
moreover, the order of the input is not relevant in transformers. Due to this, the so-
called positional encoding is introduced, such that information about the position of an
element within the sequence is provided. This can be realized in multiple ways, here only
two variants are discussed. For each input element x, a positional encoding vector pos

is determined and added to the actual input vector x + pos. In [VSP+17], the pos is
determined as

pos =








sin
(

pos

1000
2⌊i/2⌋
N

)
if 2|i

cos
(

pos

1000
2⌊i/2⌋
N

)
else



N−1
i=0 , (2.27)

with 2|i indicates i divisible by 2. This provides a unique code for each position in a
sequence.

Another approach is presented in [DBK+21], where a fix sequence length is used.
There, for each position, the corresponding positional encoding vector pos is learned.

2.1.4.4 Vanilla Transformer

The base variant of the transformer as introduced in [VSP+17] consists of an encoder and
a decoder. The encoder is used to process the input, such as a sentence which shall be
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Figure 2.11: Transformer [VSP+17]. Upper part: encoder consisting of LE layers; Lower
Part: decoder consisting of LD layers; : positional encoding. The attention is typically
realized through a multi-head attention.

translated. The decoder generates the output given the information of the encoded input.
The overall architecture of the transformer can be seen in Figure 2.11. The encoder
processes the input by linearly embedding each input element and adding the positional
encoding before sequentially feeding it through the LE encoder layers. Each encoder layer
consists of a multi head self-attention, followed by an element-wise layer normalization. A
skip connection from the multi head self-attention input to the layer normalization input
is added. Then each element is fed through a FC layer with ReLU activations, what is
followed by element-wise layer normalization. A skip connection is used from the input of
the FC layer to the input of the layer normalization.

The decoder takes its input as query in the attention, and the encoder output as
keys and values. Like in the encoder, the elements in the decoder input are first linearly
projected and the positional encodings are added. Then the decoder input together with
the encoder output is processed through LD decoder layers. The output elements are
linearly projected and fed through a softmax to produce the overall output. Like in the
encoder, first the combination of self-attention, layer normalization, and skip connection is
used. Followed by the same combination but with a cross-attention. The cross attention
takes the decoder input as query and the encoder output as key and value. The last
stage of a layer is formed by the combination of a FC layer, layer normalization, and skip
connection as in the encoder.

2.1.4.5 ViT

In [DBK+21] the ViT, a variant of the transformer suited for image classification is pre-
sented. The naive way of applying the transformer on image data by considering each pixel
as one input element leads to large attention matrices (Npixel ×Npixel) and hence is com-
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(a) ViT Architecture: The input image is
sliced into patches. Class Token: learnable
vector; Pos: learnable vector per position.
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(b) Transformer encoder with LE layers as
used in ViT. The attention is typically real-
ized through a multi-head attention.

Figure 2.12: ViT [DBK+21]

putationally difficult to realize. The approach in [DBK+21] is to create non-overlapping
patches, where each patch contains multiple pixels. The ViT reaches state-of-the-art per-
formance on classification task, without using convolutions.

The ViT utilizes an encoder-only transformer architecture, hence the decoder part of
the classical transformer is not used. First, the NS image patches are linearly projected.
Then, the so-called class token is added as an input element. In the next step, the
positional encodings are added to the input elements, here, the positional encodings are
learned per position. The input is fed through a transformer encoder with LE layers. The
layers are slight variations from the classical encoder layers. The layer normalization is
moved from the end of the attention and FC blocks to the beginning. Hence, the first
block is layer normalization followed by self-attention with a skip connection from the
layer normalization input to the output of the self-attention. The second block with layer
normalization followed by a FC layer are connected respectively. The class prediction is
based on the output of the encoder. However, only the output corresponding to the class
token input is used for the prediction, by processing the class token output with a MLP
to generate the class estimation. The architecture of the ViT and the adjusted encoder
layer are shown in Figure 2.12.
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2. Data-Driven Methods and Representation Learning

2.2 Dimensionality Reduction

In this work, dimensionality reduction techniques are applied for multiple purposes. The
most straight-forward utilization for dimensionality reduction is visualization, there a high-
dimensional space N > 3 is projected into a displayable number of dimensions N red ≤ 3.
However, dimensionality reduction is also commonly used as a pre-processing step for
other methods.

For each dimensionality reduction technique, the projection is achieved by optimizing
a certain objective. Different objectives as well as the methods are explained in the follow-
ing. In this work, the dimensionality reduction techniques Principal Component Analysis
(PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Ap-
proximation and Projection (UMAP) are applied and explained.

2.2.1 PCA

The PCA is one of the most used dimensionality reduction techniques. The main advantage
of the PCA is that it performs a linear mapping, and hence the results are interpretable.
The objective of the PCA is to find a projection of the data, such that the variance along
the new dimensions is maximized. This is realized by determining the orthogonal principal
components (directions) of the data with the highest variance.

Given the dataset D with M samples, arranged in the dataset array of shape N ×M

as XD = [x1 − µx , . . . ,xM − µx ] with zero mean per dimension, the covariance matrix is
defined as

Cxx = Ex
{

(x − µx)(x − µx)T
}

(2.28)

= 1
M

XDXT
D, (2.29)

with µx ∈ RN , the mean values for each dimension N . The PCA aims to find orthogonal
unit vectors, such that if the data is projected on them the variance along each vector is
maximized. Moreover, the dimension shall be sorted in descending order of variance, hence
the first dimension should have the highest variance. This can be realized by iteratively
solving

wi = argmax
w

{
wCxxwT

}
(2.30)

s.t. wTw = 1,

wTwj = 0 ∀ 1 ≥ j < i.

Where wCxxwT is the variance of the data projected on w. Through the constraints it is
ensured that the i-th vector is of length one and orthogonal to all previously ∀1 ≥ j < i

found vectors.
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2.2. Dimensionality Reduction

The problem in Equation (2.30) for all N vectors w1, . . . ,wN can be solved through
the eigendecomposition of the covariance matrix as Cxx = WΛW T. Hence, when sorting
the eigenvectors and eigenvalues descending to their eigenvalues, the weight matrix W

contains the vectors w ∈ RN as defined before.
By using only the first N red components, the covariance matrix is approximated as

Ĉxx = W redΛredW T
red. Projecting an input vector x to the N red components, hence,

generating the dimensionality reduced output vector y with N red dimensions is determined
as

y = W T
red(x − µx). (2.31)

When performing the dimensionality reduction on all input vectors, the dimensionality
reduced dataset Dred = {ym}Mm=1, with y ∈ RNred is generated.

2.2.2 t-SNE

Non-linear dimensionality reductions, as performed by t-SNE [MH08], are successfully
used for visualizing complex and high-dimensional data. The embeddings produced by
t-SNE can reveal lots of structure of the high-dimensional data. The objective in t-
SNE is to make high-dimensional pairwise similarities as similar as possible to their low-
dimensional pairwise similarities. The Barnes-Hut-SNE [vdM14] is a variant of t-SNE,
which is typically applied in practice, due to its performance advantage over the original
t-SNE. In the following, the t-SNE and its accelerated version Barnes-Hut-SNE are briefly
summarized. The overall objective in t-SNE is to determine low-dimensional embeddings
Dred = {ym}Mm=1 with y ∈ RNred such that the embeddings best reflect the structure of
the data points in D = {xm}Mm=1 with x ∈ RN .

The first step in t-SNE is to determine the pairwise similarities in the high-dimensional
space. For this purpose, a pointwise neighborhood adaptive similarity measure is intro-
duced. The pointwise similarity is interpreted as the conditional probability of the j-th
data point being selected as neighbor of the i-th data point. It is assumed that the
selection of a neighbor is modeled through a Gaussian centered at the i-th data point,
parameterized by σi. This is formulated as

vj|i =
exp

(
−d(xi,xj)2

2σ2
i

)

∑
k ̸=i exp

(
−d(xi,xk)2

2σ2
i

) , (2.32)

where x is a sample from D and the d is a distance measure.
The accelerated version, the Barnes-Hut-SNE, approximates the pointwise similarities

by only using the set of K nearest neighbor indices Ki of each data point. Hence, the
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computational effort is reduced significantly. The pointwise similarities are determined as

vj|i =





exp
(

−d(xi,xj)2

2σ2
i

)

∑
k∈Ki

exp
(

−d(xi,xk)2

2σ2
i

) if j ∈ Ki

0 else

. (2.33)

For both versions, the σi is selected such that the perplexity over v:|i matches u, hence

u =
M∏

j=1
v

−vj|i
j|i and (2.34)

u =
∏

j∈Ki
v

−vj|i
j|i (2.35)

hold respectively. In Barnes-Hut-SNE, the number of neighbors is selected as K = ⌊3u⌋.
Next, the pointwise similarities are symmetrized, leading to pairwise similarities as

vij =
vj|i + vi|j

2M . (2.36)

The pairwise similarities describe the data points in the high-dimensional space. By
selecting an appropriate perplexity, the focus on local or global structure in the data can
be adjusted.

To create a low-dimensional representations of the data points, pairwise similarities
are defined in the low-dimensional space as well. In contrast to the previous definition, a
normalized Student t-kernel with one degree of freedom is used as similarity function

qij =
(1 + ∥yi − yj∥2

2)−1
∑
k ̸=l(1 + ∥yl − yl∥2

2)−1 . (2.37)

In t-SNE, the objective is to make the low-dimensional similarities qij similar to the
high-dimensional similarities vij of the data points. This is realized by minimizing the
Kullback-Leibler divergence

Lt−SNE =
∑

i ̸=j
vij log

(
vij
qij

)
(2.38)

through gradient descent. Therefore, the low-dimensional embeddings y are generated
through this optimization procedure. The low-dimensional representations are typically
randomly initialized.

In the accelerated version, the gradient is approximated through the Barnes-Hut algo-
rithm [vdM14]. Within this algorithm, points are grouped when their contributions can
be represented by a single point [MHM18]. Therefore, it is not required to determine the
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2.2. Dimensionality Reduction

similarities between all the embeddings.

2.2.3 UMAP

UMAP [MHM18] is a non-linear dimensionality reduction technique. In contrast to t-
SNE, UMAP is derived from Riemannian geometry and algebraic topology. In UMAP,
data points are assumed to be uniformly distributed on a manifold. For this, the manifold
is approximated through many local manifolds, each covering only the neighborhood of a
data point. For details on the derivation see [MHM18]. As before, the overall objective is
to determine the low-dimensional embeddings Dred = {ym}Mm=1 with y ∈ RNred such that
the embeddings reflect the structure of the data points in D = {xm}Mm=1 with x ∈ RN .

The steps to generate the low-dimensional embeddings are very similar to the steps
in t-SNE, therefore, the same notation is used here to highlight the similarities. How-
ever, in UMAP the relations between data points are not expressed through conditional
probabilities but by the edge weights of a directed nearest neighbor graph.

The first step in UMAP is to generate the so-called local fuzzy simplicial sets, obtained
by a weighted directed nearest neighbor graph as

vj|i =





exp
(− max(0,d(xi,xj)−ρi)

σi

)
if j ∈ Ki

0 else
. (2.39)

Here, ρi is the dissimilarity between xi and its most similar neighbor. The parameter σi
is selected such that

∑

j∈Ki
exp

(− max(0, d(xi,xj) − ρi)
σi

)
= log2(K) (2.40)

holds. In difference to t-SNE, no normalization is required to calculate the pointwise
similarities.

With the probabilistic t-conorm, the pointwise similarities is symmetrized to achieve
the pairwise similarities

vij =
(
vj|i + vi|j

)
− vj|ivi|j . (2.41)

Hence, the directed graph is converted into an undirected graph.
The pairwise similarity of the low-dimensional representations y is defined by

qij = 1
1 + a||yi − yj ||2b2

, (2.42)

where a and b are hyperparameters. In UMAP, a and b are automatically selected by
a non-linear fitting, such that a minimum distance between the representation points is
realized.

As in t-SNE, the objective is to find projections that maximize the similarity between
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the low-dimensional and the high-dimensional pairwise similarities qij and vij . In UMAP,
this is realized by minimizing the cross entropy

LUMAP =
∑

i ̸=j
vij log

(
vij
qij

)
+ (1 − vij) log

(
1 − vij
1 − qij

)
(2.43)

of the two fuzzy sets (high- and low-dimensional), using stochastic gradient descent. The
embedding is typically initialized with a spectral embedding [vL07].

2.3 Outlier Detection

The objective in the area of outlier detection is to find data points, which do not match
the patterns and characteristics of the dataset, these points are referred to as outlier or
abnormal data points. Aside from finding outliers in an existing database, those meth-
ods sometimes are applied for novelty or out-of-distribution detection. An observation is
declared as novel or not, depending on if it fits in the existing database. In this section,
various outlier detection methods are summarized. First, a group of neighborhood-based
methods is explained. Next, Isolation Forest (IF) and One-Class Support Vector Ma-
chine (OCSVM) are discussed. Last, approaches from the group of reconstruction-based
methods are summarized.

In the following, various outlier detection methods are introduced. The outlier score
A... is the core part of an outlier detection method. An outlier score returns a value for
each tested data point. Identifying outliers is typically realized by considering the data
points above / below some thresholds as outliers. The notation A↑

... represents outlier
scores where high values indicate that the investigated data point is more likely to be an
outlier. On the contrary, a data point is more likely to be an outlier, the lower the value
of scores with the notation A↓

.... If not stated differently, outliers are detected if they are
more likely to be an outlier than all other data points or at least a big share of the other
data points. Hence, the outlier score is usually considered with respect to all other data
points.

2.3.1 Neighborhood-Based Methods

Neighborhood-based methods aim to detect local outliers. For this purpose, the data point
under investigation xi is compared to its K-neighborhood Ki. As defined in Section 2.2.2,
Ki contains the indices of the K nearest neighbors of xi, given some distance function.
Let Ri be the inverse neighborhood set, it contains all the indices for which xi is inside
their K-neighborhood, hence Ri = {j ∈ I|i ∈ Kj}, where I denotes the set of all available
indices in the dataset. Next, the various neighborhood-based outlier scores are summarized
briefly.
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K-dist One of the simplest approaches is to measure the outlier strength is to use the
distance to the K-th neighbor [RRS00]. Therefore, the farther the K-th neighbor, the
more outlying the data point xi is. With Ki(K) being the K-th nearest neighbor of the
i-th data point, the outlier score is defined as

A↑
K(xi) = d

(
xi,xKi(K)

)
. (2.44)

This score is simple to be determined, however, it does not consider the complete K-
neighborhood. Moreover, the densities within the neighborhood are not considered.

∑
K-dist In order to consider the complete K-neighborhood of the i-th data point,

taking the sum over all K distances is another outlier score [AP02]

A↑
ΣK(xi) =

∑

j∈Ki
d(xi,xj). (2.45)

Like the score A↑
K , A↑

ΣK follows the intuition that outlying points should be a far way
from their neighborhood.

ODIN In Outlier Detection using Indegree Number (ODIN) [HKF04], instead of the
neighborhood of the i-th point, the neighborhoods of the other points are investigated.
The concept is, that an outlying point less often occurs in others’K-neighborhoods. Hence,
the smaller the inverse neighborhood set

A↓
ODIN(xi) = |Ri|, (2.46)

the more likely it is for a point to be an outlier. When considering the K-neighborhood
relationships in a directed graph that would be equivalent to the incoming edges, therefore
the indegree of the i-th vertex.

LOF One of the most popular outlier scores is the Local Outlier Factor (LOF) [BKNS00].
This score is based on local density comparison. The local density for the i-th point is
compared to the average density in the K-neighborhood. First, the so-called reachability
distance is defined as

dreach(xi,xj) = max
{
d
(
xj ,xKj(K)

)
, d(xi,xj)

}
, (2.47)

which can be understood as the reachability of the i-th data point from the j-th data
point. This can be the true distance between two data points or at least it is the K-
distance of the j-th data point. Therefore, all data points in the K-neighborhood of j
have a reachability of K-distance. Given the reachability distance definition, the local
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reachability density lrd is determined as the inverse average reachability distances from
all points in the neighborhood of i to the i-th point itself

lrd(xi) = 1
1

|Ki|
∑
j∈Ki dreach(xi,xj)

. (2.48)

The lrd inversely reflects how reachable the i-th point is from all its neighbors Ki. Provided
with the density estimates per point, the LOF is determined as the average density in the
neighborhood relative to i-th density

A↑
LOF(xi) =

1
|Ki|

∑
j∈Ki lrd(xj)
lrd(xi)

. (2.49)

If the i-th data point is outlying, that will lead to a small density lrd(xi) compared to the
densities of the neighborhood. Hence, the A↑

LOF(xi) will become high.

LDOF In [ZHJ09], the Local Distance-based Outlier Factor (LDOF) is presented. It
compares the average distance between the i-th point to its neighbors to the average
distance between all K(K − 1) pairs of neighbors as

A↑
LDOF(xi) =

1
|Ki|

∑
j∈Ki

d(xi,xj)

1
|Ki|(|Ki|−1)

∑
j,j′∈Ki|j ̸=j′

d(xj ,xj′)
. (2.50)

ABOD Where the former methods are based on distances, the Angle-Based Outlier
Detection (ABOD) [KhZ08] utilizes angles to determine outliers. Here, only the special
case fast ABOD is discussed, since it is considering only the K-neighborhood. First, K
vectors are constructed spanning from the i-th data point to each neighbor. Then, for
all possible K(K − 1)/2 vector pairs, the angle between the vectors is determined. The
variance over all angles for the i-th data point yields the outlier score as

A↓
ABOD(xi) = Varj,j′∈Ki|j ̸=j′

(
(xj − xi) · (xj′ − xi

)

∥xj − xi∥2 · ∥xj′ − xi∥2

)
. (2.51)

The more inlying a data point is, the more the angles to the neighborhood vary. Therefore,
the smaller the value of the ABOD, the more outlying the data point is.

Other The scores listed above are a few representatives from the group of neighborhood-
based outlier detection methods. A few more will be briefly summarized in the remainder
of this subsection, based on [WFBU20].

In the comprehensive survey [CZS+16a], various nearest neighborhood based methods
are applied to several datasets, providing an empirical analysis. The datasets are made
publicly available to act as a benchmark for outlier detection.
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Several extensions of the LOF have been presented. The Connectivity-based Outlier
Factor (COF) [TCcFC02] using on connectivity chains to estimate the local reachability
density. In the Local Outlier Probabilities (LoOP) [KKSZ09], the density estimates are
replaced by the reciprocal of the mean quadratic distance. A more complex replacement
of LOF’s density estimates can be found in the Local Density Factor (LDF) [LLP07],
where a Gaussian kernel density estimate is used. Another variant is the Simplified LOF
(SLOF) [SZK12], where LOF’s reachability distance is replaced with the distance to the
K-th neighbor.

The following methods are based on definitions from dimensionality reduction tech-
niques. Using the weighted directed graph constructed in the first stage of t-SNE [MH08],
the outlier score Stochastic Outlier Selection (SOS) was introduced in [JHPvdH12]. Based
on t-SNE’s faster approximation Barnes-Hut-SNE, the outlier scores K Nearest Neighbor
SOS (KNNSOS) and Intrinsic SOS (ISOS) are presented in [SG17]. The former can be
considered as an approximation of the SOS, where in ISOS, the distance measures are
transformed based on an intrinsic dimensionality estimate.

2.3.2 Isolation Forest

The Isolation Forest (IF) [LTZ08] is another method for outlier detection. The basic
assumption is, that if a data point is outlying, it is easy to be isolated.

An IF {Tb(x, Θb)} is constructed, leading to B isolation trees, with Θb being the
random parameter vector for the b-th tree Tb. A sub-sampled dataset consisting of Mψ

samples is generated per tree. Provided with the sub-sampled dataset, a tree is grown by
randomly choosing a dimension and randomly choosing a split threshold (c. f. extremely
randomized trees [GEW06]). The growing procedure stops whenever all data points have
the same values or the tree reaches the depth limit ⌈log2Mψ⌉. After growing the IF, all
data points are passed through all trees. Let Ti,b =

{
tji2,b, . . . , tjiJ ,b

}
be the path of the

i-th data point through the b-th tree. Here tji2,b denotes the second node of the b-th tree
the i-th element has passed and tjiJ ,b the terminal node for the i-th data point in the b-th
tree. The average length of the paths for the i-th data point over all trees is

l̄(xi) = 1
B

B∑

b=1
|Ti,b|. (2.52)

The average length is normalized by the average length of an unsuccessful search path in
a binary search tree, which is given through

l̄norm(Mψ) = 2H(Mψ − 1) − (2(Mψ − 1)/Mψ). (2.53)

The harmonic number H(·) can be estimated via ln(·) + 0.5772156649 [LTZ08]. Finally,
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the outlier score of the IF is determined through

A↑
IF(xi) = 2

l̄(xi)
l̄norm(Mψ) . (2.54)

This score gives values closer to one, the lesser splits are required to separate a data point,
and hence the more outlying it is. On the contrary, this score will be smaller for inside
points. More specifically, in [LTZ08] it is stated that for scores much smaller than 0.5 it
is quite safe to regard them as normal instances.

2.3.3 One-Class Support Vector Machine

Another outlier detection method was presented in [SWS+00] based on the concept of
Support Vector Machines (SVMs). The idea is to consider a one class case by the One-
Class SVM (OCSVM), where the objective is to separate all data points from the origin in
the feature space with a hyperplane. Hence, all data points are treated as one class. With
Φ(), the projection from the input to the feature space, the problem definition is given as

min
w,ξ,ρ

1
2∥w∥2

2 + 1
νM

M∑

i=1
ξi − ρ, (2.55)

s.t. wTΦ(xi) ≥ ρ− ξi, (2.56)

ξi ≥ 0, (2.57)

where minimizing 1
2∥w∥2

2 contributes to maximizing the margin like in the normal SVM.
Minimizing −ρ contributes to shift the decision hyperplane wTΦ(x) − ρ = 0 as far as
possible from the origin, but also in maximizing the margin ρ/∥w∥2. As in the normal
SVM, ξ are the slack variables enabling a soft margin classifier. Using the kernel trick
k(xi,xj) = Φ(xi)TΦ(xj) and the method of Lagrange multipliers, the dual problem can
be stated as

min
λ

1
2
∑

ij

λiλjk(xi,xj), (2.58)

s.t. 0 ≤ λi ≤ 1
νM

(2.59)
∑

i

λi = 1. (2.60)

As stated in [SWS+00], if ρ ̸= 0, ν is an upper bound on the fraction of outliers in
the training data and ν is a lower bound on the fraction of support vectors. Under
more constraints (see [SWS+00] for details), ν asymptotically equals both fractions. After
determining the coefficients λ of the dual problem, the outlier ship of the i-the data point
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is determined as

A↓
OCSVM(xi) = sgn




M∑

j=1
λik(xj ,xi) − ρ


. (2.61)

Ideally, outliers should have an outlier score of −1, while normal data points (inliers)
should have +1. By assuming a certain fraction of outliers ν in the training data and by
the choice of the kernel and its parameters, the closeness of the decision boundary to the
data can be adjusted.

2.3.4 Reconstruction-Based Methods

Various approaches try to utilize generative neural networks for outlier detection. The
narrative is that if a generative model is able to reconstruct the input properly that input
can be interpreted as known data. For unknown data, which was not part of the training,
the network might fail to reconstruct that. Those approaches are well suited for images,
though not being limited to them. A General issue with the reconstruction based method
is that the model would need to be retrained with the unknown data if it should be added
to the known set. Moreover, the network should not generalize well in order to actually fail
to reconstruct unknown data. One example for that might be when the generative model
was trained on images of fours and sevens, it should still not reconstruct a nine properly.
However, that is likely to happen for well generalizing networks. In the following, only
a few approaches are discussed, but there exist various reconstruction-based approaches
and applications.

2.3.4.1 Autoencoder

With the family of autoencoders, a straight forward method for solving the reconstruc-
tion tasks exists. Autoencoders find application in many approaches e. g., [SY14, AC15,
LBR+18]. Some use basic autoencoders, others use variants like denoising or variational
autoencoders (see Section 2.5.1.1 for details on vanilla autoencoders). Nevertheless, the
concept remains the same: The autoencoder is trained with normal/known data. In infer-
ence, new data is passed through the trained autoencoder. The outlier score is estimated
by comparing the reconstructed output with the input, using the reconstruction error. Let
g be the decoder and f be the encoder, the outlier score can then be defined as

A↑
ROD(xi) = ||xi − g(f(xi))||22, (2.62)

where ROD stand for Reconstruction-based Outlier Detection. The worse the reconstruc-
tion the higher the outlier score and hence the more likely the input is an outlier.
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Figure 2.13: Reconstruction along Projection Pathway [KSL+20]. y(... ): hidden states for
the input; ŷ(... ): hidden states for the input; x: input; x̂: reconstruction; f...: layers of
the encoder; g: decoder.

2.3.4.2 RaPP

In Reconstruction along Projection Pathway (RaPP) [KSL+20], another reconstruction-
based approach based on autoencoder is presented. Instead of using only the difference
of the input and the generated output, also the hidden states of the encoder are used.
Specifically, two new outlier scores are presented, Simple Aggregation along Pathway (SAP)
and normalized aggregation along pathway. In this work, only the SAP outlier score is
applied, since the latter requires singular value decomposition of all hidden states flattened
and concatenated. Due to large amount of hidden states in deep networks, this would lead
to high computational effort.

The assumption behind RaPP is that also the hidden states of the input and the
hidden states of the reconstructed output should be very similar if it is a known input.
For this purpose, in [KSL+20] it is proposed to first process the input by the autoencoder
as x̂ = g(f(x)). In order to access the hidden states, the outputs of the various layers
(f...) of the encoder are used. Here, they are denoted by y(l) where l represents the layer
number, with y(0) the input to the encoder and y(L) the latent representation. The hidden
states of the input x are concatenated to y(0...L) and the hidden states for the reconstructed
output x̂ are concatenated to ŷ(0...L). Hence, the reconstructed output x̂ is fed through
the encoder. In Figure 2.13 the generation of y(0...L) and ŷ(0...L) is depicted. Given the
above definitions, the outlier score for SAP follows as

A↑
SAP(xi) = ||y(0...L)

i − ŷ
(0...L)
i ||22. (2.63)

Since y(0) represents x and ŷ(0) represents x̂, the outlier score includes the normal
reconstruction-based outlier score. The less similar the input and the reconstruction as
well as their hidden states are, the higher the outlier score will be and the more likely the
data point is an outlier.
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z ∈ N

g d
X̂

X

GAN

real /
generated?

Figure 2.14: f-AnoGAN: GAN training; z ∈ N : latent representation is sampled from a
normal distribution; g: generator; d: discriminator; real / generated: estimation of the
discriminator.

2.3.4.3 f-AnoGAN

Generative Adversarial Networks (GANs) are also used for outlier detection based on the
reconstruction concept, e. g., [ZRF+18, SSW+17, SSW+19, DVR+19]. In the context of
this work only the fast Anomaly detection with GANs (f-AnoGAN) method is summarized
and applied. Like before, the assumption is that if the network is able to generate an output
which is very similar to the input, that input can be assumed to be known. Moreover,
also the discriminator’s output for the original and the generated input is taken into
consideration. In the following, the method is briefly summarized.

GAN Training In the first step, the GAN is trained to produce samples that are very
similar to the ones in the data set. For this purpose, a generator network g is given a
random latent realization, commonly drawn from Gaussian distribution, z ∈ N . This
way, the output X̂ = g(z) is generated. Ideally, a well-trained generator will produce
very realistic outputs. The discriminator network d aims to judge whether the input is
real data X or a generated sample X̂. See Figure 2.14 for a graphical illustration. More
details about the GANs and their training can be found in e. g., [GBC16, SSW+19].

Encoder Training After the successful training of a GAN, it is required to find a latent
representation from which the generator g can create a realistic output. For this purpose,
in [SSW+19] an encoder f is introduced to learn the mapping of an input X to the latent
representation z. During the training of the encoder, the generator network g and the
discriminator network d are frozen, hence only the encoder network is optimized to realize
the mapping. Figure 2.15 illustrates the learning procedure. The loss to train the encoder
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(
X̂

)

d(l)(X)

Figure 2.15: f-AnoGAN: Encoder training. ^: frozen network. f : encoder; g: generator;
d(0...l): first l layers of discriminator; d(l)(X): output of discriminator’s l-th layer; X:
input.

is formulated as

Lf−AnoGAN = 1
N

∥X − g(f(X))∥2
2 − κ

Nd(l)
∥d(l)(X) − d(l)(g(f(X)))∥2

2. (2.64)

The first term is the normal reconstruction loss between the input and the generated
sample. The second term compares the l-th layer output ∈ RNd(l) of the discriminator
between the input and the generated sample. Hence, the last layers of the discriminator
d are not accessed. The hyperparameter κ controls the influence of the second term. In
[SSW+19], it is stated that the second term improves the anomaly detection performance.

Outlier Detection After the training of the GAN and the encoder, the networks can
be used to estimate the outlierhsip of samples. As already stated, the outlier detection is
based on the reconstruction assumption like the methods before. A sample is projected
into the latent space by using the encoder f and then reconstructed by the generator g.
Additionally, the input X and the reconstructed sample X̂ are fed through the discrimi-
nator d in order to compare the l-th hidden representations. Hence, the anomaly score is
the same as the loss for training the encoder:

A↑
f−AnoGAN(X) = 1

N
∥X − g(f(X))∥2

2 − κ

Nd(l)
∥d(l)(X) − d(l)(g(f(X)))∥2

2. (2.65)

Like the other reconstruction based scores, the higher the value, the more outlying the
sample is.
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2.4 Clustering

With clustering methods groups can be identified in unlabeled data. In this work, two
clustering techniques K-means and hierarchical clustering HC are explained and applied.
This section is based on [Wur18] and [KWBC23]. Clustering aims to find K clusters
{C1, . . . , CK}, such that the data inside each cluster is similar [Bis06]. This relation is
described in terms of the proximity which can be defined through the similarity or dis-
similarity, e. g., the Euclidean distance or Pearson correlation [XW05]. The proximity
measure influences how the data is going to be clustered. Some methods are explicitly or
implicitly connected to a specific proximity [XW05].

2.4.1 K-Means

One of the most prominent methods for clustering is the K-means algorithm. The ex-
planation is inspired from [MB20]. The objective is to find K cluster representatives
{c1, . . . , cK}, hence, one per cluster {C1, . . . , CK}. The clusters and the representatives
are selected such that the all data points in a cluster are close to the cluster representative.
This can be formulated as the optimization problem

{c1, . . . , cK} = argmin
{c′

1,...,c
′
K}

{
M∑

m=1
min

k=1,...,K
d
(
xm, c

′
k

)
}
. (2.66)

The K-means algorithm solves the optimization problem by using the block coordinate
descent method. The overall procedure is to iteratively optimize the cluster assignments
and the representatives until the representatives are stable. Given a pre-selected K, and
K randomly initialized cluster representatives, the K-means algorithm can be summarized
as follows:

1. Each data point is assigned to the cluster with the closest representative. Here the
cluster representatives are fixed.

2. The cluster representatives are updated according to Equation (2.66), given the
assignment from step 1. This is equal to calculating the centroids of the clusters
(average of all data points in a cluster) when using the squared Euclidean distance.

3. The steps 1 and 2 are repeated until the representatives are stable.

This way, K-means efficiently detects clusters in unlabeled data.

2.4.2 Hierarchical Clustering

Hierarchical clustering methods aim to find a hierarchy of clusters. They can be classified
as agglomerative or divisive, where only agglomerative HC is applied in this work. This

39



2. Data-Driven Methods and Representation Learning

section is mainly based on [Wur18]. In this subsection, the term dissimilarity instead of
distance is used, since it is not necessarily an actual distance.

At the beginning, each data point is considered as a single cluster. Then they are
successively merged until one single cluster remains. Typically, the most similar clusters
are merged. The linkage function determines the new dissimilarity between a merged
cluster and all remaining clusters. For this purpose, the dissimilarity Dkl between the
clusters Ck and Cl is calculated according to the equations shown below. The dissimilarity
between two points i and j is defined as dij . In the following multiple types of linkage
functions are briefly introduced.

Single Linkage The minimum dissimilarity between all the elements of both clusters is
the dissimilarity of the clusters:

Dkl = min
i∈Ck
j∈Cl

{dij}. (2.67)

Complete Linkage The maximum dissimilarity between all the elements of both clus-
ters is the dissimilarity of the clusters:

Dkl = max
i∈Ck
j∈Cl

{dij}. (2.68)

Average Linkage The dissimilarity is determined through the average of all dissimilar-
ities between the points of the two clusters:

Dkl = 1
|Ck||Cl|

∑

i∈Ck

∑

j∈Cl
dij . (2.69)

Weighted Average Linkage The average of the dissimilarities from both previous
clusters (before merging) to the arbitrary one is used:

Dkl = Dkp +Dkq

2 . (2.70)

Centroid Linkage The dissimilarity between the clusters is calculated by the Euclidean
distance between the centroids of the clusters:

Dkl = ||xk − xl||2, (2.71)
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with the centroids

xk = 1
|Ck|

∑

i∈Ck
xi, (2.72)

xl = 1
|Cl|

∑

j∈Cl
xj . (2.73)

By applying these methods, one achieves a binary tree H representing the hierarchy,
stating which clusters are merged with which dissimilarity. This hierarchy is typically
visualized using a dendrogram. One possibility to perform cluster identification based on
a hierarchical tree is to cut the tree into subtrees. All leaves of a subtree are considered
as members of one cluster. The trees are cut by choosing a dissimilarity threshold.

The choice of the linkage method mainly depends on the given data set D and the
structure of the data inside it. Moreover, the choice also depends on the used dissimilarity
measure. One main drawback of HC is its sensitivity to noise and outliers.

2.5 Representation Learning

Representation learning methods are a key part of the techniques proposed and devel-
oped in this work. The learned representations of traffic scenarios are used for tasks like
clustering and outlier detection. Therefore, relevant learning strategies from the field of
representation learning are summarized in this section.

Representation learning aims to find appropriate representations for a given input,
where the appropriateness is defined by the training objective. Models trained with the
summarized methods, project the input data to the so-called representation space. In a
properly formed representation space, the data can be further processed with methods like
clustering, classification or outlier detection.

Most of the presented methods are trained using multiple samples/instances simulta-
neously. There, a definition of similarity between the instance is required. During the
training phase of a model, the objective is to pull similar instances close together in the
representation space and to push dissimilar instance far from each other. Typically, there
are two ways to determine similar and dissimilar instances. First, by using a measure
to determine similarity between two given instances, e. g., are the two instances from the
same class. Second, generating similar instances by augmentation. By the use of augmen-
tation, the pretext knowledge is taken advantage of that the augmented instances origin
from the same source and thereby should be similar.

Methods summarized in this section are contrastive learning, triplet learning, cross
entropy based learning, Swapping Assignments between Views (SwAV) [CMM+20], Barlow
Twins [ZJM+21], and Variance-Invariance-Covariance Regularization (VICReg) [BPL21].
Moreover, typical augmentations are summarized. The autoencoder is explained as well,
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Figure 2.16: Autoencoder consisting of the encoder f and the decoder g. Training objective
is depicted in the gray box. X: input; Y : reconstruction.

which relies on the reconstruction regime.

2.5.1 Reconstruction

2.5.1.1 Autoencoder

Autoencoders find various applications in generative models, outlier detection (Section
2.3.4.1) or in the field of representation learning, as presented in the following. The
procedure of an autoencoder is divided into two parts. First, an input is converted into
the latent representation. Second, it is aimed to reconstruct the original input value from
the latent representation. The generated reconstruction is the output of the autoencoder.
As the latent representation is usually of lower dimension a bottleneck is created. Therefor
the task is to learn the characteristics of the input and compress them. Autoencoders find
also application in the domain of image processing, as in [MMCS11] an autoencoder using
CNNs is presented.

An autoencoder consists of two main components, the encoder f and the decoder g.
The encoder generates the latent representation z ∈ RNz , given the input as z = f(X).
The decoder takes the latent representation to generate the output as Y = g(z). As
already mentioned, the latent representation is typically of lower dimension than the input,
i. e., N z < N . The architecture of such an autoencoder is depicted in Figure 2.16.

In the standard setting, the objective is to optimize f and g, such that the output Y

best possible matches the input X. For this, the reconstruction loss

Lrecon = ||X − Y ||22 = ||X − g(f(X))||22 (2.74)

is used.
The trained encoder can be used for the representation generation as required in this

work. However, during the training of the autoencoder, the latent representations are only
indirectly considered since the optimization is realized based on the reconstruction.
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2.5.2 Metric Learning

Metric learning refers to a special field of representation learning. A network is trained
such that the resulting representations mimic the objective metric as well as possible.
Typically, the metric is represented by providing examples which are meant to be similar
and examples which are dissimilar. Therefore, no exact definition of the metric/measure
is required, simple extreme cases are sufficient. Typically, metric learning is applied in a
supervised setting, for example knowing the class of instances and aiming to maximize the
similarity of similar ones, while minimize similarities of dissimilar ones.

2.5.2.1 Contrastive Loss

One of the most basic representation learning strategies is contrastive learning [HCL06].
In contrast to the autoencoder, the loss is directly applied on the representations and
hence, the network is optimized such that the representations follow certain definitions.

The objective of contrastive learning is to pull representations of similar instances close
to each other, while pushing dissimilar ones away. During training, pairs of data points
(X1,X2) are provided where they are either similar y = 0 or dissimilar y = 1. The data
points (X1,X2) are passed through the neural network f individually, hence the same
network is used for both inputs. The network is therefore sometimes called Siamese or twin
network. In order to achieve the former objective, the network f is trained such that the
latent representations z1 = f(X1) and z2 = f(X2) fulfill the similarity constraint. With
the squared distance d(z1, z2)2 between the pair of latent representations, the contrastive
loss is defined as

Lcont = (1 − y)d(z1, z2)2 + ymax
{
α− d(z1, z2)2, 0

}
, (2.75)

where α is the margin. Hence, the dissimilar examples shall be at least
√
α away from

each other, while the positive examples shall be as close as possible to each other. In
Figure 2.17, the learning objective and the network are illustrated.

2.5.2.2 Triplet Loss

The triplet loss [SKP15] is an extension of the contrastive loss. Instead of considering the
positive and negative cases independently, they are coupled where both refer to the same
anchor data point. The objective is to pull the similar example closer to the anchor than
the negative example. Vice versa, the negative example shall be pushed away, at least
farther than the positive example plus some margin. During training, for each step a data
point (anchor), a similar data point (positive) and a dissimilar data point (negative) needs
to be provided. Hence, the training is based on triplets of data points (Xa,Xp,Xn), an
anchor Xa, a positive example Xp and a negative example Xn.
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Figure 2.17: Contrastive learning with a Siamese network. The training is depicted in the
gray boxes. (X1,X2): input pair for training; (z1, z2): latent representations for training
pair (each input is passed separately); y = 0/1: pair is similar/dissimilar.

A neural network f is trained such that the resulting representations fulfill the triplet
objective. For this, the data triplet is fed through the network sequentially, leading to
za, zp, and zn. Let the dissimilarity between the anchor representation and the positive
representation be dp = d(za, zp) and dn be the dissimilarity between the anchor and the
negative representation, given a dissimilarity measure d. The requirement of a positive
data point being more similar to the anchor than a negative can be expressed as

dn ≥ dp + α, (2.76)

where α is the margin, controlling how dissimilar the negative should be with respect to
dp. From this constraint, the triplet loss emerges as

Ltri = max{dp − dn + α, 0}. (2.77)

When using a similarity measure s instead of a dissimilarity measure, the constraint follows
sp ≥ sn + α and hence, the loss is formulated as

Ltri = max{sn − sp + α, 0}. (2.78)

In practice, the max{. . . , 0} is realized by a ReLU function. The triplet network as well
as the training is depicted in Figure 2.18.

The training stability using triplet learning is strongly affected by the selected neg-
ative example. For this reason, various negative sample mining strategies are proposed.
One typical choice is the so-called semi-hard sampling [SKP15], it provides high stabil-
ity and fast learning. Given an anchor and a positive example, three different types
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Figure 2.18: Triplet learning with a triplet network. (Xa,Xp,Xn): training triplet con-
sisting of an anchor, a positive example, and a negative example; z...: the latent represen-
tations corresponding to the training triplet (each input is passed separately through f).
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Figure 2.19: Negative types based on the anchor latent representationza, the positive
latent representation zp and the margin α.6

of negatives can be distinguished: 1. hard negatives dn < dp, 2. semi-hard negatives
dn > dp ∧ dn < dp + α and 3. easy negatives dn > dp + α. The three different types
are illustrated in Figure 2.19. Considering the triplet loss Equation (2.77), easy negatives
do not contribute to the learning. Hence, sampling easy negatives should be avoided for
fast learning. Contrary, hard negatives can lead to an early stopping in a local minimum
[SKP15] or even in so-called mode collapse, which will produce the same latent repre-
sentation for any input. Therefore, hard negatives should be avoided to ensure a stable
training. In conclusion, semi-hard negatives provide fast and stable training and are a
typical choice when sampling negatives.

In summary, triplet learning is used to embed a given similarity knowledge into the
representation space. This way, complex inputs can be projected into representations
which follow the required similarity. The representation space constructed with triplet

6Inspired from https://omoindrot.github.io/assets/triplet_loss/triplets.png.
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Figure 2.20: Cross entropy-based contrastive learning for K = 3 negative instances.
(Xa, . . . ,Xn3): training input tuple; z...: latent representation corresponding to input
training tuple (each input is passed separately).

learning is successfully used for tasks like face re-identification [SKP15].

2.5.2.3 Cross Entropy-based Contrastive Loss

Using multiple negative instances is realized through cross entropy-based contrastive loss,
which is widely used in representation learning [OLV18, WXYL18, Soh16, HFW+20,
CKNH20]. As in triplet learning, a network is trained to optimize the contrastive loss.

The cross entropy-based contrastive loss follows the same intuition as the triplet loss,
hence, similar instances shall be pulled close to each other in the representation space
while dissimilar once shall be pushed far from each other. Given K negative instances,
one positive instance, and an anchor instance, the cross entropy-based contrastive loss is
defined as

Lce = − log




exp( 1
τ sp)

exp( 1
τ sp) +

K∑
k=1

exp( 1
τ snk)


, (2.79)

with τ the temperature hyperparameter. The training of a network f using Lce is il-
lustrated in Figure 2.20. The similarity s... follows the same definition as for the triplet
learning.

Cross entropy-based contrastive learning has a strong relation to triplet learning. In
the following, it is shown that the special case of the cross entropy-based contrastive loss
with only a single negative instance approximates the triplet loss. Moreover, the general
case of the cross entropy-based contrastive loss approximates triplet loss combined with
hardest sampling. The relation to the triplet loss can aid the interpretation of the cross
entropy-based contrastive learning. Moreover, under some constraints and assumptions,
the contrastive loss Lce maximizes a lower bound on the mutual information [OLV18] (see
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Appendix A.1).

Single Negative Cross Entropy-based Contrastive Loss as Approximated
Triplet Loss It can be shown, that the special case of Lce with only one negative in-
stance is a smooth approximation of the triplet loss Ltri [LBCP+20]. Using the triplet loss
from Equation (2.78) and the softplus function softplus(. . . ) = log(1 + exp(. . . )), which is
a smooth approximation of max{. . . , 0}, the following holds:

Ltri = max{sn − sp + α, 0} (2.80)

Ltri ≈ softplus(sn − sp + α) (2.81)

Ltri ≈ log(1 + exp(sn − sp + α)) (2.82)

Ltri ≈ log(1 + exp(sn − sp + α)) − log(1) (2.83)

Ltri ≈ − log
(

1
1 + exp(sn − sp + α)

)
(2.84)

Ltri ≈ − log
(

exp(sp)
exp(sp) + exp(sn + α)

)
. (2.85)

When using a margin of zero α = 0, and by introducing the parameter β, which controls
how well the function is approximated, the approximated triplet loss can be written as

Ltri ≈ − 1
β

log
(

exp(βsp)
exp(βsp) + exp(βsn)

)
. (2.86)

Hence, by selecting β = 1
τ the approximated triplet loss is a linear-scaled version of Lce for

one negative instance. The influence of the parameter β for the approximation is depicted
in Figure 2.21. A typical choice is τ = 0.1, which leads to β = 10, hence for this setting,
the single negative Lce approximates the Ltri closely. Moreover, the smaller τ is selected
the stricter the single negative Lce follows Ltri. With sn −sp substituted by x, the softplus
approximation of max{x, 0} can be seen from the limit value analysis, since for x > 0

lim
β→∞

1
β

log(1 + exp(βx)) (2.87)

= lim
β→∞

1
β

[log(1 + exp(−βx)) + log(exp(βx))] (2.88)

= lim
β→∞

1
β

[log(1 + 0) + βx] (2.89)

= lim
β→∞

1
β
βx (2.90)

= x (2.91)

47



2. Data-Driven Methods and Representation Learning

−4 −2 0 2 4

0

2

4

sn − sp

L

Lce, β = 1
Lce, β = 3
Lce, β = 10
Ltri

Figure 2.21: Approximation of the triplet loss Ltri by Lce with different values for β.
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Figure 2.22: Approximation of the hardest sampling triplet loss Lhtri by Lce.

holds. For negative values x < 0

lim
β→∞

1
β

log(1 + exp(βx)) (2.92)

= lim
β→∞

1
β

[log(exp(βx)(exp(βx) + 1)) + log(exp(−βx))] (2.93)

= lim
β→∞

1
β

[log(0(0 + 1)) + log(exp(−βx))] (2.94)

= 0 (2.95)

holds, since log(0(0 + 1)) → −∞ and log(exp(−βx)) → ∞ because x > 0. For x = 0
lim
β→∞

1
β log(1 + exp(βx)) = 0 holds.
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Cross Entropy-based Contrastive Loss as Approximated Triplet Loss with
Hardest Sampling In the standard case, multiple negative instances are used in the
cross entropy-based contrastive loss. In the following it is shown, that this case can be
seen as a smooth approximation of the triplet loss with hardest negative sampling. There-
fore, using multiple negatives in the triplet loss can be realized by sampling the hardest
negative from multiple negatives. Hardest sampling from K negatives can be formulated
as

Lhtri = max
{

max
{

{snk − sp}Kk=1
}
, 0
}
. (2.96)

The Lhtri can be approximated by the temperature-scaled cross entropy-based contrastive
loss Lce, which leads to

Lhtri ≈ − 1
β

log




exp(βsp)

exp(βsp) +
K∑
k=1

exp(βsnk)


, (2.97)

where the approximation becomes stricter the smaller β. In Figure 2.22, the special case of
only two negative examples is depicted. As for the single instance case, the approximation
for τ = 0.1 or β = 10 is already close. The approximation of the hardest sampling can be
shown as follows. First, the temperature scaled contrastive loss can be written as

softplusβ(LSEβ(sn1 , . . . , snK ) − sp) (2.98)

= 1
β

log
[
1 + exp

(
β

1
β

log
[
K∑

k=1
exp(βsnk)

]
− βsp

)]
(2.99)

= 1
β

log
[
1 +

K∑

k=1
exp(βsnk) exp(−βsp)

]
(2.100)

= − 1
β

log




exp(βsp)

exp(βsp) +
K∑
k=1

exp(βsnk)


, (2.101)

where LSEβ is the β parameterized log-sum-exp function ( 1
β log

[
K∑
k=1

exp(βx)
]
), which is a

smooth approximation of the maximum function. Hence, LSEβ will return approximately
the highest snk which is equal to hardest sampling. Like for the softplus, the higher β the
stricter the approximation gets. Assume the K snk to be sorted such that sn1 ≥ sn2 ≥
· · · ≥ snK then the approximation of the maximum function for β → ∞ with LSEβ can
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be seen from

lim
β→∞

1
β

log
(

K∑

k=1
exp(βsnk)

)
(2.102)

= lim
β→∞

1
β

[
log(exp(βsn1)) + log

(
1 +

K∑

k=2
exp(β(snk − sn1))

)]
(2.103)

= lim
β→∞

sn1 + 1
β

log
(

1 +
K∑

k=2
exp(β(snk − sn1))

)
(2.104)

= lim
β→∞

sn1 + 1
β

log(1 + 0) (2.105)

= sn1 , (2.106)

where β(snk − sn1) = −∞, since sn1 ≥ snk . Hence, the LSEβ approaches the max function
for β → ∞.

2.5.3 Self-Supervised Learning

Self-supervised learning represents another branch of representation learning methods.
While being closely related to metric learning, the key difference lies in the fact that no
similarity definition is used for supervision directly. Instead of taking two positive/negative
examples which are sampled based on the similarity definition, in self-supervised learning
the positive and negative pairs are generated in an automated fashion directly from the
input data. From an input sample typically two random deviations are created by a
set of selected transformations. These two new views of the input sample are treated
as the positive pair, since they origin from the same input sample. Therefore, in self-
supervised learning the selected transformations define the similarity. The transformations
are typically called augmentations.

In the following subsections, some recent self-supervised learning methods for image
data are summarized in more detail [CMM+20, ZJM+21, BPL21]. Other important self-
supervised methods, not being cover in the following subsections are briefly discussed in
the remainder of this section.

In Simple framework for Contrastive Learning of visual Representations (SimCLR)
[CKNH20], the positive examples are generated with a set of strong augmentations from
an input. The negative examples are the remaining augmented images in the batch. Both
augmented views are processed with the same network. In Bootstrap Your Own Latent
(BYOL) [GSA+20], only positive pairs are used, hence BYOL is a non-contrastive method.
Unlike SimCLR, the two networks are different, the online network and the target network.
The online network is optimized by the loss while the target network is updated using a
moving exponential average of the weights of the online network. Hence, no gradients
flow through the target network, this is typically called as stop-gradient. Alternatively,
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Figure 2.23: SwAV learning, using the encoder f , projector g, and the prototype matrix
P . h: projected representation; q: assignment code of projected representation to the
prototypes; (Xt,Xs): training input pair; h...: projected representation corresponding to
the training input; q...: assignment code corresponding to the training input.

exploring Simple Siamese representation learning (SimSiam) [CH20] relies on the same
setting as BYOL, but the target network is selected to be similar to the online network.

2.5.3.1 SwAV

In [CMM+20], the self-supervised learning method Swapping Assignments between Views
(SwAV) is presented. As many other self-supervised methods, SwAV relies only on pos-
itive examples, which are generated by augmentation. SwAV realizes the representation
learning through a swapped prototype assignment problem. This way, a network and a
codebook (prototypes) are learned, where the network is realizing the projection to the
representation space.

Let Xt and Xs be two positive input examples. Hence, those two examples can
be considered as somehow similar (e. g., different crops of the same image). First, each
input is fed through the network f leading to the latent representations zt = f(Xt) and
zs = f(Xs). For further steps, the latent representations are projected by the network g
and normalized as h = g(z)

∥g(z)∥2
. Then, for each projected representation h ∈ RNh , the so-

called assignment code q ∈ RK is determined. The code indicates the assignment strengths
of the projected representation to the K prototypes {p1, . . . ,pK}, with ∥q∥1 = 1. The
prototypes are collected in the prototype matrix P ∈ RK×Nh . The training in SwAV is
realized by predicting the code given the other projected representation, i. e., predicting
qs from ht and vice versa predicting qt from hs. In the following, the code calculation as
well as the swapped prediction learning are explained. In Figure 2.23, the overall method
is depicted.
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Swapped Prediction Learning Training the networks f and g as well as the pro-
totypes P is realized through the swapped assignment prediction. Given two positive
instances Xt and Xs, the aim is to predict the assignment code for the other instance.
Hence, predicting q̂t from hs and predicting q̂s from ht. The target assignment codes qt

and qs are determined by the Sinkhorn-Knopp algorithm, i. e., qt from ht and qs from hs

and are fixed throughout a swapped prediction learning step. The swapped prediction loss
is formulated as

LSwAV = l(ht, qs) + l(hs, qt) (2.107)

l(ht, qs) = −
∑

k

qs,k log




exp
(

1
τhT

t pk
)

∑
k′ ̸=k exp

(
1
τhT

t pk′
)


. (2.108)

The loss in Equation (2.107) becomes minimal, if the predicted assignment of one
instance matches the code of the other instance. The predicted assignment is realized
through the softmax in Equation (2.108). Assuming a one-hot code, the loss will force the
positive instances and the selected prototype to become similar while making the positive
instances dissimilar from all other prototypes. When compared to contrastive learning,
the matching prototype can be interpreted as the positive or contracting part, while the
remaining prototypes can be seen as the negatives or contrastive part. Given that the
prototypes form a compressed version of the training data, the contrastive part represents
the compressed dataset except the most similar prototype.

Code Calculation Given a batch of projected latent representations H ∈ RB×Nh , it
is determined to which prototype from P each of the latent representations should be
assigned. This leads to the corresponding assignment codes Q. The online calculation of
the codes, using the fixed P and H, is based on considering the assignment as entropic
regularized optimal transport problem [CMM+20]

max
Q



Tr

(
QTP TH

)
− ε

∑

ij

Qij(log(Qij) − 1)



 (2.109)

s.t Q ∈ RK×B
+

Q1B = 1
K

1K

QT1K = 1
B

1B.

The first term describes the optimal transport, while the second term of the problem is
the entropic regularizer. Hence, the assignment codes Q are optimized to maximize the
similarity between the projected representations H and the prototypes P . ε controls the
smoothness of the mapping. With the constraints, it is ensured that on average B

K repre-
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sentations are assigned to each prototype in a batch. Therefore, an optimal assignment
matrix Q assigns the representations to the most similar prototypes with soft codes, due
to the entropic regularization.

The problem (2.109) is solved by [Cut13]

Q = diag(u) exp
(

P TH

ε

)
diag(v). (2.110)

The vectors u ∈ RK and v ∈ RB and hence, the assignment Q of a batch of projected
representations is being determined by the iterative Sinkhorn-Knopp algorithm [Cut13].
However, for small batch sizes, additionally, previous batches are considered through a
queue, in order to increase the code accuracy.

As presented in [CMM+20], the two positive instances’ case can be extended to the
multi-positive instance case. For this, mutli-crop strategies are introduced. The loss for
the multi-positive instances case is defined as

LmSwAV =
KP∑

i=1

KP∑

j=1
1i ̸=jl(htj , qti), (2.111)

with KP the number of positive instances. It has to be noted that this loss is a slightly
modified version to [CMS+20], since there i is restricted to select from only two positive
instances. However, here the more general case is stated.

2.5.3.2 Barlow Twins

The self-supervised learning method Barlow Twins is presented in [ZJM+21]. The method
is named after the neuroscientist H. Barlow, who presented the redundancy-reduction
principle. The authors of [ZJM+21] emphasize, that their method applies redundancy-
reduction to realize the self-supervised learning. This way, the problem of mode collapse
is prevented. Other recent methods avoid the mode collapse by stop-gradient function
(SimSiam, BYOL), non-differentiable clustering (SwAV) or negative examples (SimCLR).
Barlow Twins achieves comparable results to other methods, while being less sensitive to
the batch size.

The setup used in Barlow Twins is very similar to other self-supervised learning ar-
chitectures. A pair of similar examples is processed by the same network to produce the
representations. Here, two similar examples are created by augmentation from the orig-
inal input. More details about typical augmentations can be found in Section 2.5.3.4.
Like other methods, Barlow Twins aims to make the representations of the two positive
examples as similar as possible. As depicted in Figure 2.24, given {Xt,Xs}B a batch of
B positive pairs, the respective representations {ht,hs}B are generated by h = g(f(X)),

7Inspired and adopted from [ZJM+21].
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Figure 2.24: Barlow Twins learning7. {Xt,Xs}B: training batch of B pairs; R({ht,hs}B):
batch-wise cross-correlation matrix for the projected representations.

with h ∈ RNh . The redundancy reduction is realized by the loss function

LBT =
∑

i

(1 − Rii)2 + λ
∑

i

∑

j ̸=i
R2
ij . (2.112)

R is the batch-wise cross-correlation matrix for {ht,hs}B, hence R ∈ RNh×Nh . Given
that ht and hs are batch-normalized in Barlow Twins, the cross-correlation calculation
simplifies to

Rij =

B∑
b=1

h
(b)
t,i h

(b)
s,j

√
B∑
b=1

(
h

(b)
t,i

)
2

√
B∑
b=1

(
h

(b)
s,j

)
2

. (2.113)

The objective underlying the Barlow Twins loss is to make the cross correlation matrix
as close possible to the identity matrix, this objective is also visualized in Figure 2.24.
The first part of the loss represents the invariance term, it is responsible for making
representatives of positive pairs as similar as possible. If that is realized for the complete
batch, the diagonal of the correlation matrix will be close to one. The second term is
realizing the redundancy reduction by enforcing the feature dimensions to decorrelate.
Therefore, the second part is aiming to make all off-diagonal elements in R close to zero.
The authors argue that the redundancy reduction term is responsible for mode collapse
prevention. The hyperparameter λ controls the trade-off between the first and second
term.

2.5.3.3 VICReg

In [BPL21] Variance-Invariance-Covariance Regularization (VICReg), a self-supervised
learning method is introduced. As already defined by the name, the method aims to solve
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Figure 2.25: VICReg learning. {Xt,Xs}B: training batch of B pairs; C({h...}B): batch-
wise covariance matrix for projected representations; L...: individual loss terms of VICReg.

the representation task by regularizing the invariance, variance, and covariance. Like the
methods discussed up to now, it is based on two positive examples generated through
augmentations. Even though in the scope of this work VICReg is only used and presented
in a typical twin architecture with identical branches, it is not restricted to that setting.

Like Barlow Twins, VICReg essentially introduces a new loss function for the self-
supervised training regime. The setup is very similar to other common frameworks using
pairs of positive examples. Again, {Xt,Xs}B is a batch of B positive pairs and the
representations {ht,hs}B are generated through h = g(f(X)), with h ∈ RNh . The
VICReg loss is split into three terms: the invariance term, the variance term, and the
covariance term. Up next, each term is briefly discussed.

The invariance term is ensuring a high similarity between the representations of a
pair. In VICReg, this is realized through the Euclidean distance. Hence, the loss aims to
make the distance between two positive representations as small as possible. This is also
depicted in Figure 2.25 by the contracting force between ht and hs. The invariance term
is defined as

Li({hs,ht}B) = 1
B

B∑

b=1
∥h(b)

s − h
(b)
t ∥2

2. (2.114)

The variance term aims to achieve high variances for each dimension of the represen-
tation across the batch. Hence, this term’s objective is to prevent the mode collapse. The
variance is determined for a batch of one instance independently, i. e., {hs}B or {ht}B.
The loss for the variance term is

Lv({h}B) = 1
Nh

Nh∑

i=1
max

(
0, γ −√

σhi + ϵ
)
, (2.115)
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with σhi , the empirical variance in dimension i for one batch and ϵ a small scalar to prevent
numerical instability. The loss forces the standard deviation to be at least γ. Therefore,
in the covariance matrix, the diagonal elements should be at least γ2, which is illustrated
in Figure 2.25.

The covariance term is inspired from Barlow Twins, as VICReg aims reduce the co-
variance between the dimensions for one batch and hence make it less redundant. The
covariance matrix is determined based only on a batch of one instance {h}B as

C({h}B) = 1
B − 1

B∑

b=1

(
h(b) − µh

)(
h(b) − µh

)
T, (2.116)

where µh is the mean representation vector within a batch. The covariance loss term is
determined as

Lc({h}B) = 1
Nh

Nh∑

i=1

∑

j ̸=i
C({h}B)2

ij . (2.117)

The objective is to minimize the off-diagonal elements of the covariance matrix, what is
visualized in Figure 2.25 as well.

The complete VICReg loss is defined as

LVICReg = αv
[
Lv({hs}B) + Lv({ht}B)

]
+ αiLi({hs,ht}B) + αc

[
Lc({hs}B) + Lc({ht}B)

]
,

(2.118)
with αi, αv, and αc being the hyperparameters controlling the balance between the three
terms. In summary, the objective of the VICReg loss is threefold:

1. make two positive representations as similar as possible (invariance),

2. maintain a high variance across each feature dimension and preventing mode collapse
(variance), and

3. reduce redundancy between the feature dimensions (covariance).

2.5.3.4 Augmentations

Methods like Barlow Twins, VICReg or SwAV make use of augmentations to generate
two somehow similar examples from one input sample. The summarized self-supervised
methods are all applied on image data. The augmentation functions, typically applied in
these computer vision methods, are summarized here.

Crop & Resize The image is cropped at a random position with random size. The
output is resized to the size of the input image. The size is typically sampled from 0.08 to
1.0 of the original size and the aspect ratio being sampled from 3/4 to 4/3 of the original
aspect ratio [CKNH20].
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Original Crop Flip Jitter Gray Blur Solarization

Figure 2.26: Typical computer vision augmentations.

Horizontal Flip The image is flipped horizontally.

Color Jitter The brightness, contrast, saturation, and hue of an image are randomly
jittered. For this, the following intervals are used for sampling the jitter strengths: bright-
ness [0.2, 1.8], contrast [0.2, 1.8], saturation [0.2, 1.8], and hue [−0.2,+0.2] [CKNH20].

Grayscale The image is converted to grayscale.

Gaussian Blur This augmentation method blurs the image by a Gaussian kernel. The
kernel size is typically selected to be 10% of the image size and the standard deviation is
sampled from [0.1, 2.0] [CKNH20].

Solarization Simulating the effect of extreme overexposure is realized by this augmen-
tation. For this all pixels above a selected threshold are inverted. Typically, this threshold
is selected to be 0.5 [GSA+20].

In many methods [ZJM+21, BPL21, GSA+20, CKNH20] random crop and resize is
always applied. The other augmentations are only applied with some probability. In
Figure 2.26 the effects of the various augmentations are shown. Expect for the Gaussian
blur, the values as stated above are used. For the Gaussian blur, the values are changed
to make the effect visible.

57





Chapter 3

Identifying Relevant Traffic
Scenarios

This chapter presents novel approaches to identify relevant traffic scenarios. State-of-the-
art approaches for the identification of relevant traffic scenarios are summarized as well.
Furthermore, a statistical motivation for the necessity of relevant traffic scenario identifi-
cation is provided. As already stated in Chapter 1, in this work representative, unknown,
and critical scenarios are considered to be relevant traffic scenarios. The overall framework
of this work is shown in Figure 3.1, where the representation learning component is not
illustrated since it is not used by the methods introduced in this chapter.

Validating an Autonomous Vehicle (AV) by proofing that it performs statically safer
than a human driver is infeasible through pure unconditioned test drives. It would require
the AV to drive for millions to billions of kilometers. One approach to tackle this problem
is the so-called scenario-based testing. The assumption is that testing only relevant traffic

UnknownRepresentative

Critical

Relevant

All Traffic Scenarios

Novelty
Detection

Sec. 3.3 & 3.4

Clustering
Sec. 3.5.2

Criticality
Detection
Sec. 3.5.1

Relevant
Scenario
Dataset

AV
Validation

Sec. 3.1

Figure 3.1: Methodological overview of this work and its embedding in the validation
process of AVs. Novel methods for the highlighted components are introduced in the
corresponding sections. Also, a statistical motivation for the validation of AV through
scenario-based testing is provided in Section 3.1

59



3. Identifying Relevant Traffic Scenarios

scenarios is sufficient to proof an AV’s safety. One prominent project relying on the
scenario-based testing assumption is PEGASUS [PEG]. The key question in scenario-
based testing is, how to identify such relevant traffic scenarios. A typical approach is
to define traffic scenarios from domain knowledge. Another approach is to select relevant
traffic scenarios from real-world data. Novel traffic scenarios, which are not covered by the
validation scenarios, can occur after the deployment of AVs. In order to improve the safety
of AVs, novel scenarios should be included into future validation processes, hence it should
be possible to detect if a traffic scenario is unknown. This is also required by the ISO
21448 Road vehicle – Safety of the intended functionality (SOTIF) [ISO21]. The deployed
AV shall be monitored to enable continuous validation. This can be partially realized by
detecting representative, unknown, and critical scenarios. Hence, this chapter is focused
on methods to detect representative, unknown, and critical scenarios, as they form a key
role for the validation and monitoring of deployed AVs. The approaches discussed and
presented in this chapter are used to find relevant traffic scenarios in real-world data.
The embedding of the presented approaches into the framework of this work is shown in
Figure 3.1.

The first section shows that it is infeasible to perform simple randomized driving for the
validation of AVs. The second part discusses state-of-the-art approaches to find relevant
traffic scenarios from real-world data. In the third part, a novel outlier method with the
application of finding novel traffic infrastructures [WFBU20] is introduced and discussed.
Furthermore, alternative data-driven approaches for detecting novel traffic scenarios are
discussed and evaluated in the fourth section, using the example of road infrastructure
images. In the fifth part of this chapter, methods relying only on domain knowledge to
detect relevant traffic scenarios are introduced, where traffic scenarios are either detected
due to their criticality or due to their category.

The experimental results show that, none of the presented approaches is capable of de-
livering desirable results. One option would be to change the applied clustering or novelty
detection methods. The other option is to find representations of traffic scenarios that
are better suited for clustering and novelty detection methods. The latter is what the
methods presented in scope of this work are aiming to solve. As will be discussed, also the
domain knowledge-based approaches are not sufficient to solve the issue of detecting rel-
evant traffic scenarios. Combining data-driven approaches with domain knowledge based
methods can be a promising solution to the mentioned shortcomings. Such a combination
is demonstrated in Chapter 4, and it is shown that the use of domain knowledge to guide
representation learning is beneficial for the tasks of clustering and novelty detection.
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3.1 Statistical Motivation

The development of appropriate testing and validation strategies for AVs is necessary to
examine their reliability in a feasible manner. In this section, naive forward validation
approaches, as presented in [KP16], are analyzed and explained. The underlying ques-
tion: Is it possible to demonstrate the reliability of an AV, by just performing a certain
amount of unconditioned tests drives? For this purpose, different statistical methods can
be used. In the following, the statistical methods used in [KP16] are explained, derived,
and applied to German accident statistics. The required statistical theory is summarized
in Appendix A.2.

3.1.1 Statistical Methods

This section summarizes the statistical methods, which can be used to model the testing
of AVs through driving.

3.1.1.1 Success Run Method

In terms of reliability theory, the success run method is used to determine the number
of successful experiments which is required to prove a certain reliability with a certain
confidence. In the following, two different derivations of the success run are shown.

Binomial Distribution Derivation The investigated experiment yields x ∈ {0, 1},
hence it can be modeled by a Bernoulli distribution. Here, 0=̂ success and 1=̂ no success
holds. Given the reliability R and the failure rate F = 1 − R, the binomial distribution
over the number of failures m can be written as [OK12]

p(m|n,R) =
(
n

m

)
Fm(1 − F )n−m. (3.1)

The Cumulative Distribution Function (CDF) of this Probability Mass Function (PMF)
using F = 1 −R leads to

P(m ≤ k) = 1 −
k∑

i=0

(
n

i

)
Rn−i(1 −R)i. (3.2)

The probability of observing no failure (k = 0) in n trials with a reliability of R is

P(m ≤ 0) = C = 1 −Rn, (3.3)

where C is the confidence level.
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The number of required trials to prove a certain reliability R with a confidence of C is

n = log(1 − C)
log(R) . (3.4)

Therefore, n successful trials are required to prove that the test object (AV in the scope of
this work) has a reliability of R with a confidence of C. As can be seen, a reliability of 1,
can not be proven, since it would require ∞ successful trials, Similarly, also a confidence
of 1 is impossible to prove.

Bayes’ Theorem Derivation Contrary to the previous derivation, this approach is
based on Bayes’ theorem. First, similar to the former, the process is considered to be
binomial distributed, but here indeed the success is modeled as such [KBG+97]. The prior
probability is modeled by a beta distribution. Therefore, the probability of x given n trials
is

p(x|n) = p(n|x)p(x)∫
p(n|x)p(x)dx, (3.5)

=
(n
m

)
xm(1 − x)n−m Γ (a+b)

Γ (a)Γ (b)x
a−1(1 − x)b−1

1∫
0

(n
m

)
xm(1 − x)n−m Γ (a+b)

Γ (a)Γ (b)x
a−1(1 − x)b−1dx

. (3.6)

If the prior probability distribution is considered as a uniform distribution (no previous
knowledge), i. e., a = b = 1 and m = n (all trials succeeding), the a-posteriori probability
distribution Equation (3.6) simplifies to x|n ∼ Beta(n+ 1, 1), since

p(x|n) = xn

1
n+1

(3.7)

= (n+ 1)xn. (3.8)

The corresponding CDF using the reliability R as limit leads to

P
(
x|n ≤ R

)
= (n+ 1)

R∫

0

xndx (3.9)

= Rn+1, (3.10)

where 0 is the lower bound, because the beta distribution is defined for x ∈ [0, 1] in this
case. The probability (confidence) of x|n ≥ R is

P
(
x|n ≥ R

)
= C = 1 −Rn+1 (3.11)

and hence the required number of trials n to prove that the reliability is at least R with
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a confidence of C is
n = log(1 − C)

log(R) − 1. (3.12)

According to the derivation based on Bayes’ theorem one trial less is required, compared
to the derivation based on the binomial distribution. However, the results are very similar.

3.1.1.2 Event Amount Precision Estimate Method

This section describes how the precision of the event rate can be estimated. The event
rate is defined as y = λ

∆I , where ∆I is the fixed Poisson interval underlying the Poisson
distributed random variable m ∼ Poi(λ) and λ the number of events occurring in the
interval. As shown in Section A.2.2, the Poisson distribution can be approximated with a
normal distribution if more than 30 events occur in a Poisson interval. Hence, with λ ≥ 30
the approximated confidence interval of λ follows

[
λ− z1−α/2

√
λ, λ+ z1−α/2

√
λ
]
, (3.13)

where z1−α/2 is the 1 − α/2-th quanti of the standard normal distribution (c. f. Sec-
tion A.2.2) corresponding to the confidence interval. Then, the precision relative to the
amount of events is given by

δ =
z1−α/2

√
λ

λ
=
z1−α/2√

λ
. (3.14)

Therefore, if one wants to prove, that the precision of the amount of successes is at
least δ,

λ =
(
z1−α/2
δ

)
2 (3.15)

events must occur within the Poisson interval. This way, it is possible to determine the
minimum required size of the Poisson interval to prove this precision with

∆I =

(
z1−α/2
δ

)
2

y
. (3.16)

3.1.1.3 Hypothesis Test

Statistical testing is used to verify assumptions about the behavior or quantity of a random
variable. The following explanations are based on [FHK+16].

A statistical test problem is modeled by two hypotheses, where one of the two has to
be chosen. Therefore, the given assumption is formulated as the alternative hypothesis
H1, whereas the null hypothesis H0 represents the opposite of the assumption. Then, the
decision is carried out by testing the null hypothesis H0, which yields the possible result
that
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• H0 is accepted or

• H0 is rejected.

Two possible mistakes can occur: rejecting the null hypothesis when the null hypothesis
is true (Type 1 error or α-error) or accepting the null hypothesis when the alternative
hypothesis is true (Type 2 error or β-error). This relation is illustrated in Table 3.1.

Table 3.1: Error types of a hypothesis test.

H0 true H1 true

H0 accepted - Type 2 error /
β-error

H0 rejected Type 1 error /
α-error

-

The probability of the Type 1 error is α, it is also called the significance level of the
test. β is the probability of the Type 2 error. Therefore, the probability of correctly
deciding for the alternative hypothesis H1 is

γ = 1 − β, (3.17)

referred to as power of the test.
For demonstrating a difference from a Poisson distributed variable from a certain value

λ0 with a statistical significance, the minimum required size of the Poisson interval has to
be determined. Let λ ≥ 30, then the significance level

P(λ ≥ λ0) ≤ α (3.18)

is fulfilled if
λ+ z1−α

√
λ < λ0. (3.19)

Since the required Poisson interval is of interest, it is reformulated to

y∆I + z1−α
√
y∆I < y0∆I, (3.20)

which yields to

∆I = y

(
z1−α
y0 − y

)2
. (3.21)

Furthermore, the power of the test

P(λ ≤ λ0) ≥ 1 − β, (3.22)
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is fulfilled if
λ+ z1−α

√
λ < λ0 − z1−β

√
λ (3.23)

holds, what can be solved to

∆I = y

(
z1−α + z1−β
y0 − y

)2
. (3.24)

3.1.2 Application: How many Kilometers?

The previously explained methods can be used to determine the required amount of kilo-
meters that a AV needs to be driven, in order to demonstrate certain statistical charac-
teristics. Like in [KP16], also here the human driver failure rate is used as a reference,
whereby the German numbers are considered.

According to the publication Verkehr – Verkehrsunfälle 2017 presented by the Federal
Statistical Office of Germany [Bun18], the following rates are predicted for the year 2017.
Per 1 billion vehicle kilometers

• Ftotal = 3 371 accidents,

• Fpers = 386 accidents with injuries, and

• Ffatal = 4.1 fatal accidents happened in average.

The rates are determined based on the respective total amount of accidents and the total
amount of kilometers driven by German vehicles, including the distances driven in foreign
countries. The total amount of kilometers is estimated by the Federal Highway Research
Institute of Germany. The failure rates, as used in the section before, are given by F... =
F.../109.

The questions from [KP16] are answered in this work, given the German traffic statis-
tics. Therefore, the questions are formulated according to [KP16] as:

• How many kilometers would AVs have to be driven without failure to demonstrate
that their failure rate is below some benchmark?

• How many kilometers would AVs have to be driven to demonstrate their failure rate
to a particular degree of precision?

• How many kilometers would AVs have to be driven to demonstrate that their failure
rate is statistical significantly lower than the failure rate of the average human driver?

In the next sections, these questions are answered based on the statistical methods
shown in the former section. Furthermore, in the last section, a necessary correction term
for the usage of the hypothesis test is provided.
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3.1.2.1 Success Run Method

In order to answer the first question (How many kilometers would AVs have to be driven
without failure to demonstrate that their failure rate is below some benchmark?), the
success run method (Section 3.1.1.1) can be used. Therefore, each kilometer is considered
as an independent Bernoulli trial. Moreover, for the whole distance, no accident is allowed
to happen.

The results, given the failure rates F..., are shown in Figure 3.2. For example, if one
wants to demonstrate a failure rate below Ffatal with a confidence of 0.95, approximately
730 million kilometers need to be driven.
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Figure 3.2: Kilometers need to be driven
according to success run method.
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Figure 3.3: Kilometers need to be driven
to demonstrate certain precision.

3.1.2.2 Event Amount Precision

How many kilometers would AVs have to be driven to demonstrate their failure rate to
a particular degree of precision? The second question can be answered using the event
amount precision method (see Section 3.1.1.2). Accordingly, the whole driving is modeled
as Poisson distributed, where the minimum necessary interval size needs to be determined,
given an objective degree of precision (e. g., the estimated failure rate should be within
5 %, hence δ = 0.05 ). Moreover, it is assumed that more than 30 events occur within the
interval (3.1.1.2).

The minimum size of the Poisson interval and hence the minimum number of kilometers
need to be driven for different failure rates are depicted in Figure 3.3. In addition to the
different failure rates, also various degrees of precision are shown. For all values, a 0.95
confidence interval is used.

3.1.2.3 Hypothesis Test

The last question is: How many kilometers would AVs have to be driven to demonstrate
that their failure rate is statistically significantly lower than the human driver failure
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Figure 3.4: Kilometers need to be driven
to demonstrate statistically significantly
lower failure rates, with a significance
level of α = 0.05.
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Figure 3.5: Kilometers need to be driven
to demonstrate statistically significantly
lower failure rates, with a significance
level of α = 0.05 and a power of γ = 0.8.

rate? The answer is given by performing a statistical test. First, the hypothesis needs to
be constructed. According to [KP16] it is defined as

• H0: λ ≥ λ0 and

• H1: λ < λ0.

Like before, the Poisson distribution is approximated by a normal distribution and hence
λ ≥ 30 has to be fulfilled.

By evaluating the numbers at a significance level of α = 0.05, the results can be seen
in Figure 3.4. The x-axis shows the improvement of the AV over the human failure rates.
Demonstrating that the AV is better than a human driver with statistical significance gets
easier the better the AV performs.

If also a power of the test γ = 0.8 is used, the resulting curves are shifted upwards
compared to the previous (Figure 3.5). Accordingly, more kilometers need to be driven.

3.1.2.4 Hypothesis Test Corrected

The equation used to construct the plot of the previous section is based on the assumption
that λ ≥ 30. Therefore, one way to fulfill this condition is to modify the equation based
on the significance as

∆I = y

(
z1−α
y0 − y

)2
f(y0, y) (3.25)

with

f(y0, y) =





1 if y0−y
y0

< z1−α√
30+z1−α

30(
y
z1−α
y0−y

)2 if y0−y
y0

≥ z1−α√
30+z1−α

. (3.26)
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Figure 3.6: Kilometers need to be driven
to demonstrate statistically significantly
lower failure rates, with a significance
level of α = 0.05 – Corrected.
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Figure 3.7: Kilometers need to be driven
to demonstrate statistically significantly
lower failure rates, with a significance
level of α = 0.05 and a power of γ = 0.8
– Corrected.

The equation based on the significance level and the power also needs to be modified,
where

∆I = y

(
z1−α + z1−β
y0 − y

)2
f(y0, y) (3.27)

with

f(y0, y) =





1 if y0−y
y0

<
z1−α+z1−β√

30+z1−α+z1−β
30(

y
z1−α+z1−β

y0−y

)2 if y0−y
y0

≥ z1−α+z1−β√
30+z1−α+z1−β

(3.28)

holds.
The resulting curves are depicted in Figure 3.6 and 3.7 as solid lines. The amount

of required kilometers drops until to the point where the event rate per Poisson interval
reaches 30. From this point on, the amount of required kilometers increases. This is due
to the fact, that if the failure rate decreases, the size of the Poisson interval needs to be
increased in order to achieve at least 30 events.

3.1.3 Conclusion

In this section, statistical methods are explained which can be used to determine the
required amount of kilometers an AV needs to be driven in order to demonstrate certain
statistical reliability. The methods are applied to German accident statistics.

As a result of this section, and also of [KP16], it becomes clear, that proving reliability
by just driving the necessary amount of kilometers is infeasible. As stated in [KP16],
even under aggressive testing assumptions, existing fleets would take tens and sometimes
hundreds of years to drive the required kilometers.

Therefore, new concepts of validation need to be developed. One possible approach is
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the so-called scenario-based testing [PEG, JWKW18]. Within this approach, only relevant
scenarios are used for the validation of AVs. Nevertheless, also other approaches are known
such as formal verification, where Responsibility Sensitive Safety RSS [SSS17] is one of
the most prominent methods building on that approach. In this work, the focus lies on
scenario-based testing.

3.2 State of the Art

The validation of AVs through scenario-based testing is considered to be one of the feasible
approaches to prove their safety [JWKW18]. In the survey [RPL+20], various works uti-
lizing the scenario-based validation approach are summarized. The survey also lists works
trying to identify and define relevant scenarios. In the remainder of this section, various
related work dealing with the identification of relevant traffic scenarios are summarized.

In this work, the following definitions are used. The EGO vehicle is the vehicle under
test, while the OBJ vehicle is a vehicle in the surrounding of the EGO vehicle.

Traffic Scenario Clustering with an Unsupervised Random Forest In [KWB18]
and the successor work [KWM+19], a data-adaptive similarity measure is introduced. An
unsupervised random forest is grown by separating noise from real data. Then the simi-
larity between data points is measured by the normal proximity [KWB18] or by the path
proximity as introduced in [KWM+19]. With HC the proximity matrix is reordered, then
visualized and manually analyzed to identify categories of scenarios. This overall pro-
cedure is applied to traffic scenarios in both works. In [KWB18] the traffic scenario is
described through various features like velocity at different timestamps, and brake indi-
cator of the EGO vehicle and a OBJ vehicle. Also, the relative angle between the EGO
and the OBJ is used, as well as some infrastructure information like the approximated
radius of the road segment, the speed limit, and the number of lanes. The feature list in
[KWM+19] is more comprehensive. For example, the distance information from the EGO
vehicle to multiple surrounding vehicles, dynamic information of the EGO vehicle, and
many other more high-level features are used.

Unknown Traffic Scenario Detection with an Autoencoder Detecting unknown
scenarios through novelty detection is the aim of [LBR+18]. A reconstruction-based ap-
proach is pursued for outlier detection, hence an autoencoder is trained on known data. In
the test phase, if the reconstruction error is higher than a specified threshold, the scenario
is assumed to be unknown. To add unknown scenarios to the training data an iterative
procedure is suggested and the autoencoder is retrained with the new training data. This
way, the training data is automatically extended. The features used in the application are
the presence or absence of a car in front of the EGO as well as the curvature, slope, speed
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limit, and urbanity of the road. Each feature is collected over the span of a scenario.

Traffic Scenario Clustering with K-medoids and Dynamic Length Scenario
Extraction Finding scenario clusters is the objective of [LGO+19]. An approach for
extracting dynamic length scenarios is presented. Based on scenario dividing signals, the
dynamic length scenario can be automatically generated from continuous recordings. The
used dividing signals are the street type, the speed limit, the environment type, and the
curviness. Whenever there is a strong change in one of the dividing signals, the scenario is
split. For each dynamic length scenario a describing feature vector is generated including:
the dividing signals plus the length of the segment, characteristic of the slope, average
velocity, number of traffic lights, and number of braking maneuvers. The describing feature
vectors are then used for clustering using K-medoids [KR87].

Traffic Scenario Clustering with a Novel Scenario Similarity Measure A novel
similarity measure for traffic scenarios is introduced in [KWG+20]. For this purpose, the
similarity between two scenes is determined first. A scene represents a slice of a scenario
at a specific timestamp. The eight-car neighborhood around the EGO vehicle is used for
this. Per possible neighbor, it is determined if there is a vehicle in both scenes and what
is the difference in normalized distance between the two vehicles [0, 1]. If one scene has
an object where the other does not, this cell is penalized with 1.5. Therefore, each cell
contains a dissimilarity value, summing up the cells leads to the scene distance [0, 12]. The
scenario distance is determined by averaging the scene distances. This distance is then
used in HC. Moreover, maneuver detection, spatial and temporal filtering is introduced to
be applied before the similarity calculation.

Traffic Scenario Clustering with DTW and K-means Clustering pairs of trajecto-
ries, also called encounter scenarios, is the objective of [WRZ+20]. The overall procedure
can be summarized as follows: first, the driving encounters are transformed to be unified
length. Second, the unified length trajectories are processed with representation learning/
feature extraction in order to achieve the driving encounter representations, which are
then used for clustering in the third and final step. The unification is realized through
re-sampling using interpolation. For the representation learning/ feature extraction vari-
ous approaches have been examined: LSTM-autoencoder, convolutional autoencoder, Dy-
namic Time Warping (DTW) [SC78, M0̈7] (using the cost matrix as feature per driving
encounter), and normalized Euclidean distance (distance for each trajectory element).
The clustering is realized with K-means on the extracted features. In [WRZ+20], the best
feature extraction strategy is DTW.

Traffic Scenario Clustering with DTW, PCA and K-means The objective in
[HGSP20] is to use as little “mental model” as possible to cluster traffic scenarios. For this
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purpose, the time series data which describes the traffic scenario is first z-normalized and
then further processed. The DTW distance between pairs of time series data is calculated.
This leads to a feature vector for each traffic scenario which expresses the difference to
all other scenarios. Those feature vectors are feature-wise normalized and then further
processed using PCA. The K-means clustering is performed in the space reduced by PCA.

Traffic Scenario Clustering with HC in the Latent Space of Deep Autoencoders
In [HBG20], two different deep learning architectures are presented which are used to
reconstruct the input trajectories through a latent space. In that latent space, HC analysis
is performed. Both architectures follow the autoencoding regime. The first architecture is
realized through a convolutional autoencoder. The input trajectories are rasterized into
a sequence of grids. The second architecture uses a so-called deep set network, which
transform all positions of all objects per timestamp into a hidden representation. That
hidden representation is processed sequentially with a Recurrent Neural Network (RNN),
yielding the latent representation after processing all timestamps. Hence, the encoder is
composed of the deep set network and a RNN. Given this latent representation, the input
is reconstructed through a RNN and a deep set prediction network.

Traffic Scenario Clustering with DBSCAN using a PCA or t-SNE projected
Latent Space of a LSTM-based Autoencoder Another approach utilizing deep
learning and the autoencoding regime is presented in [DARC20], where LSTMs are used
to encode a trajectory and reconstruct it from the latent representation. The latent rep-
resentations are further projected with PCA or t-SNE before clustering with DBSCAN
[EKS+96]. The reconstruction error is used to estimate the novelty of a trajectory. How-
ever, the focus of [DARC20] is the generation of scenarios, which is realized through
recurrent conditional GANs.

Traffic Scenario Classification and Clustering with K-means in the Latent
Space of an Iteratively Learned Deep Neural Network A different problem set-
ting is presented in [BWBD21], where some known classes and also unknown classes are
assumed. In a multi-step training process, a deep neural network is trained, such that it
finds representations suited for classification and clustering of the unknown classes. The
steps include self-supervised pre-training, classification, and mixed training (clustering
and classification). For the clustering training, a novel representation based on the ran-
dom forest is introduced, the so-called Random Forest Activation Pattern (RFAP). The
Hamming similarity between two RFAPs of the latent representation of two data points
is used as objective for the clustering loss. Hence, the deep network is forced to mimic
the similarity constructed by the Hamming similarity and the RFAPs. After the training,
the latent representations are clustered with K-means. The training input consists of a
sequence of images, representing the infrastructure and the objects as well.
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Traffic Scenario Clustering with K-means in the Latent Space of an Architec-
ture consisting of an Autoencoder and a Recurrent Neural Network Also in
[ZFYZ21], an image sequence which contains the infrastructure and the objects at each
timestamp is used as input. Each frame is fed through an autoencoder which is trained
using the reconstruction loss and the triplet loss. For the triplet loss, temporally closer
frames shall be closer in the latent space. The latent representations of the image sequence
are transformed into a sequence latent representation, which is then used for clustering.
This transformation is realized by a RNN architecture, which aims to reconstruct frames
and predict future frames. The sequence representations of the scenarios are clustered
using K-means.

Traffic Scenario Clustering with Gaussian Mixture Model based on DTW, t-
SNE, min-max Distance and Multidimensional Scaling Instead of using deep
learning, in [HRC21] a tool chain of dimensionality reduction techniques and similarity
measures is applied for clustering trajectories. First the dissimilarity between trajectories
is determined with the DTW distance. The dissimilarity matrix is embedded using t-SNE.
In the embedding space, the distance between the embedded trajectories is determined us-
ing the min-max distance, which takes all possible paths from one point to the other and
returns the smallest of all largest gaps among all different paths. After embedding the
distance matrix from the min-max dissimilarity with multidimensional scaling, the result-
ing embeddings are clustered using Gaussian mixture model. Additionally, in [HRC21],
the former described clustering procedure is used to validate trajectories generated with
a GAN.

Traffic Scenario Clustering with HC based on the Chi-squared Distance Be-
tween Trajectory Histogram Representations In [BSS21], trajectories are clustered
by HC with Chi-squared distance. Each trajectory is transformed into a histogram repre-
sentation. Each point of a trajectory is encoded as an area group label. The area group
labels are defined by a Gaussian mixture model, which is fitted on the complete dataset.
Given the trajectory points encoded as area labels, a trajectory can be represented as his-
togram over the assigned area labels. The trajectories are then clustered using HC with
Chi-squared distance between the histograms. The cluster centers are generated through
averaging the histograms within a cluster.

Traffic Scenario Clustering based on DTW for Multiple Objects Clustering traf-
fic scenarios by the EGO information and other OBJs’ information is realized in [RRB+21].
To determine if two scenarios are similar, the following procedure is used. First: Do the
scenarios contain the same object types? If yes, then second: DTW distance between
EGO trajectories below a certain threshold? If yes, then third: DTW distance between
any trajectories from the same object type are below a certain threshold? If yes, scenarios
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are similar. If any of the previous statements is not true, the scenarios are considered to
be not similar.

This way, an iterative clustering can be realized.

Unknown Traffic Scenario Detection with Deep Learning Approaches Detect-
ing anomalous driving scenarios is the objective in [WSK+22]. A benchmark dataset with
abnormal driving scenarios was generated manually. Also, some baseline anomaly detec-
tion methods are proposed. Either a single trajectory, multiple trajectories or multiple
trajectories paired with the infrastructure information is used as input. They propose four
different model architectures: (i) linear, (ii) deep, (iii) two-stage, and (iv) end-to-end. The
linear and the deep models follow the typical autoencoder regime for outlier detection. The
two-stage models are trained as autoencoders, where the outlier detection is realized with
OCSVM in the latent space. The end-to-end model combines the autoencoder training
with some OCSVM like loss for the latent space, which forces all data points to be close
to some center. Here the outlier detection is realized through the distance in the latent
space.

In summary, many methods have been presented recently to address the problem of
clustering traffic scenarios and detecting unknown scenarios. Typical strategies to enable
the clustering or novelty detection is to either transform the scenarios into valuable rep-
resentations or to use specific similarity measures. Most of the approaches explicitly or
implicitly make use of certain domain knowledge:

1. Design of features with domain knowledge [KWB18, KWM+19].

2. Design of features and scenario dividing process based on domain knowledge
[LGO+19].

3. Domain knowledge-based similarity measure of traffic scenarios [KWG+20].

4. Measuring distance of time series signals with DTW [WRZ+20, HGSP20, HRC21,
RRB+21]. Where using the DTW implicitly defines what is interpreted as similar.

5. Using known classes to guide representation learning [BWBD21].

6. Domain knowledge: temporally closer frames are more similar [ZFYZ21].

7. Domain knowledge: trajectory points can be abstracted through spatial groups to
form histograms [ZFYZ21].

Using domain knowledge can aid the clustering and novelty detection to perform as ex-
pected and hence to follow certain similarity assumptions. On the other hand, one might
argue that domain knowledge might bias the method [HGSP20]. However, as can be seen
from the previous list, relying on domain knowledge is a trend in recent approaches. In
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order to prevent a strong bias, the design of the used features and the application of the
domain knowledge itself has to be done carefully.

Even though lots of recent work utilize domain knowledge, the representation learning
methods only use domain knowledge a little or not at all. The representation learning
methods present in [WRZ+20] rely only on the autoencoder regime, which is not based on
domain knowledge for the training except for the architecture and input selection. The
autoencoder concept is also applied in [HBG20, DARC20], only for the input representation
selection and network selection, domain knowledge is used. As already stated, known
classes in training procedure can be seen as utilizing domain knowledge in [BWBD21].
Another autoencoder like setting can be found in [HRC21]. It is extended with the domain
knowledge that frames which are close to each other in time should also have more similar
representations. The autoencoding regime is a common approach in recent works, since
it enables the network to extract meaningful and expressive features. However, more
explicitly guiding representation learning methods with domain knowledge has not been
investigated in the area of traffic scenario clustering and novelty detection.

Moreover, recent work has focused on trajectories and dynamic information. Static
information has been used only rarely. Only the works [BWBD21, ZFYZ21] used compre-
hensive static information, since a rasterized version of the infrastructure is used. Hence,
investigating the benefit of infrastructure information for clustering and novelty detection
of traffic scenarios is still not widely considered. Since the infrastructure is a crucial part
of a traffic scenario, this should be analyzed further.

3.3 Entropy-Based Novelty Detection of Road Infrastruc-
ture Images

Detecting novel traffic scenarios is a key factor for scenario-based testing, which is crucial
for the validation of AVs. Identifying novel scenarios can be interpreted as an outlier
detection task, where an observed scenario is tested with respect to its novelty. In this
section a nearest neighbor graph-based outlier detection method is introduced, therefore
it is an alternative approach to the methods summarized in the previous section. A traffic
scenario consists of several components. Besides the dynamic objects, the infrastructure
forms an important part. In this section, the outlier detection method is applied to in-
frastructure images to detect novel infrastructures. The methods presented in this section
have been published in [WFBU20], which is part of this dissertation.

The novel outlier score is based on a directed nearest neighbor graph. Graphs allow one
to use the data points itself to determine outliers. Such type of graphs are constructed
also in dimensionality reduction techniques such as t-SNE (Section 2.2.2), Barnes-Hut-
SNE (Section 2.2.2), LargeVis [TLZM16], and UMAP (Section 2.2.3). In this section, an
entropy-based outlier score is presented, which can be embedded into the before men-
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tioned directed graph-based dimensionality reduction techniques. The novel outlier score
is called Local Entropy Factor (LEF). The score LEF is based on the definitions of close-
ness or distance as used in the dimensionality reduction techniques. Hence, the score can
be computed directly from the graph constructed during dimensionality reduction. There-
fore, no additional graph or model has to be constructed, if a dimensionality reduction is
performed. The method presented in this section can also be used without dimensionality
reduction, the graph is constructed independently. Further, it is shown how an outlier
score presented in another work based on t-SNE [JHPvdH12, SG17] is embedded into
UMAP.

The contributions of this research on nearest neighbor-based outlier detection for traffic
scenarios are as follows:

1. Introduction of the novel unsupervised outlier score LEF based on weighted nor-
malized entropy, which can be applied within graph-based dimensionality reduction
techniques.

2. Embedding of a previously defined outlier score into UMAP.

3. Comparing the proposed scores with various state-of-the-art neighborhood-based
outlier scores on different benchmark datasets.

4. Applying the scores to a road infrastructure images dataset to validate its capabilities
in identifying new road infrastructures.

5. Providing a publicly available implementation of the LEF in combination with
UMAP and the developed OpenDRIVE [D+15] parsing and plotting tool for MAT-
LAB1.

Moreover, from the experiments it can be seen that the proposed method is more robust
with respect to the chosen number of neighbors, compared to the state-of-the-art meth-
ods. This is an important characteristic, since in unsupervised problems, the appropriate
number of neighbors is not known.

The unsupervised outlier detection is based on an unlabeled dataset D = {x1, . . . ,xM}
containing M data points xm ∈ RN . Here, a dataset is represented as a weighted directed
graph G, where each vertex vm represents a data point xm. An edge ej|i from data point
xi to xj is weighted with Pj|i.

3.3.1 Local Entropy Factor

The novel entropy-based outlier score LEF is presented in this section. It can be used
in any graph-based dimensionality reduction technique, or it can be used standalone too.
This score is designed to contain information about inlierness in addition to identifying

1Implementations can be found in https://github.com/JWTHI.
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local outliers. Hence, the definition of inliers is required. Here the membership strength
of an inlier is defined as maximal if it is the nearest neighbor to all its k neighbors and
minimal if it is not in the neighborhood of any of its neighbors. Additionally, the score
shall be higher when the incoming similarities are equally distributed. Moreover, the
value has to be weighted by the sum of incoming similarities, such that a point being
nearest neighbor to all its neighbors gets a higher score than a point being an equally
weak neighbor to all its neighbors. This definition favors data points which have the same
similarities to all their neighbors over varying similarities. The entropy-based score is
meant to detect outlying points within their neighborhood. Hence, big outlying groups
will not be detected as outliers, since they form a neighborhood.

The Shannon entropy fulfills the equally distributed requirement of the above defini-
tion. Therefore, a weighted normalized entropy is utilized in this work as the measure of
inlier strength. Identifying local outliers is achieved by selecting the data points with a
low inlier value. Let the relative incoming similarities be defined as

P̂i|j =
P ′
i|j∑

j∈Ki P
′
i|j
, (3.29)

where P ′
i|j is the incoming similarity, which is defined in the following paragraph. The

LEF is determined as a weighted normalized entropy:

A↓
LEF(xi) = −

∑
j∈Ki P

′
i|j

K

∑

j∈Ki
P̂i|j log2

(
P̂i|j

)
. (3.30)

By using the relative incoming similarities, it is ensured that they sum up to 1 and hence
the normalized entropy is bound to 1. The normalized entropy of the relative incoming
similarities would lead to 1 for data points with equal incoming similarities, independent
of the actual value of the similarities. Therefore, the normalized entropy is weighted with
the sum of incoming similarities divided by the maximum possible value K.

The LEF can be used in multiple graph-based dimensionality reduction methods. Here,
the focus is on UMAP and t-SNE. In Table 3.2 the four different variants used in this work
are listed, specifically: UMAP graph-based non-sparse LEF (ULEF), UMAP graph-based
Sparse LEF (USLEF), t-SNE graph-based non-sparse LEF (tLEF), and t-SNE graph-based
Sparse LEF (tSLEF). Extended neighborhood means, that the incoming similarity of a
missing incoming edge is estimated by using the similarity as defined for the respective
neighbor xj , but ignoring the fact that the point under investigation xi is not in the
neighborhood of xj . In A↓

USLEF (UMAP) and A↓
tSLEF (t-SNE) only existing edges are

considered, hence they are called Sparse LEF. The non-sparse versions are A↓
ULEF (UMAP)

and A↓
tLEF (t-SNE), which use extended neighborhoods as described before. When using

the similarities from UMAP, they have to be normalized by log2(K), such that the outgoing
similarities sum to 1, see Equation (2.40). The similarities of t-SNE are already normalized.
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Table 3.2: LEF variants and the corresponding substitutions.

Type P ′
i|j in Eq. (3.29) & Eq. (3.30) extended neighborhoods

A↓
ULEF Eq. (2.39)/ log2(K) yes

A↓
USLEF Eq. (2.39)/ log2(K) no

A↓
tLEF Eq. (2.33) yes

A↓
tSLEF Eq. (2.33) no

Figure 3.8: ULEF application to toy datasets. Background color indicating the value of
A↓

ULEF at the specific positions.

To visualize the ULEF scoring, it is applied to some two-dimensional toy datasets. In
Figure 3.8 the red dots are considered to be the inlier dataset, and one single point is
interpreted as test sample. The test points are sampled from a dense grid spanning the
complete plotted area. Therefore, the background color indicates the A↓

ULEF value for the
test sample at that specific point. As can be seen from the plots, the scoring is density
adaptive. This can best be seen from the second plot where three groups of inlier data
points (red dots) with three different densities are illustrated. A new data point at the
border of the group with the low density (middle), would likely be recognized as inlier.
Whereas, when introducing a new point at the border of the right most group, it would
most likely be interpreted as an outlier.

3.3.2 KNNSOS with UMAP

In this section, the UMAP graph-based KNNSOS (USOS) is introduced, which is the
outlier score KNNSOS [SG17] implemented into UMAP. The KNNSOS score [SG17] was
defined within Barnes-Hut-SNE. The initial score SOS [JHPvdH12] is defined using t-
SNE conditional probabilities. An outlier is defined as a data point which is frequently
not likely to be linked. In SOS, all the data points are used to determine the score, where
in KNNSOS only the reverse nearest neighbor set of a point is used. Hence, only the
incoming edges are considered. Therefore, the outlier score of xi is defined as

A↑
KNNSOS(xi) =

∏

j ̸=i
1 − Pi|j , (3.31)
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with Pj|i calculated as in Equation (2.33). The score leads to high values for data points
being weakly linked to other data points. If for the data point xi no link exists at all, the
score will be 1. In other words, the data point xi is not a member of any neighborhood.

The application of the KNNSOS for UMAP as such is straight forward. But, the
similarities generated by UMAP need to be adjusted. This is due to the local connectivity
requirement of UMAP, which results in the nearest neighbor having a similarity of 1.
Each data point which is the nearest neighbor of any other point would have an outlier
score of 0, no matter what the other similarities are. Therefore, the weights of the graph
are adjusted by using P ′

j|i = Pj|i/ log2(K) with Pj|i the UMAP similarities, calculated
as defined in Equation (2.39). Provided with the adjusted weights, the application of
KNNSOS in UMAP is given by the outlier score USOS, defined as

A↑
USOS(xi) =

∏

j ̸=i
1 − P ′

i|j . (3.32)

Since the weights are adjusted, the interpretation of the outlier score changes. The smallest
possible value which can be achieved is AUSOS(xi) = (1 − 1/ log2(K))|Ri|, with Ri being
the reverse nearest neighbor set. Hence, the smallest possible number varies for each
data point. This may need to be considered in data analysis steps. In this work, the score
AUSOS is not adjusted, since if more incoming edges exist, the data point can be considered
less as an outlier than others, which consist of less incoming edges. This characteristic
is used in ODIN (Section 2.3) as well. If UMAP is applied as dimensionality reduction
technique, the USOS score can be determined with little effort, since the graph is already
constructed.

3.3.3 Experiments

In this subsection, the presented scores ULEF, USLEF, USOS, tLEF, and tSLEF are in-
vestigated with respect to their outlier detection capabilities. To simplify the understand-
ability, in the remainder of this section, the scores introduced in this work are written
italic, e. g., ULEF. Therefore, they are applied to several real world datasets and com-
pared to state-of-the-art outlier methods. This section provides a brief summary of the
used datasets and the evaluation measure. The results are shown and discussed as well.
The implementation of the UMAP-based scores uses parts of the publicly available imple-
mentation [MHSG18], such as performing the binary search. The Barnes-Hut-SNE-based
scores are a modified version of [Jan12].

3.3.3.1 Datasets

The outlier datasets for the experiments in this section were taken from [CZS+16b], were
each dataset contains labels for outliers. All datasets were normalized and do not contain
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Table 3.3: Used datasets specifications [CZS+16b].

Dataset M MO N Variants
Annthyroid 7129 534 21 –
Arrhythmia 450 206 259 –

Cardiotocography 2114 466 21 –
Glass 214 9 7 –

HeartDisease 270 120 13 –
Hepatitis 80 13 19 –

InternetAds 1966 368 1555 –
Ionosphere 351 126 32 –

Lymphography 148 6 18 –
PageBlocks 5393 510 10 –
Parkinson 195 147 22 –
PenDigits 9868 20 16 10

Pima 768 268 8 –
Shuttle 1013 13 9 10

SpamBase 4207 1679 57 –
Stamps 340 31 9 –
WBC 223 10 9 10

WDBC 367 10 30 10
WPBC 198 47 33 –

Waveform 3443 100 21 10
Wilt 4819 257 5 –

duplicates. Furthermore, in case of categorical attributes, the Inverse Document Frequency
(IDF) coded versions are used. No further processing on the datasets is applied. In this
work only the standard versions of the datasets are used. Let the number of samples per
dataset be M , the number of outliers MO.

3.3.3.2 Evaluation Method

The evaluation is performed in such a way, that each outlier data point is analyzed in-
dividually with respect to all the inliers. For example, the dataset Glass (see Table 3.3)
yields 9 individual outlier datasets DO,1 . . .DO,9 each containing 205 instances and one
outlier. This differs from the evaluation performed in [CZS+16a], as this work focuses on
the local structure.

Each of the outlier datasets is then processed with different outlier detection methods,
including the ones introduced in this work. For this purpose, the number of neighbors k
is varied from 3 to 100. The k is selected larger or equal to 3 such that the perplexity in
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Table 3.4: AUCmax per dataset and method.

Dataset ULEF USLEF USOS tLEF tSLEF KNNSOS ISOS K
∑
K LOF LDOF LoOP COF

Annthyroid .78 ± .24 .78 ± .24 .80 ± .23 .79 ± .24 .79 ± .24 .80 ± .23 .79 ± .24 .67 ± .26 .68 ± .26 .74 ± .26 .78 ± .23 .77 ± .24 .73 ± .27
Arrhythmia .76 ± .25 .76 ± .24 .76 ± .25 .76 ± .25 .76 ± .24 .76 ± .25 .76 ± .25 .76 ± .27 .76 ± .26 .75 ± .27 .76 ± .25 .76 ± .25 .75 ± .25

Cardiotocography .86 ± .19 .85 ± .19 .87 ± .18 .85 ± .19 .86 ± .19 .87 ± .19 .86 ± .19 .80 ± .23 .82 ± .22 .83 ± .21 .83 ± .22 .86 ± .21 .84 ± .23
Glass .85 ± .11 .83 ± .12 .83 ± .10 .80 ± .13 .80 ± .12 .79 ± .16 .81 ± .12 .88 ± .06 .89 ± .06 .92 ± .06 .84 ± .07 .87 ± .08 .89 ± .11

HeartDisease .78 ± .20 .78 ± .20 .77 ± .21 .79 ± .20 .79 ± .20 .78 ± .20 .77 ± .21 .85 ± .18 .84 ± .18 .84 ± .18 .82 ± .20 .82 ± .20 .85 ± .18
Hepatitis .72 ± .19 .73 ± .21 .68 ± .19 .71 ± .20 .73 ± .19 .65 ± .21 .66 ± .20 .82 ± .11 .79 ± .15 .82 ± .19 .79 ± .14 .79 ± .15 .82 ± .14

InternetAds .92 ± .20 .92 ± .16 .92 ± .18 .92 ± .18 .92 ± .16 .91 ± .20 .94 ± .15 .86 ± .24 .87 ± .23 .92 ± .18 .92 ± .19 .92 ± .19 .91 ± .19
Ionosphere .95 ± .10 .95 ± .10 .95 ± .11 .95 ± .10 .95 ± .10 .95 ± .11 .95 ± .11 .97 ± .07 .97 ± .08 .95 ± .09 .93 ± .12 .95 ± .09 .97 ± .07

Lymphography 1.00 ± .00 1.00 ± .01 1.00 ± .01 1.00 ± .01 1.00 ± .01 1.00 ± .01 1.00 ± .01 1.00 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00 1.00 ± .00
PageBlocks .93 ± .13 .93 ± .13 .92 ± .15 .92 ± .13 .93 ± .13 .92 ± .14 .93 ± .13 .92 ± .14 .93 ± .14 .95 ± .10 .96 ± .06 .94 ± .09 .91 ± .18
Parkinson .95 ± .10 .94 ± .11 .95 ± .09 .95 ± .09 .94 ± .09 .97 ± .08 .95 ± .08 .89 ± .13 .92 ± .11 .93 ± .16 .85 ± .21 .94 ± .12 .93 ± .11
PenDigits 1.00 ± .00 1.00 ± .01 1.00 ± .01 1.00 ± .01 1.00 ± .01 .99 ± .01 .99 ± .01 1.00 ± .00 1.00 ± .00 1.00 ± .01 .95 ± .08 1.00 ± .00 1.00 ± .01

Pima .68 ± .27 .68 ± .27 .68 ± .26 .67 ± .27 .67 ± .27 .67 ± .27 .67 ± .27 .76 ± .22 .75 ± .22 .74 ± .20 .67 ± .27 .69 ± .26 .78 ± .21
Shuttle .98 ± .01 .98 ± .02 .98 ± .01 .98 ± .01 .98 ± .01 .98 ± .02 .99 ± .01 .96 ± .03 .97 ± .02 .98 ± .02 .98 ± .02 .99 ± .01 .98 ± .02

SpamBase .82 ± .21 .81 ± .23 .80 ± .24 .82 ± .22 .82 ± .22 .80 ± .24 .80 ± .24 .73 ± .22 .75 ± .22 .77 ± .21 .78 ± .20 .78 ± .21 .75 ± .20
Stamps .95 ± .04 .95 ± .05 .90 ± .07 .94 ± .06 .95 ± .06 .90 ± .08 .92 ± .06 .95 ± .03 .96 ± .02 .94 ± .04 .93 ± .03 .94 ± .04 .95 ± .04
WBC .93 ± .08 .93 ± .08 .94 ± .09 .93 ± .09 .93 ± .08 .93 ± .11 .94 ± .09 .99 ± .02 .99 ± .02 .99 ± .02 .98 ± .03 .98 ± .03 .98 ± .02

WDBC .97 ± .06 .97 ± .05 .97 ± .05 .97 ± .05 .97 ± .06 .97 ± .05 .97 ± .05 .95 ± .08 .95 ± .08 .97 ± .05 .97 ± .05 .97 ± .05 .95 ± .07
WPBC .53 ± .24 .53 ± .27 .52 ± .25 .52 ± .24 .52 ± .24 .53 ± .28 .51 ± .24 .57 ± .23 .56 ± .23 .55 ± .23 .55 ± .23 .53 ± .24 .59 ± .25

Waveform .76 ± .27 .76 ± .27 .76 ± .27 .76 ± .28 .76 ± .27 .75 ± .27 .76 ± .27 .78 ± .24 .78 ± .25 .77 ± .26 .78 ± .24 .77 ± .27 .73 ± .27
Wilt .80 ± .19 .81 ± .20 .83 ± .20 .83 ± .18 .82 ± .19 .84 ± .17 .83 ± .18 .58 ± .19 .61 ± .19 .72 ± .26 .83 ± .15 .80 ± .20 .74 ± .23

Barnes-Hut-SNE is at least 1. For each k, an evaluation measure is calculated. Here the
AUC ROC2 as used in [CZS+16a]

AUCk = 1
|I|

∑

i∈I





1 if A↑(o) > A↑(i)

0.5 if A↑(o) = A↑(i)

0 if A↑(o) < A↑(i)

(3.33)

is utilized, where here o is the outlier and I the set of inliers of the given outlier dataset,
with its cardinality |I|. The scores are represented by A↑. An AUCk of 1 indicates that
the outlier has the highest outlier score of all data points. Whereas, a value of 0 indicates
that the outlier has the lowest value and hence is not detected as such.

The maximum and the average values over all k-s of AUCk are determined per outlier
dataset. Then, the averages of both scores per dataset are determined as

AUCmax(D) = 1
MO

MO∑

i=1
max

k=3,...,100
(AUCk(DO,i)) (3.34)

AUCavg(D) = 1
MO

MO∑

i=1

1
98

100∑

k=3
AUCk(DO,i). (3.35)

Those values can be considered as indicators for maximum possible and average perfor-
mance given a certain dataset. In a final step, both values are averaged for all outlier
datasets.

3.3.3.3 Results

The application and evaluation of the outlier scores to the various datasets as described
in the former sections are discussed here. The average of all datasets for the max and the

2Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) curve.
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Figure 3.9: Performance per method: ( / / ) average AUCmax and ( / / ) average AUCavg
over all datasets. The squares ( / / ) indicate scores introduced in this work and the circles
( / / ) other scores. The filled shapes ( / ) indicate the best performing scores.

mean characteristics are shown in Figure 3.9. The results of the scores introduced in this
work are drawn thick and the square is an indicator of the average value. The remaining
methods are depicted normal and with a circle. The whiskers in all cases indicate the
standard deviation. The best performing score is indicated thick and with a filled marker.

From the plots shown in Figure 3.9, it can be concluded that over all, the introduced
scores are at a comparable level in terms of maximum performance ( / / ). However,
LOF performed better than the rest. In terms of the average values, the introduced
scores, especially the ones in combination with UMAP (ULEF, USLEF, USOS) show the
best performance over all scores. They offer a higher robustness against variations of k, as
it becomes clear from Figure 3.9, where the average values AUCavg over all k-s are shown
( / / ). Hence, for a randomly chosen k, the methods with the lowest risk are ULEF and
USOS. This is an essential attribute, since selecting an appropriate k is difficult because
the ground truth is not available for real world unsupervised tasks.

The scores ULEF and tLEF as well as their sparse versions USLEF and tSLEF are at
a comparable level for the maximum values. But, the average values AUCavg ( / / ) of
the non-sparse versions are slightly better. The non-sparse versions are causing additional
computational cost, since the missing incoming edges are calculated as well. Therefore,
deciding between the sparse and the non-sparse versions can be considered as trade-off
between computational cost and accuracy.

A more detailed list of the different maximum values is depicted in Table 3.4. To ease
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Figure 3.10: Position of the nodes used to create the images. Left image: (i) highway.
Right bottom image: (ii) rural. Right top blue, red, and orange: (iii) city 50, (iv) city 30,
and (v) city 5. [Ope19]

readability, only the best performing state-of-the-art methods are listed. As with the other
scores, the introduced scores may suit for certain datasets better than for others. There is
no score that is generally superior for all datasets. For example, LOF is outperforming the
ULEF on 8 datasets, whereas ULEF is outperforming LOF on 7. Accordingly, in terms
of maximum accuracy, the LOF is superior to ULEF, as already depicted in Figure 3.9.
Contrary, the ULEF is outperforming the LOF in terms of average accuracy, thereby
depicting its robustness against the number of neighbors k (see Figure 3.9).

3.3.3.4 Application to Road Infrastructure Images

The application of the introduced scores to road infrastructure images is presented in
the following section. Furthermore, the construction of the image dataset is explained.
Experiments are performed with various scores, such that an application based analysis
can be provided.

As already mentioned above, identifying newly observed traffic scenarios is a key aspect
for the validation process of AVs. The road infrastructure builds a crucial part of a scene.
The results of this work can serve as a case study. Here, a dataset of highway infrastructure
images is considered as pre-recorded dataset. Various other infrastructure classes are
compared in terms of outlierness to the highway dataset. It is important to note, that the
used classes are just defined to validate the method, since it can be assumed that a highway
should be differentiable from the most other infrastructure images. Hence, the task is not
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Table 3.5: Road infrastructure dataset description.

Class Search Area Search Criteria Nodes
(i) Highway Upper Bavaria A9, A92, A93, A99 5 447
(ii) Rural Neub. Schrobenh. 70, 80, 90, 100 km/h 5 636
(iii) City 50 Ingolstadt 50 km/h 4 604
(iv) City 30 Ingolstadt 30 km/h 5 152
(v) City 5 Ingolstadt 5 km/h 1 146

to differentiate between highway and not highway, but the task is to differentiate between
unknown and known infrastructure images.

3.3.3.5 Data Generation

The dataset generation used for this application is part of this work. Five different in-
frastructure classes with a total number of 21 985 images are generated. The classes are
(i) highway, (ii) rural roads; and inner-city roads with a speed limit of (iii) 50 km/h, (iv)
30 km/h, and (v) 5 km/h. The detailed steps are described below.

The images are generated from map data which is provided by OpenStreetMap (OSM)
[Ope19]3. In the first step, for a given geographic area, all nodes4 which fit the search
criteria of the class are extracted using the Overpass API5. All the data is extracted from
the region of Ingolstadt, Germany.

The highway nodes (i) are extracted by using Upper Bavaria as overall search area and
the highways A9, A92, A93, and A99. The district of Neuburg Schrobenhausen, which
borders Ingolstadt, is used to extract the rural road nodes (ii). There, all nodes which
have a speed limit of either 100 km/h, 90 km/h, 80 km/h or 70 km/h are considered. For
the inner city nodes (iii) - (v), Ingolstadt is selected as search area. For the classes (iii) and
(iv), the corresponding speed limits are used as filters. In the case of class (v), the road
type is filtered for living streets. The various settings as well as the number of resulting
nodes is summarized in Table 3.5. The positions of the nodes are visualized in Figure 3.10.

In the second step, each node is considered as the center of a bounding box with the
size of 100 m × 100 m. The corresponding maps are downloaded and then converted into
the OpenDRIVE format [D+15] using the netconvert tool of SUMO [LBBW+18]. As part
of this work, a tool is developed to generate adjustable images given OpenDRIVE maps
as input. The following elements are not rendered for the image generation: bike lanes,

3Map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.
org.

4Nodes in OSM define a single position on the map. A way consists of an ordered list of nodes, defining
the shape of the road.

5Overpass API: https://overpass-turbo.eu/ online data filtering tool for OSM
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(i) (ii) (iii) (iv) (v)

Figure 3.11: Example images of the different road infrastructure classes (Table 3.5).

sidewalk, restricted roads, rails, traffic signs, traffic signals, and zebra crossings. Since this
application is considered as proof of concept, omitting such infrastructure information is
assumed to be acceptable. The generated images are of size 64×64 pixels. The lane surface
itself is colored in gray, the lane markings are given in white, and the remaining area is
set to black. In Figure 3.11 some example images for the different classes are depicted.

3.3.3.6 Results

The evaluation of the outlier scores follows the same intuition as in the general experiments.
Hence, the outlier detection remains unsupervised. The classes are only used for the
evaluation. Here, the highway class is considered to be the respective inlier dataset. All
the remaining classes are considered to be outliers. In terms of the application, this can be
thought of having a base dataset Dbase collected from highways infrastructure and compare
freshly gathered data from other infrastructures to the base dataset. Then the novelty of
the freshly observed data in regard to the base dataset is evaluated by the outlier score.
As described in Section 3.3.3, each image of the freshly recorded data (classes (ii)-(v)) is
used separately to evaluate the outlier score compared to the base dataset (highway).

For this application, the number of neighbors is varied as k ∈ {5, 15, 40, 60, 80, 100}.
As before, for each k, the AUC values of all outliers are averaged as AUC. The results,
when using the classes (ii) to (v) as outliers are depicted in Figure 3.12. The results based
on the methods which use the UMAP definitions are colored in red, blue for the Barnes-
Hut-SNE, and black for the state-of-the-art methods. As it becomes clear from the plots,
the scores based on UMAP and Barnes-Hut-SNE perform more stable with respect to
variations of k than the state-of-the-art methods (Note: Here only LDOF is shown, since
it was the overall best performing score in terms of stability). This property is crucial,
since in the unsupervised task to detect novel road infrastructures, the appropriate number
of neighbors k is not known and can not be determined as in this setting. Therefore, the
following discussion considers the overall performance for all given k.

Comparing the plots of the various classes, a clear tendency is that the performance
increases from Rural to City 5. This characteristic is intuitive since rural roads are
more similar to highway roads than city roads. Overall, the scores based on UMAP
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Figure 3.12: Outlier detection performance ¯AUC over various number of neighbors k. The
highway dataset (class (i)) is considered as base dataset. For each experiment, the samples
from the classes (ii)-(v) are checked with respect to their outlier score. The more likely
they are all an outlier the better, since they can be considered as novel with respect to
the base dataset. ULEF, USOS, tLEF, KNNSOS, LDOF.

and Barnes-Hut-SNE are superior to the state-of-the-art methods. USOS, which shows
good performance for the benchmark datasets, performs the worst of the UMAP/Barnes-
Hut-SNE-based outlier scores in this application. In comparison, the introduced ULEF
score performs better. This shows that the ULEF score is preferable if UMAP is used.
On a comparable level to ULEF performs the KNNSOS score based on Barnes-Hut-SNE.
To conclude this, based on the application of road infrastructure images one should opt
for the novel introduced score ULEF when using UMAP and for KNNSOS when using
Barnes-Hut-SNE. The performance difference between the scores is negligible.

To highlight the capabilities further, a dataset for an exemplary drive is constructed.
For this purpose, images for all nodes of the highway A9 from Munich to Ingolstadt-South
are collected, but here, the orientation of the images is changed, such that the driving
direction is pointing upwards. The driving direction is determined by the position of the
current node and the position of the next node on the road. The images collected this way
are used as base dataset. Then, using the same orientation correction, the images for the
route from Ingolstadt-South to the Technische Hochschule Ingolstadt are extracted and
tested if they fit in the base dataset. For the first part, this route stays on the highway
and in the second part the route enters inner city infrastructure. In Figure 3.13, the route
is shown, it starts from the bottom. The points represent the used nodes (best viewed
with magnification). The color represents the outlier score relative to the range of the
outlier scores of the base dataset, where red indicates a high outlier score and green a
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Figure 3.13: Outlier score for the test route, given a base dataset A9 (highway). Each road
infrastructure image is represented by a point, while the points are connected to visualize
the route. Red: Outlier, Green: Inlier

low. The first part of the route along the highway results in a low outlier score visualized
green, and hence already known infrastructure images, which is reasonable, since the base
dataset is also a highway (A9). However, some images seem to differentiate even for
the highway, since some are marked red. The first red one for example, represents an
infrastructure, where an additional lane on the north heading direction is added. Hence,
it is most probable that such a constellation is not part of the base dataset. The other red
highway points are mainly due to the shape of the merging/leaving lanes. As expected,
for the inner city, the most nodes are considered as outliers. However, the first part after
the highway tends a bit more towards green. This is plausible since this part of the road
has two lanes on each side and a separation between both directions.

3.3.4 Conclusion

The novel outlier score LEF is presented in this section. The score is designed in such
a fashion that it can be embedded into dimensionality reduction techniques which use a
directed graph in the first phase. The LEF is applied in UMAP (ULEF) and Barnes-Hut-
SNE (tLEF). Besides the LEF, the score USOS is introduced, which is the application of
the KNNSOS [SG17] within UMAP. Both scores strongly focus on local out- and inliers.
A key factor of both scores is that the same definitions of similarity as in the dimen-
sionality reduction are used. Furthermore, if the dimensionality reduction is performed,
the calculation of the scores is of low costs because the required graph has already been
constructed. Nevertheless, the scores can be used as standalone, by just constructing the
directed graphs without performing the actual embedding.

The scores are applied to outlier detection benchmark datasets and evaluated in com-
parison to other K-nearest neighbor outlier scores. Comparing the best achieved accuracy,
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given the optimal number of neighbors, the scores ULEF, tLEF, and USOS are at a com-
parable level with the state-of-the-art methods. In terms of robustness to the number of
neighbors selected, the new scores are superior to the state-of-the-art methods, since the
average accuracy over all k-s is higher. This fact is of special interest, since in unsupervised
tasks, the optimal number of neighbors is not known.

Besides the application to the outlier detection benchmark dataset, a special focus
is the application to novelty detection for road infrastructure images. This is required
for identifying new and representative scenarios, as it is crucial for the validation process
of AVs. The novel score ULEF alongside with the score KNNSOS are the overall best
performing in identifying novel road infrastructures. UMAPs advantages [MHM18] in
handling large-scale datasets and preserving global data structures, makes ULEF the rec-
ommendation of the analyzed methods for the purpose of outlier detection in combination
with dimensionality reduction.

Even though the introduced scores showed equally and more robust performance to
other state-of-the-art neighborhood-based outlier scores, the performance for image data
is still low. Therefore, for image data, or also other more complex data inputs, alternative
methods have to be considered for outlier detection. One approach might be to investigate
methods that handle image data directly, such as reconstruction-based methods. Another
approach could be to transform the complex data into representations which are better
suited for simple outlier methods like the neighborhood-based methods introduced in this
section.

3.4 Alternative Outlier Detection Methods

As highlighted in the section before, the analyzed outlier methods, as well as the introduced
LEF, suffer from poor performance when applied on image data, specifically the application
to infrastructure images. To identify representative and novel traffic sceneries, one of
the requirements is to have a reliable outlier detection method. In this section, some
alternative outlier detection approaches and their performance on infrastructure images
are investigated. The approaches are either vector-based, where the input has to be in
form of a vector, or image-based, where the input has to be an image.

3.4.1 Vector-Based Methods

The methods used in the previous section, e. g., LEF, LOF, KNNSOS, are all vector-based
methods. Therefore, the infrastructure images are simply vectorized before processing
them with the outlier detection methods. Here, some more vector-based methods are
briefly discussed and their application to infrastructure images is shown.
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ABOD The method Angle-Based Outlier Detection (ABOD) is based on the neighbor-
hood of data points, like the methods introduced in the previous section. The method
and its mathematical definition is summarized in Section 2.3.1. The method investigates
the angle between all possible vector pairs inside a neighborhood. A high angle variance
within a neighborhood indicates low outlier strength for the investigated data point. Here,
the number of neighbors for ABOD is set to K = 15 for all experiments.

IF The Isolation Forest (IF) is used for the analysis as well. The concept behind the IF
is that outlying points are easily separable, hence only few splits in a tree are required.
More details about the IF can be found in Section 2.3.2. Here, the number of trees is set
to 500, while all other parameters are kept as in the original IF.

OCSVM With the OCSVM, another vector-based method is investigated. The OCSVM
aims to separate all data points from the surrounding in the input space, by separating
the data from the origin with a hyperplane in the projected space, see Section 2.3.3. The
radial basis function is used as kernel, where γ = 1

NVarx
and ν = 0.5.

3.4.2 Image-Based Methods

Instead of using methods specialized for vector data, using methods optimized for image
data could be more beneficial, since the traffic scenarios are represented as infrastructure
images. For this purpose, the following reconstruction-based approaches are used for the
investigations.

Autoencoder A convolutional Autoencoder is trained and the reconstruction error is
used as outlier strength indicator (ROD), as discussed in Section 2.3.4.1. The encoder
used here consists of four convolution layers6, each followed by a ReLU layer, and a final
FC layer. The latent representation has a dimensionality of NAE = 32. The decoder uses
six transposed convolution layers7, each except the last is followed by a ReLU.

SAP Using the convolutional autoencoder as defined above, the Simple Aggregation
along Pathway (SAP) can be determined as shown in Section 2.3.4.2. It aims to utilize
the hidden feature maps as well for the outlier score estimation.

f-AnoGAN The last reconstruction-based approach is f-AnoGAN. In contrast to the
before mentioned methods, it is using a GAN and an encoder to determine the outlier
strength of an image. Details about f-AnoGAN can be found in Section 2.3.4.3. The
network used here is similar to the one used in the original work [SSW+19].

6Kernel sizes: 3-3-3-3; Kernels: 64–32-32-16; Stride:2-2-2-2; Padding: same-same-same-same
7Kernel sizes: 4-3-3-3-3-3; Kernels: 16-32-32-32-64-1; Stride:4-2-2-2-2-1; Cropping: same-same-same-

same-same-same
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Table 3.6: AUC for the different methods across various outlier types. Dbase: highway;
Bold: best overall; Underlined: best vector-based method.

LOF ULEF ABOD IF OCSVM ROD SAP f-AnoGAN

City 5 0,665 0,773 0,738 0,201 0,252 0,981 0,969 0,860
City 30 0,577 0,650 0,710 0,165 0,211 0,889 0,876 0,756
City 50 0,634 0,644 0,729 0,256 0,315 0,899 0,889 0,760
Rural 0,543 0,519 0,655 0,184 0,235 0,763 0,757 0,737

Mean 0,586 0,612 0,700 0,196 0,247 0,855 0,845 0,758

3.4.3 Experiments

The experimental setting is similar to the first one in Section 3.3.3.5. Therefore, all
methods use the highway images as the base dataset Dbase. Then, all images from the
classes (ii)-(v) are considered as outlier, and it is investigated how well the different outlier
scores reflect that. In Table 3.6, the resulting AUC per outlier group and method are
listed, where Mean highlights the overall outlier performance with respect to Dbase. For
reference, also the neighborhood-based method LOF and the introduced score ULEF are
listed.

Among the vector-based methods, the neighborhood-based methods perform the best,
especially ABOD, which outperforms the other vector-based methods clearly. The IF and
the OCSVM seem to struggle on infrastructure images, since they reach only low perfor-
mance values. The image-based methods, have a clear advantage over the other methods.
The simple reconstruction error (ROD) achieved the highest performance, slightly above
the SAP score. The f-AnoGAN performed the worst among the image-based methods.

3.4.4 Conclusion

The vector-based outlier detection methods are not optimized for the application to image
data. Especially for this use case with infrastructure images, they are clearly outperformed
by image-based outlier detection methods. Therefore, one possibility to still be able to
use simple vector-based outlier detection methods like LOF, would be to find a different
more suitable representation for the infrastructure images or even more for the whole
traffic scenario. The other obvious path would be to use one of the image-based methods.
However, if a more suitable representation for traffic scenarios is available, it would be most
probably also helpful for tasks like clustering or visualization purposes to further analyze
the traffic scenario dataset. This would not necessarily be available through image-based
outlier detection methods. Hence, one question arises: How to represent traffic scenarios,
such that simple outlier detection methods and clustering methods can be used for traffic
scenario identification?
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3.5 Domain Knowledge-Based Methods

Instead of using data-driven methods like in the previous sections, domain knowledge-
based methods can be used to identify representative and new traffic scenarios. In this sec-
tion two main approaches are covered, namely criticality-based approaches and category-
based approaches. The presented methods have been implemented prototypically as part
of this research work, since they provide a fallback strategy, in order to safely detect
critical or obviously new scenarios.

3.5.1 Criticality-Based

One obvious way to identify a subgroup of relevant traffic scenarios is to identify the
critical ones, since in the concept of scenario-based testing, an AV should perform well
even or especially under critical conditions. The criticality of a scenario can be determined
through different criticality measures. In this work, different criticality measure are used
in parallel here, where also different levels of available information is assumed. This is
due to the fact that more sophisticated criticality measures like the safety distance from
[SSS17] require a lot of well processed information. However, due to possible errors in the
processing chain, also low-level information sources should be used for the identification of
critical scenarios. Three levels of information availability are used here: (i) Only the EGO
vehicle dynamics. (ii) The EGO vehicle dynamics and the surrounding objects (OBJs).
And (iii) like (ii) but additionally including map and position information of the EGO
vehicle.

3.5.1.1 Dynamic Impact

Relying only on dynamic information of the EGO vehicle, as defined by (i), a rather simple
criticality detection mechanism is used here. Assuming that a normal and safe driving
would not lead to high accelerations, allows monitoring only the accelerations of the EGO
vehicle to detect critical scenarios. For example, in case of emergency braking, the decel-
eration would be much stronger than in normal driving. Furthermore, in scenarios that
involve crashes the accelerations would exceed the ones of a normal driving pattern even
more. In [DKN+06], the longitudinal and lateral accelerations are part of the trigger cri-
terions to identify crashes, near-crashes, and other incidents. Whenever the accelerations
exceed some threshold, the event is triggered. In the scope of this work, those thresh-
olds are used as low-level criticality estimation. The thresholds are selected according to
[DKN+06] as

alat,max 7 m/s2 and

alon,max 6 m/s2.
For the identification of a threshold exceedance, the absolute values |alat| and |alon| have
to be used.
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In order to lower false positive triggers, the threshold has to be violated for several
timestamps. In case of many false positives, the trigger thresholds could be increased. Of
course the trigger values also heavily depend on various factors, such as the vehicle type.
Even though the dynamic impact can serve as criticality indicator, such a low-level trigger
should be used only as a fallback solution. For more sophisticated criticality estimation,
also the environment has to be considered.

3.5.1.2 TTC, THW, and RF

In order to determine the criticality of a traffic scenario, various approaches are known and
used nowadays. The criticality measures used here are Time To Collision (TTC), Time
HeadWay (THW), and Risk Feeling (RF). Each criticality measure requires information
of the EGO vehicle and surrounding OBJs, as defined above by (ii). The narrative of the
used criticality measures is simple, the smaller the TTC and THW, the more critical the
scenario, since the possibilities to prevent a crash decrease.

In the following, a framework for efficient TTC, THW, and RF calculation is presented.
Whenever the criticality measures violate certain thresholds for several timestamps, the
scenario is considered to be critical. The framework follows definition (ii) and hence relies
on the following dynamic information:

EGO: velocity, acceleration, yaw rate;

OBJ: velocity, position relative to EGO.

The TTC returns the time until a crash between two vehicles will happen, given
some assumptions. Here, the assumptions are limited to: (a) The EGO vehicle’s future
movement is modelled with a simple vehicle model, keeping the turn rate and acceleration
constant. (b) An OBJ’s movement is modelled with an even simpler model, assuming
constant velocity only. This way, the modelling of the future movement does rely only on
few dynamic information of the surrounding vehicle. The TTC calculation in this work
will return the time to a possible crash between the EGO and an OBJ, using the two
vehicle models.

THW can be understood as the time gap to another vehicle. Unlike the TTC, no crash
is assumed here, nevertheless very low THW values are critical8. Like for the TTC calcu-
lation, the EGO vehicle’s movement is modelled with constant turn rate and acceleration.
The THW calculation returns the time until the EGO vehicle possibly reaches the current
position of another vehicle.

8For example travelling on a highway behind another car with almost no distance but the very same
speed. This would not lead to a crash, hence no TTC can be determined. Still the situation is critical
since if the same speed condition changes, a crash can happen immediately. THW reflects this criticality
in measuring the time gap between the vehicles. Typically, THW finds application in traffic laws to define
safe distances to other vehicles.
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Table 3.7: Velocity and acceleration assumptions for TTC and THW.

TTC THW
vEGO = vEGO vEGO

aEGO = aEGO aEGO

vOBJ = vOBJ 0
aOBJ = 0 0

TTC and THW Calculation The calculation of the TTC and the THW is realized
in the same framework. In order to reduce computation cost, some dynamic pre-filtering
is applied, this way, only OBJs which are of interest for the calculation are determined.
The actual TTC and THW calculation is determined by simulating the future movement.

The dynamic pre-filtering is realized on some worst-case assumptions. For this purpose,
the maximum travel distance dmax is determined for the EGO and the OBJ. Only if an
OBJ is closer than

dsafe = dmax,EGO + rEGO + dmax,OBJ + rOBJ (3.36)

to the EGO, it will be considered for the THW or TTC calculations, Here r is the radius,
denoting the size of the vehicles and the maximum travel distance is calculated as

dmax = ∥v∥tmax + 0.5∥a∥t2max, (3.37)

where v and a are selected according to Table 3.7, dependent on whether TTC or THW
needs to be determined. The maximum considered time span tmax should be selected
greater than the threshold for TTC and THW. With the dynamic pre-filtering, the com-
putational effort for the TTC and THW calculation is reduced, since only a subset of
vehicles is considered. For each OBJ which passed the pre-filtering, a possible TTC or
THW is determined. For this, the vehicle dynamics as summarized in Table 3.7 are used.
The EGO’s trajectory is then modelled with a constant turn rate and acceleration model
for several timestamps t ∈ {0, t∆, 2t∆, . . . , tmax}, t∆ is the simulation delta time. The
same holds for the OBJ vehicle where instead, the constant velocity model is used. If the
velocity and acceleration are 0, the future positions are not calculated since they remain
constant over time. For each timestamp, it is checked whether the bounding boxes of
the vehicles overlap. If they overlap, the procedure ends and the timestamp of the first
overlap will be reported as the TTC or THW. For the overlap determination, another
two-stage process is utilized in order to keep computational effort low. For each simulated
timestamp, first the distance between the vehicles’ centers is determined. Only if that
distance is smaller than rEGO + rOBJ, it is checked if the bounding boxes overlap. Since
the dynamics as defined in Table 3.7 are used, the THW is calculated with keeping the
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THW TTC

dego = rego + ||vego||t + 0.5||aego||t2
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Pre-Filtering – Only OBJs inside the
circle dEGO are used for the THW deter-
mination.

Pre-Filtering – Only OBJs whose cir-
cles dOBJ intersect ( ) with the EGO
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mination.
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when EGO vehicle reaches OBJ’s initial
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ing boxes overlap, if the bounding circles
overlap. Time shown above the circles.

TTC Determination – Return time
when the EGO vehicle and the OBJ ve-
hicle will collide. Always: only check if
bounding boxes overlap, if the bounding
circles overlap. Time shown above the
circles.

Figure 3.14: TTC and THW determination (bottom) with dynamic pre-filtering (top).
: EGO vehicle; : OBJ vehicle.

OBJ vehicle fixed. Hence, the same framework as for TTC can be used.
The overall process is visualized in Figure 3.14. The top part shows the pre-filtering,

indicated with the circles (dEGO and dOBJ), and red highlighted intersection area. Only
if the circles (dEGO and dOBJ) intersect, the OBJ is considered for the TTC or THW
calculation, which is shown at the bottom.

RF is a weighted combination of TTC and THW and aims to mimic the human risk
perception. It is defined as

RF = wTHW
THW + wTTC

TTC , (3.38)

where in this work, the parameters are selected as wTHW = 1 and wTTC = 4, since
it was shown in [KYK+08] that the risk perception increases/decreases parallel to the
1/THW + 4/TTC line.

The thresholds for TTC and THW can be selected rather low, while the thresholds
for the RF can be selected high. This would lead to detecting only very critical scenarios,
which is desirable for this application.
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3.5.1.3 RSS Safety Distance

The criticality measures TTC, THW, and RF are implemented in this work independent of
the infrastructure. Including the infrastructure information can aid the criticality assess-
ment, since the future movement can be hypothesized through the infrastructure rather
than simple vehicle models. In [SSS17], definitions for safe distances in various situation
types is provided. It is part of the so-called Responsibility Sensitive Safety (RSS) frame-
work presented in [SSS17]. In the following, it is focused on three of the situation types
presented in [SSS17]. A situation represents a pair of vehicles in a specific infrastructural
setting. The situation types are defined as:

(i) the vehicles are driving on parallel routes in the same direction,

(ii) the vehicles are driving on parallel routes in the opposite direction, and

(iii) the vehicles are driving on overlapping routes.

In the following, only situations between the EGO vehicle and each of the OBJ vehicles
are considered. For each situation type, safe distances are defined. If those distances are
obeyed, the situation is safe.

Parallel Routes (i) & (ii) – Projection Before determining whether two vehicles
are in safe distance to each other, the situation is projected into a lane-based coordinate
system. In contrast to [SSS17], the project in this work is simplified and for situation
types (i) & (ii), parallel routes in same and opposite direction, realized as follows. For
each vehicle a reference line is assumed to be given. The reference lines of the two vehicles
have to be parallel for at least some interval. For example, consider the case where two
vehicles drive on a road with two lanes in opposite direction, the reference line (centerline)
would be the same for both vehicles. Such a situation is illustrated in Figure 3.15.

In the following, the projection of a situation into the situation coordinate system
(x̃(sit), ỹ(sit)) is explained. The projection is also illustrated in Figure 3.15. The vehicles
are described through their Frenet states (x̃, ỹ), given the reference line9. This way, the
maximum and minimum positions of a vehicle’s bounding box are determined, leading to
x̃max, x̃min, ỹmax, and ỹmin. The situation in the situation coordinate system (x̃(sit), ỹ(sit)) is
constructed by considering the bounding box positions for both vehicles, and by projecting
the velocity vectors according to (x̃, ỹ)10. As can be seen, the orientation of the vehicles are
not considered in the situation coordinate system. If the reference lines are not the same,
the projection is realized individually first. Then the coordinate systems are linked where
the reference lines first become parallel. Each of the following safety distance calculations

9To determine the Frenet states, points are projected onto the reference line using the normal direction
of the reference line.

10Projecting an input vector according to (x̃, ỹ) is realized by projecting it onto the normal and tangent
vector of the reference line at the origin of the input vector.
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Projection

Plain Situation Projected Situation

ỹEGO,min
ỹEGO,max
x̃EGO,max − x̃EGO,min
ỹOBJ,min
ỹOBJ,max
x̃OBJ,max − x̃OBJ,min
x̃OBJ,min − x̃EGO,max

ỹ

x̃

ỹ(sit)

x̃(sit)

Figure 3.15: Visualization of the projection for parallel routes – RSS. Left: plain situation;
Right: projected situation; : EGO vehicle; : OBJ vehicle. The black and red
arrows illustrate the velocity vectors.

for type (i) & (ii) are based on a situation projected as described above. For a parallel
routes situation of type (i) & (ii) to be critical, the lateral and longitudinal safe distance
have to be violated.

Parallel Routes (i) & (ii) – Lateral Safe Distance The lateral safe distance in-
dicates the lateral distance, two vehicles should have in a projected scenario. If the safe
lateral distance is not violated, no further checks are required. The safe lateral distance,
given a projected scenario is calculated as [SSS17]

dlat,min = µ+
[
vl + vl,ρ

2 ρ+
sgn(vl,ρ)v2

l,ρ
2amin,brake

−
(
vr + vr,ρ

2 ρ+
sgn(vr,ρ)v2

r,ρ
2amin,brake

)]

+
, (3.39)

where [·]+ = max{·, 0} and with:

vl := Lateral velocity left vehicle

vr := Lateral velocity right vehicle

amax,accel := Maximum lateral acceleration (abs)

amin,brake := Minimum lateral braking (abs)

µ := Lateral fluctuation distance

ρ := Reaction time

vl,ρ := vl + ρamax,accel

vr,ρ := vr − ρamax,accel.

The two lateral velocities are determined through the projection. The other values are
hyperparameters to the safety distance. The safe lateral distance is calculated based on
the worst case assumption, that during the reaction time ρ both vehicles will laterally
accelerate towards each other with amax,accel. After ρ both vehicles will stop moving
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towards each other with a deceleration of amin,brake.
If the lateral distance of the two projected vehicles is less than dlat,min, the situation

is potentially critical and needs to be analyzed further.

Parallel Routes Same Direction (i) – Longitudinal Safe Distance If the situation
is of type (i) (parallel routes with same directions), then the safe longitudinal distance is
calculated as follows. Assume that one vehicle is driving in front (front vehicle), while
one vehicle is driving behind the front vehicle (rear vehicle). Like before, a worst-case
assumption is used. The safe longitudinal distance expresses the longitudinal distance,
that would be required if the front vehicle suddenly brakes, while the rear vehicle will
only react and brake after some reaction time ρ. Moreover, during ρ, the rear vehicle will
accelerate. The safe longitudinal distance is defined for a projected situation of type (i) as

dlon,min,same =
[
vr + vr,ρ

2 ρ+
v2

r,ρ
2amin,brake

− v2
f

2amax,brake

]

+
, (3.40)

here the following holds:

vf := Longitudinal velocity front vehicle

vr := Longitudinal velocity rear vehicle

amax,accel := Maximum longitudinal acceleration (abs)

amin,brake := Minimum longitudinal braking (abs)

amax,brake := Maximum longitudinal braking (abs)

ρ := Reaction time

vr,ρ := vr + ρamax,accel.

Parallel Routes Opposite Direction (ii) – Longitudinal Safe Distance In con-
trast, for situations when driving on parallel routes but in opposite direction (ii), the
worst-case assumption changes for the safe longitudinal distance calculation. One vehicle
is assumed to travel in the correct direction, hence the correct lane for the travel direction.
The other vehicle is assumed to travel in the wrong direction, overtaking etc. Here, the
worst case would be that both vehicles accelerate during ρ before coming to a complete
stop. The safe longitudinal distance is defined for a projected situation of type (ii) as

dlon,min,opposite = v1 + v1,ρ
2 ρ+

v2
1,ρ

2amin,brake,correct
+ |v2| + v2,ρ

2 ρ+
v2

2,ρ
2amin,brake

(3.41)
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with:

v1 := Longitudinal velocity correct direction

v2 := Longitudinal velocity wrong direction

amax,accel := Maximum long. acceleration (abs)

amin,brake := Minimum long. braking (abs)

amax,brake,correct := Minimum long. braking correct dir.(abs)

ρ := Reaction time

v1,ρ := v1 + ρamax,accel

v2,ρ := |v2| + ρamax,accel.

Parallel Routes (i) & (ii) – Critical Scenario Detection As already stated above,
for any situation of type (i) or (ii) to be critical, both, the safe longitudinal distance
(dlon,min,opposite / dlon,min,same) and the lateral distance (dlat,min) have to be violated in
the projected situation. This logic can be applied to implement a more sophisticated
detection method for critical scenarios, as required for scenario-based testing. In case
too many scenarios are detected, one possible solution could be the adjustment of the
hyperparameters (amax,accel, amin,brake etc.).

Overlapping Routes (iii) – Projection For a situation with overlapping routes (iii),
the projection is slightly different from the one above. In a first step, a driving tube for each
vehicle is determined. The driving tube is constructed under the worst-case assumption
from the lateral distance calculation ((i) & (ii)): the vehicle will accelerate laterally during
ρ and will stop moving laterally after ρ. This way, the driving tube includes all possible
lateral movements of the vehicle to the left and to the right. Therefore, to construct
the driving tube, the lateral position to the reference line as well as the initial lateral
velocity is determined using Frenet states. After the construction of the driving tubes,
the intersection area of the tubes is determined. Then, the longitudinal distance of each
vehicle along its driving tube to the start and end of the intersection is determined. In the
case of a merging situation, only the start of the intersection area is considered for further
calculations. Figure 3.16 roughly depicts the projection for the overlapping route case.

Overlapping Routes (iii) – Safe Distance For the safe distance calculation, the
driving tubes are used as reference, where it is assumed that the vehicle can laterally be
positioned everywhere inside the tube. Therefore, the safe distance only depends on the
longitudinal actions, given the driving tubes.

The following definition is used to estimate if the vehicles are at a safe distance:

If The non prioritized vehicle can stop before entering the route of the prioritized vehicle.
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Plain Situation Projected Situation

Projection

Figure 3.16: Visualization of the projection for overlapping routes – RSS. Left: actual
situation with the driving tubes; Right: projected situation; : EGO vehicle; :
OBJ vehicle.

Else if The prioritized vehicle can stop before entering the route of the non prioritized
vehicle OR, for merging situations, the vehicle in front stays in front, after both
apply a braking pattern.

Else if For all points of the overlapping area, the time intervals [tmin, tmax] to reach this
point of both vehicles does not intersect.

For each case, the worst-case assumptions are used. The last case is realized by determining
the earliest time a vehicle would enter the intersection area (accelerating case) and the
latest time the vehicle would leave the intersection area (deceleration case). If the time
intervals of two vehicles for the crossing area intersect, the required safe distance is not
given.

Implementation The complete calculation of the former summarized safe distances was
realized prototypically. That included the situation type detection and projection. The
implementation is mainly based on the network graph representation of the given map, to
reduce computational effort.

3.5.2 Category-Based

While detecting critical scenarios is an important component of identifying relevant sce-
narios, detecting novel traffic scenario types can be of interest as well. Novel scenarios,
the AV has not seen yet in the development phase and have not been tested as well, might
be beneficial to be added to the test catalog for future testing. This section presents an
approach to identify novel traffic scenarios and enable categorization. Here, no data-driven
approaches are used. A traffic scenario is transformed into a different representation which
can be used for novelty detection and categorization.
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Like the safety distance of the RSS, this method utilizes the EGO information, the
surrounding OBJs, and a map of the surrounding traffic infrastructure. The narrative
is to transform the scenario description (EGO, OBJs, map) into a graph representation.
The steps generating the graph consists of constructing the infrastructure graph, assigning
the EGO and optionally the OBJs to the graph nodes. Finally, the graph is simplified
and pruned. In [ZZ22], another graph representation for traffic scenarios is presented. In
contrast, there the relative relations between traffic participants are encoded as well.

Graph Construction – Infrastructure Transforming the infrastructure into a graph
representation is the first step of the scenario representation transformation. Assume,
that the infrastructure is present in a format where it consists of lane pieces (e. g., Lanelet
[PPJ+18]). Further assume that the lane pieces are as large as possible, such that they
are only split if the semantic attributes change (e. g., neighbors, speed limit, traffic light),
or if the lane enters a splitting/merging situation (e. g., intersection, merging lane). Then,
each lane piece is represented as a vertex in a graph, and it is connected to other vertices
through directed weighted edges according to the reachability and neighborhood relation-
ship: 1 for directly reachable (same direction neighbors and successor lane pieces) and 2

for neighbors with opposite direction. This way, a weighted directed graph is constructed
representing the infrastructure connectivity. The attributes underneath the vertices (e. g.,
speed limit, length, width, curvature) can be later used for more detailed comparison
purposes. Given the graph representations, two infrastructures can easily be compared
in terms of connectivity. However, the graph misses the actual constellation of the OBJs
over time. Moreover, the graph might be too big to properly describe the scenario.

Graph Construction – EGO and OBJ Assignment Transforming the EGO and
OBJs into the graph representation is straight forward. Each trajectory point is assigned
to the lane pieces the vehicle is currently on. This way a route can be extracted, which is a
list of lane pieces without successive repetitions. Each of those lists can be assigned to the
graph vertices as well. This way, the EGO and OBJ movement over time is transformed
into routes in the graph. Whether to use the OBJs’ routes for analysis or not can be
decided dependent on the available size for storing scenarios. Since it is likely to detect
more novel graphs when using all OBJs compared to when only using the EGO vehicle, one
trade-off could be to use the full EGO route while only using the OBJ starting positions,
to reduce the number of novel scenarios and hence the required storage requirements.
However, this is a hyperparameter and can be selected based on the scenario catalog size
one wants to identify.

Graph Construction – Simplification and Pruning In a final step, simplifying,
and pruning the resulting graph is performed. The simplification is only required if the
lane pieces are not as big as possible, as it was assumed in the infrastructure graph
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construction. Simplification aims to recover this assumption, by merging all successive
vertices where the attributes do not change. This is required to enable a standardized
format for meaningful comparisons between two graphs. Finally, unnecessary parts of the
infrastructure graph can be removed. For this purpose, all vertices are selected, which the
EGO vehicle is assigned to. Then, all neighboring vertices are added to that set. After
that step, all vertices of each intersection, that might be included in the so far collected
set are added. Furthermore, all vertices starting and leaving at any included intersection
vertex are included. This way, only the infrastructure that is relevant to the EGO vehicle
is kept. OBJs that permanently stay outside the selected infrastructure can be discarded.
It should be noted that it might be useful to add another look-a-head distance to the
EGO’s last trajectory point. Vertices within that look-a-head distance can be further
included into the previous procedure. This way, cases like arriving at an intersection can
be represented as graphs where the intersection is included.

Scenario Comparison – Graph Comparison Given a traffic scenario in the former
discussed graph representation, it should be identified if it is a novel traffic scenario or not.
For this purpose, the known traffic scenarios, represented as graphs as well, are available for
comparison. Hence, it is checked if the graph and the routes in it are similar to any stored
traffic scenario. In general, graphs can be compared by checking if they are isomorphic.
Only if the graphs are similar, the routes can be compared by using the bijection of the
isomorphism. If the routes are similar after applying the bijection, also the routes can
be interpreted as similar. In order to reduce computational cost, the isomorphism is only
carried out if other attributes of two graphs are similar. First, the number of vertices has
to be similar. Second, the number of vertices having the same number of incoming and
outgoing edges has to be similar. Third, also the length of the routes have to be similar.
This enables a more efficient comparison of graphs, as also realized in [FFWSM+22].

The graph construction and comparison explained in this section is very similar to
the one explained in Chapter 4. The mathematical definition of the graphs and their
comparison can be seen in the corresponding chapter.

Scenario Comparison – Trajectory Comparison If many traffic scenarios with the
same graph representations are collected, they can be compared by analyzing the similarity
of the underlying trajectories. Like before, this can be realized for the EGO and all OBJs.
For the comparison of the trajectories, the DTW distance weighted by the length of the
warping path is used. As features, only the velocity and the acceleration over time (called
action profiles in Section 4.2) are used. In the master thesis [Dun22], which was supervised
in the context of this dissertation, different trajectory similarity measures were analyzed.
DTW applied on acceleration and velocity over time has shown the most promising results
for comparing trajectories.
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Discussion The domain knowledge driven approach to categorize traffic scenarios can
be used to detect unknown traffic scenarios on an abstract level. However, it lacks detailed
information of the traffic scenario such as the geometry of the infrastructure or the specific
trajectories. Such information might be relevant to compare scenarios more detailed but
are difficult to include in domain knowledge approaches. Therefore, tackling the traffic
scenario comparison with data-driven approaches could lead to a more detailed traffic
scenario clustering.
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Chapter 4

Representation Learning for
Identifying Relevant Traffic
Scenarios

As shown in the previous chapter, a simple statistical proof of an Autonomous Vehicle’s
(AV’s) safety is infeasible. Approaches like scenario-based testing are used for validation.
There, the testing of an AV is focused on relevant scenarios, instead of exclusively driving
randomly millions of kilometers. Identifying relevant scenarios is required for this approach
[JWKW18] (c. f. Figure 4.1). The scenarios can be constructed by domain knowledge or
from real world driving data.

In the previous chapter, various approaches have been proposed and summarized how
to identify relevant traffic scenarios. However, in summary, no approach was able to han-
dle alone the complex traffic scenarios in terms of detecting unknown scenarios. While the

UnknownRepresentative
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Novelty
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Sec. 4.1 & 4.2

Clustering
Sec. 4.2 & 4.3

Criticality
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Representation
Learning

Sec 4.1 & 4.2 & 4.3
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Figure 4.1: Methodological overview of this work and its embedding in the validation
process of AVs. Novel methods for Representation Learning are introduced in the corre-
sponding sections. The performance is evaluated with novelty detection and clustering.
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4. Representation Learning for Identifying Relevant Traffic Scenarios

most existing methods focus on trajectories, some also include infrastructure information.
The similarities among traffic scenarios are either defined implicitly e. g., autoencoding
regime, or explicitly e. g., DTW (see Section 3.2). Also, the performance of the proposed
approaches for outlier detection (LEF, reconstruction-based approaches) is not satisfac-
tory. The presented explicit domain knowledge methods (criticality and category) provide
traceability, but fail to express complex similarities and relationships.

As concluded in Section 3.4, simple novelty detection methods can not handle the
complex structure of traffic scenarios. Therefore, the objective is to transform traffic
scenarios into a representation which can be used for simple novelty detection methods and
clustering as well. In this chapter three representation learning approaches are presented
which aim to fulfill this task. Instead of relying on approaches without domain knowledge,
like autoencoders, domain knowledge is used to improve the performance. The embedding
of the representation learning into the overall framework of this work is illustrated in
Figure 4.1, where a traffic scenario is first transformed by the representation learning
component before being forwarded to the clustering or novelty detection component.

The first approach combines a triplet loss with an autoencoder for road infrastructure
images. The domain knowledge is applied through the triplet loss. This approach is ex-
tended in the second method to a quadruplet-based autoencoder, such that the dynamic
information of the EGO vehicle is covered as well. The third and last presented concept fo-
cuses on self-supervised learning and the advantages when using domain knowledge guided
augmentations. All three methods generate representations which can be used for tasks
like novelty detection or clustering. Therefore, the aim of the presented representation
learning methods is to form valuable representations, not to solve the task directly. Over-
all, introducing domain knowledge into the representation learning approaches improves
the performance on the downstream tasks novelty detection and clustering.

4.1 Domain Knowledge guided Triplet Autoencoder

The method summarized in this section aids the outlier detection of traffic scenarios,
by transforming the traffic scenario into a latent embedding using representation learning
guided by domain knowledge. The method is presented in [WBBU21] as well. As discussed
in the previous chapter, one meaningful way to enable outlier detection and clustering of
traffic scenarios could be to transform the traffic scenarios into more suited representations.
As shown in this section, when including domain knowledge into representation learning,
the performance can be increased.

A traffic scenario is described by multiple aspects, for example the dynamics and the
environment [PEG]. Publications often focus on the dynamics to identify representative
and novel scenarios (e. g., [WRZ+20], [HBG20], [DARC20], [HGSP20]). Besides dynamics,
another crucial component of a scenario is the infrastructure. Here, bird’s-eye view images,
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4.1. Domain Knowledge guided Triplet Autoencoder

representing the infrastructure, are used to detect novel traffic scenarios.
In this section, a method to detect unknown and potentially untested infrastructures

is presented. For this purpose, the infrastructure images are projected into a latent space
using a deep learning pipeline. As to be shown, a high performance increase is achieved
when using the latent space instead of the input space for novelty detection. In the
latent space, simple and well-established outlier detection methods can be used to identify
novel infrastructures, which indicates that the transformation to the latent space is able
to generate strong representations. In order to create this latent space, an autoencoder
architecture utilizing metric learning via triplet loss is used. The triplet mining is based
on the connectivity of the infrastructures. Through the combination of the autoencoder
scheme and the triplet learning, domain knowledge is used for shaping the latent space.

Extensive evaluation of the presented method is performed. For the encoder, state-
of-the-art networks such as ViT (Section 2.1.4.5) and ResNet-18 (Section 2.1.2.3) are
evaluated. Experiments demonstrate the influence of the triplet loss as well as the autoen-
coder scheme. The resulting architecture combinations are outperforming the alternative
methods. An implementation of the architecture is made publicly available1.

The contributions of the research in this area can be summarized as:

1. A new method to detect novel infrastructure images is presented, where the novelty
detection is performed in the latent space of a triplet loss-based autoencoder network.

2. Automated triplet mining of road infrastructures without manual labeling is intro-
duced.

3. The performance is evaluated against various methods and shows significant im-
provements.

In the following of this section, the method is explained. This includes the description
of the data generation pipeline and the definition of an infrastructure similarity measure.
After that, the training of the triplet autoencoder is defined. The experiments focus on the
outlier detection performance in the latent space of the triplet autoencoder. Furthermore,
the latent spaces are visualized for additional analysis purposes. Motivated from the
latent space visualization, another quantitative analysis of the created representations is
introduced, where the similarity of infrastructure images among neighbors in the latent
space is considered.

4.1.1 Method

In [WBBU21], an autoencoder network utilizing triplet loss is used to project road in-
frastructure images into the latent space, where the outlier detection is performed. By
using the proposed architecture, expressive latent representations for road infrastructure

1https://github.com/JWTHI/ViTAL-SCENE
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Figure 4.2: Triplet Learning Network: The triplet mining depicts how the triplet is selected
based on the graphs G. Each infrastructure image I is processed by the network, leading to
the latent representations z. Below the network, the triplet learning objective is illustrated.
The infrastructure of the anchor is reconstructed through the decoder g as Îa.

images are learned. During training, the infrastructure is assessed in two ways. First, the
visual appearance of the images, hence the shape of roads etc., is considered via the recon-
struction loss. Second, the similarity of infrastructure topologies is taken into account via
the similarity of their connectivity graphs, allowing data triplets to be identified. A data
triplet consists of three data points: the anchor, a sample similar to the anchor (positive
sample), and a sample dissimilar to the anchor (negative sample), which are required for
the triplet loss.

This subsection is split into the following parts. First, related work with respect to
triplet learning and outlier detection is provided. Second, the data generation and used
similarity measure are explained. Third, the realized triplet autoencoder network as well
as the used triplet mining is summarized. Last, the unknown traffic scenario detection
through novelty detection in the latent space is described.

4.1.1.1 Related Work: Triplet Learning and Outlier Detection

This method is using triplet learning to form the latent space. Triplet networks [SKP15]
are used to perform deep metric learning through ranking loss (Section 2.5.2.2). In tile2vec
[JWS+19], triplet networks are used for geospatial analysis. The sampling is determined
based on the distances of the tiles. In [YCS19], an autoencoder network is combined
with triplet learning. The difference of this section to [YCS19] lies in the application, the
specific network architecture, and the triplet mining.
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4.1. Domain Knowledge guided Triplet Autoencoder

To aid the detection of outliers, some works are using metric learning. An example is
[MRS+18], where out-of-distribution data is used for the training.

In the field of deep learning various approaches to detect outliers exist. The most com-
mon approach is to use the reconstruction paradigm. For example in f-AnoGAN [SSW+19],
a GAN is used as generator network, where an additional encoder is trained to learn the
mapping from an input image to the GAN’s latent representation (Section 2.3.4.3). An
extension of the reconstruction paradigm is using the hidden reconstructions additionally
[KSL+20] (Section 2.3.4.2).

In this section, standard outlier detection methods are applied in the latent space,
namely the LOF [BKNS00] (Section 2.3.1), ABOD [KhZ08] (Section 2.3.1), IF [LTZ08]
(Section 2.3.2), and the OCSVM [SWS+00] (Section 2.3.3).

4.1.1.2 Data Generation

In this method, a traffic scenario is described only through its static part, the road in-
frastructure. For this purpose, a black and white image of the infrastructure in bird’s-eye
view is generated. Furthermore, a connectivity graph is generated, which will be required
to determine the similarity between infrastructure images.

The data generation tool-chain consists of the following steps: a) position selection,
b) map data collection, c) image generation and d) graph generation. Open Street Map
(OSM) [Ope20] is used for the map data. Also, the position selection is realized via OSM.

Position Selection Within a search area, all OSM nodes can be considered as positions.
For this work the valid positions are restricted to public and car-drivable roads. Identifying
the nodes and positions can be realized through the OSM API for example. Each selected
position leads to an entry in the dataset, consisting of an image and the corresponding
connectivity graph.

Map Data Collection For each selected position, it is required to get the associated
map data. In this work, the OSM map with a parameterizable bounding box around the
location is converted into an OpenDRIVE [D+15] map, such that the image generation tool
as introduced in [WFBU20] can be used. For the conversion from OSM to OpenDRIVE,
the netconvert tool of SUMO [LBBW+18] is used.

Image Generation The image generation is realized as proposed in [WFBU20], in-
troduced in Section 3.3. Hence, the roads are colored gray, lane markings white and
the background black. Furthermore, all non-public and non-car accessible roads are not
rendered. For each position a grayscale image I is generated.
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Graph Generation The graph generation is new with respect to [WFBU20] and is
realized as follows. First, the complete OpenDRIVE map is converted into a network
graph, using the connectivity and neighbor information. The result is comparable to the
routing graph realized in Lanelet2 [PPJ+18]. In the next step, the selected location is
assigned to the corresponding node in the graph. Hence, the position on the road is
identified. Then, the graph is cropped and simplified using the following rules:

• Use all nodes which can be reached within the time tmax, given the allowed speed,
up to and including all nodes of the first junction (e. g., crossing, roundabout).

• Use all nodes which are neighboring lanes.

The infrastructure graph described here, is very much similar to the infrastructure graph
described in Section 3.5.2 of the previous chapter. However, since this method focuses on
the static information, the graph is simplified according to the reachability starting from
the selected position (center of image in this case).

Dataset The above steps are used to generate the dataset D = {(Im, Gm)}Mm=1, where
M is the number of selected positions, and hence the number of resulting images and
graphs. The image for the m-th position is given by the matrix Im ∈ RS×S with S the
selected resolution of the image. Analogous, the graph for the m-th position is given by
Gm = (Vm, Em), where Vm are the vertices and Em the edges of the graph. The actual
selected position is not used after the corresponding image and graph are extracted.

4.1.1.3 Similarity Measure

For the triplet-based learning, a notation of being similar or dissimilar is required. In
this section, the graphs are used for this purpose. Two cropped road infrastructure areas
are considered to be similar if their connectivity graphs are similar. The graphs need
to be permuted versions of each other to be similar. This is the case if there exists an
isomorphism between the two graphs. Given the graphs Gi and Gj , they are similar if
there exists a bijection p : Vi → Vj such that (u, v) ∈ Ei ⇐⇒ (p(u), p(v)) ∈ Ej . Using
the notation Gi ∼= Gj for two graphs being isomorphic, the similarity function is defined
as

si(Gi, Gj) =





1 if Gi ∼= Gj

0 else
. (4.1)

This similarity measure considers two infrastructures as same, when their connectivity is
the same. Within the triplet mining block of Figure 4.2 examples of extracted graphs
alongside their images are shown. Contrary, two infrastructures are dissimilar when their
connectivity is not the same.
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4.1.1.4 Triplet Autoencoder

The main part of this section is the triplet-based autoencoder network. It is used to
produce latent representations for given input images of road infrastructures. This section
will address the architectural details, the used loss, the triplet mining, and details on the
used networks.

Triplet learning realizes metric learning via a ranking loss. The objective is to enforce
similarity in the latent space based on three samples, a so-called data triplet. As explained
before, each triplet consists of an anchor, a positive sample, and a negative sample. The
anchor and the positive sample are similar, according to the used similarity measure. Con-
sequently, the negative sample is dissimilar to the anchor, according to the used similarity
measure. For example, in [SKP15], the anchor is an image of a face, the positive sample
is another image of the same person, and the negative is an image of another person. The
objective of the training is to push the latent representation of the negative sample away
from the latent representation of the anchor while pulling the latent representation of the
positive sample closer. This way, the metric learning is realized. More details on triplet
learning can be found in Section 2.5.2.2.

The triplet learning scheme of this method uses road infrastructure images as input,
with the anchor Ia, the positive sample Ip, and the negative sample In. Let the encoder
f be a trainable network, realizing the mapping from the input representation to the
latent representation f : I 7→ z with z ∈ RNz being the latent representation with
dimensionality N z. During the training, each sample of the triplet (Ia, Ip, In) is passed
through f separately, leading to the latent triplet (za, zp, zn). During inference, only
single samples will be passed through f . The training of f is partially realized by using
the triplet loss

Ltri(Ia, Ip, In) = max(α+ dap − dan, 0), (4.2)

with the squared distance between the anchor representation and the positive sample
representation dap = ||f(Ia), f(Ip)||22, the squared distance between the anchor represen-
tation and the negative sample representation dan = ||f(Ia), f(In)||22, and the margin α.
The triplet loss’ objective is twofold, to lower the distance between the positive sample
and the anchor dap while simultaneously increase the distance between the negative sample
and the anchor dan until dap +α. This way the latent representation is forced to follow the
definition of similarity as provided by the triplets. Like in [JWS+19], a L2-regulariation
term is added to the loss, where a weight of 0.01 is used for this additional term.

One key point of the triplet scheme is the triplet mining. While sampling Ia is realized
by randomly picking an image from the dataset D, determining the positive and negative
samples is based on the anchor. The similarity of two road infrastructure images is defined
through Equation (4.1). Hence, the positive sample is randomly picked out of all samples
having the same connectivity as the anchor. Given the graph of the anchor as Ga the pos-
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itive sample Ip is picked from {Im | m ∈ M ∧ si(Gm, Ga) = 1}. Using the same notation,
the negative sample In is picked from {Im | m ∈ M ∧ si(Gm, Ga) = 0}. The graphs are
only used to determine the data triplet, but are not processed by the network.

The selection of the negative sample has a significant influence on the training. Con-
sidering the case where the negative is already too far away and hence there is no training
contribution for this triplet, since dan ≥ dap + α would lead to Ltri = 0. Such samples
are called easy negatives. On the other hand-side having hard negatives, i. e., dan < dap,
might lead to bad local minima early in the training [SKP15]. Both types should be pre-
vented. Therefore, the objective of the triplet mining is to sample data points that are
called semi-hard negative samples. They are further away than the positive sample but
still within the margin α, such that dap < dan < dap +α holds. More detailed explanation
on negative sampling including an illustration is provided in Section 2.5.2.2.

The triplet loss conditioned training might be sufficient to separate different connectiv-
ity types, for example roundabout with 4 versus 3 exit roads. However, another objective
in this method is to ensure that neighboring points in the latent space have visually very
similar input images. The reasoning for this is twofold. First, it is assumed that the shape
of the road also has an influence on the novelty of a scenario. Second, it is assumed, the
more similar the neighborhood in the latent space is, the more reliable the projection is
for unknown data. By this, even within the same connectivity group further refinement is
achieved. For this purpose, a decoder g is introduced to complete the overall architecture.
The decoder is used to regularize the latent space, such that it can be used to recon-
struct the anchor Ia2. The underlying assumption is, that for the reconstruction to work,
the latent space has to be formed in such away, that the neighbors are not sharing only
connectivity-based similarities but also visual similarities. The trainable decoder network
g is used to generate the reconstructed anchor image Îa by g : z 7→ Î. The reconstruction
loss of the anchor,

Lrec(Ia) = ||Ia − g(f(Ia))||22 (4.3)

is used to enforce the above described objective.
The complete architecture is trained using the loss

L = Ltri + Lrec, (4.4)

such that both objectives are fulfilled: connectivity-based structure and visual similar-
ity. The overall pipeline of the triplet autoencoder network including the triplet mining
can be seen in Figure 4.2. The exemplary graphs are the results for the shown images.
This highlights the need for the local refinement by the decoder, since the shown anchor
and its positive sample are sharing the same connectivity but have quite different visual

2In general, all input samples could be reconstructed. However, in this work it was sufficient and
computationally less expensive to only use the anchor sample for reconstruction.
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appearance. Below the network, the triplet learning process is indicated.
The triplet autoencoder network can be trained on a huge dataset such as OSM,

ensuring a strong projection method. After training, the network can be used during
inference phase to project new data. This way, it is possible to train the network only
once. Furthermore, it allows one to store the data in a compressed format, i. e., the latent
representations.

The decoder network is kept fairly simple3, in order to limit the complexity of the
latent space. The decoder network structure is kept the same for all experiments, only
the encoder is varied. For the encoder network the ResNet and ViT are tested and are
therefore briefly explained in the following.

ResNet In [HZRS16] the widely used ResNet-18, -50 etc. are proposed. Residual net-
works consist of multiple residual blocks with multiple convolutional layers each. The
input to each residual block is added to the output again. Details about ResNets and
CNNs can be found in Section 2.1.2.

Vision Transformer Most recently, ViTs have been introduced in [DBK+21], using
the attention mechanism-based transformers as in [VSP+17]. ViT is a convolution-free
network for image classification, showing state-of-the-art performance.

The transformer usually uses an encoder and a decoder for sequence to sequence mod-
elling, but the ViT is using only the encoder part, as shown in Figure 4.3. First, an image
is split into flattened patches which are linearly projected, leading to the input embeddings
(marked blue). Then, an additional embedding token (orange) is concatenated to the input
embeddings before added to the learnable positional embedding (green). The sum is fed
as an input to the transformer. Inside the transformer, a multi-layer multi-head-attention
network is realized.

The output token, corresponding to the additional embedding token, is processed
through a MLP. Here, in difference to the original ViT as explained in Section 2.1.4.5, the
output vector is the latent representation z (red), whereas in the original ViT it is used
to predict a class label.

4.1.1.5 Novelty Detection

The overall objective of this section is to detect unknown road infrastructures. For this
purpose, outlier detection methods can be applied. Let the base dataset Dbase be the data
already known, for example, the scenarios an autonomous driving function has already
been tested on. If a data point is tested with respect to its outlierness it is basically

3The architecture of the decoder is as follows in PyTorch notation: ConvTranspose2D(Nz,32,6,6) →
ReLU → ConvTranspose2D(32,64,4,2) → ReLU → ConvTranspose2D(64,64,4,2) → ReLU → ConvTrans-
pose2D(64,1,6,2) → sigmoid
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Figure 4.3: Vision Transformer as used in this work. Inspired from [DBK+21].

investigated if the point fits into the known data Dbase. The training data D, used to train
the networks f and g, is not required to be the same as the base data Dbase.

Provided with the latent infrastructure representation z, simple and well-established
outlier mechanism can be applied directly in the latent space instead of the input space.
This way, the enforced similarity utilizing connectivity and shape will be the main influence
for the outlier detection.

Within this section various outlier detection methods are used. Interested readers may
refer to the corresponding sections in Chapter 2. In the following the used methods are
briefly summarized.

Local Outlier Factor The LOF [BKNS00] (Section 2.3.1) is analyzing how isolated a
data point is with respect to its neighbors. For this the local densities are used.

Isolation Forest The IF [LTZ08] (Section 2.3.2) is estimating the outlierness through
the number of splits required to isolate a data point, given randomly grown trees. It holds,
that the fewer splits the more outlying.

Angle-Based Outlier Detection Another approach is ABOD [KhZ08] (Section 2.3.1).
The variance of the direction vector’s angle from the point under investigation to all other
data points is investigated. The higher the variance the lower the outlierness. Here, the
fast version of ABOD is used, considering only the K nearest neighbors of the investigated
point.

One-Class Support Vector Machine The OCSVM [SWS+00] (Section 2.3.3) is the
extension of the normal SVM to the problem of outlier detection. The data is mapped to
the feature space as by the kernel. In the feature space, the data is separated from the
origin via a hyperplane. This way, the decision boundary is meant to encapsulate the data
in the input space.
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UMAP-based Local Entropy Factor In the work [WFBU20], summarized in Sec-
tion 3.3, the neighborhood of data points is used to define local similarity measures. A
point’s outlierness is evaluated based on how well it fits into its neighbors’ neighborhoods
using the entropy and the point-wise similarity.

4.1.2 Experiments

The introduced method is evaluated in this subsection. Various architecture realizations
and outlier detection methods are compared. This subsection is split into the following
parts. First, the details about the data used for the outlier detection and the data used for
visual analysis is explained. Second, the analyzed architectures are briefly summarized.
The outlier detection performance is discussed in the third part. The various resulting
latent space visualizations are shown and discussed in the fourth part. In the fifth sub-
section, the local visual similarity quality is assessed, proposing another possibility to
evaluate the performance of the shown architectures. The results are summarized in the
last part.

4.1.2.1 Datasets

The training dataset D is decoupled from the base dataset used for the outlier detection
Dbase and the outlier dataset Dano. Both are briefly described in the following. For both
the images display a region of size 100 m × 100 m, while the reachable time for generating
the graphs is selected as tmax = 5 s.

The training dataset D consists of ≈ 70 000 pairs of images and graphs. To provide
an insight to the dataset, it has been analyzed with respect to rough groups, but those
groups are not used in the training. In total, approx. 13 400 highway, 16 900 roundabout,
18 000 crossing, 19 900 single lane, and 1 700 multiple lane non-highway pairs are used.
The extraction region for the highway and roundabout pairs is selected to be the complete
district of Upper Bavaria in Germany. The extraction region for the remaining types is
the city of Ingolstadt in Germany with its adjacent counties.

The base and the outlier dataset are taken from [WFBU20]. Hence, the base dataset
Dbase is used to fit the models of the outlier detection methods. Therefore, the data
considered to be known are highway images only. Since, the outlier dataset Dano is taken
from [WFBU20] as well, rural and inner-city images are considered unknown.

4.1.2.2 Architectures

In order to investigate the influence of various architecture realizations, different versions
of the network were used for the experiments. The architecture of the decoder is kept the
same for all the experiments, enabling a fair comparison. The encoder is realized through
different networks. Furthermore, the loss function was changed for some experiments,
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highlighting the importance of the overall pipeline. Here, the various used options will be
briefly summarized.

For all architectures, the following parameters hold: image size 64 × 64, epochs 200,
latent dimensionality 50.

ResNet-S A small ResNet, like ResNet-18 but consisting of fewer parameters. Learnable
parameters ≈ 0.3 · 106.

ResNet-18 Here the basic implementation of ResNet-18 [HZRS16] is adjusted for single
channel inputs. Learnable parameters ≈ 11.0 · 106.

ViT-S A small version of the ViT. Learnable parameters ≈ 0.2 · 106. (patch size 8 × 8,
layers 6, dimension of input embedding npatches × 64, internal MLP dim. 128).

ViT-L A large version of the ViT. Learnable parameters ≈ 6.7 · 106. (patch size 8 × 8,
layers 20, dimension of input embedding npatches × 256, internal MLP dim. 128).

Loss Terms Furthermore, ✗Lrec is highlighting architectures where the decoder network
is deactivated. Therefore, the loss is only based on the triplet part. The triplet loss is not
used for the architectures marked with ✗Ltri. Hence, only the reconstruction loss is used.

4.1.2.3 Outlier Detection

The various architectures are evaluated with respect to their outlier detection performance.
For this, the outlier detection methods LOF, ULEF, OCSVM, and ABOD are applied in
the latent space of the resulting network. As baseline methods, the outlier detection
methods are also applied in the input space to highlight the performance gain when using
the latent representation (last row in Table 4.1). The networks are trained using D, while
the outlier detection is performed using Dbase as known and considering the remaining
Dano as unknown. Therefore, the novelty detection is applied to the case where only
highway images Dbase are known. Then unknown data points, such as inner-city images,
Dano are investigated with respect to their outlierness. If the outlier detection is able to
identify that for example inner-city images are outlying with respect to highway images,
the task is fulfilled successfully. This evaluation shows the outlier detection capabilities
with respect to connectivity classes.

Additionally, the reconstruction-based outlier detection methods f-AnoGAN [SSW+19]
(Section 2.3.4.3) and RaPP [KSL+20] (Section 2.3.4.2) are evaluated. For the RaPP, a
convolutional autoencoder is trained using Dbase then the normal reconstruction error is
used for outlier detection (ROD) and the simple aggregation along pathway (SAP) as
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Table 4.1: Outlier detection performance – AUC.

Architecture Input LOF ULEF IF OCSVM ABOD ROD SAP f-AnoGAN
f Lrec Ltri

ResNet-S ✗ ✓ z 0.913 0.775 0.935 0.959 0.892 – – –
ResNet-S ✓ ✓ z 0.954 0.696 0.933 0.950 0.954 – – –
ResNet-18 ✓ ✗ z 0.696 0.776 0.770 0.752 0.784 – – –
ResNet-18 ✓ ✓ z 0.949 0.781 0.917 0.912 0.956 – – –

ViT-S ✓ ✓ z 0.730 0.689 0.698 0.910 0.920 – – –
ViT-L ✓ ✓ z 0.900 0.793 0.707 0.937 0.956 – – –

Baseline Methods I 0.446 0.612 0.196 0.247 0.700 0.855 0.845 0.758

introduced in [KSL+20]. For the f-AnoGAN the network is also trained only on Dbase.
More details on the training and evaluation in this setting are listed in Section 4.2.1.5.

In Table 4.1, the resulting Area Under Curve (AUC) values are shown for the various
combinations. The AUC will be 1 if all outliers are detected correctly (see Section 3.3.3 for
details on AUC). For each outlier detection method (LOF, ULEF, IF, OCSVM, ABOD)
the performance is increased when applied on the latent representations compared to the
results when applied on the plain input I directly (see Section 3.4). The networks are
providing a powerful latent representation, where simple outlier detection methods can
perform well. In fact, most combinations (network with a basic outlier detection method)
are outperforming other baseline methods such as ROD, SAP, and f-AnoGAN. Using one
of the architectures in combination with ABOD is the preferable solution, since it yields
the highest performance for all triplet autoencoding-based schemes (✓Lrec and ✓Ltri) and
provides the highest performance overall. The results show that the proposed approach
to include domain knowledge in shaping the latent space improves the outlier detection
performance significantly in this application.

The relevance of the triplet loss becomes clear when comparing the simple autoencoder
architecture (ResNet-18 ✗Ltri) against the one including the triplet loss (ResNet-18 ✓Ltri).
The use of the triplet loss increases the performance for all architectures remarkably.
The influence of the decoder can be identified from ResNet-S ✗Lrec versus ✓Lrec. Its
contribution to the outlier detection is not as clear as for the triplet loss. Indeed, for some
methods the outlier detection is getting slightly worse, however, for some it is getting
better. The reason for introducing the decoder is the local visual similarity, which is not
represented by the outlier detection analysis, since this is only covering the class oriented
scale. For this purpose, another analysis will be carried out in the following subsection.
Further comparison can be drawn from the different encoder types when using the triplet
loss and the decoder. Because of its stable and high performance only ABOD is considered
for further discussions. The ResNet-18 is only slightly better than the smaller ResNet-S.
The performance difference for the two ViT versions is more significant. Here, the ViT-L
would be the architecture of choice. In conclusion, using the triplet loss as well as the
decoder is clearly beneficial, while either the ResNet-S, ResNet-18 or ViT-L can be used
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from the outlier detection performance point of view.

4.1.2.4 Latent Space Visualization

ResNet-S ✓Lrec ResNet-18 ✓Ltri ViT-L

ResNet-S ✗Lrec ResNet-18 ✗Ltri ViT-S

Figure 4.4: UMAP projections of Dz. highway, crossing, single lane, multiple
lane, roundabout.
Interactive visualization tool SCENATLAS: https://jwthi.github.io/SCENATLAS/

Another approach to assess the quality of the latent space is provided through visual
investigation. For this purpose, the latent representations Dz = {z1, . . . ,zM} are projected
into a two-dimensional space using UMAP [MHM18] (Section 2.2.3). In Figure 4.4, the
projections of Dz for the previously tested architectures are visualized.

On this scale, the difference of ResNet-S ✓Lrec versus ✗Lrec is hard to figure out. That
difference will be further investigated via the local similarity analysis. For the difference
produced by the triplet loss ResNet-18 ✓Ltri versus ✗Ltri (middle column in Figure 4.4),
this scale is sufficient. It is visible, that training the autoencoder without the triplet
loss leads to a less separable latent representation. The difference between the ResNet-S
✓Lrec and ResNet-18 ✓Ltri is mainly in the more diffuse distribution of the roundabouts
when using ResNet-18. When comparing the ViT-L against ViT-S, the former one is
showing clear advantage, since in contrary to the smaller version, it is able to distinguish
between highway and multi-lane. Comparing the architectures ResNet-S ✓Lrec, ResNet-
18 ✓Ltri, and ViT-L, all of them show clear grouping of the analysis classes, and hence,
from this perspective are equally well suited. Interested readers may refer to https:

//jwthi.github.io/SCENATLAS/, where the interactive visualization tool SCENATLAS
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is provided, which allows to discover the latent spaces more intuitively.

4.1.2.5 Local Similarity Analysis

Figure 4.5: Local visual similarity motivation. ResNet-S Up: ✓g, Down: ✗g.

As stated above, the main motivation of introducing the decoder is the local visual
similarity of the latent space. This property has not yet been analyzed. So far, only
the class orientated outlier performance was evaluated, i. e., differentiate highway versus
non-highway. Therefore, another analysis is performed for the local scale. In Figure 4.5
the problem is visualized. It is showing two zoom levels of the embeddings from ResNet-S
✓Lrec and ResNet-S ✗Lrec. Therefore, the embedding using the reconstruction loss ✓Lrec

appears to be more visually similar, as can be seen from both magnification levels. In the
following this quantity is assessed through numerical evaluation.

Given the latent representations Dz, the K nearest neighbors for the i-th sample in
the latent space are determined, leading to the nearest neighbor set Ki. Then, the average
distance in the input space (I) between a point and its neighbors is determined. By using

dlocal(k) = 1
M

M∑

m=1

1
k

∑

j∈Ki
∥Im − Ij∥2 (4.5)

the average distance between the latent space neighbors is evaluated. Since a low value
states a high average visual similarity between the i-th point and its neighbors, it is
considered that lower values reflect more meaningful representations. In Figure 4.6 the
resulting values are shown for all the architecture variants. Therefore, the reasoning for the
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Figure 4.6: Average distance of the data points in the input space to their nearest neighbors
corresponding to the respective latent representations. Smaller distance values are better.

: ResNet-18 ✗Ltri, :ResNet-18, : ResNet-S, : ResNet-S ✗Lrec, : ViT-S,
and : ViT-L

usage of the decoder is clearly provided. Moreover, the usage of the triplet loss is increasing
the performance as well. The ResNet-S and ResNet-18 are again on a comparable level,
but the ViT based architectures outperform all others. This indicates, that the ViT based
method are preferable to identify local, shape based outliers.

4.1.2.6 Summary

Table 4.2: Architecture overview, with AUC results when using ABOD in the latent space.

Architecture AUC ↑ dlocal(5) ↓ Nparams
f Lrec Ltri

ResNet-S ✗ ✓ 0.892 25.61 0.3 · 106

ResNet-S ✓ ✓ 0.954 16.90 0.3 · 106

ResNet-18 ✓ ✗ 0.784 18.28 11.0 · 106

ResNet-18 ✓ ✓ 0.956 17.07 11.0 · 106

ViT-S ✓ ✓ 0.920 16.00 0.2 · 106

ViT-L ✓ ✓ 0.956 16.12 6.7 · 106

To sum up this analysis, the important results are gathered in Table 4.2. Here, the
results using ABOD are used. The overall best performance is provided by the ViT-L.
However, also the small networks ResNet-S ✓Lrec and ViT-S perform remarkably well.

4.1.3 Conclusion

A method to create meaningful representations of road infrastructures in order to identify
novel traffic scenarios based is presented in this section. The introduced pipeline is outper-
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forming existing outlier detection methods. It has the additional advantage that it can be
trained on a huge dataset (e. g., OSM), such that no retraining is necessary. In contrary,
methods relying on the reconstruction paradigm would require retraining when detecting
unknown scenarios. This approach presents a possibility to incorporate domain knowledge
of a scenario’s static environment for shaping the latent space of a triplet autoencoder.
The presented results show that methods like outlier detection can significantly benefit
from a latent space shaped in this way.

Another approach to detect unknown infrastructure based on their topology, could be
realized through a simple categorization logic using the graphs, as shown in Section 3.5.2.
However, the method presented here provides an insight to the relationship between in-
frastructure types and additionally the local shape similarity, what can not be handled by
the approach shown in Section 3.5.2.

In conclusion, the suggested pipeline consists of a connectivity graph-based similarity
definition, an autoencoder triplet network with a ViT as encoder, and the ABOD method
performing the novelty detection in the latent space. It shows superior performance with
respect to its novelty detection capabilities and with respect to the neighborhood simi-
larity evaluation. The interactive visualization SCENATLAS of the latent spaces is pro-
vided (https://jwthi.github.io/SCENATLAS/) and the code implementing the method
is made publicly available.

Nevertheless, the method presented is very limited since it only covers the static part of
a traffic scenario. Therefore, the inclusion of dynamic traffic scenario elements is required.
Moreover, the latent spaces show potential to also be used for other tasks like clustering.
Investigating the clustering performance given the embedded data is yet another open
question that is analyzed in the remainder of this chapter.

4.2 Domain Knowledge guided Quadruplet Autoencoder

Two important tasks to enable the scenario-based approach are the definition of repre-
sentative scenarios and the identification of potentially unknown and therefore untested
scenarios. Representative scenarios can either be defined manually or automatically from
collected data. For the latter one, usually clustering is used to define groups and repre-
sentatives per group. The task of identifying untested scenarios can be realized through
novelty detection like in the previous section or by checking if the scenario fits into an ex-
isting class or cluster (e. g., [KWM+19, BKBD21]). For the tasks of clustering and novelty
detection, a good representation or similarity measure is required. When applied directly
on the plain data, the result is unsatisfactory (Section 4.2.2.2). This section presents the
approach Expert-knowledge guided Latent Space for Traffic Scenarios (Expert-LaSTS) that
has been introduced in [WBBU22], which proposes a method to design a representation
space for traffic scenarios using domain knowledge constraints. This representation space
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can be utilized for the tasks of scenario clustering and of detecting novel scenarios.
The method introduced in this section [WBBU22] extends the findings and method of

the previous section ([WBBU21]). While only the static part of a scenario is considered
in the previous section, in this section also dynamic parts are taken into account with
the inclusion of the EGO dynamics. Under some conditions, it can be considered to
be sufficient to represent the dynamic part of a scenario by only the EGO trajectory.
Assuming that the EGO is driving in the exact same infrastructure with almost the same
constellation of objects surrounding it, it will only behave differently if an object, or
another external factor, relevant to the trajectory of the EGO has changed. Such a scenario
will be detected, since the EGO trajectory will be different. If the EGO trajectory is the
same, that would mean, that if something changed in the constellation and setting, it is
not important for the EGO trajectory, hence such scenarios are considered as redundant.

The methodology can be summarized as follows. First, domain knowledge based ob-
jectives are formulated. Then, it is shown how to design a loss function and network
architecture such that those objectives are fulfilled. To realize the designed loss function,
an automatic quadruplet mining process is introduced, that is based on a similarity mea-
sure for scenarios. A similarity measure based on the topology graph of the road network
and the routes defined by the trajectories is proposed. This way, no manual labeling is
required. Overall, the objective is to form a latent space, which hierarchically divides
samples into groups, based on infrastructure, EGO route, and EGO trajectory. This la-
tent space shall be well-suited clustering and novelty detection of traffic scenarios. An
implementation realizing the presented method is made publicly available4.

The resulting latent space is most suitable for the tasks of novelty detection, clustering,
and feature stability compared to alternative approaches. The presented method can be
applied for the validation of AVs. It can aid the analysis of existing scenario databases or
the detection of novel scenarios.

The contributions of the research on domain knowledge guided quadruplet autoen-
coders for traffic scenario analysis can be summarized as:

1. Definition of a domain knowledge aided loss and architecture to design the latent
space as required.

2. Definition of an automatic mining strategy for traffic scenarios.

3. Comprehensive analysis and comparison of various representation spaces.

4.2.1 Method

The aim of the presented method, the metric learning network, is to design a latent space
by means of domain knowledge to represent traffic scenarios, including dynamic and static

4https://github.com/JWTHI/Expert-LaSTS
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aspects of the scenario. It is shown how this latent space can be utilized to detect unknown
traffic scenarios and to cluster traffic scenarios. Here, a traffic scenario is described by the
road infrastructure and the dynamic information of the EGO. This method extends the
previous method [WBBU21], presented before, which is limited to the road infrastructure
of a traffic scenario.

4.2.1.1 Preliminaries

A traffic scenario X = {I, T } consists of the road infrastructure image I and the EGO
trajectory T . The dataset D = {(X0, G0, R0), . . . , (XM , GM , RM )} consists of M traffic
scenarios and the corresponding graphs G and routes R. The individual elements are
defined in the following.

Infrastructure The road infrastructure is represented as a grayscale bird’s-eye view
image I ∈ RS×S and a graph representation G. The graph contains NG lane pieces as
vertices V = {v1, . . . , vNG} and NE edges E = {e1, . . . , eNE} connecting them. The graph
for a scene includes

1. all lanes, which are part of the EGO route,

2. all lanes up to and including the next intersection,

3. all lanes of possible intersections in 1) and 2), and

4. all lanes neighboring any lanes in 1) - 3).

This way, the graph contains mainly the relevant lanes, whereas the image contains all
lanes within the defined area. The resulting graph might differ from the one defined in the
previous section, since here, the EGO route instead of the reachability from the center is
used.

Trajectory The trajectory information is represented in two ways. The sequence
based representation T = {[x1, y1, t1], . . . , [xN , yN , tN ]} and the route representation
R = {r1, . . . , rNG}. The construction of R is realized as follows. For a trajectory point the
corresponding vertices are v(xi, yi), which leads to the vertices sequence for the trajectory
as TR = {v(x1, y1), . . . , v(xN , yN )}. The route representation R is directly linked to G as,

rn =





2 if vn ∈ v(x1, y1)

1 if vn ∈ TR \ v(x1, y1)

0 else

. (4.6)

Hence, the vertex on which the trajectory starts is linked to rn = 2, all other vertices the
trajectory passes lead to rn = 1.
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The graph generation for the infrastructure and the trajectory is very similar to the
concept discussed in Section 3.5.2. There the graphs are used for the detection of traffic
scenario categorized and potentially novel traffic scenario categories. However, relying
on only the connectivity graphs, information like distances and curvatures of the road,
and hence dynamic information as well is not covered. In this method, it is aimed to
combine the rough categorization realized by the connectivity graphs with features of the
infrastructure and the trajectory.

4.2.1.2 Base Method

In [WBBU21], a triplet autoencoder is used to project the infrastructure image I into a
latent representation. Using the triplet learning, the latent representations are optimized
to represent the topology and the shape of the infrastructure. In the remainder of this
section, a brief summary of the method [WBBU21] presented in Section 4.1 is provided.

It is proposed to use the road topologies underlying each image to perform the triplet
mining and obtain a positive and negative sample based on the anchor sample. Positive
samples have the same graph as the anchor, while negative samples have a different graph.
An example: if the anchor is a four-way roundabout, the positive sample would also be
a four-way roundabout. However, the shape of the roundabouts are not necessarily the
same. The negative sample would be some other topology (e. g., intersection).

The positive sample Ip is drawn from the subset {Im | m ∈ M ∧ si(Gm, Ga) = 1}, rep-
resenting all samples which have the same topology as the anchor sample, with si as
defined in Equation (4.1). Contrary, the negative sample Ip is drawn from the remaining
samples {Im | m ∈ M ∧ si(Gm, Ga) = 0}.

The network is a triplet autoencoder consisting of an encoder f : I 7→ z and a decoder
g : z 7→ Î, where z ∈ RNz is the latent representation. Training the network is performed
simultaneously by two approaches: the autoencoding regime and the triplet learning.
This combination enables both, the topology based learning through the triplet strategy
(Equation 4.3), and a low-level image similarity caused by the autoencoding objective
(Equation 4.2).

4.2.1.3 Proposed Method

This section extends the static description from the previous section to a scenario by
considering the dynamics of the EGO vehicle. The network architecture is adjusted and the
triplet learning is extended to quadruplet learning, called metric learning in the following.
The overall concept is depicted in Figure 4.7, which is divided into the quadruplet mining
process and the metric learning network.

The aim of this method is to design a latent space, which enables the clustering of
scenarios and the detection of novel scenarios. Domain knowledge is used to aid and
constrain the training process. For this, the following objectives are formulated:
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Figure 4.7: Metric Learning Network for Traffic Scenarios: The quadruplet mining depicts
how the required scenario quadruplet is selected based on the graphs G and routes R.
Each scenario X consists of an image I and a trajectory T . Each scenario is processed by
the network, leading to the latent representations z. Below the network, the quadruplet
learning objective is illustrated. The scenario is reconstructed through the decoder g into
a merged representation X̂, combining the infrastructure image and the trajectory.

A) Scenarios with the same infrastructure and similar trajectories shall be close together
in the latent space.

B) Scenarios with the same infrastructure but different trajectories shall be close but
not as close as A).

C) Scenarios without the same infrastructure shall be farther away than B).

D) The distance of scenarios according to A) shall be adjusted based on the similarity
of the underlying actions.

E) Neighbors should have high similarities with respect to trajectory and infrastructure
features.

The case that two scenarios have a different infrastructure but a similar route, is not
tractable in this method, since the proposed route comparison requires a similar infras-
tructure. The objectives reflect domain knowledge based assumptions about the similarity
of scenarios in a hierarchical way. Hence, the latent space should reflect these domain
knowledge based hierarchical similarity objectives. In order to achieve the objectives, an
automatic quadruplet mining process, the metric learning as well as the network architec-
ture are presented.
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Quadruplet Mining In Section 4.1 it is shown how the identification of similar infras-
tructures can be realized through their topology. Hence, distinguishing the cases C) from
A) or B) is possible. To realize the required separation between A) and B), and there-
fore to include the trajectory information to the quadruplet mining process, the mining
definitions are extended.

Given the case that two graphs are isomorphic Gi ∼= Gj , hence their infrastructure
is the same, two trajectories are considered to be similar, if they share the same route
within their graphs. The trajectories T are transformed into the route representation R

which are directly linked to the respective graph G (see Section 4.2.1.1). Two scenarios
share the same route if there exists a bijection p on Gi, Gj such that Ri = p(Rj), which is
formulated as Gi ∼= Gj | Ri = p(Rj). The route-based similarity measure is defined as

sr(Gi, Gj , Ri, Rj , ) =





1 if Gi ∼= Gj | Ri = p(Rj)

0 else
. (4.7)

According to D), just defining two trajectories to be similar is not sufficient, instead
it shall be adjusted based on the actions of the trajectories. To allow further fine-tuning
in the training, for trajectories sharing a similar route an additional similarity measure
st is defined. Let Ai = [alat,alon, |v|] be the accelerations and speed per timestamp
for the i-th trajectory. The dissimilarity between two trajectories is then calculated via
d = dDTW(Ai,Aj)|DTWseq|, where dDTW denotes the DTW distance and |DTWseq| the
warping path length divided by maximum sequence length. The intuition is to compare
the trajectories which share the same route on an action level, therefore considering the ac-
celerations and speed. The similarity is calculated with respect to maximum dissimilarity
(dmax) within all trajectories with the same route, as

st = 1 − d

dmax
. (4.8)

The mining of a data quadruplet is realized by randomly sampling an anchor scenario
Xa. Based on its corresponding graph Ga and route Ra, samples for the cases A) - C)
are drawn. Hence, three types of scenarios are sampled, where compared to the anchor
scenario they are having:

Xpp the same infrastructure G and the same route R,

Xpn the same infrastructure G but a different route R, and

Xnn a different infrastructure G.

The scenario Xpp, with similar infrastructure and similar route, is drawn from all scenar-
ios which have the same infrastructure graph and route as the anchor scenario, hence it
is randomly picked from {Xm | m ∈ M ∧ si(Gm, Ga) = 1 ∧ sr(Gm, Ga, Rm, Ra) = 1}. The
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scenario Xpn, with same infrastructure but different route, is randomly drawn from
{Xm | m ∈ M ∧ si(Gm, Ga) = 1 ∧ sr(Gm, Ga, Rm, Ra) = 0}. Finally, the scenario Xnn,
with a different infrastructure, is randomly picked from {Xm | m ∈ M ∧ si(Gm, Ga) = 0}.
This quadruplet mining process is also visualized on the left side of Figure 4.7.

Metric Learning This section introduces the metric learning and the network archi-
tecture, such that the objectives A) - E) are realized.

As can be seen in Figure 4.7, the network architecture consists of two encoders, fI : I 7→
zI for the image and fT : T 7→ zT for the trajectory. The two intermediate representations
are concatenated and then passed through the network fc : [zT, zI] 7→ z to create the final
latent representation z ∈ RNz . Finally, a decoder g : z 7→ X̂ is used to generate a merged
representation X̂ ∈ RS×S×2 of infrastructure and trajectory.

The data quadruplet (Xa,Xpp,Xpn,Xnn) is passed through the encoders fI, fT, and fc,
such that the latent representations za, zpp, zpn, znn are generated. The squared distances
from the anchor to the samples are defined as dpp = ∥za − zpp∥2

2, dpn = ∥za − zpn∥2
2, and

dnn = ∥za − znn∥2
2. The objectives A) - D) can then be formulated as

B) & C): dnn ≥ dpn + αG, (4.9)

A) & B): dpn ≥ max{dpp, αT} + αR, (4.10)

A) & D): dpp = (1 − st)αT, (4.11)

where αG, αR, and αT are margin parameters. Those constraints lead to the following
loss formulations

LG = max{αG + dpn − dnn, 0}, (4.12)

LR = max{αR + max{αT, dpp} − dpn, 0}, (4.13)

LT = |(1 − st)αT − dpp|. (4.14)

The losses LG and LR are basic triplet losses [SKP15], when optimizing both, it leads
to the quadruplet loss as presented in [ZZLZ16]. However, in this work, additionally to
the quadruplet loss, the objective is to further refine the similarity between the anchor
representation and the representation of the sample with similar infrastructure and similar
route, according to st. Like in [JWS+19], a L2-regularization term for the embedding
vectors is added to the overall loss, with a weight of 0.01, this way the representations are
kept from being pushed too far away.

The objective in E) is not directly addressed by the former loss definitions, hence
another strategy needs to be adopted. For this purpose, the latent representation of a
scenario is used to reconstruct the scenario. In this case, the reconstruction generates an
image X̂ with two channels, one channel for the infrastructure as in I and one channel
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for the trajectory information as in T . This way, the network has to connect the image
information with the trajectory information. Furthermore, for the decoding to work prop-
erly, the neighborhood in the latent space has to share high similarities. To further aid
the training, the target reconstruction image X only shows the lanes which are part of
the graph. Since simple reconstruction might fail due to the high sparsity of the generated
output, the reconstruction loss is adopted piece-wise for trajectory, infrastructure, and
respective background pixels. The weighted sparse reconstruction loss, which embeds the
objective E), is defined as

LRec = γIR(II) + γĪR(IĪ) + γTR(IT) + γT̄R(IT̄), (4.15)

with R(I) = 1
|I|
∑
i∈I(Xa(i) − X̂a(i))2 the reconstruction error for the pixel subset I.

The subset II refers to all ground truth infrastructure pixels, IĪ all remaining pixels in the
infrastructure channel. For the trajectory pixels IT and IT̄ the logic applies respectively.

Combining all the loss definitions leads the overall loss as

L = βM(βGLG + βRLR + βTLT) + βRecLRec, (4.16)

with the hyperparameters: βM controlling the influence of the metric learning term, βRec

controlling the influence of the reconstruction term, and the hyperparameters βG, βR,
and βT controlling the respective loss subterms of the metric learning term. Training
the network with L aims to realize all the domain objectives A) - D) as defined in the
beginning of this section.

4.2.1.4 Extension

The presented method focuses only on the latent space formed by z. Nevertheless, the
other latent representations zT and zI could be utilized as well. In this subsection, a
straight forward extension of the proposed method is shown. It basically adopts the
triplet learning regime introduced in the former section, to the latent representation zI of
the infrastructure encoder. Even though it would be possible, the latent representation
from the trajectory encoder is not used for any learning objective in this extension.

Given the data quadruplet as defined before, the used infrastructure latent representa-
tions are defined as zI,a, zI,pp, zI,nn, where zI,pn is not used since only a triplet is required.
The distances to the anchor representation are defined as dI,pp = ∥zI,a − zI,pp∥2

2 and
dI,nn = ∥zI,a − zI,nn∥2

2. The triplet loss for the infrastructure latent representations can be
defined as

LI = max{αI + dI,pp − dI,nn, 0}. (4.17)

This loss forces the latent representations zI to follow the infrastructure similarity, as in
the previous section. Using this as an extension for the proposed quadruplet autoencoder,
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the overall loss becomes

Lext = βM(βILI + βGLG + βRLR + βTLT) + βRecLRec. (4.18)

This way, both latent representations should be optimized to follow the domain knowledge
similarities. This could enable a separate analysis between infrastructure and a complete
scenario. Applications benefiting from such an extension would for example be to identify
whether the infrastructure or only the behavior inside that infrastructure is unknown.
Therefore, it provides the possibility to reason, on what level a traffic scenario is novel.

4.2.1.5 Alternative Approaches

In this section, the objective is to generate representations which are well suited for clus-
tering and outlier detection, as well as showing high similarities between features among
neighbors. The proposed quadruplet method aims to solve that task through a combina-
tion of metric learning and the reconstruction regime. In order to evaluate the proposed
method better, alternative approaches to solve the task are examined. In the remainder of
this Section 4.2.1.5, the setting for each alternative approach is briefly explained, while in
the following Section 4.2.2 the results of these alternative approaches are put into compar-
ison. All methods relying with alternative metric losses rely on the quadruplet sampling
as introduced in the proposed method.

Classifier Since the information of similarity between the graphs is available, one can
create groups of similar samples, hence, classes. This can be realized on an infrastructure
level and on a route level. Therefore, let CG be the number of infrastructure classes (CG

unique infrastructure graphs in the training data), while CR is the number of route classes.
The encoder part of the proposed architecture is kept. Two classification heads gclass,G and
gclass,R are plugged after fc, hence gclass,G : z 7→ {CG,c}CG

c=1 and gclass,R : z 7→ {CR,c}CR
c=1.

The overall architecture fI, fT, fc, gclass,G, and gclass,R is trained using the cross entropy
loss for classification. For this, the two loss terms of the two classification heads are
simply summed. The classification heads are both realized through a MLP with two
hidden layers. The architecture of the MLP uses (N z-C...-C...-C...) number of neurons in
the corresponding layers. The narrative behind this approach is the assumption, that the
latent representations have to be expressive such that both classifiers perform well.

Autoencoder An approach without the graph-based similarity is when using only the
reconstruction regime. Hence, the overall architecture is kept as in the proposed method.
But here, only the reconstruction loss is used to train the network:

LA,AE = βRecLRec. (4.19)
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Contrastive Learning In the proposed method, the objectives lead to the loss definition
which is essentially using two triplet losses. Instead, one could replace the triplet loss
terms with a more simple contrastive loss (Section 2.5.2.1). Hence, the relation between a
negative and a positive sample is not specifically defined. The loss terms LG and LR are
adjusted such that the contrastive loss Equation (2.75) is used. This leads to the adjusted
loss as

LG,cont = d2
pn + max

{
αG − d2

nn, 0
}
, (4.20)

LR,cont = max{αT, dpp}2 + max
{
αR − d2

pn, 0
}

and (4.21)

LA,cont = βM(βGLG,cont + βRLR,cont + βTLT) + βRecLRec. (4.22)

In order to compensate the missing ranking between the infrastructure similarity and the
route similarity, the hyperparameters are selected to be βR = 10 and βI = 1, such that
distances between samples of similar route are penalized stronger. The margins are kept
as αG = αR = αT = 1.

Cross Entropy-Based Contrastive Learning As demonstrated in Section 2.5.2.3,
contrastive learning with cross entropy loss can be interpreted as an approximation of
the triplet loss. Therefore, an obvious alternative is to replace the triplet losses by cross
entropy-based losses. The cross entropy-based contrastive loss for a single negative in-
stance using dissimilarities is defined as

LCE = 1
β

log(1 + exp(β(α+ dp − dn))). (4.23)

Here, only the 1
β scaled version of the loss is used in order to keep the similarity to the

triplet loss. When adjusting the loss terms to follow the cross entropy-based contrastive
loss, the following definitions result:

LG,CE = 1
β

log(1 + exp(β(αG + dpn − dnn))), (4.24)

LR,CE = 1
β

log(1 + exp(β(αR + max{αT, dpp} − dpn))), (4.25)

LA,CE = βM(βGLG,CE + βRLR,CE + βTLT) + βRecLRec. (4.26)

The influence of the hyperparameter β is analyzed in more detail in the experiments. Like
before, the margins are kept as αG = αR = αT = 1, while the loss terms are weighted
with βT = βR = βI = 1.

SwAV Similarity-Based SwAV was presented in a self-supervised setting Sec-
tion 2.5.3.1. Instead of generating two views which are somehow similar, here, it is investi-
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gated if two similar samples defined by the graph similarity (like in the proposed method)
can be used for learning appropriate representations as well. Therefore, the metric learn-
ing part of the proposed method is adjusted to consist of only SwAV-based losses. As in
SwAV, a projection head gproj : z 7→ h with h ∈ RNh and Nh = 512 is used. Still, the
decoder is reconstructing from z. The losses based on SwAV from Equation (2.108) are
defined as

LG,SwAV = l(ha, qpn) + l(hpn, qa), (4.27)

LR,SwAV = l(ha, qpp) + l(hpp, qa) and (4.28)

LA,SwAV = βM(βGLG,SwAV + βRLR,SwAV) + βRecLRec. (4.29)

Therefore, the intuition behind is to break the graph-based similarity into two components.
First, the anchor Xa and the sample with similar infrastructure but different route Xpn is
used for one SwAV term, aiming to make their representations very similar. Second, the
anchor Xa alongside the Xpp sample used for another SwAV term, again aiming to make
them as similar as possible. As in the contrastive learning setting, the ranking could be
compensated by different weighing of the two terms. For further analysis, only z is used,
while h is actually used for the training. Besides the fact that no negative samples hnn

are required, prototypes are learned alongside the network training.

Barlow Twins Similarity-Based Inspired from the idea to use the SwAV objective
in the overall loss to train the network, here, the Barlow Twins loss (Section 2.5.3.2) is
used in the same fashion. Instead of generating two similar samples, the similar samples
are defined using the mining procedure as in the proposed method. Also, a projection
network is used gproj : z 7→ h. Let R({ha,hpn}B) be the correlation matrix as used in
Barlow Twins loss Equation (2.112), but here using the projected representation of the
anchor ha and the sample with similar infrastructure but different route hpn. The loss
terms to train the network are then defined as

LG,BT =
∑

i

(1 − Rii({ha,hpn}B))2 + λ
∑

i

∑

j ̸=i
Rij({ha,hpn}B)2, (4.30)

LR,BT =
∑

i

(1 − Rii({ha,hpp}B))2 + λ
∑

i

∑

j ̸=i
Rij({ha,hpp}B)2 and (4.31)

LA,BT = βM(βGLG,BT + βRLR,BT) + βRecLRec. (4.32)

Like for the SwAV-based approach, no negative samples are required here.

VICReg Similarity-Based The last approach utilizing the similarity definition is
based on VICReg (Section 2.5.3.3). Similar to the concepts in combination with SwAV
and Barlow Twins, the self-supervised setting typically used in VICReg is not used, rather
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the similar samples are defined based on the mining process of the proposed method. With
the VICReg loss Equation (2.118), the used loss is defined as

LG,VICReg = αv
[
Lv({ha}B) + Lv({hpn}B)

]
+ αiLi({ha,hpn}B)

+ αc
[
Lc({ha}B) + Lc({hpn}B)

]
, (4.33)

LR,VICReg = αv
[
Lv({ha}B) + Lv({hpp}B)

]
+ αiLi({ha,hpp}B)

+ αc
[
Lc({ha}B) + Lc({hpp}B)

]
and

(4.34)

LA,VICReg = βM(βGLG,VICReg + βRLR,VICReg) + βRecLRec. (4.35)

Self-Supervised Methods The methods SwAV, Barlow Twins, and VICReg can be
used as well in their self-supervised setting to generate representations. Hence, no defini-
tions of similarity are used here. The encoder part (fI, fT, fc) of the proposed architecture
is used for the self-supervised methods, and only the projection head gproj is added. The
typical augmentations as summarized in Section 2.5.3.4 are not suited for traffic scenarios
represented by X . Therefore, four domain knowledge guided augmentations are used to
generate the necessary transformations. First, with some probability, the infrastructure
image is replaced by another image which only depicts the elements which are part of
the infrastructure graph as used in the proposed method. Assumption: two scenarios are
the same since the core elements of the infrastructure are still the same. Second, with
some probability, the same random rotation is applied to the image and the trajectory.
Assumption: two scenarios are still the same even though they are rotated versions of each
other. Third and fourth, with some probability, the image is blurred and noise is added
to the trajectory points.

The methods used to train the network are the versions of SwAV, Barlow Twins and
VICReg as summarized in Section 2.5.3. The analysis is realized based on z.

Dimensionality Reduction For reference, the analysis is also performed on the data
projected with PCA and UMAP to Nz dimensional space.

4.2.2 Experiments

The quality of the latent space constructed by the proposed method is analyzed through
various experiments. The analysis is based on four perspectives: 1. Novelty detection:
Given a base set, are new scenarios detected as novel? 2. Clustering: Do the latent
representations form meaningful clusters? 3. Feature stability: Are scenario features of
neighboring latent representations similar? 4. Visualization: Can the latent space be an-
alyzed through aided visualizations? In order to evaluate the impact of the various loss
terms and possible network variations, different settings are used for all the experiments.
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This subsection is structured as follows. First, the dataset is explained. Second,
the presented method is compared against alternative approaches. In the third part a
comprehensive ablation study is provided. The second and third parts are structured
equally: novelty detection, clustering, and feature stability. The visual assessment is
shown in part four. The different results are summarized in the last part.

4.2.2.1 Data

The data used to train and analyze the network is generated through simulation. The data
generation process is divided in two parts, the infrastructure sampling and the simulation.

Infrastructure Sampling To obtain the images of road infrastructures I, the sampling
is realized as in the previous section ([WBBU21]). From OSM [Ope21], random nodes are
selected as center for the scenarios. The underlying road infrastructure within the area of
200 m × 200 m per node is extracted as image (100 px × 100 px), graph, and as map for
simulation. To generate the graphs and images, the tools from [WBBU21] are used.

For generating the training dataset, the district of Upper Bavaria (roundabouts and
highways) and the city of Ingolstadt with its adjacent counties (inner city and rural roads)
are used as extraction regions. From all that nodes, ≈ 70 000 infrastructures are sub-
sampled for training, which builds the training dataset.

The state of Saarland and its state capital Saarbrücken are used to generate the vali-
dation dataset. Here, ≈ 60 000 infrastructures are sub-sampled for validation.

Simulation To obtain the trajectory of the EGO vehicle T , for each of the infrastruc-
tures, simulations in SUMO [LBBW+18] are performed. One vehicle (EGO) is inserted at
the center position of the scenario, while other vehicles are randomly spawned, such that
the scenarios show a rather high traffic load5. The scenario is simulated for a total time
span of 6 s. The EGO trajectory T = {[x1, y1, t1], . . . , [xN , yN , tN ]} during this timespan
is recorded.

The infrastructures as well as the routes are sampled such, that for each scenario,
similar infrastructure and route samples are available.

Groups For the analysis with respect to groups (clustering and novelty detection), three
detail levels are examined. First, a rough level, consisting of the road type categories:

1. single-lane,

2. multi-lane,

3. intersection,
5To achieve high traffic load, the number of vehicles per lane is estimated based on counting statistics

from different road types in Bavaria.
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4. intersection entering,

5. roundabout,

6. roundabout entering,

7. highway and

8. highway entering.

The second detail level considers all unique infrastructure graphs in the dataset, leading
to 737 groups. Hence, those groups can be used to analyze the performance with respect
to the infrastructure.

The third and most detailed level groups the samples by their unique routes combined
with their graphs leading to 1692 different groups. It provides insight with respect to the
complete scenario.

4.2.2.2 Comparison

The proposed method is compared to other approaches as discussed in Section 4.2.1.5.
They can be grouped into the following types: methods with a different metric loss, the
proposed extension, self-supervised methods, and alternative baseline methods. For the
group of methods with a different metric loss, the overall architecture is kept as in the
proposed method, only the metric loss is realized differently. The self-supervised methods
only use the encoder structure of the architecture and slightly modified augmentations.
The alternative methods contain a classifier approach, dimensionality reduction (UMAP
and PCA), autoencoder, and an approach where the input data is used directly (plain).
The overall performance of all the methods in comparison to the proposed method can
be found in Table 4.3. In the following, the results for the aspects novelty detection,
clustering, and feature stability is discussed.

Novel Scenario Detection Detecting novel scenarios is a crucial task in the validation
process of autonomous driving. The latent space designed by the former method suits
this need, as shown in this section. Except for the plain approach, either the latent
representations z, or the dimensionality reduced representation (UMAP and PCA) are
used for the novelty detection. Here, detecting novel scenarios is realized through outlier
detection. Therefore, assuming a base dataset (the already known scenarios), the task is
to identify scenarios which do not fit in the base dataset.

The novelty detection is performed as n-vs-1, where one group (Section 4.2.2.1) is
excluded from the base dataset. It is tested, how well this left-out group is detected as
novel. This procedure is repeated for all groups. The novelty detection performance is
measured using the Area Under Curve (AUC). Angle Based Outlier Detection (ABOD) is
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Table 4.3: Comparison Performance Summary: red indicates worse than the proposed
method, green better, and yellow comparable. The subscripts of the AUC and the ACC
scores stand for: C category level, G graph level, and R route level. The subscripts of
the d̄ scores stand for the feature stability with respect to the: I image, T trajectory, v
velocity, alon, alat longitudinal and lateral acceleration, and ψ orientation.

Novelty Detection ↑ Clustering ↑ Feature Stability ↓
Approach AUCC AUCG AUCR ACCC ACCG ACCR d̄I d̄T d̄v d̄alon d̄alat d̄ψ

Proposed 0.892 0.907 0.865 0.817 0.553 0.479 36.18 0.53 1.97 0.49 0.29 0.10
Different Metric Loss

LA,cont 0.875 0.888 0.850 0.624 0.436 0.266 35.37 0.30 0.82 0.44 0.27 0.09
LA,VICReg 0.871 0.865 0.837 0.616 0.480 0.393 36.78 0.51 1.93 0.46 0.29 0.10
LA,SwAV 0.880 0.811 0.775 0.537 0.119 0.096 35.58 0.42 1.59 0.51 0.28 0.09
LA,BT 0.865 0.854 0.835 0.616 0.502 0.428 37.83 0.61 2.11 0.46 0.30 0.10
LA,CE, β = 1000 0.890 0.901 0.860 0.716 0.527 0.490 36.11 0.54 2.01 0.50 0.29 0.10
LA,CE, β = 100 0.891 0.904 0.859 0.768 0.538 0.484 36.17 0.55 2.02 0.51 0.30 0.10
LA,CE, β = 10 0.887 0.902 0.859 0.793 0.547 0.486 36.07 0.51 1.87 0.52 0.29 0.10
LA,CE, β = 2 0.885 0.885 0.845 0.774 0.489 0.410 36.21 0.53 1.93 0.53 0.29 0.10
LA,CE, β = 1 0.897 0.890 0.849 0.754 0.405 0.367 36.20 0.48 1.77 0.50 0.29 0.10

Extension
Stacked 0.886 0.916 0.866 0.682 0.636 0.501 36.06 0.56 2.22 0.53 0.29 0.10

Self-Supervised Methods
SwAV 0.203 0.239 0.271 0.324 0.074 0.071 39.73 0.48 0.55 0.44 0.35 0.12
VICReg 0.715 0.623 0.632 0.447 0.072 0.072 39.47 0.51 0.60 0.45 0.34 0.12
Barlow Twins 0.734 0.641 0.651 0.427 0.050 0.065 39.45 0.49 0.59 0.46 0.34 0.12

Alternative Methods
Classifier 0.860 0.760 0.731 0.704 0.132 0.097 39.70 0.90 2.41 0.51 0.36 0.12
UMAP 0.613 0.116 0.063 0.613 0.116 0.063 35.96 0.90 5.02 0.67 0.35 0.11
PCA 0.692 0.699 0.665 0.613 0.482 0.406 29.86 1.08 4.63 0.58 0.34 0.11
Autoencoder 0.818 0.758 0.741 0.612 0.093 0.092 35.57 0.41 1.65 0.52 0.27 0.09
Plain 0.500 0.485 0.487 0.265 0.255 0.271 28.80 1.47 5.96 0.74 0.43 0.30
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Figure 4.8: AUC performance ABOD vs. LOF over various representation learning set-
tings. Red/cyan performance loss/gain when using LOF instead of ABOD. Peaks show
best overall performance. C category level, G graph level, and R route level.
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Figure 4.9: AUC performance ABOD vs. ULEF over various representation learning
settings. Red/cyan performance loss/gain when using ULEF instead of ABOD. Peaks
show best overall performance. C category level, G graph level, and R route level.

used as the novelty detection method. Using other outlier detection methods, like LOF and
ULEF decreased the performance in most of the cases. The novelty detection performance
of ABOD compared to LOF and ABOD compared to ULEF can be found in Figure 4.8
and Figure 4.9.

As the results show (Table 4.3), detecting novel scenarios is best realized in the
latent space formed by the proposed method or in the latent space formed by the
approximated version (see Section 2.5.2.3 about cross entropy-based contrastive loss)
LA,CE, β = 1, . . . , 1000. Apart from them, only the classic contrastive learning approach
LA,cont reaches comparable performance, when considering all the three detail levels C,
G, and R. Nevertheless, the group of methods with alternative metric loss outperforms
all self-supervised and alternative methods. The group of self-supervised methods per-
forms surprisingly weak, especially when compared to a classical autoencoder approach.
This might be due to the augmentations, which are rather slight. Interestingly, for all
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Figure 4.10: ACC performance HC vs. K-means over various representation learning
settings. Red/cyan performance loss/gain when using K-means instead of HC. Peaks
show best overall performance.

self-supervised methods, the outlier detection method LOF performs significantly better,
however, still it falls behind the classical autoencoder approach. In the following Sec-
tion 4.3, an approach focusing on strong augmentations for traffic scenarios is presented.

Clustering Another task in the field of validating AVs is to cluster scenarios into groups.
This way, possible representatives for testing per cluster can be defined. In the following,
the clustering performance is demonstrated when using the designed latent space. As
for the novelty detection, the latent representations z, or the dimensionality reduced
representation (UMAP and PCA) are used for the clustering.

Because of the highly imbalanced number of samples per group (Section 4.2.2.1), ag-
glomerative Hierarchical Clustering (HC) suits this task well. As linkage function, the
average is used. The clustering performance is stated as accuracy ACC [YXN+10]. For
this, the best mapping between the ground truth labels and the predicted labels is deter-
mined. Given this mapping the accuracy can be determined. For reference, the results
when applying K-means instead of HC for various representation learning settings are
illustrated in Figure 4.10. For the category level C, the K-means performs worse than the
HC but still somehow competitive. On the graph level G and on the route level R, the
clustering result of K-means dramatically decreases compared to HC. This is most likely
due to the highly imbalanced nature of the analyzed classes. Hence, in this application it
is opted for HC for further experiments.

For the clustering, only the approximated versions with β = 10 reached comparable
performance to the proposed method (Table 4.3). Compared to the self-supervised meth-
ods, the performance gap is even bigger. The same holds for the alternative methods.
Hence, for clustering traffic scenarios, the proposed method is best suited and therefore
the approach which shows the most promising results for the identification of relevant
traffic scenarios.
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Feature Stability As stated in the design requirements E), one of the objectives is that
neighbors in the latent space share high similarities with respect to various features. An
analysis accessing this is realized in this section.

To analyze the stability within a neighborhood, for each data point, the 15 nearest
neighbors in the latent space are considered for the further analysis. The average differ-
ences from the data points in focus to their neighbors are determined. For calculating the
differences d various features are used: 1. dI image difference (like in the previous sec-
tion [WBBU21]), 2. dT trajectory difference (average displacement), 3. dv average velocity
difference, 4. dalon average longitudinal acceleration difference, 5. dalat average lateral ac-
celeration difference and 6. dψ average orientation difference. Those values are averaged
over the complete dataset, leading to d̄.... The smaller those average values, the more
similar the features within the neighborhood, hence the better the objective is fulfilled. It
is important to note, that the features 3 - 6 are not part of the input, and are generated
additionally during simulation for analysis purposes only.

The results are listed in Table 4.3 column feature stability. The performance difference
is not as clear as for the novelty detection and the clustering. Mainly, three methods
stand out, and outperform the proposed method: LA,cont, LA,SwAV, and Autoencoder.
In general, the performance among the methods with different metric loss compared to
the proposed method is very much comparable. The self-supervised methods show strong
results for some trajectory features but weak results for the infrastructure feature. LA,cont

is the overall best performing method with respect to feature stability. However, the
proposed method is performing on a reasonable level.

Overall Comparison Since all three analysis aspects are of interest, here the methods
are compared considering the overall performance. For this, the comparison is split into the
following groups: cross entropy-based contrastive loss, different metric loss, self-supervised
methods, and alternative methods. Various figures illustrate the overall performance, the
numbers underlying the figures can be found in Table 4.3. The normalization for each of
the following figures, is selected such that the overall minimum and maximum value per
feature defines the scaled interval.

When comparing the proposed method, to the methods applying its approximated
version LA,CE, β = 1, . . . , 1000, it becomes clear that they perform very comparable. Con-
sidering Figure 4.11, the two best results are for the proposed method and LA,CE, β = 10.
Nevertheless, the relationship between the two approaches manifests itself in very similar
results.

As can be seen in Figure 4.12 In the group of methods with a different metric loss,
only the LA,CE, β = 10 performs comparable to the proposed method. LA,cont performs
worse on clustering and novelty detection but achieves good results for feature stability.
Therefore, using the triplet loss or the related cross entropy loss LA,CE, β = 10 is the best
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AUCC

AUCG

AUCR
ACCC

ACCG

ACCR

d̄I

d̄T

d̄v
d̄alon

d̄alat

d̄ψ

Proposed
LA,CE, β = 1000
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Figure 4.11: Performance Summary: Proposed method vs. LA,CE, β = 1, . . . , 1000.
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Figure 4.12: Performance Summary: Proposed method vs. methods with different metric
loss.

choice for training the network, to satisfy most of the objectives.
In this application, the self-supervised methods fail to deliver sufficient results. Only

for a few trajectory features they show higher stability than the proposed method (Fig-
ure 4.13). With respect to all other measures, the results are worse. This effect might
be due to the applied augmentation strategy, which are indeed adjusted but still not very
strong.

The proposed method also clearly outperforms all the alternative methods (see Fig-
ure 4.14). Only the autoencoder setting shows better results throughout the most feature
stability measures.
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Figure 4.13: Performance Summary: Proposed method vs. self-supervised methods.
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Figure 4.14: Performance Summary: Proposed method vs. alternative methods.
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Table 4.4: Ablation Performance Summary: orange to red indicates worse than the pro-
posed method, green better, and yellow comparable. The subscripts of the AUC and the
ACC scores stand for: C category level, G graph level, and R route level. The subscripts
of the d̄ scores stand for the feature stability with respect to the: I image, T trajectory, v
velocity, alon, alat longitudinal and lateral acceleration, and ψ orientation.

Novelty Detection 4.2.2.2 Clustering 4.2.2.2 Feature Stability 4.2.2.2
Approach AUCC AUCG AUCR ACCC ACCG ACCR d̄I d̄T d̄v d̄alon d̄alat d̄ψ

Proposed 0.892 0.907 0.865 0.817 0.553 0.479 36.18 0.53 1.97 0.49 0.29 0.10
βT = 0 0.890 0.888 0.844 0.798 0.466 0.348 35.88 0.53 2.12 0.52 0.29 0.10
βT = 0, βR = 0 0.891 0.882 0.836 0.781 0.272 0.161 36.40 0.46 1.76 0.51 0.28 0.10
βM = 0 0.818 0.758 0.741 0.612 0.093 0.092 35.57 0.41 1.65 0.52 0.27 0.09
βRec = 0 0.889 0.928 0.883 0.729 0.731 0.572 39.18 0.75 1.55 0.44 0.35 0.12
αG = 10,αR = 5 0.896 0.910 0.865 0.712 0.598 0.447 37.11 0.60 2.27 0.50 0.30 0.10
fI : ViT 0.879 0.901 0.864 0.800 0.529 0.517 36.07 0.54 2.06 0.49 0.29 0.10
fT : LSTM 0.883 0.898 0.855 0.785 0.550 0.481 35.94 0.56 2.11 0.54 0.29 0.10
random-excl 0.898 0.892 0.841 0.815 0.505 0.390 35.43 0.48 1.81 0.51 0.28 0.09
group 0.854 0.887 0.846 0.627 0.474 0.381 35.32 0.45 1.62 0.51 0.28 0.10
N ... = N ... ∗ 2 0.889 0.910 0.866 0.716 0.633 0.526 35.61 0.48 1.77 0.48 0.28 0.10
Nz = 32 0.887 0.900 0.858 0.750 0.526 0.512 36.20 0.54 2.02 0.53 0.29 0.10
Nz = 16 0.899 0.894 0.850 0.766 0.469 0.436 36.67 0.61 2.46 0.55 0.29 0.10
Nz = 8 0.903 0.881 0.839 0.783 0.447 0.303 36.90 0.57 2.18 0.54 0.30 0.10
Nz = 4 0.858 0.794 0.769 0.806 0.166 0.148 37.70 0.44 1.46 0.53 0.29 0.10
Nz = 2 0.318 0.319 0.322 0.680 0.050 0.052 39.05 0.86 3.25 0.61 0.32 0.10

4.2.2.3 Ablation

Model Variants To assess the impact of the various possible settings of the network
and the learning process, they are varied and compared.

Proposed Setting: The setting which shows overall good performance is as follows:
fI: ResNet-18 [HZRS16], fT: Transformer-Encoder [VSP+17], N I = 64, NT = 16, N z =
64, βM = βG = βR = βT = 1, βRec = 10, γI = γT = 5, γĪ = 10, γT̄ = 20, αG = αR =
αT = 1, and random negative sampling. For the decoder g, the architecture is kept similar
throughout the experiemnts6 as it is used for regularization purposes of the latent space
only.

In the Transformer-Encoder (fT), an embedding token is used like in [WBBU21]. As
alternative fT, a LSTM [HS97] is used. And as alternative image encoder fI, a ViT
[DBK+21] with patch-size of 10, dimensionality of 256, MLP dimensionality of 128, 16
layers, and 16 heads is used.

All the other variants used in the ablation, adjust few parameters from the proposed
setting. For example, in the variant βM = 0 just the according value is changed, all other
values are as stated above. N ... = N ... ∗ 2 indicates that the dimensionality of all latent

6The architecture of the decoder is as follows in PyTorch notation: ConvTranspose2D(Nz,64,6,2)
→ ReLU → ConvTranspose2D(64,128,8,2) → ReLU → ConvTranspose2D(128,128,8,2) → ReLU →
ConvTranspose2D(128,128,8,2) → ReLU → ConvTranspose2D(128,64,6,1) → ReLU → ConvTrans-
pose2D(64,2,6,1) → sigmoid
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representations (zI, zT, and z) is doubled, while for N z = 32, only the dimensionality of
z is changed.

For the negative sampling, the following strategies are examined: random, i. e., from
all graphs that are different, group, i. e., from all graphs that are different but only inside
the same category (highway, etc.) and random-excl, i. e., from all graphs that are different
excluding the same category.

Novel Scenario Detection In Table 4.4, the results for various model variations are
shown. The description in the left column, indicates what parameters are changed com-
pared to the proposed setting.

As one can see, detecting novel scenarios is realized best either with the proposed
setting, αG = 10 and αR = 5, N ... = N ... ∗ 2, fI : ViT or fT : LSTM settings. Hence, the
choice of the margin parameters has neglectable effect on the performance.

The performance with double sized latent spaces N ... = N ... ∗ 2 increases over the
proposed setting. When reducing the dimensionality, the performance for the graph and
route based novelty detection drops. Hence, either the proposed setting or the setting
N ... = N ... ∗ 2 is preferable for novelty detection.

The importance of each loss term can be seen from Table 4.4 (rows 2-5). The metric
learning related losses (LM, LG, LR and LT) are required for good performance.

Clustering The clustering accuracies for the model variants are shown in the corre-
sponding columns in Table 4.4. Only the model variants when using ViT or LSTM encoder
is achieving comparable results to the proposed setting.

Increasing the size of the latent space N ... = N ... ∗ 2 has a negative effect on the
clustering accuracy for categories but the auccuracies for clustering graphs and routes
increases. Therefore, using double sized latent spaces might be preferable if accuracy on
the category level can be sacrificed.

As for the novelty detection, the metric learning related losses (LM, LG, LR, and LT)
are important.

Feature Stability The double sized latent space setting N ... = N ... ∗ 2 achieves better
results than the proposed setting. Using only the reconstruction loss (βM = 0) does
outperform the proposed setting in terms of feature stability. Not using the reconstruction
loss (βRec = 0) has a negative effect for the most features. This supports the designed
intuition to use the autoencoder regime to achieve feature stability.

4.2.2.4 Visualization

The resulting latent representations can be assessed by visualizing them. Therefore,
UMAP is used to project the representation of the training data into a two-dimensional
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Categories v̄ ψ̄

Figure 4.15: UMAP visualizations of the latent spaces of the proposed setting (top)
and with αM = 0 (bottom). Categories: single-lane, multi-lane, intersection,
intersection-enter , roundabout, roundabout-enter, highway, and highway-enter . v̄:
0 m/s . . . 42 m/s ψ̄: −π . . . +π .

space. In Figure 4.15, the projections of two latent representations are depicted. The
upper row shows the projection for the proposed setting, and the bottom row shows the
projection for the setting αM = 0 (turning off the metric learning). In the columns differ-
ent color codings are used. In the first, the categories as in Section 4.2.2.1 are used. The
second shows the average velocity of the trajectory and the last show values related to the
orientation of the trajectory. The two latent representations were picked to demonstrate,
how the latent representations differ, and how they can be analyzed using the visualiza-
tion. It becomes clear, that the latent representation of the proposed setting provides well
structure behavior in terms of categories, since the various infrastructure types are clearly
separated. In contrast, the model without the metric loss fails in separating the categories,
instead two big clusters can be seen, one for the highway scenarios and one with all other
scenarios. There is a strong relationship between the inner cluster structure and the shown
features when using the proposed method. Therefore, the features (v̄, ψ̄) show smooth
course within the clusters (e. g., in the lower right cluster, the average speed increases
from top to bottom). This is also true for the model without metric loss, but here in a
more global scale. The analysis can support in understanding and validating the latent
representations. Readers interested in exploring the projections in more detail may refer
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to the website published alongside this work https://jwthi.github.io/Expert-LaSTS/.

4.2.2.5 Summary

The different analysis perspectives highlight the performance with respect to specific tasks.
The overall performance is summarized and best model variants are discussed.

The only approach being able to perform at a comparable level as the proposed method
is the LA,CE, β = 10, which is has a strong relation to the proposed method (see Sec-
tion 2.5.2.3 how the cross entropy-based contrastive loss approximates the triplet loss).
All the other approaches come with some disadvantages in one or the other perspective.
However, a clear trend can be seen, that is including domain knowledge to the learning
helps in forming more valuable representations.

As shown in the ablation study, the choice of the encoders for image fI and trajectory
fT have a rather low impact on the overall performance. Increasing the representation
spaces dimensionality as N ... = N ... ∗ 2 improved performance in most of the objectives
slightly, however the clustering on group level drops.

4.2.3 Conclusion

In this section, a method to design a latent space for traffic scenarios by means of domain
knowledge is presented. An automated mining strategy for traffic scenarios is introduced
and used to find similar infrastructures and routes. This way, relative similarities as defined
by domain objectives can be realized. The results in the emerging latent space outperform
alternative approaches on various analysis perspectives, namely detecting novel scenarios,
clustering, and feature stability. The ablation study provides deep insight on the impact
of various model parameters.

The method presented can be used in the validation process for AVs. More precisely,
it can support the analysis of scenarios as well as the detection of representative and novel
scenarios.

To include objects surrounding the EGO vehicle can be one possible direction for
further research on the proposed method. Also, the performance when using real-world
data can be analyzed in a next step.

Self-supervised methods have been used for comparison using domain knowledge in-
spired augmentations. Analyzing the effect of using automated domain knowledge guided
augmentations, when compared to standard Computer Vision (CV) augmentations is an-
alyzed in the next section.
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4.3 Domain Knowledge guided Augmentations for
Self-Supervised Learning

In contrast to the previous section, this section focuses on domain knowledge guided
augmentations of traffic scenarios rather than specifically defining similarities between
traffic scenarios. In various domains like CV and Natural Language Processing (NLP),
pre-training [ZGL+20, RWM21, DCLT19, RWC+19] to learn representations is seen as
an essential component for solving downstream tasks. Typically, the pre-training is re-
alized through self-supervised training with domain specific augmentations. Applying
self-supervised learning for traffic scenarios benefits from domain knowledge guided aug-
mentations as shown in the following. This presents the approach Expert-guided Augmen-
tation for representation learning of traffic scenarios ExAgt, which has been summarized
in [BWE+22] as well. In contrast to the previous sections, the aim of this section is to un-
derstand the influence domain knowledge based augmentations for traffic scenarios against
standard CV augmentations. Hence, the standard evaluation protocol from the area of
self-supervised learning is used. Given a model trained in the self-supervised setting, it is
analyzed how well the representations cluster, which can be used for the identification of
representative traffic scenarios as required in scenario-based validation of AVs. In contrast
to the previous approach, less computational effort is needed, since no similarity measure
between traffic scenarios across the training data is calculated. Moreover, not only the
EGO and the infrastructure information, but also the surrounding objects (OBJs) are part
of the traffic scenario representation used in this chapter.

Most of the state-of-the-art CV models use deep learning models pre-trained on Im-
agenet [DDS+09] to initialize the networks before fine-tuning on the intended task. A
similar trend can be seen in NLP, where Word2Vec [MCCD13], BERT [DCLT19], and
GPT [RWC+19] models are used to initialize task-specific models. In recent years, self-
supervised learning methods [LZH+21, HMKS19] are proving to be suitable for the task
of pre-training in order to learn representations without any human annotation.

In CV, the most popular self-supervised learning methods use cross-view predic-
tion [GSA+20, ZJM+21, CMM+20]. The training of cross-view prediction methods is
as follows: the input image is distorted or augmented into two different views. These two
views are processed with a shared network to generate two representation vectors, one for
each view. The networks objective is to make these representations similar as they are
generated from the same input. There are two important components in the cross-view
prediction framework: augmentations that are applied to create the two distorted views
and a learning objective that makes the representation invariant of distortion. While the
learning objective is domain independent, the augmentations to be applied are domain
specific. More details on self-supervised learning can be found in Section 2.5.3.

This section focuses on learning representations for traffic scenarios, particularly in-

143



4. Representation Learning for Identifying Relevant Traffic Scenarios

Scenario input

Crop (a) Crop (b)

Imagenet example

Crop (a) Crop (b)

Figure 4.16: Random crop augmentation in traffic scenarios vs Imagenet images.

troducing domain specific augmentations. The traffic scenarios in this section are repre-
sented as a sequence of occupancy grids. The data is different from datasets like Imagenet,
CIFAR-100 [Kri09], etc., which are used for self-supervised learning methods. The images
from Imagenet and CIFAR have central objects of interest e. g., airplanes, dogs. Applying
standard augmentations like random crop, gray-scale, etc., [GSA+20] is meaningful, as the
distorted views contain a part of the object of interest. As can be seen in Figure 4.16, this
is not necessarily the case in traffic scenarios where multiple objects are of interest like
traffic participants, infrastructure, and spatio-temporal relations. Therefore, standard CV
augmentations are extended with domain knowledge guided augmentations.

This section introduces two augmentations specifically created for traffic scenarios.
First, the connectivity-based augmentation, which is using the connectivity of the under-
lying infrastructure and the interaction of traffic participants with the EGO vehicle in a
traffic scenario. Second, the sensor-based augmentation, simulates sensors in the EGO
vehicle with restricted Field of View (FoV) and ranges. The OBJs outside the Visible
Region (VR) are removed to create a distorted view. Overall the novel augmentations
are designed, such that they aid the goal of learning meaningful representaions of traffic
scenarios.

Methods using the proposed augmentations show superior performance in zero-shot7

clustering, low-shot8 supervised learning, and supervised learning, when compared to stan-
dard CV augmentations. The resulting model, trained self-supervised with the proposed
augmentations can be used for traffic scenario clustering in order to identify representative
traffic scenarios for scenario-based testing.

The main contributions of this research on self-supervised learning for traffic scenarios

7Clustering using the representation resulting from a network trained only in self-supervised regime.
8Fine tune a network that was trained in self-supervised regime with just a few labeled samples.
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are as follows:

1. Novel approach to include domain knowledge for augmenting traffic scenarios.

2. Representation learning of traffic scenarios using a cross-view prediction framework.

3. Analysis of the representation space for downstream tasks like clustering, classifica-
tion, and investigation of the representation space stability.

4.3.1 Method

f

za

g

ha

f

zb

g

hb

L(ha, hb)

Ga = r(aa(S))

Gb = r(ab(S))

G = r(S))

Figure 4.17: Cross-view prediction framework.

4.3.1.1 Preliminaries

A dataset D = {(S1), . . . , (SM )} is available, where S = (O,M) is a scenario. The
scenario contains an object list O = {o1, . . . , oMobj} with Mobj objects o and a map M =
{m1, . . . ,mJ} with J map elements. Each OBJ o = (T , s, c) contains a trajectory T , and
information about the object size s, and type of the object c. One map element m =
(P,N , I) represents a lane piece. It contains the underling polygon P and connectivity
information: the set of neighboring lane pieces N and the intersection I which the lane
piece m is part of. Per scenario, the corresponding sequence of occupancy grids G ∈
RC×H×W can be generated by G = r(S), with H ×W being the size of the grids over C
timestamps.

Let f be a trainable network, realizing the mapping from the occupancy grid sequence
to the representation vector z = f(G) with z ∈ RNz . Like in [ZJM+21], the representation
vector z is up-projected with the trainable network g, leading to the embedding vector
h = g(z) with h ∈ RNh .
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As presented in Section 2.5.3, one goal of self-supervised learning is to train the net-
works f and g to generate meaningful representations without the need for any labelled
data. The methods discussed in this work use the cross-view prediction framework. The
schematics of such a framework is shown in Figure 4.17, where the actual twin architecture
is depicted in contrast to the illustrations used in Section 2.5.3 to highlight the augmen-
tations. An input is distorted to generate two views using the augmentations aa and ab.
The encoder network f uses the two distorted views to produce representations za and
zb. The representations za and zb are up-projected with a projection network g to get
the embeddings ha = g(za) and hb = g(zb) respectively. A learning objective L(ha,hb)
is defined using the embedding.

The objective is to learn representations that are invariant to distortions applied to
the inputs. This constraint is achieved by making the representation of the distorted view
of an input similar to another distorted view of the same input. An undesired outcome
of this constraint is that all the representations becoming constant, i. e., mode collapse.
There are different mechanisms to prevent this collapse by applying constraints in the
learning objective L. In the following, two of the most recent mechanisms (Barlow Twins
and VICReg) are briefly summarized.

Barlow Twins [ZJM+21] The mechanism used in Barlow Twins is redundancy reduc-
tion between the representations of the two distorted views. This is achieved by measuring
the cross-correlation matrix between the outputs of g(ha) and g(hb), and making it as close
to the identity matrix as possible. More details can be found in Section 2.5.3.2.

VICReg [BPL21] VICReg uses variance, invariance, and covariance regularization in
the learning objective to prevent collapse. A comprehensive explanation of VICReg is
provided in Section 2.5.3.3.

4.3.1.2 Domain Knowledge-based Augmentations

Self-supervised learning methods, which are based on cross-view predictions depend on
two important components: (a) the learning objective to prevent collapse and (b) possible
augmentations to the input. As summarized Section 2.5.3.4, standard augmentations
for the cross-view prediction frameworks in CV are random crop, color jitter, gray-scale,
Gaussian blur, mix-up, etc. [GSA+20, ZJM+21, CMM+20]. But these augmentations
cannot be directly used for domain specific inputs like traffic scenarios. Applying these
techniques to traffic scenarios may not aid the learning as exemplified in Figure 4.16.
It shows a single occupancy grid from the sequence of occupancy grids representing a
scenario and an image from Imagenet. When applying the random crop augmentation
on both of these images, the black swan is present in both the images. However, in the
occupancy grid, a random crop creates two views, where the connection between both is
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lost and can lead to a different interpretation of the scene. This is because CV datasets
like Imagenet, and CIFAR-100, have a central object of interest. For domains like traffic
scenarios, there are multiple objects of interest like the infrastructure, traffic participants,
and the spatio-temporal relations between them. So, only standard CV augmentations
might not be sufficient for domain specific inputs.

In order to create meaningful augmentations, the proposed method ExAgt introduces
two types of domain specific augmentations. The first augmentation acon is based on the
connectivity of the underlying infrastructure and traffic participants interaction with the
EGO vehicle. The second augmentation aVR is based on sensor models which restrict the
FoV and range of the EGO vehicle perception.

The standard CV augmentations manipulate only the image G as G̃ = a(r(S)), with-
out any additional knowledge. In contrast, ExAgt is leveraging domain knowledge, such
that the augmentations help in achieving better performance. Therefore, in ExAgt the
augmented occupancy grids are generated by augmenting the scenario information first
and then generate the augmented occupancy girds from the augmented scenario. Hence,
the augmented occupancy grids are generated by G̃ = r(a(S)), where a can be acon,
aVR or a∩, which is the combination of acon and aVR. With the augmented scenarios
Scon = acon(S) and SVR = aVR(S) resulting from the augmentations applied to the sce-
nario S, the combined augmentation a∩ can be defined as

S∩ = (Ocon ∩ OVR,Mcon ∩ MVR). (4.36)

Both augmentations follow the intuition, that certain information of the scenario can be
dropped while maintaining some relevant information of the scenario. Therefore, even
though scenarios might look different, they are similar with respect to some aspects. For
example, in a crossing situation, not all visible participants are actually of interest for the
EGO. As shown in the experiments, such rather simple, but domain knowledge-guided
augmentations lead to better performance.

Connectivity-Based Augmentation For the connectivity-based augmentation acon,
some map information as well as some OBJs are dropped. The idea behind this is to retain
all elements that are relevant to the EGO or to any OBJ connected to the EGO. For this
purpose, the map topology of the scenarios is utilized.

The selection of the map elements and OBJs to be included in the augmented sce-
nario Scon = acon(S) can be summarized as follows. All OBJs which are either directly
connected to the EGO or connected to the EGO through a chain of OBJs are included
in the augmented object list Ocon. Connection here means: if they pass the same map
element, a neighboring map element or the same intersection. The map elements used
for the augmentation Mcon are all elements, which are passed by the OBJs in Ocon, and
all elements connected to Mcon, given the previous definition. This way, it is aimed to
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1 s 2.5 s 5 s

Figure 4.18: Connectivity-based augmentation acon: (top) original scenario, (bottom)
augmented scenario with selected information from M and O.

collect most of the relevant OBJs and parts of the infrastructure, which can influence the
behavior or driving decisions.

To create the augmented scenario Scon = (Ocon,Mcon) as described above, the fol-
lowing steps are used. First, the EGO is added to the temporary object set Otemp, then
all lane elements which are passed by the EGO are gathered in Minit. The set Mconn

contains all neighboring lanes and lanes which are part of the same intersections as the
lane pieces in Minit. The lane sets Minit and Mconn are merged to the temporary lane
set Mtemp. After this first run, the process is repeated until the sets Mtemp and Otemp

do not change. Therefore, the object set contains all the OBJs which are topologically
connected to the EGO. This approach aims to consider possible interacting traffic partic-
ipants. The complete procedure is also summarized in Algorithm 4.1. An example of a
resulting augmented occupancy grid sequence can be seen in Figure 4.18.

Let inpolygon(O,m) be a function returning true if any of the OBJs’ trajectory points
in O lie within the polygon P of m. Hence, if any of the OBJs are passing the polygon,
the function returns true. The function connected(M,m) returns true if the element m
is either a neighbor to any element in M or the element is part of the same intersection
as any element in M.

Sensor-Based Augmentation Depending on the sensor used in a car, the VR, formed
by the FoV and range, varies. Hence, the same scenario can be perceived differently.
From [CPS+21], it can be seen that not all the traffic participants around the EGO vehicle
do influence the motion planning performance of the EGO vehicle. The second type of
augmentations is created by varying the VR of an ideal sensor

For the sensor-based augmentation SVR = aVR(S), an ideal sensor fixed at the center
of the EGO vehicle is assumed. The sensor is parametrized with: maximum αmax and
minimum αmin FoV, maximum dmax and minimum dmin range. To create a distorted
view of a scenario, a random FoV αVR and a random range dVR is sampled uniformly
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Algorithm 4.1 Connectivity-based augmentation acon.
Input: S
Output: Scon

Otemp = {oEGO}
while Otemp or Mtemp changes do

Mpass = {m ∈ M|inpolygon(Otemp,m)}
Mconn = {m ∈ M|connected(Mpass,m)}
Mtemp = Mpass ∪ Mconn
Otemp = {o ∈ O|inpolygon(o,m)m ∈ Mtemp}

end while
Scon = (Otemp,Mtemp)

1 s 2.5 s 5 s

Figure 4.19: Sensor-based augmentation aVR: (top) original scenario, (bottom) scenario
with sensor parameters restricted to FoV as 30◦ and range as 25 m.

from (αmin,αmax) and (dmin,dmax). Traffic participants within the VR are kept in the
occupancy grids and all other traffic participants are removed. An exemplary sensor
based augmentation can be seen in Figure 4.19.

If an OBJ is inside the VR can be formulated as

inVR(o(t)) =





1 if − αVR < αo < αVR ∧ do < dVR

0 else
, (4.37)

where αo is the angle from the OBJ o to the EGO’s line of sight at time t and do(t) is the
distance between the OBJ o and the EGO at time t. Given this definition, generating the
augmented scenario SVR can be defined as in Algorithm 4.2. Hence, every timeframe is
filtered for OBJs which are inside the current VR of the EGO.

4.3.2 Experiments

This section discusses the experimental setup and analysis. The analysis of the represen-
tation space generated by the self-supervised learning method with and without domain
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Algorithm 4.2 Sensor-based augmentation aVR.
Input: S, αVR = U(αmin, αmax), dVR = U(dmin, dmax)
Output: SVR

Otemp = {oEGO}
for o in O do

otemp = {}
for t in timestamps do

if inVR(o(t)) then
otemp.append(o(t))

end if
end for
Otemp.append(otemp)

end for
SVR = (Otemp,M)

knowledge-guided augmentation partially follows typically self-supervised learning exper-
iment protocol (1-3). The representation space is analyzed with respect to the following
questions:

1. Zero-shot clustering: Is there structure in the representation space formed by self-
supervised pre-training?

2. Linear evaluation: Is the representation space formed by self-supervised pre-training
linearly separable?

3. Low-shot image classification: Are few labelled examples enough for fine-tuning the
self-supervised network for classification?

4. Representation space stability: Are there local neighborhood relations in the repre-
sentation space?

5. Ablation: What is the influence of various augmentations?

4.3.2.1 Dataset

For all experiments, the Argoverse [CLS+19] dataset is used. There are a total of 333 000
scenarios, each one of 5 s length and sampled at 10 Hz. All scenarios have an EGO which is
present in the scenario for the complete timespan, OBJs surrounding the EGO, and map
information. In order to test downstream tasks like zero-shot clustering and classification,
labels for the traffic scenarios are required. To create such labels, data mining strategies
are applied for each scenario. A feature vector y is extracted for each scenario as

y = [yinLeft, yinRight, yinStr, ylnChng, ystraight]T , (4.38)

with
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• yinLeft: if the EGO vehicle has taken a left turn in an intersection over the complete
scenario

• yinRight: if the EGO vehicle has taken a right turn in an intersection over the complete
scenario

• yinStr: if the EGO vehicle is going straight in an intersection over the complete
scenario

• ylnChng: if the EGO vehicle has done a lane change over the complete scenario

• ystraight: if the EGO vehicle is staying in the same lane over the complete scenario.

Using y, the dataset Dl = {(S1,y1), . . . , (SM ,yM )} is formulated and used for testing
downstream tasks. The number of classes in Dl can be calculated by unique(y1,. . . ,yM )
leading to 26 classes.

4.3.2.2 Implementation Details

The sequence of occupancy grids Gi contains occupancy grids of size 120 × 120 pixels
with each pixel corresponding to one meter. The EGO vehicle at time t0 starts in the
pixel position (40, 60). The grids are generated in an EGO-fixed manner. From the total
5 s of the scenario 4 grids are uniformly sampled. Hence, dimension of Gi ∈ R4×120×120.
The backbone encoder f for the self-supervised pre-training is a 3D ResNet-18 [HZRS16],
which projects f : Gi 7→ zi, where zi ∈ R512. The projection network g is a MLP which
does the mapping g : zi 7→ hi, where hi ∈ R2048. The networks are trained with both
Barlow Twins and VICReg objectives with the augmentation configurations as discussed
in the following section. For training, Adam optimizer is used with lr = 1e − 4 and a
batch size of 200 for Barlow Twins and a batch size of 480 for VICReg is used for all
experiments.

4.3.2.3 Baselines

To compare the representations learned with the domain knowledge-guided augmentations
the following baselines are used:

Random Initialization (Rand. Init.) The backbone network is initialized randomly
with different random seeds.

Base Augmentations (BaseAgt) Typical augmentations from CV tasks are used. The
grids are augmented by randomly cropping them to 80 × 80 × 4, randomly rotating with
2D rotations between (-10 ◦,10 ◦), followed by adding random noise and applying Gaussian
blur. The crop size is kept big, such that most of the important scenario information is
maintained.
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Domain + Base Augmentations (ExAgt) The augmentations introduced in this
work are combined with the standard augmentations from BaseAgt. In one of the views,
the acon is applied with a probability of 0.7 and the aVR is applied with a probability of
0.3. Hence, if both augmentations are used, they are merged as defined in a∩. For the
other view, the probabilities of acon and aVR are swapped. The VR is randomly sampled
from (dmin = 20 M, dmax = 100 m) and (αmin = 60 ◦, αmax = 360 ◦).

Supervised Training (Sup) : The labelled dataset is used to train the network f in
a supervised manner.

4.3.2.4 Metrics

The zero-shot clustering performance (question 1) is measured with unsupervised cluster-
ing accuracy [YXN+10] (ACC). The linear classifier and few-shot classification (questions
2 & 3) are supervised learning experiments, hence, supervised classification accuracy is
used. For the representation stability experiment (question 4), the measure as in the pre-
vious sections is used. To determine the stability measure, for each data point K-nearest
neighbors in the representation space are chosen. The average differences with respect to
features like average velocity and average trajectory displacement from the data point to
the K-nearest neighbors are calculated. The lower the difference is, the more similar the
features within the neighborhood, which is an indicator for continuity and stability in the
representation space.

4.3.2.5 Experiments with Representations

In this section, experimental results for the clustering and the classification tasks are
discussed. Each experiment is repeated five times with different seeds and the average
values of the five experiments is presented.

4.3.2.6 Zero-Shot Clustering

This experiment is used to analyze the structure in the representation space without
any fine-tuning. The trained network f is used to extract features {z1, . . . ,zM} from a
validation dataset of size M . Hierarchical Clustering (HC) is performed on the extracted
features due to the unbalanced nature of the classes in the dataset.

Table 4.5: Zero-shot clustering accuracy ↑.

Method Rand. Init. BaseAgt ExAgt
Barlow Twins 0.29014 0.3833 0.4588

VICReg 0.29014 0.3294 0.4142
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From Table 4.5 it can be seen that when using the domain augmentations along with
standard CV augmentations the zero-shot clustering accuracy improves significantly. This
shows that the domain knowledge guided augmentations are aiding in learning better
representations when compared to using only standard CV augmentations. Therefore,
in order to find representative traffic scenarios for scenario-based testing, self-supervised
learning in combination with domain knowledge guided augmentations should be preferred
over standard CV augmentations.

Linear Classifier Evaluation The linear classifier experiment is used to evaluate how
linearly separable the traffic scenarios projected by f are in the representation space. For
analyzing this, a linear FC layer is attached to the trained f and fine-tuned using the
complete labelled dataset. During fine-tuning the weights of the network f are fixed and
only the linear FC layer is trained.

Table 4.6: Linear classifier evaluation, classification accuracy ↑.

Method BaseAgt ExAgt
Barlow Twins 0.4718 0.4754

VICReg 0.4345 0.4426

The linear classifier evaluation from Table 4.6 shows that ExAgt leads to a comparable
performance like standard CV augmentations.

Few-Shot Classification The objective of the few-shot classification experiment is to
test the performance of the encoder for use in downstream tasks like supervised classifi-
cation. Subsets of 1% and 10% of the dataset Dl with the same class distribution as the
validation dataset of Argoverse is selected. The pre-trained self-supervised network is fine-
tuned with the 1% and 10% labelled dataset and the classification performance is reported
in Table 4.7. In both 1% and 10% settings, the fine-tuned networks which are initialized
with pre-trained networks using ExAgt are able to improve the few-shot classification
performance compared to BaseAgt. Also, the fine-tuned networks pre-trained using both
BaseAgt and ExAgt are able to outperform a supervised network trained from scratch,
when using Barlow Twins. This shows that a self-supervised pre-training is essential in
cases where labelled data is scarce.

Representation Space Stability The representation space stability is used to measure
the local neighborhood relations of the data in the representation space, like in the previous
section (Section 4.2). To investigate the representation stability, for each data point,
K neighbors in the representation space are considered. The average difference with
respect to a selected feature e. g., average velocity and trajectory displacement, between
the selected data point to all the K neighbors is calculated. The average difference for
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Table 4.7: Few-shot classification, classification accuracy (higher the better). Bold: best
overall, underlined: best augmentation.

Method % labelled BaseAgt ExAgt Sup

Barlow Twins 1% 0.4653 0.4827 0.4131
10% 0.5145 0.5453 0.4624

VICReg 1% 0.3844 0.3877 0.4131
10% 0.4439 0.4448 0.4624

each data point is again averaged over the complete dataset to get the feature stability
measure ∆.... Here, only the Barlow Twins method is used for the experiments.

In Figure 4.20, ∆velocity, the average velocity difference, ∆trajxy , the average trajectory
displacement, ∆mapImage, the average difference between the bird’s-eye view of the infras-
tructure image are reported across different K values. With respect to every K and every
feature (average velocity, trajectory displacement, and map image difference) the stability
measure using ExAgt is better compared to BaseAgt. Hence, the network trained with
ExAgt has more stable local neighborhood relations.

4.3.2.7 Ablation Study

Augmentation Study This study aims to understand and analyze the effect of differ-
ent augmentations for representation learning of traffic scenarios. For this the following
augmentations, besides BaseAgt and ExAgt are considered:

• 40-Crop: All augmentations from BaseAgt with the random crop sized reduced to
40 × 40 × 4,

• BaseAgt+aVR: All augmentations from BaseAgt plus the sensor-based augmentation
aVR,

• BaseAgt+acon: All augmentations from BaseAgt plus the connectivity-based aug-
mentation acon.

All these experiments are compared against ExAgt with zero-shot clustering perfor-
mance. The reduction of zero-shot clustering accuracy from ExAgt, when applied in the
Barlow Twins method is shown in Figure 4.21. The reduction when using a reduced
crop size of 40 compared to any other combination, underlines the intuition as shown
in Figure 4.16. Hence, using small crop sizes with traffic scenarios should be avoided.
Another conclusion that can be drawn from Figure 4.21, is that the connectivity-based
augmentation acon is important for the representation learning. Adding the sensor-based
augmentation aVR leads to an even better performance, as can be seen from the value of
ExAgt.
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Figure 4.20: Representation space stability with respect to ∆velocity, ∆trajxy , ∆mapImage
across different K, when using Barlow Twins. ExAgt and BaseAgt .
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Figure 4.21: Reduction in unsupervised clustering accuracy from ExAgt with different
augmentations. : with domain knowledge; : without domain knowledge.

VR Parameter Study The sensor-based augmentation aVR is parameterizable. Here,
the impact of various VR settings is investigated. For this, unsupervised clustering perfor-
mance in Barlow Twins is analyzed. The default parameters used in all the experiments
are (dmin = 20 m, dmax = 100 m) and (αmin = 60 ◦, αmax = 360 ◦). In this experiment, the
parameters dmax and αmax are varied.

Table 4.8: VR parameter study (clustering accuracy ACC ↑), when using Barlow Twins
with ExAgt

Range (dmin − dmax) FoV (αmin − αmax) ACC
20 − 100 60 − 360 0.4588
20 − 50 60 − 360 0.4069
20 − 100 60 − 120 0.3948
20 − 50 60 − 120 0.3561

In Table 4.8, the clustering performance for the various settings are shown. The setting
used as default in this work shows the best overall performance. Also, it can be seen,
that both, the FoV and the range are important for the performance. Hence, randomly
sampling from a large VR is favorable for representation learning of traffic scenarios.

4.3.3 Conclusion

In this section, ExAgt a novel approach to augment traffic scenarios with domain knowl-
edge is presented. Augmentation is a key-component for self-supervised learning methods.
The augmentation strategy ExAgt is used in self-supervised learning methods for learning
representations of traffic scenarios. The representations learned with ExAgt are compared
with the representations learned with standard CV augmentations.

Experiments show that using ExAgt is improving the performance in most of the
downstream tasks and leads to better representation space stability. Hence, domain spe-
cific augmentations are important for traffic scenario representation learning.
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In future work, evaluating the pre-trained encoder for tasks like outlier detection and
open-set recognition can be explored.
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Chapter 5

Conclusion and Outlook

Proofing that an AV performs safer than the average human driver through simple statis-
tical test approaches is infeasible, since the AV would need to drive more than 8 billion
kilometers (see Section 3.1). Therefore, other testing strategies are required for the val-
idation of AVs. One commonly used concept is the so-called scenario-based validation
approach. Scenario-based validation relies on the assumption that it is sufficient to test
an AV in only a few relevant scenarios to proof its safety. Such relevant scenarios are typ-
ically either created through expert definition (e. g., NCAP) or by identifying them from
real-world data. This work presents methods which address the identification of relevant
traffic scenarios by specifically detecting representative, unknown, and critical traffic sce-
narios. The overall framework of this work and its embedding into the validation process
of AVs is summarized in Figure 5.1.

Recently, various work aim to solve the tasks to identify representative and unknown
scenarios. Typically, clustering is used to find representative scenarios and novelty detec-
tion is used to find unknown scenarios. A comprehensive summary of recent approaches is

UnknownRepresentative

Critical

Relevant

All Traffic Scenarios

Novelty
Detection

Chapter 3 & 4

Clustering
Chapter 3 & 4

Criticality
Detection
Chapter 3

Representation
Learning

Chapter 4

Relevant
Scenario
Dataset

AV
Validation

Figure 5.1: Methodological overview of this work and its embedding in the validation
process of AVs. : Representation Learning component is only used in Chapter 4.
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provided in Section 3.2. Most of the recent methods mainly deal with dynamic information
in the form of trajectory data, using well-designed similarity measures alongside projec-
tions mechanisms to solve the specific tasks. However, only few incorporate comprehensive
infrastructure information. When using both, dynamic and infrastructural information,
standard clustering and novelty detection methods struggle to deliver desirable results.
Hence, work dealing with combined information typically project the scenario into a rep-
resentation more suited for clustering and novelty detection. In this work, methods are
presented which realize the projection of traffic scenario by the means of representation
learning. It is focused on the inclusion of domain knowledge into the representation learn-
ing to further strengthen the expressiveness of the resulting representations.

In Section 3.3, a neighborhood-based novelty detection method is presented which is
applied on road infrastructure images, in order to detect unknown infrastructures. The
method shows high stability with respect to the selected number of neighbors, what is de-
sirable, since in novelty detection the optimal number of neighbors is typically not known.
Applied on standard outlier detection benchmark datasets, the novel method shows good
performance, comparable to other state of the art neighborhood-based outlier detection
methods, while the performance being more robust against the number of neighbors. How-
ever, as most vector-based methods, the introduced method struggles with image data.

Other outlier detection approaches are applied to the problem of identifying unknown
infrastructure images in Section 4.2.1.5. While, the vector-based approaches do not achieve
reasonable results, the outlier detection mechanisms specialized for image data show bet-
ter performance (see Section 4.2.1.5). However, the established image outlier detection
methods do not suit the task of traffic scenario clustering. Therefore, in this work it is
focused on transforming the traffic scenario into representations, such that simple and
established vector-based outlier detection methods can be used and such that clustering
can be applied on the resulting representation.

Approaching the detection of representative and critical scenarios through domain
knowledge-based methods, without relying on data-driven concepts, is presented in Sec-
tion 3.5. Detecting critical scenarios is realized in various ways, from using dynamic
information of the EGO vehicle only, up to using all surrounding objects and infrastruc-
ture information. Detecting representative scenarios is realized through automatic domain
knowledge-based categorization. For this a traffic scenario is transformed into a graph rep-
resentation, which can be used to easily compare traffic scenarios. The methods using only
domain knowledge, can be seen as an additional fallback path to the presented represen-
tation learning-based approaches. This way, the risk of overlooking critical scenarios and
also unknown scenarios is reduced. However, the domain knowledge-only methods should
not be used stand-alone, since they fail to express the complete scenario.

Besides the before mentioned proposed methods and explored approaches, the main
contribution of this work are the methods using domain knowledge guided representation
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learning to solve the task of projecting traffic scenarios into representations suited for
clustering and novelty detection of traffic scenarios. In each of the three presented ap-
proaches in Chapter 4, the utilization of domain knowledge leads to representations where
clustering and novelty detection can be performed more reliable. In the following, each
approach is briefly summarized, as well as the respective advantages and disadvantages
are discussed. Also, possible further research directions emerging from the approaches are
highlighted.

A triplet autoencoder for the projection of infrastructure images is presented in Sec-
tion 4.1. It utilizes domain knowledge by the way the similarity between infrastructure
images in determined. For this, the infrastructure is represented through connectivity
graphs, where two infrastructures are considered to be more similar if they share the same
graph as if they have a different graph. This way, a representation space is shaped in
such a way, that novelty detection can be performed with simple outlier detection meth-
ods. As shown, the detection of novel infrastructures with the presented method outper-
forms other, vector- and image-based novelty detection approaches. Also, the importance
of including domain knowledge can be seen when comparing to domain knowledge-free
representation learning approaches such as an autoencoder. The main drawback of the
presented method, is that it only considers the infrastructure and hence only the static
part of a traffic scenario. The method aids as a proof of concept, therefore it is applied on
infrastructure data generated from OSM, its application to more detailed maps is yet an
open topic. Care needs to be taken about the amount of training data, since to achieve
valuable representations even for very uncommon infrastructures, the training data should
be very comprehensive.

The triplet autoencoder is extended to the quadruplet autoencoder as shown in Sec-
tion 4.2. Besides the infrastructure, also the EGO dynamics are used to represent a
scenario. The graph-based similarity is extended to include the definitions of routes, such
that the domain knowledge similarity objectives can be realized as shown in Section 4.2.
The resulting projection leads to expressive representations, which can be used for cluster-
ing, novelty detection, and further analysis. As the results highlight, the proposed method
leads to the overall best performance in clustering traffic scenarios, detecting novel sce-
nario types, and in showing high feature stability among neighbors. Using only the EGO
information is the main drawback of the presented method. The EGO dynamics are con-
sidered to be sufficient to represent a scenario in this work, since the trajectory of the EGO
already contains its reaction to other traffic participants and the road infrastructure. Ob-
viously, that argumentation only holds for a high level overall system validation concept.
If one is interested in validating for example the perception, it might indeed be of interest
to detect uncommon constellations and setting of objects surrounding the EGO vehicle.
For this purpose, the method as presented in Section 4.2 could be extended to include
also the surrounding objects’ trajectories. The graph-based similarity measure is able to
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handle multiple objects as discussed in Section 3.5. Such a training regime would require
a huge amount of data, if one wants to provide multiple similar instances per sample. The
presented quadruplet autoencoder method is only evaluated in a proof of concept way,
hence simulation data is used for the training and evaluation consisting of ≈ 70 000 and
≈ 60 000, respectively. Applying the method to real-world data could be realized in a
future application oriented work. The quality of the representations formed by the pro-
posed method, mainly depends on the quality and amount of used data. Hence, the larger
the dataset the better. However, determining the similarities between scenarios on huge
datasets is computationally expensive, considering that the DTW distance between sim-
ilar scenarios is determined. Determining the graph and route similarity can be realized
efficiently, by comparing high level properties of the graphs and routes first, as presented
in [FFWSM+22]. To reduce the computational effort for the DTW calculation, one could
sub-sample the dataset in a balanced fashion, using the graph and route similarity.

Section 4.3 introduced domain knowledge guided augmentations for traffic scenarios
to be used in self-supervised learning frameworks. Two different augmentation types are
presented, where both manipulate the scenarios’ information by dropping information in
a domain knowledge guided way. The narrative is that scenarios are still comparable even
if less important information is missing. The first augmentation is based on connectivity
constraints, which is changing the map and the object list by ignoring non-connected el-
ements from both. The second augmentation is based on the Visible Region (VR), hence
only the object list is modified while the map stays unchanged. Like before, the aim is
to form representations where clustering and novelty detection can be applied. In con-
trast to the computationally expensive similarity determination of the previous approach,
the augmentation can be generated on the fly. Compared to standard CV augmenta-
tion, the performance for various downstream tasks improves when using the domain
knowledge guided augmentations. However, considering the results from Section 4.2, the
self-supervised setting does not yield such powerful representations as the approach where
the similarity of traffic scenarios is defined through their graphs and routes. Combining
both strategies could be beneficial, and could be further explored in future research.

In summary, various approaches have been presented and explored to apply clustering
and novelty detection on traffic scenarios. The presented methods, showed promising
performance increase in both tasks, aiding the validation process of AVs.
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List of Acronyms

ABOD Angle-Based Outlier Detection

ACC ACCuracy of a clustering

AUC Area Under Curve

AV Autonomous Vehicle

BYOL Bootstrap Your Own Latent

CDF Cumulative Distribution Function

CNN Convolutional Neural Network

CV Computer Vision

DTW Dynamic Time Warping

EGO EGO vehicle is the vehicle under test, or the vehicle
of focus

ExAgt Expert-guided Augmentation for representation learn-
ing of traffic scenarios

f-AnoGAN fast Anomaly Detection with Generative Adversarial
Network

FC Fully-Connected

FoV Field of View

GAN Generative Adversarial Network

HC Hierarchical Clustering

IF Isolation Forest

ISOS Intrinsic Stochastic Outlier Selection

KNNSOS Nearest Neighbor Stochastic Outlier Selection

LDOF Local Distance-based Outlier Factor

LEF Local Entropy Factor

LOF Local Outlier Factor
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List of Acronyms

LSTM Long Short-Term Memory

MLP MultiLayer Perceptron

NLP Natural Language Processing

OBJ OBJ vehicle is in the sourrounding of the EGO vehicle

OCSVM One-Class Support Vector Machine

ODIN Outlier Detection using Indegree Number

OpenDRIVE Open Dynamic Road Information for Vehicle Environ-
ment

OSM OpenStreetMap

PCA Principal Component Analysis

PDF Probability Density Function

PMF Probability Mass Function

RaPP Reconstruction along Projection Pathway

ReLU Rectified Linear Unit

ResNet Deep Residual Network

RF Risk Feeling

RNN Recurrent Neural Network

ROD Reconstruction-based Outlier Detection

RSS Responsibility Sensitive Safety

SAP Simple Aggregation along Pathway

SimCLR Simple Contrastive Learning of visual Representations

SimSiam Simple Siamese representation learning

SOS Stochastic Outlier Selection

SUMO Simulation of Urban MObility

SVM Support Vector Machine

SwAV Swapping Assignments between Views

t-SNE t-distributed Stochastic Neighbor Embedding

THW Time HeadWay

tLEF t-SNE graph-based non-sparse Local Entropy Factor

tSLEF t-SNE graph-based Sparse Local Entropy Factor

TTC Time To Collision

ULEF UMAP graph-based non-sparse Local Entropy Factor

UMAP Uniform Manifold Approximation and Projection

164



List of Acronyms

USLEF UMAP graph-based Sparse Local Entropy Factor

USOS UMAP graph-based KNNSOS

VICReg Variance, Invariance, Covariance Regularization

ViT Vision Transformer

VR Visible Region
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Appendix

A.1 Cross Entropy-based Contrastive Loss as Mutual Infor-
mation Maximization

Under some constraints and assumptions, the contrastive loss Lce maximizes a lower bound
on the mutual information [OLV18]. The cross entropy loss can be interpreted as a special
case of the categorical cross entropy loss, for only the positive pair case. Hence, the
cross entropy learning can be interpreted as an assignment problem, such that a sample
x should be assigned to its positive representative instead of assigning it to any other
example. For this purpose, all possible pairs for one data point are arranged in a set, as
P = {(x,p0), (x,p1), . . . , (x,pK)}. The first pair includes the positive representation p0,
while all other pairs include the K negative examples. The cross entropy-based contrastive
loss can be reformulated using the categorical cross entropy as [TKI20]

Lce = EP|x





− log




exp
(

1
τ s(x,p)

)

K∑
k=0

exp
(

1
τ s(x,pk)

)






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(A.1)

= EP|x{− log(p̂(p|x))}. (A.2)

Assume that the sample x and the only positive example p0 are sampled from a joint
distribution p(x,p), while all other examples are independent of x, therefore p(x)p(p).
The optimal probability p(pos = 0|P) for the former loss, that the positive pair is indeed
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in position 0, can then be defined as [TKI20]

p(pos = 0|P) =
p(x,p0) ∏

j ̸=0
p(x)p(pj)

K∑
k=0

p(x,pk)
∏
j ̸=k

p(x)p(pj)
(A.3)

p(pos = 0|P) =
p(x,pi)

p(x)p(pi)
K∑
k=0

p(x,pk)
p(x)p(pk)

, (A.4)

which will be one for the positive example i = p while all other examples are independent
of x. While it is zero for all negative examples i ̸= p.

As shown in the following, minimizing the loss maximizes a lower bound of the mutual
information between the samples and the representations I(x,p). To show this, the risk
of the generalized optimal cross entropy is considered:

Ropt = −Ex
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= log(K) − Ex
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= log(K) − Ex,p

{
log
[ p(x,p)
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]}
(A.13)

= log(K) − I(x,p). (A.14)

Therefore, minimizing the cross entropy loss would maximize the lower bound on the
mutual information, since I(x,p) ≥ log(K) − Ropt. The major assumptions for this
connection are: that all negative samples are independent of the current sample x and
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that K → ∞ negative samples are used, such that the approximation in Eq. (A.8) becomes
valuable and the influence of the missing positive can be ignored. However, in [TDR+20]
it is shown and concluded that if the negative sampling is not realized independently, the
connection to the mutual information vanishes. Moreover, it is shown that a high mutual
information does not necessarily lead to better representations. It is argued that the
connection of the cross entropy-based contrastive loss to the metric loss (triplet loss) could
be better to explain the recent success of methods using cross entropy-based contrastive
loss. Hence, it is proposed that knowledge from metric learning domain could also improve
cross entropy-based contrastive loss.

A.2 Statistical Theory

A.2.1 Statistical Moments

In this section, two statistical moments for discrete and continuous random variables are
shown. Also, the formal description of the underlying functions are given. The whole
section is based on [FHK+16] and [Bis06].

A.2.1.1 Discrete Random Variables

Let x be a discrete random variable with its realization x ∈ X, where X is the set of
all possible values. The probability of x = x is defined by P(x = x), then the so-called
Probability Mass Function (PMF) can be written as

p(x) = P(x = x). (A.15)

The following explanations hold for the case where X = {x1, . . . , xI} with x1 < x2 < · · · <
xk ≤ xP < · · · < xI . The Cumulative Distribution Function (CDF) of the discrete random
variable x is

P(x ≤ xk) =
k∑

i=1
p(xi). (A.16)

The expectation – the first statistical moment – of the discrete random variable x is
defined as

Ex{x} = µx =
I∑

i=1
xip(xi). (A.17)

The variance – the second centered statistical moment – based on the expectation is
formulated as

Varx{x} = σ2
x =

I∑

i=1
(xi − µx )2p(xi). (A.18)
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A.2.1.2 Continuous Random Variables

Consider the random variable x as continuous, therefore x ∈ R. In this case the distribu-
tion of x is given by the Probability Density Function (PDF)

p(x) = lim
dx→0

P(x− dx < x ≤ x)
dx . (A.19)

The CDF for continuous random variables is defined as

P(x ≤ xP) =
xP∫

−∞
p(x)dx. (A.20)

The expectation and the variance of continuous random variables follow

Ex{x} = µx =
∞∫

−∞
xp(x)dx (A.21)

and

Varx{x} = σ2
x =

∞∫

−∞
(x− µx )2p(x)dx. (A.22)

A.2.2 Probability Distributions

Following the separation between discrete and continuous random variables, first, the dis-
crete distributions (Bernoulli, binomial and Poisson) are explained. Second, the continuous
distributions (normal and beta) are discussed.

A.2.2.1 Bernoulli Distribution

Let x be a binary random variable, such that x ∈ {0, 1}. The probability of x being 1 is
P(x = 1) = µ and hence P(x = 0) = 1 − µ. Based on this, the Bernoulli distribution is
defined by the PMF

p(x|µ) = µx(1 − µ)1−x (A.23)

and the notation x ∼ Bern(µ).
The expectation and variance of a random variable with a Bernoulli distribution are

Ex{x} = µ (A.24)

Varx{x} = µ(1 − µ) (A.25)

A.2.2.2 Binomial Distribution

Let a Bernoulli trial be a trial where its outcome can be modeled by a Bernoulli distribu-
tion. If such a trial is repeated n times independently, the binomial distribution is used
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to model the distribution of m trials leading to x = 1 as

p(m|n, µ) =
(
n

m

)
µm(1 − µ)n−m (A.26)

= n!
m!(n−m)!µ

m(1 − µ)n−m (A.27)

with m ∈ N0 and m ≤ n. Therefore, a binomial distributed random variable is written as
m ∼ Bin(n, µ).

A binomial distributed random variable has the expectation and the variance,

Em{m} = nµ (A.28)

Varm{m} = nµ(1 − µ). (A.29)

The CDF of a binomial distributed random variable is

P(m ≤ k) =
k∑

i=0

(
n

i

)
µi(1 − µ)n−i. (A.30)

A.2.2.3 Poisson Distribution

Another discrete distribution is the Poisson distribution. Like in the binomial distribution
the amount of certain outcomes is modeled. However, for the Poisson distribution, a fixed
interval is considered (time or space), with λ the average number of events within the
corresponding interval. The Poisson distribution models the probability of observing m
events within an interval through the PMF

p(m|λ) = λm

m! e
−λ, (A.31)

with m ∈ N0 and λ > 0. Following the introduced notations, a Poisson distributed random
variable is written as m ∼ Poi(λ).

For a Poisson distribution, the expectation and variance are

Em{m} = Varm{m} = λ. (A.32)

Although, the Poisson distribution differs from the binomial distribution, the Poisson
distribution is a limit case of binomial distribution. Therefore, if n → ∞ and µ → 0 is
very small, the binomial distributed random variable m can be approximated through the
Poisson distribution, where lim

n→∞
µ→0

Poi(nµ) ≈ Bin(n, µ) holds.

Moreover, the Poisson distribution can be approximated by a normal distribution if
λ ≥ 30. Therefore, m ∼ N (λ, λ) (Sec. A.2.2.4).
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A.2.2.4 Normal Distribution

One of most important distribution is the normal or Gaussian distribution. Given the
normal distributed continuous random variable x , with x ∈ R its PDF is given by

p
(
x|µ, σ2

)
= 1√

2πσ2
e− (x−µ)2

2σ2 , (A.33)

with µ ∈ R and σ2 > 0. The compact notation is x ∼ N (µ, σ2).
The expectation and the variance of the normal distribution yield

Ex{x} = µ (A.34)

Varx{x} = σ2. (A.35)

A special type of the normal distribution is the standard normal distribution, with
µ = 0 and σ2 = 1. If x is an arbitrary normal distributed variable, then the standardized
random variable

z = x − µ

σ
(A.36)

is standard normal distributed. Where the standard normal distribution can be written
as

p(z) = φ(z) = 1√
2π
e− z2

2 . (A.37)

The CDF of the standard normal distribution and of the normal distribution can not
be expressed by elementary function. In case of the standard normal distribution, using
Eq. (A.20) leads to

P(z ≤ zP) = Φ(zP) = 1√
2π

zP∫

−∞
e

−z2
2 dz. (A.38)

Some typically required value pairs of the CDF are listed in Tb. A.1. Due to the normal
distribution’s symmetry, zP = −z1−P holds.

Table A.1: Typical value pairs for the CDF of the standard normal distribution.

P(z ≤ zP) 0.50 0.75 0.90 0.95 0.975 0.99

zP 0.00 0.67 1.28 1.64 1.96 2.33

Another important property is based on the symmetric lower bounded CDF

P(−zP ≤ z ≤ zP) = 1√
2π

zP∫

−zP

e
−z2

2 dz. (A.39)

The typically used value pairs for this case are shown in Tb. A.2
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Table A.2: Typical value pairs for the lower bounded CDF of the standard normal distri-
bution.

P(−zP ≤ z ≤ zP) 0.50 0.683 0.90 0.95 0.954 0.99 0.997

zP 0.67 1.00 1.64 1.96 2.00 2.57 3.00

In order to determine the values of the CDF for a normal distribution the quantity

xP = µ+ σzP (A.40)

along with the appropriate table has to be used.

A.2.2.5 Beta Distribution

The beta distribution is a distribution for continuous random variables. The beta dis-
tributed random variable x with

x ∈




[0, 1] for a, b ≥ 1

(0, 1) else
, (A.41)

is described by the PDF

p(x|a, b) = Γ (a+ b)
Γ (a)Γ (b)x

a−1(1 − x)b−1. (A.42)

The fraction is the inverse of the beta function, and it is used to normalize the function.
More precisely, it is based on the gamma function

Γ (x) =
∞∫

0

ux−1e−udu, (A.43)

which yields
Γ (x) = (x− 1)! (A.44)

if x ∈ N. The short notation of a beta distributed random variable is x ∼ Beta(a, b).
The parameters a and b have a strong influence on the shape of the distribution. As

a special case, a = b = 1 yields the uniform distribution.
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