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Abstract

Signals having multiple structures simultaneously appear in several applications in signal
processing and machine learning throughout science and engineering. One is often con-
fronted with the problem of their robust and resource efficient recovery from inaccurate
and incomplete information.
This thesis is concerned with the reconstruction of low-rank matrices possessing a non-
orthogonal decomposition with partially sparse and non-negative component vectors. Our
employed numerical algorithm is based on alternating minimization of a highly non-convex
multi-penalty functional associated with the matrix decomposition. It comprises both
data fidelity and the individual low-dimensional structures. A particular focus of our
proposed method is on structure identification.
In order to analyze this approach theoretically as well as numerically we provide concise
overviews of the fields of compressed sensing and low-rank matrix recovery before outlin-
ing recent developments regarding simultaneously structured models. By introducing a
novel class of effectively sparse and low-rank matrices together with a suitable restricted
isometry property, we are able to show successful recovery up to noise level from a number
of random measurements scaling, up to a polylogarithmic factor, linearly in the intrinsic
dimension of the signal. With this we improve upon previous results.

Zusammenfassung

Signale, welche mehrere Strukturen gleichzeitig besitzen, treten in etlichen Anwendungen
aus Wissenschaft und Technik in Bereichen der Signalverarbeitung und dem maschinel-
len Lernen auf. Oft steht man dem Problem ihrer stabilen und ressourcenschonenden
Wiederherstellung aus fehlerhafter und unvollständiger Information gegenüber.
Diese Arbeit beschäftigt sich mit der Rekonstruktion von Matrizen mit niedrigerem Rang,
welche eine nichtorthogonale Zerlegung mit zum Teil dünn besetzten und nichtnegativen
Komponenten besitzen. Unser verwendeter numerischer Algorithmus basiert auf alternie-
render Minimierung eines stark nichtkonvexen Funktionals, welches aus zahlreichen mit
der Matrixzerlegung assoziierten Straftermen besteht. Es vereint Datentreue mit den in-
dividuellen niedrigdimensionalen Strukturen. Ein spezieller Fokus unserer vorgeschlagen
Methode liegt dabei auf der Identifikation der involvierten Strukturen.
Um jenen Ansatz theoretisch sowie numerisch zu analysieren, geben wir prägnante Über-
blicke über die Felder des Compressed Sensing und der Wiederherstellung von Matrizen
mit niedrigem Rang, bevor wir aktuelle Entwicklungen bezüglich gleichzeitig strukturier-
ter Modelle skizzieren. Indem wir eine neuartige Klasse von effektiv dünn besetzten Matri-
zen niedrigen Ranges zusammen mit einer passenden eingeschränkten Isometrieeigenschaft
einführen, können wir deren erfolgreiche Wiederherstellung bis auf Fehlerniveau zeigen,
falls sich die Anzahl an zufälligen Messungen bis auf einen Faktor polylogarithmischer
Ordnung proportional zur intrinsischen Dimension des Signals verhält. Wir verbessern
damit frühere Resultate.





Acknowledgements

During my time as a Master’s student at the chair for Applied and Numerical Analysis and
Optimization and Data Analysis, I enjoyed the pleasure to be introduced to the rapidly
evolving mathematical field of compressed sensing and machine learning by attending
the lecture “Mathematical Foundations of Artificial Neural Networks” held for its first
time by Prof. Massimo Fornasier. He provided us students an insight into very active
mathematical research by presenting parts of the work [FVD19], he and his colleagues
were working on at that time.
Attracted by the intriguing topic, Prof. Massimo Fornasier’s honest commitment to my
development already during the lecture and the chance to work on an interesting research
topic, I was glad to have the opportunity to conduct my Master’s thesis with him as
my supervisor. For this I would like to express my deep gratitude towards him. I bene-
fited from his inspiring, motivating and encouraging nature as well as his enthusiasm for
mathematics in many ways, personally and professionally.
Moreover, I wish to sincerely thank my advisor Dr. Johannes Maly for all the fruitful
discussions we had, all the mails we wrote and for being available whenever I had a
question, an idea or a problem. His expertise and his constant guidance were invaluable
for me finding my way in this broad and rather new field of mathematics. I am greatly
appreciative of his innumerable helpful suggestions, improvements and advices.
Furthermore, I gratefully acknowledge the compute and data resources provided by the
Leibniz Supercomputing Centre (LRZ).
And last, but undeniably most importantly, I am very much obliged to my friends and
family for their never-ending support and encouragement.





Contents

Introduction 1
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Compressed Sensing 7
1.1 Sparsity and Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Sparse Solutions of Underdetermined Systems . . . . . . . . . . . . . . . . 8
1.3 Recovery of Sparse Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 On how `1-Minimization Promotes Sparsity . . . . . . . . . . . . . 11
1.3.2 The Null Space Property . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 The Restricted Isometry Property . . . . . . . . . . . . . . . . . . . 14
1.3.4 Performance of `1-Minimization . . . . . . . . . . . . . . . . . . . . 21
1.3.5 Robustness with respect to Measurement Noise . . . . . . . . . . . 23

1.4 Numerical Algorithms for Compressed Sensing . . . . . . . . . . . . . . . . 26
1.4.1 Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Linear and Second-Order Cone Programming . . . . . . . . . . . . 27
1.4.3 Iterative Thresholding Algorithms . . . . . . . . . . . . . . . . . . . 28

2 Low-Rank Matrix Recovery 35
2.1 Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Matrix Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 A Restricted Isometry Property for Matrix Sensing . . . . . . . . . 39
2.2.2 Matrix Sensing in the Presence of Noise . . . . . . . . . . . . . . . 45

2.3 Numerical Algorithms for Low-Rank Matrix Recovery . . . . . . . . . . . . 46
2.3.1 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Iterative Soft and Hard Thresholding for Matrices . . . . . . . . . . 46
2.3.3 Alternating Minimization . . . . . . . . . . . . . . . . . . . . . . . 48

3 Matrix Sensing from Multiple Structures 51
3.1 Sparse Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 51
3.2 On Limitations of Convex Optimization . . . . . . . . . . . . . . . . . . . 55
3.3 The Power and Perils of Non-Convex Recovery . . . . . . . . . . . . . . . . 59
3.4 Numerical Algorithms for the Recovery of Simultaneously Sparse and Low-

Rank Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Sparse Power Factorization . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Alternating Tikhonov Regularization and LASSO . . . . . . . . . . 65



4 Compressed Sensing of Simultaneously Sparse and Low-RankMatrices—
A Multi-Penalty Approach relying on Non-Convex Regularizers 67
4.1 Problem Formulation and Our Contribution . . . . . . . . . . . . . . . . . 67
4.2 On Global Minimizers of the Non-Convex Multi-Penalty Functional . . . . 71

4.2.1 Data Fidelity of Global Optima . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Effective Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Sparsity and Low-Rankness of Global Optima . . . . . . . . . . . . 76

4.3 Alternating Ridge and Bridge or `0-Regression . . . . . . . . . . . . . . . . 77
4.3.1 A Formulation of the Numerical Algorithm . . . . . . . . . . . . . . 77
4.3.2 On Theoretical Convergence of the Algorithm . . . . . . . . . . . . 79
4.3.3 Initialization of the Method . . . . . . . . . . . . . . . . . . . . . . 80

4.4 A Restricted Isometry Property . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 The Required Number of Measurements . . . . . . . . . . . . . . . . . . . 86

4.5.1 Metric Entropy of the Matrix Sets SR,Γs1,s2
and Kq,R,Γs1,s2

. . . . . . . . . 88
4.5.2 An Upper Bound on Talagrand’s γ2-Functional . . . . . . . . . . . . 91
4.5.3 A Probabilistic Bound on Suprema of Chaos Processes . . . . . . . 94
4.5.4 Proof of the Main Result . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Numerical Experiments 97
5.1 Numerical Analysis of ARBeR . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 On the Numerical Solution of the Algorithm . . . . . . . . . . . . . 98
5.1.2 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.3 The Influence of the Initialization . . . . . . . . . . . . . . . . . . . 103

5.2 Adding Non-Negativity to the Matrix Decomposition . . . . . . . . . . . . 105

Conclusions and Outlook 109

Appendix 113
A.1 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 An Upper Bound on Dudley’s Integral for Kq,R,Γs1,s2

. . . . . . . . . . . . . . . 115

List of Figures 123

Bibliography 125



Introduction

Mankind is about to reach an unprecedented and unimaginable scale of annually gener-
ated data. Within the research project DataAge 2025 the International Data Corpora-
tion (IDC) published the White Paper “The Digitalization of the World: From Edge
to Core” [RGR18]. They forecast that the overall generated and captured data per
year, which they call the Global Datasphere, will grow from 41 zettabytes in 2019 to
175 zettabytes by the year 2025. One zettabyte is equal to one thousand exabytes or one
trillion gigabytes. To put these numbers into perspective, let us state a quote from 2010
by former Google CEO Eric Schmidt [Van13].

There were five exabytes of information created between the dawn of civilization
through 2003, but that much information is now created every two days.

—Eric Schmidt

Even though the numbers in the first part of the statement are certainly exaggerated
[Moo11], the underlying message stands for its own. And at least the data created,
captured or replicated by humans every two days in near future will exceed the data
generated between the origin of humanity and the early 2000s.
Due to this data deluge, nowadays available processing power as well as data storage
capacities and transmission possibilities are brought to their limits [Eco10].
This raises the question if all the data acquired by modern high-resolution sensors—and
therefore stored and processed, even if this takes only milliseconds—is actually necessary.
To illustrate that this is far from being the case, let us give an example from everybody’s
daily life—a photo from a customary smartphone camera. In the case of an ordinary
10 megapixel camera, a total number of ten million individual measurements is required
to be taken, before all the raw data for the later image is available. This digital negative
needs roughly 10MB of storage (assuming an 8-bit color depth). However, that’s typically
not what is saved to our photo library. Image compression techniques, such as, e.g.,
JPEG, drastically reduce the size by about 80% without admitting any noticeable loss of
quality visible to the human eye. Similar methods exist for digital audio, like, e.g., MP3,
and for video footage, like, e.g., MPEG.
Any of those compression techniques relies on the empirically observed fact that real-word
data is compressible—at least with respect to an appropriate basis or, more generally, a
suitable dictionary or frame. That means, we are able to approximate the coefficients of
the signal in this basis by a sparse vector without allowing a significant error.
Thinking through this process of first acquiring the full data by taking a high number of
measurements and subsequently discarding a large proportion thereof, makes this seem
to be a waste of resources. This may be not decisive when taking a snapshot with a
commercial camera, but if sensors are expensive, which, for instance, is the case for
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INTRODUCTION

infrared light, it is desirable to reduce the number of required sensors to take pictures. A
proof of concept that in principle one single sensor suffices to generate enough data to be
able to recover a whole image, was given with the single-pixel camera [Mac09, DDT+08].
A different instance, where it is also very reasonable to rethink if every measurement and
the related time to generate a high-resolution image is necessary, is magnetic resonance
imaging (MRI) [LDSP08].
The desire of acquiring a compressed version of a compressible signal with significantly
less measurements, which were originally believed to be incomplete and therefore use-
less information, gave rise to the theory of compressed sensing. This field of very ac-
tive development is also known as compressive sampling or sparse recovery. The semi-
nal works [CRT06a, CT06, CRT06b] by Candès, Romberg and Tao and [Don06] by
Donoho initiated the research. Similar, but mostly application-oriented approaches can
be found already much earlier, see, e.g., [FR15, Section 6.2] for an overview of such early
findings.
Having this in mind, one may wonder about the value of incomplete data. A very promi-
nent example outlining how this could constitute is the Netflix Prize problem [BL07],
where one aims at recommending movies to a user by analyzing the preferences of other
but similar customers. More precisely, in collaborative filtering [GNOT92] in general, one
is interested in predicting a particular user’s taste based on collected available interests
of other users in an automated way. The underlying idea relates again to some sort of
parsimony, namely low-rankness of the data matrix. This is reasonable as in practice only
few factors contribute to a user’s preferences.
In order to overcome such issues, sparse recovery and compressed sensing were general-
ized to matrices. The framework for the matrix completion problem as described above
emerged with [CR09, CT10]. A more general problem formulation, the so-called matrix
sensing problem, was investigated in [RFP10].
Problems involving low-rank matrices and the need to recover them from measurements
arise in various applications in science and engineering. To name just a few examples, in
quantum state tomography approximately pure quantum states are modeled as positive
semidefinite matrices of low rank with unit trace [GLF+10, Gro11]. In control and sys-
tem theory the state of a low-order time-invariant system can be described by a low-rank
Hankel matrix, which one may want to detect in system identification problems [LV09].
Also in machine learning and data mining sparsity and low-rankness are ubiquitous, un-
derlying several data models in various applications of the fields, like, e.g., face or voice
recognition, intelligent searching, natural language processing and medical diagnosis.
Some of these models exhibit multiple structures simultaneously, making it desirable to
take advantage of the signal lying in several different unions of low-dimensional manifolds
at the same time. A very common instance in this setting are low-rank matrices, which
are additionally sparse in the sense that they admit some kind of sparse decomposition. In
order to illustrate how these different structures arise in a real-world problem, let us take
up the example of a recommendation system for a grocery store described in [FMN19].
Therefore, imagine a data matrix with rows corresponding to the customers of the store
and columns representing the available products. Each entry of this matrix describes the
probability that a certain customer purchases a certain product. Since there are just a
few basic factors, which have an impact on the purchase behavior, such as gender, age,
financial status, family or lifestyle, it is reasonable to suspect that this matrix is of low
rank. Any customer is influenced by these basic factors in an individual manner. In
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turn, any basic factor determines a very specific and pronounced buying pattern, which
motivates to assume that besides low-rankness also sparsity is involved in our model.
The first observation can be rephrased to how much a certain basis factor influences each
customer. This gives rise to two component vectors for each of the basic factors, which
eventually form a non-orthogonal rank-1 decomposition with partially sparse component
vectors of our low-rank data matrix. In fact, even more structure can be found in this
model. After a proper rescaling one component vector can be regarded as a discrete
probability distribution, i.e., it has only positive entries, which add up to one. This
model is very similar to the one from the Netflix prize problem mentioned previously
as a paradigm for matrix completion. However, due to customers tending to maintain
their purchase behavior even in case of small random prize fluctuations, the problem of
recovering the low-rank data matrix can be regarded as an instance of matrix sensing by
acquiring information from aggregated revenues.
The study of simultaneously structured models is a relatively new but upcoming branch
of the field of matrix recovery. In turn, the idea of reducing complexity from a set of
data by extracting the most relevant directions and revealing the essential underlying
information is comparably old [Pea01]. Principal component analysis [Jol02] established
itself in dimension reduction and unsupervised learning. However, despite being widely
spread throughout statistics, data analysis and machine learning, it lacks interpretability,
which is a severe disadvantage. To impose additional structure enhancing the desired
interpretability, sparse principal component analysis was introduced in [ZHT06]. Instead
of requiring orthogonality of the principal components, sparsity of the same is promoted.
This leads to a non-orthogonal low-rank decomposition or approximation involving par-
tially sparse components. The recovery of such matrices from a few linear measurements
was investigated from a theoretical point of view in [OJF+15] showing that tractable con-
vex approaches are not capable of taking advantage of multiple structures. Non-convex
formulations, however, are able to recover low-rank matrices possessing a sparse decom-
position from few measurements of the order of the information theoretic limit.

Organization. The thesis is organized as follows. Chapter 1 gives a concise overview
of the quickly evolving mathematical field of compressed sensing. In Chapter 2 we extend
this framework to the recovery of low-rank matrices from inaccurate and incomplete in-
formation. Based thereon we investigate simultaneously structured signals in Chapter 3.
In particular, low-rank matrices which admit a non-orthogonal sparse decomposition are
considered. The main focus of Chapter 4 is also on this signal class. We propose a novel,
highly non-convex approach based on alternating minimization to recover such matrices
from noisy and only partially available linear measurements. This generalizes the work
of [FMN19]. Eventually, Chapter 5 supports the preceding chapter with numerical exper-
iments. Beyond that, we analyze numerically if the number of necessary measurements
can be reduced if a further structure, namely positivity in the right components of the
low-rank decomposition, is added. We conclude with a further discussion.

Notation. Let us provide an overview of the notation being used throughout the thesis.
We denote the set of natural numbers by N = {1, 2, . . . } and abbreviate [n] = {1, . . . , n}
for n ∈ N. Scalars are denoted by math italic uppercase and lowercase letters. For matri-
ces and vectors we use uppercase and lowercase bold letters, respectively, i.e., Z ∈ Rn1×n2

is a matrix and z ∈ RN a vector. Consequently, the ith row of the matrix Z is denoted
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by zi, the jth column by zj and the entry they have in common by zij. For the latter,
we may also make use of the notation (Z)ij. Analogously, both zi and (z)i denote the ith
entry of the vector z.
We furthermore introduce the support of z as supp(z) = {i ∈ [N ] : zi 6= 0} and refer
to its size as the `0-norm ‖z‖0 of z. However, we want to emphasize that this notion
is misleading, as ‖ · ‖0 is not even a quasi-norm, since it is not absolutely homogeneous.
Moreover, we will heavily use the `q-(quasi)-norms, which are defined for 0 < q ≤ ∞ as

‖z‖q =

(
N∑
i=1

|zi|q
)1/q

and ‖z‖∞ = sup
i∈[N ]

|zi|,

respectively. They are norms for 1 ≤ q ≤ ∞ and (quasi)-norms for 0 < q < 1, since they
only obey the quasi-triangle inequality in this case. The so-called `0-norm can be inter-
preted as the limit of the `q-(quasi)-norms for q → 0, since ‖z‖qq → ‖z‖0, cf. Section 1.2.
Based on the former definition we introduce the N -dimensional `q-(quasi)-norm-balls of
radius r and centered in z as BNq (z, r) and abbreviate BNq (0, 1) with BNq . They are convex,
when a norm is underlying. The (N − 1)-dimensional Euclidean unit sphere, i.e., ∂BN2 , is
denoted by SN−1 ⊂ RN .
As for vectors, we will employ a variety of matrix norms. Therefore let us first recall some
notions from basic linear algebra. Namely, by rank(Z) we denote the rank of the matrix
Z ∈ Rn1×n2 . Furthermore, we write R(Z) for the range or image of the matrix Z, which
is of dimension rank(Z). The nullspace or kernel of Z is denoted by N (Z) or ker(Z) and
is (n2 − rank(Z))-dimensional according to the rank-nullity theorem.
Now, let us introduce the singular value decomposition of a rank-R matrix Z ∈ Rn1×n2 as
the product

Z = UΣVT =
R∑
r=1

σrurv
T
r ,

where σ1(Z) ≥ · · · ≥ σR(Z) > 0 denote the singular values of Z. They may also ap-
pear arranged in a vector σ(Z) ∈ RR. For ease of notation and as already done above,
we sometimes abbreviate σ = σ(Z) and analogously for the singular vectors and the
individual singular values. The left and right singular vectors, u1, . . . ,uR ∈ Rn1 and
v1, . . . ,vR ∈ Rn2 , are collected in the matrices U ∈ Rn1×R and V ∈ Rn2×R and form an
orthonormal basis of R(Z) and N (Z)⊥, respectively. That means, U ∈ Rn1×R as well
as V ∈ Rn2×R are orthogonal rectangular matrices, i.e., they satisfy UTU = Id = VTV.
Here, the identity matrix, mapping RR into itself, is denoted by Id, which, more generally,
labels the identity operator on arbitrary spaces. Σ ∈ RR×R is a positive definite diagonal
matrix, such that Σ = diag(σ). The operator diag maps a vector σ onto a diagonal
matrix Σ, such that σii = σi holds for all i. Note, however, that the same notation
may be also used to extract the diagonal of a maybe non-diagonal matrix and rearrange
it into a vector. Positive definiteness of Σ can be denoted in symbols by Σ � 0. Ac-
cordingly, we will use the character � to indicate that a matrix is positive semidefinite.
The singular value decomposition introduced before is also known as the rank-reduced
singular value decomposition. In contrast, a full singular value decomposition of the form
Z = UΣVT comes with orthogonal squared matrices U ∈ Rn1×n1 and V ∈ Rn2×n2 sat-
isfying UTU = UUT = Id ∈ Rn1×n1 and analogously for V. The diagonal matrix Σ is
then of the same size as the original matrix and has the R singular values on its diagonal
along with zeros filling up the diagonal.
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We can now naturally generalize the concept of the `q-(quasi)-norms to matrices by defin-
ing the Schatten-q-(quasi)-norm ‖Z‖q of the matrix Z as the `q-(quasi)-norm of its asso-
ciated vector σ(Z) of singular values, i.e.,

‖Z‖q = ‖σ(Z)‖q =

(
R∑
r=1

σr(Z)q

)1/q

and ‖Z‖∞ = σ1(Z),

respectively. A few candidates deserve some special attention and come along with their
own labeling. First, for q = ∞, we obtain the operator norm ‖Z‖ = ‖Z‖∞. Second,
for q = 2, the definition yields the Frobenius norm ‖Z‖F = ‖Z‖2 = tr(ZTZ)1/2, which is
induced by the Frobenius scalar product 〈Z1,Z2〉F = tr(ZT

1 Z2) =
∑n1

i=1

∑n2

j=1(Z1)ij(Z2)ij,
where Z` ∈ Rn1×n2 for ` = 1, 2. Last, for q = 1, we get the nuclear norm ‖Z‖∗ = ‖Z‖1,
whose ∗-notation originates from being the dual norm of the operator norm ‖Z‖. More-
over, we can identify the rank of Z with ‖Z‖0, which gives the number of singular values,
i.e., ‖Z‖0 = rank Z. However, this is of course no quasi-norm.
Returning to vectors, for z ∈ RN and an index set T ⊂ [N ] we introduce the restriction of
z to this set as z|T by setting all entries outside of T , i.e., on T c, to zero. This generalizes
to matrices in the form of submatrices. We denote a submatrix of Z consisting of the
columns with indices j ∈ Λ ⊂ [n2] by Z|Λ. This works analogously for Z|Λ. Also associated
with matrices is the vectorization vec Z ∈ Rn1n2 of the matrix Z ∈ Rn1×n2 , which is the
vector resulting from stacking the columns of Z on top of each other.
To denote an operator mapping matrices to vectors we use calligraphic capital letters,
such as A : Rn1×n2 → Rm, Z 7→ y = A(Z). If this is a linear map it can be described
by an (m× n1n2)-dimensional matrix by employing the vectorization of Z. This can also
be reshaped properly into m individual Frobenius scalar products involving (n1×n2)-
dimensional matrices Ai for i ∈ [m], cf. Section 2.2. We moreover use the calligraphic
letter O as part of the Landau notation.
Additionally to matrices we use bold capital letters also for subspaces and insinuate that it
is in general clear from the context whether we refer to a matrix or the subspace spanned
by its columns.
We use the notation xk also for the kth iterate in an iterative algorithm. This causes a
certain ambiguity, however, it will be clear from the context to what we refer.
The indicator function of an arbitrary set K ⊂ RN is denoted by 1K(z). Furthermore,
we call K# an ε-net or ε-cover of K with respect to a metric d, if for any z ∈ K there
exists a z# ∈ K# such that d(z, z#) ≤ ε. The ε-covering number N(K, d, ε) of K is
the smallest cardinality of any ε-net, which we call minimal ε-net. In this thesis we only
consider internal covers, i.e., we require K# ⊂ K. If d is induced by a norm ‖ · ‖, we use
the notation N(K, ‖ · ‖, ε).
Let (Ω,F ,P) denote a probability space. The probability of an event F ∈ F is denoted
by P(F ), the expectation of a random variable X : Ω→ E, where (E, E) is a measurable
space, is denoted by EX =

∫
Ω
X(ω) dP(ω). Moreover, we denote the normal distribution

with expectation µ ∈ RN and covariance matrix Σ ∈ RN×N by N (µ,Σ).
For the sake of simplicity we write a . b to express that there exists an absolute constant
C > 0 such that a ≤ Cb. The same applies to & and with a ' b we mean that a . b and
a & b hold simultaneously.
Further notation is in general introduced when it first appears.
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Chapter 1

Compressed Sensing

In this first chapter we give an outline of the vast field of compressed sensing. Starting
from basic notions such as sparsity and compressibility, we investigate the question of
how to identify sparse signals using a number of measurements which is related to their
intrinsic information content rather than the ambient dimension. We particularly focus on
lower bounds on the number of necessary measurements, on how to design a measurement
process and on how to realize the recovery efficiently via specialized algorithms.
For a more comprehensive presentation providing a much deeper insight we refer to the
monograph [FR13] by Foucart and Rauhut as well as the compendium [FR15] by
Fornasier and Rauhut and the paper [CDD09] by Cohen, Dahmen and DeVore.
For Section 1.4 in particular we recommend [For10] by Fornasier.

1.1 Sparsity and Compressibility

We motivated in the introduction that real-word signals can usually be well approximated
by sparse expansions with respect to an appropriate basis. This, however, is based solely
on an empirical observation, which seems to underly nature in many situations. In order
to make the notions of sparsity and compressibility more rigorous, let us start by defining
the set of s-sparse vectors ΣN

s . A signal z ∈ RN is called s-sparse, if at most s of its
entries are non-zero, i.e.,

‖z‖0 := |supp(z)| ≤ s. (1.1)

Despite being not even a quasi-norm, ‖ · ‖0 is colloquially termed `0-norm. For conve-
nience, let us establish the notion of the relative sparsity of an s-sparse signal z as the
quotient s/N . Moreover, let us briefly comment on the geometry of the set of s-sparse
vectors. Given a fixed support set of size s, all s-sparse vectors supported thereon form an
s-dimensional subspace. As there are

(
N
s

)
different support sets, ΣN

s is the union of just
as many subspaces of dimension s. Since the sum of two s-sparse vectors from different
subspaces may have up to 2s non-zero components, this set is non-convex.
As already mentioned, assuming merely compressibility instead of sparsity is more realistic
in applications. Compressible vectors are characterized by the property that they can be
well approximated by sparse ones. In order to make this more precise, for p > 0 let us
define the best s-term approximation of z as

z[s] := arg inf
z̃∈ΣNs

‖z− z̃‖p. (1.2)

7
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Independently of p, z[s] can be obtained by retaining only the s in absolute value largest
components of z and setting all the remaining ones to zero. The quality of this non-linear
approximation is quantified by the best s-term approximation error of a vector z ∈ RN

with respect to the `p-(quasi)-norm, given by

σs(z)p := ‖z− z[s]‖p = inf
z̃∈ΣNs

‖z− z̃‖p. (1.3)

Now, a signal z ∈ RN is called compressible if σs(z)p decays quickly in s. A prominent
example for compressible vectors are the `q-balls BNq for small q ≤ 1, which are sketched
in Figure 1.1 for different values of q.

(a) q = 1/3 (b) q = 1/2 (c) q = 2/3 (d) q = 1

Figure 1.1. Geometry of the `q-(quasi)-norm-balls B2
q for different values of q.

The following lemma formalizes this observation by establishing a bound on the best
s-term approximation error in terms of suitable `q-(quasi)-norms.

Lemma 1.1 (Stechkin’s Inequality). For p ≥ q > 0 and z ∈ RN it holds

σs(z)p ≤ s−(1/q−1/p)‖z‖q. (1.4)

Proof. Without loss of generality let us assume that z is given in its nonincreasing rear-
rangement, i.e., |zi| ≥ |zj| for all i < j. Then, s|zs|q ≤

∑s
i=1|zi|

q ≤ ‖z‖qq. Therefore,

σs(z)pp =
N∑

i=s+1

|zi|p ≤ |zs|p−q
N∑

i=s+1

|zi|q ≤ s−(p−q)/q‖z‖p−qq ‖z‖
q
q ≤ s−(p−q)/q‖z‖pq , (1.5)

which implies the claim by taking the pth root on both sides.

A variation of this lemma and therefore a different definition of compressibility resembling
the one of sparsity can be found in [FR13, Proposition 2.11]. There, a vector z ∈ RN

is called compressible if, for some threshold t > 0, the number of its significant, i.e., in
absolute value larger than t, components is small. The `q-(quasi)-norm in equation (1.4)
can then essentially be replaced by the weak `q-(quasi)-norm, cf. [DeV98].

1.2 Sparse Solutions of Underdetermined Systems

As already mentioned in the introduction, sensors measuring all kinds of data are ev-
erywhere. In natural sciences, such as physics, chemistry or biology, as well as applied
sciences, such as engineering and technology or medicine, the quantities of interest are fre-
quently only available indirectly in terms of their measurements. This often necessitates

8
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to recover a high-dimensional signal x ∈ RN from the observed data y ∈ Rm. Assuming
that the measurement procedure is linear, it can be described by

y = Ax, (1.6)

where the matrix A ∈ Rm×N models the information acquisition process and is referred
to as the encoder or encoding matrix. In the following we require A to have full rank,
i.e., rank(A) = min{m,N}. From standard linear algebra we know that, in general,
m = N is needed for unique solvability of equation (1.6). We, in turn, are interested
in the undersampled case m < N . Without further assumptions on the signal x, an
identification of the desired one is impossible as there are infinitely many solutions to the,
in this case, underdetermined linear system.
However, as motivated in the introduction, typical real-world signals admit a certain struc-
tural feature, namely compressibility or in an idealized setting, sparsity. That means, even
though being embedded into the high-dimensional space RN , their intrinsic complexity is
much smaller.
In this case, the natural question to ask is whether we are able to reduce the number of
necessary measurements such that it depends on the intrinsic information content rather
than the ambient dimension. That this is indeed theoretically possible is the subject of
the following statement.

Theorem 1.2. Suppose that the measurement matrix A ∈ Rm×N is such that every set
of 2s columns of A is linearly independent. Then every s-sparse vector x ∈ RN can be
reconstructed uniquely from its measurements y = Ax.

Proof. Let us assume that unique reconstruction cannot be performed, i.e., there are two
different s-sparse vectors x,x′ such that Ax = y = Ax′. Then, by linearity, A(x−x′) = 0
and since x− x′ is 2s-sparse, 2s columns of A are linearly dependent.

Moreover, one can actually show that the condition on the matrix A from Theorem 1.2
is also necessary, cf. [FR13, Theorem 2.13]. Therefrom, for the number of required mea-
surements we deduce m ≥ 2s, as any submatrix containing 2s columns of A needs to
be of rank 2s. Vandermonde-type matrices, for instance, can provide suitably designed
measurement matrices, which ensure this property, cf. [FR13, Theorem 2.14 and 2.15].
Let us put this differently. Assuming that we are capable of designing our measurement
process appropriately, i.e., such that it can be described by the matrix A, we are able to
guarantee that the non-convex optimization program

min
z∈RN
‖z‖0 subject to Az = y (1.7)

yields the correct solution x. We call this the `0-minimization problem and denote its
minimizer by ∆0(y). In general, typically non-linear maps of the type ∆ : Rm → RN ,
implementing a reconstruction method trying to recover the signal x from the information
held by the measurements y are referred to as decoders1.
Prohibitively, however, the optimization problem (1.7), related to the decoder ∆0, turns
out to be NP-hard for arbitrary matrices A and right-hand sides y [Nat95]. This entails

1We want to emphasize at this point that compressed sensing brings together the—in classical theory
strictly separated—worlds of sampling, which is totally linear, and compression, which is highly non-
linear.
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that any algorithmic approach becomes computationally intractable for a large surround-
ing dimension N .
Furthermore, for the case that N is large, suitable measurement matrices A are poorly
conditioned, which leads to numerical instabilities when recovering a signal x from mea-
surements of the form (1.6).
Though being foremost of theoretical interest, the non-convex and discontinuous `0-mini-
mization problem (1.7) serves as starting point for essentially two classes of tractable
approaches. Firstly, greedy methods established themselves. A well-known representative
of this class is orthogonal matching pursuit, which will be addressed briefly in Subsec-
tion 1.4.1. Secondly, methods based on convex relaxation were proposed, including convex
optimization based techniques and iterative thresholding methods, such as iterative soft
thresholding. Convex relaxation will be from a theoretical perspective the main focus of
Section 1.3 and from an algorithmic one the main part of Section 1.4.
Before that, however, we want to give a quick overview of the path from non-convex and
discontinuous `0-minimization over non-convex but continuous relaxation thereof towards
the in so many ways successful convex and continuous `1-minimization problem. This will
then finally be introduced at the beginning of Section 1.3.
The key observation for relaxation is the convergence of the qth powers of the `q-(quasi)-
norms to the `0-norm monotonously from below, i.e.,

‖z‖qq =
N∑
i=1

|zi|q −→
N∑
i=1

1{zi 6=0} = ‖z‖0 (1.8)

monotonously from below for q → 0 monotonously. As a consequence, the continuous
`q-(quasi)-norms can be seen as approximations to the discontinuous and non-convex
`0-norm. For q < 1, however, the `q-quasi-norms are still non-convex, which results in the
relaxed `q-minimization problem

min
z∈RN
‖z‖qq subject to Az = y, (1.9)

which is still NP-hard [GJY11]. Note that, without imposing certain conditions on A
and the sparsity of x, (1.9) is just an approximation to (1.7). Analogously to before, we
denote the minimizer of (1.9) by ∆q(y).

1.3 Recovery of Sparse Signals

Candès, Romberg and Tao [CRT06a] and Donoho [Don06] proposed the decoder

min
z∈RN
‖z‖1 subject to Az = y, (1.10)

which is called `1-minimization or basis pursuit. It can be regarded as the convex re-
laxation of `0-minimization (1.7) and admits several promising properties. First, it is a
convex optimization problem and can even be recast as a linear program [CDS98]. There-
fore, standard techniques from convex optimization can be employed, such as the simplex
algorithm or the interior-point method. Second, and this was one of the remarkable ob-
servations of the papers cited at the beginning of this section, conditions on the matrix A
and the sparsity of x were established which assure that `1-minimization recovers the

10
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correct solution x. Furthermore, it was shown that such measurement matrices can be
constructed at random with high probability and, moreover, that the necessary number
of measurements behaves like

m & s log

(
eN

s

)
. (1.11)

Compared to the lower bound following from Theorem 1.2, m ≥ 2s, this is worse, as the
ambient dimension N is involved. However, it appears only logarithmically. In fact, this
number is necessary to guarantee stable recovery. Third, the decoder ∆1, given by (1.10),
is stable. The notion of stability refers to possible sparsity defects mirroring typical
disturbances to signals from real-world applications, cf. the concept of compressibility
from Section 1.1. And fourth, the decoder is also robust with respect to noise in the
measurements [CT05, CRT06b]. That means, if we are facing the situation, where we
wish to recover the signal x from inaccurate measurements

y = Ax + η, (1.12)

the quality of the recovery is only affected by an additional error of order O(‖η‖2). Here,
η ∈ Rm denotes unknown noise corrupting the sensing process. We will discuss this more
closely in Subsection 1.3.5, but also refer to [FR13, Section 4.3] for a detailed presentation.
At first, however, let us consider the noiseless case.

1.3.1 On how `1-Minimization Promotes Sparsity

An illustrative and intuitive explanation why `1-minimization works so well is given in
Figure 1.2. We compare it with the on the right-hand side depicted `2-minimization, which
is strongly related to Tikhonov regularization2. Furthermore, for comparison and in order
to ease the imagination of `0-minimization, non-convex `q-minimization3 is sketched for
q = 1/2 on the left-hand side.

x+kerA x+kerA x+kerA

x x x

(a) q = 1/2 (b) q = 1 (c) q = 2

Figure 1.2. Comparison of `1-minimization (middle) with `2-minimization (right) and
`q-minimization for q = 1/2 (left). Depicted are, for each of the three situations, the
solution set {z : Az = Ax} and the suitably inflated `q-(quasi)-norm ball.

The figure suggests that, contrarily to `2-minimization, `1-minimization is capable of
recovering the sparsest solution to the linear system (1.6), i.e., it holds ∆1(y) = ∆0(y).
However, there are certain situations where this cannot be guaranteed, namely when the

2In statistics, the term ridge regression is the more common one.
3Originated from a play on words, the regularized version of (1.9) is also called bridge regression as it

literally builds a bridge between `0-penalization and ridge regression [Tib96].
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(N−m)-dimensional subspace ker A is aligned with one of the faces of the `1-norm ball.
Therefore, a necessary condition on the kernel of A, the so-called null space property, was
introduced in [CDD09]. Actually, without being mentioned explicitly though, it appeared
already much earlier. It turns out that this property is equivalent to sparse recovery via
`1-minimization, as we will show in Theorem 1.4.

1.3.2 The Null Space Property

We argued intuitively that the kernel of the encoder A plays the central role for the
question whether the problems (1.7) and (1.10) admit the same solution. The following
property of the measurement matrix turns out to be fundamental.

Definition 1.3 (Null Space Property (NSP)). A matrix A ∈ Rm×N satisfies the null
space property of order s with constant 0 < γ < 1, if

‖z|S‖1 ≤ γ‖z|Sc‖1 (1.13)

for all sets S ⊂ [N ] such that |S| ≤ s and for all z ∈ ker A\{0}. Moreover, if we refer to
it without mentioning the constant γ, we require ‖z|S‖1 < ‖z|Sc‖1 in place of (1.13).

The null space property essentially states that the kernel of the measurement matrix A
must not contain vectors, where some entries are significantly larger in magnitude than
the remaining ones. This needs to hold in particular for sparse and compressible vectors.
Namely, if this were not the case, they could not be distinguished from zero and thus a
stable recovery would not be possible.
In the following theorem we now formalize what was already mentioned previously. The
null space property is a necessary and sufficient condition for recovering sparse vectors
exactly via `1-minimization.

Theorem 1.4 (Equivalence between the Null Space Property and `1-Recovery). A given
matrix A ∈ Rm×N satisfies the null space property of order s, if and only if every s-sparse
vector x ∈ RN is the unique solution to the `1-minimization problem (1.10) with y = Ax.

Proof. Let us assume that A has the null space property of order s. Furthermore, let
x ∈ ΣN

s and denote its support by S. Then, for a vector z ∈ x + ker A, z 6= x, we observe
that v := x− z ∈ ker A\{0}. Thus, by the null space property,

‖x‖1 ≤ ‖x − z|S‖1 + ‖z|S‖1 = ‖v|S‖1 + ‖z|S‖1

< ‖v|Sc‖1 + ‖z|S‖1 = ‖−z|Sc‖1 + ‖z|S‖1 = ‖z‖1,
(1.14)

which shows the optimality of x.
Conversely, let us assume that every s-sparse vector x ∈ RN is the unique minimizer of
‖z‖1 subject to Az = Ax. Then, for any index set S and any vector v ∈ ker A\{0}, v|S
is the unique minimizer of ‖z‖1 subject to Az = Av|S. However, as v ∈ ker A, we have
A (−v|Sc) = Av|S and −v|Sc 6= v|S as v 6= 0. Consequently, ‖v|S‖1 < ‖−v|Sc‖1.

Remark 1.5 (Null Space Property for the Decoder ∆q). Replacing condition (1.13) in
Definition 1.3 by ‖z|S‖qq ≤ γ‖z|Sc‖qq provides a suitable null space property for `q-minimiza-
tion, see, e.g., [GPYZ15, Pet16]. Then, Theorem 1.4 can be reformulated analogously for
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`q-minimization. Moreover, it can be shown that `q-minimization provides an approxi-
mation to (1.7), which improves for q → 0. Stated more precisely, for 0 < q < p ≤ 1,
sparse recovery via `p-minimization implies sparse recovery via `q-minimization [FR13,
Theorem 4.9].

For practical applications it is indispensable for our reconstruction method to be stable
in the sense that a compressible signal x can be recovered by only admitting an error,
which is comparable to the best s-term approximation error. That this is the case for
`1-minimization is made more rigorous in the next theorem.

Theorem 1.6 ([FR13, Theorem 4.12]). Let us assume that A ∈ Rm×N has the null space
property of order s with constant 0 < γ < 1. Then, for any x ∈ RN , a solution x̂ to the
`1-minimization problem (1.10) with y = Ax fulfills

‖x− x̂‖1 ≤
2(1 + γ)

1− γ
σs(x)1. (1.15)

Proof. First observe that v := x − x̂ ∈ ker A. Moreover, as x̂ is a solution to (1.10), it
holds ‖x̂‖1 ≤ ‖x‖1. Let us denote the set of the s, in absolute value largest entries of x,
by S. Then,

‖x̂|S‖1 + ‖x̂|Sc‖1 ≤ ‖x|S‖1 + ‖x|Sc‖1 (1.16)

and by the reverse triangle inequality

‖x|S‖1 − ‖v|S‖1 + ‖v|Sc‖1 − ‖x|Sc‖1 ≤ ‖x|S‖1 + ‖x|Sc‖1. (1.17)

From this we deduce

‖v|Sc‖1 ≤ 2‖x|Sc‖1 + ‖v|S‖1 ≤ 2σs(x)1 + γ‖v|Sc‖1, (1.18)

where, besides the definition of best s-term approximation, the null space property of order
s with constant γ was utilized in the last inequality. We can reformulate this equivalently
and obtain

‖v|Sc‖1 ≤
2

1− γ
σs(x)1. (1.19)

Eventually, employing the null space property once more in the next-to-last inequality,
we get with inequality (1.19) that

‖x− x̂‖1 = ‖v‖1 = ‖v|S‖1 + ‖v|Sc‖1 ≤ (1 + γ)‖v|Sc‖1 ≤
2(1 + γ)

1− γ
σs(x)1, (1.20)

yielding the claim.

Because of Theorem 1.6, the null space property of order s with constant γ is often referred
to as the stable null space property of order s with constant γ.
A common term, related to (1.15), appearing frequently in the literature is instance
optimality [CDD09]. An encoder-decoder pair (A,∆) is referred to as instance optimal
of order s with constant C with respect to the (quasi)-norm ‖ · ‖X , if

‖z−∆(Az)‖X ≤ Cσs(z)X (1.21)

for all z ∈ RN . An immediate consequence of instance optimal of order s is that s-sparse
signals z can be recovered exactly.
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Remark 1.7 (Instance Optimality of the Decoder ∆q). Assuming the modified null space
property introduced in Remark 1.5 for the measurement matrix A one can show that the
pair (A,∆q) is actually instance optimal with respect to the (quasi)-norm ‖ · ‖q, see,
e.g., [GPYZ15, Pet16].

Despite having these favorable results it is inconvenient to work with the null space
property in practice, as it is hard to verify for a given matrix A. In its stead, a stronger
condition was introduced in [CT06].

1.3.3 The Restricted Isometry Property

From standard linear algebra it is well-known that a linear map, described by a matrix
A ∈ Rm×N , cannot preserve distances between arbitrary points, when m < N , i.e., it
cannot be an isometry. However, as we are not interested in sensing arbitrary vectors
z ∈ RN , there is no need for A to retain the whole geometry of RN . It suffices if A
behaves like an isometry when restricted to ΣN

s . This was firstly investigated in [CT06]
under the name uniform uncertainty principle and is now known as the restricted isometry
property [CT05].

Definition 1.8 (Restricted Isometry Property (RIP)). A matrix A ∈ Rm×N satisfies the
restricted isometry property of order s with isometry constant 0 < δ < 1, if

(1− δ)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δ)‖z‖2
2 (1.22)

for all z ∈ ΣN
s .

Clearly, if A has the restricted isometry property of order 2s, any two different s-sparse
vectors z and z′ are distinguishable by their measurements. Consequently, x is the unique
s-sparse solution amenable to the measurements y = Ax, cf. [CT05, Lemma 1.2].

Remark 1.9. In some situations it is relevant to be able to consider RIP constants δ
associated with different orders s. To distinguish them, we add the order as a subscript,
i.e., we write δs.

The restricted isometry property is stronger than the null space property, as specified in
the following result. Its proof employs a common technique in the compressed sensing
literature.

Theorem 1.10 (The Restricted Isometry Property implies the Null Space Property,
[FR15, Lemma 2]). Let us assume that A ∈ Rm×N has the restricted isometry property of
order s+ t with constant 0 < δ < 1. Then, A has the null space property of order s with
constant γ =

√
s(1+δ)
t(1−δ) .

Proof. Let v ∈ ker A and define a partition

T = {T` : |T0| = s and |T`| = t for all 0 < ` < d(n− s)/te}d(n−s)/te`=0 (1.23)

of [n] associated with a nonincreasing rearrangement of v, i.e., for all ` ≥ 1 it holds

|vi| ≤ |vj| for all i ∈ T` and j ∈ T`−1. (1.24)
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Then, after employing Cauchy-Schwarz inequality, the restricted isometry property, using
that v ∈ ker A, applying the triangle inequality and eventually the restricted isometry
property once more, we obtain

‖v|T0‖1 ≤
√
s‖v|T0‖2 ≤

√
s‖v|T0∪T1‖2 ≤

√
s

√
1

1− δ
‖Av|T0∪T1‖2

=
√
s

√
1

1− δ

∥∥∥Av|T2∪T3∪···∪Td(n−s)/te

∥∥∥
2
≤
√
s

√
1

1− δ

d(n−s)/te∑
`=2

‖Av|T`‖2

≤
√
s

√
1 + δ

1− δ

d(n−s)/te∑
`=2

‖v|T`‖2.

(1.25)

In order to upper bound the last term, we note that by definition of the partition T ,
firstly, for ` ≥ 2, summation over j yields

|vi| ≤ t−1
∥∥v|T`−1

∥∥
1

(1.26)

for all i ∈ T`. Secondly, taking the `2-norm over i ∈ T` shows

‖v|T`‖2 ≤ t−1/2
∥∥v|T`−1

∥∥
1
. (1.27)

Using this estimate in (1.25) yields

‖v|T0‖1 ≤
√
s

t

√
1 + δ

1− δ

d(n−s)/te∑
`=2

∥∥v|T`−1

∥∥
1
≤
√
s

t

√
1 + δ

1− δ
∥∥v|T c0∥∥1

, (1.28)

establishing the null space property of order s with the claimed constant γ.

It remains to discuss two relevant connected questions for RIP matrices. Namely, how they
can be constructed and which size of m is necessary therefore. It is first worth mentioning
that currently no deterministic measurement matrices are available, which are provably
optimal in the sense that they match the bounds on the number of measurements we
will derive in Subsection 1.3.4. To date, this is an open problem. However, randomiza-
tion helps out, as recognized in [CRT06a, CT06]. Random matrices, such as Gaussian or
Bernoulli matrices, turn out to satisfy the restricted isometry property with high prob-
ability provided m fulfills (1.11). This is made more precise below in Theorem 1.11 for
measurement matrices with Gaussian entries. The proof we present, exploits a link be-
tween the Johnson-Lindenstrauss Lemma [JL84] and the restricted isometry property and
was given in [BDDW08].

Theorem 1.11 (Gaussian Matrices are RIP Matrices, cf. [BDDW08, Theorem 5.2]). Let
A ∈ Rm×N be a random matrix with i.i.d. mean-zero Gaussian entries of unit variance,
and assume that

m ≥ Cs log

(
eN

s

)
(1.29)

holds for a constant C > 0, which only depends on 0 < δ < 1. Then, with probability at
least 1− exp (−cm), where c > 0 denotes a constant, which only depends on δ as well, the
matrix 1√

m
A satisfies the restricted isometry property of order s with isometry constant δ.
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Theorem 1.11 was established for several other distributions, especially for sub-Gaussian
distributions, such as the Bernoulli distribution. The decisive point is whether a concen-
tration inequality of the type (1.30) can be derived for the particular underlying distribu-
tion, cf. [Ach03].

Lemma 1.12 (Concentration Inequality for Gaussian Matrices, [Ver12, Theorem 5.16]).
Let A ∈ Rm×N be a random matrix with entries sampled i.i.d. according to N (0, 1). Then,
for all z ∈ RN and 0 < ε < 1, it holds

P

(∣∣∣∣∣
∥∥∥∥ 1√

m
Az

∥∥∥∥2

2

− ‖z‖2
2

∣∣∣∣∣ ≥ ε‖z‖2
2

)
≤ 2 exp

(
−cmε2

)
, (1.30)

where c > 0 is an absolute constant.

Sketch of Proof. The claim follows from Bernstein inequality for sub-exponential random
variables after observing that Zi = |〈ai, z〉|2−‖z‖2

2 is a mean-zero sub-exponential random
variable for all i ∈ [m].

Besides a suitable concentration inequality, such as Lemma 1.12 in the case of Gaussian
random matrices, a covering argument plays an important role when verifying a restricted
isometry property.

Proof of Theorem 1.11. Without loss of generality we can restrict the proof to ‖z‖2 = 1,
as A is linear. For the moment, let us fix a support set S ⊂ [N ] of size s and define
the set of s-sparse vectors supported thereon by ΣS. Note that there are in total

(
N
s

)
such sets ΣS ⊂ SN−1. Now, choose a minimal δ/4-net (ΣS)# ⊂ ΣS. It is well-known (see,
e.g., [Pis89, Lemma 4.16]) that such a net can be found of cardinality

∣∣(ΣS)#
∣∣ ≤ (12/δ)s, as

the support set S is fixed. A union bound to the set (ΣS)# yields by applying Lemma 1.12
with ε = δ/8 that (

1− δ

8

)
‖z#‖2

2 ≤
∥∥∥∥ 1√

m
Az#

∥∥∥∥2

2

≤
(

1 +
δ

8

)
‖z#‖2

2 (1.31)

holds for all z# ∈ (ΣS)# with probability at least 1 − 2(12/δ)s exp (−cmδ2/64). Let us
now define the constant A > 0 as the smallest number such that∥∥∥∥ 1√

m
Az

∥∥∥∥2

2

≤ (1 + A) ‖z‖2
2 (1.32)

for all z ∈ ΣS. We want to show A ≤ δ. For any z ∈ ΣS we can choose a z# ∈ (ΣS)#

with ‖z− z#‖2 ≤ δ/4. As z− z# ∈ ΣS, we observe∥∥∥∥ 1√
m

Az

∥∥∥∥2

2

≤
(∥∥∥∥ 1√

m
Az#

∥∥∥∥
2

+

∥∥∥∥ 1√
m

A
(
z− z#

)∥∥∥∥
2

)2

≤

(√
1 +

δ

8
+
√

1 + A
δ

4

)2

.

(1.33)
As A is minimal by assumption, this implies

1 + A ≤

(√
1 +

δ

8
+
√

1 + A
δ

4

)2

, (1.34)
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which in turn shows A ≤ (1+δ/8)

(1−δ/4)2 − 1 ≤ δ. The lower bound follows therefrom, as by the
reverse triangle inequality it holds∥∥∥∥ 1√

m
Az

∥∥∥∥2

2

≥
(∥∥∥∥ 1√

m
Az#

∥∥∥∥
2

−
∥∥∥∥ 1√

m
A
(
z− z#

)∥∥∥∥
2

)2

≥

(√
1− δ

8
−
√

1 + δ
δ

4

)2

≥ 1−δ.

(1.35)
This establishes the restricted isometry property relative to the fixed support set S. It
remains to extend this result to the whole set ΣN

s by a union bound. As there are in
total

(
N
s

)
≤ (eN/s)s such s-dimensional subspaces ΣS, the restricted isometry property

will fail with probability of at most 2(12eN/(δs))s exp (−cmδ2/64). The assertion follows
by using assumption (1.29). This is made more verbose in [BDDW08, Theorem 5.2].

Despite being theoretically of high interest, Gaussian measurement matrices have limited
practical application for two main reasons. First, it is difficult to design real-world sensing
devices such that they can be represented by such random matrices. Second, they are
almost surely dense matrices and therefore difficult to store and admit no fast matrix-
vector multiplication. However, several research was done on structured random matrices,
like, e.g., random partial Fourier matrices or partial random circulant and Toeplitz ma-
trices [Rau10].
For the sake of completeness, let us state a stability result analogously to the one in
Theorem 1.6 under the assumption of the restricted isometry property. In fact, it is a
direct consequence thereof when applying Theorem 1.10.

Corollary 1.13. Let us assume that A ∈ Rm×N has the restricted isometry property
of order 3s with constant 0 < δ < 1/3. Then, for any x ∈ RN , a solution x̂ to the
`1-minimization problem (1.10) with y = Ax fulfills

‖x− x̂‖1 ≤ Cσs(x)1, (1.36)

where C = 2(1+γ)
1−γ with γ =

√
(1+δ)
2(1−δ) .

Furthermore, under the same condition on the measurement matrix A, a bound on the
reconstruction error with respect to the `2-norm can be established.

Theorem 1.14 ([FR15, Theorem 2]). Let us assume that A ∈ Rm×N has the restricted
isometry property of order 3s with constant 0 < δ < 1/3. Then, for any x ∈ RN , a
solution x̂ to the `1-minimization problem (1.10) with y = Ax fulfills

‖x− x̂‖2 ≤ C
σs(x)1√

s
, (1.37)

where C = 2
1−γ

(
γ+1√

2
+ γ
)
with γ =

√
(1+δ)
2(1−δ) .

In what follows we want to provide a proof of this theorem, as its concept will reappear in
the matrix setting at a later point, cf. Theorem 2.5. However, we make a slightly stronger
assumption, namely δ3s+3δ4s < 2 and arrive at a modified constant. Therefore, we adapt
the proof of Theorem 1.2 from [CRT06b].
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Proof of Theorem 1.14. Since x is feasible and x̂ a solution to (1.10) with y = Ax, we
have ‖x̂‖1 ≤ ‖x‖1. Let us define h = x − x̂ ∈ ker A and T0 = supp(x[s]). Then, by
utilizing the reverse triangle inequality we observe

‖x|T0‖1 − ‖h|T0‖1 −
∥∥x|T c0∥∥1

+
∥∥h|T c0∥∥1

≤ ‖(x− h)|T0‖1 +
∥∥(x− h)|T c0

∥∥
1

= ‖x− h‖1 = ‖x̂‖1 ≤ ‖x‖1,
(1.38)

which simplifies to ∥∥h|T c0∥∥1
≤ ‖h|T0‖1 + 2

∥∥x|T c0∥∥1
. (1.39)

Let us now divide T c0 into subsets of size 3s associated with a non-increasing rearrangement
of h|T c0 , i.e., we introduce the partition T from Theorem 1.10 with t = 3s for h, however,
after having fixed T0 in advance. That means, property (1.24) holds only for all ` ≥ 2.
With this decomposition, we can show that the `2-norm of h is concentrated on T0 ∪ T1.
In fact, as the kth largest entry of h|T c0 can be upper bounded by

∥∥h|T c0∥∥1
/k we obtain

∥∥h|(T0∪T1)c
∥∥2

2
≤
∥∥h|T c0∥∥2

1

N∑
k=3s+1

1

k2
≤
∥∥h|T c0∥∥2

1

N∑
k=3s+1

(
1

k − 1
− 1

k

)
≤
∥∥h|T c0∥∥2

1

3s
, (1.40)

having exploited that the last sum is a telescopic sum. Combining the last two inequalities
and using Cauchy-Schwarz inequality thereafter yields

∥∥h|(T0∪T1)c
∥∥

2
≤
∥∥h|T c0∥∥1√

3s
≤
‖h|T0‖1 + 2

∥∥x|T c0∥∥1√
3s

≤ 1√
3
‖h|T0‖2 +

2√
3s

∥∥x|T c0∥∥1
. (1.41)

We can use this bound to establish a bound on ‖h‖2, namely

‖h‖2 ≤ ‖h|T0∪T1‖2 +
∥∥h|(T0∪T1)c

∥∥
2
≤ ‖h|T0∪T1‖2 +

1√
3
‖h|T0‖2 +

2√
3s

∥∥x|T c0∥∥1

≤
(

1 +
1√
3

)
‖h|T0∪T1‖2 +

2√
3s

∥∥x|T c0∥∥1
.

(1.42)

After using both triangle inequalities, an application of the restricted isometry property
of order 4s and 3s with the respective isometry constants δ4s and δ3s yields

‖Ah‖2 =

∥∥∥∥∥Ah|T0∪T1 +
∑
`≥2

Ah|T`

∥∥∥∥∥
2

≥ ‖Ah|T0∪T1‖2 −
∑
`≥2

‖Ah|T`‖2

≥
√

1− δ4s‖h|T0∪T1‖2 −
√

1 + δ3s

∑
`≥2

‖h|T`‖2

≥
√

1− δ4s‖h|T0∪T1‖2 −
√

1 + δ3s

(
1√
3
‖h|T0‖2 +

2√
3s

∥∥x|T c0∥∥1

)
≥
(√

1− δ4s −
1√
3

√
1 + δ3s

)
‖h|T0∪T1‖2 −

2√
3s

√
1 + δ3s

∥∥x|T c0∥∥1
.

(1.43)

The next-to-last inequality avails itself of the common technique in compressed sensing
used in the proof of Theorem 1.10. More precisely, repeating these computations we obtain∑

`≥2‖h|T`‖2 ≤
1√
3s

∑
`≥2

∥∥h|T`−1

∥∥
1
≤ 1√

3s

∥∥h|T c0∥∥1
. Now, using (1.39) and Cauchy-Schwarz

inequality we arrive at
∑

`≥2‖h|T`‖2 ≤
1√
3s
‖h|T0‖1+ 2√

3s

∥∥x|T c0∥∥1
≤ 1√

3
‖h|T0‖2+ 2√

3s

∥∥x|T c0∥∥1
.
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Finally, since h ∈ ker A, ‖Ah‖2 = 0 and thus (1.43) provides a bound on ‖h|T0∪T1‖2. This
in turn can be used to complete the bound (1.42) on ‖h‖2 as follows,

‖h‖2 ≤
((

1 +
1√
3

)
1

Cδ

√
1 + δ3s + 1

)
2√
3s

∥∥x|T c0∥∥1
≤ C

σs(x)1√
s
, (1.44)

abbreviating Cδ =
√

1− δ4s − 1√
3

√
1 + δ3s. Simple algebra reveals that the denominator

Cδ is greater than 0 if δ3s + 3δ4s < 2, which completes the proof.

Remark 1.15. There is nothing particularly special about having chosen the subsets, T c0
is divided into, to be of size 3s. The proof shows immediately that any b > 1 would have
been possible yielding the condition δbs + bδ(b+1)s < b− 1. This reveals a trade-off between
the order of the restricted isometry property and the condition on the RIP constants.
Improving both the required order and a sufficient bound on δ in statements like Corol-
lary 1.13 and Theorem 1.14 was the focus of a vast amount of research. For instance,
in [Can08], the results of the previous two statements were shown, for a different but well-
behaved constant C, under the assumption of a restricted isometry property of order 2s
with 0 < δ <

√
2− 1.

Having these reconstruction and stability results at hand, an intriguing question arises.
Namely, how well the combination of a measurement matrix satisfying the restricted isom-
etry property and `1-minimization performs compared to theoretically optimal encoder-
decoder pairs (A,∆). This is the content of the upcoming subsection. Before that,
however, we want to comment on `q-minimization.

Remark 1.16 (Restricted Isometry Property for `q-Minimization). Building upon Theo-
rem 1.10 one may ask whether the restricted isometry property also implies the modified
null space property for `q-minimization introduced in Remark 1.5. And indeed, we formu-
late Theorem 1.17 below to show that this is the case. Ideas of its proof, which resembles
the one of Theorem 1.10, will reappear later on in Lemma 4.9.

Theorem 1.17 (The Restricted Isometry Property implies the Null Space Property for
`q-minimization). Let 0 < q ≤ 1 and let us assume that A ∈ Rm×N has the restricted
isometry property of order s + t with constant 0 < δ < 1. Then, A has the null space
property for `q-minimization of order s with constant γ =

(
s
t

)1−q/2 (1+δ
1−δ

)q/2.
Proof. Analogously to the proof of Theorem 1.10, let v ∈ ker A and define a partition T as
in (1.23). Then, we utilize Lemma A.2(ii), which is a consequence of Hölder’s inequality,
the restricted isometry property and the fact that v ∈ ker A to obtain

‖v|T0‖
q
q ≤ s1−q/2‖v|T0‖

q
2 ≤ s1−q/2‖v|T0∪T1‖

q
2 ≤ s1−q/2

(
1

1− δ

)q/2
‖Av|T0∪T1‖

q
2

= s1−q/2
(

1

1− δ

)q/2 ∥∥∥Av|T2∪T3∪···∪Td(n−s)/te

∥∥∥q
2

= s1−q/2
(

1

1− δ

)q/2 ∥∥∥Av|T2 + Av|T3 + · · ·+ Av|Td(n−s)/te
∥∥∥q

2
.

(1.45)

In order to bound the norm in the last expression, we observe that the vector-valued func-
tion f( · ) := ‖ · ‖q2 is subadditive for 0 < q ≤ 1. To see this, note that f(w) = g(‖w‖2)
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with the concave and increasing function g : [0,∞) → [0,∞), w 7→ wq. As g(0) = 0, by
concavity, the real-valued function g itself is subadditive. Thus, using that g is an increas-
ing function in the first and exploiting that g is subadditive in the second inequality, we get
f(w1+w2) = g(‖w1+w2‖2) ≤ g(‖w1‖2+‖w2‖2) ≤ g(‖w1‖2)+g(‖w2‖2) = f(w1)+f(w2).
With this we can further bound ‖v|T0‖

q
q by employing the restricted isometry property

once more, which yields

‖v|T0‖
q
q ≤ s1−q/2

(
1

1− δ

)q/2 d(n−s)/te∑
`=2

‖Av|T`‖
q
2 ≤ s1−q/2

(
1 + δ

1− δ

)q/2 d(n−s)/te∑
`=2

‖v|T`‖
q
2.

(1.46)
It remains to upper bound the last term. We note that by definition of the partition T
for all ` ≥ 1 it also holds

|vi|q ≤ |vj|q for all i ∈ T` and j ∈ T`−1. (1.47)

For ` ≥ 2, summation over j yields |vi|q ≤ t−1
∥∥v|T`−1

∥∥q
q
for all i ∈ T`, or equivalently

|vi| ≤ t−1/q
∥∥v|T`−1

∥∥
q
. (1.48)

Taking the `2-norm over i ∈ T` subsequently shows

‖v|T`‖2 ≤ t1/2−1/q
∥∥v|T`−1

∥∥
q
. (1.49)

Finally, using this estimate in (1.46) results in

‖v|T0‖
q
q ≤

(s
t

)1−q/2
(

1 + δ

1− δ

)q/2 d(n−s)/te∑
`=2

∥∥v|T`−1

∥∥q
q
≤
(s
t

)1−q/2
(

1 + δ

1− δ

)q/2 ∥∥v|T c0∥∥qq,
(1.50)

which establishes the null space property for `q-minimization of order s with the claimed
constant γ.

Remark 1.18 (A modified Restricted Isometry Property for `q-Minimization). In [CS08],
the authors propose a different notion of the restricted isometry property. In order to
adapt Definition 1.8 to the `q-case, condition (1.22) is modified and replaced by

(1− δ)‖z‖q2 ≤ ‖Az‖qq ≤ (1 + δ)‖z‖q2. (1.51)

Instead of quantifying how well ΣN
s can be isometrically embedded into Rm by the ma-

trix A with respect to the `2-norm, the `q-(quasi)-norm is taken as measure. Eventually,
in the case of a random Gaussian measurement matrix, they are able to derive that the
number of measurement necessary to ensure, with high probability, unique recoverability
of s-sparse signals x from measurements y via `q-minimization (1.9) behaves like

m ≥ C1(q)s+ qC2(q)s log

(
eN

s

)
. (1.52)

Here, C1 and C2 are constants depending on q such that qC2(q) vanishes for q → 0. Thus,
remarkably, also the dependency on the ambient dimension N vanishes. This can be seen
as an interpolation between the `1- and the `0-case in the following sense. Theorem 1.2
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provides an ultimate lower bound on the necessary number of measurements, which is 2s
and thus linear in the sparsity. Theoretically, any s-sparse vector x can be reconstructed
uniquely from its corresponding measurements y via `0-minimization (1.7), though, as
discussed, not stably. For the other case, namely q = 1, from, e.g., Corollary 1.13 and
Theorem 1.11 we deduce that, with high probability, s-sparse vectors x can be recov-
ered from the measurements y via `1-minimization (1.10) if the measurement matrix is a
Gaussian matrix and m behaves like m ≥ Cs log (eN/s).

1.3.4 Performance of `1-Minimization

In the following we consider the performance of encoder-decoder pairs (A,∆) from a
more general and theoretical perspective. Instead of asking the typical compressed sens-
ing question related to good pairs (A,∆), we focus on the performance and properties
of optimal encoder-decoder pairs, in particular with regard to the number of necessary
measurements [CDD09]. To this end we compare the worst reconstruction error relative
to a subset K ⊂ RN for the best encoder-decoder pair (A,∆),

Em(K)X = inf
(A,∆)∈Am,N

sup
z∈K
‖z−∆(Az)‖X , (1.53)

with the best s-term approximation error of this set. Here, Am,N denotes the set of all
possible pairs (A,∆), where A ∈ Rm×N describes the encoder and ∆ : Rm → RN is any
function modeling the decoder. Issues of this type are common in the field of information
based complexity.
We are now interested in finding the smallest m such that

Em(K)X . σs(K)X , (1.54)

where σs(K)X = supz∈K σs(z)X denotes the best s-term approximation error of K with
respect to the norm ‖ · ‖X . It turns out that the quantity Em(K)X is fundamentally linked
to the concept of Gelfand widths, as we will see in Theorem 1.21.

Definition 1.19 (Gelfand Width). For a compact set K in a Banach space X the Gelfand
width of order m is given by

dm(K)X = inf
codim(Y )≤m

sup
z∈K∩Y

‖z‖X . (1.55)

The following lemma and many variants involving different setsK, such as the `q-balls BNq ,
and various normed spaces X were established for Kolmogorov widths [GG84, Glu84],
which are dual to the Gelfand widths. However, classical theory merely addressed the
case q ≥ 1. In [FPRU10] an entirely new approach relying on compressed sensing tech-
niques was taken to investigate the Gelfand widths of the non-convex `q-(quasi)-norm-
balls BNq .

Lemma 1.20 (Bounds on the Gelfand Width for the `q-(Quasi)-Norm-Ball, [FPRU10,
Theorem 1.1]). Let 0 < q ≤ 1 and q < p ≤ 2. Then, for K = BNq and X = `Np we have

cq,p min

{
1,

log(eN/m)

m

}1/q−1/p

≤ dm(K)X ≤ Cq,p min

{
1,

log(eN/m)

m

}1/q−1/p

, (1.56)
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where the constants cq,p and Cq,p depend solely on p and q. For the bound cq,p involved
in the lower bound we explicitly have cq,p = (1/2)1/q (cq)1/q−1/p, where c ≈ 0.073 is an
absolute constant.

In the next theorem we now outline the relation between the optimal worst reconstruction
error Em(K)X and the Gelfand width dm(K)X .

Theorem 1.21 ([CDD09, Lemma 2.1]). Let K be a closed compact set such that K = −K
and K +K ⊂ C0K for a constant C0 > 0. Then, for any norm ‖ · ‖X on RN , it holds

dm(K)X ≤ Em(K)X ≤ C0d
m(K)X . (1.57)

Sketch of Proof. By identifying a subspace Y of codimension less or equal than m with
the kernel of a suitable matrix A, we observe

dm(K)X = inf
A∈Rm×N

sup
v∈K∩kerA

‖v‖X . (1.58)

To show the lower bound, let (A,∆) denote an encoder-decoder pair and set z = ∆(0).
Now, for v ∈ ker A, we obtain ‖v − z‖X ≥ ‖v‖X or ‖−v − z‖X ≥ ‖v‖X . Exploiting the
assumed symmetry of K we derive

dm(K)X ≤ sup
v∈K∩kerA

‖v − z‖X = sup
v∈K∩kerA

‖v −∆(Av)‖X ≤ sup
v∈K
‖v −∆(Av)‖X . (1.59)

This yields the lower bound after taking the infimum over Am,N .
For proving the upper bound let us first choose a subspace Y as specified at the beginning
and associate the encoder A with Y ⊥. In turn, define the decoder ∆ as follows. Given y
in the image of K under the linear map A, we choose ∆(y) ∈ K∩{z : Az = y}. Utilizing
the assumed symmetry and inclusion of the Minkowski sum of K, we observe

Em(K)X ≤ sup
v∈K

(
sup

v′∈K∩{z:Az=Av}
‖v − x′‖X

)
≤ sup

v∈C0K∩kerA
‖v‖X ≤ C0 sup

v∈K∩kerA
‖v‖X .

(1.60)
Taking the infimum over the subspaces Y provides the upper bound.

Combining Theorem 1.21 and Lemma 1.20 and applying them in the setting K = BN1 and
X = `N2 establishes, for m and N large enough, the bounds√

log(eN/m)

m
. Em(BN1 )`N2 .

√
log(eN/m)

m
(1.61)

on the optimal performance for the recovery of vectors with `1-norm bounded by one,
when measuring the approximation error in the `2-norm.
Particularly the lower bound is of interest for compressed sensing, as we can deduce by
requiring equation (1.54) and utilizing Stechkin’s Inequality, Lemma 1.1, that for the
number of necessary measurements it has to hold m & s log (eN/m). Therefrom, by
modifying the constants, one can deduce

m & s log

(
eN

s

)
, (1.62)
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see, e.g., [FR13, Lemma C.6(c)]. This shows that the minimal number of measurements
necessary for stable recovery is given by (1.62), which moreover matches the bound from
Theorem 1.11, i.e., Gaussian measurements achieve the optimal measurement size.
We want to end this subsection with a few notes on `q-minimization.

Remark 1.22 (Performance of `q-Minimization). First, by combining Theorem 1.21 in
the exactly same manner with Lemma 1.20, bounds on the quantity Em(BNq )`N2 can be
derived. They can be interpreted as bounds on the optimal performance for the recovery
of compressible vectors.
Second, based thereon, bounds on the measurements similar to (1.62) can be obtained
for stable recovery with `q-minimization. More precisely, in order to assure (1.54) in the
setting K = BNq and X = `N2 , for a lower bound on the measurements we derive

m & q(1/2)(2/(2−q))s log (eN/s) . (1.63)

This improves the required number of measurements as q tends to 0. For a similar result we
refer to [FPRU10, Theorem 2.7], where it is shown that m & qs log (eN/s) is a necessary
requirement for stability in the sense of instance optimality of order s with respect to the
quasi-norm ‖ · ‖q. Even though the right-hand side in (1.63) converges to 0 for q → 0,
we want to emphasize that a term of order O(s) needs to be added according to the note
after Theorem 1.2. Due to the volumetric argument used in the proof of Lemma 1.20,
terms of such low-dimensional order vanish. However, the important observation here is
that the dependency on the dimension N disappears, which is consistent with the findings
in [CS08], cf. Remark 1.18.
And third, it is furthermore possible to extended Theorem 1.21 in a straightforward
manner to quasi-norms ‖ · ‖X on RN by replacing the lower bound with c−1dm(K)X , where
c > 1 denotes the respective quasi-norm constant, i.e., the smallest number c such that
‖w1+w2‖X≤c(‖w1‖X+‖w2‖X) holds for all w1,w2 ∈ RN , cf. [FPRU10, Proposition 1.2].

1.3.5 Robustness with respect to Measurement Noise

In most practical applications the measurement process is affected by noise, which corrupts
the measured data. This can be due to a disturbing environment or caused by the sensor
itself. In any case, the noiseless acquisition model (1.6) needs to be adapted as already
described in (1.12) in order to incorporate such perturbations. For an unknown noise
vector η ∈ Rm we model the corrupted measurement process by

y = Ax + η (1.64)

and are interested in recovering x from y up to an error of order O(‖η‖2). If a recon-
struction scheme achieves this, it is called robust with respect to measurement noise. In
literature, many different noise models were considered. The two most prominent ones
include a random dense noise vector η, which can be interpreted as a permanent present
corruption due to the environment [CRT06b], and a random sparse vector η, which can
model an unreliable measurement device or transmission channel [CT05, CRTV05]. In the
following we restrict ourselves to the first case and refer to the literature for the second.
As in the noiseless case, we are interested in finding the sparsest solution x to (1.64). This
means we consider the noise-aware `0-minimization problem

min
z∈RN
‖z‖0 subject to ‖Az− y‖2 ≤ η, (1.65)
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where η ≥ 0 is chosen suitably such that η ≥ ‖Ax− y‖2 = ‖η‖2. Following the idea
of `1-minimization in the setting without noise, it is natural to analogously consider the
convex relaxation

min
z∈RN
‖z‖1 subject to ‖Az− y‖2 ≤ η. (1.66)

This is a convex optimization problem and commonly known as quadratically constrained
or noise-aware `1-minimization, or basis pursuit denoising.
A different approach is to consider the so-called least absolute shrinkage and selection
operator (LASSO)

min
z∈RN
‖Az− y‖2

2 + β‖z‖1 (1.67)

for a regularization parameter β ≥ 0. This was introduced by Tibshirani in [Tib96].
Both optimization problems are indeed equivalent for a specific, but on the minimizer de-
pendent, choice of the parameters η and β. More rigorously the following holds, cf. [FR13,
Proposition 3.2 and Theorem B.28].

Lemma 1.23. Let A ∈ Rm×N and y ∈ Rm.

(i) Let η > 0. If x̂ is a minimizer of (1.66), there exists a parameter β ≥ 0 such that
x̂ is a minimizer of (1.67).

(ii) Conversely, let β ≥ 0. If x̂ is a minimizer of (1.67), then there exists a parameter
η ≥ 0 such that x̂ is a minimizer of (1.66).

Proof. Firstly, for (i), we observe that (1.66) is equivalent to

min
z∈RN
‖z‖1 subject to ‖Az− y‖2

2 ≤ η2, (1.68)

which in turn has the Lagrange function

L(z, λ) = ‖z‖1 + λ
(
‖Az− y‖2

2 − η
2
)
. (1.69)

As η > 0 and A has full rank there exists a strictly feasible z of (1.66). Thus Slater’s
condition is fulfilled and strong duality holds. Consequently, there exists the primal-dual
optimal pair (λ̂, x̂) for a λ̂ ≥ 0. From the saddle-point property it then follows that
L(x̂, λ̂) ≤ L(z, λ̂) for all z ∈ RN , i.e., x̂ minimizes the function L( · , λ̂). In the case
λ̂ > 0 the claim follows by setting β = 1/λ̂ ≥ 0. However, for λ̂ = 0 we note that the
saddle-point property implies x̂ = 0, since ‖x̂‖1 = L(x̂, 0) ≤ L(z, 0) for all z ∈ RN , i.e.,
in particular for z = 0. Now, let us choose β = 2‖A‖‖y‖2. Then,

‖Az− y‖2
2 + β‖z‖1 = ‖Az‖2

2 − 2〈Az,y〉+ ‖y‖2
2 + β‖z‖1

≥ ‖Az‖2
2 − 2‖Az‖2‖y‖2 + ‖y‖2

2 + β‖z‖1 = ‖Az‖2 (‖Az‖2 − 2‖y‖2) + ‖y‖2
2 + β‖z‖1

≥ −2‖Az‖2‖y‖2 + ‖y‖2
2 + β‖z‖1 = −2‖Az‖2‖y‖2 + ‖y‖2

2 + 2‖A‖‖y‖2‖z‖1

≥ −2‖A‖‖z‖2‖y‖2 + ‖y‖2
2 + 2‖A‖‖y‖2‖z‖2 = ‖y‖2

2 = ‖A0− y‖2
2 + β‖0‖1,

(1.70)

where in the last inequality, besides the definition of the operator norm, it is used that
‖z‖1 ≥ ‖z‖2. Thus, 0 is a minimizer of (1.67) as claimed.
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Secondly, for (ii), we set η = ‖Ax̂− y‖2 and note that for z with ‖Az− y‖2 ≤ η by
optimality of x̂ we observe

‖Ax̂− y‖2
2 + β‖x̂‖1 ≤ ‖Az− y‖2

2 + β‖z‖1 ≤ ‖Ax̂− y‖2
2 + β‖z‖1, (1.71)

which implies the claim.

In order to ensure robustness of the noise-aware `1-minimization (1.66) the null space
property from Definition 1.3 is not sufficient and needs an adjustment.

Definition 1.24 (Robust Null Space Property (NSP)). A matrix A ∈ Rm×N satisfies the
robust null space property of order s with constants 0 < γ < 1 and τ > 0, if

‖z|S‖1 ≤ γ‖z|Sc‖1 + τ‖Az‖2, (1.72)

for all sets S ⊂ [N ] such that |S| ≤ s and for all z ∈ RN .

We want to point out that the robust null space property requires that condition (1.72)
holds for all z ∈ RN and not just for all z ∈ ker A\{0} as in the null space property.
Thus, it is a strengthened version, i.e., it implies the null space property. Moreover,
analogously to the noiseless case, the parameter γ controls stability and novelly, robustness
is controlled by both parameters γ and τ . This is made precise in the next theorem, which
is the noisy version of Theorem 1.6.

Theorem 1.25 ([FR13, Theorem 4.19]). Let us assume that A ∈ Rm×N has the robust
null space property of order s with constants 0 < γ < 1 and τ > 0. Then, for any x ∈ RN ,
a solution x̂ to (1.66) with y = Ax + η and η ≥ ‖η‖2 fulfills

‖x− x̂‖1 ≤
2(1 + γ)

1− γ
σs(x)1 +

4τ

1− γ
η. (1.73)

As the null space property also the robust null space property is implied by a restricted
isometry property in the following way.

Theorem 1.26 ([FR13, Theorem 6.13]). Let us assume that A ∈ Rm×N has the restricted
isometry property of order 2s with constant 0 < δ < 4/

√
41. Then, A has the robust null

space property of order s with constants 0 < γ < 1 and τ > 0 depending only on δ.

For the sake of completeness we want to conclude with a recovery result for the `2-norm.
It is the noisy version of the result referred to in Remark 1.15 and portrays the robustness
of (1.66) to noise nicely.

Theorem 1.27 ([Can08, Theorem 1.2]). Let us assume that A ∈ Rm×N has the restricted
isometry property of order 2s with constant 0 < δ <

√
2 − 1. Then, for any x ∈ RN , a

solution x̂ to (1.66) with y = Ax + η and η ≥ ‖η‖2 fulfills

‖x− x̂‖2 ≤ C0
σs(x)1√

s
+ C1η, (1.74)

with well-behaved constants C0 and C1.

As in the previous parts we also want to address `q-minimization briefly.
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Remark 1.28 (`q-Minimization in the Case of Noise). In [GPYZ15] two different modifi-
cations of the robust null space property were introduced. The first and more natural one
replaces (1.72) by ‖z|S‖qq ≤ γ‖z|Sc‖qq + τ‖Az‖2 and assures a corresponding recovery re-
sult, where the error is measured in the metric d(x1,x2) = ‖x1 − x2‖qq and σs(x)qq replaces
the corresponding stability error term on the right-hand side. The second one, though,
generalizes this and reads for 0 < p ≤ q ≤ 1 as ‖z|S‖qq ≤

γ
sq/p−1‖z|Sc‖pp + τ

sq/p−1‖Az‖2. For
theoretical results and proofs thereon we refer to the literature.
Regarding stability and robustness in case of noise, in [SY10] a generalization of Theo-
rem 1.2 from [CRT06b] was formulated for `q-minimization. The latter essentially states
the same as Theorem 1.27, however, under a different assumption on the RIP constants,
namely δ3s + 3δ4s < 2. We presented the noiseless version of this proof to show The-
orem 1.14. The only adaption, which needs to be made, is to replace ‖Ah‖2 = 0 by
‖Ah‖2 ≤ 2η in the chain of inequalities (1.43). The former paper, in turn, showed that
the condition on the RIP constants for `q-minimization is weaker the smaller q gets, while
the recovery result remains comparable.
Moreover, in [CS08] it is claimed that robustness with respect to measurement noise
enhances for smaller q’s, whereas stability with respect to defects in the sparsity initially
improves before it worsens as q decreases. An analysis thereof, including conditions for a
restricted isometry property, is provided in [SCOY08]. However, they also observed that
the numerical results only partially confirm their theoretically funded expectations.

1.4 Numerical Algorithms for Compressed Sensing

After having provided an insight into the theory of compressed sensing in the previous
sections, for the remainder of this chapter we want to turn our attention to efficient
algorithms tackling the posed optimization problems.
To begin with, we want to very briefly outline orthogonal matching pursuit, which is a
greedy method and successively builds a sparse solution to (1.64). After that we turn to-
wards `1-minimization and start with a very simple idea, namely reformulating the maybe
noise-aware optimization problem into a linear or second-order cone program, respectively.
Eventually, we investigate a more problem-specific class of algorithms, namely iterative
thresholding based techniques, such as the iterative soft thresholding algorithm.
However, many more methods were proposed and analyzed in recent years, see, e.g., [For10,
FR15] for an overview. Without going into further detail we want to mention a few of
them. The iteratively reweighted least squares (IRLS) method is also an iterative ap-
proach, which transforms the `1-minimization problem into a weighted `2-minimization
problem [ODBP15]. The homotopy method is a direct approach attempting to trace
the sparse solution to an `1-regularized least squares functional with respect to the
regularization parameter. Least angle regression (LARS) is a slightly modified version
thereof [EHJT04].

1.4.1 Orthogonal Matching Pursuit

As already pointed out, orthogonal matching pursuit (OMP), see, e.g., [Tro04, TG07],
is a greedy algorithm. In general, a greedy method follows the strategy of finding the
globally optimal solution by iteratively choosing the instance which promises the best
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solution for the moment. In most cases, though, this does not result in global but only
local optimizers. However, the method has the advantages of being easy to understand
and to implement.
Basically, orthogonal matching pursuit replaces `0-minimization by the optimization prob-
lem

min
z∈RN
‖Az− y‖2 subject to ‖z‖0 ≤ s, (1.75)

which—assuming uniqueness of the respective minimizers—is equivalent to noise-aware
`0-minimization (1.65), see, Lemma A.4.
Let us now describe how the algorithm proceeds. Therefore, we assume that the sparsity s
of the signal x, which we want to recover from the measurements (1.64), is known. The
algorithm is initialized with x̂0

OMP = 0 and the corresponding residuum r0 = y as well
as support set Λ0 = ∅ are defined. The latter will be increased greedily until it reaches
the desired size s, which is also the stopping criterion. At each iteration k = 1, . . . , s the
index j ∈ [N ] maximizing the scalar product 〈aj, rk−1〉 is added to Λk. This ensures that
the `2-norm of the residual is reduced as much as possible in this iteration, when setting

x̂kOMP = arg min
ẑ:supp (ẑ)⊂Λk

‖Aẑ− y‖2. (1.76)

As (1.76) is essentially a k-dimensional least squares problem, it can be solved with
standard tools from numerical linear algebra in a fast and stable manner. Finally, it
remains to update the residual via rk = y−Ax̂kOMP. After s steps the algorithm finishes
with x̂OMP = x̂sOMP.
Of course, orthogonal matching pursuit as presented here is amenable to various adaptions.
For instance, available prior information can be included or different stopping criteria can
be used to promote sparser or less sparse solutions, or to guarantee a specific bound on
the norm of the final residual.
From an analytic point of view, under a restricted isometry property data fidelity of the
solution can be assured. Moreover, in the noiseless case exact recovery can be guaranteed,
see, e.g., [DW10].
A more enhanced greedy method, which is ultimately based on orthogonal matching
pursuit, is compressive sampling matching pursuit (CoSaMP), see, e.g., [NT09].

1.4.2 Linear and Second-Order Cone Programming

For this subsection, let us focus on the convex relaxation (1.66) of (1.65). It turns out that
the noise-aware `1-minimization problem can be recast as the second order cone program

min
ζ̂∈R2N

2N∑
i=1

ζ̂i subject to ζ̂ ≥ 0,
∥∥(A| −A) ζ̂ − y

∥∥
2
≤ η. (1.77)

Here, the solution x̂ to (1.66) can be simply recovered via x̂ = (Id | − Id) ξ̂, where we
denote the minimizer of (1.77) by ξ̂. In the noiseless case this even reduces to a linear
program.
For both problems, standard algorithms from convex optimization can be employed, such
as interior point methods, or in the case of a linear program the simplex method [BV04].
Furthermore, there are also several software package available.
However, due to the general applicability of such methods we cannot expect optimal per-
formance and anticipate that specialized algorithms are capable of outperforming them.
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1.4.3 Iterative Thresholding Algorithms

Motivated by the equivalence between noise-aware `1-minimization (1.66) and the least
absolute shrinkage and selection operator (1.67), let us for the moment consider the op-
timization problem of the very general form

min
z∈RN

f(z) + g(z). (1.78)

Here, f : RN → R is a convex and differentiable function, which—in our setting—will be
a measure for data fidelity, whereas g : RN → [0,∞] is a lower semi-continuous function,
which is assumed to be convex. Furthermore it is typically non-differentiable and will
describe a penalty term in our context. Therefore, we cannot utilize a simple gradient
descent method for minimization, since this would require a gradient. However, so-called
forward-backward splitting methods (FBS), also known as proximal gradient methods,
can be used to approach such a problem. In order to reason this terminology, let us firstly
introduce the proximal mapping of a function g as

proxg(z) = arg min
v∈RN

g(v) +
1

2
‖v − z‖2

2. (1.79)

It is well-known that strong convexity of the objective function guarantees uniqueness of
the minimizer making the proximal operator well-defined. We want to point out that this
could not be assured in general if g was non-convex.
Since the proximal mapping returns a point, which is on the one hand close to the min-
imizer of g but also not far from z on the other hand, it can be used iteratively for
minimization. Let us now explain why this is usually called backward gradient descent
step. Therefore, by definition of the subdifferential, we note that the proximal mapping
satisfies proxg(z) ∈ z− ∂g(proxg(z)), which resembles a common gradient descent step.
Though, with the difference that the subgradient is evaluated at the endpoint rather than
the starting point z.
Now, by performing iteratively and alternatively a (forward) gradient descent step for
the convex and smooth component f and subsequently a backward gradient descent step
for the convex but non-smooth component g, we obtain the forward-backward splitting
method as described in Algorithm 1 for the minimization of their sum.

Algorithm 1 Forward-Backward Splitting Method (FBS)

Input: Functions f, g : RN → R, step sizes (tk)Kk=1 and number of iterations K.
Output: Minimizer x̂FBS.
1: Set x̂0

FBS = 0 ∈ RN and k = 0.
2: while k ≤ K and stopping criterion not fulfilled
3: Set k = k + 1.
4: x̂kFBS = proxtkg

(
x̂k−1

FBS − tk∇f(x̂k−1
FBS)

)
5: end while
6: Set x̂FBS = x̂kFBS.

For a convergence analysis we refer to [GSB14] and just make the remark that a sufficient
criterion in the case of a constant step size is tk = t < 2/L for all k, where L denotes the
Lipschitz constant of ∇f 4.

4For f(z) = ‖Az− y‖22 we immediately obtain (∇f)(z) = 2AT (Az− y) and thus L = 2‖ATA‖.
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Before coming to the first iterative thresholding algorithm, which can be derived imme-
diately from what we observed, we want to spend a few words on the situation, where
this is not the case, namely when g is non-convex. In general, as the proximal mapping
may become a point-to-set mapping, also known as the proximal correspondence, in such
a setting neither convergence to a global minimizer nor independence of the initial iterate
can be guaranteed. Nevertheless, having this in mind and taking suitable precautions, al-
lows to use the forward-backward splitting method also for non-convex problems [GSB14,
Section 3.3].

Iterative Soft Thresholding. Applying the forward-backward splitting method in
the setting f(z) = ‖Az− y‖2

2 and g(z) = β‖z‖1 results in the iterative soft thresholding
algorithm (ISTA), which solves the LASSO problem (1.67), cf. [DDDM04]. Its popularity
is favored by its easy applicability and evaluation possibility as an explicit expression of
the proximal mapping of ‖ · ‖1 can be given in terms of the soft thresholding operator. A
derivation thereof can be found in, e.g., [For10, Lemma 4.1]. Since the `1-norm is fully
separable, the proximal mapping can be evaluated component-wise, i.e.,

proxβ‖ · ‖1(z) = S2β(z) = (S2β(zi))
N
i=1 , (1.80)

where Sβ : R → R denotes the scalar soft thresholding operator with threshold β and is
given by

Sβ(z) =


z − β

2
if z > β

2
,

0 if |z| ≤ β
2
,

z + β
2

if z < −β
2
.

(1.81)

A visualization of this function is given in Figure 1.3 on the very right.
When using the constant step size tk = 1/2 for all k, line 4 in Algorithm 1 becomes the
update rule of the iterative soft thresholding algorithm

x̂kISTA = Sβ
(
x̂k−1

ISTA −AT (Ax̂k−1
ISTA − y)

)
. (1.82)

For a detailed convergence analysis thereof we refer to [For10, Section 4.1], where be-
sides a proof of strong convergence, which can be guaranteed under the assumption
‖A‖ <

√
2, also acceleration techniques such as the decreasing iterative soft thresh-

olding algorithm (D-ISTA) are presented. We want to emphasize at this point that the
proof of convergence relies solely on tools of convex analysis. Consequently, iterative soft
thresholding yields a meaningful solution with good data fidelity, i.e., a small residual,
and with a small `1-norm even if there is no restricted isometry property fulfilled. More
precisely, see, e.g., [Mal19], for a minimizer x̂ of (1.67) it holds for these two quantities

‖Ax̂− y‖2
2 ≤ ‖Ax̂− y‖2

2 + β‖x̂‖1 ≤ ‖Ax− y‖2
2 + β‖x‖1 = ‖η‖2

2 + β‖x‖1 (1.83)

and

‖x̂‖1 ≤
1

β

(
‖Ax̂− y‖2

2 + β‖x̂‖1

)
≤ 1

β

(
‖A0− y‖2

2 + β‖0‖1

)
=

1

β
‖y‖2

2. (1.84)

Thus, there is a trade-off between data fidelity and sparsity, which can be controlled by β.
Note furthermore that the assumption on the spectral norm of A is in practice not re-
strictive, as it can be assured by an appropriate rescaling of A, y and β in any case. Let
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us end this paragraph with the following corollary, which is essentially a consequence of
Theorem 1.27 and applies to a limit point x̂ISTA of the iterative soft thresholding algo-
rithm.

Corollary 1.29 (cf. [Mal19, Theorem 2.3.5]). Let us assume that A ∈ Rm×N has the
restricted isometry property of order 2s with constant 0 < δ <

√
2 − 1. Then, for a

minimizer x̂β of (1.67) it holds

‖x− x̂β‖2 ≤ C0
σs(x)1√

s
+ C1ηβ, (1.85)

if β was chosen such that ηβ := ‖Ax̂β − y‖ ≥ η. The constants C0 and C1 are the ones
from Theorem 1.27.

Proof. According to Lemma 1.23(ii) x̂β is a minimizer of (1.66) with ηβ instead of η.
Thus, Theorem 1.27 can be used with ηβ instead of η, which yields the claim.

Iterative Bridge Thresholding. Due to the non-convex penalty term g(z) = β‖z‖qq,
the theory underlying the forward-backward splitting methods cannot be applied directly
if 0 < q < 1, as it relies heavily on tools from convex analysis. However, in [BLR15] an
alternative approach, the generalized gradient projection method (GGPM), was proposed,
which aims at the minimization of functionals that are the sum of a smooth part f and
a non-smooth and non-convex part g. More precisely5, let us assume that the function
f : RN → [0,∞) is differentiable and has a Lipschitz continuous derivative with Lipschitz
constant L. In turn, the function g : RN → [0,∞] is assumed to be proper, lower semi-
continuous and coercive. The generalized gradient projection method now follows a similar
idea as the forward-backward splitting method, namely alternating between forward and
backward gradient steps on the two distinct parts, respectively. Its update rule is given
by

x̂kGGPM ∈ proxtkg
(
x̂k−1

GGPM − t
k∇f(x̂k−1

GGPM)
)

= arg min
v∈RN

tkg(v) +
1

2

∥∥v − (x̂k−1
GGPM − t

k∇f(x̂k−1
GGPM)

)∥∥2

2

(1.86)

for suitable step sizes (tk)Kk=1. The difference and difficulty, though, is that the proxi-
mal mapping of the non-convex g may be set-valued, i.e., there can exist several global
and moreover various local minimizers for the optimization problem in (1.79). Despite
this fact, under the additional assumption that the step size is constant and fulfills
tk = t < 1/L, it was shown in [BLR15] that a sequence generated in the described manner
can firstly be defined in the sense that the right-hand side in (1.86) is not empty. Secondly,
at least it decreases the objective function, but is neither guaranteed to reach a global
minimizer in general nor to converge at all. However, any global minimizer is a fixed point
of the algorithm. For a more detailed presentation we refer to the cited literature.
A similar approach was taken in [ABRS10, ABS13]. Under a slightly stronger assumption,
namely that f+g additionally fulfills the so-called Kurdyka-Łojasiewicz inequality as well
as that g is continuous, convergence of the sequence of iterates to a critical point of the
objective function can be established if the generated sequence is bounded.

5For an application in infinite dimensional spaces, we refer to the cited literature.
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For a proof that our objective function ‖Az− y‖2
2 + β‖z‖qq indeed satisfies the Kurdyka-

Łojasiewicz inequality we refer to the discussion after Example 5.4(b) from [ABS13] and
the literature referenced therein. Therefore, these convergence results can be applied.
It remains to investigate the proximal mappings of the `q-(quasi)-norms. Exploiting the
fact that g(z) = β‖z‖qq is fully separable, for its multivalued proximal mapping one can
derive

proxβ‖ · ‖qq(z) = B2β(z) = (B2β(zi))
N
i=1 , (1.87)

where Bq
β : R ⇒ R denotes the multivalued scalar bridge-q thresholding operator with

threshold β. Admitting a slight abuse of notation—it is given by

Bq
β(z) =

{
0 if |z| ≤ τ qβ ,(
· + β

2
q sgn ( · )| · |q−1)−1

(z) if |z| ≥ τ qβ ,
(1.88)

with threshold τ qβ = 2−q
2−2q

(β(1− q))1/(2−q). Note that the non-convexity induces the dis-
continuity at the threshold τ qβ , where both 0 and (β(1− q))1/(2−q) are suitable minimizers.
However, these are the only two points, where the minimizer is not unique.
For a complete derivation that Bq

2β(z) is the solution to the one-dimensional optimization
problem

min
v∈R

β|v|q +
1

2
(v − z)2 (1.89)

we refer to [BLR15, Lemma 5.1]. Nevertheless, let us for the moment assume that the
regularization parameter q is rational, i.e., q = a/b for a, b ∈ N. Then it turns out
that the global minimizer is, respectively, that the global minimizers are among the roots
of a certain polynomial of degree 2b− a and the candidate 0. According to the Abel-
Ruffini theorem there is in general only a closed-form algebraic expression of these roots
if the degree is less than or equal to four. For these cases, besides the standard quadratic
formula, Cardano’s and Ferrari’s formula provide such an expression for a third and fourth
order polynomial, respectively. This applies to q = 1/2 and q = 2/3. The final choice
among these candidates can then be made by comparing the objective values [KF09]. In
fact, for these two cases, a complete analytic expression of the thresholding operator (1.88)
was derived in [XCXZ12] for B1/2

β and in [CSX13] for B2/3
β . These two operators are

depicted in the two middle subfigures of Figure 1.3.

√
β 3√54

4
β2/3 4√48

3
β3/4 β

2

(a) Hβ, q = 0 (b) B1/2
β , q = 1/2 (c) B2/3

β , q = 2/3 (d) Sβ, q = 1

Figure 1.3. Scalar thresholding operators associated with different values of q. For refer-
ence, in the cases where 0 < q < 1 we include the hard and soft thresholding operator.

We note that Bq
β evolves from the former investigated soft thresholding operator to the

hard thresholding operator as the parameter q tends from 1 to 0, cf. [Lor04]. The latter
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will be introduced in the subsequent paragraph as the solution to the limiting case q = 0
in (1.89), i.e., by using that |v|q → 1v 6=0 as q → 0.
Conclusively let us state the iterative bridge-q thresholding algorithm (IBTA) for the
constant step size tk = 1/2. It has the update rule

x̂kIBTA ∈ Bqβ
(
x̂k−1

IBTA −AT (Ax̂k−1
IBTA − y)

)
. (1.90)

The results from above apply if ‖A‖ < 1. In the case that iterative bridge-q thresholding
finds a global minimizer, analogously to (1.83) and (1.84) we obtain for data fidelity and
sparsity

‖Ax̂− y‖2
2 ≤ ‖η‖

2
2 + β‖x‖qq and ‖x̂‖qq ≤

1

β
‖y‖2

2, (1.91)

respectively.

Iterative Hard Thresholding and Iterative Best s-Term Approximation. After
having examined bridge-q thresholding let us lastly also discuss case, where the thresh-
olding operator can be associated with the `0-norm. There exist two different versions of
the so-called iterative hard thresholding algorithm. The first one builds, analogously to
the previous considerations, on the regularized version of (1.75), which can be obtained
from (1.78) with f(z) = ‖Az− y‖2

2 and g(z) = β‖z‖0. For the second one, in turn,
the `0-constrained optimization problem (1.75) serves as starting point, which was also
underlying orthogonal matching pursuit and was shown to be an equivalent formulation
of (1.65).
Let us start with the first one. In order to derive the hard thresholding algorithm for the
`0-regularized problem we define the set-valued hard thresholding operator as

Hβ(z) = arg min
v∈RN

β‖v‖0 + ‖v − z‖2
2. (1.92)

It is easy to verify that Hβ(z) = (Hβ(zi))
N
i=1 where Hβ denotes—again with a slight abuse

of notation—the scalar hard thresholding operator

Hβ(z) =

{
0 if |z| ≤

√
β,

z if |z| ≥
√
β,

(1.93)

which is plotted in Figure 1.3 on the very left. This can be done by firstly observing that
the objective function in (1.92) is fully separable, yielding a minimization problem over
the function β1v 6=0 + (v − z)2. The form of the operator then follows by comparing the
values of the reasonable candidates for minimization, v = 0 and v = z, and choosing the
better one. It shall be noted that there is no unique choice for z = ±

√
β.

This motivates to define the update rule of the iterative hard thresholding algorithm by

x̂kIHT ∈ Hβ

(
x̂k−1

IHT −AT (Ax̂k−1
IHT − y)

)
(1.94)

in order to approach a minimizer of the `0-regularized minimization problem. However,
as g in non-convex we cannot take advantage of the analysis of the forward-backward
splitting methods. In [BD08] a full proof of convergence is provided, which essentially
consists of two parts. At first, one shows that after a finite number of iterations the
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sets of zero and non-zero entries are fixed. Thus, the algorithm reduces to a Landweber
iteration, which is guaranteed to converge linearly assuming that ‖A‖ < 1.
Even though the iterative hard thresholding algorithm guarantees to find a local minimizer
of the `0-regularized minimization problem [BD08, Theorem 3], a solution is not guaran-
teed to be sparse, which is undesirable. This behaves differently for the second version,
i.e., when considering the `0-constrained optimization problem, as only sparse solutions
are feasible. Of course, this requires the knowledge of the sparsity in advance. A suitable
algorithm, called the s-sparse algorithm or the iterative best s-term approximation, was
introduced in [BD08] as

x̂kIBA =
(
x̂k−1

IBA −AT (Ax̂k−1
IBA − y)

)
[s]
, (1.95)

where the hard thresholding operator is replaced by the non-linear best s-term approx-
imation. Using similar techniques as before, convergence to a local minimizer of (1.75)
can be established under the assumption ‖A‖ < 1, see, e.g., [BD08, Section 3].
At the end of this paragraph let us provide the following convergence result from [BD09]
in the case of A having a restricted isometry property.

Theorem 1.30 ([BD09, Theorem 4]). Let us assume that A ∈ Rm×N has the restricted
isometry property of order 3s with constant 0 < δ < 1/32. Then, at iteration k, it holds

‖x− x̂kIBA‖2 ≤ 2−k‖x[s]‖2 + 6εs, (1.96)

where εs := σs(x)2 + 1√
s
σs(x)1 +‖η‖2. Furthermore, after at most K =

⌈
log2

(
‖x[s]‖2/εs

)⌉
iterations it holds

‖x− x̂KIBA‖2 ≤ 7εs. (1.97)

Further Iterative Thresholding Methods. To end this section on iterative thresh-
olding based methods, we want to point out that in recent years several different ideas
to modify and improve the existing algorithms were proposed. Some of them may have
originated in a different context and were then transferred to the setting of sparse recovery
and compressed sensing. We want to name just a few of them. Firm thresholding, which
interpolates between soft and hard thresholding, was introduced in [GB97] and analyzed
in [FR08]. A smoother version thereof is garrote thresholding, proposed in [Bre95]. A
further thresholding operator lying between soft and hard thresholding was put forward
in [FW10].
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Chapter 2

Low-Rank Matrix Recovery

We extend the sparse recovery and compressed sensing framework in this chapter in a
straightforward way to matrices. At first we briefly address the illustrative example of
matrix completion, where we would also like to take the opportunity to reveal a subtle
difference between sparse recovery and compressed sensing. Afterwards we turn towards
matrix sensing, where we investigate under which conditions on the measurement process
low-rank matrices can be recovered from a minimal number of measurements. This is
followed by an outline of a selection of the in practice most used algorithms to tackle this
sort of recovery problem.
For an overview of low-rank matrix recovery from incomplete observations we refer to
the paper [DR16] of the same name by Davenport and Romberg, which provides
a general but concise outline of the broad field. For matrix completion in specific we
recommend [CR09] and for the more general case of matrix sensing we suggest [RFP10].

2.1 Matrix Completion

As sketched in the introduction, recommender systems are concerned with the recovery
of a partially unknown data matrix from some of its known entries. To elaborate on this
connection, let us use the example of the Netflix Prize problem. Imagine that each of the
n1 customers of the platform has the opportunity to rate some of the n2 available movies
according to his or her preferences with a number from, say, 1 to 10. This results in an
n1×n2 data matrix X, in which the ratings of each customer for the respective movies are
stored. Since most users usually only rate few movies, most parts of the matrix are empty.
However, a company like Netflix is interested in these very entries in order to be able to
recommend a specific users unseen movies, which he or she might like. In mathematical
terms, one is interested in recovering the complete data matrix X ∈ Rn1×n2 from some of
its sampled entries xij for (i, j) ∈ Ω, where Ω denotes a subset of [n1]× [n2]. This subset
corresponds to the available ratings and we assume that there are m such tuples in Ω,
i.e., the total number of ratings submitted by all users is m.
Evidently, without having additional information about the matrix X this problem is
highly ill-posed. However, in many practical applications it turns out to be reasonable to
assume that the data matrix X is of low rank R or close to low rank. In our example this
kind of sparsity is legitimate to be expected as in general only very few factors contribute
to a person’s individual preferences.
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These considerations result in the rank-minimization problem

min
Z∈Rn1×n2

rank Z subject to zij = xij for all (i, j) ∈ Ω, (2.1)

which is, similarly to the `0-minimization problem (1.7), unfortunately NP-hard. Before
highlighting a significant difference to the compressed sensing framework from Chapter 1,
let us draw a connection to this optimization problem. To this end let us recall the
singular value decomposition (SVD) of a rank-R matrix Z ∈ Rn1×n2 as the decomposition
Z = UΣVT . Furthermore, denote the vector containing the singular values of Z by
σ = diag Σ. For the Schatten-q-(quasi)-norm ‖Z‖q of Z it holds ‖Z‖q = ‖σ‖q, as we saw
in the notations paragraph in the introduction. Consequently, we can associate the rank
of Z with the Schatten-0-norm ‖Z‖0, which counts the singular values and is actually not
even a quasi-norm. Moreover, the `1-norm of the vector containing the singular values
matches the nuclear norm ‖Z‖∗ of Z.
Inspired by `1-minimization in the sparse recovery and compressed sensing framework,
the nuclear norm minimization problem

min
Z∈Rn1×n2

‖Z‖∗ subject to zij = xij for all (i, j) ∈ Ω (2.2)

was proposed in [CR09], which is convex and thus computationally tractable. Further
details about this optimization problem in a more general form are addressed in the
following Section 2.2 on matrix sensing.
Let us now discuss a delicate difference compared to the compressed sensing framework.
In contrast thereto, in this section we do not have the freedom to design a measurement
operator according to our wishes and needs. Instead, our measurements are determined
by the sampling operator. Similarly it behaves in the area of sparse signal recovery or
sparse approximation, where one has no control on the decoding process. Even though
there is this slight difference in terminology and philosophy, the terms are sometimes used
interchangeably.
In the setting of matrix completion, we are therefore obliged to pose assumptions on the
data matrix X in order to make it recoverable. To clarify this, consider the example,
where X is a rank-2 matrix such that u1 = 1/

√
2(ei + ei+1), u2 = 1/

√
2(ei − ei+1) and

v1 = 1/
√

2(ej+ej+1), v2 = 1/
√

2(ej−ej+1), denoting the ith unit vector of the appropriate
dimension by ei. Then this matrix has only at most 4 non-zero entries located within a
2× 2-square with upper left corner at position (i, j). To recover this matrix a substantial
proportion of the entries would need to be sampled or phrased differently, X is likely to
lie in the null space of sampling operators for moderate m. Consequently, it is reasonable
to require that the singular vectors are sufficiently uncorrelated with the canonical basis.
They need to be spread out. A suitable type of measure, the coherence, was introduced
in [CR09].

Definition 2.1 (Coherence, [CR09, Definition 1.2]). Let U be a subspace of RN of dimen-
sion R and PU be the orthogonal projection onto U. Then the coherence of U (vis-à-vis
the standard basis {ei}Ni=1 ⊂ RN) is defined to be

µ(U) =
N

R
max
i∈[N ]
‖PUei‖2

2. (2.3)
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Note that µ(U) ∈ [1, N/R], where minimal coherence is achieved when all entries in the
with the subspace associated matrix U have the same magnitude 1/

√
N . In contrast, as

soon as U contains an element of the canonical basis, the coherence is maximal. Now, if
a matrix X has a column and row space of low coherence, it is firstly unlikely for X to lie
in the null space of the sampling operator and secondly each entry of X provides about
the same amount of information about the matrix, cf. [Rec11].
Under a suitable incoherence assumption on the low-rank matrix X, recovery via nuclear
norm minimization can be assured with high probability. This is made more rigorous in
the following theorem, for whose proof we refer to the literature.

Theorem 2.2 (Matrix Completion, [Rec11, Theorem 2]). Let X ∈ Rn1×n2 be a matrix
of rank R with singular value decomposition X = UΣVT . Without loss of generality, let
n1 ≤ n2. Assume that X obeys the following two properties.

A0 The row and column spaces have coherences bounded from above by some µ0 > 0.

A1 The matrix UVT has a maximum entry bounded by µ1

√
R/(n1n2) in absolute value

for some µ1 > 0.

Suppose that m entries of X are observed with locations sampled uniformly at random.
Then, if

m ≥ 32 max{µ0, µ
2
1}R(n1 + n2)β log2 (2n2) (2.4)

for some β > 1, the minimizer to nuclear norm minimization (2.9) is unique and equal
to X with probability at least 1− 6 log(n2)(n1 + n2)2−2β − n2−2

√
β

2 .

To close this section let us discuss the required lower bound (2.4) on the number of
observed entries by comparing it to the information theoretic limit. Any low-rank-R
matrix X ∈ Rn1×n2 has

R +
R∑
i=1

(n1 − i) +
R∑
j=1

(n2 − j) = R(n1 + n2 −R) (2.5)

degrees of freedom. Thus, if m < R(n1 +n2−R), no matter which method is used, matrix
completion is impossible from a purely information theoretic point of view. Notably,
Theorem 2.2 reaches up to a (poly)logarithmic factor the information theoretic limit.
Due to the coupon collector’s effect, which occurs since the entries are assumed to be
sampled uniformly at random, there is moreover no hope to improve (2.4) beyond a term
of the order n2 log(n2), as this is the number of required samples to ensure that every
column is taken into account at least once with high probability, cf. [CT10, Section 1.7].

2.2 Matrix Sensing

After having introduced the low-rank matrix recovery problem in the illustrative setting
of matrix completion, in the following, we want to generalize the problem in the sense
that we consider arbitrary rank-R matrices X. Let us firstly investigate the geometry of
this set. Therefore, let

X = UΣVT (2.6)
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be a singular value decomposition of X. Similarly to the set of s-sparse vectors, the set
of rank-R matrices SR forms a union of R-dimensional subspaces, where each subspace
is associated with two fixed orthogonal matrices U and V, corresponding to the left and
right singular vectors. In contrast, however, the union here contains uncountably many
subspaces as U and V can vary continuously. It is furthermore straightforward to see
that the set of rank-R matrices is non-convex.
We now aim at recovering a low-rank-R matrix X from few linear functionals about the
matrix. Therefore, let us introduce the linear measurement operator A : Rn1×n2 → Rm

together with the corresponding measurement vector

y = A(X). (2.7)

This sensing process of acquiring m measurements can be parametrized by just as many
matrices Ai ∈ Rn1×n2 , where the individual measurements are obtained according to
yi = 〈Ai,X〉F = tr(AT

i X) for i ∈ [m].
For reconstructing X from incomplete measurements y we propose, following the ideas
of (2.1), the rank-minimization problem

min
Z∈Rn1×n2

rank Z subject to A(Z) = y. (2.8)

Needlessly to say, problem (2.8) is NP-hard since it contains the `0-minimization problem
as a special case. To be a little more specific, imagine that Z was constrained to be a
diagonal matrix. It is then easy to see that the rank-minimization problem (2.8) reduces
to the `0-minimization problem (1.7). For a detailed comparison of these two problem
types, rank minimization on the one hand and support or cardinality minimization on the
other, we refer to [RFP10, Section 2].
Let us now turn towards the convex relaxation of the non-convex rank-minimization prob-
lem (2.8). For this purpose, we note that the nuclear norm is the convex envelope of the
rank on the set {Z ∈ Rn1×n2 : ‖Z‖ ≤ 1}. It is straightforward to check that for any
Z it holds rank Z ≥ ‖Z‖∗/‖Z‖, showing that on the given set the nuclear norm bounds
the rank from below and is moreover convex. For a verification that this is in fact the
tightest lower bound, which is also convex, see, e.g., [Faz02, Theorem 1]. This proves that
the nuclear norm can be regarded as the convex envelope of the rank and motivates to
consider the nuclear norm minimization problem

min
Z∈Rn1×n2

‖Z‖∗ subject to A(Z) = y, (2.9)

which is a convex optimization problem. To this end it can be tackled efficiently via
semidefinite programming (SDP) and is consequently no longer NP-hard. Such an idea
of relaxation in the matrix setting can be found already earlier as heuristics, for instance,
in [Faz02, Section 5].
As the nuclear norm is the convex envelope of the rank, the rank of the minimizer to (2.8)
can be lower bounded in terms of the minimizer to (2.9) in the following sense. Let X

denote the solution to the former rank-minimization problem, and X̂ the respective one to
the nuclear norm minimization problem. Then, utilizing the properties of the particular
optimizers in the first and last inequality, respectively, we observe the chain of inequalities

‖X̂‖∗
‖X‖

≤ ‖X‖∗
‖X‖

≤ rank X ≤ rank X̂. (2.10)
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Besides the lower bound on the rank we obtain an immediate upper bound as well.
This raises the fundamental question under which conditions on the measurement opera-
tor A it can be guaranteed in the first place that the solution to (2.9) coincides with the
one to (2.8), i.e., X̂ = X.

2.2.1 A Restricted Isometry Property for Matrix Sensing

It turns out that a natural generalization of the vector-valued version, Definition 1.8, to
matrices suffices. Apart from replacing the vector norm with the corresponding matrix
norm, the set of s-sparse vectors, for which we required to have a near-isometry, is replaced
by the set of at most rank-R matrices. This restricted isometry property was introduced
and analyzed in [RFP10].

Definition 2.3 (Rank-R Restricted Isometry Property (Matrix RIP)). A linear operator
A : Rn1×n2 → Rm satisfies the rank-R restricted isometry property with isometry constant
0 < δ < 1, if

(1− δ)‖Z‖2
F ≤ ‖A(Z)‖2

2 ≤ (1 + δ)‖Z‖2
F (2.11)

for all matrices Z ∈ Rn1×n2 of rank at most R.

Completely analogous to the sparse case, if A has the rank-2R restricted isometry prop-
erty, any two different rank-R matrices Z and Z′ are distinguishable by their measure-
ments. In particular, X is the only rank-R matrix satisfying y = A(X), cf. [RFP10,
Theorem 3.2].

Remark 2.4. Note that Definition 3.1 in [RFP10] uses an alternative version of the
matrix restricted isometry property compared to our Definition 2.3. However, in order to
stay consistent with the vector-valued analog, Definition 1.8, we use the version stated
above. In fact, up to an algebraic modification of the RIP constants, both definitions are
equivalent. More precisely, for a, b ≥ 0 and 0 < δ < 1, it holds in general that for

(1− δ)a2 ≤ b2 ≤ (1 + δ)a2 and (1− δ′)a ≤ b ≤ (1 + δ′)a,

the former implies the latter with δ′ = δ, whereas, vice versa, the latter with δ′ = δ/3
implies the former. Both versions, the one with as well as the one without squares, also
appear in the compressed sensing literature.

Let us now address the question of how well nuclear norm minimization performs under
the assumption that the measurement operatorA has a suitable matrix restricted isometry
property. Therefore, let us establish a bound on the reconstruction error in the Frobenius
norm. In particular, we obtain that a rank-R matrix X is recovered exactly from its
measurements, which itself was already proven in [RFP10, Theorem 3.3]. However, as
we will show in the subsequent theorem, also for not necessarily low-rank matrices X, a
solution to the nuclear norm minimization problem obeys a reasonable stability guarantee.
This is based on the slightly more general situation presented in [FCRP08, Theorem 4],
where the ideas from [RFP10] were extended.

Theorem 2.5 ([FCRP08, Theorem 4]). Let us assume that A : Rn1×n2 → Rm has the
rank-5R restricted isometry property such that 3δ5R + 2δ3R < 1 holds for the isometry
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constants. Then, for any matrix X, a solution X̂ to the nuclear norm minimization
problem (2.9) with y = A(X) fulfills

‖X− X̂‖F ≤ C

∥∥X−X[R]

∥∥
∗√

R
, (2.12)

where X[R] denotes the rank-R matrix that best approximates X.

To prove this theorem we need the following two technical lemmas, for whose proof we
refer to [RFP10].

Lemma 2.6 ([RFP10, Lemma 2.3]). Let X and H be matrices of the same dimensions.
If their row and column spaces are orthogonal, i.e., XHT = 0 and XTH = 0, then the
nuclear norm is additive, i.e., ‖X + H‖∗ = ‖X‖∗ + ‖H‖∗.

Lemma 2.7 ([RFP10, Lemma 3.4]). Let X̃ and H be matrices of the same dimensions
and moreover let X̃ have rank R. Then there exist matrices H0 and Hc such that

(i) H = H0 + Hc,

(ii) rank H0 ≤ 2R,

(iii) X̃HT
c = 0 and X̃THc = 0,

(iv) 〈H0,Hc〉F = 0.

Sketch of Proof. Let X̃ = ŨΣ̃ṼT denote a full singular value decomposition and note
that Σ̃ is block diagonal with a diagonal matrix Σ̃11 ∈ RR×R and a rectangular matrix
Σ̃22 = 0. Based thereon, set Ĥ = ŨTHṼ and disassemble it into blocks Ĥ11, Ĥ12, Ĥ21

and Ĥ22 aligned with the ones of Σ̃. Now, for

H0 = Ũ

(
Ĥ11 Ĥ12

Ĥ21 0

)
ṼT and Hc = Ũ

(
0 0

0 Ĥ22

)
ṼT (2.13)

it is straightforward to check that the desired properties hold.

The following proof resembles the one of Theorem 1.14 and was presented in [FCRP08].
Only some details need to be adapted to fit into the matrix setting.

Proof of Theorem 2.5. Since X is feasible and X̂ a solution to the nuclear norm min-
imization problem (2.9) with y = A(X), we have by optimality ‖X̂‖∗ ≤ ‖X‖∗. Let
X = X[R] + Xc and let us now define H = X − X̂ ∈ kerA. According to Lemma 2.7,
there exist matrices H0 and Hc such that H = H0 + Hc, rank H0 ≤ 2R, X[R]H

T
c = 0,

XT
[R]Hc = 0 and 〈H0,Hc〉F = 0. Then, by utilizing Lemma 2.6 for the first inequality and

the reverse triangle inequality twice for the second, we observe

‖X[R]‖∗ + ‖Hc‖∗ − ‖Xc‖∗ − ‖H0‖∗ ≤ ‖X[R] −Hc‖∗ − ‖Xc‖∗ − ‖H0‖∗
≤ ‖X[R] + Xc −H0 −Hc‖∗
= ‖X−H‖∗ = ‖X̂‖∗ ≤ ‖X‖∗,

(2.14)
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which simplifies to
‖Hc‖∗ ≤ ‖H0‖∗ + 2‖Xc‖∗, (2.15)

having used that ‖X‖∗ = ‖X[R]‖∗ + ‖Xc‖∗. Let us now disassemble Hc into a sum
of rank-3R matrices H1,H2, . . . associated with a non-increasing rearrangement of the
singular values of Hc. Therefore, let Hc = UΣVT = U diag (σ)VT denote the singular
value decomposition of Hc. Note that the singular values are already arranged in a non-
decreasing order. Thus6 we can define the index sets T` = {i : 3R(`− 1) + 1 ≤ i ≤ 3R`}
for ` ≥ 1 and the associated matrices H` = U diag(σ|T`)VT . Due to this construction, it
follows that for all ` ≥ 1 we have σk ≤ 1

3R

∑
j∈T` σj for all k ∈ T`+1 and in consequence

‖H`+1‖2
F ≤

1
3R
‖H`‖2

∗. Using this as well as inequality (2.15) and the fact that H0 is at
most rank-2R, we can derive the bound∑

`≥2

‖H`‖F ≤
1√
3R

∑
`≥1

‖H`‖∗ =
1√
3R
‖Hc‖∗

≤ 1√
3R

(‖H0‖∗ + 2‖Xc‖∗) ≤
√

2

3
‖H0‖F +

2√
3R
‖Xc‖∗.

(2.16)

Now, by using both triangle inequalities and by applying the rank-5R restricted isometry
property with isometry constants δ5R and δ3R, respectively, we obtain

‖A(H)‖2 =

∥∥∥∥∥A(H0 + H1) +
∑
`≥2

A(H`)

∥∥∥∥∥
2

≥ ‖A(H0 + H1)‖2 −
∑
`≥2

‖A(H`)‖2

≥
√

1− δ5R‖H0 + H1‖F −
√

1 + δ3R

∑
`≥2

‖H`‖F

≥
√

1− δ5R‖H0 + H1‖F −
√

1 + δ3R

(√
2

3
‖H0‖F +

2√
3R
‖Xc‖∗

)

≥

(√
1− δ5R −

√
2

3

√
1 + δ3R

)
‖H0 + H1‖F −

2√
3R

√
1 + δ3R‖Xc‖∗.

(2.17)

The second inequality holds since rank (H0 + H1) ≤ 5R, the next-to-last makes use of
(2.16) and the last follows as H0 and H1 are orthogonal due to the construction of H0

and Hc in Lemma 2.7, which implies ‖H0 + H1‖F ≥ ‖H0‖F .
Finally, since H ∈ kerA, we have ‖A(H)‖2 = 0. With this we can rearrange (2.17) such
that it provides a bound on ‖H0 + H1‖F . This can be used to derive a bound on ‖H‖F
as follows,

‖H‖F ≤ ‖H0 + H1‖F +
∑
`≥2

‖H`‖F ≤

(
1 +

√
2

3

)
‖H0 + H1‖F +

2√
3R
‖Xc‖∗

≤

((
1 +

√
2

3

)
1

Cδ

√
1 + δ3R + 1

)
2√
3R
‖Xc‖∗ ≤ C

‖Xc‖∗√
R

,

(2.18)

abbreviating Cδ =
√

1− δ5R −
√

2
3

√
1 + δ3R. It follows again from simple algebraic com-

putations that Cδ is greater than 0 if 3δ5R + 2δ3R < 1, completing the proof.
6Note that these steps mimic the common technique in compressed sensing, which was used in the

proof of Theorem 1.10.
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Furthermore, by utilizing the same proof technique and modifying only a few steps of the
argument, a bound on the approximation error with respect to the nuclear norm can be
established.

Theorem 2.8 ([FCRP08, Theorem 5]). Let us assume that A : Rn1×n2 → Rm has the
rank-5R restricted isometry property such that 3δ5R + 2δ3R < 1 holds for the isometry
constants. Then, for any matrix X, a solution X̂ to the nuclear norm minimization
problem (2.9) with y = A(X) fulfills

‖X− X̂‖∗ ≤ C
∥∥X−X[R]

∥∥
∗. (2.19)

The preceding theorem tells us that, under the assumption of a sufficient matrix restricted
isometry property, nuclear norm minimization is, up to a moderate constant, quantita-
tively as good as approximation with the rank-R matrix X[R] that best approximates
X. Note that X[R] can be obtained by a truncated singular value decomposition of X
according to the Eckart-Young theorem [HJ13, Subsection 7.4.2].
It remains to figure out which measurement operators are capable of guaranteeing a ma-
trix restricted isometry property with high probability. Following [CP11] we will show
that certain random operators are very likely to provide a near-isometry when the number
of measurements is commensurate with the degrees of freedom (2.5) of an rank-R matrix
Z ∈ Rn1×n2 . The most well-known class of probability distributions obeying a suitable
concentration of measure, which takes the center stage for establishing the rank-R re-
stricted isometry property, is an ensemble with i.i.d. Gaussian entries.

Definition 2.9 (Gaussian Measurement Ensembles, cf. [CP11, Definition 2.2]). The mea-
surement operator A is called a Gaussian measurement ensemble if, for i ∈ [m], each indi-
vidual measurement matrix Ai contains i.i.d. mean-zero Gaussian entries of unit variance
and if these individual measurement matrices are independent from each other as well.

Remark 2.10. Contrarily to Definition 2.2 in [CP11], we require the entries of A to be
standard normally distributed instead of having variance 1/m. This is consistent with
the considered measurement matrix in Theorem 1.11 for the vector-valued analog.

Now, if A is a Gaussian measurement ensemble we observe that E
[
‖ 1√

m
A(Z)‖2

2

]
= ‖Z‖2

F

for any matrix Z and, as we will show in the subsequent theorem, that, under certain
conditions, 1√

m
A has the rank-R restricted isometry property with high probability.

Theorem 2.11 (Gaussian Measurement Ensembles are RIP Operators, cf. [CP11, The-
orem 2.3]). Let A : Rn1×n2 → Rm be a Gaussian measurement ensemble and assume
that

m ≥ CR(n1 + n2 + 1) (2.20)

holds for a constant C > 0, which only depends on 0 < δ < 1. Then, with probability
at least 1 − 2 exp (−dm), where d > 0 denotes a constant, which only depends on δ as
well, the operator 1√

m
A satisfies the rank-R restricted isometry property with isometry

constant δ.

The remarkable novelty of this result, compared to previous versions such as [RFP10,
Theorem 4.2] is that the number of necessary measurements is up to a constant factor at
the information theoretic limit (2.5) and in particular involves no extra (poly)logarithmic
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factors. This distinguishes this result also from related requirements on the measurement
process in the compressed sensing framework.
For its proof we need two results of independent interest. The first is a standard concen-
tration inequality for Gaussian random matrices in the form of the one in Lemma 1.12.
In fact, Lemma 2.12 can be traced back to the former. The second provides an upper
bound on the covering number for the set of low-rank matrices in order to extend the
concentration inequality from single matrices to a finite cover of low-rank matrices with
bounded Frobenius norm. Therefrom a uniform result can be derived. This differs slightly
from the proceeding in the proof of the vector-valued analog, Theorem 1.11, where the
separate subspaces were covered individually before a uniform bound over all such sub-
spaces was applied. However, as we have uncountably many R-dimensional subspaces this
is not possible.

Lemma 2.12. Let A : Rn1×n2 → Rm be a Gaussian measurement ensemble. Then, for
all Z ∈ Rn1×n2 and 0 < ε < 1, it holds

P

(∣∣∣∣∣
∥∥∥∥ 1√

m
A(Z)

∥∥∥∥2

2

− ‖Z‖2
F

∣∣∣∣∣ ≥ ε‖Z‖2
F

)
≤ 2 exp

(
−cmε2

)
, (2.21)

where c > 0 is an absolute constant.

Proof. By setting z = vec(Z) ∈ Rn1n2 and A = (vec(A1), . . . , vec(Am))T ∈ Rm×(n1n2),
the statement follows directly by applying Lemma 1.12 and noting that ‖z‖2

2 = ‖Z‖2
F and

A(Z) = A vec(Z).

Lemma 2.13 (Metric Entropy of the Set of Low-Rank Matrices, cf. [CP11, Lemma 3.1]).
Let SR,Γ = {Z ∈ Rn1×n2 : rank Z ≤ R and ‖Z‖F ≤ Γ}. Then, for 0 < ε ≤ Γ, there exists
an ε-net

(
SR,Γ

)# with respect to the Frobenius norm obeying∣∣∣(SR,Γ)#
∣∣∣ ≤ (18Γ/ε)R(n1+n2+1) , (2.22)

i.e., for the metric entropy of SR,Γ it holds

logN(SR,Γ, ‖ · ‖F , ε) ≤ R(n1 + n2 + 1) log (18Γ/ε) . (2.23)

Proof. Let Z = UΣVT denote the singular value decomposition of any Z ∈ SR,Γ and note
that ‖Σ‖F ≤ Γ. In order to construct an ε-net for SR,Γ, we cover the sets of permissible
U, Σ and V individually. Let us start with Σ. Therefore, let us consider the set DΓ of
diagonal R × R matrices with Frobenius norm bounded by Γ. For the covering number
of this set it holds

N(DΓ, ‖ · ‖F , ε) = N(BR2 (0,Γ), ‖ · ‖2, ε) ≤
(

1 +
2

ε/Γ

)R
≤
(

3Γ

ε

)R
, (2.24)

where the next-to-last inequality is a consequence of [Pis89, Lemma 4.16]. The last bound
uses the assumption ε/Γ ≤ 1. With respect to ‖ · ‖F , let (DΓ)# denote a minimal ε/3-net.
Thus,

∣∣(DΓ)#
∣∣ ≤ (9Γ/ε)R. Now, let us turn to U and note that V can be considered

analogously by replacing n1 by n2. To this end let On1,R = {U ∈ Rn1×R : UTU = Id}.
In order to cover this set, introduce the ‖ · ‖2,∞ norm via ‖U‖2,∞ = maxi∈[R]‖ui‖2 and
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note that On1,R is a subset of the unit ball Bn1
2,∞(0, 1) under this norm. Hence, by using

the bound on the covering number from above in this setting, there exists an ε/(3Γ)-
net (On1,R)# for On1,R with

∣∣(On1,R)#
∣∣ ≤ (18Γ/ε)Rn1 . Note that an additional factor of

2 appears since N(On1,R, ‖ · ‖, ε) ≤ N(Bn1
2,∞(0, 1), ‖ · ‖, ε/2) as On1,R ⊂ Bn1

2,∞(0, 1). Now
define

(SR,Γ)# =
{
Z# = U#Σ#(V#)T : Σ# ∈ (DΓ)#,U# ∈ (On1,R)# and V# ∈ (On2,R)#

}
(2.25)

and observe that
∣∣(SR,Γ)#

∣∣ ≤ ∣∣(On1,R)#
∣∣∣∣(DΓ)#

∣∣∣∣(On2,R)#
∣∣ ≤ (18Γ/ε)R(n1+n2+1). It re-

mains to show that (SR,Γ)# is an ε-net of SR,Γ with respect to the Frobenius norm.
Therefore, for a fixed Z = UΣVT ∈ SR,Γ let Σ# ∈ (DΓ)# with

∥∥Σ−Σ#
∥∥
F
≤ ε/3, U# ∈

(On1,R)# and V# ∈ (On2,R)# with
∥∥U−U#

∥∥
2,∞ ≤ ε/(3Γ) and

∥∥V −V#
∥∥

2,∞ ≤ ε/(3Γ),
respectively. Then, by triangle inequality,∥∥Z− Z#

∥∥
F

=
∥∥UΣVT −U#Σ#(VT )#

∥∥
F

≤
∥∥(U−U#

)
ΣVT

∥∥
F

+
∥∥U#

(
Σ−Σ#

)
VT
∥∥
F

+
∥∥U#Σ#

(
VT − (VT )#

)∥∥
F

=
∥∥(U−U#

)
Σ
∥∥
F

+
∥∥Σ−Σ#

∥∥
F

+
∥∥Σ#

(
VT − (VT )#

)∥∥
F

≤ ε/3 + ε/3 + ε/3 = ε,

(2.26)

having exploited the orthogonality of the matrices V and U# in the third line and∥∥(U−U#
)

Σ
∥∥
F

=
∑R

i=1 σ
2
ii‖ui − u#

i ‖
2
2 ≤ ‖Σ‖

2
F

∥∥U−U#
∥∥2

2,∞ ≤ Γ2(ε/(3Γ))2 = (ε/3)2

in the inequality of the last line. This proves the claim.

Proof of Theorem 2.11. Without loss of generality we can restrict ourselves to ‖Z‖F = 1.
Let us in a first step show that, with high probability, 1√

m
A is a near-isometry on a

covering set of ∂SR,1 = {Z ∈ Rn1×n2 : rank Z ≤ R and ‖Z‖F = 1}, which is known to
obey ∣∣∣(∂SR,1)#

∣∣∣ ≤ (144
√

2/δ
)R(n1+n2+1) (2.27)

according to Lemma 2.13 with ε = δ/(4
√

2) and an additional factor of 2 coming up due
to the monotonicity property of the covering number as ∂SR,1 ⊂ SR,1. Using a union
bound argument yields, for a constant d > 0, which may only depend on δ, by applying
Lemma 2.12, that

P

(
max

Z#∈(∂SR,1)#

∣∣∣∣∣
∥∥∥∥ 1√

m
A(Z#)

∥∥∥∥2

2

− 1

∣∣∣∣∣ ≥ δ/2

)
≤ 2
(
144
√

2/δ
)R(n1+n2+1)

exp
(
−cmδ2/4

)
≤ 2 exp (−dm) ,

(2.28)

having used the assumption m ≥ CR(n1 + n2 + 1). Requiring C > (log(144
√

2/δ))/(dδ2)
guarantees that the constant d = cδ2/4 − 1/C log(144

√
2δ) is positive. It remains to

extend the derived result in a second step to the whole set ∂SR,1. Therefore, let us define
the constant B > 0 as

B = sup
Z∈∂SR,1

∥∥∥∥ 1√
m
A(Z)

∥∥∥∥
2

. (2.29)
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Now, for any Z ∈ ∂SR,1 there exists Z# ∈
(
∂SR,1

)# with
∥∥Z− Z#

∥∥
F
≤ δ/(4

√
2), which

yields with high probability∥∥∥∥ 1√
m
A(Z)

∥∥∥∥
2

≤
∥∥∥∥ 1√

m
A(Z− Z#)

∥∥∥∥
2

+

∥∥∥∥ 1√
m
A(Z#)

∥∥∥∥
2

≤
∥∥∥∥ 1√

m
A(Z− Z#)

∥∥∥∥
2

+ (1 + δ/2).

(2.30)
By decomposing the rank-2R matrix ∆Z = Z−Z# into two orthogonal rank-R matrices
∆Z1 and ∆Z2, e.g., by splitting the singular value decomposition, we observe∥∥∥∥ 1√

m
A(∆Z)

∥∥∥∥
2

≤
∥∥∥∥ 1√

m
A(∆Z1)

∥∥∥∥
2

+

∥∥∥∥ 1√
m
A(∆Z2)

∥∥∥∥
2

≤ B (‖∆Z1‖F + ‖∆Z2‖F )

≤ B
√

2‖∆Z‖F = B
√

2
∥∥Z− Z#

∥∥
F
≤ Bδ/4.

(2.31)

We used that ∆Zi/‖∆Zi‖F ∈ ∂SR,1 for i = 1, 2 in the second inequality together with the
definition of B and the Pythagoras theorem ‖∆Z1‖2

F + ‖∆Z2‖2
F = ‖∆Z‖2

F in the third
inequality. With this we can derive∥∥∥∥ 1√

m
A(Z)

∥∥∥∥
2

≤ Bδ/4 + (1 + δ/2), (2.32)

from which B ≤ Bδ/4+(1+δ/2) follows as the previous inequality holds for all Z ∈ ∂SR,1.
This, in turns, entails B ≤ (1+δ/4)/(1+δ/2) ≤ 1+δ establishing the upper bound of the
restricted isometry property with Remark 2.4 in mind. Finally, the lower bound follows
since ∥∥∥∥ 1√

m
A(Z)

∥∥∥∥
2

≥
∥∥∥∥ 1√

m
A(Z#)

∥∥∥∥
2

−
∥∥∥∥ 1√

m
A(∆Z)

∥∥∥∥
2

≥ (1− δ/2)−Bδ/4 ≥ (1− δ/2)− (1 + δ)δ/4 ≥ 1− δ,
(2.33)

which completes the proof.

2.2.2 Matrix Sensing in the Presence of Noise

Due to the relevance of the low-rank matrix recovery problem throughout science and
applied mathematics it is inevitable to investigate the situation when the measurements
are affected by noise, i.e.,

y = A(X) + η (2.34)

for a noise vector η ∈ Rm with ‖η‖2 ≤ η. In this setting, noise-aware nuclear norm
minimization

min
Z∈Rn1×n2

‖Z‖∗ subject to ‖A(Z)− y‖2 ≤ η (2.35)

stably and robustly recovers a low-rank matrix X̂ according to a modification of Theo-
rem 2.5. Additionally to the approximation error term, which compares the solution X̂
to the best rank-R approximation, a measurement error of the order O(η) appears. The
adjustment of the proof therefore works analogously to the vector-valued case, which was
addressed in Remark 1.28. By noting that ‖A(H)‖2 ≤ ‖A(X)−y‖2 + ‖y−A(X̂)‖2 ≤ 2η
and using this in (2.17), we obtain the additional measurement error term. This was
carried out in [FCRP08] as an extension to the preceding paper [RFP10].
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2.3 Numerical Algorithms for Low-Rank Matrix Re-
covery

As we did for compressed sensing in Section 1.4, we want to provide an outline of some
state-of-the-art methods for low-rank matrix recovery from incomplete and inaccurate
information. For a more wide-ranging overview with several references to the literature
we refer to [DR16, Section 3].
The first two subsections below are generalizations of the concepts of the preceded Sub-
sections 1.4.2 and 1.4.3, respectively. In the former we exploit the equivalence of nuclear
norm minimization and a suitable semidefinite program, whereas we describe matrix con-
form versions of the iterative soft and hard thresholding algorithms in the latter. In the
last subsection we present the power factorization method which is an alternating min-
imization approach relying on a decomposition of the form X = UVT . Note that the
matrices U, V may not be associated with a singular value decomposition here. To some
extent, this idea also lays the foundation for the numerical methods used at a later point.

2.3.1 Semidefinite Programming

In the noiseless case, nuclear norm minimization (2.9) is equivalent to the semidefinite
program

min
Z∈Rn1×n2 ,

Wi∈Rni×ni for i=1,2

1

2
(tr W1 + tr W2) subject to

(
W1 Z
ZT W2

)
� 0, A(Z) = y, (2.36)

see, e.g., [RFP10, Section 2] for a derivation thereof. A minor adjustment makes this also
amenable to noise, namely by noting that ‖A(Z)− y‖2 ≤ η can be expressed as a linear
matrix inequality, since for any R ∈ Rν1×ν2 it holds

‖R‖ ≤ η ⇐⇒ λmax(RTR) ≤ η2 ⇐⇒ η2Idν2 −RTR � 0 ⇐⇒
(
ηIdν1 R
RT ηIdν2

)
� 0.

(2.37)
The last equivalence follows from a Schur complement argument, which is explained in
Lemma A.5. This observation can be applied to R = A(Z)−y, resulting in a semidefinite
program in the case of noise.

2.3.2 Iterative Soft and Hard Thresholding for Matrices

Due to the analogy of the working principle of iterative thresholding based methods, we
refrain from going into detail for all methods presented in Subsection 1.4.3. Instead,
we derive the matrix version of iterative soft thresholding and refer at this point to
the adaptability of the argument for bridge thresholding as well as the first version of
hard thresholding. For the second version, however, we sketch the iterative best rank-R
approximation algorithm, which is also known as the singular value projection method.

Iterative Soft Thresholding. In the spirit of forward-backward splitting methods,
the matrix-valued least absolute shrinkage and selection operator (LASSO)

min
Z∈Rn1×n2

‖A(Z)− y‖2
2 + β‖Z‖∗, (2.38)
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which is an unconstrained convex optimization problem, serves as a starting point for
defining the update rule

X̂k
ISTA = proxtkβ‖ · ‖∗

(
X̂k−1

ISTA − t
kA∗

(
A(X̂k−1

ISTA)− y
))

(2.39)

for suitable step sizes (tk)Kk=1. This behaves completely analogous to the vector-valued
case. It only remains to investigate the proximal mapping of the nuclear norm, i.e., the
optimizer of

min
W∈Rn1×n2

β‖W‖∗ +
1

2
‖W − Z‖2

F . (2.40)

Noting that, by definition, ‖W‖∗ only depends on the singular values of W and thus
the choice of U(W) and V(W) can be solely made dependent upon the minimization
of ‖W − Z‖F , it is straightforward to establish a connection to the proximal mapping
of the `1-norm. Therefore, we assume in the following that the matrices containing
the right and left singular vectors arise from a full singular value decomposition, i.e.,
they are square matrices. Then, as the Frobenius norm is invariant under orthogonal
transformations and furthermore the sum of the squared entries of the matrix, it is
most reasonable to choose U(W) = U(Z) and analogously for the right singular vec-
tors. This restricts the sum to the diagonal. Having reduced (2.40) by this means
to minσ(W)∈Rmin{n1,n2} β‖σ(W)‖1 + 1

2
‖σ(W)− σ(Z)‖2

2 we can utilize the knowledge of
the proximal mapping of the `1-norm to obtain

proxβ‖ · ‖∗(Z) = U(Z) diag (S2β(σ(Z))) V(Z)T . (2.41)

Consequently, the proximal mapping of the nuclear norm is essentially singular value
soft-thresholding. For performing the iterative soft thresholding algorithm in the set-
ting of matrices, in turn, this necessitates to compute a singular value decomposition
of X̂k−1

ISTA − tkA∗
(
A(X̂k−1

ISTA)− y
)
at each iteration k. If A and A∗ admit some kind of

structure, which is typically the case in applications, however, not if A is a Gaussian
measurement ensemble, the computation of the singular value decomposition is the most
expensive computational cost, which demands O (n1n2 min{n1, n2}) floating-point oper-
ations (flops). Nevertheless, techniques from randomized linear algebra can bring im-
provements in many different ways but at the expenses of exactness of the decomposi-
tion [HMT11]. In general, randomized algorithms have a lower computational complexity,
in the case of computing a singular value decomposition, for instance, one can achieve an
improvement to O (n1n2 log(min{n1, n2})) flops. Additionally, they are more robust than
standard algorithms, accessible to parallelization and more memory efficient.

Singular Value Projection. Analogously to the iterative best s-term approximation
algorithm, the idea underlying the matrix-valued analog, the iterative best rank-R ap-
proximation algorithm, is to allow only rank-R matrices throughout the iterations. This
results in the update rule

X̂k
SVP =

(
X̂k−1

SVP − t
kA∗

(
A(X̂k−1

SVP)− y
))

[R]
(2.42)

for suitable step sizes (tk)Kk=1. This method was introduced and analyzed in [JMD10]
under the name singular value projection (SVP). As for its vector-valued relative, prior
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knowledge, in this case of the rank, is required. Regarding the computational complexity,
in order to obtain the R dominant components of the singular value decomposition, only
O (n1n2R) flops are required when applying standard methods for the decomposition.
This compares to O (n1n2 log(R)) flops for randomized algorithms as addressed above.
However, even though the singular value projection method guarantees convergence with
a geometric convergence rate, it typically requires many iterations for precise solutions,
which motivated to include a Newton-step in order to speed up convergence, cf. [JMD10,
Subsection 2.3]. The subsequent theorem establishes recovery up to noise level for rank-R
matrices under a suitable restricted isometry property.

Theorem 2.14 ([JMD10, Theorem 1.2]). Let us assume that A : Rn1×n2 → Rm has the
rank-2R restricted isometry property with constant 0 < δ < 1/3 and let X be a rank-R
matrix. Then, for ε ≥ 0, singular value projection with constant step size tk = 1/(1 + δ)

outputs a matrix X̂K
SVP of rank at most R such that

∥∥A(X̂K
SVP)− y

∥∥2

2
≤ C‖η‖2

2 + ε2 and

∥∥X−XK
SVP

∥∥2

F
≤ C‖η‖2

2 + ε2

1− δ
(2.43)

after at most K =
⌈

1
log(1/D)

log
(

‖y‖22
2(C‖η‖22+ε2)

)⌉
iterations for universal constants C,D.

2.3.3 Alternating Minimization

In several applications, a bilinear decomposition X = UVT of the rank-R matrix X
allows for more interpretability, such as in the example of the grocery store from the
introduction. In what follows, U ∈ Rn1×R and V ∈ Rn2×R do, in general, not arise from a
singular value decomposition of X. Instead, we allow them to be non-orthogonal matrices.
Moreover, for i ∈ [R], we refer to the vectors ui and vi as the left and right component
vectors of X, respectively. Having prescribed the desired matrix rank directly into the
two factor matrices U and V, turns the rank restricted version of the rank-minimization
problem (2.8), i.e.,

min
Z∈Rn1×n2

‖A(Z)− y‖2 subject to rank Z ≤ R, (2.44)

into the problem of finding the two component matrices U and V solving the optimization
problem

min
Ũ∈Rn1×R,

Ṽ∈Rn2×R

∥∥A(ŨṼT )− y
∥∥

2
. (2.45)

Note that the equivalence of the noise-aware version of (2.8) and (2.44) follows by redoing
the proof of Lemma A.4 for the combination of the rank and the Frobenius norm.
Due to the bilinear nature of the matrix factorization the minimization problem (2.45) is
non-convex. However, it becomes convex as soon as one factor is fixed, which motivates to
employ an alternating minimization procedure, i.e., keeping U or V fixed and minimizing
over the other, before switching their roles and repeating. This provides an approach to
obtain an approximate solution to (2.45) and is known under the name power factoriza-
tion (PF), which was proposed in the setting of low-rank matrix recovery in [PHH09]. We
summarize this procedure in Algorithm 2.
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Algorithm 2 Power Factorization (PF)

Input: Measurement operator A : Rn1×n2 → Rm, measurements y ∈ Rm, rank R and
number of iterations K.

Output: Minimizer X̂PF.
1: Initialize V̂0 ∈ Rn2×R to be the R leading right singular vectors of A∗(y) and set
k = 0.

2: while k ≤ K and stopping criterion not fulfilled
3: Set k = k + 1.
4: Ûk = arg min Û∈Rn1×R

∥∥A(Û(V̂k−1)T
)
− y

∥∥
2

5: V̂k = arg min V̂∈Rn2×R

∥∥A(ÛkV̂T
)
− y

∥∥
2

6: end while
7: Set X̂PF = Ûk(V̂k)T .

The two convex minimization problems at each iteration step are least-squares problems
of the form

min
û∈Rn1R

∥∥AV̂û− y
∥∥

2
(2.46)

in case of line 4 in Algorithm 2 and analogously for the minimization in V̂, i.e., line 5.
Here, the matrix AV̂ ∈ Rm×n1R parametrizes the action of A for fixed V̂ such that for all
Û it holds AV̂ vec(Û) = A(ÛV̂T ). The solution to (2.46) is then given in terms of the
Moore-Penrose inverse A†

V̂
y. This can be solved easily and efficiently using standard tech-

niques from numerical linear algebra in O (mn1n2R + ((n1R)2m+ (n1R)3)) flops, where
the terms correspond to the computation of AV̂ and the application of the pseudoinverse,
respectively. Note that we did not assume any special structure about the measurement
operator A, which could lower the cost of emerging matrix-matrix products. This behaves
analogously when keeping Û fixed.
At this point two comments on the convex subproblems as well as the overall non-convex
minimization problem are in order. First, due to the non-convexity, power factorization is
prone to local minimizers and relies substantially on a good initialization. And second, the
relatively easy least-squares subproblems are readily amenable for exploiting additional
structure by regularizing them. This may be, for instance, sparsity or non-negativity
in the individual component vectors. However, before taking a closer look at matrix
recovery from multiple structures—what we will do for the remainder of the thesis—we
want to conclude this part with a theoretical performance analysis result of alternating
minimization under the assumption of the restricted isometry property. The result is
taken from [JNS13], where power factorization was analyzed in the noiseless case in the
settings of matrix sensing and matrix completion. The method of proof is based on the
observation that our method can bee seen as a perturbed version of the power method.

Theorem 2.15 ([JNS13, Theorem 2.2]). Let us assume that A : Rn1×n2 → Rm has the
rank-2R restricted isometry property with constant δ < (σ1(X))2

(σR(X))2
1

100R
, where X is a rank-R

matrix. Then, for ε > 0, power factorization in form of Algorithm 2 yields a matrix
X̂K

PF = ÛK
(
V̂K
)T satisfying ∥∥X− X̂K

PF

∥∥
F
≤ ε (2.47)

after at most K = d2 log(‖X‖F/ε)e iterations.
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Chapter 3

Matrix Sensing fromMultiple Structures

After having investigated how to recover low-rank matrices from few linear measurements
in the preceding chapter, we consider the problem of recovering matrices with multiple
structures in this chapter. Starting with an outline on how simultaneously structured
models emerge, we raise the question of how to benefit from these multiple structures. In
this context we address a fundamental limitation of convex approaches based on multi-
objective optimization. As a consequence thereof we direct our attention to non-convex
recovery methods.
For a detailed analysis of matrix recovery from multiple structures we recommend the
paper [OJF+15] by Oymak, Jalali, Fazel, Eldar and Hassibi as well as [MHWG14]
by Mu, Huang, Wright and Goldfarb.

3.1 Sparse Principal Component Analysis

We want to elucidate the relevance of simultaneously structured models and their recovery
from few linear measurements by the example of the grocery store which was already
sketched in the introduction. Below, however, we do this more detailed and rigorous.
Therefore, following [FMN19, Section 1], let us consider a grocery store with n1 customers
and n2 products. We denote the matrix containing the probabilities xij that customer i
purchases product j by X ∈ Rn1×n2 . Under the reasonable assumption that a customer’s
purchase behavior is only influenced by R ≤ min{n1, n2} basis factors for a comparably
small R, we can assign two vectors ur ∈ Rn1 and vr ∈ Rn2 to each basis factor in the
following way. The ith entry (ur)i of the left component vector ur encodes to what
extent the rth basis factor affects customer i. In turn, the jth component (vr)j of the
right component vector vr describes the probability that product j is bought under the
assumption of being affected by the rth basis factor. This motivates the non-orthogonal
low-rank factorization

X = UVT =
R∑
r=1

urv
T
r , (3.1)

where the two matrices U ∈ Rn1×R and V ∈ Rn2×R contain the R left and right component
vectors ur and vr, respectively. We assume each set to be linearly independent, yet, we
do not assume the vectors to be mutually orthogonal.
This distinguishes the decomposition (3.1) from the widely used principal component
analysis (PCA) [Jol02], which was introduced over a century ago in [Pea01]. The idea
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thereof is to find a new basis for the data set, which represents the data better and
moreover results from a linear transformation of the original basis. These new variables,
the so-called principal components, shall capture the maximal variance successively in the
sense that the first principal component describes the best-fitting line and is complemented
to the best-fitting plane by the second one and so forth. This is based on the thought
that a large variance represents the interesting dynamics, whereas small variances are
associated with noise. Returning to the change of basis, we note that, in general, there
are many old variables, which are additionally correlated. In contrast, the new variables
are uncorrelated and it is typically possible to retain most of the variance and consequently
the relevant structure of the data set by taking into account only the first few principal
components. This makes principal component analysis appealing for dimension reduction
techniques. It is moreover intimately related to the singular value decomposition. Let
us assume that X has column mean zero and let X = ŨΣ̃ṼT denote a singular value
decomposition of X. Then, the columns of Ũ form the new orthonormal basis of the data
with corresponding variances σ̃2

rr for the rth principal component. The column ṽr of the
matrix Ṽ is the loading of the corresponding rth principal component.
Despite assuring minimal information loss when representing the data insinuating a lower-
dimensional structure and guaranteeing that the principal components are uncorrelated,
there is one severe drawback when it comes to interpretability of the principal components.
In general, each principal component is a combination of all original variables and the
corresponding loading is a dense vector. This makes it typically really hard to assign
a real-world interpretation to these decisive directions. Consequently, in order to ease
interpretability it is desirable to reduce the number of explicitly involved old variables in
the principal components, i.e., we request sparse loadings of the principal components.
Sparse principal component analysis (sparse PCA) was proposed in [ZHT06] by Zou,
Hastie and Tibshirani as a remedy and an extension to regular principal component
analysis especially for high dimensions. It gives up orthogonality of the principal com-
ponents in order to promote sparsity of the respective loadings. The underlying idea
is to use the fact that principal component analysis can be formulated as a regression-
type optimization problem [ZHT06, Theorem 3]. Then, in order to achieve the desired
sparsity, the ridge penalty can be replaced or supplemented by an `1-penalization term,
which is also known as LASSO penalty. The resulting regression model is known as the
LASSO [Tib96], cf. (1.67), or as the elastic net [ZH05], respectively.
Let us now come back to the example of the grocery store from the beginning. Since a
specific basic factor entails a very specific and pronounced buying pattern, it is reasonable
to assume that the right component vectors vr are sparse for all r ∈ [R]. As they can
be moreover interpreted as discrete probability vectors, it is also meaningful to assume
even further structure such as positivity, i.e., (vr)j ≥ 0 for all j ∈ [n2] and for all r ∈ [R]
as well as

∑n2

j=1(vr)j = 1 for all r ∈ [R]. The latter can be easily ensured by a proper
rescaling of the two component vectors.
In most applications we only have partial access to certain entries of X or even just
indirect information in terms of linear measurements y = A(X). In the following we
assume that there is no data from personalized fidelity cards available, i.e., the store is
not able to associate certain purchases with certain customers. That means we rely solely
on information obtained from measurements and thus consider the matrix sensing case.
Let us sketch hereinafter, as proposed in [FMN19, Section 1], how to learn X from ag-
gregated revenues utilizing small random price fluctuations. Therefore, let us consider
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m periods of constant prices with D days each. That means we track the daily sales over
mD days in total. For each price period ` ∈ [m] let us denote the vector, which encodes
the prices p`j of all products j, by p` ∈ Rn2 . The total revenues y`,d of the grocery store
on day d in price period ` can now be obtained as follows. Assuming that a random
subset Td ⊂ [n1] of all customers visits the store on that day d and that each customer’s
shopping cart can be modeled by a random subset Pi,d ⊂ [n2] of all available products,
we can compute

y`,d =
∑
i∈Td

∑
j∈Pi,d

p`j. (3.2)

Recalling that the entry xij in the ith row and jth column of X gives the probability that
customer i purchases product j, the expected revenues of the grocery store on one day d
in price period ` are

E [y`,d] =

n1∑
i=1

qi

n2∑
j=1

xijp
`
j, (3.3)

where qi denotes the probability that customer i visits the store. We collect these prob-
abilities in a vector q ∈ Rn1 and want to note that this vector could also depend on the
price period `, which would correspond to the case that some customers are attracted
by special offers created by the price modifications, in case that they are communicated.
Moreover, we notice that the quantity E [y`,d] is constant over a fixed period `, i.e., inde-
pendent of d. Let us therefore denote the over D days averaged takings in price period `
by y` = 1

D

∑D
d=1 y`,d. By the law of large numbers we observe that limD→∞ y` = E [y`,d]

in probability and almost surely. According to the central limit theorem we obtain
y` = E [y`,d] + η`,D, where η`,D denotes suitable Gaussian noise for D large enough. This
can be now rewritten as

y` =

n1∑
i=1

n2∑
j=1

(
qip

`
j

)
xij + η`,D = 〈A`,X〉F + η`,D, (3.4)

where the matrices A` ∈ Rn1×n2 are the outer products q(p`)T for ` ∈ [m], i.e., for their
entries it holds (a`)ij = qip

`
j for all i ∈ [n1] and j ∈ [n2]. By using the random price

perturbations in each period ` ∈ [m], we obtain m individual inaccurate measurements y`
of the data matrix X. We can rearrange them in the form

y = A(X) + η, (3.5)

where the measurement operator A : Rn1×n2 → Rm collects the individual matrices A`

for ` ∈ [m] and η denotes ineliminable noise with entries η`,D.
As it is desirable that the number of measurements m is small compared to the dimension
of the ambient space Rn1×n2 , which is n1n2, we want to briefly address information the-
oretic limitations on the required size of the measurements. Therefore, recall the sparse
low-rank decomposition (3.1), which can be reformulated as

X =
R∑
r=1

σr
ur
‖ur‖2

(
vr
‖vr‖2

)T
(3.6)

for σr = ‖ur‖2‖vr‖2. Let us now assume that the left component vectors ur are s1-sparse
and that the right component vectors vr are s2-sparse, i.e., ur ∈ Σn1

s1
and vr ∈ Σn2

s2
for
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all r ∈ [R]. By counting the number of degrees of freedom in (3.6), which turns out to
equal

∑R
r=1(1 + (s1 − 1) + (s2 − 1)) = R(s1 + s2 − 1), we conclude that a lower bound of

m ≥ R(s1 + s2 − 1) on the number of measurements is an absolutely necessary condition
to recover a rank-R matrix X with (s1, s2)-sparse non-orthogonal rank-1 decomposition.
In what follows, we denote the set of such (s1, s2)-sparse rank-R matrices by SRs1,s2 , i.e.,

SRs1,s2 =
{
Z ∈ Rn1×n2 : ∃ u1, . . . ,uR ∈ Σn1

s1
, v1, . . . ,vR ∈ Σn2

s2
, and σ ∈ RR,

s.t. Z =
R∑
r=1

σrurv
T
r ,

where ‖ur‖2 = ‖vr‖2 = 1 ∀r ∈ [R]
}
.

(3.7)

This matrix model was utilized and analyzed in [FMN19, Subsection 3.2]. For a matrix
X ∈ SRs1,s2 , a decomposition of the form X = UΣVT as in (3.7), where Σ = diag(σ),
is called sparse decomposition (SD) of X. This factorization may not be confused with
the singular value decomposition, which is in general different from a sparse decomposi-
tion. Moreover, the sparse decomposition is not necessarily unique and does not admit
orthogonal left and right component vectors, cf. [ROV14, Proposition 6].
Let us now compare the previously determined number of degrees of freedom and the
related bound on the number of required measurements to the situations where we would
exploit only one of the two structures. We start with sparsity solely. To this end note that
an (s1, s2)-sparse rank-R matrix has at most Rs1s2 non-zero entries. Thus, by regarding
the matrix as a long vector with columns stacked on top of each other, we deduce that
we require m & Rs1s2 measurements for recovery according to Theorem 1.2. An addi-
tional multiplicative logarithmic term log

(
en1n2

Rs1s2

)
ensures stability, cf. Corollary 1.13 in

combination with Theorem 1.11. Vice versa, considering low-rankness regardless of spar-
sity, according to Theorem 2.8 combined with Theorem 2.11, any (n1 × n2)-dimensional
matrix of rank R can be determined with m & R(n1 +n2) measurements. This raises the
question whether we can go below these lower bounds when taking both structures into
consideration simultaneously. We will deal with this question for the rest of the thesis
beginning in the upcoming section.
Before that, however, let us mention a different well-studied situation of multiple struc-
tures, which distinguishes itself in several aspects from the one we will focus on. Therefore,
consider for the moment a matrix M ∈ Rn1×n2 , which is the sum of a low-rank-R compo-
nent L and an s-sparse7 component S, i.e., we have the additive decomposition

M = L + S. (3.8)

Assuming that we can observe the matrix M directly, we aim at recovering both parts
of the matrix individually and exactly. It was shown in [CLMW11] that this is indeed
possible under suitable conditions, including an incoherence assumption on the left and
right singular spaces of L. Moreover, recovery can be done using a tractable convex op-
timization program, whose objective function is a combination of the nuclear norm ‖L‖∗
and the `1-norm ‖vec S‖1. This is called principal component pursuit (PCP). A com-
pressed version of principal component pursuit was proposed in [WGMM13] requiring

7A matrix S is called s-sparse, if it contains at most s entries, i.e., its vectorization vecS is s-sparse
in the usual sense.
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m & (R(n1 + n2 −R) + s) log2(max{n1, n2}) measurements, which matches the number
of degrees of freedom of the additive decomposition up to the polylogarithmic term. The
practical interest of this problem stems from the possibility to understand this approach
as a robust principal component analysis, since it provides the opportunity to determine
the principal components of L even if a proportion of the observed entries is significantly
corrupted or missing at all, which is modeled by the matrix S.

3.2 On Limitations of Convex Optimization

At the beginning of this section we want to take a more general point of view and con-
sider arbitrarily simultaneously structured models. As usual, the signal to be recovered is
denoted by X. Despite formulating the statements in the following from the perspective
of matrices, i.e., X ∈ Rn1×n2 , the results also apply to vectors and tensors by adapting
them suitably. Following the problem formulation from [OJF+15] by Oymak et al., let
us assume that X has τ low-dimensional structures S1, . . . , Sτ at the same time, such as
low-rankness or different types of sparsity. When aiming at recovering the signal, it is
tempting to minimize the convex relaxations for the individual structures simultaneously
or, as a weakened form, to consider a suitable linear combination of the same as a con-
vex relaxation for the simultaneously structured object. Roughly speaking, however, it
turns out that this composite optimization does, in general, not improve the number of
required measurements significantly. To elaborate on this let, us denote the penalty norm
promoting structure St by ‖ · ‖(t) for t ∈ [τ ] and consider the scalarized multi-objective
minimization problem

min
Z∈Rn1×n2

f(Z) = h
(
‖Z‖(1), . . . , ‖Z‖(τ)

)
subject to A(Z) = y (3.9)

for a scalar-valued non-negative convex and non-decreasing function h. The already ad-
dressed linear and moreover convex combination is obtained for h(w) =

∑τ
t=1 λtwt with

positive scalars λt > 0 for all t ∈ [τ ].
The crucial question is whether and under which conditions X is the unique solution
to (3.9). We will discuss this issue in the following by presenting the geometrical argument
from [MHWG14] by Mu et al. First of all, we notice that X in fact uniquely solves (3.9) if
and only if C(f,X)∩kerA = {0}, where C(f,X) = cone{Z ∈ Rn1×n2 : f(X+Z) ≤ f(X)}
denotes the descent cone of f at X. Since kerA is a random (n1n2−m)-dimensional sub-
space, the smaller C(f,X) is, the more probable unique recoverability of X is. In order to
quantify the size of the descent cone we will introduce the statistical dimension [ALMT13]
in a moment in Definition 3.2. Before that, however, let us investigate the structure of
C(f,X). Therefore, we consider its polar cone C(f,X)◦ = cone ∂f(X), see, e.g., [Roc70,
Theorem 23.7]. Having in mind that for linear combinations of proper convex functions
under certain rather weak regularity conditions, namely that the relative interiors of their
domains have at least a point in common, it holds ∂(f1 + f2)(X) = ∂f1(X) + ∂f2(X),
where the addition on the right-hand side is the Minkowski sum, we investigate the sub-
differential ∂‖X‖(t) of a single norm first. To this end let us define a measure for the
alignment of a signal with respect to a set.

Definition 3.1 (Correlation). The correlation between a matrix Z ∈ Rn1×n2 and a set
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S ⊂ Rn1×n2 is defined as

ρ(Z, S) = inf
S∈S\{0}

|〈Z,S〉F |
‖Z‖F‖S‖F

. (3.10)

We want to remark that in the previous definition there is nothing special about taking
matrices. In fact, due to the relation of the Frobenius and the Euclidean scalar product,
our definition can be obtained from the version for vectors by interpreting vectors as
vectorizations of matrices. Now notice that ρ(Z, S) ∈ [0, 1] and, geometrically speaking,
cos−1(ρ(Z, S)) gives the largest angle between Z and any point of S. For the subdifferential
of some norm ‖ · ‖(t) at X in specific, we observe

ρ(X, ∂‖X‖(t)) =
‖X‖(t)

supS∈∂‖X‖(t)‖S‖F‖X‖F
≥
‖X‖(t)

Lt‖X‖F
, (3.11)

denoting the Lipschitz constant of ‖ · ‖(t) by Lt. Note that the equality follows since the
subdifferential of a norm is the set of points, where Hölder’s inequality is tight. More
precisely, S ∈ ∂‖X‖(t) is equivalent to ‖X‖(t) = 〈S,X〉F and ‖S‖(t),∗ ≤ 1, where ‖ · ‖(t),∗
denotes the dual norm of ‖ · ‖(t). The quantity κt = ‖X‖(t)/(Lt‖X‖F ) can be regarded
as a measure for the model complexity, which can be exemplified with sparse vectors
and the `1-norm. For an s-sparse vector x ∈ RN with entries of the same magnitude it
holds κ = ‖x‖1/(L‖ · ‖1‖x‖2) =

√
s/N . For further examples see, e.g., [OJF+15, Table 2].

Moreover, we can use κt to define a with ∂‖ · ‖(t) associated angle θt = cos−1(κt) with
which it holds

∂‖X‖(t) ⊂ circ(X, θt) = {Z ∈ Rn1×n2 : 〈Z,X〉 ≤ cos(θt)}. (3.12)

Here, circ(X, θt) denotes the circular cone with axis X and angle θt, which is defined as
shown. The resulting situation is visualized in Figure 3.1.

X circ(X, θt)

θt

cone ∂‖X‖(t)

C(‖ · ‖(t),X)

X

Figure 3.1. Descent cone C(‖ · ‖(t),X) of some structure promoting norm ‖ · ‖(t) at X to-
gether with its polar cone, cone ∂‖X‖(t), which is enclosed by the circular cone, circ(X, θt),
with axis X and angle θt = cos−1(‖X‖(t)/(Lt‖X‖F )), cf. [MHWG14, Figure 1].

Let us now turn back to multiple regularizing norms and consider a composite convex
regularizer f(Z) of the form

∑τ
t=1 λt‖Z‖(t) with λt > 0 for all t ∈ [τ ]. To any reg-

ularizer ‖ · ‖(t) we associate an angle θt = cos−1(κt) = cos−1(‖X‖(t)/(Lt‖X‖F )) and a
corresponding circular cone circ(X, θt). However, as the axis thereof is fixed, we conclude

∂f(X) =
τ∑
t=1

λt∂‖X‖(t) ⊂
τ∑
t=1

circ(X, θt) ⊂ circ(X,max
t∈[τ ]

θt) (3.13)
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and consequently observe that the fact that several structures were involved disappears
on the right-hand side, which is only affected by the largest angle maxt∈[τ ] θt. Broadly
speaking, the largest angle also corresponds to the strongest or best of the structures. By
reconsidering sparse vectors, this can be illustrated. We note that the more significant the
sparsity structure of x is, the smaller is κ and thus the larger is the resulting θ = cos−1(κ).
Moreover, and leading back to the required number of measurements, a small angle
maxt∈[τ ] θt enforces narrow polar cones C(‖ · ‖(t),X)◦ = cone ∂‖X‖(t) ⊂ circ(X,maxt∈[τ ] θt)
and consequently large descent cones C(‖ · ‖(t),X). These, in turn, increase the proba-
bility that a randomly orientated subspace kerA intersects one of these cones. To make
this more rigorous let us define the statistical dimension of a convex cone C, which was
introduced in [ALMT13] for the vector case.

Definition 3.2 (Statistical Dimension). Let Z ∈ Rn1×n2 be a random matrix with i.i.d.
mean-zero Gaussian entries of unit variance. The statistical dimension of a closed convex
cone C ⊂ Rn1×n2 is defined as

δ(C) = EZ

[
‖PC(Z)‖2

F

]
, (3.14)

where PC denotes the projection onto the cone, i.e., PC(Z) = arg min Z̃∈C‖Z̃− Z‖F .

The former definition can be easily traced back to the vector version by considering the
vectorizations of the respective quantities. The statistical dimension extends the concept
of a dimension from subspaces to convex cones. In particular, it is non-negative, bounded
by the ambient dimension and monotonous in the sense that δ(C1) ≤ δ(C2) if C1 ⊂ C2 for
two closed convex cones C1 and C2. Furthermore, it fulfills a complementarity condition,
namely δ(C) + δ(C◦) = n, when n is the ambient dimension. For a linear subspace L
it moreover holds δ(L) = dim(L). To give an example let us consider the nonnegative
orthant in n dimensions, i.e., Rn

+. As it is a self-dual cone the complementarity property
yields δ(Rn

+) = 1
2
n. A closely related quantity, see, e.g., [Ver15, Definition 3.4], is the

Gaussian mean width, which aims at capturing the complexity of an arbitrary bounded set
by averaging over widths induced by intersections with randomly oriented one-dimensional
subspaces.
After this small excursion on the statistical dimension of a cone, let us now return to the
question about the probability that the random (n1n2 −m)-dimensional subspace kerA
has a non-trivial intersection with a fixed convex cone C ⊂ Rn1×n2 . In [ALMT13] this
question was explored extensively with the result that there occurs a sharp phase transi-
tion, which is determined by the statistical dimension of the cone C. If the codimension m
of the randomly oriented subspace kerA is larger than the statistical dimension δ(C), the
probability of sharing a non-trivial intersection with C is small. In turn, if m is smaller
than δ(C), it is very probable that C ∩ kerA 6= {0}. As we are primarily interested in the
latter case, we formalize this statement in the subsequent lemma.

Lemma 3.3 (Corollary of [ALMT13, Theorem 7.1]). Let A : Rn1×n2 → Rm be a Gaussian
measurement ensemble and C a convex cone. Then, if m ≤ δ(C), it holds

P (C ∩ kerA = {0}) ≤ 4 exp

(
−(δ(C)−m)2

16δ(C)

)
. (3.15)

Sketch of Proof. The statement follows from the first part of Theorem 7.1 in [ALMT13]
by considering λ = δ(C)−m, cf. [MHWG14, Corollary 4].
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In order to apply this result, let us investigate the statistical dimension of the descent
cone of a composite regularizer of the form

∑τ
t=1 λt‖ · ‖(t) with positive scalars λt, i.e., the

linear combination of the individual structure promoting norms.

Lemma 3.4 (Collorary of [MHWG14, Lemma 2]). For the statistical dimension of the
descent cone C(

∑τ
t=1 λt‖ · ‖(t),X) with positive scalars λt it holds

δ
(
C
( τ∑
t=1

λt‖ · ‖(t),X
))
≥ n1n2κ

2 − 2, (3.16)

where κ = mint∈[τ ] κt.

Proof. By utilizing the complementarity condition of the statistical dimension in the first
line and the monotonicity property in combination with the inclusion in (3.13) in the
second we observe

δ
(
C
( τ∑
t=1

λt‖ · ‖(t),X
))

= n1n2 − δ
(
C
( τ∑
t=1

λt‖ · ‖(t),X
)◦)

= n1n2 − cone ∂
( τ∑
t=1

λt‖X‖(t)

)
≥ n1n2 − circ(X,max

t∈[τ ]
θt) ≥ n1n2

(
1− sin2(max

t∈[τ ]
θt)
)
− 2

= n1n2 cos2(max
t∈[τ ]

θt)− 2 = n1n2 min
t∈[τ ]

κ2
t − 2.

(3.17)

The second inequality in the second line follows from Lemma 2 in [MHWG14], which is
an improvement to [ALMT13, Proposition 3.4].

By combining these two results and recalling that κ2
t can be interpreted as the relative

intrinsic dimension associated with structure St, we are now able to formally state the
negative result first discovered by Oymak et al. Namely that composite optimization
using a linear combination of individual structure promoting norms can do no better in
the sense of improving the required number of measurements than exploiting only the
best of these structures alone.

Theorem 3.5 ([MHWG14, Theorem 5]). Let A : Rn1×n2 → Rm be a Gaussian mea-
surement ensemble and let X 6= 0. Suppose that for each t ∈ [τ ] the norm ‖ · ‖(t) is
Lipschitz continuous with constant Lt. Moreover, let us denote κ = mint∈[τ ] κt, where
κt = ‖X‖(t)/(Lt‖X‖F ). Then, if m ≤ n1n2κ

2 − 2, it holds that

P (X uniquely solves (3.9)) ≤ 4 exp

(
−(n1n2κ

2 − 2−m)2

16(n1n2κ2 − 2)

)
, (3.18)

where the function f in (3.9) is of the form f =
∑τ

t=1 λt‖ · ‖(t) with positive scalars λt.

Proof. First recall that

P (X uniquely solves (3.9)) = P (C(f,X) ∩ kerA = {0}) . (3.19)

Then, the statement follows directly from Lemma 3.3 by applying it to the setting where
C is the descent cone of f at X and using the lower bound on the statistical dimension of
from Lemma 3.4.
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With this statement we highlighted one side of the coin concerning the sharp phase transi-
tion in recoverability regarding the required number of measurements, which is determined
by a geometric invariant, the statistical dimension. Vice versa, it can be also shown using
similar tools that if m is sufficiently large compared to the statistical dimension, recovery
is certain with exceeding probability. However, as this limit is dictated by a single struc-
ture only, this is highly unsatisfactory for our purposes as it does not allow to benefit
from multiple structures simultaneously.
As a consequence, we are obliged to go beyond tractable convex optimization based ap-
proaches in order to enhance the required number of measurements. This is the respon-
sibility of the following section.
Before coming to that, a short annotation regarding the recovery of low-rank tensors,
which play an increasingly important role in the training of neural networks, shall be
provided, as this issue was the motivation for the paper [MHWG14]. The previously
described negative result, namely, applies to their recovery. In the numerical algebra of
tensors it is a well-known fact that already the computation of the rank of a tensor, which is
the number of rank-1 tensor products in a canonical polyadic decomposition and therefore
also called CP rank, is NP-hard. Consequently, concepts like the multilinear rank of an
oder-d tensor, also known as the Tucker rank, were introduced and investigated. It is a
d-dimensional vector containing the ranks of all d distinct unfoldings of the tensor and
can be revealed by the higher order singular value decomposition (HOSVD), a particular
type of the Tucker decomposition. Tensors of low Tucker rank can now be seen as signals
which have multiple structures simultaneously by being of low rank along each mode.

3.3 The Power and Perils of Non-Convex Recovery

A significantly improved performance achieving nearly order-optimal recovery guarantees
in the case of simultaneously structured models requires non-convex methods, as we saw
in the preceding section. In order to demonstrate the superiority of non-convex regular-
ization we sketch results from [OJF+15] on simultaneously sparse and low-rank matrices.
Therefore, let us introduce a slightly modified and more special matrix model compared
to the set SRs1,s2 of (s1, s2)-sparse rank-R matrices from (3.7). S̃Rs1,s2 denotes this set of
(n1×n2)-dimensional low-rank-R matrices, which are zero outside an (s1×s2)-dimensional
submatrix, i.e.,

S̃Rs1,s2 =
{
Z =

R∑
r=1

σrurv
T
r ∈ SRs1,s2 : supp(ur) = supp(u1),

and supp(vr) = supp(v1) ∀r ∈ [R]
}
.

(3.20)

This set is also called the set of (s1, s2)-jointly-sparse rank-R matrices. The authors
of the addressed paper investigated recovery methods based on convex as well as non-
convex programs and exposed a gap in their performance regarding the required number
of measurements, which we will outline below. In order to do so, we need to introduce
one further matrix norm as well as its non-convex counterpart. For a matrix Z ∈ Rn1×n2 ,
‖Z‖1,2 denotes the `1-norm of the `2-norms of the columns of Z, whereas ‖Z‖0,2 is the
number of non-zero columns of Z.
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Theorem 3.6 ([OJF+15, Theorem 3]). Let A : Rn1×n2 → Rm be a Gaussian measurement
ensemble and consider recovering X ∈ S̃Rs1,s2 via the program

min
Z∈Rn1×n2

f(Z) subject to A(Z) = y. (3.21)

Then, for some constants c1, c2 > 0, the following hold.

(i) If f(Z) = β1‖Z‖1,2 + β2‖ZT‖1,2 + ‖Z‖∗ for regularization parameters β1, β2 > 0, the
convex optimization program (3.21) will fail to recover X with probability at least
1− exp(−c1m0), whenever m ≤ c2m0, where m0 = min{n1s2, n2s1, R(n1 + n2)}.

(ii) If f(Z) = 1
s2
‖Z‖0,2 + 1

s1
‖ZT‖0,2 + 1

R
rank(Z), the non-convex optimization pro-

gram (3.21) will uniquely recover X with probability at least 1−exp(−c1m), whenever
m ≥ c2 max{s2 log (en2/s2) , s1 log (en1/s1) , R(s1 + s2)}.

Sketch of Proof. Firstly, (i) follows using similar arguments as we exploited to prove The-
orem 3.5. A comparable result of the latter in the framework of this theorem can be found
in [OJF+15, Theorem 2].
Secondly, for (ii), note that f obeys the triangle inequality and it moreover holds f(X) = 3.
Therefore, if we have f(H) > 6 for all H ∈ kerA, unique recoverability follows from
f(Z) ≥ f(Z−X)− f(−X) > 3 for all feasible Z. In order to show the former we observe
that f(H̃) ≤ 6 implies H̃ ∈ S̃6R

6s1,6s2
and thus that S̃6R

6s1,6s2
∩ kerA = {0} suffices. This, in

turn, can be shown by utilizing that a random linear subspace kerA of codimension m
has trivial intersection with the cone S̃6R

6s1,6s2
with high probability whenever m is suffi-

ciently large, cf. Lemma 3.3. This requires the computation of the statistical dimension
of the respective cone. An alternative argument based on covering numbers was given
in [OJF+15, Lemma 14 and Lemma 15].

Having a closer look at the lower bound on the number of necessary measurements for
non-convex recovery, i.e., Theorem 3.6(ii), reveals that, up to logarithmic factors, reliable
recovery is possible with high probability from as many measurements as degrees of free-
dom, which is R(s1 + s2 − R). In order to derive the latter number, note that it suffices
to consider a singular value decomposition of the inscribed (s1 × s2)-dimensional rank-R
matrix, from which one can directly count the R +

∑R
r=1(s1 − r) + (s2 − r) degrees of

freedom. This significantly enhances the performance of the respective convexification,
which itself results in an orderwise suboptimal sample size, cf. Theorem 3.6(i) and the
discussion in Section 3.2.
Unfortunately, though, non-convex optimization problems are considered to be computa-
tionally intractable in general. Due to their non-convexity they are susceptible to spurious
local minima making global convergence guarantees impractical. Moreover, initialization
typically plays a decisive role leading to the whole performance of the algorithm being
closely related to and heavily relying on a good initialization of the method. Character-
istically for non-convex approaches, finding suitable initializations is an open problem in
most instances and if at all only heuristics without any provable convergence guarantees
are available.
In recent years, however, substantial progress was made in the fields of non-convex and
non-smooth optimization, mainly driven by the undeniable success of signal processing
and machine learning [JK17]. This is due to the immense diversity of modeling possibilities
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non-convex formulations provide compared to merely convex problems. Nowadays, non-
convex optimization is not considered to be such a delicate endeavor any more as a couple
of years ago. A crucial observation in this context was that in typical applications present
structure of the problem can be used in favor of the non-convex numerical method. This
helps to make such approaches more tractable and lower the aversion towards them.
Despite that, though, the addressed difficulties do not disappear out of nothing and have
to be kept in mind.
Understanding both, opportunities and threats, non-convex formulations offer and gaining
a much deeper insight is currently a vast area of very active research with several fields
of mathematics contributing.
In fact, we already addressed two very relevant and also well-understood non-convex
techniques, namely projected gradient descent, which is a subcase of the forward-backward
splitting methods, introduced in Subsection 1.4.3, and alternating minimization, presented
in Subsection 2.3.3. The latter also lays the foundation for a state-of-the-art non-convex
algorithm for compressed sensing of sparse and low-rank matrices, which is described in
the first part of the subsequent section.

3.4 Numerical Algorithms for the Recovery of Simul-
taneously Sparse and Low-Rank Matrices

Following on from the preceding Sections 1.4 and 2.3 on numerical algorithms for the
recovery of sparse vectors and low-rank matrices, respectively, in this section we describe
two non-convex approaches for the compressed recovery of simultaneously sparse and
low-rank matrices.
The first subsection below addresses a sparse version of the alternating minimization algo-
rithm introduced in Subsection 2.3.3. The so-called sparse power factorization additionally
imposes a sparsity structure on the matrices U and V from the decomposition X = UVT

using hard thresholding pursuit. This method can be considered as a state-of-the-art
benchmark for competing algorithms. After that, in the second subsection, we present
a numerical algorithm minimizing a multi-penalty functional, which encompasses data
fidelity as well as low-rankness of the matrix and sparsity of its non-orthogonal decom-
position. This approach was dubbed Alternating Tikhonov regularization and LASSO.
It is an iterative alternating minimization approach that alternates, however, directly
on vector pairs instead of matrices. Sparsity in the component vectors is promoted by
employing iterative soft thresholding.

3.4.1 Sparse Power Factorization

As already brought up towards the end of Subsection 2.3.3 on the power factorization
method, it is possible to impose further structure on the matrices U and V from the
bilinear decomposition X = UVT . This can be done by modifying their update rules,
which are simple least-squares problems in the first place. In [LWB18] the sparse power
factorization (SPF) was proposed and investigated by Lee, Wu and Bresler as an
alternating minimization algorithm for the compressed recovery of (s1, s2)-jointly-sparse
rank-R matrices X ∈ S̃Rs1,s2 . The row-sparsity of the factor matrices U and V is imposed
by means of Algorithm 4, which is a matrix-conform version of iterative best s-term
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approximation, cf. Paragraph 1.4.3(3). However, several other methods for compressed
sensing of sparse vectors could be employed as well, such as, e.g., iterative soft threshold-
ing, cf. Paragraph 1.4.3(1). Sparse Power Factorization is given below in Algorithm 3 in
form of the subspace-concatenated version proposed in the cited literature.

Algorithm 3 Sparse Power Factorization (SPF)

Input: Measurement operator A : Rn1×n2 → Rm, measurements y ∈ Rm, rank R, sparsi-
ties s1, s2 and number of iterationsK and L, whereK relates to the power factorization
iterations and L to the iterations of the iterative best s-term approximation.

Output: Minimizer X̂SPF.
1: Initialize Û0 ∈ Rn1×R and V̂0 ∈ Rn2×R sufficiently, see, e.g., [LWB18, Algorithms 6

and 7] and set k = 0.
2: while k ≤ K and stopping criterion not fulfilled
3: Set k = k + 1.
4: Compute V̂k−1 = orth

(
(V̂k−1, V̂0)

)
, where orth( · ) returns an orthonormal basis

for the range R( · ) of the argument.
5: if s1 < n1 then
6: Construct AV̂k−1 : Rn1×R → Rm such that it parametrizes the action of A for

fixed V̂k−1, i.e., such that for all Û it holds AV̂k−1(Û) = A
(
Û(V̂k−1)T

)
.

7: Ũk = MatrixIBA(AV̂k−1 ,y, s1, L), as described in Algorithm 4
8: else
9: Ũk = arg min Ũ∈Rn1×R

∥∥A(Ũ(V̂k−1)T
)
− y

∥∥
2

10: end if
11: Let Ûk be the best rank-R approximation of Ũk.
12: Compute Ûk = orth

(
(Ûk, Û0)

)
.

13: if s2 < n2 then
14: Construct AÛk : Rn2×R → Rm analogously to line 6.
15: Ṽk = MatrixIBA(AÛk ,y, s2, L)
16: else
17: Ṽk = arg min Ṽ∈Rn2×R

∥∥A(ÛkṼT
)
− y

∥∥
2

18: end if
19: Let V̂k be the best rank-R approximation of Ṽk.
20: end while
21: Set X̂SPF = Ûk(V̂k)T .

The method was extensively tested numerically showing a significantly improved perfor-
mance compared to methods based on convex programming. In fact, near-optimal per-
formance was reported based on a variety of numerical tests. Advantageously as well, the
algorithm comes with an own, albeit computationally expensive, initialization procedure.
Yet, using this initialization yields a provably near-optimal performance guarantee.
The theoretical aspects of sparse power factorization shall also be the last concern of this
part. In order to investigate the performance of the algorithm, the authors introduced a
suitable restricted isometry property for the relevant matrix set S̃Rs1,s2 of (s1, s2)-jointly-
sparse rank-R matrices.

Definition 3.7 (Low-Rank and Jointly-Sparse Restricted Isometry Property). A linear
operator A : Rn1×n2 → Rm satisfies the rank-R and (s1, s2)-jointly-sparse restricted isom-
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Algorithm 4 Iterative Best s-Term Approx. for Row-Sparse Matrices (MatrixIBA)

Input: Measurement operator Ared : Rn×R → Rm, measurements y ∈ Rm, row-sparsity s
and number of iterations L.

Output: Final iterate WMatrixIBA.
1: Initialize W0 = 0 ∈ Rn×R and set ` = 0.
2: while ` ≤ L and stopping criterion not fulfilled
3: Set ` = `+ 1.
4: Compute W̃ = W`−1 −A∗red(Ared(W`−1)− y).
5: Let J ⊂ [n] denote the index set of the s rows of W̃ with largest `2-norm and

PJ the projection onto the row set.
6: W` = arg min W∈Rn×R:PJ (W)=W‖Ared(W)− y‖2

7: end while
8: Set WMatrixIBA = W`.

etry property with isometry constant 0 < δ < 1 if

(1− δ)‖Z‖2
F ≤ ‖A(Z)‖2

2 ≤ (1 + δ)‖Z‖2
F (3.22)

for all Z ∈ S̃Rs1,s2.

Comparably to the results from compressed sensing of sparse vectors and low-rank ma-
trices, Theorems 1.11 and 2.11, respectively, it transpires that Gaussian measurement en-
sembles also provide, with exceeding probability, suitable operators fulfilling the rank-R
and (s1, s2)-jointly-sparse restricted isometry property provided the number of measure-
ments is sufficiently large. This threshold turns out to be at the information theoretical
limit up to a log-factor in the inverse of the relative sparsities s1/n1 and s2/n2. More
precisely, it holds the subsequent result.

Theorem 3.8 (Gaussian Measurement Ensembles have the Low-Rank and Jointly-Sparse
RIP, cf. [LWB18, Theorem 2]). Let A : Rn1×n2 → Rm be a Gaussian measurement ensem-
ble and assume that

m ≥ CR(s1 + s2 + 1) log

(
max

{
en1

s1

,
en2

s2

})
(3.23)

holds for a constant C > 0, which only depends on 0 < δ < 1. Then, with probability at
least 1−exp (−dm), where d > 0 denotes a constant, which only depends on δ as well, the
operator 1√

m
A satisfies rank-R and (s1, s2)-jointly-sparse RIP with isometry constant δ.

Sketch of Proof. Essentially, the proof resembles the one of Theorem 2.11. The major
modification concerns the usage of Lemma 2.13. Instead of applying it to the (n1 × n2)-
dimensional matrices themselves, we use it for the (s1 × s2)-dimensional submatrices.
First, we note that the set of interest, ∂SR,1 = {Z ∈ Rs1×s2 : rank Z ≤ R and ‖Z‖F = 1},
can be covered with precision δ/(4

√
2) by a discrete set obeying∣∣∣(∂SR,1)#
∣∣∣ ≤ (144

√
2/δ
)R(s1+s2+1)

. (3.24)
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Second, we observe that the matrix set S̃Rs1,s2 ∩ {Z ∈ Rn1×n2 : ‖Z‖F = 1} is a union of(
n1

s1

)(
n2

s2

)
≤ (en1/s1)s1(en2/s2)s2 sets of type ∂SR,1. Therefore, we deduce that a δ/(4

√
2)-

cover of the former set fulfills∣∣∣(S̃Rs1,s2)#
∣∣∣ ≤ (en1/s1)s1(en2/s2)s2

(
144
√

2/δ
)R(s1+s2+1)

≤
(
144
√

2 max{en1/s1, en2/s2}/δ
)R(s1+s2+1)

,
(3.25)

admitting a slight abuse of notation by omitting the restriction to matrices of unit Frobe-
nius norm. The logarithm of the right-hand side in the proceeded equation dictates the
necessary number of measurements, which follows by modifying the respective argument
in the proof of Theorem 2.11 suitably. The remainder works alike.

As we mentioned earlier, sparse power factorization comes with a provable recovery guar-
antee from a nearly optimal number of measurements. This is summarized in the following
theorem, for whose proof we refer to the literature. It shall be pointed out that the made
assumptions demand a carefully designed initialization, what is in fact crucial for the
performance. Furthermore, the noise level is required to be sufficiently small.

Theorem 3.9 (Performance of Sparse Power Factorization, cf. [LWB18, Theorem 7]).
Suppose that the following assumptions hold.

(i) X = UΣVT denotes a singular value decomposition of X ∈ S̃Rs1,s2.

(ii) The condition number of X is no greater than κ.

(iii) A satisfies the rank-2R and (3s1, 3s2)-jointly-sparse restricted isometry property with
isometry constant δ = 0.04/κ.

(iv) y = A(X) + η, where η and A(X) satisfy

‖X‖F
‖X‖

‖η‖2

‖A(X)‖2

≤ 0.04

κ
. (3.26)

(v) The initialization (Û0, V̂0) satisfies max
{∥∥PR(U)⊥PR(Û0)

∥∥,∥∥PR(V)⊥PR(V̂0)

∥∥} < 0.95,
where P denotes the orthogonal projection.

Then, the iterates
(
X̂k = Ûk(V̂k)T

)
k≥0

of Algorithm 3 satisfy

lim sup
k→∞

‖X̂k −X‖F
‖X‖F

≤ (55κ2 + 3κ+ 3)‖η‖2

‖A(X)‖2

. (3.27)

Moreover, the convergence is linear, i.e., for any ε > 0, there exists k0 = O(log(1/ε)) that
satisfies

‖X̂k0 −X‖F
‖X‖F

≤ (55κ2 + 3κ+ 3)‖η‖2

‖A(X)‖2

+ ε. (3.28)

With this we conclude this subsection and turn towards a novel alternating minimization
algorithm, which was introduced only very lately.
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3.4.2 Alternating Tikhonov Regularization and LASSO

Motivated by the convincing performance of approaches based on alternating minimization
and recent results in multi-penalty regularization [NP14], an algorithm relying on the al-
ternating minimization of a certain multi-penalty functional was proposed in [FMN19] by
Maly, Fornasier and Naumova. Their method is called Alternating Tikhonov regular-
ization and LASSO (ATLAS). It assures both convergence and approximation guarantees
and allows for more freedom in the recoverable class of signals compared to sparse power
factorization. More specifically, we return to the setting of (s1, s2)-sparse low-rank-R ma-
trices, which possess a non-orthogonal rank-1 decomposition, i.e., we aim at recovering
X ∈ SRs1,s2 from inaccurate and incomplete measurements

y = A(X) + η. (3.29)

In fact, the authors carried out the theoretical analysis for an even enlarged signal class
by introducing the concept of effective sparsity, cf. Definition 4.3. Concerning this, we
will go into further detail in the following Chapter 4, where we propose a more general
version of the herein outlined numerical algorithm that contains ATLAS as a special case.
The multi-penalty functional J R

α,β : Rn1 × · · · × Rn1 × Rn2 × · · · × Rn2 → R leading
to ATLAS is specifically designed for matrices, which have only sparse right component
vectors, i.e., are elements of SRn1,s2

, and is given by

J R
α,β(ũ1, . . . , ũR, ṽ1, . . . , ṽR) =

∥∥∥∥∥A
(

R∑
r=1

ũrṽ
T
r

)
− y

∥∥∥∥∥
2

2

+ α
R∑
r=1

‖ũr‖2
2 + β

R∑
r=1

‖ṽr‖1 (3.30)

for regularization parameters α, β > 0. Note, however, that sparsity in the left component
vectors can be easily promoted by replacing the Tikhonov regularization terms ‖ũr‖2

2 with
the sparsity promoting `1-norm-regularizers ‖ũr‖1.
The operating principle of ATLAS is now to alternate on R pairs of left and right compo-
nent vectors ũr and ṽr. The former entails a standard Tikhonov regularization problem,
whose solution can be given explicitly via the Moore-Penrose inverse. The latter yields a
LASSO problem of the form (1.67), which can be tackled using iterative soft thresholding,
cf. Paragraph 1.4.3(1). This approach allows to enlarge the class of recoverable matrices
by giving up the joint-sparsity requirement.
In [FMN19] local convergence of ATLAS to global minimizers of the functional J R

α,β was
established. Moreover, such global optima were analyzed and shown to have meaningful
properties one would expect from solutions to the inverse problem (3.29), such as having
a small measurement misfit and an in some sense sparse decomposition. Eventually, the
number of required measurements for recovery with high probability was proven to be at
the information theoretic limit up to a (poly)logarithmic factor in the ambient dimension
of the component vectors.
We refrain from going into further theoretical and numerical detail at this time, as we will
investigate this closely in the more general setting of the following Chapter 4. Further-
more, we do not give a pseudocode here, as Algorithm 5 on page 78 reduces to ATLAS
by setting p = 2 and q = 1.
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Chapter 4

Compressed Sensing of Simultaneously
Sparse and Low-Rank Matrices—
A Multi-Penalty Approach relying on
Non-Convex Regularizers

With the knowledge of the preceded parts in mind, in this chapter we propose to ap-
proach the inverse problem of recovering a simultaneously sparse and low-rank matrix
from inaccurate and incomplete measurements using a method based on alternating mini-
mization of a highly non-convex multi-penalty functional. This functional comprises both
data fidelity and the two low-dimensional structures. Whereas our algorithm enforces
low-rankness directly, multiple non-convex regularizers are employed to promote sparsity
in the components of a non-orthogonal low-rank factorization individually. We start the
chapter with a brief recapitulation of our problem setup before we summarize properties
of global optima of the multi-penalty functional. This is followed by the introduction of
our numerical method, which we call Alternating Ridge and Bridge or `0-Regression. We
outline how to prove convergence of the algorithm and address the question of initial-
ization. Afterwards, we turn towards the theoretical facets of recovering simultaneously
sparse and low-rank matrices by introducing two classes of matrices along with a restricted
isometry property. Finally, we investigate the number of required measurements, which
turns out to be optimal up to a polylogarithmic factor in the ambient dimension of the
component vectors and the rank.
The present Chapter 4 and the subsequent Chapter 5 can be regarded and read in parallel
as they are separated by decoupling numerics from theory, rather than being separated
chronologically and substantively.
The results presented in these two chapters are unpublished joint work with Johannes
Maly and Massimo Fornasier. They generalize the findings of their work together
with Valeriya Naumova, which was published in [FMN19].

4.1 Problem Formulation and Our Contribution

For the reader’s convenience, let us recapitulate the formulation of the problem setup
from a purely mathematical point of view. A motivating example was already given in

67



CHAPTER 4. COMPRESSED SENSING OF SPARSE AND LOW-RANK MATRICES

Section 3.1 on a recommendation system for a grocery store.
We aim at recovering a simultaneously sparse and low-rank matrix X ∈ Rn1×n2 from m of
its inaccurate and incomplete linear measurements, which are gathered in the measure-
ment vector

y = A(X) + η. (4.1)

In this sensing process, A : Rn1×n2 → Rm describes a suitable measurement operator and
η ∈ Rm ineliminable noise. The action of the former can be parametrized, as described at
the beginning of Section 2.2, by m separate Frobenius scalar products 〈Ai,X〉F with ma-
trices Ai ∈ Rn1×n2 . Moreover, from the latter we are only aware of an upper bound η > 0
on its Euclidean norm, i.e., ‖η‖2 ≤ η. The types of signals we consider and want to recover
are assumed to be represented by matrices that have a certain structure by admitting a
not-necessarily-orthogonal low-rank-R decomposition of the form

X =
R∑
r=1

urv
T
r (4.2)

with s1-sparse left and s2-sparse right component vectors, i.e., ur ∈ Σn1
s1

and vr ∈ Σn2
s2

for all r ∈ [R], respectively. Such matrices are called (s1, s2)-sparse rank-R matrices and
they form the set SRs1,s2 , cf. equation (3.7).
The work and methodology in this chapter are encouraged by the results of [FMN19] and
multi-penalty regularization in general, combined with the theoretically better and closer-
optimal performance of non-convex regularizers for the compressed recovery of sparse
vectors, cf. Remarks 1.18 and 1.22. For the recovery of an (s1, s2)-sparse low-rank-R
matrix X possessing a decomposition as in (4.2) from linear inaccurate and incomplete
measurements y of the form (4.1), we propose the alternating minimization of the multi-
penalty functional J p,q,R

α,β : Rn1 × · · · × Rn1 × Rn2 × · · · × Rn2 → R. It is given by

J p,q,R
α,β (ũ1, . . . , ũR, ṽ1, . . . , ṽR) =

∥∥∥∥∥A
(

R∑
r=1

ũrṽ
T
r

)
− y

∥∥∥∥∥
2

2

+α
R∑
r=1

‖ũr‖pp + β
R∑
r=1

‖ṽr‖qq (4.3)

for regularizing (quasi)-norm parameters 0 < p, q ≤ 2 and associated regularization pa-
rameters α, β > 0. This functional is highly non-convex, for one thing due to the general-
ized bilinear factorization of X̃ =

∑R
r=1 ũr(ṽr)

T in the least-squares term and for the other
due to the multi-penalty regularization term, which is permitted to include non-convex
regularizers for the individual component vectors. This favors and allows for successful
recovery from highly incomplete measurements, cf. Sections 3.2 and 3.3.
A global minimizer of the functional J p,q,R

α,β is denoted by((
ûp,qα,β

)
1
, . . . ,

(
ûp,qα,β

)
R
,
(
v̂p,qα,β

)
1
, . . . ,

(
v̂p,qα,β

)
R

)
. (4.4)

Sometimes, admitting a minor inaccuracy, we directly refer to the resulting matrix X̂p,q
α,β

as the minimizer of the functional (4.3). It is given by

X̂p,q
α,β =

R∑
r=1

(
ûp,qα,β

)
r

((
v̂p,qα,β

)
r

)T
. (4.5)
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Let us spend a few words on the idea behind the multi-penalty functional J p,q,R
α,β proposed

in (4.3). It comprises data fidelity in form of the squared Euclidean norm of the resid-
ual y−A(X̃) together with low-rankness of the matrix X̃ as well as sparsity in one or both
vector components of its non-orthogonal decomposition. The former of the two structures
is hard-coded into the formulation by allowing only R individual vector pairs (ũr, ṽr) in
the low-rank decomposition. The latter, in turn, is promoted by the regularizing `p- and
`q-(quasi)-norms of the left and right component vectors ũr and ṽr, respectively.
On the basis of this functional we propose an algorithm, which we title Alternating Ridge
and Bridge or `0-Regression (ARBeR8). It can be regarded as a generalization of the
in [FMN19] introduced method ATLAS and is in particular designed for the same class of
matrices, namely right-sided sparse and low-rank matrices, i.e., matrices in the set SRn1,s2

.
However, as we introduce it, it is amenable also to sparsity in both, rows and columns.
One is even able to impose different regularizing (quasi)-norms for the two component
vectors as it is the case in (4.3). As its relative it is based on alternating minimization
and alternates on R pairs of left and right component vectors ũr and ṽr. More precisely,
in each iteration we successively solve the individual vector-valued minimization problems

ûkr = arg min
û∈Rn1

∣∣∣∣∣∣y −A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
û(v̂k−1

r )T
)
−A

(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2
+ α‖û‖pp

(4.6)
and

v̂kr = arg min
v̂∈Rn2

∣∣∣∣∣∣y−A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
ûkr v̂

T )−A
(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2
+ β‖v̂‖qq (4.7)

for each r ∈ [R]. In contrast to ATLAS, even these individual vector-valued minimization
problems are non-convex if 0 < p < 1 or 0 < q < 1, respectively. However, compared
to the joint-minimization with respect to all 2R component vectors, these programs are
tractable and the solutions can be well-approximated by iterative bridge thresholding,
cf. Paragraph 1.4.3(2).
Let us now give a concise outline for the rest of this chapter. Beginning with properties
of global minimizers of the multi-penalty functional J p,q,R

α,β under very weak conditions
in Section 4.2, we investigate the functional more closely. We verify that global optima
provide reasonable solutions to the inverse problem. In this context we introduce the
novel concept of `q-effective sparsity, which weakens the notion of sparsity in a graduated
sense. To illustrate the associated set of vectors we discuss astonishing phenomena from
high-dimensional geometry. In Section 4.3 we formalize the algorithm ARBeR and de-
scribe how to tackle the individual minimization problems. Moreover, we sketch a proof
of convergence when the method is initialized sufficiently well, yet, provide no universal
initialization strategy. However, we suggest initialization with the leading left and right
singular vectors of A∗(y), which empirically proved itself to show good results. Addition-
ally, we recommend a multilevel-type strategy that is capable of enhancing recovery in
severely non-convex cases. After having presented these results demanding minimal re-
quirements, we introduce a suitably designed restricted isometry property together with a
new matrix model in the subsequent Section 4.4. This model generalizes the set of sparse
and low-rank matrices possessing a non-orthogonal decomposition of the type (4.2) by

8Observe that the e in ARBeR stands for the e in `0 when being pronounced as ell-zero.
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involving the formerly motivated set of effectively sparse vectors. Based thereon we prove
a recovery result under the assumption of the restricted isometry property. The question
of the required number of measurements for which this restricted isometry property and
consequently recoverability is ensured with high probability is the content of Section 4.5.
In order to determine a lower bound on this number, we make use of tools from the theory
of stochastic processes, in specific a bound on suprema of chaos processes, which is based
on a chaining method [KMR14]. For its application we bound the appearing Talagrand’s
γ2-functional in terms of the metric entropy of the newly introduced sets of matrices having
an (effectively) sparse and low-rank decomposition by employing Dudley’s inequality. We
eventually show that the necessary number of Gaussian measurements is optimal up to a
polylogarithmic factor in the ambient dimension of the component vectors and the rank.
In this final part of the theoretical analysis and also in the subsequent numerical con-
siderations, we are mainly interested in two special instances of the multi-penalty func-
tional (4.3) related to the kind of matrix we want to recover. First, in case that X possesses
a decomposition with sparse left and right component vectors, it is reasonable to use the
same regularizing (quasi)-norm for both of them, i.e., we set p = q and let 0 < q ≤ 1. Sec-
ond, if only the right component vector is known to be sparse, we use p = 2 and 0 < q ≤ 1.
In both cases, though, we write J q,R

α,β instead of J q,q,R
α,β and J 2,q,R

α,β , respectively. They are
distinguishable from one another by the signal set under consideration, i.e., whether we
investigate SRs1,s2 or SRn1,s2

.
Regarding notation as well, let us recall the version of the sparse decomposition (SD) with
normalized component vectors, which was also used in the definition of the set of (s1, s2)-
sparse rank-R matrices (3.7). For the matrix X with low-rank decomposition (4.2) let us
define quasi-singular values σr = ‖ur‖2‖vr‖2 for r ∈ [R], which may not be confused with
singular values. Then,

X = UΣVT =
R∑
r=1

σr
ur
‖ur‖2

(
vr
‖vr‖2

)T
, (4.8)

where the matrices U and V contain the normalized left and right component vectors as
columns. Σ is a diagonal matrix, whose rth diagonal entry is σr. Since the two former
matrices may not be orthogonal in general, we only have an equivalence ‖X‖F ' ‖Σ‖F
instead of an equality between those two quantities. The hidden constants correspond
to the square roots of the smallest and largest eigenvalue of the Gramian of U. More
precisely, see, e.g., Lemma A.6 for a proof, we have cU‖Σ‖F ≤ ‖X‖F ≤ CU‖Σ‖F with
constants cU =

√
λmin(UTU) and CU =

√
λmax(UTU). Based on this equivalence and

the in Lemma A.2 established equivalence of the `q-(quasi)-norms, we find the following
relation between the Schatten-q-(quasi)-norms and the `q-(quasi)-norms of the vector σ
of quasi-singular values σr for 0 < q ≤ 2, namely

cUR
1/2−1/q

(
R∑
r=1

(‖ur‖2‖vr‖2)q

)1/q

≤ ‖X‖q ≤ CUR
1/q−1/2

(
R∑
r=1

(‖ur‖2‖vr‖2)q

)1/q

. (4.9)

Exemplarily, let us reason the upper bound as follows,

‖X‖q ≤ R1/q−1/2‖X‖F ≤ CUR
1/q−1/2‖Σ‖F = CUR

1/q−1/2‖σ‖2 ≤ CUR
1/q−1/2‖σ‖q,

(4.10)
where σ = diag(Σ). The lower bound follows analogously.
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4.2 On Global Minimizers of the Non-Convex Multi-
Penalty Functional

As already announced in the outline at the end of the preceded section, we start our
analysis under very mild assumptions on the inverse problem with properties of global
minimizers

(
(ûp,qα,β)1, . . . , (û

p,q
α,β)R, (v̂

p,q
α,β)1, . . . , (v̂

p,q
α,β)R

)
of the functional J p,q,R

α,β . The fea-
tures that we expect to be promoted by the proposed multi-penalty functional are data
fidelity together with the two low-dimensional structures, low-rankness and sparsity in
the left and right component vectors of the decomposition.

4.2.1 Data Fidelity of Global Optima

Let us begin by establishing an upper bound on the measurement misfit of the global
minimizer, i.e., the residual y−A(X̂p,q

α,β). The following result is a natural generalization
of Proposition 3.1 from [FMN19].
Proposition 4.1 (Measurement Misfit for Global Minimizers). Let us assume that X ad-
mits a decomposition as in (4.2) and fulfills the noisy measurements y = A(X)+η. More-
over, let

(
(ûp,qα,β)1, . . . , (û

p,q
α,β)R, (v̂

p,q
α,β)1, . . . , (v̂

p,q
α,β)R

)
denote a global minimizer of J p,q,R

α,β .
Then ∥∥y −A(X̂p,q

α,β)
∥∥2

2
≤ ‖η‖2

2 + Cpq (αqβp)
1
p+q

R∑
r=1

(
‖ur‖p‖vr‖q

) pq
p+q , (4.11)

where Cpq =
(
p
q

) q
p+q +

(
q
p

) p
p+q .

Proof. By using the global optimality of
(
(ûp,qα,β)1, . . . , (û

p,q
α,β)R, (v̂

p,q
α,β)1, . . . , (v̂

p,q
α,β)R

)
to-

gether with the definition of the multi-penalty functional J p,q,R
α,β we obtain

∥∥y −A(X̂p,q
α,β)
∥∥2

2
≤
∥∥y −A(X̂p,q

α,β)
∥∥2

2
+ α

R∑
r=1

∥∥(ûp,qα,β)r∥∥pp + β
R∑
r=1

∥∥(v̂p,qα,β)r∥∥qq
= J p,q,R

α,β

((
ûp,qα,β

)
1
, . . . ,

(
ûp,qα,β

)
R
,
(
v̂p,qα,β

)
1
, . . . ,

(
v̂p,qα,β

)
R

)
≤ J p,q,R

α,β

(
λ1u1, . . . , λRuR, λ

−1
1 v1, . . . , λ

−1
R vR

)
=
∥∥y −A(X)

∥∥2

2
+ α

R∑
r=1

λpr‖ur‖
p
p + β

R∑
r=1

λ−qr ‖vr‖
q
q

= ‖η‖2
2 +

R∑
r=1

(
αλpr‖ur‖

p
p + βλ−qr ‖vr‖

q
q

)
(4.12)

for any set of positive parameters (λr)
R
r=1. The right-hand side in this expression can be

optimized with respect to these parameters. An application of Lemma A.8 to each of the
R terms αλpr‖ur‖

p
p + βλ−qr ‖vr‖

q
q individually yields

∥∥y −A(X̂p,q
α,β)
∥∥2

2
≤ ‖η‖2

2 +
R∑
r=1

(
Cpq
(
α‖ur‖pp

) q
p+q
(
β‖vr‖qq

) p
p+q

)
≤ ‖η‖2

2 + Cpq(α
qβp)

1
p+q

R∑
r=1

(
‖ur‖p‖vr‖q

) pq
p+q ,

(4.13)

71



CHAPTER 4. COMPRESSED SENSING OF SPARSE AND LOW-RANK MATRICES

where Cpq denotes the constant from Lemma A.8.

This proposition shows that the norm of the residual can be bounded up to the noise
level and an additional term in the sparsity promoting norms of the respective component
vectors. This summand can be controlled by the regularization parameters α and β. In
fact, it seems that this term can be made arbitrarily small, if the parameters are. However,
this causes certain difficulties. First of all, extending Lemma 3.2 from [FMN19], we show
that one needs to choose parameters of similar magnitude in order to maintain control of
both groups of component vectors. Furthermore, if the parameters become too small, it is
natural to suspect that data fidelity is achieved at the expense of the sparsity structure,
what we will see in Proposition 4.4.

Lemma 4.2 (Boundedness of Global Minimizers in Sparsity Promoting Norm). Let us
assume that X admits a decomposition as in (4.2) and fulfills the noisy measurements
y = A(X) + η. Moreover, let

(
(ûp,qα,β)1, . . . , (û

p,q
α,β)R, (v̂

p,q
α,β)1, . . . , (v̂

p,q
α,β)R

)
denote a global

minimizer of J p,q,R
α,β . Then, if

∥∥y −A(X̂p,q
α,β)
∥∥

2
≥ ‖η‖2, it hold

R∑
r=1

∥∥(ûp,qα,β)r
∥∥p
p
≤ Cpq

(
β

α

) p
p+q

R∑
r=1

(
‖ur‖p‖vr‖q

) pq
p+q (4.14)

and
R∑
r=1

∥∥(v̂p,qα,β)r
∥∥q
q
≤ Cpq

(
α

β

) q
p+q

R∑
r=1

(
‖ur‖p‖vr‖q

) pq
p+q , (4.15)

where Cpq =
(
p
q

) q
p+q +

(
q
p

) p
p+q . Under the same assumptions it furthermore holds

R∑
r=1

(∥∥(ûp,qα,β)r
∥∥
p

∥∥(v̂p,qα,β)r
∥∥
q

) pq
p+q ≤

R∑
r=1

(
‖ur‖p‖vr‖q

) pq
p+q . (4.16)

Proof. By revisiting the proof of Proposition 4.1 we also deduce

∥∥y −A(X̂p,q
α,β)
∥∥2

2
+ α

R∑
r=1

‖
(
ûp,qα,β

)
r
‖pp + β

R∑
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‖
(
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‖qq

≤ ‖η‖2
2 + Cpq(α

qβp)
1
p+q
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(
‖ur‖p‖vr‖q

) pq
p+q .

(4.17)

Utilizing the assumption we conclude

α

R∑
r=1

‖
(
ûp,qα,β

)
r
‖pp + β

R∑
r=1

‖
(
v̂p,qα,β

)
r
‖qq ≤ Cpq(α

qβp)
1
p+q

R∑
r=1

(
‖ur‖p‖vr‖q

) pq
p+q , (4.18)

showing the first two statements when considering only one of the two terms on the
left-hand side at a time.
In order to show the last inequality, note that we have

J p,q,R
α,β

((
ûp,qα,β

)
1
, . . . ,

(
v̂p,qα,β

)
R

)
= inf

λ1,...,λR>0
J p,q,R
α,β

(
λ1

(
ûp,qα,β

)
1
, . . . , λ−1

R

(
v̂p,qα,β

)
R

)
(4.19)
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The inequality direction “≤” follows directly from optimality of
(
(ûp,qα,β)1, . . . , (v̂

p,q
α,β)R

)
.

Additionally, as λr = 1 for all r ∈ [R] is a valid choice of parameters, the right-hand side
is bounded by J p,q,R

α,β

(
(ûp,qα,β)1, . . . , (v̂

p,q
α,β)R

)
and thus we also have the other direction “≥”.

From this equality we follow

α

R∑
r=1

‖
(
ûp,qα,β

)
r
‖pp + β

R∑
r=1

‖
(
v̂p,qα,β

)
r
‖qq = Cpq(α

qβp)
1
p+q

R∑
r=1

(∥∥(ûp,qα,β)r∥∥p∥∥(v̂p,qα,β)r∥∥q) pq
p+q (4.20)

by using analogous arguments as at the beginning of this proof. With this we obtain the
first equality in the following. Moreover, we denote optimal parameters in the sense of
Lemma A.8 by λ̃r. Thus, using the argument from the proof of Proposition 4.1, we have
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2
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α,β

((
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1
, . . . ,

(
v̂p,qα,β

)
R

)
≤ J p,q,R

α,β

(
λ̃1u1, . . . , λ̃

−1
R vR

)
≤ ‖η‖2

2 + Cpq(α
qβp)

1
p+q

R∑
r=1

(‖ur‖p‖vr‖q)
pq
p+q ,

(4.21)

which assures the claim after using the assumption.

Before addressing properties associated with the two low-dimensional structures, we in-
troduce the concept of `q-effective sparsity in the next subsection, as this will be used to
investigate the sparsity in the left and right component vectors.

4.2.2 Effective Sparsity

It is a well-known consequence of Hölder’s inequality that the `q-(quasi)-norm of an
s-sparse vector z ∈ RN can be bounded by

‖z‖q ≤ s1/q−1/2‖z‖2. (4.22)

For a proof thereof we refer to Remark A.3 in the appendix. This property motivates to
generalize the notion of sparsity by introducing a larger set of vectors obeying inequal-
ity (4.22). This so-called set of `q-effectively s-sparse vectors is given in Definition 4.3
below. A related, yet, slightly different version of this concept was introduced in [PV13,
Section 3] for the case q = 1.

Definition 4.3 (`q-Effectively Sparse Vectors). For 0 < q ≤ 2, N ∈ N and 1 ≤ s ≤ N ,

Kq,N
s =

{
z ∈ RN : ‖z‖q ≤ s1/q−1/2‖z‖2

}
(4.23)

defines the set of `q-effectively s-sparse vectors in RN .

Let us reflect upon this definition. First, we note that despite not having excluded the
situations q = 2 and s = N , the naming is inappropriate in these instances, as we have
Kq,N
s = RN . In all other cases the set of `q-effectively sparse vectors is strictly smaller.

Second, as already mentioned, we have the inclusion ΣN
s ⊂ Kq,N

s . Beyond that, the set
is monotonous in the sparsity as well as in the regularizing (quasi)-norm parameter q,
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i.e., we have both Kq,N
s1
⊂ Kq,N

s2
for s1 ≤ s2 and Kq1,N

s ⊂ Kq2,N
s for q1 ≤ q2. The former

follows immediately and the latter uses Hölder’s inequality as shown in Lemma A.9 in the
appendix. As q approaches zero, the set Kq,N

s of `q-effectively s-sparse vectors approaches
the set ΣN

s of exactly s-sparse vectors. These facts are also suggested by Figure 4.1 below,
which we want to describe more closely in the following.

(a) q � 1, N small or
q < 1, N large

(b) q < 1, N small or
q ≤ 1, N large

(c) q = 1, N = 2

Figure 4.1. Geometry of the set of `q-effectively sparse vectors Kq,N
s for different values

of q and in different dimensions N .

Let us for the moment focus on the two-dimensional situation which our geometrical intu-
ition is accustomed to and which we can illustrate. Each individual subfigure depicts, for a
different value of q, a properly scaled `q-(quasi)-norm-ball of radius s1/q−1/2 together with
the sphere of a unit `2-norm ball, i.e., S1. The shaded non-convex cone then pictures the
set Kq,2

s , exploiting the general observation that Kq,N
s = cone

(
SN−1 ∩ BNq (0, s1/q−1/2)

)
.

In order to understand the behavior in high dimensions we pause for a brief excursion to
high-dimensional geometry. We discuss two surprising and counterintuitive phenomena
regarding the geometry of convex bodies and `q-(quasi)-norm balls in high-dimensional
spaces. They even merge into one another.
First of all let us compute the volume of an arbitrary unit `q-(quasi)-norm ball. By using
the Cavalieri principle, we obtain the following recursive formula

λN(BNq ) =

∫ 1

−1

∫
z∈RN−1:|z1|q+···+|zN−1|q≤1−|zN |q

1 dλN−1(z) dλ(zN)

=

∫ 1

−1

∫
BN−1
q (0,(1−|zN |q)1/q)

1 dλN−1 dλ(zN)

=

∫ 1

−1

λN−1
(
BN−1
q (0, (1− |zN |q)1/q)

)
dλ(zN)

= λN−1
(
BN−1
q

) ∫ 1

−1

(1− |z|q)(N−1)/q dλ(z)

= λN−1
(
BN−1
q

)
2

Γ
(

1
q

+ 1
)
Γ
(
N−1
q

+ 1
)

Γ
(
N
q

+ 1
) ,

(4.24)

where λN denotes the N -dimensional Lebesgue measure. The last step involves the
Gamma function Γ and requires some computation, which is omitted here. As λ1(B1

q) = 2
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we conclude

λN(BNq ) =

(
2Γ
(

1
q

+ 1
))N

Γ
(
N
q

+ 1
) . (4.25)

This recovers the familiar volume expression of the Euclidean unit ball, namely πN/2

Γ(N/2+1)
,

when setting q = 2. Furthermore, we also obtain easy volume formulas for other (quasi)-
norm balls, for instance, 2N

N !
and 4N

(2N)!
for the `1-norm ball and the `1/2-quasi-norm ball,

respectively. It is straightforward to see that the volumes approach zero as N tends
to infinity, meaning that high-dimensional balls contain almost no volume. To make this
more rigorous we utilize Sterling’s approximation Γ(z+1) '

√
2πz

(
z
e

)z in equation (4.25)
in order to highlight the asymptotic behavior

λN(BNq ) ∼ 2√
N

(
8π

q

)(N−1)/2
1

NN/q
. (4.26)

In fact, this also shows that the decay is superexponential and stronger the smaller q is.
The former observation becomes even more counterintuitive when realizing that despite
having incredibly small volume, each individual `q-(quasi)-norm ball contains all unit vec-
tors of the canonical basis, from which there are 2N in N dimensions. Seeming somewhat
contradictory this raises the question how `q-(quasi)-norm balls in particular and convex
bodies in general look like. Heuristically, as summarized in [Ver15], a convex set consist
of a bulk and lots of outliers. The former contains almost all the volume despite being
small in diameter. The latter, in turn, reach far into space, yet, contribute almost nothing
to the volume. Figure 4.2 illustrates this behavior. Although the shape does not look
convex at all, this representation is required to depict the topology more accurately.

Figure 4.2. Hyperbolic representation of a high-dimensional convex set according to Mil-
man, cf. [Mil98].

We want to clarify this visualization at the example of the `q-(quasi)-norm balls, which are
convex in the case q ≥ 1. An inscribed Euclidean ball touching the (N − 1)-dimensional
faces of the `q ball, has radius N1/2−1/q. Using the dominant term in expression (4.26) for
the asymptotic volume of the respective balls, we deduce(

λN(BNq )
)1/N ∼

(
λN(BN2 (0, N1/2−1/q))

)1/N ∼ N−1/q. (4.27)

Thus, even convex sets such as the `1 ball gather almost all their volume in a small bulk,
while almost volumeless long spikes point into the direction of the coordinate axes.
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With this we can now come back to Figure 4.1. Having the special aspects of high-
dimensional geometry in mind, it is reasonable to depict also the suitably scaled convex
`1-norm ball using a non-convex shape, as done in Subfigure 4.1(b).
After this brief excursion to high-dimensional geometry let us now turn back to the de-
sirable structural properties of global minimizers of the multi-penalty functional J p,q,R

α,β .

4.2.3 Sparsity and Low-Rankness of Global Optima

First, we investigate the sparsity structure of the left and right component vectors of the
matrix X̂p,q

α,β. The proposition below, which is a straightforward adaptation of Lemma 3.3
from [FMN19] establishes effective sparsity in the component vectors.

Proposition 4.4 (Sparsity Control of Component Vectors of Global Minimizers). Let
us assume that X admits a decomposition as in (4.2) and let y ∈ Rm. Moreover, let(
(ûp,qα,β)1, . . . , (û

p,q
α,β)R, (v̂

p,q
α,β)1, . . . , (v̂

p,q
α,β)R

)
denote a global minimizer of J p,q,R

α,β . Then,

(i) if
∥∥(ûp,qα,β)r

∥∥p
2
≥ ‖y‖2

2/γ1 for some γ1 > 0, it holds∥∥(ûp,qα,β)r∥∥p∥∥(ûp,qα,β)r∥∥2

<
(γ1

α

)1/p

, (4.28)

implying (ûp,qα,β)r ∈ Kp,n1

ŝ1
with ŝ1 = (γ1/α)2/(2−p).

(ii) if
∥∥(v̂p,qα,β)r

∥∥q
2
≥ ‖y‖2

2/γ2 for some γ2 > 0, it holds∥∥(v̂p,qα,β)r∥∥q∥∥(v̂p,qα,β)r∥∥2

<
(γ2

β

)1/q

, (4.29)

implying (v̂p,qα,β)r ∈ Kq,n2

ŝ2
with ŝ2 = (γ2/β)2/(2−q).

Proof. Using the definition of J p,q,R
α,β and that

(
(ûp,qα,β)1, . . . , (v̂

p,q
α,β)R

)
is a global minimizer

thereof, we observe

α
R∑
r=1

∥∥(ûp,qα,β)r∥∥pp + β
R∑
r=1

∥∥(v̂p,qα,β)r∥∥qq ≤ J p,q,R
α,β

((
ûp,qα,β

)
1
, . . . ,

(
v̂p,qα,β

)
R

)
≤ J p,q,R

α,β (0, . . . ,0) = ‖y‖2
2.

(4.30)

The claim follows by employing the respective assumption. For the strict inequality note
that at least two strictly positive terms appear on the left-hand side.

Concerning the proposition above we want to append a few important comments. Ev-
idently, we showed that the components (ûp,qα,β)r and (v̂p,qα,β)r are either close to zero or
provably effectively sparse with respect to their own sparsity promoting norm. The as-
sociated sparsity indicators ŝ1 and ŝ2 can be controlled by the parameters α and β. The
larger they are, the smaller the respective indicator and thus the sparser the component
vector is. This formalizes what was already addressed in the discussion after Proposi-
tion 4.1, yielding a trade-off between data fidelity and structure in form of sparsity. To
control this trade-off, a reasonable and careful choice of the regularization parameters is
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indispensable. Moreover, although the previous result only makes a statement about ef-
fective sparsity, in most numerical examples exact sparsity is achieved. In fact, a smaller
regularizing quasi-norm parameter q effects stronger sparsity. We will give numerical
evidence thereof in Figure 5.3 in the following chapter.
It remains to treat low-rankness. By construction, the functional takes into consideration
only matrices, or more precisely the 2R component vectors of their non-orthogonal rank-R
decomposition, which are or result in matrices of at most rank R. This immediately
ensures the desired low-rankness.
After having seen that even under minimal assumptions on the measurement process A
global minimizers X̂p,q

α,β of the functional J p,q,R
α,β provide reasonable approximations to the

simultaneously sparse and low-rank matrix X, we want to answer the question of how to
approach such optima in the next section.

4.3 Alternating Ridge and Bridge or `0-Regression

The numerical algorithm we propose, ARBeR, attempts to find global minimizers of the
highly non-convex multi-penalty functional J p,q,R

α,β . Before providing a detailed formula-
tion of the method a comment on naming is in order. The designation Alternating Ridge
and Bridge or `0-Regression originates from the situation where we want to recover a low-
rank matrix X with merely sparse right component vectors vr, i.e., X ∈ SRn1,s2

. In this
case we set p = 2 and let 0 < q ≤ 1. As a consequence, the intermediate vector-valued
optimization problem (4.6) employs Tikhonov regularization, which is also known as ridge
regression. In turn, problem (4.7) becomes an `q-regularized optimization problem, which
is known as bridge regression, cf. [Tib96, Section 11], and which was suggested in [FF93]
by Frank and Friedman. In the particular case q = 1 we obtain a LASSO problem as
in (1.67) and ARBeR reduces to ATLAS. Moreover, we also extend our method to the
limit case q = 0, where (4.7) becomes an `0-regularized optimization problem.
For the rest of this section let us turn back to the general situation.

4.3.1 A Formulation of the Numerical Algorithm

At first we want to formalize our method and describe how to tackle the occurring update
rules for the component vectors. The former is done on the next page in the form of
Algorithm 5. It remains to provide a solution strategy for the vector-valued subprob-
lems (4.31) and (4.32) under the different choices of gu and gv, respectively. Exemplarily,
let us look at the update of the rth right component vector, which has the form

v̂kr = arg min
v̂∈Rn2

∥∥ỹ − Ãv̂
∥∥2

2
+ gv(v̂), (4.33)

where ỹ contains the partial residual and Ã : Rn1 → Rm parametrizes the action of the
operator A for a fixed opposite, here, left component vector ûkr .
Now, if gv( · ) = β‖ · ‖2

2, i.e., if we have the situation that no sparsity shall be promoted,
the solution of the resulting Tikhonov regularization problem can be given explicitly
by v̂kr =

(
β Id +ÃT Ã

)−1
ÃT ỹ.

Elsewise, if gv( · ) = β‖ · ‖qq or gv( · ) = β‖ · ‖0, i.e., if we want to promote sparsity in
the respective component, we have recourse to the tools developed in Subsection 1.4.3.
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Algorithm 5 Alternating Ridge and Bridge or `0-Regression (ARBeR)

Input: Measurement operator A : Rn1×n2 → Rm, measurements y ∈ Rm, rank R, regu-
larizing (quasi)-norm parameters 0 ≤ p, q ≤ 2, regularization parameters α, β > 0 and
number of iterations K and L, where K relates to the power factorization iterations
and L to the iterations of the employed iterative thresholding method.

Output: Minimizer X̂p,q
ARBeR.

1: For r ∈ [R] initialize û0
r ∈ Rn1 and v̂0

r ∈ Rn2 to be the rth leading left and right
singular vector of A∗(y), respectively. Moreover, set k = 0.

2: while k ≤ K and stopping criterion not fulfilled
3: Set k = k + 1.
4: for r = 1, . . . , R
5: if s1 = n1 then
6: Set the regularizer gu to be the Tikhonov regularizer, i.e., gu(û) = α‖û‖2

2.
7: else
8: if q = 0 then
9: Set the regularizer gu to be the `0-norm, i.e., gu(û) = α‖û‖0.
10: else
11: Set the regularizer gu to be the `p-(quasi)-norm, i.e., gu(û) = α‖û‖pp.
12: end if
13: end if
14: Update the rth left component vector by solving the appropriately regularized

optimization problem,

ûkr = arg min
û∈Rn1

∣∣∣∣∣∣y −A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
û(v̂k−1

r )T
)

−A
(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2
+ gu(û).

(4.31)

15: if s2 = n2 then
16: Set the regularizer gv to be the Tikhonov regularizer, i.e., gv(v̂) = β‖v̂‖2

2.
17: else
18: if q = 0 then
19: Set the regularizer gv to be the `0-norm, i.e., gv(v̂) = β‖v̂‖0.
20: else
21: Set the regularizer gv to be the `q-(quasi)-norm, i.e., gv(v̂) = β‖v̂‖qq.
22: end if
23: end if
24: Update the rth right component vector by solving the appropriately regularized

optimization problem,

v̂kr = arg min
v̂∈Rn2

∣∣∣∣∣∣y −A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
ûkr v̂

T )

−A
(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2
+ gv(v̂).

(4.32)

25: end for
26: end while
27: Set X̂p,q

ARBeR =
∑R

r=1 ûkr(v̂
k
r )
T .

78



CHAPTER 4. COMPRESSED SENSING OF SPARSE AND LOW-RANK MATRICES

In this case, iterative thresholding algorithms can be employed to approximate the solu-
tion to vector-valued optimization problem. Iterative soft thresholding (ISTA), cf. Para-
graph 1.4.3(1), can be used to approach solutions to the resulting LASSO problem if q = 1.
In the case 0 < q < 1 the emerging `q-regularized non-convex minimization problem can be
overcome with non-smooth iterative bridge-q thresholding, cf. Paragraph 1.4.3(2). Lastly,
an approximate solution to the `0-regularized non-convex minimization problem can be
found using iterative hard thresholding, cf. Paragraph 1.4.3(3).
Naturally, this works analogously for updating the left component vectors.

4.3.2 On Theoretical Convergence of the Algorithm

Having a numerical procedure at hand which provides reasonable grounds to believe that it
can find minimizers of J p,q,R

α,β we are curious about its theoretical convergence guarantees.
In this subsection we want to sketch how to prove local convergence to global optima
and global convergence to stationary points making avail of the framework presented
in [ABRS10]. To do so, we slightly modify the update rules (4.6) and (4.7) from the
alternating scheme by complementing them with terms, which assure convergence from a
theoretical point of view, however, turn out to be empirically unnecessary. This results in

ûkr = arg min
û∈Rn1

∣∣∣∣∣∣y −A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
û(v̂k−1

r )T
)
−A

(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2

+ α‖û‖pp + 1
2µkr

∥∥û− ûk−1
r

∥∥2

2

(4.34)

and

v̂kr = arg min
v̂∈Rn2

∣∣∣∣∣∣y −A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
ûkr v̂

T )−A
(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2

+ β‖v̂‖qq + 1
2νkr

∥∥v̂ − v̂k−1
r

∥∥2

2

(4.35)

with suitably chosen positive sequences (µkr)k≥1 and (νkr )k≥1 for all r ∈ [R].
A generalization of the setting from [ABRS10], which was also done in [FMN19, Subsec-
tion 3.4], now addresses the convergence analysis of an alternating minimization approach
to a function L of the form
L(ũ1, . . . , ṽR) = Q(ũ1, . . . , ṽR) +

∑R
r=1 fr(ũr) +

∑R
r=1 gr(ṽr),

fr : Rn1→ R ∪ {∞}, gr : Rn2→ R ∪ {∞} are proper lower semi-continuous for r ∈ [R],

Q : Rn1 × · · · × Rn1 × Rn2 × · · · × Rn2 → R is continuously differentiable,
∇Q is Lipschitz continuous on bounded subsets of Rn1 × · · · × Rn1 × Rn2 × · · · × Rn2 .

(4.36)
It is straightforward to see how to fit our problem into this framework. Then, applying the
adaptations of Theorems 3.2 and 3.3 from [ABRS10], which were conducted in [Mal19,
Appendix B.2], yields the following. If for an initial value (û0

1, . . . , v̂
0
R) and suitable

positive sequences (µkr)k≥1 and (νkr )k≥1 it holds
inf L > −∞,
L(·, û0

2 . . . , v̂
0
R) is proper,

for some positive r− < r+ the sequences (µk1)k≥1, . . . , (ν
k
R)k≥1 belong to (r−, r+),

(4.37)
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and if L fulfills the so-called Kurdyka-Łojasiewicz property at the global minimum of the
function L, the sequence generated by

ûkr = arg min û∈Rn1L(ûk1, . . . , û
k
r−1, û, û

k−1
r+1 , . . . , û

k−1
R , v̂k1 , . . . , v̂

k
r−1, v̂

k−1
r , v̂k−1

r+1 , . . . , v̂
k−1
R )

+ 1
2µkr

∥∥û− ûk−1
r

∥∥2

2
,

v̂kr = arg min v̂∈Rn2L(ûk1, . . . , û
k
r−1, û

k
r , û

k−1
r+1 , . . . , û

k−1
R , v̂k1 , . . . , v̂

k
r−1, v̂, v̂

k−1
r+1 , . . . , v̂

k−1
R )

+ 1
2νkr

∥∥v̂ − v̂k−1
r

∥∥2

2
,

(4.38)
when iterating over r in an interior and k in an outer loop, converges to the global
minimum. Moreover, if the Kurdyka-Łojasiewicz property holds at each point of the
domain, the sequence (ûk1, . . . , v̂

k
R) either tends to infinity or converges to a stationary

point of L.
Roughly speaking, the idea behind the function L having the Kurdyka-Łojasiewicz prop-
erty at a global minimum is to assure the existence of a continuous concave function ϕ
with which the range can be reparameterized in a way that the composition ϕ ◦ L has a
kink in the minimum and increases steeply around it. For a precise definition we refer
to [ABRS10, Definition 3.2].
In order to apply these results to our setting, i.e., to L = J p,q,R

α,β , and therefore providing
evidence for the assertions about local and global convergence from the beginning, we need
to verify that J p,q,R

α,β fulfills the requirements, foremost the Kurdyka-Łojasiewicz property.
In fact, all but this property can be checked straightforwardly. To show the remaining
condition we make use of a result from algebraic geometry, stating that semialgebraic
functions have the Kurdyka-Łojasiewicz property [BDLS07]. For this approach, however,
we restrict ourselves to the case where the parameters p and q are rational. A function is
called semialgebraic if its graph can be written as a finite union of sets of the form

{z ∈ Rd : ρs(z) = 0, %t(z) > 0, s ∈ [S], t ∈ [T ]} (4.39)

with real polynomials ρs and %t. It is easy to see that polynomials and the absolute
value of one component of a vector, i.e., the mapping z 7→ |zi|, are semialgebraic, see,
e.g., [FMN19, pages 14–15]. Moreover, if q = a/b ∈ Q, the function h : R+ → R+, z 7→ zq

is semialgebraic since

graph(h) = {(z, r) ∈ R×R : za − rb = 0, z > 0, r > 0} ∪ {(z, r) ∈ R×R : z = 0, r = 0}.
(4.40)

Finally, since also compositions, finite sums and finite products of semialgebraic functions
turn out to be semialgebraic, the semialgebraicity of J p,q,R

α,β follows as

J p,q,R
α,β (ũ1, . . . , ṽR) =

m∑
`=1

∣∣∣y` − R∑
r=1

〈
A`, ũrṽ

T
r

〉
F

∣∣∣2 +α
R∑
r=1

n1∑
i=1

|ũri|p+β
R∑
r=1

n2∑
j=1

|ṽrj|q (4.41)

can be rewritten as a finite sum, composition and finite product of semialgebraic functions.

4.3.3 Initialization of the Method

Generally speaking, non-convex methods and optimal initialization in combination are
a difficult task as already addressed in Section 3.3. For this reason, we only propose a
heuristic in this subsection, which does not claim to be ideal.
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First of all, note that the seemingly natural initialization with R zero vectors, which is
often the first choice in applications, is not advisable, as (0, . . . ,0) is a stationary point
of the method.
We, in turn, suggest to initialize ARBeR with the R leading left and right singular vectors
of A∗(y), where A∗ : Rm → Rn1×n2 denotes the adjoint of the measurement operator A
and is given by

A∗(y) =
m∑
`=1

y`A`. (4.42)

Numerical tests, which, on the one hand, give evidence that our proposed initialization
is plausible, yet, on the other hand, point out that it is not optimal, will be provided in
Subsection 5.1.3. The latter will be verified by comparing the performance to the one ob-
tained when using the left and right component vectors of the solution X as initialization,
which are, needless to say, not accessible in practice.
Lastly, we want to propose a novel multilevel-type strategy, which is in particular de-
signed for very small regularizing quasi-norm parameters p and/or q. The core reasoning
of this idea rests on the common belief that initialization becomes more decisive the more
severely non-convex the optimization problem is in some sense. As the parameters p and q
are readily accessible and provide the sole external way to have an impact on the degree
of non-convexity, they can be increased in order to alleviate non-convexity. However,
since we are primarily interested in minimizers of the multi-penalty functional J p,q,R

α,β with
the original parameters p and q, we propose to construct a finite and in both compo-
nents non-increasing sequence (pλ, qλ)

Λ
λ=1 such that (pΛ, qΛ) = (p, q) and (p1, q1) are both

sufficiently large. Starting from λ = 1, for each tuple (pλ, qλ) we perform our algorithm
ARBeR with the respective parameters pλ and qλ, which are gradually decreased. At each
level λ the left and right component vectors of the obtained solution X̂

pλ−1,qλ−1

ARBeR are used
as initialization. The first stage is initialized as described above. This approach will also
be investigated numerically in Subsection 5.1.3. It has to be mentioned, however, that
this initialization method may be costly, as ARBeR is additionally performed Λ−1 times.

4.4 A Restricted Isometry Property

So far, in former Section 4.2, global minimizers X̂p,q
α,β of the multi-penalty functional J p,q,R

α,β

were analyzed merely indirectly by examining properties such as data fidelity and struc-
ture. In the following, however, we want to provide the necessary tools to upper bound
the approximation error directly. Therefore, we introduce two particular types of matrix
models together with suitably designed restricted isometry properties, which generalize
the ones from [FMN19] and are supposed to be the proper ones to be considered when
recovering simultaneously (effectively) sparse and low-rank matrices possessing a non-
orthogonal low-rank decomposition.
To begin with, we restrict the set SRs1,s2 of (s1, s2)-sparse rank-R matrices from equa-
tion (3.7) such that the norm of their quasi-singular values is bounded by Γ ≥ 1. That
means we define the set

SR,Γs1,s2
=
{
Z =

R∑
r=1

σrurv
T
r ∈ SRs1,s2 : ‖σ‖2 ≤ Γ

}
. (4.43)
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Based upon this matrix model we want to introduce a relaxation by replacing sparsity
with effective sparsity. Our analysis will be built upon this set. For Γ ≥ 1, the set Kp,q,R,Γs1,s2

of (`p, `q)-effectively (s1, s2)-sparse rank-R matrices is defined as

Kp,q,R,Γs1,s2
=
{
Z ∈ Rn1×n2 : ∃ u1, . . . ,uR ∈ Kp,n1

s1
, v1, . . . ,vR ∈ Kq,n2

s2
, and σ ∈ RR,

s.t. Z =
R∑
r=1

σrurv
T
r ,

where ‖ur‖2 = ‖vr‖2 = 1 ∀r ∈ [R], and ‖σ‖2 ≤ Γ
}
.

(4.44)

A decomposition of the form X = UΣVT as in (4.44) with Σ = diag(σ) is called effec-
tively sparse decomposition of X ∈ Kp,q,R,Γs1,s2

.
Regarding the former definition a few remarks are in order. First, the cases p = 2 or q = 2
are not explicitly excluded, in turn, they can be understood as having no effective sparsity
in the respective component vectors. Naturally, the same holds for s1 = n1 or s2 = n2.
Second, the restriction Γ ≥ 1 is a natural condition as explained in [FMN19, Remark 4.6].
And third, the properties discussed after Definition 4.3 can be transferred immediately
to the set Kp,q,R,Γs1,s2

, meaning that we have SR,Γs1,s2
⊂ Kp,q,R,Γs1,s2

as well as monotonicity in the
components p, q, s1 and s2 if the others are fixed. Evidently, we also have monotonicity
in the rank R and in Γ.
The key property of this set is closedness under matrix addition to some extent. More
precisely, for Z =

∑R
r=1 σrurv

T
r ∈ Kp,q,R,Γs1,s2

and Z̃ =
∑R̃

r=1 σ̃rũrṽ
T
r ∈ K

p̃,q̃,R̃,Γ̃
s̃1,s̃2

it holds

Z− Z̃ ∈ Kmax{p,p̃},max{q,q̃},R+R̃,
√

Γ2+Γ̃2

max{s1,s̃1},max{s2,s̃2} . (4.45)

This can be seen directly by noting that

Z− Z̃ =
R+R̃∑
r=1

σrurv
T
r (4.46)

is an effectively sparse decomposition of Z− Z̃, when setting σR+r = σ̃r, uR+r = −ũr and
vR+r = ṽr for all r ∈ [R̃]. The crucial point for this to work is that we dispense with
orthogonality of the component vectors. Motivated by the framework of sparse principal
component analysis [ZHT06], this was put forward in [FMN19] as was a corresponding
restricted isometry property, which we propose to generalize as follows.

Definition 4.5 (Additive Low-Rank and (Effectively) Sparse Restricted Isometry Prop-
erty). A linear operator A : Rn1×n2 → Rm satisfies the additive rank-R and (`p, `q)-
effectively (s1, s2)-sparse Γ-restricted isometry property (RIPΓ) with isometry constant
0 < δ < 1 if ∣∣‖A(Z)‖2

2 − ‖Z‖
2
F

∣∣ ≤ δ (4.47)

for all Z ∈ Kp,q,R,Γs1,s2
. If equation (4.47) only holds for all Z ∈ SR,Γs1,s2

, the operator A has
the weaker additive rank-R and (s1, s2)-sparse RIPΓ.

Clearly, our restricted isometry property distinguishes itself from the familiar ones, such
as, e.g., Definition 3.7. We emphasize this by calling it additive. The indispensability
of this modification can be directly traced back to the non-orthogonality of the sparse
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decomposition. In oder to reason this let us anticipate what will be developed in the
subsequent section, namely that, with high probability, Gaussian measurement ensembles
have our additive restricted isometry property, if the number of measurements scales, up to
polylogarithmic factors, as m & R(s1 +s2). The hidden constant depends on the diameter
of the considered matrix set. If we would have not given up the scaling invariance, this
would not be achievable, as we sketch now following Remark 3.14 from [FMN19]. To do
so, let us for simplicity consider the set K2,q,2,Γ

n1,s2
of rank-2 matrices with merely sparse

right component vectors in the setting n1 ≈ s2 � n2. Moreover, let u ∈ Rn1 and
v1 ∈ Rn2 denote unit norm vectors with ‖v1‖q ≤ s2

1/q−1/2/2 and let us define the vector
v2 = −v1 + εw for any w ∈ Rn2 and ε > 0 small enough such that v2 ∈ Kq,n2

s2
. Then, for

Γ = max{1, (1 + ‖v2‖2)/2}, we observe that

Z =
1

2
εuwT =

1

2
uvT1 +

1

2
uvT2 ∈ K2,q,2,Γ

n1,s2
, (4.48)

which is a rank-1 matrix without any particular further structure. Yet, by being small in
size, it admits an effectively rank-2 sparse decomposition. Now, if our restricted isometry
property was of the form

(1− δ)‖Z‖2
F ≤ ‖A(Z)‖2

2 ≤ (1 + δ)‖Z‖2
F , (4.49)

i.e., scaling invariant, it would immediately hold for any rank-1 matrix, also the ones
without an effectively sparse right component vector. This, however, demands an infor-
mation theoretic lower bound on the required number of measurements of order O(n2),
which is substantially worse than O(R(n1 + s2)).
Let us now continue with the main result of this section, which provides an upper bound on
the approximation error

∥∥X−X̂p,q
α,β

∥∥
F
for global minimizers of the multi-penalty functional

under the assumption of our restricted isometry property. This generalizes Theorem 3.7
from [FMN19].

Theorem 4.6 (Approximation Quality for Global Minimizers under Additive RIP).
Let us assume that A : Rn1×n2 → Rm has the additive rank-2R and (`p, `q)-effectively(
max{s1, (γ1/α)2/(2−p)}, max{s2, (γ2/β)2/(2−q)}

)
-sparse9 (c+1)Γ-restricted isometry prop-

erty with constant 0 < δ < 1 for a fixed choice of γ1, γ2 > 0 and c ≥ 1.
Then, for any X ∈ Kp,q,R,Γs1,s2

, a global minimizer X̂p,q
α,β of J p,q,R

α,β with noisy measurements
y = A(X) + η is an element of Kp,q,R,cΓŝ1,ŝ2

with10 ŝ1 = (γ1/α)2/(2−p) and ŝ2 = (γ2/β)2/(2−q)

and moreover fulfills

∥∥X− X̂p,q
α,β

∥∥
F
.

√
s
q(2−p)
2(p+q)

1 s
p(2−q)
2(p+q)

2 R1− pq
2(p+q) (αqβp)

1
2(p+q)‖X‖

pq
2(p+q)
pq
p+q

+ 2‖η‖2 +
√
δ, (4.50)

if the following assumptions on the global optimizer hold. First, denoting its rth left and
its rth right component vector by (ûp,qα,β)r and (v̂p,qα,β)r, respectively, it have to hold

(i)
∥∥(ûp,qα,β)r∥∥p2 ≥ (‖X‖F +

√
δ + ‖η‖2

)2
/γ1 and

9In case that p = 2 or that (γ1/α)2/(2−p) exceeds n1, we replace the expression (γ1/α)2/(2−p) by n1.
This is handled analogously for q = 2 and (γ2/β)2/(2−q), which is replaced by n2 in case.

10See footnote 9.
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(ii)
∥∥(v̂p,qα,β)r∥∥q2 ≥ (‖X‖F +

√
δ + ‖η‖2

)2
/γ2

for all r ∈ [R]. Second, denoting the vector of quasi-singular values by σ̂p,q
α,β, it has to hold∥∥σ̂p,q

α,β

∥∥
2
≤ cΓ.

Proof. Let us abbreviate (γ1/α)2/(2−p) by ŝ1 and (γ2/β)2/(2−q) by ŝ2 and let us set ŝ1 = n1

if p = 2 and ŝ2 = n2 if q = 2.
Then, by means of triangle inequality and the additive restricted isometry property, which
applies since X ∈ Kp,q,R,Γs1,s2

⊂ Kp,q,2R,(c+1)Γ
max{s1,ŝ1},max{s2,ŝ2}, we observe

‖y‖2 ≤ ‖A(X)‖2 + ‖η‖2 ≤
√
‖X‖2

F + δ + ‖η‖2 ≤ ‖X‖F +
√
δ + ‖η‖2. (4.51)

Now, Proposition 4.4 can be applied. Utilizing the assumptions on the component vectors
of the global minimizer X̂p,q

α,β, the requirements of the proposition can be assured as we
have ∥∥(ûp,qα,β)r

∥∥p
2
≥
(
‖X‖F +

√
δ + ‖η‖2

)2
/γ1 ≥ ‖y‖2

2/γ1, (4.52)

where we made use of (4.51) in the last inequality.
∥∥(v̂p,qα,β)r

∥∥q
2
can be bound analogously.

Hence, we obtain (ûp,qα,β)r ∈ Kp,n1

ŝ1
and (v̂p,qα,β)r ∈ Kq,n2

ŝ2
for all r ∈ [R]. Integrating the

assumption on the vector of quasi-singular values of the global minimizer we conclude
that X̂p,q

α,β ∈ K
p,q,R,cΓ
ŝ1,ŝ2

, which verifies the last claim.
In combination with X ∈ Kp,q,R,Γs1,s2

, the closedness of the matrix setK under matrix addition
from (4.45) shows

X− X̂p,q
α,β ∈ K

p,q,2R,(c+1)Γ
max{s1,ŝ1},max{s2,ŝ2}. (4.53)

Therefore, the additive rank-2R and (`p, `q)-effectively (max{s1, ŝ1}, max{s2, ŝ2})-sparse
(c+ 1)Γ-restricted isometry property can be applied, yielding∥∥X− X̂p,q

α,β

∥∥
F
≤
√∥∥A (X)−A

(
X̂p,q
α,β

)∥∥2

2
+ δ ≤

∥∥A (X)−A
(
X̂p,q
α,β

)∥∥
2

+
√
δ

≤
∥∥y −A(X̂p,q

α,β

)∥∥
2

+ ‖η‖2 +
√
δ.

(4.54)

The first term in the last line is the measurement misfit, which can be controlled by
Proposition 4.1. This results in

∥∥X− X̂p,q
α,β

∥∥
F
≤

√√√√‖η‖2
2 + Cpq (αqβp)

1
p+q

R∑
r=1

(‖ur‖p‖vr‖q)
pq
p+q + ‖η‖2 +

√
δ

≤

√√√√Cpq

R∑
r=1

(‖ur‖p‖vr‖q)
pq
p+q (αqβp)

1
2(p+q) + 2‖η‖2 +

√
δ,

(4.55)

for which it remains to upper bound
∑R

r=1

(
‖ur‖p‖vr‖q

) pq
p+q . By exploiting that ur ∈ Kp,n1

s1

and vr ∈ Kq,n2
s2

for all r ∈ [R] in the first inequality, this can be done as follows. Namely,
R∑
r=1

(‖ur‖p‖vr‖q)
pq
p+q ≤ s

q(2−p)
2(p+q)

1 s
p(2−q)
2(p+q)

2

R∑
r=1

(‖ur‖2‖vr‖2)
pq
p+q

≤ c
− pq
p+q

U s
q(2−p)
2(p+q)

1 s
p(2−q)
2(p+q)

2 R1− pq
2(p+q)‖X‖

pq
p+q
pq
p+q
,

(4.56)

where the last inequality makes use of relation (4.9) noting that 0 < pq/(p+ q) < 2. This
concludes the proof.
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Before turning towards the conclusive question of how to design measurement operators
fulfilling our additive restricted isometry property and the related question of the required
number of measurements, let us spend a few words on the preceding theorem.
First, we observe that by choosing the regularization parameters aligned with the noise-
to-signal ratio, i.e., α = β = ‖η‖2

2/‖X‖
pq/(p+q)
pq/(p+q), we obtain a reduced bound of the form

∥∥X− X̂p,q
α,β

∥∥
F
.

(√
s
q(2−p)
2(p+q)

1 s
p(2−q)
2(p+q)

2 R1− pq
2(p+q) + 2

)
‖η‖2 +

√
δ (4.57)

in place of (4.50), which resembles typical compressed sensing bounds.
Second, and returning to the general statement, we identify three individual terms con-
tributing to the approximation error. Two of them are separate terms covering the noise
level and the RIP constant. And one depends entirely on structural properties of the signal
we want to recover and on the regularizing parameters of the multi-penalty functional. We
note that this latter term could be made vanish if we would let the regularization param-
eters α and β become arbitrarily small. This, however, is not possible for already known
reasons, see, for instance, the discussion after Proposition 4.1. The previous theorem adds
yet another aspect why small regularization parameters are not practicable. Namely, if α
or β is getting too small, the restricted isometry property degenerates in the sense that
it is required to hold for an exceedingly large class of matrices. This can be seen by
noting that, for decreasing parameters α and β, ŝ1 = (γ1/α)2/(2−p) and ŝ2 = (γ2/β)2/(2−q)

increase. Obviously, this is independent from one another. According to footnote 9 they
are limited by n1 and n2, respectively. In this case, however, quantities of the ambient
dimension get involved, what leads to not being able to take advantage of any parsimony
of the original model with respect to this structure.
Third, let us have a closer look at the restricted isometry property. Limiting ourselves
to the situation of matrices with merely sparse right component vectors, we set p = 2
and let 0 < q ≤ 1. Moreover, we assume that the singular value decomposition is a
sparse decomposition, which makes the prefactor depending on R disappear. This can
be seen by comparing the, in this case, identity ‖X‖qq =

∑R
r=1(‖ur‖2‖vr‖2)q to (4.9).

We want to firstly understand the relation between s2 and ŝ2, i.e., between the original
and the recovered sparsity parameter. Therefore, to obtain an upper bound of the type
O(‖X‖+‖η‖+

√
δ) for a suitable (quasi)-norm ‖ · ‖, we need to choose β = O

(
s

(q−2)/(2+q)
2

)
,

having made the, in the spirit of Lemma 4.2, beneficial assumption α = β. With this
choice we derive ŝ2 = O

(
s

2/(2+q)
2

)
and are able to conclude that the matrix set for which

the requested restricted isometry property has to hold contains only matrices with effec-
tively s2-sparse right component vectors. A similar computation, however, without the
assumption α = β, can be carried out for sparsity in both components. Suitable choices
of the parameters yield ŝi = O(si) for i = 1, 2.
And fourth, forming the transition to the subsequent section, we observe that the re-
spective restricted isometry property is easier to be fulfilled the smaller the parameters p
and q are. This goes back to the monotonicity property of the set of (`p, `q)-effectively
(s1, s2)-sparse rank-R matrices. The quantification of this observation is the content of
the remainder of this chapter.
Before that, let us also refer to the discussion after the more special version of Theorem 4.6,
Theorem 3.7 in [FMN19], for further aspects of this result.
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4.5 The Required Number of Measurements

One of the most intriguing questions concerning the recovery of structured matrices with
non-orthogonal sparse decomposition of low rank from linear measurements was not an-
swered so far. Namely, how many measurements there are required to ensure provably
good approximation and how corresponding measurement operators look like. By means
of Theorem 4.6 this boils down to investigate which measurement operators have the ad-
ditive restricted isometry property from Definition 4.5. We are peculiarly interested in
the situations described by the matrix sets SR,Γs1,s2

and SR,Γn1,s2
, i.e., the recovery of low-rank

matrices with sparse left and right or merely sparse right component vectors. As an arti-
fact of the proof technique used in former Sections 4.2 and 4.4 we introduced alleviated,
i.e., larger, matrix sets, on which the analysis of global minimizers of the multi-penalty
functional J p,q,R

α,β was built on.
In this section, we restrict ourselves slightly regarding the variability in the regularizing
(quasi)-norm parameters. However, from an applied point of view, this causes no severe
limitations. Following what was already mentioned in the outline at the end of Section 4.1,
in the case of sparsity in both components we set p = q and let 0 < q ≤ 1. Our analysis
is then founded on the set Kq,q,R,Γs1,s2

, where s1 < n1 and s2 < n2. In turn, if only the
right component is sparse we set p = 2 and let 0 < q ≤ 1 and consider the set K2,q,R,Γ

n1,s2
,

for which we note that it coincides with Kq,q,R,Γn1,s2
. Consequently, in analogy to the multi-

penalty functional, we can introduce the reduced notation Kq,R,Γs1,s2
with s1 < n1 in the first

and s1 = n1 in the second case.
Based on this set we will now work out which measurement operators have the associated
additive rank-R and (`q, `q)-effectively (s1, s2)-sparse Γ-restricted isometry property by
establishing the following result, which extends Lemma 3.12 from [FMN19]. For compar-
ison, we provide an analogous result for the smaller set SR,Γs1,s2

and its associated weaker
additive rank-R and (s1, s2)-sparse RIPΓ.

Theorem 4.7 (Gaussian Measurement Ensembles have the Additive Restricted Isometry
Property). Let A : Rn1×n2 → Rm be a Gaussian measurement ensemble and assume that

m ≥ C

(
δ

Γ2R

)−2

R (s1 + s2 + 1) log

(
max

{
e
√
R,

en1

s1

,
en2

s2

})
(4.58)

holds for a constant C > 0. Then, with probability at least 1 − 2 exp
(
− d(δ/(Γ2R))m

)
,

where d > 0 denotes a constant, the operator 1√
m
A satisfies the additive rank-R and

(s1, s2)-sparse Γ-restricted isometry property with isometry constant 0 < δ < Γ2R.
Moreover, let 0 < q ≤ 1 and assume that

m ≥ C ′
(

δ

Γ2R

)−2

R

((( s1

n1

)2/q−2

s1 +
( s2

n2

)2/q−2

s2 + 1

)
+ 144(2q−2)/(2−q)(s1 + s2)

)

· polylog

(
e
√
Rmax

{
n1

s1

,
n2

s2

}max{1/q−1/2,1}
)

(4.59)

holds for a constant C ′ > 0. Then, with probability at least 1 − 2 exp
(
− d′(δ/(Γ2R))m

)
,

where d′ > 0 denotes a constant, the operator 1√
m
A satisfies the stronger additive rank-R
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and (`q, `q)-effectively (s1, s2)-sparse Γ-restricted isometry property with isometry con-
stant 0 < δ < Γ2R.

Before providing a proof thereof, what we will do, divided into several steps, in the
remainder of this section, let us discuss this theorem.
Gaussian measurement operators are guaranteed to have the additive rank-R and ((`q, `q)-
effectively) (s1, s2)-sparse Γ-restricted isometry property with isometry constant δ, if, up
to polylogarithmic terms and neglecting on q dependent factors, m & ∆−2O(R(s1 + s2))
measurements are taken. Here, 0 < ∆ < 1 denotes ∆ = δ/(Γ2R), where Γ2R is the
squared Frobenius radius of the matrix sets SR,Γs1,s2

andKq,R,Γs1,s2
, respectively. That means, the

required number of measurements depends essentially linearly on the intrinsic dimension
of the signal. Let us now focus on the on q dependent prefactors, which come into play
if 0 < q < 1. First, the terms (s1/n1)2/q−2 and (s2/n2)2/q−2 are smaller the smaller
the relative sparsities s1/n1 and s2/n2 are and thus reduce the necessary measurements.
This effect is strengthened by smaller q’s. Second, the factor 144(2q−2)/(2−q) decreases if
q → 0, yet, it does not converge to zero. It is bounded from below by 1/144. Third
and contrarily, the polylogarithmic term, which includes first and third powers of the
logarithm, is worsened by small effective sparsities and small q’s.
Unfortunately, however, to the best of our knowledge, we are not aware of any infor-
mation theoretical limits on the required number of measurements for our very general
class of matrices Kq,R,Γs1,s2

, cf. [FMN19, Remark 3.13]. Information theoretical investigations
regarding non-orthogonal multi-structured decompositions provide a direction for future
research.

Remark 4.8 (Extension to Sub-Gaussian Measurement Ensemble). The assertion of the
previous theorem can be straightforwardly extended to the even larger class of random
measurement operators with sub-Gaussian entries. Recall that a random variable ξ is
called L-sub-Gaussian if it obeys the tail bound P(|ξ| ≥ t) ≤ 2 exp(−t2/(2L2)) for all
t > 0, i.e., its distribution is dominated by the distribution of a Gaussian random variable.
L is up to an absolute constant equivalent to the sub-Gaussian norm ‖ξ‖ψ2

of ξ, which
is defined as ‖ξ‖ψ2

= supp≥1 p
−1/2(E|ξ|p)1/p. Then, in the case that A is a sub-Gaussian

measurement ensemble, Theorem 4.7 holds with modified constants d, C, d′, and C ′ that
depend on L. In fact, the proof we provide covers this case as well.

We now give a concise outline of the proof of Theorem 4.7, which we eventually give in
Subsection 4.5.4. Our main ingredient therefore is a bound on suprema of chaos processes
that was presented in [KMR14]. The paper considers random variables of the form

sup
H∈H

∣∣‖Hξ‖2
2 − E‖Hξ‖2

2

∣∣, (4.60)

where H denotes a set of matrices and ξ a random vector. By expanding the norms, one
can show that (4.60) is the supremum of an order-2 chaos process. The authors established
expectation and deviation bounds on this random variable, which we formulate in Subsec-
tion 4.5.3. This involves two complexity measures of the set H. One of them is the radius
of the matrix set H and the other is Talagrand’s γ2-functional, see, e.g., Definition 4.14
below. In order to upper bound the latter quantity, what we do in Subsection 4.5.2, we
employ Dudley’s inequality, which connects the functional to covering numbers. For this
reason we start with computing the metric entropy of the sets SR,Γs1,s2

and Kq,R,Γs1,s2
in the

subsequent Subsection 4.5.1. Let us note that this last step is convenient as the covering
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number is an elementary geometric quantity, however, it is not optimal. The reason is as
follows. The proof of Dudley’s inequality relies on a very elementary chaining method,
resulting in a logarithmic gap, i.e., the bound is only sharp up to a logarithmic factor.
Talagrand’s γ2-functional, in turn, is based on the more sophisticated generic chaining
method, which takes the geometry better into account.
Before going into the details of the proof of Theorem 4.7, we want to highlight the analogy
of the proof technique to the one of Theorems 1.11 and 2.11. In any case, we want to estab-
lish a concentration inequality for an expression of the type (4.60), where ξ parametrizes
the measurement operator and H denotes the set of signals, for which we want to have
a near-isometry. Typically, a concentration inequality for an individual signal serves as a
starting point. In order to extend it to all signals, it is firstly established on a finite subset
of the signal set, usually on a suitable ε-net. This step requires some sort of generalization
from one signal to finitely many. In the proofs from the first two chapters this involved a
union bound. In the following proof, however, we require the more elaborate tool in form
of Theorem 4.17, which relies on a chaining argument. Lastly, the extension to the whole
set is performed using a perturbation argument.

4.5.1 Metric Entropy of the Matrix Sets SR,Γs1,s2
and Kq,R,Γs1,s2

In order to establish bounds on the covering number and therefore the metric entropy
of the matrix sets SR,Γs1,s2

and Kq,R,Γs1,s2
, we require control of the covering numbers of the

respective component vectors, i.e., the sets ΣN
s and Kq,N

s . To this end let us investigate
the geometry of the closely related set

K̃q,N
s =

{
z ∈ RN : ‖z‖2 ≤ 1 and ‖z‖q ≤ s1/q−1/2

}
, (4.61)

which was introduced in the case q = 1 in [PV13]. We notice that Kq,N
s ∩ BN2 ⊂ K̃q,N

s

and define Σ̃N
s = ΣN

s ∩ BN2 correspondingly. Because of this inclusion let us recall the
monotonicity property of the covering number. For two sets obeying K ⊂ K̃ it holds

N(K, ‖ · ‖, ε) ≤ N(K̃, ‖ · ‖, ε/2). (4.62)

This relation will help us later on to construct ε-nets of Kq,N
s ∩ BN2 from ε-nets of K̃q,N

s .
To get there, we firstly show that an ε-net of the latter can be built from sparse vectors,
whose relative sparsity is only slightly larger than the effective relative sparsity s/N of the
set K̃q,N

s , which we want to cover. With this result we generalize Lemma 3.2 from [PV13].
To do so, we adapt a commonly employed proof technique in compressed sensing, which
was already utilized in this form in Theorem 1.17.

Lemma 4.9 (Sparse Net of K̃q,N
s ). Let 0 < q < 2. Then, if s ≤ t, the set Σ̃N

t ∩ K̃q,N
s is

an (s/t)1/q−1/2-net of K̃q,N
s with respect to the normed space (RN , ‖ · ‖2).

Proof. Let z ∈ K̃q,N
s and define a partition

T = {T` : |T`| = t for all ` < bN/tc}bN/tc`=0 (4.63)

of [N ] associated with a nonincreasing rearrangement of z, i.e., for all ` ≥ 1 it holds

|zi| ≤ |zj| for all i ∈ T` and j ∈ T`−1. (4.64)
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By construction, z|T0 ∈ Σ̃N
t ∩ K̃q,N

s and ‖z− z|T0‖2 =
∥∥z|∪`≥1T`

∥∥
2
, which remains to be

upper bounded. Therefore, by definition of the partition T , we observe that for ` ≥ 1 it
also holds |zi|q ≤ |zj|q for all i ∈ T` and j ∈ T`−1. Firstly, for ` ≥ 2, summation over j
yields

|zi| ≤ t−1/q
∥∥z|T`−1

∥∥
q

(4.65)

for all i ∈ T`. Secondly, taking the `2-norm over i ∈ T` subsequently shows

‖z|T`‖2 ≤ t1/2−1/q
∥∥z|T`−1

∥∥
q
. (4.66)

With this we conclude that

‖z− z|T0‖
q
2 =

∥∥z|∪`≥1T`

∥∥q
2
≤
∑
`≥1

‖z|T`‖
q
2

≤
∑
`≥1

tq/2−1
∥∥z|T`−1

∥∥q
q
≤ tq/2−1‖z‖qq ≤ tq/2−1s1−q/2,

(4.67)

where the first inequality follows from A.2(i) with p = 1 and q/2 instead of q when
considering the vector

(
‖z|T`‖

2
2

)
`≥1

. The last one exploits that z ∈ K̃q,N
s .

Required to apply this result is the metric entropy of the space of sparse vectors. To this
end, let us cite the following lemma, which bounds this quantity by exploiting that Σ̃N

s is
a union of

(
N
s

)
s-dimensional unit balls, a property which is inherited from the space ΣN

s .
For each low-dimensional ball we can then make use of the well-known bound

N(Bs2, ‖ · ‖2, ε) ≤
(

1 +
2

ε

)s
, (4.68)

which relies on a standard volume comparison argument, see, e.g., [Pis89, Lemma 4.16].
In fact, it can be seen easily by noting that N(Bs2, ‖ · ‖2, ε) ≤ M(Bs2, ‖ · ‖2, ε), where
M(K, ‖ · ‖, ε) denotes the ε-packing number of a set K. It is the largest cardinality of
any set K� ⊂ K such that for all z1, z2 ∈ K� it holds ‖z1 − z2‖ > ε. Such a set is called
ε-packing. Since balls of radius ε/2 and centered in the points of a maximal ε-packing
are mutually disjoint and contained in the Minkowski sum K + Bs2(0, ε/2), we obtain
M(Bs2, ‖ · ‖2, ε)λ

s(Bs2(0, ε/2)) ≤ λs(Bs2(0, 1 + ε/2)), from what we can deduce the result.

Lemma 4.10 (Metric Entropy of Σ̃N
s , [PV13, Lemma 3.3]). Let 0 < ε < 1 and 1 ≤ s ≤ N .

Then, for the metric entropy of Σ̃N
s it holds

logN(Σ̃N
s , ‖ · ‖2, ε) ≤ s log

(
3eN

εs

)
. (4.69)

We can now combine the former two lemmas to upper bound the metric entropy of the
set K̃q,N

s . This extends Lemma 3.4 from [PV13] in the following way.

Lemma 4.11 (Metric Entropy of K̃q,N
s ). Let 0 < q < 2, 0 < ε < 1 and 1 ≤ s ≤ N . Then,

for the metric entropy of K̃q,N
s it holds

logN(K̃q,N
s , ‖ · ‖2, ε) ≤

{
N log

(
5
ε

)
if ε ∈ (0, 2

(
s
N

)1/q−1/2
],

s
(

2
ε

)2q/(2−q)
log
(

6eN
s

(
ε
2

)(3q−2)/(2−q)
)

else,

. s

(
2

ε

)2q/(2−q)

log

(
eN

s

)
,

(4.70)
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where the hidden constant may depend on q.

Proof. First of all, for any ε ∈ (0, 1) we derive a straightforward upper bound from the
covering number of the unit ball BN2 . As K̃q,N

s ⊂ BN2 , it holds

N(K̃q,N
s , ‖ · ‖2, ε) ≤ N(BN2 , ‖ · ‖2, ε/2) ≤

(
1 +

2

ε/2

)N
≤
(

5

ε

)N
, (4.71)

where the first inequality uses the monotonicity property (4.62) of the covering number
and the next-to-last follows from (4.68).
Now, let us assume that ε ∈ (2 (s/N)1/q−1/2 , 1), which assures that for t := s (2/ε)2q/(2−q)

it holds t ≤ N . Moreover, since t ≥ s, according to Lemma 4.9, Σ̃N
t ∩K̃q,N

s is an ε/2-net of
K̃q,N
s . In combination with the monotonicity property (4.62) of the covering number and

Lemma 4.10, applied with ε/4 and t, we observe that Σ̃N
t ∩K̃q,N

s admits an ε/2-net N with
|N | ≤

(
12eN
εt

)t. Using triangle inequality, we conclude that N is an ε-net of K̃q,N
s .

This lemma shows that the metric entropy of K̃q,N
s is equivalent to the one of Σ̃N

s regarding
the dependency on the intrinsic and ambient dimension.
Building on Lemmas 4.10 and 4.11, we can now derive the metric entropy of the matrix
sets SR,Γs1,s2

and Kq,R,Γs1,s2
. We start with the former by providing the following result.

Lemma 4.12 (Metric Entropy of SR,Γs1,s2
, [FMN19, Lemma 4.2]). Let 0 < ε < 6Γ

√
R and

1 ≤ si ≤ ni for i = 1, 2. Then, for the metric entropy of SR,Γs1,s2
it holds

logN(SR,Γs1,s2
, ‖ · ‖F , ε) ≤ R(s1 + s2 + 1) log

(
18ΓR

ε

)
+Rs1 log

(
en1

s1

)
+Rs2 log

(
en2

s2

)
.

(4.72)

In order to prove this, the cited paper modifies the proof of Lemma 3.1 from [CP11]. We
will now use the same proof technique to establish the following extension of Lemma 4.4
from [FMN19]. Actually, by replacing the respective sets and covering numbers, the proof
of Lemma 4.12 can be recovered.

Lemma 4.13 (Metric Entropy of Kq,R,Γs1,s2
). Let 0 < q < 2, 0 < ε < 6Γ

√
R and 1 ≤ si ≤ ni

for i = 1, 2. Furthermore, without loss of generality assume that s2/n2 ≤ s1/n1. Then,
for the metric entropy of Kq,R,Γs1,s2

it holds

logN(Kq,R,Γs1,s2
, ‖ · ‖F , ε)

≤ R logN(K̃q,n1
s1

, ‖ · ‖2,
ε

6Γ
√
R

) + logN(BR2 (0,Γ), ‖ · ‖2,
ε

6R
) +R logN(K̃q,n2

s2
, ‖ · ‖2,

ε
6Γ
√
R

)

≤



R(n1 + n2 + 1) log
(

30ΓR
ε

)
if ε ∈ I02,

Rs2

(
12Γ
√
R

ε

)2q/(2−q)
log
(

6en2

s2

(
ε

12Γ
√
R

)(3q−2)/(2−q)
)

+R(n1 + 1) log
(

30ΓR
ε

)
if ε ∈ I21,

Rs1

(
12Γ
√
R

ε

)2q/(2−q)
log
(

6en1

s1

(
ε

12Γ
√
R

)(3q−2)/(2−q)
)

+Rs2

(
12Γ
√
R

ε

)2q/(2−q)
log
(

6en2

s2

(
ε

12Γ
√
R

)(3q−2)/(2−q)
)

+R log
(

30ΓR
ε

)
else,

(4.73)
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where I02 = 12Γ
√
R(0, (s2/n2)1/q−1/2] and I21 = 12Γ

√
R((s2/n2)1/q−1/2, (s1/n1)1/q−1/2]

abbreviate the intervals.

Proof. Inspired by the relaxation (4.61) of Definition 4.3, let us define the matrix set

K̃q,R,Γs1,s2
=
{
Z̃ ∈ Rn1×n2 : ∃ ũ1, . . . , ũR ∈ K̃q,n1

s1
, ṽ1, . . . , ṽR ∈ K̃q,n2

s2
,

and Σ̃ ∈ RR×R diagonal with ‖Σ̃‖F ≤ Γ, s.t. Z̃ = ŨΣ̃ṼT
}

(4.74)

and note that Kq,R,Γs1,s2
⊂ K̃q,R,Γs1,s2

. Then, by the monotonicity property (4.62) it holds
N(Kq,R,Γs1,s2

, ‖ · ‖F , ε) ≤ N(K̃q,R,Γs1,s2
, ‖ · ‖F , ε/2) and it remains to find an ε/2-net of K̃q,R,Γs1,s2

.
To this end, with respect to ‖ · ‖2, let (K̃q,n1

s1
)# and (K̃q,n2

s2
)# denote minimal ε/(6Γ

√
R)-

nets of K̃q,n1
s1

and K̃q,n2
s2

, respectively. Furthermore, with respect to ‖ · ‖F , let (DΓ)#

denote a minimal ε/(6R)-net of the set of diagonal R × R matrices with Frobenius
norm bounded by Γ. For the covering number of this set, according to (4.68), it holds
N(DΓ, ‖ · ‖F , ε) = N(BR2 (0,Γ), ‖ · ‖2, ε) ≤ (3Γ/ε)R. To conclude, we show that the set

K# =
{
Z̃# ∈ Rn1×n2 : ∃ (ũ1)#, . . . , (ũR)# ∈

(
K̃q,n1
s1

)#
, (ṽ1)#, . . . , (ṽR)# ∈

(
K̃q,n2
s2

)#
,

and Σ̃# ∈
(
DΓ

)#
, s.t. Z̃# = Ũ#Σ̃#

(
Ṽ#
)T}

(4.75)

is an ε/2-net of K̃q,R,Γs1,s2
. Therefore, let Z̃ = ŨΣ̃ṼT ∈ K̃q,R,Γs1,s2

. Then, first, for any r ∈ [R]

choose (ũr)
# ∈ (K̃q,n1

s1
)#, i.e., such that ‖ũr−(ũr)

#‖2 ≤ ε/(6Γ
√
R) and analogously choose

(ṽr)
# ∈ (K̃q,n2

s2
)#. Furthermore, select Σ̃# ∈ (DΓ)# such that ‖Σ̃−Σ̃#‖F ≤ ε/(6R). With

this we obtain

‖Z̃− Z̃#‖F ≤ ‖(Ũ− Ũ#)Σ̃ṼT‖F +‖Ũ#(Σ̃− Σ̃#)ṼT‖F +‖Ũ#Σ̃#(Ṽ − Ṽ#)T‖F
≤ Γ‖Ũ− Ũ#‖F +R‖Σ̃− Σ̃#‖F +Γ‖Ṽ − Ṽ#‖F
≤ Γε/(6Γ)+Rε/(6R)+Γε/(6Γ) = ε/2,

(4.76)

having used the submultiplicativity of the Frobenius norm, ‖Ũ#‖2
F =

∑R
r=1‖(ũr)#‖2

2 ≤ R

(analogously for Ṽ) and ‖Σ̃ṼT‖2
F =

∑R
r=1‖(Σ̃)rrṽr‖2

2 ≤ Γ2 (analogously for Ũ#Σ̃#) in
the second inequality. The last inequality involves the properties of the nets and uses
‖Ũ − Ũ#‖2

F =
∑R

r=1‖ũr − (ũr)
#‖2

2 (analogously for ‖Ṽ − Ṽ#‖2
F ). An application of

Lemma 4.11 then yields the claim as

N(K̃q,R,Γs1,s2
, ‖ · ‖F , ε/2) ≤

∣∣K#
∣∣ ≤ ∣∣(K̃q,n1

s1
)#
∣∣R∣∣(DΓ)#

∣∣∣∣(K̃q,n2
s2

)#
∣∣R. (4.77)

4.5.2 An Upper Bound on Talagrand’s γ2-Functional

In order to derive a sharp upper bound on the expectation

E sup
H∈H

ξH (4.78)

of the supremum of a stochastic process (ξH)H∈H, which is indexed by a general metric
space, an improved concept of chaining was expounded in [Tal05]. At the heart of this
generic chaining methods stand the following quantity.
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Definition 4.14 (Talagrand’s γ2-Functional, [Ver18, Definition 8.5.1]). Let (H, d) be a
metric space. A sequence of subsets (Hk)

∞
k=0 of H is called an admissible sequence if the

cardinalities of Hk satisfy |H0| = 1 and |Hk| = 22k for all k ≥ 1. The γ2-functional of H
is then defined as

γ2 (H, d) = inf
(Hk)k

sup
H∈H

∞∑
k=0

2k/2d(H,Hk), (4.79)

where the infimum is with respect to all admissible sequences.

Let us assume that the random variables ξH are mean-zero with sub-Gaussian incre-
ments, i.e., ‖ξH1 − ξH2‖ψ2

. d(H1,H2) for all H1,H2 ∈ H. Then it can be shown, see,
e.g., [Ver18, Theorem 8.5.3], that

E sup
H∈H

ξH . γ2 (H, d) . (4.80)

This bound is an improvement of Dudley’s inequality, which can be recovered by observing
that

γ2(H, d) .
∫ ∞

0

√
logN(H, d, ε) dε. (4.81)

Note that the upper bound can be replaced by the diameter diam(H) of H in the met-
ric d. Moreover, if H is symmetric, i.e., H = −H, we can even use the radius, i.e., the
quantity d(H) = supH∈H d(H,0), as an upper bound. Regarding notation, if the metric is
induced by a norm ‖ · ‖, we write γ2(H, ‖ · ‖) for Talagrand’s γ2-functional. For the radius
of the set H with respect to some norm, we write d(H) and add a subscript to indicate
the norm. For instance, we write dF (H) for the radius in the Frobenius norm and d∞(H)
for the radius in the spectral norm.
As we face matrix-indexed random variables of the form ξH = ‖Hξ‖2

2−E‖Hξ‖2
2 for the two

very special situations associated with the matrix sets SR,Γs1,s2
and Kq,R,Γs1,s2

, we require bounds
on the quantities mentioned above for these two cases. Note that ξ is an associated random
vector containing the randomness, which will consist of i.i.d. mean-zero sub-Gaussian
entries of unit variance in our setting.
Let us therefore fit our formulation of the restricted isometry property into the setting of
this subsection. To this end, recall that we are interested in the failure probability

P

(
sup
Z

∣∣∣∣∣
∥∥∥∥ 1√

m
A(Z)

∥∥∥∥2

2

− ‖Z‖2
F

∣∣∣∣∣ ≥ δ

)
, (4.82)

where the supremum is with respect to one of the two sets SR,Γs1,s2
and Kq,R,Γs1,s2

. In order to
reformulate this properly let us define the random vector ξA ∈ Rmn1n2 associated with a
measurement operator A : Rn1×n2 → Rm by

ξA =

 vec(A1)
...

vec(Am)

 , (4.83)

where the matrices A1, . . . ,Am are as described after equation (4.1). In turn, for the
matrix Z ∈ Rn1×n2 we define an m×m-block diagonal matrix HZ ∈ Rm×mn1n2 by

HZ =
1√
m

 vec(Z)T 0 · · ·
. . .

· · · 0 vec(Z)T

 . (4.84)
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We observe that 1√
m
A(Z) = HZξA. Building upon this let us introduce the auxiliary

matrix set HSR,Γs1,s2
=
{
HZ : Z ∈ SR,Γs1,s2

}
and define the set HKq,R,Γs1,s2

analogously. Since we
will formulate statements in the following, which hold for both auxiliary matrix sets,
we will write H abbreviatorily, if we address both situations. The mapping Z 7→ HZ

is an isometric linear bijection and we have ‖HZ‖F = ‖Z‖F and ‖HZ‖ = ‖Z‖F/
√
m.

Furthermore, assuming that the entries of ξA are i.i.d. with zero mean and unit variance,
we can verify that E‖HZξA‖2

2 = ‖HZ‖2
F = ‖Z‖2

F .
From these properties we can directly deduce upper bounds on the two quantities dF (H)
and d∞(H). Therefore, let Z = UΣVT denote an (effectively) sparse decomposition and
note that ‖Z‖F = ‖UΣ‖F‖V‖F ≤ Γ

√
R. Then, dF (H) = supHZ∈H‖HZ‖F ≤ Γ

√
R and

d∞(H) = supHZ∈H‖HZ‖ ≤ Γ
√
R/
√
m.

The last ingredient before applying the bound on suprema of chaos processes, which
we formulate in Theorem 4.17, is an upper bound on Talagrand’s γ2-functional. For
this reason we compute Dudley’s integral, i.e., the right-hand side of (4.81), for the two
cases HSR,Γs1,s2

and HKq,R,Γs1,s2
.

Lemma 4.15 (A Bound on Dudley’s Integral for HSR,Γs1,s2
, [FMN19, Lemma 7.1]). For

Γ ≥ 1 it holds

∫ dS

0

√
logN(HSR,Γs1,s2

, ‖ · ‖, ε) dε .

√
Γ2R2(s1 + s2 + 1) log

(
max

{
e
√
R, en1

s1
, en2

s2

})
m

,

(4.85)
where dS abbreviates d∞

(
HSR,Γs1,s2

)
.

The proof of the next lemma resembles to one of the former, however, it requires much
more involved computations, which will be outsourced to Appendix A.2.

Lemma 4.16 (A Bound on Dudley’s Integral for HKq,R,Γs1,s2
). Let 0 < q ≤ 1. For Γ ≥ 1 it

holds

∫ dK

0

√
logN(HKq,R,Γs1,s2

, ‖ · ‖, ε) dε .

√√√√Γ2R2
(((

s1
n1

)2/q−2
s1+

(
s2
n2

)2/q−2
s2+1

)
+ C(q)(s1+s2)

)
m

·
√

polylog
(
e
√
Rmax

{
n1

s1
, n2

s2

}max{1/q−1/2,1}
)
,

(4.86)

where dK abbreviates d∞
(
HKq,R,Γs1,s2

)
, C(q) = 144(2q−2)/(2−q) is decreasing in q and the hidden

constant is independent of q.

Proof. As the mapping Z 7→ HZ is bijective and an isometry with ‖HZ‖ = ‖Z‖F/
√
m, it

holds N(HKq,R,Γs1,s2
, ‖ · ‖, ε) = N(Kq,R,Γs1,s2

, ‖ · ‖F ,
√
mε). Thus it remains to bound the integral

∫ Γ
√
R√
m

0

√
logN(Kq,R,Γs1,s2 , ‖ · ‖F ,

√
mε) dε, (4.87)

whose integrand can be controlled by means of Lemma 4.13. Therefore, let us assume
s2/n2 ≤ s1/n1 for the moment. Moreover, let us include a factor of

√
m in the integral.
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After the change of variables ε′ =
√
mε we use the bound on the metric entropy of the

set Kq,R,Γs1,s2
together with the basic inequality

√
x+ y ≤

√
x+
√
y for all x, y ≥ 0 to obtain

the following upper bound∫ Γ
√
R√
m

0

√
m

√
logN(Kq,R,Γs1,s2 , ‖ · ‖F ,

√
mε) dε =

∫ Γ
√
R

0

√
logN(Kq,R,Γs1,s2 , ‖ · ‖F , ε′) dε′

≤
∫ 12Γ

√
R(s2/n2)1/q−1/2

0

√
R(n1 + n2 + 1) log

(
30ΓR
ε′

)
dε′

+

∫ 12Γ
√
R(s1/n1)1/q−1/2

12Γ
√
R(s2/n2)1/q−1/2

√
Rs2

(
12Γ
√
R

ε′

)2q/(2−q)
log
(

6en2

s2

(
ε′

12Γ
√
R

)(3q−2)/(2−q)
)

dε′

+

∫ 12Γ
√
R(s1/n1)1/q−1/2

12Γ
√
R(s2/n2)1/q−1/2

√
R(n1 + 1) log

(
30ΓR
ε′

)
dε

+

∫ Γ
√
R

12Γ
√
R(s1/n1)1/q−1/2

√
Rs1

(
12Γ
√
R

ε′

)2q/(2−q)
log
(

6en1

s1

(
ε′

12Γ
√
R

)(3q−2)/(2−q)
)

dε′

+

∫ Γ
√
R

12Γ
√
R(s1/n1)1/q−1/2

√
Rs2

(
12Γ
√
R

ε′

)2q/(2−q)
log
(

6en2

s2

(
ε′

12Γ
√
R

)(3q−2)/(2−q)
)

dε′

+

∫ Γ
√
R

12Γ
√
R(s1/n1)1/q−1/2

√
R log

(
30ΓR
ε′

)
dε′

=: I1 + I2 + I3 + I4 + I5 + I6 =: I,

(4.88)

which we elaborate in Appendix A.2. From the computations there we obtain

I .

(
Γ2R2

((( s1

n1

)2/q−2

s1 +
( s2

n2

)2/q−2

s2 + 1

)
+ 144(2q−2)/(2−q)(s1 + s2)

)

· polylog

(
e
√
Rmax

{n1

s1

,
n2

s2

}max{1/q−1/2,1}
))1/2

,

(4.89)

where the hidden constant is an absolute constant. Due to the symmetry of this bound
with respect to s1 and s2 and analogously with respect to n1 and n2 and combinations
thereof, the preliminarily made assumption that s2/n2 ≤ s1/n1 can be dropped.

4.5.3 A Probabilistic Bound on Suprema of Chaos Processes

In this short subsection we present a probabilistic deviation and tail bound for the supre-
mum of a chaos process, which is the main tool for the proof of Theorem 4.7.

Theorem 4.17 (A Bound on Suprema of Chaos Processes, Corollary of [KMR14, The-
orem 3.1]). Let H be a symmetric set of matrices and let ξ be a random vector whose
entries ξi are independent mean-zero L-sub-Gaussian random variables of unit variance.
Set

E = γ2(H, ‖ · ‖)
(
γ2(H, ‖ · ‖) + dF (H)

)
,

V = d∞(H)
(
γ2(H, ‖ · ‖) + dF (H)

)
and

U = d2
∞(H).

(4.90)
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Then, for t > 0,

P

(
sup
H∈H

∣∣‖Hξ‖2
2 − E‖Hξ‖2

2

∣∣ ≥ cE + t

)
≤ 2 exp

(
−dmin

{
t2

V 2
,
t

U

})
, (4.91)

where the constants c and d depend only on L.

Remark 4.18. Theorem 4.17 follows immediately from Theorem 3.1 in [KMR14] by
noting that the symmetry, i.e., H = −H, implies d∞(H) ≤ γ2(H, ‖ · ‖), what can be seen
directly from the definition of Talagrand’s γ2-functional.

4.5.4 Proof of the Main Result

We now have all necessary ingredients to conclude with a proof of Theorem 4.7. We give
the proof for the set Kq,R,Γs1,s2

. The adaption for the smaller set SR,Γs1,s2
is straightforward and

can be found, for instance, on page 19 in [FMN19].

Proof of Theorem 4.7. Let us abbreviate HKq,R,Γs1,s2
by HK. Making use of the auxiliary

quantities introduced in equations (4.83) and (4.84), we observe

P

(
sup

Z∈Kq,R,Γs1,s2

∣∣∣∣∣
∥∥∥∥ 1√

m
A(Z)

∥∥∥∥2

2

− ‖Z‖2
F

∣∣∣∣∣ ≥ δ

)
= P

(
sup

HZ∈HK

∣∣‖HZξA‖2
2 − E‖HZξA‖2

2

∣∣ ≥ δ

)
.

(4.92)
Let us now assume that the number of measurements m is sufficiently large in the sense
that it obeys (4.59), i.e., for some 0 < ∆ < 1 it holds

m & ∆−2R

((( s1

n1

)2/q−2

s1 +
( s2

n2

)2/q−2

s2 + 1

)
+ 144(2q−2)/(2−q)(s1 + s2)

)

· polylog

(
e
√
Rmax

{
n1

s1

,
n2

s2

}max{1/q−1/2,1}
)
,

(4.93)

where the hidden constant shall be the one from Lemma 4.16. Denoting the bound on
Dudley’s integral for the set HK, which was established in this lemma, by DK, we are now
able to control the quantities E, V and U from Theorem 4.17. More precisely, it hold

E ≤ D2
K + Γ

√
RDK, V ≤ Γ

√
RDK + Γ2R√

m
and U ≤ Γ2R

m
. (4.94)

We can verify that DK ≤ ∆Γ
√
R ≤ Γ

√
R and D2

K + Γ
√
RDK ≤ Γ2R(∆2 + ∆) ≤ 2Γ2R∆,

and thus E ≤ 2Γ2R∆ and V ≤ 2Γ2R/
√
m. Now, let c > 0. Then, for δ ≥ 3cΓ2R∆, which

assures δ ≥ c(E + Γ2R∆), we can apply Theorem 4.17 to obtain

P

(
sup

HZ∈HK

∣∣‖HZξA‖2
2−E‖HZξA‖2

2

∣∣ ≥ δ

)
≤ P

(
sup

HZ∈HK

∣∣‖HZξA‖2
2−E‖HZξA‖2

2

∣∣ ≥ c(E+Γ2R∆)

)
≤ 2 exp

(
−dmin

{
c2Γ4R2∆2

(2Γ2R)2
m,

cΓ2R∆

Γ2R
m

})
≤ 2 exp

(
−d′∆2m

)
,

(4.95)

showing the claim.

95





Chapter 5

Numerical Experiments

As already announced in the preface of the former chapter, in this final chapter we provide
numerical evidence for the theoretical results we presented. We start with the familiar
setting, meaning that we aim at recovering simultaneously sparse and low-rank matrices.
At first, properties such as the empirical recovery probability, the mean approximation
error of the numerical solution and the sparsity of its component vectors are addressed.
Afterwards, we spend a few words on the role of the hyperparameters, before we test
a multilevel-type initialization strategy. Eventually, the setting of the numerical exper-
iments is modified by making a further structural assumption, namely positivity of the
sparse component vectors. We analyze numerically whether one can benefit from this
additional structure.
For our numerical simulations the LRZ Linux-Cluster CoolMUC-2 was used. The compu-
tations were performed on one single compute node with an Intel Xeon E5-2690 v3 with
28 cores and 64GB RAM using a MATLAB R2019a implementation.

5.1 Numerical Analysis of ARBeR

As described in Sections 3.1 and 4.1, the objective of our numerical method ARBeR, as
given in Algorithm 5, is the efficient and robust recovery of a low-rank matrix X ∈ Rn1×n2

which admits a non-orthogonal sparse decomposition of the form (4.2).
Throughout this and also the next section, we consider low-rank-R matrices with merely
sparse right component vectors, i.e., we have 1 ≤ s2 ≤ n2, but no sparsity in the left com-
ponent, i.e., s1 = n1. As a consequence, the usual dimensional setting requires n1 � n2,
since we could not benefit from the sparsity in the right component vectors elsewise. This
means that we consider the multi-penalty functional J 2,q,R

α,β with 0 ≤ q ≤ 1. Hence, our
algorithmic approach employs ridge regression for the left and bridge-q regression for the
right component vectors. We denote this compactly by ARBeR2,q

A vector y ∈ Rm of m inaccurate and incomplete measurements is obtained from the
matrix X according to (4.1). The involved measurement operator A in this and the sub-
sequent section is a suitably scaled Gaussian measurement ensemble. However, numerical
experiments showing comparable results were also performed using operators with, e.g.,
Bernoulli random variables. Furthermore, the noise we assume is ineliminable and of
considerable magnitude. To model this, we set the noise level to η = ‖η‖2 = 0.3‖X‖F .
In the following, we focus mainly on the comparison of different values for the regularizing
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(quasi)-norm parameter q. For appropriate numerical results with the state-of-the-art
algorithm SPF, we direct the reader to Section 5 from [FMN19].

5.1.1 On the Numerical Solution of the Algorithm

The first and maybe already the most intriguing issue, which was addressed extensively
from the theoretical perspective in Section 4.5, deals with the number of required measure-
ments to ensure, with high probability, successful recovery of the simultaneously struc-
tured matrix. In order to investigate this question numerically, we analyze the recovery
of 20 randomly drawn rank-1 matrices X ∈ R8×128 with Frobenius norm 10.
Therefore, for different regularizing (quasi)-norm parameters q ∈ {0, 1/3, 1/2, 2/3, 3/4, 1},
we visualize the empirical recovery probability achieved by ARBeR2,q for various relative
sparsities 0 < s2/n2 ≤ 1 and various numbers of measurements m in Figure 5.1. The
latter is also plotted relative to the ambient dimension of the matrix space, i.e., relative
to n1n2. We call a recovery successful, if for the relative approximation error it holds∥∥X − X̂ARBeR2,q

∥∥
F
/‖X‖F ≤ 0.4. ARBeR2,q employs iterative bridge-q thresholding to

find an approximate solution to the vector-valued subproblem (4.32), which is responsible
for the recovery of the sparse component vector.
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(b) ARBeR2,1/3
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Figure 5.1. Phase transition diagrams depicting the recovery success of ARBeR2,q for
different values of q and various sparsities and numbers of measurements. The empirical
recovery probability is depicted by color from zero (blue) to one (yellow).

Regarding the internal parameters of the employed numerical method, we fix the reg-
ularization parameters α = β = 0.5 and for the number of outer iterations we choose
K = 10. Apart from that, the number of iterations for the involved intermediate iterative
thresholding algorithms tackling the multiple (non)-convex optimization problems (4.32)

98



CHAPTER 5. NUMERICAL EXPERIMENTS

is limited by L = 106. The iterative method may break earlier if two consecutive iterations
are closer than a prescribed tolerance of 10−8. Moreover, the method is initialized with
the leading singular vectors of A∗(y).
The phase transition diagrams in Figure 5.1 contain various information. It stands out
that ARBeR2,q with a parameter q close to one performs best concerning the recovery
success for various relative sparsities. This is most visible for less sparse right component
vectors and is not surprising as small q’s naturally promote sparsity stronger than larger
ones, highlighting the well-known trade-off between data fidelity and sparsity, whose il-
lustration will be complemented by Figure 5.3. For small sparsities (s2 ≤ 0.05 · n2),
the methods perform approximately equally well. However, we do not observe any no-
ticeable improvement for smaller values of q, which conflicts the theoretical results from
Section 4.5 and is most likely due to the significant non-convexity and the linked diffi-
culty to find a good initialization. Moreover, considering the diagrams individually, each
variant of ARBeR associated with a different value of q experiences a relatively sharp
transition of the empirical recovery probability as the number of measurements increases,
i.e., the recovery success shifts within a small interval. This is a typical behavior when
reconstructing signals with some sort of parsimony. We furthermore observe that the
transition margin is wider the denser the right component is.
In order to quantify the former observations more explicitly and provide numerical evi-
dence also for the recovery of matrices with higher but still low rank we conduct the exper-
iment visualized in Figure 5.2. Based on 20 randomly drawn rank-5 matrices X ∈ R16×100,
which admit a non-orthogonal decomposition with 10-sparse right component vectors and
have Frobenius norm 10, we compare the empirical recovery probabilities and the relative
average approximation errors of ARBeR2,q for the same values of q as previously. In this
case, a relative approximation error of 0.5 suffices for a recovery to be called successful.
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Figure 5.2. Comparison of the empirical recovery probabilities (left) and the relative
average approximation errors (right) of ARBeR2,q for different values of q and various
numbers of measurements. For reference, the noise level is appended in the right figure
as a dashed line.

The internal parameters are chosen as before, we only use K = 50 outer iterations and
initialize the algorithm with the leading five singular vector pairs of A∗(y).
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The figure on the left-hand side, which depicts the empirical recovery probability for a
varying number of measurements, confirms the sharp transition boundaries and the supe-
riority of ATLAS. However, also the other methods show convincing results, in particular
when bringing to mind that the measurements are highly corrupted and the initialization
is certainly not optimal. Beyond that, in the figure on the right we directly compare the
corresponding relative average approximation errors. We observe that the relative error
is at the noise level as soon as the number of measurements exceeds the phase transition.
Moreover, we note the familiar relation between the different versions of ARBeR.
The, after these two figures, noticeable superiority of ATLAS does not come without a
cost. To see this, let us have a closer look at one particular matrix recovery and investi-
gate the structure of the recovered components. The number of available measurements
is set to m = 0.3 · n1n2. We recall that the interesting components of our signal X
are the 10-sparse right components, whose ambient dimension is 100. The by ATLAS
proposed reconstruction is a rank-4 matrix with one 41-sparse, two 35-sparse and one
15-sparse component. In turn, ARBeR2,0 suggests a rank-5 matrix with one 6-sparse, two
4-sparse and two 1-sparse components. The other variants balance this by finding sparser
components than ATLAS does but less sparse components than ARBeR2,0.
To quantify this effect, we return to the setting of Figure 5.1. For different values of the
parameter q, we depict the relative sparsity of the by ARBeR2,q recovered right component
vector for various relative sparsities and various numbers of measurements.
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Figure 5.3. Color gradient diagrams picturing the relative sparsity of the by ARBeR2,q

recovered right component vector for different values of q and various sparsities and num-
bers of measurements. The recovered averaged relative sparsity is depicted by color from
zero (blue) to one (yellow).
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Interpreting the diagrams separately, we observe that ARBeR tends to return rather
sparse components as long as too few measurements are available, i.e., if the number of
available measurements is below the in Figure 5.1 observed phase transition. This is a
consequence of the structure of our multi-penalty functional. If the accessible information
is too little to ensure data fidelity, rather sparse components which have at least some
positive effect on the residual term are a reasonable choice to achieve a small value for the
functional. A comparison of the diagrams among each other convincingly demonstrates
that a small choice of the parameter q promotes sparsity. However, as can be seen in
Subfigure 5.3(a), ARBeR2,0 also enforces comparably strong sparsity in regions, where
the true sparsity of the component vectors is much weaker, i.e., the components are
denser. This hinders the recovery as shown in the corresponding Subfigure 5.1(a) and
makes small q’s unsuitable for matrices with less sparse components. Conversely, for
significantly sparse components, ATLAS proposes too dense vectors as can be seen when
having a close look at Subfigure 5.3(f). Even though this has no negative effect on the
recovery success as shown in Subfigure 5.1(f), it is certainly undesirable, as the recovery
of the structures is a central point and their lack would result in a loss of interpretability.
Remarkably, let us note that, e.g., ARBeR2,2/3 accomplishes successful recoverability in
regions of larger sparsity by returning an approximate solution with sparser component
vectors. This is particularly beneficial if defects in the sparsity are present in the original
signal.
At the end of this subsection, let us give analogous figures for the performance in case
of ARBeR2,0 when replacing the `0-regularized optimization problem (4.32) by its `0-
constrained version, cf. Lemma A.4. For our numerical method this means that the
iterative hard thresholding method is replaced by an iterative best s2-term approximation
method, which were both described in Paragraph 1.4.3(3). Of course, this requires prior
knowledge of the sparsity level s2.
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Figure 5.4. Phase transition diagram for the recovery success of ARBeR (left) and
color gradient diagram for the relative sparsity of the reconstructed right component
vector (right), when utilizing the best s2-term approximation algorithm to tackle the
`0-constrained version of the regularized problem (4.32). In both cases, the respective
quantity is depicted by color from zero (blue) to one (yellow).

As one expects, by construction, this variant of ARBeR2,0 always recovers the correct
sparsity, see Subfigure 5.4(b). Furthermore the recovery success of this method is compa-
rable to the one of ATLAS in the range of large sparsities and to the standard variant of
ARBeR2,0 in case of small sparsities.
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At the end of this subsection we want to show that the different variants of ARBeR
associated with different values of the parameter q perform approximately equally well
in regards to the dependency of the relative approximation error on the noise-to-signal
ratio ‖η‖2/‖X‖F . For this experiment, whose results are depicted in Figure 5.5, the
setting of Figure 5.2 in the case of m = 0.3 · n1n2 measurements is reused. This includes
the choice α = β = 0.5 for the regularization parameters. The data, though, is only
founded on 8 randomly drawn matrices X ∈ Rn1×n2 . The theoretical upper bounds are
derived from Theorem 4.6 and rescaled with a factor of 1/2. To obtain a bound on the
quantity ‖X‖pq/(p+q) we employ Lemma A.2(ii), see, e.g., the first inequality in (4.10).
Note that a theoretical bound in case of ARBeR2,0 is not available.
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Figure 5.5. Dependency of the relative average approximation errors of ARBeR2,q for
different values of q on the noise-to-signal ratio. For reference, theoretical upper bounds
are appended in the left figure as dashed lines.

5.1.2 Hyperparameter Tuning

Having observed that the regularizing (quasi)-norm parameter q can be utilized to steer the
sparsity of the recovered right component vectors, in this subsection we investigate which
impact the regularization parameters α and β have on the performance of the algorithm
and the structure of the recovered matrix. For the sake of simplicity, we assume α = β.
Complementary numerical experiments testing also other relations between α and β in
the case of ATLAS can be found in Subsection 5.1 of [FMN19]. There, however, rank-1
matrices of the same dimension were used. One observation we will not make here, but
transfers directly to the versions of ARBeR is that small values of the parameter α result
in a small relative approximation error. This is also compatible with the theory in form
of Theorem 4.6.
In Figure 5.6, we numerically analyze the dependency of the relative average approxima-
tion error and the relative average sparsity of the right component vectors with respect
to the choice of the regularization parameters α and β. Except for two modifications, the
setting of Figure 5.2 for a fixed number of m = 0.3 · n1n2 measurements is maintained.
The major change is that the noise level is set to zero. Moreover, as already done in the
last experiment of the previous subsection, we only draw 8 matrices at random. We also
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derive theoretical upper bounds on the relative approximation error from Theorem 4.6.
As before, we rescale them by a factor of 1/2.
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Figure 5.6. Dependency of the relative average approximation errors of ARBeR2,q (left)
and the relative average sparsities of the reconstructed right component vectors (right)
for different values of q on the regularization parameter β under the assumption α = β.
For reference, theoretical upper bounds are appended in the left figure as dashed lines.

The first immediate observation, concerning the figure on the left, is a decrease of the
relative approximation errors as the regularization parameters α and β tend to zero. This
decay follows the predicted ones given by the theoretical bounds. However, an interesting
failure of recovery occurs if β becomes too small. More precisely, located between β = 0.08
and β = 0.25 for the different values of q, the error abruptly explodes. This can be traced
back to a breakdown of our restricted isometry property, cf. Theorem 4.6. Small values of β
force the measurement operator A to fulfill a restricted isometry property which requires
a nearly isometric embedding for matrices with less, than just `q-effectively s2-sparsely,
structured right components. Since the number of measurements is chosen close to the
limit sufficient to assure the restricted isometry property for the smaller set Kq,R,Γn1,s2

, the
requirements on A to ensure recoverability in this case are too strong.
The figure on the right-hand side shows that the choice of the parameter β has an effect
on the sparsity. As one expects, sparser components can be obtained by choosing the
regularization parameter β sufficiently large. We want to conclude this experiment with
a note. The attentive reader may wonder why, for β = 0.5, ATLAS proposes right
components which approximately have the desired relative average sparsity of 0.1. This
seemingly stands in conflict with the exemplary recovery ahead of Figure 5.3. But, the
crucial point is that the measurements here are noise-free. As soon as noise comes into
play, ATLAS returns significantly denser components.

5.1.3 The Influence of the Initialization

The criticality of the initialization was already mentioned in Subsection 4.3.3, where we
proposed the initialization with the R leading singular vector pairs ofA∗(y). This was also
the one used so far. In this subsection we compare different initializations to investigate

103



CHAPTER 5. NUMERICAL EXPERIMENTS

their influence on the recovery success. In the setting of Figure 5.2 we run ARBeR2,0 for
the three different types of initialization we describe in the following. The first, indicated
by initialization with X, utilizes the R leading singular vector pairs of the desired signal X.
This serves as reference and is not available in practice. The second, labeled multilevel ini-
tialization, employs the novel multilevel-type strategy described in the last passage of Sub-
section 4.3.3. The used Λ = 6 levels are {(2, 1), (2, 3/4), (2, 2/3), (2, 1/2), (2, 1/3), (2, 0)}.
And finally, the last is the well-known initialization with the adjoint.
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Figure 5.7. Comparison of the empirical recovery probabilities (left) and the relative
average approximation errors (right) of ARBeR2,0 for different initializations and various
numbers of measurements. For reference, the noise level is appended in the right figure
as a gray line.

As was to be expected, the initialization with X performs significantly better than the
adjoint initialization. Successful recovery can be observed already for a very low number
of measurements. Also the relative average approximation error is smaller and approaches
noise level earlier. Let us now turn to the performance of our novel multilevel initialization
strategy. It achieves a considerable improvement of the recovery probability and the
relative approximation error compared to the adjoint initialization. In comparison to
Figure 5.2 we realize that recovery sets in at the same time as for ATLAS, which is due
to the fact that the multilevel version starts therewith. From this we conjecture that the
convergence radius of the resulting multilevel version of ARBeR2,0 was enlarged towards
the one of ATLAS. By noting that the respective recovery probabilities are about as
good as the ones of ATLAS, we provided proof that the bottleneck for the severely non-
convex versions of ARBeR is the initialization. Moreover, we presented a heuristic how a
promising initialization can be computed, for which, however, one may not forget about
the involved computational cost.
There is one more feature worthy to be mentioned. For a sufficiently large number of
measurements, our multilevel initialization leads to a smaller approximation error than
the initialization with the signal of interest itself. We suppose that the reason therefore is
that alternating minimization searches minimizers to the multi-penalty functional (4.3),
which are, particularly in the noisy case, different from X. In this case, initialization with
a related minimizer for a larger q is more beneficial than initialization with X.
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5.2 Adding Non-Negativity to the Matrix Decomposi-
tion

In the introductory example of the grocery store from Section 3.1 we motivated additional
structure of the right component vectors. Besides their sparsity, in order to give them a
real-world meaning, non-negativity of their entries was reasoned. After a suitable rescaling
this allows to interpret a component vr as a discrete probability vector.
As this structural assumption restricts the space of eligible signals, it is inevitable to come
up with the question whether this is reflected by the number of necessary measurements.
In contrast to a structure such as low-rankness or sparsity, though, one cannot expect a
further reduction of the order of the measurements as the dimension of the space remains
unchanged. Whereas an s-sparse vector in dimension N is located in a union of

(
N
s

)
s-dimensional subspaces, a non-negativity assumption restricts the set to exactly this
number of s-dimensional non-negative orthants embedded into the larger ambient space.
Detached from the question of required measurements for successful recovery, there is one
desirable feature one would like to have implemented in a numerical method. Supposing
that one is a priori aware of this kind of structure, one would like to have ensured that
the by our algorithm proposed matrix possesses this structural property. It is not clear if
ATLAS, respectively ARBeR2,1, is capable of detecting11 this structure.
However, by a minor modification we are able to enforce the non-negativity of the right
component vectors directly in our framework. By restricting the multi-penalty func-
tional J 2,1,R

α,β to the set Rn1 × · · · ×Rn1 ×Rn2
+ × · · · ×Rn2

+ and setting it to infinity outside
there, minimizers thereof possess the desired structure. Formally, this can be done by
employing the regularizer

‖z‖+
1 =

{
‖z‖1 if z ≥ 0,
∞ else,

(5.1)

where “≥” is understood component-wise. Of course, an analogous adaption can be done
for the more general functional J p,q,R

α,β . In the following we limit ourselves to the case q = 1.
The natural alternating minimization approach for this modified functional replaces the
vector-valued optimization problem (4.7) by

v̂kr = arg min
v̂∈Rn2 ,v̂≥0

∣∣∣∣∣∣y−A(∑
ρ<r

ûkρ(v̂
k
ρ)
T
)
−A

(
ûkr v̂

T )−A
(∑
ρ>r

ûk−1
ρ (v̂k−1

ρ )T
)∣∣∣∣∣∣2

2
+β‖v̂‖1. (5.2)

In order to derive an iterative algorithm finding an approximate solution to this prob-
lem, the tools from Section 1.4.3 can be reused. The only missing piece is a suitable
thresholding operator, which takes the non-negativity into account.
For this reason, let us introduce a non-linear function, which gained tremendous attention
as an activation function of artificial neurons in the theory and application of artificial
neural networks in recent years. The so-called rectified linear unit (ReLU) is defined as

ReLU(z) = max {0, z} . (5.3)

Its popularity is due to being a realistic model of biological neurons and enabling efficient
training of neural networks [GBB11]. This partially closed a modeling gap between com-
putational neurosciences and machine learning research. For notational ease let us write

11Note that the component vector pairs are only determined up to a sign change modifying this question
to whether all entries have the same sign.
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ReLUβ for the function z 7→ ReLU(z− β/2). This function can be regarded as an activa-
tion function with threshold β/2, i.e., the associated neuron fires if the joint stimulus is
above this value. Together with the scalar soft thresholding operator Sβ this function is
sketched in Figure 5.8 below.

β
2

β
2

(a) Sβ (b) ReLUβ

Figure 5.8. Scalar soft thresholding operator (left) and shifted ReLU (right).

It remains to see how this non-linear function is linked to the optimization problem (5.2).
To this end, in the subsequent lemma we show that a suitably shifted rectified linear
unit can be regarded as the proximal mapping of the regularizer ‖z‖+

1 , when applied
component-wise.

Lemma 5.1. The shifted rectified linear unit ReLU2β is the solution of the scalar-valued
optimization problem

min
v≥0

β|v|+ 1

2
(v − z)2. (5.4)

Proof. Due to the restriction of the optimization problem to positive v’s, the absolute
value in (5.4) can be dropped. The resulting optimality condition reads β + (v − z) = 0
and thus yields v = z − β, which is a valid choice as long as z ≥ β. In the case that
z < β, by noting that βv + 1

2
(v − z)2 = (β − z)v + 1

2
(v2 + z2), we immediately conclude

that v = 0 is the optimal solution.

Thus, in consequence, by replacing the soft thresholding operator Sβ by a vectorized form
of the rectified linear unit ReLUβ with threshold β/2 we are able to iteratively tackle the
optimization problem

v̂kr = arg min
v̂∈Rn1 ,v̂≥0

∥∥ỹ − Ãv̂
∥∥2

2
+ β‖v̂‖1, (5.5)

of whose form (5.2) is. This leads to a non-negative formulation of the algorithm ATLAS.
Before presenting numerical results investigating the performance of the method, a word
on initialization is in order. It turns out that the standard initialization with the R leading
singular vector pairs of A∗(y) fails in situations where most of the leading right singu-
lar vectors are orientated oppositely to the right component vectors of X12. A remedy
therefore is to replace the right component vectors of the initialization with the entry-wise
absolute value of the vector. This will be also used to initialize ATLAS, where it helps to
identify the non-negativity structure.
Taking up the experimental setting of Figure 5.2, in the figure below we compare the
empirical recovery probabilities and the relative average approximation errors of ATLAS

12This is based on the numerical observation that recovery saturates at probability ≈ 1−(1/2)R without
allowing further measurements to improve.
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and its non-negative version, which employs the ReLU instead of soft thresholding, when
recovering 20 randomly drawn rank-5 matrices X ∈ R16×100, which admit a non-orthogonal
decomposition with 10-sparse non-negative right component vectors.
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Figure 5.9. Comparison of the empirical recovery probabilities (left) and the relative
average approximation errors (right) of ATLAS and its non-negative version for various
numbers of measurements. For reference, the noise level is appended in the right figure.

We witness a slight improvement of the recovery probability when employing the non-
negative version of ATLAS. This means that the number of required measurements indeed
benefits from the additional information about the structure of the decomposition.
A further much more significant advantage of employing the ReLU is illustrated in the fol-
lowing figure, where we analyze the non-negativity structure of the recovered components.
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Figure 5.10. Comparison of the average percentage of positive entries in the by ATLAS
and its non-negative version recovered right component vectors for various numbers of
measurements. The noisy and noiseless case are considered separately.

By construction, non-negative ATLAS ensures right component vectors with merely non-
negative entries. ATLAS, however, is only partially capable of recovering this structure
from a reasonable amount of measurements. Especially in the case of significant measure-
ment noise an exceedingly large number of measurements would be necessary.
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Conclusions and Outlook

This thesis was concerned with the efficient and robust recovery of signals which admit
multiple structures simultaneously. Inaccurate and incomplete information about the sig-
nal was given in terms of few linear perturbed measurements. In particular, we considered
matrices with a low-dimensional intrinsic complexity, which was effected by low-rankness
of the matrix, sparsity and positivity in the component vectors of a non-orthogonal low-
rank decomposition. Therefore, we analyzed both theoretically and numerically a highly
non-convex approach based on alternating minimization of a suitable multi-penalty func-
tional. Advantageously, the emerging individual vector-valued optimization problems we
obtained were numerically tractable and involved discontinuous iterative thresholding
based algorithms, which are well-understood and investigated.
In order to embed this approach into the wide field of compressed sensing, where it un-
doubtedly belongs to, we started by outlining the most important concepts, ideas, proofs
and numerical algorithms of elementary vector-valued compressed sensing in Chapter 1.
Despite providing a general overview of the field, our first chapter was tailored to comply
the special requirements of the final theoretical Chapter 4, which led to the study of the
NP-hard non-convex `q-minimization problem. After that, in Chapter 2, we turned to-
wards the recovery of matrices with a single structure, namely low-rankness. Observing
that such matrices can be recovered, with high probability, from an optimal number of
measurements, we raised the question, whether one could profit from further, additional
structure. Before we addressed this question from a purely theoretical and partially ab-
stract point of view in Chapter 3, we laid the foundation for our numerical approach by
presenting the power factorization method, an alternating minimization based approach.
From an applied perspective, it transpired that non-convex approaches may be worth to
be considered as they arise naturally from the nature of the matrix decomposition and are
not a priori intractable. Theoretically, this was made more rigorous in the already brought
up third chapter, where we explained why approaches relying on convex optimization are
limited and cannot make use of the full available structure. In turn, we emphasized the
chances non-convex methods offer, for what we also gave theoretical evidence. Eventually,
in the last two chapters, once from a theoretical point of view and once from a numerical
perspective, we analyzed the proposed highly non-convex approach for the compressed
sensing and robust recovery of simultaneously structured matrices from inaccurate and
incomplete linear measurements. In Chapter 4 we first investigated global optimizers of
the multi-penalty functional, which comprises data fidelity, low-rankness and sparsity in
the component vectors of the non-orthogonal matrix decomposition. This included a brief
excursion to high-dimensional geometry revealing both stunning and singular features of
high-dimensional shapes. Afterwards, our algorithm which we dubbed Alternating Ridge
and Bridge or `0-Regression was stated and convergence was established. Lastly, we in-
troduced a very general class of simultaneously (effectively) sparse and low-rank matrices
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and a consistent restricted isometry property, which was shown to be sufficient to guaran-
tee some sort of approximation. Subsequently, using tools from the theory of stochastic
processes, we proved that random measurements operators fulfill our additive restricted
isometry property with high probability provided that the number of measurements scales,
up to a polylogarithmic factor, linearly in the intrinsic dimension of the signal. Moreover,
we saw that this number can be further improved by using “more non-convex” regulariz-
ers. However, this improvement reflects itself only in prefactors depending on the relative
sparsity of the sparse component vectors and constant factors. By means of Chapter 5 we
supported the former chapter with numerical verification of the theoretical results. At the
very end, we even made a third structural assumption besides low-rankness and sparsity,
namely positivity of the vector components.
In retrospect, we see several possible directions for further research, some of which we
want to address in the following.
As for all non-convex algorithms, initialization is a delicate task, both decisive and chal-
lenging. We did not establish any provably correct recovery guarantees or convergence
guarantees for our or a different type of initialization. This remains an open problem.
Moreover, there are two further quantities associated with the multi-penalty functional
and, in consequence, our numerical method for which we require some sort of prior knowl-
edge. First, the rank of the matrix was hard-coded into the formulation, raising the
question if one could determine it in advance if it is unknown. Regarding this, however,
we saw that our algorithm does not enforce the rank but sees it as an upper bound.
And even if it underestimates the rank it still yields a suitable approximation, meaning
that very generous estimates of the rank would be sufficient for practical applications.
Second, the regularization parameters α and β were fixed in advance and need to be
chosen cautiously, which is a well-known drawback of multi-penalty approaches in gen-
eral. Furthermore, we focussed exclusively on measurement operators constructed using
(unstructured) sub-Gaussian measurement ensembles. In several applications, however,
one does not have this freedom as one may be bound to a limited amount of randomness.
Examples include structured random measurements, such as random partial Fourier ma-
trices or partial random circulant matrices. Moreover, whereas Gaussian measurement
ensembles have full rank with probability one, in certain instances one may face rank-
one measurements. While having received much attention in the standard compressed
sensing framework, an adaption to our setting remains to be done. A further open, yet,
central question to be answered is the question of optimality. This issue is closely linked
to information theoretical bounds for our introduced matrix sets of ((`p, `q)-effectively)
(s1, s2)-sparse rank-R matrices. We are currently not aware of any such bounds, for which
reason we only showed that our established bound on the necessary number of measure-
ments for reconstructing such matrices improves upon previous results.
Eventually, as the final contribution of this thesis, we want to outline a beautiful connec-
tion to deep feedforward neural networks.
Machine learning, and the broader field of artificial intelligence, gained tremendous at-
tention in recent years. Due to their superior performance in applications such as face
and handwriting recognition, natural language processing and strategy games as well as
their progress in autonomous driving and medical diagnosis, they experienced enormous
research interest. Machine learning typically comes into play when it is too complicated
to code a computer program directly and when one disposes of large amounts of data.
In supervised learning, a branch of machine learning, labeled training data is used to
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find patterns in order to generalize beyond the input data, i.e., be able to predict labels
of unknown instances. Artificial neural networks, among others, such as support vector
machines, provide a way to represent data and are capable of revealing complex models
on the basis of unstructured data. An illustration of a three-layered feedforward neural
network is given below.

Multiple hidden layersInput
layer

Output
layer

Figure: Structure of a fully connected feedforward neural network with three input neu-
rons, three hidden layers with five, four and five neurons and one single output neuron.

Each blue node of the previous figure represents one neuron and processes its input data u
by evaluating σ

(
θ +

∑m
i=1 aiui

)
, where a is a weight vector, θ a scalar-valued threshold

and σ : R → R a non-linear function, the so-called activation function. Note that the
former two quantities are individual for each neuron, whereas the latter is, in general,
fixed for the whole network. The same holds for the orange node(s), however, sometimes,
the activation function is skipped in the output neuron(s). Training such neural networks
is an extremely difficult task, as non-convex optimization is involved. Moreover, due to
the large number of parameters, interpretability is also an issue. This draws parallels to
sparse principal component analysis.
Let us now have a closer look at the two central subproblems of our numerical method
ARBeR, the optimization problems (4.31) and (4.32). As already observed, they are
essentially of the form (4.33) and can be tackled by employing iterative thresholding,
cf. Subsection 1.4.3. The respective update rules were given in (1.82), (1.90) and (1.94)
taking the general form x̂k = σ(Wx̂k−1 + w), where σ denotes the respective scalar
thresholding operator and is applied to each entry of a vector if its input is a vector.
We note that one iteration of the thresholding algorithm can be described by one layer
of a neural network. Thus, the update of one single component of our non-orthogonal
matrix decomposition can be computed by a feedforward neural network, whose number of
hidden layers plus the output layer matches the number of iterations. Each layer contains
the same number of neurons, coinciding with the dimension of the component vector.
As our approach ARBeR alternates between u and v components, this is followed by a
further feedforward neural network of the same type. Only the number of neurons per
layer as well as the activation function change. This alternating procedure is repeated
over all component vectors and the outer loop of our numerical method, yielding a very
deep neural network. Eventually, the desired component vectors are distributed over the
output layers of the last 2R neural sub-networks.
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Appendix

This additional part provides a collection of further material referred to in the thesis but
skipped there for reasons of clarity and brevity.

A.1 Auxiliary Results

We start with some auxiliary tools, which supplement assertions from the thesis and
complement certain steps in proofs.

Lemma A.2 (Relations of `q-Norms and `q-Quasi-Norms). Let 0 < q ≤ p <∞. Then,

(i) for z ∈ `q(R) it holds ‖z‖p ≤ ‖z‖q, i.e., `q(R) ⊂ `p(R), and

(ii) for z ∈ RN it also holds ‖z‖q ≤ N1/q−1/p‖z‖p.

Proof. Firstly, for (i), we assume without loss of generality that ‖z‖q = 1 so that in
particular |zi| ≤ 1 for all k ∈ N. Since p ≥ q we have |zi|p = |zi|q|zi|p−q ≤ |zi|q and
1/p ≤ 1/q, which is used in the first and second inequality of

‖z‖p =

(
∞∑
i=1

|zi|p
)1/p

≤

(
∞∑
i=1

|zi|q
)1/p

≤

(
∞∑
i=1

|zi|q
)1/q

= ‖z‖q = 1, (A.6)

respectively. For a general non-zero z ∈ `q(R) consider z/‖z‖q.
Secondly, assertion (ii), follows by applying Hölder’s inequality with p̃ := p/q ∈ (1,∞)
and q̃ = p̃/(p̃− 1) = p/(p− q), as

‖z‖qq =
N∑
i=1

(|zi|q · 1) ≤

(
N∑
i=1

(|zi|q)p/q
)q/p

·N (p−q)/p = ‖z‖qp ·N
(p−q)/p. (A.7)

Remark A.3. If z ∈ RN is s-sparse, the statement from Lemma A.2(ii) can be sharpened
by replacing N with s, i.e., for z ∈ ΣN

s we have ‖z‖q ≤ s1/q−1/p‖z‖p for 0 < q ≤ p <∞.

Lemma A.4. Let A ∈ Rm×N and y ∈ Rm.

(i) Let η ≥ 0. If ẑ is a unique minimizer of (1.65), then there exists a parameter s ∈ N0

such that ẑ is also a unique minimizer of (1.75).

(ii) Conversely, let s ∈ N0. If ẑ is a unique minimizer of (1.75), there exists a parameter
η ≥ 0 such that ẑ is also a unique minimizer of (1.65).
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Proof. Firstly, for (i), let us set s = ‖ẑ‖0 ∈ N0 and consider all z ∈ RN with z 6= ẑ and
‖z‖0 ≤ s. As ẑ is a unique minimizer of (1.65), for all such z it necessarily has to hold
‖Az− y‖2 > η ≥ ‖Aẑ− y‖2. Thus, ẑ is the unique minimizer of (1.75).
Secondly, for (ii), let us set η = ‖Aẑ− y‖2 and consider all z ∈ RN with z 6= ẑ and
‖Az− y‖2 ≤ η. As ẑ is a unique minimizer of (1.75), for all such z it necessarily has to
hold ‖z‖0 > s ≥ ‖ẑ‖0. Thus, ẑ is the unique minimizer of (1.65).

Lemma A.5 (Schur Complement). Let M ∈ R(ν1+ν2)×(ν1+ν2) denote a symmetric matrix
of the form

M =

(
A B
BT C

)
(A.8)

with symmetric A ∈ Rν1×ν1 and C ∈ Rν2×ν2 and arbitrary B ∈ Rν1×ν2. Let A be addi-
tionally invertible. Then

M =

(
A B
BT C

)
=

(
Idν1 0

BTA−1 Idν2

)(
A 0
0 C−BTA−1B

)(
Idν1 A−1B
0 Idν2

)
.

(A.9)
Moreover, M � 0 if and only if A � 0 and C−BTA−1B � 0.

Proof. The matrix equality obviously holds. The second statement follows since a block
diagonal matrix is positive (semi)definite if and only if each of its diagonal blocks is
positive (semi)definite.

Lemma A.6 (Norm Equivalence for a Matrix with a Non-Orthogonal Decomposition).
Let Z ∈ Rn1×n2 possess a decomposition of the form

Z = UΣVT =
R∑
r=1

σrur (vr)
T , (A.10)

where {ur}Rr=1 ⊂ Rn1 denotes a set of linearly independent, yet, maybe non-orthogonal,
vectors of unit norm, {vr}Rr=1 ⊂ Rn2 a set of vectors of unit norm and {σr}Rr=1 ⊂ R+ a
set of positive scalars. Then,

cU‖Σ‖F ≤ ‖Z‖F ≤ CU‖Σ‖F (A.11)

with constants cU =
√
λmin(UTU) and CU =

√
λmax(UTU).

Proof. By rewriting the squared Frobenius norm of Z we observe that

‖Z‖2
F =

n2∑
j=1

n1∑
i=1

∣∣∣∣∣
R∑
r=1

σrurivrj

∣∣∣∣∣
2

=

n2∑
j=1

∥∥∥∥∥
R∑
r=1

σrvrjur

∥∥∥∥∥
2

2

=

n2∑
j=1

∥∥∥∥∥∥∥U
 σ1v1j

...
σRvRj


∥∥∥∥∥∥∥

2

2

. (A.12)

Let us now define the auxiliary vector wj = (σ1v1j, . . . , σRvRj)
T ∈ RR and note that for

fixed j it holds λmin(UTU)‖wj‖2
2 ≤ ‖Uwj‖2

2 ≤ λmax(UTU)‖wj‖2
2. With this we conclude

‖Z‖2
F =

n2∑
j=1

‖Uwj‖2
2 '

n2∑
j=1

‖wj‖2
2 =

n2∑
j=1

R∑
r=1

|σrvrj|2 =
R∑
r=1

|σr|2‖vr‖2 =
R∑
r=1

|σr|2 = ‖Σ‖2
F .

(A.13)
for hidden constants c2

U = λmin(UTU) and C2
U = λmax(UTU).
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Remark A.7. If the decomposition in (A.10) is a singular value decomposition of Z, the
statement of Lemma A.6 reduces to the well-known fact ‖Z‖F = ‖Σ‖F .

Lemma A.8 ([FMN19, Lemma 4.1]). Let α, β, a, b, p, q > 0. Then

f : R+ → R, λ 7→ f(λ) = αλpa+ βλ−qb (A.14)

attains its minimum at λ̃ =
(
q
p
βb
αa

) 1
p+q and has the minimal value

min f = f(λ̃) = Cpq(αa)
q
p+q (βb)

p
p+q , (A.15)

where Cpq =
(
q
p

) p
p+q +

(
p
q

) q
p+q .

Proof. Differentiating f shows f ′(λ) = αpλp−1a − βqλ−q−1b, yielding the critical point
when set equal to zero. By considering the limits for λ → 0+ and λ → ∞, it is a
minimizer. The minimal value can be computed immediately.

Lemma A.9 (Monotonicity of Kq,N
s in q). Let 0 < q1, q2 ≤ 2. If q1 ≤ q2, then it holds

Kq1,N
s ⊂ Kq2,N

s .

Proof. Let us firstly exclude the two cases q2 = 2 and q1 = q2, in which the statement
is obvious. Thus, we can restrict ourselves to the situation 0 < q1 < q2 < 2. Now, let
z ∈ Kq1,N

s and without loss of generality assume that ‖z‖2 = 1.
Since q2 < 2 we have p̃ := (2−q1)/(q2−q1) ∈ (1,∞) and q̃ = p̃/(p̃−1) = (2−q1)/(2−q2).
Applying Hölder’s inequality in the last step of the first line yields

‖z‖q2q2 =
N∑
i=1

|zi|q2 =
N∑
i=1

|zi|2/p̃|zi|q2−2/p̃ ≤

(
N∑
i=1

|zi|2
)1/p̃( N∑

i=1

|zi|q̃(q2−2/p̃)

)1/q̃

= ‖z‖2/p̃
2

(
N∑
i=1

|zi|q1
)(2−q2)/(2−q1)

= ‖z‖q1(2−q2)/(2−q1)
q1

≤
(
s1/q1−1/2

)q1(2−q2)/(2−q1)
= s1−q2/2,

(A.16)

where the next-to-last step involves the assumption that z ∈ Kq1,N
s , i.e., ‖z‖q1q1 ≤ s1−q1/2.

For a general non-zero z ∈ Kq1,N
s consider z/‖z‖2.

A.2 An Upper Bound on Dudley’s Integral for Kq,R,Γs1,s2

In this technical section we compute bounds for the individual integrals I1, . . . , I6 appear-
ing in inequality (4.88). To be precise, we consider the integrals I1, I3, I6 and I2 + I5, I4,
noting that two different types are apparent. To keep the notation compact, we make use
of the abbreviation I25 = I2 + I5

Let us estimate the integrals I1, I3 and I6 first. We start with a second change of variables,
namely ε′′ = ε′/(30ΓR), which yields the first equality in the following computation.
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Furthermore, we employ Cauchy-Schwarz inequality to obtain the second line. After an
evaluation of the remaining integral we have

I1 = 30ΓR
√
R(n1 + n2 + 1)

∫ 2

5
√
R

(s2/n2)1/q−1/2

0

√
log

(
1

ε′′

)
dε′′

≤ 30ΓR
√
R(n1 + n2 + 1)

√∫ 2

5
√
R

(s2/n2)1/q−1/2

0

12 dε′′
∫ 2

5
√
R

(s2/n2)1/q−1/2

0

log

(
1

ε′′

)
dε′′

= 30ΓR
√
R(n1 + n2 + 1)

√√√√ 2

5
√
R

( s2

n2

)1/q−1/2

ε′′
(

1 + log

(
1

ε′′

))∣∣∣∣ 2

5
√
R

(s2/n2)1/q−1/2

0

= 12ΓR
√
n1 + n2 + 1

( s2

n2

)1/q−1/2

√
1 + log

(
5
√
R

2

( s2

n2

)1/2−1/q
)

≤


(

432Γ2R2
(
s2
n2

)2/q−2
s2 log

(
5e
√
R

2

(
s2
n2

)1/2−1/q
))1/2

if n2 ≥ n1,(
288Γ2R2

(
s1
n1

)2/q−2
s1 log

(
5e
√
R

2

(
s2
n2

)1/2−1/q
))1/2

if n2 < n1,

(A.17)

where the last inequality makes use of the assumption s2/n2 ≤ s1/n1 for the case n2 < n1.
Apart from the assumption s2/n2 ≤ s1/n1 entering additionally in the fourth line, we
proceed similarly for I3, which results in

I3 = 30ΓR
√
R(n1 + 1)

∫ 2

5
√
R

(s1/n1)1/q−1/2

2

5
√
R

(s2/n2)1/q−1/2

√
log

(
1

ε′′

)
dε′′

≤ 30ΓR
√
R(n1 + 1)

√√√√∫ 2

5
√
R

(s1/n1)1/q−1/2

2

5
√
R

(s2/n2)1/q−1/2
12 dε′′

∫ 2

5
√
R

(s1/n1)1/q−1/2

2

5
√
R

(s2/n2)1/q−1/2
log

(
1

ε′′

)
dε′′

= 30ΓR
√
R(n1 + 1)

√√√√ 2

5
√
R

(( s1

n1

)1/q−1/2

−
( s2

n2

)1/q−1/2
)
ε′′
(

1 + log

(
1

ε′′

))∣∣∣∣ 2

5
√
R

(s1/n1)1/q−1/2

2

5
√
R

(s2/n2)1/q−1/2

≤ 12ΓR
√
n1 + 1

(( s1

n1

)1/q−1/2

−
( s2

n2

)1/q−1/2
)√

1 + log

(
5
√
R

2

( s2

n2

)1/2−1/q
)

≤
(

144Γ2R2(n1 + 1)

(( s1

n1

)2/q−1

+
( s2

n2

)2/q−1
)(

1 + log

(
5
√
R

2

( s2

n2

)1/2−1/q
)))1/2

≤


(

288Γ2R2
((

s1
n1

)2/q−2
s1 +

(
s2
n2

)2/q−2
s2

)
log
(

5e
√
R

2

(
s2
n2

)1/2−1/q
))1/2

if n2 ≥ n1,(
432Γ2R2

(
s1
n1

)2/q−2
s1 log

(
5e
√
R

2

(
s2
n2

)1/2−1/q
))1/2

if n2 < n1,

(A.18)

where the next-to-last inequality follows as (x− y)2 ≤ x2 + y2 for all x, y ≥ 0.
Upper bounding the last integral of this type, namely I6, essentially follows the lines of
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the former I3 and uses s1/n1 ≤ 1 in the last inequality. Thus we get

I6 = 30ΓR
√
R

∫ 1

30
√
R

2

5
√
R

(s1/n1)1/q−1/2

√
log

(
1
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)
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√
R

2
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√
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√
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1
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√√√√ 1
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√
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1 + log
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1 + log
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2

( s1

n1

)1/2−1/q
)))1/2

≤
(

145Γ2R2 log

(
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√
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( s1
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)1/2−1/q
))1/2
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(A.19)

Now, let us turn to the remaining integrals and derive upper bounds for I25 = I2 + I5

and I4. The change of variables ε′′ = ε′/(12Γ
√
R) yields

I25 = 12ΓR
√
s2

∫ 1/12

(s2/n2)1/q−1/2

(
1

ε′′

)q/(2−q)√
log

(
6en2

s2

ε′′(3q−2)/(2−q)
)

dε′′, (A.20)

and

I4 = 12ΓR
√
s1

∫ 1/12

(s1/n1)1/q−1/2

(
1

ε′′

)q/(2−q)√
log

(
6en1

s1

ε′′(3q−2)/(2−q)
)

dε′′, (A.21)

respectively. Due to the analogy of both integrands and their integration bounds it suffices
to estimate the first one and substitute s2 by s1 and n2 by n1 in order to obtain a bound
for the latter one as well.
Unfortunately, for q 6= 2/3 or q 6= 1, the integrand in (A.20) admits no elementary
antiderivative as it would involve the error function. This in turn necessitates upper
bounding the integrands beforehand. Therefore, let µ, ν ∈ R and consider

(
1

ε′′

)q/(2−q)−µ(
1

ε′′

)µ√
log

(
6en2

s2

ε′′(3q−2)/(2−q)−νε′′ν
)
, (A.22)

where the gray terms highlight the ones to be bounded in advance. We note that for
(µ, ν) ∈

{
{1} × R

}
∪
{
R× {0}

}
we can find elementary antiderivatives.
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Let us firstly cover the special case q = 2/3. A straightforward computation shows

I25 = 12ΓR
√
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(A.23)

For 0 < q < 2/3, it turns out that among the feasible parameters µ and ν the optimal
upper bound is obtained by adapting the computations from the case q = 2/3. More
precisely, choosing µ = q/(2− q) and ν = 0 yields

I25 ≤ 12ΓR
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In contrast, in the case 2/3 < q < 1, the same methodology yields the bound
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(A.25)

which is unfortunately not optimal for the whole range of q due to the singularity in q = 1
in (A.25). For q sufficiently close to 1, a better bound can be obtained by choosing µ = 1
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and ν = (3q − 2)/(2− q), which results in
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(A.26)

Note that by construction, for q = 2/3, the bounds (A.24) and (A.25) coincide with
(A.23).
Let us now turn to the second special case q = 1 and reproduce the computations
from [FMN19, Lemma 7.1, Integrals I2 and I4]. We get
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(A.27)

Note that for q → 1 the bound (A.26) converges pointwise in s2 to the bound in (A.27).
As already mentioned previously, bounds on I4 are obtained analogously.
To conclude, we need to put the obtained individual bounds together by making use of
the basic inequality x+ y ≤

√
2(x2 + y2) for all x, y ∈ R. For the first type of integral we

obtain
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(A.28)

where C = 12 · 144Γ2 denotes an absolute constant.
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Similarly, for the second type of integral we get
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where
Si(q) =

{
si <

(
1
12

)2q/(2−q)
ni

}
(A.30)

denotes the set of the indicator 1Si(q)(si) for i = 1, 2. This indicator function comes into
play since the integrals I4 and I25 are only active if the sparsities s1 and s2 are sufficiently
small. We furthermore collect constants, which may depend on q, together with the
logarithmic terms in the function
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Note that for 0 < q ≤ 2/3 we have (2− q)/(2− 2q) ≤ 2 and that for 2/3 < q ≤ 1 we have
min{(2− q)/(2− 2q), (2(2− q))/(3(3q − 2))} ≤ 2

√
2.

Neglecting constants and summarizing all logarithmic terms in one polylogarithmic term
we arrive at
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(A.34)

Let us emphasize that the hidden constant is independent of the parameter q.
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Remark A.10. The prefactor Γ2R2 should be read as Γ2R ·R. The latter factor, R, be-
longs to the lower bound on the information theoretic complexity of the matrix set Kq,R,Γs1,s2

,
which is of order O(R(s1 + s2)), see, e.g., the computation after equation (3.6). The
former factor, Γ2R, is the squared Frobenius radius dF

(
HKq,R,Γs1,s2

)
of the auxiliary matrix

set HKq,R,Γs1,s2
.

Remark A.11. We want to note that the two cases q = 2/3 and q = 1 seem to be special
in the sense that the integrands can be integrated directly without further bounding.
Furthermore, recall that q = 2/3 and q = 1 were also cases where the thresholding
operators could be determined explicitly, cf. Paragraphs 1.4.3(1) and 1.4.3(2). However,
despite the latter being true also for q = 1/2, the antiderivative of (A.20) involves the
error function in this case.
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