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AS: aortic stenosis 

AVA: aortic valve area 

AVGmean: mean aortic valve gradient 

LFLG AS: low-flow, low-gradient aortic stenosis 

LVEF: left ventricular ejection fraction 

LVOT: left ventricular outflow tract 

mPAP: mean pulmonary artery pressure 

SAVR: surgical aortic valve replacement 

SVi: stroke volume index 

TAPSE: tricuspid annular plane systolic excursion 

TAVR: transcatheter aortic valve replacement 

VTI: velocity time integral 
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1 Introduction 
 
 
1.1 Anatomy of the aortic valve. 

The aortic valve is located between the left ventricle and the aorta. The normal aortic valve is tricuspid; 

the cusps have a semilunar shape and are freely mobile (see Figure 1). The cusps are named according 

to their location with respect to the coronary arteries, i.e. left coronary, right coronary and non-coronary 

cusp (1). The aortic valve opens during systole, when the left ventricle contracts and the pressure in the 

left ventricle exceeds that in the aorta. The arrangement of cusps of the aortic valve is designed to allow 

non-turbulent forward flow of blood into the aorta during systole while also preventing backflow during 

diastole. Non-turbulent forward blood flow is important, as it results in an even distribution of mechanical 

stress to the aortic wall. Calcification of the cusps results in altered biomechanical properties of the 

aortic valve; narrowing of the aortic valve orifice leads to increases in resistance, and hence a greater 

force of left ventricular contraction is required to eject the same volume of blood. 

 

 

 
Figure 1: Normal and pathologically calcified macroscopic aortic valve morphology and 
histological appearance. 

Photographs of a healthy tricuspid aortic valve (A) and a severely calcified aortic valve (B). 

Histopathological sections comparing the trilaminar structure from a healthy aortic valve cusp (C) with 

pathological alterations such as fibrotic material and a calcified nodule found in a diseased aortic valve 
cusp (D). After the initial phase, when initial injury occurs, deposition of calcium triggers a vicious circle 

increasing valve wall stress and tissue injury, reducing leaflet compliance, and enhancing further valve 

calcification (propagation phase). Adapted with permission from Lindman et al. (1). 

A B 

C D 
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1.2 Epidemiology of aortic stenosis: becoming the most frequent valvular heart disease. 

Calcific aortic stenosis (AS) results from progressive fibrocalcific remodeling of the aortic valve. It 

represents the most common valvular heart disease in developed countries, and the burden that it poses 

to health care systems is expected to increase over the next decades owing to ageing populations and 

the lack of effective prevention strategies to slow down disease progression. Whilst the prevalence of 

AS among adults between the ages 50 and 59 years ranges at only 0.2%, its prevalence increases 

almost linearly with age up to 9.8% among octogenarians as a result of its degenerative pathophysiology 

(2–4). 

 

 
1.3 Etiology: from streptococcal throat infections to age-related degenerative calcification. 

Calcific degeneration, a congenital bicuspid valve and rheumatic heart disease represent the most 

common causes for severe AS (5). Importantly, by 1970, the main etiology for AS in developed countries 

shifted from rheumatic fever to age-related degenerative calcification (6). This near complete elimination 

of rheumatic heart disease in developed countries during the late 20th century can be attributed to 

improvements of socioeconomic conditions and the widespread use of penicillin G benzathine to treat 

group A streptococcus throat infections. Nevertheless, rheumatic fever and related rheumatic heart 

disease persist in the poorest regions of the world (such as Oceania, South Asia, and central sub- 

Saharan Africa), resulting in 33 million people suffering from rheumatic heart disease and 319,000 

deaths due to rheumatic heart disease in 2015 (7). Whilst patients with rheumatic heart disease 

secondary to untreated streptococcal pharyngitis present during the sixth decade of life, patients with 

calcific AS typically develop symptoms at the age of ≈80 years (Figure 2) (8). A plethora of anatomical, 

genetic, and clinical factors all contribute to the pathogenesis of calcific AS. Clinical factors associated 

with calcific AS include older age, male gender, hypercholesterolemia, hypertension, smoking, and 

diabetes (9,10). Not surprisingly, coronary artery disease is a widespread comorbidity in patients with 

calcific AS. Moreover, mechanical stress due to abnormal blood-flow dynamics may also play a key role 

in the development of calcific AS, as congenitally bicuspid aortic valves, which are found in about 0.5 to 

0.8% of the population, disproportionately frequently represent the underlying anatomy in patients 

undergoing valve replacement for severe AS in developed countries (11). 
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Figure 2: On the shift in age at presentation among patients with severe aortic stenosis. 

Onset of symptoms is preceded by a long latent period of progressive narrowing of the aortic valve and 

consecutive myocardial pressure overload. The onset of symptoms heralds a rapid increase in mortality 

unless valve replacement is performed. Adapted with permission from Carabello et al. (6). 

 

 
1.4 Clinical presentation: dyspnea, angina, and syncope represent the symptom triad. 

The natural course of AS is characterized by a long latency period, in which the left ventricle adapts to 

progressive aortic valve narrowing with concentric muscle hypertrophy. Eventually, left ventricular 

remodeling becomes maladaptive and patients begin to experience symptoms. The onset of symptoms 

in patients with severe AS heralds a rapid extra-aortic valve cardiac disease progression and a high rate 

of death in untreated patients (see Figure 2) (12). Unless valve replacement is performed, most will die 

within five years (13). The classic symptom triad of AS include dyspnea, angina, and syncope, and they 

often only appear upon significant obstruction of the aortic valve. Moreover, it is sometimes difficult in 

elderly and cardiovascular multimorbid patients to distinguish symptoms caused by severe AS from that 

of other medical conditions such as coronary artery disease, atrial fibrillation, and deconditioning. 

Dyspnea on exertion is found as the most common initial symptom, and hemodynamic studies revealed 

that dyspnea develops particularly in patients with left ventricular diastolic dysfunction and elevated left- 

sided filling pressures (see Figure 3) (14). Angina as the second most common symptom develops when 

the myocardial oxygen demand exceeds the coronary oxygen supply, and angina is therefore often 

described by patients with coexisting coronary artery disease and left ventricular hypertrophy. Those 

patients experience angina typically during exercise, when the heart rate accelerates and the time 

available for coronary blood flow decreases (15,16). Approximately 15% of AS patients present with 
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syncope, which is the least frequent but most urgent component of the classic symptom triad. Patients 

who present with syncope are typically diagnosed with a smaller left ventricular cavity and a reduced 

output, ultimately resulting in inadequate cerebral blood flow during exercise or in the context of cardiac 

arrhythmias (14,17). 

 

 

 
Figure 3: Cardiac decompensation resulting in pleural effusion (chest X-ray on the left side) and 
pulmonary edema (chest X-ray on the right side) in patients with severe aortic stenosis. 

 

 
1.5 Diagnostics: universally available echocardiography is the cornerstone, but right heart 

catheterization might prove helpful in inconclusive cases. 

Transthoracic echocardiography represents the primary diagnostic modality for the evaluation of AS. 

Apart from confirming the diagnosis and assessing the severity of AS, echocardiography also allows to 

evaluate extra-aortic valve cardiac damages such as left ventricular dysfunction and concurrent valvular 

insufficiencies, hence providing further prognostic information, and identifying ancillary treatment 

targets. The severity of AS is typically assessed by continuous-wave Doppler echocardiography 

measuring the velocity of blood flow through the narrowed aortic valve orifice (see Figure 4). By applying 

the simplified Bernoulli equation, the pressure gradient across the aortic valve can be further calculated. 

Notably, the mean aortic valve gradient (AVGmean) is a more robust parameter than the maximum 

transvalvular jet velocity. Apart from being operator-dependent, the Bernoulli equation is also a gross 

simplification of valve hemodynamics, as it assumes a steady laminar flow, which is clearly not the case 
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in severe AS. Whilst mild AS is defined by a maximum transvalvular jet velocity < 3 m/s and/ or an 

AVGmean < 20 mmHg, severe AS is defined by a maximum transvalvular jet velocity ≥ 4 m/s and /or an 

AVGmean ≥ 40 mmHg (see Table 1) (18,19). 

 

 
Mild Moderate Severe 

Maximum transvalvular jet velocity (m/s) 2.5-3.0 3.0-4.0 >4.0 

Maximum aortic valve gradient (mmHg) <40 40-65 >65 

Mean aortic valve gradient (mmHg) <20 20-40 >40 

Aortic valve area (cm2) >1.5 1.0-1.5 <1.0 

Indexed aortic valve area (cm2/m2) >0.85 0.60-0.85 <0.60 

Table 1: Grading of aortic stenosis. 
 
 

 
Moreover, employment of the continuity equation based on the principle of conservation of mass allows 

for calculation of the functional aortic valve area (AVA), which is particularly useful in cases, where peak 

transvalvular jet velocity and AVGmean range lower than 4 m/s and 40 mmHg, respectively, but concerns 

about AS severity persist. According to the continuity equation, the stroke volume ejected through the 

left ventricular outflow tract (LVOT) must be equal to the stroke volume passing through the stenotic 

aortic valve orifice. Knowing the respective time velocity integral (VTI) of blood flow through the LVOT 

and the aortic valve, the functional AVA can then be calculated as follows: AVA = LVOTarea x (VTILVOT) / 

VTIaorta (see Figure 4). 
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Continuity equation:  what comes in … comes out. 

volume in = volume out 

 
Flow rate (cm3/s) = area x velocity 

areax x velocityx = areay x velocityy 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

velocityAV 
 

 
areaLVOT x velocityLVOT = areaAV x velocityAV 

areaAV = (areaLVOT x velocityLVOT) / velocityAV 

 
Figure 4: On the continuity equation to calculate the functional aortic valve area. 

 
AV: aortic valve; LVOT: left ventricular outflow tract. 
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A high-flow, high-gradient AS is typically met in patients with preserved left ventricular systolic function 

(see Figure 5). 

 

 

 

 
Figure 5: Transthoracic echocardiography in a patient presenting with severe aortic stenosis. 

A: Parasternal long-axis view. Please note the thickened right and non-coronary cusp of the aortic valve. 

B: Parasternal short-axis view. Please note the irregular calcification and thickening of the aortic valve. 

C: Continuous-wave Doppler echocardiography to assess flow velocity in the proximal aorta. Please 

note that a maximum transvalvular jet velocity of 4.8 m/s and a mean aortic valve gradient of 51 mmHg 

were measured. 

D: Pulsed wave Doppler echocardiography to assess flow velocity in the left ventricular outflow tract. 
Please note that a functional aortic valve area of 0.70 cm2 was calculated using the continuity equation, 

confirming the diagnosis of severe aortic stenosis. 

AV: aortic valve; LA: left atrium; LV: left ventricle; MPA: main pulmonary artery; MV: mitral valve; RA: 

right atrium; RV: right ventricle; RVOT: right ventricular outflow tract. 

 

 
Criteria to be met for the diagnosis of a classical low-flow, low-gradient (LFLG) AS are as follows: 1) 

maximum transvalvular jet velocity < 4 m/s and/ or AVGmean< 40 mmHg, 2) AVA ≤ 1 cm2, and 3) left 

ventricular ejection fraction (LVEF) < 50% (see Figure 6). Notably, the impaired left ventricular systolic 

function in classical LFLG AS might theoretically be caused by severe AS itself as a consequence of 

long-standing afterload mismatch, but more typically LFLG AS develops in multimorbid patients suffering 

from the combined presence of high afterload due to aortic valve obstruction and intrinsic myocardial 
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impairment secondary to ischemic heart disease for instance. Another important entity is “paradoxical” 

LFLG AS as encountered in patients with preserved LVEF. Those patients present with reduced left 

ventricular stroke volume indices (SVi ≤ 35 mL/m2), resulting from small left ventricular cavities (typical 

for elderly, hypertensive women with small body size and concentric hypertrophy), severe diastolic 

dysfunction (up to one-third of “paradoxical” LFLG AS patients might have concomitant cardiac 

amyloidosis (20)) or significant mitral regurgitation (21). A normal-flow, low-gradient AS can be 

encountered in patients with co-existing mitral regurgitation. 
 

 
Figure 6: Subtypes of low-gradient aortic stenosis. 

AS: aortic stenosis; AVA: aortic valve area; LVEF: left ventricular ejection fraction; MG: mean aortic valve 
gradient; SVi: stroke volume index. Adapted with permission from Clavel et al. (22). 

 

 
Obviously, measurement accuracy in terms of optimal alignment of the Doppler with the transvalvular 

jet and adequate recording of the true gradient is crucial to avoid an erroneous diagnosis of apparently 

moderate AS when severe AS is actually present. Planimetry of the AVA is therefore sometimes 

performed by transesophageal echocardiography (see Figure 7). 
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Figure 7: Planimetry of the aortic valve area by transesophageal echocardiography. 

 
 

 
In cases with inconclusive clinical and imaging findings, invasive evaluation of AS severity can prove 

further helpful. Notably, coronary angiography is essential prior to transcatheter aortic valve replacement 

(TAVR) and surgical aortic valve replacement (SAVR) in order to determine the potential need for 

concomitant revascularization (18). In inconclusive cases, right heart catheterization can be additionally 

performed, allowing AVA calculation based on transvalvular volume flow rate and pressure 

measurements. Moreover, right heart catheterization represents the gold standard to assess and 

classify pulmonary hypertension (23). Accurate assessment of pulmonary hypertension is also 

prognostically relevant in patients presenting with severe AS (24). At the same time, echocardiographic 

assessment of systolic pulmonary artery pressure levels tends to systematic underestimation in patients 

with severe tricuspid regurgitation (25,26), which can also be found in a considerable proportion of 

patients with severe AS (27,28). 

 

 
1.6 Indications for aortic valve replacement: clinical symptoms, aortic stenosis severity, 

and left ventricular response indicate the need for intervention. 

There are no directed medical therapies to slow the progression of severe AS besides generally 

reducing cardiovascular risk factors and optimizing comorbid conditions. In fact, a large, randomized, 

prospective clinical trial comparing aggressive lipid lowering therapy (daily intake of 40 mg of simvastatin 

plus 10 mg of ezetimibe) with placebo could not detect differences with regards to hemodynamic 

progression or time to valve replacement in adults with mild-to-moderate, asymptomatic AS (29). Patient 

outcomes therefore crucially depend on appropriate timing and type of aortic valve replacement as the 

Transesophageal echocardiography in a patient with a healthy aortic valve 
 
 
 
 
 
 
 

 
Transesophageal echocardiography in a patient with severe aortic stenosis 
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only effective treatment. Once symptoms occur, the mortality rate increases to > 50% within two years 

unless aortic valve replacement is performed promptly (30). Aortic valve replacement with a surgical or 

transcatheter approach is therefore a class I recommendation for symptomatic patients with severe AS, 

unless comorbidities or limited life expectancy suggest a more appropriate palliative care (18). Since AS 

is a progressive disease that will inevitably result in obstruction of the left ventricular outflow, even 

seemingly mild symptoms such as exertional dyspnea or decreased exercise capacity are an indication 

for aortic valve replacement in patients with severe AS (see Figure 8). 
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Figure 8: Management of patients with severe aortic stenosis (European Society of Cardiology 
guideline). 

BP: blood pressure; EuroSCORE: European System for Cardiac Operative Risk Evaluation; LVEF: left 

ventricular ejection fraction; SAVR: surgical aortic valve replacement; STS-PROM: Society of Thoracic 

Surgeons - predicted risk of mortality; TAVI: transcatheter aortic valve implantation; TF: transfemoral. 
Adapted with permission from Vahanian et al. (18). 

 

 
Whether aortic valve replacement is beneficial in asymptomatic patients with severe AS and normal left 

ventricular systolic function remains controversially discussed since decades. Whilst it was previously 

argued that intervention is not needed until symptoms supervene, because the risk of sudden cardiac 

death would be less than the risk of intervention, innovations in surgical and transcatheter techniques 

and concomitant reduction of procedural risks argue for early or elective replacement strategy instead 

of watchful waiting. The Aortic Valve ReplAcemenT versus Conservative Treatment in Asymptomatic 

SeveRe Aortic Stenosis (AVATAR) trial therefore randomized 157 asymptomatic patients (enrolled 

between 2015 and 2020) with severe AS and normal left ventricular function to either SAVR or 

conservative management according to current guidelines. Over a median follow-up of 32 months, 

patients randomized to early surgery had a significantly lower incidence of the primary composite 

endpoint of all-cause death, acute myocardial infarction, stroke or unplanned hospitalization for heart 

failure, as compared to patients allocated to the conservative treatment strategy (hazard ratio: 0.46 [95% 

confidence interval: 0.23-0.90], p-value: 0.021) (31). 

Apart from clinical symptoms and severity of aortic valve obstruction, the decision to replace a stenotic 

aortic valve may also take the left ventricular response to AS-induced pressure overload into account. 

Considering the complex valvular-ventricular interaction is important since the pathophysiology of 

adverse outcomes in AS is essentially determined by the extent of imbalance between the increase in 

left ventricular hemodynamic burden due to obstruction of the aortic valve, on the one hand, and the 

compensation capacity of the left ventricle to overcome this increase in pressure (and later volume) 

overload, on the other hand. This means that patients with already impaired left ventricular systolic 

function due to ischemic heart disease are more vulnerable to any new insult such as rising left 

ventricular pressure overload. The Transcatheter Aortic Valve Replacement to UNload the Left ventricle 

in patients with ADvanced heart failure (TAVR UNLOAD) trial therefore aim to investigate whether 

afterload reduction by means of TAVR on top of optimal heart failure therapy can improve clinical 

outcomes in patients with moderate AS and reduced LVEF (32). 
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1.7 Selection of valve replacement strategy: on the emergence of transcatheter aortic valve 
replacement. 

A multidisciplinary group of physicians involving interventional cardiologists, cardiac surgeons, imaging 

specialists, and anesthetists, referred to as “heart team”, typically develops an individualized risk-benefit 

analysis of the available options for aortic valve replacement considering for instance coexisting 

coronary artery disease (potentially in need of bypass grafting), severe impediments to surgery such as 

a heavily calcified, fragile (“porcelain”) aorta, and overall life expectancy. In fact, 30% of patients with 

severe symptomatic AS were denied surgery prior to the emerge of TAVR, and higher age and left 

ventricular dysfunction were the most striking characteristics of patients deemed inoperable (33). 

Similarly to intracoronary artery stenting as a novel, disruptive technology to reduce the disease burden 

in patients with coronary artery disease and prohibitively high operative risk, TAVR upon its first in human 

implantation in 2002 (34) has been established as a less invasive treatment option for severe AS in 

otherwise inoperable patients (35,36). The underlying idea to insert a biological valve inside a large stent 

and to implant this valve using a transcatheter technique was developed in 1987, when Henning 

Andersen got inspiration from a lecture by Julio Palmaz, who had previously invented balloon- 

expandable coronary stents in animals (37). Equipped with wires made of iron and steel from the 

hardware store and with pig hearts from the slaughterhouse, the initial proof-of-concept was performed 

in 1989 by an uneventful first implantation of a prothesis prototype in an 80 kg pig. Apart from reducing 

mortality in inoperable patients with severe AS, the Placement of Aortic Transcatheter Valves 

(PARTNER) trial has demonstrated that TAVR was an equivalent treatment option to SAVR in high-risk 

patients with regards to mortality, reduction in symptoms, and improved valve hemodynamics (38). A 

later randomized trial involving intermediate-risk patients with severe AS (PARTNER 2 trial) has further 

shown TAVR and SAVR result in similar outcomes regarding death or disabling stroke even in 

intermediate-risk patients (39), additionally supporting the undeniable efficacy of TAVR. This is 

remarkable, because TAVR has thus created a paradigm shift in the treatment of patient with severe AS 

that was not anticipated by cardiac surgeons (37). Technological enhancements and procedural 

simplification have since then fueled the implementation of TAVR into clinical practice. The PARTNER 

3 trial even demonstrates that among patients with severe AS, who were at low risk for death with 

surgery, the rate of the composite of death, stroke, or rehospitalization at one year was significantly 

lower with TAVR than with surgical aortic valve replacement (hazard ratio: 0.54 [95% confidence interval: 

0.37-0.79], p-value: 0.001) (40). Also considering that patients undergoing TAVR benefit from faster 
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recovery, shorter hospital stay and rapid return to normal activities (41,42), TAVR at the time of writing 

is the preferred option in all patients ≥ 75 years of age regardless of the degree of surgical risk (18,43). 

 

 
1.8 Prognosis: on the impact of extra-aortic valve cardiac damage. 

Conventional perioperative risk evaluation and concomitant prognostic assessment for patients with 

severe AS is based on surgical risk scores mainly relying on valve-related factors, symptoms and co- 

morbidities, but because those risk models (such as European System for Cardiac Operative Risk 

Evaluation [EuroScore] score and Society of Thoracic Surgeons [STS] score) were not specifically 

developed from a patient population undergoing TAVR, their generalized application seems 

questionable (44). More recently, a bipartite assessment of patients with severe AS grading both AS 

severity (akin to grading the tumor in oncology) and staging extra-aortic valve cardiac (akin to staging 

the tumor extension in oncology) damage has been proposed by Généreux et al. (27). This anatomic 

and functional staging classification based on parameters measured during routine echocardiographic 

examination distinguishes five stages of disease progression with rising stages as assessed prior to 

TAVR translating into increased mortality (see Figure 9). 

 

 

 
Figure 9: Staging classification of aortic stenosis based on the extent of cardiac damage. 

LA: left atrial; LV: left ventricular; RV: right ventricular. Adapted with permission from Généreux et al. 
 
(27). 
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This concept of staging cardiac repercussions of AS was also successfully validated in patients with 

moderate AS (45). Yet, this staging classification of cardiac damage assumes a sequential order of 

accumulated pathologies, hence ignoring the aggravating impact of comorbidities such as ischemic 

heart disease, chronic obstructive pulmonary disease, and atrial fibrillation. To determine whether the 

observed damage is caused by the AS per se or by a co-developed disease is particularly important in 

order to identify additional treatment targets beyond the correction of AS. The necessity to accurate 

capture the patient’s cardiac status in its contextual structural and functional complexity is further 

emphasized by observational studies demonstrating that irreversibility of pulmonary hypertension and/ 

or right heart dysfunction after TAVR are associated with higher mortality (46–50). 
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1.9 Artificial intelligence: chances for a new age in cardiology? 

In the dawning age of artificial intelligence, machine learning technology is progressively implemented 

into medical research and clinical decision support, and by performing tasks in a faster and potentially 

more precise fashion than humans (51–56), machine learning technology could pave the way to patient- 

tailored (precision) medicine. Importantly, the future of medicine is not about the competition of artificial 

intelligence against humans, but real-life medical practice will be coined by collaborative setups, where 

oversight-providing humans receive assistance from artificial intelligence. For instance, Chen et al. have 

developed an augmented reality microscope, where the predictions of an artificial intelligence algorithm 

on detecting cancer are superimposed on the view of the sample seen by the user through the eyepiece 

of an optical light microscope in real-time (57). 

Artificial intelligence can be simply defined as a field of computer science that enables computers to 

perform tasks that normally require human intelligence. Whilst traditional artificial intelligence techniques 

were limited in their ability to process raw data and therefore required cumbersome engineering and 

considerable domain expertise to design feature extractors, modern machine learning algorithms allow 

to self-control their performance and make adjustments automatically by using the data itself and hence 

improving at a task with incremental experience (“learning through iteration”) (see Figure 10). 

 
Artificial intelligence 
(the computer mimics 
human intelligence by 

applying simple rules for 
decision-making, such as if- 

then rules and decision 
trees) 

 
Machine learning 

(a subset of artificial 
intelligence including 

statistical techniques that 
enables machines to 
improve at tasks with 

incremental experience) 

 
Deep learning 

(a subset of machine 
learning that is based on 

multilayered “neural” 
networks and vast amounts 
of data to train themselves 

to perform tasks) 

 
Figure 10: Domains of artificial intelligence. 

 
 

 
For example, automation of electrocardiography interpretation was traditionally performed by computers 

mimicking human intelligence in terms of applying rules-based algorithms. Such rules were explicitly 
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programmed by humans and intended to determine the heart rate, to detect the underlying rhythm, and 

to describe any pathognomonic waveform changes (58). Since the input features and subsequent rules 

to apply on were selected and designed by humans, the resulting diagnosis from the computer was easy 

to understand. At the same hand, those traditional artificial intelligence techniques were limited to predict 

human-defined outputs, potentially neglecting the complexity of a disease. 

Modern machine learning algorithms, on the other hand, are particularly useful to analyze highly 

complex data structures without the constraints of applying any a priori hypotheses or reducing the data 

set to a few input features. Mainly two disciplines of machine learning can be distinguished: 

1) In unsupervised machine learning, the computer aims at recognizing any consistent patterns within 

a data set. 

2) In supervised machine learning, data need to be labelled and the computer predicts a label of interest. 
 
 

 
1.9.1 On the principles of unsupervised machine learning for pattern recognition. 

Unsupervised machine learning resembles natural human learning in a way that humans discover the 

structure of the world by observing and analyzing it (59). Unsupervised machine learning approaches 

include dimensionality reduction techniques such as principal component analysis and clustering 

methods such as k-means or agglomerative, hierarchical clustering (60). Unsupervised machine 

learning requires only minimal human interaction, as it is unconstrained by labor-intensive and often 

variable human labelling. As a consequence, the strength of unsupervised machine learning lies in its 

ability to identify novel relationships in the data that are potentially unrecognizable to humans. For 

instance, unsupervised machine learning algorithms have been successfully applied to data sets 

composed of clinical variables concerning patients with severe AS and automatically identified distinct 

disease phenotypes (55,61). Importantly, cluster analysis often represents only the first step to group 

the data, and there exists no a priori guarantee that one unsupervised machine learning technique is 

superior to all others (62). In order to avoid that the clustering approach results in lumping together 

patient groups that should be separated, distinct unsupervised machine learning techniques must be 

tested, and the emerging clusters must be validated with clinical domain knowledge (63). As a result, 

unsupervised machine learning approaches hold the promise to detect novel phenotypes in complex 

diseases, which differ in underlying pathophysiology and are associated with different response to 
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treatment and/ or outcome. By eliciting those formerly hidden associations in data sets, machine learning 

has the potential to pave the way to precision medicine (64). 

 

 
1.9.2 On the principles of supervised machine learning as prediction models. 

Supervised machine learning is employed to predict an outcome of interest. Based on a training set with 

labelled instances (requiring considerable human efforts to create), supervised machine learning 

algorithms autonomously select input features and iteratively weights them to identify the best 

combination to predict the outcome of interest. After learning and self-constructing the rules for decision- 

making, the trained model can be applied to never-before-seen data for validation. In contrast to 

conventional statistics such as linear or logistic regression models, supervised machine learning 

employing random forests, extreme gradient boosting algorithms or artificial neural networks rely on 

fewer assumptions, and they have proven particularly useful to decipher complex, non-linear 

associations between input data and outcome. For instance, supervised machine learning algorithms 

have been proven to successfully diagnose genetic disorders based on facial phenotypes (65) – data 

input that is hardly possible to be analyzed by regression analysis, but can be processed by artificial 

neural networks. Those networks mimic the human cortex: digitized input is processed through multiple 

layers of artificial neurons until an output is ultimately provided (see Figure 11). Like biological neurons, 

artificial neurons are interconnected. Each artificial neuron receives incoming signals from multiple 

neurons, processes the information, and transmits the signal to the next layer (it “fires” similar to the 

action potential of a biological neuron). By employing rectified linear unit activation functions for neurons 

in the hidden layers, the strength of their output signal is sensitive to the activation input sum and not 

subjected to any saturation effects. Importantly, signals are only passed further if the aggregated 

incoming signals cross a threshold. Weighting the incoming signals is a crucial part of the autodidactic 

learning aspect of artificial neural networks during training – successive adjustments ultimately enable 

the artificial neural network to generate outputs that are increasingly similar to the target output (59,66). 
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Nature Machine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: From biological to artificial neurons. 

A biological neuron (A) is composed of a cell body containing the nucleus, many branching extensions 

called dendrites, and one very long axon, which splits off into many branches with synapses – which 

are in turn connected to the dendrites or cell bodies of other neurons to transmit signals via the release 
of neurotransmitters. When a neuron receives a sufficient amount of excitatory neurotransmitters within 

a few milliseconds, the voltage gradient across its membrane changes (B), and the neuron generates a 

short, all-or-nothing electrical impulse called action potential. This potential travels along the axon and 

activates synaptic connections as it reaches them. Each neuron being connected to thousands of other 

neurons, often organized in consecutive layers as in the human cerebral cortex (C), allows for highly 

complex information processing. The artificial neuron is inspired by the biological neuron: it has one or 

more inputs and generates one output (D). When the weighted sum of its inputs surpasses a threshold 

(E), the neuron is activated, and it produces a signal to the next layer. Whilst Mother Nature had chosen 
to use roughly sigmoid activation functions in neurons (all-or-nothing law), rectified linear unit activation 

functions perform better in artificial neural networks – mainly because they do not saturate for positive 

values. Connecting multiple layers of artificial neurons enables information processing similar to the 

human brain (F). An artificial neural network with a deep stack of hidden layers is referred to as a deep 

neural network - those are particularly powerful in biosignal, image and natural language processing. 

Artwork from Amelie Hesse (printed with permission). 
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1.9.3 Explainable artificial intelligence to fill the gap between predictive power and 
transparency of machine learning algorithms. 

Besides predicting the outcome of interest, supervised machine learning techniques also offer the 

possibility to explore the relationships between input data and a specific outcome. To explain the 

determination of output is extremely important, because a systematically flawed “black box” algorithm 

has tremendous potential for medical malpractice. The European Union’s General Data Protection 

Regulation therefore demands that the output generated by an algorithm must be comprehensible 

before the algorithm can be implemented into patient care (67). Based on classic game-theoretic 

Shapley values, Lundberg et al. have developed a method that allows global model insights by 

combining local explanations of model predictions (68). By informing clinicians not only about the 

probability of an event, but also about the factors that are underlying this prediction, explainable artificial 

intelligence offers clinicians a target to treat the patient and possibly avert the anticipated event (69). 
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2 Methods 
 
 
All statistical and machine learning analyses were performed using R statistical software (R version 

3.6.3; R Foundation for Statistical Computing, Vienna, Austria). All computations were performed on a 

MacBook Pro (macOS Catalina version 10.15.5, Apple Computer) with a 2.3-GHz quad-core Intel Core 

i7 processor. 
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3 Objectives 
 
 
Acknowledging that patients with severe AS present with vast heterogeneity in terms of disease 

progression and comorbidities, this dissertation thesis employed a combination of unsupervised and 

supervised machine learning techniques to refine the understanding of phenotypic complexity in patients 

with severe AS. 

 

 
1) “Harnessing feature extraction capacities from a pre-trained convolutional neural network (VGG-16) 

for the unsupervised distinction of aortic outflow velocity profiles in patients with severe aortic stenosis” 

Since the human brain can process only a finite number of parameters, a lot of information in raw data 

remain unrecognized. Harnessing feature extraction capacities from an artificial neural network that 

mimics the human visual cortex, but has sixteen instead of six neural layers, holds the promise to refine 

interpretation of e.g., aortic outflow velocity profiles. Those profiles represent a crucial part in the 

echocardiographic process to diagnose a severe AS. Moreover, those profiles contain not only 

information about obstruction of the aortic valve, but they also provide information about left ventricular 

contractility. Aortic outflow velocity profiles were therefore presented to an established artificial neural 

network, which allocated them to two distinct clusters. Cluster-related survival differences after TAVR 

were hereinafter evaluated, ultimately addressing the question whether a computer can extract relevant 

information from one single echocardiographic image to stratify patients into high-risk and low-risk 

cohorts for mortality after TAVR. 

 

 
2) “Subphenotyping of patients with aortic stenosis by unsupervised agglomerative clustering of 

echocardiographic and hemodynamic data” 

Apart from the fact that severe AS can trigger a deleterious cascade of extra-aortic valve damage to the 

heart and pulmonary circulation, patients with severe AS typically suffer from comorbidities such as 

coronary artery disease, chronic obstructive pulmonary disease, and atrial fibrillation, which in turn can 

cause additional impairments to the cardiac structure and function. Unsupervised agglomerative 

clustering was therefore applied to preprocedural data from echocardiography and right heart 

catheterization to detect phenotypes among patients with severe AS sharing similar extents of cardiac 

damage. In comparison to traditional hypothesis-driven staging classifications, this machine learning 



Objectives 22 
 

approach comes with the advantage not to infer causality between severity of AS and observed cardiac 

damage, but patients are segregated into clusters based on real-world data. Thus, this approach 

promises to better capture the patient’s cardiac status in its structural and functional complexity. By 

comparing survival rates after TAVR in accordance with cluster assignment, our phenotyping approach 

based on unsupervised machine learning was tested to provide clinically relevant information. 
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4 Results 
 
 
4.1 Summarized publication #1: “Harnessing feature extraction capacities from a pre- 

trained convolutional neural network (VGG-16) for the unsupervised distinction of 

aortic outflow velocity profiles in patients with severe aortic stenosis” 

Severity of AS is typically assessed by transthoracic echocardiography. The aortic outflow velocity profile 

contains valuable information about both aortic valve obstruction and left ventricular contractility. For 

instance, an increasing transvalvular pressure gradient can be observed in the natural course of 

progressive narrowing of the aortic valve, until acceleration of flow velocity eventually deteriorates due 

to left ventricular decompensation, resulting in a LFLG AS. Moreover, the shape of the aortic outflow 

velocity profile changes from a triangular shape with an early peak to a much more rounded form with a 

later peak, reflecting slow end-systolic opening of the stenotic aortic valve combined with left ventricular 

dysfunction. 

Notably, the human brain can process only a finite number of parameters. Previous attempts to extract 

information from the aortic outflow velocity profile therefore focused on single characteristics and were 

hence prone to oversimplification. This study therefore sought to employ unsupervised machine learning 

techniques to decipher meaningful echocardiographic signatures and related cardiac phenotypes by 

analyzing aortic outflow velocity profiles from selected patients with severe AS undergoing TAVR. 

Importantly, the superhuman performances of machine learning algorithms are typically based on a 

myriad of information, so that the computer can iteratively learn from the data itself. However, bedside 

research embedded in clinical practice is commonly based on modest-sized patient cohorts. This study 

therefore applied the concept of transfer learning: a convolutional neural network (VGG-16) was trained 

on a large data set of publicly available images (ImageNet data set; 14 million images belonging to 1,000 

classes), and the convolutional part of the pre-trained VGG-16 model was subsequently employed to 

analyze aortic outflow velocity profiles from a small, but well-characterized cohort of patients with severe 

AS. As a matter of fact, the number of enrolled patients was limited to 101 patients to emphasize the 

ubiquitous problem of data scarcity. After principal component analysis and k-means clustering, 

practice-relevant evidence was assessed by relating cluster assignment with 2-year all-cause mortality 

after TAVR. 
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Among 101 patients (mean age: 79.3 ± 6.78 years; 49 [48.5%] women) constituting the study population 

at hand, 2-year survival following TAVR was 83.0% (95% CI 75.1-91.7%). Patients initially presented 

with an AVA of 0.804 ± 0.223 cm2, and predominantly suffered from dyspnoea corresponding to New 

York Heart Association functional class III (56.4%). 

The convolutional part of the pre-trained VGG-16 model in conjunction with principal component analysis 

and k-means clustering of the abstractions of Doppler tracings enabled to distinguish two shapes of 

aortic outflow velocity profiles. Interestingly, all patients from cluster 2 presented with a AVGmean below 

40 mmHg, whilst AVGmean from patients in cluster 1 ranged between 20 and 102 mmHg. Kaplan-Meier 

analysis revealed that mortality in patients from cluster 2 (n = 40 [39.6%]) was significantly increased 

(hazard ratio for 2-year mortality: 3 [95% confidence interval: 1-8.9]). Besides reduced cardiac output 

(4.57 ± 1.42 L/min) and signs of pulmonary hypertension (mean pulmonary artery pressure [mPAP]: 

31.9 ± 12.2 mmHg), patients from cluster 2 also presented with more severe impairment of right 

ventricular function (tricuspid annular plane systolic excursion [TAPSE]: 18.1 ± 3.82 mm) and right atrial 

enlargement (right atrial area: 22.0 ± 8.28 cm2) in comparison to patients from cluster 1. Contrarily to the 

initial expectation, patients from cluster 1 with seemingly less extensive cardiac damage were diagnosed 

with a more severe obstruction of the aortic valve than patients from cluster 2 (AVA: 0.739 ± 0.211 cm2 

vs. 0.903 ± 0.205 cm2, p-value: 0.0001). 

In conclusion, this study demonstrates that transfer learning enables sophisticated pattern recognition 

in a clinical data set of limited size. Relying on good quality Doppler tracings and harnessing the 

intriguing feature extraction capacity from an established convolutional neural network, agnostic 

interpretation of aortic flow velocity profiles from patients with severe AS revealed that not so much the 

actual stenosis of the aortic valve expressed as AVA determines the prognosis after TAVR, but the left 

ventricular compensation capacity and subsequent development of pulmonary hypertension and right 

heart failure stratify patients into low-risk and high-risk cohorts. 

 
 
Contribution from Elena Rippen: 

 
1) Data acquisition, cleaning, and curation. 

 
2) Manual cropping and scaling of aortic outflow velocity profiles. 

 
3) Conception of the study and interpretation of data (together with Mark Lachmann). 

4) Drafting of the manuscript (together with Mark Lachmann). 
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4.2 Summarized publication #2: “Subphenotyping of patients with aortic stenosis by 

unsupervised agglomerative clustering of echocardiographic and hemodynamic data” 

Previous staging classifications to stratify patients with AS hypothesized a sequential order of 

accumulated extra-aortic valve pathologies such as left ventricular dysfunction, mitral regurgitation and 

left atrial enlargement, pulmonary hypertension, and ultimately right heart failure (27,45). Such an 

approach infers causality between AS and co-existing pathologies, and it hence ignores the aggravating 

impact of comorbidities such as ischemic heart disease, atrial fibrillation and chronic obstructive 

pulmonary disease on cardiac function and structural integrity. This is particularly problematic, because 

a plethora of contributors to right heart dysfunction, including coronary artery disease and subsequent 

myocardial ischemia as well as chronic obstructive pulmonary disease and secondary pulmonary 

hypertension, will persist despite correction of severe AS and hence limit the expected benefit of TAVR. 

A novel classification system based on unsupervised agglomerative clustering in conjunction with an 

artificial neural network was therefore established to comprehensively capture the patient’s cardiac 

status in its contextual structural and functional complexity. 

Unsupervised agglomerative clustering was applied to pre-procedural data from echocardiography and 

right heart catheterization from 366 consecutively enrolled patients undergoing TAVR for severe AS at 

two tertiary centers in Germany between 2014 and 2020. 

Cluster analysis revealed four distinct phenotypes, reflecting various pathophysiologies and extents of 

disease progression, and ultimately differing in prognosis following TAVR. 

Patients in cluster 1 (n = 164) presented with preserved cardiac function (LVEF: 57.2 ± 6.36%) and 

normal pulmonary artery pressures (mPAP 21.2 ± 6.54 mmHg). Kaplan-Meier analysis showed that 2- 

year survival from patients in cluster 1, hereinafter referred to as reference, ranged high at 90.6%. In 

contrast, patients in cluster 2 (n = 66) featured elevated pulmonary artery pressures (mPAP: 34.2 ± 7.76 

mmHg) but a still preserved right ventricular systolic function (TAPSE: 21.3 ± 3.52 mm) and a low rate 

of severe tricuspid regurgitation (2 out of 66 patients; 3.03%). Given the isolated postcapillary nature of 

pulmonary hypertension in cluster 2, which is considered reversible upon resolving the underlying AS, 

patients in cluster 2 had a 2-year survival rate not statistically different from that of patients in cluster 1 

(2-year survival 85.8% [95% confidence interval: 76.9%-95.6%]; hazard ratio for 2-year mortality: 1.5 

[95% confidence interval: 0.6-3.6]). Left heart failure (LVEF: 42.4 ± 15.7%), severe pulmonary 

hypertension (mPAP: 46.9 ± 8.54 mmHg), and right heart dysfunction (TAPSE 16.1 ± 4.57 mm) 
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characterized patients in cluster 3 (n = 45). A classical LFLG AS was found in 21 out of 45 patients 

(46.7% vs. 6.10%, 4.55% and 28.6% in clusters 1, 2 and 4, respectively; p-value: 6.1x10-13). Moreover, 

24.4% of patients from cluster 3 were diagnosed with chronic obstructive pulmonary disease (in 

comparison to 8.54%, 15.2% and 15.4% in clusters 1, 2 and 4, respectively; p-value: 0.0376). 

Subsequently, their 2-year mortality was significantly increased (2-year survival: 77.3% [95% confidence 

interval: 65.2-91.6%], hazard ratio for 2-year mortality: 2.6 [95% confidence interval: 1.1-6.2]). 

Interestingly, patients from cluster 4 (n = 91) showed mild postcapillary pulmonary hypertension (mPAP: 

27.5 ± 9.15 mmHg), yet dilatation of all heart chambers, biventricular dysfunction (LVEF: 47.3 ± 12.2%; 

TAPSE: 16.8 ± 4.46 mm), and a high prevalence of both mitral and tricuspid regurgitation (12.1% and 

14.3%, respectively). Besides a high prevalence of atrial fibrillation and/ or flutter (75.8%), patients from 

cluster 4 also presented with highest age at diagnosis (81.3 ± 6.73 years vs. 79.6 ± 5.96, 78.1 ± 6.91 

and 79.8 ± 8.73 years in clusters 1, 2 and 3, respectively; p-value: 0.0068). Patients from cluster 4 

featured the worst prognosis (2-year survival: 74.9% [95% confidence interval: 65.9-85.2%], hazard ratio 

for 2-year mortality: 2.8 [95% confidence interval: 1.4-5.5]). 

Taken together, artificial intelligence-enabled phenotyping sheds light from a new perspective on the 

complex, non-linear accumulation of extra-aortic valve cardiac damage in patients with severe AS. In 

contrast to traditional, hypothesis-driven classification systems, the proposed phenotyping approach 

does neither hypothesize a linear sequence of accumulated pathologies (thus it incorporates the 

aggravating impact of comorbidities), nor does it stratify patients into low-risk and high-risk cohorts in 

accordance with a single variable’s dichotomy (thus it reduces the risk of oversimplification). Addressing 

irreversibility of pulmonary hypertension and persistence of severe tricuspid regurgitation after TAVR 

should obtain priority in order to improve long-term survival. 

 

 
Contribution from Elena Rippen: 

 
1) Data acquisition, cleaning, and curation. 

 
2) Conception of the study and interpretation of data (together with Mark Lachmann). 

 
3) Drafting of the manuscript (together with Mark Lachmann). 

 
4) Assisting in revising the manuscript according to the reviewers’ comments (together with Mark 

Lachmann). 
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5 Discussion 

On the recovery of extra-aortic valve cardiac damage after transcatheter aortic valve 

replacement. 

Considering that the extra-aortic valve cardiac damage is not necessarily related to the severity of AS, 

it remains questionable if the extra-aortic valve cardiac damage can be completely reversed upon TAVR. 

Contributors to right heart dysfunction such as chronic obstructive pulmonary disease and secondary 

pulmonary hypertension will persist despite correction of severe AS, and possibly limit the beneficial 

effect of TAVR. In a follow-up study we have therefore analyzed the recovery of extra-aortic valve cardiac 

damage in accordance with our artificial intelligence-based phenotyping approach (70). We could show 

that TAVR elicited favorable effects on left heart hemodynamics and significantly ameliorated pulmonary 

artery pressures in all patients (Table 2). 

 

 
 Before (n = 366) After (n = 247) p-value 

LVEF, mean ± SD [95% CI], % 52.7 ± 11.1 53.2 ± 9.85 0.66 

 [51.6-53.9] [52.0-54.4]  

sPAP, mean ± SD [95% CI], mmHg 47.2 ± 15.8 43.3 ± 15.1 0.0079 

 [45.4-49.1] [41.2-45.4]  

Right midventricular diameter, mean ± SD [95% CI], 29.5 ± 6.60 29.9 ± 6.00 0.088 

mm [28.8-30.2] [29.1-30.8] 
 

TAPSE, mean ± SD [95% CI], mm 19.6 ± 5.02 19.8 ± 5.14 0.72 

 [19.1-20.2] [19.2-20.5]  

LA area, mean ± SD [95% CI], cm2 26.3 ± 8.29 26.3 ± 7.86 0.12 

 [25.4-27.2] [25.3-27.3]  

RA area, mean ± SD [95% CI], cm2 20.5 ± 7.47 20.9 ± 7.94 0.86 

 [19.7-21.4] [19.9-22.0]  

MR ≥ III/IV°, No (%) 34 (9.29%) 9 (3.64%) 0.0015 

TR ≥ III/IV°, No (%) 33 (9.02%) 25 (10.1%) 0.53 

Table 2: Comparison of echocardiographic follow-up data before and after transcatheter aortic 
valve replacement. 

Comparison was calculated by paired-samples Wilcoxon test. 
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CI: confidence interval; LA area: left atrial area; LVEF: left ventricular ejection fraction; MR: mitral 

regurgitation; RA area: right atrial area; SD: standard deviation; sPAP: systolic pulmonary artery 

pressure; TAPSE: tricuspid annular plane systolic excursion; TR: tricuspid regurgitation. 
 

 
Yet, a detailed look into the recovery of extra-aortic valve cardiac damage per cluster revealed that 

structural and functional alterations of the right heart persisted in patients assigned to high-risk clusters 

3 and 4, which were characterized by a high prevalence of chronic obstructive pulmonary disease and 

atrial fibrillation and/ or flutter (Figure 12). 

 

 
100 

 
80 

 
60 

 
40 

 
20 

 
 
 
 

 
Time point 

Preprocedural 

Postprocedural 

120 
 

100 
 

80 
 

60 
 

40 
 

20 

 
 
 
 

 
Time point 

Preprocedural 

Postprocedural 

 
0 

 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

 
0 

 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

 
 

80 50 
 
 

60 
 

 
40 

 

 
20 

 

 
Time point 

Preprocedural 

Postprocedural 

40 

 
30 

 
20 

 
10 

 

 
Time point 

Preprocedural 

Postprocedural 

 

0 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

0 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

 
 

80 100 
 
 

60 
 

 
40 

 

 
20 

 

 
Time point 

Preprocedural 

Postprocedural 

80 

 
60 

 
40 

 
20 

 

 
Time point 

Preprocedural 

Postprocedural 

 

0 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

0 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

 
 

40 40 
 

 
30 30 

 

 
20 

 

 
10 

 
Time point 

Preprocedural 
Postprocedural 

 

 
20 

 

 
10 

 
Time point 

Preprocedural 
Postprocedural 

 
0 

 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

0 
 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Class 

 
 
p−value: 0.036 p−value: 0.613 p−value: 0.082 p−value: 0.311 

 
 
 
p−value: 0.016 p−value: 0.887 p−value: 0.647 p−value: 0.016 

p−value: 0.819 p−value: 0.062 p−value: 0.100 p−value: 0.081 

 
 

p−value: 0.60 p−value: 0.83 p−value: 0.86 p−value: 0.21 

 
p−value: 0.42 p−value: 0.77 p−value: 0.78 p−value: 0.78 

Pr
op

or
tio

n  
of

 M
R  
³  

III
/IV

° [
%

]  
LA

 a
re

a  
[c

m
2 ] 

Ri
gh

t m
id

ve
nt

ric
ul

ar
 d

ia
m

et
er

 [m
m

] 
LV

EF
 [%

]  

RA
 a

re
a 

[c
m

2 ]  
TA

PS
E 

[m
m

] 
sP

AP
 [m

m
Hg

] 



Discussion 29 
 

 
Figure 12: Comparison of echocardiographic parameters before and after transcatheter aortic 
valve replacement in accordance with cluster assignment. 
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LA area: left atrial area; LVEF: left ventricular ejection fraction; MR: mitral regurgitation; RA area: right 

atrial area; sPAP: systolic pulmonary artery pressure; TAPSE: tricuspid annular plane systolic excursion; 

TR: tricuspid regurgitation. 
 

 
Whilst previous studies had already described that right heart dysfunction can persist in a number of 

cases after TAVR (49,71), and that postprocedural decline of right ventricular function and/ or worsening 

of tricuspid regurgitation are associated with a poor prognosis (50,72), our artificial intelligence-based 

phenotyping approach predicts the trajectory of cardiopulmonary recovery ex ante, and it might thus 

refine the prognostic assessment. Moreover, since right-sided cardiac damage including severe 

tricuspid regurgitation persisted after TAVR and ultimately limited prognosis, our follow-up study 

emphasizes the need for additional treatments such as transcatheter tricuspid valve interventions. 

 

 
On the generalizability of the proposed artificial intelligence-enabled phenotyping approach to 

further valvular heart diseases. 

Similar to patients with severe AS, patients with severe mitral regurgitation also present with 

considerable heterogeneity depending on underlying etiology, extent of disease progression and 

comorbidities. We therefore adapted our artificial intelligence-enabled phenotyping approach to patients 

with severe mitral regurgitation undergoing transcatheter edge-to-edge repair (73). Among 609 patients 

undergoing mitral valve transcatheter edge-to-edge repair for both primary and secondary mitral 

regurgitation, four pathophysiologically novel and prognostically informative phenotypes were unraveled 

by unsupervised agglomerative clustering (Figure 13): 

1) Cluster 1 was constituted by patients with isolated defects of the mitral valve and without 

significant extra-mitral valve cardiac damage - meaning that they presented with preserved left 

ventricular function (LVEF: 56.5 ± 7.79%) and regular left ventricular end-systolic diameter (35.2 

± 7.52 mm). Hereinafter serving as a reference, 5-year survival in patients from cluster 1 was 

60.9%. 

2) Cluster 2 was similar to cluster 1, but patients had already progressed to developing pulmonary 

hypertension (systolic pulmonary artery pressure levels: 68.4 ± 16.2 mmHg). Even though mitral 

valve transcatheter edge-to-edge repair resulted in a significant amelioration of systolic 

pulmonary artery pressure levels in these patients at 1-year follow-up (49.6 ± 18.1 mmHg), their 
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5-year survival ranged at 43.7% and was significantly lower compared to that from cluster 1 - 

emphasizing the importance of adequate timing of intervention. 

3) Cluster 3 was characterized by left (and right) ventricular failure in terms of chamber dilatation 

and functional impairment - most of these patients would have been classified as typical 

secondary mitral regurgitation. Their 5-year survival was reduced to 38.3%. 

4) Poorest 5-year survival (23.8%) was observed in patients from cluster 4 presenting with biatrial 

dilatation. All patients from cluster 4 were diagnosed with atrial fibrillation, possibly sustaining a 

vicious circle of mitral regurgitation, atrial enlargement, and atrial fibrillation. 

 
 
 
 

 
 
 
Figure 13: Artificial intelligence-enabled phenotyping approach facilitates to capture the 
complexity of cardiac damage as commonly encountered in patients presenting with mitral 
regurgitation. 

LA volume: left atrial volume; LVEF: left ventricular ejection fraction; LVESD: left ventricular end-systolic 
diameter; MV EROA: mitral valve effective regurgitant orifice area; RA area: right atrial area; sPAP: 
systolic pulmonary artery pressure; TAPSE: tricuspid annular plane systolic excursion. 
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Importantly, it was also confirmed in patients with mitral regurgitation that correction of the valvular defect 

reduces the hemodynamic burden imposed to the pulmonary circulation expressed as systolic 

pulmonary artery pressure levels, but right ventricular dysfunction as initially observed in patients from 

cluster 3 did not recover after mitral valve transcatheter edge-to-edge repair, nor could pathological 

remodeling obtained as biatrial dilatation in patients from cluster 4 be reversed (Table 3, Figure 14). 

 

 
  

 
Cluster 1 

 
(n = 139) 

 

 
Cluster 2 

 
(n = 71) 

Class 
 

Cluster 3 
 

(n = 150) 

 

 
Cluster 4 

 
(n = 20) 

 

 
p-value 

LVEF, % 54.5 ± 8.70(3) 54.1 ± 8.51(3) 33.7 ± 12.5(1,2,4) 49.8 ± 13.9(3) <2.2x10-16 

LVEDD, mm 51.3 ± 7.23(3) 51.0 ± 6.64(3) 63.5 ± 10.6(1,2,4) 55.4 ± 9.43(3) <2.2x10-16 

LVESD, mm 35.2 ± 7.70(3) 34.0 ± 7.87(3) 54.0 ± 13.3(1,2,4) 40.9 ± 13.4(3) <2.2x10-16 

LVEDV, mL 122 ± 46.5(3) 103 ± 39.4(3) 203 ± 85.1(1,2) 127 ± 15.9 1.0x10-10 

LVESV, mL 64.1 ± 34.7(3) 54.2 ± 26.1(3) 149 ± 83.8(1,2) 99.7 ± 62.6 1.2x10-12 

MV gradient, mmHg 3.40 ± 1.45 3.51 ± 1.64 2.94 ± 1.47 3.39 ± 1.04 0.0334 

sPAP, mmHg 42.2 ± 14.7 49.6 ± 18.1 42.1 ± 12.5 45.8 ± 17.3 0.0668 

TAPSE, mm 19.1 ± 3.99(2,3,4) 17.6 ± 5.41(1) 16.2 ± 4.16(1) 15.9 ± 4.24(1) 3.5x10-5 

RV diameter (midventricular), 

mm 

29.9 ± 5.73 31.9 ± 5.99 31.5 ± 6.61 36.8 ± 12.4 0.2037 

LA volume, mL 109 ± 42.0(2,3,4) 156 ± 71.3(1,4) 130 ± 46.0(1,4) 316 ± 132(1,2,3) 1.4x10-7 

RA area, cm2 24.3 ± 7.84(4) 27.3 ± 8.57(4) 25.2 ± 7.29(4) 42.3 ± 9.50(1,2,3) 0.0004 

TAPSE/sPAP ratio, mm/mmHg 0.530 ± 0.321(2,3) 0.404 ± 0.214(1) 0.427 ± 0.188(1) 0.398 ± 0.157 0.0127 

 

 
Table 3: Echocardiographic 1-year follow-up data. 

Continuous variables are given as means ± standard deviation. Numbers in parentheses indicate 

between which clusters significant differences (p-value ≤ 0.05) were detected. 

No differences in MV gradient after correction for multiple testing. 

LA volume: left atrial volume; LVEDD: left ventricular end-diastolic diameter; LVEDV: left ventricular end- 
diastolic volume; LVEF: left ventricular ejection fraction; LVESD: left ventricular end-systolic diameter; 
LVESV: left ventricular end-systolic volume; MV gradient: mitral valve gradient; RA area: right atrial area; 
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RV diameter (midventricular): right midventricular diameter; sPAP: systolic pulmonary artery pressure; 

TAPSE: tricuspid annular plane systolic excursion. 
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Figure 14: Comparison of echocardiographic parameters before and after mitral valve 
transcatheter edge-to-edge repair in accordance with cluster assignment (derivation cohort). 

LA volume: left atrial volume; LVEF: left ventricular ejection fraction; LVESD: left ventricular end-systolic 

diameter; MV gradient: mitral valve gradient; RA area: right atrial area; sPAP: systolic pulmonary artery 

pressure; TAPSE: tricuspid annular plane systolic excursion. 
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Upon training an artificial neural network to facilitate future patient-to-cluster assignment, the prognostic 

value of our artificial intelligence-enabled phenotyping approach with regards to 5-year all-cause 
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mortality was externally confirmed in 817 patients from two independent institutions, which is to be 

considered as another important milestone before clinical implementation (Figure 15). 
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Figure 15: External validation of the proposed machine learning-based phenotyping approach in 
patients with severe mitral regurgitation undergoing transcatheter edge-to-edge repair. 

Kaplan-Meier survival plots comparing cluster-related survival between patients from the derivation and 

the external validation cohort. 

 

 
On man-machine interactions for future patient-to-cluster assignment. 

 
The future of medicine is not about the competition of artificial intelligence against humans, but real-life 

medical practice will be coined by collaborative setups, where oversight-providing humans receive 

assistance from artificial intelligence (74). Our studies provide evidence on the usefulness of machine 

learning algorithms in several valvular heart diseases such as AS, mitral regurgitation, and tricuspid 

regurgitation (26,70,73,75,76). To facilitate their clinical implementation, the underlying codes must be 

made publicly available. Since our artificial neural network to assign patients with severe AS to one of 

the four proposed subphenotypes demonstrated an excellent performance to detect patients from high- 

risk clusters 3 and 4 (100.0% and 85.2% sensitivity, as well as 95.9% and 95.1% specificity, respectively) 

(76), we decided to export our trained artificial neural network and to embed it into a simplified code that 

allows future patient-to-cluster assignment (see Figure 16) (70). Currently regarded as a prototype, our 
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man-machine interaction-based classification model could serve as an online-based decision support 
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tool in the future. Feeling that we as clinicians should strive to use the best (not the simplest) model 

available to guide treatment decisions, this would open the avenue for other cardiologists to stratify their 

patients according to our classification system. 

 
 
 

 
Artificial neural network 
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hence refined prognostic assessment 

 
 
 
 
 
 
 
 
Figure 16: On the future man-machine interaction to stratify patients with severe aortic stenosis 
according to the proposed artificial intelligence-enabled phenotyping approach. 

This schematic illustration demonstrates how we envision the future of cardiology: a future patient with 

severe aortic stenosis would be examined by echocardiography and right heart catheterization, and the 

measured parameters would be given to the artificial neural network as input data, which in turn 

calculates an individualized cluster assignment with concomitant prognosis. 
 

 
A control group of conservatively treated patients with severe aortic stenosis, assigned to 

beforehand defined clusters, could have quantified life-extending effects of transcatheter aortic 

valve replacement in accordance with cluster assignment. 

It is inherent to the nature of this retrospective, observational study that no definitive conclusions can be 

drawn regarding the benefit of TAVR in accordance with cluster assignment, as a (randomized) 

conservative treatment group as control was missing. Even though 2-year survival rates from patients 

in high-risk clusters 3 and 4 ranged at low levels (77.3% and 74.9%, respectively), their survival was still 

better compared to conservatively managed patients featuring 2-year survival rates below 50% (30). 

Thus, it can be said that the beneficial effect of TAVR in patients from clusters 3 and 4 was limited 

H1.1 

 

H2.1 

 
  Y1  

 
  X1  H1.2 

 

H2.2 

 
  Y2  

 
  X…  H1.3 

 

H2.3 

 
  Y3  

 
X12  H… 

 
H… 

 
  Y4  

 
H 1.12 H 2.12 

  

 

Softm
ax activation  



Discussion 38 
 

compared to patients from clusters 1 and 2, but for sure it was not in vain. For the future, we believe that 

it would be of interest to additionally apply our man-machine interaction-based phenotyping approach 

to a cohort of conservatively treated patients in order to ultimately quantify the net survival benefit 

between treatment groups in accordance with cluster assignment. 
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6 Conclusion 
 

 
In this thesis focusing on the employment of artificial intelligence in patients with severe AS, it was shown 

that smart collaborative setups converging human and machine intelligence can enhance our 

understanding of often complex clinical presentations. Not so much the obstruction of the aortic valve, 

which can be resolved by TAVR, but the (irreversible) extra-aortic valve cardiac damage determines 

prognosis and therefore demands to be properly captured. Our artificial intelligence-enabled 

phenotyping approach has a clinical consequence as it prompts timely correction before the fixation of 

irreversible extra-aortic valve damage, and it emphasizes the need for additional treatments such as 

transcatheter tricuspid valve interventions to improve survival in high-risk clusters. 



References 40 
 

7 References 
 
 
1. Lindman BR., Clavel M-A., Mathieu P., et al. Calcific aortic stenosis. Nat Rev Dis Primer 

2016;2:16006. Doi: 10.1038/nrdp.2016.6. 

2. Eveborn GW., Schirmer H., Heggelund G., Lunde P., Rasmussen K. The evolving epidemiology 
of valvular aortic stenosis. The Tromsø Study. Heart 2013;99(6):396–400. Doi: 10.1136/heartjnl- 
2012-302265. 

3. Osnabrugge RLJ., Mylotte D., Head SJ., et al. Aortic Stenosis in the Elderly. J Am Coll Cardiol 
2013;62(11):1002–12. Doi: 10.1016/j.jacc.2013.05.015. 

4. d’Arcy JL., Coffey S., Loudon MA., et al. Large-scale community echocardiographic screening 
reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE 
Population Cohort Study. Eur Heart J 2016;37(47):3515–22. Doi: 10.1093/eurheartj/ehw229. 

5. Otto CM., Prendergast B. Aortic-Valve Stenosis — From Patients at Risk to Severe Valve 

Obstruction. N Engl J Med 2014;371(8):744–56. Doi: 10.1056/NEJMra1313875. 

6. Carabello BA. Introduction to Aortic Stenosis. Circ Res 2013;113(2):179–85. Doi: 
10.1161/CIRCRESAHA.113.300156. 

7. Watkins DA., Johnson CO., Colquhoun SM., et al. Global, Regional, and National Burden of 

Rheumatic Heart Disease, 1990–2015. N Engl J Med 2017;377(8):713–22. Doi: 

10.1056/NEJMoa1603693. 

8. Braunwald E. Aortic Stenosis: Then and Now. Circulation 2018;137(20):2099–100. Doi: 
10.1161/CIRCULATIONAHA.118.033408. 

9. Stewart BF., Siscovick D., Lind BK., et al. Clinical Factors Associated With Calcific Aortic Valve 

Disease fn1fn1This study was supported in part by Contracts NO1-HC85079 through HC-850086 

from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 

Maryland. J Am Coll Cardiol 1997;29(3):630–4. Doi: 10.1016/S0735-1097(96)00563-3. 

10. Katz R., Wong ND., Kronmal R., et al. Features of the Metabolic Syndrome and Diabetes Mellitus 

as Predictors of Aortic Valve Calcification in the Multi-Ethnic Study of Atherosclerosis. Circulation 

2006;113(17):2113–9. Doi: 10.1161/CIRCULATIONAHA.105.598086. 

11. Roberts WC., Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in 

adults having isolated aortic valve replacement for aortic stenosis, with or without associated 

aortic regurgitation. Circulation 2005;111(7):920–5. Doi: 10.1161/01.CIR.0000155623.48408.C5. 

12. Ross J., Braunwald E. Aortic Stenosis. Circulation 1968;38(1s5). Doi: 10.1161/01.CIR.38.1S5.V- 

61. 

13. Varadarajan P., Kapoor N., Bansal RC., Pai RG. Clinical profile and natural history of 453 

nonsurgically managed patients with severe aortic stenosis. Ann Thorac Surg 2006;82(6):2111– 

5. Doi: 10.1016/j.athoracsur.2006.07.048. 

14. Park S-J., Enriquez-Sarano M., Chang S-A., et al. Hemodynamic patterns for symptomatic 



References 41 
 

presentations of severe aortic stenosis. JACC Cardiovasc Imaging 2013;6(2):137–46. Doi: 

10.1016/j.jcmg.2012.10.013. 

15. Rajappan K., Rimoldi OE., Dutka DP., et al. Mechanisms of Coronary Microcirculatory 

Dysfunction in Patients With Aortic Stenosis and Angiographically Normal Coronary Arteries. 

Circulation 2002;105(4):470–6. Doi: 10.1161/hc0402.102931. 

16. Gould KL., Carabello BA. Why Angina in Aortic Stenosis With Normal Coronary Arteriograms? 

Circulation 2003;107(25):3121–3. Doi: 10.1161/01.CIR.0000074243.02378.80. 

17. Carabello BA. Georg Ohm and the Changing Character of Aortic Stenosis: It’s Not Your 

Grandfather’s Oldsmobile. Circulation 2012;125(19):2295–7. Doi: 

10.1161/CIRCULATIONAHA.112.105825. 

18. Vahanian A., Beyersdorf F., Praz F., et al. 2021 ESC/EACTS Guidelines for the management of 

valvular heart disease. Eur Heart J 2021:ehab395. Doi: 10.1093/eurheartj/ehab395. 

19. Writing Committee Members, Otto CM., Nishimura RA., et al. 2020 ACC/AHA Guideline for the 

Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the 

American College of Cardiology/American Heart Association Joint Committee on Clinical Practice 
Guidelines. J Am Coll Cardiol 2021;77(4):450–500. Doi: 10.1016/j.jacc.2020.11.035. 

20. Ternacle J., Krapf L., Mohty D., et al. Aortic Stenosis and Cardiac Amyloidosis. J Am Coll Cardiol 

2019;74(21):2638–51. Doi: 10.1016/j.jacc.2019.09.056. 

21. Guzzetti E., Annabi M-S., Pibarot P., Clavel M-A. Multimodality Imaging for Discordant Low- 
Gradient Aortic Stenosis: Assessing the Valve and the Myocardium. Front Cardiovasc Med 
2020;7:570689. Doi: 10.3389/fcvm.2020.570689. 

22. Clavel M-A., Magne J., Pibarot P. Low-gradient aortic stenosis. Eur Heart J 2016;37(34):2645– 

57. Doi: 10.1093/eurheartj/ehw096. 

23. Galiè N., Humbert M., Vachiery J-L., et al. 2015 ESC/ERS Guidelines for the diagnosis and 

treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of 

Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European 

Respiratory Society (ERS)Endorsed by: Association for European Paediatric and Congenital 

Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart 

J 2016;37(1):67–119. Doi: 10.1093/eurheartj/ehv317. 

24. Tang M., Liu X., Lin C., et al. Meta-Analysis of Outcomes and Evolution of Pulmonary 
Hypertension Before and After Transcatheter Aortic Valve Implantation. Am J Cardiol 
2017;119(1):91–9. Doi: 10.1016/j.amjcard.2016.09.015. 

25. Lurz P., Orban M., Besler C., et al. Clinical characteristics, diagnosis, and risk stratification of 

pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter 

tricuspid valve repair. Eur Heart J 2020;41(29):2785–95. Doi: 10.1093/eurheartj/ehaa138. 

26. Fortmeier V., Lachmann M., Körber MI., et al. Solving the Pulmonary Hypertension Paradox in 
Patients With Severe Tricuspid Regurgitation by Employing Artificial Intelligence. JACC 

Cardiovasc Interv 2022;15(4):381–94. Doi: 10.1016/j.jcin.2021.12.043. 



References 42 
 

27. Généreux P., Pibarot P., Redfors B., et al. Staging classification of aortic stenosis based on the 

extent of cardiac damage. Eur Heart J 2017;38(45):3351–8. Doi: 10.1093/eurheartj/ehx381. 

28. Tomii D., Okuno T., Praz F., et al. Potential Candidates for Transcatheter Tricuspid Valve 

Intervention After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv 

2021:S1936879821014023. Doi: 10.1016/j.jcin.2021.07.030. 

29. Rossebø AB., Pedersen TR., Boman K., et al. Intensive Lipid Lowering with Simvastatin and 

Ezetimibe in Aortic Stenosis. N Engl J Med 2008;359(13):1343–56. Doi: 

10.1056/NEJMoa0804602. 

30. Makkar RR., Fontana GP., Jilaihawi H., et al. Transcatheter Aortic-Valve Replacement for 
Inoperable Severe Aortic Stenosis. N Engl J Med 2012;366(18):1696–704. Doi: 
10.1056/NEJMoa1202277. 

31. Banovic M., Putnik S., Penicka M., et al. Aortic Valve ReplAcemenT versus Conservative 
Treatment in Asymptomatic SeveRe Aortic Stenosis: The AVATAR Trial. Circulation 2021. Doi: 

10.1161/CIRCULATIONAHA.121.057639. 

32. Spitzer E., Van Mieghem NM., Pibarot P., et al. Rationale and design of the Transcatheter Aortic 
Valve Replacement to UNload the Left ventricle in patients with ADvanced heart failure (TAVR 
UNLOAD) trial. Am Heart J 2016;182:80–8. Doi: 10.1016/j.ahj.2016.08.009. 

33. Iung B., Cachier A., Baron G., et al. Decision-making in elderly patients with severe aortic 

stenosis: why are so many denied surgery? Eur Heart J 2005;26(24):2714–20. Doi: 

10.1093/eurheartj/ehi471. 

34. Cribier A., Eltchaninoff H., Bash A., et al. Percutaneous Transcatheter Implantation of an Aortic 

Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description. Circulation 

2002;106(24):3006–8. Doi: 10.1161/01.CIR.0000047200.36165.B8. 

35. Leon MB., Smith CR., Mack M., et al. Transcatheter Aortic-Valve Implantation for Aortic Stenosis 

in Patients Who Cannot Undergo Surgery. N Engl J Med 2010;363(17):1597–607. Doi: 

10.1056/NEJMoa1008232. 

36. Zahn R., Gerckens U., Grube E., et al. Transcatheter aortic valve implantation: first results from 

a multi-centre real-world registry. Eur Heart J 2011;32(2):198–204. Doi: 

10.1093/eurheartj/ehq339. 

37. Andersen HR. How Transcatheter Aortic Valve Implantation (TAVI) Was Born: The Struggle for a 

New Invention. Front Cardiovasc Med 2021;8:722693. Doi: 10.3389/fcvm.2021.722693. 

38. Kodali SK., Williams MR., Smith CR., et al. Two-Year Outcomes after Transcatheter or Surgical 

Aortic-Valve Replacement. N Engl J Med 2012;366(18):1686–95. Doi: 10.1056/NEJMoa1200384. 

39. Leon MB., Smith CR., Mack MJ., et al. Transcatheter or Surgical Aortic-Valve Replacement in 

Intermediate-Risk Patients. N Engl J Med 2016;374(17):1609–20. Doi: 10.1056/NEJMoa1514616. 

40. Mack MJ., Leon MB., Thourani VH., et al. Transcatheter Aortic-Valve Replacement with a 



References 43 
 

Balloon-Expandable Valve in Low-Risk Patients. N Engl J Med 2019;380(18):1695–705. Doi: 

10.1056/NEJMoa1814052. 

41. Tam DY., Hughes A., Wijeysundera HC., Fremes SE. Cost-Effectiveness of Self-Expandable 

Transcatheter Aortic Valves in Intermediate-Risk Patients. Ann Thorac Surg 2018;106(3):676– 

83. Doi: 10.1016/j.athoracsur.2018.03.069. 

42. Baron SJ., Wang K., House JA., et al. Cost-Effectiveness of Transcatheter Versus Surgical Aortic 

Valve Replacement in Patients With Severe Aortic Stenosis at Intermediate Risk. Circulation 

2019;139(7):877–88. Doi: 10.1161/CIRCULATIONAHA.118.035236. 

43. Tang GHL., Verma S., Bhatt DL. Transcatheter Aortic Valve Replacement in Low-Risk Patients: 
A New Era in the Treatment of Aortic Stenosis. Circulation 2019;140(10):801–3. Doi: 
10.1161/CIRCULATIONAHA.119.041111. 

44. Beohar N., Whisenant B., Kirtane AJ., et al. The relative performance characteristics of the logistic 
European System for Cardiac Operative Risk Evaluation score and the Society of Thoracic 

Surgeons score in the Placement of Aortic Transcatheter Valves trial. J Thorac Cardiovasc Surg 

2014;148(6):2830-2837.e1. Doi: 10.1016/j.jtcvs.2014.04.006. 

45. Amanullah MR., Pio SM., Ng ACT., et al. Prognostic Implications of Associated Cardiac 
Abnormalities Detected on Echocardiography in Patients With Moderate Aortic Stenosis. JACC 

Cardiovasc Imaging 2021;14(9):1724–37. Doi: 10.1016/j.jcmg.2021.04.009. 

46. Schewel J., Schmidt T., Kuck K-H., Frerker C., Schewel D. Impact of Pulmonary Hypertension 

Hemodynamic Status on Long-Term Outcome After Transcatheter Aortic Valve Replacement. 

JACC Cardiovasc Interv 2019;12(21):2155–68. Doi: 10.1016/j.jcin.2019.08.031. 

47. Alushi B., Beckhoff F., Leistner D., et al. Pulmonary Hypertension in Patients With Severe Aortic 

Stenosis: Prognostic Impact After Transcatheter Aortic Valve Replacement. JACC Cardiovasc 

Imaging 2019;12(4):591–601. Doi: 10.1016/j.jcmg.2018.02.015. 

48. Masri A., Abdelkarim I., Sharbaugh MS., et al. Outcomes of persistent pulmonary hypertension 
following transcatheter aortic valve replacement. Heart 2018;104(10):821–7. Doi: 
10.1136/heartjnl-2017-311978. 

49. Cremer PC., Zhang Y., Alu M., et al. The incidence and prognostic implications of worsening right 

ventricular function after surgical or transcatheter aortic valve replacement: insights from 

PARTNER IIA. Eur Heart J 2018;39(28):2659–67. Doi: 10.1093/eurheartj/ehy251. 

50. Poch F., Thalmann R., Olbrich I., et al. Changes of Right Ventricular Function After Transcatheter 
Aortic Valve Replacement and Association With Outcomes. J Card Fail 

2021:S1071916421001184. Doi: 10.1016/j.cardfail.2021.03.007. 

51. Raghunath S., Ulloa Cerna AE., Jing L., et al. Prediction of mortality from 12-lead 

electrocardiogram voltage data using a deep neural network. Nat Med 2020. Doi: 
10.1038/s41591-020-0870-z. 

52. Fries JA., Varma P., Chen VS., et al. Weakly supervised classification of aortic valve 

malformations using unlabeled cardiac MRI sequences. Nat Commun 2019;10(1):3111. Doi: 



References 44 
 

10.1038/s41467-019-11012-3. 

53. Diller G-P., Kempny A., Babu-Narayan SV., et al. Machine learning algorithms estimating 

prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre 

including 10 019 patients. Eur Heart J 2019;40(13):1069–77. Doi: 10.1093/eurheartj/ehy915. 

54. Perez MV., Mahaffey KW., Hedlin H., et al. Large-Scale Assessment of a Smartwatch to Identify 

Atrial Fibrillation. N Engl J Med 2019;381(20):1909–17. Doi: 10.1056/NEJMoa1901183. 

55. Kwak S., Lee Y., Ko T., et al. Unsupervised Cluster Analysis of Patients With Aortic Stenosis 

Reveals Distinct Population With Different Phenotypes and Outcomes. Circ Cardiovasc Imaging 

2020;13(5). Doi: 10.1161/CIRCIMAGING.119.009707. 

56. Sengupta PP., Shrestha S., Kagiyama N., et al. A Machine-Learning Framework to Identify 

Distinct Phenotypes of Aortic Stenosis Severity. JACC Cardiovasc Imaging 2021:S1936- 

878X(21)00286-2. Doi: 10.1016/j.jcmg.2021.03.020. 

57. Chen P-HC., Gadepalli K., MacDonald R., et al. An augmented reality microscope with real-time 

artificial intelligence integration for cancer diagnosis. Nat Med 2019;25(9):1453–7. Doi: 

10.1038/s41591-019-0539-7. 

58. Kossmann CE. Electrocardiographic Analysis by Computer. JAMA J Am Med Assoc 

1965;191(11):922. Doi: 10.1001/jama.1965.03080110046011. 

59. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature 2015;521(7553):436–44. Doi: 

10.1038/nature14539. 

60. Dey D., Slomka PJ., Leeson P., et al. Artificial Intelligence in Cardiovascular Imaging. J Am Coll 

Cardiol 2019;73(11):1317–35. Doi: 10.1016/j.jacc.2018.12.054. 

61. Casaclang-Verzosa G., Shrestha S., Khalil MJ., et al. Network Tomography for Understanding 

Phenotypic Presentations in Aortic Stenosis. JACC Cardiovasc Imaging 2019;12(2):236–48. Doi: 

10.1016/j.jcmg.2018.11.025. 

62. Wolpert DH. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Comput 

1996;8(7):1341–90. Doi: 10.1162/neco.1996.8.7.1341. 

63. Quer G., Arnaout R., Henne M., Arnaout R. Machine Learning and the Future of Cardiovascular 

Care. J Am Coll Cardiol 2021;77(3):300–13. Doi: 10.1016/j.jacc.2020.11.030. 

64. Ribeiro JM., Astudillo P., de Backer O., et al. Artificial Intelligence and Transcatheter Interventions 
for Structural Heart Disease: A glance at the (near) future. Trends Cardiovasc Med 
2021:S1050173821000177. Doi: 10.1016/j.tcm.2021.02.002. 

65. Gurovich Y., Hanani Y., Bar O., et al. Identifying facial phenotypes of genetic disorders using 
deep learning. Nat Med 2019;25(1):60–4. Doi: 10.1038/s41591-018-0279-0. 

66. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat 
Med 2019;25(1):44–56. Doi: 10.1038/s41591-018-0300-7. 

67. Goodman B., Flaxman S. European Union Regulations on Algorithmic Decision-Making and a 

“Right to Explanation.” AI Mag 2017;38(3):50–7. Doi: 10.1609/aimag.v38i3.2741. 



References 45 
 

68. Lundberg SM., Erion G., Chen H., et al. From local explanations to global understanding with 

explainable AI for trees. Nat Mach Intell 2020;2(1):56–67. Doi: 10.1038/s42256-019-0138-9. 

69. Lauritsen SM., Kristensen M., Olsen MV., et al. Explainable artificial intelligence model to predict 

acute critical illness from electronic health records. Nat Commun 2020;11(1):3852. Doi: 

10.1038/s41467-020-17431-x. 

70. Lachmann M., Rippen E., Schuster T., et al. Artificial intelligence-enabled phenotyping of patients 

with severe aortic stenosis: on the recovery of extra-aortic valve cardiac damage after 

transcatheter aortic valve replacement. Open Heart 2022;9(2):e002068. Doi: 10.1136/openhrt- 
2022-002068. 

71. Asami M., Stortecky S., Praz F., et al. Prognostic Value of Right Ventricular Dysfunction on 
Clinical Outcomes After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Imaging 
2019;12(4):577–87. Doi: 10.1016/j.jcmg.2017.12.015. 

72. Cremer PC., Wang TKM., Rodriguez LL., et al. Incidence and Clinical Significance of Worsening 
Tricuspid Regurgitation Following Surgical or Transcatheter Aortic Valve Replacement: Analysis 

From the PARTNER IIA Trial. Circ Cardiovasc Interv 2021;14(8). Doi: 

10.1161/CIRCINTERVENTIONS.120.010437. 

73. Trenkwalder T., Lachmann M., Stolz L., et al. Machine learning identifies pathophysiologically and 

prognostically informative phenotypes among patients with mitral regurgitation undergoing 

transcatheter edge-to-edge repair. Eur Heart J - Cardiovasc Imaging 2023:jead013. Doi: 

10.1093/ehjci/jead013. 

74. Rajpurkar P., Chen E., Banerjee O., Topol EJ. AI in health and medicine. Nat Med 2022. Doi: 
10.1038/s41591-021-01614-0. 

75. Lachmann M., Rippen E., Rueckert D., et al. Harnessing feature extraction capacities from a pre- 

trained convolutional neural network (VGG-16) for the unsupervised distinction of aortic outflow 

velocity profiles in patients with severe aortic stenosis. Eur Heart J - Digit Health 2022:ztac004. 

Doi: 10.1093/ehjdh/ztac004. 

76. Lachmann M., Rippen E., Schuster T., et al. Subphenotyping of Patients With Aortic Stenosis by 

Unsupervised Agglomerative Clustering of Echocardiographic and Hemodynamic Data. JACC 

Cardiovasc Interv 2021;14(19):2127–40. Doi: 10.1016/j.jcin.2021.08.034. 



Danksagung 46 
 

8 Danksagung 
 

 
Mein größter Dank gebührt meinem Doktorvater Herrn Prof. Karl-Ludwig Laugwitz. Unter seiner 

schützenden Hand durfte sich unsere junge Arbeitsgruppe zur künstlichen Intelligenz entfalten. Von ihm 

habe ich gelernt, dass der Fortschritt über die Zeit wichtiger ist als die Perfektion zu Beginn. Für die 

Zukunft würde ich mir wünschen, dass ich die Faszination für die Synergie aus Klinik und Wissenschaft, 

wie sie Herr Prof. Laugwitz mir vorgelebt hat, weiterhin verspüre. 

Ebenso möchte ich unseren Kooperationspartnern aus dem Deutschen Herzzentrum München danken, 

insbesondere Herrn Prof. Michael Joner, Herrn PD Erion Xhepa und Frau PD Teresa Trenkwalder. Dank 

ihrer Hilfe konnten die im Klinikum rechts der Isar entwickelten Ideen an größeren Patientenkollektiven 

angewendet und schließlich zur Publikation gebracht werden. Herr PD Erion Xhepa fungierte 

darüberhinaus als Mentor meiner Doktorarbeit und inspirierte uns, unsere Algorithmen für die Patienten 

mit Aortenklappenstenosen auf seine Patienten mit Mitralklappeninsuffizienzen umzuschreiben. 

Mit meinem zweiten Mentor Herrn Dr. Mark Lachmann verband mich eine familiäre Freundschaft, 

weshalb ich Loyalität als seine wichtigste Qualität beschreiben würde. Seit dem Entstehen unserer 

Arbeitsgruppe 2019 haben wir im Enthusiasmus für unsere Forschung gefühlt 1000 Projektideen 

entwickelt, 99% verworfen, und 1% realisiert. Dieses 1% stellt absolut betrachtet meine Promotion und 

seine Habilitation dar. Es war mir immer eine Freude, ihn zu Kongressen auf der ganzen Welt von San 

Francisco über Barcelona und Venedig bis nach Tokio begleiten zu dürfen, um unsere aktuellsten 

Ergebnisse zu präsentieren und neue Patienten zu rekrutieren. 

Meiner Familie, meinem Freund und seiner Familie, sowie meinen Freunden möchte ich von ganzem 

Herzen für die langjährige unermüdliche Unterstützung, sowie Ermutigungen und Motivation während 

der Schulzeit, des Studiums und natürlich der Dissertation danken. Ich hoffe, sie sind bereit für die 

nächsten Schritte. 

Abschließend möchte ich dem blinden Zufall in Person von Frau Sabine Rössler und Frau Vera 

Lachmann danken, denn sie haben mich in die Kardiologie an das Klinikum rechts der Isar gelotst und 

mir meinen Mentor Herrn Dr. Lachmann an die Seite gestellt. Außerdem möchte ich mich bei Frau Dr. 

Vera Fortmeier (geb. Lachmann) bedanken, welche mich für die Anwendung der künstlichen Intelligenz 

bei Trikuspidalklappeninsuffizienzen begeisterte und mir eventuell als Vorbild dienen wird, wie man den 

anspruchsvollen Spagat zwischen Klinik, Forschung und Familie meistern könnte. 



Appendix 47 
 

9 Appendix 



 

European Heart Journal - Digital Health ORIGINAL ARTICLE 
https://doi.org/10.1093/ehjdh/ztac004 

 

Harnessing feature extraction capacities from a 
pre-trained convolutional neural network 
(VGG-16) for the unsupervised distinction of 
aortic outflow velocity profiles in patients with 
severe aortic stenosis 
Mark Lachmann  1†

, Elena Rippen  1†
, Daniel Rueckert  2,3

, Tibor Schuster4, 
Erion Xhepa  5,6

, Moritz von Scheidt  5,6
, Costanza Pellegrini5, 

Teresa Trenkwalder  5, Tobias Rheude5, Anja Stundl  1, Ruth Thalmann1, 
Gerhard Harmsen7, Shinsuke Yuasa8, Heribert Schunkert  5,6

, Adnan Kastrati  5,6
, 

Michael Joner5,6, Christian Kupatt  1,6
, and Karl-Ludwig Laugwitz  1,6

* 
1First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; 2Institute for AI and Informatics in 
Medicine, Faculty of Informatics and Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; 3Department of Computing, Imperial College London, 
London, UK ; 4Department of Family Medicine, McGill University, Montreal, Quebec, Canada; 5Department of Cardiology, German Heart Centre Munich, Technical University of 
Munich, Munich, Germany; 6DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; 7Department of Physics, University of 
Johannesburg, Auckland Park, South Africa; and 8Department of Cardiology, Keio University School of Medicine, Minato, Tokyo, Japan 

Received 31 August 2021; revised 14 October 2021; accepted 1 February 2022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
* Corresponding author. Tel: +49 89 4140 2350, Fax: +49 89 4140 4900, Email: KL.Laugwitz@mri.tum.de 
†The first two authors contributed equally to the study. 
VC The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact 
journals.permissions@oup.com 

 
 

................................................................................................................................................................................................... 
                

Methods After pre-training a CNN (VGG-16) on a large data set (ImageNet data set; 14 million images belonging to 1000 
and results classes), the convolutional part was employed to transform Doppler tracings to 1D arrays. Among 366 eligible 

patients [age: 79.8 ± 6.77 years; 146 (39.9%) women] with pre-procedural echocardiography and right heart cath- 
eterization prior to transcatheter aortic valve replacement (TAVR), good quality Doppler tracings from 101 
patients were analysed. The convolutional part of the pre-trained VGG-16 model in conjunction with principal 
component analysis and k-means clustering distinguished two shapes of aortic outflow velocity profiles. Kaplan– 

ratio (HR) for 2-year mortality: 3; 95% confidence interval (CI): 1–8.9]. Apart from reduced cardiac output and 
mean aortic valve gradient, patients from Cluster 2 were also characterized by signs of pulmonary hypertension, 
impaired right ventricular function, and right atrial enlargement. After training an extreme gradient boosting algo- 
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Conclusion Transfer learning enables sophisticated pattern recognition even in clinical data sets of limited size. Importantly, it is the 

left ventricular compensation capacity in the face of increased afterload, and not so much the actual obstruc- tion 
of the aortic valve, that determines fate after TAVR. 
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Introduction 
In the dawning age of artificial intelligence, machine learning technol- 
ogy is progressively implemented into medical research and clinical 
decision support.1–6 Without the constraint of any a priori 

. 
assumption, machine learning algorithms iteratively learn from data, 

. typically requiring a myriad of information. Bedside research 

. embedded in clinical practice, however, is commonly based on 

. modest-sized patient cohorts, e.g. in the setting of rare diseases or 

. novel treatment strategies. Transfer learning holds the promise to 
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alleviate the bottleneck of insufficient training data by acquiring fea- 
ture extraction capacity from a large data set and applying it to a 
related problem in the same domain. 

Severe aortic stenosis (AS), which can trigger a deleterious cas- 
cade including left heart dysfunction, pulmonary hypertension (PH), 
and eventually right heart failure,7 and which is associated with a 2- 
year mortality of up to more than 50% unless valve replacement is 
performed promptly,8 is typically diagnosed by transthoracic echo- 
cardiography.9 Besides an increasing gradient due to progressive nar- 
rowing of the aortic valve, the aortic outflow velocity profile in 
patients with severe AS changes from a triangular shape with an early 
peak to a much more rounded form with a later peak.10 
Furthermore, acceleration of flow velocity will eventually deteriorate 
due to left ventricular decompensation, resulting in a ‘low flow, low 
gradient AS’.11 

Hypothesizing that the aortic outflow velocity profile contains 
more valuable information about aortic valve obstruction and left 
ventricular contractility than can be captured by human cognition, 
this study sought to extract features of the complex geometry of 
Doppler tracings by employing a convolutional neural network 
(CNN). VGG-16 is a CNN with state-of-the-art feature extraction 
capacity, which achieved 92.7% Top 5 test accuracy in a data set of 
over 14 million regular natural images belonging to 1000 classes 
(ImageNet data set).12 Adopting the concept of transfer learning, the 
convolutional part of the pre-trained VGG-16 model was employed 
to transform Doppler tracings from a small, but well-characterized 
cohort of patients with severe AS to 1D arrays. After principal com- 
ponent analysis (PCA) and k-means clustering of those 1D arrays, 
practice-relevant evidence was assessed by relating cluster assign- 
ment with all-cause 2-year mortality after transcatheter aortic valve 
replacement (TAVR). 

. 

. Transthoracic echocardiography . All echocardiographic studies were performed by experienced institu- 

. tional cardiologists during clinical routine using a commercially available . echocardiography system equipped with a 2.5-MHz multifrequency . 
phased-array transducer. The continuous wave Doppler-derived aortic 

. outflow velocity profiles were obtained from the apical four-chamber . 
view (Figure 2A). Only 101 aortic outflow velocity profiles were selected 

. for clustering depending on image quality—meaning that Doppler trac- 

. ings with insufficient contrast or with labelling within the aortic outflow 

. velocity profile were excluded (Figure 2B). 

. . 
Statistical analysis 

. All statistical analyses were performed using R version 3.6.3 (R . 
Foundation for Statistical Computing, Vienna, Austria; see Supplementary 

. material online, Table S1 for a complete list of employed R packages). The 

. pre-trained VGG-16 model on the ImageNet data set was loaded from 

. the Keras deep learning library (R package ‘keras’), and the classifier part . of the VGG-16 model was omitted. After pre-processing (Figure 2A), . 
scaled Doppler tracings as input images were thus converted to a feature 

. tensor of shape as the output of the last layer of the convolutional part (R 

. packages ‘magick’ and ‘imager’). After transformation from feature tensor 

. of shape (7, 7, 512) to 1D array with 7 ×	7 ×	512 values per instance, . PCA and k-means clustering were applied (R packages ‘FactoMineR’, ‘fac- . 
toextra’, and ‘NbClust’). Notably, we expected two clusters to be segre- 

. gated. Survival was illustrated using Kaplan–Meier method, and a Cox . 
proportional hazards model was used to estimate hazard ratios (HRs) be- 

. tween identified clusters (R packages ‘survival’, ‘survminer’, and ‘ggforest’). 

. Missing values among variables that were identified as significant predic- 

. tors for 2-year mortality in initial univariate analysis were imputed by a . random forest algorithm (R package ‘missForest’)13 before proceeding . 
with multivariate analysis, but were not used hereinafter, e.g. for cluster 

. comparisons. Because the derivation cohort was unbalanced with regards 

. to cluster assignments, a technique to synthetically over-sample the mi- 

. nority class was applied (synthetic minority over-sampling technique; 
14 . SMOTE) (R package ‘DMwR’). After balancing, an extreme gradient 

Methods 

Patient recruitment 
This is a post hoc analysis of prospectively and systematically collected 
data from patients undergoing TAVR for severe AS at two tertiary care 
centres in Munich, Germany, between January 2014 and December 2020. 
The study was approved by the respective local ethics committees in 
conformity with the Declaration of Helsinki, and all patients enrolled pro- 
vided written informed consent. In total, the joint registry listed 2575 
patients. Among 366 completely characterized patients with pre- 
procedural echocardiography and right heart catheterization prior to 
TAVR, good quality Doppler tracings with sharp, well-defined borders 
from the intentionally small number of 101 patients were analysed, con- 
stituting the derivation cohort (Figure 1A). The validation cohort was con- 
sequently represented by the remaining 265 patients with complete data 
from pre-procedural echocardiography and right heart catheterization, 
yet without good quality Doppler tracings (or no available records at all). 
As an elderly patient population approaching the end of life was studied, 
post-procedural 2-year all-cause mortality was defined as a clinically 
meaningful primary outcome measure. Survival data were obtained from 
the German Civil Registry in case of patients being registered in Germany 
(n = 354; 96.7%), or from general practitioners, hospitals, and practice 
cardiologists for patients from foreign countries. 

. 
boosting algorithm (R package ‘xgboost’) was selected as the machine 

. learning technique of choice for cluster assignment in future patients, and 

. it was trained on a comprehensive set of functional and structural param- 

. eters from echocardiography and right heart catheterization. Again, miss- . ing values were imputed by a random forest algorithm. SHAP (SHapley . 
Additive exPlanations) values were calculated to compare the contribu- 

. tion of input variables to the model prediction (R package . ‘SHAPforxgboost’).15 To sum up, this study was designed as a two-step 

. experiment: 

. . (1) In a first step, we aimed to decipher meaningful echocardiographic . 
signatures and related cardiac phenotypes by analysing aortic out- 

. flow velocity profiles (Doppler tracings) from 101 patients with se- 

. vere AS undergoing TAVR by using a pre-trained CNN in 

. conjunction with PCA and k-means clustering (unsupervised ma- . chine learning experiment). . 
(2) Since the first experiment did not allow to assign future patients to 

. the just defined clusters, we additionally sought to employ an ex- 

. treme gradient boosting algorithm, which was trained on functional 

. and structural parameters of cardiopulmonary conditions from the . 101 patients with good quality Doppler tracings (hereinafter . 
referred to as derivation cohort) to predict cluster assignments as 

. stemming from the first experiment, and which was then validated 

. on the remaining 265 patients (hereinafter referred to as validation 
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size of the VGG-16 model was already part of the image processing R code after loading the folder with 101 scaled Doppler tracings. (B) 
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cohort) with regards to cluster-related survival after TAVR (super- 
vised machine learning experiment). 

Categorical variables are presented as numbers and frequencies (%), 
whilst continuous variables are given as mean ± standard deviation (SD) 
and 95% confidence interval (CI). Chi-square or Fisher’s exact test was 
used to evaluate the association between categorical variables, and 
independent-samples Wilcoxon test was used for comparison of con- 
tinuous variables. For analysis of collinearity, Pearson’s correlation coeffi- 
cients were calculated. A P-value <_0.05 was considered to indicate 
statistical significance. 

 

Results 
One hundred and one patients with good 
quality Doppler tracings illustrate the 
problem of data scarcity in clinical 
research 
Importantly, aortic outflow velocity profiles from only 101 out of 366 
patients were initially analysed (Figure 1A) to emphasize the problem 
of data scarcity in clinical research. Therefore, to confirm the repre- 
sentative nature of the small-sized derivation cohort at hand [mean 
age: 79.3 ± 6.78; 95% CI: 78.0–80.7 years; 49 (48.5%) women], deriv- 
ation and validation cohorts were initially compared with regards to 
demographic, clinical, echocardiographic, and haemodynamic charac- 
teristics (Supplementary material online, Tables S2 and S3). No signifi- 
cant differences were found with regards to age, symptomatic 
burden expressed as New York Heart Association (NYHA) function- 
al class, obstruction of the aortic valve expressed as aortic valve area 
(AVA), left ventricular systolic function, mean pulmonary artery pres- 
sure (mPAP), and right ventricular dysfunction. In fact, a difference 
was detected in the proportion of female patients, which were signifi- 
cantly more often represented in the derivation cohort (48.5% vs. 

 
. 36.6%, P-value: 0.0499). Presenting with a mean AVA of 
. 0.804 ± 0.223 (95% CI: 0.760–0.848) cm2, and predominantly suffer- . ing from dyspnoea corresponding to NYHA functional Class III 
. (56.4%) (Tables 1 and 2) 2-year survival after TAVR among patients . 

from the derivation cohort ranged at 83.0% (95% CI: 75.1–91.7), 
. which was statistically indifferent compared to patients from the val- . 

idation cohort (P-value: 0.665) (Figure 1B). 
. . Two distinct clusters of aortic outflow 
. velocity profiles can be distinguished, 
. reflecting different phenotypes with 
. subsequently differing mortality . 

The convolutional part of the pre-trained VGG-16 model (Figure 3A) 
. in conjunction with PCA and k-means clustering of the abstractions 
. of Doppler tracings enabled to distinguish two shapes of aortic out- 
. flow velocity profiles (Figure 3B). Interestingly, all patients from 
. Cluster 2 presented with a mean aortic valve gradient (AVGmean) . below 40 mmHg, whilst AVGmean from patients in Cluster 1 ranged 
. between 20 and 102 mmHg (Figure 3C). Kaplan–Meier analysis 
. revealed that mortality in patients from Cluster 2 (n = 40, 39.6%) was 
. significantly increased (HR for 2-year mortality: 3; 95% CI: 1–8.9) . (Figure 3D). Besides reduced cardiac output (4.57 ± 1.42; 95% CI: 
. 4.17–5.04 L/min) and signs of PH (mPAP: 31.9 ± 12.2; 95% CI: 28.5– . 35.7 mmHg), patients from Cluster 2 also presented with more se- 
. vere impairment of right ventricular function [tricuspid annular plane . 

systolic excursion (TAPSE): 18.1 ± 3.82; 95% CI: 17.3–19.2 mm] and 
. right atrial enlargement [right atrial (RA) area: 22.0 ± 8.28; 95% CI: . 

19.5–24.6 cm2] in comparison to patients from Cluster 1 (Figure 3E 
. and Table 2). Contrarily to the initial expectation, patients from 
. Cluster 1 with seemingly less extensive cardiac damage were diag- 
. nosed with a more severe obstruction of the aortic valve than 
. patients from Cluster 2 (AVA: 0.739 ± 0.211; 95% CI: 0.685–0.793 
. cm2 vs. 0.903 ± 0.205; 95% CI: 0.837–0.968 cm2, P-value: 0.0001). 

 
 
 

Class 
........................................................................................................................................... 
All (n 5 101) Cluster 1 (n 5 61) Cluster 2 (n 5 40) P-value 

.................................................................................................................................................................................................................... 
Age (years), mean ± SD [95% CI] 79.3 ± 6.78 [78.0–80.7] 79.4 ± 5.88 [77.8–80.8] 79.3 ± 8.03 [76.8–81.6] 0.4067 
Women, N (%) 49 (48.5%) 31 (50.8%) 18 (45.0%) 0.7123 
BMI (kg/m2), mean ± SD [95% CI] 26.8 ± 4.28 [26.0–27.6] 26.9 ± 4.25 [25.8–28.0] 26.7 ± 4.36 [25.5–28.0] 0.8758 
Arterial hypertension, N (%) 88 (87.1%) 51 (83.6%) 37 (92.5%) 0.3166 
Diabetes mellitus, N (%) 23 (22.8%) 14 (23.0%) 9 (22.5%) 1 
NYHA functional class, mean ± SD [95% CI] 2.61 ± 0.71 [2.47–2.75] 2.54 ± 0.72 [2.36–2.72] 2.72 ± 0.68 [2.53–2.93] 0.1896 
NYHA functional Class III 57 (56.4%) 32 (52.5%) 25 (62.5%) 0.4294 
NYHA functional Class IV 6 (5.9%) 3 (4.9%) 3 (7.5%) 0.9152 
EuroSCORE (%), mean ± SD [95% CI] 17.1 ± 14.3 [14.3–20.0] 13.9 ± 8.94 [11.7–16.3] 22.1 ± 19.0 [16.5–27.6] 0.0694 
eGFR (mL/min), mean ± SD [95% CI] 60.7 ± 21.4 [56.4–64.9] 65.4 ± 19.5 [60.1–70.2] 53.3 ± 22.3 [46.8–59.3] 0.0214 
CAD, N (%) 85 (84.1%) 49 (80.3%) 36 (90.0%) 0.3061 
COPD, N (%) 12 (11.9%) 7 (11.5%) 5 (12.5%) 1 
Atrial fibrillation and/or flutter, N (%) 42 (41.6%) 19 (31.1%) 23 (57.5%) 0.0155 
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Table 2 Comparison of echocardiographic and haemodynamic characteristics in accordance with cluster assignment 
(derivation cohort) 

Class 
.................................................................. 

All (n 5 101) Cluster 1 (n 5 61) Cluster 2 (n 5 40) P-value 
.................................................................................................................................................................................................................... 
AVA (cm2), mean ± SD [95% CI] 0.804 ± 0.223 0.739 ± 0.211 0.903 ± 0.205 0.0001 

 
AVGmean (mmHg), mean ± SD [95% CI] 

[0.760–0.848] 
37.9 ± 17.0 

[0.685–0.793] 
47.7 ± 14.1 

[0.837–0.968] 
22.9 ± 7.37 

 
4.6 ×	10-15 

 [34.5–41.2] [44.4–51.3] [20.5–25.2]  
Cardiac output (L/min), mean ± SD [95% CI] 5.08 ± 1.33 5.41 ± 1.17 4.57 ± 1.42 0.0006 

 [4.82–5.34] [5.11–5.70] [4.17–5.04]  
LVEF (%), mean ± SD [95% CI] 53.0 ± 12.0 57.5 ± 6.43 46.2 ± 15.1 0.0001 

 [50.6–55.4] [55.6–58.8] [42.0–50.7]  

LVEDD (mm), mean ± SD [95% CI] 47.2 ± 9.44 45.7 ± 7.70 49.7 ± 11.4 0.1028 
 [45.4–49.1] [43.8–47.7] [46.2–52.8]  

mPCWP (mmHg), mean ± SD [95% CI] 17.8 ± 9.01 15.5 ± 8.40 21.4 ± 8.83 0.0007 
 [16.1–19.6] [13.3–17.6] [18.6–24.2]  

mPAP (mmHg), mean ± SD [95% CI] 27.6 ± 11.5 24.7 ± 10.1 31.9 ± 12.2 0.0019 
 [25.3–29.8] [22.1–27.2] [28.5–35.7]  
RV-RA gradient (mmHg), mean ± SD [95% CI] 34.0 ± 14.7 32.2 ± 13.8 37.0 ± 16.0 0.1302 

 [30.9–37.1] [28.5–35.9] [31.3–42.6]  

PVR (WU), mean ± SD [95% CI] 2.10 ± 1.36 1.80 ± 0.997 2.56 ± 1.69 0.0050 
 [1.83–2.37] [1.55–2.06] [2.02–3.10]  

TAPSE (mm), mean ± SD [95% CI] 19.8 ± 4.05 20.8 ± 3.89 18.1 ± 3.82 0.0014 
 [18.9–20.6] [19.8–21.7] [17.3–19.2]  
Right midventricular diameter (mm), mean ± SD [95% CI] 29.0 ± 6.46 27.4 ± 5.82 31.1 ± 6.77 0.0088 

 
LA area (cm2), mean ± SD [95% CI] 

[27.6–30.3] 
25.8 ± 8.21 

[25.8–29.0] 
24.8 ± 8.11 

[28.8–33.3] 
27.4 ± 8.21 

 
0.1017 

 
RA area (cm2), mean ± SD [95% CI] 

[24.2–27.5] 
19.5 ± 6.89 

[22.9–27.3] 
17.8 ± 5.17 

[24.8–30.1] 
22.0 ± 8.28 

 
0.0133 

 
Low gradient (AVGmean < 40 mmHg), N (%) 

[18.2–20.9] 
54 (53.5%) 

[16.6–18.9] 
14 (23.0%) 

[19.5–24.6] 
40 (100%) 

 
1.5 ×	10-13 

LV dysfunction (LVEF <_ 45%), N (%) 22 (21.8%) 5 (8.2%) 17 (42.5%) 0.0001 
PH (mPAP >_ 25 mmHg), N (%) 52 (51.5%) 25 (41.0%) 27 (67.5%) 0.0162 
RV dysfunction (TAPSE <_ 16 mm), N (%) 20 (20.4%) 6 (9.8%) 14 (23.0%) 0.0021 
MR >_ III/IV◦, N (%) 10 (9.90%) 4 (6.56%) 6 (15.0%) 0.1882 
TR >_ III/IV◦, N (%) 7 (6.93%) 2 (3.28%) 5 (12.5%) 0.1101 

 
 

AVA, aortic valve area; AVGmean, mean aortic valve gradient; CI, confidence interval; LA area, left atrial area; LV dysfunction, left ventricular dysfunction; LVEDD, left ventricular 
end-diastolic diameter; LVEF, left ventricular ejection fraction; mPAP, mean pulmonary artery pressure; mPCWP, mean postcapillary wedge pressure; MR, mitral regurgitation; 
PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RA area, right atrial area; RV dysfunction, right ventricular dysfunction; SD, standard deviation; TAPSE, tricus- 
pid annular plane systolic excursion; TR, tricuspid regurgitation. 

 
 

Comorbidities, such as arterial hypertension, coronary artery disease, 
and chronic obstructive pulmonary disease, were similarly prevalent 
between Clusters 1 and 2. Yet, patients from Cluster 2 with failing 
hearts showed a higher prevalence of atrial fibrillation and/or flutter 
(57.5% vs. 31.1%, P-value: 0.0155), and parallelly suffered from 
reduced renal function (estimated glomerular filtration rate: 
53.3 ± 22.3; 95% CI: 46.8–59.3 mL/min vs. 65.4 ± 19.5; 95% CI: 60.1– 
70.2 mL/min, P-value: 0.0214). Notably, no general association be- 
tween deteriorating cardiac output and worsening of renal function 
could be described by correlation analysis (R: 0.10, P-value: 0.3117), 

. 
nor did patients with reduced cardiac output generally display impair- 

. ments of renal function (Supplementary material online, Figure S2A 

. and B). An illustration of 20 exemplifying profiles per cluster is pro- 

. vided in Figure 3F. 

. 

. Conventional dichotomization according 

. to AVGmean results in loss of prognostic . resolution 

. In order to compare unsupervised clustering of aortic outflow vel- 

. ocity profiles with a traditional approach of hand-crafted 
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categorization, the derivation cohort was conventionally dichotom- 
ized according to AVGmean (Figure 4A). Survival analysis confirmed 
that patients with AVGmean <40 mmHg (n = 54, 53.5%) died earlier, 
but no statistical significance was reached (HR for 2-year mortality: 
1.8; 95% CI: 0.59–5.2) (Figure 4B). Apart from identifying well- 
established predictors for mortality, such as deteriorating renal func- 
tion, male sex, and EuroSCORE, univariate Cox regression analysis 
also confirmed the prognostic value of left ventricular ejection frac- 
tion, mPAP, and TAPSE. At the same time, no significant association 
between AVGmean or AVGmax, on the one hand, and 2-year all-cause 
mortality, on the other hand, could be detected by regression analysis 
(Table 3). 

An extreme gradient boosting algorithm 
enables cluster assignment in future 
patients and confirms that left 
ventricular compensation capacity 
rather than the actual obstruction of the 
aortic valve determines fate after 
transcatheter aortic valve replacement 
To test whether the cluster-related phenotypes as detected by the 
convolutional part of the pre-trained VGG-16 model in conjunction 
with PCA and k-means clustering could also be found among the 
remaining 265 patients with either poor quality or no available 
Doppler tracings [56 (15.3%) of 366 patients had no Doppler tracings 
as raw data available], an extreme gradient boosting algorithm was 

 
. 

trained on a comprehensive set of functional and structural parame- 
. ters from pre-procedural echocardiography and right heart catheter- . 

ization. In total, 12 variables, ideally covering all stages of cardiac and 
. pulmonary circulatory conditions as previously described,16 served 
. as input data. Moreover, the actual obstruction of the aortic valve 
. expressed as AVA was included as a thirteenth input variable 
. (Supplementary material online, Figure S3 for a complete list of input 
. variables). Since the derivation cohort was predominantly composed 
. of patients assigned to cluster 1 (60.4%), a minority class over- . 

sampling technique (SMOTE) was applied to create a balanced data 
. set (Figure 5). After application of SMOTE, a training and a test set . 

were randomly defined using a 0.75:0.25 split ratio, meaning that 120 
. ‘patients’ were assigned to the training set and 40 ‘patients’ were 
. assigned to the test set. As a holdout data set, this test set was desig- 
. nated to finally assess the extreme gradient boosting algorithm’s per- 
. formance, before eventually using the trained algorithm for patient- 
. to-cluster assignment in the validation cohort. The purpose of the 
. validation cohort was to evaluate cluster-related survival differences 
. 

as they were observed for the clusters that have been segregated 
. during the first, unsupervised machine learning experiment among . 

the derivation cohort. In total, 2.44% of the 1313 data points related 
. to 101 patients from the derivation cohort had missing values for . 

those 13 variables (Supplementary material online, Figure S3A), and 
. the largest proportion of missing values was found for measurements 
. of right midventricular diameter (12.9% of values missing) 
. (Supplementary material online, Figure 3B). After imputing missing val- 
. ues, initially observed and later imputed values for right 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 A convolutional neural network followed by PCA and unsupervised k-means clustering provides the proof-of-principle that two sub- 
groups of patients with severe AS can be distinguished according to the aortic outflow velocity profile. (A) VGG-16 network architecture (schematic). 
The VGG-16 network can be split into two parts: 13 convolutional layers constitute the first part, through which each image is passed through for 
feature extraction. The convolutional layers are followed by three fully connected layers for classification, and the last layer uses a softmax activation 
function for final class prediction. Since the aortic outflow velocity profiles were no established class within the ImageNet data set, the classification 
part of VGG-16 was omitted after pre-training, and hence only the model’s feature extraction capacity was exploited in order to transform aortic 
outflow velocity profiles to 1D arrays (flatten layer), which were subsequently used for unsupervised clustering. (B) PCA of 1D arrays from 101 aortic 
outflow velocity profiles. (C) Scatter plot including 95% confidence ellipse in order to illustrate cardiac output and mean aortic valve gradient in ac- 
cordance with cluster assignment. (D) Kaplan–Meier survival analysis in accordance with cluster assignment. (E) Bee swarm plots for comparison of 
baseline echocardiographic and haemodynamic data. (F) Representative aortic outflow velocity profiles in accordance with cluster assignment. AVA, 
aortic valve area; AVGmean, mean aortic valve gradient; LA area, left atrial area; LVEDD, left ventricular end-diastolic diameter; mPAP, mean pulmon- 
ary artery pressure; RA area, right atrial area; ReLU, Rectified Linear Unit; TAPSE, tricuspid annular plane systolic excursion. 

Continued 

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjdh/advance -article/doi/10.1093/ehjdh/ztac004/6555836  by guest on 23 April 2022 



8 M. Lachmann et al. 
 

. 

. 

. 

. 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 (Continued)  

 

 
midventricular diameter displayed a similar distribution (29.0 ± 6.46; 
95% CI: 27.6–30.3 mm vs. 27.6 ± 2.45; 95% CI: 26.1–29.1 mm, P-value: 
0.5256) (Supplementary material online, Figure S3C and D). 
Importantly, the main characteristics of Clusters 1 and 2 in terms of 
cardiac output, AVGmean and AVA were preserved after over- 
sampling (Figure 6A). An extreme gradient boosting algorithm for 
cluster assignment was hereinafter trained on 58 instances for 
‘Cluster 1’ and on 62 instances ‘Cluster 2’, respectively, and it reached 
an accuracy of 97.5%, significantly outperforming the no information 

. 
rate (P-value: 1.4 ×	10-9), as demonstrated in the test set of 40 

. ‘patients’ (Figure 6B). Notably, AVGmean showed by far the highest . 
global feature importance for cluster prediction as determined by 

. SHAP values (Figure 6C). Applying the trained extreme gradient . 
boosting algorithm to the validation cohort of 265 patients (Figure 5) 

. enabled identification of patients belonging to high-risk Cluster 2. 

. Again, those patients were characterized by a functionally and struc- 

. turally failing left heart in conjunction with PH and right heart impair- 

. ment (Table 4). Compared to patients from Cluster 1, survival was 
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subsequently reduced (Figure 6D), and the hazard ratio for 2-year 
mortality after TAVR was significantly increased (2.6, 95% CI: 1.4–5.1, 
P-value: 0.004). Importantly, a less severe obstruction of the aortic 
valve was found again in patients assigned to high-risk cluster 2 (AVA: 
0.839 ± 0.219, 0.789–0.889 in Cluster 2 vs. 0.742 ± 0.186, 0.715– 
0.769 in Cluster 1, P-value: 0.0007) (Table 4), confirming the initially 
surprising finding from the derivation cohort (Figure 6E). 

 

Discussion 
Transfer learning exploiting big data 
could be key to overcome the obstacle of 
data scarcity as commonly encountered 
in clinical reality, and learning from a 
related problem aids in gaining novel 
insights into phenotypic presentations of 
patients with severe aortic stenosis 
Identifying patients at risk is a core element in the practice of 
medicine, but risk stratification for patients with severe AS in 
contemporary clinical practice is often limited by hypothesis- 
driven selection of a few factors typically regarded in isolation, by 
suggesting a model of orderly progression of accumulated 
pathologies upstream of the causative AS, or by the assumption of 
a parametric linear relationship between predictor variable and 
outcome. This study demonstrates that prognostic reso- 
lution of survival in patients with severe AS undergoing TAVR 
can be refined by harnessing the intriguing feature extraction 
capacity from an established CNN pre-trained on big data in 
order to subsequently recognize complex geometries in aortic 
outflow velocity profiles, which integrate crucial information 
about left ventricular contractility and aortic valve obstruction. 
Thus, two major phenotypes with important clinical implications 

. 
could be unravelled. The main messages from our study are 

. therefore as follows (Graphical Abstract): 

. 

. (1) Transfer learning has the potential to unearth hidden gems even in 

. clinical data sets of limited size. . (2) Not so much the actual stenosis of the aortic valve expressed as . 
AVA determines the prognosis after TAVR, but the left ventricular 

. compensation capacity and subsequent development of PH and 

. right heart failure stratify patients into low-risk and high-risk 

. cohorts. 

. . On the drawbacks of traditional methods 

. for risk assessment—and how machine 

. learning technology can pave the way to 

. personalized risk stratification prior to . transcatheter aortic valve replacement 

. In order to illustrate the almost ubiquitous problem of data scarcity 

. in medical research on the one hand, and the vast potential of trans- 

. 
fer learning, on the other hand, the number of aortic outflow velocity 

. profiles to be analysed was intentionally kept small. Possibly, differen- . 
ces in survival after dichotomization according to AVGmean would 

. have become statistically significant, if more patients were included. . 
Nonetheless, dichotomization of continuous variables is prone to 

. reducing statistical power without notable benefit (oversimplifica- . 
tion), and physicians in a real-world scenario therefore rarely rely on 

. a single variable’s dichotomy for decision-making or prognostic as- . 
sessment, but rather prefer context-specific interpretation of exten- 

. sive (raw) data. Aiming to detect predictors of mortality among a 

. similar cohort of patients with severe AS undergoing TAVR, Weber 

. et al.17 analysed a set of echocardiographic and haemodynamic data, 

. and identified presence of combined pre- and post-capillary PH, and 

. a lower AVGmean as independent predictors by using multivariate 

. Cox regression analysis. However, traditional regression models as- 

. sume a parametric linear function relating the predictor variables 

. with the response. This assumption might not hold true in the natural 
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Table 3 Univariate and multivariate cox regression analysis with 2-year mortality as a dependent variable (derivation 
cohort) 

Univariate analysis Multivariate analysis 
.............................................................. .................................................................. 

HR (95% CI) P-value HR (95% CI) P-value 
.................................................................................................................................................................................................................... 
Age 0.96 (0.89–1) per year 0.21  

Sex (female) 0.26 (0.074–0.95) 0.042 0.20 (0.04–1.02) 0.0531 
BMI 0.93 (0.81–1.1) per kg/m2 0.26   

Arterial hypertension 1.9 (0.24–14) 0.55   

Smoking 1 (0.33–3) 1   
Diabetes mellitus 1.9 (0.62–5.5) 0.27   

NYHA functional class 1.4 (0.57–3.2) per class 0.49   

EuroSCORE 1 (1–1.1) per % 0.0017 1.03 (0.99–1.08) per % 0.1374 
eGFR 0.97 (0.95–1) per mL/min 0.024 0.97 (0.94–1.00) per mL/min 0.0831 
Hb 1 (0.75–1.4) per g/dL 0.95   

CAD 0.91 (0.2–4.1) 0.91   

COPD 2.1 (0.6–7.7) 0.24   
Atrial fibrillation and/or flutter 3.7 (1.2–12) 0.026 1.71 (0.35–8.50) 0.5099 
AVA 1.4 (0.16–13) per cm2 0.75   

AVGmax 0.98 (0.96–1) per mmHg 0.13   

AVGmean 0.97 (0.94–1) per mmHg 0.11   
Cardiac output 0.66 (0.42–1) per L/min 0.064   
LVEF 0.94 (0.9–0.97) per % 0.0004 0.96 (0.84–1.09) per % 0.4913 
LVEDD 1.1 (1–1.1) per mm 0.0056 0.95 (0.87–1.05) per mm 0.3149 
mPAP 1 (1–1.1) per mmHg 0.04 1.00 (0.94–1.08) per mmHg 0.9269 
mPCWP 1 (1–1.1) per mmHg 0.073   
PVR 1.3 (1–1.6) per WU 0.045 0.81 (0.47–1.40) per WU 0.4539 
TAPSE 0.85 (0.73–1) per mm 0.045 0.85 (0.67–1.09) per mm 0.1967 
Right midventricular diameter 1.1 (1–1.2) per mm 0.02 1.06 (0.96–1.18) per mm 0.2344 
LA area 1.1 (1–1.1) per cm2 0.011 1.03 (0.93–1.14) per cm2 0.5449 
RA area 1.1 (1.1–1.2) per cm2 7.7 ×	10-5 1.04 (0.94–1.16) per cm2 0.4110 
Low gradient (AVGmean < 40 mmHg) 1.8 (0.59–5.2) 0.314   

LV dysfunction (LVEF <_ 45%) 4.7 (1.6–14) 0.0052 0.44 (0.03–7.33) 0.5663 
PH (mPAP >_ 25 mmHg) 1.6 (0.53–4.7) 0.42   
RV dysfunction (TAPSE <_ 16 mm) 2.3 (0.77–6.8) 0.14   

Assignment to Cluster 2 3 (1–8.9) 0.04 1.12 (0.29–4.37) 0.8676 

AVA, aortic valve area; AVGmax, maximum aortic valve gradient; AVGmean, mean aortic valve gradient; BMI, body mass index; CAD, coronary artery disease; CI, confidence 
interval; COPD, chronic obstructive pulmonary disease; GFR, glomerular filtration rate; HR, hazard ratio; IVS, interventricular septum thickness; LA area, left atrial area; 
LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic diameter; mean RV pressure, mean right ventricular 
pressure; mPAP, mean pulmonary artery pressure; mPCWP, mean postcapillary wedge pressure; NYHA, New York Heart Association; PVR, pulmonary vascular resistance; PW, 
posterior wall thickness; RA area, right atrial area; RA pressure, right atrial pressure; TAPSE, tricuspid annular plane systolic excursion. 

 
 

course of AS, since the AVGmean initially increases with progressive 
narrowing of the AVA, but later decreases as the left ventricle 
decompensates (‘low flow, low gradient AS’). If patients on the transi- 
tion from moderate to severe AS were analysed by logistic regression 
analysis, an increasing AVGmean would clearly be interpreted as an in- 
dicator for disease progression, and hence serve as a marker for 
worsened prognosis.18 The beauty of the hereby established ap- 
proach lays in the improvement to identify and segregate patients 
with similar characteristics firstly without applying any a priori assump- 
tion and secondly without restricting the analysis to human-selected 
patient characteristics as data features. At the same time, many 
Doppler tracings were not suitable to be analysed by a CNN due to 
poor echocardiographic acquisition or due to suboptimal alignment 

. with the jet and hence inadequate recording of the true transvalv- 

. ular gradient. So, how can our assignment to distinct clusters and . its clinical implication be generalized to the majority of patients? 

. Ideally, this study is not only perceived as a proof-of-concept valid . 
for selected patients, but as yet another step along the road to im- 

. plementation of artificial intelligence in clinical decision-making. . 
We have therefore decided to additionally train an extreme gradi- 

. ent boosting algorithm on functional and structural data from pre- 

. procedural echocardiography and right heart catheterization, thus 

. opening the avenue for other cardiologists to stratify their 

. patients according to our beforehand created classification gener- 

. ated by transfer learning. Upon loading the trained extreme gradi- 

. ent boosting algorithm and adding the requested input data into 
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the corresponding R code (both available from the corresponding 
author; see Supplementary material online, Figure S4 for a preview 
of the R code), future patients can be assigned to either Cluster 1 
(good prognosis) or Cluster 2 (poor prognosis). 

The extent of cardiac damage is already 
mirrored in the aortic outflow velocity 
profile, and it is the left ventricular 
response to the increased afterload that 
determines fate in patients with severe 
aortic stenosis 
Capturing the complexity of cardiac damage subsequent to severe 
AS is key to sophisticated risk stratification prior to TAVR. This is 
particularly true, as PH and right ventricular dysfunction can persist 
in a substantial number of cases after TAVR, and persistence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
translates into distressing mortality.19–21 G´en´ereux et al.7 therefore 

. established a staging classification, which considers disease progres- . . sion beyond the compensation capacity of the left ventricle. This 

. divisive, top-down staging classification is driven by the hypothesis 

. that extravalvular damages to the heart and pulmonary circulation 

. subsequent to severe AS occur in a sequential order of left heart 

. failure, PH, and right heart dysfunction. Despite its simplicity, this 

. 
staging classification cannot be easily implemented into clinical 

. practice, as clinicians commonly encounter disparities between AS- . 
induced haemodynamic burden and extravalvular damages (pos- 

. sibly influenced by comorbidities, such as atrial fibrillation and . 
chronic obstructive pulmonary disease, or by genetic predispos- 

. ition).16,22,23 Failure of left ventricular compensation capacity and 

. subsequent backwards transmission of elevated left-sided filling 

. pressures was more frequently observed in Cluster 2 than in 

. Cluster 1 (mean post-capillary wedge pressure: 21.4 ± 8.83, 95% CI: 
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18.6–24.2 mmHg vs. 15.5 ± 8.40, 95% CI: 13.3–17.6 mmHg, P-value: 
0.0007), whilst patients in Cluster 1 presented with a more severe 
obstruction of the aortic valve, indicating a longer disease progres- 
sion, yet resulting in less cardiopulmonary impairments. This insight 
into disease progression in patients with severe AS emphasizes the 
importance of the complex pathophysiologic valvular-ventricular 
interactions, which obviously vary among individuals. In the con- 
temporary ‘one-size-fits-all’ practice of medicine, the timing of 
intervention mainly focuses on the aortic valve. Our study may alter 
the perception of ideal timing of intervention as well as it may facili- 
tate the development of individualized treatment, as an earlier 
intervention in patients from Cluster 2 might have had prevented 
further aggravation of left heart decompensation, PH, and right 
heart dysfunction. Addressing a similar issue, a study investigating 
the benefit of early intervention in patients with moderate AS and 
impaired left ventricular function has already been initialized [TAVR 
UNLOAD (Transcatheter Aortic Valve Replacement to Unload 
the Left Ventricle in Patients with Advanced Heart Failure) trial].24 
Moreover, it will be interesting to analyse future echocardiographic 
follow-up studies in accordance with cluster assignment, since recov- 
ery from cardiopulmonary damages that cannot be totally attributed 
to the obstruction of the aortic valve seems questionable. Thus, 
suspected persistence of PH and right heart dysfunction despite 

. correction of severe AS by TAVR could emerge as an unmodifiable 

. (?) driver for increased mortality in patients from Cluster 2. 

. . 
Unsupervised clustering could reveal 

. diversity of aortic stenosis phenotypes 

. with unprecedented precision, but 

. extensive quality control is mandatory 

. before unleashing machine learning . 
algorithms in clinical practice 

. Extending this proof-of-principle study based on good quality 

. Doppler tracings from 101 patients to a larger cohort could reveal . even more diversity in aortic outflow velocity profiles by unravelling 

. additional clusters. Even nowadays, AS with discordant markers of se- . 
verity, such as severely reduced AVA and low AVGmean, but pre- 

. served left ventricular ejection fraction (‘paradoxical low-gradient . 
AS’)25 remains a conundrum in diagnosis and treatment.26 It will be 

. interesting to see whether contemporary classifications of AS pheno- 

. types will be mirrored by unsupervised clustering, or if distinct clinical 

. presentations will emerge. Admittedly, involvement of artificial intelli- 

. gence in clinical decision-making is still frowned upon due to the 

. ‘black box’ nature, and the potential for a flawed machine learning al- 

. gorithm to induce iatrogenic harm is vast. The opaqueness in the 

 
   

  

 

 

Figure 6 An extreme gradient boosting algorithm opens the perspective to assign patients to beforehand defined clusters by a comprehensive set 
of functional and structural parameters of cardiac and pulmonary circulatory conditions. (A) Bee swarm plots for comparison of key characteristics 
between clusters after over-sampling (SMOTE). (B) Confusion matrix (test set). (C) Shedding light on the black box of extreme gradient boosting al- 
gorithm-mediated cluster assignment by calculating SHAP (SHapley Additive exPlanations) values for its input variables. The y-axis represents the in- put 
variables in descending order of global feature importance, whilst the x-axis indicates the adjustment to the predicted cluster. Moreover, each dot 
in this sina plot represents an observation, i.e. a patient from the derivation cohort, and the gradient colour denotes the value of the respective in- put 
variable. Therefore, if the dots on one side of the central line are increasingly yellow or purple, that suggests that increasing values or decreasing 
values, respectively, move the predicted cluster in the respective direction (left: Cluster 1; right: Cluster 2). For instance, higher values of AVGmean 
(purple dots) are associated with assignment to Cluster 1. (D) Kaplan–Meier survival analysis in accordance with extreme gradient boosting-algo- 
rithm-mediated cluster assignment (validation cohort). (E) Comparison of clusters as defined by the CNN in conjunction with PCA and k-means clus- 
tering (derivation cohort; red) or as determined by the trained extreme gradient boosting algorithm (validation cohort; blue). The central line in each 
box plot denotes the median value, while the box contains all values ranging between the 25th and 75th percentiles of the data set. The black 
whiskers mark the 5th and 95th percentiles, and values falling beyond these upper and lower bounds are considered outliers, plotted as black dots. 
AVA, aortic valve area; AVGmean, mean aortic valve gradient; LA area, left atrial area; LVEDD, left ventricular end-diastolic diameter; mPAP, mean pul- 
monary artery pressure; mPCWP, mean postcapillary wedge pressure; PVR, pulmonary vascular resistance; RA area, right atrial area; RA pressure, 
right atrial pressure; RV pressuremean, mean right ventricular pressure; TAPSE, tricuspid annular plane systolic excursion. 
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determination of output has therefore fuelled demands for explain- 
ability as expressed in the European Union’s General Data 
Protection Regulation.27 Gradient-weighted class activation mapping 
(GRAD-CAM) visualizations from the tool box of explainable artifi- 
cial intelligence are typically applied in order to inspect images and to 
get insights into CNN decisions.28 Yet, GRAD-CAM visualizations 
connecting the raw image to the decision of a classifier were not used 
in this study for two reasons: 

(1) Patient-to-cluster assignment was based on PCA and k-means clus- 
tering of Doppler tracings, which represents a form of unsupervised 
learning, and which is different from assignment by means of a 
trained classifier, which would have represented a form of super- 
vised learning. 

(2) Training a classifier in terms of fully connected layers following the 
convolutional part of the pre-trained VGG-16 network would have 
required thousands of Doppler tracings, which could have only 
been collected in a labour-intensive, multicentric effort. 

It, therefore, remains enigmatic which characteristics of the aortic 
outflow velocity profile would result in assignment to either Cluster 
1 or 2. As shown by the PCA (Figure 3B), there cannot be a single 
‘most important’ feature that defines the echocardiographic signature 
of patients assigned to Cluster 1 or 2, as the first two dimensions of 
the PCA explain only 10.72% and 8.96% of the variation among all 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
. 
. transformed aortic outflow velocity profiles, respectively. This gap in 
. mechanistic inference can be perceived as a limitation to this study, 
. but it also demonstrates the strengths of neural networks, which en- . 

able to identify novel relationships in complex and finely nuanced 
. data sets and which therefore go beyond (simplified) stratification in . 

accordance with human-selected features.29 To explain at least par- 
. tially which feature within the aortic outflow velocity profiles drive 
. the differences between Clusters 1 and 2, the 20 most distant 
. Doppler tracings (hereinafter referred to as ‘top 10’ and ‘bottom 10’ 
. Doppler tracings) along PCA dimension #1 were identified . 

(Supplementary material online, Figure S5A–C) and related echocar- 
. diographic and haemodynamic characteristics were compared . 

(Supplementary material online, Figure S5D and Table S4): among the 
. studied characteristics, the strongest difference in terms of statistical 
. significance expressed as the respective P-value level was found for 
. AVGmean (59.5 ± 15.6; 95% CI: 48.3–70.7 mmHg among Top 10 
. Doppler tracings vs. 17.9 ± 7.62; 95% CI: 12.4–23.4 mmHg among . 

bottom 10 Doppler tracings, P-value: 0.0002). This finding was con- 
. firmed by direct comparison of top 10 and bottom 10 Doppler trac- . 
. ings (Supplementary material online, Figure S5E). 
. Scrutinizing the generalizability of our findings as generated on 101 
. selected patients, we decided to test if cluster-related phenotypes 
. could also be detected among the initially excluded 265 patients due 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 (Continued)  
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AVA (cm2), mean ± SD [95% CI] 0.770 ± 0.201 0.742 ± 0.186 0.839 ± 0.219 0.0007 

 
AVGmean (mmHg), mean ± SD [95% CI] 

[0.746–0.794] 
40.4 ± 15.3 

[0.715–0.769] 
47.1 ± 12.3 

[0.789–0.889] 
23.5 ± 6.00 

 
<2.2 ×	10-16 

 
Cardiac output (L/min), mean ± SD [95% CI] 

[38.5–42.2] 
4.86 ± 1.19 

[45.3–48.9] 
5.04 ± 1.23 

[22.1–24.9] 
4.42 ± 0.970 

 
5.9 ×	10-5 

 
LVEF (%), mean ± SD [95% CI] 

[4.72–5.01] 
52.6 ± 10.8 

[4.86–5.22] 
55.5 ± 8.05 

[4.19–4.64] 
45.4 ± 13.1 

 
4.6 ×	10-10 

 [51.3–53.9] [54.3–56.7] [42.4–48.4]  
LVEDD (mm), mean ± SD [95% CI] 46.9 ± 8.16 45.4 ± 7.41 50.4 ± 8.86 0.0001 

 
LA area (cm2), mean ± SD [95% CI] 

[45.8–47.9] 
26.5 ± 8.33 

[44.3–46.5] 
25.3 ± 7.85 

[48.2–52.5] 
29.3 ± 8.82 

 
0.0009 

 [25.4–27.6] [24.1–26.5] [27.2–31.4]  

mPCWP (mmHg), mean ± SD [95% CI] 17.3 ± 8.28 16.6 ± 7.56 19.2 ± 9.66 0.0499 
 [16.3–18.3] [15.5–17.6] [17.0–21.4]  

mPAP (mmHg), mean ± SD [95% CI] 28.5 ± 11.4 27.5 ± 10.8 31.1 ± 12.5 0.0331 
 [27.1–29.9] [25.9–29.0] [28.2–34.0]  

PVR (WU), mean ± SD [95% CI] 2.48 ± 1.59 2.34 ± 1.58 2.83 ± 1.57 0.0033 

 
TAPSE (mm), mean ± SD [95% CI] 

[2.29–2.67] 
19.6 ± 5.36 

[2.11–2.56] 
21.0 ± 5.10 

[2.47–3.19] 
16.3 ± 4.53 

 
2.7 ×	10-10 

 [18.9–20.3] [20.2–21.7] [15.3–17.4]  

Right midventricular diameter (mm), mean ± SD [95% CI] 29.7 ± 6.65 29.0 ± 6.89 31.3 ± 5.81 0.0085 

 
RA area (cm2), mean ± SD [95% CI] 

[28.8–30.5] 
21.0 ± 7.68 

[28.0–30.1] 
19.9 ± 6.95 

[29.9–32.6] 
23.5 ± 8.75 

 
0.0022 

 [20.0–22.0] [18.9–21.0] [21.4–25.6]  

 
 
 
 

to poor or missing Doppler tracings. The cluster-related clinical 
implications could be confirmed by an extreme gradient boosting al- 
gorithm, and calculation of SHAP values as a state-of-the-art metric 
to quantify the contribution of input variables to model prediction 
highlighted the importance of transvalvular gradients, incorporating 
information about both aortic valve obstruction and left ventricular 
contractility. Notably, continuous wave Doppler echocardiography 
in combination with the Bernoulli equation to assess transvalvular 
pressure gradients is based on oversimplification of human haemo- 
dynamics, as for instance a column of flow with uniform velocity dis- 
tribution is assumed, which is clearly not the case in patients with 
severe AS.30 The analysis of the spatio-temporal pattern of the ejec- 
tion jet, e.g. by three-dimensional cardiovascular magnetic resonance 
imaging, could therefore reveal novel insights into AS phenotypes. 

Limitations: on the prohibitive costs of 
poor image quality, and why you should 
not trust artificial intelligence implicitly 
Machine learning algorithms per se learn from data, meaning that 
insufficient data quality or systematic bias during data collection 
would hamper the algorithm to identify any consistent and 

. generalizable patterns. The accuracy of a CNN therefore strictly 

. relies on the input data quality. Physicians in a real-world scenario 

. yet commonly encounter difficulties in examining patients with se- 

. vere AS, as they typically present dyspnoeic and are hence less 

. suited for optimal positioning for echocardiography. It was, there- 

. fore, important to demonstrate that the subset of 101 patients 

. with good quality Doppler tracings was representative of the en- 

. tire study population of 366 patients (Supplementary material on- . line, Tables S2 and S3). Moreover, we had to ensure by 

. cumbersome manual cropping that the Doppler tracings serving as . 
input images contain no other information than the aortic outflow 

. velocity profile of interest (Figure 2). An example of a seemingly . 
high-performance machine learning algorithm flawed by shortcuts 

. in the training set is a model that is supposed to distinguish a wolf . 
from a husky by animal characteristics but eventually reveals to de- . rive its performance from the simple, but undesired identification . 
of patches of snow on the photograph.31 Moreover, the unscruti- 

. nized synthesis of training data from separate data sets of COVID- 

. 19-negative and COVID-19-positive images was demonstrated to 

. introduce near worst-case confounding and thus abundant oppor- 

. tunity for machine learning algorithms to learn shortcuts due to 

. variations in image acquisition and radiographic projection.32 
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VGG-16 for clustering of Doppler tracings 15 

Claiming to have found a reasonable echocardiographic signature 
among patients presenting with severe AS, it was therefore of 
paramount importance to us to validate (and finally confirm) the 
clinical implications of related phenotypes in a second cohort by 
yet another machine learning algorithm. Obviously, we cannot 
guarantee that the algorithms employed in this study would out- 
perform all other algorithms in clustering patients (unsupervised 
learning experiment) and in assigning patients to clusters (super- 
vised learning experiment). In the commonly accepted absence of 
any a priori guarantee that one machine learning technique is super- 
ior to all others,33 the only way to determine which algorithms 
works best for the given data structure is to evaluate them all. 
However, this is practically impossible, innovative and more 
powerful algorithms might emerge in the future, and it ultimately 
also relies on the programmer’s ability to tune the hyperparameter 
of respective models to perfection. As a matter of fact, we applied 
hierarchical agglomerative clustering to the transformed aortic 
outflow velocity profiles, hence testing yet another popular clus- 
tering algorithm equivalent to k-means clustering. Hierarchical ag- 
glomerative clustering also facilitated to identify a cluster with 

 
. 

(25.6 ± 8.14, 95% CI: 23.9–27.4 mmHg) (Supplementary material 
. online, Figure S8D and Table S5). 
. 
. . Conclusion 
. . In summary, this is the first study to demonstrate the usefulness of 
. transfer learning for unsupervised clustering of aortic outflow vel- . 

ocity profiles in patients with severe AS. Since the perception of 
. patients presenting with severe AS is in a state of flux from a valve- 
. centred perspective to a personalized comprehensive view covering 
. all aspects of co-developed cardiopulmonary impairments, the unrav- 
. elled phenotypes in this study hold the promise to better stratify . 

patients into low-risk and high-risk cohorts. Importantly, it is the left 
. ventricular response to the increased afterload, not so much the ac- 
. tual obstruction of the aortic valve, that determines fate after TAVR. 
. As a new arrow in the quiver from interventional cardiologists to re- 
. fine prognostic assessment prior to TAVR, the trained extreme gradi- . ent boosting algorithm for individual cluster assignment in future . patients can be requested from the corresponding author. 

significantly reduced AGV  
mean ; however, the two segregated clus- 

. 

ters were vastly overlapping as demonstrated by the first two 
dimensions of a PCA as well as by a correlation plot depicting 
AGVmean and cardiac output, and subsequently, 2-year survival dif- 
ferences did not reach statistical significance (Supplementary ma- 
terial online, Figure S6). Importantly, AS represents a progressive 
disease with a continuous transition of stages of disease severity. 
Unlike clustering of e.g. bone marrow cells of distinct haematopoi- 
etic lineages (where you would expect clearly defined clusters of 
e.g. erythrocytes and lymphatic cells based on their gene expres- 
sion profiles), it is practically impossible to distinguish any clearly 
separated clusters among patients with severe AS and their re- 
spective aortic outflow velocity profiles. This is reflected by the sil- 
houette diagram (Supplementary material online, Figure S7) 
revealing a mean silhouette coefficient of only 0.0689 ± 0.0459 
among the clusters as defined by k-means clustering. Moreover, 
we acknowledge that the accuracy of the extreme gradient boost- 
ing algorithm was evaluated on a test set that was at least partially 
composed of synthetic data. We have therefore added an alterna- 
tive experimental design with a test set containing only real and un- 
seen patients (explicitly no synthetic data) (Supplementary 
material online, Figure S8A). Thus, we could confirm the satisfying 
accuracy of the extreme gradient boosting algorithm for patient- 
to-cluster assignment based on 13 variables from pre-procedural 
echocardiography and right heart catheterization (accuracy: 92.0%; 
95% CI: 74.0–99.9%) (Supplementary material online, Figure S8B). 
Applying the algorithm trained under the alternative experimental 
design to the validation cohort of patients with poor quality or no 
available Doppler tracings also confirmed the increased risk of 
mortality for patients assigned to Cluster 2 in comparison to 
Cluster 1 (HR for 2-year mortality: 2.1; 95% CI: 1.1–4.1, P-value: 
0.022) (Supplementary material online, Figure S8C). Again, patients 
assigned to Cluster 2 were characterized by a relatively larger 
AVA (0.824 ± 0.214; 95% CI: 0.779–0.870 cm2) and also by a 
reduced left ventricular function (left ventricular ejection fraction: 
47.5 ± 13.3; 95% CI: 44.7–50.4%) and by a lower AVGmean 

. . Supplementary material 

. 

. Supplementary material is available at European Heart Journal – Digital 

. Health online. 

. 

. 
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to clinical presentation by applying unsupervised machine learning. 

 
BACKGROUND Patients with severe AS present with heterogeneous clinical phenotypes, depending on disease pro- 
gression and comorbidities. 

 
  

heart catheterization from 366 consecutively enrolled patients undergoing transcatheter aortic valve replacement for 
severe AS. 

 

 

 

               
           

 
 

with severe AS. Importantly, structural alterations in left and right heart morphology, possibly due to genetic predis- 
position, constitute an equally sensitive indicator of poor prognosis compared with high-grade PH. 
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A B B R  E V I A T  I O N S  

A N D  A C R O  N Y MS  

 
ANN = artificial neural network 

AS = aortic stenosis 
 

AVG = aortic valve gradient 

EuroSCORE = European 
System for Cardiac Operative 

Risk Evaluation 

LVEF = left ventricular ejection 

fraction 

mPAP = mean pulmonary 

artery pressure 

PH = pulmonary hypertension 
 

PVR = pulmonary vascular 
resistance 

RHC = right heart 

catheterization 

TAPSE = tricuspid annular 

plane systolic excursion 

TAVR = transcatheter aortic 

valve replacement 

alcific aortic stenosis (AS) repre- 
sents one of the most frequent car- 
diovascular diseases after coronary 

artery disease and systemic arterial hyper- 
tension in developed countries, and the 
prevalence of severe AS among the elderly 
population (aged $75 years) is estimated to be 
3.4% (1). As a consequence of backward 
transmission of left-sided filling pressures 
caused by severe AS, about 50% of patients 
present  with  pulmonary  hypertension  (PH) 
(2). Furthermore, as right heart performance 
is closely coupled with pulmonary circula- tion, 
initial compensatory right ventricular 
remodeling processes will eventually fail and 
lead to right heart dilatation with impair- ment of 
right ventricular function and pro- gressing 
tricuspid regurgitation (3,4). 

 

Patients with severe AS are traditionally 
categorized into subgroups according to the 

depending on the extent of left ventricular dysfunc- 
tion, PH, and right heart failure. 

 
METHODS 

 

PATIENT RECRUITMENT. This was a retrospective cohort 
study drawing on prospectively and system- atically 
collected echocardiographic and hemody- namic data 
from patients with severe AS. Enrolled patients underwent 
transcatheter aortic valve replacement (TAVR) for severe 
AS at 2 tertiary centers in Munich, Germany, between 
January 2014 and December 2020. Patients were included 
in the registry only after written informed consent was 
received. As the aim of this study was to analyze the extent 
of extravalvular damage subsequent or parallel to se- 
vere AS in depth, only patients with both echocardi- 
ography and RHC, obtained preprocedurally prior to 
TAVR, were included in this study. Baseline de- 
mographic and clinical characteristics were obtained from 
registry data or clinical records as appropriate. The 
primary outcome measure was all-cause mortal- 

presence of symptoms and aortic valve gradient (AVG), 
flow, and left ventricular ejection fraction (LVEF) (5). 
This conventional categorization of pa- tients represents 
a form of hypothesis-driven and divisive clustering, 
incorporating only a limited set of characteristics. 
Moreover, in a real-world scenario, physicians commonly 
encounter a disparity between AS-induced 
hemodynamic burden and extravalvular damage to the 
heart and pulmonary circulation, which might illustrate 
the consequences both of chronicity of AS and of 
comorbidities such as atrial fibrillation, coronary artery 
disease and chronic obstructive pul- monary disease. As 
unsupervised agglomerative clustering works on a 
theoretically endless set of variables and without the 
constraint of any a priori assumption, it holds the promise 
to improve identifi- cation and segregation of patients 
with similar char- acteristics. Unsupervised clustering 
approaches have proved extremely successful in analyzing 
high- throughput experimental data, for example, in the 
field of genomics or cancer biology (6). Adopting ma- 
chine learning to cardiovascular medicine could aid in 
advancing the field of personalized medicine, espe- 
cially when it concerns subphenotyping of heteroge- neous 
diseases (7-10). 

We therefore hypothesized that unsupervised 
agglomerative clustering of a complementary set of 
echocardiographic and hemodynamic parameters from 
right heart catheterization (RHC) could capture the 
complexity of clinical presentation in patients with 
severe AS by revealing distinct phenotypes, which  
would  subsequently  differ  in  mortality 

ity within 2 years after TAVR. Survival data were obtained 
from the German Civil Registry in case of patients being 
registered in Germany (96.7%), or from general 
practitioners, hospitals, and practice cardiol- ogists for 
patients from foreign countries. Planned and conducted 
in conformity with the Declaration of Helsinki, this study 
was approved by the local ethics committee. 

TRANSTHORACIC  ECHOCARDIOGRAPHY.  All  echo- 
cardiographic studies were performed by experienced 
institutional cardiologists during clinical routine us- ing 
a commercially available echocardiographic sys- tem 
equipped with a 2.5-MHz multifrequency phased-
array transducer. 

INVASIVE ASSESSMENT OF HEMODYNAMIC STATUS. 

A 7-F Swan-Ganz catheter was routinely used for 
preprocedural RHC via femoral access. Systolic and 
diastolic pulmonary artery pressures were directly 
recorded. Mean pulmonary artery pressure (mPAP) was  
calculated  as:  diastolic  pulmonary  artery 
pressure  +  1/3  ×  (systolic  pulmonary  artery 
pressure — diastolic pulmonary artery pressure). Mean 
postcapillary wedge pressure was calculated over the 
entire cardiac cycle. Cardiac output was determined using 
the indirect Fick method. Pulmo- nary vascular 
resistance (PVR) was defined as: (mPAP — mean 
postcapillary wedge pressure)/car- 
diac output. 

 
STATISTICAL ANALYSIS AND VARIABLE SELECTION 

CRITERIA. All  statistical  analyses  were  performed 

SEE PAGE 2141  
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using R version 3.6.3 (R Foundation for Statistical 
Computing) (see Supplemental Table 1 for a complete list 
of R packages used). All computations were per- formed 
on a MacBook Pro (macOS Catalina version 10.15.5, Apple 
Computer) with a 2.3-GHz quad-core Intel Core i7 
processor. The complete R code is available from the 
corresponding author upon reasonable request. 

Categorical variables are presented as numbers and/or 
frequencies and continuous variables as mean 
!	SD. The chi-square or Fisher exact test was used to 
evaluate associations between categorical variables, and 
the Kruskal-Wallis test in combination with the pairwise 
Wilcoxon test with correction for multiple testing 
(Benjamini-Hochberg method) was used for comparisons 
of continuous variables, as appropriate. Pairwise 
comparisons of clusters as determined by unsupervised 
agglomerative clustering or predicted by an artificial 
neural network (ANN) were also calcu- lated using an 
independent-samples Wilcoxon test. 

For analysis of collinearity, Pearson correlation 
coefficients were calculated, and the correlation ma- 
trix was hereinafter visualized (R package corrplot). 
The following criteria were defined for the selection of 
variables to be used for hierarchical clustering: 1) routine 
measurements in preprocedural work flow of 
echocardiography and RHC before TAVR; 2) good quality 
of representation on the first 5 dimensions of a 
principal component analysis, defined by squared cosine; 
and 3) no collinearity with other variables, as determined 
by the Pearson correlation coefficient. 

After variable selection, a distance matrix was 
calculated using the Euclidean distance metric, the ideal 
number of clusters was determined using the elbow 
method, and agglomerative hierarchical clus- tering was 
finally performed, applying Ward’s mini- mum variance 
method (R packages FactoMineR, factoextra, and 
NbClust). It is important to note that missing values were 
imputed using a random forest algorithm before 
calculating the distance matrix for the principal 
component analysis and hierarchical clustering (R 
package missForest) but were not used thereafter (eg, 
for cluster comparisons). A heatmap including 
dendrograms was generated for visualization of clustering 
results (R package ComplexHeatmap). 

Survival was illustrated using the Kaplan-Meier 
method, and a Cox proportional hazards model was 
used to estimate HRs between identified clusters (R 
packages survival, survminer, and ggforest). A further 
univariate Cox proportional hazards model was used to 
shed light on additional contributing factors to 2-year 
mortality. For parameter estimates of interest, 95% CIs 
were reported. 

 

FIGURE 1 General Information About the Study Population From Recruitment to 
Follow-Up 

 

 

(A) Flowchart for patient recruitment. (B) Kaplan-Meier survival plot for the entire study 
population. (C) Density plot illustrating time to death and time to censoring for the 
entire study population. AVA ¼	aortic valve area; RHC ¼	right heart catheterization; 
TAVR ¼	transcatheter aortic valve replacement. 

 

 
An ANN for cluster prediction was programmed 

using Keras for R with TensorFlow as a backend en- 
gine (R packages keras and tensorflow). The ideal ANN 
architecture (ie, the number of hidden layers 
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FIGURE 2 Variable Selection and Resulting Cluster Analysis 
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TABLE 1 Demographic and Clinical Characteristics in Accordance With Cluster Assignment 

 Cluster 1 (n ¼	164) Cluster 2 (n ¼	66) Cluster 3 (n ¼	45) Cluster 4 (n ¼	91) P Value 

Age (y) 79.6 !	6.0 (4) 78.1 !	6.9 (4) 79.8 !	8.7 81.3 !	6.7 (1, 2) 0.0068 

Female 43.9 42.4 42.2 29.7 0.1483 

BMI (kg/m2) 26.3 !	4.4 27.6 !	4.0 26.7 !	4.4 27.1 !	4.8 0.1539 

Arterial hypertension 86.5 93.9 100.0 (1) 94.5 0.0095 

Smoking 19.0 28.8 28.9 31.9 0.1625 

Diabetes mellitus 25.2 24.2 24.4 36.3 0.2127 

NYHA functional class 2.48 !	0.71 (3, 4) 2.52 !	0.66 (3, 4) 3.02 !	0.72 (1, 2) 2.87 !	0.78 (1, 2) 5.4 ×	10—7 

EuroSCORE (%) 13.7 !	10.1 (3, 4) 13.9 !	11.2 (3, 4) 29.1 !	20.9 (1, 2) 22.6 !	14.6 (1, 2) 8.6 ×	10—10 

eGFR (mL/min) 63.0 !	20.5 (3, 4) 64.6 !	21.6 (3) 52.8 !	21.1 (1, 2) 56.0 !	19.9 (1) 0.0046 

CAD 84.0 87.9 80.0 87.9 0.5635 

COPD 8.6 (3) 15.2 24.4 (1) 15.4 0.0376 

Atrial fibrillation and/or flutter 20.1 (2, 3, 4) 37.9 (1, 3, 4) 75.6 (1, 2) 79.1 (1, 2) 0.0005 

Values are mean !	SD or %. The chi-square or Fisher exact test was used to evaluate associations between categorical variables, and the Kruskal-Wallis test in combination with the 
pairwise Wilcoxon test with correction for multiple testing (Benjamini-Hochberg method) was used for comparisons of continuous variables, as appropriate. Numbers in 
parentheses indicate between which clusters significant differences (P # 0.05) were detected. Pairwise comparison could not detect significant differences among clusters for 
the prevalence of arterial hypertension. 

BMI ¼	body mass index; CAD ¼	coronary artery disease; COPD ¼	chronic obstructive pulmonary disease; eGFR ¼	estimated glomerular filtration rate; EuroSCORE ¼	European 
System for Cardiac Operative Risk Evaluation; NYHA ¼	New York Heart Association. 

 

and the respective number of nodes per layer) was 
found by plain trial and error. As the ANN had to solve 
a multiclass classification task (ie, to assign each pa- tient 
to exactly 1 cluster), the final output layer con- sisted of 1 
node per cluster using the softmax activation function. 
Accuracy and loss were chosen as metrics to observe the 
model’s performance during training and testing. To 
prevent overfitting, a callback function was programmed 
to automatically interrupt training when the loss in the 
test set did not further decrease after 20 epochs. A P value 
#0.05 was considered to indicate statistical 
significance. 

 
RESULTS 

 

 
THREE HUNDRED SIXTY-SIX PATIENTS WITH RHC 

BEFORE TAVR FOR SEVERE AS CONSTITUTED THE 

STUDY POPULATION. In total, the registry contained 
2,575 patients undergoing TAVR for severe AS be- 
tween 2014 and 2020. Among them, 2,209 patients 

were excluded because of missing preprocedural RHC, 
so that the detailed analysis was performed on a dataset 
consisting of 366 patients. The mean age of 
the study population was 79.8 !	6.8 years, the mean 
aortic valve area was 0.78 !	0.21 cm2, and median 
survival was 6.3 years (Figures 1A and 1B). Fifty percent 
of deaths occurred within 1.97 years after TAVR 
(Figure 1C). 
TWELVE VARIABLES FROM ECHOCARDIOGRAPHY 

AND  RHC  WERE  SELECTED  FOR  CLUSTERING. 

Initially, 26 routinely measured candidate variables 
from echocardiography and RHC were assessed regarding 
their significance in explaining the variance among 
patients. The first 5 dimensions of a principal component 
analysis explained 62.9% of the variance within the 
dataset. Variables with low quality of representation on 
those first 5 dimensions, such as E/ e0 ratio and 
posterior wall thickness, were regarded as not meaningful 
enough to be included in cluster analysis.  Notably,  
aortic  valve  area  also  had  no 
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TABLE 2 Comparison of Echocardiographic and Hemodynamic Data From RHC in Accordance With Cluster Assignment 

 Cluster 1 (n ¼	164) Cluster 2 (n ¼	66) Cluster 3 (n ¼	45) Cluster 4 (n ¼	91) P Value 

AVA (cm2) 0.79 !	0.19 0.78 !	0.23 0.74 !	0.24 0.79 !	0.20 0.6768 

AVGmean (mm Hg) 41.6 !	12.7 (2, 3, 4) 50.3 !	18.0 (1, 3, 4) 33.5 !	13.7 (1, 2) 31.9 !	14.7 (1, 2) 7.5 ×	10—13 

AVGmax (mm Hg) 64.3 !	21.4 (2, 3, 4) 75.4 !	24.0 (1, 3, 4) 50.0 !	21.1 (1, 2) 49.8 !	21.0 (1, 2) 3.6 ×	10—12 

Cardiac output (L/min) 5.12 !	0.88 (2, 3, 4) 5.79 !	1.55 (1, 3, 4) 3.82 !	0.87 (1, 2, 4) 4.47 !	1.12 (1, 2, 3) <2 ×	10—16 

LVEF (%) 57.2 !	6.4 (2, 3, 4) 55.9 !	6.5 (1, 3, 4) 42.4 !	15.7 (1, 2) 47.3 !	12.2 (1, 2) 4.2 ×	10—16 

LVESD (mm) 30.3 !	8.1 (3, 4) 32.7 !	8.3 39.6 !	14.7 (1) 36.5 !	11.4 (1) 9.1 ×	10—5 

LVEDD (mm) 43.9 !	7.2 (2, 3, 4) 46.8 !	5.7 (1, 3, 4) 52.7 !	10.3 (1, 2) 49.5 !	9.2 (1, 2) 6.8 ×	10—9 

IVS (mm) 13.6 !	2.4 14.4 !	2.6 (3) 12.8 !	2.4 (2) 13.6 !	2.8 0.0117 

PW (mm) 11.9 !	2.3 12.3 !	2.4 12.1 !	3.4 12.5 !	2.6 0.3775 

RV-RA gradient (mm Hg) 30.3 !	11.5 (2, 3, 4) 36.6 !	14.0 (2, 3) 48.7 !	14.0 (1, 2, 4) 37.5 !	14.4 (1, 3) 3.0 ×	10—12 

sPAP (mm Hg) 34.3 !	10.1 (2, 3, 4) 51.6 !	11.2 (1, 3, 4) 69.8 !	14.0 (1, 2, 4) 44.1 !	13.2 (1, 2, 3) <2 ×	10—16 

mPAP (mm Hg) 21.2 !	6.5 (2, 3, 4) 34.2 !	7.8 (1, 3, 4) 46.9 !	8.5 (1, 2, 4) 27.5 !	9.2 (1, 2, 3) <2 ×	10—16 

mPCWP (mm Hg) 12.7 !	5.3 (2, 3, 4) 22.2 !	6.2 (1, 3, 4) 28.5 !	6.6 (1, 2, 4) 17.1 !	8.6 (1, 2, 3) <2 ×	10—16 

PVR (Wood units) 1.68 !	0.84 (2, 3, 4) 2.26 !	1.16 (1, 3) 4.96 !	1.95 (1, 2, 4) 2.43 !	1.12 (1, 3) <2 ×	10—16 

Mean RV pressure (mm Hg) 7.5 !	4.2 (2, 3) 12.2 !	4.1 (1, 3, 4) 16.1 !	7.5 (1, 2, 4) 8.9 !	5.5 (2, 3) <2 ×	10—16 

RA pressure (mm Hg) 5.4 !	2.8 (2, 3, 4) 9.6 !	4.8 (1, 3, 4) 14.2 !	4.8 (1, 2, 4) 7.0 !	4.6 (1, 2, 3) <2 ×	10—16 

TAPSE (mm) 21.5 !	4.7 (3, 4) 21.3 !	3.5 (3, 4) 16.1 !	4.6 (1, 2) 16.8 !	4.5 (1, 2) <2 ×	10—16 

Right midventricular diameter (mm) 28.0 !	5.1 (2, 3, 4) 26.0 !	6.4 (1, 3, 4) 34.1 !	6.3 (1, 2, 4) 32.1 !	7.1 (1, 2, 3) 7.8 ×	10—11 

LA area (cm2) 21.5 !	5.2 (2, 3, 4) 26.3 !	6.2 (1, 3, 4) 30.4 !	6.9 (1, 2) 32.9 !	9.0 (1, 2) <2 ×	10—16 

RA area (cm2) 15.8 !	3.8 (2, 3, 4) 19.6 !	4.6 (1, 3, 4) 27.8 !	8.1 (1, 2) 26.1 !	7.2 (1, 2) <2 ×	10—16 

Mitral regurgitation grade $ III/IV 5.0 (3, 4) 1.6 (3, 4) 31.1 (1, 2, 4) 12.5 (1, 2, 3) 2.1 ×	10—6 

Tricuspid regurgitation grade $III/IV 2.5 (3, 4) 3.2 (3, 4) 31.1 (1, 2, 4) 14.8 (1, 2, 3) 5.1 ×	10—8 

 
Values are mean !	SD or %. The Kruskal-Wallis test in combination with the pairwise Wilcoxon test with correction for multiple testing (Benjamini-Hochberg method) was used for com- 
parisons among clusters. Numbers in parentheses indicate between which clusters significant differences (P # 0.05) were detected. Variables from echocardiography: LVEF, LVESD, LVEDD, 
IVS, PW, RV-RA gradient, TAPSE, LA area, and RA area. Variables from right heart catheterization: sPAP, mPAP, mPCWP, PVR, mean RV pressure, and RA pressure. Measurements of AVA, 
AVGmean, and AVGmax were preferentially taken from right heart catheterization, if available. 

AVA ¼	aortic valve area; AVG ¼	aortic valve gradient; IVS ¼	interventricular septal thickness; LA ¼	left atrial; LVEDD ¼	left ventricular end-diastolic diameter; LVEF ¼	left ventricular ejection 
fraction; LVESD ¼	left ventricular end-systolic diameter; RV ¼	right ventricular; mPAP ¼	mean pulmonary artery pressure; mPCWP ¼	mean postcapillary wedge pressure; PVR ¼	pulmonary 
vascular resistance; PW ¼	posterior wall thickness; RA ¼	right atrial; sPAP ¼	systolic pulmonary artery pressure; TAPSE ¼	tricuspid annular plane systolic excursion. 

 

relevant impact on explaining the observed variance 
among patients and did therefore not contribute as a 
variable for clustering (Figure 2A). For cases in which 
variables measure similar characteristics and there- fore 
show close correlation, such as PVR and trans- pulmonary 
pressure gradient or maximum and mean AVG, only 1 
variable was implemented in the cluster analysis. In total, 
the 26 candidate variables were reduced to 12 final 
variables for clustering, which covered all stages of 
potential disease progression from AVG over left heart 
function and pulmonary circulation to right heart 
structural and functional parameters (Figure 2B). In 
total, 5.2% of 4,392 data points had missing values for 
those 12 variables (Supplemental Figure 1A), and the 
largest proportion of missing values was found for 
measurements of right ventricular mean pressure (11.7% 
of values missing) (Supplemental Figure 1B). After 
imputing missing values, initially observed and later 
imputed values for right ventricular mean pressure 
displayed a 
similar distribution (9.8 !	5.8 mm Hg vs 9.2 !	
3.5 mm Hg) (Supplemental Figures 1C and 1D). The 

potential number of clusters was further determined using 
the elbow method, which demonstrated that 4 clusters 
would be ideal (Figure 2C). Subsequently, patients were 
categorized into 4 clusters using un- supervised 
agglomerative clustering (Figure 2D). 
FOUR DISTINCT CLINICAL PHENOTYPES COULD BE 

DISTINGUISHED, REFLECTING VARIOUS EXTENTS OF 

DISEASE SEVERITY AND HENCE DIFFERING IN 

MORTALITY. Cluster 1 (n ¼	164 [44.8%]), constituting 
the majority of patients and serving as a reference cluster, 
comprised patients who presented with an intermediate 
symptomatic burden expressed as a mean New York 
Heart Association functional class of 
2.48 !	0.71 (Table 1). Patients in this cluster demon- 
strated preserved cardiac function (cardiac output 
5.12 !	0.88 L/min, LVEF 57.2% !	6.4%, tricuspid 
annular plane systolic excursion [TAPSE] 21.5 !	
4.7 mm) and a high gradient across the aortic valve 
(AVGmax 64.3 !	21.4 mm Hg) (Table 2). Furthermore, 
PH was absent in cluster 1 (mPAP 21.2 !	6.5 mm Hg). 
In agreement with the regular size of the left and right 
atria in patients in cluster 1, the prevalence of atrial 
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fibrillation and/or flutter was lowest among all clus- 
ters (20.1%). Taking the intermediate risk of comor- 
bidities into account (European System for Cardiac 
Operative Risk Evaluation [EuroSCORE] 13.7% !	
10.1%), Kaplan-Meier analysis showed an excellent 2- year 
survival rate of 90.6% (95% CI: 85.8%-95.6%) for patients 
in cluster 1 (Figure 2E). 

In contrast, patients in cluster 2 (n ¼	66 [18.0%]) 
were characterized by postcapillary PH, revealing el- 
evations in mPAP (34.2 !	7.8 mm Hg) and mean 
postcapillary wedge pressure (22.2 !	6.2 mm Hg), 
indicating disease progression beyond the compen- satory 
capacity of the left ventricle (Table 2). Notably, the 
integrity of left and right ventricular systolic 
function was maintained (LVEF 55.9% !	6.5%, TAPSE 
21.3 !	3.5 mm), and the prevalence of severe mitral 
and tricuspid regurgitation (1.6% and 3.2%, respec- 
tively) was comparable with that in cluster 1. Given 
the isolated postcapillary nature of PH in cluster 2, which 
is considered reversible upon resolving the underlying AS, 
patients in cluster 2 had a 2-year sur- vival rate not 
statistically different from that of pa- tients in cluster 
1 (2-year survival 85.8% [95% CI: 
76.9%-95.6%]; HR for 2-year mortality: 1.5 [95% CI: 
0.6-3.6]) (Figure 2E). 

The most extensive disease characteristics subse- quent 
to severe AS, in contrast, were found in pa- tients in 
cluster 3 (n ¼	45 [12.3%]), who presented with a mean 
New York Heart Association functional 
class of 3.02 !	0.72. Patients in this cluster presented 
with the most severely impaired cardiac function, 
expressed as cardiac output of merely 3.82 !	0.87 L/ 
min (LVEF 42.4% !	15.7%, TAPSE 16.1 !	4.6 mm). At 
the same time, patients in cluster 3 presented with 
the highest mPAP (46.9 !	8.5 mm Hg) and the highest 
PVR (4.96 !	1.95 Wood units). Together with elevated 
mean  postcapillary  wedge  pressure  (28.5  !	
6.6 mm Hg), these parameters indicate combined pre- and 
postcapillary PH (Table 2). Concomitant with left and 
right heart enlargement, the prevalence of severe mitral 
and tricuspid regurgitation was dramatically increased 
(31.1% and 31.1%, respectively). Compared with cluster 1, 
2-year survival in patients in cluster 3 was significantly 
decreased (77.3% [95% CI: 65.2%- 
91.6%]; HR for 2-year mortality: 2.6 [95% CI: 1.1-6.2]) 
(Figure 2E). 

Finally, patients in cluster 4 (n ¼	 91 [24.9%]) dis- 
played  dilatation  of  all  cardiac  chambers  and 
impairment of left and right ventricular function 
(LVEF 47.3% !	12.2%, TAPSE 16.8 !	4.5 mm) (Table 2). 
Concomitant with the structural changes of the left and 
right heart, the prevalence of severe mitral and tricuspid 
regurgitation was increased (12.5% and 14.8%, 
respectively), although less impressively than 

 

TABLE 3 Univariate Cox Regression Analysis Using Death Within 2 Years 
After TAVR as a Dependent Variable 

 HR (95% CI) P Value 

Age 0.99 (0.95-1) per year 0.78 

Female 0.74 (0.41-1.3) 0.32 

BMI 0.95 (0.89-1) per kg/m2 0.1 

Arterial hypertension 1.3 (0.41-4.2) 0.65 

Smoking 1.5 (0.91-2.6) 0.11 

Diabetes mellitus 1.3 (0.69-2.3) 0.45 

NYHA functional class 1.9 (1.3-3) per class 0.0019 

EuroSCORE 1 (1-1) per % 4.3 ×	10—6 

eGFR 0.98 (0.97-0.99) per mL/min 0.0063 

CAD 1.1 (0.48-2.7) 0.78 

COPD 2.3 (1.2-4.3) 0.01 

Atrial fibrillation and/or flutter 1.7 (1-2.8) 0.048 

AVA 1.3 (0.34-4.7) per cm2 0.74 

AVGmean 0.97 (0.94-0.99) per mm Hg 0.0011 

AVGmax 0.98 (0.97-0.99) per mm Hg 0.0039 

Cardiac output 0.73 (0.57-0.93) per L/min 0.013 

LVEF 0.96 (0.94-0.98) per % 5.9 ×	10—5 

LVESD 1 (1-1.1) per mm 0.0007 

LVEDD 1 (0.99-1.1) per mm 0.11 

IVS 0.88 (0.78-0.99) per mm 0.036 

PW 0.96 (0.86-1.1) per mm 0.53 

mPAP 1 (1-1) per mm Hg 0.035 

mPCWP 1 (0.99-1.1) per mm Hg 0.23 

PVR 1.3 (1.1-1.5) per Wood unit 0.0006 

Mean RV pressure 1 (0.97-1.1) per mm Hg 0.44 

RA pressure 1 (0.98-1.1) per mm Hg 0.17 

TAPSE 0.93 (0.87-0.98) per mm 0.0099 

Right midventricular diameter 1.1 (1-1.1) per mm 0.014 

LA area 1 (0.99-1.1) per cm2 0.2 

RA area 1 (1-1.1) per cm2 0.0061 

Mitral regurgitation grade $III/ IV 2.4 (1.2-5) 0.016 

Tricuspid regurgitation grade $III/ IV 0.86 (0.31-2.4) 0.78 

 
Abbreviations as in Tables 1 and 2. 

 
 

in cluster 3. In the context of seemingly milder PH 
than in clusters 2 and 3, how would these severe structural 
changes translate into 2-year outcomes? The alterations 
in cardiac morphology and function are well reflected 
in survival: 2-year survival in pa- tients in cluster 4 was 
significantly reduced compared with those in cluster 1 
(74.9% [95% CI: 65.9%-85.2%]; 
HR for 2-year mortality: 2.8 [95% CI: 1.4-5.5]) (Figure 
2E). 

UNIVARIATE COX REGRESSION ANALYSIS SUGGESTED 

ADDITIONAL  NONCARDIAC  CONTRIBUTORS  TO 

MORTALITY  AFTER  TAVR. Various  variables  from 
demography, echocardiography, and RHC were stud- 
ied  using  univariate  Cox  regression  analysis  to 
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FIGURE 3 Use of an ANN for Cluster Assignment 
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identify additional contributing factors for 2-year 
mortality (Table 3). Among well-established noncar- 
diac predictors such as deteriorating estimated glomerular 
filtration rate and presence of chronic obstructive 
pulmonary disease, univariate Cox regression analysis 
also suggested a linear association between AVGmean and 
mortality after TAVR. 

AN ANN COULD ACCURATELY ASSIGN PATIENTS TO 

PREDEFINED CLUSTERS. To open an avenue to pro- 
spectively assign patients to the predefined clusters, the 
study population, containing a cluster assignment from 
unsupervised agglomerative clustering for each patient, 
was randomly divided into derivation and validation 
cohorts, and an ANN with 2 hidden layers was 
subsequently trained (see Figures 3A and 3B). After 
training for 284 epochs, when the loss in the test set had 
not further decreased for 20 epochs, the ANN reached 
accuracy of 90.6% in the training set and loss of 0.526 
in the test set (Figure 3C). Applying the trained ANN 
to the validation cohort demonstrated accuracy of 83.5% 
(95% CI: 75.2%-89.9%), which significantly  
outperformed  the  no-information  rate 
(P = 2.3 × 10—15). Patients in high-risk clusters 3 and 4 
were detected with high sensitivity (100.0% and 85.2%, 
respectively) and specificity (95.9% and 95.1%, 
respectively) (Table 4). Moreover, comparison of clusters 
within the validation cohort as determined by 
unsupervised agglomerative clustering (reference) or 
predicted by the ANN (prediction) demonstrated a strong 
resemblance in terms of echocardiographic and 
hemodynamic characteristics (Supplemental Table 2, 
Figure 3D). 

 
DISCUSSION 

 

 
EXPANDING THE ANALYTICAL ARMAMENTARIUM WITH 

MACHINE LEARNING TECHNOLOGY OFFERS NOVEL 

INSIGHTS INTO CLINICAL PHENOTYPES PRESENTED  BY  

PATIENTS  WITH  SEVERE  AS. 

Innovative algorithms and improved computing po- 
wer enable machine learning to extract information 

from complex datasets at a scale that exceeds the capacity 
of conventional methods. Unsupervised agglomerative 
clustering holds the promise to pro- vide finer resolution 
by grouping observations on the basis of similarities 
instead of differences and hence potentially challenges the 
traditional perspective, especially in the field of medicine. 
To our knowledge, this is the first detailed study focusing 
on sub- phenotyping patients with severe AS according 
to their cardiopulmonary profile, as assessed by pre- 
procedural echocardiography and RHC, by applying 
unsupervised agglomerative clustering. Implement- ing 
12 carefully chosen variables, which cover all stages of 
cardiac and pulmonary circulatory condi- tion, into the 
calculation for a distance matrix, basi- cally 4 distinct 
clinical phenotypes of patients with severe AS could be 
distinguished, reflecting various extents of disease 
severity and hence differing in mortality. Finally, our 
study supports the theory that AS should not be regarded 
as an isolated valvular disease, but also upstream 
damages such as left ventricular dysfunction, PH, and 
right heart failure must be taken into consideration. 
Distinct from pre- vious studies, we provide a 
comprehensive structural and hemodynamic evaluation 
based on unsupervised clustering. We hence aimed to 
refine diagnostic res- olution, as we neither classify 
patients in accordance with a hypothesis-driven staging 
system of sequential damages nor infer causality (eg, 
decreased left ven- tricular systolic function in cluster 3 
could be caused by afterload mismatch due to severe AS 
or due to intrinsic myocardial impairment secondary to 
ischemic heart disease, myocardial fibrosis, or arte- rial 
hypertension). 

PREPROCEDURAL RHC AS A PREREQUISITE FOR 

INCLUSION RESTRICTED THE STUDY POPULATION TO 

366 PATIENTS (14.2%), YET COMPARISON WITH PUBLISHED   

RESEARCH   ARGUES   FOR   ITS 

REPRESENTATIVE CHARACTER. As a major limita- 
tion to the generalization of our findings, we acknowledge 
that only a minority of patients from the 

 

 

FIGURE 3  Continued 

 

 

 
outliers, plotted as black dots. Abbreviations as in Figure 2. 
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Imputation by means of a random forest algorithm has 
been proved efficient in complex epidemiologic datasets 
(15), and the applied algorithm has been validated for a 
proportion of missing values of up to 30% (16). The 
imputation was based on the assump- tion that values 
are missing at random and can therefore be replaced by 
predictions based on the observed portion of variables 
(17). Observed and imputed values for the most 
frequently missing var- iable used for clustering (ie, right 
ventricular mean pressure) were compared, and no 
significant differ- ences were detected. The possibility 
of reliably imputing missing values could be a helpful 
approach, if software programs in future clinical practice 
should aim to prospectively assign patients to clusters 
that are characterized by the aforementioned 12 
variables. 

 
 
 

joint registry (14.2%) met the inclusion criterion of 
preprocedural RHC. This is because contemporary 
guidelines from the European Society of Cardiology 
recommend restricting preprocedural RHC to situa- tions 
in which noninvasive evaluation of AS severity is 
inconclusive or discordant with clinical findings 
(11). Nonetheless, we focused on a cohort with pre- 
procedurally obtained RHC, as RHC represents the gold 
standard to assess the severity of hemodynamic 
impairment of the pulmonary circulation (12). To evaluate 
whether the study population is still repre- sentative, we 
compared classifications of PH with data from 
published research. Pooling 3 recently published datasets 
containing information about RHC from 2,336 patients 
with severe AS (2,13,14), we could observe similar 
proportions of patients with no and with isolated 
postcapillary PH, which together constitute the vast 
majority of cases (83.6% and 82.5% for the study 
population and for the reference from published research, 
respectively) (Supplemental Figure 2, Supplemental 
Table 3). As this study dem- onstrates, detailed 
assessment of hemodynamic sta- tus in pulmonary 
circulation and closely coupled right heart can refine 
diagnostic resolution and concomitant long-term risk 
stratification. At the same time, it could also prove 
beneficial for prognostic resolution prior to TAVR, if 
future ANNs can assign patients to predefined clusters 
solely according to echocardiographic parameters. 

RELIABLE IMPUTATION OF MISSING VALUES USING 

A RANDOM FOREST ALGORITHM OPENS AN AVENUE 

FOR PROSPECTIVE  STUDIES. Because  calculating  a 
distance matrix for subsequent cluster analysis re- 
quires complete observations, we initially applied a 
random forest algorithm to impute missing values. 

MACHINE LEARNING CAN ASSIST IN CLINICAL DECISION 

MAKING BY IDENTIFYING DIAMETRICALLY OPPOSED 

ENDS OF A CONTINUOUS SCALE OF DISEASE 

PROGRESSION WITH A DRAMATIC DIFFERENCE IN 

MORTALITY. After the onset of symptoms due to se- 
vere AS, mortality increases to more than 50% within 
2 years, unless valve replacement is performed 
promptly (18). Clusters 1 and 3 represent diametri- 
cally opposed ends of a continuous scale of disease 
progression, with patients in cluster 3 being alarm- 
ingly dyspneic because of reduced cardiac output, massive 
PH, and severely impaired right heart func- tion. 
Interestingly, no differences in age could be 

found between clusters 1 and 3 (79.6 !	6.0 years vs 
79.8 !	 8.7 years). It therefore remains elusive 
whether patients in cluster 3 had more rapid pro- 
gression of disease, until they finally presented with 
New York Heart Association functional class > III or 
whether AS had evolved earlier but remained undi- 
agnosed and therefore untreated for a longer time. An 
increased HR of 2.6 (95% CI: 1.2-6.2) for death within 2 
years after TAVR as observed in cluster 3 highlights 
the importance of early diagnosis and accurate timing 
of intervention. 

 
RIGHT VENTRICULAR AND ATRIAL DILATATION WITH 

CONCOMITANT SEVERE TRICUSPID REGURGITATION 

DISTINGUISHES CLUSTERS 2 AND 4 WITH ISOLATED 

POSTCAPILLARY PH. With regard to the extent of PH 
subsequent to AS, clusters 2 and 4 both appeared as 
intermediate stages of disease progression at first sight 
but differed in mortality. Mortality in cluster 2 was 
similar to that in cluster 1, while mortality in cluster 4 
was significantly increased and resided in a range similar 
to that in cluster 3, with the most extensive 
characteristics of cardiopulmonary failure. Possibly, 
dilatation of the right ventricle and atrium with 
subsequent high frequency of severe tricuspid 

TABLE 4 Confusion Matrix of Cluster Assignments Within the Validation Cohort (n ¼	109 
[30% of the Study Population]) as Determined by Unsupervised Agglomerative Clustering 
(Reference) and as Predicted by the Artificial Neural Network (Prediction) 

 
 

 
Prediction 

 

 
Cluster 1 
(n ¼	51) 

Reference 

Cluster 2 Cluster 3 
(n ¼	20) (n ¼	11) 

 

 
Cluster 4 
(n ¼	27) 

Cluster 1 (n ¼	51) 45 5 0 1 

Cluster 2 (n ¼	16) 3 12 0 1 

Cluster 3 (n ¼	15) 0 2 11 2 

Cluster 4 (n ¼	27) 3 1 0 23 

Sensitivity (%) 88.2 60.0 100.0 85.2 

Specificity (%) 89.7 95.5 95.9 95.1 

Positive predictive value (%) 88.2 75.0 73.3 85.2 

Negative predictive value (%) 89.7 91.4 100.0 95.1 

 
Accuracy ¼	83.5% (75.2%-89.9%); no information rate ¼	46.8%; P (accuracy > no information rate) ¼	2.3 ×	10—15. 
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CENTRAL ILLUSTRATION Machine Learning Technology Aids in Capturing the Complexity of 
Clinical Presentations in Patients With Severe Aortic Stenosis 

 

 
Lachmann, M. et al. J Am Coll Cardiol Intv. 2021;14(19):2127–2140. 

Unsupervised clustering of patients with severe aortic stenosis (n ¼	366) according to echocardiographic and hemodynamic characteristics 
reveals 4 distinct clinical phenotypes, which subsequently differ in survival after transcatheter aortic valve replacement. Both distinct 
extents of disease progression due to severe aortic stenosis and the aggravating impact of comorbidities such as atrial fibrillation and chronic 
obstructive pulmonary disease account for differences among clusters. Importantly, structural changes of the heart, possibly due to genetic 
predisposition, constitute an equally sensitive indicator of poor prognosis as compared with high-grade pulmonary hypertension. 
COPD ¼	chronic obstructive pulmonary disease; LVEF ¼	left ventricular ejection fraction; MR ¼	mitral regurgitation; PH ¼	pulmonary 
hypertension; TAPSE ¼	tricuspid annular plane systolic excursion; TAVR ¼	transcatheter aortic valve replacement; TR ¼	tricuspid 
regurgitation. 

 

regurgitation in patients in cluster 4 ultimately resulted 
in death from right heart failure. We conclude that PH 
without right ventricular dilatation, as observed in 
cluster 2, does not impair outcomes at 2-year follow-up 
after TAVR, whereas cluster 4 with moderate and cluster 
3 with severe PH form a group with  distressing  2-
year  survival  rates  (Central 

Illustration). Moreover, the remarkably similar sur- vival 
function among patients in clusters 3 and 4 accompanied 
by relevant differences in morphologic and 
hemodynamic right-sided parameters calls for future 
clinical investigation, where pre- and post- procedural 
management may have significant impact on  
segregating  mid-term  mortality  among  these 

pr
in

t  &
 w

eb
 4

C
/F

PO
 



 

2138 Lachmann et al JA C C : C A R D I O V A S C U L A R I N T E R V E N T I ON S V OL . 1 4 , N O . 1 9 , 2 0 2 1 

Subphenotyping of Patients With Aortic Stenosis OC T O B  E R 1 1 ,  20  2 1 : 2 1 2 7  – 2 1 4  0 

 
 
 

clusters. Our currently proposed machine learning 
approach may ultimately help identify these patients prior 
to TAVR. Functional tricuspid regurgitation ac- counts for 
approximately 80% of cases, and in pa- tients with 
long-standing AS, it reflects the consequence of 
advanced hemodynamic burden sec- ondary to left heart 
dysfunction, PH, and right ven- tricular and atrial 
dilatation (5). Because of its functional nature, it was 
classically believed that correction of the underlying AS 
would also improve tricuspid regurgitation. However, PH 
as a linking hub between left and right heart disease can 
persist in a substantial number of cases after TAVR, and 
persis- tence of PH translates into poor prognosis (19). 
Future echocardiographic follow-up studies after TAVR 
will shed light on the questionable reversibility of PH and 
right heart dysfunction in accordance with clus- ter 
assignment. 

PATIENT SUSCEPTIBILITY AND GENETIC PREDISPOSITION 

TO VENTRICULAR FAILURE IN RESPONSE TO AS-INDUCED 

PRESSURE OVERLOAD REQUIRE FURTHER INVESTIGATION. 

Interestingly, patients in cluster 4 showed dilata- 
tion of left ventricular end-diastolic diameter and right 
midventricular diameter, and concomitant with the 
structural changes, LVEF and TAPSE were impaired in 
comparison with patients in reference cluster 1. As the 
prevalence of coronary artery disease  was  equal  in  
all  clusters,  future  studies 

(notably, increased HR for mortality in clusters 3 
and 4 also remained significant if no censoring of 
survival data was applied) (Supplemental Figure 3). 
Patients unavoidably could have died from addi- tional 
cardiovascular diseases, such as coronary ar- tery 
disease or arrhythmic disorders including concomitant 
risk for stroke and bleeding from anti- coagulation 
therapy. Moreover, elderly patients and patients with 
more advanced cardiac diseases (as it is the case for 
patients in clusters 3 and 4 with EuroSCOREs of 29.1% 
! 20.9% and 22.6% ! 14.6%, 
respectively) often have reduced physiological reserve 
and are hence more vulnerable to any new insult, such 
as systemic infections. A retrospective, observational 
cohort study analyzing mortality in 1,197 patients with 
severe AS undergoing TAVR demonstrated that infection 
(14.0%) and malignancy (11.0%) were the leading causes 
of noncardiac death 
(20). Moreover, Minamino-Muta et al (20) described age, 
male sex, low body mass index, diabetes mel- litus, 
anemia, and dialysis as factors to be inde- pendently 
associated with noncardiac death in patients with severe 
AS. Cox regression analysis performed in the present 
study confirmed well- established predictors for mortality 
such as the EuroSCORE, estimated glomerular filtration 
rate, chronic obstructive pulmonary disease, right atrial 
area, mPAP, and PVR. 

Univariate analysis further suggested an associa- 

should investigate individual genetic predisposition 
to  ventricular  failure  in  response  to  AS-induced tion between AVG  mean and mortality after TAVR. It is 

pressure overload. Notably, Généreux et al (4), who 
categorized patients with AS according to the extent of 
cardiac damage by applying conventional divisive, top-
down clustering, also observed that extravalvular damage 
to the heart and pulmonary circulation does not 
necessarily occur in a sequential order of left heart 
failure, PH, and right heart dysfunction but may vary 
depending on pa- tient susceptibility and genetic 
predisposition. Apart from the possibly contributing 
influence of genetic predisposition, a self-amplifying 
loop of left and right atrial enlargement, atrial 
fibrillation and/or flutter, and advanced atrial remodeling 
fol- lowed by mitral and tricuspid regurgitation might 
have been triggered in patients in clusters 3 and 4 
(Central Illustration). 

STUDY LIMITATIONS. As an elderly patient popula- tion 
with potentially multiple comorbidities approaching the 
end of life was analyzed, all-cause mortality within 2 
years after TAVR was considered a clinically meaningful 
primary outcome measure, without  further  
investigating  the  cause  of  death 

important to note that traditional regression models 
assume a parametric linear relationship between predictor 
variable and outcome, which might hold true for the 
relationship between deteriorating car- diac output or 
renal function and mortality. However, the AVG initially 
increases with progressive narrow- ing of the aortic 
valve area but later decreases as the left ventricle 
decompensates (“low-flow, low- gradient AS”), as 
observed in high-risk clusters 3 and 4 (21). The benefit 
of the present unsupervised agglomerative clustering 
approach in combination with an ANN for prospective 
cluster assignment obviously lies in its ability to allow 
variables to act in concert without a priori assumptions, 
thereby deci- phering intricate interdependencies. As this 
is a bicentric, post hoc analysis with the majority of pa- 
tients excluded because of missing RHC, prospective 
and external validation on complete cohorts is required 
to confirm our model of 4 distinct clinical phenotypes 
among patients with severe AS and to demonstrate that 
the ANN can predict cluster assignment and 
concomitant mortality also in different settings. 
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CONCLUSIONS 

 

Machine learning aids in capturing the complexity of 
clinical presentations observed in patients with severe AS 
by clustering basically 4 distinct clinical pheno- types, 
which differ in mortality depending on disease severity. 
Unsupervised agglomerative clustering de- serves 
particular attention, as the extent of cardiac and 
pulmonary circulatory impairments does not necessarily 
follow a sequential order from AS-induced left heart 
dysfunction, through PH, to ultimately right heart failure 
but is also influenced by comorbidities and ageing in 
general. As predefined cluster assign- ments could 
additionally be recapitulated by an ANN, this study 
advocates for the use of machine learning technology for 
individual cluster assignment and hence refined risk 
stratification prior to TAVR for pa- tients with severe AS 
in future clinical practice. 
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WHAT IS KNOWN? AS can trigger a deleterious cascade of 

right heart failure. Clinical presentations therefore appear het- 
erogeneous, depending on disease progression and possibly 
aggravated by comorbidities such as coronary artery disease, 
atrial fibrillation, and concomitant valvular defects. 

 
WHAT IS NEW? Machine learning (ie, unsupervised agglom- 

in reducing the complexity of clinical presentations observed in 
patients with severe AS by distinguishing basically 4 distinct 
phenotypes, which reflect different extents of disease severity 
and hence differ in mortality. By distinguishing phenotypes 

hypothesized sequential order of isolated, AS-induced impair- 

light from a new perspective on structural and hemodynamic 

that structural alterations in left and right heart morphology 
constitute an equally sensitive indicator of poor prognosis 
compared with high-grade PH. 

 
WHAT IS NEXT? Clusterwise comparison of future echocar- 

PH and the persistence of severe tricuspid regurgitation should 
obtain paramount priority. 
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