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Abstract

In recent years, the usage of robotic systems has increased significantly in all fields, and
there is an increasing focus on developing intelligent systems capable of autonomously
navigating in various scenarios. The ROS framework offers multiple solutions to the key
SLAM problem in autonomous navigation research. There are still a few challenges to
autonomous navigation in indoor environments, such as the lack of reliable Global Posi-
tioning System (GPS) data or the need to install WiFi tags or QR code markers. A potential
solution is to use 3D BIM models of facilities to aid the localization part of autonomous
navigation algorithms by using the semantic information of the static structures like walls
and floors of the building. Most modern buildings have a digital twin available, which
accurately describes the static physical structure of the building. By feeding these digital
models to robotic systems, remotely operated mapping and navigation can be achieved
efficiently. In this research work, a basic BIM-based autonomous navigation framework
will be designed to simulate the navigation of a quadruped robot in the Gazebo simulator.
Then this framework will be implemented on a Unitree Go1 quadruped robot to verify the
real world performance.
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1. Introduction

1.1. Motivation

In recent years, there has been a rapid increase in the usage of robotic systems in dif-
ferent industries and research institutes. There have been significant improvements in
robotic hardware design: from wheeled robots to legged robots and now flying quad-
copter drones. In the earlier phases, the development was majorly focused on wheeled
robots that were easier to control and move in well-defined areas. However, such wheeled
robots perform poorly in navigating real world environments, as such scenarios often in-
volve uneven terrains and multiple floors connected by staircases or electrical lifts. To
overcome these issues of wheeled robots, recent research has been focused on developing
sophisticated legged robots whose walking or running patterns can be dynamically de-
signed and controlled. These developments have enabled the usage of robots in industrial
environments where using them might have seemed unfathomable a few years ago. The
advantages include optimum costs and flexible design controls.

Following the popular usage of robotic systems in other industries, the construction in-
dustry has also begun focusing on more intelligent systems that involve less human con-
trol, provide more accurate measurements, and enable a faster problem analysis leading
to optimized and rapid development. The modern construction industry faces several is-
sues, including the rise in energy costs, lack of skilled workforce, and challenging work
conditions, including environments where it is near impossible for a human to work, e.g.,
high-rise buildings, extreme weather environments, and oceans. These issues are not lim-
ited to just new construction projects. Instead, issues such as natural disasters lead to
chaos and the breakdown of existing building structures which become extremely difficult
to access for humans. Robotic machines offer excellent opportunities in this industry to
support humans in such hazardous environments while minimizing the costs of search
and rescue operations.

One central area of focus in the robotics research community is Simultaneous Local-
ization and Mapping (SLAM), i.e., mapping an environment using mobile robots while
simultaneously localizing it in that environment. The robot is moved around in the un-
known environment to create the map either through remote control or onsite control. As
the robot moves around in the environment, it draws a map with reference to its position
within the map. The mapping quality of an environment depends on the precise estima-
tion of the robot’s position. This will be further explained in the upcoming chapters.

Mapping can be further split into two categories: Outdoor and Indoor mapping. While
outdoor mapping can be done without many issues, as it is often aided by GPS signals
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1. Introduction

or visible landmarks, the challenges for indoor mapping are higher because of the lack of
reliable information about the robot’s current position. GPS connectivity is often either of
poor quality or completely missing in indoor environments compared to outdoor environ-
ments. However, several solutions have been proposed in recent years, for instance, using
physical objects like Radio frequency identification (RFID) tags[ 13 ], WiFi routers for com-
munication, fiduciary markers, or other electronic tags. However, these solutions require
an additional cost and are not feasible for large-scale usage.

In this research work, a Building Information Modelling (BIM) based solution is pro-
posed for localizing the robot in an indoor environment. A BIM model contains the 3D ge-
ometrical model of the environment and also provides basic semantic information about
the environment, like the position of doorways, staircases, or walls. By feeding this in-
formation to the SLAM module, the localization of a robotic agent can be improved, thus
improving the mapping quality.

The improved localization performance can be used to control the robot remotely if the
localization performance is highly accurate. In general, the focus will be on dynamic en-
vironments like under-construction building projects or high-traffic indoor areas. Com-
pared to wheeled robots, a quadruped robot performs much better in such environments.
Autonomous navigation is preferred as it provides more flexibility in design and control
compared to an onsite control module, saving precious time and costs. This thesis will ex-
plore the latest research works in robotics to develop a BIM-aided autonomous navigation
framework. This framework will first be developed in a simulation environment and then
integrated into a quadruped robot to verify real world performance.

2



1.2. Research objectives

1.2. Research objectives

The main focus of this thesis is to achieve a basic framework for the autonomous navi-
gation of a quadruped robot in the real world by utilizing information from BIM models.
The BIM models will be used to create a 2D map of the indoor environment for localization
and navigation. The core objectives of this research work are listed below.

• The first objective is to create a virtual simulation framework in Robot Operating
System (ROS) using the Gazebo simulator and Rviz visualization tools. This would
require creating an accurate ROS compliant description of the quadruped robot and
its operating environment.

• The next objective is to perform a robot and sensor simulation in a virtual environ-
ment. The simulations should focus on measuring the performance of the robot’s
mapping, localization, and navigation capabilities in this virtual environment. A
comparison should be made between the various state-of-the-art localization algo-
rithms and packages already available in ROS. The optimal package that promises
good performance in the real world should be selected for navigating the quadruped
robot in a real world environment.

• Another objective is to extract relevant information from a BIM model of a real world
environment. This information should be provided to the ROS based framework to
verify if it leads to an improvement in the SLAM performance.

• When the simulation provides satisfactory results without errors or crashes, the au-
tonomous navigation stack shall be implemented and tested in a real quadruped
robot. The path planning algorithm’s performance in planning a path between the
current position and a target goal shall be measured. The robot is expected to nav-
igate autonomously through the calculated waypoints without issues. The robot
should be able to detect and avoid obstacles in its path.

• At the end, conclusions shall be drawn from the simulations and real world exper-
iments done in this research work. Furthermore, some potential extensions for this
research work shall be discussed.
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1.3. Reading guide

The thesis document is divided into the following chapters:

• In Chapter  2 , the theoretical background necessary to understand the entire research
work is detailed.

• In Chapter  3 , the latest research work related to the thesis is discussed and summa-
rized.

• In Chapter  4 , the process of setting up the experimental framework and workflow
for this thesis are explained.

• In Chapter  5 , the details of the virtual and real world experiments and the results
are described and discussed.

• In Chapter  6 , this research work is summarized, and concluding statements are
provided. The future scope of extension of this work is also discussed.





2. Theoretical Background

This chapter describes the relevant theoretical background that is essential to understand
this document.

2.1. SLAM

Simultaneous localization and mapping (SLAM) is a classical computational problem in
the autonomous navigation domain that involves creating a map of an unknown envi-
ronment while simultaneously locating the agent’s position that intends to perform au-
tonomous navigation. This is often compared to the classic chicken-and-egg problem since
it is difficult to localize the agent in a map without the knowledge of the environment, and
it is similarly challenging to map the environment without knowing where the agent is.
Extensive research in the past decades has attempted to solve this problem, and several
potential solutions exist with the aid of different kinds of sensors.

Two significant approaches famous in the robotic community are Lidar based SLAM
and Camera based SLAM solutions. Lidars provides depth and edge features of objects
present in the environment. Lidar based SLAM solutions focus on detecting these objects
and then represent them as point clouds. The camera sensor provides high-quality images
of the environment and the SLAM solutions often focus on contour detection or separation
of colors to draw objects of interest in the environment. SLAM has been one of the most
popular research topics in the robotics community and multiple algorithms are available
for either mapping a new environment or localizing an agent in an existing map of the
environment.

2.2. Building Information Models

Building Information Modeling is the process of creating a three dimensional virtual model
of a building or a construction facility, and the model resulting from the process is called a
Building Information Model (BIM Model). These models facilitate shared project develop-
ment between multiple stakeholders by making it easier to modify the stored information
over time. They contain important information about a structure, such as the coordinates
of individual parts, the texture and color of surfaces, and the location of different parts
of the building. They also specify semantic information about objects like floors, walls,
doors, or ceilings inside the building.
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2. Theoretical Background

Figure 2.1.: A sample BIM Model

BIM models can also be extended to four dimensions or higher by adding further infor-
mation, such as time, that tracks how the model changed gradually over time. The digital
form is especially helpful in designing simulations and testing environments for those sce-
narios that are challenging to create in real life. In this research work, we utilized 3D BIM
models for creating 2D and 3D maps that will be, in turn, used for autonomously navigat-
ing a robot. Figure  2.1 shows a sample BIM model in Industry Foundation Classes (IFCs)
format, which is recognized as a standard ISO format (ISO 16739-1:2018, [ 31 ]).

2.3. Quadruped Robots

In the past few years, many robotic systems have been developed to support navigation on
different kinds of indoor and outdoor terrains. The two major robotic systems are wheeled
robots and legged robots. The wheeled robots generally consist of four-wheel setups that
are based on differential drive systems similar to cars. Initial robotic development in ROS
to achieve the goals of remote navigation and autonomous navigation focused on such
wheeled robots. They tend to suit flat terrains and support elevated flat terrains like slopes
but struggle to move on uneven terrains and climb staircases in multi-floor areas. To over-
come these issues, legged robots were developed that were more sophisticated and could
travel across uneven terrains and climb stairs. Though two-legged robots currently exist
and are being actively developed, they are often larger in size and less flexible compared to
four-legged robots. It is also quite tricky to add payloads to a two-legged robot, and there
exist limitations to their stability during navigation. In comparison, four-legged robots
are more robust and efficient in traversing uneven terrains while being equally good at
moving indoors or doing trivial tasks like climbing stairs. The four-legged robots have
become quite popular recently due to their apparent advantages over two-legged robots
and accessibility to multiple open source ROS-based algorithms that facilitate navigation.
For our research objectives, four-legged robots are best suited as they can carry a payload,
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including a perception sensor system that will be mounted on the robot.

2.4. Basics of Robot Operating System

Robot Operating System (ROS) is an open source platform that provides a vast collection
of software tools and libraries that can be used to simulate or program robotic applications.
ROS intends to provide a standard low-level framework for any robotics development. It
primarily acts as a communication service between multiple hosts and individual appli-
cations running on them and is synchronized in real-time using ROS. ROS is language
agnostic and can work with both C++ and Python efficiently.

There are two major generations of ROS, i.e., ROS1 and ROS2, each having multiple soft-
ware releases. ROS2 is relatively newer and is still under active development. This work
utilizes ROS1 and related tools as a starting step, but this project can be migrated to ROS2
as well with some modifications.

2.4.1. Communication

Communication in ROS is facilitated by Nodes and Topics. XML-based launch files are
used to load the nodes and topics in ROS.

Nodes

$ # List all nodes
$ rosnode list

$ # Information about a specific node
$ rosnode info <node_name>

Source Code 2.1.: Display information about nodes

Nodes are individual processes that perform a computational task with the ability to
communicate with each other. E.g., One node could be dedicated to processing an input
Lidar scan, and another could control the robot’s movement by processing the wheel sen-
sor information. Nodes communicate with each other via ROS topics. Code  2.1 shows the
shell commands to generate information about nodes.

Ros Graph

ROS provides a simple-to-use GUI-based tool called ROS Graph that displays the dif-
ferent nodes and the flow of information between them. The graph can be launched using

7



2. Theoretical Background

Figure 2.2.: Example of a Rqt graph

$ rosrun rqt_graph rqt_graph

Source Code 2.2.: Start ROS Graph

the command listed in Code  2.2 . This information comes in handy when there are a large
number of nodes interacting with each other via multiple topics.

Topics

$ # List all topics
$ rostopic list

$ # Information about a specific topic
$ rostopic info <topic_name>

$ # Messages published by a specific topic
$ rostopic echo <topic_name>

Source Code 2.3.: Display information about topics

Topics are used to send or receive data between nodes. Nodes are classified into two
types: publisher and subscriber. As the names indicate, a publisher node publishes certain
information, and a subscriber node subscribes or receives that information. Topics facil-
itate this flow of information between publisher and subscriber nodes. Topics can be of
different types, and it is essential to specify the message type for each topic. E.g., a node
publishing 3D lidar data will use ”sensor msgs/PointCloud2” [ 57 ] message type, and sim-
ilarly, a node that wants to receive and process 3D lidar data should use a subscriber hav-
ing message type ”sensor msgs/PointCloud2”. Code  2.3 shows the shell commands to
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generate information about nodes.

Transformation in ROS

Figure 2.3.: Transform visualization in Rviz

In a robotic system, multiple sensors support a robot and produce data in their own co-
ordinate system. ROS requires that a basic structure should be established among these
parts using transformation so that every device operates in the same coordinate system.
For instance, the quadruped robot is made up of several mechanical parts, which are de-
fined as joints and links in ROS and all their data should arrive in the same coordinate
system. While links are fixed, joints can perform multiple motions based on their design
objective. An XML-based Unified Robotics Description Format (URDF) file makes this
information available to ROS. In this URDF, the transforms between different frames are
defined.

ROS utilizes a coordinate transformation library tf to either publish or receive coordi-
nate transformations. This is done with the help of a Broadcaster that broadcasts informa-
tion about different coordinate frames and a Listener that listens/receives such informa-
tion. The exchange of information is done in a message format tf/tfMessage. This format
also includes the coordinate transform information and the timestamp of the incoming
messages, which helps nodes synchronize multiple inputs from different nodes. E.g., the
robotic system should know when a 3D point cloud was received from the lidar sensor
or the timestamp of the current velocity. A minor delay or desynchronization in this in-
formation can lead to dangerous consequences. The user must set up this transformation
as a connected tree by defining a ”base” frame to which all other frames will deliver in-
formation. The frames in the tree have either a parent or child frame to detail the flow of
information. An unconnected transformation tree would lead to multiple problems, and
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ROS would have difficulties processing the messages correctly. The transform tree can
be seen in real time by running the command listed in Code  2.4 . Figure  2.3 shows a vi-
sualization of the cooridnate systems of a robot’s joints and links using tf library in Rviz
tool.

$ rosrun rqt_tf_tree rqt_tf_tree

Source Code 2.4.: Display tranformation tree

2.4.2. Visualization

(a) Visualization of Lidar data in Rviz (b) Sample Cafe world in Gazebo

Figure 2.4.: ROS visualization tools

Rviz

ROS visualization (Rviz) is a powerful visualization tool in ROS that displays both 2D
and 3D information about robotic systems. It can display a virtual model of the robot
and incoming data from sensors like lidar and camera in 2D and 3D, which capture the
robot’s operating environment. It is possible to view other information like obstacles or
the planned path of the robot. It is also possible to design custom plugins for Rviz and
visualize the data. Rviz was extensively used for this research work as a primary visual-
ization tool to quickly and efficiently configure the used robotic system. Figure  2.4a shows
a sample visualization of 3D lidar pointcloud data in Rviz tool.

Gazebo

Gazebo is a 3D simulator tool that simulates the physical dynamics of robots and sensors.
It facilitates the creation of custom 3D environments that accurately represent the physical
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world in which the robot will operate. It also provides the capability to simulate lidar
and camera sensors of various kinds. The robot’s movement can be designed to work as
it works in the real world, and configure the sensors to test various scenarios that can be
created in the real world. It can be integrated into ROS using a set of packages named
gazebo ros pkgs. This tool was utilized extensively in this research work to simulate the
robot’s 3D sensor data and perform autonomous navigation. Figure  2.4b shows a sample
3D environment in Gazebo simulator.

2.4.3. Navigation Stack

Figure 2.5.: ROS Navigation Stack

ROS provides a navigation stack that can be used to program any robot for navigation
tasks in a 2D x-y plane. The navigation stack can receive information from multiple sen-
sors like odometry, lidar, or camera and use this information to send translational and
rotational velocity commands to the robot. It is necessary to properly set up the transfor-
mation tf tree for the robot so that all the information can be accessed from the robot’s base
frame. A proper setup ensures that the information from multiple sensors is synchronized
in time, thus avoiding costly mistakes that might be caused due to sending the wrong ve-
locity command or causing collisions due to incorrect detection of an object as free space.
Through the robot’s URDF file, the navigation stack also receives information about the
robot’s size and shape, which is critical in determining if the robot can traverse a planned
path. Configuration files necessary for the navigation stack are written in YAML format.
Figure  2.5 shows an overview of the ROS navigation stack.

Sensor sources

The navigation stack can utilize data from different sensors to process the environment’s
information and identify objects, surfaces, and free space. It is required that these messages
should be either of type sensor sensor msgs/LaserScan or type sensor sensor msgs/PointCloud.
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Most popular sensors in the market usually provide a ROS interface or drivers detailing
how to generate this information.

Odometry

Another critical information for setting up the Navigation stack is Odometry data which
is generated by motion sensors. These sensors measure the robot’s position in the en-
vironment by estimating the translational and rotational change in the position. Inertial
measurement unit (IMU) sensors are popularly used to determine odometry information,
but they can also be estimated from perception sensors like Cameras or Lidar. The naviga-
tion stack does not emphasize a particular input sensor. However, it expects the data to be
in nav msgs/Odometry message format, which ensures compatibility with multiple sensors
and flexibility in case one of them goes bad or starts sending junk information. This is
facilitated by fusing the information from different sensors using Kalman Filters.

Map

In addition to the sensor data, the navigation stack requires a 2D occupancy grid map of
the operating environment. Occupancy grid maps are designed as two-dimensional grids
to simplify the localization and tracking of an agent in the map by using its 2D coordinates.
Each cell in the grid map contains numerical information to specify if an object occupies
it or it contains free space. This map can either be created before running the navigation
stack or during the navigation operation. Initial map creation can be done by multiple
methods depending on available resources. For instance, in environments like a small
room, it might be sufficient to roughly draw the map on painting software and then use
lidar or camera scan matches to tune the map for accuracy. This painting method becomes
complicated for larger environments and requires more accurate tools like 3D to 2D map
projection or map slicing from 3D files. Though, for most projects, it might be much easier
first to move the robot around an environment: either small or large, and create the map
using the SLAM algorithms provided by ROS. As the name suggests, these algorithms can
create a map in real-time by measuring the odometry data from IMU sensors and using
the perception sensor data for edge detection and matching. This provides an easy way to
build a map for any kind of environment incrementally.

Costmaps

The navigation stack uses costmaps to identify obstacles and free space in the environ-
ment. The costmaps are created based on the input 2D map and object detection informa-
tion from perception sensors. The costmaps are designed as occupancy grid maps in which
a cell is assigned a value or cost depending on whether it is an obstacle (high cost) or free
space (low cost). This information is necessary when the robot is given a target point and is
directed to navigate autonomously to that point. There are two types of costmaps: Global
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costmap and Local costmap. The Global costmap stores information about the whole en-
vironment and is used for path planning for long-distance targets. The Local costmaps
store information about the robot’s immediate surroundings, detecting obstacles in the
long-term/global path and creating short local plans. Both of these costmaps have several
configuration parameters that can be set up easily for different robots and environments.
Some vital information that these costmaps require are:

• Robot dimensions: It is used to represent the robot as a point of proportional size in
the map

• Sensor data type: Whether the sensor data is in 2D (sensor msgs/LaserScan) or 3D
(sensor msgs/PointCloud)

• Sensor detection range and obstacle range: To determine and update obstacles in the
given range

The global costmap displays information in a global ”map” frame and requires the
robot’s ”base” frame to track it. Whereas local costmap displays information in a local
odometry-based ”odom” frame that moves dynamically with respect to the global ”map”
frame. The size of this local costmap can be configured depending on requirements, but
the global costmap is always configured to the entire map published on ”/map” topic.

Planner

Similar to costmaps, the navigation stack has two planners: Global planner and Local
planner. Given a target on the map, a global planner computes a path in the entire map to
reach that point. Global planner provides a set of waypoints that should be traversed to
reach the target, considering the obstacles. The availability of a pre-built map of the envi-
ronment is not necessary for a global planner, and it can provide an initially expected path
and keep updating itself incrementally over time to improve the quality of the path. How-
ever, this might reduce the accuracy of long-distance path planning. In contrast, the local
planner plans immediate short paths in the local costmap and is responsible for comput-
ing and publishing the velocity commands to the robot. It checks the obstacles in real-time
and updates frequently to reflect changes in the map. Thus it is very critical to config-
ure it correctly to perform in a highly dynamic environment. In comparison, the global
planner accesses vast global information for planning the path and is not updated as fre-
quently as the local planner. Global planner can support many planner algorithms like
Dijkstra’s[ 14 ] or A*[ 24 ] path algorithm. For local planner, ROS provides multiple algo-
rithms like base local planner [ 59 ], dwa local planner [ 58 ] and teb local planner [ 60 ].

Base controller

To navigate the robot, the navigation stack sends velocity commands via a base controller
on ”cmd vel” topic, which describes the required values of velocity in the x and y direction
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(vx, vy) and rotational information (vtheta). cmd vel topic computes these values based on
the configuration parameters and by interacting with the costmaps and planners. It then
publishes this information using messages of type geometry msgs/Twist.msg. Therefore, a
node should be created to accept these geometry msgs/Twist.msg messages, and configure
the robot’s controllers to move it accordingly.

<!-- geometry_msgs/Twist.msg -->
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

<!-- geometry_msgs/Vector3.msg -->
float64 x
float64 y
float64 z

2.5. Mapping and Localization in ROS

As discussed in previous sections, a map is required to create costmaps and planners for
autonomous navigation in ROS. The map can be built during runtime while moving the
robot in the environment or provided as a static map created before navigation. Depending
on the chosen map strategy, ROS provides several algorithms that are capable of perform-
ing SLAM in 2D and 3D, i.e., simultaneously building a map and localizing the robot in
the generated map. Some algorithms focus only on localization of the robot in a pre-built
map. In this research work, we used both strategies and explored some algorithms. For
2D map creation Gmapping [ 61 ] and Hector mapping [  35 ] were used, and for localization
AMCL [ 54 ] was used. Some 3D localization algorithms like A-LOAM [ 22 ], LegoLOAM
[ 64 ], and HDL Graph SLAM [ 37 ] were also used to understand the 3D pose tracking of the
robot.

3D pointcloud to 2D scan

If a 3D lidar or camera sensor is used for mapping and localization, it is necessary to
convert the incoming 3D data into a 2D planar laser scan. For a 3D lidar, this can be
achieved by using the pointcloud to laserscan[ 55 ] package that takes a 3D input cloud (sen-
sor msgs/PointCloud2) from lidar sensor and publishes a 2D laser scan (sensor msgs/
LaserScan). Similarly for a RGBD camera, a package depthimage to laserscan[ 56 ] is available
that subscribes to image topic (sensor msgs/Image) and camera info topic (sensor msgs/
CameraInfo), and publishes a 2D laser scan topic (sensor msgs/LaserScan). Both of these
packages provide several configuration parameters that can be modified to work on dif-
ferent kinds of lidars and cameras.

14



2.6. Maps in ROS

2.6. Maps in ROS

As discussed in the previous sections, an occupancy grid map comprises cells containing
numerical information about the presence of an object or free space in the cell. This re-
search work focuses on autonomous navigation in a pre-built 2D map created from a 3D
BIM model. In this section, the details of map creation from BIM are discussed.

2.6.1. Map from BIM

Figure 2.6.: 2D Map from BIM model

It is imperative that the BIM model accurately defines the core structure of the environ-
ment. Missing or outdated information can result in an inaccurate or wrong map genera-
tion. The strategy chosen for this work is first to extract the geometrical information of the
3D BIM model, then create a 2D image of the floor on which the robot will be navigated.
Several tools can convert a 3D BIM model into other file types or generate 2D images from
the model. The primary tool used for this work was IfcConvert [ 10 ], an application from the
open source project IfcOpenShell [ 12 ] that provides several tools for managing or modify-
ing IFC based BIM models. IfcConvert provides several options to convert 3D BIM models
of .ifc file format into other file formats like 3D meshes .obj, .dae or 2D layers like Scalable
Vector Graphics (.svg) [ 11 ].

SVG and OpenCV

Scalable Vector Graphics is a widely used 2D vector graphics format written in XML lan-
guage. Compared to other 2D image formats like PNG, which are pixel-based, SVG files
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consist of a complex mathematical setup that is made up of dots, lines, and shapes. This
information is available in XML format and hence can be easily searched for semantic in-
formation. Another advantage of SVG is that it can be easily extended or compressed,
while other pixel-based images lose the granularity and clarity when scaled up.

After obtaining the SVG file, a corresponding map is drawn on a blank digital canvas us-
ing the popular library OpenCV [ 4 ]. OpenCV (Open Source Computer Vision Library) is a
cross platform open source library widely used in research and industrial computer vision
development. It provides a vast number of functions and algorithms for image processing
and image conversions. The SVG file was converted into a Portable Network Graphics (PNG)
format file for easier image processing. The obtained PNG file provides more image pro-
cessing flexibility than the SVG file. This library was used mainly to transform this PNG
file into a 2D occupancy grid map. Some of the openCV functions used to process the PNG
image and generate the required 2D map are detailed below.

Opencv functions

The OpenCV library was mainly used to perform grayscale conversion of images, binary
thresholding to convert the input image into a black and white image, and for detecting
object contours.

(a) Image with multiple ob-
jects (b) binary threshold (c) contours

Figure 2.7.: Contour detection with OpenCV

• cv2.cvtColor: This function converts the color space of the input image into another
color space. It was used to convert the image into a grayscale image in this research
work.

• cv2.threshold: This function converts a grayscale image into a binary image (Black and
White). It checks each pixel in the image and its value against an input threshold.
Values lower than the threshold are set to 0 (black), and the values higher than the
threshold are set to the maximum value (white). Figure  2.7b shows an example of an
image generated after applying a binary threshold to figure  2.7a .
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• cv2.findContours: This is a function to detect and store information about the contours
or borders of objects in an image

• cv2.drawContours: This is a function to draw the contours of objects in an image based
on input boundary points. Figure  2.7c shows an example of an image generated after
finding and drawing the contours of objects in the image from figure  2.7a . As seen
with this function, the contours of an object are drawn in red.

• bitwise not: Then we perform a bitwise inversion operation to invert the colors, i.e.,
convert black to white and white to black and save the image as a png file.

• cv2.morphologyEx: This is a type of morphological function from openCV that help in
either increasing or decreasing the borders of an object in the image. This function is
useful in removing noise around the contours of an image.

2.6.2. Other Maps

Multiple other ROS based methods can also generate 2D maps. One such way is to utilize
the Gazebo tool to visualize a 3D model of the environment and then slice a layer from it
by choosing a z-coordinate value in the 3D model. The open source project pgm map creator
[ 75 ] provides a ROS package and plugin for this. The plugin libcollision map creator.so is
added to a Gazebo world file that represents a 3D environment. Then a configurable ROS
launch file is executed to generate the 2D map.

ROS can also work well with 3D maps. A point cloud mesh can be extracted from a
3D model using the CloudCompare [ 9 ] tool. Figure  2.8 shows an example of a 3D map
generated from the CloudCompare tool. This map can also be converted to other formats
like Octomap based on the requirements of the localization algorithm.

Figure 2.8.: 3D Pointcloud map
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In this chapter, related research and work has been described.

3.1. Autonomous Navigation with Quadruped Robots

In recent years, the navigation of legged robots has become a hot research topic. Mul-
tiple research organizations have dedicated time and efforts to enable custom-designed
robot development and produced software packages to operate them. The majority of
the research in the past decade has focused on utilizing and integrating the solutions into
the standard robotics development framework ROS [ 48 ]. ROS framework has a large col-
lection of algorithms and packages required for robotics development and testing. ROS
started as a personal project at Stanford in 2005 to fix the problem of redeveloping the basic
software architecture each time a new study started and focused on utilizing that time for
actual robotic application development. Over the next few years, ROS took the shape of an
open source project, and multiple libraries and algorithms were added to it. A significant
part of general robotic development is based on controlling and moving a robotic agent in
the real world. This also led to an increased focus in the area of autonomous navigation,
which aimed at building smarter self-reliant systems. The core part of these systems is the
ROS navigation stack [  42 ] that was introduced in 2010 to help different kinds of robots to
adapt to this stack and achieve autonomous navigation capabilities. The navigation stack
is limited to 2D navigation and needs major modifications to comply with the 3D environ-
ment. Though the next generation of ROS, i.e., ROS2 [ 67 ], was introduced a few years ago,
the entire core of this research work will be based on ROS.

The ROS navigation stack requires the robot’s odometry to track its pose and path. Ad-
ditionally, it requires information about the environment that can be generated using per-
ception sensors like Lidar or Camera. Each sensor has its own benefits depending on the
research goal. Many popular techniques have been developed to support SLAM in ROS.
For research focused on 2D navigation, the Robot localization [ 43 ] package from ROS can
be utilized to estimate the robot’s pose on a map. The map can be either provided before
starting navigation in the environment or can be created using SLAM algorithms. For 2D
navigation, maps should be based on the occupancy grid map format. For 3D navigation,
multiple options exist, like voxel-based maps, point cloud maps, and Octomaps [ 27 ].

Many quadruped robots have been developed using ROS. Some of the popular ones
used in this research are ANYmal [  28 ] from ETH Zürich, Cheetah [ 2 ], and Mini-Cheetah
[ 33 ] from MIT. Apart from these, multiple commercial robots are available, such as the Spot
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robot by Boston Dynamics and a range of different-sized quadruped robots from Unitree -
A1, B1, Go1, and Aliengo.

The majority of these quadruped robots utilize ROS control packages to control their
movement and path planning for goals. Some notable ROS control projects are OCS2 [ 16 ],
Free Gait [  15 ], WoLF [  49 ], QuadSDK [  45 ], TOWR [  74 ]. These projects focus on controlling
the joints and links in the quadruped robot’s legs to navigate them on uneven terrains
and at different speeds. legged control [ 39 ] is an open source Nonlinear Model Predictive
Control (NMPC) and Whole-body control (WBC) based framework built using ROS con-
trol and OCS2 libraries. This framework supports the control of Unitree robots and hence
would be used extensively for simulating the control and dynamics of the Unitree Go1
robot.

3.2. ROS and BIM

A BIM model contains detailed semantic information about the 3D environment, and this
information can be used to aid the autonomous navigation process. This information can
be beneficial, especially in indoor areas with many dynamic objects and constantly chang-
ing environments. BIM can inform the robot about the static structures in such environ-
ments, which can also help track the robot’s position. This research work focuses on inte-
grating the information in a 3D BIM model into the ROS navigation stack.

In recent years, multiple research works have focused on integrating BIM models in their
industries. In the Augmented Reality field, BIM models have been used to localize the AR
devices [  25 ][ 41 ] and support emergency response systems by generating user interfaces for
indoor localization [ 17 ]. In the construction industry, the BIM models are used to automate
the monitoring of construction progress [  47 ][ 65 ] and cloud-based real-time construction
management using RFID devices. Some projects have focused on creating semantic maps
from BIM models to support indoor mapping [ 32 ] and visualizing obstacles [ 21 ][ 6 ]. Some
deep learning-based methods have focused on improving the robot’s localization in an
indoor environment. [ 1 ][ 23 ][ 3 ][ 7 ].

3.3. ROS based SLAM

SLAM has been one of the key areas of research for the robotic community. Therefore,
many popular SLAM solutions are available as ROS packages that work for both Lidar and
Camera sensors. Gmapping [ 61 ] is one of the most popular 2D SLAM packages in ROS.
It relies on odometry data and 2D scans of the environment from perception sensors and
works well with a camera or lidar sensor. Hence, it performs poorly when the odometry
data is of poor quality. Hector SLAM [ 35 ] is another 2D SLAM package in ROS that works
quite well even without odometry data. Cartographer [ 26 ] is a ROS package that works
for multiple varieties of sensors and performs well for both 2D and 3D navigation.
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RTAB-Map [ 38 ] is a SLAM project initially developed to support visual SLAM based on
camera data but now supports multiple types of lidar and camera sensors. Lidar Odom-
etry and Mapping (LOAM) [ 76 ] is a popular lidar-based SLAM solution that generates
odometry data from lidar scans and creates a map. Many improvements have been made
over LOAM, and they are available as open source ROS packages [ 22 ][ 64 ]. Apart from
SLAM solutions, some lidar-based ROS algorithms focus on improving the localization of
a robot [ 5 ][ 73 ]. The most popular localization algorithm for 2D localization is AMCL [ 54 ].
This algorithm was the core package used in this research work to localize the robot in a
2D map.

Adaptive Monte-Carlo Localizer

AMCL algorithm

Algorithm Augmented MCL (Xt−1, ut, zt, m):
static wslow, wfast

X̄t = Xt = ∅
for m = 1 to M

x
[m]
t = sample motion model(ut, x

[m]
t−1)

w
[m]
t = measurement model(zt, x

[m]
t ,m)

X̄t = X̄t +
〈
x
[m]
t , w

[m]
t

〉
wavg = wavg +

1
Mw

[m]
t

endfor
wslow = wslow + αslow(wavg − wslow)
wfast = wfast + αfast(wavg − wfast)
for m = 1 to M do

with probability max(0.0, 1.0− wfast/wslow) do
add random pose to Xt

else
draw i ∈ {1, . . . , N} with probability ∝ w

[i]
t

add x
[i]
t to Xt

endwith
endfor
return Xt

The AMCL algorithm is a computationally efficient adaptation of the Monte Carlo local-
ization method that utilizes particle filter to estimate the pose of the robot[ 68 ]. In AMCL,
the particles are adaptive, i.e., the algorithm utilizes fewer points when the pose is accu-
rately identified but uses a large number of particles when the guessed estimate is poor.
In the beginning, the robot’s pose is represented by a large number of particles spread
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throughout the input occupancy grid map. As the robot moves around and new mea-
surements arrive, the particle filter estimates the likelihood of a particle representing the
true position of the robot. The particles with low likelihood are removed in the update
cycle, while those with high likelihood are preserved. More particles are added in the area
around the most probable pose of the robot before the subsequent measurements arrive.
After some time, the particle filter accumulates multiple particles around the true position
of the robot. Algorithm  1 describes the particle filtering process in AMCL. The AMCL
algorithm is available in ROS as a package and provide multiple parameters that can be
configured to suit the need of different robots.

HDL Localization

HDL Graph SLAM[ 37 ] is a real-time SLAM algorithm that works well with 3D lidar sen-
sors. It estimates the odometry of the robot by NDT-based scan matching and utilizes loop
detection to provide a 3D graph slam solution. This algorithm provides a standalone HDL
localization package that functions even in the absence of good odometry data from the
IMU sensors of the robot. Robot pose tracking only requires a point cloud map of the
environment and the initial position of the robot on the map.

Figure 3.1.: HDL Graph SLAM [ 36 ]

3.4. Summary

The latest developments in quadruped robot control and localization methods were re-
searched. The 2D map required for the ROS navigation stack can be generated by running
a SLAM algorithm in ROS and navigating the environment. Alternatively, a pre-built map
can be used directly to focus only on localization. A 3D BIM model contains vital infor-
mation about indoor environments. Hence they will be used to generate this 2D map. The
generated map will be compared with ROS-based techniques like Gmapping and Hector
mapping. Localization in 3D point cloud maps will also be explored.

The OCS2-based open source project legged control [ 39 ] can be used as a starting point for
creating a gazebo simulation to replicate the real world dynamics of the Go1 quadruped
robot. It provides multiple walking patterns or gaits, but this project will primarily use the
standard stance and static-walk gait for simulation.
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The control packages for the real world are available on Unitree’s GitHub repository.
However, they are defined in a primitive manner and require significant additional work
to plan the robot control in two different states: high and low. The low-state mode is re-
quired to fine-tune the walking patterns of the Go1 robot. To avoid redeveloping the basic
controls and odometry generation, closed-source packages from the robot supplier MyBot-
Shop were used. They provide a good starting point for implementing the 2D navigation
stack. More packages would need to be developed to program the 2D navigation stack
fully, and the learnings from the simulation experiments will be added here. (@s: check
this sentence)
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4.1. Hardware setup

This section describes the hardware and software used in this research work. A quadruped
Unitree Go1 robot [ 20 ] is used to perform autonomous navigation in simulation and real
world. The Go1 robot is powered by a rechargeable battery system and can easily move
in most environments, including under-construction buildings. It supports wireless and
wired control and is compatible with ROS based development. The entire framework is
set up in ROS, and it runs on a small computer that can be mounted on the Go1 robot
along with the Ouster lidar [ 29 ][Figure  4.1b ], which provides point cloud information of
the environment and Realsense camera sensors [ 51 ] [Figure  4.1c ] for visual pointclouds.
The Gazebo simulator and Rviz tool were used to simulate and visualize the framework.

(a) Unitree Go1 [ 20 ]

(b) Ouster OS1-32 [ 29 ]

(c) Realsense D435i [ 51 ]

Figure 4.1.: Hardware setup
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4.2. ROS Integration

A ROS based simulation framework is necessary before attempting to autonomously nav-
igate the Go1 robot in the real world environment. As mentioned in Chapter  2 , ROS
provides several simulation tools, among which Gazebo and Rviz were primarily used
here. Unitree Go1 recommends using ROS melodic environment but also supports ROS
noetic. Therefore, ROS noetic was chosen to test the autonomous navigation capabilities
of the Go1 robot. Other ROS based tools, such as Rqt-based graphical tools, were used to
send commands to the robot, visualize the flow of information and verify the transforms
between different sensors.

4.2.1. Basic setup

(a) Ouster lidar (b) Realsense camera (c) Mounting frame

Figure 4.2.: 3D Meshes

$ rosrun xacro xacro go1_robot.xacro > go1_robot.urdf

Source Code 4.1.: Generate URDF file from Xacro

The most crucial requirement for setting up a ROS based framework is correctly defining
the coordinate transforms between different sensors; otherwise, the incoming data will
make little sense. For the Go1 robot, Unitree provides an XML-based Xacro file detailing
the transforms and other information (weight, translation, rotation info) on its open source
GitHub repository [ 53 ]. This xacro file was modified, and information about the mounting
[ 71 ], Ouster lidar, and Realsense camera was added to this file. Once the final xacro file is
configured, it can be converted into a URDF file by using Code  4.1 . This URDF file can
be used to visualize the entire system as a whole in Gazebo or Rviz. The transforms of
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individual joints and links can be visualized as well, and any issues in transformation can
be resolved.

4.2.2. OGM from BIM

As discussed in Chapter  2 , to create a map from the input BIM model, the model should
represent the 3D environment as accurately as possible. The BIM model need not contain
information about all the objects in the environment, but basic information like Floor and
Wall structure should be present. The accuracy of the input model will decide the accuracy
of localization in the 2D map. This algorithm was developed using Miguel Vega’s work
[ 69 ] [ 70 ] on creating 2D occupancy grid maps from a BIM model.

The input model is first converted into an SVG format file [ 11 ] and then processed using
OpenCV library to generate distinct layers as PNG format files. These layers will then be
further processed with OpenCV tools to create the final PGM map compatible with the ROS
navigation stack. For compatibility, the 2D map should represent the outdoor area in gray
color, the free space on the floor in white color, and the objects (including walls) that can
cause a collision marked in black color. The process to generate this 2D map is detailed in
this section.

Create SVG

$ # Command to generate SVG file using IfcConvert tool
$ IfcConvert <Input IFC filename> <Output SVG filename> <Geometry Options>

$ # Example
$ IfcConvert model.ifc model.svg --exclude entities IfcFloor IfcSpace

Source Code 4.2.: Convert IFC file to SVG file

The open source project IfcOpenShell[ 12 ] provides a tool IfcConvert[ 10 ] to convert a 3D
BIM model in IFC format into a 2D SVG floor plan. The command to perform this conver-
sion is listed in Code  4.2 . The parameters required to perform this conversion are:

• IfcConvert path: Path of the folder where IfcConvert executable file is located

• Input filename: Path and filename of the input IFC file

• Output path: Path and filename of the output SVG file

• Geometry Options: These define the geometry of the output SVG files. For example,
the option -section-height is used to specify the z-coordinate or height in the BIM model
from where the 2D layer will be sliced
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• Entities: Parts of the IFC file that should be included or excluded like IfcWindow,
IfcDoor, etc.

Extract Layers

An SVG file is just a 2D layer of the 3D model; hence all the necessary information can-
not be extracted with just one layer. Multiple such layers are necessary, which can then
be superimposed on each other to create the final map containing information about the
indoor area, outdoor area, and the borders separating them. These slices can be extracted
using the -section-height option in IfcConvert. The height (z-coordinate) of the layer should
be selected carefully, as a minor change could affect the final result.

For superimposing images and drawing on them, it is better to first convert the SVG
files to other image formats like PNG files and then use the OpenCV library for processing
them as discussed in Chapter  2 . The goal is to draw three different layers representing the
indoor area where the robot can drive, the outdoor area where navigation is not possible,
and the walls structure separating the two areas.

(a) Outdoor layer (b) Indoor layer (c) Wall layer

Figure 4.3.: Image layers

1. Outdoor layer: This layer should differentiate between outdoor and indoor areas. Ac-
cordingly, the 3D model can be drawn as a black colored silhouette on a gray colored
canvas representing the outdoor area. To achieve this, the z-coordinate point should
be chosen carefully to ensure the representation of the entire model floor area. The
best option is to choose the point from the floor entity IfcSlab from the IFC file. Other
IFC entities like IfcSpace and IfcWindow can be excluded for faster processing times.
After selecting the z-point and creating an SVG file, it was converted into a PNG file
for drawing the indoor and outdoor layers.

The easiest way to differentiate between the indoor and outdoor areas in the image
is to use the contour detection method from the OpenCV library to find the borders
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of the 3D model. For this, the PNG image was first converted into a grayscale im-
age, and Binary thresholding was applied to the image, resulting in a black and white
colored image. Afterward, to detect the contours of this black and white image, the
findContours method from OpenCV was used. All the contours detected in the image
are not necessary for this layer. The focus is on the contour that separates the indoor
and outdoor regions. Generally, the outermost contour represents the borders of the
entire image. This contour can be used to draw a plain gray-colored canvas whose
size is the same as the original image’s size. The rest of the contours depend on the
model’s contents and represent the entire model’s shape and shapes of individual
rooms or objects. For this layer, information about the indoor areas is not required;
hence, they can all be painted in a single color. OpenCV provides simple pixel-wise
addition functions to superimpose images. Thus it would be better to paint the in-
door area in black color (pixel value = 0) and later add colored layers (pixel value > 0)
on this. Figure  4.3a shows an example image of this layer.

2. Indoor layer: This layer should highlight the entire floor area in the BIM model that
the robot will access for navigation. For multi-story buildings, this layer should be
chosen at the floor level on which the robot will move around. The movable floor
area should be painted white, while the rest of the image can be painted black. The
floors lower or higher than the one of interest will be ignored and painted black. The
model’s outline should be maintained, which requires that the walls should also be
painted white. Similar to the previous layer, the best option is to choose the point
from the floor entity IfcSlab from the IFC file. Other IFC entities like IfcWall and
IfcWindow can be excluded for faster processing times.

After selecting the z-point and creating an SVG file, it was converted into a PNG file
for drawing the indoor and outdoor layers. Since this layer requires information
about both walls and movable area, contour detection is not necessary as we do not
want to paint the indoor area in a single color. Instead, a simple binary thresholding
operation can be performed after converting the SVG file into a grayscale PNG. This
results in the outdoor area being painted white and objects of interest (wall, floor)
being painted black. However, we need them reversed, so another operation from
OpenCV bitwise not that inverts the colors of the binary image will be used to con-
vert the outdoor area to black and objects of interest to white. Figure  4.3b shows an
example of this layer.

3. Intermediate layer: The Outdoor and Indoor layers can now be added using the ad-
dition operation from OpenCV library to create an image that contains the outdoor
area in gray color and the indoor movable area in white color. However, as it can
be seen in Figure  4.3b , the Indoor layer is filled up with white color and cannot dif-
ferentiate walls from free space on the floor. Thus, the resulting image will also be
unable to differentiate between walls and movable areas. Information about walls is
necessary to avoid collisions. Therefore, we need another layer that will add the wall
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information distinctly to this image.

4. Wall layer: The wall layer contains the outlines of all walls that separate rooms on a
single floor and define the borders of the model. For this layer, the z-coordinate is
chosen such that it captures the information about all the walls in the model while
ignoring the floors. In particular, the selected point must not be located along a
window as it might be represented as a door in the extracted 2D SVG file and hence
depict an opening where the robot can walk through. The SVG layer is created by
excluding some entities - IfcSpace, IfcOpeningElement, IfcDoor, IfcWindow and IfcSlab
for faster processing time and preserving only the information about walls.

To add the wall information to the image generated after the addition of Indoor and
Outdoor layers, a simple operation can be performed in OpenCV where the walls
can be painted white in color (pixel value = 255), other areas painted black in color
(pixel value = 0) and then this image is subtracted from the intermediate layer (Out-
door + Indoor layer). We do not want to alter the movable areas, so they should be
represented by black color, which would not cause any change during subtraction.

The generated SVG file contains walls in black color and other areas in white color.
First, the SVG file is converted into a grayscale PNG, and then Binary thresholding is
applied to it. The resulting image will have other areas painted white and the walls
painted black. We need them reversed, so the pixel inversion operation bitwise not
from OpenCV is applied, which converts the outdoor area to black and the walls to
white. Figure  4.3c shows an example of this layer.

Figure 4.4.: Final PGM image

5. Final image: As discussed above, the walls layer can now be subtracted from the in-
termediate image obtained after adding indoor and outdoor layers. The resulting
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image will contain all walls in black color, the movable floor area in white color,
and the outdoor area in gray color. There are possibilities of mismatch in the align-
ment of the walls at border areas. The morphological transformation operation from
OpenCV morphologyEx can be used to fill these gaps. This operation results in the
desired final image that should be saved in PGM format as ROS expects occupancy
grid maps. In addition, the respective YAML file that defines the resolution and ori-
gin coordinates of the model can be generated by extracting the origin coordinates
from any one of the SVG files. Figure  4.4 shows an example of the final 2D map.

4.2.3. 3D Map from BIM

As discussed in Chapter  2 , multiple ROS based algorithms are available for robot localiza-
tion based on input 3D perception data from a 3D lidar or camera. Most of these algorithms
require a 3D point cloud (PCD) map of the environment. The 3D map can be created by
the 3D visualization tool CloudCompare[ 9 ]. It provides an option to sample points from a
3D mesh. Therefore, the input BIM model was first converted into a Wavefront (.obj) file
and then sampled in CloudCompare. Figure  4.5 shows an example of a 3D point cloud map
created using CloudCompare.

Figure 4.5.: 3D point cloud map

4.3. Simulation

This section discusses the implementation details of the ROS navigation stack for simulat-
ing autonomous navigation. This simulation setup was based on the open source project
from Qiayuan Liao [ 39 ] that uses OCS2[ 16 ] and ROS control[ 8 ] libraries to operate a Uni-
tree A1 quadruped robot in gazebo simulator and operating it in the real world. It provides
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a simple mechanism to simulate various gaits for Unitree’s quadruped robots and add
customizations for navigation. The existing project was modified for this research work
by adding the necessary Unitree Go1 configuration (xacro) files and additional sensors as
discussed in Section  4.2.1 .

4.3.1. Gazebo environment

Figure 4.6.: Custom world in Gazebo

The first step is to create a custom simulation environment that accurately reflects the
input BIM model, thus ensuring a true representation of the real world. Gazebo simulator
is used in this research work to create the simulation environment. Gazebo requires the
environment to be described and configured in a Simulation Description Format (SDF)
file, an XML-based format that utilizes 3D meshes or nested models to create a simulation
environment. Therefore, the input BIM model (.ifc) is first converted to a Collada mesh file
(.dae), which can then be added and resourced by an SDF file. This SDF file, along with a
basic configuration file can now be referenced by a Gazebo world file (.world) along with
other additional models or resources (e.g., a ground plane or a light source). The resulting
world file looks as shown in figure  4.6 . This world file can now be loaded into a gazebo
environment using a simple ROS launch file.

4.3.2. Configuration

The next step adds all the necessary configuration files and three-dimensional mesh files
of the quadruped Go1 robot, lidar, and camera sensors through a URDF file.

• Unitree Go1:
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(a) Gazebo (b) Rviz

Figure 4.7.: Visualization of Go1 robot

The configuration files and mesh representations in collada format (.dae) were im-
ported from Unitree’s ROS GitHub repository [ 53 ]. The sensors and the mounting
system information were added to this URDF file. Further, minor modifications were
made to match the requirements of Qiayuan Liao’s [ 39 ] project.

• Ouster Lidar (libgazebo ros ouster laser.so):

For simulating the 3D point cloud lidar data, Wil Selby’s blog[ 63 ] was followed.
The necessary mesh file and plugin to simulate lidar in Gazebo were used from Wil
Selby’s[ 62 ] and Gepetto team’s[ 18 ] git repositories.

• RealSense Camera (librealsense gazebo plugin.so):

For simulating the RealSense D435i camera, the gazebo plugin was imported from
Pal-Robotics Github repository[ 66 ]. The 3D mesh files were used from Intel’s ROS
Github repository for RealSense cameras[ 50 ].

• ROS control (liblegged hw sim.so, libgazebo ros p3d.so):

The plugins for controlling the quadruped robot were used without any modifica-
tions from Qiayuan Liao’s [ 39 ] project.

Figure  4.7 shows the visualization of the Go1 robot with a mounting frame on which
Ouster Lidar and Realsense camera are mounted.
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4.3.3. Manual Control

Before setting up the planners and costmaps for autonomous navigation, it should be ver-
ified if the quadruped robot can move around in the custom gazebo world based on user-
input velocity commands. After loading the custom world in the Gazebo simulator, the
quadruped robot and its controller should be started using the Rqt-based graphical tool
rqt controller manager. This tool allows the user to switch on the robot’s movement, i.e.,
from a static stance to walking or running. After the controllers are launched, the robot
can be given velocity commands either through the command line interface or by using
the Rqt-based graphical tool rqt robot steering.

4.3.4. Costmaps and Planners

As discussed in section  4.2.2 , to create the costmaps for navigation and obstacle avoid-
ance, the map generated from the BIM model will be used. For the 2D obstacle layer in
the costmaps, a 2D laser scan of type sensor msgs/LaserScan is required. Therefore, a point-
cloud to laserscan node [ A.2.2 ] was used to convert the 3D point cloud from Ouster lidar to
a 2D laser scan of type sensor msgs/LaserScan. For the 3D obstacle layer, a source that pro-
vides messages of type sensor msgs/PointCloud is required. Hence, either the point cloud
from the Ouster lidar or the Realsense camera can be used. The global planner was set up
using the default Dijkstra’s algorithm. For the local planner, DWAPlannerROS [  58 ] algo-
rithm was used. The costmaps are visible on the 2D map as soon as the 2D laser scan and
map topics are available. The local and global plans can be seen by setting a target goal
point where the robot has to navigate autonomously. This goal can be easily set using the
2d Nav Goal option in Rviz. Figure  4.8 displays the global and local costmaps drawn over
the input BIM-based map.

(a) Global Costmap (b) Local Costmap

Figure 4.8.: Costmaps
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4.3.5. Localization

Another prerequisite for 2D autonomous navigation is the robot’s initial position in the
input map. The initial pose can be set using the 2D Pose Estimate option in Rviz or by
including the information in a ROS launch file. After setting the initial pose, the robot can
be given a target goal to navigate to, but this also requires that the robot knows where
it is moving on the map. The odometry frame provides this information but is prone to
errors or drift during long-term navigation. As discussed in Chapter  2 , this issue can be
fixed by using the AMCL algorithm for localization that requires only a 2D laser scan of
the environment and is capable of scan matching, i.e., matching edges and contours of the
environment.

4.3.6. Summary

Figure 4.9.: Simulation Navigation Stack

In brief, the simulation process for autonomously navigating the Go1 robot in a BIM
based world can be summarized as below:

1. Launch the custom environment using the Gazebo world file.

2. Launch the ROS controllers to start up the robot in the simulation environment.

3. Launch the pointcloud to laser scan node to convert 3D lidar data to 2D scans.

4. Launch the map server node to load the BIM based occupancy gridmap.

5. Launch the AMCL node to localize the robot on the input map.

6. Launch the move base node to load the costmaps and planners.
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7. Set the inital pose of the robot on the map and provide a target goal via Rviz.

4.4. Real world autonomous navigation

This section explains the ROS-based framework required for autonomously navigating
Unitree Go1 in the real world. This framework is developed using real-time development
based on live data and recorded rosbag files. Rosbag files are better for tuning parameters
and verifying the implementation.

Figure 4.10.: Real world environment

4.4.1. Remote control

One of the main aims of this project is to perform autonomous navigation with the Go1
robot by controlling it remotely through wireless control. A remote connection is required
from the computer mounted on the Unitree Go1 robot to another computer system to op-
erate the robot wirelessly. One convenient option is to use a Remote Desktop Protocol
(RDP) based tool. For this project, Microsoft Remote Desktop tool was used as it provides a
fast remote connection and accurately replicates the remote system’s graphics. However,
it requires that both devices should be on the same network. The network was constructed
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by creating a Mobile WiFi hotspot from a cellular device, and then this network connection
was added to both computers.

4.4.2. Power supply

As mentioned in Section  4.1 , the Unitree Go1 robot can be powered on via its rechargeable
battery, and for the sensors and the computer, a set of small rechargeable batteries were
used. The Go1 robot and Ouster lidar were connected to the onboard computer via eth-
ernet cables, and the Realsense camera was connected using a USB Type-C to Type-C cable
[ 72 ]. After switching on all the devices, a remote connection is established between the
devices. Then the ROS system can be launched. Figure  4.11 displays the setup on a Go1
robot before and after switching it on.

Figure 4.11.: Unitree Go1 setup

4.4.3. Basic configuration

The URDF files from Section  4.2.1 and mesh files from section  4.3.2 were used for the basic
configuration. As discussed in section  4.2.2 , the map generated from the BIM model was
used for real world 2D navigation. Additionally, the private project from the robot supplier
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MYBOTSHOP [ 44 ] was used to connect the Unitree Go1’s controller system to the onboard
computer and send velocity commands through the cmd vel topic. The velocity commands
can be either sent by a keyboard, rqt based plugins, or the navigation stack. This project
also provides an Extended Kalman Filter based robot localization node to localize the robot
in the map using Unitree Go1’s odometry. Additionally, it provides launch files to generate
the odometry of the Go1 robot from its IMU sensor data.

4.4.4. 2D scan

Ouster Lidar

Similar to simulation, the ROS navigation stack requires a 2D laser scan in real life. The
ROS drivers provided by the Ouster ROS project[ 30 ] were used to generate the 3D point
cloud data from the Ouster lidar. A simple launch file sensor.launch is provided as part of
the driver package to generate the point cloud data. The launch file requires the Ouster
sensor name (unique for each product) and an ethernet connection between the Ouster
lidar and the computer. Thus, the sequence is first to launch the sensor.launch file and then
use pointcloud to laserscan.launch from Section  4.3.4 to generate the 2D laser scan.

Realsense Camera

Intel Realsense also provides ROS drivers to operate the D435i camera and visualize its
data [ 50 ]. It provides a simple launch file rs camera.launch that can automatically detect the
sensor type and create ROS topics that can be visualized in Rviz or used for further pro-
cessing. A 2D laser scan can also be extracted from the 3D camera data using the depthim-
age to laserscan[ 56 ] node from ROS. A launch file depthcamera to laser.launch was created to
perform this conversion in real-time.

4.4.5. Simulation Packages

The move base node configuration files to load costmaps and planners on the input BIM
based 2D map were taken over from the simulation setup. Additionally, the launch files to
load the AMCL node was also taken over from simulation setup.

4.4.6. 3D Localization

To supplement the 2D navigation some ROS packages for 3D localization that directly use
3D point cloud from lidar were also implemented.

hdl localization

The hdl localization for real-time 3D localization was also implemented. As detailed on
koide3/hdl localization[ 36 ], the hdl localization.launch has to be configured to receive the odom-
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etry and 3D point cloud data from the sensors. Then, this launch file can be executed in
ROS with ouster lidar, and the data can be visualized in Rviz. Initially, the aligned points
topic might be misaligned with the input point cloud map, but this can be easily aligned
by using the 2D Pose Estimate option to set the initial pose of the robot in the input point
cloud map.

4.4.7. Summary

The steps required to autonomously navigate the Go1 robot in real world environment are
summarized as:

1. Power on all the devices and add the wired connections.

2. Launch Unitree Go1 description and control files to generate odometry data and
enable remote control via ROS.

3. Launch the perception sensors (lidar/camera) nodes and convert 3D point cloud
data to 2D scans.

4. Launch the move base node and map server node to load the BIM based 2D map,
costmaps and planners.

5. Launch the AMCL node for 2D localization.

6. Launch Rviz, set initial pose of the robot on the map and provide target goals.
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In this chapter, the experiments performed during the development of this research work
and their results are discussed. The Gazebo simulator and Rviz tool were extensively used
to visualize the configuration process and verify if the results are as expected. Other tools
used in this work are detailed in Section  A.1 .

5.1. Map creation

A 2D map is an essential component of the ROS navigation stack. As discussed in the
previous section, the 2D maps were generated using the IfcConvert tool, and the OpenCV
library was used to paint the maps to distinguish between different layers. To extract the
2D layer slices for the map generation process, the possible range of z-coordinate points on
the input BIM model were chosen by identifying a range of points using the 3D visualiza-
tion tool CloudCompare[  9 ]. A simple trial and error method was used to select the height
from this range and then visually verify the generated SVG files.

5.1.1. Single-floor BIM

The map generation process from the input BIM model in Figure  5.1 is described here.
Table  5.1 lists the required input parameters to the map generation algorithm.

1. Outdoor layer: Since the input BIM model has only one floor, the model’s outline
separating the outdoor and indoor areas can be visualized by this one floor. The
lowest and highest points on the floor are at z = −4.15 and z = −4.0 respectively. To
extract a silhouette, the z-coordinate was selected from this range [−4.15,−4]. Figure

Parameter Value
contourHeight -4
overlayHeight -4
wallsHeight -3.16
bounds 600x600
scale 50

Table 5.1.: Input parameters
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Figure 5.1.: Single-floor BIM [Image generated using Open IFC Viewer[ 46 ]]

 5.2a shows the SVG file generated at z = −4 and figure  5.2b shows the generated
PNG file after processing the SVG file with OpenCV.

2. Indoor layer: The entire area of the model on which the robot navigates can be visu-
alized by extracting the single floor from the BIM model. To extract the indoor layer,
the z-coordinate was selected from the floor’s height range [−4.15,−4]. Figure  5.3a 

shows the SVG file generated at z = −4 and Figure  5.3b shows the generated PNG
file after processing the SVG file with OpenCV.

3. Border layer: The input BIM model contains walls of varying heights, but their base
is the same floor, i.e., the lowest z-coordinate is the same for all walls. To choose a
z-coordinate that represents all walls, the height range should be from the highest
point on the shortest wall to the lowest point on the walls. Also, the windows have
to be excluded. This range was identified as (-4, -3.15) to avoid doors and windows
(around z = −3.15). Figure  5.4a shows the SVG file generated at z = −3.16 and
Figure  5.4b shows the generated PNG file after processing the SVG file with OpenCV.
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(a) Outdoors layer SVG (b) Outdoors layer PNG

Figure 5.2.: Outdoor Layer

(a) Indoors layer SVG (b) Indoors layer PNG

Figure 5.3.: Indoor Layer

(a) Wall layer SVG (b) Wall layer PNG

Figure 5.4.: Wall Layer
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Intermediate and Final images

(a) Intermediate = Outdoor + Indoor (b) Final = Intermediate - Walls

Figure 5.5.: Final image

After obtaining the three layers, an intermediate layer was generated by adding the
Outdoor and Indoor layers using OpenCV. Figure  5.5a shows the intermediate layer. Later,
using OpenCV the wall layer was subtracted from the intermediate layer to generate the
final image layer. This layer was saved as an occupancy grid map. Figure  5.5b displays
the occupancy grid map generated from the BIM model in Figure  5.1 .
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5.1.2. Multi-floor BIM

Figure 5.6.: Multi-floor BIM [Image generated using Open IFC Viewer[ 46 ]]

Parameter Value
contourHeight -3.5
overlayHeight -3.5
wallsHeight -1.501
bounds 500x500
scale 100

Table 5.2.: Input parameters

Figure  5.6 describes the map generation process from the input BIM model. Table  5.2 

lists the required input parameters to the map generation algorithm.

1. Outdoor layer: Since the input BIM model has multiple floors, a map of only one floor
is extracted. The outline of the model separating the outdoor and indoor areas can
be visualized using the points on this floor. To extract a silhouette, the z-coordinate
was selected at z = −3.5. Figure  5.2a shows the SVG file generated at z = −3.5 and
Figure  5.2b shows the generated PNG file after processing the SVG file with OpenCV.
As seen, the outline of the entire BIM model is captured in a black silhouette.

2. Indoor layer: The entire area of the model on which the robot can navigate can be
visualized by using a point from the height of the floor. To extract the indoor layer
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(a) Outdoor layer SVG (b) Outdoor layer PNG

Figure 5.7.: Outdoor Layer

the z-coordinate was selected at z = −3.5. Figure  5.3a shows the SVG file generated
at z = −3.5 and Figure  5.3b shows the generated PNG file after processing the SVG
file with OpenCV. As seen, only the area of interest is highlighted in white color and
other floors are represented as black color obstacles to avoid robot movement.

(a) Indoor layer SVG (b) Indoor layer PNG

Figure 5.8.: Indoor Layer

3. Border layer: The input BIM model contains walls of varying heights and multiple
floors. The z-coordinate should be carefully chosen such that it represents the walls
around the area of interest accurately. Also, the windows have to be excluded. The z-
coordinate that captures all the relevant walls was identified as z = −1.501 to avoid
doors and windows (around z = −1.5). Figure  5.4a shows the SVG file generated at
z = −3.16 and Figure  5.4b shows the generated PNG file after processing the SVG file
with OpenCV. As seen, all the walls have been generated in white color on a black
canvas as expected.
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(a) Wall layer SVG (b) Walls

Figure 5.9.: Wall Layer PNG

Intermediate and Final images

(a) Intermediate = Outdoor + Indoor (b) Final = Intermediate - Walls

Figure 5.10.: Final image

After obtaining the three layers, an intermediate layer was generated by adding the
Outdoor and Indoor layers using OpenCV. Figure  5.5a shows the intermediate layer. Af-
terward, the wall layer was subtracted from the intermediate layer to generate the final
image layer using OpenCV. This layer was saved as an occupancy grid map. Figure  5.5b 

displays the occupancy grid map generated from the BIM model in Figure  5.1 . As seen,
the navigatable area for the robot is highlighted in white, other floors are highlighted in
black, and the walls are colored black as well.
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5.2. Simulation experiments

This section discusses the results from the Simulation of the Go1 robot in a custom de-
signed Gazebo world. The Gazebo world file was created using the input BIM model, and
the Go1 robot and its sensors were loaded into the environment. It is expected that the
Go1 robot navigates in this environment as it would in the real world.

5.2.1. Basic configuration

Figure 5.11.: Transform tree of Go1 robot

As discussed in Chapter  2 , the most important requirement is to set up the transfer tree
properly,i.e., defining the flow of information and their respective coordinate transforms.
After configuring the xacro files and generating a URDF, the Go1 robot was loaded into the
Gazebo world. Figure  5.11 displays the transform tree of the Go1 robot in the Rqt-based
graphical tool rqt tf tree. As seen in the figure, the Lidar and camera sensors are linked
to the mount frame, which is the frame defined for the mounting system on which sensors
are placed. This mount frame is linked to the base frame of Go1, where all the other frames
supply their data to. An imu sensor is also present that helps generate the odometry of the
Go1 robot.

5.2.2. Sensor Data

After the transforms are set up, the sensors should be checked to see if they produce any
data and if that data accurately reflects the simulation world. As discussed in Chap-
ter  4 , Gazebo requires a plugin to simulate the sensor data. The plugins used here were
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(a) Ouster pointcloud in rviz (b) Realsense Real data

Figure 5.12.: Sensor data

libgazebo ros ouster laser.so to simulate the Ouster lidar data, which can be configured ac-
cording to the type of Ouster sensor available (match parameters). For RealSense, d435
was used librealsense gazebo plugin.so, which can also be configured for range and other
parameters.

Figure  5.12a displays the Ouster point cloud in the input BIM model and Figure  5.12a 

displays the Realsense camera point cloud in the input BIM model.

Convert to 2D laser scan

ROS navigation stack requires that the sensor data should be provided as 2D laser scan in-
stead of 3D point clouds. The pointcloud to laserscan was used to conveet the 3D lidar data
into 2D laser scans. The ROS launch file to perform this conversion is listed in Appendix

 A.2.2 . The cloud in topic was set to the ouster lidar pointcloud topic and the target frame
to transform the data was set as the ouster sensors frame. Figure  5.13 shows the lidar
sensor data in multiple colors and the 2D scan as white colored points. It can be observed
that the walls are detected properly in the generated 2D scan.

Figure 5.13.: 3D point cloud and 2D laser scan
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5.2.3. Manual Navigation

Figure 5.14.: Manually controlling Go1 robot

To check the physical dynamics of the simulation setup, it is required to check if the
Unitree go1 robot could move in the Gazebo world. For this, it should be ensured that
while launching the go1 robot in the gazebo world, it is initially placed on the floor on
which we would like to navigate autonomously. Scenarios of climbing stairs or moving in
external areas were not considered for this work.

Figure  5.14 shows the Go1 robot in the custom-designed Gazebo world. As discussed in
Chapter  4 , the ROS control-based controllers for the robot were started to move the robot
from a static stance to a trot stance. Then, longitudinal and lateral velocity commands
were given using the Rqt-based graphical tool rqt robot steering on the topic cmd vel. It was
observed that the Go1 robot responds well to the velocity commands on the cmd vel topic
and moves in the Gazebo world as expected. Special care should be taken while moving
the robot in the simulation world. If the robot collides with the wall or steps on staircases,
it might fall down or display unrealistic behavior, which would end the current simulation
session, and the environment would need to be relaunched to start from the beginning.

5.2.4. 2D Localization

After ensuring the robot responds to velocity commands, it should be checked how it
localizes itself on the map and how good the alignment is. The AMCL node needs the
\scan topic on which the 2D laser scan data from the lidar sensor will arrive. It also needs
the robot’s initial position in the input 2D map. The initial pose can either be included in
the launch file or set using the 2D Pose Estimate option in Rviz. After launching the AMCL
node, it crashed with an error message caused due to the tilt in the ouster lidar placement.
AMCL requires the lidar sensor to be mounted planar to the floor. To solve this issue, the
mounting position of the Ouster lidar was changed in the URDF file, and the tilt angle was
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set to 0 degrees. This solved the issue, and the AMCL ran without problems. After the
AMCL node starts up, the initial pose was set using 2D Pose Estimate option in Rviz. It
was observed that the AMCL node localizes the robot accurately and tracks its movement
accurately when it is moved.

Figure 5.15.: AMCL localization

Figure  5.15 shows the output visualization after setting the initial pose of the Go1 robot
in the BIM-based 2D map. The arrows in red surrounding the Go1 robot represent the pose
array of AMCL which calculate the probability of the robot’s pose on the map. As seen,
the robot pose is determined accurately, and the lidar sensor detections match the collision
walls of the 2D map.

5.2.5. Path Planning and Autonomous navigation

Figure 5.16.: Short goal

As discussed in Chapter  4 , the planners and costmaps were implemented after setting
up the lidar scans and AMCL node. To test autonomous navigation, the robot was given
target goals via the 2D Nav Goal option in Rviz. Figure  5.16 shows the Go1 robot on
the 2D map surrounded by AMCL pose array, the local costmap in black, the Ouster 3D
point cloud, and 2D laser scans. The robot was given a short goal just behind its back.
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This results in two plans: a global plan in green and a local path in yellow. It was visually
observed that both plans were accurate. The local plan tries to move the robot toward the
global plan and align as much as possible. When the endpoint in the global map is reached,
the robot stops moving. This was the expected result for simulating 2D autonomous navi-
gation.

There were also some issues with 2D autonomous navigation in the simulation environ-
ment. Figure  5.17 displays one such event. When the robot is given a long-distance goal, it
tends to lose its laser scan-matching alignment in long corridors. This can be caused due to
poor performance of AMCL in long corridors. AMCL needs edge features in the 2D scan
to align itself over time. Straight long corridors mean no edge features are available, and
this causes a drift in the alignment over time. This issue should be further investigated to
avoid colliding with walls.

Figure 5.17.: Long goal
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5.3. Real World Experiments

This section discusses results from the autonomous navigation setup for the Go1 robot in
real world scenarios. A BIM model of the real world environment was used to generate
a map used in the ROS navigation stack. It is expected that the Go1 robot can navigate
autonomously in this environment based on input target goals.

Figure 5.18.: Real world environment for Autonomous Navigation test

5.3.1. Basic configuration

Similar to the simulation environment experiments, the first step is to evaluate if all the
transforms are correctly set up between the frames. It should then be verified if the sensor
data reflects the real world. Errors in the coordinate transformation of sensor data can lead
to disastrous consequences because of collisions or breakdowns.

As seen in Figure  5.19 , all the joints and links of the Go1 robot are correctly set up,
and data is being published as expected on the trunk frame. The trunk frame, in turn,
forwards the data to the base frame of the robot. As defined in the modified URDF file
for the Go1 robot, the lidar and camera sensors transform the data to the parent mount-
ing frame, transforming it to the robot’s trunk frame. All these transforms are published
by the robot state publisher. The base to odom frame transform is provided by the Extended
Kalman Filter (EKF) based robot localization node. The inputs to the EKF are the Go1
robot’s Pose (x, y, z) and Euler angles (Roll, Pitch, Yaw) which are generated by the Go1
robot in HighState [ 52 ]. The input BIM-based 2D map is published on the map frame, and as
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discussed in Chapter  4 , the AMCL algorithm provides the map to odom frame transform.

Figure 5.19.: Transform tree of Go1 robot

5.3.2. Sensor data

After verifying the transforms, the incoming data was visualized using the Rviz tool. With
Rviz, the 3D point cloud option can be used to visualize the incoming data on the lidar and
camera topics, i.e., /ouster/points and /camera/depth/image rect raw and verify the alignment
of the sensors. If the configuration files contain incorrect geometry information, the sensor
point cloud data will have misalignments with the real world. Before visualizing the data,
the lidar and camera sensor drivers for ROS should be started using their launch files,i.e.,
ouster ros/sensor.launch and realsense2 camera/rs camera.launch.

(a) Ouster lidar (b) Realsense camera

Figure 5.20.: Sensor data

The ROS navigation stack requires the sensor data to be provided as 2D scans. Therefore
the pointcloud to laserscan.launch file was used to convert the 3D point cloud from Ouster
lidar into 2D laser scans. Figure  5.20a shows the ouster pointcloud in color on the z-axis
and the 2D laser scan in white points. During the initial tests, it was observed that the
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pointcloud to laserscan node provides the scan which is not exactly on the horizontal plane
but rather with a 5-degree tilt due to the mounting position of the Ouster sensor on the
Go1 robot. In a long corridor, the floor is detected as a wall behind the robot and identified
as an obstacle. This, in turn, causes problems for scan matching algorithms like AMCL and
results in poor tracking. Therefore, the URDF file for the Ouster lidar sensor was modified
by removing the 5-degree tilt from the z-axis, which means the ROS framework will think
that the lidar is mounted parallel to the floor and has a 0-degree tilt on the z-axis. Fur-
ther, the pointcloud to laserscan node’s parameters were updated by repeatedly changing
them and observing the output laser scan in Rviz. Finally, the pointcloud to laserscan node
outputs a 2D scan which detects the walls as shown in Figure  5.20a .

Realsense camera also provides a 3D image and depth point cloud, which are much
easier to visually verify as they show the environment exactly as it is and have a fast
update rate. Besides providing visual images for observing the robot’s path and tracking
objects, it can also be used to produce a 2D laser scan similar to the pointcloud to laserscan
node. As discussed in Chapter  4 , this is done using the depthcamera to laserscan.launch
file. Figure  5.20b shows the camera depth point cloud in color on the z-axis and 2D laser
scan in white points. It also shows an image of the environment from the camera image
topic. Compared with the 2D laser scan from lidar, the 2D scan from the camera sensor
fluctuates more on the z-axis. However, it is still useful as a redundant data source in case
the lidar sensor runs out of power. Both pointcloud to laserscan and depthcamera to laserscan
nodes were used as inputs to AMCL algorithm for experiments in this research work.

5.3.3. 2D Localization

Figure 5.21.: AMCL localization

After verifying the input sensor data, the localization node should be verified as it pro-
vides the important transformation between the fixed map frame which represents the en-
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vironment around the robot, and the odom frame that provides the odometry information
of the robot. The map to odom frame transform provides information of the movement of a
robot from its inital position to a target position. The AMCL node created for simulation
was used for real world navigation. The AMCL node works for both lidar and camera-
based 2D laser scans. It was observed that the AMCL node works well when the robot’s
initial pose is set on the map using Rviz. The AMCL pose array produces good results if
the robot walks straight, but as soon as the robot takes a turn, the AMCL node corrupts
and produces junk data. This leads to bad localization on the map, affecting path planning.

Figure  5.21 shows the lidar sensor data and AMCL’s pose array when the Go1 robot’s
initial pose is set through Rviz. The correctness of the robot in the map can be verified by
observing the 2D and 3D lidar scans matching the walls on the PGM map.

5.3.4. Autonomous Navigation

Figure 5.22.: Autonomous navigation

The costmaps and planers developed for simulation were reused for real world naviga-
tion. The Global planner was set up using Dijkstra’s algorithm, and the local planner was
set up using the DWA planner. It was expected that the robot would be able to move to
target goals autonomously for both long-distance and short-distance targets. The entire
navigation stack was visualized on Rviz after running the prerequisite launch files for the
Go1 robot and perception sensors. The costmaps were built as expected, and the AMCL
was able to localize the robot based on the initial pose. It was observed that the robot could
autonomously navigate to short goals in straight lines, but it struggled to navigate to long-
distance goals. As soon as the robot rotates following the planner’s turn command, the
AMCL pose array produces junk data, and the laser scans mismatch with the real world.
Figure  5.22 shows an example of such an event.

As seen in Figure  5.22 , the Go1 robot is given a target goal at a corner in the corridor
using the 2D Nav Goal option in Rviz. Though the planners produce accurate global and
local paths, the Go1 robot’s turning maneuver causes the input sensor scans to mismatch
and produce incorrect local costmaps. This leads to incorrect recognition of the real world
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environment; thus, the robot starts performing random incorrect maneuvers. To fix the
issue, the depth cloud from the camera was used to produce 2D scans, but it did not im-
prove the autonomous navigation performance. One of the causes for this error can be
incorrect odometry generation leading to erroneous transform of odom to base frame. This
issue can be resolved using the raw IMU data from the Go1 robot to produce odometry or
adding a high-quality IMU sensor to the payload system mounted on the Go1 robot. This
will be further discussed in the upcoming Chapter  6 .

5.3.5. 3D Localization

Figure 5.23.: HDL Graph SLAM based localization

Since 2D localization with AMCL had poor results, multiple 3D localization algorithms
were explored. Most algorithms struggled to produce good results at startup without ac-
curate input IMU data. However, the hdl localization algorithm from hdl graph slam works
well even in the absence of IMU data. It requires an input 3D map as a .pcd format file,
which represents the environment as a point cloud. As discussed in Section  4.2.3 , the
point cloud map was extracted from the input BIM model and used as an input to the
hdl localization node. This node also requires the initial pose of the Go1 robot in the 3D
environment. It can be set in the input 3D map by using the Rviz tool. Initially, the
hdl localization node will take a few seconds to match the point cloud but once the match
is established it provides good tracking of the robot in the 3D environment.

Figure  5.23 displays the BIM based 3D pointcloud map in white color and the gener-
ated aligned points from hdl localization node in color. It is observed that the pointcloud
matching has high accuracy.
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The core aim of this research work was to set up a basic framework for the autonomous
navigation of a quadruped robot in simulation environments and real world environments
while utilizing the information about these environments from their corresponding BIM
models. This chapter discussed the findings and future scope of extending this work.

6.1. Conclusions

In this section, the objectives set in Section  1.2 will be addressed to draw conclusions.

1. Create the basic setup to integrate a quadruped robot in ROS

This research work used the Go1 quadruped robot from Unitree and the requisite
xacro and URDF configuration files imported from Unitree’s open source project. In
addition to the quadruped robot, an Ouster lidar, and a Realsense camera were used
for autonomous navigation. Thus, their information was defined in ROS compliant
configuration files and added to Unitree’s configuration files. 3D meshes were cre-
ated for the payload mounting system on the Go1 robot, and transforms were set up
to provide accurate real world data.

2. Setup a basic simulation framework in ROS

A basic simulation framework was created for simulating the Unitree Go1 robot in
the Gazebo simulator. A process was defined to create a 3D gazebo worlds from
3D BIM models of a facility. The 3D models were first converted into a wavefront
(.obj) 3D mesh format file using the open source tool IfcConvert. These meshes were
then added to SDF files required to create a world file in Gazebo. An open source
ROS control-based project was used to simulate the movement of the quadruped
Go1 robot in the virtual gazebo environment. Further, all the nodes necessary for
the ROS navigation stack were created and configured to provide accurate results.
The simulation framework was majorly tested in one custom-made 3D environment
but can be easily extended to other 3D environment models. Multiple ROS based
SLAM packages were explored to verify if the simulation framework can simulate
autonomous navigation properly in Gazebo simulator.

3. Extract a map from BIM

A Python based algorithm was developed to generate a 2D occupancy grid map from
a 3D BIM model of a facility. The map was constructed from three distinct layers,

59



6. Conclusion and Future scope

each containing vital information about the environment, i.e., information about the
outdoor environment, indoor environment, and collision objects. The focus was on
processing one BIM model at a time. The algorithm can be automated for processing
multiple models in a batch but needs user input for specifying the ”z-coordinate” to
slice the three layers from each model. In terms of computational time, the whole
map generation process is quite fast, thus enabling a quick trial-and-error method to
check the quality of the output visually. Multiple ROS based map creation methods
were also explored to compare the performance of this algorithm [ 75 ]. The BIM
model was also utilized to create 3D maps based on point clouds or other efficient
voxel-based approaches. This 3D map was used to explore 3D localization methods
in ROS.

4. Simulation to real world transition

The simulation framework was used to understand the capabilities of the quadruped
robot and to set up the prerequisite packages required for the ROS navigation stack in
the real world. A basic autonomous navigation framework was created and tested in
the real world. Before operating the Go1 robot in the real world, the environment was
simulated in Gazebo, and comparisons were made on how accurately the simulation
and real world match. It was observed that the robot could not navigate with full
autonomy in the real world due to localization issues on the 2D map. Some potential
solutions to resolve this were explored, but it was concluded that this would not be
possible in a short time frame. Another conclusion was that the full capabilities of the
3D Ouster lidar should be utilized for localization as the 3D point cloud to 2D laser
scan conversion operation artificially reduces the input sensor data. Multiple ROS
based 3D localization algorithms were also explored to understand the performance
of localization in an input 3D BIM-based point cloud map.

6.2. Limitations

In this section, the limitations of this research work are discussed.

• In the 3D BIM model to 2D map generation process, it is difficult to visually identify
the accuracy of the final map. In some testing scenarios, it was observed that the
final map might have a different resolution than the actual environment. During the
map generation process, the coordinates of the origin point of the 3D BIM model
are preserved in the generated SVG files. These coordinates were configured using
a YAML file for the generated occupancy grid map. But it was found that these
coordinates were not correct, and the resolution issue persists. A potential solution
is to use different tools for generating the SVG files and then converting them to PNG
files because there might be a loss of information in this process.
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• Another limitation of the map generation process is that a batch job of multiple input
BIM files is not possible. To utilize the Python script for multiple BIM models, it is
recommended to extract the 2D layer height from user input through the command
line interface.

• The AMCL node for localization provides poor performance in certain areas that do
not contain unique features like long corridors. Even if walls have unique features
like windows, the performance is still dependent on the height at which the 2D laser
scan is extracted from the 3D point cloud. The AMCL node is generally designed
for differential drive-based robots and should be tuned for better performance in
quadruped robots.

• Certain 3D localization algorithms that were explored during this research work
failed to provide good performance at startup due to a lack of accurate odometry
information. Further investigation is required to answer if the performance of these
algorithms can be improved. And the more important question would be: Are these
algorithms required to achieve the end goal of autonomous navigation because other
options exist such as HDL Localization that does not depend on accurate odometry
information.

• During the development of the ROS navigation stack for real world autonomous
navigation, it was observed that the Go1 hardware did not respond to velocity com-
mands from the ROS framework. An outdated firmware version was identified as
the root cause, so a new firmware was installed on the Go1 robot; however, that made
the Go1 robot totally unresponsive, even to the remote controller’s commands. This
issue was later fixed by replacing the main board of the Go1 robot, and it began re-
sponding to ROS velocity commands. In the future, if more control is required on
the individual hardware joints and internal camera sensors of the Go1 robot, then it
is recommended that custom nodes should be designed to extract the raw data from
these sensors using the onboard Raspberry Pis.

• The mobile-device based hotspot network connection has limitations of range and is
prone to poor connectivity in indoor areas. Another wireless network connection
method should be explored.

6.3. Discussion

The primary contribution of this work is the quadruped robot based framework for au-
tonomously operating the Go1 robot in various indoor environments based on a 2D map
generated from a 3D BIM model. The map creation method results in a good initial map
that can be used for localization at startup. If needed, the map can be redrawn and updated
over time based on the difference between the real world and its BIM model representa-
tion. It is difficult to visually estimate the accuracy of the generated map, especially for
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multi-story BIM models. The obtained map might be prone to resolution or projection er-
rors. During the simulation experiment, two methods were used to verify the quality of
the map. The first method was to visually check the alignment of detected edge features
like walls, corners, or windows in the gazebo lidar scan with edge features in the 2D map
from the BIM model. The second method focused on generating a 2D sliced map from a
gazebo model by using the gazebo collision detection plugins.

The entire framework was designed in ROS Noetic but can be adapted to the latest re-
leases of ROS2 as well. The custom gazebo world creation process is rather straightforward
and requires only a 3D mesh file. The xacro configuration files for the Go1 robot are cus-
tomizable, and additional sensors or payload systems can be easily added. In this research
work, an Ouster lidar and a Realsense camera sensor were simulated through their gazebo
plugins. While exploring the potential computational resources that would be required
for a multi-camera sensor system, it was observed that simulating four Realsense cameras
together with an Ouster lidar slowed down the entire simulation significantly. To work
with the 2D navigation stack, a 2D laser scan was extracted from a 3D point cloud using
pointcloud-to-laserscan node in ROS.

The simulation framework was then used to create the ROS navigation stack for real
world autonomous navigation. Though both frameworks used a similar implementation,
autonomous navigation did not work as expected, and the robot faced issues in navigating
to target goals. This project can be used as a starting point to tune the navigation stack for
real world development. The simulation framework is customizable and allows to perform
diverse experiments in a shorter time compared to direct real world development. The
simulation framework also supports multiple gaits for Unitree robots, allowing them to
climb stairs. The ROS navigation tuning guide [ 77 ] can be used as an initial verification
method to identify the root causes of the failure and to fix them. One of the options to
solve the localization issue is by using 3D maps to localize the robot and provide the pose
to the 2D map. However, this requires a static transform should be established from the
the 3D map to the corresponding 2D map of the floor on which the robot moves. This can
be an area of further research.

6.4. Future scope

This section describes some of the future research topics based on this thesis.

• The SVG file creation process from the BIM model can be tried with other SVG file
processing tools. The origin coordinates information from the BIM model should be
utilized in the final 2D map to avoid the manual setting of resolution and coordinates.

• The simulation framework designed in this work can be extended to work in dif-
ferent kinds of environments by adding static and dynamic objects to the Gazebo
environment. It can also be extended to work in large-scale environments. The sim-
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ulation framework can be customized to work for ROS2[ 34 ] and Nav2[ 40 ], which is
the successor of the ROS navigation stack.

• Instead of using odometry messages from the Go1 robot, raw IMU sensor data can
be extracted from the Go1 robot[ 19 ]. If the quality of the IMU sensor data is not
satisfactory, then a high-quality IMU sensor should be added to the payload system
mounted on the Go1 robot to generate high-quality odometry.

• Additional camera sensors can be added to visualize a 360-degree view around the
Go1 robot. This will lead to an increase in computational resource requirements. In
that case, a GPU should also be added.

• It was observed that the Ouster sensor heats up quickly in the existing mounting
frame. For long-term usage, heat sinks should be provided for the Ouster lidar. Ad-
ditionally, it should be mounted parallel to the ground if 2D navigation is the main
goal. For 3D navigation, this setup might work with an inclined lidar; however, it is
recommended to place it parallelly.

• The ouster lidar continuously provides high-quality point cloud data of the environ-
ment. This data can be captured through another node and saved to compare with
the input BIM model.
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A. Hardware And Technical Setup

A.1. Tools

The hardware setup used in this research work consists of the following:

• Unitree Go1: A quadruped robot from Unitree robotics

• OS1-32: A 3D lidar sensor from Ouster Inc.

• RealSense D435i: A depth camera from Intel Realsense

• Mini PC: A portable size computer running Ubuntu 20.04 and ROS Noetic

• Payload: A 3D printed lightweight mounting system on Go1 robot for perception
sensors and the computer

• Power supply: 2 rechargeable batteries to run mini pc and Ouster lidar

The computer is connected to the Go1 robot and Ouster lidar using ethernet cables, while
the Realsense camera sensor can be connected using a USB Type-C to Type-C cable. A pack
of rechargeable batteries is used to supply power to the Ouster lidar and the computer. The
camera sensor is powered by the mini computer through the cable connection itself and
does not need any other power souce. The Unitree Go1 sensor also utilizes a rechargeable
battery system for power supply.
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A.2. ROS launch files

A.2.1. Launch Custom World

1 <launch>
2 <arg name="robot_type" default="$(env ROBOT_TYPE)" doc="Robot type: [a1,

aliengo, go1, laikago]"/>↪→

3 <arg name="rviz" default="true"/>
4

5 <rosparam file="$(find legged_gazebo)/config/default.yaml"
command="load"/>↪→

6

7 <param name="legged_robot_description" command="$(find xacro)/xacro
$(find legged_unitree_description)/urdf/robot.xacro↪→

8 robot_type:=$(arg robot_type)
9 "/>

10

11 <!-- We resume the logic in empty_world.launch, changing only the name
of the world to be launched -->↪→

12 <include file="$(find gazebo_ros)/launch/empty_world.launch">
13 <arg name="world_name" value="$(find

legged_gazebo)/worlds/hall.world"/>↪→

14 </include>
15

16 <!-- push robot_description to factory and spawn robot in gazebo -->
17 <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model"

clear_params="true"↪→

18 args="-z 1.5 -param legged_robot_description -urdf -model $(arg
robot_type)" output="screen"/>↪→

19

20 <!-- Launch rviz -->
21 <node if="$(arg rviz)" name="rviz" pkg="rviz" type="rviz"
22 args="-d $(find legged_unitree_description)/rviz/go1_view.rviz"
23 output="screen"/>
24 </launch>
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A.2.2. Launch Pointcloud to Laserscan Node

1 <launch>
2 <node pkg="pointcloud_to_laserscan" type="pointcloud_to_laserscan_node"

name="pointcloud_to_laserscan">↪→

3

4 <remap from="cloud_in" to="/ouster/points"/>
5 <remap from="scan" to="/scan" />
6 <rosparam>
7 target_frame: os_sensor
8 transform_tolerance: 0.01
9

10 angle_min: -3.14 <!-- -PI, minimum scan angle in radians -->
11 angle_max: 3.14 <!-- +PI, maximum scan angle in radians -->
12

13 range_min: 0.3
14 range_max: 70.0
15 </rosparam>
16 </node>
17 </launch>
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A.2.3. Launch AMCL node

1 <launch>
2 <arg name="frame_prefix" default=""/>
3 <arg name="scan_topic" default="/scan" />
4

5 <node pkg="amcl" type="amcl" name="amcl" output="screen">
6 <remap from="scan" to="$(arg scan_topic)"/>
7

8 <param name="use_map_topic" value="false"/>
9 <param name="base_frame_id" value="$(arg frame_prefix)base"/>

10 <param name="odom_frame_id" value="$(arg frame_prefix)odom"/>
11 <param name="global_frame_id" value="$(arg frame_prefix)map"/>
12

13 <param name="odom_model_type" value="omni"/>
14 <param name="odom_alpha5" value="0.1"/>
15 <param name="gui_publish_rate" value="100.0"/>
16 <param name="laser_max_beams" value="1000"/>
17 <param name="laser_max_range" value="70.0"/>
18 <param name="min_particles" value="500"/>
19 <param name="max_particles" value="20000"/>
20 <param name="kld_err" value="0.05"/>
21 <param name="kld_z" value="0.99"/>
22 <param name="odom_alpha1" value="0.2"/>
23 <param name="odom_alpha2" value="0.2"/>
24

25 <param name="odom_alpha3" value="0.2"/>
26 <param name="odom_alpha4" value="0.2"/>
27 <param name="laser_z_hit" value="0.5"/>
28 <param name="laser_z_short" value="0.05"/>
29 <param name="laser_z_max" value="0.05"/>
30 <param name="laser_z_rand" value="0.5"/>
31 <param name="laser_sigma_hit" value="0.2"/>
32 <param name="laser_lambda_short" value="0.1"/>
33 <param name="laser_model_type" value="likelihood_field"/>
34 <param name="laser_likelihood_max_dist" value="2.0"/>
35 <param name="update_min_d" value="0.25"/>
36 <param name="update_min_a" value="0.2"/>
37 <param name="resample_interval" value="1"/>
38

39 <param name="transform_tolerance" value="1.0"/>
40 <param name="recovery_alpha_slow" value="0.0"/>
41 <param name="recovery_alpha_fast" value="0.0"/>
42

43 <!-- <param name="initial_pose_a" value="0.0"/> -->
44 </node>
45 </launch>
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A.2.4. Launch Autonomous Navigation

1 <launch>
2 <arg name="rviz" default="true"/>
3

4 <!-- Map server -->
5 <arg name="map_file"
6 default="$(find legged_unitree_description)/maps/map.yaml"/>
7 <node pkg="map_server" name="map_server" type="map_server"
8 args="$(arg map_file)">
9 <param name="frame_id" value="/map" />

10 </node>
11

12 <!-- Convert 3D point cloud to 2D laser -->
13 <include file="$(find legged_unitree_description)
14 /launch/include/pointcloud_to_laserscan.launch"/>
15

16 <!-- AMCL used for localization -->
17 <include
18 file="$(find legged_unitree_description)/launch/include/amcl.launch"/>
19

20 <!-- Calls navigation stack -->
21 <include
22 file="$(find

legged_unitree_description)/launch/include/move_base.launch"/>↪→

23

24 <node if="$(arg rviz)" name="rviz" pkg="rviz" type="rviz"
25 args="-d $(find legged_unitree_description)/rviz/go1_navigate.rviz -f

/map"↪→

26 output="screen"/>
27 </launch>
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