
Analysing Neuro-Dynamic
Programming Through

Non-Convex Optimisation
Martin Gottwald

Technische Universität München
TUM School of Computation, Information and Technology

Analysing Neuro-Dynamic Programming Through
Non-Convex Optimisation

Martin Gottwald

Vollständiger Abdruck der von der TUM School of Computation, Information and Tech-
nology der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Sebastian Steinhorst

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Klaus Diepold

2. Priv.-Doz. Dr. Hao Shen

Die Dissertation wurde am 25. September 2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
9. Februar 2024 angenommen.

Martin Gottwald. Analysing Neuro-Dynamic Programming Through Non-Convex Optimi-
sation. v5. Technische Universität München, Munich, Germany, 2024.

Keywords: Actor-Critic, Critical Point Analysis, Gauss Newton Residual Gradient, Local
Quadratic Convergence, Mean Squared Bellman Error, Neuro-Dynamic Programming.

© 2024 Martin Gottwald

Lehrstuhl für Datenverarbeitung, Technische Universität München, Arcisstraße 21, 80333
München, Germany, https://www.ce.cit.tum.de/ldv/.

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Com-
mons, PO Box 1866, Mountain View, CA 94042, USA.

Supported by Deutsche Forschungsgemeinschaft (DFG) through TUM International Grad-
uate School of Science and Engineering (IGSSE), GSC 81.

https://www.ce.cit.tum.de/ldv/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die diese Arbeit ermöglicht haben.
Ohne die stetige Ermutigung und Unterstützung, die ich in den letzten Jahren von vielen
Seiten erfahren habe, wäre dieses Dokument nicht entstanden.

An erster Stelle danke ich meinem Doktorvater, Prof. Klaus Diepold, für die Möglichkeit
und den Freiraum am Lehrstuhl für Datenverarbeitung an selbst gewählten Themen zu
forschen, und für die wertvollen Ratschläge, die er mir in dieser Zeit gegeben hat. Von
besonderer Bedeutung war für mich auch, dass ich die verschiedenen Lehrveranstaltungen
nach eigenem Ermessen gestalten und mit Inhalten füllen durfte.

Darüber hinaus möchte ich mich bei Dr. Hao Shen als meinem Mentor bedanken. Er
gab mir immer wieder neue Impulse für Forschungsrichtungen und stand jederzeit für
Diskussionen zur Verfügung. Zudem gab er mir die Möglichkeit, meine Promotion nahtlos
in seiner Forschungsgruppe bei fortiss fortzusetzen.

Ein weiterer Dank gilt all meinen Kolleginnen und Kollegen am Lehrstuhl für die
gemeinsame Zeit, sei es bei einem gemeinsamen Kaffee oder bei einer Runde Tischfußball.
Zudem wäre ohne deren Einsatz für den Erhalt der Recheninfrastruktur am Lehrstuhl
die Promotion deutlich schwieriger ausgefallen. Außerdem danke ich meinen Kollegen bei
fortiss für ihre hilfreichen Kommentare in der Endphase dieser Arbeit.

Ein großer Dank geht an meine Familie. Ohne die von ihnen geschaffene Grundlage und
ihre jahrelange Unterstützung wäre mein Studium und auch meine Promotion nicht zu
schaffen gewesen.

Mein besonderer Dank gilt Susanne. Ohne ihre bedingungslose Unterstützung in allen
Höhen und Tiefen der Dissertation wäre diese nicht möglich gewesen.

Abstract

Recent development of Dynamic Programming with Value Function Approximation has
demonstrated superior performance of Neural Networks in solving challenging problems
with large or even continuous state spaces. One specific approach is to deploy Neural
Networks to approximate value functions by minimising the Mean Squared Bellman Error
function. Despite great successes of Deep Reinforcement Learning as a subfield of Dynamic
Programming, development of reliable and efficient numerical algorithms to minimise the
Bellman Error is still of great scientific interest and practical demand for applications in
sequential decision making. Challenges arise due to the underlying optimisation problem
being highly non-convex and not fully understood.

The first group of major contributions in this work resides in Policy Evaluation or the
training of a Critic. Namely, I analyse the Mean Squared Bellman Error from a smooth
optimisation perspective and develop an efficient Gauss Newton algorithm. First, I conduct
a critical point analysis of the error function and provide technical insights on optimisation
and design choices for Neural Networks. When the existence of global minima is assumed
and the objective fulfils certain conditions, suboptimal local minima can be avoided when
using over-parametrised Neural Networks. Second, I construct a Gauss Newton Residual
Gradient algorithm based on the analysis in two variations. The first variation applies to
discrete state spaces and exact learning. I numerically confirm theoretical properties of this
algorithm such as local quadratic convergence to a global minimum. The second variation
employs a sampling based approximation of integrals in the Mean Squared Bellman Error
and can be used in the continuous setting. New issues for the objective arise from the
required sampling step and I adapt the critical point analysis accordingly. I demonstrate
feasibility and generalisation capabilities of the proposed algorithm empirically using
continuous control problems and provide a numerical verification of my analysis. I outline
the difficulties of Semi-Gradient approaches and how a Residual Gradient formulation can
help. As part of the experiments, I find that multistep Bellman Operators cannot improve
the training once second-order optimisation is employed. Lastly, with a Policy Iteration
experiment, I test the general applicability of the algorithm and describe a conflict between
the desired over-parametrisation setting and a necessary under-parametrisation.

The second group of main contributions in my work addresses the Actor-Critic algorithm
class. I extend my critical point analysis from the Critic towards the objective used to
train an Actor. As the first result, I require reward signals to avoid constant regions to
prevent a frequent loss of information during Actor training. Second, by relying as before
on over-parametrised networks and several design choices during the training of an Actor, I
can establish pleasing properties for the optimisation problem. Yet, due to the non-convex
nature of the Critic, it is no longer possible to realise a Gauss Newton algorithm. A third
contribution addresses an open issue in the expected input domain of the Critic and the
employed image space for the Actor. Since they do not coincide, it is possible that the
Actor cannot maximise the Critic and undefined behaviour is possible. I propose a solution,
which is based on formulating the Actor as Supervised Regression task and restricting its
image set to the unit ball. As part of the experiments with Actor-Critic algorithms, I find
both positive and negative results regarding their performance.

Keywords: Actor-Critic · Critical Point Analysis · Gauss Newton Residual Gradient · Local
Quadratic Convergence · Mean Squared Bellman Error · Neuro-Dynamic Programming

The machine is only a tool after all, which can
help humanity progress faster by taking some
of the burdens of calculations and interpreta-
tions off its back. The task of the human brain
remains what it has always been; that of discov-
ering new data to be analyzed, and of devising
new concepts to be tested.

– Isaac Asimov, I, Robot (1950)

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Contents

1 Introduction 1
1.1 Status Quo in Deep Reinforcement Learning 1
1.2 The Demand for Realising Dynamic Programming with Function Approxi-

mation through Non-Convex Optimisation 5
1.3 Contribution . 9

2 Neuro-Dynamic Programming in a Nutshell 11
2.1 Introduction . 11
2.2 Dynamic Programming . 11
2.3 Multi-Layer Perceptrons . 15
2.4 Non-Convex Optimisation in the Context of Dynamic Programming 17
2.5 Approximate Dynamic Programming with Function Approximation 19

2.5.1 The Mean Squared Bellman Error as Objective for Optimisation . . 19
2.5.2 Model-Based vs. Model-Free . 21

2.6 Benchmarks . 23
2.6.1 Adapted Seven State Star Problem 23
2.6.2 Simple Linear Dynamics . 24
2.6.3 Mountain Car . 26
2.6.4 Cart Pole . 28

3 Analysing the Critic: Characterising Critical Points of the Mean Squared
Bellman Error 31
3.1 Introduction . 31
3.2 Related Work . 32
3.3 A Critical Point Analysis of the Mean Squared Bellman Error 33

3.3.1 Exact Formulation with Discrete State Spaces 34
3.3.2 Sampling Based Approaches For Continuous State Spaces 38
3.3.3 Multistep Methods For Continuous State Spaces 45

3.4 A Gauss Newton Residual Gradient Algorithm 51
3.4.1 Convergence of the Proposed Algorithm 51
3.4.2 The Algorithm . 52
3.4.3 Demonstration of Local Quadratic Convergence 56
3.4.4 Tracking the Rank of the Jacobian During Optimisation 57

3.5 Experiments in Continuous State Spaces . 63
3.5.1 Experimental Setup . 63
3.5.2 Empirical Convergence Analysis . 65
3.5.3 Generalisation Capabilities of MLPs 68
3.5.4 Multistep Impact . 72
3.5.5 Policy Iteration . 79

3.6 Remark: Over- vs. Under-parametrisation 87

ix

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

4 Analysing the Actor: Extending the Investigation to Parametrised Policies 91
4.1 Introduction . 91
4.2 Existing Methods & Related Work . 92

4.2.1 Existing Methods . 92
4.2.2 Related Work . 94

4.3 Critical Points of the Approximated Q-Function with Respect to Actions . 97
4.3.1 Notation . 97
4.3.2 Requirements for the Reward Function 98
4.3.3 Investigation of the Differential Map 100
4.3.4 Interpretation and Implications . 105

4.4 Combining the Q-function with Parametrised Policies 106
4.4.1 Critical Points for an Actor . 106
4.4.2 Impact of Advantage Functions . 110
4.4.3 An Actor-Critic Algorithm with a Gauss Newton Residual Gradient

Critic . 111
4.5 Experiments Regarding Actor-Critic Algorithms 113

4.5.1 Experimental Setup . 113
4.5.2 Reward Issues . 114
4.5.3 Over-parametrised Actor . 115
4.5.4 Limitations of the Actor-Critic Approach 116

4.6 Fitted-Actors to Handle Spurious Critical Points 119
4.6.1 Critic’s Expected Action Input vs. the Actual Action Space 119
4.6.2 Actor Training as Supervised Regression Task 121
4.6.3 Fitted-Actors that Live in the Unit Ball 126
4.6.4 A Fitted-Actor Algorithm with Gauss Newton Optimisation 130
4.6.5 Behaviour of a Fitted-Actor Policy Iteration Algorithm 133
4.6.6 Remark . 136

5 Conclusion 137

A Step by Step Calculations 139

B Skipped Figures and Results 143

Bibliography 147

x

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Chapter 1

Introduction

1.1 Status Quo in Deep Reinforcement Learning
Dynamic Programming (DP) is a general purpose framework for solving discrete sequential
decision making tasks and infinite horizon continuous optimal control problems [Bellman,
1957]. It contains as a subfield Reinforcement Learning (RL), which has gained large
popularity over the last decades. Furthermore, Dynamic Programming may even serve as
an alternative approach to automatic control. Exemplary applications include the control
of magnetic confinements for fusion reactors [Degrave et al., 2022], microgrids [Adibi and
Van der Woude, 2022], quadrotors [Gronauer et al., 2022] or robots in general, e.g., the
work in [Levine et al., 2016]. The control of multi-agent systems through DP is explored in
[Ramaswamy et al., 2021].

To handle systems with large or even continuous state spaces, DP methods cannot be
applied directly and approximations become necessary [Granzotto et al., 2021, Li et al.,
2021, Rawlik et al., 2012]. The related field is called Approximate Dynamic Programming
(ADP) and studies Value Function Approximation (VFA) as an important and effective
approximation instrument [Bertsekas, 2012, Sutton and Barto, 2020].

These VFA methods come in two groups, namely linear and non-linear. Various efficient
Linear Value Function Approximation (LVFA) algorithms have been developed and analysed
in the field, e.g., [Nedić and Bertsekas, 2003, Bertsekas et al., 2004, Parr et al., 2008, Geist
and Pietquin, 2013, Tsitsiklis and van Roy, 1997]. Despite their significant simplicity and
convergence stability, the performance of LVFA methods depends heavily on construction
of features and their linear combination, which is a time consuming and hardly scalable
process in general [Parr et al., 2007, Böhmer et al., 2013]. Therefore, recent research efforts
have focused more on Non-Linear Value Function Approximation (NL-VFA) methods.

As a popular non-linear mechanism, kernel tricks have been successfully adopted to
VFA. They have demonstrated their convincing performance in various applications [Xu
et al., 2007, Taylor and Parr, 2009, Bhat et al., 2012]. Unfortunately, due to the nature of
kernel learning, these algorithms can easily suffer from a high computational burden due
to the required number of samples. Furthermore, kernel-based VFA algorithms can also
have serious problems with over-fitting. As an alternative, Neural Networks (NN) have
been another common and powerful approach to approximate value functions [Lin, 1993,
Bertsekas and Tsitsiklis, 1996]. The subfield of DP dealing with NN as approximation
architectures is called Neuro-Dynamic Programming (NDP) and is also known as Deep
Reinforcement Learning (DRL). Impressive successes of NNs in solving challenging problems
in pattern recognition, computer vision, speech recognition and game playing [LeCun et al.,
2015, Yu and Deng, 2015, Mnih et al., 2015, Silver et al., 2017] have further triggered
increasing efforts in applying NNs to VFA [van Hasselt et al., 2016]. More specifically,

1

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

NN-based Value Function Approximation (NN-VFA) approaches have demonstrated their
superior performance in many challenging domains. For example, Deep Q-Networks (DQN)
allow for successful playing of Atari games [Mnih et al., 2015] or the game Go [Silver
et al., 2016, 2017]. Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2015]
extends these capabilities towards the continuous control regime. Despite these advances,
development of more efficient NN-VFA based algorithms is still of great demand for tackling
even more challenging applications. So far, these impressive successes are generally only
possible, if a plethora of training samples and computational resources are available.

Next to estimating or approximating the value function, the representation and training
of policies is also of great interest. A common approach is the family of Actor-Critic
algorithms [Barto et al., 1983], because they realise a procedure similar to Policy Iteration
and allow for continuous state and action space problems. A Critic, which is constructed
around obtaining a NN-VFA, is responsible for evaluating a current behaviour or policy
and, thus, corresponds to Policy Evaluation. An Actor executes actions and improves
its performance by querying the Critic for the quality of its output. It resembles Policy
Improvement. In the remaining document, the terms Critic and Policy Evaluation are used
interchangeably. Similarly, an Actor and Policy Improvement can be exchanged.

Aside from some early work in [Baird III, 1995], called Residual Gradient (RG) algo-
rithms, omitting gradients of the TD-target has been a common practice, see, for example,
the work in [Riedmiller, 2005], and is more recently referred to as Semi-Gradient (SG)
algorithms [Sutton and Barto, 2020]. This means, one tries to reduce the Mean Squared
Bellman Error (MSBE) by using gradient information, but the gradient of the function
approximation architecture at successor states is ignored. Semi-Gradient algorithms posses
a high convergence speed in contrast to their Residual Gradient counterparts, but unfor-
tunately they may exhibit undefined behaviour and their divergence is well-known. For
example, Henderson et al. [2018] or Islam et al. [2017] have outlined strong changes in the
outcome of an algorithm with seemingly identical implementations or a severe sensitivity
on hyper parameters. Reasons for choosing Semi-Gradients over Residual Gradients include
inferior learning speed of RG methods [Baird III, 1995], limitation with non-Markovian
feature space [Sutton et al., 2008] and non-differentiable operators such as the max-operator
involved in Q-learning. Residual Gradients are favoured for their convergence guarantees
and applicability of “classic” gradient based optimisation techniques.

Existing realisations of Actor-Critic algorithms mostly rely on a Semi-Gradient formu-
lation to minimise the loss in the Critic part. To circumvent the aforementioned issues,
different heuristics and stabilisations have been proposed. Target Networks [Mnih et al.,
2013] decouple the evaluation of a network at current and successor states. This helps
with preventing divergence by providing more stable target values for training NNs. Dou-
ble Q-Learning [van Hasselt et al., 2016] further improves training by removing harmful
overestimations of Q-values.

Also for the Actor part, many stabilising techniques have been introduced. Among the
most effective ones are Proximal Policy Optimisation (PPO) [Schulman et al., 2017] or
Trust Region Policy Optimisation (TRPO) methods [Schulman et al., 2015]. Restrictions
on the update distance for policies are employed in various forms with the goal to keep
policies on track. After improving or updating, the Actor performance is still ensured by
preventing drastic changes. Also, approaches like Knowledge Regularisation [Gottwald
et al., 2017] fall in this category. To remove challenges in Actor training altogether, authors
also omit training of an explicit Actor and recover optimal actions for all states directly

2

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Actor-Only Critic-Only

Actor-Critic:
• Better training than Actor-Only
• Benefits of Policy Gradient opposed to Critic-Only

•Q-Learning

•DQN

•Qt-Opt

•TRPO

•DDPG

•PPO

•Random Search

•Policy Gradient

•MC-Rollout

Figure 1.1: The intersection of Critic-Only and Actor-Only methods forms the class of
Actor-Critic algorithms. For all three areas, a selection of representative
algorithms is mentioned.

from a Q-function. They work with Critic-Only algorithms. For example, Kalashnikov
et al. [2018] introduces QT-Opt, where the Cross Entropy Method searches in the input of
a Q-function for optimal actions. The opposite approach to Critic-Only approaches is the
set of Actor-Only methods. By employing Actor-Only algorithms, one works directly in
policy space and tries to discover a well performing function without relying on a Critic.
Figure 1.1 provides an overview over the full Actor-Critic landscape.

A point is reached, where one should question, why classic optimisation is not used as
the common approach to Deep Reinforcement Learning. A most prominent example is
the existence of the Deadly Triad [Sutton and Barto, 2020], which denotes divergence
and stability issues for Semi-Gradient algorithms. At the same time, this triad seems
to affect only Semi-Gradient algorithms but not Residual Gradient approaches, which
would suggest to use that formulation instead. However, despite the historical reasons
for preferring Semi-Gradient algorithms, there are also reported cases, where a Residual
Gradient method reliably converges to a poor solution, thus discouraging its use. Therefore,
a natural hypothesis is whether or not this behaviour of Residual Gradient algorithms
only arises, because required assumptions for guarantees from the Dynamic Programming
methodology are no longer satisfied and, as a result, whether Residual Gradient algorithms
are merely not applied correctly any more.

A directly related challenge is the selection of a proper reward signal, which allows
for actual progress during the training phase. This is still an art on its own, where
various authors have investigated different strategies. For example, in [Schaul et al., 2016],
Prioritized Experience Replay (PER) is designed to improve training by including transition
data with different importance values into the objective. Events, which would have naturally
a low chance for occurring, appear more often and boost the learning progress. Hindsight
Experience Replay (HER) [Andrychowicz et al., 2017] takes this approach even further.
State space transitions, which would be considered as a failure for not achieving the correct

3

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Semi-GradientResidual Gradient

Enhancement for training:
• HER
• PER
• SORB
• · · ·

not
needed enhancement

•Double Q-Learning

•Target Networks

•TRPO / PPO

•DDPG

•Non-convex optimisation

•2nd order methods

Figure 1.2: The influence of methods for improved training on Residual Gradient and Semi-
Gradient formulations as algorithm classes. For both, a selection of affected
algorithms and methods are mentioned. From the Dynamic Programming
perspective, proposed enhancements for training should not provide a benefit
for RG algorithms due to theoretical guarantees for convergence.

task, are reinterpreted to serve as a successful realisation of an alternative task. Thereby,
a proper improvement of some policy is maintained. In [Eysenbach et al., 2019], the
combination of conventional graph search and planning with RL methods is proposed
and called Search on the Replay Buffer (SORB). The aim is to overcome problems for
RL methods when information from sparse reward signals does not propagate sufficiently
well over long horizons. Alternatively, employing massively parallel data collection and
parameter updates as explored in [Mnih et al., 2016] can overcome challenges with the
reward signal. Figure 1.2 provides a visual summary of the relations between enhancements
for training, when Residual Gradient or Semi-Gradient formulations are employed as the
main algorithmic classes for a Critic.

Opposed to these methods when employed together with Semi-Gradient formulations,
one typically does not face challenges for training, which arise due to a particular choice of
reward signal, if one is working with Dynamic Programming methods. The corresponding
algorithms achieve their task and improve iteratively a given policy. The only uncertainty in
choosing a reward signal is whether the chosen function will lead to the desired policy. But
learning itself is working, which indicates again that one should ground Deep Reinforcement
Learning algorithms in the foundation of Dynamic Programming. Hence, when assuming
that a Residual Gradient formulation and its combination with non-convex optimisation
results in a proper realisation of Dynamic Programming, then these enhancements should
not provide any beneficial effect.

Instead of proposing various techniques for repairing Semi-Gradient algorithms, which
actually only shift the underlying problem, it is necessary to tackle the actual design issue in
Deep Reinforcement Learning algorithms. Consequently, to construct working algorithms,
one should go back to the mathematical foundation of Reinforcement Learning, namely
the (Approximate) Dynamic Programming theory, and rely on non-convex optimisation
as framework for training. This is the goal for my thesis, which involves on the one hand

4

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

setting up Bellman Operators correctly and seeking for their unique fixed point. On the
other hand, one has to formulate with the help of Residual Gradient algorithms a sound
objective, which can be used together with non-convex optimisation. This may even involve
relying on analytic models of the environment. Furthermore, the role of Non-Linear Value
Function Approximation in continuous state spaces should be made explicit.

Once the Dynamic Programming framework is working as it is known from the past,
one can use its theoretical results to make proper statements about Policy Improvement
and the convergence of algorithms, even if Non-Linear Value Function Approximation is
involved. Hence, a foundation based on non-convex optimisation will then be a starting
point for future engineering efforts, where its benefits become visible during the design of
algorithms. The construction of an algorithm will be easier, because the expected outcome
is known in advance such that one can tell whether a correct result is produced or not. Also,
their verification becomes more feasible because a training phase with reliable convergence
reduces the need for trial-and-error.

The rest of this chapter is built around two main topics, which cover the aforementioned
subjects in greater detail. First, I give in Section 1.2 a complete motivation for my work
and outline, why a sophisticated analysis of the Mean Squared Bellman Error with concepts
from non-convex optimisation is required once Non-Linear Value Function Approximation
is present in Dynamic Programming methods. Second, in Section 1.3, I summarise the
main contributions of my dissertation.

1.2 The Demand for Realising Dynamic Programming with
Function Approximation through Non-Convex Optimisation

It is natural to wonder why one should approach Dynamic Programming when using
Non-Linear Value Function Approximation via non-convex optimisation, despite working
DRL algorithms such as PPO being already available, and why an in-depth analysis is
even required. Due to a plethora of literature about Deep Reinforcement Learning and
sophisticated textbooks about Approximate Dynamic Programming, it is already known
that both DRL and ADP provide a well-performing methodology with impressive results.
However, over the last two decades, the struggling of Deep Reinforcement Learning methods
also has become well-known and the major effort in Approximate Dynamic Programming
regarding a theoretical understanding of algorithms has been spent in linear function
approximation architectures. But once non-linear architectures such as Neural Networks
are introduced, there exist an implicit complexity and subtle algorithmic design choices,
which are easy to overlook. In the following, I will address several existing issues, in
no particular order, and provide a justification why one should tackle these issues via
non-convex optimisation.

Reproducibility Many existing DRL algorithms have significant problems with their
reproducibility. There are even papers addressing this issue as their core contribution, for
example, the work in [Henderson et al., 2018, Islam et al., 2017, Gronauer and Gottwald,
2021]. There is a certain common agreement that algorithms such as Proximal Policy
Optimisation [Schulman et al., 2017] or Deep Deterministic Policy Gradients [Lillicrap
et al., 2015] are notoriously hard to reproduce. This may partially arise from an imprecise
or even incomplete description of methods in papers, which leads to unwanted degrees

5

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

of freedom in implementations. Also, vague formulations of tasks for agents allow for
misunderstanding. On top of that, most algorithms possess a severe dependency on hyper
parameters. Without concise descriptions of tuning efforts it is almost impossible to tell
whether a DRL algorithm shows its correct performance on a certain task, or whether
more training is required.

I propose to focus on Residual Gradient algorithms, which can benefit from a proper
analysis of critical points and non-convex optimisation in general. Semi-Gradient algorithms,
as they are described in [Sutton and Barto, 2020], omit parts of the gradient information
and would make a different analysis necessary. For RG approaches, it is possible to create
design principles for the function approximation architecture, which help with formulating
a sound algorithm without requiring additional tricks. Thereby, one avoids a hard to
describe search space for hyper parameters.

An analysis of Residual Gradient algorithms also allows to handle explicitly continuous
state space problems. Unfortunately, it happens that papers with a theoretical approach,
for example, the work in [Brandfonbrener and Bruna, 2020, Holzleitner et al., 2021, Bojun,
2020, Sutton et al., 1999], only employ the Bellman Equation in matrix form or with discrete
Markov Chains. Hence, one has to rely on some form of discretisation for continuous
spaces to arrive in the realm of those papers, but any regular grid of a space quickly
explodes in storage requirements once the dimensionality increases. Also, any irregular
subdivision produces for higher dimensions extremely large cell sizes in the representation,
which render the approach unusable in practice. Consequently, these theoretical results are
out of reach from the engineering perspective and, thus, prevent any verification within a
computer system and real world examples. Making use of the reverse direction of those
findings, namely transferring statements about a transition probability matrix to continuous
dynamical systems, is far from being trivial [Lind and Marcus, 1995]. From the algorithmic
side and from the implementation’s viewpoint, one has to provide an analysis, which takes
continuous spaces directly into account such that an efficient Deep Reinforcement Learning
system can be developed. In this work, I make the role of continuous spaces and the
required sampling explicit and provide a Residual Gradient approach and its analysis in
both continuous state and action space problems.

Strong Requirements Even if the underlying algorithm is not the source of problems,
because, for example, an implementation is publicly available, it happens that DRL
algorithms are used without ensuring the theoretical requirements. This may be due to the
fact that such requirements are either ignored or simply not reported in sufficient detail
and are therefore unknown in general. A well-suited example is the Deterministic Policy
Gradient algorithm [Silver et al., 2014], which provides the foundation for others when
using Neural Networks to approximate value functions. In particular, the reward function
is subject to regularity requirements, which sometimes are not present in applications, see,
for example, the work in [Matheron et al., 2020]. Furthermore, the reward signal must
provide proper gradient information to be used with Actor-Critic approaches.

To arrive at a concise formulation of an optimisation task, a complete investigation of
all moving components is mandatory and the goal of my thesis. Next to the question,
whether a sparse or dense reward is going to be used, one also has to incorporate the effect
of its derivatives. Beside the proper analysis of critical points and the construction of
design principles for the Critic and Actor, the reward signal and thus the entire objective,

6

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

which appears in non-convex optimisation problems, needs to satisfy certain conditions.
These conditions stem not only from a theoretical perspective, for example, decaying
learning rates according to the Robbins-Monro condition, but also from an engineering
and implementation perspective.

Data Consumption & Quality Real world applications do not provide data in the amount
that existing Deep Reinforcement Learning algorithms demand [Moerland et al., 2020].
To provide a feeling for the numbers, consider the amount of data consumed by the
Reinforcement Learning algorithm AlphaGo [Silver et al., 2017] for learning to play the
game of Go. To produce a policy with super human performance, AlphaGo has used 4.9
million games of self plays, where each play consists of a plethora of state space transitions.

Furthermore, current state of the art RL algorithms operate model-free and rely on
exploration mechanisms to collect the required data. Whereas it is trivial to formulate
exploration based on noisy actions or random walks on paper, in practice it might be
impossible to reach parts of the state space, where the reward signal is present. Depending
on the environment at hand, collecting all transitions can become easily a challenge on
its own. As an example, consider an autonomous car with the goal to reach a certain
pose. If the current pose is close enough to the desired one, a positive reward is given.
When starting from an arbitrary initial state, executing random steering and acceleration
commands certainly will not bring the car to its target pose. Since no reward is received,
learning is impossible and an initial policy is not changed.

Even worse, in real world applications, exploration by executing arbitrary actions is
also too dangerous. See, for example, the concerns described by García and Fernández
[2015]. There exists a form of agreement that RL should work with (available) models,
e.g., in [Berkenkamp et al., 2017], or exploit learned models, e.g., in [Cowen-Rivers et al.,
2022], such that an arbitrary number of any possible state space transition can be queried
without restriction.

The need for working model-based also arises from the choice of non-convex optimisation
as tool for minimising the Mean Squared Bellman Error. It is covered in more detail later
in the document. When writing down the MSBE as objective for minimisation, one sees
that either ergodic processes are needed or that states must be sampled freely from the
entire state space. However, loosing the ergodicity happens easily once policies improve.
For example, in the well-studied pole balancing control problem, an optimal policy prevents
the pole from falling over. Thus, states with high angular velocities of the pole or even
large angles themselves no longer show up and the ergodicity is lost. In such environments,
invoking a model is the only option to create by hand transitions in the state space, which
can occur in arbitrary regions.

Since one cannot guarantee that the dynamical system under control is ergodic in general
and because relying on exploration is also too risky for engineering applications, I conclude
that working model-based is a more or less mandatory requirement to enable the application
of any RL or DP algorithm. A positive consequence is that once the necessity for a model
is present, the distinction between On- and Off-Policy algorithms is no longer required.
The typical definition as given, for example, in [Sutton and Barto, 2020] is:

“On-policy methods attempt to evaluate or improve the policy that is used
to make decisions, whereas off-policy methods evaluate or improve a policy
different from that used to generate the data.”

7

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

However, this definition does not apply to a model-based algorithm, where state transitions
are created arbitrarily. States are set freely in the state space and not according some
current policy (Off-Policy learning), but one still tries to evaluate the current policy and
its action produced for the successor state (On-Policy setting). This means, my analysis
and the approach based on Residual Gradient algorithms includes implicitly both settings.

A last aspect related to the availability of data is the Double Sampling issue. This
issue arises from the necessity to collect per state several realisations of its successors to
handle expectations correctly [Baird III, 1995]. In real world implementations of RL or
DP algorithms, it is impossible to collect transition data that satisfies this requirement.
However, if one already has to use models for other reasons, then solving the Double
Sampling issue is no longer required. The information about successor states, including
their entire probability distribution, is either part of the model or must be easy to obtain
from an accurate simulator. Hence, Residual Gradient algorithms can be implemented
without relying on additional constructions and benefit directly from my analysis.

Reliability, Runtime and Computational Concerns The bad environmental impact of
artificial intelligence, or more precisely Deep Learning and the related computer programs,
is no longer a secret [Strubell et al., 2019, Dodge et al., 2022]. Even dedicated effort has
been spent on capturing the exact impact [Henderson et al., 2020]. Here, not only the
aforementioned amount of hyper parameter tuning, which is required until one knows the
values that result in a working algorithm, is a problem, but also the training itself for a
certain (possibly optimal) set of hyper parameters is inefficient. One has to spend ever
larger models with increasing training times for the learning algorithm with diminishing
returns [Thompson et al., 2021].

My analysis might provide a beneficial effect on these concerns. Due to insights from the
critical points and the derived design principles, it could become possible to employ second-
order optimisation with approximated Hessian information. Thereby, one would remove
the need for excessive tuning of learning rates and tweaking the parameters such as the
momentum of a descend method drops away. Also, frequent restarts of the entire training
process are redundant, because bad local minima or saddles would have to be suppressed
such that second-order methods can be applied. On top of that, less computation time is
necessary due to a better descent behaviour of such methods. Even if individual steps are
more expensive, the overall time is smaller, since far less steps are enough. Additionally,
the outcomes of optimisation typically have a better quality.

Policy Gradient Methods and Random Policy Search Pure Policy Gradient methods,
which are an example of Actor-Only algorithms, appear as promising alternative with
impressive results on robotic manipulators, e.g., [Levine et al., 2016]. The same applies
to pure Random Search methods in policy space, e.g., [Mania et al., 2018] and references
therein. Despite Mania et al. [2018] only considering linear functions of the state as policy
class, they are still able to demonstrate competitive results on typical RL benchmarks.

However, disadvantages of Policy Gradient formulations or Random Search methods
also exist. The biggest ones are twofold. First, these algorithms are tailored towards finite
horizon problems. Second, no statements about the type and nature of a policy are possible.
The first disadvantage results from the lack of general results regarding convergence of such
methods in the more general infinite horizon discounted reward setting [Zhang et al., 2019].

8

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Relying on finite horizon tasks or shortest path formulations is the best one can do. The
second disadvantage arises from the missing access to a value- or Q-function. In particular,
for the infinite horizon setting, the only way to draw conclusions about the nature of a
given policy is to make use of the necessary and sufficient condition for optimality (cf.
Equation (2.10)).

Hence, I propose to use still the Dynamic Programming methodology within an infinite
horizon setting and to focus on Actor-Critic architectures or, more precisely, on the
Approximate Policy Iteration framework. This allows for statements about optimality
of a policy and provides a foundation with known behaviour of algorithms. To do so, a
sophisticated analysis is required such that the Dynamic Programming framework can be
applied, especially if non-linear approximation architectures for both the value function
and policy are employed.

1.3 Contribution
In this work, I study the Dynamic Programming methodology when working with Non-
Linear Value Function Approximation from a pure non-convex optimisation viewpoint.
More precisely, I work in the framework of geometric optimisation [Absil et al., 2008],
although I stay for the major part of my work in Euclidean vector spaces. It is important
to understand and overcome the challenges involved in both Policy Evaluation and Policy
Improvement. Naturally, these results carry over to Deep Reinforcement Learning in
the form of Actor-Critic algorithms by characterising the learning behaviour of Policy
Evaluation (a.k.a Critic) and Policy Improvement (a.k.a Actor).

I seek not only for a better understanding of Deep Reinforcement Learning, but also try
to clarify mysteries or unanswered questions. For example, the application of non-convex
optimisation is not that straightforward and will require precise conditions such that a
descent algorithm is guaranteed to work. Also, the effectivenesses of DRL algorithms on
continuous problems needs a careful investigation such that limitations of Neural Networks
in an Actor-Critic approach become visible. Even if no universal remedy would be available,
a concise characterisation of all conditions and requirements is still valuable. If one has a
guarantee of the form “if some conditions are violated, then training of Neural Networks
must fail”, then it would be possible to avoid unnecessary computation beforehand. My
main contribution consists of two building blocks, which reflect the underlying structure
of an (Approximate) Policy Iteration algorithm, and therefore covers also the Actor-
Critic algorithm class. Firstly, I address the problem of minimising the Mean Squared
Bellman Error, i.e., Policy Evaluation or the training of a Critic. Secondly, I focus on
the maximisation of the Critic’s assessment of a policy, which corresponds the Policy
Improvement step or the training of an Actor.

For the Policy Evaluation part, I conduct a critical point analysis of the MSBE when
combined with Neural Networks. Additionally, I also address its Hessian and derive a
proper approximation for it. I work with both discrete and continuous state spaces. With
discrete states, exact learning is possible and leads to strong theoretical statements. In
continuous spaces, one needs to use sampling to make the MSBE accessible. This weakens
theoretical findings for discrete spaces and also gives raise to new complications. For
both types of state spaces, I obtain insights in the learning process and can prevent the
existence of saddle points or undesired local minima by requiring over-parametrisation of

9

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the NN-VFA architecture and by ensuring certain properties of the optimisation objective.
Furthermore, my analysis leads to an efficient and effective Approximated Newton (AN),
or, more precisely, to a Gauss Newton (GN) algorithm. As an extension, I study the effect
of multistep Bellman Operators and their impact on critical point conditions. Afterwards, I
investigate the continuous state space setting from a numerical perspective. I test, whether
or not ignoring the dependency of derivatives on the network parameters in the TD-target
has a significant impact, especially in the context of second-order optimisation. Next,
I outline how to overcome the convergence speed issues of Residual Gradient methods
and show that gradients and higher-order derivatives of the TD-target provide critical
information about the optimisation problem. They are essential for implementing efficient
optimisation algorithms and result in solutions with higher quality. In particular, for a
Critic-Only Policy Iteration algorithm, this property is a core requirement. As part of
the experiments, I find that multistep Bellman Operators do not improve significantly
the training if second-order optimisation is already employed. Finally, I conduct several
experiments to confirm the results of my critical point analysis, namely the roll of over-
parametrisation for MLPs, numerically and also investigate generalisation capabilities of
NN-VFA methods empirically.

To investigate the optimisation problem related to Policy Improvement, I start with
the construction of a sound situation, in which optimisation and training of NNs in both
components of a Policy Iteration procedure work reliably. I demonstrate subtleties in
formulating such a proper optimisation task and characterise sources of challenges, which
affect negatively the training of an Actor. A first source is the Critic and its MLP used to
approximate a Q-function. The gradients of the MLP with respect to action inputs are
required to provide a clear improvement direction for the policy parameters. Additionally,
the location and type of critical points need to be consistent with the training goal for an
Actor. I describe how to design MLPs for achieving proper gradients. A second source
of challenges is also the reward signal. Its shape translates directly into the shape of the
Q-function, thus the reward function needs to be designed with its usage for non-convex
optimisation in mind. I investigate the requirements and report the necessary properties
one has to ensure. A third source of challenges is residing in the MLP of the Actor, which is
used as parametrised policy. Similarly to the Critic, over-parametrisation affects positively
the optimisation task. Yet, a new problem resides in the required MLP structure to map
into the available action space. First, I capture this problem empirically and report its
extent. Second, I propose a possible solution by reformulating training of Actors and
exploiting geometry of the unit ball. Throughout my work regarding Actors, I construct
various experiments with the goal to demonstrate severity of these subtleties and to grasp
certain aspects also quantitatively.

My thesis takes the following structure. Chapter 2 describes Neuro-Dynamic Program-
ming in a nutshell and introduces all notations or concepts around Non-Linear Value
Function Approximation as they are required for later chapters. In Chapter 3, I present
my critical point analysis of the Mean Squared Bellman Error and report my findings
for training Non-Linear Value Function Approximation architectures to represent value
functions. Afterwards, in Chapter 4, I transfer those findings from the approximation of
value functions into the policy domain. I make the interplay between the two function
approximation architectures explicit and also account for the impact of the reward signal
on optimisation. Lastly, I conclude my work in Chapter 5.

10

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Chapter 2

Neuro-Dynamic Programming in a Nutshell

2.1 Introduction
The purpose of this chapter is the introduction of my notation and the clarification of
technical preliminaries such that a concise foundation for Chapters 3 and 4 is available.
This includes, for example, a summary of Dynamic Programming itself and the notation
behind Neural Networks, but also the specification of benchmarks. First, I outline the
Dynamic Programming setting in general. I introduce the well-known Markov Decision
Process as modelling language and define its components. Furthermore, I state the overall
goal of DP, namely the iterative improvement of policies such that they approach an
optimal one, and describe tools for achieving this goal. Second, I provide the definition
of Multi-Layer Perceptrons, which will be the NL-VFA method I am going to analyse. A
precise notation, which covers all the inner mechanisms of this function class, is mandatory
to allow for a critical point analysis in later chapters. Third, I give a description of non-
convex optimisation in general and address how existing approaches in the Reinforcement
Learning domain interact with non-convex optimisation. Eliminating all types of ambiguities
regarding optimisation strategies is indispensable for my work. Fourth, I describe how
non-linear function approximation architectures can be used with Dynamic Programming
and formulate the optimisation problem I want to investigate in a later chapter. A concise
basis for this topic is imperative, as it affects all the rest of my work. Fifth, I introduce
several benchmarks, which I will use to investigate and verify my theoretical findings
also quantitatively. Each benchmark consists of the definition of a dynamical system and
the corresponding reward signal to specify a certain task. The benchmarks will appear
in dedicated sections with sophisticated experiment and as small intuitive illustrations
throughout my theoretical analysis.

The rest of this chapter is arranged as follows. The introduction of Dynamic Programming
itself is contained in Section 2.2. Section 2.3 then establishes the necessary notational
conventions around Multi-Layer Perceptrons. Afterwards, in Section 2.4, I elaborate on
the connection between existing RL algorithms and the field of non-convex optimisation.
Next, Section 2.5 defines the objective I use for approximating value functions. Lastly, in
Section 2.6, I describe the benchmarks used for numerical statements during the entire
document.

2.2 Dynamic Programming
As the common approach, I model the sequential decision making task or the continuous
control problem as a Markov Decision Process (MDP) by defining the tuple (S,A, P, r, γ).
For the state space S, I consider both finite countable sets of KS discrete elements

11

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

S = {1, 2, . . . ,KS} as well as compact subsets of finite dimensional Euclidean vector spaces
S ⊂ RKS . Depending on the state space, I denote with slight abuse of notation by KS := |S|
either the cardinality of a finite set or by KS := dim(S) the dimension of a vector space.
The meaning of S and KS will be clear from the context. The action space A follows the
same pattern. I consider environments with KA discrete actions one can choose from, i.e.,
A = {1, 2, . . . ,KA}. And there are environments, which provide also a compact subset of
a vector space such that the action space takes the form A ⊂ RKA . Again, by slight abuse
of notation, I set KA := |A| or KA := dim(A) depending on the nature of the action space.
The conditional transition probabilities P : S ×A× S → [0, 1] are either available directly
in the form of analytic models or can be collected by using simulators and performing
rollouts. For discrete spaces, they define a discrete probability distribution P (s′|s, a) for
transiting from state s to s′ when executing action a. In continuous state action spaces,
the term P takes the role of a probability density function and must be used with integrals.
A scalar reward function r : S ×A× S → [−M,M] with M ∈ R assigns an immediate and
finite one-step reward to the transition triplet (s, a, s′). Finally, γ ∈ (0, 1) represents a
discount factor, which is required to ensure convergence of the overall expected discounted
reward.

The goal in DP is to learn a stationary policy π, which maximises the expected discounted
reward. It is sufficient to consider deterministic policies of the form π : S → A, as the
space of history independent and deterministic policies can be proven to contain an optimal
policy. Derivations and proofs for this statement and others in the current section are
available in chapter one and two of [Bertsekas, 2012]. Furthermore, stochastic policies of
the form π : S ×A → [0, 1], which would be used to sample an action, do not fit into the
geometric optimisation approach of my work.

The expected discounted reward starting in some state s ∈ S and following the policy π
afterwards is called value function and is defined as

Vπ : S → R, s 7→ lim
T→∞

E
s1,s2,...,sT

[
T∑
t=0

γtr(st, π(st), st+1)
∣∣∣s0 = s

]
. (2.1)

Taking the maximum over all allowed policies results in the optimal value function

V ∗ : S → R, s 7→ max
π∈Π

Vπ(s), (2.2)

where Π denotes the space of all deterministic Markov policies. For a given policy π, the
value function Vπ satisfies a recursive relationship, which is known as the Bellman Equation.
One can write for all states s ∈ S

Vπ(s) = E
w∼W(s,π(s))

[
r
(
s, π(s), f(s, π(s), w)

)
+ γVπ

(
f(s, π(s), w)

)]
∀s ∈ S, (2.3)

where the entire stochasticity of the transitions from some state s with action a is encoded
in the additional disturbance variable1 w ∈ W(s, a). The disturbances w are required to
be finite and countable to be used as weighted summation, or must provide a suitable

1Unfortunately, if the bold print is ignored, the symbol W is used for both the spaces of all disturbances
and the space of parameters in a Multi-Layer Perceptron. Additionally, the system dynamics and an
approximated function will share the same symbol f . To stick to the notation in existing literature and
because there is typically no confusion arising for the reader, I keep the clash of notation. The meaning
of a term is defined uniquely by the context and its arguments.

12

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

probability density function to be used in integrals. In both cases, the system equation
f : S × A ×W → S in the Bellman Equation is fully deterministic. Similarly to Vπ, the
optimal value function V ∗ belongs for all states s ∈ S to the Optimal Bellman Equation

V ∗(s) = max
a∈A

E
w∼W(s,a)

[
r
(
s, a, f(s, a, w)

)
+ γV ∗(f(s, a, w))] ∀s ∈ S. (2.4)

Although the disturbance w can be used equally well for discrete and continuous state
spaces, there exists for discrete states the convenience to treat the successor state s′ directly
as the random variable. Hence, one is able to combine the operations for all states in one
equation. First, one replaces the expectation over w with a weighted sum over all s′

Vπ(s) =
∑
s′

P (s, π(s), s′)
(
r(s, π(s), s′) + γVπ(s

′)
)
∀s ∈ S. (2.5)

Second, one collects all operations for every s ∈ S as vectors or matrices to yield the
Bellman Equation in matrix form

Vπ = Rπ + γPπVπ. (2.6)

The matrix Pπ contains all possible values of P (s, π(s), s′). The vector Rπ is the result of
collecting all r(s, π(s), s′) terms after they have been combined via the expectation. The
related computation takes the form Rπ = (Pπ � R̃π) · 1, where R̃π stores all r(s, π(s), s′)
as matrix similar to Pπ. By multiplying their elementwise product with a vector of ones
from the right, one obtains for all states the expected values. Of course, the matrix form of
the Bellman Equation is only available if transition probabilities are known and can exist
due to a discrete and finite state action space.

When treating Vπ ∈ V as a variable, where V is the space of all possible value functions,
the right hand side of Equation (2.3) induces the Bellman Operator under the policy π
and is denoted by Tπ : V → V. Analogously, the Optimal Bellman Operator Tg : V → V
is implied by Equation (2.4). It can be shown that both Tπ and Tg are contraction
mappings with modulus γ and, consequently, that the value function Vπ and optimal value
function V ∗ are their unique fixed points, respectively. Using these operators, one can
introduce a shorthand notation and write compactly

Vπ(s) = (Tπ Vπ) (s) and V ∗(s) = (Tg V
∗) (s) (2.7)

for all states s in the state space. Due to their contractive nature, both operators allow for
an iterative procedure to compute their respective fixed points. In Value Iteration (VI),
one starts with an arbitrary initial value function V ∈ V and applies Tg infinite many
times to arrive at the optimal value function

V ∗(s) = lim
T→∞

(
(Tg ◦ · · · ◦ Tg)︸ ︷︷ ︸

T times

V
)
(s) ∀s ∈ S. (2.8)

The Bellman Operator Tπ appears in Policy Iteration (PI), which consists of two components.
Policy Evaluation takes a form similar to Equation (2.8), but uses Tπ to produce Vπ when
starting from some V ∈ V

Vπ(s) = lim
T→∞

(
(Tπ ◦ · · · ◦ Tπ)︸ ︷︷ ︸

T times

V
)
(s) ∀s ∈ S. (2.9)

13

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Policy Improvement takes a current policy π together with its evaluation Vπ and extracts
a greedily induced policy (GIP) π′ : S → A from both. This means one needs to solve

(Tπ′ Vπ) (s) = (Tg Vπ) (s) ∀s ∈ S (2.10)

for π′. The new GIP π′ then satisfies π′ ≥ π in the sense that Vπ′(s) ≥ Vπ(s) for all states
in the state space with the equality being true for optimal policies. By alternating between
Equations (2.9) and (2.10), one arrives again at V ∗ and also obtains a corresponding
optimal policy π∗.

In Equation (2.10), there is a certain computational overhead involved in the derivation
of an improved policy from a value function. Namely, to determine for a given state the
optimal action, it is required to evaluate the system dynamics for all noisy transitions
whenever a certain candidate for an optimal action is selected. This overhead can be
avoided, if one introduces similar to Equation (2.1) a so-called Q-function. It is defined as

Qπ : S ×A → R, (s, a) 7→ lim
T→∞

E
s1,s2,...,sT

[
T∑
t=0

γtr(st, π(st), st+1)
∣∣∣s0 = s, a0 = a

]
(2.11)

and has its corresponding Bellman Equation and Operator in Q

Qπ(s, a) = E
w∼W(s,a)

[
r
(
s, a, f(s, a, w)

)
+ γQπ

(
f(s, a, w), π(f(s, a, w))

)]
= (Tπ Qπ)(s, a) (2.12)

for all s, a ∈ S×A. The definition of the optimal Q-function and its corresponding Optimal
Bellman Equation and Operator work as for state-only value functions. One obtains

Q∗ : S ×A → R, (s, a) 7→ max
π∈Π

Qπ(s, a) (2.13)

and

Q∗(s, a) = E
w∼W(s,a)

[
r
(
s, a, f(s, a, w)

)
+ γmax

a′∈A
Q∗(f(s, a, w), a′)]

= (Tg Q
∗)(s, a) ∀(s, a) ∈ S ×A (2.14)

The Bellman Operators Tπ and Tg in Q possess identical contraction properties as when
working with value functions alone. Hence, all algorithms work with Q-factors as they
do for state-only value functions. This means it is possible to use the same symbol for
the operators and accept again a slight abuse of notation. With Q-functions, a greedily
induced policy can now be defined compactly as

π′(s) ∈ argmax
a∈A

Qπ(s, a) (2.15)

for all s ∈ S. Most importantly, Equation (2.15) brings the advantage that one only needs
to optimise a scalar function with any suitable method to determine an optimal action for
a given state. Neither the evaluation of the dynamical system f nor the stochasticity are
involved in this process and the computational burden is reduced.

With Q-functions and the idea behind Policy Iteration, it is finally possible to introduce
an algorithm with practical relevance, namely Approximate Policy Iteration (API). This

14

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

algorithm makes the role of inexact realisations, which must occur in any computer system,
explicit and allows for a feasible implementation. For API, the construction of the limit
value in Equation (2.9) and the exact improvement for actions in all states in Equation (2.10)
are replaced by two approximate formulations

‖Q−Qπ‖∞ ≤ ε1 and ‖Tπ′ Qπ − Tg Qπ‖∞ ≤ ε2, (2.16)

where ‖x‖∞ = maxij |xij | is the maximum norm. The constants ε1 and ε2 are non-negative
scalars. As with exact Policy Iteration, each round of Approximate Policy Evaluation
and Approximate Policy Improvement refines the Q-function and policy π until the
approximation errors ε1 and ε2 prevent any further progress. Of course, Equation (2.16)
also exist in terms of V and would share the same behaviour.

In practice, the approximate formulations for Policy Evaluation and Improvement will
be realised as optimisation problems, whose solutions are Vπ or Qπ and the policy π. For
the value- or Q-function, the optimisation problem can be constructed by defining the
so-called Temporal Difference error. Given an arbitrary V ∈ V , the difference of both sides
in Equation (2.7) is denoted by

δ(s) := V (s)− (Tπ V) (s) ∀s ∈ S. (2.17)

The term Temporal Difference (TD) arises from the occurrence of a current state in V (s)
and its successor state s′ inside (Tπ V)(s). In this context, one calls the application of a
Bellman Operator also the TD target. Similarly, the Bellman Equation in Q allows as well
to define the corresponding TD error in Q

δQ(s, a) := Q(s, a)− (Tπ Q) (s, a) ∀(s, a) ∈ S ×A. (2.18)

Both types of TD errors are non-zero for all but the correct value- or Q-function. Thus,
one can use δ or δQ to convert the theoretical fixed point iteration from Equation (2.9)
into an implementable root finding problem. To do so, I will use a non-linear function
approximation architecture, namely a Neural Network, to represent the function space V.
Then, I will combine the squared TD-error for all states with the approximation architecture
to obtain a performance objective that, when minimised, leads to an accurate approximation
of the true value- or Q-function under policy π .

A concise introduction of all components, which are required for approximating the
space V , is the goal for Section 2.3. The objective used for training, i.e., the Mean Squared
Bellman Error, is constructed in Section 2.5. In Chapter 3, I then conduct a critical point
analysis of the MSBE to provide a complete characterisation of this objective and its set of
solutions.

For improving a policy π, an optimisation problem is given directly by Equation (2.15).
Whereas discrete action spaces allow easily for exact Policy Improvement, continuous ones
render approximation architectures necessary here as well. Possible solution approaches to
this optimisation task and their analysis are subject to Chapter 4.

2.3 Multi-Layer Perceptrons
To approximate value functions, I deploy in my work a classic feed-forward and fully
connected Neural Network, a.k.a. Multi-Layer Perceptron (MLP). In the following, I

15

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

summarise the well-known definition of an MLP such that for the remaining document a
concise notation exists with the goal to avoid any possible source of confusion.

Let me denote by L the number of layers in the MLP structure, and by nl the number of
processing units in the l-th layer with l = 1, . . . , L. By l = 0, I refer to the input layer with
n0 units. The value of n0 depends on the state space and its type. For value functions and
discrete state spaces, I have n0 = 1 such that a single state can be processed directly as
natural number by the MLP. In a continuous setting, I use n0 = KS units matching the
KS-dimensional state vectors. To represent a Q-function, the input layer is increased by
one for discrete actions, i.e., n0 = KS + 1, or by the dimension of the action space such
that one has n0 = KS +KA units in the input layer. I always restrict the number of nodes
in the output layer l = L to nL = 1.

Let σ : R→ R be a unit activation function and denote by σ̇ : R→ R its first derivative
with respect to the input. The unit activation function σ and its derivatives act element-wise
on non-scalar values. Depending on the concrete choice for σ, the domain and image might
have to be changed. Traditionally, the activation function σ is chosen to be non-constant,
bounded, continuous and monotonically increasing (e.g., the Sigmoid function). More
recent popular choices consider unbounded functions like (Leaky-) ReLU, SoftPlus or
the Bent-Identity2. In this work, I further restrict the choice for the activation function
to smooth, unbounded and strictly monotonically increasing functions such as SoftPlus,
Bent-Identity or also the Identity function itself, which is used frequently in the last layer.
The latter two functions are used in this work. The reason for this additional restriction
will become clear in Chapter 3.

For the (l, k)-th unit in an MLP architecture, i.e., the k-th unit in the l-th layer, I define
the corresponding unit mapping Λl,k : Rnl−1 × R× Rnl−1 → R as

Λl,k(wl,k, bl,k, φl−1) := σ
(
wT
l,kφl−1 − bl,k

)
, (2.19)

where φl−1 ∈ Rnl−1 denotes the output from layer (l − 1). The terms wl,k ∈ Rnl−1

and bl,k ∈ R are a parameter vector and a scalar bias associated with the (l, k)-th unit,
respectively. Next, I can define the l-th layer mapping by stacking all unit mappings of
layer l as

Λl(Wl, bl, φl−1) :=
[
Λl,1(wl,1, bl,1, φl−1) . . . Λl,nl

(wl,nl
, bl,nl

, φl−1)
]T

= σ
(
WT

l φl−1 + bl

)
, (2.20)

with Wl := [wl,1, . . . , wl,nl
] ∈ Rnl−1×nl and bl := [bl,1, · · · , bl,nl

] ∈ Rnl being the l-th
parameter matrix and bias vector, respectively. It is convenient to store the bias vector
as an additional row of the matrix and extend the layer input with a constant value of 1.
Thus, one can write Equation (2.20) equivalently as

Λl(Wl, φl−1) := σ

(
WT

l ·
[
φl−1

1

])
(2.21)

by using a larger parameter matrix Wl ∈ R(nl−1+1)×nl . Next, let me define the overall
function represented by the MLP. First, I denote by φ0 ∈ RK the network input. Then,

2also abbreviated as Bent-Id

16

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the output at the l-th layer is defined recursively as φl := Λl(Wl, φl−1). Note that the last
layer in an MLP can employ the identity map as activation function and thus may only be
an affine mapping. Finally, by denoting the set of all parameter matrices in the MLP as
W := R(n0+1)×n1 × · · · × R(nL−1+1)×1, I can compose all layer-wise mappings to define for
a set of parameters W ∈W the overall network mapping as

f : W × Rn0 → R, (W, φ0) 7→
(
ΛL(WL, ·) ◦ · · · ◦ Λ1(W1, ·)

)
(φ0), (2.22)

which contains in total Nnet parameters with Nnet being computed by

Nnet =

L∑
l=1

(nl−1 + 1)nl. (2.23)

With this construction, I can define the set of parametrised functions, which belong to a
given MLP architecture, by writing

F :=
{
f(W, ·) : Rn0 → R

∣∣ W ∈W
}
. (2.24)

With slight abuse of notation, I write F(n0, n1, . . . , nL−1, 1) to specify a concrete function
class by describing the architecture of the MLP, i.e., the number of processing units in
each layer as well as input and output dimensions. Sometimes it is more convenient to
describe an MLP by its depth d and identical width w of all hidden layers. In this case, I
use the notation F(n0, w× d, 1). The type of non-linearity is typically fixed and mentioned
separately.

2.4 Non-Convex Optimisation in the Context of Dynamic
Programming

Before being able to set up the optimisation task residing in the root finding problem from
Equations (2.17) and (2.18), it is necessary to introduce the existing approaches in the
Dynamic Programming or Reinforcement Learning domain on an abstract level first. This
is, because the nature of existing approaches dictates, which framework has to be employed
for the construction of algorithms. Subsequently, I will introduce the required concepts
and notation for non-convex optimisation in general, without already having to define
the actual minimisation problem related to DP with NL-VFA. Finally, I can then outline
the connection between RG or SG approaches and the non-convex optimisation methods.
Later in Section 2.5, these preliminary steps allow me to define concisely the Mean Squared
Bellman Error as the objective and also the minimisation task (cf. Equation (2.30)), which
will produce an approximated value function with the smallest MSBE.

In Reinforcement Learning, there exist two fundamental approaches, which make use of
gradient information and derivates for computing approximated value functions:

• Residual Gradient – A descent algorithm, which employs a complete gradient. It
has been introduced in [Baird III, 1995].

• Semi-Gradient – A descent algorithm, which omits parts of a gradient. The book
[Sutton and Barto, 2020] and references therein describe its construction. This type
of algorithm is also called Direct Algorithm according to [Baird III, 1995].

17

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Both approaches are descent algorithms in the sense that they seek to decrease stepwise
the MSBE. The difference between Residual Gradient and Semi-Gradient formulations
resides in the choice of a descent direction. For Residual Gradient algorithms, the complete
gradient is calculated such that for sufficiently small step sizes an objective is reduced. In
Semi-Gradient algorithms, one ignores the dependence on parameters through the value
function inside the Bellman Operator. Consequently, the guarantee to have a descent is lost
and Semi-Gradient algorithms may also increase the objective depending on the current
parameters. During my analysis in Chapter 3, I will only investigate Residual Gradient
algorithms in detail and from a theoretical perspective. When working with non-convex
optimisation as toolset, there is no insight to be gained from a critical point analysis, if
one would use directions for descending, which are not always guaranteed to point in the
same half space as the gradient. A comparison of both approaches with empirical studies
is available in [Zhang et al., 2020b] and references therein.

Non-convex optimisation is typically encountered in a Supervised Regression setting,
i.e., approximating a desired target function with a given Multi-Layer Perceptron by
using samples. In the following, I summarise the most important concepts regarding non-
convex optimisation. Even if Supervised Regression is a different problem than Dynamic
Programming or Reinforcement Learning, many ideas and parts of the notation will be
shared with my later application of non-convex optimisation to approximate value functions
with Multi-Layer Perceptrons.

Let X be a Hilbert space, i.e., a finite dimensional vector space over some field K. For
many engineering applications, the field K is simply the real numbers R. The space is
endowed with an inner product 〈·, ·〉A : X → R. An inner product is a bilinear, symmetric
positive-definite form and also induces a norm ‖x‖A =

√
〈x, x〉A for all x ∈ X . Analogously,

Y and W define a second and third Hilbert space with identical properties. The bold print
for W signalises that it will represent the collection of parameter matrices in an MLP,
whereas the normal calligraphic symbols X and Y represent a simple Euclidean vector
space. An unknown target function is denoted by f∗ : X → Y and is only accessible in
the form of sampled tuples (xi, yi) ∈ X × Y with i = 1, . . . , N . For each tuple it holds
yi = f∗(xi). All tuples together form the dataset D := {(x1, y1), . . . , (xN , yN)}, which is
used for training an MLP.

The task for Supervised Regression is to adjust the parameters W ∈W of a parametrised
function f : W × X → Y in such a way that it approximates f∗ with minimal error.
Therefore, one introduces the error function E : Y × Y → R+

0 , which maps two elements
in Y to a non-negative real number. A common choice is the squared distance E(z1, z2) =
‖z1 − z2‖2A with z1, z2 ∈ Y. When combined with the parametrised function f and the
dataset D, it is possible to define an objective J : W → R+

0 for minimising as

J (W) =
1

N

∑
(xi,yi)∈D

E(f(W, xi), yi).

This objective maps the current choice for parameters W to their quality of approximation.
The best possible approximation can be stated as

W∗ ∈ argmin
W∈W

J (W).

An effective tool for solving this minimisation problem is a Gradient Descent algorithm.
First, one needs the differential map of J for the current parameters, i.e., DJ (W), and

18

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

applies it to some direction H ∈W . Second, one has to compute with the help of Riesz’
Representation Theorem the unique value G ∈ W such that DJ (W)[H] = 〈G,H〉A
applies. The gradient of J (W) is now given by ∇J (W) := G and allows for the iterative
procedure W ←W − α∇J (W) for minimising J . The term 0 < α < 1 denotes a step
size and exists to compensate numerical errors in a computer system.

An even more effective tool is provided by Newton’s Method (NM). One makes use
of second-order differentials and calculates for two directions H1,H2 ∈ W the unique
value H ∈ R|W|×|W| such that D2 J (W)[H1,H2] = 〈H1,H ·H2〉A holds. Once H1 and H2

are converted to a flat vector, then H denotes the Hessian matrix ∇2J (W). A Newton’s
Method results in a similar iterative descent procedure of the form W ← W − αη to
minimise J . But due to the usage of Newton’s direction η = (∇2J (W))−1∇J (W), one
achieves a super linear convergence rate as opposed to direct Gradient Descent. In practice,
one typically works with approximations of the Hessian to ease the computation burden.
Such an approach is then called an Approximated Newton algorithm.

The connection between Residual Gradient algorithms and non-convex optimisation in
general arises now in the root finding problems from Equations (2.17) and (2.18). Since
Residual Gradient methods compute a full gradient as it is done for non-convex optimisation,
it is possible to investigate their behaviour by studying the underlying objective and its
critical points. Furthermore, the realisation of Newton-like algorithms for the application
in Dynamic Programming with Non-Linear Value Function Approximation becomes a
promising topic. Thus, the construction and study of the Hessian matrix, or at least an
estimation of it, is a mandatory task for my analysis.

2.5 Approximate Dynamic Programming with Function
Approximation

If a state space is finite but too large for value functions to be stored in memory, or even has
to be treated as infinite due to its size, an exact representation of the value function Vπ(s)
for all states s ∈ S is practically impossible. This phenomenon has been coined as the
Curse of Dimensionality [Bellman, 1957]. Also, for continuous state spaces, where a proper
iteration over all states is not available due to the lack of a natural discrete formulation,
exact representations are out of reach. An accurate value function approximation is thus
useful and necessary for representing the actual value function Vπ of a current policy π in
any computer system. For training such a function approximation architecture, one has
to rely on the Temporal Difference error from Equation (2.17) and use an optimisation
approach. For the sake of simplicity, I omit in the following Q-functions, because they
require the exact same construction steps.

2.5.1 The Mean Squared Bellman Error as Objective for Optimisation
Let V ⊆ V̂ be the set of all approximations considered, which is typically a smaller set
than that of all possible value functions V̂. Let further F : S → R with F ∈ V be a
concrete but arbitrary value function approximation. To create a quality assessment for
such an approximation at hand, one can combine the aforementioned Temporal Difference
error from Equation (2.17) for a single state s together with a weighted norm ‖·‖ν , where
the weighting is given by some function ν : S → (0, 1). This yields the Mean Squared

19

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Bellman Error

MSBE(F) =
1

2

∥∥∥F − (Tπ F)
∥∥∥2
ν
, (2.25)

which accepts a value function approximation F ∈ V and returns a non-negative scalar
value. The pre-factor 1/2 is included for convenience. Due to the contraction property
of Tπ, the only function, which can render the MSBE zero, is the correct value function Vπ.

As the MSBE contains a norm over a function space, the realisation of ‖·‖ν comes in two
different ways depending on the type of state space. In discrete spaces, one can enumerate
all states and express the value function as a table. Hence, one can write down directly

MSBE(F) =
1

2

∥∥∥F − (Tπ F)
∥∥∥2
ν
=

1

2

∑
s∈S

ν(s)
(
F (s)− (Tπ F)(s)

)2
, (2.26)

where the weighting needs to satisfy
∑

s∈S ν(s) = 1. Since the weighting also shares the
properties of a probability distribution, one can treat the summation as expectation and
approximate it by Monte Carlo sampling. One arrives at

MSBE(F) =
1

2
E

s∈S

[(
F (s)− (Tπ F)(s)

)2
]
≈ 1

2N

N∑
i=1

(
F (si)− (Tπ F)(si)

)2
, (2.27)

where N samples si are drawn according to the distribution ν. In continuous spaces, the
value function remains, as the name suggests, a continuous function. Thus, one needs to
work directly in the Hilbert space L2 and realise the norm via integrals

MSBE(F) =
1

2

∥∥∥F − (Tπ F)
∥∥∥2
ν
=

1

2

∫
S
ν(s)

(
F (s)− (Tπ F)(s)

)2
ds. (2.28)

Now, ν takes the role of a normalised probability density function, which has to satisfy∫
S ν(s)ds = 1. Therefore, one can make use of Monte Carlo Integration again, which allows

to write integrals as summations over (many) samples

MSBE(F) =
1

2

∫
S
ν(s)

(
F (s)− (Tπ F)(s)

)2
ds ≈ 1

2N

N∑
i=1

(
F (si)− (Tπ F)(si)

)2
. (2.29)

As before in the discrete case, the samples si need to be distributed according to ν.
For the choice of ν, ergodic decision making problems play a special role. These problems

possess a so-called steady state distribution ξ(s) ∈ (0, 1) for each state s ∈ S, which, when
used in place of ν, allows for pleasing properties. Firstly, by choosing ξ as weighting in
discrete state spaces, one maintains for Linear Value Function Approximation architectures
the contraction properties of Tπ when combining it with a linear projection onto that
function space. Secondly, relying on ξ weighted states opens up the possibility to work
model-free and online. Although this is of great interest for practical applications, this
also brings up additional problems, which I cover on their own in Section 2.5.2.

In general, the choice of ν does not give rise to strong limitations. Most importantly,
changing the weighting inside a norm to an equivalent one can only change the steepest
descent direction. The types and locations of critical points remain the same, which is
crucial for my critical point analysis in Chapter 3.

20

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

From Equations (2.27) and (2.29) it becomes clear that a realisation of an optimisation
procedure for both types of state spaces results in the same instructions for a computer.
As the only requirement, one has to ensure that the integrand (F (s)− (Tπ F)(s)) in
Equation (2.28) is square integrable, i.e., an element in L2. This is not a problem for
the definition of Vπ as the infinite discounted sum in Equation (2.1). Already necessary
assumptions such as finite rewards |r(·)| < M for some M > 0 and bounded state spaces
guarantee square integrability. The system dynamics must be chosen to fit implicitly
into these conditions. Still, care must be taken for the selected function space V. If
using for example Neural Networks with arbitrary non-linearities as function class, square
integrability might not be ensured. Furthermore, Neural Networks are defined for the
whole Euclidean space, but the integral covers only a bounded subspace. Hence, to avoid
issues at the boundary of the state space, the integral should be extended to the whole
Euclidean space instead of just S. However, this stands in conflict with the assumptions
required for DP and also can affect in turn the square integrability of Vπ. I leave these
mathematical considerations as a topic for future research.

The extension of the MSBE to Q-factors is in both settings straightforward. One has to
add another sum or integral over all actions to the definition of the MSBE and include the
action as second argument for F .

Dynamic Programming with Non-Linear Value Function Approximation now manifests
itself in the optimisation problem

Fπ ∈ argmin
F∈V

MSBE(F), (2.30)

where Fπ is an optimal approximation to Vπ in terms of minimising the MSBE. In general,
one has Fπ 6= Vπ for at least some states s ∈ S and only aims to be close enough to Vπ.
The accuracy of the solution Fπ as defined in Equation (2.30) is known to be bounded by∥∥Fπ − Vπ

∥∥
ξ
≤ 1 + γ

1− γ
inf
F∈V

∥∥F − Vπ

∥∥
ξ
. (2.31)

Obviously, the challenge is to find a function space V, which is convenient to use for
optimisation and which still contains a good enough approximation for the desired value
function Vπ.

2.5.2 Model-Based vs. Model-Free
A desired property of any Reinforcement Learning algorithm is that it typically needs
to work without requiring a model of the system under control. This property is called
model-free and applies for example to the famous Q-Learning algorithm [Watkins and
Dayan, 1992]. Mere transition data in the form of consecutive (s, a, r, s′, a′) tuples is
enough to allow for a successful learning progress. These transition tuples can be created
by executing a policy directly in the environment and collecting the states on the fly. A
well performing simulator or a benevolent physical system are enough to gather all states,
which are then distributed natively according to the steady state distribution ξ. Therefore,
the empirical mean in Equations (2.27) and (2.29) approximates automatically the correct
quantity. Aside from contraction properties for projected Bellman Equations, this is a
main reason, why the assumption of an ergodic MDP is a core ingredient in many RL
algorithms.

21

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

A second reason is related to the MSBE itself and arises from the approach via non-convex
optimisation. It becomes visible once I set ν = ξ and write the norm in the MSBE from
Equation (2.26) for discrete state spaces as inner product

MSBE(~F) =
1

2

∥∥∥~F − (Tπ
~F)

∥∥∥2
ξ

=
1

2

〈
~F − (Tπ

~F), ~F − (Tπ
~F)

〉
Ξ

=
1

2

(
~F − (Tπ

~F)
)T

Ξ
(
~F − (Tπ

~F)
)
. (2.32)

Here, the vector ~F = [F (1), . . . , F (KS)]
T represents a tabular VFA. The diagonal matrix

Ξ = diag(ξ1, . . . , ξKS), which consists of all steady state distributions ξi, is responsible
for defining a proper inner product. In general, to define an inner product 〈x, y〉A, the
matrix A must have full rank, be positive definite and symmetric. Since the steady state
distribution Ξ is a diagonal matrix and thus always symmetric, the main requirement is
that every state occurs under the current policy and, additionally, this needs to happen
infinite many times. Having a proper inner product in Equation (2.32) will be essential for
my analysis in Chapter 3, because only in a Hilbert space one has a closed-form expression
for the gradient direction. However, here arises a fundamental problem of model-free RL
algorithms. Many dynamical systems and environments, which are used for RL or DP
applications, are easily not ergodic. Additionally, if changing policies are present, ergodicity
can appear or vanish every time a policy is updated.

As an intuitive example, consider the task of balancing a pole, which is a famous and
well-studied continuous control benchmark. Once a policy becomes optimal, the only visited
states are those around the balancing point. All other states do not show up any more
such that the inner product is no longer valid and the direction information, which is used
to define a unique gradient, is destroyed. Consequently, training of function approximation
architectures based on derivatives becomes impossible.

This issue also shows up in a different context of a more recent work [Bojun, 2020].
Furthermore, even a practical relevance of this problem has been described by the community.
For example, de Bruin et al. [2015] observe this problem for the DDPG algorithm. A replay
memory must be representative for the entire state space to enable stable training. Gu
et al. [2016] elaborate on a necessary presence of good and bad transition examples in the
training data. For a correct learning of the value function under some policy, bad events
such as the execution of an action that would destroy a robot, must happen and be part of
the transition tuples.

Whereas authors propose to involve rollouts based on hypothetical transitions or learned
models, one could also arrive at the conclusion that the original model of the environment
under control is needed to obtain the required transition data without executing actions in
the real world. If there is no access to an analytic model, then one will face unavoidable
obstacles regarding the distribution ξ. Namely, it is important to formulate at any time
during the learning process a proper optimisation task.

Since samples from the entire state space are required to define the objective uniquely,
one has to inject manually the transition data from parts of the state space, which would
not be visited by the policy on its own. Therefore, I move completely away from the
concept of ξ-distributed states and rely on other weightings, which cover the complete
state space. Fortunately, critical points of an objective are in general not affected by a

22

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

change of weighting. The only result is that whenever states have to be sampled from the
state space, they are drawn according to the weights ν.

A simple solution is to incorporate uniformly distributed values. Hence, whenever
sampling is involved to obtain the MSBE, I use for ν(s) in Equations (2.26) to (2.29) the
uniform distribution

ν̃(s) =
1∫

S zdz
, (2.33)

which is simply removed in the remaining document, because a positive constant factor
does change the objective.

If it is mandatory to collect transitions in the state space independently of the currently
active policy to implement Bellman Operators as needed by Equation (2.25), then the
main consequence is that working model-based is the sole option. Only if one is using
an analytical model, or alternatively a powerful simulator, where states and arbitrary
transitions can be collected without restrictions, it is possible to distribute states freely in
the entire state space and retrieve their successors. This implies that I move with my work
entirely out of the Reinforcement Learning field and that I am now completely rooted in
the Dynamic Programming methodology. There is no exploration happening any more
and algorithms from later chapters cannot be applied for online learning. A beneficial side
effect is that handling stochastic environments is no longer a severe challenge. This is
because once the model is needed and available with high enough quality, incorporating
noisy transitions only adds another expectation, which does not conflict with the remaining
algorithm and is straightforward to compute. Where exactly this challenge would show up
and cause problems is explained in Section 3.3.2.

2.6 Benchmarks
To test Dynamic Programming algorithms, one or more environments are required. Their
description is provided here at the beginning of the document such that the remaining text
can refer to these environments and show some numerical results on the fly for explaining
theoretical concepts. Of course, these benchmarks appear in my experiments as well.

For stochastic dynamical systems, only discrete state space problems are considered.
Their description takes the form of a graph or table specifying explicitly the probability
for transiting from state s to s′ when executing action a. Deterministic discrete problems
are not covered in my work on their own, because they are a special case of the stochastic
formulation and do not bring additional insights.

Deterministic continuous dynamical systems possess an analytic description of the
behaviour as their core component. A transition function f : S × A ×W → S maps a
current state s, an action a and the disturbance w to a unique successor. Due to certain
considerations, which are addressed explicitly in Section 3.3.2, stochastic transitions in
continuous dynamical systems are not part of my work. Hence, I simplify the transition
function to f : S ×A → S for the remaining work.

2.6.1 Adapted Seven State Star Problem
Baird’s Seven State Star Problem [Baird III, 1995] is a well-known example to demonstrate
convergence issues of algorithms. It is a discrete state space problem with only a few
number of states. Furthermore, the Star Problem enables closed form and exact solutions

23

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

s1 s2

s3s4

s5

s6 s7

P = 0.01

P = 0.01

P = 0.01

P = 0.01

P = 0.01

P = 0.01

P = 0.94

Figure 2.1: An adapted version of Baird’s Seven State Star Problem [Baird III, 1995].
Additional transitions with low probabilities from the central node back to the
six outer states are added. This restores an ergodic infinite horizon problem such
that the MSBE is well-defined when relying on the steady state distribution.

because all transition parameters are known. Thus, it allows for extensive testing and
comparison against a ground truth.

The original problem consists of six starting states with single transitions to a central
absorbing terminal state. This implies that the Star Problem is non-ergodic. Since I
want to maintain the setting, in which algorithms with linear function approximation
architectures and projects on the subspace remain convergent, a direct usage of the Star
Problem is not possible for my work. Its original construction stands in conflict with the
ξ-weighted definition of the MSBE from Equation (2.32).

To obtain a dynamical system, where all states occur infinite many times under the
current policy, I extend the Star Problem with transitions from the central node to all
others. In Figure 2.1, a graph with all transitions and their probabilities is shown.

The graph suggests why it is called Star Problem. To complete the definition of a
benchmark for Dynamic Programming applications, a reward is added to the central node
with value one. Next, I use γ = 0.99 as discount factor whenever this benchmark is
used. Finally, a policy for evaluation is already defined implicitly by setting the transition
probabilities to fixed values. Since the Bellman Operator will be used in matrix form, there
is no need to introduce a dedicated mapping from states to actions.

2.6.2 Simple Linear Dynamics
A mostly linear dynamical system in one dimension serves as a continuous benchmark,
whose ground truth is known and easily available. Furthermore, the construction of
controllers by hand is straightforward. Although this benchmark must be treated as a toy
problem, it still occurs in the literature, e.g., in [Matheron et al., 2020], and is used for
more fundamental statements about the behaviour of algorithms.

To meet the requirements of the Dynamical Programming methodology, the benchmark
cannot be a linear dynamical system for the entire state-action space. At boundaries of S,
successor states need to be kept inside of the compact subset. Thus, the dynamics of the

24

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

environment is given by

f(s, a) = clip(s+ a/2), (2.34)

where clip(·) projects s+ a/2 back into S. The clipping operation is mandatory to restrict
states to a finite range such that the state space is indeed a compact subset of R. Thereby,
the linearity is destroyed at the boundaries. The environment has a one dimensional state
space S = [−3/2, 5/2] and, accordingly, a one dimensional action space A = [−1, 1]. The
borders for the state space and the scaling for actions are selected with no particular reason
in mind. The action space matches the image of tanh(·), such that it is straightforward to
use parametrised policies.

I consider for this environment several types of rewards. Which type of reward will be
used depends on the context and intended message of later chapters and experiments. The
first reward function consists of piecewise constant functions with discontinuous transitions
between them. It takes the form

r1(s) =

{
1 if |s− rc| ≤ re

0 else
, (2.35)

where the constants rc = 1 and re = 1/5 denote a centre and extent of the non-zero reward
region, respectively. This type of reward would be classified as sparse and one would expect
this reward to be harder for a learning algorithm.

The second reward function is the dense counterpart to the previous one and is constructed
around a triangular shape. Intuitively, it should turn out favourably for the learning process.
The reward signal is given by

r2(s) =

s− rc
re

+ 1 if s ≤ rc

rc − s

re
+ 1 else

(2.36)

and makes use of the same constants as before. The main property of r2 is that it is
everywhere strictly monotonic, which will become necessary for Chapter 4.

A third reward function resembles r1, but uses explicitly continuous transitions between
different reward levels (left rl = 0.0, mid rm = 1.0 and right rr = 0.0). These transitions
are necessary to meet certain regularity requirements, which will be relevant for Chapter 4.
Still, since it is mostly a constant function, it remains a challenging reward signal. The
definition of the third reward is

r3(s) =

rl if s ≤ l1
rm − rl

2
sin

(
π

r1 − l1
s− π

(
1

2
− l1

r1 − l1

))
+

rm + rl
2

if l1 < s ≤ r1

rm if r1 < s ≤ l2
rm − rr

2
sin

(
π

r2 − l2
s+ π

(
1

2
− l2

r2 − l2

))
+

rm + rr
2

if l2 < s ≤ r2

rr if r2 < s

. (2.37)

The transitions consist of fitted sine curves and take place between l1 = rc − re − rt and
r1 = rc − re for the left transition and between l2 = rc + re and r2 = rc + re + rt for

25

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
state

4

3

2

1

0

1
va

lu
e

r1(s)
r2(s)
r3(s)

Figure 2.2: The reward functions from Equations (2.35) to (2.37) evaluated on the entire
state space S = [−3/2, 5/2]. The enlarged area reveals that r3 contains indeed
a smooth transition between different reward levels, whereas r1 resembles a
square wave signal.

the right one. The new constant rt = 0.025 controls the width of transition regions. For
convenience, Figure 2.2 shows all reward functions evaluated on the state space.

Independently of the actual reward function employed, the discount factor for this
benchmark is set to γ = 0.9 such that accumulated and discounted rewards falls into a
pleasing range.

2.6.3 Mountain Car
The Mountain Car control problem from [Moore, 1990] is a well-studied dynamical system.
An underpowered car is supposed to drive up a hill and reach a goal. Since the engine of
the car is not strong enough, an optimal policy consists of swinging up the car in the valley,
which can be achieved by alternating the direction of acceleration according to the current
velocity. The state of the car is described by its continuous position x ∈ [−1.2, 0.6] and
velocity ẋ ∈ [−0.07, 0.07]. Actions live in the range a ∈ [−1, 1] and denote the fraction of
the maximal available acceleration of the engine. Its sign serves as the direction indicator.

A standardised reference implementation of this benchmark, called MountainCar-v0,
is available in the OpenAI Gym package [Brockman et al., 2016]. Unfortunately, it is
still necessary to modify the reference implementation to obtain a valid infinite horizon
problem.

First, rollouts in this environment are cut after 200 transitions. For discount factors close
to one, this becomes problematic, because the approximation of arising from truncated
geometric series becomes too coarse. Thus, any manipulation applied to rollouts is disabled.
Second, I have replaced the built-in constant reward function. In its original form, this
functions assigns independently of a state, an action and its successor state to any transition
a punishment of −1. The new reward function favours being in a goal region by not giving

26

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

punishments in that area. It follows the pattern

r(s) =

{
0 if s in goal
−1 else

, (2.38)

where “in goal” indicates, whether the state s is considered to be a goal state. The goal
region is defined as x > 0.45, where x denotes the position of the car. Lastly, once the car
enters the goal region it jumps back to a starting state. Doing so ensures that all states
can occur repeatedly even under an optimal policy and, in turn, ergodicity is present. The
adjustments allow to use the environment in a non-episodic fashion and, thereby, establish
the required formulation to fit into the MDP language. The MSBE in Equation (2.25)
and the value function Vπ from Equation (2.1) can be computed correctly now. The
environment with all changes employed is called MyMountainCar-v0 in the rest of this
document.

For my later experiments, a baseline policy, which can successfully swing up the car, is
given by the function

π(s) = π(

[
x
ẋ

]
)

{
1 if ẋ ≥ 0

−1 if ẋ < 0
. (2.39)

This policy accelerates the car always in the current moving direction and thereby builds up
momentum. It will be used for Policy Evaluation experiments whenever MyMountainCar-v0
is involved.

Since the teleportation component of the state transitions is a rather severe manipulation
of the dynamics, another variant of the Mountain Car is constructed. The adapted
benchmark is called MyMountainCar-v1 and is designed to run in an infinite horizon
setting without additional manipulations of the system dynamics. The core behaviour
remains roughly the same as before. Its differential equation takes the form

ẍ = pa− g

m
cos (3x)

ẋ = clip (ẋ+∆t · ẍ) (2.40)
x = clip (x+∆t · ẋ)

with mass m = 1kg, gravity g = 0.0025m/s2 and time step ∆t = 1 s. The action is scaled
with the dimensionless power p = 0.0015 of the engine. The central difference between
both versions of the benchmark resides in the clipping operation applied to the updated
position. Collisions with boundaries are now perfect inelastic collisions with infinite heavy
borders, thus, the velocity of the car flips its direction without changing the magnitude.
Furthermore, the environment allows for infinite many transitions without artificial terminal
conditions.

Additionally, the reward for the environment MyMountainCar-v1 is changed to be the
position of the car

r(s) = r(

[
x
ẋ

]
) = x. (2.41)

The dynamics and reward together define the task to stand still on top of the right hill.
Due to the reflection at borders, an optimal policy also needs to learn to slow the car down.
The small gap that appears on the right side behind the summit helps a little.

27

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

The policy described in Equation (2.39) is no longer the best solution, as it causes the
car to roll down again. Hence, a more sophisticated policy is required as baseline. The
following look-up table for actions

π(s) =

· · · · · ·
· · −1 1 · ·
· · −1 1 · ·
· · −1 1 · ·
· · −1 1 1 ·
· · −1 1 1 1
· · · 1 1 ·
· · · · · −1
· · · · −1 −1
1 1 1 · −1 −1

︸ ︷︷ ︸

velocity bins

position bins , (2.42)

where zero actions are represented by dots to emphasize the non-zero actions, achieves this
and provides reproducible goal reaching. The policy accelerates the car carefully in the
valley and breaks early enough to stop on the right hill in the goal area. To make use of
this table, the position is discretised with ten bins and the velocity with six bins. The
corresponding action can be retrieved from the responsible cell.

I set the discount factor for all variations of Mountain Car environments to γ = 0.99, if
not stated otherwise during an experiment. Smaller values would blur the fine details of a
value function and make it more difficult to distinguish successful policies from mediocre
ones based on the accumulated rewards.

The change from MyMountainCar-v0 to MyMountainCar-v1 has been motivated by the
insights in Section 4.3. Thus, for historical reasons, parts of my work rely still on the first
version despite the fact that the second could serve as perfect replacement.

2.6.4 Cart Pole
The Cart Pole control problem [Barto et al., 1983, Florian, 2007] is a frequently used
environment in the optimal control community. A pole is placed on a moveable cart and
connected with a hinge to its top. The cart can be accelerated along a line, thereby
controlling the angular velocity of the pole. With a carefully designed feedback controller,
it is possible to balance the pole in an unstable equilibrium. Both the cart and the pole
are described as point masses such that the whole dynamical system is defined by the
vector [x, ẋ, θ, θ̇]T ∈ R4. The position and velocity of the cart are denoted by x and ẋ. The
angle and angular velocity of the pole use the symbol θ and θ̇. The boundaries for each
component are given by ±[2.4, 12◦, 2.0, 2.0]T.

Similarly to the Mountain Car benchmark, there exists the CartPole-v1 environment of
the OpenAI Gym package, to which I add some modifications. The resulting benchmark
receives the new name MyCartPole-v0.

The first modification is for the reward function. Namely, this benchmark also receives a
new non-constant reward. Instead of rewarding every step with +1, including those states,
which are considered to be a failure because the pole fell over or the cart left the allowed
range, I only punish with −1 reward the transition into those failure states. Otherwise,

28

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the reward is zero. The reward function can be written compactly but informally as

r(s) =

{
−1 if s is failure state
0 else

. (2.43)

A state is considered to be a failure if the position of the cart is getting closer than 0.024
units to the boundary. Similarly, the angle of the pole must stay 1.2◦ away from its maximal
values. The second modification alternates the system behaviour. By adding connections
from all terminal regions, i.e., the regions where a failure is present, to the start state, the
episodic formulation of the balancing task is removed and I restore also here an infinite
horizon MDP.

For the same reasons as for the Mountain Car benchmark, I also add another version of
the Cart Pole environment, which can work without jumps in the transitions and has an
adapted reward function. It is named MyCartPole-v1. The core dynamics are identical
to the original environment. A new component is a projection operation applied to the
position and angle update. Projecting the angle onto the state space allows the pole to rest
on the left or right angle limit. Thereby, a full swing up is not required. But simultaneously,
starting from the border of the angle range is harder than the original gentle start state at
the centre, which is automatically restored once the pole fell over. A position projection
keeps the cart on the screen. For the sake of completeness, the following equations describes
the unchanged and original acceleration part of the dynamical system

c =
lmp

(mp +mc)

h =
p

mp +mc
a+ cθ̇2 sin(θ)

θ̈ =
g sin(θ)− cos(θ)h
4/3l − c cos(θ)2

(2.44)

ẍ = h− cθ̈ cos(θ),

where the mass of the pole is mp = 0.1 kg and that of the cart mc = 1kg. The half length
of the pole is l = 0.5m, the gravity is approximately that on earth’s surface g = 9.8m/s2

and the action input is multiplied by p = 10 to bring it in a proper range. The new
modifications reside exclusively in the integrator part

θ̇ = clip
(
θ̇ +∆t · θ̈

)
ẋ = clip (ẋ+∆t · ẍ)

θ = clip
(
θ +∆t · θ̇

)
x = clip (x+∆t · ẋ) . (2.45)

The additional clip(·) operations keep the four components inside the state space. The clip-
ping step, which is applied to the position and angle, i.e., the lower line in Equation (2.45),
also represents a perfect elastic collision with the boundaries. Once an angle or a position,
which is exceeding the limits of the state spaces, is corrected, the corresponding velocity
is multiplied by zero. Hence, either the cart position itself or the pole angle is no longer
changing. For the Cart Pole benchmark, the integration time step is reduced to ∆t = 0.2 s.

The reward signal is no longer a binary indicator, but measures the distance of some
state towards an upright pose of the pole. It takes the form

r(s) = r(
[
x ẋ θ θ̇

]T
) = −

(
θ2 + 0.01 · θ̇2

)
. (2.46)

29

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

A policy needs to learn a stable balancing to receive zero punishment. On top of that, a
proper solution also requires to balance the pole towards the middle of the state space,
because collision at boundaries interfere with the balancing objective. However, a dedicated
position reward in the function is not required.

Lastly, I set the discount factor for all Cart Pole environments also to γ = 0.99, if not
otherwise stated.

30

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Chapter 3

Analysing the Critic: Characterising Critical
Points of the Mean Squared Bellman Error

3.1 Introduction
The goal for this chapter is the investigation of algorithms to solve Policy Evaluation, which
also corresponds to understanding training of a Critic when working with Actor-Critic
algorithms. My investigation addresses two main building blocks. On the one hand, I
aim at a full critical point analysis of the MSBE as objective for training MLPs. On the
other hand, I am interested in a general application of non-convex optimisation to solve
the underlying minimisation problem for Policy Evaluation or Critic training. There are
several valid starting points and research directions, which all need to be investigated to
arrive at a working algorithm.

For the beginning, there exist subtle but important differences in formulation of the
MSBE for discrete and continuous spaces. Discrete states allow for exact learning, whereas
continuous spaces always involve sampling and thus approximations. These differences lead
to different possible statements and requirements. Furthermore, the sampling setting brings
additional problems on its own. A subsequent important design choice for an algorithm
is whether to choose only one-step Bellman Operators or whether one involves several
consecutive transitions in an environment during training. Once multiple transitions are to
be used, again different realisations become possible, namely compound Multistep Bellman
Operators and TD(λ)-like methods. For both, one has to classify their impact on the
objective and record all implied changes on the optimisation task.

Once a concrete algorithm is available, it is necessary to verify it. With discrete state
spaces, it is possible to confirm algorithmic properties and to have a first verification of
theoretical results in a controlled setting. Afterwards, I conduct experiments, which cover
the continuous sampling based setting. Thus, they are more interesting and also unveil the
practical applicability of the algorithm.

Parts of this chapter are based on my published work. The relevant papers are [Gottwald
et al., 2018, 2021] and [Gottwald and Shen, 2022]. The notation and introduction in
[Gottwald et al., 2021] is also contained partially in Chapter 2.

The remaining chapter is structured as follows. In the next section, Section 3.2, I review
the existing work regarding the construction and analysis of Deep Reinforcement Learning
algorithms in the context of my own work. I conduct a critical point analysis of the MSBE
when using NN-VFA in Section 3.3 and present the results separately for discrete and
continuous state spaces in Sections 3.3.1 and 3.3.2, respectively. The variants based on a
multistep formulation are covered in Section 3.3.3. Section 3.4 is dedicated to my proposed
Gauss Newton Residual Gradient algorithm and addresses details, which are relevant

31

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

for implementation and execution. This section also introduces pseudo code and covers
experiments in discrete state spaces. Finally, in Section 3.5, I evaluate the performance
and generalisation capabilities of my proposed method in several experiments on a larger
scale and continuous state spaces. The chapter ends in Section 3.6 with a remark regarding
conflicting insights of the critical point analysis and practical requirements.

3.2 Related Work
Recent attempts towards developing efficient NN-VFA methods follow the approach of
extending the well-studied LVFA algorithms. These are a general family of gradient-based
Temporal Difference algorithms, which have been proposed to optimise either the Mean
Squared Bellman Error [Baird III, 1995, Baird III and Moore, 1999] or the Mean Squared
Projected Bellman Error [Sutton et al., 2008, 2009]. The work in [Maei et al., 2009]
adapts the results of developing the so-called Gradient Temporal Difference algorithms to
a non-linear smooth manifold setting. The proposed approach requires projections onto
some smooth manifold, which is practically infeasible because the so-called geometry of
VFA manifolds is in general not available. Similarly, the approach developed in [Silver,
2013] projects estimates of the value function directly onto the vector subspace spanned
by the parameter matrices of the NNs. Unfortunately, no further analysis or numerical
development exists besides the original work.

Such a difficulty in studying and developing NN-VFA methods is partially due to an
incomplete theoretical understanding of training NNs. The main challenge of the underlying
optimisation problem is the strong non-convexity. Although there are several efforts towards
characterising the optimality of NN-training, e.g., the papers [Kawaguchi, 2016, Nguyen and
Hein, 2017, Haeffele and Vidal, 2017, Yun et al., 2018], a complete answer to the question
is still missing and demanding. The work in [Shen, 2018a,b, Shen and Gottwald, 2019]
addresses training of NNs using theory of differential topology and smooth optimisation.
It has highlighted the importance of over-parametrisation to ensure proper convergence
to a solution using an Approximated Newton algorithm. In this work, I introduce those
techniques to the Neuro-Dynamic Programming domain.

Lately, there has been more interest in Residual Gradient algorithms. As described
in [Baird III, 1995], Residual Gradient algorithms possess convergence guarantees, since
they use a complete gradient of a well-defined performance objective. Thus, they are
eligible for a critical point analysis. Unfortunately, these guarantees are coupled to solving
the Double Sampling issue, i.e., the requirement of having several possible successors for
every state to capture stochastic transitions. In a recent work [Saleh and Jiang, 2019], the
authors explore the application of deterministic Residual Gradient algorithms to bypass
the Double Sampling issue when using the Optimal Bellman Operator. Furthermore, they
characterise empirically the impact of stepwise increased noise in environments and can
motivate reviving Residual Gradient algorithms. Yin et al. [2022] report negative results
regarding Residual Gradient algorithms based on an experimental investigation. However,
at the time of writing my thesis, the document also appears to be incomplete and seems to
suffer from an imprecise formulation of the RL setting. In this work, I investigate Residual
Gradient algorithms in deterministic problems for Policy Evaluation instead of aiming
directly at the optimal value function. This allows to use a Policy Iteration scheme as done
in [Gottwald et al., 2018] with full control over the learning outcome. Involving a Gauss

32

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Newton Residual Gradient algorithm overcomes limitations regarding convergence speed
and a poor quality of the outcome, which have been described by the community.

In the paper [Wen et al., 2021], the authors also formulate the approximation of a
Q-function as Residual Gradient algorithm. However, they are forced later-on in their
document to rely on a Semi-Gradient method to circumvent the required Double Sampling.
It is interesting to see that the authors are able to use a Semi-Hessian for their Stackelberg
Actor-Critic algorithm. In my experiments, I find that a pure Semi-Gradient algorithm
with its Semi-Hessian diverges or shows no improvement over time. Thereby, I can motivate
both my selected approach via a Residual Gradient formulation and their extension of a
Semi-Gradient algorithm towards the Stackelberg Actor-Critic.

Dabney and Thomas [2014] explore a natural Critic-Only Residual Gradient algorithm.
Instead of constructing a Hessian matrix of the Bellman Residual, they introduce the Fisher
Information Matrix to enhance the descent behaviour. Despite the similarity between a
Hessian and the Fisher Matrix, they are not identical. Hence, a one-to-one translation of
insights is not possible. The authors need to employ a two-timescale algorithm, whereas I
can rely directly on non-convex optimisation. Furthermore, I can provide sophisticated
analysis and characterisation of Hessian and, thus, also analyse the descent behaviour as a
whole.

Another work [Cai et al., 2019], which is also strongly related to mine, pursues a similar
idea, namely the importance of over-parametrisation. However, the authors address Semi-
Gradient algorithms and thus work in a different setting. They show that the usage of
NNs for NL-VFA with a redundant amount of adjustable parameters is mandatory for
achieving good performance. They establish an implicit local linearisation and enable
reliable convergence to a global optimum of the Mean Squared Projected Bellman Error.
In [Brandfonbrener and Bruna, 2020], reliable convergence under over-parametrisation is
also confirmed when treating Semi-Gradient TD-Learning as ordinary differential equation
and investigating stationary points of the associated vector field. The Jacobian of over-
parametrised networks, when evaluated for all discrete states, can have full rank, which is
required for their theoretical investigation. Using an empirical approach as proposed in [Fu
et al., 2019], the authors arrive at the conclusion that larger NN-VFA architectures result in
smaller errors and boost convergence. In [Liu et al., 2019], the role of over-parametrisation
is classified as an important ingredient for a variant of Proximal Policy Optimisation
[Schulman et al., 2017] to converge to an optimum. Xiao et al. [2022] investigate over-
parametrisation with linear function approximation for Residual Gradient algorithms and
can derive regularisation terms for the non-linear case.

In my present document and my previously published work, I confirm the role of over-
parametrisation when using Residual Gradient algorithms together with Non-Linear Value
Function Approximation. Further, I provide insights from the global analysis perspective
to characterise the behaviour of a descent algorithm.

3.3 A Critical Point Analysis of the Mean Squared Bellman Error
In the following, I present my theoretical investigation of Residual Gradient algorithms by
analysing the critical points of the MSBE. Thereby, I follow the work in [Shen, 2018b] and
translate those insights to the Neuro-Dynamic Programming domain. First, I investigate
discrete state spaces and derive conditions, under which learning the exact value function

33

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

works reliably. Second, I extend my analysis to continuous spaces by changing to a
sampling based approximation of the MSBE and adapt previous conditions accordingly.
I characterise the importance of over-parametrisation, give design principles for MLPs
and unveil a connection to other state of the art algorithms. Third, I include multistep
methods in the analysis. By using multiple transitions of a dynamical system, one is able
to formulate of a more informative objective without strengthening requirements on the
function approximation architecture.

3.3.1 Exact Formulation with Discrete State Spaces
In discrete problems, one has two fundamental choices to approach a critical point analysis.
Either one seeks for an approximation architecture, which is exact for each of the KS
states, or one is interested in an architecture, which is exact for only N � KS sampled but
unique states. Despite working with sampled and unique states would simplify the analysis
and relax restrictions, as I show later for continuous spaces, this also means that I have to
address generalisation to states outside of sampled ones. However, since the sampling case
with discrete states would be almost identical to my approach for continuous state spaces,
I only present the exact learning assumption here. This implies that I am interested in
conditions for an MLP that would allow for a perfect solution to any state in a Markov
Decision Process.

I consider MLPs of the form F(1, n1, . . . , nL−1, 1), i.e., fully connected feed forward
networks with arbitrary depth or width but a one dimensional input and output. With
discrete and finite spaces, one can evaluate an MLP f ∈ F for every available state
s ∈ S and collect the evaluations of f as vector in RKS , where KS is the number of
states. As the simplest approach, I encode the discrete states with natural numbers for
the single input unit and, thus, can treat F (W) := [f(W, 1) · · · f(W,KS)]

T ∈ RKS as the
approximated value function for all states. Next, I define the Bellman Residual vector for
a policy π : S → A through the Bellman Operator in matrix form as

∆π(W) = F (W)− Tπ F (W)

= F (W)−
(
Rπ + γPπF (W)

)
=

(
IKS − γPπ

)
F (W)−Rπ, (3.1)

where the term Rπ contains the collection of all one-step rewards suitable for the matrix
form of the Bellman Operator and Pπ is the transition probability matrix under policy
π. The identity matrix with shape KS ×KS is denoted by IKS . I use a capital ∆ instead
of δ to emphasize that I consider all transitions in here instead of just a single one as in
Equation (2.17). Using a diagonal matrix Ξ := diag(ξ1, . . . , ξKS) consisting of the steady
state distributions ξi for all states, I can rewrite the norm in Equation (2.26) as the Neural
Mean Squared Bellman Error (NMSBE) function

J (W) :=
1

2
∆π(W)TΞ∆π(W). (3.2)

It is important to notice that the NMSBE function is generally non-convex in W, and even
worse, it is also non-coercive [Güler, 2010]. Namely, for W→∞ one does not necessarily
have J (W)→∞. Thus, the existence and attainability of global minima of J (W) are not

34

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

guaranteed in general. Nevertheless, when appropriate non-linear activation functions are
employed in hidden layers, exact learning of finite samples can be achieved with sufficiently
large architectures [Shah and Poon, 1999]. Thus, for my analysis, it is safe to assume that
there exists an MLP able to approximate the value function Vπ.

Assumption 1 (Existence of exact approximator). Let Vπ : S → R be the exact value
function under policy π. There exists at least one MLP architecture F as defined in
Equation (2.24) together with a set of parameters W∗ ∈W such that the output of F and
Vπ coincide, i.e., one has

f(W∗, s) = Vπ(s) ∀s ∈ S.

To conduct a critical point analysis of the NMSBE function, I first need to compute
first-order derivatives. Due to the matrix form of the Bellman Operator Tπ, I obtain the
directional derivative of J at the point W ∈W in direction H ∈W as

DJ (W)[H] = ∆π(W)TΞ (IKS − γPπ)DF (W)[H], (3.3)

with DF (W)[H] being the differential map of the MLP. As the function F (W) is simply
a superposed function evaluated at each state, I just need to compute the directional
derivative of the MLP evaluated at a specific state s, i.e., D f(W, s)[H]. Furthermore, the
directional derivative of f(W, s) is a linear operator, hence the evaluation of directional
derivatives of f for all states can be expressed as matrix vector multiplication and results in

DF (W)[H] =
[
vec(∇Wf(W, 1)) · · · vec(∇Wf(W,KS))

]T

︸ ︷︷ ︸
=:G(W)∈RKS×Nnet

vec(H), (3.4)

where vec(∇Wf(W, s)) ∈ RNnet is the gradient of f with respect to the parameters
evaluated at W for state s under the Euclidean norm and vec(H) ∈ RNnet the corresponding
direction. The operation vec(·) transforms a matrix into a vector by stacking its columns. It
acts on collections of matrices by concatenating the results of each individual vectorisation.
The matrix G(W) takes the role of the Jacobian for the evaluation of all states F (W).
Now, I can characterise all critical points of the NMSBE function J from Equation (3.2)
by setting its gradient ∇WJ (W) ∈ RNnet to zero, i.e., ∇WJ (W) = 0. Combining the
results from Equations (3.3) and (3.4) together with Riesz’ Representation Theorem yields
the critical point condition

∇WJ (W) := G(W)T (IKS − γPπ)
T Ξ∆π(W)

!
= 0, (3.5)

which is the counterpart1 to Equation (19) in [Shen, 2018b] for the Dynamic Programming
setting with exact learning. I derive the following proposition.

Proposition 1 (Suboptimal local minima free condition). Let an MLP architecture F
satisfy Assumption 1. If the rank of the matrix G(W) as constructed in Equation (3.4) is
equal to KS for all W ∈W, then any extremum W∗ ∈W of J realises the true value
function Vπ, i.e., f(W∗, s) = Vπ(s) ∀s ∈ S. Furthermore, the NMSBE function J is free
of suboptimal local minima.

1In this paper I use G in place of P to avoid confusion with the transition probability matrix

35

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Proof. Since the underlying state space transitions under policy π are required to be
Markovian and ergodic, both terms Ξ and (IKS − γPπ) have full rank. Consequently, the
expression Ξ(IKS − γPπ)G(W∗)T also has rank KS , if one claims that G(W∗) has full
rank. Hence, there is only the trivial solution left for the linear system in Equation (3.5),
meaning that the Bellman Residual ∆π(W

∗) must be exactly zero for all states. Since the
Bellman Residual is only zero for the unique fixed point Vπ of the operator Tπ, Assumption 1
implies that W∗ corresponds to the true value function. Furthermore, the Bellman Residual
appears as factor in the NMSBE. Hence, at any critical point the error vanishes and there
are no suboptimal local minima.

To make use of Proposition 1, I need to investigate, under what conditions the matrix
G(W) has full column rank. The first risk of loosing a full rank can be eliminated by
choosing proper activation functions without zero derivatives for finite inputs. To see this,
one has to look at the structure of G(W). Carrying out the calculations in Equation (3.4)
yields

G(W) =

ΨT

1

(
In1 ⊗ φ

(1)
0

T
)

· · · ΨT
L

(
InL ⊗ φ

(1)
L−1

T
)

...

ΨT
1

(
In1 ⊗ φ

(KS)
0

T
)
· · · ΨT

L

(
InL ⊗ φ

(KS)
L−1

T
)

 , (3.6)

where the Kronecker products result from the layer wise definition of an MLP. The matrices
Ψl ∈ Rnl×nL obey the recursive definition Ψl = ΣlW̄l+1Ψl+1 with ΨL = 1. The diagonal
matrices Σl consist of φ̇l, which is the output until layer l but using σ̇ as activation
function for layer l. A detailed construction is available in Appendix A. By choosing strictly
monotonically increasing functions for σ, I remove one way for parts of G(W) becoming
zero. A second way to reduce the rank of G(W) is to have parameter matrices W̄l, which
are approaching zero. Due to random initialisation of all Wl, this typically does not happen.
Although there are no theoretical guarantees, most matrices have full rank in practical
applications, where noise or sampling is present. More demanding are situations, in which
rows of G(W) lie in a shared subspace and thus result in a rank deficient matrix. Obviously,
one has to design MLPs in such a way that the risk for this situation is minimised. The
evident requirement for G(W) is to have enough columns for the given number of rows

Nnet ≥ KS , (3.7)

meaning that I want to employ over-parametrised MLPs. In the DP setting, I have as
an additional advantage that each block in G(W) reduces to a single row, because the
output layers are always scalar, i.e., nL = 1. For a given amount of samples, there are less
possibilities to have linear dependent rows compared to a more general multidimensional
regression setting, where I would have nL ≥ 1.

Unfortunately, the requirement of using over-parametrised MLPs as in Equation (3.7)
prevents a direct application of the theory. If I need as many adjustable parameters in
an MLP as there are unique states, I could use a tabular representation in the first place
and avoid dealing with Non-Linear Value Function Approximation. Note that the strong
condition in Equation (3.7) stems from the assumption of being exact for all states.

In many applications, discrete states are not processed directly by an MLP but passed
through an encoding step such as assigning random features. This leads to a potentially

36

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

weaker lower bound K̃ < KS , since several states could receive an identical feature vector.
But even with K̃ parameters, one ends in the same contradiction. Once it is possible to
employ MLPs with K̃ parameters, one could also work directly with tabular methods in
the feature space.

If the NMSBE is changed to be an approximation based on sampling, as done for
continuous spaces in Section 3.3.2, I could reduce the number of MLP parameters from
KS states down to N � KS samples. But as an immediate consequence, generalisation
becomes an issue, because the MLP is trained by design with only a subset of all elements
in the state space. Investigating the predictive capabilities for the remaining states of a
discrete space, which not necessarily has a proper definition for a metric, is beyond the
analysis presented in my work.

In order to obtain an efficient and effective algorithm, one can employ Newton-type
optimisation procedures. Furthermore, to ease the work involved in the Hessian, one should
aim at an Approximated Newton algorithm. A closer look reveals that the differential map
as shown in Equation (3.3) is a candidate for the Gauss Newton approximation as in the
non-linear regression setting. Indeed, for the second directional derivative of J at W with
two directions H1,H2 ∈W , I have

D2 J (W)[H1,H2] = ∆π(W)TΞ (IKS − γPπ)D
2 F (W)[H1,H2]

+ DF (W)[H1]
T (IKS − γPπ)

T Ξ (IKS − γPπ)DF (W)[H2], (3.8)

where I see that the first summand from the right hand side vanishes at any critical point
W∗ ∈W according to Proposition 1. Thus, the evaluation of the Hessian of the NMSBE
function at W∗ is given by

D2J (W∗)[H1,H2] =

vec(H1)
TG(W∗)T (IKS − γPπ)

T Ξ (IKS − γPπ)G(W∗)︸ ︷︷ ︸
=:HW J (W∗)∈RNnet×Nnet

vec(H2). (3.9)

This corresponds to the Gauss Newton approximation for non-linear least squares regression,
i.e., defining the Hessian as product of the Jacobian and its transpose. My characterisation
of critical points reveals this possibility for approximation as a side benefit. Using naively
the product of the MLP’s Jacobians G(W∗) as approximation would ignore the additional
structure coming from the Bellman Operator.

To ensure proper behaviour for a GN algorithm, I further need to characterise the
Hessian HW J (W∗) of the NMSBE at all critical points. Its quadratic form leads to the
following result for MLPs.

Proposition 2 (Properties of the approximated Hessian). The Hessian of the NMSBE
function J at any critical point W∗ is always positive semi-definite. Furthermore, its rank
is bounded from above by

rank(HW J (W∗)) ≤ KS ,

if the MLP satisfies Equation (3.7).

Proof. Positive semi-definiteness of HW J (W∗) follows from its symmetric definition. As
before, the steady state distribution Ξ and the matrix (IKS − γPπ) have full rank. The
rank of G(W∗) is at most KS . Due to HW J (W∗) being the product of these matrices,
one obtains the upper bound on its rank.

37

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

It is interesting to see that the rank condition from Equation (3.7) also allows the
Hessian to become positive definite for the special case KS = Nnet. If the matrix G(W)
has full rank, then the Hessian is positive definite. This has significant consequences for
the optimisation problem. A positive definite Hessian at all critical points means that
they are all local minima, thereby supporting further Proposition 1. There are no saddle
points or maxima, where a gradient based optimisation strategy could get stuck. Thus,
over-parametrisation of MLPs is not only important for Proposition 1, but also necessary
from the algorithmic perspective. I confirm the proposed approximation for the Hessian in
discrete state spaces with exact learning numerically in Section 3.4.3.

3.3.2 Sampling Based Approaches For Continuous State Spaces
In higher dimensional continuous state spaces, an exact representation of the value function
based on a fine grained partitioning of S is typically impossible. This is due to the Curse
of Dimensionality and one is forced to work directly with the continuous space. This causes
MLPs to be of the form F(KS , . . . , 1) to accept KS dimensional state vectors as input.

Since there cannot exist a transition probability matrix in continuous spaces and its
corresponding discrete steady state distribution ξ, the NMSBE as shown in Equation (3.2)
is not available here. Instead, I have to work with a finite number of samples N ∈ N to
approximate the loss as done in Equation (2.29).

Another limitation for Residual Gradient algorithms is the so-called Double Sampling
issue. Due to the expectation inside the Bellman Operator, for every single sample si ∈ S
many possible successors s′i are necessary to approximate this expectation empirically
[Baird III, 1995]. The Double Sampling issue can be bypassed, if either an accurate model
containing a description of stochastic transitions is available or if one has access to a
simulator, where the state can be set freely to collect its successors. However, if one
wishes to learn in a model-free manner or with rather limited and less powerful simulations,
collecting successor samples becomes problematic. In a recent work [Saleh and Jiang, 2019],
the authors rediscovered the application of Residual Gradient algorithms in deterministic
environments. They are motivated by their observation that many environments and
common benchmarks are deterministic or contain only a small amount of noise. Therefore,
ignoring the stochastic term in the Bellman Operator does not cause too much harm.
The consequence for my analysis is that I follow the same strategy and restrict myself to
deterministic MDPs and analyse the algorithm in its purest form. As in [Saleh and Jiang,
2019], a deterministic algorithm is still of practical use. And, as elaborated in Section 2.5.2,
if I already need to use analytical models or capable simulators such that the objective
for training is defined properly, then the stochasticity in Tπ does not pose any interesting
challenge.

Therefore, the one-step TD-error from Equation (2.17) now simplifies for the i-th
sample to

δ(si) := V (si)− r(si, π(si), s
′
i)− γV (s′i), (3.10)

where s′i = f(si, π(si)) is the successor of si when executing the action π(si). As before, I
collect the evaluation of the MLP for all N sampled states si as a vector and denote it
by F (W) := [f(W, s1) · · · f(W, sN)]T ∈ RN . Next, I rewrite the loss of Equation (2.29)

38

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

accordingly and obtain the sampled NMSBE for continuous state spaces as

J̃ (W) :=
1

2N

N∑
i=1

(
f(W, si)− r(si, π(si), s

′
i)− γf(W, s′i)︸ ︷︷ ︸

δ(si)

)2

=
1

2N

[
δ(s1) · · · δ(sN)

] δ(s1)
...

δ(sN)

=

1

2N
∆̃π(W)T∆̃π(W), (3.11)

where ∆̃π(W) ∈ RN now takes the form

∆̃π(W) = F (W)−Rπ − γF ′(W) (3.12)

when I denote by F ′ the evaluation of f for all successor states s′i. Similar lines of thought
apply to this loss as to the discrete setting . But analogously to [Shen, 2018b], I now consider
a finite set of sample states, at which in the best case the corresponding value function is
approximated exactly. I formulate this situation for Residual Gradient algorithms precisely
in the next definition.

Definition 1 (Finite exact approximator). Let Vπ : S → R be the value function under
policy π. Given N sample states si ∈ S, I call an MLP f ∈ F , which satisfies

f(W, si) = Vπ(si) ∀i = 1, . . . , N

for some parameters W ∈W, a finite exact approximator of Vπ based on the N sample
states.

As in the discrete setting, one can choose sufficiently rich MLP architectures F and,
thus, assume also in the continuous setting the existence of such an approximator.

Assumption 2 (Existence of finite exact approximators). Let Vπ : S → R be the value
function of policy π. Given N unique samples si ∈ S, there exists at least one MLP
architecture F as defined in Equation (2.24) together with a set of parameters W ∈W, such
that the MLP f(W, ·) ∈ F is a finite exact approximator of Vπ according to Definition 1.

The sampling based approximation of the NMSBE provides a new complication for Defi-
nition 1 and Assumption 2, which does not occur in the exact learning setting. Definition 1
only describes the best possible situation. However, there are MLPs, which are not finite
exact approximators, but may also have zero NMSBE.

Proposition 3 (The NMSBE includes bad solutions). Given an arbitrarily expressive
MLP architecture F , there can exist some parameters W ∈W, for which f(W, ·) ∈ F
renders the NMSBE as defined in Equation (3.11) zero, without f being a finite exact
approximator according to Definition 1.

Proof. The NMSBE consists of N squared terms in a sum, which are computed with N
unique sample states si and their successors. To minimise the NMSBE, an MLP has to
shrink the magnitude of each individual δ(si)2. Let s ∈ S be one of the si and s′ be its

39

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

successor. The term δ(s)2 can be thought of the task to align f(W, s) with f(W, s′) while
considering the one-step reward r and discount factor γ. If s′ is not part of the sample
states si, and if additionally its distance to any si is so large that the MLP can produce
values for s′ independently of other states, a new degree of freedom arises to minimise
δ for s and s′. The output values of the MLP, which are required to solve the equation
f(W, s)− γf(W, s′) = c for an arbitrary constant c, or, in other words, render δ(s) zero,
are only defined up to scale if s and s′ are the free variables. A sufficiently large MLP
can produce for almost all sample states si the correct value function, but can also create
arbitrary values for s and s′. By the nature of δ, the MLP has zero NMSBE. Yet, it is not
always a finite exact approximator.

Whether the issue characterised by Proposition 3 becomes problematic, depends not only
on the distribution of samples in the state space, but also on generalisation capabilities of
an MLP. It is questionable, whether the issue in Proposition 3 has practical relevance. Of
course, one can construct toy examples to demonstrate this issue. But in real engineering
applications, the combination of high generalisation capabilities, randomly placed samples,
more complicated system dynamics and the usage of multistep algorithms should alleviate
the issue altogether. Thus, an empirical investigation should reveal, whether the effect of
Proposition 3 is negligible and whether these generalisation capabilities are sufficient. It is
part of the experiments in Section 3.5.

To provide an intuitive understanding of Proposition 3, let me construct such a toy
example with the help of the one dimensional dynamical system as it is described in
Section 2.6.2. Further, I use its reward signal r1 from Equation (2.35). The policy for
evaluation is set to be constant right, i.e., π(s) = 1 ∀s ∈ S. To approximate value functions,
I use piecewise constant functions, which consist of 32 segments with equal width. These
approximation architectures are trained by minimising the sampled MSBE, of course
with a Gauss Newton descent algorithm. Training data consists also of 32 equally spaced
samples in the state space such that one sample per constant region of the approximation
architecture is available. To reveal all possible scaling degrees of freedom, the 12th and
13th state sample can be omitted during training. Doing so creates a gap in the covered
state space and cuts the connection between successors. I train five architectures, which
use all the training samples. They will serve as a reference for the best possible case one
can have. Each architecture has its 32 initial parameters set to the same value, i.e., the
initial value function is constant for the complete state space. The initial parameters for
the five different architectures are offset to each other and take the values 0.42 + i · 0.025
with i ∈ {−2,−1, 0, 1, 2}. I select those values due to the final range in which Vπ is living
and to have a proper spread for visualisation. Another collection of five architectures,
which employ the same initialisation strategy, are trained in the same setting but with the
gap included. Lastly, a ground truth is available in the from of rollouts, which start from a
large number of densely packed starting states. Further details regarding the computing of
ground truths are available in Section 3.5.1. Alternatively, the computation of Vπ could
also exploit the tabular nature of a piecewise constant function approximation and apply
directly the Bellman Operator under policy π as it can be done in discrete MDPs. The
results of this experiment are provided in Figure 3.1.

The toy problem confirms Proposition 3 numerically. Figure 3.1a shows that the sampled
MSBE, as it is computed in Equation (2.29), becomes zero when taking machine precision
into account. However, the corresponding approximated value functions in Figure 3.1b do

40

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 2 4 6 8
iteration

10 32

10 27

10 22

10 17

10 12

10 7

10 2
sa

m
pl

ed
 M

SB
E

missing connection
best possible case

(a) Error over time

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
state

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e
fu

nc
tio

n
Reward propagates

with all samples

Arbitrary scaling
if sample is

missing

missing connection
best possible case
V (s)

(b) Approximated value functions

Figure 3.1: Sampling inside the MSBE leads to problems for training piecewise constant
approximation architectures. Their parameters can only be trained up to some
scaling constant (blue markers). It is impossible to change parameters away
from their initial values, if connections between states are missing (red markers).
For both, the sampled MSBE approaches zero over time.

not match the ground truth. Neither the training with artificial connectivity issues nor the
training, where all sample states are included, get everywhere close to Vπ(s). The offsets
from initialisation or the initial values themself remain visible. The best possible case, which
is shown in blue in Figure 3.1b, follows everywhere the structure from the ground truth,
i.e., the approximated value functions have the same steps and offsets between different
segments. But the effect from initialisation is not corrected during the training. The initial
offset of the parameters remains and results in shifted value functions. This behaviour
already implies that the sampling based approach to the MSBE poses a first challenge
for realising Policy Evaluation with function approximation via non-convex optimisation.
However, it is important to emphasize that an offset for the entire value function does not
skew the outcome of Policy Improvement. Hence, the combination of Policy Evaluation
and Improvement can still result in a working Approximate Policy Iteration algorithm.
Additionally, since the TD-errors are also part of Semi-Gradient algorithms, they suffer
from the same problem to a certain extent. The negative aspect of Proposition 3 becomes
apparent, once the training process does not include the entire state space any more. By
removing the 12th and 13th sample from the training data, one removes the connection
between states on the left side of the gap (s ≤ 0.13) from those on the right side (s > 0.13).
This allows the MSBE to be zero for arbitrary values of states directly left of the gap.
Hence, the value function approximations, which are shown in red, contain in the middle
of the state space their initial values. They are not changed during training, because the
reward signal is not propagating across the entire state space. States further to the left
correctly adapt their values to produce those typical steps as they show up for the ground

41

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

truth. This scaling freedom has now a fatal impact on the outcome of Policy Improvement.
The solution to (Tπ′ Ṽ)(s) = (Tg Ṽ)(s) ∀s ∈ S from Equation (2.10), where Ṽ denotes
the approximated value function, depends entirely on the initialisation of the function
approximation architecture.

Unfortunately, there is no feasible method to determine, whether the reward signal is
propagating correctly or not. One possible way for compensating the scaling degree of
freedom is to enhance the connectivity between consecutive states by employing multistep
Bellman Operators. Once there are more connections between sample states and their
various successors available, the chance that parts of the state space are not sufficiently
connected becomes smaller and the reward signal would propagate more reliably. Hence, an
approximation architecture has less freedom to approximate functions, which would shrink
the magnitude of the (multistep) Temporal Difference error to zero without becoming close
to Vπ. Of course, one has to expect that results will still not be perfect, but the distance
from approximated value functions to the ground truth should be smaller. Hence, this
toy problem provides a first motivation to extend the analysis of this section also to the
multistep setting. In Section 3.3.3, I give further motivation and extend the analysis of
critical points to multistep Bellman Operators.

Beside the investigation of the sampled MSBE itself, its combination with Multi-Layer
Perceptrons, namely the NMSBE, needs to be investigated as well. It is important to
know, whether its critical points form a set of solutions matching Definition 1 or whether
there are further complications. An analysis of critical points follows the same steps as in
Section 3.3.1. First, I need the differential map of Equation (3.11). It takes the form

D J̃ (W)[H] =
1

N
∆̃π(W)T

(
DF (W)[H]− γDF ′(W)[H]

)
=

1

N
∆̃π(W)T

(
G(W)− γG′(W)

)
vec(H), (3.13)

where the definition of G(W) ∈ RN×Nnet applies as in the discrete setting. The matrix G′

results from using s′i as input. Using this map, critical points are characterised by setting
the gradient to zero

∇WJ̃ (W) :=
1

N

(
G(W)− γG′(W)︸ ︷︷ ︸
=:G̃(W)∈RN×Nnet

)T
∆̃π(W)

!
= 0. (3.14)

Apparently, the critical point condition for the continuous setting based on N unique samples
in Equation (3.14) takes a similar form as that of the discrete setting in Equation (3.5). But
since I no longer investigate the exact learning scenario, I have to reformulate Proposition 1
and obtain a slightly different version.
Proposition 4 (Suboptimal local minima free condition). Let an MLP architecture f ∈ F
satisfy Assumption 2. If the rank of the matrix G̃(W) as defined in Equation (3.14) is
equal to N for all W ∈W, then any extremum W∗ ∈W of J̃ achieves zero NMSBE.
Furthermore, the NMSBE function J̃ of Equation (3.11) is free of suboptimal local minima.

Proof. As before, Equation (3.14) defines a linear equation system in the sampled Bellman
Residual vector ∆̃π(W). If one claims that G̃(W) has full rank, there is only the trivial
solution left for ∆̃π(W). By Assumption 2, one knows that such an MLP exists. Fur-
thermore, the Bellman Residual appears as factor in the sampled NMSBE. Hence, at any
critical point the error vanishes completely and there are no suboptimal local minima.

42

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

I now address the requirements for a full rank of G̃(W), since this matrix forms the
backbone of Proposition 4. As the first requirement, G̃(W) has to be non-zero to define a
proper equation system and enforce a trivial solution in terms of ∆̃π(W) in Equation (3.14).
For both differential maps G(W) and G′(W), the design principles apply individually.
Hence, it is unlikely in practice that for N unique sample states simultaneously both
matrices vanish elementwise on their own. More troublesome is the distance between a
state s and its successor s′. If ‖s− s′‖ → 0, which happens for example whenever s is
getting close to a fixed point of the dynamical system, then the discount factor γ ∈ (0, 1)
prevents a perfect cancellation of G(W) with G′(W). Aside from those fixed points in
the state space, it is again unlikely to observe perfect cancellation of these two matrices
in practice. As the second requirement, the rank of G̃(W) is important. Obviously, it is
more difficult to make concise statements compared to discrete and exact learning setting.
For the rank of the sum of two matrices, a known inequality is

rank (A+B) < rank (A) + rank (B) , (3.15)

which implies that I still have to increase the rank of G(W) and G′(W) individually to
push the upper bound for the rank of G̃(W) high enough to allow for a full rank. This
leads to similar design principles for the MLP as in the discrete setting. Hence, the more
complex G̃(W) still complies to considerations of the discrete setting regarding linear
dependent rows. Of course, these properties and requirements come without any guarantees.
In general, I expect that carefully constructed examples (yet almost pathological) exist,
where a drop of the rank of G̃(W) happens frequently. But in practice, where numerical
errors and sampled quantities are present, I do not consider this to become a significant
problem. When taking a closer look at G̃(W) itself, I find that the overall block structure
of G(W) as shown in Equation (3.6) remains. I have

G̃(W) =

 G̃(W)11 · · · G̃(W)1L
...

G̃(W)N1 · · · G̃(W)NL

 (3.16)

with the blocks

G̃(W)ij = ΨT
j

(
Inj ⊗ φj−1

(i)
)T
− γΨ′T

j

(
Inj ⊗ φ′

j−1
(i)
)T

.

The vectors φl ∈ Rnl result from the evaluation of all layers for state s and φ′
l from using

the successor s′. Similarly, the matrices Ψ and Ψ′ use s and s′ for their computation. I
provide slightly more detailed construction steps in Appendix A. Unfortunately, one can
see from Equation (3.16) that no additional statements or simplifications are possible.

Various authors report a slow convergence of RG algorithms due to the similarity of
G(W) and G′(W), e.g., the work in [Baird III, 1995, Bertsekas, 2012, Dabney and Thomas,
2014, Zhang et al., 2020b]. I can identify two remedies here. The first is already visible
in Equation (3.14) or Equation (3.16), where the contribution from successors states in
G′(W) comes with the prefactor γ. If using n-step returns, as done for example in [Mnih
et al., 2016], the discount factor would come with higher powers, thus, more efficiently
taking away the cancelling effect of G′(W) onto G(W) if a successor stays after several
steps still close to its original state. For large enough lookahead, γn would become small

43

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

enough to allow for ignoring G′(W) altogether, which also helps with the desired full
rank of G̃(W). Also, Semi-Gradient issues such as the limited applicability of classic
optimisation methods seem to be avoidable, because for long enough lookahead the omitted
dependence of derivatives with respect to MLP parameters in the TD target vanishes
naturally. Furthermore, it is interesting to see that the extension of n-step returns to a full
TD(λ) algorithm is a core component in Proximal Policy Optimisation [Schulman et al.,
2017] or Generalized Advantage Estimation [Schulman et al., 2016]. By using TD(λ), one
obtains per sampled state more information without increasing their amount. Hence, the
required number of parameters to obtain a full rank for G(W) does not increase. This
direction is explored further in Section 3.3.3. A second remedy is related to vanishing
gradients of J̃ , if s and s′ are close by. Since this effect is coupled to the geometry of the
loss surface, a natural solution is to use second-order gradient descent, which takes the
curvature explicitly into account to define a descent direction. Hence, I propose to employ
analogously to the discrete setting a Gauss Newton Residual Gradient Algorithm. Other
approaches to overcome curvature issues, for example momentum based descent algorithms,
are too reliant on the dynamical runtime behaviour as well as on initialisation. They are
prone to excessive hyper parameter tuning and frequent restarts. In the worst case, they
complicate reproducibility, which is also a reason, why I have decided to use second-order
optimisation.

As before, to see the possibility for a GN approximation of the Hessian, I first write
down the second-order differential map of J̃ at some point W ∈W for two directions
H1,H2 ∈W

D2 J̃ (W)[H1,H2] =
1

N
∆̃π(W)T

(
D2 F (W)[H1,H2]− γD2 F ′(W)[H1,H2]

)
+

1

N
D∆̃π(W)[H1]

T
(
DF (W)[H2]− γDF ′(W)[H2]

)
. (3.17)

Since the first summand contains the Bellman Residual as factor, it vanishes at any critical
point W∗ of J̃ due to the assumption of exact learning at sample states. This removes
the contribution of second-order derivatives of the MLP and allows me to simplify the
Hessian to

D2 J̃ (W∗)[H1,H2] =
1

N
vec(H1)

T
(
G(W∗)− γG′(W∗)

)T(
G(W∗)− γG′(W∗)

)
︸ ︷︷ ︸

HW J̃ (W∗)∈RNnet×Nnet

vec(H2).

(3.18)
It becomes clear that Proposition 2 applies almost unchanged.

Proposition 5 (Properties of the approximated Hessian). The Hessian of the NMSBE
function J̃ from Equation (3.11) is at any critical point W∗ always positive semi-definite.
Furthermore, its rank is bounded from above by

rank(HW J̃ (W∗)) ≤ N.

Proof. Positive semi-definiteness follows from the symmetric definition. The rank of the
matrix (G(W∗)− γG′(W∗)) is at most N . For HW J̃ (W∗) being the product of these,
one gets the upper bound on its rank.

44

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

I want to emphasize that due to the sampling based formulation of the objective, the
requirement to employ over-parametrised MLPs

Nnet ≥ N (3.19)
is far less restricting in terms of the size of the Hessian than in the discrete setting with
exact learning. One can control the amount of samples N and select a reasonable size.
With nowadays hardware capabilities, computational concerns regarding a second-order
optimisation method are no longer that severe. MLPs can become large enough for NDP
applications while still allowing for working with Hessians in a reasonable amount of time.
I further address practical concerns in Section 3.4 and as part of the experiments.

For HW J̃ (W∗) there still exists the special case for Nnet = N , which causes the matrix
to become positive definite if its rank is full. Hence, the considerations from the discrete
setting apply here as well.

The attentive reader might have spotted that Propositions 4 and 5 rely both on Assump-
tion 2 being fulfilled. However, the case, where the assumption does not hold, has not been
addressed yet. Doing so leads to the following remark.
Remark 1 (What if finite exact approximators do not exist). If a finite exact approximator
is out of reach, i.e., Assumption 2 is not satisfied, then for MLPs f ∈ F the condition

∆̃π(W) 6= 0 ∀W ∈W

applies. Depending on the rank of G̃(W), the objective J̃ is either free of critical points if the
rank is full, or arbitrary critical points exists, because there are solutions to Equation (3.14)
other than the trivial one. They fall into the null space of G̃(W) and thereby create the
zero for the critical point condition.

The typical logic and line of argumentation applies for the rank of G̃(W) as in the
previous propositions. Namely, one would expect the row rank of G̃(W) to be full in
typical engineering applications. The empirical results in Section 3.5.4 will support this
expectation. Thus, the situation outlined in Remark 1 results in a descent algorithm,
which can be run as long as the numerical precision of a computer system permits further
progress. There are no critical points, where the iterates would accumulate, such that one
can decrease the NMSBE forever and ever with diminishing progress.

In summary, I have two kind of approaches, namely exact learning and sampling based
approximation. For discrete state spaces, I have a sound and exact algorithm with verifiable
local quadratic convergence as I will show later. For continuous state spaces, only a sampling
based algorithm is realisable. As I have shown, it possesses a matching behaviour with only
slightly altered propositions. Thus, the only major difference is indeed the formulation of
the loss. By using sampling, I allow for broader applications without sacrificing the entire
theoretical foundation. The last uncertainty left is, how many sample states are required,
i.e., how to select the size of N for a certain MDP and given MLP. I treat this problem
concerning sampling complexity mainly as future research, although there will be some
empirical statements in that regard.

3.3.3 Multistep Methods For Continuous State Spaces
A key ingredient in well-performing RL algorithms are n-step returns [Mnih et al., 2016] or
full TD(λ)-like multistep lookahead mechanisms [Schulman et al., 2016, 2017]. In the previ-
ous section, there have been already hints that these capabilities of multistep formulations

45

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

could arise due to their effect on the critical point condition from Equation (3.14). Fur-
thermore, multistep methods should be more robust regarding bad positioned state space
samples. Longer trajectories consisting of multiple transitions transport more effectively
the information about the reward signal through the state space. Hence, the goal of this
section is to investigate and analyse the impact of multistep lookahead formulation on RG
algorithms, especially when using a GN approximation of the Hessian during optimisation.
I start with extending the loss to realise a training algorithm that employs multistep
lookahead. Next, I derive its differential map and the related critical point condition.
Later, in Section 3.5.4, the influence of larger lookahead on critical points is captured
empirically for a Policy Evaluation task. Alternations in behaviour regarding convergence
and generalisation performance are described. Additionally, I explore the application of
multistep methods for full Policy Iteration at the end of Section 3.5.5.

One obtains a multistep lookahead method by merging k repeated applications of the
Bellman Operator Tπ in a single operation. The major part of common multistep DRL
approaches involve two particular constructions. The first contains the well-known TD(λ)-
like formulation, in which infinite many powers of the Bellman Operator are combined with
an exponential weighting. The second construction is a variation of the first, which only
requires finite many steps into the future and can be combined with an arbitrary weighting.
To ease the reading, I call this second construction in my work compound method and also
introduce the more compact label TD(k). In the following, I introduce both constructions
concisely such that I can tackle afterwards their corresponding critical point conditions.

As the first construction attempt for a multistep method, one sums together infinite
many powers of Tπ with exponential weighting to obtain the TD(λ) method. This is a
common approach and already thoroughly investigated in textbooks, e.g., in [Bertsekas,
2012]. Yet, the results only apply to discrete state spaces and linear function approximation
architectures such that a partial goal of my analysis is to bridge the gap towards continuous
spaces and non-linear approximation techniques. Nevertheless, I also address discrete
state space for the sake of completeness in Section 3.4.4. In [Schulman et al., 2016],
a TD(λ) approach is used together with advantage functions to achieve a well-working
DRL algorithm. Despite this particular realisation of a DRL algorithm being the main
motivation for the investigation of multistep methods in my thesis, I still work directly
with value functions. Since the advantage A(s, a) = Q(s, a)− V (s) depends on Q and V ,
these two functions still need to be learned on their own, for example through minimising
the NMSBE. Hence, I focus on V alone to avoid dealing with two optimisation tasks in my
work. I denote the multistep Bellman Operator corresponding to TD(λ) by T

(λ)
π : V → V.

It accepts some λ ∈ (0, 1) and takes the form

T(λ)
π := (1− λ) lim

k→∞

k∑
j=0

λj Tj+1
π . (3.20)

Of course, the operator T
(λ)
π always acts on a certain value function V ∈ V and cannot

exist on its own. The expressions in the sum are simple n-step returns as used in [Mnih
et al., 2016]. Thus, TD(λ) can be seen as a more sophisticated and generalised version of
n-step returns. For j = 1, I have (T1

π V)(s) = (Tπ V)(s) for some s ∈ S when using the
shorthand notation from Equations (2.3) and (2.7). Two- and three-step returns can be

46

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

written down as

(T2
π V)(s) = E

s′,s′′

[
r(s, π(s), s′) + γr(s′, π(s′), s′′) + γ2V (s′′)

]
and

(T3
π V)(s) = E

s′,s′′,s′′′

[
r(s, π(s), s′) + γr(s′, π(s′), s′′) + γ2r(s′′, π(s′′), s′′′) + γ3V (s′′′)

]
,

respectively. Higher powers of Tπ are defined similarly. Due to the same reasons as for
the one-step operator (cf. Section 3.3.2), expectations over successor states are rendered
obsolete, since I only work with deterministic environments. The fixed point of T

(λ)
π

is still Vπ as defined in Equation (2.1) and yields the condition Vπ(s) = (T
(λ)
π Vπ)(s).

Therefore, this operator also allows for a conversion of the fixed point iteration into a root
finding problem by defining the difference

δ(λ)(s) := V (s)− (T(λ)
π V)(s). (3.21)

A key problem with this condition is that infinite many transitions to the successors s′, s′′,
s′′′, . . ., are required for computation. Hence, I exploit the geometric series and terminate
the sum early once λj is small enough to be ignored without causing larger approximation
errors. The available machine precision could serve as a rough guidance. For example,
if one uses λ = 0.9, cutting the infinite sum at j = 500 transitions would result in a
pre-factors smaller than 0.9500 ≈ 10−23 for later terms. Of course, this is not a perfect
guarantee that the approximation error is small, because it still depends on the actual
value of (Tj

π V)(s). But it provides a good heuristic. Hence, in practical applications,
one still collects many successors, but at least just finite many. To do so, one brings
the dynamical system under control into the desired current state s and retrieves its k
successors s′, s′′ until s(k) by executing actions according to the current policy. Once a
batch of N start states si, which are uniformly distributed in the entire state space, and
their successors s

(j)
i with j = 1, . . . , k is complete, one can approximate a solution to the

root finding problem with an MLP by minimising the multistep Neural Mean Squared
Bellman Error (mNMSBE)

J (λ)(W) :=
1

2N

N∑
i=1

(
f(W, si)−

∞∑
j=0

γjrij − (1− λ) γ
∞∑
j=0

λjγjf(W, s
(j+1)
i)

)2

=
1

2N
∆(λ)

π (W)T∆(λ)
π (W) (3.22)

with any suitable method. The expression ∆
(λ)
π (W) ∈ RN now takes the form

∆(λ)
π (W) := F (W)−R(λ)

π − (1− λ) γ
∞∑
j=0

λjγjF (j+1)(W) (3.23)

by collecting for all i the evaluation of the MLP f : W × S → R for the states at the j-th
successor as a vector F (W)(j) := [f(W, s

(j)
1) · · · f(W, s

(j)
N)]T ∈ RN . Furthermore, I use the

abbreviation rij = r(s
(j)
i , π(s

(j)
i), s

(j+1)
i) and group all accumulated and discounted reward

terms in R
(λ)
π .

47

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

The second construction TD(k) uses only finite many powers by design and combines
them as simple weighted average. Despite arbitrary weightings are possible, I only address
uniform weightings for the sake of simplicity. Therefore, the corresponding multistep
Bellman Operator T

(k)
π : V → V uses at most k-steps into the future and is given by

T(k)
π :=

1

k

k∑
j=1

Tj
π . (3.24)

As an example, the compound operator with three-step lookahead results in the expres-
sion T

(3)
π = 1/3

(
T1
π +T2

π +T3
π

)
, where individual terms are defined as for T

(λ)
π . A more

generic foundation for this type of multistep formulation, which contains the definition
of T(k)

π as special case, is already existing in [Bertsekas, 2012] and called Free-Form sampling.
The main idea is to enhance the range of possible applications by being able to incorporate
rollouts of different lengths in the implementation of multistep methods. As an example,
assume that one has created a rollout consisting of three consecutive transitions. To
form T

(k)
π , one would use only three (sub) rollouts, namely one, two and three consecutive

transitions, which all start from the first state. If one wishes to use the entire available
data in a rollout of length three, then also the second two-step transition starting from
the first successor and all three available one-step transitions would need to be included
in the operator. The major benefit of Free-Form sampling would be an increased data
efficiency for learning. However, I would face in my work additional restrictions regarding
the applicability. Having the critical point condition in mind, I cannot easily add more
starting states for the rollouts, as this would increase the amount of rows in G̃(W), or,
more precisely, in its multistep counterpart. Thus, I do not use the possibilities offered by
Free-Form sampling. The operator T

(k)
π has been also rediscovered in a more recent work

[Yuan et al., 2019] as a seemingly novel approach to data efficient DRL.
Analogously to the TD(λ) setting, the operator T

(k)
π also possesses Vπ(s) as its unique

fixed point and, thus, allows to write Vπ(s) = (T
(k)
π Vπ)(s). Hence, the conversion of the

fixed point iteration to an optimisation task follows the same pattern as usual and results
in

δ(k)(s) := V (s)− (T(k)
π V)(s). (3.25)

The main advantage of the compound method over the exponentially weighted one is that
it is easier to obtain the required data from an environment. Approximations are not
necessary, because only finite many successor s′, s′′, . . ., s(k) are involved by design. Next,
I can define the compound version of the mNMSBE as

J (k)(W) :=
1

2N

N∑
i=1

(
f(W, si)−

1

k

k−1∑
j=0

(k − j)γjrij −
1

k

k∑
j=1

γjf(W, s
(j)
i)

)2

=
1

2N
∆(k)

π (W)T∆(k)
π (W), (3.26)

where the expression ∆
(k)
π (W) ∈ RN takes the form

∆(k)
π (W) := F (W)− 1

k
R(k)

π −
1

k

k∑
j=1

γjF (j)(W). (3.27)

48

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Previous definitions still apply and all one-step rewards rij are grouped together in R
(k)
π .

Before addressing critical points of Equations (3.22) and (3.26), consider the following
numerical example, which visualises how multistep formulations impact the learning
progress, in particular, if the training data contains flaws. I employ the continuous one-
dimensional dynamical system described in Section 2.6.2 with its reward function r1 from
Equation (2.35). A ground truth for Vπ is easily available by performing rollouts from
many starting states. Further details regarding the general method for computing ground
truths via rollouts are given in Section 3.5.1. Alternatively, the computation of Vπ could
also exploit the tabular nature of a piecewise constant function and apply directly the
Bellman Operators under policy π as it can be done in discrete MDPs. The policy is
set to move one unit to the right in every state. It takes the form π(s) = 1 ∀s ∈ S.
For the function approximation architecture, I use as in Section 3.3.2 piecewise constant
functions comprised of 32 equally spaced segments in the state space and train them by
minimising the multistep version of the NMSBE. In total, there are 32 training samples
placed equidistantly from left to right by hand in the state space such that they match
the nature of the selected approximation architecture. The 12th and 13th sample in this
set can be omitted during training with the goal to create an artificial gap and cut the
connection between states on the left side of the gap and their successors on the right.
The next step is to obtain through various versions of the multistep Bellman Operators
approximations to Vπ based on the remaining training samples. This means, the function
approximation architecture will suffer from this carefully positioned gap. As baseline serves
the training with plain one-step Bellman Operator Tπ from before. The related experiment
is shown in Figure 3.1 and demonstrates clearly the issue regarding missing connections.
The multistep methods TD(k) and TD(λ) show how the problems regarding a missing
connection in the state space can be alleviated. More precisely, I use k ∈ {2, 50, 100} for
the compound method TD(k). For TD(λ), the decay is chosen from λ ∈ {0.5, 0.75, 0.95}.
Each decay is used with 1000 consecutive transitions with the goal to approximate the
geometric series with minimal error. Figure 3.2 shows the outcome for the approximated
value functions when using multistep operators.

One can see in Figures 3.2a and 3.2b that the scaling effect is not visible any more as it
is the case for the one-step approach in Figure 3.1b. Despite the direct connection between
sampled states being lost once the gap is included in training, the offset of all approximated
value functions is compensated during training. A second important observation is that
compound multistep methods with short lookahead (k = 2) result for all initialisations at
a bad approximation independently of the training data used. The best possible case and
the one with missing connections coincide and are offset from the ground truth Vπ. For
λ-weighted methods with a strong decay (λ = 0.5), the situation is worse. Both cases do
not coincide any more and by including the gap in the training data the approximation
becomes even slightly better. This bad behaviour vanishes for both cases when a longer
lookahead k or a weak decay λ is employed. For TD(k), the approximated value functions
get close to the ground truth and the connectivity issue is successfully compensated. For
TD(λ), the same principal behaviour is also there. But the result is not as good as for
the compound formulation. The fact that a compound method achieves in this simple
example with a fraction of the state space transition (k = 50) a similar reduction in the
approximation error as the TD(λ) method with λ = 0.9 and 1000 transitions, raises further
the motivation for looking at those methods in more detail.

49

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
state

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e
fu

nc
tio

n missing connection
best possible case
k = 2
k = 50
k = 100
V (s)

(a) TD(k) via T
(k)
π

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
state

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e
fu

nc
tio

n missing connection
best possible case

= 0.5
= 0.75
= 0.95

V (s)

(b) TD(λ) via T
(λ)
π

Figure 3.2: Multistep operators compensate missing connections between states. The
best possible case for training is to use all available training samples. By
omitting certain states, connection issues are made explicit during training. a)
Compound methods for large k can compensate missing connections. Only for
k = 2, an artefact shows up, where even the best possible case is not matching
Vπ. This could be explained with the fundamental scaling freedom of the
NMSBE such that errors amplify. b) A similar behaviour applies to the TD(λ)
approach. Yet, the outcomes are worse than for the compound formulation for
all λ.

Hence, I extend the approach of Section 3.3.2 and investigate the critical point conditions
for both objectives J (λ)(W) and J (k)(W) from Equations (3.22) and (3.26), respectively.
Critical points of J (λ)(W) are characterised by the equation

∇WJ (λ)(W) =
1

N

(
G(W)− (1− λ) γ

∞∑
j=0

λjγjG(j+1)(W)︸ ︷︷ ︸
=:G̃(λ)(W)∈RN×Nnet

)T
∆(λ)

π (W)
!
= 0, (3.28)

where G(W) is the differential map of F with respect to the parameters W evaluated
at all start states. With G(j)(W), I denote the same quantity but use the j-th successor
states as input. A similar expression follows for J (k)(W). By setting its gradient to zero

∇WJ (k)(W) =
1

N

(
G(W)− 1

k

k∑
j=1

γjG(j)(W)︸ ︷︷ ︸
=:G̃(k)(W)∈RN×Nnet

)T
∆(k)

π (W)
!
= 0 (3.29)

one obtains the condition for critical points. In both conditions, one can see that the
matrices, i.e., G̃(λ)(W) in Equation (3.28) and G̃(k)(W) in Equation (3.29), follow the

50

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

structure of the matrix in Equation (3.16) as it appeared in Section 3.3.2. Due to the
usage of multiple transitions, there are just more terms being combined to yield G̃(λ)(W)
and G̃(k)(W). This means, that the statements regarding the rank of those matrices stay
the same as those given around Equation (3.15). I still want to have a rank as large as
possible for each G(j)(W). Therefore, one needs to provide a large enough MLP in terms
of parameters such that Nnet > N becomes possible and stick to the already mentioned
design choices. Based on Equation (3.15), I would expect that longer lookahead exhibit
a positive influence on the rank of either G̃(λ)(W) or G̃(k)(W). In the best case, the
rank becomes easily full when involving multiple transitions such that requirements for
Proposition 4 and Remark 1 are more likely to be satisfied. But this can only be answered
empirically. Numerical investigations for the rank are provided in Section 3.4 for the exact
learning case in discrete state spaces. A more sophisticated analysis with experiments for
the sampling setting in continuous spaces is part of Section 3.5.

3.4 A Gauss Newton Residual Gradient Algorithm
In this section, I provide details regarding my concrete algorithm and make use of the
results from the previous analysis. The focus lies on aspects that are relevant on their
own, i.e., decoupled from any experiment, but fit no longer into the previous section as
they are only due to the implementation in a computer system. I address the convergence
in general and provide pseudo code as it is used in the experiments. Lastly, I verify all
components by demonstrating local quadratic convergence of a Gauss Newton algorithm
for the discrete and exact learning setting.

3.4.1 Convergence of the Proposed Algorithm
There exists rich literature covering the convergence of Gauss Newton algorithms. More
specifically, the Levenberg-Marquardt approach, where a descent direction η ∈W is the
solution to a regularised linear equation system, provides a framework for articulating the
convergence properties of my proposed method. Using the gradient from Equation (3.13)
directly and the approximated Hessian from Equation (3.18) combined with an identity
matrix times a small scalar factor, I solve(

HW J̃ (W) + c INnet

)
η = ∇WJ̃ (W) (3.30)

for η, where c > 0 controls the strength of regularisation. Theorem 4 in [Behling et al.,
2019] ensures that the series of distances of iterates to the set of critical points forms a
Cauchy sequence if certain assumptions hold. Firstly, in a neighbourhood around critical
points, the theorem requires G(W) or G̃(W) to be Lipschitz continuous. Secondly, the
gradient needs to provide a local bound on the distance of iterates to the set of critical
points. Thirdly, the linearisation error has to be small enough. The MLP architectures
I am working with satisfy these assumptions. Since I have no full control over the rank
of G(W) or G̃(W) during the entire optimisation process, I assume that a loss of rank
could happen and set the regularisation to c = 10−5. All experiments use this value if not
otherwise stated. Once the iterates are close enough to critical points, then Propositions 1
and 4, and their related considerations, ensure a proper outcome. Unfortunately, it is
hardly possible to calculate for arbitrary control problems a convergence radius beforehand.

51

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Hence, I select the initial parameters for the optimisation process randomly, which may
result in additional iterations until one hits the basin of attraction. To remove the risk
for harmful initial steps in the parameter space, I combine the descent direction η with a
learning rate α ∈ (0, 1).

3.4.2 The Algorithm
In my numerical analysis, I rely on two common DP procedures, namely Approximate
Policy Evaluation and Approximate Policy Improvement. The approximate nature of those
algorithms arises from the usage of MLPs as function class. Both algorithms together
provide the Approximate Policy Iteration procedure. It can be used to compute sequentially
improving policies until the point, where approximation errors prevent any further progress.

The actual realisation of Policy Evaluation depends on the setting at hand. For the exact
learning scenario with discrete state spaces, I need to use equations from Section 3.3.1 to
arrive at Algorithm 1. The input is the MLP used for representing a value function and
the MDP components themselves. The result is an approximation of Vπ for all states.

Algorithm 1 Policy Evaluation with Discrete States and Gauss Newton Optimisation
Hyper parameters: γ ∈ (0, 1), α > 0, c = 10−5, ε ≤ 10−25, Nnet ∼ KS
Input:

- MLP f ∈ F(1, n1, . . . , nL−1, 1) with initialised parameters W ∈W
- transition probabilities Pπ and rewards Rπ

Output: W such that f(W, s) ≈ Vπ(s) s = 1, . . . ,KS

1: do
2: Evaluate F (W) := [f(W, 1) . . . f(W,KS)]

T ∈ RKS and its differential map G(W)

3: Bellman Residual: ∆π(W) = F (W)− Pπ (Rπ + γF (W))

4: NMSBE: J (W) = 1
2∆π(W)TΞ∆π(W)

5: Gradient: ∇WJ (W) = G(W)T
(
IKS − γPπ

)T
Ξ∆π(W)

6: Hessian: HW J (W) = G(W)T
(
IKS − γPπ

)T
Ξ
(
IKS − γPπ

)
G(W)

7: Solve for η:
(
HW J (W) + cINnet

)
η = ∇WJ (W)

(e.g. with Householder QR-Decomposition)
8: Descent step: W←W − αη

9: while J (W) > ε

For continuous state spaces and the sampling setting, Policy Evaluation takes the form
as shown in Algorithm 2. It makes use of the machinery in Section 3.3.2 to realise a Gauss
Newton Residual Gradient algorithm for approximating Vπ with a given MLP. Different
than before, the required inputs no longer expect the complete MDP description. Only a
list of N sample states needs to be provided. Additionally, the policy must be specified
explicitly, since it is no longer contained as part of the transition probabilities. The

52

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

output of the algorithm consists now of MLP parameters, which correspond to a good
approximation in the context of Definition 1.

Algorithm 2 Policy Evaluation with Gauss Newton Residual Gradient Formulation
Hyper parameters: γ ∈ (0, 1), α > 0, c = 10−5, ε ≤ 10−5, N ∼ Nnet

Input:
- MLP f ∈ F(KS , . . . , 1) with initialised parameters W ∈W
- policy π : S → A
- unique sample states si ∈ S with i = 1, . . . , N

Output: W such that f(W, si) ≈ Vπ(si) ∀i = 1, . . . , N

1: Construct transition tuples (si, ri, s
′
i) using π for all i

2: do
3: Evaluate F (W) := [f(W, s1) . . . f(W, sN)]T ∈ RN and its differential map G(W)

4: Evaluate F ′ and G′ using s′i

5: Bellman Residual: ∆̃π(W) = F (W)−Rπ − γF ′(W)

6: NMSBE: J̃ (W) = 1
2N ∆̃π(W)T∆̃π(W)

7: Gradient: ∇WJ̃ (W) = 1
N

(
G(W)− γG′(W)

)T
∆̃π(W)

8: Hessian: HW J̃ (W) = 1
N

(
G(W)− γG′(W)

)T(
G(W)− γG′(W)

)
9: Solve for η:

(
HW J̃ (W) + cINnet

)
η = ∇WJ̃ (W)

(e.g. with Householder QR-Decomposition)
10: Descent step: W←W − αη

11: while J̃ (W) > ε

To construct a Policy Iteration framework, a new procedure is established, which uses
Policy Evaluation in one of the two forms described before and extends it with a Policy
Improvement step. Since my experiments only require Policy Iteration for continuous state
spaces, there is no dedicated description for a Policy Iteration algorithm in the discrete
space setting. However, the required modifications are straightforward and should not
allow for any ambiguity. The important new component is Policy Improvement, which
is responsible for obtaining a GIP according to Equation (2.15). Despite the fact that
Policy Evaluation works equivalently for state-only value functions and Q-factors, the
necessity for solving Equation (2.15) renders Q-factors mandatory to use. For discrete
action spaces, the related argmax(·) operation is trivial to compute and can be done by
brute force search. This approach is suitable for the PI experiments in Section 3.5.5. For
continuous action spaces, the computation of a GIP gets more demanding. One can either
stick to direct search methods in action space for computing the action corresponding to
the largest Q-factor, or one employs parametrised policies to determine the best action in
a state. Since continuous action spaces bring additional challenges on their own, this topic
is postponed until Chapter 4. After every pair of evaluation and improvement, which is

53

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

called sweep in the following, a better performing policy should be available. The complete
Policy Iteration algorithm is depicted in Algorithm 3.

Algorithm 3 Policy Iteration for Continuous State Spaces
Hyper parameters: N ∼ Nnet, sweeps > 0
Input: MLP architecture f ∈ F(KS , . . . , 1) with parameter space W
Output: policy π : S → A

1: Draw W element-wise uniformly from [−1, 1]
2: π(s)← GIP(f,W, s) ∀s ∈ S
3: Draw si for i = 1, . . . , N uniformly from S

4: for sweep in sweeps do
5: if not persistent parameter then
6: Draw W elementwise uniformly from [−1, 1]
7: end if
8: if not persistent data then
9: Draw si for i = 1, . . . , N uniformly from S

10: end if

11: W← PolicyEvaluation(f,W, π, s1, . . . , sN)
12: π(s)← GIP(f,W, s) ∀s ∈ S

13: Evaluate π empirically using several rollouts
14: end for

A common practice in Policy Iteration is to reuse the MLP parameters of the most recent
Policy Evaluation step as initialisation for the next sweep. Although it is theoretically
possible to start in every sweep with a freshly initialised MLP, in real world applications
one observes that this adjustment stabilises Policy Iteration a lot. In [Sigaud and Stulp,
2019], this practice is called persistent, whereas running the evaluation from scratch in
every sweep is referred to as transient. I employ this naming convention here as well
and have equipped the Policy Iteration procedure in Algorithm 3 with an optional use of
persistent parameters in Lines 5 to 7. Additionally, I extent this pattern to the sampling
of states. Lines 8 to 10 provide the mechanism to resample data in every sweep.

Line 13 performs technically the same operation as Policy Evaluation, but due to the
use of independent Monte Carlo rollouts, it is possible to obtain reliable and unbiased
performance metrics for the policy. In infinite horizon problems, this is only possible by
introducing an early termination of the rollouts. The idea and concept is similar to that of
the TD(λ) method and its finite many terms contributing to the geometric series.

Let τ denote a rollout, which may also be called a trajectory, of length L > 0. Each τ
contains L transitions tuples si, ai, si+1 with i = 1, . . . , L and actions being computed by
the policy ai = π(si). The first state s0 is the starting point in the state space and is a free
parameter. The discounted return of a trajectory is defined as R(τ) =

∑L
i=1 γ

ir(si, ai, si+1),
which is related but not identical to Vπ from Equation (2.1). Firstly, the expectation is
missing meaning that τ represents one particular sample from the environment if noise is

54

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

present. By combining for a certain start state s0 the discounted returns of many trajectories
as empirical mean, it is possible to get an approximation for the expectation. By the law
of large numbers, the approximation error becomes small if the number of trajectories used
becomes large. Due to my special case of only considering deterministic environments, even
a single trajectory per given start state should be enough. However, machine precision
and the resulting numerical errors in the computation still make it necessary to use an
average over a couple of trajectories to obtain a more stable performance value of a policy
when starting in s0. Secondly, the discounted return is a mere finite horizon approximation
for expected discounted reward. However, due to the required discount factor γ to render
the series bounded, there does not arise a too large approximation error, if the length of
trajectories is chosen sufficiently long. The required length depends on the environment at
hand and the selected discount factor. But also the overall runtime has to be taken into
account and might pose restrictions on the largest length possible.

To be able to provide performance curves, which visualise intuitively the learning progress
of the algorithm across several sweeps, another processing step is required. Let j denote
a sweep and let there be M sweeps in total, i.e., j = 1, . . . ,M . Per sweep, there will
be N trajectories starting from N different states. They receive the index k = 1, . . . , N .
Thus, I now use the term τjk to refer to a specific trajectory and τ to refer to the
set of all trajectories. Consequently, their discounted returns can be interpreted as a
matrix R(τ) ∈ RM×N . For visualisation, R(τ) is now combined in three different ways.
The first way is the mean discounted return for all sweeps R̄ = 1

N

∑
k R(τjk) ∈ RM×1. The

second one is the minimal discounted return R− = mink R(τjk) ∈ RM×1 and the third one
is the maximal return R+ = maxk R(τjk) ∈ RM×1. All three quantities have one value per
sweep and can be used to reveal the typical learning progress as well as the best and worst
case. If the enveloping curve around R̄ is narrow, then this indicates that all rollouts are
consistent. Otherwise, a more careful investigation without aggregation of the performance
is required.

A frequent concern regarding second-order algorithms is the computational effort involved
in models with many parameters. However, typical architectures of MLPs used in DP
applications contain around two hidden layers with approximately 50 units in each layer as
upper limit on the MLP size. For such MLPs, Nnet falls in the range of 2000 parameters,
for which second-order optimisation is manageable with reasonable time and storage as
I demonstrate with my experiments. A second concern is raised about the root seeking
behaviour of a Newton’s method. By using second-order information in a gradient descent
optimisation procedure, one aims directly at any root in the gradient vector field of the
NMSBE. Thus, the optimiser would also be attracted by (local) maxima or even saddle
points. However, due to the nature of a non-linear least squares problem and as I have
already elaborated after Propositions 2 and 5, these types of extrema do not exist if all
assumptions are satisfied. Additionally, saddles and maxima are numerically unstable
such that approximation errors help to overcome those extrema. A third concern, which
people may rise, is to just use an automatic differentiation framework for all kind of
derivatives and gradients instead of the tedious manual work. In my implementation, I do
not make use of them due to the following reasons. First, such frameworks are not able
to introduce approximations to symbolic expressions on their own. As I already have the
required differential maps available due to my theoretical investigation, I could realise the
optimisation procedure by hand without too much overhead required. Second, to the best
of my knowledge, the operations involved in the Hessian are not suited for general purpose

55

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 5 10 15 20
iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

di
st

an
ce

(a)

0 5 10 15 20
iteration

10 25

10 21

10 17

10 13

10 9

10 5

10 1

103

NM
SB

E

(b)

Figure 3.3: A typical local quadratic convergence behaviour observed for an adapted version
of Baird’s Seven State Star Problem. Within only a couple of descent steps, the
error or distance decreases down to machine precision. a): Distance of iterates
W(k) to the accumulation point W∗. b): The NMSBE corresponding to each
iterate W(k).

graphics processing units, hence I expect the performance gain of automatic differentiation
frameworks to be minimal. Third, as I have to solve linear equation systems in every descent
step, I cannot avoid to use other software libraries as well. This would add additional
overhead in the data transfer between computational devices and the main memory such
that benefits of these frameworks diminish further. In conclusion, by implementing the
algorithm manually, I achieve a full control over all components and also could make
use of sophisticated parallelisation in all of them. Of course, recent developments and
contributions to automatic differentiation frameworks can render these considerations
obsolete.

3.4.3 Demonstration of Local Quadratic Convergence
To evaluate empirically my derived theoretical results in the discrete state space setting
together with the assumption of exact learning, I demonstrate local quadratic convergence
on the adapted Star Problem (cf. Section 2.6.1). Only when all components are working
as intended, local quadratic convergence of a second-order gradient descent algorithm can
be visible.

I deploy an MLP architecture F(2, 7, 1) consisting of Nnet = 29 parameters with step
size α = 1 and use Bent-Id as activation function in hidden layers. Every state receives a
unique two-dimensional random feature to embed the discrete states in a vector space for
the input layer. Features are drawn from a normal distribution with zero mean and unit
covariance.

In Figure 3.3, I visualise the convergence behaviour through the distance of the accumu-
lation point W∗ to all iterates W(k) as well as by the corresponding NMSBE. I use the
last iterate as W∗ and measure the distance by extending the Frobenius norm of matrices
to collections of matrices as ‖W(k) −W∗‖2F :=

∑L
l=1 ‖W

(k)
l −W ∗

l ‖2F .
It is clear from Figure 3.3a that the Gauss Newton algorithm converges locally quadrati-

cally fast to a critical point. Judging from the negligibly small final NMSBE as seen in

56

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Figure 3.3b, I conclude that the MLP is an exact approximator of the ground truth value
function. Both graphs together imply that the approximated Hessian is exact close to
critical points W∗. Due to over-parametrisation, convergence to suboptimal local minima
does not happen.

3.4.4 Tracking the Rank of the Jacobian During Optimisation
Aside from a visual inspection of the convergence rate, as I have provided it in the previous
section, it is desirable to quantify empirically the convergence behaviour across many
repetitions of the entire training process. To get a reliable indicator, which reveals whether
the optimisation is really working properly, one needs to measure how the rank of the
matrix G(W), as it is defined in Equation (3.6), behaves. Of particular interest is how the
rank for freshly initialised MLPs look like and how they behave during training. In the
best case, one would observe that initial rank deficient Jacobians recover over time and
that no loss of the rank occurs during training.

I employ the typical computation of the rank based on singular values of a matrix.
The rank is equal to the amount singular values σi, which exceed a predefined threshold2

maxi {σi} ·max {M,N} · ε. The shape of this matrix is given by M and N . The machine
precision ε is set by the data type.

However, depending on the matrix, this method of defining the rank might be too coarse.
Hence, I also make use of the singular values directly and use the inverse condition number

κ =
σmin

σmax
(3.31)

to characterise the rank of G(W). Due to the ordering of singular values, the inverse
condition number satisfies 0 ≤ κ ≤ 1. For κ→ 1, all singular values are close together and
the matrix has a full rank (or it is the zero matrix, assuming that the ratio of zeros behaves
correctly). If κ→ 0, the magnitude between the smallest and largest σ is far apart and
one needs to treat the matrix as rank deficient. Since singular values of smoothly varying
matrices also vary smoothly, it is also possible to track κ during training. Thereby, it is
possible to see, whether the optimisation algorithm can recover from situations with bad
conditioned initial G(W).

Next, I repeat the experiment from the previous section, namely training an MLP to
approximate Vπ for the adapted Star Problem, for 100 times. The random features for
embedding discrete states in a two dimensional space are kept constant and are identical
for all repetitions. Every repetition starts with a randomly initialised MLP. In Figure 3.4a,
the rank of G(W) without any training happening is presented as a histogram. Figure 3.4b
contains the inverse condition numbers for all repetitions during training. For the sake
of visualisation, I show the major part of repetitions in as grey lines and draw only a
selected subset in another colour. In all figures, the curves drawn in blue belong to those
repetitions, where κ requires the most iterations to reach its final value. In this way, it is
possible to see the overall long-term behaviour of all repetitions via the grey background
as well as the evolution of a few individual runs by the blue foreground.

As expected, Figure 3.4a demonstrates that the rank itself is always full and does
not provide a reliable and detailed insight into the nature of G(W). For all executed

2This is the common approach in numerical computing libraries such as NumPy or the corresponding
literature

57

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

2 4 6
rank

0

20

40

60

80

100

am
ou

nt

0 0 0 0 0 0

100

(a) Direct computation of rank.

0 10 20 30 40
iteration

10 5

10 4

10 3

10 2

in
ve

rs
e

co
nd

iti
on

in
g

nu
m

be
r

(b) The inverse condition number of G(W).

Figure 3.4: An investigation of the matrix G(W) using an adapted version of Baird’s Seven
State Star Problem for 100 repetitions. a): The rank of G(W) at the beginning
of training. For all randomly initialised MLPs the rank is full. b): The inverse
condition number κ of G(W) during training. In blue, the 20 runs with the
longest time until κ settles at its final value are emphasized. The horizontal
dashed line represents the average value at the end of training.

optimisation procedures, every singular value of the Jacobian exceeds the predefined
threshold. In Figure 3.4b, I can see several important properties. First, at the beginning
of training, all MLPs start with a ratio above 10−3, thereby supporting coarse statements
about the rank from Figure 3.4a. Second, after some iterations, every training process
stabilises and the ratio settles at a certain level. There are no strong jumps for κ towards
zero, which could lead to a failure of optimisation, because the critical point condition
looses its pleasing properties. Third, all ratios stay in a sound range of approximately 10−6

to 10−2. Since I am working with double precision, the inverse condition numbers are far
away from regions, where the ratio is close to machine accuracy. Severe issues with G(W)
and its rank do not arise such that the optimisation process has to work as desired. The
worst effect should be the loss of local quadratic convergence for the runs with smallest
final κ.

Hence, since κ appears as a reliable indicator for the rank of G(W), it is reasonable
to wonder, whether it can be used to classify the convergence characteristics of the GN
algorithm. As a first attempt, I take the final κ of a run and use it as a score. I select three
different repetitions out of the 100. The first has the largest ratio at the end of training,
the second is on average and the third achieves the smallest κ. Their NMSBE over time is
in depicted in Figure 3.5a.

As one can see, the final κ can be used to some extent as a classifier for the convergence
pattern. However, the largest κ and average value reports runs with approximately the
same convergence behaviour. Only the smallest ratio serves as a proper indicator for bad
optimisation behaviour and reveal a missing local quadratic convergence.

To obtain a better indicator, I select another three repetitions out of the 100, but this
time they are selected based on the required number of iterations until κ settles at its final
value. The first run requires the largest amount of iterations until κ reaches its final value.
It belongs to the lowest lines in Figure 3.4b and achieves a final NMSBE of only 2.7 · 10−7

and κ = 4.8 · 10−6. The second is selected based on the average time to settle. It has

58

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 10 20 30 40 50
iteration

10 27

10 22

10 17

10 12

10 7

10 2

103
NM

SB
E

Smallest ratio
Average ratio
Largest ratio

(a) Repetitions are selected based on the ratio κ
at the end of training. The better κ is, the
more likely one can observe local quadratic
convergence. Only for very small values, the
convergence is hindered so strongly that final
error is significantly larger.

0 10 20 30 40 50
iteration

10 27

10 22

10 17

10 12

10 7

10 2

103

NM
SB

E

Largest time
Average time
Smallest time

(b) The time required for the inverse condition
number to arrive at its final value is used
for slection. It provides a better classifier
for the behaviour. The quicker κ settles, the
more likely one can observe local quadratic
convergence. Only for longest times to settle,
convergence is hindered so strongly that final
error is significantly larger.

Figure 3.5: Error over time for the adapted Star Problem, when repetitions are selected
based on the inverse condition number. The convergence behaviour reflects the
value of κ.

the final error 5.9 · 10−28 and ratio κ = 1.1 · 10−4. The third run is the fastest to settle
and is located at the top. Its final error is 2.8 · 10−27 and the inverse condition number
is κ = 2.1 · 10−2. The error over time for the three repetitions are shown in Figure 3.5b.

It can be seen that for a run with very long settling time there is no local quadratic
convergence. This matches the previous attempt, however, another repetition out the
100 is reported. As before, the error at the end of training is much larger than for other
repetitions. Different than before, it is now possible to spot different convergence speeds
for small and average times to settles. In Figure 3.5, this corresponds to the runs visualised
with green and blue graphs. The final error approaches smallest value observed so far at
the end of training, but the speed of convergence correlates properly with the indicator.
The best case to happen is that of blue lines in Figures 3.5a and 3.5b. Just a couple of
descent steps result in the final error.

Overall, the phenomenon of bad initialisation with low performance occurs very rarely
in the 100 repetitions of the experiment. When investigating again Figure 3.4b, I see that
the run with average settling time in Figure 3.5b belongs to a ratio located at the lower
middle spectrum. In other words, all other repetitions have better values for κ and, thus,
should convergence reliably with stepwise more pronounced local quadratic convergence.

So far, all tests with the adapted Baird’s Star Problem converge reliably with single-step
lookahead. Hence, one cannot expect to see a significant performance boost onto the final
error, if multistep transition data would be incorporated. However, there might be a visible
impact on the rank of the matrix and, in turn, on the convergence behaviour. Hence, I
employ a multistep formulation in the exact learning setting for Baird’s Seven State Star

59

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Problem and run the experiments again. Section 3.5.4 then only deals with continuous
spaces, since this is the primary application area of multistep methods.

Fortunately, the realisation of multistep methods for small discrete state space tasks
is straightforward. By combining the definitions of T(k)

π and T
(λ)
π from Equations (3.20)

and (3.24) with the matrix form of the operators similar to Equation (3.1), one finds that
the same procedure as in Algorithm 1 can be used, if different expressions for Pπ and Rπ

are provided. More specifically, to obtain the compound method for exact learning with
discrete state spaces, I define the new multistep transition matrix

P (k)
π =

1

k

k−1∑
j=0

γjP j+1
π

and the aggregated reward vector

R(k)
π =

1

k

k−1∑
j=0

γjP j
πRπ.

For the exponentially weighted case, the two terms take a similar form. The transition
probabilities are given by

P (λ)
π = (1− λ)

∞∑
j

γjλjP j+1
π .

The corresponding rewards can be computed as

R(λ)
π =

∞∑
j=0

γjλjP j
πRπ.

I exploit in these definitions that the reward in the Star Problem depends only on the
current state. Next, I write for a discrete state space the multistep Bellman Operators for
some value function V ∈ RK compactly as

(T(k)
π V) = P (k)

π

(
R(k)

π + γV
)

for the compound method and as

(T(λ)
π V) = P (λ)

π

(
R(λ)

π + γV
)

for the λ-weighted formulation. An immediate consequence is that multiple transitions
only affect the critical point condition indirectly. Since the new optimisation task can
be expressed in terms of alternated P and R matrices, the critical point condition still
matches Equation (3.5). There are only slightly different terms, which still share an
identical behaviour. This also implies that Propositions 1 and 2 works as before and that
the definition and computation of G(W) itself stays the same. Different for a multistep
approach is that the counterpart of Equation (3.1) now conveys more information. Thus,
an MLP might achieve zero NMSBE earlier or adjust its parameters more quickly. This
will then influence the Jacobian G(W).

To capture the impact of multistep method empirically, I repeat the previous experiment,
but make use of the compound Bellman Operator T

(k)
π and exponentially weighted version

60

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

T
(λ)
π . For the compound method, I vary the amount of steps k into the future. More

specifically, I test k ∈ {2, 3, . . . , 10}. The value k = 1 is omitted, because this is exactly
the single-step approach from before. For the TD(λ)-like method, I adjust the decay λ
and select it from λ ∈ {0.1, 0.5, 0.9, 0.95}. The infinite series inside of the operator is
approximated with trajectories consisting of 150 consecutive transitions. The error, which
is caused by terminating the series after finite many terms, is for all values of λ negligible,
if these many transitions are used. I compute the network Jacobians for all configurations
after each descent step and collect their inverse condition numbers κ. Similar to before, they
are plotted across iterations to reveal the type of descent behaviour. Additionally, the errors
over time for repetitions corresponding to a small, medium and large time to settle of κ
are provided again. Figure 3.6 depicts the experiments for a subset of the aforementioned
values. Omitted parameters share the same characteristics of other parameters and do not
reveal more details.

The convergence plots in the left column of Figure 3.6 confirm the hypothesis that
multistep methods cannot result in a significantly better descent behaviour. Both the
smallest and average time to settle remain unchanged even if multistep methods are
employed. The baseline is provided by single-step approaches, which manages to get a final
error around 10−27 as it can be seen in Figure 3.5b. The exponentially weighted TD(λ)
formulation achieves only the same final error, despite relying on multistep transition data
with large horizon. On the contrary, a compound method with k = 10 steps into future
can gain three orders of magnitude and achieve a better result in terms of final NMSBE.
Of course, it is questionable whether this achievement is of any use. From an engineer’s
perspective, both approximated value functions will be indistinguishable from each other.

More important are the changes in the spectrum of κ values during and at the end of
training. Figures 3.6b, 3.6d and 3.6f demonstrate that multistep formulations can have
a positive effect on optimisation and, furthermore, that a compound Bellman Operator
is better than the exponentially weighted variant. The inverse condition numbers at the
end of training for k ≥ 3 have less spread than all λ-weighted versions. Furthermore, the
ratios are located consistently at larger values for all k. In particular, for k = 10, the ratio
stays above 10−4, thereby indicating clearly that the rank of G(W) has to be considered
full. More importantly, when comparing against the values for the single-step case in
Figure 3.4b, one sees that ratios have improved. In conclusion, the foundation of the theory
from Section 3.3.1 is strengthened further.

The practical benefit of a multistep approach is visible in Figures 3.6a, 3.6c and 3.6e.
Even the worst convergence pattern encountered in all repetitions of the compound methods
are now acceptable. Whereas the convergence speed for the worst single-step case is too
slow to be of any use (cf. red curve in Figure 3.5b), for T

(k)
π with k = 10 it is even

possible for the optimisation task to converge for bad inverse condition numbers within
the considered iterations to the same final error.

TD(λ) methods only demonstrate an unsatisfactory performance. For all tested values
of λ, i.e., not only the single value for λ shown in Figure 3.6h, there is no clear advantage
over the single-step experiment. Neither the final error nor the convergence speed or the
achieved ratio κ are improved. Furthermore, it needs to be stressed that the T

(λ)
π operator

involves 150 transitions in the state space. These are significantly more (s, a, r, s′, a′)
tuples used for training than in the largest compound method. In summary, the increased
computational burden without having a positive impact on the quality of value function

61

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 20 40
iteration

10 26

10 20

10 14

10 8

10 2

104

NM
SB

E

Largest time
Average time
Smallest time

(a) Error over time for k = 3.

0 10 20 30 40
iteration

10 6

10 5

10 4

10 3

10 2

in
ve

rs
e

co
nd

iti
on

in
g

nu
m

be
r

(b) The inverse condition number of G(W) for k = 3.

0 20 40
iteration

10 26

10 20

10 14

10 8

10 2

104

NM
SB

E

Largest time
Average time
Smallest time

(c) Error over time k = 5.

0 10 20 30 40
iteration

10 6

10 5

10 4

10 3

10 2

in
ve

rs
e

co
nd

iti
on

in
g

nu
m

be
r

(d) The inverse condition number of G(W) for k = 5.

0 20 40
iteration

10 26

10 20

10 14

10 8

10 2

104

NM
SB

E

Largest time
Average time
Smallest time

(e) Error over time for k = 10.

0 10 20 30 40
iteration

10 6

10 5

10 4

10 3

10 2

in
ve

rs
e

co
nd

iti
on

in
g

nu
m

be
r

(f) The inverse condition number of G(W) for k = 10.

0 20 40
iteration

10 26

10 20

10 14

10 8

10 2

104

NM
SB

E

Largest time
Average time
Smallest time

(g) Error over time for λ = 0.9.

0 10 20 30 40
iteration

10 6

10 5

10 4

10 3

10 2

in
ve

rs
e

co
nd

iti
on

in
g

nu
m

be
r

(h) The inverse condition number of G(W) for λ = 0.9.

Figure 3.6: The time to settle and inverse condition numbers κ of G(W) for different
multistep methods. Experiments use an adapted version of Baird’s Seven State
Star Problem. There are 100 repetitions per choice of k or λ. In blue, the 20
repetitions with the longest time to settle are emphasized.
The compound multistep operator T

(k)
π produces better values for κ than T

(λ)
π .

Consequently, the convergence is better, even for the worst observed κ.

62

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

approximation prevent any justification of their application in discrete state space problems
when using MLPs as function approximator and second order methods for training.

3.5 Experiments in Continuous State Spaces
Following my experiments with discrete state spaces, I will now look at continuous problems
in detail and investigate my Gauss Newton Residual Gradient algorithm empirically. I
outline the general experimental setup first. Second, I introduce the first experiment
where I test the convergence behaviour during Policy Evaluation in continuous state spaces.
I compare Residual Gradient algorithms with Semi-Gradient formulations and quantify
the influence of second-order optimisation on both. Next, I explore the generalisation
capabilities of an MLP when trained with a Gauss Newton Residual Gradient algorithm by
evaluating the NMSBE on unseen states outside of the training set. In a third experiment, I
elaborate on the behaviour of the algorithm when exploiting multiple steps in the transition
data. I still work with the Policy Evaluation component and capture empirically the
rank of the network Jacobian in a continuous state space setting. Finally, I address the
application of a second-order Residual Gradient algorithm in full Policy Iteration and
test its performance in a continuous control problem. I investigate, whether a Policy
Iteration algorithm based on Gauss Netwon Residual Gradient Policy Evaluation achieves
higher rewards compared to its first-order and Semi-Gradient counterparts. Additionally, I
measure the impact of multistep formulations on the quality of policies.

3.5.1 Experimental Setup
In all exerperiments, I apply the Gauss Newton Residual Gradient algorithm for Policy
Evaluation in finite dimensional and bounded Euclidean state spaces. I provide empirical
results for the performance of the Approximated Newton algorithm by minimising the
objective of Equation (3.11) in several different scenarios:

• Convergence of Policy Evaluation – I analyse the convergence behaviour when
evaluating a fixed policy and compare the cases of whether or not considering
derivatives of the TD-target. This means, I compare Semi-Gradient and Residual
Gradient formulations for both first- and second-order optimisation methods. This
draws the connection to existing and important algorithm classes such as DDPG
from Lillicrap et al. [2015].

• Generalisation Capabilities – I investigate the algorithm in terms of its generalisa-
tion capabilities. This is both interesting and important due to a still unexplainable
performance of Neural Networks [Lawrence et al., 1997, Zhang et al., 2017, Neyshabur
et al., 2017]. Unfortunately, classical measures of generalisation error for MLPs such
as Vapnik-Chervonenkis dimension and Rademacher complexity are still not capable
of providing sufficient answers [Anthony and Bartlett, 1999, Jakubovitz et al., 2019].
Since it is impossible to include the entire state space via sampling in the optimisa-
tion problem, generalisation to unseen states is essential for successful algorithms.
Consequently, generalisation capabilities are investigated numerically for different
architectures and sampling scenarios.

63

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

• Impact of Multistep Formulations – I employ a multistep Bellman Operator
and capture the effect on the optimisation behaviour of the Gauss Newton Residual
Gradient algorithm. Multistep formulations are the tool of choice and appear in
many (Deep) Reinforcement Learning implementations. By combining optimisation
methods that use approximated second-order information with multistep transition
data, I can determine whether they mutually assist one another.

• Full Policy Iteration – I combine Policy Evaluation with Q-factors and improve
iteratively an initial policy. This reveals the general applicability of a Gauss Newton
Residual Gradient algorithm. However, the Policy Iteration algorithm is restricted to
the setting employed in this chapter. Namely, the Policy Iteration approach must be
realised as Critic-Only method, i.e., there is no explicit policy and one has to retrieve
greedy actions directly from a Q-function. To do so, all environments considered for
the following experiments possess a discrete action space.

For the experiments, I use the Mountain Car and Cart Pole control problems as benchmarks.
These two environments are classic deterministic benchmarks with a typical continuous
state space and a manageable complexity, which allows for an extensive investigation and
visualisation. Their complete description is available in Sections 2.6.3 and 2.6.4, respectively.
I set the discount factor for all environments to γ = 0.99 if not otherwise specified.

Since the state space in the Mountain Car problem is two dimensional, I am also able
to estimate the ground truth value function with Monte Carlo methods based on a fine
grained two dimensional grid. Thus, I can evaluate accurately the performance of tested
algorithms against a ground truth and also run a qualitative and visual verification of the
outcome. Because of the higher dimension of the state space in the Cart Pole environment,
I no longer provide visualisation attempts of the value function but rely on the achieved
accumulated and discounted reward of a policy as the performance indicator.

Due to historical reasons, I use two different versions of the Mountain Car and Cart
Pole environments. The experiments in Sections 3.5.2 and 3.5.3 rely on MyMountainCar-
v0, whereas in Section 3.5.4 the new version MyMountainCar-v1 is active. This change
has become necessary after my investigation from Chapter 4 has been completed. More
details about the reason for this change in the environments is part of the description of
benchmarks in Sections 2.6.3 and 2.6.4. Similarly, I perform the experiments related to
Policy Iteration in Section 3.5.5 in two different variations. The first uses the original
version of the Cart Pole environment, namely MyCartPole-v0, and the second employs
the new version called MyCartPole-v1. Again, details about their differences are given in
Section 2.6.4.

The policies, which are used for the Policy Evaluation task, are fixed throughout the
experiment but depend on the environment used. For MyMountainCar-v0, the policy is
given by Equation (2.39) and simply accelerates the car in the direction of the current
velocity. When working with MyMountainCar-v1, the policy takes the form as described
by Equation (2.42). It is capable of steering the car into the goal and stopping there. For
these two policies, it is possible to generate a ground truth solution for the value functions
through the help of Monte Carlo rollouts. They take the form as shown in Figure 3.7.

To get those ground truths based on rollouts of the respective policies, I create a large
number of trajectories and their discounted returns as described at the end of Section 3.4.2.
Furthermore, to have estimates close to the solution Vπ for the entire state space, I let the
trajectories start from states s0, which are arranged on a regular grid. The resolution of

64

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

positio
n

1.251.000.750.500.250.000.250.50

velocity

1e 2
6 4 2 0 2 4 6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94

(a) MyMountainCar-v0

positio
n

1.251.000.750.500.250.000.250.50

velocity

1e 2

6420246

V

1e1

2

0

2

4

(b) MyMountainCar-v1

Figure 3.7: Ground truths for value function Vπ obtained from Monte Carlo rollouts. The
policies for evaluation are the predefined ones from the respective environments
(cf. Equations (2.39) and (2.42)). Please pay attention to the axis labels
and tick values. First, the surfaces are rotated by 180 degree along the z-
axis compared to each other. Second, the left surface has the negative z-axis
pointing upwards. This manipulation is necessary to reveal for both surfaces
the interesting structure, which would otherwise be occluded by the value
function itself.

the grid is 500× 500 such that there are no artefacts from a low sampling frequency. Per
start state there is only one rollout. Since the environments and policies are deterministic,
there is no need to combine several trajectories per starting state. And as one can see in
Figure 3.7, numerical issues are not noticeable. The trajectories themself consist of 2000
transitions, such that the necessary cut-off in an infinite horizon task does not create strong
approximation errors for the discount factor γ = 0.99. Unfortunately, in my experiments,
where I rely on rollouts to assess the quality of a policy during training, I need to reduce
the length of trajectories to keep the overall runtime of those experiments feasible. Hence,
there will be a slight mismatch between the ground truth and a policy, even if the value
function under that policy would be the correct one.

3.5.2 Empirical Convergence Analysis
Setting First, I make use of the Mountain Car problem in the version MyMountainCar-v0
from Section 2.6.3 and its corresponding predefined fixed policy from Equation (2.39).
I investigate the performance of the optimisation problem under the influence of three
variants: ignoring TD targets in derivatives, using Hessian based optimisation and varying
learning rates. I use four different learning rates α ∈

{
100, 10−1, 10−2, 10−3

}
and study all

16 combinations of parameters.
For all tests, I adopt the batch learning scenario. Specifically, I use as training set

N = 100 transition tuples (s, r, s′) collected in prior with actions set by the fixed policy.
All states are sampled uniformly from S. Executing the action provided by the policy
in each state yields its successor s′ and the one-step reward r for that transition. I fix

65

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the transition tuples throughout all convergence experiments to provide a fair comparison
between individual runs.

As function space for approximated value functions, I employ the MLP F(2, 10, 10, 1)
with Bent-Id activation functions. This architecture has Nnet = 151 free parameters, i.e.,
more parameters than the number of samples, and complies to my theoretical considerations.
Furthermore, MLPs in this experiment are all initialised with the same weight matrices to
further improve the comparability. For initialisation, I use a uniform distribution in the
interval [−1, 1].

Although there is no noise or randomness in the environment part involved and I do not
make use of exploration mechanisms, the outcomes can still vary. I use an asynchronous
and multithreaded implementation such that numerical errors can either accumulate or
cancel out over time based on the order of execution. Hence, all experiments are repeated
25 times. My results of the optimisation processes are shown in Figure 3.8.

Results I observe that Semi-Gradient algorithms always diverge for extremely large step
sizes as shown in Figure 3.8a with α = 1. For smaller step sizes α ∈

{
10−1, 10−2, 10−3

}
as

shown in Figures 3.8b, 3.8c and 3.8d, a Semi-Gradient algorithm can converge if using first-
order optimisation. Extending it to second-order gradient descent causes it to diverge sooner
or later for all step sizes. For small enough learning rates, e.g., α = 10−3, second-order
Semi-Gradient additionally achieves only the same final NMSBE as first-order Residual
Gradient methods, indicating that the computation for the approximated Semi-Hessian is
obsolete. However, I want to point out that the resulting solution of Policy Evaluation is
not good compared to other possible outcomes.

Figures 3.8b and 3.8c show that first-order gradient descent algorithms with and without
ignoring the dependency of the gradient on the TD target perform consistently and achieve
almost identical final errors. Looking at the descent behaviour, I can confirm the slow
convergence issue of a Residual Gradient formulation. From Figure 3.8d it becomes clear
that first-order Semi-Gradient descent combined with carefully selected learning rates
α ∈

{
10−2, 10−3

}
can achieve an equal or even lower final error, further explaining its

popularity over Residual Gradients.
In contrast stands the Gauss Newton Residual Gradient algorithm, i.e., a Gauss Newton

algorithm combined with complete derivatives of the NMSBE. This algorithm works well
with all learning rates. In particular, this algorithm works with large learning rates, as
it can be seen in Figures 3.8a and 3.8b. Even for an extremely large learning rate α = 1,
convergence is not a problem. Despite strong initial numerical problems, all repetitions
arrive at a sufficiently small NMSBE over time. For all learning rates, the final value
for the NMSBE is orders of magnitude smaller than that of other approaches. In other
words, building the derivatives of the TD target with respect to the parameters and using
(approximate) second-order information of the NMSBE function are important ingredients
for designing and implementing efficient NN-VFA algorithms. Modifying the descent
direction based on the curvature is crucial to achieve good performance. This insight
matches also the empirical evidence in [Gronauer and Gottwald, 2021] that when combining
Semi-Gradient algorithms with an annealing scheme on the learning rate, even better
performance can be obtained.

66

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 2000 4000 6000 8000 10000
iteration

10 9

10 7

10 5

10 3

10 1

101

NM
SB

E

2nd order Residual Gradient
1st order Residual Gradient
2nd order Semi Gradient
1st order Semi Gradient

(a) α = 100

0 2000 4000 6000 8000 10000
iteration

10 9

10 7

10 5

10 3

10 1

101

NM
SB

E

2nd order Residual Gradient
1st order Residual Gradient
2nd order Semi Gradient
1st order Semi Gradient

(b) α = 10−1

0 2000 4000 6000 8000 10000
iteration

10 9

10 7

10 5

10 3

10 1

101

NM
SB

E

2nd order Residual Gradient
1st order Residual Gradient
2nd order Semi Gradient
1st order Semi Gradient

(c) α = 10−2

0 2000 4000 6000 8000 10000
iteration

10 9

10 7

10 5

10 3

10 1

101

NM
SB

E

2nd order Residual Gradient
1st order Residual Gradient
2nd order Semi Gradient
1st order Semi Gradient

(d) α = 10−31

Figure 3.8: The NMSBE as defined in Equation (3.11) plotted over time for all tested
optimisation approaches. Figure a) to d) represent considered learning rates
α ∈

{
100, 10−1, 10−2, 10−3

}
, respectively. A Residual Gradient formulation

combined with Hessian based optimisation outperforms Semi-Gradient algo-
rithms for all learning rates and stays convergent, even for large values of α.
First-order only Residual Gradient algorithms demonstrate the reported slow
convergence.

67

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Order Time Time Iterations Error at
(SG) (RG) iteration 1500

1st 8.4 s 7.6 s 104 ≈ 3 · 10−4

2nd 22.4 s 48.0 s 104 ≈ 1 · 10−5

Table 3.1: Runtime requirements with α = 0.1.

Computational concerns A severe burden of Newton-type algorithms is the computational
complexity involved in evaluating the (approximated) Hessian, especially since the Gauss
Newton approximation involves a full sized and dense matrix. If I assume that the gradient
direction can be obtained in O(n) operations, then the GN step adds an additional effort
of O(n3) to form the Hessian and solve for Newton’s direction. The runtime requirements
of the experiments are summarised in Table 3.1.

Calculating the approximated Hessian and Newton’s direction using Eigen’s Householder
QR-decomposition when linked against OpenBlas and OpenLapack increases the run time
significantly. My experiments run on an AMD 3990X 64-Core computer, but these
execution times are not supposed to be accurate and reproducible measurements. They
should only reveal the overall trend. The numbers imply that within 104 steps of a first-
order Residual Gradient method only around 1500 iterations of a Gauss Newton Residual
Gradient algorithm can be performed on the available computer. However, the performance
gain in terms of convergence speed and lower error, as seen in Figure 3.8b or Figure 3.8c,
still justifies the additional computational effort. A second-order algorithm is in total faster
than first-order only methods, because far less iterations are required to reach an already
significantly smaller error.

3.5.3 Generalisation Capabilities of MLPs
As mentioned earlier in the critical point analysis, working with finite exact approximators
based on N samples from a continuous state space causes generalisation to be an important
topic. Since the value function approximator can only be trained to fit a finite set of
samples exactly, the generalisation capabilities of an MLP for states in between the collected
training samples are essential to DP and worth further investigation. Thus, I evaluate an
approximated value function, which I obtain by optimising the NMSBE with the Gauss
Newton Residual Gradient algorithm, on parts of the state space, which are not covered by
the training data.

Single Architecture

Setting I start with a single architecture and vary the amount of training samples. More
specifically, I consider again the MLP F(2, 10, 10, 1) with learning rate α = 10−2 and
Bend-Id activation function. It possesses Nnet = 151 parameters. For their initialisation, I
use a uniform distribution in the interval [−1, 1]. In this experiment, the number of training
samples N is varied non-uniformly between 25 and 2000. Selected values are given as part
of the figure. I compute the NMSBE for a separated test set comprised of 25 · 104 states
arranged on a grid. Again, for each N , I use batch training with samples placed uniformly

68

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

25 50 75 100 125 150 175 200 225 250 275 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000
number of samples

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2
NM

SB
E

2000

Training
Testing

Figure 3.9: The final NMSBE of the MLP F(2, 10, 10, 1) for different amount N of training
samples. The NMSBE using the training samples is shown in blue. That
for the test set is drawn in red. The dotted line represents the condition
N = Nnet, where it can be seen that the median training and test errors
are smaller than the direct neighbours, thus hinting at the important role of
over-parametrisation.

in the state space. Every training of MLPs is repeated 10 times. Finally, I visualise the
NMSBE as box-plots for the training data and the held-out test set in Figure 3.9.

Results It is clear that for N = 2000 samples the training process is always successful
with almost ignorable variance. While decreasing the number of randomly placed training
samples down to N = 225, the median test error becomes larger with more pronounced
variances. Only poor results are observed at N ≤ 75, where the MLP becomes able to fit
the training data exactly. But the test error indicates that this is no longer a valid solution.

I observe for the median test and training error that, for N = 150 samples, they are
smaller or at least equal to their direct neighbours, respectively. Simultaneously, the variance
for training errors is reduced compared to the neighbours. Since this number of samples
(N = 150) is almost identical to the number of parameters in the network (Nnet = 151),
these effects could be a numerical confirmation of the role of over-parametrisation as it
has been derived from theoretical considerations in Section 3.3. However, I admit that an
empirical verification is rather involved. In particular, I require N unique samples in the
training set, but there is no practical way to determine, whether those N collected samples
are “sufficiently unique”.

When evaluating the approximated value function with smallest test error for N ∈
{25, 50} samples visually, i.e., see Figures 3.10a and 3.10b, one can spot a plateau located
at around −100 expected discounted reward. This is exactly the solution to the Bellman
Equation or, more precisely, to the loss as defined in Equation (3.11), if every transition
would yield −1 reward. I conclude that those scarce samples do not allow the reward
information to flow and, hence, I have solved implicitly a different MDP. By comparing
the ground truth value function as shown in Figure 3.7a to other value functions learned
with different sample sizes as shown in Figures 3.10c to 3.10f, I see that training with
even only 100 samples starts to fit the shape of the ground truth value function in the
correct range. Hence, this experiment suggests that for problems with a continuous state
space, NN-VFA methods can still perform well with a relatively small number of sampled

69

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2
6

4
2

0
2

4
6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94
9.96

(a) N = 25

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2
6

4
2

0
2

4
6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94
9.96

(b) N = 50

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2
6

4
2

0
2

4
6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94
9.96

(c) N = 100

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2
6

4
2

0
2

4
6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94
9.96

(d) N = 150

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2
6

4
2

0
2

4
6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94
9.96

(e) N = 200

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2
6

4
2

0
2

4
6

V

1e1

9.82
9.84
9.86
9.88
9.90
9.92
9.94
9.96

(f) N = 2000

Figure 3.10: Approximated value functions for different sample sizes N with minimal test
NMSBE, evaluated at the same states as for the MC version. A minimal
amount of data is required to learn the main structure of the value function.
However, increasing the amount of data beyond a certain value does not bring
any visible benefit.

interactions. Furthermore, with only N = 100 training samples, which corresponds to the
over-parametrisation regime, it is possible to learn qualitatively the same approximation of
the value function as when using significantly more training data. This implies on the one
hand that it is possible to avoid the computational burden regarding the larger training
data set. On the other hand, it also demonstrates that defining a reliable error measure
between functions is a non-trivial task on its own and must be used with care.

Various Architectures

Setting It is widely believed that the architecture of an MLP has an important influence
on its generalisation performance, but the exact impact is still unclear. Therefore, I perform
the previous experiment for several MLPs with different architectures F(KS , w × d, 1).
Next to varying the number of samples in the same scenario as before, I select as network
depths d ∈ {2, 3} and as widths w ∈ {1, 2, 3, . . . , 20}. Concrete choices of architectures and
the values of N are available as axis labels in Figure 3.11. I provide the mean test and
training error as contour plots in Figure 3.11 with logarithmic scale (Z = log10(E), where
E is the actual error and Z its plotted value). This additional processing step is required
to reveal the detailed structure of the surface.

Results To be able to relate intuitively a certain MLP architecture and its number of
parameters with the amount of samples used for training, I introduce in all contour plots

70

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

25 50 7510
0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0
75

0
80

0
85

0
90

0
95

0
10

00
20

00

N
F(2

, 1
×3, 1

),N
ne

t=
9

F(2
, 2

×3, 1
),N

ne
t=

21

F(2
, 3

×3, 1
),N

ne
t=

37

F(2
, 4

×3, 1
),N

ne
t=

57

F(2
, 5

×3, 1
),N

ne
t=

81

F(2
, 6

×3, 1
),N

ne
t=

10
9

F(2
, 7

×3, 1
),N

ne
t=

14
1

F(2
, 8

×3, 1
),N

ne
t=

17
7

F(2
, 9

×3, 1
),N

ne
t=

21
7

F(2
, 10

×3, 1
),N

ne
t=

26
1

F(2
, 11

×3, 1
),N

ne
t=

30
9

F(2
, 12

×3, 1
),N

ne
t=

36
1

F(2
, 13

×3, 1
),N

ne
t=

41
7

F(2
, 14

×3, 1
),N

ne
t=

47
7

F(2
, 15

×3, 1
),N

ne
t=

54
1

F(2
, 16

×3, 1
),N

ne
t=

60
9

F(2
, 17

×3, 1
),N

ne
t=

68
1

F(2
, 18

×3, 1
),N

ne
t=

75
7

F(2
, 19

×3, 1
),N

ne
t=

83
7

F(2
, 20

×3, 1
),N

ne
t=

92
1

8.508

8.
16

6

7.823 7.
48

0
7.

13
7

6.
79

5
6.

45
2

6.
10

9
5.

76
7

5.
42

4

5.0
81

4.739

4.396
4.053

3.710
3.368 9.194

8.508

7.823

7.137

6.452

5.767

5.081

4.396

3.710

3.025

(a)

25 50 7510
0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0
75

0
80

0
85

0
90

0
95

0
10

00
20

00

N
F(2

, 1
×3, 1

),N
ne

t=
9

F(2
, 2

×3, 1
),N

ne
t=

21

F(2
, 3

×3, 1
),N

ne
t=

37

F(2
, 4

×3, 1
),N

ne
t=

57

F(2
, 5

×3, 1
),N

ne
t=

81

F(2
, 6

×3, 1
),N

ne
t=

10
9

F(2
, 7

×3, 1
),N

ne
t=

14
1

F(2
, 8

×3, 1
),N

ne
t=

17
7

F(2
, 9

×3, 1
),N

ne
t=

21
7

F(2
, 10

×3, 1
),N

ne
t=

26
1

F(2
, 11

×3, 1
),N

ne
t=

30
9

F(2
, 12

×3, 1
),N

ne
t=

36
1

F(2
, 13

×3, 1
),N

ne
t=

41
7

F(2
, 14

×3, 1
),N

ne
t=

47
7

F(2
, 15

×3, 1
),N

ne
t=

54
1

F(2
, 16

×3, 1
),N

ne
t=

60
9

F(2
, 17

×3, 1
),N

ne
t=

68
1

F(2
, 18

×3, 1
),N

ne
t=

75
7

F(2
, 19

×3, 1
),N

ne
t=

83
7

F(2
, 20

×3, 1
),N

ne
t=

92
1

4.
39

9
4.

39
9

4.171

4.171

3.
94

3

3.715

3.487

3.259

3.031

2.8
03

2.575

2.347
2.119

1.891
4.399

3.943

3.487

3.031

2.575

2.119

1.663

1.206

0.750

0.294

(b)

25 50 7510
0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0
75

0
80

0
85

0
90

0
95

0
10

00
20

00

N
F(2

, 1
×2, 1

),N
ne

t=
7

F(2
, 2

×2, 1
),N

ne
t=

15

F(2
, 3

×2, 1
),N

ne
t=

25

F(2
, 4

×2, 1
),N

ne
t=

37

F(2
, 5

×2, 1
),N

ne
t=

51

F(2
, 6

×2, 1
),N

ne
t=

67

F(2
, 7

×2, 1
),N

ne
t=

85

F(2
, 8

×2, 1
),N

ne
t=

10
5

F(2
, 9

×2, 1
),N

ne
t=

12
7

F(2
, 10

×2, 1
),N

ne
t=

15
1

F(2
, 11

×2, 1
),N

ne
t=

17
7

F(2
, 12

×2, 1
),N

ne
t=

20
5

F(2
, 13

×2, 1
),N

ne
t=

23
5

F(2
, 14

×2, 1
),N

ne
t=

26
7

F(2
, 15

×2, 1
),N

ne
t=

30
1

F(2
, 16

×2, 1
),N

ne
t=

33
7

F(2
, 17

×2, 1
),N

ne
t=

37
5

F(2
, 18

×2, 1
),N

ne
t=

41
5

F(2
, 19

×2, 1
),N

ne
t=

45
7

F(2
, 20

×2, 1
),N

ne
t=

50
1

7.
13

7

6.795

6.
45

26
.1

09
5.

76
7 5.
42

4
5.

08
1

4.739

4.396

4.053

3.7
10 3.368 9.194

8.508

7.823

7.137

6.452

5.767

5.081

4.396

3.710

3.025

(c)

25 50 7510
0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0
75

0
80

0
85

0
90

0
95

0
10

00
20

00

N
F(2

, 1
×2, 1

),N
ne

t=
7

F(2
, 2

×2, 1
),N

ne
t=

15

F(2
, 3

×2, 1
),N

ne
t=

25

F(2
, 4

×2, 1
),N

ne
t=

37

F(2
, 5

×2, 1
),N

ne
t=

51

F(2
, 6

×2, 1
),N

ne
t=

67

F(2
, 7

×2, 1
),N

ne
t=

85

F(2
, 8

×2, 1
),N

ne
t=

10
5

F(2
, 9

×2, 1
),N

ne
t=

12
7

F(2
, 10

×2, 1
),N

ne
t=

15
1

F(2
, 11

×2, 1
),N

ne
t=

17
7

F(2
, 12

×2, 1
),N

ne
t=

20
5

F(2
, 13

×2, 1
),N

ne
t=

23
5

F(2
, 14

×2, 1
),N

ne
t=

26
7

F(2
, 15

×2, 1
),N

ne
t=

30
1

F(2
, 16

×2, 1
),N

ne
t=

33
7

F(2
, 17

×2, 1
),N

ne
t=

37
5

F(2
, 18

×2, 1
),N

ne
t=

41
5

F(2
, 19

×2, 1
),N

ne
t=

45
7

F(2
, 20

×2, 1
),N

ne
t=

50
1

4.
39

9

4.3994.171

3.943

3.
71

5

3.487

3.487

3.259

3.031

2.803

2.
57

5

2.347
2.119

1.
89

1

4.399

3.943

3.487

3.031

2.575

2.119

1.663

1.206

0.750

0.294

(d)

Figure 3.11: The training and test error of different MLP architectures (ordinate) for
various sample sizes N (abscissa). I use a logarithmic scale Z = log10(E),
where E is the original error and Z its plotted value. Red indicates higher
errors. In all plots, the solid line represents the condition Nnet ≈ N . The left
column shows training errors, the right provides test errors.
For training, one can see that low error as well as the case of exact fitting
happens to the upper left of the black solid line, confirming considerations
from Section 3.3. The testing errors reveal that, at least for MLPs with a
large number of parameters, the region with smallest test error reaches close
to the condition Nnet ≈ N . However, for all (small) MLPs the well-known
rule “the more data, the better performance” applies.

71

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

an auxiliary line called “condition line” to represent the condition Nnet ≈ N . I obtain
this line by rounding the amount of parameters Nnet to the closest value of N and joining
the corresponding tuples in figures. In the following, I look separately at training and
testing errors and start with the training errors, i.e., the contour plots in the left column
of Figure 3.11.

The isolines of the error surface consists of almost straight lines starting from the origin.
Hence, when I increase the amount of data I also have to increase the depth or width of an
MLP to maximise the chance of avoiding suboptimal minima. If the number of parameters is
large compared to the number of samples, then the isolines are almost vertical. This implies
that the training error is independent of the MLP architecture as long as the architecture
is sufficiently rich and over-parametrisation still applies. Only when passing the condition
line, it is possible to cross easily isolines, thereby increasing the training error significantly.
In each of Figures 3.11a and 3.11c, there exists each at least one isoline, which stays close to
the condition line. For MLPs with d = 2 this happens at −4.739 ≈ log10

(
1.82 · 10−5

)
and

for d = 3 at −5.081 ≈ log10
(
8.30 · 10−6

)
. Thus, this behaviour suggests that the geometry

of the error surface reflects indeed the condition in Equation (3.19) from my theoretical
investigation. Also, exact learning of all samples indicated by training errors close to zero
happens only above the condition line, i.e., whenever the network has more parameters
than the number of training samples.

Next, I address the testing error as shown in the right column of Figure 3.11. For depth
three MLPs, where the condition Nnet ≈ N is available for large values of N , I observe that
the region with smallest test error extends always to the condition line. This happens for
MLPs wider than F(2, 15×3, 1) at N = 500. I see that larger MLPs work more predictable,
whereas smaller MLPs still can achieve the smallest test error for several training set sizes
N with higher errors in between. In other words, large MLPs do not necessarily increase
the threshold of required samples for good performance in my experiment. Small MLPs
need samples in a similar scale as the largest MLPs to achieve the smallest test error.
Even those MLPs, which one would consider as tiny such as F(2, 7 × 3, 1), also achieve
the smallest test error with the same amount of samples. Thus, if for small MLPs the
condition Nnet > N is far from being realistic, the well-known statement “the more data,
the better performance” applies. One needs roughly a factor of ten more training data
than adjustable parameters. In summary, large MLPs concentrate the region with extreme
values for the test errors and amplify the effect of the sample size. For N ≈ 75, the
largest architectures produce also almost the highest test errors. Hence, by shrinking the
amount of parameters in an MLP such that one moves closer to Nnet ≈ N one can reduce
computational complexity of the model without changing the amount of data and the test
error. If N → 1000, one has to employ MLPs with a comparable amount of parameters
such that the area with smallest test error is present. These MLPs then possess the highest
generalisation performance out of all architectures.

3.5.4 Multistep Impact
From an intuitive perspective, one would expect a better performance when switching to
multistep methods. But since a Gauss Newton Residual Gradient algorithm converges
already without problems, one could also argue that a beneficial impact of multiple
transitions depends highly on the algorithm and problem at hand. Hence, I repeat partially
my previous experiments, but use the multistep operators T

(k)
π and T

(λ)
π to define the fixed

72

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

point problem. Again, I compare first-order and Hessian based descent algorithms and
test, whether different values for amount of transitions per start state create a meaningful
difference.

Convergence Behaviour

Setting Training is performed in a batch setting with both a GN and first-order only
RG algorithm. For the former, I use a constant learning rate α = 0.1. And for the latter
α = 0.01. Start states are sampled uniformly from the entire space. I use N = 250 samples
for training. For representing value functions, I take an MLP consisting of two hidden layers
with 15 units each and employ Bent-Id activation functions. The input layer accepts two
dimensional state vectors. The output is scalar with linear activation. Initial parameters
are drawn element-wise uniformly from the interval [−1, 1].

I test the compound Bellman Operator T(k)
π with k ∈ {1, 2, 3, . . . , 10}. The exponentially

weighted operator T
(λ)
π is used with λ ∈ {0.5, 0.9, 0.99}. The trajectories are stopped after

{50, 250, 1000} transitions, respectively. The trajectory lengths L are selected such that
λL is sufficiently small (i.e., in the order of 10−5).

I show results for 15 repetitions, where I randomise the training data and initial network
parameters in each run. The visualisation of the convergence behaviour during training
for both multistep methods is contained in Figure 3.12. Figure 3.13 emphasizes the final
training error for different parameters as box plot.

Results Most notably, I observe a missing beneficial impact of T
(k)
π and T

(λ)
π with

increasing k or λ for GN based optimisation. Using multiple transitions during training
does not clearly help with convergence and the final outcome.

Only when training with a first-order RG algorithm, the convergence speed can be
slightly enhanced by increasing k. The known slower convergence of RG algorithms for
k = 1 vanishes with larger values, at the price of a higher error. However, this effect is
rather subtle and not easily visible in Figure 3.12 because of the required range for the
y-axis. In Appendix B, an alternated version of the figure is available to demonstrate this
behaviour more clearly.

For both first-order and Hessian based optimisation, a stepwise larger k results in worse
final training errors. Simultaneously, the descent behaviour for larger lookahead becomes
more unstable as well, in particular for λ = 0.99 with 1000 transitions. This could be
explained by the fact that an MLP with identical capacity must fit a more complex objective.
The increase of the final error is more pronounced for gradient only optimisation than for
the GN method.

A larger MSBE at the end of training would imply that the solutions represented by
a trained MLP become worse. Thus, I check also the value functions visually. They are
rendered in Figure 3.14.

The best approximated value function for k = 5, which is shown in Figure 3.14e, possesses
a qualitatively better shape despite a higher training error than the best value function
for k = 1 depicted in Figure 3.14d. This can be interpreted as a confirmation of the
initial thoughts in Section 3.3.3. Multistep operators are better in conveying the reward
information, thus the MLP is required to learn a better approximation. However, increasing
the lookahead further seems to hinder the training again. The value function for k = 10 in

73

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

10 3

10 1

101

103

NM
SB

E

k = 1
Second Order
First Order

k = 2 k = 3 k = 4 k = 5

0k 3k 6k 9k
iteration

10 3

10 1

101

103

NM
SB

E

k = 6

0k 3k 6k 9k
iteration

k = 7

0k 3k 6k 9k
iteration

k = 8

0k 3k 6k 9k
iteration

k = 9

0k 3k 6k 9k
iteration

k = 10

(a) Compound Method

0k 3k 6k 9k
iteration

10 3

100

103

106

NM
SB

E

= 0.5

0k 3k 6k 9k
iteration

= 0.9

0k 3k 6k 9k
iteration

= 0.99
Second Order
First Order

(b) TD(λ)-like Method

Figure 3.12: The impact of multistep lookahead onto first-order and Hessian based RG
algorithms. I test both multistep operators T

(λ)
π and T

(k)
π . Only first-order

optimisation shows better convergence for larger k or λ. Yet, the final achieved
NMSBE increases with the lookahead.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

10 5

10 4

10 3

10 2

10 1

100

NM
SB

E

1storder
2ndorder

(a) Compound Method

=0.5 =0.9 =0.99

10 5

10 4

10 3

10 2

10 1

100

101

102

NM
SB

E

1storder
2ndorder

(b) TD(λ)-like Method

Figure 3.13: Final training errors for different multistep methods and parameters. The box
plots unveil the increase of final MSBE with greater lookahead.

74

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(a) Gradient only with k = 1

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(b) Gradient only with k = 5

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(c) Hessian based with λ = 0.9

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(d) Hessian based with k = 1

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(e) Hessian based with k = 5

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(f) Hessian based with k = 10

Figure 3.14: Best approximations to Vπ according to smallest NMSBE. Training uses
first- and second-order optimisation combined with the compound and TD(λ)
multistep formulation. In general, one can not obtain a good approximation
Vπ from a visual perspective, in particular, when comparing against the ground
truth in Figure 3.7b. However, with second-order optimisation, one can see
for k = 1 and k = 5 that at least a qualitative resemblance is present.

Figure 3.14f and for λ = 0.9 in Figure 3.14c appear more jagged. It seems that there is a
certain trade-off between the size of the lookahead and the difficulty of the learning task
due to a higher complexity of the objective. The value functions for first-order optimisation
are almost identical for all tested parameters and multistep methods. They look similar to
Vπ in Figures 3.14a and 3.14b and do not contain the spiral-like structure. In accordance
to the insights about TD(λ) from the discrete setting in Section 3.4.4), the experiment
with continuous state space also suggest that the similar quality for the value function
approximation does not justify the additional computational effort for the long trajectories,
in particular for larger λ.

Rank Analysis

Setting Next, I investigate also the rank of G̃(k)(W) and G̃(λ)(W) during training as
I have done in discrete setting. My goal is to see, whether the claims on a full rank of
the Jacobians hold, in particular for the single-step case. Furthermore, analysing the rank
or inverse condition numbers ultimately reveals, whether one should rely on multistep
formulations when incorporating approximated Hessian information or not. I work with
the exact same setting from the convergence experiment in Section 3.5.4. For all runs of
this experiment, I compute the matrices G̃(k)(W) and G̃(λ)(W) for all iterates W. The
rank is determined as described in Section 3.4.4 and singular values follow directly from a

75

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

100

150

200

250

ra
nk

= 0.5

100

150

200

250

ra
nk

= 0.9

0 2000 4000 6000 8000 10000
iteration

100

150

200

250

ra
nk

= 0.99

Second Order
First Order

(a) Rank

10 16

10 14

10 12

10 10

10 8 = 0.5

10 16

10 14

10 12

10 10

10 8 = 0.9

0 2000 4000 6000 8000 10000
iteration

10 16

10 14

10 12

10 10

10 8 = 0.99

Second Order
First Order

(b) Inverse condition number

Figure 3.15: The inverse condition numbers κ and ranks for G̃(λ)(W) during training. The
MLP satisfies Nnet = 301 > 250 = N and one can see that rank and condition
numbers behave correctly during training for second-order optimisation. First-
order optimisation suffers from rank deficient Jacobians such that there are
more local minima with poor NMSBE compared to second-order training case.
This matches observed higher errors from previous figures.

Singular Value Decomposition of the matrices. The results for the TD(λ) approach with
rank and inverse condition numbers of G̃(λ) are given in Figure 3.15. Figure 3.16 shows
the results for the compound Bellman Operator T

(k)
π . The upper part depicts ranks during

training for first- and second-order methods for all repetitions. The lower part combines
the smallest and largest singular values to yield the inverse condition number κ for all
iterations. The parameters k and λ take the values mention before.

Results Opposed to the discrete setting with only a few states, the rank itself becomes
useful to some extend on its own. For both multistep approaches with second-order descent,
the rank of most repetitions jumps almost immediately to the maximal value. But there
are a few cases, where the matrix G̃(W)(k) is obviously rank deficient. For the first-order
descent algorithm, the situation is apparently bad. Almost all runs do not reach a full
rank for their the Jacobian during the entire training time. The only exception is T

(λ)
π

with λ = 0.99. There it happens for some runs to reach a full rank for the Jacobian. The
resulting value function is more pronounced and not as flat as others for first-order learning
(cf. Figures 3.14a and 3.14b), but has the overall same shape.

76

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

100
150
200
250

ra
nk

k = 1 k = 2

100
150
200
250

ra
nk

k = 3 k = 4

100
150
200
250

ra
nk

k = 5 k = 6

100
150
200
250

ra
nk

k = 7 k = 8

0 2000 4000 6000 8000 10000
iteration

100
150
200
250

ra
nk

k = 9

0 2000 4000 6000 8000 10000
iteration

k = 10

Second Order
First Order

10 16

10 12

10 8 k = 1 k = 2

10 16

10 12

10 8 k = 3 k = 4

10 16

10 12

10 8 k = 5 k = 6

10 16

10 12

10 8 k = 7 k = 8

0 2000 4000 6000 8000 10000
iteration

10 16

10 12

10 8 k = 9

0 2000 4000 6000 8000 10000
iteration

k = 10

Second Order
First Order

Figure 3.16: The inverse condition numbers κ and ranks for G̃(k)(W) during training. The
MLP satisfies Nnet = 301 > 250 = N and one can see that rank and condition
numbers behave correctly during training for second-order optimisation. First-
order optimisation suffers from rank deficient Jacobians such that there are
more local minima with poor NMSBE compared to second-order training case.
This matches observed higher errors from previous figures.

77

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

When using as before the inverse condition numbers as indicator, a more fine grained
classification becomes available. Most notably is that the κ values do not jump as they
do in the discrete setting. Hence, there is no need to talk about the time to settle as
before. Most runs for the second-order optimisation have healthy values around or above
10−12 and keep them consistently. Only some have bad inverse condition numbers, which
are sitting close to 10−16. Thus, their Jacobians do not behave well and this cannot be
spotted based on the rank alone. But these few runs are not representative for the others.
For first-order methods, a different picture becomes visible. Despite the rank seemingly
approaching its maximum over time, during the entire training all κ values are located at
the bottom of the range without clear trend of improvement.

An important observation in Figures 3.15 and 3.16 is that the initial rank of the MLPs
Jacobian is not full. This is either given by computing the rank directly or via the
inverse condition number κ. In Appendix B, a variation of the figures with focus on the
initialisation is available to make the observation more pronounced. Thus, the Jacobian and
Proposition 4 imply that there are many critical points, because the critical point condition
allows for a plethora of solutions. The extreme case G̃(k)(W) ≡ 0 or G̃(λ)(W) ≡ 0, which
would cause any update direction for parameters being a critical point, does not appear in
any repetitions.

On top of the initialisation, first-order optimisation suffers strongly from rank deficient
Jacobians during the entire training phase. Hence, according to the reasoning around
Proposition 4, there are multiple local minima with poor MSBE present for all iterations .
This matches observed higher errors from Figure 3.12a. Using gradients alone for realising
a descent algorithm does not work, since no matter what direction is selected, it is too easy
to hit arbitrary minima with larger errors. Even worse, since the minima exist mainly due
to the null space of G̃(k)(W) and G̃(λ)(W), the minima is not an isolated point but can be
a connected set. The iterates then could move freely without causing any improvement for
the error.

The second-order training case does not have this issue. The full rank requirement for
the Jacobian is satisfied after only a couple of iterations such that the only type of extrema
left are global ones. Of course, one has to take Remark 1 into account and consider the case
that no extrema exist at all. Since the MSBE is not approaching zero within numerical
limitation of a computer, it might be that critical points are out of reach and one can only
reduce the error as long as possible.

The loss of rank or small κ values at the beginning of training are not a significant hurdle.
Due to the Gauss Newton approach for approximating the Hessian, the descent direction
is the gradient with some perturbation. It arises from the regularisation term and also
from a bad approximation of the Hessian when being further away from extrema. This
also explains, why it is possible to see increasing errors for some iterations during training.
Hence, it is rather unlikely (but not impossible) to get attracted by “early” critical points,
which exists due to the null space of G̃(k)(W) or G̃(λ)(W). Only once the “true” critical
points, i.e., those, which are relevant for Proposition 4, get close by, the Hessian and thus
the descent direction becomes correct. Since one can observe that the rank goes up, one
can conclude that optimisation obeys theoretical considerations.

78

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Remark

It is important to emphasize that the experiments suggest that multistep methods are not
a global remedy for all problems in DP with NN-VFA. In particular, for the second-order
training case, one can see that k = 1 works also in the continuous setting reliably. Changing
to larger lookahead has a beneficial impact on κ, but it is questionable if this is really
worth the effort. Judging based on Figure 3.12, there is no clear advantage or disadvantage
for larger lookahead for the compound Bellman Operator in terms of final error. The same
holds true for λ-weighted lookahead. Larger λ such that rewards from later successors
have more impact on the current state only increases the effort without providing better
approximations of value functions. The only case, where an advantage is visible, is that for
first-order gradient descent and a TD(λ) approach. With increasing λ, the rank becomes
almost full and the inverse condition numbers improve for the entire training process. Still,
high final errors suggest that the approximation is not a good fit for the actual value
function.

3.5.5 Policy Iteration
A First Attempt

Setting To examine the practical applicability of Gauss Newton Residual Gradient
optimisation, I change the environment to Cart Pole and test my approach in a Policy
Iteration setting. For that purpose, I use Q-factors instead of the state-only value function V
and use a greedily induced policy as defined in Equation (2.15). To represent Q-factors,
the network input consists of the continuous state and the discrete action index, hence
MLPs need KS +1 units in the input layer. More specifically, I use the MLP F(5, 15, 15, 1)
with Nnet = 346 parameters to approximate the Q-function. Actions are selected by brute
force enumeration and evaluation of all possible values in a certain state. The learning
rate is set to α = 0.1.

Primarily, I am interested in the effect of different sample sizes and how the amount of
Policy Evaluation iterations impacts the overall performance. Hence, I select the number
of states, which are sampled uniformly from the entire state space before every Policy
Evaluation step, in the range N ∈ {100, 200, 300, 400, 500, 1000}. The number of descent
steps, which also controls the quality of the Policy Evaluation component, is taken from
i ∈ {50, 100, 150}. Additionally, I also compare the impact of reusing the last parameters
of the previous Policy Evaluation step as initialisation for the current sweep. Based on
the outcome of experiments in Section 3.5.2, I also wonder, whether a Semi-Gradient
formulation can work for a PI setting. Thus, I also test, whether the slow convergence
of first-order methods is that severe for full Policy Iteration. With regard to Section 4.3,
both versions of the Cart Pole benchmark, i.e., MyCartPole-v0 and MyCartPole-v1, are
tested to see, whether a proper system dynamics and reward function are necessary for the
success of a PI algorithm.

I measure the performance of a policy after every improvement step as described at the
end of Section 3.4.2. I obtain unbiased estimations for the discounted reward by performing
several rollouts with 500 transitions, which start from random but kind start states. By
the adjective “kind” I denote a region in the centre of the state space, where the cart is
located towards the middle of the track with the pole being almost upright. Furthermore,
there is only a small but still non-zero initial velocity for both the cart and the pole. I

79

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Option Effect Comment
Transient parameters More random training Progress is reset randomly,

i >> 150 does not help
1st order Semi-Gradient Divergence only tested in

MyCartPole-v0
2nd order Semi-Gradient Lack of improvement &

Divergence
1st order Residual Gradient Divergence

Table 3.2: Hyper parameter with convergence issues.

have decided to use less transitions in trajectories compared to the computation of the
ground truth to reduce the overall runtime of the experiment. Even if this causes the
approximation error of expected discounted rewards to be larger, it is still possible to see
the learning progress.

In order to provide figures, which enable reliable statements independently of the
initialisation for MLP parameters, every parameter combination is executed ten times from
scratch. Therefore, the combination of rollouts across all sweeps requires an additional
processing step. For each repetition, I obtain one average return R̄l as well as the minimal
and maximal returns, which are denoted by R−

l and R+
l , respectively. The index l denotes

the repetition and ranges from l = 1, . . . , 10. I combine all repetitions by forming the
average of these terms over all l, i.e., I compute R̄− = 1

10

∑
l R

−
l , R̄+ = 1

10

∑
j R

+
l and

R̄ = 1
10

∑
l R̄l. The overall average performance R̄ can then be visualised as single curve,

which indicates the typical return of the policy. The average best cases R̄+ and worst cases
R̄− are drawn as shaded area around R̄. The size of the shaded area indicates how stable
the process is. All curves receive a uniform filter with size three to remove only the most
drastic jumps in the graphs for consecutive sweeps.

Many combinations of all tested parameters result in an immediate divergence of MLP
parameters within the first five sweeps. If they do not diverge, then there are still many
cases, where only chaotic performance values are present, which tremble around in a
minimal to barely improved accumulated reward spectrum. Other choices for parameters
do not have a beneficial impact and, for example, render the training simply more random.
Table 3.2 summarises the effects of those bad performing parameters and, if required,
their interactions. To compensate the seemingly random reset of progress for transient
parameters, it seems obvious that one should use significantly more training iterations per
sweep. Because every sweep starts with a fresh MLP, the optimisation process needs enough
time to arrive at a good approximation of Vπ. However, I have seen in my experiments
that choosing i = 5000 descent steps does not compensate the resetting behaviour. The
progress of Policy Iteration still appears to be lost from time to time. This stands in
conflict with insights from the convergence experiment (cf. Figure 3.8), which suggest that
i = 5000 iterations should be enough to realise Policy Evaluation. As a consequence, I
work exclusively with persistent parameters and a small amount of iterations as specified
above. This also has the pleasing effect that the overall runtime of the Policy Iteration
algorithm is reduced. My results for working PI experiments are visualised in Figure 3.17.

80

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 10 20 30 40 50
sweep

8

7

6

5

4

3

2

1
pe

rfo
rm

an
ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(a) i = 50, v0

0 10 20 30 40 50
sweep

90

80

70

60

50

40

30

pe
rfo

rm
an

ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(b) i = 50, v1

0 10 20 30 40 50
sweep

8

7

6

5

4

3

2

1

pe
rfo

rm
an

ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(c) i = 100, v0

0 10 20 30 40 50
sweep

80

60

40

20

0

pe
rfo

rm
an

ce
N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(d) i = 100, v1

0 10 20 30 40 50
sweep

8

7

6

5

4

3

2

1

pe
rfo

rm
an

ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(e) i = 150, v0

0 10 20 30 40 50
sweep

90

80

70

60

50

40

30

20

pe
rfo

rm
an

ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(f) i = 150, v1

Figure 3.17: Combining Gauss Newton Residual Gradient Policy Evaluation with Q-factors
and greedily induced policies to obtain full Policy Iteration. As environment
serves Cart Pole in versions v0 and v1. The graphs show the expected reward
according to rollouts.
Sequentially improving policies are to some extent visible, especially for the
environment v0. However, there is no clear trend for the required number of
samples or the optimal amount of Policy Evaluation iterations. For all cases,
the quality of policies is bad, since an optimal policy with perfect balancing
should produce close to zero rewards (i.e., no punishment at all). Without
second-order optimisation or when using Semi-Gradients, Policy Iteration does
not work or diverges after a couple of sweeps.

81

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Results Experiments with Semi-Gradients for both first- and second-order descent algo-
rithms and tests with a first-order Residual Gradient formulation do not show improving
policies over time, or even diverge. Thus, I can only provide results for my Gauss Newton
Residual Gradient formulation. Fortunately, this behaviour already implies that second-
order information is essential to enable and stabilise Policy Iteration in continuous control
problems with Non-Linear Value Function Approximation architectures. It also shows that
in order to get the benefits of second-order approaches, the TD target cannot be ignored
during the computation of differential maps.

Sequentially improving policies are visible for several parameter combinations in Fig-
ure 3.17. But this happens only at the beginning of training and only until a certain reward
threshold. A stable and repeatable training of policies from scratch is not available.

In all plots of Figure 3.17, it is hard to find a clear trend for the required number of
samples or the optimal amount of Policy Evaluation iterations. Figures 3.17a, 3.17c and
3.17e allow for the statement that once the number of sample states N is getting close to
or exceeding the number of MLP parameters Nnet = 346, then the highest rewards are
visible. However, since proper balancing would result in zero punishment, i.e., the highest
reward, one needs to classify these policies as poor result in terms of solving the task.

With the other version of the environment, performance generally looks worse with
one exception. In Figure 3.17d, one can see that N = 1000 samples and i = 100 descent
steps for Policy Evaluation produces for several repetitions well performing policies. The
accumulated reward in this environment needs not be necessarily exactly zero to indicate
a proper policy. Slight swinging around the balancing point produces a minor negative
reward, but the pole is indeed kept upright.

It is interesting that both decreasing and increasing the amount of Policy Evaluation
iterations results in worse performance. But based on my available experimental results, I
cannot make reliable statements at this point.

Although I observe a slightly chaotic behaviour, I argue that this is to be expected,
since function approximation is utilised in a Policy Iteration framework. Thus, there are
two unavoidable sources of errors, namely inaccurate Policy Evaluation and erroneous
Policy Improvement. First, different than typical RL settings, where samples come from
an exploration mechanism, I select samples uniformly distributed in the entire state space.
Thus, my control problem and learning algorithm does not have a high resolution focused
on visited parts of the state space, but try to find a global solution, which is obviously a
more challenging problem. Second, I make use of discrete actions. This means, I demand a
smooth function approximation architecture to model jumps in the value function, which
must occur for example around the balancing point of the pole.

Remark on Visualisation Providing intuitive visualisations for the training progress of
the PI algorithm, without having by accident false claims on the level of performance,
is a challenge on its own. To emphasize the difficulty in visualising results of several
repetitions of the same experiment, I provide here the raw rollout values for the seemingly
best performing parameter combination in Figure 3.17d. Ten individual executions for
N = 1000 samples with i = 100 Policy Evaluations steps are depicted in Figure 3.18.

All repetitions use the same hyper parameters N and i. One can see from the ten
individual graphs in Figure 3.18, that the various rollouts per individual repetition of
the entire training process produce mostly similar discounted returns. This means, after

82

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

80

60

40

20

0
pe

rfo
rm

an
ce

0 20 40
sweep

80

60

40

20

0

pe
rfo

rm
an

ce

0 20 40
sweep

0 20 40
sweep

0 20 40
sweep

0 20 40
sweep

Figure 3.18: The individual performance curves, which result in a single combined line in
Figure 3.17d. Whereas repeated rollouts for a certain approximated Q-function
achieve often consistent rewards (single graph with shaded area), redoing the
overall experiment can result in completely different behaviour (all ten cases
compared against each other).

initialising the MLP, the evaluation of the policy produces consistent values. Cases, where
the complete shown range of the y-axis is covered by the shaded area, are a due to a single
rollout reporting the minimal or maximal accumulated discounted reward. The remaining
ones stick to the average value.

Running again the whole experiment produces varying performance curves. This cor-
responds to comparing individual graphs in Figure 3.18 with each other. Unfortunately,
these curves can be rather dissimilar. By averaging the mean accumulated rewards over
time for all ten executions, I can highlight the trend for performance over time in the
overall experiment. Additionally, by combining the min-max areas as described earlier, it
is possible to obtain an intuitive understanding for the algorithm. If the shaded area is still
small after the combination, then all repetitions of the experiment perform consistently
and the combined graph allows for robust statements. If not, then a more sophisticated
investigation is required and the plots shown in Figure 3.17 are not suitable for drawing
concrete conclusions. The reader must reproduce the experiment on his or her own and
investigate all runs individually.

Leaving the Over-parametrisation Setting

Setting My previous PI experiments have been constructed around the theoretical in-
sights from the critical point analysis in Section 3.3.2. Namely, the MLP size should be
synchronised with the amount of training samples. Thus, I have selected the number of
samples N around the given number of MLP parameters Nnet. However, if one keeps the
generalisation experiment from Section 3.5.3 in mind and, in particular, the test errors

83

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 10 20 30 40 50
sweep

7

6

5

4

3

2

1

pe
rfo

rm
an

ce

N = 1000
N = 2000
N = 3000

(a) i = 300, v0

0 10 20 30 40 50
sweep

80

60

40

20

0

pe
rfo

rm
an

ce

N = 1000
N = 2000
N = 3000

(b) i = 300, v1

Figure 3.19: Combining the Residual Gradient Gauss Newton Policy Evaluation with Q-
factors and greedily induced policies to full Policy Iteration. As environment
Cart Pole is employed in both versions. The graphs show the expected reward
obtained by performing rollouts.
More data and Policy Evaluation iterations seem to help and solve the struggle
from previous experiments. For version v1 of Cart Pole, the algorithm achieves
consistently working policies, whereas original version v0 appears unsolvable.
The beneficial effect of additional data stands in conflict with theoretical
insights, but matches generalisation experiment.

from Figure 3.11, then the obvious strategy is to incorporate significantly more data into
the Policy Evaluation task than parameters of the MLP.

Therefore, I repeat the complete experiment from the previous section with the same
settings, expect for a different amount of iterations i and sample states N . The number
of iterations is fixed to i = 300 and I vary the amount of training data in the set
N = {1000, 2000, 3000}. As usual, I sample start states uniformly from the entire state
space. I include more iterations i to reduce further the NMSBE based on idea that a
higher quality for Policy Evaluation step cannot cause any harm. However, when taking
the overall runtime into account if N is increased, the large amount of iterations from
previous experiments (e.g. i = 5000) is not possible, because for PI, an MLP is trained
every sweep.

Using the same strategy for visualisation as before, I provide the resulting performance
of the PI algorithm when using more training samples in Figure 3.19.

Results Most notably, the Gauss Newton Residual Gradient algorithm, when used inside
a Policy Iteration algorithm, is now working. All experiments with enough data, i.e.,
N ∈ {2000, 3000}, produce consistently policies in the upper reward range. The sizes of
shaded areas in Figure 3.19 are small compared to those in Figure 3.17, indicating that
policies can be optimised reliably and independently of the initialisation.

Increasing only the amount of descent steps to get a better Policy Evaluation is not
sufficient to enable training progress. This can be seen when comparing the curve for
i = 300 and N = 1000 in Figure 3.19b with the curves corresponding to i ∈ {100, 150} and
N = 1000 from the previous Figures 3.17d and 3.17f. The discounted reward produced by
the policies remains at approximately −40 for all values of i when using only N = 1000

84

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

samples for training. Only with larger N , it is possible to obtain policies with correct
balancing behaviour, i.e., an accumulated reward close to zero.

It is important to emphasize the difference in the resulting quality of policies between
the two versions of the Cart Pole benchmark. For the original environment MyCartPole-v0
with performance curves from Figure 3.19a, the increased amount of data does not solve
the previous problem with the maximal achievable expected reward. Even the best policies
do not solve the task, not even from a qualitative perspective. Once the formulation of
the environment fits natively into the MDP language and the reward signal is replaced
with a function, which does not contain extended constant regions, well performing policies
are possible. For MyCartPole-v1 and N = 3000, the policies manage to achieve almost
zero punishment for all repetitions. This can be seen starting at sweep 40 in Figure 3.19b.
Furthermore, those policies exhibit also from a visual perspective a proper balancing
behaviour.

A possible explanation for this behaviour is related to insights from Section 4.3. Namely,
it is crucial that the Q-function maintains a proper shape such that a greedily induced
policy according to Equation (2.15) has a high chance for selecting the correct action.

Effect of Multistep Operators on Policy Iteration

Setting As the last experiment for a Policy Iteration algorithm, I want to see, whether
multistep formulation provide at least a noticeable boost for the performance of polices.
Hence, I take the same experimental setting for Policy Iteration as in my experiments
from the previous two paragraphs. But this time, I realise Policy Evaluation through the
compound multistep operator. I check impact of multistep lookahead for k ∈ {5, 10, 15}.
Based on my insights from the Seven State Star Problem in Section 3.4.4 and from
the multistep convergence tests in Section 3.5.4, I ignore completely the TD(λ) method.
Furthermore, I also omit the environment MyCartPole-v0, because the existing single-step
PI experiments suggest that this environment is simply not solvable. I provide my results
in Figure 3.20.

Results The performance curves reveal that the TD(k) multistep method does not help
Policy Iteration, at least if second-order optimisation is involved for the Policy Evaluation
component. Independently of k, I only observe the same behaviour for the PI progress as
in the single-step case with small amounts of data (i.e., i ≤ 1000). Once enough samples
are involved, i.e., N ∈ {2000, 3000}, PI starts to work as for k = 1. This can be seen from
Figures 3.17b, 3.17c and 3.17f. Whereas a lookahead of k = 5 does not seem to have any
impact, selecting the largest lookahead k = 15 even destroys the high quality of policies
such that the accumulated reward settles at approximately −20 for N = 3000. This effect
matches the hindered convergence behaviour for large λ or k in Section 3.5.4.

As a conclusion for the setting I consider, a multistep formulation does not help to
increase the performance. If the amount of data is large enough, then the algorithm simply
works (right column in Figure 3.20). Also, one cannot overcome the struggle, if only little
amount of data is used (left column in Figure 3.20). The performance curves stay similar
to that of Figure 3.17d for k = 1 and by using a multistep formulation one increases only
the computation burden.

85

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 10 20 30 40 50
sweep

90

80

70

60

50

40

30
pe

rfo
rm

an
ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(a) k = 5, i = 100

0 10 20 30 40 50
sweep

80

60

40

20

0

pe
rfo

rm
an

ce

N = 1000
N = 2000
N = 3000

(b) k = 5, i = 300

0 10 20 30 40 50
sweep

90

80

70

60

50

40

30

pe
rfo

rm
an

ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(c) k = 10, i = 100

0 10 20 30 40 50
sweep

80

60

40

20

pe
rfo

rm
an

ce

N = 1000
N = 2000
N = 3000

(d) k = 10, i = 300

0 10 20 30 40 50
sweep

90

80

70

60

50

40

30

20

pe
rfo

rm
an

ce

N = 100
N = 200
N = 300
N = 400
N = 500
N = 1000

(e) k = 15, i = 100

0 10 20 30 40 50
sweep

80

70

60

50

40

30

20

10

pe
rfo

rm
an

ce

N = 1000
N = 2000
N = 3000

(f) k = 15, i = 300

Figure 3.20: Residual Gradient Gauss Newton based Policy Iteration for different sizes of
multistep lookahead with compound Bellman Operator T(k)

π . The environment
is MyCartPole-v1. All figures show the expected reward of the policies obtained
by performing rollouts.
One can see, that TD(k) does not bring an advantage. On the contrary, a
bigger lookahead k leads to larger demand of training data N to maintain
identical performance. PI executions in the left column do not achieve a
proper progress at all and resemble those with k = 1.

86

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

3.6 Remark: Over- vs. Under-parametrisation
If I compare my theoretical results from Section 3.3 with those from experiments in
Section 3.5, then it is apparent that there exists a certain conflict. My analysis of critical
points suggests that one should select for given MLP the amount of samples such that
Nnet ≥ N holds. In practice however, I find that the relation N ≥ c ·Nnet with c ≥ 1 is
needed to enable proper progress for a Policy Iteration application. My goal for this section
is to summarise the empirical insights regarding data consumption and also to provide a
possible explanation, which justifies the observed behaviour within my analysis of critical
points.

The initial question, which needs to be answered, is, whether there is a fundamental
problem with my approach through non-convex optimisation. Afterwards, it can be
hypothesised, whether there are additional and still undiscovered mechanisms at work.
Therefore, I need to test first, whether the MLP I have selected in previous experiments is
indeed capable to model the correct value function. Second, I need to ensure that the data
itself is not a source of artefacts.

To do so, I run another collection of experiments focused around solving the Policy
Evaluation task, but employ this time two fundamentally different learning methodologies.
I compare my proposed approach, namely minimising the NMSBE with a Gauss Newton
Residual Gradient algorithm, with a pure Supervised Regression algorithm. For both
strategies, I use the same MLP architecture and identical start states as training data.
Target values, which are required to realise Supervised Regression, are given by Monte
Carlo rollouts performed in all starting states. This boils down to using the Vπ values
shown in Figure 3.7b directly for fitting. To ensure that Supervised Regression does provide
an unbiased comparison, I do not make use of my Gauss Newton algorithm as I do later
on in the regression task from Section 4.6, but rely on a “typical” setting. This means, I
make use of Torch [Paszke et al., 2019] as a common Deep Learning framework and use the
provided Adam optimiser [Kingma and Ba, 2014] and settings according to best practices.

The experimental setup orients itself on that of the previous section. The environment
is still MyMountainCar-v1 such that I can compare value functions visually with those in
Figures 3.7 and 3.14. Furthermore, this also allows me to draw a connection to Actor-Critic
algorithms and their limitations as described in Section 4.5.4. The MLP consists of two
hidden layers with 15 units each and Bent-Identity as activation function. The input is
two dimensional matching the state space and the MLP has a single linear output unit
to represent the expected discounted reward. Thus, the MLP has Nnet = 301 parameters.
Training consists for both methods of 104 iterations. For the Gauss Newton Residual
Gradient algorithm, I set the learning rate to α = 0.1. For Supervised Regression, I use
α = 0.01 and let Adam handle the adaptions. For Adam itself, I rely on default parameters
as they are given by the authors.

The actual experiment now uses two different amounts of start states N and both learning
approaches. For the first amount of training samples, I select N = 250, which is the number
of start states used in the multistep experiment from Section 3.5.4. With N = 250 samples,
I comply to the results from the critical point analysis, i.e., there are more parameter Nnet

than samples N . But at the same time, this value for N also has revealed more clearly
the issues regarding learning the correct value function. As the second value for N , I pick
N = 3000. This amount of training samples has been deemed necessary during the Policy
Iteration experiments in Section 3.5.5 or also during the experiments with an Actor-Critic

87

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

algorithm from Section 4.5.4. Therefore, I investigate four different combinations: learning
methodology and over- or under-parametrisation. Every combination is executed ten times
to reduce the impact of initialising the MLP parameters randomly. I show the value
functions for the smallest achieved error in Figure 3.21 and the errors for each iteration in
Figure 3.22.

Figures 3.21c and 3.21d suggest that the MLP is indeed expressive enough to approximate
the ground truth, which is shown in Figure 3.7b. When looking at the red curves in
Figures 3.22a and 3.22b, one sees that regression ends with a mean squared error of about
30 or, in other words, the approximated value function is offset by approximately 5 units
on average from the ground truth. Thus, the theoretical considerations in Section 3.3.2
can be maintained in numerical applications. In particular, Assumption 2 is not entirely
out of reach. Of course, creating a perfect zero would involve MLPs with infinite size.

Next, for the under-parametrisation setting, the final NMSBE achieved by the Gauss
Newton Residual Gradient algorithm is around 2 · 10−4. Since one knows from Figure 3.16
that the rank of the Jacobian is full, this is a strong hint that the situation outlined in
Remark 1 applies as is. Optimisation is possible as long as the numerical precision of the
computer system is not the limiting factor.

In the over-parametrisation setting, the value function resulting from the DP approach,
which is shown in Figure 3.21a, primarily only shares a qualitative resemblance to that of
regression (Figure 3.21c) or the ground truth (Figure 3.7b). It does not posses the exact
right numerical values and appears to be offset across the entire state space. Here, I can
conclude that the NMSBE as objective for a Residual Gradient formulation in continuous
spaces is too complicated to obtain easily a good approximation for a value function with
an MLP. This emphasizes, why a characterisation of all critical points, as I have done in
Section 3.3, is crucial. To come up with a sophisticated Approximated Newton algorithm,
all moving parts of an optimisation problem must be identified and understood. Also, my
other experiments match the insights from the critical point condition. If working in an
over-parametrised configuration, the only full solution from the DP perspective is to have
a vanishing TD-error vector for all states. But at the same time, due to a limited number
of samples, the approximation of integrals in the MSBE, which is required to arrive at the
sampling based formulation for a practical algorithm, is of low quality. Hence, one does not
capture the entire requirement or information in the optimisation task for solving the MDP
properly. This is where Proposition 3 applies with its negative consequences for training.
Namely, solving the MDP works from the algorithmic perspective in the sense that some
loss becomes small. But the outcomes is not a solution to the actual engineering problem.

More puzzling, but in a positive way, is the beneficial effect of increasing the amount of
samples, i.e., switching to the under-parametrised setting. Whereas the result of regression
becomes more sharp (cf. Figure 3.21d), the value function from minimising the NMSBE
only reproduces the correct underlying structure. Figure 3.21b shows a coarse spiral-like
pattern, but the value function is completely offset when compared against the ground truth.
The result of this single experiment is also backed by the investigation of generalisation
capabilities from Section 3.5.3. To my understanding, such a puzzling nature of this
behaviour stems directly from the critical point condition in Equation (3.14). Once the
condition N > Nnet holds, then there is a guaranteed null space in the matrix G̃(W), in
which N −Nnet components of the Bellman Residual ∆̃π(W) can vanish. Thus, one would
expect critical points to include many solutions with completely arbitrary value functions.
However, since the rank of G̃(W) in the under-parametrisation setting is still Nnet and

88

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(a) Dynamic Programming with N = 250

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(b) Dynamic Programming with N = 3000

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(c) Supervised Regression with N = 250

positio
n

1.25
1.00

0.75
0.50

0.25
0.00

0.25
0.50

velocity

1e 2

6
4

2
0

2
4

6

V

1e1

2

0

2

4

(d) Supervised Regression with N = 3000

Figure 3.21: Best approximations to Vπ according to the smallest errors. The error is given
by Bellman Residual minimisation (top row) or by the MSE for Supervised
Regression (bottom row). Training of MLPs is done in over- (N = 250,
left column) and under-parametrisation (N = 3000, right column) setting.
One can see that the overall outcome is only qualitatively similar. From a
quantitative perspective however, the MLP has a certain freedom in finding
the best approximation.

89

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 2000 4000 6000 8000 10000
iteration

10 4

10 3

10 2

10 1

100

101

102

lo
ss Bellman

Regression

(a) N = 250

0 2000 4000 6000 8000 10000
iteration

10 4

10 3

10 2

10 1

100

101

102

lo
ss Bellman

Regression

(b) N = 3000

Figure 3.22: Comparison of convergence behaviour for Bellman Residual minimisation and
Supervised Regression in the over- (N = 250) and under-parametrisation
(N = 3000) setting. The meaning of the y-axis depends on the method. For
regression, it denotes the Mean Squared Error between predictions and target
labels. For Bellman Residual minimisation, it is the NMSBE as defined in
Equation (3.11).
Supervised Regression remains mostly unaffected by different N , only the
width of the shaded area is smaller with more samples. For Bellman Residual
minimisation, one can see that the over-parametrisation setting allows for a
smaller NMSBE.

therefore as large as it can get, there is still the incentive created by the Nnet × Nnet

sub-block in G̃(W) to render Nnet entries in ∆̃π(W) zero. I have conducted experiments
similar to that of Section 3.5.4 for larger values of N to see this behaviour of the rank.
However, I do not include them in my work due to the required amount of pages to list
seemingly identical figures.

I hypothesise that in this mechanism a dependency is residing, which favours a good
outcome of optimisation. In the ideal case, the only way for an MLP to render ∆̃π(W) zero
is to be the actual value function Vπ. This is due to Tπ being a contraction in the function
space V . Since the usage of more state samples, i.e., larger and larger N , affects positively
the approximation of integrals inside the MSBE and the connectivity between states across
the entire state space, the issue outlined in Proposition 3 vanishes. The only way to make
an MLP learn a wrong function would be to have again significantly more parameters than
samples, such that tearing apart the expected rewards for different states becomes possible
again. Thus, as long as there are enough parameters Nnet such that sufficient many unique
state samples or components of ∆̃π(W) are enforced to become zero, the Policy Evaluation
task can work well enough and, hence, the overall Policy Iteration algorithm is able to
produce good policies over time. This line of thought is supported by the training and
test errors in Figure 3.11, by the behaviour of Policy Iteration with more training data (cf.
Figure 3.19) or the Actor-Critic algorithm (cf. Figure 4.5) in the under-parametrisation
setting.

90

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Chapter 4

Analysing the Actor: Extending the
Investigation to Parametrised Policies

4.1 Introduction
In this chapter, I extend my analysis of critical points and the application of non-convex
optimisation from the MSBE and the Critic-Only approach to the full Actor-Critic regime.
The foundation of this chapter is my published paper [Gottwald et al., 2022].

The analysis and possible statements for Actor-Critic algorithms become more com-
plicated compared to Chapter 3, because an Actor uses the Critic, or more precisely, its
approximated Q-function, as objective for training. It is important to investigate, what
kind of statements are still possible and which components of an algorithm require more
care, especially since the Q-function is a non-linear and non-convex function with less
pleasing properties than the NMSBE used for training a Critic. For example, by using the
Q-function to train an Actor, there will be a more restrictive structure imposed on the
reward function. Furthermore, if the Actor is also build around a parametrised policy to
handle continuous action spaces, then the domain, on which the task is defined, will cause
trouble. Lastly, if a policy is to be trained based on collected states-action tuples, then
one obtains a classic regression setting, for which additional challenges for training with
respect to the MLP components will show up. Hence, analysing the optimisation task,
which forms the Actor-Critic algorithm, and merely writing down the source for troubles is
already of great value.

This chapter is organised as follows. Section 4.2 addresses the existing literature.
More precisely, Section 4.2.1 gives an overview over possible methods once continuous
action spaces are involved. Afterwards, Section 4.2.2 addresses existing realisations and
investigations of Actor-Critic algorithms. My insights regarding the Q-function as an
objective and its action input are contained in Section 4.3. Section 4.4 extends those
insights when involving parametrised policies, i.e., an Actor. Experiments for demonstrating
concepts from previous sections numerically are the goal for Section 4.5. I give a quantitative
verification for theoretical insights and also show overall capabilities and limitations of
an Actor-Critic approach, when using Gauss Newton Residual Gradient optimisation for
training the Critic. Finally, in Section 4.6, I address geometrical issues, which I have
revealed during the design and investigation of Actor-Critic algorithms. I propose and
evaluate a possible solution, which is build around the training of policies as Supervised
Regression tasks and exploiting the geometry of a unit ball.

91

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

4.2 Existing Methods & Related Work
The purpose of this section is to introduce and define the actual problem, which needs to be
faced, once the action space is no longer discrete. In any Dynamic Programming algorithm,
one has to be able to extract from a given value- or Q-function an enhanced policy such
that one can solve the Policy Improvement step from Equation (2.10). Since there are
several equally valid approaches, Section 4.2.1 gives a general overview first. Afterwards, I
address in Section 4.2.2 the existing literature. Despite all approaches relying on Q-factors,
they naturally split into two categories. Algorithms in the first category tackle the Policy
Improvement task by taking a Q-function and searching directly in the action space for
optimal values. In the second category, existing work employs a parametrised policy such
that it covers the class of Actor-Critic algorithms.

4.2.1 Existing Methods
A main challenge for the realisation of a Dynamic Programming algorithm is the imple-
mentation of the Policy Improvement step, which appears either inside Policy Iteration or
as the last instruction for Value Iteration. With the help of Q-factors, solving the general
form of Policy Improvement as given in Equation (2.10) reduces to the more compact
construction π(s) ∈ argmaxaQ(s, a) as it is defined in Equation (2.15). Given a current
Q-function or its approximation, this maximisation is now straightforward to solve from a
conceptual viewpoint. Furthermore, if the action space is discrete, Policy Improvement
even becomes trivial, as it involves just an O(|KA|) search. Namely, one iterates over all
elements in the set and selects the largest one. Typically, this search is fast enough for
reasonable action spaces and in the worst case parallelisation must be employed.

Of course, the obvious approach of discretising continuous action spaces leads to typical
combinatorial problems and suffers from an exploding number of combinations. As a
numerical example, consider a humanoid robot, which can easily have twenty degrees of
freedom. With the coarsest discretisation possible, namely for each joint turn clockwise,
idle and turn counter clockwise, this already results in over three billion combinations.
Hence, processing the action space directly in its continuous form is mandatory, which in
turn renders the Policy Improvement step more demanding. Aside from obtaining optimal
continuous actions themself from a Q-function, one also faces new challenges related to the
training of parametrised function approximation architectures, which might be needed to
represent the space of policies.

Common approaches and algorithms, which can realise a full DP algorithm, form three
different categories:

• Direct-GIP – One solves the optimisation problem in Equation (2.15) directly at
the states one is interested in and obtains for those states optimal actions a∗. The
actions can be used directly as action input to a dynamical system or can be inserted
in the Optimal Bellman Operator Tg to realise Q-learning or even Value Iteration in
continuous spaces.

• Fitted-Actor – The previous approach is employed to create a training set consisting
of state-action pairs, which can be used for Supervised Regression of a parametrised
policy in a successive but separated step.

92

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

• Actor-Critic – One introduces a parametrised policy and trains it directly through
the (approximated) Q-function. This means, the scalar Q-function is treated as
non-linear and non-convex loss surface and is used in conjunction with the chain rule.
One creates an improved policy for all states by manipulating the policy parameters
with the goal to increase the approximated expected reward.

In the first two scenarios, Direct-GIP and Fitted-Actor, various tools are available, which
allow to create a dataset (si, a

∗
i) with i = 1, . . . , N for Supervised Regression. A simple

yet performant example is derivative free optimisation. The Cross Entropy Method (CEM)
is a well-known algorithm in that category and can be used to obtain for some given state
an optimal action according to the Q-function. An approach which uses CEM treats the
Q-function as a black box and returns optimal actions for all states, when given enough
computation time. Whereas such a method can work on a large scale, as demonstrated
for example with QT-Opt in [Kalashnikov et al., 2018], gradient ascent methods should
result in better efficiency [Laguna et al., 2006] and are preferable. To exploit gradient
information, solving Equation (2.15) is converted to the iteration

a← a+ α∇aQπ(s, a), (4.1)

which starts with an initial action a0 and follows repeatedly a fraction α of the gradient.
This has to be done for every state s ∈ S one is interested in. The iteration terminates,
once a reaches a critical point a∗ of Qπ with respect to the action input, assuming one
exists. Even second-order optimisation

a← a+ α
(
HaQ(s, a)

)−1∇aQ(s, a) (4.2)

has been proposed and explored in [Nichols and Dracopoulos, 2014], where the Hessian and
Gradient of the Q-function are used together to define a geometry-aware ascent direction.
I provide more details on this approach as part of the related work in Section 4.2.2 and
during my analysis of critical points of an approximated Q-function in Section 4.3.

The third scenario, Actor-Critic, employs the chain rule to define a gradient with respect
to the parameters U ∈ U of a parametrised policy through some Q-function

DUQ
(
s, π(U, s)

)
[h] = D2Q

(
s, π(U, s)

)
◦DU π(U, s)[h]. (4.3)

Thus, it expresses equation Equation (4.1) directly in the policy parameter space U . This
particular usage of the Q-function is possible and well-behaved as it is described in [Silver
et al., 2014] for the Deterministic Policy Gradient algorithm. The chain rules is applicable
for a Q-function in terms of its definition as expected accumulated discounted return and
not only because of the function class used to represent some approximated Q-function.
The corresponding iteration then can be written informally as

U← U+ α∇UQπ

(
s, π(U, s)

)
. (4.4)

In all three scenarios, I am interested in an extremum of the (approximated) Q-function
with respect to the action input. Hence, it is important to know, how the critical point
condition of an approximated Q-function with respect to the action input looks like and
what kind of theoretical statements are available. This is my goal for Sections 4.3 and 4.4.

93

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

4.2.2 Related Work
Searching for Optimal Actions

As mentioned in Section 4.2.1, a GIP can be realised by searching directly in the action
space for optimal actions at a certain state by maximising Q-values. The search process
can be realised by computing derivatives of the Q-function with respect to its action input
and performing gradient ascent. Lee and Anderson [2014] have explored this approach for
first-order gradient ascent. Nichols and Dracopoulos [2014] use second-order optimisation,
i.e., Newton’s Method, and thus face the typical problems when combining Hessian-based
methods with non-convex objectives. Namely, the MLP used to approximate Q(s, a)
possesses local minima and even saddle points in A, which will be discovered reliably by
Newton’s Method. It is required to start from several initial actions and to keep track of
the action with largest expected reward observed so far to retrieve proper actions from
some Q-function. Furthermore, the optimisation problem is also altered to some extent,
because the action space A has to be a compact subset of a vector space such that DP
methods become applicable. To ensure that the action iterates after each ascent step
remain in A, it is mandatory to project ascent directions or the iterates themself back to
the domain. The authors employ direct component-wise clipping of action vectors with the
consequence that there arise new points with artificially zero gradients at the boundary
of the action space, where an update direction is perpendicular to the surface and gets
removed completely by clipping operations. A follow up work [Nichols, 2016] also compares
Newton’s Method with other approaches. Among the tested optimisation strategies are
derivative based optimisation, discretisation with brute-force search and the Nelder-Mead
method. All considered benchmarks contain a one dimensional action space. Thus, neither
the required amount of restarts for Newton’s Method nor the grid based approach create
issues regarding sampling complexity or storage requirements.

For my work, I am also considering derivates of Q-function, but primarily because they
arise as part of the chain rule, which is required for implementing Actor-Critic methods.
Hence, I face the same problems regarding the existence of gradients or the type of extrema
of Q(s, a), which are mentioned by the authors in their work. But different to their paper,
in my work these problems are primarily relevant for a parametrised Actor. In the reverse
direction, my insights regarding the possibility to apply a Gauss Newton algorithm for
training an Actor may carry over to their work. Lastly, I elaborate explicitly on these
additional critical points, which arise along the boundary of A, during my description of
the Actor-Critic optimisation behaviour and propose a way for handling them.

The idea of solving argmaxaQ(s, a) directly to obtain a Policy Improvement step has
also been explored in various papers. Kalashnikov et al. [2018] introduce with QT-Opt a
scalable distributed system to build a Reinforcement Learning algorithm, which can learn
to grasp objects with a robotic arm based on camera data. The relevant component is their
application of Cross Entropy Method, which is a black box derivative-free optimisation
technique, to retrieve optimal actions for given states according to a Q-function. The
authors observe that CEM is already enough to define a policy implicitly through the
Q-function and therefore can avoid training an explicit Actor altogether. However, relying
on black box optimisation strategies also prevents any form of insight into the optimisation
problem itself. Other forms of sampling to retrieve actions have also been explored, for
example, Gibbs Sampling in [Kimura, 2007].

94

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

In [Ryu et al., 2020], Continuous Action Q-Learning is proposed, which converts
maxaQ(s, a) into a Mixed Integer Programming task to retrieve actions from the Q-
function. However, scalability of this technique could remain an issue and prevents a
broader application.

Wire-Fitting [Baird and Klopf, 1993] relies on interpolation between pairs consisting of
an action input and estimated values of the Q-function for that input. These pairs are
called Wires and have the pleasing property that the action with largest Q-value is one
of the action points with the highest value. The performance of Wire-Fitting dependents
directly on the number of pairs and has been used by the authors in a memory based
RL algorithm. According to [Nichols and Dracopoulos, 2014], one has to trade off the
number of Wires with the available computational resources. On the one hand, there need
to exist sufficiently many Wires for an accurate representation of the function. But on
the other hand, one also needs to keep the overall computation time feasible. A similar
idea is described in [Millán et al., 2002] or [Lazaric et al., 2007]. A weighted combination
of actions is maintained and updated according to Q-values with the aim to efficiently
retrieve actions with largest Q-values.

Normalised Advantage Functions [Gu et al., 2016] follow the strategy of changing
the available function space of the approximation architecture, which is employed to
represent Q-factors. The authors render the Policy Improvement step argmaxa Q̃(s, a)
analytically solvable by imposing a quadratic form on the approximated Q-function, i.e.,
Q̃(s, a) = −1/2(a− µ(s))TΣ(s)(a− µ(s)) + Ṽ (s). The state dependent functions µ and Σ
describe completely the quadratic form and are represented by another MLP next to that
for the estimated value function Ṽ . To compute optimal actions analytically, one just has
to evaluate the corresponding terms and define a∗ = µ(s). The matrix Σ allows for more
expressiveness during fitting the Q-function, but drops away regarding the action selection
such that less computation is required. A similar idea to enforce a quadratic form for Q
also has occurred in [Rawlik et al., 2012], but it has been used in a different and unrelated
context. Whereas an analytical solution for the optimal action is very pleasing, imposing a
quadratic form for the Q-function might result in a bad fit for certain environments.

Input Convex Networks [Amos et al., 2017] provide a general strategy for training NNs.
The authors create MLPs f : W×X → R, which possess a convex structure with respect to
their arguments x ∈ X and therefore allow for an efficient inference over the input domain.
In particular, the optimisation task argminx f(x,W) is now convex with all the resulting
benefits. A drawback for general applications is that the network can have only a scalar
output. Of course, this is not a limitation for the application in RL, where the main task
is to estimate Q-factors and to retrieve optimal actions from it. It remains questionable
and is problem dependent, whether the achieved convexity is worth the loss of generality
for the space of possible function approximations.

Asadi et al. [2021] combine the Deep Q-Network from [Mnih et al., 2015] with Radial
Basis Functions (RBF) to obtain a DRL method applicable to continuos action spaces. The
authors describe how to find approximately optimal actions given the current Q-function.
A good approximation for the result of argmaxaQ(s, a) is defined by the best centroid of
the responsible Radial Basis Function component. Furthermore, their method can also
be employed together with DDPG. The motivation for their RBF-DQN is that a direct
approximation of the Q-function suffers from many local maxima and saddle points. The
advantage of the RBF step is, that this addition does not hinder the universal function
approximation properties of the underlying Neural Network. Thus, the authors avoid the

95

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

limitations of Normalised Advantage Function or Input Convex Networks and maintain a
better applicability.

There is a clear trend in avoiding issues regarding training of an explicit Actor. Many
constructions to allow for different kind of RL algorithms have been proposed. But, as
pointed out in [Kalashnikov et al., 2018, Lim et al., 2018, Ryu et al., 2020, Asadi et al.,
2021], these constructions (e.g., special MLP architectures) come with a loss of generality.
Limiting the expressive power of the function approximation method can lead to problems.
Hence, I study the optimisation problem when using pure Neural Networks for representing
a policy and try to characterise their training behaviour in an unrestricted setting. To
remove bad effects on training, one requires a full understanding of the nature of all
critical points, which motivates further to investigate the Actor optimisation task from the
non-convex optimisation perspective.

Parametrised Policies

The Deterministic Policy Gradient (DPG) theorem by Silver et al. [2014] provides the
foundation for training Actors directly through a Critic’s derivative without the log-
likelihood trick. The authors tackle integrals over successor states and introduce regularity
requirements with the aim to apply Leibniz’s rule for swapping the order of differentiation
and integration, and to employ Fubini’s theorem for altering the order of integrals. As
the result, defining the gradient for Actor parameters through a Critic is possible in
general and not only due to the use of a particular function approximation architecture
such as Multi-Layer Perceptrons. The extension of DPG towards MLPs is coined Deep
Deterministic Policy Gradient and investigated from an empirical perspective in [Lillicrap
et al., 2015].

By using DPG as foundation for Actor-Critic algorithms, one also avoids using more
sophisticated approaches such as Residual- and Stackelberg Actor-Critic formulations [Wen
et al., 2021]. There is no difference between an original loss for the Actor and a varied loss
provided by the Critic. Consequently, there is also no need to involve an additional MLP
responsible for modelling the difference term between these two losses.

Zhang et al. [2019, 2020a] report a problem with parametrised policies that are trained
by maximising value function directly, i.e., the typical definition of infinite horizon expected
discounted rewards serves directly as objective. The authors point out shortcomings of
the analysis of policy gradient algorithms, and motivate using non-convex optimisation as
a toolbox. They elaborate on a direct application of non-convex optimisation for policy
parameters and find that it can end up at saddle points or in local extrema with only poor
performance. Thus, they also investigate the application of rollouts with randomised lengths
and demonstrate that their more sophisticated approach provides an escape mechanism
from saddles. In my work, I focus on the setting, where a value- or Q-function is represented
by some MLP. Hence, whereas my setting and idea is still related to their work, I face
different challenges due to a different objective.

Understanding the behaviour of Actor-Critic algorithms with MLPs for both Critic and
Actor is also of high practical demand. In [de Bruin et al., 2015], Deep Deterministic
Policy Gradient, a DRL algorithm by [Lillicrap et al., 2015], is applied to a robotic arm
with two joints. The authors find that if the trainings data does not consist of sample
trajectories from the entire state-action space, then the algorithm becomes unstable. This
insight confirms my considerations regarding the need of models in Section 2.5.2. Matheron

96

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

et al. [2020] address situations, in which the Actor-Critic algorithm DDPG does not show
improvement over time, although it is known that DDPG can achieve high performance
after careful tuning. The authors work in a toy environment with sparse piecewise constant
rewards and outline, why in this scenario DDPG converges sometimes to suboptimal policies.
Most importantly, this happens despite a behaviour policy discovering non-zero rewards.
In my analysis, I am facing similar problems for sparse and piecewise constant reward
signals when analysing the optimisation task for the Actor. Even when working without
Semi-Gradients in the Critic and also without exploration mechanisms (i.e., model-based),
training is sometimes impossible. Based on my findings for critical points, I propose a
basic design principle for the reward function to ensure that a Q-function always maintains
a proper geometry to serve as loss for gradient based training of an Actor. This results in
even stronger requirements for the reward function than those already necessary according
to [Silver et al., 2014].

4.3 Critical Points of the Approximated Q-Function with Respect
to Actions

The first step towards extending the critical point analysis from the Critic to an Actor
is to address the Q-function alone. Please keep in mind that it is now mandatory to use
Q-factors, because relying on a state-only value function would involve derivatives of the
reward function and system dynamics with respect to their action inputs. This would open
up a new source of potential issues, for example, those described in [Metz et al., 2021] and
references therein. Handling these issues is beyond the scope of my thesis.

Since the Deterministic Policy Gradient algorithm already provides a foundation for
using Q-factors in general for training an Actor, the goal of this section is to gain an
understanding for the nature of an approximated Q-function. It is important to make
the role of an MLP explicit, because it determines directly how the represented function
behaves.

4.3.1 Notation
When working with Actor-Critic algorithms, it becomes necessary to introduce new symbols
and notation for the use in this chapter. Most notably, there will be now two MLPs present,
where one represents the Q-function and the other serves as policy π. Therefore, all affected
expressions come in two variations and receive a corresponding index Q or π. I introduce
the new notation already over here, i.e., rather close to the beginning of this chapter,
despite it is not required until Section 4.4. My intention is to avoid unnecessary changes in
writing throughout this chapter.

First, and as already mentioned, two MLPs can now be involved at the same time. The
Q-function is approximated by some fQ ∈ F(KS +KA, . . . , 1) with parameters W ∈W.
The policy π is represented with fπ ∈ F(KS , . . . ,KA) and parametrised by U ∈ U . Both
MLPs have an arbitrary depth or width, which can be different in general. However, for my
applications, I keep the amount of hidden layers and their widths synchronised such that
the search space for hyper parameters is reduced. Both MLPs use the Bend-Id activation
function in hidden layers. The output layer of fQ is linear, whereas fπ uses normally
tanh(·) to match a compact action space. It is up to the environment to scale actions

97

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

correctly. In the later document, two differential maps of MLPs will show up. To keep the
naming consistent, there will exist some GQ(W) for the approximated Q-function and a
matrix Gπ(U) for the policy MLP.

Second, the objectives for training MLPs must be distinguished clearly from each
other. The NMSBE for continuous state spaces from Equation (3.11) is now denoted
by JQ : W → R+

0 and there will be a new objective for the policy parameters called
Jπ : U → R. The image of an objective depends on its usage in an ascent or descent
algorithm.

Third, some hyper parameters will show up in two flavours. Currently, this applies to
learning rates α, strengths of regularisation for Hessians c and amount of ascent or descent
steps i.

4.3.2 Requirements for the Reward Function
The first component in a DP algorithm, which is responsible for the desired shape and
form of a Q-function, is the one-step reward r itself. Matheron et al. [2020] have figured
out piecewise constant rewards as a source of problems in DDPG, because Qπ will also be
piecewise constant when working in linear and time discrete environments. Their approach
is to characterise DDPG’s behaviour when working in a full RL setting, which includes
exploration mechanisms with behaviour policies, collecting and incorporating off-policy
transition tuples and working model-free. Yet, the problem with a piecewise constant
Q-function is far more general and exists not only due to using DDPG as an algorithm class.
I employ a purely theoretical non-convex optimisation perspective and work model-based to
remove the need for exploration. Still, once I have obtained correctly a piecewise constant
Q-function, which is matching the reward signal, training an Actor is no longer possible.
Hence, the reward function itself must be suitable for MLP training. Normally, when
coming from the Dynamic Programming methodology or tabular Reinforcement Learning
methods in discrete state-action spaces, there are no important restrictions on the reward
function except for being bounded such that Equation (2.11) converges reliably. In my
work, where I consider continuous spaces and consequently the use of smooth function
approximation in both Actor and Critic, I require proper derivative information from the
Critic to adjust the policy MLP parameters. This rules out any sparse and piecewise
constant reward function of the form

r(s, a, s′) =

{
rmax if (s, a, s′) ∈ R
0 else

,

where R denotes a spatially limited reward region in the state space. For such a reward, it
can happen that a value- or Q-function is also almost everywhere constant. In particular at
the beginning of training, when an initialised policy is producing mostly constant actions,
this is likely to happen.

To see this effect, consider the simple one-dimensional linear dynamical system from
Section 2.6.2 with the reward function r3 from Equation (2.37) and the constant policy
π(s) = 1. The reward function is drawn as the blue dashed curve in Figures 2.2 and 4.1a.
The value function under the policy is represented by the red line in Figure 4.1a. The
contour plot from Figure 4.1b shows the Q-function for the entire state action space. Both
Vπ and Qπ are ground truths obtained from a Monte Carlo method. Their construction

98

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
state

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
va

lu
e

V (s)
r(s)

(a) reward and value function

1 0 1 2
state space

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ac
tio

n
sp

ac
e

0.000
0.211
0.422
0.633
0.844
1.056
1.267
1.478
1.689
1.900

(b) Q-function

Figure 4.1: The value- and Q-function for a piecewise constant reward signal under the
policy π(s) = 1 in a one dimensional (linear) dynamical system. The charac-
teristics of the reward function carries over to the value- and Q-function and
prevent the application of gradient based methods for solving argmaxaQ(s, a).
Both Vπ and Qπ are ground truths obtained from a Monte Carlo method.
Thus, they demonstrate the severity of this issue by showing that also the best
possible case is affected negatively by the reward signal.

follows that of ground truths from previous experiments and is described in Section 3.5.1
and also at the end of Section 3.4.2.

Due to the form of the reward function, both Vπ and Qπ possess large constant regions.
Therefore, it is impossible extract an optimal action for arbitrary states using gradient
based methods. In most regions of the state-action space, gradients are zero. As long as
the policy does not improve, the value- or Q-function under that policy will not change and
in turn, the problem persists. A Policy Iteration algorithm, which is relying on gradient
information, is blocked.

The fact that this issue happens even for the ground truth, i.e., no kinds of approximations
or an MLP itself are involved, underlines the severity of the issue. The best possible case
is that training an MLP works without flaws and that it approximates closely the correct
function. Yet, the result is not of any use for solving the Policy Improvement step.

Of course, this also has consequences for Actor-Critic algorithms, where the derivate of
a Q-function appears through the chain rule in the training of a policy MLP. When going
back to the foundation of deterministic Actor-Critic algorithms [Silver et al., 2014], the
reward function r must be continuous such that one can use the chain rule to compute
gradients for the Actor via a Q-function. Hence, the application of DDPG in [Matheron
et al., 2020] also leaves the realm, where theoretical requirements are satisfied.

Based on the behaviour of ground truth value- or Q-function shown in Figure 4.1, I
propose on top of the conditions given in [Silver et al., 2014] to use reward signals, which
avoid larger extended regions, in which the reward value stays constant. In one-dimensional
environments, this boils down to using (mostly) strictly monotonic functions as the reward.
For such rewards, the value- or Q-functions more likely to provide proper improvement
directions for actions. Thus, an Actor-Critic training procedure can work more reliably.
Unfortunately, it is hardly possible to determine in advance how large a constant region
of the reward function may become before it creates a problem for training progress. An

99

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

empirical and slightly more sophisticated justification is given as part of the experiments
with Actor-Critic algorithms in Section 4.5.2.

4.3.3 Investigation of the Differential Map
A bad reward function on its own can lead to severe problems for Actor-Critic algorithms
in terms of having a plethora of critical points without any use. Hence, it is important
to know, where critical points of an approximated Q-function with respect to its action
input actually originate from and how the critical point condition of the objective in
Equation (4.1) looks like. Since the derivative of fQ will appear later-on as part of the
chain rule in the gradient for Actor updates, it is mandatory to avoid frequent loss of
information for the Actor due to a bad setting for the Q-function approximation. On top
of that, the differential map of the policy MLP fπ will affect significantly the loss surface.

First Steps Let me start with the differential map of the MLP fQ, which I use to represent
a Q-function. Its derivation follows the same steps as in Section 3.3, but this time, the
derivative applies to the action input. After defining a direction h ∈ A, I obtain the familiar
pattern

Da fQ(W, s, a)[h] = D2 ΛL(WL, φL−1) ◦ · · · ◦D2 Λ1(W1, φ0) ◦Da

[
s
a

]
[h]

= ΣLW̄
T
LΣL−1W̄

T
L−1 · · ·Σ1W̄

T
1

[
0

IKA

]
h

= ΨT
1︸︷︷︸

∈R1×n1

W̄T
1︸︷︷︸

∈Rn1×(KS+KA)

[
0

IKA

]
︸ ︷︷ ︸

∈R(KS+KA)×KA

h︸︷︷︸
∈RKA×1

=: C(W, s, a)h, (4.5)

where I make use of definitions given after Equation (3.6) or as provided in Appendix A.
According to Riesz, I compute the gradient as

Da fQ(W, s, a)[h] =

〈[
0 IKA

]
W̄1Σ1W̄2Σ2 · · · W̄LΣL︸ ︷︷ ︸

=:∇afQ(W,s,a)

, h

〉
(4.6)

with the corresponding critical point condition

∇afQ(W, s, a) =
[
0 IKA

]
W̄1Σ1W̄2Σ2 · · · W̄LΣL

!
= 0. (4.7)

When attempting to render Equation (4.7) zero, the design principles of an MLP, which are
already required for a proper minimisation of the NMSBE, become active. First, creating a
critical point by having any parameter matrix W̄i becoming zero is not likely to happen. A
zero parameter matrix would render the MLP constant, which is not matching a reasonable
training task in DP, and because randomly initialised matrices typically have full rank.
Second, one cannot rely on Σi to create critical points. All Σi are diagonal matrices,
which contain the output of the truncated MLP on their diagonal. Furthermore, all layers
use σ̇, i.e., the derivative of the activation function. Hence, this second case is directly

100

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

prevented by design principles employed for Critic training. Since I choose functions for
the non-linearities in an MLP, which are free from vanishing gradients for finite inputs, the
individual Σi in Equation (4.7) cannot become zero.

Numerical and Visual Confirmation Before spending more effort on investigating all
the expressions, I run a quick numerical verification for the existence of critical points. I
consider arbitrary Q-functions, which are obtained from MLPs with parameters chosen
randomly. More concisely, I take an MLP fQ ∈ F(4, 10, 10, 1) with Bend-Id and a single
sampled state s to represent some Q-function. It has four input dimensions to process
a hypothetical two dimensional state space and action vectors with two components,
thus KS = KA = 2. I evaluate fQ(s, a) with a selected from a 175 × 175 grid in the
range [−1.1, 1.1]2. This domain is larger than the intended action space A = [−1, 1]2,
which allows to see without problems the behaviour of fQ near and beyond the boundary.
The visualisations of Q-functions as contour plot for two different random initialisations
are contained in Figure 4.2. The boundary of the action space is shown as dotted line.
Gradients of fQ(s, a) with respect to a are computed using Equation (4.6) and are drawn
in Figures 4.2c and 4.2d with a zoom-in centred around the shortest vectors.

In Figure 4.2a, a candidate for a critical point is present in the region, where isolines
are rather far away. Yet, when looking at the vector field on a smaller scale as done in
Figure 4.2c, one finds a clear direction towards the interior of A. The gradients are not
close to zero, not even from a numerical perspective when taking limited machine precision
into account. In such a situation, optimal actions satisfying argmaxaQ(s, a) are located at
the boundary. In Figure 4.2a, those actions are located roughly at the upper middle section.
This property gives rise to additional and severe issues for any geometric optimisation
approach. The requirement to stay in A makes the application of a projection operation
to the actions or gradients mandatory. However, these projectors also open a new way to
create artificially zero gradients. Hence, a gradient based algorithm for Direct-GIP will now
have new solutions, which are not consistent with those of an unconstrained task. Since
these vanishing gradients originate exclusively from projections, I call them in the following
“spurious” critical points and handle them differently than their natural counterparts. An
example, where such a spurious critical point would show up, can be seen in Figures 4.2a
and 4.2c close to the centre of the upper boundary. I cover the issues related to spurious
critical points on their own in Section 4.6.

After some repeated initialisations, I have been able to produce a Q-function approxima-
tion, which has its optimal action as maximum in A, as one can see in Figure 4.2b. Since
only a compact subset of the input domain to the MLP is covered, it is not possible to
decide, whether this action corresponds only to a local or indeed a global maximum. On
the other hand, this does not matter for a DP application, since I only need statements
about the action space itself and the action with the largest Q-value in that domain. Lastly
and as a side note, care must be taken to not find saddle points. I have not observed them
so far, but nothing prevents them from occurring.

In conclusion, if proper critical point inside the action space exists, as it can be seen in
the numerical example from Figure 4.2b, but the individual expressions are unlikely to
vanish on their own, then there must be another source of solutions to Equation (4.7). A
not that obvious candidate would be null spaces, which would provide the natural critical
points inside A. For the rest of this section and for Section 4.4, I proceed only with these

101

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

1.0 0.5 0.0 0.5 1.0
a1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
a 2

-7.
80

0

-7.
70

0
-7.

60
0

-7.500 -7.
50

0

-7.400

-7.
40

0

-7.300

-7.
300

-7.200

-7.100

-7.000

-6.900

-6.800

-6.700

-6.600

-6.500

-6.400

-6.300

-6.200
-6.100

-6.000
-5.900

8.00

7.75

7.50

7.25

7.00

6.75

6.50

6.25

6.00

(a)

1.0 0.5 0.0 0.5 1.0
a1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

a 2

-1.500
0.000

1.500
3.000

4.500

6.000

7.500

9.000

10.500

12.000

13.500

15.000

16.500

18.000

19.500

21.000

22.500

24.000

25.500 5

0

5

10

15

20

25

(b)

1.0 0.5 0.0 0.5 1.0
aQ(s, a)1

1.0

0.5

0.0

0.5

1.0

aQ
(s

,a
) 2

0.35 0.30 0.25

1.10

1.05

1.00

0.95

(c)

1.0 0.5 0.0 0.5 1.0
aQ(s, a)1

1.0

0.5

0.0

0.5

1.0

aQ
(s

,a
) 2

0.5 0.4

0.65

0.60

0.55

0.50

(d)

Figure 4.2: The Q-function as error surface. The MLP F(KS +KA, . . . , 1) is initialised
randomly and uses a single fixed state s ∈ S. The action input is determined
by a grid in the range [−1.1, 1.1]2. The black dotted line surrounds the actual
action space A = [−1, 1]2. The evaluation of the MLP is done also outside of
A to reveal the behaviour around the boundary of A. Gradients lengths are
upper bounded to enhance visibility. a) and c) The Q-function with a critical
point outside of A and the corresponding gradient vector field ∇aQ(s, a). b)
and d) Similarly, but the critical point is part of A.

102

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

natural critical points. Section 4.6 is then dedicated to their spurious counterparts and
introduces a possible method to handle them correctly.

Critical Points due to Null Spaces A mechanism to render Equation (4.7) zero, which
is not that obvious, is that a vector falls into the null space of a matrix. An apparat
candidate for a null space is the matrix

[
0 IKA

]
. For the sake of convenience, I call

this term in the following zero-one matrix. This matrix is guaranteed to have a null space,
because its rank is only KA. Hence, the question arises, whether the column vector

A := W̄1Σ1 · · · W̄LΣL ∈ R(KS+KA)×1

is an element of it. To answer it, first introduce the partitioning

A =

[
A
A

]}
∈ RKS×1}
∈ RKA×1

such that one obtains the condition[
0 IKS

]
·
[
A
A

]
= 0A+ IKAA = A

!
= 0.

Here, one can see that the only way to satisfy the condition is that the term A still needs
to vanish on its own. Creating a zero in the trivial way through the parameter matrices
or derivatives of activation functions contained in Σi is not possible. The aforementioned
design principles for MLPs or the typical use cases, i.e., non-zero weight matrices, prevent
this method. The zero-one matrix only takes care of the upper part of A, which belongs to
the state input. Thus, this is not enough.

The usage of homogenous inputs φ̃ =
[
φ 1

]
causes parameter matrices to be non-

square even if one uses in all hidden layers the same number of units. In their transposed
usage, there is one more column than rows, indicating that there must be a null space in
which a vector could fall. But as one can already see in Equation (4.7), only the truncated
matrices W̄i without transpose play a role. Hence, the actual matrices that contribute
to the critical point condition do not have a null space just by adding the bias vector to
them. Furthermore, hidden layers should be of same size according to design principles
in [Shen, 2018b] to prevent additional loss of rank for the matrix G̃(W). Thus, for all
hidden matrices, I have W̄l ∈ Rnl−1×nl with nl−1 = nl. So there is no further null space,
if I assume that the matrices themselves are of full rank, as I already have done for the
chapter with the theoretical investigation for a Critic. Because the last matrix W̄L has
the shape nL−1 × 1, it again ensures that there is no useful null space according to its
definition. There are more rows than columns.

The matrices Σl are diagonal for all l with non-zero entries due to proper activation
functions and compatible shapes. Hence, they do not contribute anything and are out of
interest.

The actual important null space is present in the matrix W1, where the input dimension
gets boosted to the hidden layer size. Normally, this null space has to exist, because the
first layer should lift the input dimension of the MLP to a higher value. To see how this
null space does affect the critical point condition, one should investigate more closely the
actual values used to produce Figure 4.2. I increase with W̄1 ∈ R4×10 the four dimensional
state-action input to a ten dimensional latent space, hence there is a six dimensional basis

103

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

for a null space. In Figure 4.2d, the critical point is located at a∗ =
[
−0.41 −0.56

]T.
With that action one can compute the column vector B = Σ1W̄2 . . . W̄LΣL ∈ R10×1 such
that one obtains A = W̄1B =

[
∗ ∗ 0 0

]T. One can see that B resides indeed in the
null space of W̄1 and that the first two non-zero components (denoted by ∗) get removed
by the zero-one matrix. Thus, I have critical points due to a null space, which exists in the
truncated parameter matrix W̄1.

It is an open question, whether solutions for the critical point condition, which arise from
null spaces, can be exploited in the context of DP. Since such solutions are not necessarily
defined exactly, one can use a basis for the null space and move around freely without
affecting the outcome. This opens up the possibility to pick an arbitrary critical point
out of all available ones with other tasks in mind, e.g., as it has been proposed with Safe
Regularization for general Neural Network training in [Kissel et al., 2020]. But for the
application in DP, the MLP parameters are fixed and only the two dimensional action
input can be varied. Hence, it is not clear how to move in the null space of W̄1, if one can
only control the input to an MLP. Whatever value is inserted gets processed non-linearly to
produce this B vector. From the surface plot in Figure 4.2b, there is also a numerical hint
that the set of critical points does not consists of an extended region in the action space.
Hence, an another interesting question regarding the applicability of Safe Regularization,
is, whether the set of critical points is indeed a point. However, this question leaves the
scope of my thesis.

Hessian Motivated by the work from [Nichols and Dracopoulos, 2014], let me take a look
at the Hessian of the MLP fQ used to approximate a Q-function. If it has been possible to
derive and use a Newton’s Method (cf. Equation (4.2)), maybe I can introduce further
simplifications or even arrive at an Approximated Newton Algorithm. Thus, I start from
Equation (4.5) and apply the derivative with respect to the action a second time to obtain
the unwieldy term

Da

(
Da fQ(W, s, a)[h1]

)
[h2] = Da

(
C(W, s, a)h1

)
[h2]

= DaΨ1(s, a)
T[h2]W̄

T
1

[
0

IKA

]
h1

=
L∑
l=1

ΨT
L,l DaΣl[h2]W̄

T
l Ψ

T
l−1,0

[
0

IKA

]
= . . .

= hT2
[
0 IKA

] L∑
l=1

Ψl−1,0W̄lΣ̇l diag
(
ΨT

L,l

)
W̄T

l Ψ
T
l−1,0

[
0

IKA

]
h1

= 〈h2 |HaQ(W, s, a)|h1〉 , (4.8)

where the definitions of Ψf,i are not inserted for the sake of visibility. Opposed to the
original definition of Ψl after Equation (3.6), the term Ψf,i with two indices final and
initial now denotes an arbitrary segment in the sequence of Σ and W̄ matrices. It holds

Ψf,i = W̄T
i+1Σi+1 · W̄T

i+2Σi+2 · · · · · W̄T
f−1Σf−1 · W̄T

f Σf

104

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

with Σl and W̄l defined as before. The indices i and f satisfy i ≤ f . To avoid confusion,
consider the following examples

ΨL,1 = W̄T
2 Σ2 · · · W̄T

LΣL

ΨL−1,0 = W̄T
1 Σ1 · · · W̄T

L−1ΣL−1

Ψl+1,l−1 = W̄T
l Σl · · · W̄T

l+1Σl+1.

As a special case, it applies ΨL,L = I, where the shape of the identity matrix is given by
the MLP architecture. Please also note that Σ̇l in Equation (4.8) contains the second-order
derivatives of the activation function on its diagonal for layer l. The counter intuitive
notation arises from the original definition of Σ, where it has been easier to abbreviate
directly the first derivatives of the activation functions.

Since the only mechanism for creating critical points is using the null space of W̄1, there
is no useful way to achieve a simplification of the Hessian at critical points as required for
a Gauss Newton approximation. The only hint at a minor approximation would be for
layer L, i.e, the last term in the summation.

4.3.4 Interpretation and Implications
During my investigation in this section, I have unveiled the source of critical points with
respect to the action inputs of an MLP, which is used to approximate a Q-function.
Furthermore, I have outlined how to control them to some extend. One can reduce the
amount of critical points by following the design principles for MLPs as they are required
for training the Critic by minimising the NMSBE. Additionally, the reward function should
avoid having constant areas. Therefore, less suboptimal outcomes for Policy Improvement
exist in general, because fewer local maxima are present, where first-order gradient ascent
algorithms would get stuck.

Of course, this is not a general guarantee for a performant algorithm, because local
maxima are not excluded entirely. There remains the typical struggle of gradient based
methods with non-convex objectives. I expect that following the gradient uphill to maximise
for some initial action its Q-value is working reliably enough for practical applications.

Additionally, first-order methods will suffer from flat surfaces such that more sophisticated
methods like momentum based optimisation should be employed. Alternatively, second-
order optimisation works as well to overcome flat regions, but will also seek actively for
arbitrary critical points, including minima and saddle points. Since I do not have the
same full control over the Q-function as over the loss when minimising the NMSBE, I
cannot eliminate completely this bad behaviour of a Newton’s Method at this point. The
outcome for Policy Improvement depends completely on the Hessian of the Q-function
at critical points with respect to the action input and, therefore, on the curvature of the
surface. Thus, similar to [Nichols and Dracopoulos, 2014], I expect that multiple restarts
are required. In the worst case, the optimisation task is not solvable with second-order
optimisation. Because of the Hessian, the optimisation process moves actively away from
larger Q-values across the entire action space.

Thanks to the required projections to keep the iterates inside of the action space, one
should be able to ensure that there are always critical points available in the action
space. Either in the form of natural critical points inside of A, or as spurious ones,
which are located on the boundary. Unfortunately, they imply a strong manipulation

105

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

of the optimisation task and manipulate the optimisation behaviour. Whereas this is
not a limiting factor for the Direct-GIP approach, these considerations carry over to an
Actor-Critic formulation and will affect the training of the policy MLP. Hence, for the
remaining part of chapter, I am interested in how exactly spurious critical points interact
with the parametrised policy. I will extend the critical point analysis from Chapter 3 for
the NMSBE to the full Actor-Critic regime and check, whether an Approximated Newton
algorithm can be constructed directly in the policy parameter space.

4.4 Combining the Q-function with Parametrised Policies
A common approach in (Deep) RL is to combine an MLP for estimating the Q-function
with a second MLP for approximating the policy π. This pattern of an algorithm is
called Actor-Critic, which also can be seen as a possible realisation of Approximate Policy
Iteration as it is defined in Equation (2.16). An Actor, which corresponds to a parametrised
policy, is trained by a Critic or the Q-function to increase its performance. More precisely,
optimising the policy MLP is implemented by maximising the Q-function for all states.
The Critic is obtained as usual by minimising the NMSBE. It realises the Policy Evaluation
step in Approximate Policy Iteration.

Due to the usage of Q-factors, the loss for Critic part is now slightly different compared
to the existing analysis from Chapter 3. I now use the TD-error δQ from Equation (2.18)
for defining the root finding problem and, consequently, evaluate the MLP fQ for state-
action tuples instead of states alone. The resulting vector takes the form FQ(W) :=

[fQ(W, s1, a1) . . . fQ(W, sN , aN)]T ∈ RN . With FQ, I write the difference of both sides in
Equation (2.12) in vector form as

∆Q
π (W) = FQ(W)−Rπ − γF ′

Q(W). (4.9)

The term F ′
Q denotes the evaluation of fQ for all successor states s′i and actions a′i.

Successor states originate from the system dynamics evaluate for the current tuple (s, a).
The corresponding actions are provided by the current Actor a′i = fπ(U, s′i). All one-
step rewards are contained as usual in Rπ. Finally, I can formulate with the help of
Equation (4.9) the Neural Mean Squared Bellman Error in Q (NMSBEQ) as

JQ(W) =
1

2N
∆Q

π (W)T∆Q
π (W). (4.10)

This is the loss corresponding to the Critic and required for training the MLP, which
represents a Q-function. All insights from Chapter 3 apply as before.

4.4.1 Critical Points for an Actor
For analysing the critical points of the objective used to train an Actor, it is a mandatory
first step to define concisely the optimisation task related to the Actor. This optimisation
task makes use of a given MLP fQ and its parameters to define an update direction for
parameters sitting in fπ.

Before continuing, please pay attention to an omitted technical complication. For my
analysis in the rest of this section and also during the related experiments in Section 4.5, I
ignore these spurious critical points, which have been introduced in Section 4.3. For now,

106

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

everything is assumed to behave nicely. MLPs have the complete Euclidean space as input
domain for actions such that projections to remain inside of the compact subset A are not
required from the implementation viewpoint. The geometrical issues and thus spurious
critical points themself are then covered in Section 4.6.2.

Given a set of sample states si ∈ S, the loss for training an Actor is given by

Jπ(U) =
1

N

N∑
i=1

fQ(W, si, fπ(U, si))

=
1

N

[
1 . . . 1

] fQ(W, s1, fπ(U, s1))
...

fQ(W, sN , fπ(U, sN))

=:

1

N
1T · Fall(W,U). (4.11)

The goal is to maximise the approximated expected reward for all sample states si according
to the MLP fQ. This can be achieved by gradient ascent in the policy parameter space.

To arrive at the related critical point condition, one has to compute the differential map
of Equation (4.11) with respect to the policy parameters U ∈ U . I yield

DU Jπ(U)[H] =
1

N

N∑
i=1

DU fQ(W, si, fπ(U, si))[H]

=
1

N
1TDU Fall(W,U)[H],

where H ∈ U is a direction in the policy parameter space. For now, I take a single state s
out of all sampled ones and the known differential map of fQ, as it has been computed in
Equation (4.5). Then, I exploit the chain rule and insert everything to obtain

DU fQ(W, s, fπ(U, s))[H] = Da fQ(W, s, fπ(U, s)) ◦DU fπ(U, s)[H]

=C(W, s, fπ(U, s))
[
ΦT
1 (In1 ⊗ φ0)

T · · · ΦT
L (InL ⊗ φL−1)

T
]

︸ ︷︷ ︸
=:G

(s)
π (U)∈RKA×Nnet

 vec(H1)
...

vec(HL)

=C(W, s, fπ(U, s))G(s)

π (U) vec(H). (4.12)
I denote by Φl the same expressions as Ψl, but use the parameter matrices Ul of the
policy MLP. The definition of Ψl is provided in the text after Equation (3.6). Combining
Equation (4.12) for all states results in

DU Jπ(U)[H] =
1

N

N∑
i=1

C(W, si, fπ(U, si))︸ ︷︷ ︸
=:Ci

G(si)
π (U)︸ ︷︷ ︸
=:Gi

vec(H)

=
1

N

[
C1 · · · CN

]
︸ ︷︷ ︸
=:C(W,U)∈R1×N·KA

 G1
...

GN

︸ ︷︷ ︸

=:Gπ(U)∈RN·KA×Nnet

vec(H)

=
1

N
C(W,U)Gπ(U) vec(H). (4.13)

107

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

A critical point condition for the policy parameters now manifests itself in

∇UJπ(U) :=
1

N
Gπ(U)TC(W,U)T

!
= 0. (4.14)

As a first insight from Equation (4.14), the condition is fulfilled whenever C(W,U) becomes
zero, i.e., the action produced by fπ is an extremum of fQ. This is a pleasing property,
because finding extrema is the goal for a GIP from Equation (2.15) and, apparently, the
objective for the Actor complies to it. Constellations, in which the differential map of the
approximate Q-function C(W,U) vanishes, have already been considered in Section 4.3.3.

Analogously to the analysis in Chapter 3, sufficiently large MLPs allow also the Actor
part for exact learning based on a similar reasoning as in Section 3.3.2. Hence, I introduce
an alternated version of Definition 1 for the Actor, which makes the interplay between fQ
and fπ concise.
Definition 2 (Extremal policy approximator). Let fQ ∈ F(KS +KA, . . . , 1) be an approx-
imate evaluation of some current policy π : S → A. Given N samples (si, ai) ∈ S ×A, one
calls an MLP fπ ∈ F(KS , . . . ,KA), which satisfies

fπ(U, si) = ai such that ∇afQ(si, ai) = 0 ∀i = 1, . . . , N

for some policy parameters U ∈ U , an extremal policy approximator of a greedily induced
policy based on the N sampled tuples.

This definition simply states that training an Actor corresponds to finding a policy,
which produces actions that are critical points of an approximated Q-function. Due to
the more complicated nature of the Q-function as opposed to the typical loss from the
last chapter, one cannot tell in general, whether the MLP fπ produces indeed the (local)
maximum, or just some action, which might be a saddle or local minimum of fQ. Thus,
the considerations given in Section 4.3.4 apply over here as well. Namely, going uphill in
the parameter space of the policy MLP typically works and saddles or minima are not
a limiting factor from an engineering perspective. There are just no guarantees that a
(global) maximum is inside action space and that it is reached. Next, it is possible to
introduce a slightly varied formulation of Assumption 2 for a policy MLP.
Assumption 3 (Existence of extremal policy approximator). Let fQ ∈ F(KS +KA, . . . , 1)
be an approximate evaluation of some current policy π : S → A. Given N unique sample
(si, ai) ∈ S ×A, there exists at least one MLP architecture F(KS , . . . ,KA) as defined in
Equation (2.24) together with a set of parameters U ∈ U , such that the MLP fπ(U, ·) ∈
F(KS , . . . ,KA) is an extremal policy approximator for fQ according to Definition 2.

Finally, based on Definition 2 and Assumption 3, a new proposition to characterise the
nature of the optimisation task in the Actor becomes available.
Proposition 6 (Proper solution condition for an Actor). Let an MLP architecture fπ ∈
F(KS , . . . ,KA) satisfy Assumption 3. If the rank of the matrix Gπ(U) as defined in
Equation (4.13) is equal to N · KA for all U ∈ U , then any extremum U∗ ∈ U of Jπ
corresponds to an extremal policy approximator according to Definition 2.

Proof. The objective for the Actor defines a linear equation system in terms of Gπ(U) and
C(W,U), c.f. Equation (4.14). If the rank of Gπ(U) is full, then the matrix enforces the
trivial solution for C(W,U). Since C(W,U) is a factor in the differential map of fQ, any
critical point of the Jπ(U) implies an extremal policy approximation.

108

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Unfortunately, the more complex nature of a Q-function, or to be more precise, the
MLP used to approximate this Q-function, allows for any type of extremum. Hence, the
proposition is weaker than its counterparts for the Critic in Section 3.3. There are no
longer global statements about the quality of the outcome of optimisation. One only gets
actions, for which it is known that they are critical point of fQ in the best case. This is
necessary to solve argmaxaQ(s, a), but not itself sufficient.

A full rank is possible as soon as I employ over-parametrised MLPs, since I need enough
columns for the given amount of rows. But because the policy has a vector valued output,
it is a harder problem than the approximation of a scalar Q-function. Instead of having
only more parameters than samples (Nnet > N , c.f. Equation (3.19)), I also have to take
the dimension of the action space into account and require fπ to satisfy

Nnet ≥ N ·KA. (4.15)

I do no longer have a full control over the outcome of Actor training as when learning a
Critic. This is due to the Q-function, which imposes as non-linear and non-convex function
an arbitrarily complicated geometry on the loss surface. Therefore, let me continue with
the analysis of the curvature to see what kind of statements are still possible. As for
the Q-function, the term Gπ(U) is the Jacobian of the MLP representing a policy when
evaluated for all sample states. Its structure and definition is analogue to Equation (3.6).
The auxiliary expression C(W,U) contains derivatives of the Critic, or, in other words, the
change of the Q-function with respect to the action inputs. Using these abbreviations, I
can go on with the second-order differential maps. My goal is to introduce a Gauss Newton
approximation of the Hessian also in the Actor part, but due to using the more complex
Q-function as objective, I expect this to be a bit less informative. I have

DU

(
DU Jπ(U)[H1]

)
[H2] =

1

N

(
DUC(W,U)[H2]Gπ(U) vec(H1)

+ C(W,U)DU

(
Gπ(U) vec(H1)

)
[H2]

)
. (4.16)

Here, I already see that the term C(W,U), which sits in front of the second-order
differentials of the policy, still vanishes at critical points U∗ by design, if I assume that the
policy MLP is rich enough to achieve exact learning and that Proposition 6 holds. Hence,
I am able to proceed with the GN approximation at critical points

DU

(
DU J (U∗)[H1]

)
[H2] =

1

N
DUC(W,U∗)[H2]Gπ(U

∗) vec(H1). (4.17)

To obtain the Hessian with respect to U, I need the expressions

DUC(W, s, fπ(U, s))[H] = DaC(W, s, fπ(U, s)) ◦DU fπ(U, s)[H],

where DaC(W, s, a)[h] is computed in Equation (4.8) and DU fπ(U, s)H follows the
same steps as in Equation (4.12). Once they are inserted in the corresponding sum of
Equation (4.13), I can complete Equation (4.17) and get

DU

(
DU Jπ(U∗)[H1]

)
[H2] = vec(H2)

T 1

N
Gπ(U

∗)TH(U∗)Gπ(U
∗)︸ ︷︷ ︸

=:HU Jπ(U∗)

vec(H1)

= vec(H2)
THU Jπ(U∗) vec(H1), (4.18)

109

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

where the symmetrical block diagonal matrix H(U∗) contains the Hessians of fQ for all
sample states and actions

H(U∗) =

 Ha fQ(W, s1, fπ(U
∗, s1))

. . .
Ha fQ(W, sN , fπ(U

∗, sN))

 .

Although a Gauss Newton approximation is possible for training the Actor, if the
technical complications regarding the input domain and spurious critical points are ignored
for now, I am no longer able to ensure a “global” applicability of a Gauss Newton algorithm
as I can do for the Critic training in Propositions 2 and 5. The type of an extremum
depends completely on the geometry imposed by the approximated Q-function. In practice,
this means that one cannot start at an arbitrary point in the parameter space U and
expects the Actor to improve. A second-order optimisation process will get attracted by
any type of extremum according to the Q-function. Whatever is closest, in terms of the
Newton’s direction and the basin of attraction around critical points, is reached, potentially
moving the policy parameters actively towards smaller Q-values.

A possible solution might reside in the Levenberg-Marquardt heuristic, where first- and
second-order methods are combined. One follows the gradient as long as the Newton’s
direction points away from an optimum and switches gradually to second-order optimisation
to benefit from good convergence properties of a second-order method. Alternatively, for
an Actor-Critic algorithm, it might be possible to exploit an easier strategy. First, fast
gradient ascent steps are preformed until the error is no longer changing. If required, one
can include some small disturbances to escape from saddles and tiny local maxima. Minima
and saddles are by their nature always numerically unstable and should not impose a
significant problem for gradient directions. After enough gradient ascent steps, one should
be close enough to a (local) maximum such that the Hessian in Equation (4.18) is negative
definite. Therefore, as the second step, one makes use of a GN algorithm to refine the
solution. But to be on the safe side, one should employ some form of test, whether the
gradient and Newton’s direction point into the same half space.

4.4.2 Impact of Advantage Functions
In the existing literature such as [Schulman et al., 2015, 2016] or in commonly used
textbooks, for example [Bertsekas and Tsitsiklis, 1996], a frequently employed instrument
are the advantage functions. The so-called advantage of an action under some policy is
defined informally as A(s, a) = Q(s, a) − V (s) and corresponds to a state-wise centring
of the Q-function at zero. Actions produced by the policy then have an advantage value
of zero. Better actions for a given state are those with positive advantage, worse actions
possess a negative value. The main motivation for using advantage functions is that
the image set of the function A(s, a) is centred around zero and thus more suitable for
non-linear function approximation architectures such as MLPs. However, an apparent
disadvantage is the requirement to either estimate both the Q- and value function, or
to involve the additional computational effort to compute the value function from the
Q-function whenever it is needed. Since the task of learning Q and V is still present and
the output range of a scalar function should not affect an optimisation problem at all, I
wonder whether advantage functions are really beneficial for the optimisation problem

110

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

insides the Actor. Based on my empirical insights so far, I would argue that there is no
urgent need to rely on advantage functions. MLPs appear to be able to learn value- or
Q-functions in the correct range, which implies that a centring around zero is not required.
Furthermore, for the application in Actor-Critic algorithms, it seems that there does not
arise a benefit from the changed output range of the Critic MLP for the Actor.

This argumentation would also match the structure of differential maps. One can see
this structure by defining two policies π1 and π2, where π2 is represented by an MLP and
has the parameters U ∈ U . One wants to train this second policy π2 with the goal that it
performs better than the current policy π1, which might be the policy of a previous sweep
or some behaviour policy used for exploration. Next, take a look at the definition of the
advantage function A : S ×A → R with the two policies already inserted

Aπ1(s, π2(U, s)) = Qπ1(s, π2(U, s))− Vπ1(s)

= Qπ1(s, π2(U, s))−Qπ1(s, π1(s)).

The second line makes use of the relations between value- and Q-functions and emphasizes
the importance of not mixing up indices of both policies. To compute the differential map
with respect to the policy parameters, I follow my typical approach and obtain

DUAπ1(s, π2(U, s))[H] = D2Aπ1(s, π2(U, s)) ◦DU π2(U, s)[H].

Since the value function is independent of the action, i.e, there is no dependence of π1 on
U, derivatives of the advantage function simplify to

D2Aπ(s, a)[h] = D2Qπ(s, a)[h]−D2 Vπ(s)[h]︸ ︷︷ ︸
=0

such that I arrive at the same situation as in Equation (4.13). Advantage functions seem to
have no direct impact on the learning outcome, at least from the optimisation perspective.

Lastly, the benign property to reduce the variance of gradients by subtracting a baseline
from the Q-function (cf. [Sutton et al., 1999]), i.e., switching to advantage functions, is
not applicable in my setting, because I make use of deterministic policies. Furthermore,
due to my usage of model-based algorithms, I also do not need the mechanisms to express
the advantage of one policy over another based on estimates, as it is done for example in
[Schulman et al., 2015] close to their first equation. This also frees the effort in algorithmic
design choices to ensure that an improved policy is still close to its predecessor. Once a
Q-function is available, a GIP can be constructed by just considering the objective from
Equation (4.11) and an initial choice of policy parameters.

4.4.3 An Actor-Critic Algorithm with a Gauss Newton Residual Gradient Critic
The realisation of an Actor-Critic algorithm follows the pattern of the PI procedure in
Algorithms 2 and 3 from Chapter 3, but partially breaks open the clear separation between
Policy Evaluation and Policy Improvement. The training of both MLPs fQ and fπ becomes
to some extend a simultaneous and ongoing task. The exact procedure is outlined in
Algorithm 4.

The Actor-Critic algorithm receives two MLPs and their hyper parameters as input and
returns improved versions as output. In the ideal case, the MLP fQ approximates closely

111

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Algorithm 4 Actor-Critic Algorithm with Gauss Newton Optimisation for the Critic
Hyper parameters: γ ∈ (0, 1), αQ > 0, απ > 0, c = 10−5, ε ≤ 10−5, N ∼ Nnet

Input:
- MLP fQ ∈ F(KS +KA, . . . , 1) with initialised parameters W ∈W
- MLP fπ ∈ F(KS , . . . ,KA) with initialised parameters U ∈ U

Output:
- U such that fπ(U, s) is a trained policy
- W such that fQ(W, s, a) ≈ Qfπ(s, a)

1: for sweep in sweeps do
// Preparation

2: Draw (si, ai) for i = 1, . . . , N uniformly from S ×A
3: Construct transition tuples (si, ai, ri, s

′
i, a

′
i = fπ(U, s′i)) for all i

// Policy Evaluation : Critic
4: for i in iQ do
5: Evaluate FQ(W) := [fQ(W, s1, a1) . . . fQ(W, sN , aN)]T ∈ RN

6: Evaluate F ′
Q(W) := [fQ(W, s′1, a

′
1) . . . fQ(W, s′N , a′N)]T ∈ RN

7: Compute GQ(W) and G′
Q(W).

8: Bellman Residual in Q: ∆Q
π (W) = FQ(W)−Rπ − γF ′

Q(W)

9: NMSBE: JQ(W) = 1
2N∆Q

π (W)T∆Q
π (W)

10: Gradient: ∇WJQ(W) = 1
N

(
GQ(W)− γG′

Q(W)
)T

∆Q
π (W)

11: Hessian: HW JQ(W) = 1
N

(
GQ(W)− γG′

Q(W)
)T(

GQ(W)− γG′
Q(W)

)
12: Solve for η: (HW JQ(W) + cINnet) η = ∇WJQ(W)

(e.g. with Householder QR-Decomposition)

13: Descent step: W←W − αQη
14: end for

// Policy Improvement : Actor
15: for i in iπ do
16: Evaluate Fall(W,U) := [fQ(W, s1, fπ(U, s1)) . . . fQ(W, sN , fπ(U, sN))]T ∈ RN

17: Compute C(W,U) and Gπ(U)

18: Objective: Jπ(U) = 1
N 1

TFall(W,U)
19: Gradient: ∇UJπ(U) = 1

NGπ(U)TC(W,U)T

20: Ascent step: U← U+ απ∇UJπ(U)
21: end for

// Training Progress
22: Evaluate fπ empirically using several rollouts
23: end for

112

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the Q-function of the policy fπ and fπ is itself close to an optimal policy. In a more typical
case, the policy should perform better than the one implied by the initial parameters and
the Critic captures only the most important aspects of the resulting policy.

Based on the empirical insights from Chapter 3, I remove the toggle for transient or
persistent parameters and data sets. The Actor-Critic algorithm always employs persistent
MLPs, meaning that the training progress is kept across sweeps. Opposed to that, the data
collection is now always performed transient. In each sweep, new transition data is collected,
such that the whole Actor-Critic algorithm resembles a mini batch stochastic gradient
ascent or descent optimisation. Despite introducing some noise in training, I argue that
this strategy is not a problem. In every sweep, there are still always N state-action samples.
Thus, every sweep matches individually the setting from the theoretical investigation. As
long as the states are sampled uniformly without skewing or bias, they approximate in
each sweep the NMSBE in the same manner. Thus, critical points for the Q-function,
which I am aiming for, are the same and the optimisation of fQ works as intended in the
long term. Since the training of fπ only depends on fQ and arbitrary samples from the
complete state space, it will work as well. The Critic MLP fQ is static from the Actor’s
perspective and its critical points with respect to action inputs remain unchanged from
the sampling process.

4.5 Experiments Regarding Actor-Critic Algorithms
In the following, I provide numerical confirmations to some of my theoretical insights from
Sections 4.3 and 4.4. I describe the overall experimental setting first. Afterwards, I address
requirements for the reward function and the impact of over-parametrisation. Lastly, I
evaluate the Actor-Critic algorithm itself and outline its limitations.

For the experiments in this section, I follow the common practice of the RL community
and still ignore the issues regarding the input domain. They result from differences between
the desired action input to the Critic MLP and the actual compact subset of an Euclidean
vector space, which has to be used as A. The origin of this issue has been described to
some extend in Sections 4.3 and 4.4 and is the main topic for the subsequent Section 4.6.

4.5.1 Experimental Setup
There are two MLPs for fQ and fπ with the size of input and output layers set according to
the environment. They use Bent-Identity in hidden layers. The Critic has a linear output
and the Actor contains tanh(·) to match A. The width and depth of the MLPs varies for
each experiment. Parameters for fQ and fπ are initialised element-wise and uniformly in
the interval [−1, 1]. Furthermore, they are persistent, i.e., each sweep of PI starts with the
parameters from the last round. I run in each PI sweep iQ = 2 · 103 Approximated Newton
steps for the Critic and iπ = 5 ·103 gradient ascent steps for the Actor. For both algorithms,
I pick a constant learning rate αQ = απ = 10−2. Furthermore, I set the regularisation for
the approximated Hessian of the NMSBE to cQ = 10−5. With these parameters, the Critic
is able to converge and the Actor is training fast enough. Since I use a more sophisticated
descent algorithm for the Critic compared to the Actor, it is important to ensure that the
Actor has enough time to realise a proper improvement of the policy, hence it can use more
descent steps than the Critic. Training samples consist of uniformly distributed tuples in

113

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 5 10 15 20 25
sweep

0

2

4

6

8

10

ac
cu

m
ul

at
ed

 re
wa

rd

(a) Piecewise constant sparse reward function

0 5 10 15 20 25
sweep

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

(b) Reward function without constant regions

Figure 4.3: Actor-Critic performance behaviour for r1 and r2 in the one dimensional toy
benchmark. Only with the reward r2, the major part of all repetitions settle at
high values over time. The constant areas in r1 cause the Actor improvement
to fail.

the state-action space. I collect them once at the beginning of a sweep and use them in a
batch ascent/descent setting.

By running rollouts as described at the end of Section 3.4.2, I evaluate the performance
of policies. Similar to the Critic-Only Policy Iteration experiment from Section 3.5.5,
I create in each sweep 10 trajectories starting randomly in S. Each trajectory consists
of 500 transitions. Furthermore, the entire experiment is repeated several times from
scratch to remove the impact from initialisation. But opposed to previous Policy Iteration
experiments, in this section I do not combine all the repetitions of an experiment in a
single graph. The results, which will be shown in the next sections, are too different to
each other to be merged. Hence, I depict average performance curve and their respective
min-max enveloping curves semi-transparently for each repetition and rely on blending to
reveal how often a certain outcome is achieved across all repetitions.

4.5.2 Reward Issues
To emphasize the effect of reward functions on the learning progress, consider the training
behaviour of an Actor-Critic algorithm in the one dimensional benchmark problem (cf.
Section 2.6.2) for the two reward functions r1 and r2 as defined in Equations (2.35)
and (2.36), respectively. I use N = 250 training samples (s, a) and train 25 times a policy
from scratch. The MLPs fQ and fπ have width 15 and two hidden layers. Figure 4.3a
shows results for r1 and Figure 4.3b for r2.

I observe the expected behaviour. When using the reward function r1, a major part of
all repetitions settle at close to zero accumulated and discounted reward. This can be seen
in Figure 4.3a. Except for a few cases which recover after several sweeps, the Actor-Critic
algorithm produces consistently policies without any performance. Those policies do not
manage to reach and stay in the reward region, thereby generating the value zero. Due to
the loss of information when computing the gradient for updating Actor parameters, it is
not possible to change the policy. Only if one has luck during initialisation, it is possible
yet unlikely to observe good performing policies.

114

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Once I replace the reward function with r2, the performance of the Actor-Critic algorithm
changes drastically. Figure 4.3b shows that the major part of repetitions approaches a
high reward level and only a couple stabilise around an intermediate performance level
located at −40. Policies with around zero accumulated reward are those, which move an
agent successfully towards the state with highest one-step reward (maxs r2(s) = 1.0) and
can also stabilise it at this state. If a policy only reaches the intermediate performance
level, then this corresponds to an agent, which oscillates with a stable orbit around the
state with maximal one-step reward.

From this experiment, one can see that even in trivial dynamical systems an inappropriate
reward can lead to failure. To allow Actor-Critic algorithms to work, it is mandatory to use
reward functions without extended constant areas whenever possible. Unfortunately, this
will open up issues regarding reward shaping. Namely, the more information an engineer
encodes in the reward function, the more likely it is for the algorithm to come up with
solutions, which do not match the expectations or intentions of the engineer.

4.5.3 Over-parametrised Actor
To characterise the influence of over-parametrisation, I use in this experiment again the toy
problem and but only the reward r2. I run the Actor-Critic algorithm with a varying amount
of training data and different MLPs such that the impact on the critical point conditions
and the over-parametrisation requirement becomes accessible. I set N ∈ {100, 200} and
use two MLP widths n ∈ {25, 50}. In this experiment, MLPs only possess one hidden
layer to ease the computational burden. Furthermore, there are only 10 repetitions. The
MLPs have N crit

net ∈ {101, 201} parameters for the Critic and Nact
net ∈ {76, 151} for the

Actor. The factor two for network widths n and number of samples N is just a coincidence.
I select the width for a given number of samples with the combined absolute distance
d =

∣∣N crit
net −N

∣∣+ ∣∣Nact
net −N

∣∣. When the number of samples N is set to the aforementioned
values, the distance d is smallest for the widths mentioned above. Actually, I have tested the
values n ∈ {10, 15, 20, . . . , 100}, but only report the subset mentioned above to maintain
the reading flow. My results are contained in Figure 4.4.

I notice that increasing the amount of samples for both MLP widths has a negative
impact on performance. Whereas there still exist some repetitions, which settle at the
highest possible reward, for both values of n the amount of bad performing repetitions
grows for larger N . For the small MLP in Figures 4.4a and 4.4c, the time for convergence
is increased. Some runs take more PI sweeps to reach at the largest accumulated reward. A
single bad run keeps a lower performance level over a longer time span (in terms of sweeps
when compared against its counter part in Figure 4.4a) before it reaches the suboptimal
level of −40. This level is visible in all four combinations in Figure 4.4 and belongs to a
policy, where the state is not stabilised close to the reward centre but oscillates around it.
For those policies, MC rollouts collect frequently lower one-step rewards. For the bigger
MLP architecture, the effects are more pronounced. The asymptotic performance for half
of the runs is significantly lower and only arrives at this −40 level when using more data.

I conclude that the size of MLPs should be related to the amount of samples used for
training. Of course, using more data than parameters can work sometimes. I have seen
this with other hyper parameter combinations of n and N , which also matches insights
from other experiments in my thesis. But my results in Figure 4.4 show that there are
configurations, where more data can be harmful to the learning outcome of Actor-Critic

115

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 5 10 15 20 25
sweep

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

(a) N = 100, n = 25

0 5 10 15 20 25
sweep

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

(b) N = 100, n = 50

0 5 10 15 20 25
sweep

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

(c) N = 200, n = 25

0 5 10 15 20 25
sweep

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

(d) N = 200, n = 50

Figure 4.4: Actor-Critic performance behaviour for different amount of training data and
MLP sizes. Adding more data is not necessarily beneficial. In my experiments,
I observe that maintaining N ≈ Nnet is also important.

algorithms and may result in policies with lower overall performance. Even in a toy problem,
one has to pay attention to algorithmic details and cannot simply expect it to work. By
using my theoretical insights, I provide at least a partial guidance for constructing an
Actor-Critic algorithm, which uses non-linear function approximation architectures, and
for formulating a well-behaving optimisation problem.

4.5.4 Limitations of the Actor-Critic Approach
As the last experiments in this section, I want to demonstrate also some limitations of
Actor-Critic algorithms. They become visible once I switch from the one dimensional toy
problem to the environments MyMountainCar-v1 and MyCartPole-v1. Since there is a
parametrised Actor, I use only version v1 of both environments. Only this version brings
the correct reward function for the usage with Actor-Critic approaches. Since the two
environments posses a higher dimensional state space with a more complex Q-function, I
use again two hidden layers and width 15. Next, I also employ a different setting for the
optimisation tasks, namely those from Section 3.5.5. This is done such that I can compare
the Actor-Critic performance with the PI experiments build around a Critic-Only approach.
The Critic MLP fQ receives now only iQ = 300 iterations of the Gauss Newton descent

116

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 5 10 15 20 25
sweep

80

70

60

50

40

30
pe

rfo
rm

an
ce

(a)

0 5 10 15 20 25
sweep

80

60

40

20

0

pe
rfo

rm
an

ce
(b)

0 5 10 15 20 25
sweep

80

60

40

20

0

pe
rfo

rm
an

ce

(c)

Figure 4.5: Performance of the Actor-Critic approach for different environments. Bad
performing runs are drawn in red. a): MyMountainCar-v1 cannot be solved,
because the Actor learns the function π(s) = 1 in the best case, or shows no
improvement in the worst case. b): The same environment with Critic-Only
algorithm, i.e., the PI approach from 3.5.5, as reference. It is possible to solve
the environment. Hence, the struggle is indeed due to using parametrised
Actors. c): MyCartPole-v1 can be solved, and if so, with high quality policies.
But there are also too many bad performing repetitions to label it a successful
algorithm.

algorithm with a larger learning rate αQ = 0.1. This change is also motivated by my
insight, that in those environments a Critic converges sufficiently well within that amount
of iterations if the learning rate is increased. Furthermore, this also reduces computational
effort. The Actor fπ now performs iπ = 5 · 103 iterations for maximising fQ. The larger
amount of iterations does not increase runtime significantly, since it is a first-order only
algorithm, but reduces the risks of relying on an “incomplete” Policy Improvement step. Its
learning rate stays the same as before and uses the value απ = 0.01. Lastly, I increase the
amount of training samples to N = 3000. Of course, by doing so, the over-parametrisation
requirement is violated. But the empirical evidence from the Policy Iteration experiment
in Section 3.5.5 suggest that the additional training data is indeed required. Also, the
thoughts and explanations from Section 3.6 apply, for the Critic directly and for Actor
indirectly through the Supervised Regression analogy. Lastly, due to a strong variation
in the outcome of training, I increased again the number of repetitions to 50. Figure 4.5
shows the training behaviour of the Actor-Critic algorithm for both environments and also
the outcome of a Critic-Only approach (i.e., that of Section 3.5.5) for MyMountainCar-v1.

Figure 4.5a shows that the Actor-Critic approach is not able to solve the environment
MyMountainCar-v1. In the best case, the Actor learns a policy similar to π(s) = 1 for all
states, which is capable of producing some reward but is not the best possible outcome. In
the worst case, the Actor does not improve at all. The resulting policy keeps the car down
in the valley. So far, I have not observed a single close to optimal policy produced by an
Actor-Critic algorithm, which could be a hint, that the environment itself is containing an
issue.

Since I have not used a PI algorithm together with MyMountainCar-v1 in Chapter 3,
it is important to check, whether a solution to this control problem is learnable. To

117

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

remove the Actor as possible source of errors, I employ a Critic-Only approach as part
of this experiment. Figure 4.5b demonstrates, that the environment is indeed solvable
and, consequently, that the Actor-Critic algorithm causes more trouble than a Critic-Only
approach. When using a Critic alone and its implicitly defined policy, one can produce at
least for single sweeps a policy, which approaches zero accumulated reward. Such a policy
drives the car via a swing-up in the goal area and also breaks early enough to stay there.
As a human, one would classify this policy as optimal. Furthermore, among all repetitions,
there is no longer a bad performing one, which would not create any reward at all. One
can also see that the Critic-Only method also suffers from oscillations between two types
of policies, namely a perfect one and a sub-optimal policy. This could be explained by the
typical behaviour of an Approximated Policy Iteration algorithm.

Lastly, the results shown in Figure 4.5c confirm that an Actor-Critic can work. At
least in the sense that the policies for a reasonable amount of repetitions achieve high
accumulated rewards. The results also demonstrate, why a combined visualisation similar
to that for Critic-Only PI experimentsis in the previous chapter is not possible over here.
For an Actor-Critic algorithm, this would lead to completely skewed statements. Several
repetitions demonstrate that a close to optimal policy (i.e., a perfect balancing of the pole
with minimal movement of cart) can be learned. Some runs of the experiment settle at
intermediate performance, which corresponds to a slightly swinging of pole, but without
falling over. Some struggle completely and the corresponding policies are unable to keep
the pole upright.

The central difference between the environments, which I consider for this section, is
whether or not they make a strongly non-linear policy class necessary to achieve an optimal
control. The environment MyCartPole-v1 and the one dimensional toy problem can be
solved with an almost linear policy of the form π(s) = clip(A · s), where A denotes some
matrix of matching shape for the state vector s and clip(·) projects the vector component-
wise into A. Due to the clipping operation, large angles of the pole always produce a
large value for the action. Once the balancing point is close by, the clipping is no longer
required and the policy becomes linear. The same would be true for MyMountainCar-v0
with the original task of just getting fast. Opposed to that, the current reward signal in
MyMountainCar-v1 demands a policy to go to the rightmost position and stop there. In
this environment, there does not exist an immediate balancing task and it also does not
require actions with frequently switching signs as it is needed in the toy benchmark. Hence,
a policy cannot be expressed as a linear function of the state and also not as an affine
mapping. Thus, a possible explanation for the bad outcome for learned policies is that in
MyMountainCar-v1 it is too easy for an Actor to produce a policy similar to π(s) = 1 for
all states. This “solution” is producing higher rewards than a the random initialisation
and, therefore, represents a learning progress. Furthermore, a constant function for the
Actor would correspond to a rank deficient Gπ(W). Therefore, this kind of policy is a
perfectly valid outcome of the optimisation task, since many, if not all, parameters in the
parameter space of fπ form a critical point.

I hypothesise that training the MLP fπ with first-order only gradient ascent in Actor
might be too weak. The ascent directions are not good enough to lead early enough
to a correct policy. In particular, for MyMountainCar-v1, this implies that one cannot
avoid the suboptimal solution, which is rather easy to represent with an arbitrary MLP.
Unfortunately, employing second-order methods with (approximated) Hessian information
is not possible for Actor-Critic methods as hinted at the end of Section 4.4.1. Thus, these

118

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

experiments are an empirical motivation for a different approach towards training an Actor.
One needs to be able to handle geometrical issues explicitly, which is the topic for the next
section.

4.6 Fitted-Actors to Handle Spurious Critical Points
This section covers the spurious critical points of the Critic with respect to its action input,
which arise from enforcing geometrical requirements for the action space. First, I elaborate
on their origin and the related problems for a naive formulation of an optimisation task.
Second, I describe how so-called Fitted-Actors could be used to avoid issues related to
spurious critical points. Since they realise the training of Actors based on a separated
Supervised Regression task, one has the full control over the construction of the training
dataset and how optimal actions are extracted from a Q-function. Lastly, a new and
unexpected complication for Fitted-Actors needs to be solved. The training of an Actor
in a supervised manner struggles to learn fine details according to a Q-function as long
as the output activation of the MLP is tanh(·). An easy solution is to make use of linear
outputs, which do not include a squashing behaviour. But this causes the Actor to produce
values outside of the action space. As an attempt to overcome this problem, I propose and
investigate a Fitted-Actor algorithm, which works with the unit balls as target domain for
the action space.

4.6.1 Critic’s Expected Action Input vs. the Actual Action Space
The MLPs used for approximating a Q-function expect a full Euclidean vector space as
domain. On the contrary, for DP applications, one is forced to work with compact subsets
for the state space S and action space A to ensure the boundedness of rewards and their
accumulation. This opens up the possibility that critical points regarding the action input
for fQ are located outside of A. Thus, the behaviour of algorithms to solve argmaxaQ(s, a),
when they operate at boundaries of A, plays an important role and one should handle these
geometrical issues explicitly. The simplest scenario possible is an action space, which is
given by a hypercube of the form A := [−1, 1]KA ⊂ RKA . At the same time, it is the typical
action space encountered in many RL benchmarks. Thus, it serves as a representative
foundation for the remainder of this section.

Having optimisation on subspaces in mind, any manipulation applied to a point in the
action space, which ensures that A is not left, should be expressed through a projection
operation. An operator, which manipulates gradients in the action space such that one
stays in A, takes the form

PA(a, g) = da+ ge − a, (4.19)

where d·e clips a vector to A component-wise. In particular, for a Direct-GIP method
of the form given in Equation (4.1), this operator corresponds to clipping the action
iterates after every ascent step to the action space. It should match the approach used
in [Nichols and Dracopoulos, 2014] or [Nichols, 2016]. The expression PA is indeed a
projection, since a straightforward computation reveals that the idempotency property
(PA◦PA)(a, g) = PA(a, g) holds. Of course, this operator is neither an orthogonal projection
nor a linear one. One can verify this visually with the help of Figure 4.6.

119

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

g̃

da+ ge

x

y

a

g = ∇aQ(s, a)

(a) Visualisation of PA(a, g).

1.0 0.5 0.0 0.5 1.0
(a, aQ(s, a))1

1.0

0.5

0.0

0.5

1.0

(a
,

aQ
(s

,a
)) 2

(b) Projection applied to gradient vector field.

Figure 4.6: The projection operator from Equation (4.19) applied to the gradient vector
field. One can see a new spurious critical point at the top boundary. Gradients
for actions outside of A are omitted for better visibility and because PA(a, g)
is not designed for that area. Furthermore, gradient lengths are upper bounded
to remove visual clutter. Still, whenever an original gradient vanishes also the
corresponding arrow in the visualisation vanishes.

Figure 4.6a depicts, how the projector in Equation (4.19) is acting on direction vectors
such as the gradient, which would leave the space when applied to a certain action. In
Figure 4.6b, the outcome of projection, when applied to the previous gradient vector
field, is shown. It is easy to see that by using this projection spurious critical points now
show up at the boundary whenever gradients are perpendicular to the border and point
outwards. Other components do not exist for such gradients and the remaining ones are
suppressed by the application of PA. Hence, one is left with a new type of critical point at
the equilibriums 〈∇aQ(s, a), na〉 = ‖∇aQ(s, a)‖, where na refers to the normal vector of
the boundary at the point of interest a. A good effect is that due to PA, there is always
at least one critical point, where an ascent algorithm would stop. Either as a natural
critical point inside of A, or as a spurious one on the boundary. The mismatch between
the expected and actual action domain for the Critic now gives rise to two complications.

The minor complication applies to derivative based Direct-GIP methods, where one just
needs to keep the current action inside of A. For implementing Direct-GIP via gradient
ascent in action space (cf. Equation (4.1)), any method needs to be aware of the boundary.
This can be achieved easily for an action space, which takes the form of a hypercube,
by transforming the gradient for the current action with the help of Equation (4.19).
As the result, the next action iterate is manipulated and the accumulation point is not
necessarily a true natural critical point any more. Hence, my analysis of critical points
from Section 4.3 does not apply as is to such Direct-GIP algorithms and less statements
about the optimisation behaviour are possible.

The major complication is related to the Actor-Critic formulation, where policy param-
eters get changed via the Critic through the chain rule (cf. Equation (4.4)). For this
approach, there is no longer a clear way to include the projector PA into training. There
are two effects, where the difference in domains is noticeable for Actor-Critics. First, the
policy MLP has to use tanh(·) as activation function in the output layer to comply to

120

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the action space such that values outside of A cannot be produced by design. Then, one
can only hope that solutions to Equation (4.14) correspond to values for the Actor inside
A. Second, the Gauss Newton approximation as described in Sections 4.4 and 4.5 is not
realisable in general, because critical points of the Q-function approximator with respect to
the action input might be located outside of the action space. Thus, the GN approximation
for the Hessian is not only harmful since I have no control over the curvature, it can also be
a completely bad approximation if omitted second derivatives contribute too much when
being away from potentially unreachable natural critical points.

In conclusion, when employing a Critic as objective, one is forced to handle these
geometrical issues explicitly. The main goal is to stay inside of the action space A. Actor-
Critic algorithms would require careful work to include the geometry of the action space in
the training process of both the Actor and Critic. However, there is no clear strategy how
to include projections on the hypercube during the optimisation of both. The projector
PA, as it is defined in Equation (4.19), is a non-linear oblique projection operator, which
prevents additionally the usage of classic results for projected gradients if a function’s
input domain (in this case that of the Q-function or its approximation fQ) gets restricted
to some smaller Hilbert space. On top of that, one does not even have a proper Hilbert
space for A any more. Actually, the space A does not even have the structure of a vector
space. Despite A ⊂ RKA still applies in my example, the boundedness of A and the typical
definition as the hypercube A = [−1, 1]KA prevents the definition of an inner product
and also interferes with the vector space conditions. Thus, the adaption of Actor-Critic
algorithms remains open for now.

Fortunately, Direct-GIP methods are more flexible and allow for a reliable recovery of
optimal actions according to some Qπ. Thus, I propose to focus on Fitted-Actor algorithms
in the following, where Actors are trained as a separated Supervised Regression task. By
doing so, one can avoid the challenges and limitations of Actor-Critic training.

4.6.2 Actor Training as Supervised Regression Task
If I combine the concerns from Section 4.6.1 and also keep in mind recent effective algorithms
such as QT-Opt, which also scale to higher dimensional action spaces according to the
authors, it is obvious that training the Actor as separated Supervised Regression task
appears as promising alternative. Hence, I follow now a new strategy. First, I solve
Equation (2.15) with any suitable (global) optimisation approach and generate a dataset
consisting of (s, a∗) pairs. Several choices for the optimiser exists as it can be seen in
Section 4.2.2. I use the Cross Entropy Method as described in [Kalashnikov et al., 2018].
The method is easy to realise, can handle sufficiently high dimensional action spaces and has
a pleasing performance in practice. Second, I address and solve the Supervised Regression
task

J̃π(U) =
1

N

N∑
i=1

∥∥∥fπ(U, si)− a∗i

∥∥∥2 (4.20)

with typical derivative based optimisation. This decoupling of the Critic and Actor brings
several advantages.

First, the shape and curvature of the Q-function approximation architecture is no longer
a limiting factor. For creating (s, a∗) tuples, derivative free random search methods can be
employed such that the type of extrema does not matter. Furthermore, flat regions without

121

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

gradient information, which would pose a challenge for an hypothetical Actor or gradients
with respect to the action input, are harmless. On top of that, my previously introduced
and more restrictive requirements regarding the reward signal can be removed, because
there is no longer the need to maintain a proper slope of the approximated Q-function.

Second, input space limitations regarding the position and nature of critical points are
not problematic. During the search for optimal actions in a certain state, constraints on
the state and action spaces can be easily ensured by the use of clipping or projection
operations applied to the samples themselves. The search space consists by design only of
the considered action space.

Third, the computational effort inside of the full Hessian of the Q-function with respect
to the input drops away. Additionally, it is rather convenient to map into the correct range
for the action space A by using tanh(·) as activation function for the output layer.

To minimise the objective for the Actor in Equation (4.20), I can now employ a Gauss
Newton algorithm and benefit from all theoretical insights in [Shen, 2018b]. Namely, fitting
the Actor is expected to work reliably once MLP with proper activation functions are used.
If over-parametrisation is available, I can even eliminate suboptimal local minima.

The entire Fitted-Actor algorithm is contained in Algorithm 5 and will be described
in a later section once all relevant components have been described. For the rest of this
section, I need to introduce an unexpected complication first. As it turns out, Supervised
Regression with tanh(·) activation functions for the output layer in the MLP fπ gives
rise to a new and unsolved challenge for training. It becomes visible in the Mountain
Car control problem MyMountainCar-v1 and is also in line with the limitations of an
Actor-Critic method in that environment. First, I set up by hand the first sweep of a
Policy Iteration algorithm. More precisely, I take the initial policy π(s) = 1 and create
its evaluation Qπ with any suitable method. As the next step, the PI algorithm needs to
come up with a second policy, which needs to perform better than the initial constant
policy. In the Mountain Car problem and for the selected reward, this means that the
new policy must produce for some parts of the state space actions with negative values to
gain higher velocities than those appearing under a constant policy. Next, I can test the
realisation of Policy Improvement with a Fitted-Actor. I create a training set of (si, a∗i)
pairs with i = 1, . . . , N through the Cross Entropy Method (cf. Algorithm 6). With that
method, I search for all existing sampled states s those actions, which satisfy sufficiently
well argmaxaQ(s, a). Once this is completed, I fit the policy MLP fπ to this dataset by
running a Gauss Newton Non-Linear Least Squares algorithm until convergence. Results
and failure cases are visible in Figure 4.7.

Please note that both quiver plots in Figure 4.7 appear to be identical, but this is not
the case in terms of numerical values in the computer. Because the length of action arrows
is upper bounded to enable the presented visualisation, the differences between the two
figures get lost. When looking directly at the numerical values for the coloured actions, I
find different values for the policy output.

Clearly visible in Figure 4.7a is the successful application of CEM. It is possible to
obtain from a given Q-function a dataset consisting of state action tuples, which convey
the semantically correct information to enable Policy Improvement. Whereas the most
actions after the improvement step still point in the same direction as the original values
(black arrows), there is indeed an acceleration happening down in the valley in the interval
s = [−0.5,−0.06]T. The related actions are highlighted as red (initial policy) and blue
(improved actions) arrows.

122

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
position

0.06

0.04

0.02

0.00

0.02

0.04

0.06
ve

lo
cit

y
Improved policy
Initial policy

(a) Initial policy and improved one via CEM.

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

ve
lo

cit
y

(x) = x
(x) = tanh(x)

(b) Result of regression for both activations.

Figure 4.7: Fitting a policy MLP fπ to state action samples is not working correctly
in MyMountainCar-v1. Arrows correspond to accelerating in the indicated
direction. Due to a necessary clipping of arrow lengths, both figures appear
to be identical. a): The state action samples used for training and optimal
actions samples obtained from the Critic fQ with the Cross Entropy Method.
Those actions, which change the sign after the Policy Improvement step, are
highlighted in red and blue, respectively. All others are drawn in black. b):
An MLP fπ with tanh(·) in its output layer is not able to adapt to the few
actions samples, where the action now has to be negative. Switching to a linear
activation for the output layer allows for a correct regression. Affected actions
are drawn in different colours.

The struggle to solve the regression task for a Fitted-Actor becomes obvious in Figure 4.7b.
The MLP fπ prefers to produce a policy, which is mapping the entire state space to a
constant value. For the training data at hand, this constant action is positive one, which
corresponds to the most frequent action value in the dataset as produced by the initial
policy π(s) = 1. By using tanh(·) to comply with the action space, the MLP fπ struggles
to learn fine details regarding changed signs for the few actions (i.e., the arrows drawn in
red and blue as before). Therefore, a successful Policy Improvement is not possible and
the overall Fitted-Actor Policy Iteration algorithm is prone to become blocked.

As it can already be seen in Figure 4.7b, the experiment also contains a setting for the
regression task, which involves a plain linear output for the MLP fπ. The difference in
sign between red and blue arrows in that figure belongs precisely to the type of activation
function used for fπ and suggests that this bad behaviour is mainly due to the usage of
tanh(·) in the output layer. Once a linear output is used for the policy approximation
architecture, the regression outcome improves and now carries the correct qualitative
information to be used inside a PI algorithm. Of course, a linear output is not suitable for a
DP application, since the MLP output is now residing outside of the action space. Normally,
one is forced to choose tanh(·) as activation function in the output layer to comply to
the hypercube as action space. But my single execution of a Supervised Regression task
already suggests that this practice needs to be reworked.

In the following, I want to provide more resilient statements regarding the outcome
of regression. Thus, I repeat the regression task from before 50 times and collect the
values of several performance indicators to arrive at empirical results. I follow the exact

123

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

same procedure as described above and only provide the remaining details to complete
the experimental setting. I work with N = 250 sampled states, which are distributed
uniformly in S. The Q-function is approximated with the MLP fQ ∈ F(3, 15, 15, 1) with
a linear output. The MLP fπ ∈ F(2, 15, 15, 1) represents a policy and uses once tanh(·)
for the output and once the identity function. Both have a Bent-Identity in hidden layers,
use the learning rates αQ = απ = 0.1 and iQ = iπ = 1000 iterations for descending.
As the performance indicators, I use four different measurements. As the first, I collect
the final fitting errors (mean squared `2 error) for the Fitted-Actor. The mean reward
of the improved policies obtained from rollouts as described at the end of Section 3.4.2
provides the second indicator. The third and fourth indicators are defined by the span
of action values and the angle between all actions to a reference point. Both rely on a
one dimensional action space and need to be adapted before they can be used in arbitrary
spaces. I compute the span of action values by evaluating for the improved policy π the
largest possible difference between a pair of actions δa = maxs∈S π′(s)−mins∈S π′(s). For
a successful improvement with tanh(·) activation, the span δa approaches two, i.e., some
actions are changed from +1 to −1. With a linear activation, the span should be larger
than two, because actions outside of the space can be produced. The angle span provides a
more strict and binary statement about the behaviour of actions. I convert the output of a
policy to an angle towards a reference action first. Namely, I set β(s) = arccos(π(s), aref)
with the reference action aref = 1. The angle can take two different values β ∈ {0, 180◦},
depending on whether the action points to the right or left1. Lastly, I compute in a similar
fashion the angle span by δβ = maxs∈S β(s)−mins∈S β(s). If this value is zero, then all
seemingly improved actions still point in the same direction as the reference action. Since
the reference is matching the output of the initial policy, this means the improvement
has not been successful. Once the angle span jumps to 180◦, at least some actions have
changed their orientation. The evaluation of the four indicators for all repetitions is shown
as box plots in Figure 4.8.

The results demonstrate empirically the struggle in training an MLP, which employs
tanh(·) in its output layer, when compared to an MLP with a linear output. Performing
a successful regression of the training data is in many cases not possible with an MLP
that relies on tanh(·) in its output layer. The leftmost indicator in Figure 4.8 shows that
small final errors can occur, but are not the typical case. In many cases, not all improved
actions are represented correctly by the policy MLP, which leads to problems in Policy
Improvement as shown in Figure 4.7b. Switching to linear outputs allows to learn more
fine grained details. This results as expected in smaller final errors and overall lower errors
compared to the case with tanh(·).

The mean reward of the improved policy, which corresponds to the second indicator
in Figure 4.8, reveals that a linear output with a mandatory clipping operation before
actions are fed into the dynamical system is not an option. Whereas the policy produced
by fπ with tanh(·) at least can achieve consistently an expected reward of −30, which
corresponds to driving right as far as possible, the performance of fπ with linear output is
even worse. However, it is debatable, whether the collected reward is a reliable tool for
assessment at the very beginning of a PI algorithm.

The indicators responsible for the action and angle span in Figure 4.8 unveil clearly the
struggle for training when using tanh(·). Both indicators report zero as the major value

1I am not using radians such that the confusion π ≈ 3.1415 does not arise.

124

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Final Error

10 8

10 6

10 4

10 2

100

Mean Reward
80

70

60

50

40

30

Action Span

0

10

20

30

40

50

Angle Span

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tanh() activation
Linear activation

Figure 4.8: Empirical investigation for fitting MLPs to (s, a∗) tuples. The experiment uses
the same setting as for Figure 4.7, but involves more repetitions.
The four indicators demonstrate the challenge in fitting a policy to the data,
if tanh(·) is employed in the output (red box plots). The MLP is not able to
decrease sufficiently the training error and does not produce correct actions
as indicated by the action and angle spans. Thus, the new policy after the
improvement step is not able to capture the essence of the reward function
and blocks the PI algorithm. With a linear output in the policy MLP, learning
becomes possible. But the main limitation is that the action space is left (third
indicator) and, consequently, that the empirical performance of the policy is
worse according to rollouts (second indicator).

among all repetitions, meaning that all actions point in the same direction and thus are
identical. The new policy represented by the MLP with tanh(·) after performing the Policy
Improvement step is not able to capture the essence of the reward function. The indicators
match the selected situation Figure 4.7b, where one can see that all actions take the value
1. An application of this MLP in a Policy Iteration algorithm is not possible. Switching
to a linear output for the MLP has the desired effect for training, but comes at the price
of exceeding the action space limits. When using a linear activation function, the angle
span consists for most but not all repetitions of the largest possible value, indicating that
actions change their sign. However, the action span demonstrates concisely their main
issue. The largest action space, which can fit in the action space A = [−1, 1], is two. Thus,
in all repetitions bad policies have been learned, which cannot be used naturally in the
environment.

Judging from the empirical investigation, an obvious solution to ease the problems is to
change the policy MLP to use a linear activation functions for its output. However, this
creates the issue with a wrong image of the function, which must be avoided since the main
task is to stay in A to be able to use the policy within the environment. Hence, a possible
conclusion would be to combine a linear output of the MLP with some component-wise
clipping operation, which moves its action output into the available action space. This
clipping strategy would thus follow the same idea as the Direct-GIP approach and their
projectors. A disadvantage of this approach is that clipping causes actions to get “corrected”
automatically, which has the negative consequence that an MLP and its optimisation task
are not aware that large action values outside of A are bad solutions. Clipping operations
simply destroy information.

125

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

To move the action output of the MLP fπ inside a restricted set and also correct
the case, where action values are too large, a more sophisticated approach than direct
clipping is necessary. As possible solution, I propose to train the policy MLP with its
output constrained to the unit ball and include a corresponding projection operation in the
training process. The action space is therefore reduced from a hypercube to the smaller
volume of a ball, but this should not impose practical limitations. The unit ball is a subset
of the hypercube [−1, 1]KA and satisfies all requirements for DP algorithms, but also adds
some pleasing properties regarding optimisation. Introducing Fitted-Actors with the unit
ball as image results in the approach described in the next section.

4.6.3 Fitted-Actors that Live in the Unit Ball
By introducing a Fitted-Actor algorithm and an MLP fπ, which can use the unit ball as
its image, it is possible to remove the tanh(·) in the output layer of the MLP, which is
the limiting factor during training policies via Supervised Regression. Hence, the policy
MLP fπ now uses a linear output similar to the Critic and gets combined with a new
projection operation to work in the KA-Ball BKA . Therefore, I introduce another projector
PB : RKA → BKA , which is given by

PB(x) =
x

max {1, ‖x‖A}
. (4.21)

This projector moves elements from the full vector space RKA down to the unit ball BKA .
There might be a minor conflict in the way to count dimensions, in particular, when talking
about spheres embedded in vector spaces. Namely, an n sphere typically lives in an n+ 1
dimensional vector space. But since the interior of the ball is still the original (vector)
space, it is easier to have the same index in my document and ignore the off-by-one issue
from other literature or common textbooks. Furthermore, for the sake of convenience,
it is also possible to omit the dimension index for the ball altogether in the remaining
document. It will always be KA.

The first question that arises, is what is gainend from working in the unit ball. The
ball consists of two parts, namely, the interior and its surface. The interior does not
provide any technical difficulty, because it behaves during the optimisation just like an
unrestricted Euclidean space, The surface of the ball however, makes optimisation on the
sphere necessary. But here also resides the advantage of this construction. Opposed to the
non-linear and oblique projection operator as defined in Equation (4.19), the projector on
the surface of a sphere is linear and even orthogonal. Hence, I can benefit of the sphere
structure on the surface and have a proper and well defined behaviour for the optimisation
problem with existing solution techniques. It should be possible to switch on the fly
between the interior and surface case. Whereas this will not be mathematically rigorous, it
should still be an acceptable realisation for practical applications.

The possibility to exploit optimisation techniques on the sphere also carries over from
the Fitted-Actor constructions back to a full Actor-Critic algorithm. Once the Actor is
producing values inside of the unit ball, also the Critic must be aware of the new input
domain. Hence, the projection steps would appear as part of the chain rule used to train
the Actor through the Critic. Only by relying on PB from Equation (4.21) as an orthogonal
operator (when dealing with the surface of B), it is possible to express gradients for the
Actor in the tangent space and avoid the creation of spurious critical points. This would

126

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

result in a complex and challenging approach to DP with NN-VFA, which will require
a sophisticated analysis on its own. Hence, I leave this as future research and focus on
exploiting the Fitted-Actor approach.

Since the training of a Critic and an Actor is already decoupled for Fitted-Actors,
working inside the ball is conceptually simple as I will demonstrate in the rest of this
section. It is directly possible to alternate the Fitted-Actor approach by making PB a
part of the MLP and by replacing the clipping operation to stay within BKA instead of
[−1, 1]KA . The following text summarises some of the important notation and concepts
regarding Supervised Regression from [Shen, 2018a,b]. Although the cited documents have
all required expressions, they do not appear in the exact right form as they are needed for
my work. This is most notably for the inclusion of the projector from Equation (4.21) and
its differential map in these terms. As the first new concept for Supervised Regression,
there exists now an explicit error function E : A×A → R+

0 , which measures the distance
between the output of fπ and the desired action value. A common choice for Euclidean
spaces is the general form of a squared norm

E(a1, a2) =
1

2

〈
a1 − a2, a1 − a2

〉2
A
=

1

2

∥∥(a1 + th− a2)
∥∥2
A
, (4.22)

where A denotes a positive definite symmetric matrix with shape KA ×KA and full rank.
The two possible action inputs are denoted by a1, a2 ∈ A. This error function has the
differential

D1E(a1, a2)[h] =

=
1

2

d

dt

∣∣∣∣
t=0

(a1 + th− a2)
TA(a1 + th− a2)

=
1

2

d

dt

∣∣∣∣
t=0

(
(a1 − a2)

TA(a1 − a2) + t(a1 − a2)
TAh+ thTA(a1 − a2) + t2hTAh

)
= (a1 − a2)

TAh = 〈a1 − a2, h〉A , (4.23)

where an arbitrary direction is denoted as usual by h ∈ A. The second-order derivative of
the error function reads as

D2
1E(a1, a2)[h1, h2] =

d

dt

∣∣∣∣
t=0

(a1 + th2 − a2)
TAh1

=
d

dt

∣∣∣∣
t=0

(
aT1Ah1 + thT2Ah1 − aT2Ah1

)
= hT2Ah1 = 〈h2, h1〉A . (4.24)

To arrive at an optimisation problem, the parameters U of the policy MLP fπ, the sample
states si with their corresponding action labels a∗i and the error function define together
the objective

J̃π(U) :=
1

N

N∑
i=1

E(·, a∗i) ◦ fπ(U, si), (4.25)

which of course is identical to Equation (4.20), but possesses the required shape to be
able to insert the projection. The differential map is now the thing of interest. For some

127

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

direction H ∈ U , it takes the form

DU J̃π(U)[H] =
1

N

N∑
i=1

D1E(fπ(U, si), a
∗
i) ◦DU fπ(U, si)[H]. (4.26)

Finally, inserting everything yields the expressions required to realise the optimisation task

DU J̃π(U)[H] =
1

N

N∑
i=1

(
fπ(U, si)− a∗i

)T
A

[
ΦT
1 (In1 ⊗ φ0)

T . . . ΦT
L (InL ⊗ φL−1)

T
]

︸ ︷︷ ︸
=:G

(si)
π (U)∈RKA×Nnet

 vec(H1)
...

vec(HL)

︸ ︷︷ ︸

=:vec(H)∈RNnet×1

. (4.27)

Now I can apply the required changes to this expression to arrive at a Fitted-Actor
algorithm, which is working in the unit ball. There are two possible realisations. The first
is to alternate the MLP such that its output is inside the unit ball. This would be realised
by applying the projector PB from Equation (4.21) to the output vector after the last layer.
The second would leave the MLP unchanged but would combine the corresponding input of
the error function with PB. Thus, a new virtual error function Ẽ(a1, a2) = E(PB(a1), a2) is
created, which possess a more complex geometry that will be clearly visible in its Hessian.
For no particular reason, I have decided to include PB through the error function. In both
cases, the projector will change the differential map of the objective J̃π, thus, one has to
compute the differential of the projector first. It is given by

DPB(x)[h] =

{〈
1

‖x‖A

(
I − AxxT

〈x,x〉A

)
, h

〉
if x /∈ B

〈I, h〉 else
. (4.28)

Next, it has to be added as new term in the differential map of the objective. Due to the
chain rule, the new term appears in Equation (4.27) between the differential of the error
function and the leftmost term in each Ψ. This underlines the skewing effect on the error
function. The differential DPB(x)[h] is independent of the parameters U and is always
tied towards the matrix A used in the squared norm.

Lastly, I need a quick calculation for the Gauss Newton Approximation of the Hessian to
be able to see the impact of the virtual error function. If I assume as usual that the policy
MLP fπ is rich enough to allow for exact learning, then at any critical point U∗ ∈ U the
Hessian takes the form

D2
U J̃π(U∗)[H1,H2] =

1

N

N∑
i=1

((
DU(fπ(U

∗, si)− a∗i)[H2]
)T

AG(si)
π (U∗) vec(H1)

+
(
fπ(U

∗, si)− ai
)T︸ ︷︷ ︸

=0

ADUG(si)
π (U∗) vec(H1)

)
(4.29)

=
1

N

N∑
i=1

(
vec(H2)

T(G(si)
π (U∗))TAG(si)

π (U∗) vec(H1)
)

=vec(H2)
T 1

N
GT

π (U
∗)ÃGπ(U

∗) vec(H1), (4.30)

128

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

where the symmetrical block diagonal matrix Ã = diag(A, . . . , A) contains the Hessian
of E for all samples. If the Hessian of E vanishes to have the default inner product for
Euclidean spaces, then A is reduced to the identity matrix. In the middle between the two
Jacobians G

(si)
π (U), the changes to the error function due to the projector would appear.

The skewing by DPB(x)[h] happens once from the left of A and once from the right and
creates the symmetrical pattern Jac1 PB(x)

TA Jac1 PB(x).
The sharp eyed reader might already spot an issue with the rank of the projector’s

differential. It has an effect on the statements about the Jacobian from [Shen, 2018b]. In
particular, for the one dimensional action space considered in this section, the differential
is zero once the value is outside of B, otherwise one. This seems to be an issue, but one
can argue that this is not too harmful in practice. The contribution to Gradients and
Hessians for input state samples, whose corresponding action output value lies outside
of desired range, is zero. However, if policy parameters change due to other elements in
the training data, these samples will contribute again to all expressions. Also, the critical
point condition for the Actor MLP fπ is to some extend weaker, because the rank can
be deficient due to DPB(x)[h]. Yet, the additional solutions in parameter space, which
become possible through the loss of rank of the projectors differential, correspond to MLPs
with large action values. They get corrected by the projector anyway. For fitting a proper
policy to the training data sampled in the unit ball, action values must be as well inside of
the boundaries or need to be located at least on the boundary. Hence, the projection on
the unit ball is not active in that regime such that solutions for critical points correspond
to proper policies. For action spaces with two or more dimensions, the differential of the
projection has full rank for most input values. Only the basis vectors result in a reduced
rank. Since the set of unit vectors is small compared to the entire action space, this will
not be a severe problem. Thus, properties of objective are not affected significantly and it
is possible to realise a Gauss Newton algorithm for training.

To see the effect of working on the ball, I repeat the empirical verification from Sec-
tion 4.6.2. The experimental setting is the same as before, but I now consider additionally
policy MLPs, which produces outputs in the unit ball. Hence, I compare cases with tanh()
output for fπ, a plain linear output, which relies on clipping to produces actions inside A,
and the approach with linear output but using the ball projector. I show the results next
to the those from the previous experiment in Figure 4.9.

The indicators reveal that the approach based on the unit ball can work partially and
shows the desired properties, but also demonstrate certain issues. I will focus in Figure 4.9
only on the results for linear activation functions and the projector (green box plots). Box
plots shown in red or blue are identical to Figure 4.8 and are repeated for convenience.

To the positive effects belong a slightly enhanced final fitting error and the maintained
action span. Whereas the regression works better than having tanh(·) in the output, the
method constructed around the unit ball cannot achieve the same consistent small errors
as for the unmodified linear output. The action span is in the range from zero to two,
indicating that the method overcomes the limitations of regressions with tanh(·) without
suffering from leaving the action space.

The downside is visible with the average reward of the improved policy and the angle
span. Similar to the pure linear activation function, the achieved expected rewards after
the improvement cover a large range of values and performs worse than tanh(·). The angles

129

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Final Error

10 30

10 25

10 20

10 15

10 10

10 5

100

Mean Reward

80

70

60

50

40

30

Action Span

0

10

20

30

40

50

Angle Span

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tanh() activation
Linear activation
Actor in unit ball

Figure 4.9: The empirical investigation for fitting MLPs to (s, a∗) tuples from Figure 4.8
extended with the method that works in the unit ball. When working with the
unit ball, the outcome for final errors and the action span is improved when
compared against tanh(·). However, the average reward of the improved policy
suffers and the distribution of angles between all actions and a reference value
is compressed at zero. This would imply that the method constructed around
the unit ball has struggle to achieve high performance in a PI algorithm.

between actions sit according to the box plot almost all at zero, which would imply that
the method cannot overcome the change of sign for important actions.

Despite these results, I will still explore a full Fitted-Actor PI algorithm, which works on
the unit ball. I expect that there will be performance issues, but it could serve as a possible
solution to the original problem, namely avoiding spurious critical points by realising a
reliable Policy Improvement based on Supervised Regression.

4.6.4 A Fitted-Actor Algorithm with Gauss Newton Optimisation
A Fitted-Actor algorithm resembles in many parts the procedure for an Actor-Critic
approach from Algorithm 4 in Section 4.4.3. In fact, the most important change is that
the Policy Improvement step is realised now as two separated tasks. The first task is the
application of CEM to extract for all sample states si the corresponding best actions a∗i ∈ B
according to the current approximation fQ of the Q-function. The second one encompasses
the Supervised Regression to improve the policy MLP fπ by fitting the dataset. A minor
change resides in the transition data used to execute Policy Evaluation. Algorithm 5
provides the entire Fitted-Actor procedure.

Line 3 emphasizes that the result of Cross Entropy Method is also used directly for
training the Critic. The policy MLP fπ is no longer active in conjunction with the successor
state and gets replaced by the action produced with CEM. Please note that a′i

∗ is not
an optimal action in the sense that it belongs to Q∗, it is just an approximation for the
best outcome of argmaxa fQ(W, s, a). By not involving fπ at all in the Critic, one obtains
the advantage that the Policy Evaluation step has a higher quality, because a′i

∗ is more
likely to be the correct value according to fQ than the action produced by the Actor, i.e.,
a′i

∗ 6= a′i = fπ(U, s′i) in general. Furthermore, the fitted policies only serve for the empirical
verification and visualisation of the training progress across all sweeps. Instead of executing
the random search for actions every time a value is needed, one “compiles” the dataset

130

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Algorithm 5 Fitted-Actor with Gauss Newton Optimisation
Hyper parameters: γ ∈ (0, 1), αQ > 0, απ > 0, c = 10−5, ε ≤ 10−5, N ∼ Nnet

Input:
- MLP fQ ∈ F(KS +KA, . . . , 1) with initialised parameters W ∈W
- MLP fπ ∈ F(KS , . . . ,KA) with initialised parameters U ∈ U

Output:
- U such that fπ(U, s) is a trained policy
- W such that fQ(W, s, a) ≈ Qfπ(s, a)

1: for sweep in sweeps do
// Preparation

2: Draw (si, ai) for i = 1, . . . , N uniformly from S ×A
3: Construct transition tuples (si, ai, ri, s

′
i, a

′
i
∗) for all i

// Policy Evaluation : Critic
4: for i in iQ do
5: Evaluate FQ(W) := [fQ(W, s1, a1) . . . fQ(W, sN , aN)]T ∈ RN

6: Evaluate F ′
Q(W) := [fQ(W, s′1, a

′
1) . . . fQ(W, s′N , a′N)]T ∈ RN

7: Compute GQ(W) and G′
Q(W)

8: Bellman Residual in Q: ∆Q
π (W) = FQ(W)−Rπ − γF ′

Q(W)

9: NMSBE: JQ(W) = 1
2N∆Q

π (W)T∆Q
π (W)

10: Gradient: ∇WJQ(W) = 1
N

(
GQ(W)− γG′

Q(W)
)T

∆Q
π (W)

11: Hessian: HW JQ(W) = 1
N

(
GQ(W)− γG′

Q(W)
)T(

GQ(W)− γG′
Q(W)

)
12: Solve for η: (HW JQ(W) + cQINnet) η = ∇WJQ(W)
13: Descent step: W←W − αQη
14: end for

// Direct-GIP : Construction of Dataset for Actor
15: a∗i ← argmaxa∈A fQ(W, si, a) for i = 1, . . . , N

// Policy Improvement : Fitted-Actor
16: for i in iπ do
17: Objective: J̃π(U) = 1

N

∑N
i=1E(fπ(U, si), a

∗
i)

18: Gradient: ∇UJ̃π(U) = 1
N

∑N
i=1Gπ(U, si)

T∇1E(fπ(U, si), a
∗
i)

19: Hessian: HU J̃π(U) = 1
N

∑N
i=1Gπ(U, si)

TH1E(fπ(U, si), a
∗
i)Gπ(U, si)

20: Solve for η:
(
HU J̃π(U) + cπINnet

)
η = ∇UJ̃π(U)

21: Descent step: U← U− απη
22: end for

// Training Progress
23: Evaluate fπ empirically using several rollouts
24: end for

131

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

si, a
∗
i into a policy, which is defined on the entire state space. This blurs the distinction

between the pure Critic-Only approach from Chapter 3 and the Fitted-Actor algorithm of
this section.

The major difference of Fitted-Actors compared to Actor-Critic methods starts with
Line 15. Instead of using the Critic directly for training the Actor, a dataset of state-action
tuples is created. The explicit solving of argmaxa∈A fQ(W, s, a) directly in the action space
is done via CEM. A detailed description follows later in the text. In Lines 17 to 19, the
components for training an Actor are implemented as an ordinary Supervised Regression
problem. As outlined in Section 4.6.2, a non-linear least squares problem is solved with
Gauss Newton optimisation. Consequently, there are now two linear equation systems to
define descent directions for both the Actor and Critic in Lines 12 and 20. Both use as
before Householder QR-Decomposition for solving.

To switch from the normal setting, i.e., using a hypercube for A, to an Actor, which
works with the unit ball, one just need to replace in Lines 17 to 19 the error function E
with its varied counterpart Ẽ. This applies to the objective itself and also to its derivatives
such that the differential map of the projector as given in Section 4.6.3 becomes active.

To search for optimal actions in Lines 3 and 15, the Cross Entropy Method is employed.
Finally, Algorithm 6 contains the complete description of my realisation of CEM. For the
sake of simplicity, I formulate the algorithm in a more general setting. Namely, the method
is presented for solving the maximisation of an arbitrary function f : X → R. This allows
to use typical notation inside the algorithm without having to embed everything in the DP
context of the remaining document.

Algorithm 6 Cross Entropy Method for maximising a scalar function
Hyper parameters:

- imax = 50, ε = 10−10, c0 = 10
- Ntotal = 500, Nkeep = 10% Ntotal, Nnoisy = 2% Ntotal

Input: function f : X → R
Output: solution x∗ ∈ X such that f(x∗) ≈ maxx∈X f(x)

1: Initialise: mean ∼ U , cov = c0 · I, i = 0
2: do
3: xi ∼ N (mean, cov) with i = 1, . . . , Ntotal −Nnoisy

4: xi ∼ U() with i = Nnoisy, . . . , Ntotal

5: xi = PX (xi) for all i = 1, . . . , Ntotal

6: si = f(xi) for all i = 1, . . . , Ntotal

7: Sort all xi in descending order according to si
8: mean = Mean(x1, . . . , xNkeep

), cov = Cov(x1, . . . , xNkeep
)

9: i = i+ 1
10: while i < imax and ‖cov‖∞ > ε

The initialisation in Line 1 produces a vector and matrix with a shape matching X .
For the application in Fitted-Actors, the space X can be the action space in its original
form A = [−1, 1]KA or the subset corresponding to the unit ball B. An initial mean is
drawn from the uniform distribution U . The covariance matrix starts with a scaled identity
matrix I, which posses a compatible shape. Lines 3 and 4 draw particles from a normal

132

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

distribution N , which is specified by the current mean and covariance, and also from a
uniform distribution U to escape bad local solutions. Line 5 ensures that all particles
remain in X , especially if drawn from N , by applying an appropriate clipping or projection
operation. Next, all the scores si of all particles xi are computed (Line 6). Afterwards,
the particles are sorted according to their quality (Line 7). The last important step in
Line 8 uses the best performing particles to compute a new mean and covariance for the
next iteration. The Cross Entropy Method terminates, if either the covariance becomes
sufficiently small or if the maximal amount of iterations is reached. The last computed
mean is then used as the best value in X , i.e., it is assumed to provide a solution for
maxx∈X f(x). The hyper parameters specified in the beginning of the algorithm work
reasonable well in practice for my application. Furthermore, with the selected values for all
three variants of N , the resulting CEM is so fast to not be noticeable compared to other
algorithmic components. Therefore, I have not spent sophisticated work to optimise them
further.

4.6.5 Behaviour of a Fitted-Actor Policy Iteration Algorithm
With my last experiments, I want to test my approach for training an Actor on the unit
ball within a full PI loop. I want to gain empirical insights on whether this method
can be used and how it performs compared to the Actor-Critic method. The overall
structure of the experiment is based on that from Section 4.5.1. I only have to include
small adjustments due to the Supervised Regression. Based on the experience gained so
far from all experiments, I restrict the search space of certain parameters.

I employ two MLPs fQ ∈ F(KS +KA, 15, 15, 1) and fπ ∈ F(KS , 15, 15,KA) to represent
the Q-function and policy, respectively. The input dimension of MLPs need to match the
environment. Hidden layers rely on the Bent-Identity, whereas the output layers depend on
the usage. The Critic has always a linear output. The Actor either uses tanh(·), the identity
as activation combined with clipping or a linear output followed by the ball projector. Both
optimisation tasks make use of a Gauss Newton descent algorithm. In the two optimisation
tasks, learning rates are identical and set to αQ = απ = 0.1. The regularisation for the
Hessian is set for both to cQ = cπ = 10−5. The MLPs fQ and fπ are trained with each
iQ = iπ = 1000 descent steps. All parameters are initialised uniformly in the range [−1, 1]
before the first sweep. Furthermore, all parameters are persistent, i.e., the last parameters
from the previous sweep serve as initialisation for the next one. I use for training N = 3000
state samples, which are placed uniformly in S. They are transient, meaning I resample
the training data in every sweep. Due to my results for the Actor-Critic algorithm and the
Critic-Only PI experiment, I no longer investigate smaller values for N , which would allow
for exploiting effects from over-parametrisation.

The PI algorithm starts from a random policy and improves it iteratively over 25 sweeps.
Policies are evaluated as usual after every sweep with Monte Carlo rollouts. I create ten
trajectories with each 500 transitions starting randomly in the state space. Details given
in the experimental setup for Actor-Critic experiments from Section 4.5.1 apply.

For the environments, I select MyMountainCar-v1 from Section 2.6.3 and MyCartPole-
v1 from Section 2.6.4. Except for the necessary adjustments for the input and output
dimensions of the MLPs, I use the same setting for optimisation in all environments.
I vary the output activation of the policy MLP fπ and whether or not the training is
performed on the unit ball. The entire training process is repeated ≈ 30 times from scratch.

133

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Unfortunately, some repetitions are missing due to technical complications. Figures 4.10a,
4.10c and 4.10e show the results for MyMountainCar-v1, where Actors use tanh(·) in the
output, the identity with clipping and a linear function followed by the ball projector,
respectively. Figures 4.10b, 4.10d and 4.10f contain counterparts for the other environment
MyCartPole-v1.

The performance curves for the environment MyMountainCar-v1, i.e., the left column
in Figure 4.10, reveal together two important facts. First, using an MLP fπ with linear
output and component-wise clipping, which is not included during the training process,
is to some extend harmful. The fitting of policies works unreliable, which results in a
chaotic behaviour across all sweeps. Policies with all types of qualities show up, such that
they cover the full spectrum of expected rewards (cf. Figure 4.10c). Second, adding the
projection on the unit ball to MLPs, which use a linear output, results in a proper training
process. This can be seen by the similarity of Figures 4.10a and 4.10e. Both plots show
qualitatively the same structure without the strong jumps in performance as in Figure 4.10c.
Unfortunately, the Fitted-Actor approach with a projection on the unit ball is still not able
to overcome the last hurdle. Only suboptimal policies are produced as the best possible
case. Policies, which achieve average discounted expected reward between −25 and −30,
correspond to accelerating constantly to the right instead of swinging up. I conclude that
the environment MyMountainCar-v1 simply favours too strongly learning this kind of
policy, since this happens for different approaches. The required level of detail, which is
needed to create a working Policy Improvement step, are too subtle for an Actor-Critic or
Fitted-Actor algorithm to be learned reliably. It seems, that a Critic-Only formulation,
which computes actions on the fly, always results in a more robust algorithm compared to
using an additional Actor with a second non-linear function approximation architecture.
This can be seen with the experiment in Figure 4.5b, where a Critic-Only method is indeed
able to solve the MyMountainCar-v1 environment, because it achieves for some sweeps
policies with zero accumulated rewards.

The right column in Figure 4.10, i.e., the results for the environment MyCartPole-v1,
confirms mostly the statements from above. Again, one can see in Figures 4.10b and 4.10d
that a linear output layer combined with clipping demonstrates a stronger chaotic behaviour
than the usage of tanh(·) as activation. A pure clipping of action values outside of the
desired range destroys information. Yet, a linear output with clipping is able to produce
from time to time working policies. Other than for the MyMountainCar-v1 environment,
Figures 4.10b and 4.10f are no longer that similar. Indeed, one can see in the figures that
the amount of repetitions, where the MLP fπ can learn successfully a proper balancing
policy at the end of training, is higher when working on the unit ball than for using tanh(·)
in the output layer. However, in this environment a linear output with clipping works
better in terms of how often a good policy shows up, even if the training process itself is
rather unstable.

The results for MyCartPole-v1 match also the Actor-Critic method regarding the general
ability to solve that environment as shown in Figure 4.5c. However, based on the available
empirical insights, one has to conclude that using the Actor-Critic method is the better
strategy, at least for this particular control problem.

134

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

0 5 10 15 20 25
sweep

90

80

70

60

50

40

30

20
ac

cu
m

ul
at

ed
 re

wa
rd

17 runs
12 runs

(a) tanh(·)

0 5 10 15 20 25
sweep

100

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

4 runs
25 runs

(b) tanh(·)

0 5 10 15 20 25
sweep

90

80

70

60

50

40

30

20

ac
cu

m
ul

at
ed

 re
wa

rd

16 runs
13 runs

(c) Linear with clipping

0 5 10 15 20 25
sweep

100

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

22 runs
7 runs

(d) Linear with clipping

0 5 10 15 20 25
sweep

90

80

70

60

50

40

30

20

ac
cu

m
ul

at
ed

 re
wa

rd

19 runs
10 runs

(e) Linear with ball projector

0 5 10 15 20 25
sweep

100

80

60

40

20

0

ac
cu

m
ul

at
ed

 re
wa

rd

11 runs
17 runs

(f) Linear with ball projector

Figure 4.10: The Fitted-Actor algorithm in MyMountainCar-v1 (left column) and
MyCartPole-v1 (right column). Each figure shows the expected rewards
for the Actor with different choices for its output layer. All runs are grouped
into two categories based on final reward value. a) and b): The reference
behaviour with tanh(·) as activation, which suffers from constant policies.
c) and d): A linear output with clipping shows chaotic behaviour during
training, because leaving A is not punished. Yet, it is still possible to learn
a good policy by chance. e) and f): Projection on the unit ball enables
usage of linear outputs, but its performance depends on the environment.
For MyMountainCar-v1, one only restores the behaviour of tanh(·). For
MyCartPole-v1, one can enhance the quality of policies compared to tanh(),
but a linear output with clipping results more often in well performing policies.

135

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

4.6.6 Remark
Unfortunately, it is difficult to draw a clear conclusion regarding whether Fitted-Actors
or Actor-Critics should be used. The approach based on the unit ball can work, but it is
not a universal remedy. When investigating individual components, one can see that the
limitations of tanh(·) as activation function in the output layer or the mismatch between
expected and actual action spaces can be overcome. But as soon as all components are
assembled together to form a full PI algorithm, Fitted-Actors do not result in a method,
which performs significantly better than a direct Actor-Critic approach. Still, a positive
aspect is that using the projector on the unit ball restores the correct behaviour for a linear
output. It is a sound method to achieve a restriction to A. A negative property is that
this projection introduces more moving parts in the algorithm, which have to play together
smoothly and therefore create more work in setting up a proper application. Hence, one
can also argue to use a plain Critic-Only approach to avoid entirely all kinds of problems
related to an Actor. Yet, this statement is tied towards being able to extract fast enough
actions from a Q-function to steer the system under control properly.

In the end and once NN-VFA is involved, realising a DP algorithm remains an art on its
own. I can incorporate all the insights from my analysis, but finding the right experimental
setup is non-trivial. Even if an algorithm is well understood and analysed, there are
so many moving parts which all need careful tuning such that an working algorithm is
the result. As an example that covers all the components of an Actor-Critic algorithm,
consider the different behaviour of the same algorithm for the two versions of the Cart Pole
benchmarks. Despite seemingly harmless alternations, one version allows for a successful
application of the method, the other does not.

136

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Chapter 5

Conclusion

Dynamic Programming with Neural Network based Value Function Approximation has
become one of the most powerful learning paradigms in both research and application over
the recent years. Despite the superior performance, its training and convergence analysis
has remained challenging due to an incomplete theoretical understanding how MLPs affect
the common DP setting. Namely, most previous theoretical analysis of DP with VFA
approach these challenges from the perspective of minimising the Mean Squared Projected
Bellman Error and Linear Value Function Approximation architectures. Hence, they are
arguably incompatible with recent successful algorithms. My work bridges this gap by
working with tools from non-convex optimisation and by investigating the critical point
conditions of the related optimisation problems.

For DP algorithms, there are two important components. The first is the computation
of a Q-function for some given policy. The second is the improvement of this policy, once a
Q-function is available. Both components need to be addressed both individually and as
entangled entity.

I tackle the first component in DP, namely the computation of value- or Q-functions, by
employing non-convex optimisation for minimising the MSBE. More precisely, I work with
the Neural Mean Squared Bellman Error, which is the objective resulting from combining
MLPs as the Non-Linear Value Function Approximation architecture with the ordinary
MSBE. I address both the discrete and continuous state space setting. Within discrete
spaces, exact learning is possible and one can minimise the NMSBE directly. Obtained
solutions correspond to the ground truth. However, for continuous spaces, a sampling based
calculation of the NMSBE and the use of a Residual Gradient formulation become necessary.
This leads to a more complicated objective and the important insight that this objective
now also allows for bad solutions. By using an approach based on non-convex optimisation
this finding has become possible. A second important outcome, which underlines why
non-convex optimisation should be used, is that my analysis unveils the possibility to
utilise approximated second-order information of the cost function for both discrete and
continuous state space formulations. My investigation results in an efficient Approximated
Newton method, namely a Gauss Newton Residual Gradient algorithm, which possesses
the typical and pleasing convergence properties.

For computing improved policies, i.e., the second component in DP, I analyse the class
of Actor-Critic algorithms. In every variation of Policy Improvement, a first building
block is the extraction of optimal actions from a given Q-function or its approximation.
To enable the usage of non-convex optimisation, an important result of my work are
additional constraints on the reward signal, which ensure its compatibility with derivative
based optimisation. A second block in Actor-Critic algorithms are parametrised policies
themselves. They are trained by maximising an (approximated) Q-function for all states in

137

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

the state space. Ensuring a proper outcome is getting much more complicated, because the
Q-function is in general a non-linear and non-convex objective, but due to my critical points
analysis of the objective, the complexity of the optimisation process becomes manageable.
As part of my investigation through non-convex optimisation, I have unveiled an additional
issue residing in the geometry of the action space. Namely, the Critic expects input values
from a different space than it actually receives. To overcome these geometrical complications,
I propose to decouple Actor and Critic training by switching to a Fitted-Actor method.
Despite this method realising overall a sound Policy Iteration procedure, which handles the
geometry of the action space correctly, it does not always produce well-performing policies.
Further effort needs to be spent to address the training of parametrised policies, which can
use the existing foundation provided by my work.

For all cases, non-convex optimisation is a promising methodology, which takes the
geometry of a problem explicitly into account. It can answer open issues in Neuro-Dynamic
Programming and, thus, also in Deep Reinforcement Learning. Furthermore, it unveils
important details for the implementation of efficient algorithms. Relying on non-convex
optimisation renders difficulties in the formulation of an optimisation task visible and
provides guidance for design choices. My work also establishes a foundation for incorporating
other Neural Network architectures such as convolutional networks or transformers into
Neuro-Dynamic Programming. Additionally, other loss functions could be investigated as
well through non-convex optimisation. This will require additional and significant work,
but will also outline their limitations and advantages. Non-convex optimisation is a useful
toolset when applied correctly and will always reveal details about the task. However, it is
not rendering the application and implementation of such algorithms trivial. A thorough
analysis and investigation of the concrete problem at hand is always required.

138

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Appendix A

Step by Step Calculations

This chapter contains calculations with detailed steps and instructions. I have not included
them in the main text, because their value and insights do not justify an increased complexity
of the storyline. My work over here falls in the category “tedious but straightforward”.

Differential Map of the Error Function For the error function E : RK → R and some
evaluated function F ∈ RK , I have

E(F) =
1

2

(
F − Pπ

(
Rπ + γF

))T
Ξ
(
F − Pπ

(
Rπ + γF

))
DE(F)[h] =

1

2

d

dt

∣∣∣∣
t=0

[(
(F + th)− Pπ

(
Rπ + γ(F + th)

))T
Ξ
(
(F + th)− Pπ

(
Rπ + γ(F + th)

))]
=
1

2

[(
h− Pπγh

)T
Ξ
(
(F + th)− Pπ

(
Rπ + γ(F + th)

))
+
(
(F + th)− Pπ

(
Rπ + γ(F + th)

))T
Ξ
(
h− Pπγh

)]
t=0

=
1

2

[(
h− Pπγh

)T
Ξ
(
F − Pπ

(
Rπ + γF

))
+
(
F − Pπ

(
Rπ + γF

))T
Ξ
(
h− Pπγh

)]
=
(
F − Pπ

(
R+ γF

))T
Ξ
(
IK − γPπ

)
h

=

〈(
IK − γPπ

)T
Ξ
(
F − Pπ

(
R+ γF

))
, h

〉
.

Thus, according to Riesz, the gradient of E with respect to F is

∇FE(F) =
(
F − Pπ

(
R+ γF

))T
Ξ
(
IK − γPπ

)
.

Differential Map of an MLP Consider an MLP f ∈ F(n0, n1, . . . , nL−1, nL) and an input
s ∈ S. To calculate the differential map of f for s at the point W ∈W and a direction
H ∈W , first start with a single layer l of the MLP. I have

DWl
f(W, s)[Hl] = D2 ΛL(WL, φL−1) ◦ . . . ◦D2 Λl+1(Wl+1, φl) ◦D1 Λl(Wl, φl−1)[Hl],

where D1 Λl(Wl, φl−1)[Hl] and D2 Λl(Wl, φl−1)[hl−1] refer to the derivative of layer mapping
Λl with respect to the first and the second argument, respectively. For the layer definition

139

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

in Equation (2.21), I obtain

D1 Λl(Wl, φl−1)[Hl] =
d

dt

∣∣∣∣
t=0

...

σ

(
(Wl,k + t ·Hl,k)

T ·
[
φl−1

1

])
...

=

...

σ̇(· · ·)HT
l,k

[
φl−1

1

]
...

t=0

= diag
(
φ̇l

)
HT

l

[
φl−1

1

]
=: Σl ·HT

l · φ̃l−1

and

D2 Λl(Wl, φl−1)[hl−1] =
d

dt

∣∣∣∣
t=0

...

σ

(
WT

l,k · (
[
φl−1

1

]
+ t ·

[
hl−1

0

]
)

)
...

=

...

σ̇(· · ·)WT
l,k

[
hl−1

0

]
...

t=0

= diag
(
φ̇l

)
WT

l

[
hl−1

0

]
=: Σl · W̄T

l · hl−1.

The term Σl ∈ Rnl×nl is a diagonal matrix with its entries being the derivatives of the
activation function with respect to the input φ̇l. Inside of φ̇k, the derivative of the activation
function σ̇(. . .) is contained for all units in layer l. The input to φ̇l is the unmodified output
φl−1 of the truncated MLP. By writing W̄ , I indicate that the last row is cut off due to the
multiplication by zero. The notation φ̃ implies that the layer output is extended with an
additional 1. This resembles homogenous coordinates as they are used with the special
Euclidean group SE(3) for computer vision applications. Inserting these parts yields for
the differential map

DWl
f(W, s)[Hl] = ΣLW̄

T
L · ΣL−1W̄

T
L−1 · · ·Σl+1W̄

T
l+1 · ΣlH

T
l φ̃l−1.

To shorten this expression let me construct a sequence of matrices for all l = L−1, . . . , 1 as

Ψl := ΣlW̄l+1Ψl+1 ∈ Rnl×nL ,

140

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

with ΨL ≡ 1 due to the activation function in the last layer being the identity function.
Now I can write compactly

DWl
f(W, s)[Hl] = ΨT

l H
T
l φl−1.

To arrive at the expression shown in the main text consider a matrix A ∈ Rn×m and a
compatible column vector b ∈ Rn×1. When denoting by A1, · · · , Am the m columns of A,
one can show by straightforward computation the identity

AT · b =

 AT
1 b
...

AT
mb

 =

 bTA1
...

bTAm

 =

 bT

. . .
bT

 A1

...
Am

 =
(
Im×m ⊗ bT

)
· vec(A).

By setting A = Hl and b = φl−1, I get

DWl
f(W, s)[Hl] = ΨT

l

(
Inl
⊗ φT

l−1

)
vec(Hl).

Finally, I can combine the expressions for all layers and produce the full differential map
with respect to all parameters

DW f(W, s)[H] =
[
ΨT

1

(
In1 ⊗ φT

0

)
. . . ΨT

L

(
InL ⊗ φT

L−1

)]
︸ ︷︷ ︸

∈RnL×Nnet

·

 vec(H1)
...

vec(HL)

︸ ︷︷ ︸

∈RNnet×1

,

where the MLP input φ0 is just the input s. For the application with the MSBE in my
work, I always have nL = 1, because the value function maps to a scalar value. When
using all N inputs at once, I arrive at the expression G(W) ∈ RN ·nL×Nnet as shown in
Equation (3.4)

DW F (W)[H] =

ΨT

1

(
In1 ⊗ φ

(1)
0

T
)

. . . ΨT
L

(
InL ⊗ φ

(1)
L−1

T
)

...

ΨT
1

(
In1 ⊗ φ

(N)
0

T
)

. . . ΨT
L

(
InL ⊗ φ

(N)
L−1

T
)

︸ ︷︷ ︸

=:G(W)∈RN·nL×Nnet

·

 vec(H1)
...

vec(HL)

 .

The superscript (·)(i) indicates that the layer outputs φl arise from the i-th state in the
input layer.

Definition of G̃(W) Equation (3.16) originates directly from the difference of G(W) and
G′(W). I have

G̃(W) =G(W)− γG′(W)

=

 G(W)11 · · · G(W)1L
...

G(W)N1 · · · G(W)NL

− γ

 G′(W)11 · · · G′(W)1L
...

G′(W)N1 · · · G′(W)NL

=

 G̃(W)11 · · · G̃(W)1L
...

G̃(W)N1 · · · G̃(W)NL

141

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

with the blocks

G̃(W)ij = ΨT
j

(
Inj ⊗ φj−1

(i)
)T

︸ ︷︷ ︸
G(W)ij

−γ Ψ′T
j

(
Inj ⊗ φ′

j−1
(i)
)T

︸ ︷︷ ︸
G′(W)ij

.

by pairing each block in the matrices. No further simplifications, which would allow for
more insights, are possible.

142

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Appendix B

Skipped Figures and Results

This chapter contains figures and results, which I have not included in the main text. Their
value and insight does not justify an increased complexity of the reading flow.

Generalisation Experiments The following two contour plots belong to Figure 3.11 and
show the outcome for MLPs with only one hidden layer. The parameters and setting is
that of the generalisation experiment in Section 3.5.3.

25 50 7510
0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0
75

0
80

0
85

0
90

0
95

0
10

00
20

00

N
F(2

, 1
×1, 1

),N
ne

t=
5

F(2
, 2

×1, 1
),N

ne
t=

9

F(2
, 3

×1, 1
),N

ne
t=

13

F(2
, 4

×1, 1
),N

ne
t=

17

F(2
, 5

×1, 1
),N

ne
t=

21

F(2
, 6

×1, 1
),N

ne
t=

25

F(2
, 7

×1, 1
),N

ne
t=

29

F(2
, 8

×1, 1
),N

ne
t=

33

F(2
, 9

×1, 1
),N

ne
t=

37

F(2
, 10

×1, 1
),N

ne
t=

41

F(2
, 11

×1, 1
),N

ne
t=

45

F(2
, 12

×1, 1
),N

ne
t=

49

F(2
, 13

×1, 1
),N

ne
t=

53

F(2
, 14

×1, 1
),N

ne
t=

57

F(2
, 15

×1, 1
),N

ne
t=

61

F(2
, 16

×1, 1
),N

ne
t=

65

F(2
, 17

×1, 1
),N

ne
t=

69

F(2
, 18

×1, 1
),N

ne
t=

73

F(2
, 19

×1, 1
),N

ne
t=

77

F(2
, 20

×1, 1
),N

ne
t=

81

5.
76

7
5.

42
4

5.081 4.
73

9

4.3
96

4.053

3.7103.368

9.194

8.508

7.823

7.137

6.452

5.767

5.081

4.396

3.710

3.025

(a)

25 50 7510
0
12

5
15

0
17

5
20

0
22

5
25

0
27

5
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0
75

0
80

0
85

0
90

0
95

0
10

00
20

00

N
F(2

, 1
×1, 1

),N
ne

t=
5

F(2
, 2

×1, 1
),N

ne
t=

9

F(2
, 3

×1, 1
),N

ne
t=

13

F(2
, 4

×1, 1
),N

ne
t=

17

F(2
, 5

×1, 1
),N

ne
t=

21

F(2
, 6

×1, 1
),N

ne
t=

25

F(2
, 7

×1, 1
),N

ne
t=

29

F(2
, 8

×1, 1
),N

ne
t=

33

F(2
, 9

×1, 1
),N

ne
t=

37

F(2
, 10

×1, 1
),N

ne
t=

41

F(2
, 11

×1, 1
),N

ne
t=

45

F(2
, 12

×1, 1
),N

ne
t=

49

F(2
, 13

×1, 1
),N

ne
t=

53

F(2
, 14

×1, 1
),N

ne
t=

57

F(2
, 15

×1, 1
),N

ne
t=

61

F(2
, 16

×1, 1
),N

ne
t=

65

F(2
, 17

×1, 1
),N

ne
t=

69

F(2
, 18

×1, 1
),N

ne
t=

73

F(2
, 19

×1, 1
),N

ne
t=

77

F(2
, 20

×1, 1
),N

ne
t=

81

3.943

3.
71

5

3.487

3.
25

9
3.0

31
2.

80
3

2.5752.
34

7
2.

11
9

2.119

1.
89

1

1.891

4.399

3.943

3.487

3.031

2.575

2.119

1.663

1.206

0.750

0.294

(b)

Figure B.1: The training and test error of different MLP architectures (ordinate) for various
sample sizes N (abscissa). I use a logarithmic scale Z = log10(E), where E
is the original error and Z its plotted value. Red indicates higher errors. In
all plots the solid line represents the condition Nnet = N . Please refer to
Figure 3.11 for a complete description. Left column: Training error. Right
column: Test error.

Due to the small number of parameters in the MLP, it is only for N ≤ 75 possible to
observe the effect of over-parametrisation. However, the tiny MLPs are not rich enough to
represent the value function and do not achieve sufficiently low error.

143

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Multistep Experiments This is an alternative version for showing the first-order only
gradient descent with different sizes of lookahead. Figure B.2 aims to complement the
figures in the convergence investigation from Section 3.5.4.

0k 3k 6k 9k
iteration

10 1

100

NM
SB

E

k = 1

k = 2

k = 3
k = 4
k = 5
k = 6
k = 7
k = 8
k = 9
k = 10

(a) Compound Method

0k 3k 6k 9k
iteration

100

101

102

NM
SB

E

= 0.5

= 0.9

= 0.99

(b) TD(λ)-like Method

Figure B.2: Larger lookahead can have a beneficial impact onto the convergence speed.
This plots shows the same data as in Section 3.5.4, but since only the first-order
methods are shown for different k or λ, it is possible to see the beneficial impact
on the convergence speed at the beginning of training.

Due to the missing second-order optimisation, the limits for the y-axis become more
suitable for the first-order gradient descent experiments. It is possible to see the enhanced
convergence speed, once the lookahead k is increased. This is the known desirable behaviour
for multistep lookahead methods, at least for first-order gradient descent. But one can also
observe the price to pay in Figure B.2a. Namely, the training error also increased with
larger k. Despite the faster decay of the error, the overall outcome is worse. The TD(λ)
method behaves a bit differently. Here, the choice of λ is a trade-off. This can be seen in
Figure B.2b and matches the literature, e.g., [Bertsekas, 2012].

The following figure shows the initial ranks and inverse condition numbers for the
experiments from Section 3.5.4. Although it is possible to extract the same information
directly from the figures in that section, it is rather sophisticated due to the size of those
figures. Thus, Figure B.3 depicts the distribution of initial ranks and values for κ as box
plot for the compound operator T

(k)
π .

144

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

100

110

120

130

140

150

160

170
ra

nk

(a) Initial ranks
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

10 17

10 16

(b) Initial κ values

Figure B.3: These box plots emphasize the initial rank or inverse condition numbers of
Jacobians for various MLPs before any training happened. This figure is
essentially a magnified version of all corresponding figures in Section 3.5.4.

The randomly initialised MLPs do not have a Jacobian with full rank. The behaviour
for the TD(λ) variation is similar, i.e., the Jacobian of the loss behaves the same, even if
more terms contribute to it or a different weighting is involved.

The important property is, that for second-order methods the rank quickly goes up,
whereas for first-order training, the loss of a full rank remains an issue. This can see in
figures from Section 3.5.4.

145

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

Bibliography
P. A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton

University Press, 2008.

M. Adibi and J. Van der Woude. Secondary frequency control of microgrids: An online reinforcement
learning approach. IEEE Transactions on Automatic Control, 2022.

B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In Proceedings of the 34th

International Conference on Machine Learning, 2017.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
Pieter A., and W. Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, volume 30, 2017.

M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

K. A. Asadi, N. Parikh, R. E. Parr, G. D. Konidaris, and M. L. Littman. Deep radial-basis value
functions for continuous control. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 2021.

L. C. Baird and A. H. Klopf. Reinforcement learning with high-dimensional continuous actions.
Technical report, Wright Laboratory, Wright-Patterson Air Force Base, Tech. Rep. WL-TR-93-
1147, 1993.

L. C. Baird III. Residual algorithms: Reinforcement learning with function approximation. In
Proceeding of the 12th International Conference on Machine Learning, 1995.

L. C. Baird III and A. W. Moore. Gradient descent for general reinforcement learning. In Advances
in Neural Information Processing Systems, 1999.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(5), 1983.

R. Behling, D. S. Gonçalves, and S. A. Santos. Local convergence analysis of the levenberg-
marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound
condition. Journal of Optimization Theory and Applications, 183(3), 2019.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement learning
with stability guarantees. In Advances in Neural Information Processing Systems, volume 30,
2017.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 4th
edition, 2012.

D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

147

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

D. P. Bertsekas, V. Borkar, and A. Nedić. Improved temporal difference methods with linear
function approximation. In Learning and Approximate Dynamic Programming. IEEE Press, 2004.

N. Bhat, V. Farias, and C. C. Moallemi. Non-parametric approximate dynamic programming via
the kernel method. In Advances in Neural Information Processing Systems, volume 25, 2012.

W. Böhmer, S. Grünewälder, Y. Shen, M. Musial, and K. Obermayer. Construction of approximation
spaces for reinforcement learning. Journal of Machine Learning Research, 14(1), 2013.

H. Bojun. Steady state analysis of episodic reinforcement learning. In Advances in Neural
Information Processing Systems, volume 33, 2020.

D. Brandfonbrener and J. Bruna. Geometric insights into the convergence of nonlinear TD learning.
In International Conference on Learning Representations, 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. Computing Research Repository, arXiv:1606.01540, 2016.

Q. Cai, Z. Yang, J. D. Lee, and Z. Wang. Neural temporal-difference learning converges to global
optima. Computing Research Repository, arXiv:1905.10027, 2019.

A. I. Cowen-Rivers, D. Palenicek, V. Moens, M. A. Abdullah, A. Sootla, J. Wang, and H. Bou-
Ammar. Samba: Safe model-based & active reinforcement learning. Machine Learning, 111(1),
2022.

W. Dabney and P. Thomas. Natural temporal difference learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 28, 2014.

T. de Bruin, J. Kober, K. P. Tuyls, and R. Babuska. The importance of experience replay database
composition in deep reinforcement learning. In Deep Reinforcement Learning Workshop, 2015.

J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner,
A. Abdolmaleki, D. de las Casas, C. Donner, L. Fritz, C. Galperti, A. Huber, J. Keeling,
M. Tsimpoukelli, J. Kay, A. Merle, J. Moret, S. Noury, F. Pesamosca, D. Pfau, O. Sauter,
C. Sommariva, S. Coda, B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu, D. Hassabis, and
M. Riedmiller. Magnetic control of tokamak plasmas through deep reinforcement learning.
Nature, 602(7897), 2022.

J. Dodge, T. Prewitt, R. Tachet des Combes, E. Odmark, R. Schwartz, E. Strubell, A. S. Luccioni,
N. A. Smith, N. DeCario, and W. Buchanan. Measuring the carbon intensity of ai in cloud
instances. In ACM Conference on Fairness, Accountability, and Transparency, 2022.

B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. In Advances in Neural Information Processing Systems, volume 32,
2019.

R. V. Florian. Correct equations for the dynamics of the cart-pole system. Technical report, Center
for Cognitive and Neural Studies (Coneural), Romania, 2007.

J. Fu, A. Kumar, M. Soh, and S. Levine. Diagnosing bottlenecks in deep q-learning algorithms. In
Proceedings of the 36th International Conference on Machine Learning, volume 97, 2019.

J. García and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(42), 2015.

M. Geist and O. Pietquin. Algorithmic survey of parametric value function approximations. IEEE
Transactions on Neural Networks and Learning Systems, 24(6), 2013.

148

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1905.10027

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

M. Gottwald and H. Shen. On the compatibility of multistep lookahead and hessian approximation
for neural residual gradient. In The Multi-disciplinary Conference on Reinforcement Learning
and Decision Making, 2022.

M. Gottwald, D. Meyer, H. Shen, and K. Diepold. Learning to walk with prior knowledge. In
International Conference on Advanced Intelligent Mechatronics, 2017.

M. Gottwald, M. Guo, and H. Shen. Neural value function approximation in continuous state
reinforcement learning problems. In European Workshop on Reinforcement Learning, 2018.

M. Gottwald, S. Gronauer, H. Shen, and K. Diepold. Analysis and optimisation of bellman residual
errors with neural function approximation. Computing Research Repository, arXiv:2106.08774,
2021.

M. Gottwald, H. Shen, and K. Diepold. A critical point analysis of actor-critic algorithms with
neural networks. In 6th IFAC Conference on Intelligent Control and Automation Sciences, 2022.

M. Granzotto, R. Postoyan, L. Buşoniu, D. Nes̆ić, and J. Daafouz. Exploiting homogeneity for the
optimal control of discrete-time systems: application to value iteration. In 60th IEEE Conference
on Decision and Control, 2021.

S. Gronauer and M. Gottwald. The successful ingredients of policy gradient algorithms. In
Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021.

S. Gronauer, M. Kissel, L. Sacchetto, M. Korte, and K. Diepold. Using simulation optimization
to improve zero-shot policy transfer of quadrotors. In International Conference on Intelligent
Robots and Systems, 2022.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In Proceedings of The 33rd International Conference on Machine Learning, 2016.

O. Güler. Foundations of Optimization. Springer, 2010.

B. D. Haeffele and R. Vidal. Global optimality in neural network training. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau. Towards the systematic
reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning
Research, 21(248), 2020.

M. Holzleitner, L. Gruber, J. Arjona-Medina, J. Brandstetter, and S. Hochreiter. Convergence
Proof for Actor-Critic Methods Applied to PPO and RUDDER, pages 105–130. Springer Berlin
Heidelberg, 2021.

R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibility of benchmarked deep rein-
forcement learning tasks for continuous control. Computing Research Repository, arXiv:1708.04133,
2017.

D. Jakubovitz, R. Giryes, and M. R. D. Rodrigues. Generalization Error in Deep Learning, pages
153–193. Springer International Publishing, 2019.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrish-
nan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. Computing Research Repository, arXiv:1806.10293, 2018.

149

https://arxiv.org/abs/2106.08774
http://arxiv.org/abs/1708.04133
http://arxiv.org/abs/1806.10293

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, volume 29, 2016.

H. Kimura. Reinforcement learning in multi-dimensional state-action space using random rectangular
coarse coding and gibbs sampling. In Society of Instrument and Control Engineers Annual
Conference, 2007.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Computing Research
Repository, arXiv:1412.6980, 2014.

M. Kissel, M. Gottwald, and K. Diepold. Neural network training with safe regularization in the
null space of batch activations. In International Conference on Artificial Neural Networks, 2020.

M. Laguna, A. Duarte, and R. Martí. The accelerated cross entropy method: An application to the
max-cut problem. available online, last accessed 05.01.2023, 2006.

S. Lawrence, C. L. Giles, and A. C. Tsoi. Lessons in neural network training: Overfitting may be
harder than expected. In Proceedings of the 14th National Conference on Artificial Intelligence
and 9th Conference on Innovative Applications of Artificial Intelligence, 1997.

A. Lazaric, M. Restelli, and A. Bonarini. Reinforcement learning in continuous action spaces
through sequential monte carlo methods. In Advances in Neural Information Processing Systems,
2007.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521, 2015.

M. Lee and C. W. Anderson. Convergent reinforcement learning control with neural networks
and continuous action search. In IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning, 2014.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39), 2016.

Y. Li, K. H. Johansson, J. Mårtensson, and D. P. Bertsekas. Data-driven rollout for deterministic
optimal control. In 60th IEEE Conference on Decision and Control, 2021.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Contin-
uous control with deep reinforcement learning. Computing Research Repository, arXiv:1509.02971,
2015.

S. Lim, A. Joseph, L. Le, Y. Pan, and M. White. Actor-expert: A framework for using action-value
methods in continuous action spaces. Computing Research Repository, arXiv:1810.09103, 2018.

L. J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie Mellon
University, 1993.

D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University
Press, 1995.

B. Liu, Q. Cai, Z. Yang, and Z. Wang. Neural proximal/trust region policy optimization attains
globally optimal policy. In Advances in Neural Information Processing Systems, volume 32, 2019.

H. R. Maei, C. Szepesvári, S. Bhatnagar, D. Precup, D. Silver, and R. S. Sutton. Convergent
temporal-difference learning with arbitrary smooth function approximation. In Advances in
Neural Information Processing Systems, volume 22, 2009.

H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to
reinforcement learning. Computing Research Repository, arXiv:1803.07055, 2018.

150

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1810.09103
http://arxiv.org/abs/1803.07055

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

G. Matheron, N. Perrin, and O. Sigaud. Understanding failures of deterministic actor-critic with
continuous action spaces and sparse rewards. In Artificial Neural Networks and Machine Learning,
2020.

L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman. Gradients are not all you need.
Computing Research Repository, arXiv:2111.05803, 2021.

J. D. R. Millán, D. Posenato, and E. Dedieu. Continuous-action q-learning. Machine Learning, 49
(2-3), 2002.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. Computing Research Repository, arXiv:1312.5602,
2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Peterson, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd International
Conference on Machine Learning, 2016.

T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement learning: A survey.
Computing Research Repository, arXiv:2006.16712, 2020.

A. W. Moore. Efficient memory-based learning for robot control. Technical Report UCAM-CL-TR-
209, University of Cambridge, Computer Laboratory, 1990.

A. Nedić and D. P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2), 2003.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization in deep
learning. In Advances in Neural Information Processing Systems, 2017.

Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks. In Proceedings of the
34th International Conference on Machine Learning, 2017.

B. D. Nichols. A comparison of action selection methods for implicit policy method reinforcement
learning in continuous action-space. In International Joint Conference on Neural Networks, 2016.

B. D. Nichols and D. C. Dracopoulos. Application of newton’s method to action selection in contin-
uous state-and action-space reinforcement learning. In Proceedings of the European Symposium
on Artificial Neural Networks, 2014.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for value-
function approximation. In Proceedings of the 24th International Conference on Machine Learning,
2007.

R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of linear
models, linear value-function approximation, and feature selection for reinforcement learning. In
Proceedings of the 25th International Conference on Machine Learning, 2008.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32, 2019.

151

http://arxiv.org/abs/2111.05803
http://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2006.16712

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

A. Ramaswamy, S. Bhatnagar, and D. E. Quevedo. Asynchronous stochastic approximations with
asymptotically biased errors and deep multiagent learning. IEEE Transactions on Automatic
Control, 66(9), 2021.

K. Rawlik, M. Toussaint, and S. Vijayakumar. On stochastic optimal control and reinforcement
learning by approximate inference. In Robotics: Science and Systems VIII (RSS 2012), 2012.

M. Riedmiller. Neural fitted q iteration – first experiences with a data efficient neural reinforcement
learning method. In Proceedings of the 16th European Conference on Machine Learning, 2005.

M. Ryu, Y. Chow, R. M. Anderson, C. Tjandraatmadja, and C. Boutilier. Caql: Continuous action
q-learning. In Proceedings of the 8th International Conference on Learning Representations, 2020.
to appear.

E. Saleh and N. Jiang. Deterministic bellman residual minimization. In Optimization Foundations
for Reinforcement Learning Workshop, 2019.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In Proceedings of
the 4th International Conference on Learning Representations, 2016.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
Proceedings of the 32nd International Conference on Machine Learning, volume 37, 2015.

J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. In Proceedings of the 4th International Conference on
Learning Representations, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. Computing Research Repository, arXiv:1707.06347, 2017.

J. V. Shah and C. S. Poon. Linear independence of internal representations in multilayer perceptrons.
IEEE Transactions on Neural Networks, 10(1), 1999.

H. Shen. A differential topological view of challenges in learning with feedforward neural networks.
Computing Research Repository, arXiv:1811.10304, 2018a.

H. Shen. Towards a mathematical understanding of the difficulty in learning with feedforward neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018b.

H. Shen and M. Gottwald. Demystification of flat minima and generalisability of deep neural
networks. In Workshop on Understanding and Improving Generalization in Deep Learning, 2019.

O. Sigaud and F. Stulp. Policy search in continuous action domains: An overview. Neural Networks,
113, 2019.

D. Silver. Gradient temporal difference networks. In Proceedings of the 10th European Workshop
on Reinforcement Learning, volume 24, 2013.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning,
volume 32, 2014.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of Go with deep neural networks and tree search. Nature, 529, 2016.

152

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1811.10304

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of go without human knowledge. Nature, 550, 2017.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in
NLP. Computing Research Repository, arXiv:1906.02243, 2019.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT Press, 2nd
edition, 2020.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems,
volume 12, 1999.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergent O(n) algorithm for off-policy temporal-
difference learning with linear function approximations. In Advances in Neural Information
Processing Systems, volume 21, 2008.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora. Fast
gradient-descent methods for temporal-difference learning with linear function approximation. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

G. Taylor and R. Parr. Kernelized value function approximation for reinforcement learning. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso. Deep learning’s diminishing returns:
The cost of improvement is becoming unsustainable. IEEE Spectrum, 58, 2021.

J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5), 1997.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 1992.

J. Wen, S. Kumar, R. Gummadi, and D. Schuurmans. Characterizing the gap between actor-critic
and policy gradient. In Proceedings of the 38th International Conference on Machine Learning,
2021.

C. Xiao, B. Dai, J. Mei, O. A. Ramirez, R. Gummadi, C. Harris, and D. Schuurmans. Understanding
and leveraging overparameterization in recursive value estimation. In International Conference
on Learning Representations, 2022.

X. Xu, D. Hu, and X. Lu. Kernel-based least squares policy iteration for reinforcement learning.
IEEE Transactions on Neural Networks, 18(4), 2007.

S. Yin, T. Luo, P. Liu, and Z. J. Xu. An experimental comparison between temporal difference
and residual gradient with neural network approximation. Computing Research Repository,
arXiv:2205.12770, 2022.

D. Yu and L. Deng. Automatic Speech Recognition: A Deep Learning Approach. Springer-Verlag,
London, 2015.

Y. Yuan, Z. L. Yu, Z. Gu, Y. Yeboah, W. Wei, X. Deng, J. Li, and Y. Li. A novel multi-step
q-learning method to improve data efficiency for deep reinforcement learning. Knowledge-Based
Systems, 175, 2019.

153

http://arxiv.org/abs/1906.02243
https://arxiv.org/abs/2205.12770

Analysing Neuro-Dynamic Programming Through Non-Convex Optimisation

C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In The
6th International Conference on Learning Representations, 2018.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In The 5th International Conference on Learning Representations,
2017.

K. Zhang, A. Koppel, H. Zhu, and T. Başar. Convergence and iteration complexity of policy gradient
method for infinite-horizon reinforcement learning. In 58th IEEE Conference on Decision and
Control, 2019.

K. Zhang, A. Koppel, H. Zhu, and T. Başar. Global convergence of policy gradient methods to
(almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6), 2020a.

S. Zhang, W. Boehmer, and S. Whiteson. Deep residual reinforcement learning. In Proceedings of
the 19th International Conference on Autonomous Agents and Multi Agent Systems, 2020b.

154

	Introduction
	Status Quo in Deep Reinforcement Learning
	The Demand for Realising Dynamic Programming with Function Approximation through Non-Convex Optimisation
	Contribution

	Neuro-Dynamic Programming in a Nutshell
	Introduction
	Dynamic Programming
	Multi-Layer Perceptrons
	Non-Convex Optimisation in the Context of Dynamic Programming
	Approximate Dynamic Programming with Function Approximation
	The Mean Squared Bellman Error as Objective for Optimisation
	Model-Based vs. Model-Free

	Benchmarks
	Adapted Seven State Star Problem
	Simple Linear Dynamics
	Mountain Car
	Cart Pole

	Analysing the Critic: Characterising Critical Points of the Mean Squared Bellman Error
	Introduction
	Related Work
	A Critical Point Analysis of the Mean Squared Bellman Error
	Exact Formulation with Discrete State Spaces
	Sampling Based Approaches For Continuous State Spaces
	Multistep Methods For Continuous State Spaces

	A Gauss Newton Residual Gradient Algorithm
	Convergence of the Proposed Algorithm
	The Algorithm
	Demonstration of Local Quadratic Convergence
	Tracking the Rank of the Jacobian During Optimisation

	Experiments in Continuous State Spaces
	Experimental Setup
	Empirical Convergence Analysis
	Generalisation Capabilities of MLPs
	Multistep Impact
	Policy Iteration

	Remark: Over- vs. Under-parametrisation

	Analysing the Actor: Extending the Investigation to Parametrised Policies
	Introduction
	Existing Methods & Related Work
	Existing Methods
	Related Work

	Critical Points of the Approximated Q -Function with Respect to Actions
	Notation
	Requirements for the Reward Function
	Investigation of the Differential Map
	Interpretation and Implications

	Combining the Q -function with Parametrised Policies
	Critical Points for an Actor
	Impact of Advantage Functions
	An Actor-Critic Algorithm with a Gauss Newton Residual Gradient Critic

	Experiments Regarding Actor-Critic Algorithms
	Experimental Setup
	Reward Issues
	Over-parametrised Actor
	Limitations of the Actor-Critic Approach

	Fitted-Actors to Handle Spurious Critical Points
	Critic's Expected Action Input vs. the Actual Action Space
	Actor Training as Supervised Regression Task
	Fitted-Actors that Live in the Unit Ball
	A Fitted-Actor Algorithm with Gauss Newton Optimisation
	Behaviour of a Fitted-Actor Policy Iteration Algorithm
	Remark

	Conclusion
	Step by Step Calculations
	Skipped Figures and Results
	Bibliography

