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Abstract

In optoacoustic (photoacoustic) tomogra-

phy, several parameters related to tissue

and detector features are needed for

image formation, but they may not be

known a priori. An autofocus (AF) algo-

rithm is generally used to estimate these

parameters. However, the algorithm

works iteratively and is therefore imprac-

tical for clinical imaging with planar geometry systems due to the long recon-

struction times. We have developed a fast autofocus (FAF) algorithm for 3D

optoacoustic systems with planar geometry. Such an algorithm exploits the

symmetries of the planar geometry and a virtual source concept to reduce the

dimensionality of the parameter estimation problem. The dimensionality

reduction makes FAF much simpler computationally than the conventional

AF algorithm. We show that the FAF algorithm required about 5 s to provide

accurate estimates of the speed of sound in simulated data and experimental

data obtained using an imaging system that is poised to enter the clinic. The

applicability of FAF for estimating other image formation parameters is dis-

cussed. We expect the FAF algorithm to contribute decisively to the clinical

use of optoacoustic tomography systems with planar geometry.
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1 | INTRODUCTION

Optoacoustic (photoacoustic) tomography is an emerging
optical imaging modality that combines the rich contrast

based on optical absorption with the ability of ultrasound
to provide high-resolution images deep inside tissue [1–
3]. In this technique, pulsed laser light is selectively
absorbed by chromophores, creating a local increase in
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pressure via thermo-elastic expansion, which in turn pro-
duces ultrasound waves. Several detectors at the tissue
surface record the acoustic waves over time. By applying
tomographic principles, an image of the initial pressure
distribution, and thus the regions of high optical absorp-
tion, can be obtained.

Optoacoustic tomography has taken a major step
toward clinical use with the advent of imaging systems
based on planar geometry [4–6]. In this geometry, the tis-
sue is illuminated with unfocused pulsed light, and ultra-
sound detectors are arranged on a 2D plane above the
tissue. Applying tomographic principles generates a 3D
image of the tissue contained within the cube immedi-
ately below the 2D plane. The light emitter and detectors
can be placed on the same side of the imaged region, cre-
ating a reflection-like configuration that can image

regions that would be inaccessible to systems based on
transmission or on cylindrical or spherical geometries. In
a particularly promising approach, one focused ultra-
wideband transducer is raster-scanned on a 2D plane
above the surface of the tissue. This approach is known
as raster scanning optoacoustic mesoscopy (RSOM).
Other authors use the terminology acoustic resolution
photoacoustic microscopy [3, 7]. This technique can
achieve resolutions of tens of microns at depths of several
millimeters and has demonstrated unique abilities for
imaging tissue pathology in patients with dermatological
disease, diabetes or cardiovascular disorders [8–11].

In RSOM, the ultrasound detector is scanned along a
“fast” axis and a “slow” axis (Figure 1A). At each point,
1D time domain ultrasound signals within the cone-
shaped sensitivity field of the focused detector are

FIGURE 1 Principle of the FAF algorithm, validation of its underlying assumptions, and its application to simulated data. A, Scheme

representing the geometrical considerations of the FAF algorithm. The transducer raster-scans (slashed lines) over the target area with its

sensitivity field indicated in purple. The black bold rectangle represents a central B-plane corresponding to a central B-scan. The virtual

spheres (green) used in the FAF algorithm are obtained by projecting the real spheres (black) along angle θ (dotted green arcs). B, Simulated

B-scan of the 3D distribution of real spherical sources. C, Simulated B-scan obtained by projecting the 3D spheres onto the B-plane as

described in panel A. D, Null image produced when panel C is subtracted from panel B. E, Left: 2D reconstruction of the B-scan from

simulated data and right: maximum amplitude projection along the z-axis. F, Calculated sharpness metrics as a function of speed of sound,

based on the 2D reconstructions and 1D maximum amplitude projections corresponding to the distribution of sources in panel B. It also

includes the sharpness metric calculated using the standard AF from the 3D reconstruction (gold standard). G, Median speed of sound

estimated from 100 simulated datasets by the FAF algorithm and different sharpness metrics. The diamond shows the result for the

conventional AF algorithm based on the 2D Brenner metric for one dataset
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collected, making up the so-called “A-scan.” One-dimen-
sional scanning of the detector along the fast axis gener-
ates a two-dimensional sinogram called the “B-scan,”
while scanning along the slow axis generates a stack of
B-scans that together comprise a 3D sinogram called the
“C-scan.”

High-quality image formation algorithms for clinical
applications require knowledge of several parameters
related to the acoustic properties of the tissue being
imaged, such as the speed of sound. The speed of sound
can vary between experiments, since it depends on the
tissue composition as well as temperature [12]. Other
parameters important for imaging relate to the detector,
such as its numerical aperture or focal distance. Some of
these parameters may not be known with sufficient accu-
racy, requiring their estimation.

In the simplest approach to estimating image formation
parameters, values are defined manually and the resulting
reconstructed images are visually inspected. This trial-and-
error approach takes substantial time and reduces reproduc-
ibility, leading to the use of the autofocus (AF) algorithm [13]
in optoacoustic tomography [12, 14].

The AF algorithm works by automatically reconstructing
images covering a range of possible values for the particular
imaging parameter; for example, it generates images in
which the speed of sound ranges from 1400 to 1600 m/s in
steps of 1 m/s. For each parameter value, a sharpness metric
is calculated for the resulting image, forming a cost function.
Appropriate selection of the sharpness metric results in a
healthy cost function with a Gaussian or Lorentzian shape,
whose maximum can be obtained easily using brute force.
The parameter value yielding the maximum is taken as the
correct estimate.

The AF algorithm has been validated for estimating
speed of sound in imaging systems with cylindrical or
planar geometries, but it requires extensive time when
geometry is planar [12]. In a cylindrical configuration,
256 detectors are used, leading to fast reconstructions
(<<1 s), which translates to approximately 1 s to calcu-
late the 50 reconstructions typically needed for the AF
algorithm [14]. In some planar configurations, in con-
trast, the large number of detectors (~104) results in
excessive computational time [12]. The time is even lon-
ger in RSOM, which may involve up to 105 detector posi-
tions. Common implementations of time-domain back-
projection reconstruction [15], which involves a complex-
ity of O(n5), generally take around 2 min to perform one
reconstruction and therefore around 1.5 h to calculate
the AF algorithm. Even frequency-domain back-
projection [15], which has a lower computational com-
plexity of O(n3log2[n]), requires approximately 15 s per
reconstruction [16] and therefore around 15 min to calcu-
late the AF algorithm. Reconstruction times are even

longer for other image formation approaches, such as
model-based reconstruction [17–19].

These computation times are far too long to support
clinical applications, where far less than 1 min is avail-
able for calculating the AF algorithm. In order to fulfill
this “<1 min criterion” and move optoacoustic imaging
with planar geometry closer to the clinic, we developed a
“fast AF” (FAF) algorithm. The FAF leverages the fact
that due to the symmetries in planar geometry, the B-
scan signal from a 3D distribution of optoacoustic emit-
ters can be approximated as the B-scan signal generated
by a virtual 2D distribution of sources obtained by
projecting the real 3D sources onto a “B-plane” associated
with that B-scan (see Section 2 and Figure 1A). As a
result, the AF algorithm can be correctly applied to single
B-scans by calculating a sharpness metric for the 2D
reconstructions of the virtual sources (see Section 2 and
Figure 1A). This process substantially reduces the com-
putational complexity of image formation from O(n5) to
O(n3) in the case of time-domain reconstructions, and
from O(n3log2[n]) to O(n2log2[n]) in the case of fre-
quency-domain reconstructions [15] (also known as w-k
algorithms [16]). This reduction in complexity translates
to faster computation of the FAF algorithm.

In this article, we validate the FAF algorithm for esti-
mating speed of sound in simulations, phantoms and
clinical data collected using a standard RSOM system.
The FAF algorithm was able to estimate speed of sound
in clinical data within 7 s. We compare the FAF algo-
rithm against the conventional AF applied to 3D data,
and we discuss the possibility of using the FAF algorithm
to estimate other image formation parameters.

2 | MATERIALS AND METHODS

2.1 | Description of the FAF algorithm
for estimating speed of sound

For calculating the FAF algorithm, a complete C-scan is
acquired, then a B-scan is randomly selected from the 3D
sinogram. Several 2D reconstructions on the B-plane
(associated with the B-scan) are performed, each with a
different speed of sound. Next, a metric is used to assess
the sharpness of the resulting 2D images or the 1D maxi-
mum intensity projection (MIP) of the 2D images along
the z dimension (see “performance assessment of the
FAF algorithm”). In this way, the distribution of sharp-
ness as a function of the speed of sound is obtained. The
estimation of the speed of sound corresponds to the value
that leads to the maximum of the sharpness function.

The standard AF algorithm is based on 3D recon-
structions of C-scans or the 2D MIPs of those 3D
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reconstructions. We hypothesized that applying the FAF
algorithm to 2D reconstructions of B-scans or 1D MIPs of
those 2D reconstructions would lead to the same esti-
mated speed of sound as the conventional AF algorithm.

2.2 | Justification of FAF assumptions

In this section, we proof that the B-scan from any 3D dis-
tribution of sources is equivalent to the signal from a spe-
cific 2D distribution of virtual sources on the B-plane
associated with that B-scan (see Figure 1A). Since the 2D
reconstruction from such a B-scan displays the virtual
sources, sharpness metrics can be applied to estimate the
speed of sound, exactly as when operating with 3D recon-
struction of real sources.

The proof relies on two assumptions. First, the opto-
acoustic signal from any 3D light-absorbing structure is
equivalent to the signal generated by assuming that the
absorbing structure is composed of small, discrete absorb-
ing spheres. Second, the optoacoustic signal from a real
sphere in the 3D space recorded on a B-scan is equivalent
to the signal from a virtual sphere generated by
projecting the real sphere onto the B-plane associated
with the B-scan. This projection is performed along the
angular dimension of a cylindrical coordinate system
whose z-axis aligns with the B-scan (see Figure 1A).

Mathematically the two assumptions can be
expressed as follows:

p ri
!, t
� �

≈
XN
j¼1

po rj
!� �

psp ri
!, rj

!, t
� �

≈
XN
j¼1

po rj
!´
� �

psp ri
!, rj

!´, t
� �

ð1Þ

where ri
! is the position of the l-th detector of a specific

B-scan, p ri
!, t
� �

is the optoacoustic signal arriving at the l-
th detector at time t, N is the total number of discrete
spheres that make up the light-absorbing structure,
po rj

!� �
is the initial optoacoustic pressure (t¼ 0) inside

the j-th sphere located at rj
!, psp ri

!, rj
!, t

� �
is the opto-

acoustic pressure at time t inside the j-th sphere assum-
ing an initial pressure of 1N=m2 and measured at the l-th
detector, and psp ri

!, rj
!´, t

� �
is the optoacoustic pressure in

the j-th sphere after projection onto the B-plane at loca-
tion rj

!´ (see Figure 1A). We note that po rj
!´
� �¼ po rj

!� �
.

The first assumption in Equation (1) holds as long as
the spheres are sufficiently small, according to Huygens
principle. In order to empirically validate the second
assumption in Equation (1), we simulated a B-scan
corresponding to the 3D distribution of absorbers ran-
domly distributed inside a volume. We then projected the
absorbers onto the B-plane associated with the B-scan

and calculated the corresponding “virtual” B-scan.
Finally, we confirmed that subtraction of the B-scans
from each other resulted in a blank image (Figure 1B-D).

The second assumption in Equation (1) can also be vali-
dated analytically if one notices that psp ri

!, rj
!, t

� �
depends

on the distance from the source and the detector [20], and
that the angle between r and z is always 90� (Figure 1A).

2.3 | Assessment of the FAF algorithm

2.3.1 | RSOM system and image
reconstruction

To assess the performance of the FAF algorithm, we used
an RSOM system developed by our group. The system
features a custom-made, spherically focused piezoelectric
50-MHz transducer (bandwidth 10–120 MHz) with 3-mm
focal distance (Sonaxis, Besancon, France). Signals were
digitized using a 700-MHz data acquisition card working
at 1 Gs per sec (GageScope RazorMAX; GaGe, Lockport,
Illinois). Optoacoustic signals were induced using a 1-ns
DPSS laser operating at 532 nm and a pulse rate of
500 Hz (Wedge HB; Bright Solutions, Cura Carpignano,
Italy). The scan head with the transducer was mounted
at the end of an articulated arm. It provided three motor-
ized stages to allow precise positioning of the transducer
in the x, y and z directions; the head was scanned in the x
and y directions. Laser light was delivered below the
transducer via a custom-made fiber bundle (Ceramoptec,
Livani, Lituane). The entire system was controlled using
MATLAB on a PC running Microsoft Windows. Further
details of the system can be found elsewhere [8, 10].

All 2D reconstructions of B-scans as well as 3D recon-
structions were performed using the 2D and 3D Fourier
domain reconstructions in the k-wave toolbox in
MATLAB [21]. The FAF algorithm, including calculation
and evaluation of the sharpness metrics (see below), was
coded entirely using MATLAB.

2.3.2 | Performance assessment

We assessed the performance of the FAF algorithm using
simulations, phantoms and clinical data.

2.3.3 | Simulations

We simulated single B-scans corresponding to 100, 3D
distributions of 100 spherical absorbers with diameters
between 10 and 30 μm, randomly distributed in a volume
of x = 1800 μm, y = 200 μm and z = 1800 μm. The speed
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of sound was set to 1550 m/s. For each of the 100 simula-
tions the FAF algorithm was applied on a B-scan
corresponding to a B-plane of 1800 � 1800 μm located at
the center of the volume. More in detail, for each B-scan
we calculated 200 reconstructions (speed of sound values
ranging from 1450 to 1650 m/s in steps of 1 m/s). For
each set of 200 reconstructions four speed of sound esti-
mations were obtained from the cost functions that
results from applying the four sharpness metrics
described in “sharpness metrics.” The most suitable
sharpness metric should provide the clearest Gaussian/
Lorentzian shape and the speed of sound estimation clos-
est to the value of the forward solution.

To benchmark the FAF algorithm, we also applied
the conventional AF algorithm [12] using as sharpness
function the 2D Brenner metric applied to the MIP along
the slow axis in the full 3D reconstructed data. The speed
of sound estimation obtained from the conventional AF
for one dataset was taken as the gold standard.

2.3.4 | Phantoms

A 10-μm polyamide suture was immersed in water and
imaged. Data were acquired in a scan window measuring
4 by 3 mm, with a step size of 15 μm in the x and y direc-
tions. This generated 36 180 A-lines. The FAF algorithm
was applied to 10 equidistant B-scans along the slow axis
at a step size of 30 μm in order to assess the stability of
the estimated speed of sound along the field of view.
Such stability is taken as an indicator of the performance
of the algorithm. For each B-scan, we performed 29
reconstructions which correspond to speed of sound
values varying from 1420 to 1560 m/s in steps of 5 m/s.
For each set of 29 reconstructions four speed of sound
estimations were obtained from the cost functions that
results from applying the four sharpness metrics
described in “sharpness metrics.” The most suitable
sharpness metric should provide the clearest Gaussian/
Lorentzian shape and the speed of sound value most
invariant to B-scan selection.

To benchmark the FAF algorithm, we also applied
the conventional AF algorithm [12] using as sharpness
function the 2D Brenner metric applied to the MIP along
the slow axis in the full 3D reconstructed data. The speed
of sound estimation obtained from the AF was taken as
the gold standard.

2.3.5 | Clinical data

An eczematous skin lesion was scanned to yield 54 135
A-lines over a window measuring 6 by 2 mm in steps of

15 μm in the x and y directions. The FAF algorithm was
applied to 10 equidistant B-scans along the slow axis at a
step size of 30 μm in order to investigate how stable the
estimated speed of sound was along the field of view.
Such stability is taken as an indicator of the performance
of the algorithm. More in detail, we selected speed of
sound values ranging from 1440 to 1620 m/s in steps of
5 m/s leading to 36 reconstructions for each B-scan. For
each set of 36 reconstructions four speed of sound estima-
tions were obtained from the cost functions that results
from applying the four sharpness metrics described in
“sharpness metrics.”

To benchmark the FAF algorithm, we also applied
the conventional AF algorithm [12] using as sharpness
function the 2D Brenner metric applied to the MIP along
the slow axis in the full 3D reconstructed data. The speed
of sound estimation obtained from the AF was taken as
the gold standard.

Clinical scanning was performed following approval
from the Ethics Committee of the Klinik und Poliklinik
für Dermatologie und Allergologie am Biederstein
(Munich, Germany).

2.4 | Sharpness metrics

We tested four sharpness metrics in order to identify the
one optimal for the FAF algorithm and assess its perfor-
mance: 2D Brenner gradient and 1D Brenner [22], mid-
frequency discrete cosine transform (MDCT) [23] and
maximum energy. The 2D Brenner gradient takes the
reconstructed B-plane, calculates, and sums the squared
derivatives in the x and y directions:

FBrenner 2D ¼
X
k, l

Rkþn,k�Rk,lð Þ2þ Rk,lþn�Rk,lð Þ2 ð2Þ

where R is the reconstructed image, k is the k-th pixel in
the x direction and l is the l-th pixel in the z direction.
The reconstructed image has dimensions k and l and n is
a positive integer.

The 1D Brenner metric is also based on the sum of
the squared derivatives, but it uses the 1D MIP of the 2D
reconstruction along the z-axis:

FBrenner 1D ¼
X
k

f kþn� f k
� �2 ð3Þ

where f is the MIP of the reconstructed image R(k,l) along
the z direction (l).

MDCT works as an edge detector: it convolves the
reconstructed 2D B-plane with a predefined matrix and
sums the resulting values:

ENGLERT ET AL. 5 of 9
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Fmdct ¼
X
k, l

R k, lð Þ�OMDCTð Þ2 ð4Þ

where * is the convolution operator and

OMDCT ¼

1 1 �1 �1

1 1 �1 �1

�1 �1 1 1

�1 �1 1 1

2
6664

3
7775 ð5Þ

The maximum energy metric calculates the value of the
pixel with the highest intensity in the reconstructed
image.

3 | RESULTS

Figure 1 illustrates the geometrical considerations behind
the FAF algorithm, validation of its key assumptions and
its application to simulations. Figure 1A depicts the pro-
jection of real 3D optoacoustic sources onto a B-plane to
generate the 2D distribution of virtual sources. Figure 1B-
D validates the assumptions behind the FAF algorithm.
Figure 1B shows the B-scan from a random 3D distribu-
tion of sources, while Figure 1C shows the B-scan from
the virtual sources projected onto the B-plane. Sub-
tracting one B-scan from the other resulted in a blank
image (Figure 1D), as expected.

Figure 1E,F shows how the algorithm performed with
the simulated data in Figure 1B. Figure 1E shows the
reconstruction (speed of sound = 1550 m/s) obtained
from the B-scan of one dataset displaying the virtual
sources, together with its MIP along the z-axis. Figure 1F
shows the different sharpness functions; the 1D Brenner
gradient led to the best cost function with a Gaussian or
Lorentzian shape with the clearest maximum. Neverthe-
less, all metrics estimated the speed of sound for this
dataset within 1 m/s of the defined value of 1550 m/s in
the forward solution (1551 m/s for the 1D Brenner,
1549 m/s for the 2D Brenner, 1551 for the maximum
energy and 1549 m/s for MDCT). Figure 1F also show the
sharpness function obtained from the standard AF,
which matches closely the one obtained by FAF (Brenner
2D) and estimates the speed of sound of 1550 m/s of the
forwards solution.Figure 1G shows median speeds of
sound and corresponding quartiles for 100 simulated
datasets. The 1D Brenner, 2D Brenner, maximum energy
and MDCT metrics correctly estimated the speed of
sound with a mean value between 1549 and 1551 m/s
and a standard deviation < 2 m/s except for the maxi-
mum energy method with a standard deviation of 6 m/s.
The diamond at 1550 m/s corresponds to the speed of

sound estimated by the conventional AF algorithm
(Figure 1F) applied the data dataset corresponding to
Figure 1E.

Figure 2 shows the results of applying the conven-
tional AF and FAF algorithm to imaging data of a phan-
tom (suture in water). Figure 2A shows a central B-scan,
with the “crescent-like” shape typical for an elongated
suture. Figure 2B depicts the 2D reconstruction (speed of
sound = 1495 m/s) obtained from the B-scan and its MIP
along the z-axis. The different sharpness related metrics
as a function of speed of sound are shown in Figure 2C
including the result from the conventional AF algorithm.
The 1D Brenner function again showed the most promi-
nent Gaussian or Lorentzian shape and clearest maxi-
mum. The speed of sound at the maximum, 1495 m/s,
led to a high-quality reconstructed image (Figure 2D).
The conventional AF algorithm also estimates a speed of
sound of 1495 m/s.

Figure 2E shows boxplots depicting median speed of
sound and associated quartiles based on 10 B-scans along
the slow axis and different metrics. The 1D Brenner,
maximum energy and MDCT metrics showed similarly
low variation in speed of sound, while the 2D Brenner
metric showed negligible variation. The diamond corre-
sponds to the speed of sound estimated by the conven-
tional AF algorithm (Figure 3C) which has the same
value as the FAF 2D Brenner metric and nearly the same
value as the 1D Brenner and maximum energy metric.

Figure 3 shows the application of the FAF algorithm
to imaging of eczematous skin. Figure 3A shows a central
B-scan, in which the microvasculature appears as “cres-
cent-like” shapes typical of elongated cylindrical struc-
tures, similar to the suture phantom. Figure 3B depicts
the 2D reconstruction (speed of sound = 1515 m/s)
obtained from the B-scan and its MIP along the z-axis.
Figure 3C shows the different sharpness metrics as a
function of speed of sound. As the gold standard, we
included the conventional AF algorithm, which we
applied to the MIP of the reconstruction of the complete
dataset (see Section 2). The best metric is the Brenner
function applied to the 1D maximum intensity projec-
tion, providing a healthy Gaussian/Lorentzian function
with the clearest maximum. The FAF 1D Brenner esti-
mates the same maximum as the conventional AF algo-
rithm using the 2D Brenner method on the 3D dataset
(1515 m/s) but, as expected, the computational time dif-
fers. The estimation with FAF algorithm takes in total
6.5 s with a reconstruction time of roughly 175 ms for
one speed of sound value while the conventional auto-
focus algorithm applied on the whole dataset needs
>90 min to run with roughly 2.5 min per reconstruction.
For the FAF, the value of the speed of sound
corresponding to the position of the maximum lead to a

6 of 9 ENGLERT ET AL.
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high quality reconstructed images, as it can be observed
in Figure 3D. The reliability of the speed of sound estima-
tion for 10 different B-scans along the slow axis for differ-
ent metrics is shown as median values with the
corresponding quartiles in Figure 3E with the lowest vari-
ation for the 1D Brenner metric. The diamond corre-
sponds to speed of sound estimated by the conventional
AF algorithm (Figure 3C) which has nearly the same
value as the mean value obtained from 1D Brenner func-
tion of the FAF (1518.6 m/s ± 5,5 m/s for FAF and
1515 m/s for the conventional AF algorithm).

4 | DISCUSSION

In this work, we propose a FAF algorithm that over-
comes the drawbacks related to the long computational
times (>10 min) of its conventional counterpart for 3D
planar geometry systems [12, 14]. The FAF algorithm
exploits the symmetries inherent in planar geometry by

operating from 2D reconstructions of B-scans as well as
their 1D MIPs. The conventional AF, in contrast, must
operate from 2D MIPs calculated from 3D reconstruc-
tions of complete C-scans. The dimensionality reduction
in the FAF algorithm translates to substantially less com-
putational complexity.

For the first time, the autofocus approach can be
applied to planar geometry optoacoustic tomography sys-
tems with a large number of detectors. Such systems are
rapidly progressing toward the clinic, but require suitably
fast and robust algorithms to estimate the speed of sound
and other parameters. The FAF algorithm takes <<1 min
to estimate the speed of sound and supports the recon-
struction of high-quality images.

We found that the Brenner gradient calculated from
either 2D reconstructions or their 1D MIPs generated the
best cost functions for applying the FAF algorithm to real
data. Similarly, the Brenner gradient appears to be opti-
mal for the conventional AF algorithm [12]. However,
the gradient is implemented with n = 2 in the

FIGURE 2 Application of the FAF algorithm to phantom data. The phantom was a suture embedded in water (see Section 2). A,

Sinogram corresponding to a central B-scan. B, Left: 2D reconstruction on the B-plane corresponding to the B-scan in panel A. Right: the

maximum amplitude projection along the z-axis. C, Calculated sharpness metrics as a function of speed of sound, based on the 2D

reconstructions and 1D maximum amplitude projections from the B-scan shown in panel A. It also includes the one obtained using the

conventional AF algorithm. D, Reconstructed images based on what the 1D Brenner gradient metric considered to be poor estimates (top

and bottom rows) or a good estimate (middle row) of the speed of sound. See also the crosses in panel C. E, Boxplots showing the speed of

sound estimated using different sharpness metrics for 10 equidistant B-scans along the slow axis. The diamond shows the result for the

conventional AF algorithm based on the 2D Brenner metric and the full 3D dataset
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conventional algorithm, whereas we found that the gradi-
ent with n = 1 performed best in the FAF algorithm (see
Equations (2) and (3)). Furthermore, we found that global
metrics related to sharpness work better than local metrics
since local metrics are prone to be corrupted by noisy
pixels and constructive and destructive interference.

The standard AF operates using 3D reconstructions
and provides one value of the SoS. The FAF algorithm
operates using B-Scans from a 3D sinogram and therefore
can potentially provide several values of the SoS. How-
ever, our results indicate that the FAF algorithm is robust
regardless of the B-scan selection. When the algorithm
was applied to 10 B-scans from clinical data, the standard
deviation in the estimated speed of sound was 5.5 m/s.
This variation may be reduced even more by selecting six
or seven B-scans along the entire dataset and calculating
the mean resulting from all the SoS estimations. In this
case, the execution time is still <1 min, which is accept-
able for a clinical setting and two orders of magnitude

faster than the execution time of >90 min for the conven-
tional AF algorithm. In fact, the mean SoS from different
B-scans of clinical data differed by only 3.6 m/s from the
speed estimated by the conventional AF algorithm (see
Section 3).”

Future work will aim to adapt the FAF algorithm to
calculate parameters other than speed of sound that
influence image formation quality. Such parameters
include aspects of detector geometry, such as focal posi-
tion and numerical aperture, for which manufacturer-
supplied values may not be sufficiently accurate. The
adaption is straightforward as long as one aims to esti-
mate one parameter leaving the rest fixed. To the best of
our knowledge, the application of the AF algorithm on a
multi-parametric space has not been reported.

A limitation of the FAF algorithm is that it assumes
homogeneous speed of sound across the entire imaged
volume. Major modifications will be needed to equip the
algorithm to account for different speeds of sound in

FIGURE 3 Application of the FAF algorithm to clinical data. A region of eczematous skin was imaged (see Section 2). A, Sinogram

corresponding to a central B-scan. B, Left: 2D reconstruction on a B-plane from the B-scan in panel A. Right: the MIP of the 2D

reconstruction on a B-plane along the z-axis. C, Calculated sharpness metrics as a function of speed of sound, based on the 2D

reconstructions and 1D maximum amplitude projections from the B-scan shown in panel A. The sharpness metric obtained from the 3D

reconstruction is shown in red. D, Reconstructed images based on what the 1D Brenner gradient metric considered to be poor estimates (top

and bottom rows) or a good estimate (middle row) of the speed of sound. See also the crosses in panel C. E, Boxplots showing the speed of

sound estimated using different sharpness metrics for 10 equidistant B-scans along the slow axis. The diamond shows the result for the

conventional AF algorithm based on the 2D Brenner metric and the full 3D dataset
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different regions of the target volume, such as one speed
in the coupling medium and another in tissue. This situa-
tion may break the symmetries in planar geometry on
which the FAF algorithm depends. Future work should
compare the performance of image reconstruction with
the FAF algorithm when speed of sound is assumed to be
homogeneous or heterogeneous.

We expect that implementation of the FAF algorithm
can bring optoacoustic tomography systems closer to the
clinic in order to improve the management of dermato-
logical, cardiovascular and metabolic diseases.
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