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Abstract— This paper deals with the distributed H2 subopti-
mal containment control problem by static state feedback for
linear multi-agent systems. Given multiple autonomous leaders,
a number of followers, and an H2 cost functional, we aim to
design a distributed protocol that achieves containment control
while the associated H2 cost is smaller than an a priori given
upper bound. To that end, we first show that the H2 suboptimal
containment control problem can be equivalently recast into the
H2 suboptimal control problem of a set of independent systems.
Based on this, a design method is provided to compute such
a distributed protocol. The computation of the feedback gain
involves a single Riccati inequality whose dimension is equal to
the dimension of the states of the agents. The performance of
the proposed protocol is illustrated by a simulation example.

I. INTRODUCTION

In the past two decades, distributed control for multi-
agent systems has received much attention due to its wide
range of applications, e.g., flocking [1], formation control
[2], and intelligent transportation systems [3]. One of the
fundamental research problems of multi-agent systems is
consensus [4]. Depending on the number of leaders in the
network, consensus problems can be classified into leaderless
consensus [5], leader-follower consensus (one leader) [6],
and containment control problem (multiple leaders) [7].

In the scenario of multiple leaders, the problem of contain-
ment control arises, where the states of followers converge
into the convex hull formed by the states of leaders. In the
existing literature, containment control has been studied for
single-integrators under fixed and switching directed network
topologies [8], for double-integrators under stationary and
dynamic leaders [9], for time-delayed high-order linear sys-
tems with directed interaction topologies [10] and for general
linear systems under directed fixed topology [11], [12].

In the operation of multi-agent systems, it should be
noted that the agent dynamics might be affected by external
disturbances. Therefore, researchers have focused on seeking
performance requirements for containment control of multi-
agent systems. To this end, there are works dealing with per-
formance guarantees. In [13], over switching topologies with
communication time delay, an observer-based containment
control protocol for linear multi-agent systems was estab-
lished to guarantee certain H∞ performance. In [14], with a

The authors acknowledge the financial support by the European Union’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement no. 899987 and by the Federal Ministry
of Education and Research of Germany in the programme of “Souverän.
Digital. Vernetzt.”. Joint project 6G-life, project identification number:
16KISK002.

Y. Gao, J. Jiao, and S. Hirche are with the Chair of Information-oriented
Control, TUM School of Computation, Information, and Technology,
Technical University of Munich, 81669, Munich, Germany {ge54sem,
junjie.jiao, hirche}@tum.de

prescribed L2 - L∞ performance, L2 - L∞ containment control
was investigated for single-integrators of multi-agent systems
with Markovian switching topologies and non-uniform time-
varying delays. In [15], with a prescribed H∞ performance,
a distributed static state protocol achieves containment con-
trol for second-order heterogeneous nonlinear multi-agent
systems under directed topologies. We note that the works
mentioned above only focused on the H∞ performance index,
which is a criterion that indicates the robustness of a system
to the worst case of external disturbances.

Meanwhile, it is worth mentioning that quite some efforts
have been devoted to addressing H2 performance in the lead-
erless consensus problem. The H2 consensus control prob-
lems of general linear multi-agent systems with undirected
[16] and directed graphs [17] were studied by considering
performance regions. Suboptimal distributed protocols based
on static relative state feedback [18] and dynamic output
feedback [19] were established to minimize a given H2 cost
criterion while achieving consensus for linear multi-agent
systems. However, the above works regarding H2 perfor-
mance did not consider the case of multi-agent systems with
multiple leaders, i.e., the H2 containment control problem.

Motivated by the above, this paper deals with the H2
optimal containment control problem for linear multi-agent
systems. To this end, we will first introduce a suitable
performance output and, subsequently, an associated H2 cost
functional. The objective is to design a distributed static
protocol that minimizes the given H2 cost functional while
achieving containment control. However, due to the commu-
nication constraints among the agents, this problem is non-
convex, and, so far, no closed-form solution has been given
in the literature. Therefore, this paper considers an alternative
form of this problem that requires only suboptimality.

The outline of this paper is as follows. In Section II,
basic notations and graph theories are reviewed. In Section
III, we formulate the distributed H2 suboptimal containment
control problem. After that, we establish a design method
for computing a suboptimal static state feedback protocol in
Section IV. A simulation example is provided in Section V to
illustrate the performance of our proposed protocol. Finally,
Section VI concludes this paper.

II. PRELIMINARIES

A. Notation

Let R be the field of real numbers, Rn be the space of n
dimensional real vectors, and Rm×n be the space of m×n real
matrices. We denote by In the identity matrix of dimension
n×n. The superscript ⊤ means transpose for the real vector
and matrix. We denote by tr(A) the trace of a square matrix A.



A matrix is Hurwitz (or stable) if it has negative real parts
for all eigenvalues. For a symmetric matrix P, if P is positive
definite we denote P > 0, and if P is negative definite we
denote P < 0. The n×n diagonal matrix with d1, . . . ,dn on
the diagonal is denoted by diag(d1, . . . ,dn). For matrices
M1, . . . ,Mm, the block diagonal matrix with diagonal blocks
Mi is denoted by blockdiag(M1, . . . ,Mm). We use A⊗B to
denote the Kronecker product of matrices A and B.

B. Graph theory

A directed graph is denoted by G= (V,E), which consists
of the node set V= {1, . . . ,N} and edge set E= {e1, . . . ,eM}
satisfying E ⊂ V× V. The edge from node i to node j
is represented by the pair (i, j) ∈ E. We say a graph is
undirected, if (i, j) ∈ E implies ( j, i) ∈ E. A graph is called
simple if (i, i) /∈E, which means no self-loops. The adjacency
matrix A = [ai j] ∈ RN×N with nonnegative elements ai j is
defined as aii = 0, ai j = 1 if ( j, i)∈ E, and ai j = 0 otherwise.
Subsequently, the Laplacian matrix L = [Li j] ∈RN×N of G is
defined as Lii =∑

N
j=1 ai j and Li j =−ai j. Note that L=D−A,

where D = diag(d1, . . . ,dN) is the degree matrix of G with
di = ∑

N
j=1 ai j. For an undirected graph, its Laplacian matrix

L is symmetric and only has real nonnegative eigenvalues.

III. PROBLEM FORMULATION

We consider a multi-agent system with N agents, consist-
ing of M followers with external disturbances and N −M
autonomous leaders. Without loss of generality, we assume
that the agents indexed by 1, ...,M are followers and we
denote the follower set as F

∆
= {1, . . . ,M}, while the agents

indexed by M + 1, ...,N are leaders and the leader set is
denoted by L

∆
= {M+1, ...,N}. The dynamics of the ith

leader is represented by

ẋi = Axi, zi =Cxi, i ∈ L, (1)

and the dynamics of the ith follower is represented by

ẋi = Axi +Bui +Edi, zi =Cxi +Dui, i ∈ F, (2)

where xi ∈ Rn, ui ∈ Rm, di ∈ Rq, and zi ∈ Rp are, respec-
tively, the state, the coupling input, the unknown external
disturbance, and the output to be controlled. The matrices
A, B, C, D and E are of compatible dimensions. Throughout
this paper, we assume that the pair (A,B) is stabilizable.

In this paper, we consider the case that the relative states
between neighboring agents are available for control. The
leaders (1) and followers (2) can then be interconnected by
a distributed static protocol of the form

ui = K
N

∑
j=1

ai j(xi − x j), i ∈ F, (3)

where K ∈Rm×n is the feedback gain to be designed and ai j
is the i jth entry of the adjacency matrix A associated with
graph G which satisfies the following assumption.

Assumption 1: The leaders receive no information from
any followers. The leaders’ states are available to at least
one follower, and leaders have a directed path to that

follower. The communication graph between the M followers
is connected, simple, and undirected.

Since the leaders have no neighbors, the Laplacian matrix
associated with graph G can be partitioned as

L =

[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
, (4)

where L1 ∈ RM×M and L2 ∈ RM×(N−M).
Denote xxx fff =

[
x⊤1 , . . . ,x

⊤
M
]⊤, xxxlll =

[
x⊤M+1, . . . ,x

⊤
N
]⊤, uuu =[

u⊤1 , . . . ,u
⊤
M
]⊤, ddd =

[
d⊤

1 , . . . ,d⊤
M
]⊤, zzz fff =

[
z⊤1 , . . . ,z

⊤
M
]⊤ and

zzzlll =
[
z⊤M+1, . . . ,z

⊤
N
]⊤. We can then write the agents (1)

and (2) in compact form as

ẋxxlll = (IN−M ⊗A)xxxlll , zzzlll = (IN−M ⊗C)xxxlll ,

ẋxx fff = (IM ⊗A)xxx fff +(IM ⊗B)uuu+(IM ⊗E)ddd,

zzz fff = (IM ⊗C)xxx fff +(IM ⊗D)uuu.
(5)

Correspondingly, the protocol (3) can be written as

uuu = (L1 ⊗K)xxx fff +(L2 ⊗K)xxxlll . (6)

Foremost, we want the protocol (6) to solve the contain-
ment control problem without considering disturbances. Note
that by containment control, we mean that the states of the
followers converge to the convex hull formed by the states
of the leaders [11]. The critical point of containment control
is the convex hull formulated in the following definition.

Definition 1: For a set X = {x1, . . . ,xn} in V ⊆
Rp, its convex hull co(X) is defined as co(x) =
{∑

n
i=1 αixi|xi ∈V,αi ≥ 0,∑n

i=1 αi = 1} .
For containment control of the multi-agent system (5), the

convex hull ωωωxxx(t) spanned by leaders (1) is defined as

ωωωxxx(t)
∆
=
(
−L−1

1 L2 ⊗ eAt)
 xM+1 (0)

...
xN (0)

 , (7)

where the sum of each row of −L−1
1 L2 is equal to 1 which is

derived from the following lemma and xi(0), i=M+1, . . . ,N
are the initial states of the leaders. See e.g. [11], [20].

Lemma 1 ([20]): Under Assumption 1, L1 is positive def-
inite and each row of −L−1

1 L2 has its sum equal to 1.
We now give a formal definition of containment control.

Definition 2: We say the protocol (6) achieves contain-
ment control for the multi-agent system (5) if, whenever
ddd = 0, the states of followers xxx fff converge into the convex
hull formed by the states of leaders xxxlll , as t → ∞, i.e.,
xxx fff (t)→ ωωωxxx(t) as t → ∞, where ωωωxxx(t) is defined in (7).
To proceed, we introduce a new state error for each follower
as ξi = ∑

N
j=1 ai j(xi − x j), i ∈ F. Denote ξξξ =

[
ξ⊤

1 , . . . ,ξ⊤
M
]⊤,

we then have ξξξ = (L1 ⊗ In)xxx fff +(L2 ⊗ In)xxxlll .
Note that, in the case ddd = 0, we have xxx fff tends to(

−L−1
1 L2 ⊗ In

)
xxxlll , whenever ξξξ converges to 0, i.e., xxx fff (t)→

ωωωxxx(t). Hence, containment control is achieved.
In the context of distributed H2 optimal control for multi-

agent systems, we are interested in the differences between
the output values of leaders and followers. Therefore, we
introduce the performance output εi = ∑

N
j=1 ai j(zi − z j), i ∈



F. Denote εεε =
[
ε⊤1 , . . . ,ε⊤M

]⊤, we have εεε = (L1 ⊗ Ip)zzz fff +
(L2 ⊗ Ip)zzzlll . Thus, the performance output εεε reflects the
disagreements between the outputs of leaders and followers.

By interconnecting the dynamics of agents system (5) with
the control protocol (6), the overall controlled error system
satisfies the following dynamics

ξ̇ξξ = (IM ⊗A+L1 ⊗BK)ξξξ +(L1 ⊗E)ddd,

εεε = (IM ⊗C+L1 ⊗DK)ξξξ .
(8)

Denote Ao := IM ⊗A+ L1 ⊗BK, Eo := L1 ⊗E, Co := IM ⊗
C+L1⊗DK. The impulse response matrix for the error sys-
tem (8) from the external disturbance ddd to the performance
output εεε is then equal to

TK(t) =CoeAotEo. (9)

Subsequently, the associated H2 cost functional is defined as

J(K) :=
∫

∞

0
tr
[
T⊤

K (t)TK(t)
]

dt, (10)

which measures the performance of the system (8) as the
square of the L2- norm of its impulse response. Since the
protocol (3) has a particular structure due to the communi-
cation graph, the associated H2 optimal control problem is a
non-convex optimization problem. It is difficult to solve this
problem and a closed-form solution is unknown to exist. As
an alternative, in the present paper, a suboptimal version of
this problem is solved.

The H2 suboptimal containment control problem of linear
multi-agent systems is then defined as follows.

Definition 3: The protocol (3) is said to solve the H2
suboptimal distributed containment control problem of the
multi-agent system (5) if,

• whenever the disturbances of all followers are equal to
zero, i.e., ddd = 0, we have xxx fff (t)→ ωωωxxx(t) as t → ∞.

• J(K)< γ , where γ is an a priori given upper bound.
The problem that we want to address is as follows.

Problem 1: Let γ > 0. Design a feedback gain K ∈Rm×n

such that the distributed protocol (3) achieves containment
control and J(K)< γ .

IV. H2 SUBOPTIMAL DISTRIBUTED CONTROL OF
MULTI-AGENT SYSTEMS BY STATIC STATE FEEDBACK

In this section, we address Problem 1 and provide a design
approach to obtain an appropriate feedback matrix K.

From Assumption 1 and Lemma 1, we know that L1 is
positive definite, and therefore, L1 is diagonalizable. Let
U ∈RM×M be an orthogonal matrix that diagonalizes L1, i.e.,
U⊤L1U = Λ = diag(λ1, . . . ,λM), where λi > 0, i = 1, . . . ,M
are the eigenvalues of L1. By applying the state transforma-
tion

ξ̂ξξ = (U⊤⊗ In)ξξξ , (11)

the error dynamics (8) becomes

˙̂
ξξξ = (IM ⊗A+Λ⊗BK)ξ̂ξξ +(U⊤L1 ⊗E)ddd,

εεε = (U ⊗C+L1U ⊗DK)ξ̂ξξ .
(12)

Note that the impulse response matrix of (12) from the
disturbance input ddd to the output εεε is equal to (9).

To proceed, we present the following M auxiliary systems:

˙̃
ξ i = Aξ̃i +λiBũi +λiEd̃i, ε̃i =Cξ̃i +λiDũi, i = 1, . . . ,M,

(13)
where λi > 0, i = 1, . . . ,M are the eigenvalues of L1, ξ̃ ∈Rn,
ũi ∈Rm, d̃i ∈Rq, and ε̃i ∈Rp are, respectively, the state, the
control input, the external disturbance, and the output of the
ith auxiliary system. Meanwhile, we consider the following
associated static state feedback controllers

ũi = Kξ̃i, i = 1, . . . ,M, (14)

with the same gain matrix K. By interconnecting (13)
and (14), we obtain M independent closed-loop systems:

˙̃
ξ i = (A+λiBK)ξ̃i +λiEd̃i,

ε̃i = (C+λiDK)ξ̃i,
i = 1, . . . ,M. (15)

Denote Ãi := A + λiBK, C̃i := C + λiDK, Ẽi := λiE, the
impulse response matrix from the disturbance d̃i to the output
ε̃i is T̃i,K(t) = C̃ieÃit Ẽi. For each closed-loop system in (15),
we introduce the associated H2 cost functional Ji(K) :=∫

∞

0 tr
[
T̃⊤

i,K(t)T̃i,K(t)
]

dt, i = 1, . . . ,M.

The following theorem holds.
Theorem 1: Assume that D⊤C = 0 and D⊤D = Im. The

static protocol (3) with feedback gain K achieves con-
tainment control for the agents (5) if and only if the
controllers (14) with the same feedback gain K internally
stabilize all M systems (13). Moreover, we have

J(K) :=
M

∑
i=1

Ji(K). (16)

Proof: It follows from (11) that ξ̂ξξ = 0 if and only
if ξ1 = ξ2 = · · · = ξM = 0. Hence, the containment control
problem is solved if and only if limt→∞ ξ̂ξξ (t) = 0. Recall that
U⊤L1U = Λ = diag(λ1, . . . ,λM). By introducing two other
transformations:

d̂dd = (U⊤⊗ In)ddd, ε̂εε = (U⊤⊗ In)εεε, (17)

the error system (12) can be transformed into

˙̂
ξξξ = (IM ⊗A+Λ⊗BK)ξ̂ξξ +(Λ⊗E)d̂dd,

ε̂εε = (IM ⊗C+Λ⊗DK)ξ̂ξξ .
(18)

Denote Âo := IM ⊗A+Λ⊗BK, Ĉo := IM ⊗C+Λ⊗DK and
Êo :=Λ⊗E. It can be easily seen that the system (Âo, Êo,Ĉo)
is equivalent to the composition of the M independent
closed-loop systems (Ãi, Ẽi,C̃i) in (15), for i = 1, . . . ,M. So
limt→∞ ξ̂ξξ (t) = 0 if and only if ξ̃1 = · · · = ξ̃M = 0 as t → ∞.
Then, it follows from [11, Algorithm 2] that containment
control is achieved if and only if the matrices A+λiBK of
the M closed-loop systems are stable.

Next, we prove (16). Let K be such that matrices A+λiBK
are Hurwitz. It can be seen from (11) and (17) that (U⊤⊗



In)Ao(U ⊗ In) = Âo, (U⊤ ⊗ In)Co(U ⊗ In) = Ĉo and (U⊤ ⊗
In)Eo(U ⊗ In) = Êo. Then by substituting (9) in (10) we have

J(K) :=
∫

∞

0
tr
[
T⊤

K (t)TK(t)
]

dt

=
∫

∞

0
tr
[
(CoeAotEo)

⊤(CoeAotEo)
]

dt

=
∫

∞

0
tr
[
(U ⊗ In)(ĈoeÂot Êo)

⊤(ĈoeÂot Êo)(U⊤⊗ In)
]

dt.

Recall that D⊤C = 0, D⊤D = Im, and Λ =
diag(λ1, . . . ,λM), it is easy to see ĈoeÂot Êo =
blockdiag(T̃1,K(t), T̃2,K(t), . . . , T̃M,K(t)). Subsequently,

J(K) :=
∫

∞

0

M

∑
i=1

tr
[
UT̃i,K(t)⊤T̃i,K(t)U⊤

]
dt

=
∫

∞

0

M

∑
i=1

tr
[
T̃i,K(t)⊤T̃i,K(t)

]
dt =

M

∑
i=1

Ji(K).

This completes the proof.
Note that the assumptions D⊤C = 0 and D⊤D = Im are

made here to simplify notation, and can be replaced by the
regularity condition D⊤D > 0 alone.

By applying Theorem 1, we have converted the distributed
H2 suboptimal containment control problem for linear multi-
agent system (5) into a number of H2 suboptimal control
problems for M systems (15).

Next, the following lemma presents sufficiency and ne-
cessity for the existence of the controllers (14) with the
given matrix K ∈Rm×n that solves the H2 suboptimal control
problems of the M systems (15), i.e., the closed-loop systems
(15) are internally stabilized and ∑

M
i=1 Ji(K)< γ .

Lemma 2: The static state feedback controllers (14) in-
ternally stabilize all systems (15) and ∑

M
i=1 Ji(K)< γ if and

only if there exist positive definite matrices Pi, i = 1, . . . ,M
satisfying

(A+λiBK)⊤Pi +Pi(A+λiBK)+

(C+λiDK)⊤(C+λiDK)< 0, (19)
M

∑
i=1

λ
2
i tr(E⊤PiE)< γ. (20)

Proof: (Sufficiency) By (20), for εi > 0 sufficiently
small, we have ∑

M
i=1 γi < γ , where γi := λ 2

i tr(E⊤PiE) + εi.
It follows from [18, Theorem 3], inequalities (19) and
(20) can be considered as the concrete form of the H2
suboptimal control problem for linear systems, by taking
A = Ãi = A+λiBK, E = Ẽi = λiE and C = C̃i = C+λiDK.
So there exist Pi such (19) and λ 2

i tr(E⊤PiE)< γi hold for all
i = 1, . . . ,M. Moreover, all systems (15) are internally stable
and Ji(K)< γi. Therefore, ∑

M
i=1 Ji(K)< γ .

(Necessity) Since all systems (15) are internally stable and
Ji(K) < γi, for i = 1, . . . ,M, by taking A = Ãi = A+ λiBK,
E = Ẽi = λiE, and C = C̃i =C+λiDK. It follows from [18,
Theorem 3] that there exist positive definite matrices Pi such
that (19) and λ 2

i tr(E⊤PiE)< γi hold for i = 1, . . . ,M. Since
∑

M
i=1 Ji(K)< γ , there exist εi > 0 sufficiently small such that

∑
M
i=1 γi < γ , where γi := λ 2

i tr(E⊤PiE)+ εi, this implies that
∑

M
i=1 λ 2

i tr(E⊤PiE)< γ .

Note that, in Lemma 2, a method to find such a gain ma-
trix K has not yet been provided. In the following theorem,
we provide a design method to compute one such K.

Theorem 2: Let γ > 0 be a given upper bound. Assume
that D⊤C = 0 and D⊤D = Im. Consider the multi-agent sys-
tem (1) and (2) with the associated H2 cost functional (10).
Furthermore, consider the following two cases:

(i) if

0 < c <
2

λ1 +λM
, (21)

where λ1 is the smallest eigenvalue and λM is the
largest eigenvalue of L1. Then there exists P > 0
satisfying

A⊤P+PA+(c2
λ

2
1 −2cλ1)PBB⊤P+C⊤C < 0. (22)

(ii) if
2

λ1 +λM
≤ c <

2
λM

, (23)

then there exists P > 0 satisfying

A⊤P+PA+(c2
λ

2
M −2cλM)PBB⊤P+C⊤C < 0. (24)

Moreover, if in both cases P also satisfies

tr(E⊤PE)<
γ

λ 2
MM

, (25)

then the protocol (3) with K :=−cB⊤P achieves containment
control and the protocol is H2 suboptimal, i.e., J(K)< γ .

Proof: For case (ii) above, using the upper and lower
bound on c given by (23), c2λ 2

M −2cλM < 0 can be verified.
Since the Riccati inequality (24) has positive definite solu-
tion P. For i = 1, . . . ,M, taking Pi = P and K = −cB⊤P in
(19) immediately yields

(A− cλiBB⊤P)⊤P+P(A− cλiBB⊤P)

+(C− cλiDB⊤P)⊤(C− cλiDB⊤P)< 0.
(26)

Recall the conditions D⊤C = 0 and D⊤D = Im, this yields

(A− cλiBB⊤P)⊤P+P(A− cλiBB⊤P)

+c2
λ

2
i PBB⊤P+C⊤C < 0.

(27)

Since c2λ 2
1 − 2cλ1 ≤ c2λ 2

i − 2cλi ≤ c2λ 2
M − 2cλM < 0 and

λi ≤ λM for i= 1, . . . ,M, the positive definite matrix P of (24)
also satisfies the M Riccati inequalities

A⊤P+PA+(c2
λ

2
i −2cλi)PBB⊤P+C⊤C < 0. (28)

For case (i) above, using the upper and lower bound on c
given by (21), it can be verified that c2λ 2

M −2cλM ≤ c2λ 2
i −

2cλi ≤ c2λ 2
1 − 2cλ1 < 0 and λi ≤ λM for i = 1, . . . ,M. The

proof of case (i) is similar to case (ii) and it is omitted here.
Next, it follows from (25) that also (20) holds. By

Lemma 2 then, all M systems (15) are internally stabilized
and ∑

M
i=1 Ji(K)< γ . Consequently, it can be concluded from

Theorem 1 and Lemma 2 that the protocol (3) achieves
containment control for the network (5) and J(K)< γ .

Remark 1: Theorem 2 states that by choosing suitable c
and P, the distributed static containment control protocol (3)
with feedback matrix K =−cB⊤P is H2 suboptimal. Then the



Fig. 1. The communication topology between the leaders and followers

question arises: how do we find the smallest upper bound γ

such that tr(E⊤PE)< γ/λ 2
MM? Notice that a feasible given γ

directly depends on tr(E⊤PE). Moreover, the smaller P lead
to smaller tr(E⊤PE), therefore, smaller allowed γ . One way
we could try is to find P as small as possible. With δ > 0, we
can establish two equalities from the two cases (i) and (ii) of
Theorem 2 in the following to find the solution P(c,δ )> 0.

A⊤P+PA− (−c2
λ

2
1 +2cλ1)PBB⊤P+C⊤C+δ In = 0,

A⊤P+PA− (−c2
λ

2
M +2cλM)PBB⊤P+C⊤C+δ In = 0.

Let r1 = (−c2λ 2
1 + 2cλ1) and r2 = (−c2λ 2

M + 2cλM). Obvi-
ously, the larger the coefficient r1(or r2) of the term PBB⊤P
and the smaller δ , the smaller P is. It can be shown that the
maximum of r1 is obtained when c∗ = 1

λ1
and the maximum

of r2 is obtained when c∗ = 1
λM

. Therefore, for both cases
0 ≤ c < 2

λ1+λM
and 2

λ1+λM
≤ c < 2

λM
, if we choose δ > 0 very

close to 0 and choose c = 2
λ1+λM

, we find the ‘best’ small
solution to the Riccati inequalities (26) and (27) in the sense
as elaborated above.

V. SIMULATION EXAMPLE

In this section, we give a simulation example to illustrate
the performance of our designed protocol. Consider a multi-
agent system consisting of three leaders of the form (1) and

six followers of the form (2), where A =

0 0 −1
0 0 2
1 0 −1.5

,

B =

 1
1.2
1.5

 , E =

0.1 0 0
0.2 0 0
0 0 0.2

 , C =

4 1 1
4 1 1
0 0 0

 , D =[
0 0 1

]⊤. It is easy to check that the pair (A,B) is stabi-
lizable. We also have that D⊤C =

[
0 0 0

]
and D⊤D = 1.

For illustration, let the communication graph G between
the agents be given by Figure 1, where nodes 7, 8, and 9
denote the leaders and the other nodes denote the followers.
Correspondingly, due to the particular form of the Laplacian
matrix associated with G, the smallest and largest eigenvalue
of L1 of the Laplacian matrix (4) are computed to be
λ1 = 0.6856 and λ6 = 5.8245. Now we will use the method
proposed in Theorem 2 to design a protocol (3) to solve the
containment problem while the H2 cost functional satisfies
J(K) < γ . We let the desired upper bound for the cost be

γ = 33. We use case (ii) in Theorem 2 to compute a P solve

A⊤P+PA+(c2
λ

2
6 −2cλ6)PBB⊤P+C⊤C+δ In = 0 (29)

with δ = 0.001, which is sufficiently small. In addi-
tion, we choose c = 2

λ1+λ6
= 0.3072, which is the ‘best’

choice to minimize the H2 performance upper bound γ .
Then, by solving (29) in Matlab with the command
icare, we compute the feedback gain matrix K = cB⊤P =
(−2.8768,−0.7079,−0.3584). Moreover, we compute the
associated H2 cost to be 6λ 2

6 tr(E⊤PE) = 32.6304, which is
indeed smaller than the upper bound γ = 33. In Matlab, we
use the command norm(sys,2) and compute the actual
H2 norm of the controlled system (8) as ||TK ||H2 = 3.5608,
which is indeed smaller than

√
γ =

√
33 = 5.7446.

Next, we compare the performance of our pro-
tocol with that of the proposed protocol in [12].
The corresponding feedback gain is computed as K̄ =
(−0.2455,−1.0000,−0.8898). The associated actual H2
norm of the controlled system is computed to be ||T̄K ||H2 =
7.6992. It can be seen that the performance of the static
protocol in [12] is not comparable to our static protocol since
its associated actual H2 norm is much bigger than that of our
protocol, i.e., ||T̄K ||H2 = 7.6992 > ||TK ||H2 = 3.5608.

As an example we choose, the initial states of the followers
to be x10 =

[
10 −12 −4

]⊤, x20 =
[
−13 −10 5

]⊤,
x30 =

[
5 12 12

]⊤, x40 =
[
−9 −12 3

]⊤,
x50 =

[
−8 −11 −5

]⊤, x60 =
[
−12 −10 −1

]⊤ and
the initial states of the leaders to be x70 =

[
4 1.2 −3

]⊤,
x80 =

[
5.2 1.5 4

]⊤, x90 =
[
3 10 10

]⊤. The same
white noise ddd with an amplitude between -60 and 60 is
applied to further compare the performance of our proposed
protocol and the protocol proposed in [12]. We have plotted
the trajectories of the states xxx and the performance output
variable εεε using our designed static protocol and the
protocol in [12]. It can be seen in Figures 2 and 3 that our
protocol has a better tolerance for external disturbance, this
further shows that our proposed static protocol has a better
performance than the static protocol in [12].

VI. CONCLUSIONS

In this paper, we have studied the distributed H2 sub-
optimal containment control problem of linear multi-agent
systems using static state feedback. Given a multi-agent
system with N agents consisting of M followers and N −M
leaders, and an associated global H2 cost functional with
a desired upper bound, we have provided a design method
for computing a suboptimal distributed protocol that achieves
containment control, i.e., the states of followers can be driven
into the convex hull spanned by the states of leaders and the
associated H2 cost functional is smaller than a given bound.
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