
Technische Universität München
TUM School of Computation, Information and Technology

Acadela: A Domain-Specific Language for Modeling Executable
Clinical Pathways

Minh Trí Huỳnh

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Alexander Pretschner

Prüfer der Dissertation:
1. Prof. Dr. Florian Matthes
2. Prof. Dr. Martin Bichler

Die Dissertation wurde am 17.08.2023 bei der Technischen Universität München eingereicht und
durch die TUMSchool of Computation, Information and Technology am 24.01.2024 angenommen.

Abstract

Motivation: E-health applications leverage clinical pathway (CPs) models to execute and man-
age treatment cases and procedures in medical facilities. Graphical domain-specific languages
(DSLs) assist technical experts in modeling and visualizing relevant aspects of CPs, resulting
in intuitive, overarching workflow representations. However, expressing graphical notations and
medical concepts of CP-specific elements requires intensive extensions to the underlying process
modeling frameworks. Meanwhile, text-based DSLs address this concern by textually defining
CP concepts in grammar or meta-models. Nevertheless, they can be technical-oriented or without
process visualization, limiting their usability and explanatory power.
Methodology: To alleviate these disadvantages, our study developsAcadela, a low-tech-oriented,
adaptive text-based DSL with visualization capability to define CPs. Acadela declares grammar
to enforce textual syntax for modeling CP concepts, such as treatment procedures, responsibility,
medical data visualization, and communications with external systems. The CP concepts con-
form to the requirements of Smart Adaptive Case Management (SACM), an e-Health system for
delivering integrated care for chronic diseases. Furthermore, Acadela provides a visualization to
preview the CP model. This feature addresses the limitation of textual DSLs and aims to foster
communication between medical and technical staff.
Evaluation: To explore the DSL’s expressiveness and usability, we conducted two separate ex-
perimental user studies with sixmedical professionals and eight technical staff. First, wemodeled
five CPs used by medical professionals in their daily routines. Then through semi-structured in-
terviews, we collected feedback regarding the language’s expressiveness. Next, we invited the
technical staff tomodel a hypertensionCP and debug a faulty CPmodel written inAcadela.
Result: Overall, the medical professionals consider the modeled CPs accurately reflect their
treatment procedure, and the technical staff consider the language easy to use and applicable
to model CPs. The results imply the DSL’s potential to model CPs with various degrees of
complexity while being learnable and usable to modelers.
Limitation: The participants state that Acadela shall model different data visualization formats,
such as infographics, videos, or statistics. Furthermore, the Acadela IDE does not auto-complete
the ID of CP elements and preview their UI design. Regarding external validity, Acadela demon-
strates that the generated CPs are compatible with SACM, yet the DSL does not experiment with
compiling CPs to the format of other e-Health platforms.
Future Work: Acadela has not explored the modeling of CPs in different medical fields, such
as Cardiology or Orthopedics. Additionally, the DSL does not model CPs compatible with an
e-Health platform other than SACM. Therefore, a potential research direction is to experiment
with the challenges and possibilities of modeling other CPs, potentially from different medical
fields, used in an existing e-Health platform.

iii

Zusammenfassung

Motivation: E-Health-Systeme nutzenModelle für klinische Behandlungspfade (KBs), umFälle
undVerfahren inmedizinischen Einrichtungen auszuführen und zu verwalten. Grafische domain-
spezifische Sprachen (DSLs) unterstützen technische Experten bei der Modellierung und Visual-
isierung relevanter Aspekte von KBs, was zu intuitiven, übergreifendenWorkflow-Darstellungen
führt. Allerdings erfordert die Darstellung grafischer Notationen und medizinischer Konzepte
von KB-spezifischen Aspekten intensive Erweiterungen der bestehenden Prozessmodellierungs-
Frameworks. Textbasierte DSLs adressieren dieses Problem, indem sie KB-Konzepte in Gram-
matiken oderMetamodellen textuell definieren. Sie können jedoch technisch orientiert oder ohne
Prozessvisualisierung sein, was ihre Benutzerfreundlichkeit und Erklärungskraft einschränkt.
Methodik: Um diese Nachteile zu mildern, wird in unserer Studie Acadela entwickelt, eine low-
tech-orientierte, adaptive textbasierte DSL mit Visualisierungsfunktion. Acadela deklariert eine
Grammatik zur Durchsetzung einer textuellen Syntax für die Modellierung von KB-Konzepten,
wie z.B. Behandlungsverfahren, Verantwortung, Visualisierung medizinischer Daten und ex-
terne Kommunikation. Die KB-Konzepte entsprechen den Anforderungen von Smart Adaptive
Case Management (SACM), einem e-Health-System für die integrierte Versorgung chronischer
Krankheiten. Darüber hinaus bietet Acadela eine Visualisierung zur Vorschau des KB-Modells.
Diese Funktion adressiert die Beschränkung von textuellen DSLs und zielt darauf ab, die Kom-
munikation zwischen medizinischem und technischem Experten zu fördern.
Bewertung: Wir führten zwei separate experimentelle Nutzerstudien mit sechs medizinischen
Fachkräften und acht technischenMitarbeitern durch, um die Ausdruckskraft undNutzbarkeit der
DSL zu bewerten. Zunächst modellierten wir fünf KBs, die von den medizinischen Experten in
ihrer täglichen Routine verwendet werden. Anschließend sammelten wir in halbstrukturierten In-
terviews Feedback zur Ausdruckskraft der Sprache. Anschließend luden wir die Technikexperten
ein, einen Hypertonie-KB zu modellieren und ein fehlerhaftes KB-Modell zu debuggen.
Ergebnis: Die medizinischen Fachkräfte finden, dass die modellierten KB ihr Behandlungsver-
fahren genau widerspiegeln, und das Technikpersonal betrachtet die Sprache als nutzbar und
geeignet für die KB-Modellierung. Die Ergebnisse zeigen, dass die DSL KBs mit verschiedener
Komplexität modellieren kann und dabei für Modellierer erlernbar und nutzbar ist.
Einschränkung: Die Teilnehmer geben an, dass Acadela verschiedene Datenvisualisierungsfor-
mate modellieren soll, wie z.B. Infografiken, Videos oder Statistiken. Außerdem vervollständigt
die Acadela IDE nicht automatisch die ID von KB-Elementen und zeigt deren UI-Design in der
Vorschau an. Was die externe Validität betrifft, so zeigt Acadela, dass die generierten KBs mit
SACM kompatibel sind, doch experimentiert die DSL nicht mit der Kompilierung von KBs in
das Format anderer e-Health-Plattformen.
Zukünftige Arbeit: Acadela sollte die Modellierung von KBs in verschiedenen medizinischen
Bereichen, wie Kardiologie oder Orthopädie, demonstrieren. Außerdem sollte die DSL die Kom-
patibilität mit anderen e-Health-Plattformen als der SACM zeigen. Auf diese Weise kann man
die Herausforderungen und Möglichkeiten der Modellierung und Ausführung von KBs aus ver-
schiedenen medizinischen Bereichen in einem e-Health-System entdecken.

iv

Acknowledgements

I would like to express my gratitude to Professor FlorianMatthes, who has been offering constant
support throughout my Doctoral study with great patience, generosity, and valuable guidance.
The experience, knowledge, and expectation that I learn from Professor Matthes are essential not
only for a broad and in-depth study of my field of research but also for managerial aspects relevant
to an efficient organization of research or teaching activities in my current and future career.
In addition, I highly appreciate one research ideology of Professor Matthes that technology or
research shall not only bridge the existing gap or expand the current knowledge base, but it shall
deliver practical benefits and address the concerns of its beneficiaries. Therefore, I have been
endeavoring to apply this inspiration in my research work and teaching during my Doctorate in
the chair of Software Engineering for Business Information Systems (sebis).
My Masters and Doctorate would not exist without the help and encouragement of my mother.
Therefore, I would like to express my gratefulness for her immeasurable patience, sympathy,
and suffering to spiritually and financially support me since my birthday. May the accomplish-
ment of this Dissertation partly repay the unconditional sacrifice and magnificent merit of my
mother.
My Thesis leverages the support of Smart Adaptive CaseManagement (SACM), textX, and GoJS
to deliver its functionality. Hence I highly appreciate the support and patience of Felix Michel,
who enlightened me on the mechanism of SACM. Furthermore, I also wish to thank Igor De-
janović and the GoJS development team for creating user-friendly and maintainable technical
solutions that significantly support me in realizing the features of my Dissertation.
Without the valuable feedback of the participants, I would not be able to evaluate the applicability
and quality of the research. Thus, I sincerely thank the medical professionals and technical staff,
who devoted a remarkable proportion of their hectic schedules to helpme understand the practical
value which I can contribute to their work and the healthcare domain.
Working at the sebis chair of Technical University Munich significantly extends my knowledge
and experience in research, teaching, and interpersonal collaboration. Therefore, I appreciate my
colleagues and all other staff at TUM for their valuable support, openness, understanding, and
advice that greatly expand my limited horizon, develop cultural and emotional awareness, and
assist me to focus on accomplishing my duty and research.
Finally, I would like to express my appreciation to my wife, Thoang Thanh Mai, for her empathy,
encouragement, and support in terms of spirit and nutriment. Her motivation and companion-
ship significantly power me to accelerate and overcome barriers in accomplishing my Thesis
work. Furthermore, I also would like to thank my sister Mai Huynh, for her spiritual support and
cheering throughout my Doctoral study.

Unterschleißheim, Bavaria, Germany, 22.01.2023
Tri Huynh

v

Contents

Abstract iii

Zusammenfassung iv

Acknowledgements v

Contents vi

List of Figures x

List of Tables xvi

1 Introduction 1
1.1 Problem Description . 1
1.2 Research Questions . 2
1.3 User Study . 4
1.4 Dissertation Structure . 5

2 Foundations 6
2.1 Clinical Pathways (CP) . 6

2.1.1 Goals . 6
2.1.2 Characteristics . 7

2.2 Adaptive Case Management (ACM) . 9
2.2.1 Concerns of Production Case Management 9
2.2.2 Suitability for Clinical Pathways Modeling 10
2.2.3 Challenges . 12

2.3 Case Management Model and Notation (CMMN) 12
2.3.1 Applicability to ACM and CP Modeling 13
2.3.2 Concepts and Graphical Notations . 14

2.4 Domain Specific Language (DSL) . 19
2.4.1 Modeling Language Elements . 19
2.4.2 Advantages of Domain Specific Modeling Languages 19
2.4.3 Graphical Domain Specific Languages 21
2.4.4 Textual Domain Specific Languages 22

2.5 textX Meta-Language (Compiler-compiler) 23
2.5.1 Motivation . 23
2.5.2 Features . 24

3 Related Work 27
3.1 Graphical Domain-Specific Modeling Languages 27

3.1.1 DSML4CPs - Modeling Clinical Pathways in Oncology Using Extended
MEMO OrgML Process Modeling Language 27

3.1.2 BPMN4CP - Modeling Clinical Pathways by Extending BPMN 29

vi

CONTENTS

3.1.3 BPMNSIX - Modeling Surgical Workflow by Extending BPMN 31
3.2 Textual Domain-Specific Language . 32

3.2.1 FCIG - Modeling Clinical Guidelines using Xtext 32
3.2.2 Prescriptive Grammar for Clinical Describing Workflow 33

4 Smart Adaptive Case Management (SACM) 35
4.1 Problem Description . 35
4.2 Requirements . 37

4.2.1 R1: Support a Purely Meta-Model-Based Approach 37
4.2.2 R2. Integration with External Services 40
4.2.3 R3: Support Communication and Coordination 41

4.3 Architecture . 43
4.3.1 Conceptual Layers of SACM Backend 43
4.3.2 The CONNECARE Project . 46
4.3.3 SACM-CONNECARE Integration . 47

4.4 Meta-model Elements in SACM . 50
4.4.1 ◼ Schemata and ◼ Data . 51
4.4.2 ◼ Actors . 51
4.4.3 ◼ Case Definition . 52
4.4.4 ◼ User Interface . 53
4.4.5 ◼ Case . 53

5 Language Design 55
5.1 Requirements for Modeling Clinical Pathways 55
5.2 Language Specification . 60

5.2.1 Flexible Syntactic Rules . 60
5.2.2 Automatic Execution of Default Behaviors 62
5.2.3 Concise Constructs . 63

5.3 Concrete Syntax for Clinical Pathway Element Definition 66
5.3.1 Data Type . 66
5.3.2 Mandatory Attribute . 68
5.3.3 Input Field . 68
5.3.4 Output Field . 71
5.3.5 Form . 76
5.3.6 Precondition . 76
5.3.7 Trigger (HttpHook) . 78
5.3.8 Task . 80
5.3.9 Stage . 85
5.3.10 Summary Panel . 88
5.3.11 Responsibilities . 91
5.3.12 Setting . 92
5.3.13 Case . 93
5.3.14 Workspace . 96
5.3.15 Import . 96

5.4 Constraint Validation . 97
5.4.1 Syntax Errors . 98
5.4.2 Semantic Errors . 101

5.5 Syntax Optimization Effect . 105

vii

CONTENTS

6 Implementation 107
6.1 Architecture Design . 107

6.1.1 Acadela System Components . 108
6.2 Integrated Development Environment (IDE) 110
6.3 Grammar Definition . 112

6.3.1 textX Grammar Rule Expressions . 113
6.3.2 Grammar Specification for Modeling Clinical Pathways 116
6.3.3 Reflection on Addressing CP Modeling Requirements 125

6.4 Parser . 126
6.5 Interpreter . 128

6.5.1 CP Meta-model Construction . 129
6.5.2 Syntax Error Validation . 133
6.5.3 Semantic Error Validation . 135

6.6 Compilation to SACM Clinical Pathway . 138
6.7 Model Visualization . 149

6.7.1 Graphical Notation Definition . 149
6.7.2 Rendering CP Elements . 150
6.7.3 Double-clicking to Focus on the Code Definition 153

7 Evaluation 154
7.1 Evaluation Approach . 154

7.1.1 Define Evaluation Goals and Scopes 154
7.1.2 Identify Units of Analysis . 155
7.1.3 Design Evaluation Tasks . 155
7.1.4 User Study Setup . 156
7.1.5 Pilot Testing . 156
7.1.6 Schedule User Study . 156
7.1.7 Data Collection . 157
7.1.8 Draw Individual and Collective Results 157
7.1.9 Identify Implications . 157

7.2 Expressiveness . 157
7.2.1 Population . 158
7.2.2 Modeled Clinical Pathways . 158
7.2.3 User Study Setup . 162
7.2.4 Result . 162
7.2.5 Discussion . 164

7.3 Usability Evaluation . 165
7.3.1 Population . 165
7.3.2 Experiment Setup . 165
7.3.3 Experiment Design . 165
7.3.4 Training . 165
7.3.5 Modeling . 166
7.3.6 Result . 167
7.3.7 Discussion . 169

7.4 Limitations . 170
7.4.1 Need Supportive CP Elements . 170
7.4.2 Support Previewing CP Elements . 170
7.4.3 Auto-complete CP Elements in Web-based IDE 170
7.4.4 Dependent on textX Error Handler . 170

viii

CONTENTS

7.4.5 Mishandling of Special Characters . 170
7.4.6 Limited Number of Participants . 170
7.4.7 Internal Validity . 171
7.4.8 External Validity . 171

8 Conclusion and Future Work 172
8.1 Summary . 172
8.2 Future Work . 175
References . 175

A Appendices 184
A.1 Acadela Complete Grammar . 184
A.2 CP Model Definition and Visualization in Acadela 198

A.2.1 COPD Breathing Exercise . 198
A.2.2 Selection of Antipsychotics for Schizophrenia 202
A.2.3 Diagnosis of Class II Smoke Inhalation Injury 208
A.2.4 Cervical Cancer Diagnosis . 214
A.2.5 Chronic Headache Treatment . 220

A.3 Code Snippets . 228
A.3.1 Responsibilities Declaration and Assignment 228
A.3.2 Dynamic Template Definition . 228

A.4 System Usability Scale Questionnaire . 230
A.5 Syntax and Semantic Error Analyzer . 230

A.5.1 Mapping of Violated Rules and their Human-readable Representation . 230
A.6 HttpHook Example Content . 231
A.7 Complete SACM Meta-model . 234

ix

List of Figures

2.1 ACM Key Concepts. 10
2.2 Design-time phase modeling and runtime phase planning 13
2.3 Graphical Notations of four Task types expressed in each column with the bottom

row shows theirDiscretionary version. a1)Non-blocking HumanTask, a2) Blocking
HumanTask, b) ProcessTask, c) CaseTask, d) DecisionTask. 14

2.4 Graphical Notations of a CMMN CaseFileItem. 15
2.5 Graphical Notations of TimerEventListener (left) and UserEventListener (right). . . 15
2.6 CMMN Sentry establishes a dependency between two Tasks (left) or two Stages

(right). The white diamond represents an Entry Criterion, while the black diamond
denotes an Exit Criterion. 16

2.7 CMMN depicts an AND (left) or OR (right) relationship among Tasks using Sen-
try as Entry Criteria. 16

2.8 A Milestone (left) with one Entry Criterion (right) notations in CMMN. 16
2.9 Graphical Notations of a CMMN Stage (left) and Discretionary Stage(right). . . 17
2.10 CMMN Graphical Notation of a CasePlanModel. The folder body includes all

Case elements . 17
2.11 CMMN Applicable Decorator to CaseItems (Object Management Group, 2016,

p. 79). 18
2.12 Illustration of a DSMLmechanism that identifies domain-specific concepts from

the business domain and represents the concepts through an implementation lan-
guage (DSL). (Frank, 2011a, p. 29). 20

2.13 Simplified textX architecture and workflow from a) creating parser and meta-
model from grammar, b) parsing the model definition code to generate a model,
and c) interpreting or generating code. (Dejanović, Vaderna, Milosavljević, &
Vuković, 2017, p. 3). 24

2.14 textX example workflow for processing a Robot Instruction Language. a) lan-
guage grammar specification, b) meta-model generated from the grammar, c) the
source code of a Robot Instruction set, d) the generated model (Dejanović, n.d.e). 25

2.15 Arpeggio ParsingExpression class and example. a) The hierarchy of PEG’s classes
in Arpeggio, b) The parser model of the Robot Instruction Language (Dejanović,
Milosavljević, & Vaderna, 2016, p. 3). 25

2.16 A Python program to interpret the Robot Instruction model using textX facilities. 26
3.1 Excerpt of a Soft Tissue Sarcoma CP expressed in DSML4CPs (Heß, Kacz-

marek, Frank, Podleska, & Täger, 2015, p. 12). 28
3.2 BPMN4CP model of a (simplified) stroke CP with workflow, resources and doc-

uments (Braun, Schlieter, Burwitz, & Esswein, 2016, p. 29). 29
3.3 BPMNSIX model of a cataract surgery process and a part of Phacoemulsification

subprocess . 31
3.4 A CIG model (left) and its outline (right) in FCIG IDE 33
3.5 A prescription workflow that the DSL models. 34

x

LIST OF FIGURES

4.1 Visualization of the problem in the Integrated Care Environment without inte-
grated tool support (left). Each organization stores medical data independently,
leading to redundancy and uncoordinated analysis of the patient’s medical sta-
tus, potentially resulting in undesirable outcomes. An integrated care environ-
ment empowered by integrated tools (right) can offer consistent documentation
of critical data, thus fostering collaboration and communication among care pro-
fessionals throughout the care process. (Michel, 2020, p. 3) 36

4.2 Degree of process structure according to Michel et al. (adapted from (Di Ciccio,
Marrella, & Russo, 2012)) . 39

4.3 Conceptual architectural layers of SACM (Hernandez-Mendez,Michel, &Matthes,
2018, p. 263) . 44

4.4 Capabilities ordered by conceptual layers. Solid lines represent the usage of a
specific capability. Dashed lines represent extended functionality. Adapted from
Hernandez-Mendez et al. (2018, p. 265) by Michel (2020). 45

4.5 High-level project vision. The Smart Adaptive Case Management provides care
services with its collaborative, purely meta-model-based approach enriched with
clinical decision support (Michel, 2020, p.135). 47

4.6 The CONNECARE system architecture adapted from (Michel & Matthes, 2018,
p. 17). ACM4IC Components are highlighted with a dot in the upper right corner
(Michel, 2020, p. 141) . 48

4.7 Conceptual orchestration of a monitoring prescription task (Michel, 2020, p. 143). 50
4.8 Meta-model adapted from Hernandez-Mendez et al. (2018, p. 267). A com-

plete conceptual meta-model containing relevant attributes is illustrated in Fig-
ures A.6, A.7, and A.8 of Appendix A.7 . 50

5.1 Illustration of Flexible Syntax Rules in Acadela. The two code snippets are syn-
tactically different but semantically equivalent. The comparison demonstrates
the Acadela properties of 1) Case-insensitive, 2) Indent-insensitive, 3) No An-
nouncement Separator for each key-value assignment, 4) No End Indicator for
each CP element declaration, 5) Interchangeable Quote and Double Quote for
String, 6) Directives to represent system-defined attribute values, 7) Interchange-
able Order of Directives, Child Elements, and Attributes 61

5.2 Illustration of default constant value assignment in Acadela. In SACM (1), mod-
elers need to declare the mandatory Attribute whether the Stage is mandatory or
not. In Acadela (2), mandatory is the default value of the mandatory Attribute,
and repeatable has ONCE as the default value, hence modelers do not need to
specify it. 63

5.3 Illustration of Acadela approach to combine schema, execution behaviors and
visual representation in one single CP element definition. The HumanTask def-
inition in SACM (1) requires the schema definition (EntityDefinition) and case-
related execution and visualization (HumanTaskDefinition). Meanwhile Acadela
(2) groups all HumanTask attributes, behaviors, and graphical representation into
a single element. 64

5.4 Hierarchy of elements in a clinical pathway model expressed in Acadela. 65
5.5 Input Field Rendering in SACM produced by Listing 5.1 70
5.6 Rendering of the Multiple Choice - Single Answer InputField in the SACM UI.

The InputField value in this example is ’1’. 71
5.7 Rendering of the Multiple Choice - Multiple Answer InputField in the SACMUI.

The InputField value in this example is [’TEMPLE’, ’SHOULDER’]. 71

xi

LIST OF FIGURES

5.8 SACM Display of the Conditional OutputField in Listing 5.5. Here the blood
pressure is high because the Diastolic value is above 90. 74

5.9 Background Color Effect from the color code definition to the BmiValueOutput-
Field in Listing 5.6. 74

5.10 Illustration of InputField values (massage positions - left) affect the output image
visualization (right) by showing temple and nape massage positions as blue circles. 75

5.11 Acadela code (left) to declaring conjunction (AND) relationship between prereq-
uisite Stages or Tasks in Acadela. The SACM UIs (right) display the Assessment
Stage is activated onlywhen theCardiogram andMRI Scan Stages finish (Picture
c). If both or one of the Cardiogram or MRI Scan Stages are activated (Picture a
and b), the Assessment Stage is disabled. 78

5.12 Acadela Declaration (left) and SACM UI (right) of a single Task (Quick Test)
and multiple instances of a repeatable Task (PCR Test) for the Lab Test Stage.
An Add Task button exists when there is at least one manually activated Task in
the Stage. Clicking the Add Task button allows the creation of the repeatable
Task(s), as shown in the below dropdown box. The example inspires by the re-
search on applying parallel PCR Tests to detect SARS-CoV-2 by (Perchetti et al.,
2020, p. 2) . 83

5.13 Acadela Declaration (left) and SACM UI (right) of a single Stage (Identifica-
tion) and parallelly repeatable Stage (PCR Test). The circle with a plus icon
exists when declaring at least one manually activable Stage. Clicking the plus
circle displays a dropdown box to select the (repeatable) Stage, which SACM
will instantiate. The number below the parallel Stage is the cardinal instance
number, not the latest iteration of that Stage. Each parallel Stage is executable
only once. The example inspires by the research on applying parallel PCR Tests
to detect SARS-CoV-2 by (Perchetti et al., 2020, p. 2) 87

5.14 UI display of a repetitive Stage in SACM. A blank circle expresses a completed
Stage. The door-shaped purple object denotes the activated Exercise Stage that
the user is interacting with. SACM shows the latest Stage iteration below its name. 88

5.15 Illustration of SummaryPanel UI in SACM as defined in Listing 5.18. SACM
retains the visual effect of each Input/OutputField. 90

5.16 UI of the Case defined in Listing 5.23 from the view of a Clinician User. The
screenshot shows the current workflowwith completed and opening Stages (purple-
background circles), Tasks, assigned roles, and otherCase information (e.g.,Case
name, patient info). 96

5.17 Example of invalid element declaration (top) and their enhanced error message
(bottom) in Acadela. The Form UnexpectedForm is invalid as Stages do not ac-
cept a Form as a child element. 98

5.18 Example of the need for customizing the textX error message. Original error
message (a) of textX that shows the grammar construct (’Eq’) in stead of the
concrete syntax element ("="). Therefore, Acacdela enhances the message (b)
to show the expected operator. 99

5.19 Example of an error message (right) for typos that are similar to Acadela keyword
(left). At line 97, the typo "Precnoddition" has two different characters than the
"Precondition" keyword of Acadela. Thus the error message suggests the correct
keyword to modelers. 99

xii

LIST OF FIGURES

5.20 Example of an error message (right) for typos that are totally different from
Acadela keywords (left). In line 97, the typo "Prerequisite" does not exist in the
Acadela dictionary, and many characters are not closely similar to any Acadela
keyword. Thus Acadela only states that the keyword is unrecognized. 100

5.21 Example of an enhanced error message (b) in Acadela from the original one of
textX (a) to explain the invalid String data type (top). In line 133, a single quote
is missing in the String value. Thus Acadela informs modelers that quotation
marks are needed. 100

5.22 Example of customized syntax validation for conditional statements in the ex-
pression attribute. The top case shows an error of using the wrong keyword (":"
instead of "then"); the bottom one demonstrates an incomplete boolean expres-
sion. Acadela outputs the corresponding enhanced error messages below the
code snippet to state the error cause and solution direction. 101

5.23 Example of invalid referencing path in the condition attribute of a Precondition.
At line 12, the RequestMedicalLabTest Task ID of the path does not refer to an
existing Stage. The intended Task ID isMeasureBloodPressure. Finally, Acadela
gives a hint that it expects an existing Task ID. 102

5.24 Example of invalid referenced ID in the previousStep attribute of a Precondition.
At line 11, the CholesterolTest ID refers to an InputField but not an existing Stage
or Task. The intended ID is RequestMedicalTest. Finally, Acadela states that an
existing ID of a Stage or Task is required. 102

5.25 Example of invalid referenced ID in the expression attribute of an OutputField.
At line 10, 11, and 12, the SystolicValue ID does not refer any InputField or
OutpurField in the same Form. The intended ID is Systolic. Therefore, Acadela
suggests to declare an InputField or OutputField within the same Form of the
OutputField. 103

5.26 Example of an enhanced error message for duplicate Stage IDs. 103
5.27 Example of an enhanced error message for duplicate Stage and Task IDs. 104
5.28 Example of an enhanced error message for sending requests to untrusted URLs

of external services. 104
5.29 Example of an enhanced error message for sending requests to trusted URLs but

using unauthorized HTTP Method. In this example, the trusted URL does not
allow SACM to use the DELETE method. 104

5.30 Example definition of a minimum Stage in SACM (left - 279 characters) and
Acadela (right - 49 characters) . 105

5.31 Example definition of aHumanTask in SACM (left - 2007 characters), andAcadela
(right - 891 characters) . 106

6.1 Container diagram of the SACM-Acadela system integration. The green con-
tainers denote the frontend-related applications, while the blue ones represent
the backend applications. 107

6.2 Component diagram of the Acadela frontend. 108
6.3 Component diagram of the Acadela backend. The dark blue components repre-

sent classes and libraries used in the Acadela backend. The light blue rounded
rectangles are SACM Containers that the Acadela backend communicates with,
and the green container is the Acadela frontend React application. 109

6.4 Demonstration of Autocomplete in Acadela IDE. The left picture shows an in-
complete keyword and suggestions. The middle one shows the inserted code
snippet after selecting the auto-complete option. Finally, the right picture shows
the definition of a Snippet auto-complete definition in Monaco. 110

xiii

LIST OF FIGURES

6.5 The IDE GUI of Acadela with syntax highlighting. The top panel shows the
code written by modelers. The Validate button sends the code to the backend for
verifying syntactic or semantic errors. The Submit button has the same feature
as the Validate one, but the backend further checks the existence of defined Users
andGroups in the CP and sends the CPmeta-model to SACM. Finally, the bottom
panel shows the status of the code compilation or an enhanced error message if
a bug occurs. 111

6.6 Syntax highlighting definition for keywords and code sections in Monaco (bot-
tom) based on a set of color rules (top). Lines 27 and 28 instructs Monaco to
identify multi-line strings in the code. 112

6.7 The Acadela CP meta-model based on the SACM schema and Acadela grammar.
The default multiplicity is one, e.g., One Case has only one Setting. 130

6.8 Example of how the Acadela Interpreter traverses through attributes in a Stage
object of the textX model (top left) to create an Acadela Stage object with at-
tributes and objects of child elements (HumanTasks, Precondition, and HttpHook)
on the right. 1) and 2): Extract the Stage attributes from the corresponding textX
model object, such as description (1) and ownerPath (2). 3) Construct a Stage
object from the extracted attribute values. 4) Access each Task in the Stage to
collect Task’s properties. 5a) Construct a Task Object from the Task properties
identified in Step 4. 5b) Construct other Tasks in the Stage by repeating Step 4.
6) Extract the previous Stage or Task ID and condition in the Precondition textX
model object. 7) Construct the Precondition object based on the attributes ex-
tracted in Step 6. 8) For imported elements, e.g., HttpHook, access the reference
(ref) attribute to 9) extract the attributes of the imported element. Finally, 10)
Construct the HttpHook from the extracted attributes in Step 9. 131

6.9 Example of compiling properties of an interpreted Case object (left) into SACM
JSON format (right). 142

6.10 Example of compiling an interpreted SummarySection object (left) into SACM
JSON format (right). The SummarySection code snippet is from lines 42 to 49
of Listing 5.23. 143

6.11 Example of compiling properties of an interpreted HumanTask object (left) into
SACM JSON format (right). The HumanTask is activated when the Dietician
asks for a BMI check in the ExaminationChecklist Task of the same Evaluation
Stage. 144

6.12 Example of compiling properties of an interpreted Stage object (left) into SACM
JSON format (right). 145

6.13 Example of compiling a interpreted Stage (left) into SACMJSON structure of En-
tityDefinition (right). The Attribute-related properties of HumanTasks in the Stage
constitute their AttributeDefinitions. 146

6.14 Example of compiling a interpreted HumanTask (left) into SACM JSON struc-
ture of EntityDefinition (right). The Attribute-related properties of Input/Output-
Field in the Stage form their AttributeDefinitions. 148

6.15 Example of a CP Visualization in Acadela using the GoJS tool. 149
7.1 Suggestions to conduct user study in research from Robert K. Yin (top) and ac-

tivities in designing Acadela user study (bottom). 154
7.2 Execution procedure of the breathing exercise in a web application. a) The

patient answers questions about health status prior to the exercise. b) A post-
questionnaire to record the patient’s condition after the exercise (Cavusoglu,
2021). 159

xiv

LIST OF FIGURES

7.3 Forest plots present the effect sizes on efficacy, fatigue, and weight gain for com-
parisons of antipsychotics and placebo. Relative risks are the measurement unit
for effect size, except for weight gain which uses mean differences in kilogram
(Siafis et al., 2022). 159

7.4 CP of Smoke Inhalation Injury Assessment. The process is constraint-driven
based on the symptoms (Karpov, 2018). 160

7.5 CP of Cervical Cancer Screening. The guideline suggests different treatment
processes depending on the patient’s age (Roche Diagnostics, 2018). 161

7.6 Illustration of InputField values (massage positions - left) affect the output image
visualization (right) . 162

7.7 Rating ofmedical professionals on Statements regarding the accuracy ofmodeled
CP elements (stage, task, and transition condition), visualization, and treatment
process. 163

7.8 Excerpts of feedback towards the modeled CPs from medical professionals. . . 163
7.9 The workflow of a simplified Hypertension CP 167
7.10 Rating of experts on Statements regarding the a) Usability of the Acadela Syntax,

b) Usability of EMs, c) Usefulness of EMs, and d) Acadela SUS Score. 168
7.11 Grade Ranking of SUS Score. 168
A.1 Visualization of the CP model generated by Listing A.2. 198
A.2 Visualization of the CP model generated by Listing A.3. 202
A.3 Visualization of the CP model generated by Listing A.4. 208
A.4 Visualization of the CP model generated by Listing A.5. 214
A.5 Visualization of the CP model generated by Listing A.6. 220
A.6 Detailed meta-model with focus on the case definition (Michel, 2020, p.190). . 234
A.7 Detailed meta-model with focus on the schemata and data (Michel, 2020, p.191). 235
A.8 Detailed meta-model with focus on the case. (Michel, 2020, p.192). 236

xv

List of Tables

2.1 Characteristics of CPs derived from the three articles 8
4.1 High-level responsibilities of components in the CONNECARE system (Michel,

2020, p. 142) . 49
5.1 Features Comparison of DSLs for CP modeling. 55
5.2 Description of Data Types in Acadela based on SACM specification. (Michel,

2020, p. 101) . 67
5.3 An example of expressing the isMandatory Attribute of a Stage in SACM and

Acadela. 68
5.4 The attributes of an Acadela InputField. * - the attribute is required. A - the

attribute is created in Acadela and does not exist in SACM. 70
5.5 The attribute of an Acadela OutputField. * - the attribute is required. A - the

attribute is created in Acadela and does not exist in SACM. 73
5.6 The Acadela Form attributes apply to all the included InputFields and OutputFields. 76
5.7 The attributes of Acadela Precondition. * - the attribute is required. 77
5.8 Description on the attributes of aHttpHook (Michel, 2020, p. 113). *

- the attribute is required. 79
5.9 The attributes of an Acadela Task. * - the attribute is required. A - the attribute is created in

Acadela and does not exist in SACM. 82
5.10 The attributes of an Acadela Stage. ! - the attribute is required. A - the attribute

is created in Acadela and does not exist in SACM. 87
5.11 The attributes of an Acadela SummaryPanel. * - the attribute is required. 89
5.12 The attributes of an Acadela User. * - the attribute is required. 91
5.13 The attributes of an Acadela Group. * - the attribute is required. 91
5.14 The attributes of an Acadela Setting Attribute. * - the attribute is required. . . . 92
5.15 The attributes of an Acadela Case. * - the attribute is required. A - the attribute

is created in Acadela and does not exist in SACM. 94
6.1 Example of a trusted API table as a CSV file. Each row stores the Workspace

ID, the API URL of an external system, and its eligible HTTP method(s). . . . 138
7.1 Background of medical experts participated in the expressiveness evaluation. . 158
7.2 Background of technical staff participated in the usability evaluation 166
A.1 SUS Statements to Rate Acadela Syntax and Error Validator. 230

xvi

1 Introduction

1.1 Problem Description

E-Health applications have been offering essential support to execute, monitor, analyze, andman-
age treatments and clinical data in medical facilities. Clinical pathways (CPs) serve as the core
of e-Health applications as they establish a standardized procedure for medical treatments of a
specific patient group in a defined period (Panella et al., 2003; Campbell et al., 1998; Every et
al., 2000). Besides regulating workflow activities, CPs also govern the utilization of resources
(human, medical, administrative (Heß et al., 2015; Braun et al., 2014)) necessary to provide
healthcare services (Khodambashi, 2013). By playing a decisive role in executing medical treat-
ments, CPs significantly influence the quality of healthcare services (Vanhaecht et al., 2009;
Rotter et al., 2010; Hai et al., 2019). Effectively applying CPs results in numerous benefits, such
as ameliorating patient conditions (Rotter et al., 2010; Panella et al., 2008), reducing complica-
tions (Preston et al., 2013), mortality (Hai et al., 2019), length of stay, and treatment costs (Yang
& Su, 2014), enhancing communication between medical professionals (Vanhaecht et al., 2009,
2010), and increasing satisfaction for patients (Van Dam et al., 2013) and medical staff (Schuld
et al., 2011). For this reason, modeling CPs can improve the quality of healthcare services by
enabling process analysis (Fernández-Llatas et al., 2010), variance analysis (Di Lenarda et al.,
2017; García et al., 2016; Du et al., 2020), audit (Fudholi & Mutawalli, 2018), or automating
process execution (Tongchuan & Deyu, 2013; Li et al., 2014, p. 402).
To realize the benefits of CP models, e-Health systems can apply Enterprise Modeling to con-
struct conceptual models for analyzing, describing, and planning organizational aspects (Frank,
2014, p. 2; Sandkuhl et al., 2014, pp. 16-17). Building conceptual models requires a model-
ing language that comprises syntax and semantics elements to define modeling concepts (Siau
& Rossi, 2011, p. 251). Specifically, according to Frank (2011a, pp. 26-27), "abstract syntax
defines rules for constructing syntactically correct models using the language concepts. The con-
crete syntax defines the symbols used to represent the abstract syntax. Since these symbols are
usually graphical, it is also referred to as graphical notation. The semantics of a modelling lan-
guage defines the (formal) interpretation of modelling concepts.". To represent conceptual mod-
els, one can apply General Purpose Modeling Language (GPML) or a Domain-Specific (Model-
ing) Language (DS(M)L). Because the building blocks of DSLs are terminologies and concepts
used in the respective domain (Heß et al., 2015), they offer several benefits over GPMLs (Frank,
2013, pp. 133-134).
Firstly, DSML enhances productivity because users do not construct domain concepts on their
own (Frank, 2013, p. 133) using primitive data types of GMPL (Heß et al., 2015, p. 3). The
second benefit is the consolidation of model integrity, as syntax and semantic rules prevent il-
logical or illegitimate model definitions to a certain degree (Frank, 2013, p. 133). Consequently,
a thoroughly designed language increases the model quality. Finally, DSMLs leverage concrete
syntax (e.g., graphical notations) to enhance the comprehensibility of the model (Frank, 2013, p.
134). In combination with domain-specific technical terms, DSMLs also foster communication

1

1 Introduction

between users of the models (Heß et al., 2015, p. 3). For these reasons, designing effective and
efficient DSMLs is one of the state-of-the-art methods for modeling CPs.
One of the approaches to classify DSMLs is by considering the language representation, which
leverages graphical notations or text. On the one hand, graphical DSLs enable modelers to build
medical procedures by interacting with visual elements in a GUI. One advantage of this approach
is that using graphical notations improves the extension and convenience of the model (Frank,
2010, p. 1). If graphical DSLs appropriately display model elements following a logical and hier-
archical structure (Wienands & Golm, 2009, p. 458) with domain-specific technical terms, they
can provide a user-friendly interface and learnable modeling mechanism (Hermans et al., 2009,
p. 433). Furthermore, visual artifacts foster communication between technical and domain ex-
perts, as they share a common understanding of the notations for CP elements (Heß et al., 2015).
However, one noticeable trade-off is that existing workflowmodeling notations, like BPMN, lack
the concepts to express aspects besides workflow execution (e.g., resource consumption or doc-
uments), thus demanding extra effort to develop custom extensions for modeling and visualizing
these aspects (Braun et al., 2014; Heß et al., 2015; Neumann et al., 2016).
On the other hand, textual DSLs model CPs using a text-based interface. The textual presentation
of the model combined with an IDE brings three significant benefits. First, extensions of the
model are convenient with textual definitions of sub-DSL for new elements (Rieger et al., 2018).
Second, validating models is manageable as textual DSLs only define syntactic constraints via
grammar (Baar, 2015). Last but not least, an IDE offers convenient support with error warning,
syntax highlighting, and auto-completion of CP elements and their values (Cook et al., 2007, p.
16-17; Merkle, 2010). However, textual DSLs typically do not offer model visualization, which
may hinder users from previewing the modeled process. Furthermore, DSLs shall accommodate
several barriers to be practical and user-friendly in modeling CPs.
The first barrier is that DSLs specialized in particular medical fields or treatments due to their fo-
cus on specific, intensive medical procedures used in a hospital (Heß et al., 2015). In these cases,
extending the DSL to support treatments in other medical fields requires a considerable effort to
include new terminology or elements. The second concern is usability, as DSLs should be easy
to use and learn for modelers. Consequently, DSLs can indirectly the quality of the healthcare
service by improving user satisfaction and productivity of the modeling process.

1.2 Research Questions

Our study aims to address the above concerns of DSLs for modeling CPs used in different med-
ical departments by proposing a generic, textual DSL named Acadela. Additionally, our DSL
strives for a straightforward, flexible, and concise syntax to increase the learnability and usabil-
ity on the side of modelers. Given the two motivations, we formulate the following hypothesis
to discover the feasibility of developing such a DSL:

Hypothesis

It is possible to define a single DSLwhich canmodel and orchestrateCPswhile fostering
communication between clinical and technical experts.

To answer the above hypothesis, our study starts from the foundation of CP modeling by find-
ing the necessary elements to construct executable CPs. Next, we explore how to define the
syntax and semantics of our DSL such that it can express diverse CPs while being user-friendly

2

1 Introduction

and learnable. Finally, our study shall evaluate the expressiveness and usability of the DSL by
conducting user studies with medical professionals and technical staff at healthcare institutions.
Based on this direction, our research formulates the following research questions (RQs) to collect
the data and evidence:

Research Question 1

What elements are required to model and orchestrate executable Clinical Pathways for
Adaptive Case Management?

CP modeling shall consider not only elements relevant to workflow execution but also the re-
sources necessary to provide healthcare services. Examples of these resources are involved staff,
financial documents, or clinical instructions in textual or video format (Heß et al., 2015). Fur-
thermore, due to the unpredictable character of CPs, the DSL shall be capable of modeling both
non-deterministic and structured processes (Michel, 2020, p. 34). Therefore, our study first iden-
tifies the essential elements to model CPs through literature research and a study of an existing
e-Health system. In addition, the DSL visualizes the modeled CP to provide an overarching
overview of the treatment process to modelers and care professionals.

Research Question 2

What are the syntax and semantics that enable a textual DSL to model executable Clinical
Pathways for Adaptive Case Management?

The next concern is how to design a DSL to model the identified elements. In other words,
how can one formulate the syntax and semantics to define CP elements in textual format. First,
the language representation shall express the features of a CP model while being intuitive and
learnable to modelers. Therefore, Acadela aims for a low-technical-oriented and concise syntax
to express CP elements. The second concern is how to define an abstract syntax to enforce rules
for flexibly presenting the concrete syntax. Finally, we discover how to interpret and validate the
CP model semantically. This step is crucial for compiling a CP model written in Acadela to a
format compatible with the experimented e-Health system.

Research Question 3

Can the DSL model Clinical Pathways from different medical fields with diverse com-
plexity while being understandable to clinical experts?

This RQ explores 1) the expressiveness of the DSL and 2) its understandability from the view
of medical professionals. Since Acadela aims to model generic CPs, our study examines the
DSL’s capability in modeling linear to complex conditional-driven CPs in the daily routines of
care professionals from various medical departments. Specifically, we modeled the workflow
elements and stage transition conditions for each CP. Then, we interview the experts to evaluate
the CP models’ accuracy and the understandability of the model’s code. If the professionals
consider themodels to be correct, it implies that Acadela has the potential to model CPs in diverse
medical fields. Additionally, if the model code is comprehensible to medical experts, they can
discuss the logic and structure of CPs with modelers. As a result, the DSL can serve as a shared
artifact to foster communication between medical and technical experts, hence improving the
quality of CPs.

3

1 Introduction

Research Question 4

Do modelers regard the DSL and the development environment user-friendly and learn-
able when modeling CPs?

Besides the capability of modeling CPs, the DSL shall be user-friendly tomodelers, thus improv-
ing their user experience and productivity. Therefore, our study explores the usability of Acadela
from the perspective of technical staff working in medical facilities or research institutions. In
the evaluation, the participants experience the features of Acadela by modeling a CP and debug-
ging another faulty CP from its error messages. Next, they gave us feedback regarding the DSL
learnability, user-friendliness, and applicability to model CPs in e-Health applications.

1.3 User Study

Our evaluation method resembles the user study of Faber (2019), which applied the recommen-
dations of conducting user studies by Robert K. Yin (2009). We first define the research questions
(RQ3 and RQ4) regarding expressiveness and usability. Then we identify the target participants
for each evaluation. Next, to measure the evaluation outcome, we design assessment tasks and
questionnaires to collect quantitative and qualitative feedback from the experts. We then set up
pilot tests with computer science research assistants to estimate the cognitive workload and ap-
propriateness of the tasks. The decisive phase is to conduct the evaluation and gather feedback
from the participants. Finally, we analyze the data to derive conclusions and implications from
the assessments.

Expressiveness Evaluation: This assessment explores the potential of Acadela in modeling
generic CPs. To ensure the practical value of the study, we only consider medical professionals
working in healthcare facilities. Therefore, we contacted six medical professionals from five
medical departments and collected five CPs from their fields of expertise. Next, we modeled the
CPs with Acadela and interviewed the professionals to evaluate the accuracy of the constructed
CPs. The result shows that medical professionals consider the CPs to be accurate and can be
beneficial to their daily routines. However, they suggest that the DSL can reveal further practical
value if our study models treatment variations, i.e., alternative care paths triggered in specific
conditions. Additionally, most medical professionals feel confident making small changes in the
reconstructed CP but often lack the time and technical background to model it.

Usability Evaluation: To study the user-friendliness of Acadela, we conducted field exper-
iments with technical staff working in the healthcare industry or medical research institutions.
The participants developed a hypertension CP using Acadela and gave us quantitative and qual-
itative feedback regarding the user-friendliness, learnability, and applicability of the DSL. The
result shows that, in general, the technical staffs consider the syntax of Acadela to be straightfor-
ward, learnable, and applicable to model CPs. However, participants with limited experience in
programming stated that more training is needed to familiarize themselves with the syntax.

4

1 Introduction

1.4 Dissertation Structure

From the motivation of developing a textual DSL for modeling CPs in various e-Health sys-
tems, the remainder of this Dissertation presents its foundational knowledge, implementation,
and findings in the following seven chapters:

Chapter 2: Foundations describes the fundamental knowledge regarding the definition of
CP, Case Management, DSL development, and the textX DSL design tool applied in our re-
search.

Chapter 3: Related Work presents existing graphical and textual DSLs for modeling CPs.
Our study describes the capabilities, strengths, and research gaps that Acadela aims to bridge for
each DSL.

Chapter 4: Smart Adaptive Case Management (SACM) introduces SACM as the target
e-Health system that executes CPs compiled from the Acadela code. This chapter explains the
motivation, features, architecture, and CP meta-model of SACM as the subsystem that models,
manages, and executes CPs in the CONNECARE, a European-funded e-Health system special-
ized in practicing integrated care.

Chapter 5: Language Design explains the design principles applied in creating Acadela,
the concrete syntax representation of SACMCPmodeling concepts, and the constraint validation
of the language.

Chapter 6: Implementation describes the development of the Acadela system, including
its IDE, compiler, syntactic and semantic constraint validators, and CP visualization.

Chapter 7: Evaluation presents the results, implications, and limitations derived from our
expressiveness and usability assessments with care professionals and technical staff, respec-
tively.

Chapter 8: Conclusion summarizes the findings as answers to the hypothesis and research
questions formulated in Section 1.2. Furthermore, our study proposes possible directions for
future work to cover the gaps in the current research.

5

2 Foundations

This chapter presents the fundamental concepts of the motivation, design, and implementation
of the Acadela DSL. The first section establishes the definition of CP, including its characteris-
tics, incorporated elements, and goals. Afterward, the second section explains Adaptive Case
Management (ACM) as the workflow management mechanism to execute CPs in e-Health sys-
tems. Next, the third section summarizes the concepts, nature, and elements of the Case Man-
agement Model and Notation (CMMN). Finally, the last two sections explain the definitions and
motivation for applying Domain-Specific Language (DSL) and Compiler-compiler language in
constructing Acadela.

2.1 Clinical Pathways (CP)

Zander et al. (1987) at the New England Medical Centre first used the term "clinical pathway" in
1985. Since then, the medical field has been extending CP with multiple definitions and alterna-
tive terms, such as critical paths, critical pathways, care paths, care maps (Every et al., 2000),
integrated care pathways, and guidelines (De Bleser et al., 2006). For example, De Bleser et al.
(2006) identified 84 different definitions of CP from their literature survey during the 2000-2003
period . After analyzing various research on CPs (Campbell et al., 1998; Panella et al., 2003;
De Bleser et al., 2006), we derive one summary of CP definition as follows:

Clinical Pathway Definition:

Clinical Pathways are multidisciplinary patient-care management plans that define
care goals with the process and timing necessary to achieve such goals with optimal
efficiency. (Campbell et al., 1998; De Bleser et al., 2006; Vanhaecht et al., 2006)

The following subsections recapitulate the goals and characteristics of CPs.

2.1.1 Goals

Care E�ciency Improvement The primary purpose of applying CPs is to increase care
efficiency (Every et al., 2000; De Bleser et al., 2006; Panella et al., 2003) by reducing the cost
of treatment, optimizing resource utilization, and reducing treatment time using optimal care
procedures. This goal arises from one critical concern in healthcare is reducing treatment costs
without diminishing the care quality (Wentworth & Atkinson, 1996). To solve this issue, CPs
with standardized procedures can simplify diagnostic activities by defining the conditions for
taking laboratory examinations (Panella et al., 2003, p. 513). For instance, patients only take
direct chest radiography when they have not received an X-ray scan in the preceding six months
(Panella et al., 2003, p. 514). Consequently, the number of clinical examinations decreases,
resulting in a reduction in treatment costs. (Panella et al., 2003, p. 515).

6

2 Foundations

Another contribution of CPs in enhancing care efficiency is their support to care process coordi-
nation. Since multidisciplinary care professionals develop standardized treatment activities, CPs
help medical practitioners better understand their responsibilities, enhance process’s learnability
by sharing information, and support the integration of segments in a healthcare system (Panella
et al., 2003, pp. 509-510).

Care Quality Enhancement As standardized treatment procedures, one of CP’s primary
goals is to improve patient outcomes (Every et al., 2000; De Bleser et al., 2006, p. 560) and
satisfaction. CPs can achieve this goal by practicing a patient-focused vision as a care priority
(Vanhaecht et al., 2009), complying with standardized medical practices, and receiving contin-
uous quality improvement (De Bleser et al., 2006, p. 560; Vanhaecht et al., 2009, p. 786). As
a result, CPs can follow the best standard of practice to provide high care quality and minimize
outcome variation in treatment processes (Panella et al., 2003).

Evaluation Another purpose of using CPs is to evaluate the variation and outcome of treat-
ment processes (Panella et al., 2003, p. 60; Yan et al., 2017). Although CPs contain predefined,
predictable, and standardized care procedures, variances are still unavoidably possible because
patients can have unique medical complexities. Furthermore, the subjective initiatives of health-
care experts, patients, and their families after applying CP to the care process also contribute to
the process variation (Ye et al., 2009). By comparing the standardized care procedures in CPs
with the patient’s progression from their Electronic Medical Records (EMR), one can identify
whether the given care deviates from the expected treatment path. (Yan et al., 2017).
For example, Yan et al. (2017) modeled a CP of unstable angina pectoris (UA) in BPMN and
applied it to two datasets containing 888 (only UA diagnosis) and 1608 patients (UA diagnosis
and complications). The result shows that Electrocardiogram (ECG) monitoring and examina-
tion were missing in both groups of patients. Additionally, they witness an increase in the dose of
beta-blockers medicine. These activities may not be performed or recorded in the EMR system
(Yan et al., 2017, p. 316), but the variance analysis of the CP model reveals the missing care ac-
tivities. Therefore, medical experts can locate and redesign their treatment process to efficiently
and effectively optimize the care procedure.

Documentation The above variance analysis study demonstrates another essential role of CP
in collecting relevant medical data. In general, variance in CPs is the result of omitted, late, or
incorrectly performed actions (Every et al., 2000, p. 462). CPs document these series of time-
associated actions, resulting in an abundance of data points that can overwhelm the variance
analysis procedure (Every et al., 2000). However, this issue is resolvable with computer-assisted
pathway analysis (Every et al., 2000, p. 462; Hyett et al., 2007). Thanks to records of positive
and negative variances, like early discharge and unplanned surgery return, medical experts can
form a collection of evidence to improve the system, clinical practice, and delivery of care service
(Hyett et al., 2007).

2.1.2 Characteristics

From an intensive analysis of 82 articles, De Bleser et al. (2006) identified the most outstanding
attributes of CPs as follows:

7

2 Foundations

1. Homogeneous patient group: The care of a particular population of patients with a
(diagnosis-) specific clinical problem.

2. Multidisciplinary team: Diverse medical professionals (e.g., physicians, nurses, admin-
istrative staff) are responsible for patient care.

3. Time scale: The length of hospital stay for the patient or the optimal timeline of the care
procedure.

4. Inventory of actions: the procedures, events, or essential components of care.
Other characteristics with moderate mentions are patient care management, care efficiency, care
standardization, sequence in the CP, and variance analysis. Care standardization refers partly to
uniformity of care practice that reduces variability while attains theminimum level of care.
In another study of CP classification, Kinsman et al. (2010) developed the following five criteria
by conducting a literature review and testing them against 260 papers:

1. The intervention was a structured multidisciplinary plan of care.
2. The intervention was used to channel the translation of guidelines or evidence into local

structures.
3. The intervention detailed the steps in a course of treatment or care in a plan, pathway,

algorithm, guideline, protocol or other ‘inventory of actions’.
4. The intervention had time-frames or criteria-based progression (that is, steps were taken

if designated criteria were met).
5. The intervention aimed to standardize care for a specific clinical problem, procedure or

episode of healthcare in a specific population.
The author derived the above criteria from three articles that comprehensively review the charac-
teristics of CPs. Table 2.1 summarizes the identified CP properties from the three papers.

De Bleser et al. (2006) Campbell et al. (1998) Vanhaecht et al. (2006)
Guides care management for a
well defined group of patients
for a well defined period of
time

Structured multidisciplinary
care plan

Facilitate variance
management

States goals and key elements
of care based on evidence and
best practices

Detail essential steps in care of
patients with a specific clinical
problem

Support multidisciplinary care

Sequences the actions of a
multidisciplinary team

Facilitate translation of
national guidelines into local
protocols

Support evidence-based
clinical practice

Allow documenting,
monitoring and evaluating of
variances

Help communication with
patients by providing a clearly
written summary of care

Table 2.1: Characteristics of CPs derived from the three articles

Summary From the above research work, the fundamental features of CPs are 1) Evidence-
based clinical practice to treat homogeneous patient population with a particular health problem,
2) Multidisciplinary care teams responsible for 3) specific sequence of care activities, which

8

2 Foundations

can be 4) time-constrained to achieve optimal timing for the treatment. Finally, 5) medical data
documentation and monitoring are necessary for evaluating the variance of care practices.

2.2 Adaptive Case Management (ACM)

Software engineering and business process management studies classify workflow management
systems into two categories. On the one hand, Van der Aalst et al. (2005, p. 8) classify business
processes into Workflow Management and Case Handling. On the other hand, Swenson (2013)
and Motahari-Nezhad and Swenson (2013, p. 265) distinguish two approaches for case manage-
ment: Production Case Management (PCM) and Adaptive Case Management (ACM).

2.2.1 Concerns of Production Case Management

The similarity between PCM andWorkflowManagement is that knowledge workers execute a set
of actions specific to the case scenario (Van der Aalst et al., 2005, p. 4; Swenson et al., 2012, p.
110). Technical experts can define these sequences of actions in advance (Swenson et al., 2012,
p. 110) at the design time (Van der Aalst et al., 2005, p. 2). However, when handling a case
in PCM, knowledge workers cannot significantly modify their activities as they are restricted to
predefined tasks and options (Motahari-Nezhad & Swenson, 2013, p. 265; Van der Aalst et al.,
2005, p. 2).

Application Context The design of PCM can handle scenarios with a certain level of un-
predictability while allowing sufficient flexibility in selecting the necessary actions (Swenson et
al., 2012, p. 109; Van der Aalst et al., 2005, p. 2). These scenarios contain numerous variations
among individual cases, so it is impossible to define a fixed procedure. Instead, knowledge work-
ers choose a dedicated group of actions to process the case (Swenson et al., 2012, p. 110).

Adaptability Concerns Developing PCMs raises several concerns in constructing an adaptive
process. First, designing a simplistic model cannot handle the vast number of variations arising
at runtime; nevertheless, if the model attempts to cover all possible exceptions, it significantly
increases the complexity of maintaining and managing the model (Van der Aalst et al., 2005, p.
2). The second drawback is that developers follow a standard application development lifecycle,
i.e., program, test, then deploy, which limits the ability of case managers to modify the workflow
process (Swenson et al., 2012, p. 113).
Furthermore, case managers and knowledge workers need to decide their actions in unprece-
dented scenarios, the PCM design limits their available options in these circumstances. In the
context of healthcare, this situation can be fatal if doctors cannot execute radical treatment (Swenson
et al., 2012, p. 113) or request a different medical test (Van der Aalst et al., 2005, p. 4) because
the defined model does not offer these options. Therefore, handling cases in medical fields con-
siders applying ACM because it enables caseworkers more flexibility to adapt their treatment
process without potentially involving technical experts.

9

2 Foundations

Adaptive Case Management Definition:

"Systems that are able to support decision making and data capture while providing
the freedom for knowledge workers to apply their own understanding and subject
matter expertise to respond to unique or changing circumstances within the business
environment" (Swenson & Palmer, 2010).

2.2.2 Suitability for Clinical Pathways Modeling

Flexible Case Execution and Modi�cation In ACM, there exists no predefined control
flow. Instead, the sequence of activities materializes during the case handling based on the care
goals (Herrmann & Kurz, 2011, p. 83). ACM possesses this ability because each case consists
of a case workspace and objectives. In addition, each workspace contains a process comprising
tasks necessary to achieve the case objectives. Figure 2.1 illustrates the key concepts of adaptive
case construction in ACM (Kurz, 2013).
By leveraging a simple hierarchy of tasks instead of complex process networks like in BPMN 2.0,
ACM helps knowledge workers to adapt the process at runtime (Swenson et al., 2012, p. 109;
Kurz, 2013). This feature empowers knowledge workers to adapt and improve the case process as
the situation arises (Swenson et al., 2012, p. 109; Kurz, 2013). As a result, knowledge workers
do not have to follow a static set of predefined processes, which may be unsuitable for exceptional
or unusual scenarios.

Figure 2.1: ACM Key Concepts.

The flexible definition, modification, and management of case templates and instances in ACM
support CP modeling significantly. The reason is that HISs shall incorporate relevant stakehold-
ers and variations during their execution in work practice for a better care quality (Hitt & Tambe,
2016, p. 838; Avgar et al., 2018). Empowering knowledge workers to execute exceptional tasks

10

2 Foundations

for unprecedented scenarios is recommended in CP execution (Campbell et al., 1998, p. 135),
and especially vital in handling life-or-death situations. This ability enables medical profession-
als to deviate from the standard pathway (Campbell et al., 1998, p. 135), or conduct radical
treatments that are hopefully effective but not predefined in the system to save a patient’s life
(Swenson et al., 2012, p. 113). Flexible modification of CP at runtime also supports a practice,
which encourages adapting the new variance of the CP after a careful multidisciplinary auditing
(Campbell et al., 1998, p. 136).

Caseworker Competency Advancement ACM facilitates a faster response to organiza-
tional or routine changes and higher proficiency in processing unpredictable situations because
knowledge workers without modeling or programming skills can modify the process themselves
at runtime (Hauder et al., 2014a, p. 2). The result is a continuous promotion of innovative ser-
vice delivery (Swenson et al., 2012, p. 113) and learning effect in the organization (Panella et
al., 2003, pp. 509-510; Swenson & Palmer, 2010).
Modeling CPs using ACM can further enhance the experience and expertise of medical staff
because the execution paths and control flows in CPs show how previous or particular cases
were processed. Consequently, these data from the past serve as the recommended method to
handle the cases for knowledge workers (Hauder et al., 2014a, p. 4).

Authorized Case Execution Clinical processes can involve a multidisciplinary team of med-
ical professionals (e.g., physicians, nurses, or administrative staff). During the treatment process,
each expert can only conduct their designated tasks without accessing the data or activities that
are not assigned or eligible for their role. ACM can define such an access control mechanism
thanks to the following perspectives (Kurz, 2013, p. 88):

1. Common Organization Perspective (COP): refers to case objects, case goals, and basic
case structure shared by all participants. Thanks to COP, ACM can define activities or data
accessible to all knowledge workers in a case.

2. Private Organizational Perspective (POP): contains the best practices that an organiza-
tion or its members conduct to reach the case objectives. Defining treatment tasks with
restricted access to a particular group of medical professionals is possible with POP.

3. Private Agent Perspective (PAP): supports access control such that certain activities or
case information are only executable to individual caseworkers.

One goal of CPs is to provide a common treatment plan view for medical experts to understand
their various roles in the care process (Pearson et al., 1995; Every et al., 2000, p. 462). As a result,
the involvement of medical experts in the care process is crucial for developing and implementing
CPs (Every et al., 2000, p. 462). For these reasons, ACM with the fine-grained access control
mechanism enables multidisciplinary teams to define restrictions at an organization, group, or
individual level for each treatment activity and case datum. This coordination in access control
definition is also effective in preventing opinion-based variations created by having only one
professional team leading the CP development (Wooster & Forthman, 1996; Anders et al., 1997,
pp. 14-15; Bailey et al., 1998, p. 37).

11

2 Foundations

2.2.3 Challenges

Technical Concerns: Encouraging knowledge workers without programming experience to
adapt and instantiate case templates at runtime requires a flexible execution environment. Specif-
ically, this environment should simultaneously enable modelers to create and caseworkers to in-
teract with case templates (Di Ciccio et al., 2015; Marin et al., 2016, p. 2). As a result, the design
requirements for this environment shall seamlessly address the following essential concerns of
ACM development (Hauder et al., 2014a, pp. 8-10):

1. Data integration: Data are the essential ACM element that provides context for determin-
ing the process execution. Concurrent modification of case data frommultiple caseworkers
can cause inconsistent states. ACM systems can prevent this by appropriately handling a
shared memory, locking of data objects, and linking of data objects and processes.

2. Knowledge work empowerment: Providing autonomy for knowledge workers is an out-
standing characteristic of ACM. Therefore, ACM systems concern guidance techniques to
recommend the next steps for knowledge workers to handle new cases effectively (Hauder
et al., 2014a, p. 4). Additionally, advanced collaboration is crucial in scenarios requiring
the inclusion of individual expertise, experience, and collective judgment to process the
case (Hauder et al., 2014a, p. 4). Furthermore, expert knowledge in case execution is
significant for leveraging the emerging design of case templates.

3. Authorization and Role Management: With data integration into the process, some at-
tributes in the case form are not accessible to users, depending on their role and the case
state. Additionally, ACM systems should enforce constraints and rules to forbid case tem-
plate modification to specific roles.

4. Workflow Management Foundation: Besides adaptable case management and rule en-
forcement, ACM systems need to support routine paths and process patterns by integrating
with traditional workflow management or other methods. However, the adaption of pro-
cess instances at runtime might trigger inconsistent states or deadlocks in the system. This
problem can be solvable by verifying process models in case management.

5. Knowledge Storage and Extraction: Data in SACM, such as contextual information from
conversations or implicit knowledge from execution traces of process instances, can be
primarily unstructured. Since ACM should support knowledge-intensive processes and not
overload case workers with numerous insignificant information, its system shall possess
an efficient and user-friendly mechanism to store and extract relevant knowledge.

2.3 Case Management Model and Notation (CMMN)

CMMN is the definition of a common meta-model and notation for case modeling and visual-
ization (Object Management Group, 2022). The developer of CMMN is Object Management
Group (OMG), an international, open membership, and for-non-profit consortium that develops
technology standards for industries (Object Management Group, 2022). OMG published the first
version of the CMMN specification in May 2014. At the time of this research, the latest version
of CMMN is 1.1, published in 2016. (Object Management Group, 2016)
The purpose of CMMN is to support the modeling of unpredictable and evolving processes,
which expects an indeterministic sequence of activities during execution (Object Management
Group, 2022). Another goal of CMMN is to establish an interchangeable format to exchange case

12

2 Foundations

models across various tools. The following subsections further explain 1) the CMMN applicabil-
ity to support ACM and CP modeling and 2) the concepts and notation of the framework.

2.3.1 Applicability to ACM and CP Modeling

The vision of CMMN seamlessly aligns with ACM since their common objective is to support the
management of cases that cannot predefine activities in advance. In healthcare services, the pro-
cesses of medical treatments and diagnoses are exemplars of such scenarios. A remedy applied
to a patient cannot thoroughly predetermine its workflow prior to the treatment (Michel, 2020,
p. 15). The reason is that healthcare professionals execute medical activities (e.g., diagnoses,
medical tasks, or laboratory tests) depending on the patients’ medical conditions (Kinsman et al.,
2010, p. 2) or problems (Campbell et al., 1998, pp. 133-134). However, each patient’s treatment
needs to conduct the same tasks (Michel, 2020, p. 15). For example, a CP of cardiac catheteriza-
tion requires medical professionals to complete a checklist of actions, investigations, and patient’s
condition assessment before discharge (Campbell et al., 1998, p. 134). CMMN can model both
dynamic and structured sequences of activities thanks to its definition of DiscretionaryItems and
PlanItems as Figure 2.2 illustrates (Object Management Group, 2016, p. 7).

Figure 2.2: Design-time phase modeling and runtime phase planning

A typical case has design-time and runtime phases. During the design time, knowledge workers
(medical experts) and modelers collaborate to define PlanItems, which refer to activities required
to execute a predefined process segment. For instance, every treatment ends with filling out a dis-
charge form to assess the patient’s condition. Additionally, the case includes DiscretionaryItems,
which represent activities besides the compulsory PlanItems that knowledge workers can apply
at their discretion to achieve the case goal. Thanks to DiscretionaryItems, medical experts can
adaptively execute extraordinary tasks in unprecedented situations, such as requesting a specific
laboratory test that has not been conducted in any previous treatment.
Another positive influence of DiscretionaryItems is their support for the evolvement and improve-
ment of CPs as medical experts can decide and share the effective combination of activities to
handle a specific disease variation. A typical example of treating a particular variant improves
the experience and expertise of knowledge workers, as they are familiar with the recommended
steps should a similar scenario happen in the future. Furthermore, over time, the team can include
non-mandatory but frequently-used activities as compulsory PlanItems of theCaseModel.
To further demonstrate the applicability of CMMN in modeling CPs following the ACM ap-
proach, the next subsection describes CMMN notations and how they can be applied to construct
CP elements.

13

2 Foundations

2.3.2 Concepts and Graphical Notations

Task A CMMN Task represents activities executed during the handling of a Case. Every Task
has an isBlocking attribute. When set to true, the Casewill wait for the Task to finish. Otherwise,
the Case completes the Task upon instantiation without waiting for its accomplishment (Object
Management Group, 2016, p. 45).
Additionally, every Task has its Discretionary version (e.g., Discretionary HumanTask) to express
that a particular activity is not compulsory to complete a process (Object Management Group,
2016, pp. 64-67). However, knowledge workers can execute the Task when handling the Case at
their discretion. CMMN categorizes Tasks into four types:

1. HumanTask: expresses activities conducted by knowledge workers (Object Management
Group, 2016, p. 46-47). Manual tasks performed by healthcare professionals, such as
discharge, prescription, or taking laboratory tests, belong to this category.

2. ProcessTask: triggers the execution of a business Process (Object Management Group,
2016, p. 47-48). ProcessTasks are necessary when ACM systems need to call a function or
service from an internal HIS of a medical institution or an external system. For instance,
to retrieve the complications or interactions between two medications. In this example,
the task inputs are the drug names, and the output is the side effects or contraindications
created by the medications.

3. CaseTask: creates an instance of another Case (Object Management Group, 2016, pp. 49-
50).

4. DecisionTask: invokes a defined CMMN Decision of the Case. A Decision takes inputs
from a DecisionTask and returns its outputs to a DecisionTask (Object Management Group,
2016, p. 50). CMMN supports defining an expression to select a Decision (Object Man-
agement Group, 2016, p. 51); thus, one can declare conditional statements to decide which
Decision is valid. This Task type can be helpful when knowledge workers need to retrieve
care recommendations based on the patient medical conditions.

Figure 2.3 shows the CMMN graphical notations of the four Task types.

Figure 2.3: Graphical Notations of four Task types expressed in each column with the bottom row shows
their Discretionary version. a1) Non-blocking HumanTask, a2) Blocking HumanTask, b) ProcessTask,
c) CaseTask, d) DecisionTask.

14

2 Foundations

CaseFileItem CMMN represents Case Information as a CaseFile (Object Management Group,
2016, p. 21). Each CaseFile contains CaseFileItems, which denote data using any type of data
structure (Object Management Group, 2016, p. 22). Therefore, a CaseFileItem can contain a
single or a hierarchy of data objects. As a result, CaseFileItems can store folders, a hierarchy
of folders, or (XML) documents (Object Management Group, 2016, p. 22). Furthermore, it is
possible to specify the metadata of eachCaseFileItem and its parent or childCaseFileItems (Object
Management Group, 2016, p. 23). CMMN associates only one CaseFile to a Case.
CaseManagement in a clinical context can leverageCaseFileItems to store a collection of medical
documents such as a patient’s profile, guidelines, or necessary forms to accomplish the treatment.
Figure 2.4 illustrates a graphical notation ofCaseFileItem in CMMN (ObjectManagement Group,
2016, p. 65).

Figure 2.4: Graphical Notations of a CMMN CaseFileItem.

EventListeners To model time constraints and manual events, CMMN offers TimerEventListener
and UserEventListener to enable, activate, or terminate Stages or Tasks (ObjectManagementGroup,
2016, p. 25).
TimerEventListener represents the elapse of time (Object Management Group, 2016, p. 26). In
clinical processes, TimerEventListener enforces a time constraint that an activity or phase should
finish or repeat within a specific amount of time.
UserEventListener captures events created by knowledge workers (Object Management Group,
2016, p. 28). In order to influence the workflow of a Case, a user event can directly change
the state of Stages or Tasks (Object Management Group, 2016, p. 28). Another possibility is to
modify the CaseFileItems, which stores all the data collected by the Case (Object Management
Group, 2016, p. 28). Stages or Tasks can use CaseFileItems data of any type as inputs or outputs
of its execution. (Object Management Group, 2016, pp. 21-22).
Figure 2.5 illustrates the graphical notations of TimerEventListener and UserEventListener in CMMN.
EventListeners has a circle shape and a clock or human icon to respectively depict TimerEventLis-
tener or UserEventListener (Object Management Group, 2016, p. 69).

Figure 2.5: Graphical Notations of TimerEventListener (left) and UserEventListener (right).

Sentry CMMN introduces the Sentry element to trigger events and conditions among CMMN
Case Elements. This ability enables Sentry to establish a dependency among Tasks or Stages.
Sentry expresses a conditionwith an "if <condition>" syntax. An event declaration follows an "on
<event>" structure, with <event> referring to one state in the lifecycle of a CaseItem, e.g., "on
activate". A combination of an event and condition has a "on <event> if <condition>" syntax.

15

2 Foundations

These abilities enable Sentry to define 1) Entry Criteria to enforce the condition for triggering a
Task or Stage from another; 2) Exit Criteria to dictate the condition for finishing aCaseItem.
Sentry is essential in handling variations and realizing adaptations toCase handling. For example,
in clinical processes, knowledge workers may need to adapt (e.g., activate, complete, or skip) an
alternative activity or phase based on specific medical conditions or external events.
Figure 2.6 demonstrates how a Sentry establishes a dependency connection between two Tasks or
two Stages (Object Management Group, 2016, pp. 70-71). In addition, Figure 2.7 demonstrates
how CMMN visualizes a disjunction (OR) and conjunction (AND) relation among Tasks (Object
Management Group, 2016, p. 71).

Figure 2.6: CMMN Sentry establishes a dependency between two Tasks (left) or two Stages (right). The
white diamond represents an Entry Criterion, while the black diamond denotes an Exit Criterion.

Figure 2.7: CMMN depicts an AND (left) or OR (right) relationship among Tasks using Sentry as Entry
Criteria.

Milestone To mark a checkpoint for progress evaluation, CMMN defines a Milestone element
to represent an achievable goal in the process. A Milestone includes no Task, but the accomplish-
ment of Tasks or deliverables (e.g., the value of a CaseFileItem) typically leads to the Milestone
achievement (Object Management Group, 2016, p. 28). The condition(s) to reach a Milestone is
expressible by defining (multiple) Entry Criterion applied to a Milestone.
Medical teams can apply Milestone to mark or set care objectives at different phases of the treat-
ment. Figure 2.8 illustrates the notation of a Milestone and a Milestone with one Entry Criterion
in CMMN (Object Management Group, 2016, p. 68).

Figure 2.8: A Milestone (left) with one Entry Criterion (right) notations in CMMN.

Stage CMMN Stage is equivalent to a phase of a process. In this regard, a Stage can group
Tasks (activities) and Stages (treatment phases) that belong to the same medical context (e.g.,

16

2 Foundations

Patient Discharge, Diagnosis, or Prescription). Furthermore, a Stage can hold EventListeners to
model timing constraints or triggers of the included Task or Stage.
Additionally, a Stage can contain both plan andDiscretionary Tasks or Stages (ObjectManagement
Group, 2016, p. 37). The DiscretionaryItems have entry and exit criteria to control their activation
and termination (Object Management Group, 2016, p. 41) with conditional expressions as Sentry
(Object Management Group, 2016, pp. 32-33).
Figure 2.9 depicts the graphical notation of the CMMN Stage and its Discretionary version
(Object Management Group, 2016, p. 61). Clicking the plus button at the bottom expands the
Stage and reveals its inner elements. Afterward, the plus icon turns into a minus symbol to signal
that the Stage is collapsible.

Figure 2.9: Graphical Notations of a CMMN Stage (left) and Discretionary Stage(right).

CasePlanModel Every Case is associated with only one CasePlanModel that serves as a con-
tainer for all case elements (Object Management Group, 2016, p. 20), e.g., Stages and Tasks in a
treatment. TheCasePlanModel can evolve at runtime by incorporating extraCase elements when
needed (Object Management Group, 2016, p. 20). Therefore, a multidisciplinary care team can
modify existing or insert extra CP elements to adapt their medical interventions. Furthermore,
the lifecycle of CasePlanModel is trackable at runtime, enabling medical experts to constantly
monitor patientCases, e.g., whether the treatment is active, pending, closed, completed, or failed.
(Object Management Group, 2016, p. 110).
Figure 2.10 illustrates the graphical notation of a CasePlanModel having a folder shape, with the
case name written on the top left rectangle. The folder body contains all the Case elements, such
as Stages and/or Tasks (Object Management Group, 2016, p. 59).

Figure 2.10: CMMN Graphical Notation of a CasePlanModel. The folder body includes all Case ele-
ments

Decorators To express the behaviors of PlanItems and DiscretionaryItems, CMMN applies Dec-
orators, which are symbols to denote the supported behavior pattern of a particular CMMN ele-
ment. Decorators’ graphical notation resides on the bottom center of a CMMN element. Figure
2.11 demonstrates the list of applicable Decorators for each CaseItem type (Object Management
Group, 2016, p. 79). Note that the CaseItem represents both its Plan and Discretionary ver-
sion. For example, A Stage Item refers to both the Stage and Discretionary Stage; Decorators
applicable to a Task means that the Plan and Discretionary HumanTask, ProcessTask, CaseTask, or
DecisionTask can also use these Decorators, except when specified otherwise. CMMN provides
the following Decorators:

17

2 Foundations

1. PlanningTable: defines the context for planning a Stage or HumanTask. A PlanningTable
of a Stage includes the executable (Discretionary) Tasks and nested (Discretionary) Stages
(Object Management Group, 2016, p. 38). While a PlanningTable of a HumanTask contains
1) the follow-up Stages and Tasks of the HumanTask (Object Management Group, 2016,
p. 46), or 2) Discretionary HumanTask or Tasks that are relevant to the execution of the
HumanTask (Object Management Group, 2016, p. 47).

2. Entry and Exit Criteria: See the Description of 2.3.2.
3. AutoComplete: Having no AutoComplete Decoratormeans a Stage orCase requires case-

workers to complete it manually (Object Management Group, 2016, p. 38).
4. ManualActivation: Defines the conditions for manually or automatically starting a Task or

Stage once it is enabled (Object Management Group, 2016, pp. 51-52).
5. Required: Specifies that a Task, Stage, or Milestone has a condition for completing or ter-

minating itself before the parent Stage can finish. In other words, a Stage can only finish
when its Required child Task, Stage, or Milestone completed or aborted (Object Manage-
ment Group, 2016, pp. 51, 53).

6. Repetition: States the condition for a Task, Stage, or Milestone to be repeated. (Object
Management Group, 2016, pp. 51, 53).

Figure 2.11: CMMN Applicable Decorator to CaseItems (Object Management Group, 2016, p. 79).

18

2 Foundations

2.4 Domain Speci�c Language (DSL)

The focus of Enterprise Modeling is constructing and applying conceptual models to describe,
analyze, and (re-)design information systems, action systems (e.g., business process models or
strategy models (Frank, 2014, p. 3)), along with other organizational aspects (Frank, 2014, pp.
2-3; Sandkuhl et al., 2014; Heß et al., 2015). These information and action systems involve
multidisciplinary teams of experts from different backgrounds and professions (Frank, 2014, p.
2). Therefore, abstractions (models) representing a particular view of the systems are necessary
to provide an insight into the process. Moreover, the model should apply domain concepts cor-
responding to the experts’ background as a common reference to foster communication among
multidisciplinary teams (Frank, 2014, p. 3). Creating conceptual models requires expressing
domain concepts through a modeling language (Siau & Rossi, 2011, p. 251).

2.4.1 Modeling Language Elements

The foundations of modeling languages are their syntax and semantics. Therefore, designing a
modeling language concerns the definition of three elements below:

1. Abstract syntax dictates the rules to define language concepts for constructing a model
syntactically (Frank, 2011a, pp. 26-27). It is similar to syntax rules of grammar in human
language, e.g., subject-verb agreement; past, present, or future tenses.

2. Concrete syntax defines the symbols to express language concepts based on the abstract
syntax (Frank, 2011a, p. 27). An example is in Java, to express an access modifier (an
abstract syntax rule) of a class’s function or variable, one can use public, private, protected,
or no character as textual symbols of Java concrete syntax (Oracle, 2022).

3. Semantics defines themeaning for (formally) interpretingmodeling concepts (Frank, 2011a,
p.27; Harel & Rumpe, 2004, p. 67). The language semantic supports the analysis, refine-
ment, manipulation, and evolution of the models (RWTH Aachen Software Engineering
Chair, 2022). For example, in several programming languages (e.g., C, Java, Javascript),
the syntax if (a < 2) func1(); represents a conditional expression to instruct that if variable
a is less than 2, then execute the function func1().

Constructing a conceptual model can follow two approaches, 1) using a General Purpose Mod-
eling Language (GPML) or 2) Domain-Specific Modeling Language (DSML). The next sec-
tions describe the concerns of using GPMLs and present the benefits of leveraging DSMLs over
GPMLs.

2.4.2 Advantages of Domain Speci�c Modeling Languages

DSMLs intend to model concepts exclusively belonging to a particular domain by leveraging its
technical terms (Heß et al., 2015, p. 3). Thanks to this characteristic, developing a modeling
language as a DSML offers several advantages compared to using GPML:

1. Enhance productivity: in GPML, the construction of every model element has to be done
from scratch and relies on primitive constructs such as classes, attributes, or data types
(Frank, 2011a, pp. 27-28; Frank, 2013, pp. 5-6). This constraint limits the expressiveness
of communication because multidisciplinary teams with diverse background knowledge
can only apply a few primitive concepts to explain their model’s syntax and semantics.

19

2 Foundations

Meanwhile, DSML removes this barrier as developers can model domain concepts without
using primitive constructs (Frank, 2011a, p. 28). Specifically, using meta-languages like
Xtext 1 or textX 2, developers can define the syntax and grammar rules to declare a domain
object with its attributes and behaviors. The meta-language then identifies the domain ob-
ject type, attributes, and behaviors by parsing the elements based on the grammar rules.
Afterward, the meta-language automatically constructs a General Programming Language
(GPL) object with primitive concepts. This mechanism can increase productivity as devel-
opers can declare or modify domain concepts and model constraints without using GPML
constructs, as shown in Figure 2.12. (Frank, 2011a, pp. 28-29)

Figure 2.12: Illustration of a DSMLmechanism that identifies domain-specific concepts from the business
domain and represents the concepts through an implementation language (DSL). (Frank, 2011a, p. 29).

2. Foster Model Integrity: Building a modeling language in GPML may pose a risk to in-
tegrity because the modeling phase involves the domain experts defining model constraints
(Frank, 2013, p. 6). However, the domain experts or model users may be unfamiliar with
GPML or GPL concepts as they do not originate from a technical background. Conse-
quently, developers define the constraints using GPL features that the domain experts may
not thoroughly understand; hence a flaw can occur due to miscommunication.
In contrast, DSML has an advantage over GPML in excluding the model’s inconsisten-
cies (Frank, 2011a, p. 28). In DSML, developers can leverage implicit constraints from
domain-specific concepts and DSML constructs to prevent declarations of illegitimate
models (Frank, 2011b; Córdoba-Sánchez & De Lara, 2016, e.g., pp. 2-3, 35). Further-
more, DSML developers and domain experts can collaboratively verify these constraints
in the code and model as the domain concepts are the common reference to express the
restrictions (Frank, 2011a, p. 28).

3. Foster Communication: From the previous two benefits, applyingDSML implies the pos-
sibility of enhancing understanding and discussion of the model concepts and constraints
for both developers and domain experts. This advantage is achievable because the expres-
sion of various model concepts leverages domain terminology that the model users can
fluently command. (Heß et al., 2015, p. 3)

1Xtext: https://www.eclipse.org/Xtext/
2textX: https://textx.github.io/textX/3.0/

20

https://www.eclipse.org/Xtext/
https://textx.github.io/textX/3.0/

2 Foundations

The representation of DSMLs can be graphical or textual to deliver the benefits. However, de-
veloping DSMLs needs to address several challenges. The following subsections describe the
advantages and concerns in designing graphical or textual DSMLs.

2.4.3 Graphical Domain Speci�c Languages

Concept Graphical DSMLs leverage visual elements to express the elements and relationships
of domain concepts (Frank, 2013, p. 7; Shen et al., 2021, p. 3121). Therefore, users typically
interact with an editor to create or modify their model (Frank, 2013, p. 6). These interactions
include, but are not limited to, drag-and-drop elements, clicking on a visual element to create
and edit a model object, and typing to define, modify, or search for model elements.

Advantages Modeling elements using graphical symbols offers several benefits:
1. Enhance Usability: Displaying concepts in graphical notations can increase the under-

standability and readability of the models to their users (Frank, 2010, p. 1). Logical and
hierarchical illustrations of model elements (Wienands & Golm, 2009, p. 458) contribute
to the user-friendliness and learnability of the DSL (e.g., Hermans et al., 2009, p. 433).
Specifically, graphical DSLs reduce the learning effort as users do not have to thoroughly
understand the declaration and semantic rules (e.g., Schlee & Vanderdonckt, 2004, p. 2).

2. Foster Communication: Visualizing models provides a direct and overarching insight
into the solutions. As a result, this diagrammatic representation facilitates communication
and collaboration in a more straightforward and illustrative way than textual DSLs.

3. Error prevention: Graphical DSLs handle syntactic and semantic constraints on both the
graphical and conceptual levels (Frank, 2013, p. 6). Therefore, preventing faults is pos-
sible by prohibiting users from declaring erroneous elements or process flow graphically
(Hermans et al., 2009, p. 433; Frank, 2011a, pp. 35-36).

Concerns Aside from the above benefits, using graphical DSLs to model CPs faces the fol-
lowing challenges:

1. Complex Extension: Using a standard process model framework like BPMN lacks the
visual elements to represent the domain concepts (Braun et al., 2014, pp. 1, 5; Heß et
al., 2015, pp. 7-8). Therefore, DSL designers must extend the standard framework by
modeling the rules and graphical notations as a meta-model (Braun et al., 2014, pp. 5-6).
Constructing this meta-model requires DSL developers to learn and use the extension tool
of the standard modeling language (Braun et al., 2014, p. 3; Heß et al., 2015, p. 8). In
textual DSLs, defining a new language or domain concept is more straightforward. DSL
designers directly create a set of rules or sub-DSLs in the grammar using the constructs
provided by the DSL definition framework.

2. Design Elegant UI: Certain domains possess a complex knowledge base of terminologies,
restrictions, and dependency among concepts (Morgan et al., 2018). In these cases, DSL
designers encounter the challenges of depicting visual elements for modeling large-scale
problems (Shen et al., 2021, pp. 3124-3125). Specifically, Shen et al. (2021, p. 3125)
noticed that inappropriate layout arrangement may result in a disordered UI and hidden
element details.

21

2 Foundations

2.4.4 Textual Domain Speci�c Languages

In this form of DSL, textual characters and symbols are the core elements of the abstract and
concrete syntax. Similar to graphical DSL, textual DSL needs a meta-model containing abstract
entities to represent the domain concepts (Jouault et al., 2006, p. 2). Alternatively, textual DSL
can define the abstract syntax as a grammar containing the syntactic constructs to express the
model elements textually (Harel & Rumpe, 2004, p. 69; Cook et al., 2007, pp. 15-17). The con-
crete syntax is a textual representation of the domain concepts based on the grammar rules (Cook
et al., 2007, pp. 15-16) or meta-model (Jouault et al., 2006, p. 2). If the DSL leverages grammar,
it can process the concrete syntax using a parser-generator such as Yacc or ANTLR to read the
grammar and construct model elements accordingly (Cook et al., 2007, pp. 15-16).
Regarding the semantics of the model, grammar-based textual DSL expresses the semantic do-
mains (e.g., numbers, text, conditions) using a combination of characters, arithmetic operators, or
other symbols (Harel & Rumpe, 2004, pp. 66-67). Meanwhile, a meta-model-based textual DSL
can map the meta-model definition to another DSL or GPL with execution semantics (Jouault et
al., 2006, p. 2). For example, a DSL can map the firing rules of a Petri net to a Java code model
(Jouault et al., 2006, p. 2).

Advantages Defining conceptualmodels using textual elements offers the ensuing benefits:
1. Fast Editing: the IDE of a textual DSL can increase productivity and ease of use with

facilities such as code completion, text highlighting, and syntax checking (Cook et al.,
2007, pp. 16-17; Merkle, 2010). These features prevent fault as the users 1) reuse syntax-
compliant templates to definemodel elements and 2) are aware of unusual errors, warnings,
or colors that appear in their code.

2. Foster Direct Communication: The textual forms of code with domain-specific terms
(e.g., mathematical notations) enables model users to express abstract concepts, and their
properties straightforwardly (Shen et al., 2021, p. 3121). Furthermore, the textual code
is conveniently distributed to the relevant domain experts as documents; hence they can
communicate efficiently. For example, domain experts can refer to a problematic entity,
attribute, condition, or expression in the model from their line of code on a (printed) doc-
ument.

3. Performance: Textual DSLs can handle large-scale and sophisticated problems with their
concise and domain-specific expression of concepts (e.g. K. J. Brown et al., 2011; Kindl-
mann et al., 2016; Córdoba-Sánchez & De Lara, 2016, p. 33; Shen et al., 2021, p. 3121).

4. Ease of Extension: a textual DSL or a system can consist of sub-DSLs to express a partic-
ular concern of the domain concepts. Therefore, according to Riegel et al. (2018, p. 393),
each sub-DSL can evolve independently to extend the language. Furthermore, reusing the
modeling language’s element is possible among different sub-DSLs, e.g., textX allows one
meta-model (sub-DSL) to import another meta-model component (Dejanović, n.d.a).

5. Support Integration: Since the written codes are textual documents, a version control tool
can manage, merge, or find differences in the codes produced by textual DSLs. (Merkle,
2010; Shen et al., 2021, p. 3121). Furthermore, the production of textual outputs enables
textual DSLs to work as an internal component of a system. Reusing an existing language’s
facilities enables efficient construction and flexible customization of the DSL (Günther,
2009, p. 6; Shen et al., 2021, p. 3122).

22

2 Foundations

Concerns : Textual DSLs development experiences the following challenges:
1. Intuitive Model Overview: Pure textual DSLs express details of all model elements with-

out visualizing their order and dependency. This deficiency is a disadvantage compared
to graphical DSLs that can illustrate workflow or data flow in a highly abstracted, concise,
and intuitive manner. (Shen et al., 2021, p. 3122).

2. Fragmented Systems: In systems comprising multiple textual sub-DSLs representing dif-
ferent domain concepts, customizing a particular DSL requires changing relevant modules
in the system framework and DSL build tools. For example, Rieger et al. (2018, p. 393)
examined the modularization of textual DSLs. They discovered that an Xtext DSL de-
pends on five Eclipse projects for unit testing, grammar definition, and integration to the
Eclipse editor. If a system uses six DSLs, it needs to manage 30 projects relevant to DSL
configuration. Furthermore, developers should balance language features and extensions
such that they do not change the core language or limit the reusability of the host language
(Rieger et al., 2018, p. 394).

3. Demand Learning Effort: Users of textual DSLs need to understand the syntax rules
for declaring model elements to represent a domain concept. In contrast, graphical DSLs
with an intuitive interface can relieve users from understanding the syntax declaration and
semantic rules (Shen et al., 2021, p. 3122). As a result, the language users can focus on
designing and analyzing their models’ workflow or data flow (Shen et al., 2021, p. 3122).

2.5 textX Meta-Language (Compiler-compiler)

textX 3 is an Xtext-inspired meta-language and tool written in Python to define IDE-independent,
lightweight, and extensible DSLs (Dejanović et al., 2017, pp. 1-2). DSL developers can apply
textX to design languages for various purposes, such as extracting data sources, supporting IDE
features, or building Model-Driven Engineering toolchains. (Dejanović et al., 2017, p. 2). The
tool generates a parser and meta-model of a given source code from the grammar definition.
Furthermore, textX can also act as an interpreter by creating Python classes with attributes to
represent the model elements and their attributes as defined in their source code and the DSL
grammar (e.g., see "Interpreting Model" section in Dejanović (n.d.e))

2.5.1 Motivation

DSLs are subject to changes, particularly in the early stages of development when the language
designers need to understand and analyze the domain (Dejanović et al., 2017, p. 2). Therefore,
Dejanović et al. consider that DSL development tools should be lightweight by being independent
of complex environments. This feature helps integrate the DSL into diverse application contexts
and enhances the practices of agile methods and techniques.
Furthermore, considering classical Python parsing tools can generate parsers from 1) a grammar
specification or 2) the interpretation of a grammar definition (Dejanović et al., 2017, p. 2). How-
ever, this task is only a step in developing a language because developers still need to process the
parse tree to produce a suitable data representation format (e.g., an abstract representation of the
model). This concern is alleviated when applying language workbenches, which serve as cost-
efficient tools to provide full-fledged DSL construction facilities such as compilers, debuggers,
or language-agnostic editor generation (Dejanović et al., 2017, p. 2). Nevertheless, language

3http://textx.github.io/textX/3.1/

23

http://textx.github.io/textX/3.1/

2 Foundations

workbenches are complex, usually bind to a specific integrated environment, and most are Java-
based tools. Therefore, Dejanović et al. developed textX to address the two concerns of classical
parsers and language workbenches.
textX aims to be a lightweight and versatile tool that offers fast specification of concrete and
abstract syntaxes for meta-model definition. Its only dependency is the Arpeggio Parsing Ex-
pression Grammar (PEG) parser (Dejanović et al., 2016). In context-free grammars (CFGs),
expressing ambiguity in the language syntax makes it unnecessarily difficult to express and parse
machine-oriented languages. PEG provides an alternative, recognition-based formal foundation
to declare machine-oriented syntax for expressing ambiguity of a language by not introducing
ambiguity initially (Ford, 2004, p. 1). The following subsection describes the workflow of textX
to explain its features.

2.5.2 Features

Figure 2.13 describes the workflow of textX from (a) creating a meta-model and parser from
grammar, (b) parsing a model source code to generate its in-memory model, to (c) interpreting
the in-memory model.

Figure 2.13: Simplified textX architecture and workflow from a) creating parser and meta-model from
grammar, b) parsing the model definition code to generate a model, and c) interpreting or generating code.
(Dejanović et al., 2017, p. 3).

1. Meta-model and Parser Creation from Grammar: a textX grammar comprises rules
that 1) describe concepts of the DSL as meta-classes and 2) express the abstract syntax of
those concepts using textual concrete syntax. textX generates a meta-model with a hier-
archical order consisting of Python classes and attributes to represent the grammar rules.
For example, steps (a) and (b) in Figure 2.14 illustrate the grammar of a Robot Instruction
language and its generated meta-model. The language defines the movement directions
and walking steps from the initial position.
Since concepts in grammar can contain their attributes and dependency on other concepts,
textX can construct the Arpeggio parser from the structure of the concepts. The parser is
a graph of Python classes that inherits ParsingExpression class (Dejanović et al., 2016, p.

24

2 Foundations

Figure 2.14: textX example workflow for processing a Robot Instruction Language. a) language grammar
specification, b) meta-model generated from the grammar, c) the source code of a Robot Instruction set,
d) the generated model (Dejanović, n.d.e).

Figure 2.15: Arpeggio ParsingExpression class and example. a) The hierarchy of PEG’s classes in Arpeg-
gio, b) The parser model of the Robot Instruction Language (Dejanović et al., 2016, p. 3).

2). Since Arpeggio is a PEG parser, which is a recognition-based system, the ParsingEx-
pression class defines eligible rules or string predicates in a meta-language‘ (Ford, 2004,
pp. 1-2). Figure 2.15 illustrates (a) the hierarchy of Arpeggio ParsingExpression class and
(b) the Arpeggio parser of the Robot grammar (Dejanović et al., 2016, p. 3).

25

2 Foundations

2. Parsing Model: the generated parser in step (a) of Figure 2.13 reads an input source code,
which is the DSL’s textual representation of the model, thereby creating a graph of Python
classes at runtime to express the concepts in the input model (Dejanović et al., 2017, p.
3). Each class in the model is an instance of the corresponding class in the meta-model.
Because this meta-model contains syntax rules (e.g., at least one element exists), it verifies
if the structure of the input model is valid and throws a corresponding syntax error in case
of constraint violation (Dejanović et al., 2017, p. 4). Step (c) and (d) in Figure 2.14 shows
how textX generates the model from a source code of the Robot Instruction language.

3. Interpreting Model: The model contains a graph of Python classes and attributes of the
concepts defined from the source code. Therefore, a program can access any concept and
its elements by traversing the model’s parse tree, thereby analyzing the extracted data to
execute a particular semantic expression (e.g., adding two numbers). For example, figure
2.16 demonstrates how to use Python to extract concepts of the model (d) in Figure 2.14
(Dejanović, n.d.e).

Figure 2.16: A Python program to interpret the Robot Instruction model using textX facilities.

textX also offers other considerable features for DSL development (Dejanović et al., 2017, p. 3),
such as (1) automatic meta-model and parser construction from a single definition; (2) automatic
resolving of model references, enabling the import of external elements (Dejanović, n.d.c); (3)
meta-model and model visualization, modifiers for (4) repetition expression and (5) grammar
rules; (6) case-sensitive/-insensitive parsing; (7) white space handling control; (8) direct support
for code comments by treating them as whitespaces; (9) object and model post-processing; (10)
grammar modularization; (11) support for debugging and error report.

26

3 Related Work

The approach of modeling CPs with DSLs can construct effective and efficient digital treatment
processes. Therefore, CP modeling witnesses numerous studies proposing different techniques
to develop DSLs. One method to classify the implementation of DSLs is to consider their rep-
resentation. From this perspective, the category of DSLs for CPs are 1) graphical, 2) textual,
and 3) a combination of both. This chapter sequentially summarizes state-of-the-art solutions in
each category with their supported CP concepts, advantages, points of improvement, and the re-
search gap that our study explores. Table 5.1 in Section 5.1 summarizes the modelable elements
in SACM and the DSLs discussed in this section.

3.1 Graphical Domain-Speci�c Modeling Languages

3.1.1 DSML4CPs - Modeling Clinical Pathways in Oncology Using
Extended MEMO OrgML Process Modeling Language

Motivation Considering existing DSMLs focused on executing workflow activities but ne-
glected financial, administrative, and human resource management concepts, Heß et al. (2015)
developed DSML4CPs to model CPs, Health Information System (HIS) aspects, and other hospi-
tal activities. Furthermore, the authors were concerned about using simple DSMLs with generic
semantics details. Although these languages relieve the users of learning and applying CP mod-
eling concepts, they do not provide comparable understandability compared to DSMLs with spe-
cialized terminologies and abstractions (Frank, 2010). Hence, the authors designed DSML4CPs
with terminologies specific tomodel Oncology treatment activities, foster communications among
stakeholders, and enable model analysis.

Method The authors follow the language designmethod of Frank (2010, 2013), which consists
of seven steps: (1) define scope, (2) analyze requirements, (3) derive specific requirements with
a collection of scenarios, (4) specify the language rules (abstract syntax), (5) formulate graphi-
cal notations of the language concepts (concrete syntax), (6) develop optional features, and (7)
iteratively evaluate and refine the developed artifacts.
Regarding the implementation, DSML4CPs leverages MEMO OrgML, a process modeling lan-
guage that supports extensions of domain concepts. The authors exert this capability to integrate
oncological treatment terminology, syntactic and semantic rules into the meta-model definition.
As a result, DSML4CPs can express CPs using OrgML graphical notations with internal con-
straint validation capability. Figure 3.1 shows a Soft Tissue Sarcoma CP expressed using ex-
tended concepts of DSML4CPs.

Strength A remarkable capability of DSML4CPs is the expression of HIS aspects, such as
medical, administrative, human, and financial resources. These elements are necessary to supply

27

3 Related Work

Figure 3.1: Excerpt of a Soft Tissue Sarcoma CP expressed in DSML4CPs (Heß et al., 2015, p. 12).

resources for the execution of healthcare services besides workflow, control flow, and responsi-
bility assignment. Furthermore, MEMO OrgML enables extensions to the DSML. Therefore,
defining new terminologies relevant to the treatment requirements is possible.

28

3 Related Work

Additionally, DSML4CPs offers an intuitive representation of CP elements. The authors ad-
justed the original graphical notations of MEMO OrgML to express diverse treatment activities
(e.g., laboratory or scanning test, diagnosis, surgery). Consequently, the instinctive icons of the
workflow elements effectively convey the activity type. The evaluation result partly unveiled the
understandability of the DSML’s UI and Oncology-specific concepts, as the stakeholders stated
that DSML4CPs fosters communications among involved parties (Heß et al., 2015, p. 13).

Research Gap Heß et al. (2015, p. 4) stated that modeling CPs of other medical domains
requires an extension of their professional terminology. Therefore, the ease of use, adaptability,
and implementation to model CPs in other medical fields is unexplored. Furthermore, e-Health
applications may need to communicate with partner systems for data integration or synchroniza-
tion, yet DSML4CPs does not support this capability. Based on these unexplored potentials,
Acadela aims to discover 1) the ability to model CPs in different medical fields as a generic
DSML and 2) support communication to external systems.

3.1.2 BPMN4CP - Modeling Clinical Pathways by Extending BPMN

Motivation Realizing the original BPMN framework cannot fully express unpredictability in
a treatment process, Braun et al. (2014, 2016) extended BPMN to include capabilities to model
parallel flow, variable flow, and necessary elements for evidence-based decisions. Besides,
the DSML can also model clinical documents and resources (e.g., Human, Medicine, Room,
Transportation) management capabilities (Braun et al., 2016). Figure 3.2 illustrates an example
BPMN4CP model of a (simplified) stroke CP.

Figure 3.2:BPMN4CPmodel of a (simplified) stroke CPwith workflow, resources and documents (Braun
et al., 2016, p. 29).

29

3 Related Work

The authors leverage the BPMN’s kernel because of the following benefits:
1. Promote tool integration, model exchangeability, and unambiguous language interpretation

with its meta-model definition
2. Extensible thanks to a structured definition and lightweight mechanism
3. Recognized by the industry and academia world
4. Qualified as an official ISO standard (International Organization for Standardization, 2013)

Method Braun et al. leverage BPMN "extension by addition" mechanism (Stroppi et al., 2011,
p. 3) to add domain-specific concepts into BPMN. Each ExtensionDefinition has ExtensionAt-
tributeDefinition to define the attributes of an Extension concept. Each ExtensionAttributeDef-
inition contains ExtensionAttributeValueDefinition to dictate the (primitive) data type of an at-
tribute. The final step is to bind the Extension element and attributes into BPMN using its Ex-
tensionDefinition.
To integrate the extended domain-specific concepts systematically, the authors adapted themodel-
transformation-based procedure model of Stroppi et al. (2011, p. 5) to formulate a 3-step process
(Braun et al., 2014, p. 2):

1. Domain Analysis and Equivalence Check: Verifying whether an extended concept is
representable by any equivalent BPMN elements. If the semantics of the domain-specific
concept is not expressible using the default BPMN elements, then create a custom Exten-
sion Concept element. Otherwise, define the extended concept as a BPMN Concept.

2. Modeling the Domain: Define the Conceptual Domain Model of Extension (CDME) as
a UML class diagram to express all the Extension Concepts and BPMN Concepts defined
in Step 1.

3. Transform the CDME to a BPMN Extension Model: Deriving the BPMN+X from
the CDME configuration. BPMN+X is a UML profile consisting of stereotypes (e.g.,
BPMNElement, ExtensionElement, ExtensionDefinition) to express the extended concepts
in BPMN.

Strength BPMN4CP supports various documents and resourcemanagement capabilities. Thus,
medical experts can have an overarching view of treatment activities, required supplies, and rel-
evant documents. Besides, the language can flexibly extend new medical concepts by defining
extra Extension objects. This feature enables the inclusion of domain concepts from different
medical fields to model their CPs. Reusability is another advantage, as it can export or import
BPMN-based medical conceptual models; hence, BPMN4CP can benefit from or export com-
patible CP models to other BPMN-based DSMLs.

Research Gap Regarding functionality, BPMN4CP does not support communication with
external systems or importing CP elements. Additionally, from the demonstrated CPs of the
extended BPMN4CP, the capability to visualize medical data and process backward variable
flow can be possible. However, the example CP models did not present this feature. Finally, the
opinion of modelers and medical experts regarding the usability and accuracy of the treatment
process is unexplored. Meanwhile, our study incorporates the feedback of the users to discover
the applicability of Acadela.

30

3 Related Work

3.1.3 BPMNSIX - Modeling Surgical Work�ow by Extending BPMN

Motivation BPMNSIX aims to model the workflow, involved medical resources, and system
operability for CPs of integrated operating rooms (ORs). (Neumann et al., 2016, 2017)

Method Neumann et al. applied the procedure of Braun et al. (2016) to define and integrate
extended OR concepts into BPMN in six steps: 1) analyze requirements based on a domain-
specific use case and literature review, 2) investigate different modeling languages to determine
their applicability in modeling CPs, 3) perform equivalence check to identify Extensions to the
original BPMN notations, 4) define a CDME as UMLDiagram to 5) create an abstract syntax by
transforming the CDME into a valid BPMN extension model, and 6) define the concrete syntax
with graphical notations for the extended concepts (Neumann et al., 2016, p. 3).
TheOR concepts which BPMNSIX models are Surgical Activities, which includesActuator (role),
Used Body Part, Surgical Action, Anatomical Structure, and Used Resource or Instrument; Sur-
gical Phase composes of Surgical Activities; Intervention is the lowest granularity level that com-
prises Surgical Phases; Process Flow covers 1) Parallel Flow execution of simultaneous tasks,
2) Exceptional Treatment contains irregularities and complications in the treatment process, and
3) Resource Exception specifies resource unavailability (Neumann et al., 2016, pp. 3-4). Figure
3.3 demonstrates a cataract surgery CP expressed in BPMNSIX (Neumann et al., 2017).

Figure 3.3: BPMNSIX model of a cataract surgery process and a part of Phacoemulsification subprocess

Strength BPMNSIX has similar advantages to BPMN4CP, which enables the definition and
reusability of future domain concept extensions. In addition, the DSML demonstrated its ca-
pability to model backward variable flow. In conclusion, BPMNSIX can model relevant aspects
from workflow activities to resource management in CPs for ORs.

31

3 Related Work

Research Gap Similar to BPMN, BPMNSIX did not explore the usability of the language from
the modelers’ perspective. Additionally, external communication and importing CP elements are
not mentioned in the features of BPMNSIX .

3.2 Textual Domain-Speci�c Language

3.2.1 FCIG - Modeling Clinical Guidelines using Xtext

Motivation Realizing Electronic Medical Records (EMRs) depends on clinical decision sup-
port guidelines to improve care quality, reduce medical errors and facilitate decision-making
processes. Msosa (2018, 2019) developed a framework named FCIG to model and maintain
Clinical Practice Guidelines (CPGs) in the form of Computer-interpretable Guidelines (CIGs).
The CIGs aim to support clinical information systems of low- and middle-income countries.
The study focused on modeling two CPGs adapted by the World Health Organization (WHO),
namely Integrated Guidelines of the Management of HIV and Integrated Management of Child
Illnesses.

Method First, the author identifies the semantics for CIG elements. Specifically, each CIG is
a Guideline containing a list of Recommendations. Each Recommendation has a list of Condi-
tions and Actions. A Condition has a DecisionVariable (type String), Relator (e.g., "is", <, ≥),
and VariableValue, which is a number, String, or boolean value. An example of a Condition is
"HIV rapid test result is negative". An Action has an ActionVerb to denote a function and an
ActionVerbComplement to specify the object. For instance, in the "Prescribe regimen 4" Action,
"Prescribe" is the Action Verb, and "regimen 4" is the ActionVerbComplement. The author then
built the abstract syntax from the above semantics.
To implement the concrete syntax, Msosa (2018, p. 73) leveraged the Xtext1 framework to build
grammar rules for FCIG. In addition, the DSL has an IDE to support modelers in defining CIG
elements. Figure 3.4 shows an example of the HIV CIGs model expressed in FCIG.
For the evaluation of FCIG, the author invited 6 experienced and 13 novice CIG modelers and
presented the three primary grammar constructs (Recommendation, Condition, Action). Then
the participant followed a link to evaluate the language by completing a System Usability Scale
(SUS) Questionnaire. The SUS mean scores of the experience and novice modelers are 89.17
and 79.23, respectively.

Strength The SUS score implies FCIG is user-friendly to both novice and expert modelers.
From this observation, the language syntax and IDE can potentially increase productivity and
user experience. The reason is that FCIG is learnable to both experts and apprentices. When
combined with IDE features such as syntax highlighting or auto-completion, the modelers can
efficiently construct CIGs.
Another advantage of FCIG is its ability to model alternative treatment paths thanks to the con-
ditional activation of medical interventions. This ability supports parallel flows, backward and
forward variable flows as multiple simultaneous activities can be repeated whenever their condi-
tions are satisfied.

1Xtext: https://www.eclipse.org/Xtext/

32

https://www.eclipse.org/Xtext/

3 Related Work

Figure 3.4: A CIG model (left) and its outline (right) in FCIG IDE

SinceXtext can express FCIGmodels in the Ecoremeta-model of Eclipse EMF2, the CIGsmodels
of the DSL are reusable in a different system that utilizes Ecore to construct CIGs.

Research Gap Regarding the language functionality, the ability to send requests to external
systems is unexplored in FCIG. For example, the language may need a different construct to
request APIs if a clinical guideline needs medical guidance from another service. In addition,
a difference between Acadela and FCIG is that Acadela needs to support the visualization of
medical data, which is not in the scope of FCIG. Furthermore, Acadela has a constraint validator
to help users identify and fix syntax and semantic errors in their code.
Concerning the usability of FCIG, in the DSL evaluation, the modelers participated in a paper-
based session to review FCIG grammar. This result demonstrates that the participants can under-
stand the language, yet it does not expose their ability to command and apply FCIG. In Acadela,
we examined the usability of modelers by presenting a modeling scenario such that they have to
use the IDE features to model missing elements of a CP. This context demonstrates that partici-
pants can understand and use the language to execute their modeling tasks.

3.2.2 Prescriptive Grammar for Clinical Describing Work�ow

Because the paper is not freely and fully accessible, we could only gain limited insights into the
language implementation, strength, and research gap.

2EMF: https://www.eclipse.org/modeling/emf/

33

https://www.eclipse.org/modeling/emf/

3 Related Work

Figure 3.5: A prescription workflow that the DSL models.

Motivation Clinical experts are working on various tools that are cumbersome and not seam-
lessly integrated into each other, leading to disconnected and inflexible prescription workflows.
Therefore, Kauranen et al. (2019) developed a textual DSL to simultaneously model a clinical
prescribing process and maintain the Electronic Health Record (EHR).

Method The DSL uses a Parser Combinator Grammar (PCG) to directly and indirectly map
medical concepts to a syntax. Additionally, there is a custom IDE for medical experts to create
their prescriptions. Finally, the result of the process is stored in the EHR under HL7 standard.
Figure 3.5 illustrates the prescription process that the DSL models.

Strength HL7 is a standardized format used in multiple HISs. Hence the model produced by
the DSL is potentially compatible or reusable in different e-Health applications. Furthermore,
textual DSLs are extensible by defining new sub-grammar to represent extended medical con-
cepts.

Research Gap The ability to model various CPs in different medical fields is unexplored. Ad-
ditionally, the demonstrated prescription workflow is a linear process. As a result, the possibility
of modeling parallel or repeated activities is not yet illustrated. Furthermore, medical experts
may need to consult external services to learn about side effects or chemical interactions among
medicines. However, it is unclear if the language supports this capability. Meanwhile, Acadela
provides constructs to define the CP data, triggered event, HTTP method, and response error
message for external requests.

34

4 Smart Adaptive Case Management

(SACM)

Integrated care is a widely recognized approach to providing patient-centered treatment. How-
ever, medical facilities need more effective software solutions to address concerns in practicing
integrated care. Alternatives to using e-Health systems are paper-based methods that hinder
effective collaborations among professionals; meanwhile, hardwiring a workflow engine in a
frontend environment requires a remarkable effort to evolve the model for handling treatment
variations continuously (Michel, 2020, p. 3). Therefore, Felix Michel (2020) developed SACM
as a meta-model-based ACM for Integrated Care (ACM4IC) that incorporates case-based col-
laboration, adaptive modeling, and customization of treatments.
In our study, SACM is the e-Health application that provides CP definition, execution, and man-
agement features. Therefore, Acadela demonstrates its potential to model CPs in e-Health sys-
tems by compiling CP definitions in Acadela to a SACM format, such that SACM executes the
CPs having the expected behaviors. In other words, CPs defined in SACM function correctly as
CPs defined in Acadela. However, Acadela implements several optimization features to enhance
the CP modeling process.
First, SACM defines meta-models of the treatment templates using XML, which contains re-
ducible elements (e.g., opening and closing tags, declaration of the default path reference that
can be automatically inferred). Furthermore, the XML templates are not modularizable, i.e.,
they cannot import an element from an external XML file. For these reasons, Acadela aims to
optimize the definition of treatment meta-models with a more concise, reusable DSL that is user-
friendly and learnable to modelers. In parallel, Acadela also visualizes the treatment pathway as
a shared artifact to foster communication between technical and medical experts.

4.1 Problem Description

Integrated care is a practice that promotes multidisciplinary medical professionals, patients, and
carers to collaborate in providing patient-centric treatments using integrated technological so-
lutions. Additionally, integrated care empowers patients for self-management and continuously
monitors their activities to propose the corresponding recommendations and suggestions (Vargiu
et al., 2017). Operating an integrated care environment requires the system design to addressmul-
tidimensional challenges; the following three concerns are significant and prevalent difficulties
in developing integrated care systems:

1. Highly Context-dependent, Unpredictable Treatments: Hollingsworth (2010) states
that interactions among medical conditions, medications, and treatments result in inde-
terministic care procedures. Furthermore, due to interruptions, unpredictability, and tight
collaborations, treatment paths are context-dependent and do not have predefined strategies
to achieve the care goal (Horsky et al., 2005). Additionally, medical professionals need to
include the latest medical knowledge or evidence-based practices to handle variations in

35

4 Smart Adaptive Case Management (SACM)

the treatment process (Garde & Knaup, 2006). Therefore, medical facilities require a ver-
satile system that can efficiently adapt treatment executions based on the patient case’s
context.

2. System Interoperability and Semantic Information Exchange: Integrated care system
involves a diverse range of healthcare services, leading to a complex system design. The
intricate system landscape poses challenges in coordinating the services, i.e., sharing infor-
mation necessary for an efficient healthcare operation. Furthermore, progressively special-
izing in disease-focused medicine contributes to service fragmentation which jeopardizes
holistic care principles (Valentijn et al., 2013).

3. Coordination across Multiple Organizations and Different Roles: Patient treatment is
a knowledge-intensive process that usually involves the coordination of multidisciplinary
professionals from diverse organizations. Overlooking the communication among experts
can increase health resource consumption and might adversely affect the treatment out-
come of patients (Garde & Knaup, 2006). In contrast, precise and immediate communica-
tion is a critical factor in delivering treatments (Horsky et al., 2005).

Figure 4.1 demonstrates the collaboration problem in an integrated care environment without
integrated tool support on the left and with integrated tool support for care professionals on the
right. Depending on the healthcare system, medical professionals can be distributed across mul-
tiple organizations (e.g., in Spain) or be concentrated in one organization (e.g., Israel). Given
that medical treatments usually record patient conditions in questionnaires, uncoordinated doc-
umentation of patient data can lead to redundant evaluations. Consequently, the care process
contains slightly different results, hence drawing diverse conclusions for the case. Furthermore,
uncoordinated execution of concurrent therapies in chronic disease treatments can lead to un-
desirable side effects. Therefore, integrated care must exchange semantic information across
organizations and foster collaboration among healthcare professionals to enable contextualized
and patient-oriented treatment.

Figure 4.1: Visualization of the problem in the Integrated Care Environment without integrated tool sup-
port (left). Each organization stores medical data independently, leading to redundancy and uncoordinated
analysis of the patient’s medical status, potentially resulting in undesirable outcomes. An integrated care
environment empowered by integrated tools (right) can offer consistent documentation of critical data,
thus fostering collaboration and communication among care professionals throughout the care process.
(Michel, 2020, p. 3)

To address the above challenges, FelixMichel develops SACMwith the following features:

36

4 Smart Adaptive Case Management (SACM)

1. Adaptive Case Management: One core principle of ACM is promoting knowledge work-
ers to apply their knowledge and experience to handle changing circumstances (Swenson
& Palmer, 2010). This doctrine is particularly suitable for medical treatments as medi-
cal professionals can adapt the treatment activities to tackle unprecedented variants of the
treatment process. SACM supports this ability by defining treatment-specific case tem-
plates containing mandatory and optional care activities. Therefore, medical professionals
can adaptively conduct patient-centric treatments at runtime, i.e., selecting the necessary
treatment tasks depending on the medical condition of an individual patient or the occur-
rence of unpredictable situations.

2. Purely Meta-model-based Integration Patterns: SACM enables the configurations of
all system layers by modifying the corresponding meta models (Michel, 2020, p. 33).
In other words, developers change data schemata, process models, discretionary access
rights, and user interface models by adjusting the meta-model of the case. This feature
offers flexibility in adapting to the desired needs of the treatment as developers do not
have to modify any application code; but rather adapt the meta-models accordingly.

3. Incorporation of Case-based Collaboration Capabilities: Integrated care treatments re-
quire coordinating medical professionals across different medical departments to manage
various aspects of the care process. For this reason, SACM offers communication features
to support medical experts in 1) recording data, 2) exchanging case information, 3) assign-
ing tasks based on the roles of the involved medical experts, 4) receiving notification of
any adversary or critical medical status, and 5) summarizing critical medical data of the
patient case (Michel, 2020, pp. 38-39).

The following subsection further describes the specific requirements and motivations to realize
the three features of SACM.

4.2 Requirements

Based on literature research, Michel (2020, p. 33) designs SACM to conform to the following
non-functional requirements:

1. Operating as a Software as a Service (SaaS) System that supports multi-tenancy.
2. Applying Container-based Deployment using Docker to provide a reliable and fast de-

ployment process (Bernstein, 2014, pp. 82-83).
3. Providing API Interfaces to support system interoperability and extendability.

Additionally, Michel (2020, pp. 33-39) identifies three high-level functional requirements to
develop an ACM software system. This section presents the decomposition of these require-
ments.

4.2.1 R1: Support a Purely Meta-Model-Based Approach

Innovative ACM requires a swift and flexible case configuration to address treatment evolution
promptly. Therefore, modeling case templates as meta-models is a potential approach because
meta-model-based systems enable adaptive and consistent case modification to the needs of med-
ical experts without changing the application code (Matthias, 2011). In other words, case ele-
ments such as data schemata, workflow model, discretionary access rights, and appearance of
case items are directly configurable by updating their attributes in the case meta-model. Upon its

37

4 Smart Adaptive Case Management (SACM)

completion, the modified case meta-model is ready to use without redeploying the system. As
a result, modelers and care professionals can efficiently collaborate to create or adapt case tem-
plates and operate them afterward. To realize this benefit, a meta-model in SACM shall support
the definition of the following models:

R1.1: Data Schema Models

Requirement: SACM must model the data generated during the case execution or data re-
turned from an interaction with a third-party system. An example of the latter is a patient profile
and medical conditions returned from a hospital information system. (Michel, 2020, p. 34)

Motivation: Case Management integrates data into process executions (Hauder et al., 2014a,
p. 99). To support this characteristic, The CMMN CaseFileItem element stores case data di-
rectly inside the case or as references to information sources (Object Management Group, 2016,
p. 22). Those referable data sources can be objects or files that encapsulate data. This feature
enables reusable and nested data structures, as one can define the reference to a parent or child
data source (Object Management Group, 2016, pp. 22-23). The data stored in these referable
objects can be structured or unstructured, simple or complex, such as key-value pairs or unstruc-
tured XML documents. To model elements in integrated care treatment, SACM leverages the
CMMN concepts and nested, reusable data structure while adding extensions to model concepts
not defined in CMMN, e.g., HttpHook for sending HTTP requests to external services.

R1.2: Adaptive Process Models

Requirement: The system shall define adaptive treatment templates that are customizable to
the requirements of hospitals or specific treatments. The system should define care processes
using Adaptive Case Management as the reference methodology. These processes shall be syn-
chronizable to other systems for supporting integrated care. (Michel, 2020, p. 34)

Motivation: Clinical processes comprise both structured, predefined procedures and indeter-
ministic treatment paths. Meanwhile, the essential capability of ACM is managing processes
containing both unpredictable execution paths and deterministic business workflows. ACM pos-
sesses this ability by incorporating the structuring concepts of traditional workflows into itsmech-
anism (Burns, 2011). Figure 4.2 illustrates the four different categories of processes based on
their degree of structure.
According to the classification method, structured processes do not permit exceptional execution
paths during the process. A Structured process with Ad-hoc exceptions and unstructured pro-
cesses with predefined fragments are typical for ACM because they allow alternative execution
paths to handle unpredictable situations. Meanwhile, unstructured processes execute activities
spontaneously. In general, processes exchange a high degree of flexibility and knowledge intensity
with a lower degree of automation and predictability, and vice versa.
CMMN supports modeling this ACMbehavior of deviating from a structured process or selecting
suitable activities thanks to the Sentry element (See Section 2.3.2). A Sentry activates Stage(s)
or Task(s) based on a conditional expression. Since CMMN Stage can contain both structured
process fragments with predefined workflow and optional activities, a Sentry applied to a Stage

38

4 Smart Adaptive Case Management (SACM)

Figure 4.2: Degree of process structure according to Michel et al. (adapted from (Di Ciccio et al., 2012))

can trigger an exceptional execution path. Additionally, modelers can construct unstructured
processes using the Discretionary Stage/Task. Applying CMMN concepts of Sentry, Discretionary
Stage/Task, and Plan Stage/Task enables runtime planning (Kurz et al., 2015, p. 4), which is
essential for handling unpredictable circumstances (Hauder et al., 2014a, p. 104; Kurz et al.,
2015, p. 3).

R1.3: Support Role-Based and Discretionary Access Right Model

Requirements: The system needs to support granular role-based and discretionary access
control mechanisms to enforce who can access which patient cases. Additionally, the system
must assign clinical tasks based on user roles. (Michel, 2020, p. 35)

Motivation: Executing each patient case in integrated care pathways involves the collaboration
of multidisciplinary care professionals (White, 2009). However, each care team member may
have a different level of involvement (Burns, 2011). Therefore, processes shall support defining
responsibilities of each professional, such that they can 1) execute designated medical interven-
tions and 2) access authorized sensitive medical data of the patient while ensuring data privacy
(Michel, 2020, p. 35).
A crucial factor for role-based and discretionary access control is transparent responsibility.
This characteristic specifies the designated authority of all caseworkers, hence facilitating the
collaboration among them (Herrmann & Kurz, 2011; Kurz, 2013, pp. 89-90; Hauder et al.,
2014b, p. 26). Specifically, authorized case workers can properly assign others to execute a new
activity as they know the other users’ roles. Therefore, the system shall support granting access
to case activities dynamically at runtime. As a result, knowledge workers can influence and
adapt various case aspects at their discretion and perspective within their designated authority
(Kurz, 2013, p. 90).

39

4 Smart Adaptive Case Management (SACM)

Regarding the access control, the system shall support the definition of read, write, and owner
access level for each responsible care professional of the case.

R1.4 Support Simple User Interface Models

Requirements: The user interface must represent each model element using a generic model-
based approach while supporting simple layout designs to display tasks. Furthermore, "the de-
fault representation must be overridable with a declared special representation to support dedi-
cated clinical use cases and ensure extendability" (Michel, 2020, p. 36).

Motivation: Tractinsky et al. (2000, pp. 139-140) discovered strong correlations between the
user’s aesthetic perception of an interface and their usability perception of a system. In other
words, a beautiful user interface is an indispensable factor in engaging users to interact with the
system. Furthermore, software quality also remarkably affects the usability and acceptability
of the system (Suduc et al., 2010, p. 145). To enhance the quality, the system shall support
handling variations in clinical processes, which requires incorporating exceptional elements into
the representations. Therefore, it is crucial to support display customization to reflect deviation
from the default representation. This feature minimizes the efforts to design and manage multiple
static layout designs. In addition, modelers can adapt the representation to display data or visual
elements generated by the deviated execution. The adapted visualization helps medical experts
view both the default and exceptional data to analyze and handle the case.

4.2.2 R2. Integration with External Services

Patient-centric treatments in integrated care mainly depend on aggregated information (Michel,
2020, p. 36). In this context, non-integrated information sources interrupt the work of knowledge
workers (care professionals) and postpone complying activities (Matthias, 2010). Therefore,
SACM should 1) support the integration of external data sources to prevent duplicate data and
allow access to legacy or shared information and 2) orchestrate processes in third-party systems
to incorporate or trigger external events during the treatment execution.

R2.1: Support External User Identity Management

Requirements: The system shall provide a Single Sign-On to authenticate care professionals.
Therefore, the system shall support external user identity management. Furthermore, the sys-
tem should persist foreign identifiers of external data as internal primary keys to simplify the
integration.

Motivation: The microservice architecture is a widely used strategy to address the separation
of concerns. Applying microservices to the medical context requires most services to authenti-
cate and authorize users. This access control mechanism is necessary to govern the interactions
with confidential patient data (Michel, 2020, p. 37). A centralized user identity management sup-
ports the realization of 1) a consistent authentication policy across microservices and 2) a Single
Sign-On strategy that enables users to authenticate once with a central authentication author-
ity; thus, they can access permitted and protected resources afterward without re-authenticating

40

4 Smart Adaptive Case Management (SACM)

(De Clercq, 2002, pp. 40-42). A successful login to the central authentication authority typ-
ically generates encrypted tokens, which are returned to the client and included in subsequent
requests to microservices (Bánáti et al., 2018, p. 1183). The case execution engine of the system
should manage the case authorization because the authorization policy primarily depends on the
instantiated case.

R2.2: Support Process Orchestration of Third-Party Systems

Requirement: The system shall support the orchestration of external systems to provide inte-
grated care services. Therefore, SACM shall seamlessly integrate with external system processes
(e.g., patient self-management process) to provide aggregated process information for care pro-
fessionals.

Motivation: Organizations possess legacy systems that are crucial in any offered solutions.
However, core aspects of case management that require interaction with the legacy systems have
a low degree of automation (White, 2009, p. 11; Kurz et al., 2015, p. 4). Therefore, seamless in-
tegration with existing systems is necessary for effective case management (White, 2009, p. 11).
Furthermore, case management needs to support external events affecting the case’s decision-
making. For example, an external service notifies a case management system when the monitor-
ing data of a patient exceed a certain threshold. Therefore, ACM systems require an integrated
process orchestration for interoperability with existing systems (Kurz et al., 2015, p. 4).

R2.3: Support Semantic Integration of External Data Sources

Requirement: Hospital information systems operate using extensive amounts of patient data.
Therefore, system architecture shall enhance internal data with external data sources.

Motivation: One or several integrated HISs typically manage patient information to prevent
inputting data multiple times (Michel, 2020). However, information distributed across multiple
systems increases the complexity for caseworkers (Matthias, 2010). Case management has a low
degree of automation; Nevertheless, it typically requires data from legacy information systems
to operate (White, 2009, p. 11). In this case, caseworkers usually copy-paste data from one
system to another; or manually transfer documents to their colleagues. Therefore, efficient case
management systems should seamlessly coordinate and integrate diverse supporting systems.
This ability reduces data duplication and manual handoffs in the current operation and supports
the development of future solutions (White, 2009, p. 11).

4.2.3 R3: Support Communication and Coordination

Integrated care typically consists of care teams distributed across different organizational bound-
aries. Each team comprises multidisciplinary specialists that are responsible for certain aspects
of the case treatment. During the case handling, the team documents the results, discusses pos-
sible treatments, and coordinates with colleagues to provide the solutions (White, 2009, pp. 4,
11). Since care professionals make decisions based on advice and knowledge exchange (White,
2009, p. 4), active information exchange is vital in managing cases.

41

4 Smart Adaptive Case Management (SACM)

R3.1: Support Process Contextual Notifications

Requirements: Care professionals can prescribe patients specific tasks via a third-party sys-
tem, e.g., measuring blood pressure every morning. The system should notify the responsible care
professionals when the blood pressure exceeds an individually specified threshold. When encoun-
tering unforeseen technical situations, the system should also notify professional users.

Motivation: Knowledge-intensive processes must handle unpredictable circumstances that
may require manual exception handling. Since tight information integration is critical for ef-
ficient case management (Matthias, 2010), the system must directly link notifications to their
triggered process element or task. Only the case owner and care professionals responsible for
the process should receive the notification to avoid unnecessary distractions to other casework-
ers.

R3.2: Support Direct Case-Based Communication

Requirement: The system shall support information exchange with case-based professional-
to-professional messages; thus, all involved care professionals can follow ongoing conversations.
The system shall support direct communication with the patient in a separate conversation to
provide integrated care.

Motivation: Knowledge workers typically use various tools (e.g., communication, workflow
management applications) during the case execution (Motahari-Nezhad & Swenson, 2013, p.
264), including email-based applications as an established communication channel; and chat
functionality to support casemanagement and collaboration (Motahari-Nezhad&Swenson, 2013,
p. 267). Furthermore, the system requires tight integration between authentication and case-
based authorization to control access to sensitive patient information in the cases.

R3.3: Support Unstructured Case Notes

Requirement: The system needs to provide a wiki-based notes area for professionals to doc-
ument unstructured information collaboratively. Additionally, the system should provide indi-
vidual predefined templates depending on the case definitions.

Motivation: ACM shall organize all case-related information efficiently and easily accessible,
given that decoupled information may be lost or unavailable when required (McCauley, 2011).
Furthermore, the system should enhance flexibility by supporting optional template declaration
to customize case notes for dedicated treatments (Michel, 2020, p. 39).

R3.4: Support Case-Template Specific Summaries

Requirement: The case template must support declaring summary sections to provide a case-
specific overview. The summary sections assist professionals in quickly identifying a patient’s
status based on crucial case information.

42

4 Smart Adaptive Case Management (SACM)

Motivation: Kurz et al. (2015) states a requirement to visualize the case progress to help case-
workers identify case aspects of their designated tasks. According to Michel (2020, p. 39),
reporting the case progress using simple generic metrics does not sufficiently represent the ac-
tual state and case progress. Although mathematical metrics may express the percentage of
completed tasks, they cannot sufficiently incorporate subsequent activities that are dynamically
added during runtime planning. Nevertheless, case workers gain insight into the progress of a
case from its existing data (White, 2009, p. 11). Therefore, the system shall support the decla-
ration of case-specific summary sections to represent critical case information, thus expressing
the case progress as transparently as possible (Michel, 2020, p. 39).

R3.5 Clarify Needed Contribution

Requirement: For every case, professionals need to complete their assigned activities. Since
professionals are traditionally responsible for multiple cases, the system shall provide a dash-
board to indicate which case needs contributions from the professionals.

Motivation: The collaborative and knowledge-intensive characteristics of case works imply
the need for documenting various individual decisionsmade by caseworkers. For all caseworkers,
their needed contribution and responsibility must be transparent to ensure the completion of
case works (Herrmann & Kurz, 2011; Kurz, 2013, pp. 89-90; Hauder et al., 2014b, p. 26).
Furthermore, the system shall allow the update of caseworker responsibilities to represent their
actual duties in the case execution (Michel, 2020, p. 39).

4.3 Architecture

To articulate the design of SACM meta-model-based architecture, Section 4.3.1 describes the
hierarchical layers and their functionality in the SACM backend. Furthermore, Section 4.3.3 il-
lustrates the integration of SACM into CONNECARE, a European-funded integrated care appli-
cation for chronic diseases used by four medical institutions in the Netherlands, Spain, and Israel.
The CONNECARE integrated environment demonstrates how SACM collaborates with a central
authentication authority and another subsystem to deliver a health monitoring service.

4.3.1 Conceptual Layers of SACM Backend

Figure 4.3 illustrates the latest version of the eight-layer architecture of SACM (Hernandez-
Mendez et al., 2018, pp. 263-266). In summary, a single relational database stores all persisted
data. These data enable linking elements of different conceptual layers to create a domain ontol-
ogy. The backend exposes publicly accessible functionality via a RESTful API which authorizes
requests based on roles and access rights. In this hierarchy, the higher conceptual layer provides
higher abstracted functionality by leveraging the capabilities of the lower layer. This section
successively describes each layer in detail regarding their roles in ACM. Each layer has a desig-
nated color to demonstrate its association with a given functionality or meta-model element (See
Section 4.4). The description begins from the lowest to the highest layer.
◼Annotated Versioned Linked Content Graph: According toHernandez-Mendez et al. (2018,
p. 264), this layer supports versioned data storage and ensures the system can store revisions of
semi-structured data as entities (e.g., JSON Objects) and references between them. The ratio-
nale is that organizations already apply structured or unstructured data in their operation; thus,

43

4 Smart Adaptive Case Management (SACM)

Figure 4.3: Conceptual architectural layers of SACM (Hernandez-Mendez et al., 2018, p. 263)

the system needs to import an evolvable, schemaless set of semi-structured data initially (e.g.,
Excel sheets, Wiki pages with embedded tables and media). This layer supports the data-first
(schema-second) data modeling approach (Büchner, 2007).
◼ Multiple Dynamic Schemata: Thanks to this layer, users can collaboratively structure their
information over time by adding or removing schema constraints containing relationship and car-
dinality restrictions (Hernandez-Mendez et al., 2018, p. 264). Therefore, a data schema is a set of
constraints applied to a flexible and evolvable content graph; rather than a container to store data
subsequently (like a SQL Database). However, this implies that data can contain inconsistencies
during the system evolution, which can be resolved collaboratively without leaving the system
scope (Büchner, 2007; Matthes et al., 2011).
◼ Role-Based and Discretionary Access Control Models: This layer addresses the security
concerns in enforcing access rights in the system. The security model comprises internal or
external users and groups of an organization. The access rights (administrator, editor, author,
and reader roles) are defined initially at the Workspace level. They can be overwritten (loos-
ened or tightened) at the Entity level to guarantee secure access to the data stored in the system.
(Hernandez-Mendez et al., 2018, p. 264)
◼ Advanced Search and Indexing: On this layer, the unstructured data (i.e., long texts or hy-
pertexts) is linked to the semi-structured data (using parsing and full-text indexing technologies).
This mechanism is a core element of the HybridWiki approach (Matthes et al., 2011) and lays the
groundwork for natural language processing techniques and model discovery processes. The ra-
tionale behind this design is that not all the data in the enterprise are structured or semi-structured,
and the system should be able to use all possible data formats without the need for an upfront
structuring process. This layer’s description originates from Hernandez-Mendez et al. (2018, p.
264).
◼ Higher-Order Functional Language: According to Hernandez-Mendez et al. (2018, p. 265),
this layer introduces a strongly-typed query language (similar to LINQ - (Meijer et al., 2006)) to
access all the structured information in the information system. The language allows 1) adding
computed results as attributes of Entities (i.e., Derived Attributes) and 2) executing operations
(e.g., Map, Reduce, and Join) over collections of Entities. The rationale is to offer the users a
flexible mechanism to extract knowledge from the stored data, which is not limited by the basic
API of the system, and allows the users to create adaptive and tailored data views based on
individual information requests (Reschenhofer & Matthes, 2016, p .98).

44

4 Smart Adaptive Case Management (SACM)

◼ Case-Based Process Models: Hernandez-Mendez et al. (2018, pp. 265-266) states that this
layer enables the user to define knowledge- and data-intensive processes following the adaptive
case management paradigm introduced by Swenson and Palmer (2010). SACM uses and adapts
the CMMN 1.1 (Object Management Group, 2016) specification as a reference to create the con-
ceptual design (Michel, 2020, p. 43). According to Michel (2020), a modeler can define Stages,
Tasks, and Sentries to declare a collaborative process. Each task links to one or multiple read-
only or writable attributes. The design enables modelers to define and dynamically instantiate
standard processes or reusable process fragments when needed. Modelers declare case templates
with required data structures as XML files. Afterward, modelers import these files into the sys-
tem for execution.
◼ Case Execution Engine: This layer manages the information regarding 1) the states of all case
instances being executed in the system, 2) the links to the shared or case-local data, and 3) the
actors involved in a case (Hernandez-Mendez et al., 2018, p. 266). Moreover, the case execution
engine enforces the access control policies defined in the access rights layer. Meanwhile, the data
management layer keeps an audit trail of the executed steps and data modifications (Hernandez-
Mendez et al., 2018, p. 266). The rationale is tomonitor the executed steps in the process and how
the users accomplished the case. These data are helpful for future analyses, such as compliance
auditing or prediction. In SACM, this layer provides communication and coordination features,
such as case-based messaging, notes, and alerts (Michel, 2020, p. 43).

Figure 4.4: Capabilities ordered by conceptual layers. Solid lines represent the usage of a specific capa-
bility. Dashed lines represent extended functionality. Adapted from Hernandez-Mendez et al. (2018, p.
265) by Michel (2020).

45

4 Smart Adaptive Case Management (SACM)

◼ Simple User Interface Models: According to Michel (2020, p. 43), this layer enables custom
data representation on the user interface. The schemata layer provides basic data types, with each
data type being bound to strictly one generic readable and writable representation. In addition,
this layer supports overriding the default representation and grid layout option to provide a custom
data representation.
Figure 4.4 illustrates the capabilities of each layer and their usage or extension relationships
(Hernandez-Mendez et al., 2018, p. 265). The color of an element or capability represents its
association with a layer in Figure 4.3. Section 4.4 further describes the hierarchy and features of
the conceptual meta-model.

4.3.2 The CONNECARE Project

The decision support and case management features of SACM power the operation of the Per-
sonalized Connected Care for Complex Chronic Patients research project (CONNECARE). The
European Union’s Horizon 2020 research and innovation program funded 5 million Euros for
CONNECARE under grant agreement No. 698802 from April 2015 to December 2019. The
project seeks to provide integrated care solutions for patients with chronic diseases.

Objective: CONNECARE aims to improve care coordination and self-management of Com-
plex Chronic Patients (CCPs) by co-designing, developing, deploying, and evaluating a novel in-
tegrated care services model supported by a smart and adaptive case management system (Vargiu
et al., 2017). A CCP is "a patient with at least one chronic diseases, comorbidities, frail (due to
social, economic and/or clinical factors), usually elderly, and who consumes a very high level of
health resources" (Vargiu et al., 2017). An estimation of over 40 percent of all hospital admis-
sions is required to provide the healthcare needs for CCPs.

Consortium: The CONNECARE comprises four clinical and five technical partners. The fol-
lowing clinical partners executed implementation studies within their hospitals: 1) University
Medical Center Groningen (UMCG), located in Groningen, Netherlands. 2) AssutaMedical Cen-
ters (ASSUTA), located in Tel Aviv, Israel. 3) Institute de Recerca Biomèdica de Lleida Fundació
Dr Pifarré (IRBLLEIDA) located in Lleida, Spain. 4) The Consorci Institut D’Investigacions
Biomediques August Pi i Sunyer (IDIBAPS), located in Barcelona, Spain.
Meanwhile, the following technical partners developed or provided information technology so-
lutions to perform the implementation studies: 1) Eurecat Technology Center (EURECATE),
located in Barcelona, Spain. 2) Technical University of Munich (TUM), located in Munich, Ger-
many. 3) Advanced Digital Innovation UK Ltd (ADI), located in West Yorkshire, United King-
dom. 4) Università degli Studi di Modena e Reggio Emilia (UNIMORE), located in Modena,
Italy. 5) eWave, located in Tel Aviv, Israel.

Stakeholders: Figure 4.5 demonstrates the CONNECARE vision to orchestrate patients, in-
formal carers (e.g., patient relatives), and responsible professionals across organizational bound-
aries who conducted the patient-centric treatment (Michel, 2020, p. 135). Clinical partners
of the projects further classify professionals into hospital staff, specialist doctors, primary care
doctors, and social workers. The system must coordinate patient-centric treatment among all
professionals involved and communicate the treatment to the patient.

46

4 Smart Adaptive Case Management (SACM)

Figure 4.5: High-level project vision. The Smart Adaptive Case Management provides care services
with its collaborative, purely meta-model-based approach enriched with clinical decision support (Michel,
2020, p.135).

Patient-centric Treatment Operation: The regional execution of the collaborative man-
agement of CCPs follows a protocol described by Cano et al. (2017). Implementing the protocol
requires supporting professionals with different integrated care concepts, such as telemonitoring,
self-management, and decision support (Michel, 2020, p. 135).
Specifically, telemonitoring assists in the inceptive detection of anomalies, enabling pre-emptive,
immediate care activities. The Self-Management System (SMS) empowers patients to participate
in care activities actively; record their medical, mental, or physical conditions through question-
naires and tasks execution; and communicate with the responsible care professionals (Vargiu et
al., 2019). Therefore, the SMS is crucial for medical institutions to monitor health conditions
and understand the concerns and satisfaction of the patients (Vargiu et al., 2018, 2019).
Meanwhile, the decision support system 1) assists professionals in risk assessment and stratifi-
cation to focus on acute cases, 2) visualizes patients on a map based on their health conditions,
barriers to treatment (e.g., anxiety, low income), optimal route for a home visit, and relevant
medical facilities, and 3) design CP using customizable templates (Mariani et al., 2019). The
system also provides a recommender to communicate the patient’s adherence to treatment and
engage patients to play an active role in their care process (Fernández et al., 2017, p. 2; Mariani et
al., 2019). As a result, the project vision forms a three-dimensional care paradigm that includes
a medical organization, care services, and an underlying technological infrastructure (Michel,
2020, p. 135).

4.3.3 SACM-CONNECARE Integration

In the CONNECARE project, SACM serves as a component that provides the case management
and decision support features to medical professionals via a web-based UI. Figure 4.6 illustrates
the CONNECARE architecture with user roles, components, and neighbor systems. The remain-
der of this section describes the purpose of each component in the system.

SACM: With an ACM4IC engine, SACM provides core backend functionality such as case
management, external system communication, and collaboration features as described in the Re-

47

4 Smart Adaptive Case Management (SACM)

Figure 4.6: The CONNECARE system architecture adapted from (Michel & Matthes, 2018, p. 17).
ACM4IC Components are highlighted with a dot in the upper right corner (Michel, 2020, p. 141)

quirement Section (See Section 4.2). ACM4IC is a Java application that supports modeling ca-
pabilities across different conceptual layers (e.g., case entities, access control, UI), as Figure 4.6
illustrates. The purely meta-model-based approach of SACM enables reusing individual compo-
nents in different contexts, such as data representation in the frontend or integration with existing
systems. Additionally, SACM contains a decision support system to provide supplemental risk
information for a patient.
SACM exposes the backend functionality of those layers via a JSON-based API. Therefore, a
Single Page Web Application powered by Angular version 5.2.10 accesses the backend API to
provide the features for medical professionals.

SMS: The users of SMS are patients. The backend of SMS consists of microservices to provide
self-management features, e.g., patient monitoring prescriptions. The patients use the features
via an Android or iOS app developedwith Xamarin tomaintain a single code base for bothmobile
platforms.
SACM interacts with SMS microservices using the DualTask meta-model element. This integra-
tion method enables case models in SACM to connect to hardwired SMS microservices repeat-
edly and flexibly.

User Identity Management (UIM): A centralized interface provides the Single Sign-On
(SSO) service for all users in the CONNECARE system. Moreover, the UIM is responsible for
creating, updating, and disabling users in the CONNECARE system (Michel, 2020, p. 141).
Regarding the user creation, the UIM adds the created user internally and pushes that user to the
SACM. The system applies a similar process to other operations on the users.

48

4 Smart Adaptive Case Management (SACM)

Regarding authentication, the UIM generates a JSON Web Token (JWT) with a private key for
each successful authentication. All other components validate the JWT using a public key. This
JWT generation mechanism simplifies the integration of all services on all architectural levels
(Michel, 2020, p. 140). For example, the professional UI of SACM can directly request the UIM
API endpoint for authenticating a user.

Message Broker: A RabbitMQ message broker regulates communication between SACM
and SMS by providing producer and consumer API endpoints. Additionally, the message broker
receives necessary information from adapters of third-party site-specific hospital systems. This
approach enables integration with external systems. Due to legal regulations, CONNECARE
only performs read operations on the external HISs (Michel, 2020, p. 140).
Table 4.1 summarizes the responsibilities of components in CONNECARE (Michel, 2020, p.
142). AMaster role indicates that the component primarily orchestrates the activity, while a Slave
role means the component passively collaborates with the Master and may need to synchronize
data with other components.

UIM SACM SMS

Authentication Master
creates JWT token

Slave
validates JWT token

Slave
validates JWT token

User Creation
User Update
User Disable

Master
user basic fields

Slave
synced users, pushed on

change by UIM
Slave

Case Authorization N.A. Master Slave
Case Instantiation
Case Update
Case Delete

N.A.
Master

provides hooks for
integration

Slave
use hooks to sync

Table 4.1: High-level responsibilities of components in the CONNECARE system (Michel, 2020, p. 142)

To illustrate the coordination of the SACM and SMS, Figure 4.7 shows the conceptual flow of
a monitoring prescription scenario (Michel, 2020, p. 143). First, nurse Anne Williams adds a
DualTask to a Workplan Stage. This DualTask requests the patient to measure their body temper-
ature once a day within a period specified by a start and end date. The DualTask also contains a
range of healthy body temperatures with a minimum andmaximum value. After SACM validates
and stores the DualTask’s input parameters, it checks if any hook execution is needed when the
case state changes. Since SMS needs to display this monitoring task to the patient, the SACM
DualTask has an HTTP Hook definition to transmit the task data upon completion to the SMS as
a JSON serialized payload. The SMS then pushes the new monitoring prescription request to its
mobile app.
Next, patient Maya Wilson measures her body temperature with a wearable thermometer. The
SMS mobile app then forwards the recorded temperature to its backend, which drafts the moni-
toring prescription task in the SACM backend. The nurse can then read the body temperature in
the SACM UI almost in real-time.
If the patient’s temperature exceeds the defined minimum and maximum value, the SMS notifies
SACM to alert the related task owners. As a result, nurse Anne Williams will see a new notifica-
tion when she opens her dashboard. In case the nurse contacts the patient and discovers that the
temperature is much lower than the current value, she executes the task correct feature in SACM

49

4 Smart Adaptive Case Management (SACM)

to edit the temperature. After that, the SACM backend receives the corrected information and,
if specified, can update this value in the SMS by sending a hook request.

Figure 4.7: Conceptual orchestration of a monitoring prescription task (Michel, 2020, p. 143).

4.4 Meta-model Elements in SACM

The conceptual meta-model in Figure 4.8 illustrates the modeling concepts in each conceptual
architecture layer (See Figure 4.3) and their dependencies with other layers. The UML class
diagram meta-model focuses on relevant concepts for designing a holistic ACM and simplifies
other related notions. In the diagram, a gray box represents the boundary of an architecture layer.
Meanwhile, the colored modeling elements indicate the specific layer they belong to according
to the color code described in Section 4.3.1. The following paragraphs describe the modeling
elements in the context of their architecture layer and ACM (Michel, 2020, pp. 44-48).

Figure 4.8: Meta-model adapted from Hernandez-Mendez et al. (2018, p. 267). A complete conceptual
meta-model containing relevant attributes is illustrated in Figures A.6, A.7, and A.8 of Appendix A.7

50

4 Smart Adaptive Case Management (SACM)

4.4.1 ◼ Schemata and ◼ Data

A Workspace is a container storing definitions of model elements and their instances. In ad-
dition, the Workspace might declare access rights, including readers, writers, administrators,
and contributors. Among them, the contributor role might have the right to instantiate and get
direct write access to model elements. Typically, a Workspace defines a protected environment
for a specific stakeholder Group to access. For example, in integrated care, stakeholders are care
professional teams, social workers, informal carers, patients, and administrators that can access
their treatment cases.
The meta-model leverages the combination of EntityDefinition and AttributeDefinitions to resemble
a data structure of a class and its attributes in the UML notation (Object Management Group,
2015, p. 192). Likewise, an Entity and its Attributes represent an object and its attribute value.
SACM supports latemodeling using a data-first and schema-second strategy thanks to the loosely
coupled data and schemata layers. However, the system does not combine late modeling with
case management.
SACM associates one AttributeDefinition with only one EntityDefinition (Michel, 2020, p. 45).
Likewise, one Attribute is associated with precisely one Entity of the Case. The meta-model
supports multiple AttributeValues based on the specified multiplicity having the following val-
ues: any, maximum one, exactly one, or at least one. Each AttributeDefinition may have an op-
tional AttributeConstraint to define its type, therefore enforcing which AttributeValue is valid at
the instance level. The supported primitive types for AttributeValues are string, longtext, num-
ber, date, enumeration (multiple choice), JSON object, and references to an object (e.g., Entity,
Group).
An AttributeConstraint subsumes several constraints. First, the NumberConstraint only accepts
a NumberValue with optional minimum and maximum values. The EnumerationConstraint en-
ables declaring multiple choice questions with multiple options. Each option contains a human-
readable description and a value used for internal computation. For example, an option "Yes"
has a value of "1", and an option "No" has a value of "0". Finally, the LinkConstraint restricts a
LinkValue, which is a reference to a valid instantiated model element, such as an Entity, Principal,
Group, or User. A LinkConstraint referring to an Entity can optionally declare the accepted Entity-
Definition. In addition, a LinkConstraint referring to a User can optionally declare a set of Groups
in which the User must have a Membership in at least one of the Groups.
Besides AttributeDefinition, the meta-model provides DerivedAttributeDefinitions to declare dy-
namic calculations and expressions of output based on input values, typically from AttributeDefi-
nitions. To simplify the visualization, the DerivedAttributeDefinitions is a part of the AttributeDef-
inition painted with a green background. Conceptually, DerivedAttributes are not referable with a
unique identifier because SACM evaluates all DerivedAttributes dynamically.

4.4.2 ◼ Actors

All access rights in a Workspace accept one or multiple Principals as value. The role structure
follows a composite pattern: the Group is a composite, the User is a leaf, and the Principal is an
abstract component. A Membership specifies that a User is a member of a Group. Additionally,
Membership can include meta-data such as the user creation and expiry dates. This hierarchy
enables nesting Groups in the form of Group Membership.

51

4 Smart Adaptive Case Management (SACM)

By default, the containing model elements of a Workspace inherit its access rights. However,
modelers can define exceptional access policies. Furthermore, certain Cases can extend the in-
herited access right with additional access rules.

4.4.3 ◼ Case De�nition

ACaseDefinition is a container of all model elements that collectively constitute a holistic, purely
meta-model-based Case template (Michel, 2020, p. 46). Each CaseDefinition refers to only one
EntityDefinition that represents the root data structure of the Case. Optionally, the Case root
Entity is extensible by attaching a second EntityDefinition, which declares the 1) roles accessible
to the Case and 2) due dates applied to workflow elements, such as Stages or Tasks. This second
EntityDefinition can serve as the Case Settings. In addition, each CaseDefinition has an owner
path which refers to the Group or User responsible for managing the Case. Likewise, a Case
declares a client path referring to the treated patient.
A CaseDefinition has a version attached to it. When importing the CaseDefinition, SACM auto-
matically sets the instantiable flag of older versions to false by default. Furthermore, an optional
notes template is declarable inside the CaseDefinition.
The ProcessDefinition represents the abstract of StageDefinition and StageDefinition in the com-
posite pattern. ProcessDefinition contains essential properties for declaring a Process in the work-
flow. By default, a Process executes only once, yet they can be serially or parallelly repeatable
when defined. Furthermore, a Process has a flag to indicate whether it is mandatory to complete
the Case or parent Process. SACM automatically activates a Process concerning its constraint,
i.e., SentryDefinitions. Otherwise, the system supports declaring manual or expression-based ac-
tivation, which evaluates a manually or automatically activated Process at runtime based on the
expressed conditions.
Additionally, each ProcessDefinition contains an owner path which refers to a User or Group re-
sponsible for the Process accomplishment and handling of unpredictable events. This owner path
depends on the Case root Entity and is resolved during runtime. Finally, since Processes com-
monly generate and extend the existing Case data, each Process contains a path referring to its
attached EntityDefinition, which extends the Case Entity structure.
The composite pattern of the workflow structure supports the declaration of nested workflow
elements. The ProcessDefinition represents the abstract of StageDefinition and TaskDefinition in
the composite pattern. The StageDefinition is the composite that contains TaskDefinitions as the
leaf. A TaskDefinitions is either 1) an AutomatedTaskDefinition representing AutomatedTask ex-
ecuted by a third-party system, or 2) a TimedTaskDefinition representing HumanTaskDefinition or
DualTaskDefinition. A time constraint is applicable to both task types by declaring a due date
path. The executors of a HumanTask are human caseworkers, while a DualTask is a combination
of HumanTask followed by an AutomatedTask.
A TaskDefinition contains TaskParamDefinitions to declare how SACM visualizes the inputs or
outputs of the Task Parameters in the UI. In addition, each TaskParamDefinition has 1) a read-only
property to define if the parameter is writable or only readable, 2) if the parameter is mandatory
for the Task completion, and 3) the declaration of a path that links to the Attribute of a Task Entity,
starting from the Case root Entity. This method forms a Task data structure by binding Attributes
to TaskParams. This binding enables updating previous results of the Task.
Modeling complex preconditions for ProcessDefinitions (i.e., StageDefinitions and TaskDefinitions)
is possible thanks to SentryDefinitions (Michel, 2020, p. 47). Specifically, a SentryDefinition pre-

52

4 Smart Adaptive Case Management (SACM)

condition declares which ProcessDefinition(s) must be completed before activating another Pro-
cess. Optionally, a conditional expression on elements of the data layer enables defining control
flow among Processes. For example, a Case only triggers a Prescription Stage when the blood
pressure value of the Evaluation Stage is not Normal. SACM only considers these expressions
after the ProcessDefinition preconditions are satisfied.
SACM leverages HttpHookDefinitions to orchestrate integrated processeswith systems fromCON-
NECARE or third parties. A HttpHook is an HTTP Request containing the URL of the destinated
system; anHTTPmethod value ofPOST,GET,PUT, orDELETE; optionally, a failure message is
declarable. The HttpHookDefinition defines a HttpHook to send an HTTP request when a specified
Process state change event occurs, e.g., activate, enable, complete, terminate, or Task correction
event. For example, SACM only sends an HTTP POST request to add the newly measured blood
pressure values to a partner system when the blood measurement Task is completed. A HttpHook
in CaseDefinition is more restricted because one Case event declares only one HttpHook, which
only supports the GET method and can not define the failure message.
For the provision of a customizable Case data summary, the meta-model offers a SummarySec-
tionDefinition declaration, each containing a name and a path to an Attribute on the data layer.
As a result, a SummarySectionDefinition displays the Attribute’s value of a specific Case data,
e.g., medical status or patient’s personal information. In addition, SACM supports a customiz-
able grid layout definition to arrange SummarySectionDefinitions, as described in the following
subsection.

4.4.4 ◼ User Interface

The meta-model enables modelers to specify the LayoutPosition of Summary Sections and Task
Parameters in a three-column grid layout. The supported positions are left, center, right, and
stretched (i.e., cover the entire width of the grid layout area). Additionally, TaskParamDefinitions
have more complex layout positions, such as left-center and center-right, which stretch over two
columns. By default, the purely meta-model-based approach binds each AttributeConstraint to
exclusively one representation in the user interface (Michel, 2020, p. 47).
To enable customization of data representation that complies with the meta-model-based ap-
proach, SACM provides CustomDataRepresentations to display the data as an SVG graphic by
specifying a string; or a line diagram containing data nodes in the JSON format. This ability en-
ablesmodelers to extend theCustomDataRepresentations based on domain-specific needs.

4.4.5 ◼ Case

TheCase execution engine instantiatesmostmodeling elements stated in theCaseDefinition layer
(Michel, 2020, pp. 47-48). Specifically, one Case refers to 1) its root Entity; 2) the case owner
and client paths, each path pointing to a User or Group; 3) Principals containing the dedicated
Case readers and writers; 4) the Messages created during the Case execution. Thus, a Message
exists only in theCase instance and contains the creation date and a User as its author; 5) Summary
Sections to recapitulate critical case data; and 6) all Process elements, i.e., Stages and Tasks.
Regarding the Process, each has a property to indicate the current state of its lifecycle, which
contains the following states (Michel, 2020, p. 49):

53

4 Smart Adaptive Case Management (SACM)

• Available: The Process is instantiated but is not enabled because it does not meet a pre-
condition. The reason can be 1) inactive parent Stage, 2) The Process’s SentryDefinition is
not satisfied, 3) a combination of 1) and 2).

• Enabled: The Process meets its precondition, i.e., having an active parent Stage and its
SentryDefinition is satisfied. However, the Process requires a manual activation to execute
runtime planning.

• Active: The Process is currently executed, and its data are still modifiable. In other words,
the User may input values to several TaskParams, but they did not complete nor terminate
the Task.

• Terminated: The Process is not finalized successfully because 1) the caseworker deems
the Process not suitable for the Case, hence terminating it; 2) an external system can abort
a Process when it is no longer applicable.

• Completed: The Process is finalized successfully. This state occurs when 1) a caseworker
executed all the required actions and completed the Process; 2) an external system com-
pleted an AutomatedTask.

When processing a repeated process, SACM instantiates multiple Processes and associates the
successor Process with its predecessor to form a repetition order. The Process inheritance struc-
ture on the case execution layer resembles the one in the case definition layer. Specifically, a
TaskParam maps to the TaskParamDefinition with a path linking to an Attribute. Additionally,
the abstract TimedTask has a path referring to a due date Attribute, which allows overriding the
AttributeValue locally. Finally, a DualTask has two internal states to keep track of the current
lifecycle state from the human part and the automated part.
Additionally, each Process contains Logs created at runtime to assist in debugging complex sce-
narios. The properties of a Log are 1) a creation date, 2) a log level, 3) a log message, and 4) an
optional description property. Logs help debug the HttpHook execution of integrated Processes
with third-party systems.
Another concept is Alert, which has three types in SACM (Michel, 2020, p. 48). First, an error
Alert occurs when an HttpHook execution fails, thereby triggering the error Alert to show the
defined failure message of the HttpHook. The second Alert type appears when a caseworker
modifies a completed or terminated Task. Finally, an external system can trigger a custom Alert at
any time. This Alert enables incorporating complex domain-specific logic into the microservices
of partner systems.
Several modeling elements with composite associations have strongly coupled dependencies,
thus enabling cascading delete operations. Therefore, deleting CaseDefinition results in elimi-
nating all associated Cases.

54

5 Language Design

Acadela derives the features of modeling CPs based on the SACM metamodel and requirements
from SACM and existing DSLs. As a result, Acadela incorporates both the essential elements
of CP construction identified in the literature while inheriting SACM capabilities of external
communication and customizable data presentation. The first section of this chapter presents an
overview of the CP modeling capabilities of different DSLs in the Related Work chapter com-
pared to Acadela. Afterward, the second section describes the concrete syntax to demonstrate
how Acadela declares CPs in SACM and simplifies the current Case definition syntax.
Besides CP modeling, Acadela provides error validation, custom IDE, and CP visualization to
support the modeling process. The remaining sections of this chapter discuss the handling of
syntax and semantic errors in Acadela, the architecture to incorporate the CP modeling and sup-
porting features, and a reflection on the rationales of the language design decisions.

5.1 Requirements for Modeling Clinical Pathways

Table 5.1 summarizes the CP modeling features from the DSLs discussed in the Related Work
Chapter (See Chapter 3) and Acadela. The features are identified from the requirements of
SACM and other DSLs for CP modeling. Since fostering communications among care pro-
fessionals are not CP modeling functions, Table 5.1 excludes sub-requirements in SACM R3
(Section 4.2.3).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 SF1 SF2
DSML4CPs
BPMN4CP
BPMNSIX

FCIG
Acadela

No Support Partial Support Full Support

Table 5.1: Features Comparison of DSLs for CP modeling.

F1: The DSL shall model medical processes using concepts from the healthcare domains. These
concepts shall be familiar to healthcare professionals.

Rationale: First, concepts used in the DSL should map to the terminology that the prospec-
tive users are familiar with (Frank, 2013, p. 136). Second, constructing activities and phases
of a medical process is essential for care professionals to conduct their treatment.

55

5 Language Design

Requirement Source: SACM R1.2 Requirement (See Section 4.2.1), DSML4CPs R1 (Heß
et al., 2015, p. 5), BPMN4CP R1 (Braun et al., 2014, p. 12), BPMNSIX (Neumann et al.,
2016, p. 3).
SACM Solution: Defining treatment Stages and Tasks using StageDefinition and TaskDefi-
nition. The schema of each Stage or Task is an Entity with Attributes defined by EntityDefini-
tion and AttributeDefinion. Using familiar medical terminology, modelers and care profes-
sionals can declare medical concepts in each Stage and Task and model them in the Entity
schema.

F2: The DSL shall model alternative treatment processes, their triggering conditions, and po-
tential values that could activate other alternatives (Heß, 2013, p. 375).

Rationale: Medical professionals frequently handle unpredictable scenarios during the
planned treatment process. Therefore, a DSL shall provide decision support to healthcare
professionals, patients, and their relatives to decide the appropriate medical intervention
(De Bleser et al., 2006, p. 562).
Requirement Source: SACM R1.2 Requirement (See Section 4.2.1), DSML4CPs R2 (Heß
et al., 2015, pp. 5-6), BPMN4CP R6 (Braun et al., 2014, p. 12), BPMNSIX (Neumann et
al., 2016, p. 4), FCIG Computer-based Clinical Practice Guidelines (CPG) (Msosa, 2018,
pp. 11-12).
SACM Solution: Defining a SentryDefinition for a Stage or Task results in an alternative
treatment process. The alternative process is triggered only when it satisfies all conditions
in the SentryDefinition.

F3: The DSL shall model evidence classes with data assigned to them (Heß et al., 2015, p. 6).
Additionally, the DSL shall support referencing the evidence (Braun et al., 2014, p. 4).

Rationale: Medical experts leverage CPs to treat patients according to the principle of
Evidence-Based Medicine (EBM) (S. Wang et al., 2011; X. Wang et al., 2021). There-
fore, CP processes and decisions shall be supplemented with information on the evidence
to decide the appropriate interventions.
Requirement Source: DSML4CPs R3 (Heß et al., 2015, p. 6), BPMN4CP R3 (Braun et
al., 2014, p. 12), FCIG (Msosa, 2018, pp. 7-8).
SACM Solution: As described in F1, the data layer of SACM serves as a schema to store
information of particular evidence collected in a specific Task.
Remark: FCIG can process references to a medical evidence, yet the DSL does not support
declaration of an evidence class.

F4: The DSL shall model iterative treatment processes. Parallel repetition should also be sup-
ported (Michel, 2020, p. 46; Neumann et al., 2016, p. 4).

Rationale: CP shall support control flow by executing both optimal, sequential procedures
and repetitive, unpredictable processes in a treatment. Parallel execution is necessary to
construct simultaneous tests of the same type (Michel, 2020, p. 46) (e.g. parallel PCR tests
(Berdal et al., 2008; Perchetti et al., 2020, p. 2).

56

5 Language Design

Requirement Source: SACM R1.2 and ProcessDefinition (Michel, 2020, pp. 34, 46),
DSML4CPs R4 (Heß et al., 2015, pp. 6), BPMN4CP R2 and R5 (Braun et al., 2014, p.
12), BPMNSIX ParallelFlow (Neumann et al., 2016, p. 4).
SACM Solution: The ProcessDefinition has an repeatable attribute to specify if a Stage or
Task is sequentially executed or repeated serially/parallelly.

F5: The DSL shall model each medical process’s treatment goal(s) based on medical practices
and preferences of individual patients.

Rationale: Expressing goals based on the applied remedies and the patient’s preference
fosters treatment transparency (Heß et al., 2015, p. 6). Furthermore, this feature encourages
medical professional teams to establish unified treatment approaches to achieve the care
goal(s) (Heß et al., 2015, p. 6).
Requirement Source: DSML4CPs R5 (Heß, 2013, p. 6).
SACM Solution: the DerivedAttributeDefinition can express the condition for accomplish-
ing a Task’s goal based on the TaskParams, which store the patient’s preferences or medical
conditions. Furthermore, SACM can configure the goal’s text and UI decoration to display
it on the GUI of a Task or SummarySection.

F6: The DSL shall support assigning responsibilities to medical processes (at runtime). The
responsibilities distinguish between staff that executes medical tasks and staff responsible for the
treatment outcome.

Rationale: All caseworkers (care professionals) shall know their required contributions to
the treatment. Therefore, responsibility must be transparent to ensure the completion of
case works (Herrmann & Kurz, 2011; Kurz, 2013, pp. 89-90; Hauder et al., 2014b, p. 26).
Specifying the responsibilities of each healthcare professional optimizes the sequencing of
medical procedures, indicates contact persons, and fosters communication among staff (Heß
et al., 2015, p. 6). Furthermore, since treatment activities are unpredictable, responsibil-
ities cannot be assigned upfront (Michel, 2020, p. 35). Thus, a DSL should support the
declaration of responsibilities for case activities at runtime.
Requirement Source: DSML4CPs R6 (Heß et al., 2015, p. 6), SACM R1.3 (Michel,
2020, p. 35), BPMN4CP R1 (Braun et al., 2014, p. 12), BPMNSIX (Neumann et al., 2016,
p. 6).
SACM Solution: The Principal in SACM declares the participating Groups or Users repre-
senting departments, care teams, or medical professionals. The Case access rights of each
Principal are read, write, and owner to reflect different levels of intervention or management.
In addition, each CaseDefinition, StageDefinition, and TaskDefinition includes an ownerPath
to define the Groups or Users having the right to execute the Case, Stage, or Task.

F7: The DSL should model checklists associated with medical processes.
Rationale: Checklists are widely accepted and helpful instruments to show details of med-
ical process executions (Healey et al., 2011, p. 3; Wolff et al., 2004, pp. 430-431).
Requirement Source: DSML4CPs R7 (Heß et al., 2015, p. 6).
SACM Solution: An EntityDefinition of enumeration type can define a checklist as amultiple-
choice or single-choice questionnaire (Michel, 2020, p. 80) by specifying the multiplicity

57

5 Language Design

property to any or exactlyOne, respectively. SACM EnumerationConstraints define the label
for each choice and their associated numeric or text values (See Section 4.4.1).

F8: The DSL should model various aspects and information needs of stakeholders in medical
institutions. Therefore, the DSL should support inclusion of medical documents (guidelines,
forms, etc.) necessary to accomplish medical processes.

Rationale: CPs aim to optimizemedical care from various perspectives. Therefore, Acadela
should provide concepts to model treatment-related information, such as (multidisciplinary)
medical or organizational aspects (Heß et al., 2015, p. 6). Furthermore, the DSL should
include documents necessary for the treatment to assist care professionals.
Requirement Source: DSML4CPs R8 (Heß et al., 2015, p. 6), BPMN4CP Document
Concepts (Braun et al., 2016, p. 3252), BPMNSIX (Neumann et al., 2016, p. 4).
SACM Solution: The combination of EntityDefinitions and AttributeDefintions enables the
definition of generic objects; thus, it can model different information needs, such as pa-
tient consent or patient data collected during admission or discharge Stages. Furthermore,
SACM also supports declaring a TaskParam containing an URL path to a document, thus
CPs can include various document types (e.g., consent forms, medical guidelines) into the
process.

F9: The DSL should model the allocation of resources to the medical process.
Rationale: CP’s goals include supporting the management and optimizing resource con-
sumption (Heß et al., 2015, p. 6). Resources comprise equipment or documents used during
the medical process (Neumann et al., 2016, p. 4), medicine, and facilities (Heß et al., 2015,
p. 6; Braun et al., 2016, p. 3252).
Requirement Source: DSML4CPs R9, BPMN4CP (Heß et al., 2015, p. 6; Braun et al.,
2016, pp. 3251-3252), BPMNSIX (Neumann et al., 2016, pp. 3-4).
SACM Solution: SACM can model medical resources such as drugs, aids as an Entity, with
the resource properties as Attributes. Moreover, SACM can request a server to update the
consumption of medical resource using HttpHook, which sends the necessary information
of the resource and quantity to a server API that checks for the resource availability and
updates the in-stock value based on the consumed units.

F10: The DSL should model time constraints and explicit time events.
Rationale: the definition of CP incorporates the timing necessary to achieve care goals
(De Bleser et al., 2006; Campbell et al., 1998; Vanhaecht et al., 2006). Therefore, a DSL
should provide features to declare due dates or timed activities such as periodic repeated or
time-lapsed tasks.
Requirement Source: DSML4CPs R8, (Braun et al., 2014, p. 12), BPMN4CP R4 (Braun
et al., 2014, p. 12).
SACM Solution: Defining a due date as an AttributeDefinition in the Case Setting’s Entity-
Definition sets a variable for default time constraint (e.g., 24 hours, one week). Afterward,
a TimedTaskDefinition (HumanTaskDefinition or DualTaskDefinition) includes the path to this
due date variable, enforcing the time constraint when activating the Task. However, SACM
does not support time-lapsed events and periodically repeated Tasks within a Stage. Nev-

58

5 Language Design

ertheless, SACM can declare a repeatable Stage containing tasks with a due date to model
periodic and repetitive activities.

F11: The DSL should model external requests to orchestrate and integrate with existing or ex-
ternal systems.

Rationale: e-Health services may need to interact with legacy systems which store user
data. Furthermore, delivering care services may require sharing medical data with partner
systems at different lifecycles of the activities. Therefore, a DSL should support defining
external request communications when a process reaches a specific state.
Requirement Source: SACM R2.2, R2.3 (Michel, 2020, p. 37).
SACM Solution: Defining a HttpHookDefinition inside a StageDefinition or TaskDefinition
triggers a HTTP request to an external system or service at a given lifecycle state. This
request sends all information of the Stage or Task to a specifiedURLwhen reaching a defined
state at runtime. An HTTP method and a custom error message are also declarable in the
HttpHookDefinition.

F12: The DSL should support customizing the representation of an activity.
Rationale: Customization of the UI display of activities enhances extendability and sup-
ports the modelling of specialized clinical use cases (Michel & Matthes, 2018). Addition-
ally, care professionals need a holistic, insightful view of the patient’s medical status on
the user interface to ease the analysis the patient’s condition and planning an appropriate
intervention (Suganthi & Poongodi, 2021).
Requirement Source: SACM R1.4 (Michel, 2020, p. 36).
SACM Solution: SACM provides five UI customization features: 1) specifying the layout
position of a Task element (TaskParamDefinition), 2) defining color background applied to
different numeric ranges of a TaskParam value, 3) conditionally outputting a value based on
other TaskParams of the same Task, 4) applying SVG with adaptive styling based on other
TaskParam(s) value, 5) displaying a collection of data with time series as a line chart.

F13: The DSL should support importing CP elements into the current CP definition.
Rationale: Different CPs may use the same administrative or medical tasks, e.g., patient ad-
mission, laboratory test. Repeatedly declaring these tasks in each CP results in duplication
and cumbersome modification for all affected CPs when the tasks change. Therefore, defin-
ing these share elements once and importing them into CPs foster reusability and flexibility
of the modeling process.

Besides the above modeling capabilities, a DSL should offer the following features to support
the modeling task:
SF1: The DSL should offer an IDE. For textual DSLs, the IDE should have syntax highlighting
and auto-completion capabilities.

Rationale: Auto-completion, syntax highlighting and syntax checking can enhance the pro-
ductivity when defining CP elements and increase usability (Cook et al., 2007, pp. 16-17;
Merkle, 2010). In combination with syntax highlighting, the IDE can prevent syntax errors
as 1) unusual color changes indicate an element violates syntactic rules, and 2) insert prede-
fined templates or auto-completing keyword prevents typos in defing CP elements.

59

5 Language Design

Remark: Acadela IDE does not auto-complete CP elements (e.g., identifier of Stages, Tasks,
etc.).

SF2: The DSL should visualize the modeled CP using basic graphical notations to demon-
strate the reconstructed elements, such as phases, control flows, activities and their inputs or
outputs.

Rationale: A CP visualization provides visual clues that can enhance the understandability
and readability of the models (Frank, 2010, p. 1). Another benefit is reducing the learning
effort as the clinical experts do not have to understand modeling concepts in-depth (e.g.,
Hermans et al. (2009, p. 433)). Additionally, one noticeable feedback from interviews with
technical staffs is that Acadela needs a graphical visualization to provide an overarching
overview of the CPmodel. These visual clues assist in debugging andmodel analysis.

5.2 Language Speci�cation

From the necessary CP modeling features described in the previous section, our study develops
Acadela as a textual DSL to define CPs compatible with SACM. In addition, Acadela also aims to
optimize the modeling process by providing 1) flexible syntactic rules, 2) automatic construction
of default behaviors, and 3) concise constructs that combine schematic and UI display definitions.
Our study derives these properties from guidelines of language design (Karsai et al., 2014; Frank,
2010). This chapter consecutively describes these DSL properties with examples to illustrate the
optimization of the current modeling approach using XML.

5.2.1 Flexible Syntactic Rules

Sincemodelers inmedical facilities have diverse programming knowledge, Acadela syntax should
inherit syntactic features that promote flexibility and convenience from various existing program-
ming languages. This practice can reduce the effort in designing language (Karsai et al., 2014,
p. 3) and ease the CP definition task for modelers, as they can reuse syntactic rules similar to
software design languages (e.g., Python, C, or SQL) (Frank, 2010, p. 13). As a result, Acadela
possesses the following syntactic properties, which Figure 5.1 illustrates:

1. Case-insensitive: Modelers can write keywords in Acadela as UPPERCASE, CamelCase,
or lowercase. This feature offers two benefits: 1) relieving users from syntax errors caused
by wrong character casing, and 2) supporting different coding practices related to casing
code elements. For example, Task and Stage can have uppercase or camel case, while
their attributes are lowercase; or all keywords are uppercase or lowercase. Acadela gets
inspiration from the case-insensitive property of SQL.

2. Indent-insensitive: Acadela does not assign any particular function to the tab character
nor uses tabs to enforce a switch to a different hierarchical level. This property supports
modelers in applying various indent strategies according to their coding practice. Acadela
gets inspiration from indent-insensitive property of Java, Javascript, and C family program-
ming languages.

3. No Announcement Separator: Acadela does not use a character to mark the end of a
statement. This property is different from Java and C-family languages which use the
semicolon. The purpose is to relieve users from ending their statements. Acadela gets
inspiration of this feature from Python.

60

5 Language Design

Figure 5.1: Illustration of Flexible Syntax Rules in Acadela. The two code snippets are syntactically
different but semantically equivalent. The comparison demonstrates the Acadela properties of 1) Case-
insensitive, 2) Indent-insensitive, 3) No Announcement Separator for each key-value assignment, 4) No
End Indicator for each CP element declaration, 5) Interchangeable Quote and Double Quote for String,
6) Directives to represent system-defined attribute values, 7) Interchangeable Order of Directives, Child
Elements, and Attributes

4. No End Indicator: Modelers do not have to type any keyword to mark the end of an ele-
ment definition, as Acadela parses the legitimate attributes and child elements to construct
an object. This property is different from SACM CaseDefinition model in XML, which
requires a closing tag for every CP element.

5. Interchangeable Quote and Double Quote for String: Similar to many programming
languages, the start and end of a String is a single quote or double quote. However, if
modelers need to use quotes in the String value, they need to wrap the String using the
other type of quote. For example, in Figure 5.1, the uiReference Attribute wraps the String
with a single quote, but a pair of double quotes enclose the String value "None". Acadela
gets inspiration from the same property of Javascript and Python.

6. Directives: For system-defined Attributes, i.e., Attributes that have a predefined set of pos-
sible values, their declaration starts with a hash (#) character follows by the Attribute value.

#<attributeValue>
For example, #mandatory directive applied to a Stage means the isMandatory attribute of
the Stage is true, i.e., the Stage compulsory to complete a CP.
Acadela Directive gets inspiration of from Annotations of the Spring Boot framework.

61

5 Language Design

7. Interchangeable Order of Attributes and Child Elements: For everyCP element, Acadela
syntax support the definition ofDirectives, Attributes, and eligible child CP elements. There-
fore, modelers can arrange the items in each Directive, Attribute, or child CP elements
group in any order. For example, Figure 5.1 shows that both code snippets declare a non-
mandatory and manually activated Stage enabled only when the Identification Stage com-
pletes. However, the two code snippets have a different order of directives, attributes, and
child CP elements.
Note that the declaration of Stages and Tasks follows a chronological order, i.e., the first
Stage or Task appears first in the SACM UI, follow by the second Stage or Task. However,
an exception occurs when a Stage or Task is manually activated. In this case, the Stage or
Task is invisible until the caseworker manually triggers it.

5.2.2 Automatic Execution of Default Behaviors

Default Reference Assignment: Another default value type is the stereotypical reference
path to an EntityDefinition of a Case element. In SACM, a Case, Stage, or Task contains an en-
tityAttachPath stating where the newly instantiated Entity is attached (Michel, 2020, pp. 103,
107, 109). The starting point of entityAttachPath is the Case root Entity. The node in the path
is the element ID, with each node separated by a dot. For example, the entityAttachPath to a
MeasureBmi Task in an Evaluation Stage is Evaluation.MeasureBmi. As a result, the entityAt-
tachPath of a Task follows the structure <StageID>.<TaskID>. While the entityAttachPath of a
Case or Stage is its ID. For TaskParamDefinition, the typical reference path is the parent Stage
ID, parent Task ID, and the AttributeDefinition ID of the parent Task separated by a dot:

<ParentStageID>.<ParentTaskID>.<AttributeDefinitionID>

Acadela constructs the entityAttachPath of each element based on their element type. For Case
and Stage, Acadela assigns the Case and Stage ID to the entityAttachPath. While for Task and
TaskParam elements, Acadela analyzes the parent Stage and Task to extracts their IDs for con-
structing the entityAttachPath.
In addition, Case, Stage, and Task elements also have an entityDefinitionId, which refers to their
EntityDefinition (Michel, 2020, pp. 103, 107, 109). The ID of EntityDefinition can be the same with
its corresponding CP element (e.g., StageDefinition, TaskDefinition. Therefore, Acadela defines
the Case, Stage, or Task element with a unique ID. During the interpretation phase, Acadela
generate the EntityDefinition of the CP element with the ID, and assign the ID as the entity-
DefinitionId value of the CP element. This unique ID is the shared property in the definition
of the schema (EntityDefinition) and CaseDefinition, StageDefinition, or TaskDefinition element;
hence Acadela can construct the two Definition objects of the same CP element using the unique
ID.
Besides the entityDefinitionId, a CaseDefinition contains the entityDefinitionId and entityAt-
tachPath of its Setting Entity. These attributes are named newEntityDefinitionId and newEn-
tityAttachPath in the SACM Case object. The Case Setting stores the case owner, case client
(patient), default due date definition, and user-defined Attributes. Acadela automatically as-
signs the Setting ID as the value of newEntityDefinitionId and newEntityAttachPath by de-
fault.
Figure 5.2 illustrates the default value assignment feature by presenting a StageDefinition in
SACM syntax (picture 1) and the same StageDefinition written in Acadela syntax (picture 2). In

62

5 Language Design

Acadela, modelers do not need to specify entityDefinitionId and entityAttachPath attributes,
although they can manually declare their entityDefinitionId and entityAttachPath.

Figure 5.2: Illustration of default constant value assignment in Acadela. In SACM (1), modelers need to
declare the mandatory Attributewhether the Stage is mandatory or not. In Acadela (2), mandatory is the
default value of the mandatory Attribute, and repeatable has ONCE as the default value, hence modelers
do not need to specify it.

Default Constant Value Assignment: In the SACM CP definition, users frequently assign
a specific value to certain attributes. For example, Figure 5.2 demonstrates that when a Stage is
typically mandatory, the modelers need to specify the isMandatory Attribute in every StageDef-
inition of SACM (picture 1). However, in Acadela (picture 2), modelers do not need to declare
the mandatory Directive as its default value is mandatory. Modelers can declare that the Stage
or Task is not compulsory by adding a #notmandatory directive after the Stage or Task ID. Addi-
tionally, when Stages are usually non-repeated, Acadela sets the default value as ONCE to the
repeatable Attribute; thus, modelers also do not need to declare it.
As a result, Acadela relieves the users from defining these Attributes by storing a dictionary with
key-value pairs representing the Attribute name and its default value. The Interpreter section
under the Implementation chapter discusses this feature in further detail (See Section 6.5). Con-
sequently, modelers do not need to declare the default constant value of the Attribute. Instead,
Acadela will add such attributes into SACM-compatible JSON objects of the CP element during
the interpretation phase.

5.2.3 Concise Constructs

Single Clinical Pathway Element De�nition: Defining a CP element in SACM requires the
declaration of 1) a schematic model containing the element attributes and 2) the behaviors and
visualization of the element in the CP execution. While this approach separates the schemata,
execution, and graphical representation concerns of the element, its side effect is the duplication
of attributes used by the model and visualization definitions. Furthermore, separating these con-
cerns requires modelers to examine or modify two locations of a CP element when debugging
or updating the element, which can be more error-prone than a centralized definition method,
where modelers need to manage one definition for each CP element.
Therefore, Acadela optimizes the CP element definition by combining schema, case-related be-
haviors, and graphical representation into one object declaration. As a result, Acadela states the
shared attributes of the three layers once. Afterward, during the interpretation phase, Acadela
extracts the shared attributes and inserts them into the JSON objects of the schema and visualiza-
tion definition of the CP element. In addition, Acadela includes all other schematic, case-related,
visual representation properties, and child elements into a single CP element definition.

63

5 Language Design

Figure 5.3 illustrates the combined approach of Acadela in defining a Spirometry measurement
HumanTask in SACM. Picture (1) shows the a) schema definition of the Task and its input fields
(EntityDefinition and AttributeDefinition); b) Case execution behaviors (HumanTaskDefinition), in-
cluding the Precondition (SACM SentryDefinition) to activate this Task, which states the Stage or
Task thatmust already be completed); and c) the features of the spirometric InputFields (TaskParamDef-
initions), including their graphical representation (position attributes at line 29 and 34).
Picture (2) shows a combined definition of the HumanTask schema, behaviors, and visualization
in Acadela. The ID and description in the EntityDefinition and HumanTaskDefinition converge into
the Acadela HumanTask ID and label. In the interpretation phase, Acadela extracts these two
properties to construct the EntityDefinition and HumanTaskDefinition JSON objects in SACM for-
mat. The Acadela InputFieldmerges the TaskParam schema (AttributeDefinitions), case-related and
graphical properties. The Form object contains mandatory and readonly attributes that apply to
all fields; hence modelers do not need to specify these two properties for every TaskParam. Sim-
ilar to SACM, other child elements of the Task, like the Precondition (SentryDefinition in SACM),
also reside within the Task Definition.

Figure 5.3: Illustration of Acadela approach to combine schema, execution behaviors and visual represen-
tation in one single CP element definition. The HumanTask definition in SACM (1) requires the schema
definition (EntityDefinition) and case-related execution and visualization (HumanTaskDefinition). Mean-
while Acadela (2) groups all HumanTask attributes, behaviors, and graphical representation into a single
element.

Hierarchical Declaration of Clinical Pathway Elements: Acadela arranges CP elements
in a subsumption order to provide a hierarchical structure of CP models. For example, a Case is
the master object that contains multiple Stages, and each Stage consists of Tasks; thus, Acadela
enforces a subsumption rule to declare all Stages elements within the Case object and define
Tasks within its Stage. Figure 5.4 illustrates the hierarchy of CP elements in Acadela. Note that

64

5 Language Design

the color code in Figure 5.4 is to distinguish CP elements in Acadela. The color code does not
represent the architecture layer described in Figure 4.3.

Figure 5.4: Hierarchy of elements in a clinical pathway model expressed in Acadela.

The next section describes each CP element in further detail. The remainder of this subsection
presents an overview of the CP elements introduced in Figure 5.4.
Acadela begins the CP model definition with an optional Import section, in which modelers can
include CP elements declared in other files. Next, the Workspace section states the repository
where the Case definition will be stored. Therefore, Workspace usually specifies the name of a
medical facility that applies the CP. Additionally, theWorkspace contains theCase object, which
defines the CP for treating a particular disease.
The Case Responsibilities element includes references to 1) medical teams or professionals in-
volved in the treatment and 2) a patient group to enable the search of a patient in the group. The
Case Setting includes 1) the case owner, 2) global variables accessible to the Case elements,
e.g., the default due date used by Stages or Tasks, and 3) the selected medical teams to participate
in the treatment. External System Communication is an optional element that specifies how to
send the data of a Case, Stage, or Task to an external system. Summary Panel declares interesting
medical data from the Case elements and their grid layout position in the UI. Finally, the Stage
section defines all the treatment phases.

65

5 Language Design

Stage and Task contain External System Communication and Transition Condition(s). The latter
specifies 1) the previous Stage or Task that must be completed to trigger the current one and 2)
an optional condition to activate the Stage or Task.
A Task has a Form containing optional global readonly and mandatory attributes applied to all of
its InputFields. The InputField is an element to collect medical data, and OutputField expresses
how to compute or display specific information based on the inputs.
To establish consistency in the model code, Acadela restricts CP elements of the same type
to be declared consecutively. For instance, Responsibilities (Groups and Users) are at the same
hierarchical level as Stages, but modelers cannot declare the Responsibilities element in the middle
of the two Stages. Instead, the correct position of Responsibilities is before of after the declaration
of all Stages.
As described in the flexible syntax rules, the order of children objects in a CP element is in-
terchangeable. As a result, modelers can declare Responsibilities, Setting, External System Com-
munication, SummaryPanel, and Stage in any sequence. For example, modelers can swap the
position of the Stages definition to Responsibilities. This feature helps medical software develop-
ment teams to arrange elements flexibly according to their standards or preferences.

5.3 Concrete Syntax for Clinical Pathway Element De�nition

This section demonstrates how Acadela declares CP elements in SACM by leveraging its lan-
guage properties described in the above section. Every CP element specification has a table
listing all attributes, their features, and how to express them (concrete syntax) in Acadela. Ad-
ditionally, each element presents its minimum, and complete versions declared in SACM and
Acadela syntax. This presentation aims to illustrate how Acadela optimizes CP model defini-
tions in SACM. The Grammar section in the Implementation chapter explains how the Acadela
grammar (abstract syntax) shapes the concrete syntax.
Since SACM reuses specific Attributes in multiple CP elements, this section first explains these
shared Attributes, their applicable CP elements, and expression in SACM and Acadela.
The color code in the tables indicates the architectural layer, as expressed in Figure 4.3.

5.3.1 Data Type

SACM defines a type Attribute containing various 1) primitive data types used to validate the
value of an InputField (See 5.3.3) or enforce the type of an OutputField (See 5.3.4) and 2) SACM
built-in data types applicable to a specific CP element. (Michel, 2020, p. 101)
By default, SACM sets the type value as notype.
Data types marked with𝐴 symbol is built-in Acadela types to combine multiple types or express
the attribute intuitively.

Data Type Expression in Acadela Description
notype #notype No data type applied to this field.
string #string A text type contains characters, symbols or numbers.
text𝐴 #text Same as string, but text is an alternative understandable to

medical professionals.

66

5 Language Design

longtext #longtext Display a text area in the UI to show multi-line text.
boolean #boolean Accepts true or false value.

number

#number
#number(MIN-MAX)
#number([Sign][Number])

where [Sign] in
{ =, <>, <=, >=, <, >}

Represent a numeric value:
• #number: any number without restriction
• #number(MIN-MAX): accepts a number within the

MIN and MAX range. For example, #number(1-
10) means the InputField only accepts numbers
from 1 to 10.

• #number([Sign][Number]): accepts a number ac-
cording to the comparison expression. For in-
stance, #number(>100) only accepts any number
larger than 100.

singlechoice𝐴 #singlechoice
Indicates a multiple-choice question that only accepts a
single answer among the given options. Acadela inter-
prets this type as an Enumeration object when compiling
to SACM format.

multiplechoice𝐴 #multiplechoice
Indicates a multiple-choice question that accepts multiple
answers among the given options. Acadela interprets the
InputField type as Enumeration and the multiplicity At-
tribute as atLeastOne when compiling to SACM format.

date #date
#date.after(TODAY)

State a date type. #date.after(TODAY) sets the date value
24 hours from the current time.

json #json Indicates a JSON object. This type is useful for showing
chart data expressing each data point as a JSON entity.

custom𝐴 #custom(path)

If applied to an InputField, Acadela assigns the value
from the path variable to the InputField. For Output-
Field, Acadela stores the Output into the element at the
path location. The path variable points to a CP element in
the Case starting from the Case level, For example, Set-
ting.BloodPressure points to the BloodPressure Attribute
in the Case Setting.

link #link.Users(UserOrGroup)
#link.Entity(EntityId)

#link.Users declares references to any User or Group
stated in the Case Responsibilities (See 5.3.11). Mean-
while, #link.Entity declares a reference to any CP element
(e.g., Stage, Task, InputField, orOutputField) through its
ID.

documentLink𝐴 #documentLink(Url)

A shortcut made by Acadela to insert a link to an exter-
nal document accessible from the URL. The InputField
value in the UI of SACM is the URL link. SACM cre-
ates the link to the document by setting the data type to
string, readOnly and mandatory Attributes to false, uiRef-
erence to privatelink, and defaultValue is the document’s
URL. Acadela sets all these properties accordingly when
interpreting an InputField with documentLink type, so the
InputField is compatible with SACM.

Table 5.2: Description of Data Types in Acadela based on SACM specification. (Michel, 2020, p. 101)

67

5 Language Design

5.3.2 Mandatory Attribute

SACMuses the isMandatory Attribute in a Stage or Task to specify that it is compulsory to accomplish the
Case or parent Stage, respectively. The isMandatory Attribute applied to an InputField or OutputField
specifies that the field must have a valid value in order to complete the Task.
In SACM, isMandatory is a booleanAttribute having a true or false value (Michel, 2020, p. 106). Acadela
expresses the true and false values using #mandatory and #notMandatory, respectively. To offer conve-
nience for modelers, Acadela sets isMandatory to true by default, so modelers only specify the isManda-
tory Attributewhen the Stage, Task, or Input/OutputField is not compulsory for accomplishing a CP. Ta-
ble 5.3 shows an example to declare the isMandatory Attribute of a Stage in SACM and Acadela.

SACM Acadela
<StageDefinition id="Identification"

isMandatory="true" ...>
</StageDefinition>

Stage Identification
#mandatory

<StageDefinition id="Identification"
isMandatory="false" ...>

</StageDefinition>
Stage Identification

#notMandatory

Table 5.3: An example of expressing the isMandatory Attribute of a Stage in SACM and Acadela.

5.3.3 Input Field

This element presents a graphical representation to collect medical data related to an activity conducted
by healthcare professionals. An Acadela InputField is a combination of SACM TaskParamDefinition
and AttributeDefinition. For this reason, Acadela supports the declaration of 1) layout position; 2) visual
effect (e.g., painting background colors according to the input values); 3) the accepted data type (e.g.,
number, text, or multiple-choice question) of the InputField. The data type determines how SACM renders
the InputField in theUI, i.e., displaying a field for the text or number type or showing the question and radio
button or checkbox for single-choice or multiple-choice questions; 4) readonly to state that the InputField
value cannot be changed; 5) whether the field is mandatory for completing the Task. Note that SACM
does not allow an InputField to be both mandatory and readonly.

TheAcadela InputField combinesAttributeDefinition, EnumerationOption (for declaringmultiple-choice
questions), and TaskParamDefinition of SACM. (Michel, 2020, p. 101, 102, 112). Table 5.4 shows the
SACM Attributes incorporated in the Acadela InputField element. The color code applied to each SACM
Attribute indicates its SACM architecture layer.

SACM Attribute Acadela Expression Description

id∗ <ID>
The identifier used as a reference within the
Case declaration or within an imported file.
The attribute name of ID in Acadela is "name"
as textX uses the "name" property as a refer-
ence to identify an imported element in a file.

description∗ label = "<text>"

A text displayed in the UI which describes the
input to care professionals. Acadela replaces
the description keyword with the label term
to emphasize the UI rendering characteristic
of this attribute. This description can be ex-
pressed using the local human language.

type ∗ #<type>
(See Section 5.3.1)

Enforce a data type constraint (e.g., text, num-
ber, multiple-choice question, link to aCP ele-
ment) on the InputField. See Section 5.3.1 for
a detailed description of type in Acadela.

68

5 Language Design

multiplicity
#atLeastOne
#exactOne (default)
#maximalOne
#any

Declares the expected quantity of value in the
InputField. For example, a multiple-answer
multiple-choice question can have #atLeast-
One or #any multiplicity as more than one an-
swer can be added to the InputField value.
Available multiplicity options are #atLeast-
One, #exactOne, #maximalOne, or #any.

additionalDescription additionalDescription
= "<text>"

a text expresses explanatory information re-
lated to the current InputField. When declar-
ing the additionalDescription value, SACM
creates a question mark icon next to the Input-
Field. hovering over this icon displays the ad-
ditionalDescription content as a tooltip text.

uiReference uiRef = "<text>"
Express the UI effect applied to this Input-
Field. For example, define a background color
band for ranges of numeric values, or display
the InputField as a URL link to an external file.

question 𝐴

question = "<text>"
option "<option1>"
value = "<value1>"
externalId = "<text>"
additionalDescription
= "<text>"

option "<option2>"
value = "<value2>"
externalId = "<text>"
additionalDescription
= "<text>"

Declares a multiple-choice question with op-
tions. Each option has a value attribute, which
SACM assigns to the value of the InputField
when the option is selected. In addition, mod-
elers can specify the type as #singlechoice
or #multiplechoice to indicate whether one or
multiple answers are accepted. externalId and
additionalDescription attributes)are optional
and function like the ones of the InputField.
The multiple-choice question is a compressed
syntax for declaring an EnumerationOption
in SACM.

externalId externalId = "<text>" Declares an ID to map with an external system
defaultValues defaultValues = "<text>" Declares a list of multiple values that SACM

will initially set to the InputField

defaultValue defaultValue = "<text>" Declares a single value that SACM will ini-
tially set to the InputField

path

For custom path to an ele-
ment, set directive to
#custom𝐴 and declare:
ElementPath
= "<pathToElement>"𝐴

By default, Acadela declares a path point-
ing to the InputField Entity from the par-
ent Stage. Therefore, the default path value
is <StageId>.<TaskId>.<InputFieldId>. For
example, the path to an InputField Age in the
Task AdmitPatient of the Stage Identification
is Identification.AdmitPatient.Age. Modelers
do not need to specify the default path. How-
ever, a custom path pointing to a different CP
elementmust be declarable with a #custom and
an ElementPath attribute containing the refer-
ence path to a CP element.

isMandatory #mandatory (default)
#notMandatory

States whether the InputField must contain a
value or not to complete a Task. See Section
5.3.2 for further information.

69

5 Language Design

isReadOnly #readOnly
#notReadOnly (default)

States whether the InputField displays its value
in a readonly format or expects a user inputs.
The default value is false as medical tasks fre-
quently need to collect medical data.

position #left
#leftcenter
#center
#centerright
#right
#stretched (default)

States the grid layout position to render the
InputField in the UI, which contains three
grid columns. The supported values are:
#left: the left grid cell
#center: the middle grid cell
#right: the right grid cell
#leftcenter: span across the first two cells
#centerright: span across the last two cells
#stretched: span across all the cells

part #humanDuty
#systemDuty

Only applicable to InputFields of a DualTask.
This Attribute states whether a case worker or
a system inputs data into the InputField.

Table 5.4: The attributes of an Acadela InputField.
* - the attribute is required.
A - the attribute is created in Acadela and does not exist in SACM.

The following examples illustrate the declaration of the InputField in different scenarios. First, Listing 5.1
and 5.2 show the minimum and complete versions of the InputField declaration. The minimum version
contains only the compulsory InputField attributes. The complete version shows all declarable attributes
in the InputField. Figure 5.5 shows the UI displayed in SACM for the InputField declared in Listing
5.1.

1 InputField FIELDNAME
2 #text
3 label = ’label ’

Listing 5.1: Minimum Input Field
Declaration

Figure 5.5: Input Field Rendering in
SACM produced by Listing 5.1

1 InputField FIELDNAME
2 #mandatory
3 #notReadOnly
4 #left
5 #maxOne
6 //# humanDuty // for Dual Task
7 #text
8
9 label = ’label ’
10 additionalDescription = ’extraInfo ’
11 // for custom reference to a CP object
12 // CustomFieldValue = ’

pathToCaseObject ’
13 uiRef = ’visualizationDefinition ’
14 externalId = ’IdInExternalSystem ’
15 defaultValue = ’defaultValue ’
16 // defaultValues = [’val1 ’, ’val2 ’]

Listing 5.2: Complete Input Field Declaration

The second example illustrates how to define a multiple-choice question that accepts a single value (List-
ing 5.3) or multiple values (Listing 5.4). Figure 5.6 and 5.7 show the graphical representations of the
InputField in both question modes.

70

5 Language Design

1 InputField ApplyHeat
2 #singleChoice
3 question =
4 "Using Heat Lamp?"
5 option "No" value = ’0’
6 option "Yes" value = ’1’

Listing 5.3: Multiple Choice Question - Single
Answer

1 InputField AcupuncturePos
2 #multiplechoice
3 question = ’Massage Positions :’
4 Option " Temple "
5 value = ’TEMPLE ’
6 Option " Shoulder "
7 value = ’SHOULDER ’
8 Option "Jaw"
9 value = ’JAW ’

Listing 5.4: Multiple Choice Question - Multiple
Answers

Figure 5.6: Rendering of the Multiple Choice -
Single Answer InputField in the SACMUI. The
InputField value in this example is ’1’.

Figure 5.7: Rendering of the Multiple Choice - Mul-
tiple Answer InputField in the SACM UI. The Input-
Field value in this example is [’TEMPLE’, ’SHOUL-
DER’].

5.3.4 Output Field

An Acadela OutputField supports the following capabilities to compute and display an output from In-
putField(s):

1. Mathematical operations: SACM supports basic arithmetic and square root calculations. Ad-
ditionally, Acadela automatically converts a string to a number in the formula using the num-
ber(<InputFields>) function provided by SACM.

2. Conditional expressions: produce outputs based on conditional statements applied to InputField(s).
Compound and complex conditional expressions are declarable using AND or OR operators and
parentheses. Note that the OutputField only accepts Input/OutputField(s) ID within the same
Task; thus, referencing an Input/OutputField outside the OutputField’s Task is not supported.

3. Background color coding: the uiReference attribute stores definitions of a color band applied to
the OutputField’s result. Therefore, modelers can declare a background color applied to a range
of numeric values, e.g., if the output Body Mass Index (BMI) value is from 18.5 to 24.9 (normal),
display a green background to the BMI OutputField.

4. Dynamic template rendering: display a custom visual effect on a SVG image based on the Input-
Field(s) value. To enable this feature, first modelers define an InputField storing an SVG template
that contains a medical image and custom graphical content (e.g., painted circle, rectangle contain-
ing text data). Next, SACM requires another OutputField that returns the template style based on
the InputField(s) value. The OutputField uses SACM conditional expression syntax to generate
the style based on the corresponding conditions applied to InputField(s).

Table 5.5 demonstrates the attributes of an OutputField in SACM and the color code to express their
hierarchy level in the Architecture of SACM.

71

5 Language Design

SACM Attribute Acadela Expression Description

id∗ <ID>

The identifier used as a reference within
the Case declaration or within an im-
ported file. The attribute name of ID
in Acadela is "name" as textX uses the
"name" property as a reference to identify
an imported element in a file.

description∗ label = "<text>"

A text displayed in the UI which describes
the output to care professionals. Acadela
replaces the description keyword with the
label term to emphasize the UI rendering
characteristic of this Attribute. This de-
scription can be expressed using the local
human language.

explicitAttributeType∗ #<type>
default: #notype
(See Section 5.3.1)

Enforce an data type constraint (e.g., text,
number) on the OutputField. See Section
5.3.1 for a detailed description of type in
Acadela.

additionalDescription additionalDescription
= "<text>"

a text expresses explanatory information
related to the current OutputField. When
declaring the additionalDescription value,
SACM creates a question mark icon next
to the OutputField. When hovering over
this icon, the UI displays the addition-
alDescription as a tooltip text.

uiReference uiRef = "<text>"

Express the UI effect applied to this Out-
putField. For example, define a back-
ground color band for different ranges of
numeric value (See Listing 5.6 and Fig-
ure 5.9), show the data as a line diagram
(uiRef = "linediagram"), or display an
SVG of the medical data (uiRef = "svg").

expression uiRef = "<text>"

Define how to render an output value us-
ing conditional expression, mathematical
formula, graphical effects (e.g., CSS style
definition), or SVG template that involves
InputField(s). Listing 5.5, 5.6, and A.9 re-
spectively show the syntax for the above
rendering mechanisms.

externalId externalId = "<text>" Declares an ID to map with an external
system

72

5 Language Design

path
For custom path to an element:
set directive to #custom and
ElementPath = "<pathToElement>" 𝐴

Declares a path pointing to the Entity
of the other Case object that displays
the OutputField value. Acadela au-
tomatically generates the path to the
OutputField as follows. If the path
points to an InputField or OutputField
of a Stage, then the path value is
<StageId>.<TaskId>.<InputFieldId>.
For example, the path to an Input-
Field Age in the Task AdmitPatient of
the Stage Identification is Identifica-
tion.AdmitPatient.Age. If the path points
to a Setting Attribute, then the path is
Settings.<AttributeName>

isMandatory ∗ #mandatory
#notMandatory (default)

States whether theOutputFieldmust con-
tain a value or not to complete a Task. See
Section 5.3.2 for further information.

isReadOnly #readOnly
#notReadOnly (default)

States whether the OutputField value is
overridable whenmodifying the Task data.
However, in SACM, the result of an Out-
putField is not modifiable as it is gener-
ated from the value of InputField(s)

position
#left
#leftcenter
#center
#centerright
#right
#stretched (default)

States the grid layout position to render the
OutputField in the UI, which contains 3
grid columns. The supported values are:
#left: the left grid cell
#center: the middle grid cell
#right: the right grid cell
#leftcenter: span across the first two cells
#centerright: span across the last two cells
#stretched: span across all the cells

Table 5.5: The attribute of an Acadela OutputField.
* - the attribute is required.
A - the attribute is created in Acadela and does not exist in SACM.

Conditional Output Expression: Listing 5.5 illustrates an example of declaring aminimumBlood-
PressureCondition OutputField that conditionally displays the result. In blood pressure measurement
(United Kingdom National Health Service, 2021), a Systolic/Diastolic blood pressure value below 90/60
mmHg is low, from 90/60 to 120/80 mmHg is healthy, 120/80 to 140/90 mmHg is pre-high, and above
140/90 mmHg is high. Figure 5.8 shows the SACM output of the blood pressure status based on the code
of Listing 5.5.

Dynamic Background Color Rendering: Listing 5.6 and Figure 5.9 show how to define a color
band for rendering background color according to a numeric value range. In this example, yellow, green,
orange, and red color codes apply to the underweight, normal, overweight, and obese BMI scale. Since
the height and weight value is normal, SACM renders a green background to the OutputField.
Note that in SACM the same color cannot be used twice in a uiReference definition. Additionally, decimal
values (e.g., 18.5) deactivate the coloring function.

73

5 Language Design

1 I n p u t F i e l d S y s t o l i c
2 #number (0 −300)
3 l a b e l = ’ S y s t o l i c Blood P r e s s u r e : ’
4
5 I n p u t F i e l d D i a s t o l i c
6 #number (0 −300)
7 l a b e l = ’ D i a s t o l i c Blood P r e s s u r e : ’
8
9 Ou t p u t F i e l d B l o o dP r e s s u r eCond i t i o n
10 # l e f t
11 l a b e l = ’ Blood P r e s s u r e Assessment : ’
12 e x p r e s s i o n = ’
13 i f (S y s t o l i c >= 140 or D i a s t o l i c >= 90)
14 t h en " High "
15 e l s e i f
16 (S y s t o l i c > 120 or D i a s t o l i c > 80)
17 t h en " E l e v a t e d "
18 e l s e i f
19 (S y s t o l i c > 90 or D i a s t o l i c > 60)
20 t h en "Normal "
21 e l s e "Low" ’

Listing 5.5: Minimum OutputField Declaration of
a conditional output. The BloodPressureCondition
OutputField shows the blood pressure status based
on the Systolic and Diastolic values.

Figure 5.8: SACM Display of the Condi-
tional OutputField in Listing 5.5. Here
the blood pressure is high because the Di-
astolic value is above 90.

1 InputField Height
2 #number (0 −3) #exactlyOne
3 label =’Height (m)’
4
5 InputField Weight
6 #number (0 −500) #exactlyOne
7 label =’Weight (kg)’
8
9 OutputField BmiScore
10 #left
11 label = ’BMI Score:’
12 uiRef = ’colors (0 < yellow < 18 <

green < 25 < orange < 30 < red <
100) ’

13 expression = ’Weight / (Height ∗
Height)’

Listing 5.6: Code Definition of color codes for ranges of
numeric values using the uiRef Acadela attribute.

Figure 5.9:BackgroundColor Effect from
the color code definition to the BmiValue
OutputField in Listing 5.6.

Dynamic Visualization : The following example demonstrates the definition of a customizable UI
template to show the head massage positions and their affected meridian vessels (Listing 5.10). Acadela
requires theOutputField to contain 1) an expression of an SVG image that helps modelers defines region
and symbols in a graphical image (lines 9-28); 2) a SACM command to dynamically define the CSS styles
based on InputField(s) value (lines 30-41). Examples of styles are hiding or showing elements or drawing
a fore- or background color; 3) a CSS style placeholder (line 18) in the SVG to be replaced by the CSS
style definition in 2) (lines 43-46). In the following example, a massage position from an InputField will
add a style to fill circles having the same body part as the class name with blue, thus creating the dynamic
rendering image as Figure 5.10 illustrates.

74

5 Language Design

1 I n p u t F i e l d HeadMassagePos i t i on #mu l t i p l eCho i c e
2 q u e s t i o n = "Massage t h e f o l l ow i n g p o s i t i o n s : "
3 o p t i o n " Temple " v a l u e = "TEMPLE"
4 op t i o n "Nape " v a l u e = ’NAPE’
5 o p t i o n " Jaw " va l u e = ’JAW’
6 / / . . . − Op t i on s f o r o t h e r head o r body a r e a s
7 o p t i o n " Forehead " v a l u e = "FOREHEAD"
8
9 I n p u t F i e l d mas sageLoca t i onTemp la t e # s t r i n g #exac t l yOne / / Impor t SVG Templa te
10 l a b e l = " Mer id i an Templa te "
11 u iRe f = ’ h idden ’
12 d e f a u l tV a l u e = ’<svg v e r s i o n ="1 .0" xmlns=" h t t p : / /www.w3 . org / 2 0 0 0 / svg "
13 xmlns : x l i n k =" h t t p : / /www.w3 . org / 1 9 9 9 / x l i n k "
14 wid th="<width>p t " h e i g h t ="<he i gh t >p t "
15 viewBox="0 0 <width> <he i gh t >"
16 p r e s e r v eA s p e c tR a t i o ="xMidYMid meet">
17
18 <s t y l e > # d y n am i c s t y l e v a r s {} </ s t y l e > / / s t y l e p l a c e h o l d e r
19 <image x l i n k : h r e f=<l inkToImagePa th >" />
20 / / use <g . . . > <pa t h d="<da t a p o i n t s >"/> </g> f o r custom SVG g r a p h i c
21
22 < c i r c l e c l a s s =" t emp le " cx="86" cy="60" r ="3" f i l l ="none "/ >
23 < c i r c l e c l a s s =" t emp le " cx="122" cy="60" r ="3" f i l l ="none "/ >
24
25 < c i r c l e c l a s s ="nape " cx="492" cy="84" r ="3" f i l l ="none "/ >
26 < c i r c l e c l a s s ="nape " cx="509" cy="84" r ="3" f i l l ="none "/ >
27
28 / / . . . − Othe r custom shape s and l o c a t i o n d e f i n i t i o n ’
29
30 Ou t p u t F i e l d ma s s a g eLoc a t i o nS t y l e # s t r i n g / / Dynamic S t y l e based on i n p u t s
31 l a b e l = "Massage S t y l e "
32 u iRe f = " h idden "
33 e x p r e s s i o n = ’ l e t ma s s a g eS i t e s = HeadMassagePos i t i on i n
34 l e t s t y l eTemp l e = i f ma s s a g eS i t e s . c o n t a i n s ("TEMPLE")
35 t h en " . t emp le { f i l l : b l u e }" e l s e " " i n
36 l e t s t y l eNape = s t y l eTemp l e + i f ma s s a g eS i t e s . c o n t a i n s ("NAPE")
37 t h en " . nape { f i l l : b l u e }" e l s e " " i n
38 / / . . . − code t o d e f i n e s t y l e f o r each body p a r t
39 l e t s t y l e F o r e h e a d = s t y l eNeck + i f ma s s a g eS i t e s . c o n t a i n s ("FOREHEAD")
40 t h en " . f o r e h e a d { f i l l : b l u e }"
41 e l s e " " i n s t y l e F o r e h e a d ’
42
43 Ou t p u t F i e l d ma s s ag eLoca t i o nV i s u a l # s t r i n g
44 l a b e l = " P o t e n t i a l Massage P o i n t s " u iRe f = ’ svg ’
45 / / Rep lace t h e p l a c e h o l d e r i n SVG wi th t h e dynamic s t y l e
46 e x p r e s s i o n = ’ r e p l a c e (massageLoca t ionTempla t e , "# d y n am i c s t y l e v a r s {} " ,

ma s s a g eLoc a t i o nS t y l e) ’

Listing 5.7: Dynamic Template Rendering Definition code in Acadela

Figure 5.10: Illustration of InputField values (massage positions - left) affect the output image visualiza-
tion (right) by showing temple and nape massage positions as blue circles.

75

5 Language Design

5.3.5 Form

The Form is an Acadela element that contains all InputFields and OutputFields of a Task. Each Form
has an ID to enable importing Form from an external file by ID. Forms support global mandatory and
readOnly directives that uniformly declare the two attributes to all InputFields and OutputFields during
the interpretation phase. Table 5.6 describes the value of the two attributes. Modelers can also specify
a different mandatory or readOnly Attribute value to a particular field to override the global directives.
This feature reduces repetitive definition of the two attributes in multiple InputFields or OutputFields.
Listing 5.8 and 5.9 respectively show the Form declaration with and without global directives.

SACM Attribute Acadela Expression Description

isMandatory #mandatory (default)
#notMandatory

Declares whether all InputField OutputField
must contain a value (#mandatory) or not (#not-
Mandatory) to complete a Task. See Section
5.3.2 for further information.

isReadOnly #readOnly
#notReadOnly (default)

Declare whether all InputField or OutputField
value is overridable when modifying the Task
data. However, in SACM, the result of an Out-
putField is not modifiable as it is generated from
the value of InputField(s)

Table 5.6: The Acadela Form attributes apply to all the included InputFields and OutputFields.

1 Form BmiForm #readOnly
2
3 InputField Height #number (0 −3)
4 label =’Height (m)’
5
6 InputField Weight #number (0 −500)
7 label =’Weight (kg)’
8
9 OutputField BmiScore #number
10 label = ’BMI Score:’
11 uiRef = ’<colorCode >’
12 expression =
13 ’Weight / (Height ∗ Height)’
14
15 InputField DoctorNote
16 #text #notReadOnly
17 label = "Note:"

Listing 5.8: FormDefinition examplewith global
readOnly attributes applied to all InputFields and
OutputFields except the DoctorNote InputField,
which has a local notReadOnly directive

1 Form BmiForm
2 InputField Height
3 #number (0 −3) #readOnly
4 label =’Height (m)’
5
6 InputField Weight
7 #number (0 −500) #readOnly
8 label =’Weight (kg)’
9
10 OutputField BmiScore
11 #stretched #number #readOnly
12 label = ’BMI Score:’
13 uiRef = ’<colorCode >’
14 expression =
15 ’Weight / (Height ∗ Height)’
16
17 InputField DoctorNote
18 #text #notReadOnly
19 label = "Note:"

Listing 5.9: Form Definition without global
attribute. Each field specifies its own readOnly
attribute

5.3.6 Precondition

Acadela Precondition is a condensed version of SentryDefinition in SACM to define control flows. The
Precondition previousStep attribute states the ID of the prerequisite Stage or Task to trigger the current
one. The condition Attribute declares the criteria needed to trigger the current Stage or Task. The con-
dition’s boolean expression can include an InputField, OutputField, or number of Stage’s iterations. A
Stage or Task can have many Precondition definitions. This ability enables the definition of complex

76

5 Language Design

decision criteria to trigger alternative execution paths, i.e., activate a particular Stage or Task based on
the current medical status. Listing 5.10 demonstrates a decision criteria written as a complex boolean
expression that controls the condition to activate a Stage.
Additionally, Acadela supports the declaration of multiple Preconditions to display a disjunction (OR)
relationship among them. SACM expresses a Conjunction relationship (AND) of prerequisite Stages or
Tasks by declaring multiple previousStep attributes in a Precondition. Listing 5.10 and Listing 5.3.6 show
how to declare the disjunction and conjunction relationships in Acadela, respectively.
Furthermore, SACM creates a repetitive Stage by assigning the current Stage ID to the previousStep
attribute of the same Stage’s Precondition, as illustrated in Listing 5.15 and Figure 5.14 in Section
5.3.9.

SACM Attribute Acadela Expression Description

processDefinitionId∗ previousStep
= "<StageOrTaskID>"

Declares the prerequisite Stage or Task that
must be completed to trigger the current
Stage or Task.

expression condition
= "<booleanExpression>"

Declare the decision criteria as a boolean ex-
pression to activate the current Stage or Task.
SACM supports the definition of compound
and complex boolean expressions.

Table 5.7: The attributes of Acadela Precondition.
* - the attribute is required.

1 Stage Identification
2 label = ’Identification ’
3
4 HumanTask SelectPatient
5 label = ’Assign Patient ’
6
7 Form PatientAssignForm
8 InputField PatientAge #number
9 label = " Patient age"
10
11 Stage CY #repeatserial
12 label = ’Cytological − Testing ’
13
14 Precondition previousStep = ’Identification ’
15 Precondition previousStep = ’CY’
16 condition = ’(CY. AssessCY .Colp = 2 or CY. AssessCY .Colp = 3)
17 and (Identification . SelectPatient . PatientAge < 30) ’
18
19 HumanTask AssessCY
20 label = ’Evaluate test results ’
21
22 Form CYForm
23 InputField Colp #singlechoice
24 question = ’Cytological testing ’
25 Option ’Pap II −p,g’ value=’2’
26 Option ’Pap IIID −1’ value=’3’
27 // Other Options

Listing 5.10: Declaration of repetitive Stagewith complex conditional expression. The CY Stage in this
example is repeated if the cytological test result obtained from AssessCY Task is Pap II-p,g or Pap IIID-1
and the patient Age collected from the SelectPatient Task of the Identification Stage is less than 30.

77

5 Language Design

1 Stage Cardiogram
2 label = ’Cardiogram ’
3 // ... Stage elements
4
5 Stage MRIScan
6 label = ’MRI Scan ’
7 // ... Stage elements
8
9 Stage Assessment
10 label = " Assessment "
11
12 Precondition
13 previousStep = ’Cardiogram ’
14 previousStep = ’MRIScan ’
15 // ... Other Stage elements

Figure 5.11:Acadela code (left) to declaring conjunction (AND) relationship between prerequisite Stages
or Tasks in Acadela. The SACM UIs (right) display the Assessment Stage is activated only when the
Cardiogram and MRI Scan Stages finish (Picture c). If both or one of the Cardiogram or MRI Scan
Stages are activated (Picture a and b), the Assessment Stage is disabled.

5.3.7 Trigger (HttpHook)

SACM updates medical status in external systems by sending a HTTP request (HttpHook) with the data
from a Case, Stage, or Task when a state change event (e.g., activated, completed) occurs (Michel, 2020,
p. 113). Specifically, a Case supports sending an external request in each activate, complete, terminate,
and delete event. Meanwhile, a Stage or Task can send multiple requests to different external systems for
each state change event. Therefore, Acadela defines a Trigger element to group all HttpHooks definitions
in a Case, Stage, or Task.
The CP element determines the scope of its HttpHook. Specifically, a Task HttpHook sends the Task data
from its InputFields andOutputFields to the external system url using a HTTP method. Similarly, a Stage
HttpHook sends all data from its Tasks, and aCase HttpHook sends the data of all the Stages and Tasks. If
the request fails, SACM shows the value of the failureMessage attribute to the user. Table 5.8 summarizes
the properties of an HttpHook definition. The position of method, url, and failureMessage attributes
are interchangeable in Acadela. Listing 5.11 shows how Acadela defines a Trigger construct inside the
MeasureBMI Task. Listing 5.12 presents the body content of a HTTP Request sent after completing the
(MeasureBMI) Task in Listing 5.11.

SACM Attribute Acadela Expression Description

on∗ On <event>

Declare the state change event that sends a HTTP
request to an external service. The event name is
case-insensitive in Acadela, i.e., UPPERCASE,
lowercase, or camelCase are accepted. Possi-
ble Stage and Task events are available, enable,
activate, complete, terminate, and correct. For
DualTask, the supported events are activateHu-
manPart, activateAutomatedPart, completeHu-
manPart, completeAutomatedPart, correctHu-
manPart, and correctAutomatedPart. Eligible
Case events are activate, complete, terminate,
and delete.

78

5 Language Design

url∗ invoke ’<url>’ Declare the URL of an external service or system
API that receives the HTTP Request.

method∗ method <HttpMethod>
State the HTTPmethod used in the request. Sup-
ported methods are POST, GET, PUT, DELETE.
TheMethod name is case-insensitive in Acadela.
Note that a Case HttpHook does not have the
method attribute.

failureMessage with failureMessage
’<error message>’

Declare a human readable error message in
case the HTTP Request execution fails. SACM
displays the failureMessage as an user-friendly
Alert. Note that aCase HttpHook does not have
the failureMessage attribute.

Table 5.8: Description on the attributes of a HttpHook (Michel, 2020, p. 113).
* - the attribute is required.

1 HumanTask MeasureBmi externalId = ’measureBmiOperation ’
2 label = ’MeasureBmi ’
3
4 Trigger
5 On activate method Post invoke ’https :// extSystem .com/api/bmi ’
6
7 On complete method Post invoke ’https :// extSystem .com/api/bmi ’
8 with failureMessage ’Cannot store BMI data in the partner system !’
9
10 HumanTask MeasureBmi externalId = ’measureBmiOperation ’
11 label = ’Measure BMI ’
12
13 Form BMIForm
14 InputField Height #number (0 −3) #exactlyOne
15 label =’Height (m):’
16
17 InputField Weight #number (0 −300) #exactlyOne
18 label =’Weight (kg):’
19
20 OutputField BmiScore #number
21 externalId = " BmiValueExternal "
22 label =’BMI Calculation :’
23 expression = ’round(Weight / (Height ∗ Height))’

Listing 5.11: Declaration of a HttpHook in a HumanTask.

1 {2 "isOverdue": false ,3 "stateTransitions": {4 // Other State activities Info5 "COMPLETED": {6 "by": {7 "id": "2c9480845bee03e7015bfcad28990010",8 "email": "practitioner.email@clinic.de",9 "name": "Doctor James",10 "resourceType": "users"11 },12 "date": "2022 -11 -04 19:01:25.0"13 }14 },15 "parentStage": "1xfdrfg925rl6", // Evaluation Stage ID in SACM16 "state": "COMPLETED",

79

5 Language Design

17 "externalId": "measureBmiOperation",18 "id": "uja8x6ouh6ci", // Measure BMI Task ID in SACM19 "description": "Measure BMI",20 "name": "ST1_MeasureBmi",21 "resourceType": "humantasks",22 // ... Other attributes23 "taskParams": [24 {25 "task": "uja8x6ouh6ci",26 "multiplicity": "exactlyOne",27 "attributeType": "number",28 "id": "vkdgza9trevj", // Height InputField ID in SACM29 "values": [1.8],30 "description": "Height (m):",31 "isMandatory": true ,32 "name": "Height",33 "isReadOnly": false ,34 },35 {36 "task": "uja8x6ouh6ci",37 "multiplicity": "exactlyOne",38 "attributeType": "number",39 "id": "1nybzswudgjv2", // Weight InputField ID in SACM40 "values": [83],41 "description": "Weight (kg):",42 "isMandatory": true ,43 "name": "Weight",44 "isReadOnly": false ,45 },46 {47 "task": "uja8x6ouh6ci",48 "attributeType": "number",49 "externalId": "BmiValueExternal",50 "id": "sl1p2i7w4jx3", // BmiScore OutputField ID in SACM51 "values": [26],52 "description": "BMI Calculation:",53 "isMandatory": true ,54 "name": "BmiScore",55 "isReadOnly": true ,56 }57],58 "isMandatory": true ,59 "case": "1oteh56xcg5s1" // Patient Case ID60 // ... Other Task Attributes61 }

Listing 5.12: Excerpt of the HTTP Request body sent by the second HttpHook in Listing 5.11 after
completing the MeasureBMI Task. Appendix A.6 lists the full body content.

5.3.8 Task

A Task represents the activity of collecting medical data relevant to the health status of the patient (Michel,
2020, p. 79). Therefore, A Task can contain questionnaires, data fields, and supplemental medical docu-
ments to assist care professionals in conducting their activities. To model Tasks, SACM supports Human-
Task, AutomatedTask, and DualTask concepts to define manual, automatic, and hybrid activities. Table
5.9 describes the attributes of a Task.

80

5 Language Design

SACM Attribute Acadela Expression Description

id ∗ <ID>

The identifier used as a reference within
the Case declaration or within an imported
file. The attribute name of ID in Acadela is
"name" as textX uses the "name" property as
a reference to identify an imported element
in a file.

description ∗ label = "<text>"

A text displaying the Task name in the UI.
Acadela replaces the description keyword
with the label term because the attribute
does not explain the purpose of the Task.
This description can be expressed using the
local human language.

multiplicity
#atLeastOne
#exactlyOne (default)
#maximalOne
#any

Declares the expected quantity of value in
the InputField. For example, a multiple-
answer multiple-choice question can have
#atLeastOne or #any multiplicity as more
than one answer can be added to the In-
putField value. Available multiplicity op-
tions are #atLeastOne, #exactlyOne, #max-
imalOne, or #any.

additionalDescription additionalDescription = "<text>"

a text expresses explanatory information re-
lated to the current InputField. When declar-
ing the additionalDescription value, SACM
creates a question mark icon next to the In-
putField. When hovering over this icon, the
UI displays the additionalDescription as a
tooltip text.

externalId externalId = "<text>" Declares an ID to map with an external sys-
tem

ownerPath owner = "<path>"

The path refers to a medical group or pro-
fessional responsible for executing the Task.
This path begins from the Case root Entity,
with every path section separated by the dot.
The ownerPath typically starts from the Set-
ting element, e.g., Setting.Clinicians for as-
signing members in the clinician group to
handle the Task. Note that if an ownerPath
is not declared in a Task, Acadela automat-
ically sets the Stage ownerPath as the Task
owner

dueDatePath dueDate = "<path>"

The path refers to an Attribute stating the
default deadline time to complete the Task,
e.g., 24 hours from now. This path be-
gins from the Case root Entity, with every
path section separated by the dot. The due-
DatePath typically starts from the Setting el-
ement, e.g., Setting.DueDate24Hours. See
section 5.3.12 for the declaration of the due
date attribute in theCase Setting. The due-
DatePath is not applicable to Automated-
Task

81

5 Language Design

isMandatory∗ #mandatory (default)
#notMandatory

States whether the Taskmust contain a value
or not to complete a Task. See Section 5.3.2
for further information.

repeatable #noRepeat (default)
#repeatSerial
#repeatParallel

States whether the Task is executed once
(#noRepeat), serially repetitive or parallelly
repetitive

activation #manualActivate
#autoActivate
#activateWhen(condition) 𝐴

States how to trigger the Task. Acadela
expresses the three activation modes of
SACM as follows:
#manualActivate: triggered by a staff
#autoActivate: triggered by the SACM exe-
cution engine
#activateWhen(condition): triggered by the
SACM execution engine when a given con-
dition is satisfied.
The #activateWhen(condition) is an
Acadela construct that combines the
manualActivationExpression and activa-
tion="EXPRESSION" declarations when
defining a conditional Task activation.

entityAttachPath entityAttachPath = "<path>"

Declares the path to store the newly instan-
tiated Task Entity. This path starts from
the Case root Entity, hence the first sec-
tion of the path is the parent Stage con-
taining the Task. As a result, Acadela
sets the default entityAttachPath as <par-
entStageID>.<currentTaskId>. Model-
ers can overwrite this path by declaring their
entityAttachPath in the Task.

entityDefinitionId entityDefinitionId = "<path>"

States the EntityDefinition ID that serves as
a schema for the Task. SACM will instan-
tiate the Entity and attach it to the declared
entityAttachPath. By default, Acadela cre-
ates an EntityDefinition of the Task from its
attributes, InputField, and OutputField el-
ements. This EntityDefinition has the same
ID and description as the Task. Therefore,
Acadela sets the default entityDefinitionId
as the Task ID. Modelers can overwrite this
path by declaring their entityDefinitionId in
the Task.

dynamicDescriptionPath dynamicDescriptionPath = "<path>"

Declares the path to any CP element (e.g.,
OutputField, InputField, Task) for extend-
ing the current Task definition. This path be-
gins from the Case root Entity, thus the first
path section is a Stage ID if the element is
a workflow item, i.e., Task, InputField, or
OutputField; or "Setting" if the element is
a Case Setting’s Attribute.

Table 5.9: The attributes of an Acadela Task.
* - the attribute is required.
A - the attribute is created in Acadela and does not exist in SACM.

82

5 Language Design

SACM supports manual activation of (parallelly) repeatable Tasks. Figure 5.12 shows the Acadela code
and SACM visualization of a single Task and manually repeatable Tasks. However, manually creating re-
peatable Tasks can be time-consuming to care professionals, hence Acadela supports declaring the number
of parallel instances of the Task using #repeatParallel(< number of parallel Task instances>). Note that
the e-Health system, not Acadela, offers the feature to construct multiple simultaneous Task instances.
SACM does not support automatic instantiations of parallelly repeatable Tasks.

1 Stage LabTest
2 label = ’Lab Test ’
3
4 Precondition
5 previousStep = ’Identification ’
6
7 HumanTask QuickTest
8 label = ’Quick Test ’
9 // QuickTest Form declaration
10
11 HumanTask PcrTest
12 #manualActivate #repeatParallel
13 label = ’PCR Test ’
14 dueDateRef
15 = ’Setting . WorkplanDueDate ’
16
17 // PcrTest Form declaration

Figure 5.12: Acadela Declaration (left) and SACM UI (right) of a single Task (Quick Test) and multiple
instances of a repeatable Task (PCR Test) for the Lab Test Stage. An Add Task button exists when there
is at least one manually activated Task in the Stage. Clicking the Add Task button allows the creation
of the repeatable Task(s), as shown in the below dropdown box. The example inspires by the research on
applying parallel PCR Tests to detect SARS-CoV-2 by (Perchetti et al., 2020, p. 2)
Regarding each Task type, HumanTasks denote activities conducted by staff, possibly with a declared
due date. AutomatedTasks are executions performed by external systems which does not support a due
date declaration (Michel, 2020, p. 110). Finally, DualTasks include activities performed by human staff,
followed by an execution conducted by an external system (Michel, 2020, p. 108). As a result, each
InputField orOutputField of a DualTask has a duty directive to state whether a human or system executes
the Task. The due date is declarable in DualTasks.
In Acadela syntax, each Task type has a Form containing InputFields to record medical data and Output-
Field to express or visualize medical information based on the InputFields. Moreover, a Task contains
Precondition(s) to define activation conditions and enable repetition. Furthermore, multiple HttpHooks
is includible to support activity synchronization with external systems, particularly for DualTasks. Table
5.9 lists all attributes of a Task in Acadela. Listing 5.13, and 5.14 demonstrates a complete definition of
HumanTask and DualTask in Acadela. AutomatedTask definition is identical to HumanTask except that
the due date is not declarable.

1 // Minimum HumanTask Declartion
2 HumanTask TASKNAME
3 label = ’TASK_LABEL ’
4
5 // Complete Human Task Declaration
6 HumanTask TASKNAME
7 #mandatory // isMandatory true or false

83

5 Language Design

8 #noRepeat // one −time , serial or parallel repetition
9 #autoActivate // activation mode
10 #any // multiplicity
11 owner = ’Setting .< GroupOrUser >’
12 label = ’TASK_LABEL ’
13 dueDateRef = ’Setting . DATE_ATTRIBUTE_ID ’
14 additionalDescription = ’TOOLTIP_TEXT ’
15 externalId = ’EXTERNAL_ID ’
16 dynamicDescriptionRef = ’PATH_TO_OTHER_CP_OBJECT ’
17
18 Precondition previousStep = ’PREVIOUS_STAGE ’
19 condition = ’TRANSITION_CONDITION ’
20
21 Trigger
22 On TASK_LIFECYCLE_STATE invoke ’EXTERNAL_SYSTEM_URL ’ method

HTTP_METHOD
23 with failureMessage ’ERROR_MESSAGE ’
24
25 On TASK_LIFECYCLE_STATE invoke ’EXTERNAL_SYSTEM_URL ’ method

HTTP_METHOD
26 with failureMessage ’ERROR_MESSAGE ’
27
28 Form FORMNAME
29 InputField INPUT_FIELD_NAME1 #text
30 label = ’FIELD_LABEL1 ’
31
32 OutputField FIELDNAME
33 label = ’FIELD LABEL ’
34 expression = ’if (FIELD_NAME < NUM) then " OUTPUT1 " else " OUTPUT2 "’

Listing 5.13: Example of a minimum (lines 2-3) and complete HumanTask declaration (lines 6-34) in
Acadela. The directives and attributes appear in the complete HumanTask definition but not in the
minimum version are default or optional values that do not need to be declared.

1 DualTask TASKNAME
2 label = ’TASK_LABEL ’
3
4 DualTask DUALTASKNAME
5 #mandatory // isMandatory true or false
6 #noRepeat // one −time , serial or parallel repetition
7 #autoActivate // activation mode
8 #any // multiplicity
9
10 owner = ’Setting .< GroupOrUser >’
11 label = ’TASK_LABEL ’
12 dueDateRef = ’Setting . DATE_ATTRIBUTE_ID ’
13 additionalDescription = ’TOOLTIP_TEXT ’
14 externalId = ’EXTERNAL_ID ’
15 dynamicDescriptionRef = ’PATH_TO_OTHER_CP_OBJECT ’
16
17 Precondition previousStep = ’PREREQUISITE_STAGE_OR_TASK_ID ’
18 condition = ’TRANSITION_CONDITION ’
19
20 Trigger
21 On TASK_LIFECYCLE_STATE
22 invoke ’EXTERNAL_SYSTEM_URL ’ method HTTP_METHOD
23 with failureMessage ’ERROR_MESSAGE ’
24
25
26 Form FORMNAME

84

5 Language Design

27 InputField INPUT_FIELD_NAME1 #text #humanDuty
28 label = ’FIELD_LABEL1 ’
29
30 InputField INPUT_FIELD_NAME2 #json #systemDuty
31 uiRef = ’linediagram ’
32 label = ’FIELD_LABEL2 ’
33
34 OutputField FIELDNAME #left
35 label = ’OUTPUT FIELD LABEL ’
36 expression = ’if (FIELD_NAME < NUM and FIELD_NAME >= NUM)
37 then " OUTPUT1 "
38 else if (FIELD_NAME = NUM or FIELD_NAME = "TEXT ")
39 then " OUTPUT2 "
40 else " OUTPUT3 "’

Listing 5.14: Example of a minimum (lines 1-2) and complete DualTask declaration (lines 4-40) in
Acadela.

5.3.9 Stage

A Stage represents a treatment phase comprising multiple Tasks. Similar to a Task, a Stage has an owner
which is a group, or an individual that executes the Stage operations and reads or writes Stage data.
SACM supports the definition of one-time, parallelly, or serially repeatable Stages. Table 5.10 describes
the Stage attributes and their expression in Acadela.

SACM Attribute Acadela Expression Description

id ∗ <ID>
The identifier used as a reference within the
Case declaration or within an imported file.
The attribute name of ID in Acadela is "name"
as textX uses the "name" property as a reference
to identify an imported element in a file.

description ∗ label = "<text>"

A text displaying the Stage name in the UI.
Acadela replaces the description keyword with
the label term because SACM renders the de-
scription Attribute as the Stage name, not as
an explanation of the Stage purpose. The de-
scription value can be expressed using the local
human language.

multiplicity
#atLeastOne
#exactlyOne(default)
#maximalOne
#any

Declares the expected multitude of a Stage.
Serially and parallelly repeatable Stages shall
have multiplicity of #atLeastOne. Declaring
#any deactivates conditional trigger of a Stage.

additionalDescription additionalDescription = "<text>"

a text expresses explanatory information re-
lated to the current InputField. When declaring
the additionalDescription value, SACM creates
a question mark icon next to the InputField.
When hovering over this icon, the UI displays
the additionalDescription as a tooltip text.

externalId externalId = "<text>" Declares an ID to map with an external system

85

5 Language Design

ownerPath owner = "<path>"

The path refers to a medical group or pro-
fessional responsible for executing the Task.
This path begins from the Case root Entity,
with every path section separated by the dot.
The ownerPath typically starts from the Setting
element, e.g., Setting.Clinicians for assigning
members in the clinician group to handle the
Task.

dueDatePath dueDate = "<path>"

The path refers to an Attribute stating the de-
fault deadline time to complete the Stage, e.g.,
24 hours from now. This path begins from
the Case root Entity, with every path section
separated by the dot. The dueDatePath typi-
cally starts from the Setting element, e.g., Set-
ting.DueDate24Hours. See section 5.3.12 for
the declaration of the due date attribute in the
Case Setting.

isMandatory∗ #mandatory(default)
#notMandatory

States whether the Stage must be completed
once activated to accomplish aCase treatment.
See Section 5.3.2 for further information.

repeatable #noRepeat(default)
#repeatSerial
#repeatParallel

States whether the Stage is executed once
(#noRepeat), serially repetitive (#repeatSerial)
or parallelly repetitive (#repeatParallel)

activation
#manualActivate
#autoActivate
#activateWhen(condition) 𝐴

States how to trigger the Stage. Acadela ex-
presses the three activation modes as follows:
#manualActivate: triggered by a human staff
#autoActivate: triggered by the SACM execu-
tion engine
#activateWhen(condition): triggered by the
SACM execution engine when a given condi-
tion is satisfied.
The #activateWhen(condition) is an Acadela
construct that combines the manualActiva-
tionExpression="<conditionalExpression>"
and activation="EXPRESSION" declarations
when defining a conditional Stage activation
in SACM.

entityAttachPath entityAttachPath = "<path>"
Declares the path to store the newly instantiated
Stage Entity. This path starts from the Case
root Entity, hence the default path value is the
Stage ID. Modelers can overwrite this path by
declaring their entityAttachPath attribute.

dynamicDescriptionPath dynamicDescriptionPath=’<path>’

Declares the path to a CP element (e.g., In-
putField, Task) for extending the current Stage
definition. This path begins from theCase root
Entity, thus the first path section is a Stage ID
if the element is a workflow item, i.e., Stage,
Task, InputField, or OutputField; or "Setting"
if the element is a Setting Attribute.

86

5 Language Design

entityDefinitionId entityDefinitionId=’<path>’

States the EntityDefinition ID that serves as a
schema for the Stage. SACM will instantiate
the Entity and attach it to the declared entityAt-
tachPath. By default, Acadela creates an En-
tityDefinition of the Stage from its attributes
and Tasks. This EntityDefinition has the same
ID and description as the Stage. Therefore,
the default entityDefinitionId is the Stage ID in
Acadela. Modelers can overwrite this path by
declaring their entityDefinitionId attribute.

Table 5.10: The attributes of an Acadela Stage.
! - the attribute is required.
A - the attribute is created in Acadela and does not exist in SACM.

Like parallel Tasks, SACM provides a manual instantiation for parallelly repetitive Stages but does not
support an automatic mechanism to create the Stages. Each parallel Stage is executable only once. Fig-
ure 5.13 shows the Acadela definition (left) and UI visualization (right) of a single Stage and manually
activated, parallelly repetitive Stages. While Listing 5.15 and Figure 5.14 illustrate the definition and visu-
alization of a serially repeatable Stage. Nested Stages are feasible but not implemented in SACM.
Regarding the structure, a Stage can have multiple Tasks to record data or assist care professionals with
visualization of medical information. Moreover, Similar to Tasks, a Stage contains Precondition(s) to
control the process flow. Furthermore, HttpHooks are includible to share all the Tasks data in the Stage
with external systems. Listing 5.16 demonstrates a minimum and complete definition of attributes and
child elements in a Stage.

1 // Single Stage
2 Stage Identification
3 label = ’Identification ’
4 // ... Stage Elements
5
6 // Parallelly repeatable Stage
7 Stage PcrTest
8 #manualActivate #repeatParallel
9 label = ’PCR Test ’
10 // ... Stage Elements

Figure 5.13: Acadela Declaration (left) and SACMUI (right) of a single Stage (Identification) and paral-
lelly repeatable Stage (PCR Test). The circle with a plus icon exists when declaring at least one manually
activable Stage. Clicking the plus circle displays a dropdown box to select the (repeatable) Stage, which
SACM will instantiate. The number below the parallel Stage is the cardinal instance number, not the
latest iteration of that Stage. Each parallel Stage is executable only once. The example inspires by the
research on applying parallel PCR Tests to detect SARS-CoV-2 by (Perchetti et al., 2020, p. 2)

87

5 Language Design

1 Stage Identification
2 label = " Identification "
3 // ... Stage elements
4
5 Stage Evaluation
6 #repeatSerial #atLeastOne
7 label = " Exercise "
8
9 Precondition
10 previousStep = ’Identification ’
11
12 Precondition
13 previousStep = ’Evaluation ’

Listing 5.15: Precondition Definition to enforce a
repetitive Stage using the previousStep Attribute.
Lines 9 and 10 state that the Exercise Stage is
only triggered when the Identification Stage is
completed. Lines 11 and 12 state that the Exercise
Stage is repetitive as the previous Exercise Stage
iteration needs to be finished to activate the new
Exercise Stage

Figure 5.14: UI display of a repetitive
Stage in SACM. A blank circle expresses
a completed Stage. The door-shaped pur-
ple object denotes the activated Exercise
Stage that the user is interacting with.
SACMshows the latest Stage iteration be-
low its name.

1 // Minimum declaration of a single execution stage
2 Stage STAGENAME
3 label = ’STAGE_LABEL ’
4 // Task(s) Definition
5
6 // Complete Stage Declaration
7 Stage STAGENAME
8 #mandatory
9 #noRepeat
10 #autoActivate
11 #any
12 owner = ’Setting . CaseOwner ’
13 label = ’STAGE_LABEL ’
14 additionalDescription = ’ADDITIONAL_DESCRIPTION ’
15 externalId = ’EXTERNAL_ID ’
16 dynamicDescriptionRef = ’PATH_TO_OBJ_OF_DYNAMIC_DESCRIPTION ’
17
18 // Precondition (s) Definition
19 // HttpHook (s) Definition
20 // Task(s) Definition

Listing 5.16: Minimum (lines 2-4) and complete declaration (lines 6-19) of a Stage in Acadela

5.3.10 Summary Panel

A SummaryPanel contains critical InputFields orOutputFields values in a readonly format to present the
patient medical status or treatment goal(s). The SummaryPanel includes each InputField orOutputField
value using a reference path starting from its parent Stage, i.e.,<StageId>.<TaskId>.<Input/OutputFieldId>.
SACM applies a grid layout with three columns format to display the SummaryPanel’s values. The visual
effect of the value (e.g., background color, SVG rendering) remains in the SummaryPanel.

88

5 Language Design

SACM Attribute Acadela Expression Description

id ∗ <ID>
The identifier used as a reference within the
Case declaration or within an imported file.
The attribute name of ID in Acadela is "name"
as textX uses the "name" property as a reference
to identify an imported element in a file.

description ∗ label = "<text>"

The Summary title in the UI. Acadela replaces
the description keyword with the label term be-
cause SACM renders the description Attribute
as the Summary title, not as an explanation of
the Summary value. The description value can
be expressed using the local human language.

position #left
#center
#right
#stretched

States the grid layout position to render the
InputField in the UI, which contains three
grid columns. The supported values are:
#left: the left grid cell
#center: the middle grid cell
#right: the right grid cell
#stretched: span all three cells

Table 5.11: The attributes of an Acadela SummaryPanel.
* - the attribute is required.

1 SummaryPanel
2 Section SECTION_NAME_1
3 label = " Section 1 Title"
4 InfoPath <StageID >.< TaskID >.< InputField1ID >
5
6 Section SECTION_NAME_2
7 #left // column position in the Grid Layout
8 label = " Section 2 Title"
9 InfoPath <StageID >.< TaskID >.< InputField2ID >
10 InfoPath <StageID >.< TaskID >.< InputField3ID >
11 InfoPath <StageID >.< TaskID >.< OutputField1ID >

Listing 5.17: SummaryPanel definition in Acadela syntax. A SummaryPanel can contain multiple
Sections, each Section has a position directive, a title, and one or many InfoPath which points to an
Input/OutputField in the Case Definition from its parent Stage or Task.

1 SummaryPanel
2 Section TreatmentGoal #left
3 label = " Treatment Goal:"
4 InfoPath TreatmentApproval . DiscussTreatment . TreatmentGoal
5
6 Section SleepCondition #left
7 label = "Sleep Condition "
8 InfoPath Questioning . QuestionPatientCondition . SleepCondition
9
10 Section MassageConsent #left
11 label = " Remedies Consent :"
12 InfoPath TreatmentApproval . DiscussTreatment . MassageConsent
13 InfoPath TreatmentApproval . DiscussTreatment . AcupunctureConsent
14 InfoPath TreatmentApproval . DiscussTreatment . GuashaConsent
15
16 Section MassagePosition #center

89

5 Language Design

17 label = " Massaging Points "
18 InfoPath Massaging . MassageHead . MassageLocationVisual
19
20 Stage Questioning // Stage Attributes
21
22 HumanTask QuestionPatientCondition // Task Attributes
23
24 Form PatientConditionForm
25 InputField SleepCondition #singleChoice
26 question = "How is your sleep condition ?"
27 option "I got nightmare frequently " value = ’1’
28 // Other options
29 option "Good" value = ’5’
30 option "Very good" value = ’6’
31
32 Stage TreatmentApproval // Stage Attributes
33
34 HumanTask DiscussTreatment // Task Attributes
35
36 Form TreatmentDiscussionForm
37 InputField TreatmentGoal #text
38 label = " Treatment Goal:"
39
40 InputField MassageConsent #singleChoice
41 question = " Massage Consent :"
42 option "No" value = ’0’
43 option "Yes" value = ’1’
44 uiRef = " colors (0 <= red < 1 <= green < 2)"

Listing 5.18: Example of a SummaryPanel Definition to display treatment goal and medical data in the
CP at a specific grid layout position. Listing A.9 shows the dynamic image rendering mechanism used by
the MassageLocationVisual OutputField.

Figure 5.15: Illustration of SummaryPanel UI in SACM as defined in Listing 5.18. SACM retains the
visual effect of each Input/OutputField.

90

5 Language Design

5.3.11 Responsibilities

SACM provides a separate API to create Users and Groups representing medical professionals and teams.
Modelers define the information of Users andGroups according to the SACMXML structure. Specifically,
a SACM User definition contains a local ID, static ID to assist referencing from external systems, name,
role, age, and other organizational data. Meanwhile, a SACMGroup definition contains a local ID, static
ID, name, and title that appears in the UI. Table 5.12 and 5.13 list the attributes in Acadela User and
Group elements.

SACM Attribute Acadela Expression Description

id ∗ <ID>
The identifier used as a reference within the Acadela
Case declaration or within an imported file. The at-
tribute name of ID in Acadela is "name" as textX uses
the "name" property as a reference to identify an im-
ported element in a file.

staticId staticId = "<text>"
The unique identifier of this User in SACM, which exter-
nal systems use as a reference. In SACM, the maximum
length of a staticId is 32 characters.

Table 5.12: The attributes of an Acadela User.
* - the attribute is required.

SACM Attribute Acadela Expression Description

id ∗ <ID>
The identifier used as a reference within the Acadela
Case declaration or within an imported file. The at-
tribute name of ID in Acadela is "name" as textX uses
the "name" property as a reference to identify an im-
ported element in a file.

staticId staticId = "<text>"
The unique identifier of this Group in SACM, which
external systems use as a reference. In SACM, the max-
imum length of a staticId is 32 characters.

Table 5.13: The attributes of an Acadela Group.
* - the attribute is required.

Acadela provides the Group and User constructs to declare references to SACM Groups and Users. Each
Acadela Group or User has a 1) SACM local ID that is referable within a CP and 2) an optional staticId
attribute that stores the global identifier of the medical team or staff in SACM. In addition, Group ele-
ments have a name attribute storing the medical team name. This name attribute helps Acadela verify the
existence of a declared medical team in the CP. Note that SACM requires the staticId in the declaration of
eachGroup or User, yet to enhance usability, Acadela automatically searches the staticId from the SACM
database. If the staticId is declared, then Acadela skips this search operation. Tables 5.12 and 5.13 list
the attributes of the User and Group elements in Acadela.
Acadela clusters the Group and User definitions under a Responsibilities element. SACM requires the
Group or User declarations as Attributes in the Case Setting, hence Stages and Tasks can refer to them
as the process owner when applicable. Listing 5.19 and 5.20 show the concrete syntax and example of
defining references to medical teams and professionals in the Responsibilities element. Section Setting
describe the declaration of the Group and User aliases in Listing 5.21.

1 Responsibilities
2 Group <id > name = ’<groupName >’ staticId = ’<GroupStaticIdInSacm >’
3 User <id > staticId = ’<UserStaticIdInSacm >’

Listing 5.19: Group and User Definition in Acadela syntax.

91

5 Language Design

1 Responsibilities
2 group DemoClinicians name = ’Demo Clinician ’
3 staticId = "5 f737af3443311e9bd8a0242ac13000e "
4 group DemoProfessionals name = ’Demo Professional ’ // no staticId ,

Acadela will search from the name
5 user alanF staticId = "349 ca79c443011e9bd8a0242ac13000e "
6 user maryL // no staticId , Acadela will search from the user ID (maryL)

Listing 5.20: Group and User Definition in Acadela syntax.

5.3.12 Setting

The Setting is the central element to store the case owner, due date, and aliases of Groups or Users as
Attributes. Optionally, modelers can declare a case client to enable searching a patient from the patient list
in SACM. Table 5.14 shows the properties of a Setting Attribute declared in the Setting element.

SACM Attribute Acadela Expression Description

id ∗ <ID>
The identifier used as a reference within the
Case declaration or within an imported file.
The attribute name of ID in Acadela is "name"
as textX uses the "name" property as a refer-
ence to identify an imported element in a file.

description ∗ label = "<text>"
A text displayed in theUI. Acadela replaces the
description keyword with the label term to em-
phasize the UI rendering characteristic of this
attribute. This description can be expressed
using the local human language.

type ∗ #<type>
(See Section 5.3.1)

Enforce a data type constraint (e.g., text, num-
ber, multiple-choice question, link to a Case
object) on the Attribute. See Section 5.3.1 for
a detailed description of type in Acadela.

multiplicity
#atLeastOne
#exactOne(default)
#maximalOne
#any

Declares the expected number of Attribute in-
stances at runtime.

additionalDescription additionalDescription
= "<text>"

a text expresses explanatory information re-
lated to the current Attribute. When declaring
the additionalDescription value.

uiReference uiRef = "<text>"
Express the UI effect applied to this Attribute.
For example, define a background color band
for numeric value, or display the Attribute as
a URL link to an external file.

externalId externalId = "<text>" Declares an ID to map with an external system
defaultValue defaultValue = "<text>" Declares a single value that SACM will ini-

tially set to the Attribute

defaultValues defaultValues = ’<text>’ Declares a list of multiple values that SACM
will initially set to the Attribute

Table 5.14: The attributes of an Acadela Setting Attribute.
* - the attribute is required.

92

5 Language Design

The Setting is also suitable to store constants or global variables. InputFields andOutputField can lever-
age the global variables to store, compute, or display the data, which are required by multiple Tasks or
Stages. Acadela supports the read (forOutputFields) or write (for InputFields) of global variables with a
#custom directive and ElementPath attribute, e.g., ElementPath="Setting.<globalVariableAttributeId>"
(See the path attribute of Section 5.3.3 and 5.3.4). Listing 5.22 shows an example definition of a Case
Setting in Acadela.

1 Responsibilities
2 group DemoClinicians name = ’Demo Clinician ’ staticId = "5

f737af3443311e9bd8a0242ac13000e "
3 // ... Other Group and User references
4
5 Setting
6 CaseOwner DemoClinicians
7 label = ’Demo Clinicians ’
8
9 CasePatient DemoPatients
10 label = ’Patient ’
11
12 Attribute Clinician
13 #Link.#Users(DemoClinicians)
14 label = ’Clinician ’
15
16 Attribute WorkplanDueDate
17 #date.#after(TODAY) // due date within the next 24 hours
18 label = ’24− hour Due Date ’

Listing 5.21: Case Setting declaration syntax in Acadela.

5.3.13 Case

An Acadela Case represents a CP model that comprises the Case attributes listed in Table 5.13 and the
following elements from SACM CaseDefinition (Michel, 2020, p. 103):

1. Responsibilities: The reference to medical teams or professionals involved in the CP.
2. Case Setting: Stores Case meta-data, including the case owner, optional case patient, alias of a

Responsibilities element, due date duration (e.g., next 24 hours), constants, and global variables.
3. Case HttpHook: Declares a HTTP request being sent to an external service when a Case state

change event occurs.
4. Case Summary: Presents the critical medical data and treatment goal(s) for care professionals to

analyze the patient’s condition and determine the necessary medical interventions.
5. Stage(s): The treatment phases consist of medical or administrative Tasks that collects or displays

case-related data to support the treatment process. Preconditions are declarable to enforce control
flows in Stages and Tasks, i.e., define structured processes of ordered steps or adaptive processes
containing flexible alternative execution paths.

Table 5.15 describes the attributes in an Acadela Case. Listing 5.22 shows the syntax for declaring aCase
in Acadela, while Listing 5.23 demonstrates the code to declare a Case and Figure 5.16 illustrates the UI
of the resulting workflow model in SACM.

93

5 Language Design

SACM Attribute Acadela Expression Description

id∗ <ID>
The identifier used as a reference within the Acadela
Case declaration or within an imported file. The at-
tribute name of ID in Acadela is "name" as textX uses the
"name" property as a reference to identify an imported el-
ement in a file.

description∗ label = "<text>"
A text displayed in the UI to show the CP name. Acadela
replaces the description keyword with the label term
to emphasize the UI rendering characteristic of this at-
tribute. This description can be expressed using the local
human language.

prefix ∗𝐴 prefix = "<text>"
Prepended text to the ID of the Case, Stages, and Tasks
in the CP. This prefix helps SACMdistinguish CPs having
the same name but used by different medical institutions.

version ∗𝐴 version = <integer>
State the version number of the current Case definition.
SACM appends this value to a prefixed Case id to sup-
port CP versioning.

Table 5.15: The attributes of an Acadela Case.
* - the attribute is required.
A - the attribute is created in Acadela and does not exist in SACM.

1 define Case <CpId >
2 prefix = ’<prefixText >’
3 version = <versionNumber >
4 label = ’<CpNameInUI >’
5
6 Trigger
7 On <caseStateEvent1 > invoke ’<externalSystemApiUrl1 >’
8 On <caseStateEvent2 > invoke ’<externalSystemApiUrl2 >’
9
10 // Responsibilities Definition
11 // Setting Definition
12 // Stage Definitions

Listing 5.22: Case declaration syntax in Acadela.

1 #aca0 .1
2 workspace Demo
3
4 define Case Schizophrenia
5 prefix = ’MSC ’
6 version = 1
7 label = ’Schizophrenia Treatment ’
8
9 Trigger
10 On activate invoke ’https :// partnerSystemUrl /api/ activate ’
11
12 Responsibilities
13 group DemoPhysicians name = ’Demo Physician ’ // staticId = ’asdf234 ’
14 group DemoClinicians name = ’Demo Clinician ’
15 group DemoProfessionals name = ’Demo Professional ’
16 group DemoPatients name = ’Demo Patient ’
17 group DemoNurses name = ’Demo Nurse ’
18

94

5 Language Design

19 user demoUser
20
21 Setting
22 CaseOwner DemoProfessionals #exactlyOne
23 label = ’Demo Professionals ’
24
25 Attribute WorkplanDueDate
26 #exactlyOne #date.#after(TODAY)
27 label = ’Workplan Due Date ’
28 externalId = ’dueDateConnie ’
29
30 CasePatient DemoPatients #exactlyOne
31 label = ’Patient ’
32
33 Attribute Clinician
34 #Link.#Users(DemoClinicians)
35 label = ’Clinician ’
36
37 Attribute Nurse
38 #Link.#Users(DemoNurses)
39 label = ’Nurse ’
40
41 SummaryPanel
42 Section MedicalInformation
43 label = " Medical Information :"
44 InfoPath Identification . MedicalInfo .Age
45 InfoPath Identification . MedicalInfo . Gender
46
47 Section PatientPreferences #left
48 label = " Patient Preferences :"
49 InfoPath Identification . PatientPreferences . TreatmentGoal
50 // Other InfoPath and Summary Sections
51
52 Stage Identification
53 label = " Identification "
54 // Stage Attributes and Task Definitions
55
56 Stage ShareDecisionMaking #repeatSerial
57 owner = ’Setting . Clinician ’
58 label = ’Share Decision Making ’
59
60 Precondition previousStep = ’Identification ’
61 Precondition previousStep = ’ShareDecisionMaking ’
62
63 HumanTask OpenTherapySession #exactlyOne
64 label = ’Arrange Therapy Session ’
65 // Task Form Definition
66
67 Stage Discharge #manualActivate
68 owner = ’Setting .Nurse ’
69 label = ’Discharge ’
70 // Discharge Task Declaration

Listing 5.23: An example of Case declaration syntax in Acadela.

95

5 Language Design

Figure 5.16: UI of the Case defined in Listing 5.23 from the view of a Clinician User. The screenshot
shows the current workflow with completed and opening Stages (purple-background circles), Tasks, as-
signed roles, and other Case information (e.g., Case name, patient info).

5.3.14 Workspace

In the CONNECARE system, multiple hospitals and clinics stored their CP models in the SACM backend.
Therefore, SACM defines a Workspace concept to represent a collection of all CPs (Case metamod-
els) used by a medical facility. The Workspace id attribute is typically a hospital or clinic ID stored in
the SACM database. Besides, to support various parsing and interpreting mechanisms for CPs in differ-
ent medical institutions, Acadela has an optional directive stating the e-Health system abbreviation and
Acadela version number at the beginning of the file. Acadela declares this directive and the Workspace
reference as follows:

1 #< eHealthSystemAbbr >< versionNumber > // e.g. #sacm1 .0
2 Workspace <id >
3 // Case Definition

Listing 5.24: Workspace Definition in Acadela syntax.

5.3.15 Import

To enhance reusability, Acadela leverages the textX Reference Resolving Expression Language (RREL)
(Dejanović, n.d.c) to enable importing a Case, Setting, SummaryPanel, Stage, Task, HttpHook, Form,
InputField, OutputField, Attribute, and variable into a CP definition. First, modelers define the above
element(s) in a separate file with .aca extension. Next, the element is importable at the beginning of the
Case definition, thus, modelers can use an element in the imported file by referring to their ID using the
syntax use <ElementType> <ElementId>.
Additionally, Acadela also supports import as aliases, hence modelers can assign a namespace to an
imported file. Listing 5.25 shows the syntax to declare and use both forms of import. Finally, Listing 5.26
shows an example of using both types of import in a Case definition.

1 import <pathToFolder >.< fileName1 > // Import a file contains CP element (s)
2 import <pathToFolder >.< fileName2 > as <alias > // import a file as alias
3
4 // CP element import
5 use <ElementType > <elementId > // call a CP element without alias
6 use <ElementType > <alias >.< elementId > // call a CP element with alias
7

96

5 Language Design

8 // CP element ’s attribute import
9 <attrKeyword > = use <attrId > // assign an attribute value without alias
10 <attrKeyword > = use <alias >.< attrId > // assign the value with alias

Listing 5.25: Acadela syntax for importing a CP element or an element’s attribute with or without alias.

1 // extfile / prescribeTask .aca content :
2 define HumanTask Prescribe #repeatParallel #manualActivate
3 label = ’Prescribe ’
4 // Task Form declaration
5 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6
7 // extfile / bmiColorCode .aca content :
8 define bmiUiRef = ’colors (0 < yellow < 18 < green < 25 < orange < 30 <

red < 100) ’
9
10 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11
12 // Case definition
13 #aca1 .0
14 import extfile . prescribeTask // containing the Prescribe HumanTask
15 import extfile . bmiColorCode as bmiColor // import as alias
16
17 workspace DemoClinic
18
19 define case MA1_Malnutrition
20 // Case attribute , Responsibilities , Setting , and HttpHook definitions
21 Stage Evaluation
22 label = " Evaluation "
23
24 Task MeasureBmi
25 label = " Measure BMI"
26 Form BmiForm
27 // Other Input Fields for Height and Weight
28 OutputField BmiScorePlus #left #number
29 label = ’BMI Score:’
30 expression = ’round(Weight / (Height ∗ Height))’
31 uiRef = use bmiColor . bmiUiRef // call an element with alias
32
33 Stage Prescription
34 label = " Prescription "
35
36 use Task Prescribe // call an element without alias

Listing 5.26: Example of importing a CP element or attribute in Acadela. Suppose that the extfile folder
stores files of a HumanTask (prescribeTask.aca) or bmiUiRef variable (bmiColorCode.aca) definitions.
Acadela first requires import declarations before the Workspace reference (lines 14 and 15). Finally, for
CP elements, modelers need to call the Task import under the Stage at the intended position using the
use Task Prescribe structure (line 36). For alias import, modelers uses the alias.<elementID> structure.
Variable import is placed in the value part of the key=value syntax (line 31).

5.4 Constraint Validation

During the modeling process, modelers can make various syntax or semantic errors. textX already pro-
vides a syntax error handler for its parser that can catch typos and unexpected elements in the CP model.
Additionally, textX also provides an error message stating the error location with line and row numbers,
the code snippet around the error location with an asterisk marking the error position, and the expected

97

5 Language Design

output at that position. Although textX error messages include the name of terminals and non-terminals
defined in the Acadela grammar, these names are only familiar to language designers. Thus the original
error messages need to be more understandable to modelers, its primary user group.
Supporting modelers with concise and comprehensible error messages that articulate the cause and posi-
tion of error with familiar technical terms is crucial to 1) prevent barriers in development progress (Becker
et al., 2018, p. 635); 2) reduce the number of exceptions (Becker, 2016, p. 130); 3) ease debugging diffi-
culty (Barik et al., 2017, p. 583), which results in shortening the development time, as developers typically
allocate 13-25% of their development tasks for fixing errors (Barik et al., 2017, p. 575). Therefore, our
first goal is to enhance textX syntax error messages using the domain concepts or terms expressed in the
concrete syntax.
In addition, textX does not provide tools for semantic constraint validation. For example, Acadela should
detect any non-existing path to a CP element. As a result, our study developed additional 1) custom seman-
tic validators and 2) enhanced error message generator that reveals the error cause, location, and fixing
direction as recommended by (Nielsen, 2001). This section describes the types of syntax and semantic
errors that Acadela can detect and their enhanced output error messages. For implementation details, Sec-
tion 6.5.2 explains syntax or semantic fault detection and error message generation mechanisms.
Note that the Acadela semantic and syntax error analyzers do not output all the syntax and semantic errors
simultaneously, but only display the first detected fault. textX catches successive errors after modelers fix
the previous one. Acadela will output a successfully compiled message if no syntax or semantic error is
detected.

5.4.1 Syntax Errors

Unexpected Element

Acadela grammar defines the hierarchical structure and expected position of each CP element and its
attributes. For instance, a Stage requires the definition of directives and Stage attributes, followed by
Precondition(s), Trigger (HttpHooks), and Task(s) definitions. The order of the last three elements is
interchangeable. Defining a CP item that does not exist at a hierarchical level or does not appear in an
expected position violates this rule. For instance, declaring a Form in a Stage is invalid as Stage does not
accept any Form as a children element, as shown in Figure 5.4.1; stating a directive after a Precondition
infringes the expected order as directives shall be declared right after a Stage ID. Defining a non-existing
modeling concept also triggers this error.

1 Stage Evaluation ... // Stage Attribute Definition
2 Form UnexpectedForm

Syntax Error! Unrecognized command at line 2 and column 9!
Unexpected keyword: Form
Expected one of:
1. ’client’
2. ’dynamicDescriptionRef’
// ... Other suggestions
10. DualTask at position :(2, 9) => ’*Form Unexp’.

Figure 5.17: Example of invalid element declaration (top) and their enhanced error message (bottom) in
Acadela. The Form UnexpectedForm is invalid as Stages do not accept a Form as a child element.
Another concern of textX is that it displays operators using the construct name instead of the character.
For example, Acadela grammar defines the equal sign to assign a value to an attribute as follows:

1 Eq: // grammar construct name
2 ’=’ // grammar rule , an equal sign in this case
3 ; // rule terminates

98

5 Language Design

When the operator is missing, textX shows the construct name (EQ) but not the expected character (=),
as shown in the end of Listing 5.4.1:

139 HumanTask MeasureBloodCholesterol #mandatory
140 owner ’Setting .Nurse ’
141 label = ’Record Blood Cholesterol ’

(a) Original textX error message:
Expected Eq at position <absolutePathToGrammarFolder>:(140, 19) => ’ owner *’Setting.N’

(b) Acadela enhanced error message:
Syntax Error! Unrecognized command at line 140 and column 19!
Expected Equal sign (=) at position <absolutePathToGrammarFolder>:(140, 19) => ’ owner *’Set-
ting.N’.

Figure 5.18: Example of the need for customizing the textX error message. Original error message (a) of
textX that shows the grammar construct (’Eq’) in stead of the concrete syntax element ("="). Therefore,
Acacdela enhances the message (b) to show the expected operator.
This action can confuse modelers if they do not know the grammar construct name of the missing element.
Therefore, Acadela translates this error message to show the expected character instead.
Acadela leverages the textX parser and customizes errormessages to catch four types of syntax errors.
Typo

Acadela contains a set of keywords to signal the declaration of CP elements (e.g., Stage, Task), directives
(e.g., #mandatory, #any), or attributes (e.g., label, uiRef). By default, if modelers input a typo in the CP
definition code, Acadela states that the typo word is unknown and suggests syntactically valid keywords
expected at that position. However, if the typo has less than three characters different from an Acadela
keyword, the error message includes a "Did you mean <keyword>?" question after stating the error type.
This behavior intends to helpmodelers quickly realize the direction to solve the typo error. Figure 5.4.1 and
5.4.1 show the code snippet and error message to demonstrate the handling of the two typo cases.

97 Precnoddition
98 previousStep =
99 ’Identification ’

Syntax Error! Unrecognized command at line 97 and column
17!
No keyword Precnoddition. Did you mean: Precondition?
Expected one of:
1. ’externalId’
2. ’additionalDescription’
3. ’dynamicDescriptionRef’
4. Precondition
5. Trigger
6. Form
7. Ref at position :(97, 17) => ’*Precnoddit’.

Figure 5.19: Example of an error message (right) for typos that are similar to Acadela keyword (left). At
line 97, the typo "Precnoddition" has two different characters than the "Precondition" keyword of Acadela.
Thus the error message suggests the correct keyword to modelers.

99

5 Language Design

97 Prerequisite
98 previousStep =
99 ’Identification ’

Syntax Error! Unrecognized command at line 97 and column 17!
Unrecognized keyword: Prerequisite
Expected one of:
1. ’externalId’
2. ’additionalDescription’
3. ’dynamicDescriptionRef’
4. Precondition
5. Trigger
6. Form
7. Ref at position :(97, 17) => ’*Prerequisi’.

Figure 5.20:Example of an errormessage (right) for typos that are totally different fromAcadela keywords
(left). In line 97, the typo "Prerequisite" does not exist in the Acadela dictionary, and many characters are
not closely similar to any Acadela keyword. Thus Acadela only states that the keyword is unrecognized.
Unexpected Data Type

The value of element attributes has a specific data type. For example, the value of a CP version is a number,
and of a label is a string, i.e., double-quoted or single-quoted text. textX expresses these types of data
using STRING, INT, FLOAT, or NUMBER constants. However, stating the data type constant may not
expose the error cause explicitly. For example, an "expected STRING" message means that the modelers
forget to open or close a text with a single or double quote, as shown in Figure 5.21. Therefore, Acadela
enhances the error message to reveal the root cause, thus modelers quickly realize the bug.

132 Stage MedicalTest #mandatory
133 label = Medical Test ’

(a) Original textX error message:
Expected STRING at position <absolutePathToGrammarFolder>:(133, 17) => ’ label = *Medical
Te’.

(b) Acadela enhanced error message:
Syntax Error! Unrecognized command at line 133 and column 17!
Expected Text with quotation marks ("", ”) at position <absolutePathToGrammarFolder>:(133, 17)
=> ’ label = *Medical Te’.

Figure 5.21: Example of an enhanced error message (b) in Acadela from the original one of textX (a) to
explain the invalid String data type (top). In line 133, a single quote is missing in the String value. Thus
Acadela informs modelers that quotation marks are needed.
Custom String Pattern

Several attributes require a String value that conforms to a unique SACM syntactic rule. For instance, the
conditional statement of an expression attribute in OutputFields must respect the SACM syntax, which
uses the "then" keyword to signal an action when a condition is true. Another example is the definition
of a color code that must begin with a colors function with a parameter specifying the color bands, each
consisting of a known color name (e.g., green, red) in the middle of two numbers. Acadela sets a dedicated
grammar rule for each of these attributes to validate their string value. Figure 5.22 shows the examples of
different errors caught in a conditional expression of SACM.
However, Acadela assumes that for HTML, Javascript, and SVG expressions in an Input/OutputField,
modelers use a different IDE that validates the syntax and semantically checks the logic of their code
through executing it in an external IDE. Thus, modelers only paste a syntactically valid code into the
expression attribute of the field; hence Acadela does not validate the value’s syntax.

100

5 Language Design

Since Acadela aims to generate compatible CP models for multiple e-Health systems from a single CP
definition, including all rules to define the CP concepts of supported e-Health systems will lengthen the
base grammar and increase complexity. Therefore, Acadela analyzes the syntax of attributes’ value unique
to an e-Health system during the interpretation phase. For each unique attribute, the syntax analyzer checks
the value using a dedicated sub-grammar, which declares the syntactic rules to parse the value. This results
in a shortened and maintainable base Acadela grammar, as the exotic attributes are syntactically analyzed
after interpreting CP elements according to the syntax of the client e-Health system.

124 OutputField DiastolicAnalysis #left
125 label = ’Diastolic Assessment :’
126 expression = ’ if (Diastolic <) then " Normal "
127 else if (Diastolic <= 89) then " Elevated "
128 else "High"’

Syntax Error! Invalid expression at line 126:
Expected one of:
1. Number including fraction
2. Integer (Number) at position <absolutePathToGrammarFolder>:(126, 17) => ’astolic < *) then
"No’.

124 OutputField DiastolicAnalysis #left
125 label = ’Diastolic Assessment :’
126 expression = ’ if (Diastolic < 80) : " Normal "
127 else if (Diastolic <= 89) then " Elevated "
128 else "High"’

Syntax Error! Invalid expression at line 126:
Expected ’then’ at position <absolutePathToGrammarFolder>:(126, 20) => ’olic < 80)*: "Normal"’.

Figure 5.22: Example of customized syntax validation for conditional statements in the expression at-
tribute. The top case shows an error of using the wrong keyword (":" instead of "then"); the bottom
one demonstrates an incomplete boolean expression. Acadela outputs the corresponding enhanced error
messages below the code snippet to state the error cause and solution direction.

5.4.2 Semantic Errors

A syntactically correct CP definition does not guarantee that the CP model is free from logical errors.
Therefore, our study develops custom semantic error analyzers from scratch to prevent a subset of semantic
bugs in the CP definition. Acadela only activates the semantic validator after textX parses the CP definition
and generates the corresponding AST. Afterward, Acadela traverses the AST to create a Python class
representing the CP metamodel that includes all CP elements with their attributes and line number in the
code. This overarching metamodel is the baseline for validating the three categories of semantic errors
below. Finally, if an error occurs, Acadela generates an error message stating the error cause, line number,
erroneous value, and the direction to debug. The Acadela backend returns this enhanced error message
to the Acadela IDE to explain the semantic bug to the user.
Non-existing Path or Reference

Several attributes, such as condition in Precondition, expression in InputField or OutputField, have a
String value containing a reference to an (imported) element within the CP. In SACM, this reference path
starts from the Case hierarchal level for the following attributes: InfoPath in SummaryPanel; owner
and dueDateRef in Stage or Task; condition in Precondition. For these attributes, the path pattern is
Setting.<AttributeID> when referring to a Setting’s Attribute, or <StageID>.<TaskID>.<FieldID>
when referring to an InputField or OutputField element. Acadela semantic error handler verifies if the

101

5 Language Design

specified path points to an existing Attribute or if the Stage, Task, and Field IDs are correct. The val-
idator throws an error when any part of the reference path is wrong and shows the bug of referring to a
non-existing element ID with a line number in the error message, as illustrated in Figure 5.24.

1 Stage Evaluation ... // Stage Definition
2
3 HumanTask RequestMedicalTest ... // Task Definition
4 HumanTask MeasureBloodPressure ... // Task Definition
5 Form CgiForm
6 InputField CholesterolTest ... // InputField Definition
7
8 Stage Treatment ... // Stage Definition
9
10 Precondition previousStep = ’Evaluation ’
11 // RequestMedicalLabTest does not exist , expect RequestMedicalTest .
12 condition = ’Evaluation . RequestMedicalLabTest . CholesterolTest = 0’

Semantic Error: Invalid reference path at line 12! ’RequestMedicalLabTest’ Task does not exist. Ex-
pect the ID of a defined Task in the Case.

Figure 5.23: Example of invalid referencing path in the condition attribute of a Precondition. At line 12,
the RequestMedicalLabTest Task ID of the path does not refer to an existing Stage. The intended Task ID
is MeasureBloodPressure. Finally, Acadela gives a hint that it expects an existing Task ID.
Besides, some attributes should only accept a valid CP element ID as a String value. Declaring an ID that is
non-existing or not in the attribute’s scope is a semantic error. Attributes of this category are previousStep
of Precondition that only accepts a valid Stage or Task ID; expression of InputField or OutputField
that contains references to Input/OutputFields within the same Task. Figure 5.24 and 5.25 show that
the violation of these rules generates a semantic error message of an invalid element in previousStep and
expression attributes that reveals the erroneous ID and its line number.

1 Stage Evaluation // ... Stage Attributes Definition
2
3 HumanTask RequestMedicalTest ... // Task Definition
4 Form CgiForm
5 InputField CholesterolTest ... // InputField Definition
6
7 HumanTask MeasureBloodPressure ... // Task Definition
8
9 Stage Treatment ... // Stage Attributes Definition
10
11 // CholesterolTest is not the ID of a Stage or Task.
12 Precondition previousStep = ’CholesterolTest ’
13 condition = ’Evaluation . RequestMedicalTest . CholesterolTest = 0’

Semantic Error at line 12! Stage or Task ’CholesterolTest’ does not exist. Expect the ID of an existing
Stage or Task.

Figure 5.24: Example of invalid referenced ID in the previousStep attribute of a Precondition. At line
11, the CholesterolTest ID refers to an InputField but not an existing Stage or Task. The intended ID is
RequestMedicalTest. Finally, Acadela states that an existing ID of a Stage or Task is required.

102

5 Language Design

1 HumanTask MeasureBloodPressure // ... Task Attributes Definition
2
3 Form BloodPressureForm
4 InputField Systolic // ... InputField Definition
5 InputField Diastolic // ... InputField Definition
6
7 OutputField BloodPressureCondition #left
8 label = ’Blood Pressure Assessment :’
9 expression = ’
10 if (SystolicValue >= 140 or Diastolic >= 90) then "High"
11 else if (SystolicValue > 120 or Diastolic > 80) then " Elevated "
12 else if (SystolicValue > 90 or Diastolic > 60) then " Normal "
13 else "Low"’

Semantic Error at line 10! Invalid field SystolicValue found in the expression of OutputField Blood-
PressureCondition. Expected the ID of an InputField or OutputField declared in the same Form of
OutputField BloodPressureCondition.

Figure 5.25: Example of invalid referenced ID in the expression attribute of an OutputField. At line 10,
11, and 12, the SystolicValue ID does not refer any InputField or OutpurField in the same Form. The
intended ID is Systolic. Therefore, Acadela suggests to declare an InputField or OutputField within the
same Form of the OutputField.
Non-unique Identifier

To distinguish elements in a SACM CP, Acadela enforces the following requirements on identifiers of CP
elements:

1. Stage ID is unique across CP elements, i.e., a Stage ID does not match with the ID of any other
Stage, Task, InputField, and OutputField.

2. Task ID in a Stage is unique, i.e., no two Tasks in the same Stage have the same ID. However,
Tasks in different Stages can share the same ID. Task ID and Input/OutputField ID can also be
the same.

3. The ID of InputFields and OutputField are unique within a Form, i.e., no two InputFields or Out-
putFields in a Form share the same ID. However, InputFields and OutputFields of different Tasks
can share the same ID.

The above rules conform with SACM constraints on unique IDs of StageDefinitions, TaskDefinitions, and
TaskParamDefinitions. Suppose the CP definition violates one of the above rules. In that case, Acadela
shows an error message stating which element ID is not unique at which line and what element type(s)
the modelers should check for ID uniqueness. Figure 5.26 and 5.27 show two examples of enhanced error
messages of non-unique IDs for Stage and HumanTask, respectively.

1 Stage Identification
2 Stage Identification

Stage IDs should be unique! Identification at line 1 and column 5 is a duplicate. Please verify that the
IDs are unique for each Stage.

Figure 5.26: Example of an enhanced error message for duplicate Stage IDs.

103

5 Language Design

1 Stage MeasureBloodPressure
2 \\ .. Stage Attributes Definition
3 HumanTask MeasureBloodPressure

Task IDs should be unique! MeasureBloodPressure at line 3 and column 1 is a duplicate. Please verify
that the Task IDs does not match with a Stage ID.

Figure 5.27: Example of an enhanced error message for duplicate Stage and Task IDs.
Untrusted External Service URLs

Medical institutions have strict security policies to filter untrusted inbound or outbound connections. Since
SACM supports sending CP data to external medical systems, Acadela should ensure that any SACM CP
only sends HttpHook requests to trusted APIs of the partner system. Additionally, Acadela should prevent
modelers from sending unauthorized requests to the partner systems’ APIs. As a result, Acadela enforces
a list of trusted API URLs; each URL has allowed HTTP methods for SACM to use. The URLs specify
trusted communication channels with partner systems, while the permitted HTTP methods define the
authorized methods for SACM. Figure 5.28 and 5.29 demonstrate two examples of declaring untrusted
URL and HTTP method. In these scenarios, the trusted URL is "https://partnersystem.de/monitor" and
its authorized HTTP methods are GET and POST.

1 Workspace Demo
2
3 define Case Hypertension
4 ... // Case Attributes and child elements Definition
5 Stage Evaluation
6 ... // Stage Attributes Definition
7 Trigger
8 On complete invoke ’http :// untrustedparty /api/case ’ method post

The URL http://untrustedparty/api/case at line 8 and column 17 is not in the list of trusted sources for
workspace Demo. Please check the trusted sources list for the permitted URLs.

Figure 5.28: Example of an enhanced error message for sending requests to untrusted URLs of external
services.

1 Workspace Demo
2
3 define Case Hypertension
4 ... // Case Attributes and child elements Definition
5 Stage Evaluation
6 ... // Stage Attributes Definition
7 Trigger
8 On complete invoke ’https :// partnersystem .de/ monitor ’ method DELETE

The URL https://partnersystem.de/api/monitor at line 8 does not accept the HTTP method DELETE.
Allowed methods for this URL: GET , POST.

Figure 5.29: Example of an enhanced error message for sending requests to trusted URLs but using unau-
thorized HTTP Method. In this example, the trusted URL does not allow SACM to use the DELETE
method.

104

5 Language Design

5.5 Syntax Optimization E�ect

By relieving modelers from declaring repetitive or frequently used attributes and shortening system-
defined properties (e.g., mandatory, multiplicity), Acadela reduced the effort in defining CP elements.
This effect is evident when defining minimal workflow elements such as Stages, Tasks, InputFields, or
OutputFields, which require two separate definitions of schema, execution behavior and visual represen-
tation definitions in SACM. Figure 5.30 demonstrates the optimized syntax of Acadela (right) from the
SACM XML (left) in terms of characters and lines used to define a minimal Stage Definition.

1 <E n t i t y D e f i n i t i o n i d="Demo_LabTest "
2 d e s c r i p t i o n="Lab␣ Te s t ">
3 / / A t t r i b u t e D e f i n i t i o n s o f Tasks
4 < / E n t i t y D e f i n i t i o n>
5
6 <S t a g eD e f i n i t i o n i d="Demo_LabTest "
7 i sManda to ry=" f a l s e "
8 d e s c r i p t i o n="Lab␣ Te s t "
9 r e p e a t a b l e="ONCE"
10 e n t i t y D e f i n i t i o n I d="Demo_LabTest "
11 e n t i t y A t t a c h P a t h="Demo_LabTest ">
12 / / T a s kD e f i n i t i o n s
13 < / S t a g eD e f i n i t i o n>

1 Stage LabTest
2 #notmandatory
3 label = ’Lab Test ’
4 // Define HumanTasks

Figure 5.30: Example definition of a minimum Stage in SACM (left - 279 characters) and Acadela (right
- 49 characters)
Considering a complete definition of a CP element, Acadela is similar to SACM in specifying user-defined
attributes. However, Acadela’s directives and automatic construction of typical attributes’ values partially
reduce the code size. For example, Figure 5.31 demonstrates a complete HumanTask definition in SACM
(left) and Acadela (right). Acadela optimizes the syntax with the following features:

1. Shortens the type definitions of InputFields using directives (text, number(>=0)). For multiple-
choice questions, i.e., enumeration type, Acadela removes unnecessary keywords.

2. Automatically constructs the values of entityDefinitionPath and entityAttachPath attributes.
3. Relieves the definition of multiplicity, mandatory, and readOnly attributes in Input/OutputFields

by assigning their default value if not declared by modelers.
Furthermore, since Acadela supports importing CP elements, modelers can define shared CP items used
across different CPs. These reusable elements are typically administrative procedures, e.g., patient admis-
sion and discharge. The import feature can significantly reduce the CP code size for declaring dynamic
templates containing a lengthy SVG image definition; since modelers can include the template in the
current CP model definition with two lines of code.

105

5 Language Design

1 <E n t i t y D e f i n i t i o n i d = "Demo_Drug "
2 d e s c r i p t i o n = "Drug ">
3 <A t t r i b u t e D e f i n i t i o n i d = " drug "
4 t ype = " s t r i n g "
5 m u l t i p l i c i t y = " exac t l yOne "
6 d e s c r i p t i o n = "Drug " />
7 <A t t r i b u t e D e f i n i t i o n i d = " dosage "
8 t ype = " s t r i n g "
9 m u l t i p l i c i t y = " exac t l yOne "
10 d e s c r i p t i o n = " Dosage " />
11 <A t t r i b u t e D e f i n i t i o n i d = " f r e q "
12 t ype = " number . min (0) "
13 m u l t i p l i c i t y = " exac t l yOne "
14 d e s c r i p t i o n = "Drug Frequency "
15 d e f a u l t V a l u e s=" [1] " />
16 <A t t r i b u t e D e f i n i t i o n i d = " f r e q u n i t "
17 t ype = " enume r a t i on "
18 m u l t i p l i c i t y = " exac t l yOne "
19 d e s c r i p t i o n = "Drug Frequency Uni t "
20 d e f a u l t V a l u e s = " [’DAYS’] ">
21 <Enumera t i onOp t ion v a l u e="DAYS"
22 d e s c r i p t i o n = "Days " />
23 <Enumera t i onOp t ion v a l u e = "WEEKS"
24 d e s c r i p t i o n = "Weeks " />
25 <Enumera t i onOp t ion v a l u e = "MONTHS"
26 d e s c r i p t i o n = "Months " />
27 < / A t t r i b u t e D e f i n i t i o n>
28
29 <HumanTaskDef in i t i on i d = "Demo_Drug "
30 i sManda to ry = " f a l s e "
31 r e p e a t a b l e = "PARALLEL"
32 a c t i v a t i o n = "MANUAL"
33 ownerPa th = " Demo_Set t ings . C l i n i c i a n "
34 d e s c r i p t i o n = "Drug "
35 dyn am i cDe s c r i p t i o nP a t h = "Demo_Workplan .

Demo_Drug . drug "
36 e x t e r n a l I d = "Drug "
37 dueDa tePa th = " Demo_Set t ings . WorkplanDueDate "
38 e n t i t y D e f i n i t i o n I d = "Demo_Drug "
39 e n t i t y A t t a c h P a t h = "Demo_Workplan . Demo_Drug ">
40
41 <H t t pHookDe f i n i t i o n
42 on = "TERMINATE"
43 u r l = " h t t p : / / i n t e r n a l s y s t em / drug / t e rm i n a t e

"
44 method = "POST"
45 f a i l u r eMe s s a g e = " Could no t t e rm i n a t e

p r e s c r i p t i o n on P a r t n e r System ! " />
46
47 <Ta skPa r amDe f i n i t i o n i sReadOnly = " f a l s e "
48 i sManda to ry = " t r u e "
49 pa t h="Demo_Workplan . Demo_Drug . drug " />
50 <Ta skPa r amDe f i n i t i o n i sReadOnly = " f a l s e "
51 i sManda to ry = " f a l s e "
52 pa t h="Demo_Workplan . Demo_Drug . dosage " />
53 <Ta skPa r amDe f i n i t i o n i sReadOnly = " f a l s e "
54 i sManda to ry = " t r u e "
55 pa t h="Demo_Workplan . Demo_Drug . s t a r t d a t e " />
56 <Ta skPa r amDe f i n i t i o n i sReadOnly = " f a l s e "
57 i sManda to ry = " t r u e "
58 pa t h="Demo_Workplan . Demo_Drug . f r e q " />
59 <Ta skPa r amDe f i n i t i o n i sReadOnly = " f a l s e "
60 i sManda to ry = " t r u e "
61 pa t h="Demo_Workplan . Demo_Drug . f r e q u n i t " />
62 < / HumanTaskDef in i t i on>

1 HumanTask Drug
2 #no tManda to ry
3 # r e p e a t P a r a l l e l
4 #manua lAc t i v a t e
5 owner = " Demo_Set t ings . C l i n i c i a n "
6 l a b e l = "Drug "
7 dynam i cDe s c r i p t i o nRe f = "

Demo_Workplan . Demo_Drug . drug "
8 e x t e r n a l I d = "Drug "
9 dueDateRef = " S e t t i n g s .

WorkplanDueDate "
10
11 T r i g g e r
12 On t e rm i n a t e
13 invoke " h t t p : / / i n t e r n a l s y s t em /

drug / t e rm i n a t e "
14 method POST
15 wi th f a i l u r eMe s s a g e " Could no t

t e rm i n a t e p r e s c r i p t i o n on
P a r t n e r System ! "

16
17 Form P r e s c r i p t i o n F o rm
18 #mandatory
19 #notReadOnly
20
21 I n p u t F i e l d drug
22 # t e x t
23 l a b e l = ’Drug ’
24
25 I n p u t F i e l d dosage
26 # t e x t
27 #no tManda to ry
28 l a b e l = ’ Dosage ’
29
30 I n p u t F i e l d f r e q
31 #number (>=0)
32 l a b e l = ’Drug Frequency ’
33 d e f a u l t V a l u e s = " [1] "
34
35 I n p u t F i e l d f r e q u n i t
36 # s i n g l eCho i c e
37 Que s t i on = ’Drug Frequency

Un i t ’
38 Opt ion "Days "
39 va l u e = "DAYS"
40 Opt ion "Weeks "
41 va l u e = "WEEKS"
42 Opt ion "Months "
43 va l u e = "MONTHS"

Figure 5.31: Example definition of a HumanTask in SACM (left - 2007 characters), and Acadela (right -
891 characters)

106

6 Implementation

Based on the CP requirements and language design principles discussed in the previous sections, our
study devise the engineering solution for modeling and visualizing CP models as a web application. The
architecture shall support a seamless integration of Acadela into the CPmodeling features of SACM, while
providing a maintainable, flexible, and extensible structure to support CP modeling in various e-Health
systems in the future. This section first present the architecture of Acadela, followed by the description of
how the DSL compiles a CP model into a SACM-compatible format, detects syntax or semantic errors,
and visualizes the generated CP model on the frontend UI.

6.1 Architecture Design

The Acadela-SACM architecture integrates the CP modeling and visualization in Acadela with the adap-
tive casemanagement execution engine in SACM. The engineering of the CPmodeling solution inAcadela
requires 1) a frontend UI for modelers to define and preview CP meta-models and 2) backend compo-
nent to parse, interpret, and compile the CP models written in the Acadela DSL to a SACM-compatible
JSON format. The Acadela backend uses the SACM API for creating CP meta-model. This API collects
the JSON meta-model definition from the request body. Furthermore, the Acadela backend connects to
the SACM engine for checking the existence of a User or Group defined in the meta-model.

Figure 6.1: Container diagram of the SACM-Acadela system integration. The green containers denote
the frontend-related applications, while the blue ones represent the backend applications.

107

6 Implementation

Once SACM successfully constructs the CP meta-model, medical experts access the CONNECARE UI
to create a patient Case that applies the CP. The CONNECARE UI sends all the Case interactions and
authentication requests to a proxy server, which forwards the requests to the SACM Wrapper or SACM
Engine, respectively. Figure 6.1 illustrates the interactions among subsystems in the Acadela-SACM in-
tegrated system through a C4 Container Diagram.

C4 Container Diagram Notations (S. Brown, n.d.): A human shape expresses the user role that
interacts with the (sub-)system. A rounded rectangle with white background represents a (sub-)system
boundary comprising one or multiple containers. A Container in the C4 model is a rounded colored rect-
angle representing an executable, independently deployable application that persists data and performs
programmatic instructions. Dotted arrows denote the relationship between two containers and their com-
munication purpose.

6.1.1 Acadela System Components

Figure 6.2 and 6.3 demonstrates the architecture of the Acadela frontend and backend systems using the
C4 component diagrams.

C4 Component Diagram Notations (S. Brown, n.d.): The dotted lines represents the currently
focused Container, which comprise multiple Components. A Component is a building block of the appli-
cation, which can represent a collection of classes. This class collection can be a module, JAR file, or a
library. Each Component states the applied technology and its functionality. Dotted arrows denotes the
relationship between two Containers and their communication purpose.

Figure 6.2: Component diagram of the Acadela frontend.

Acadela Frontend The Acadela frontend container constructs the online IDE and a visualizer for
modeling and previewing CP meta-models. Acadela leverages the Monaco (Microsoft, 2022) library to
define the IDE layout, keywords, and rules for syntax highlighting and auto-completion. An Editor View

108

6 Implementation

React component holds the IDE View and CP visualization Diagram View. This Editor View calls the
compile service to send the CP model code written in this IDE to the backend when the modeler clicks a
Submit or Validate button. The response to this request is a message stating whether the code is compiled
successfully or an error occurs, which is shown in a status panel.
Additionally, the backend also returns a meta-model definition in JSON format. The Diagram View uses
this JSONmeta-model definition and the GoJS library (Northwoods Software, 2022) to construct 1) graph
node elements with color coding to represent CP elements and 2) link elements between nodes to represent
the control flow of the CP.

Figure 6.3: Component diagram of the Acadela backend. The dark blue components represent classes and
libraries used in the Acadela backend. The light blue rounded rectangles are SACM Containers that the
Acadela backend communicates with, and the green container is the Acadela frontend React application.

Acadela Backend The Acadela backend is responsible for parsing, interpreting, validating syntax
and semantic errors, and compiling the defined CP meta-models into SACM JSON format. Furthermore,
the interpreter includes 1) the textX parser that performs syntax checking and generates an AST from the
CPmeta-model code, 2) A textX meta-model storing the hierarchical structure and attribute of CP elements
as Python classes, 3) A Python SACM interpreter that traverses the AST to identify and construct CP
elements defined in the CP meta-model by extracting the type and attributes of nodes in the AST. Since
the CP hierarchy and attributes are accessible in the interpreter, it also validates the SACM-exclusive
string patterns and semantic constraints. Finally, the Acadela backend compiles the interpreted Python
classes of CP meta-model elements into a SACM-compatible CP meta-model in JSON.
One design concern for the Acadela backend is that various e-Health systems may have different syntaxes
for declaring an attribute value. For example, conditional expressions in SACM are similar to if-else
statements of the Bash shell, but other e-Health systems may apply a Python or Java syntax. Therefore,
Acadela provides two constructs to relieve modelers of other e-Health systems from learning Acadela
conditional expressions. First, a compile mode directive at the beginning of the CP definition file indicates
the target e-Health systems. This directive instructs Acadela to select the interpreter for generating the
CP model compatible with the target e-Health system. Second, each interpreter of an e-Health system

109

6 Implementation

has a dedicated grammar for validating the syntax of attributes whose values can be expressed differently
in various e-Health systems. This design helps Acadela chooses the correct syntax validation mechanism
for a particular e-Health application without complicating the CP grammar.
The following subsections describe the procedure of compiling a CP definition from Acadela code to
SACMmeta-model and visualizing the generated CP. The processes start with modelers defining CPmeta-
models in the IDE, then sending it to the Acadela backend, which parses, interprets, checks semantic and
syntax errors, and compiles the CP model into SACM-compatible JSON format if the code is error-free.
Next, Acadela sends the final code to the SACM wrapper, which forwards the CP to the SACM engine for
validation and persistence. Simultaneously, the Acadela backend returns the CP in SACM JSON format
to the Acadela frontend for constructing the CP workflow visualization.

6.2 Integrated Development Environment (IDE)

Acadela leverages the Monaco IDE to support modelers in defining and debugging CPs with syntax high-
lighting and auto-completion. The content of the CPmeta-model defined in this IDE is sent to the backend
upon clicking the Validate or Submit button. Figure 6.5 shows the UI of the Acadela IDE.

Auto-completion Acadela leverages two auto-complete types of Monaco: Text and Snippet, to au-
tomatically generate a keyword or CP element definition template. Each auto-completion requires a rule
definition, specifying 1) a label that hints at the auto-completed element. Monaco renders the label as
an item of a drop-down list when modelers type characters contained in the label. In Acadela, this label
can be the keyword or a description of a CP element; 2) the auto-complete type (Text or Snippet); 3) the
text to be inserted when the user clicks on the label option. The auto-completion of Snippet requires an
additional insertTextRules attribute, which Acadela sets as InsertAsSnippet for the auto-completion of all
CP elements. Figure 6.4 demonstrate the auto-completion of a CP elements in the IDE (left and middle)
and their corresponding rule definition (right).

Figure 6.4: Demonstration of Autocomplete in Acadela IDE. The left picture shows an incomplete key-
word and suggestions. The middle one shows the inserted code snippet after selecting the auto-complete
option. Finally, the right picture shows the definition of a Snippet auto-complete definition in Monaco.

Syntax Highlighting Monaco provides a language definition infrastructure to define a language’s
keywords as strings and code sections (e.g., comments, strings) as regular expressions. Acadela contains
three keyword groups: CP element type, CP element attributes, and directives, combined with two code
section patterns: double/single-quoted strings and comments. A tag (aka. token in Monaco) labels each
keyword group or code section pattern. To enable syntax highlighting, Monaco supports a theme definition
that specifies rules for applying color and text decoration (e.g., bold) to each tag. Figure 6.6 illustrates
how to define colors (top) to paint keywords and code patterns (bottom) in Monaco.

110

6 Implementation

Figure 6.5: The IDE GUI of Acadela with syntax highlighting. The top panel shows the code written by
modelers. The Validate button sends the code to the backend for verifying syntactic or semantic errors.
The Submit button has the same feature as the Validate one, but the backend further checks the existence
of defined Users andGroups in the CP and sends the CP meta-model to SACM. Finally, the bottom panel
shows the status of the code compilation or an enhanced error message if a bug occurs.

Code Submission When clicking the Validate or Submit button, the IDE sends the code to the
backend. A validation request only asks the backend to check for syntax and semantic errors in the code
and returns a CP meta-model in JSON format to the frontend. A submission request executes the actions
of validation requests, plus sending the CP meta-model to SACM for creating the executable CP.
For the validation request, the Acadela backend returns an enhanced error message if it detects a syntax or
semantic error in the code. A submission request may receive an Internal SACM error when a bug occurs
within the SACM system or a non-existingGroup or User defined in the Responsibilities element.
The following section describes how Acadela applies the grammar to parse the CP meta-model defini-
tion.

111

6 Implementation

Figure 6.6: Syntax highlighting definition for keywords and code sections in Monaco (bottom) based on
a set of color rules (top). Lines 27 and 28 instructs Monaco to identify multi-line strings in the code.

6.3 Grammar De�nition

The Acadela grammar resides on the backend to define the abstract syntax, which contains rules declaring
constructs of CP elements. Each rule specifies the attribute, child element, or string literal used in the
CP element. Applying the grammar rules to a CP definition code helps textX identify syntax errors and

112

6 Implementation

generate an abstract syntax tree (AST) to represent the structure of the code elements. The following
subsections consecutively explain 1) the rule expressions used in the grammar, 2) examples of construct
definitions using the rules, and 3) the generated AST of a CP meta-model definition code.

6.3.1 textX Grammar Rule Expressions

Each rule starts with a string name and a colon, then the body, and ends with a semicolon. textX grammar
(Dejanović, n.d.b) introduces the following types and operators to define rules.

String Match: a double- or single-quoted String. Acadela uses this rule to define its operators which
accept whitespaces (e.g., space or new line) before or after them. For example, Acadela expresses an equal
sign ("=") as follows:

1 Eq:
2 ’=’
3 ;

This rule has the name "Eq" and allows modelers to state either "[attributeName>=<value>" or "<at-
tribute> = <value>" in their code.

Regex Match: applies a Python regular expression wrapped inside slashes, i.e., /<regex_rule>/.
textX uses the python re module internally to verify regular expressions matching. Acadela uses Regex
Match to declare keywords that a whitespacemust follow. For example, the rule definition for the keyword
"Stage" is as follows:

1 StageTerm :
2 /(Stage)\s/
3 ;

The parentheses represent a regex group, which specifies the text Stage in this case. Additionally, the \s
pattern represents a whitespace. As a result, stating "Stage <StageId>" is valid, but "Stage<StageId>"
throws a syntax error as no whitespace exists after the Stage keyword.

Repetitions: defines constraints on the multiplicity of a matched expression. textX grammar provides
the following three repetition rules and their operator.

1. Zero or more (*): An expression can be undefined or appear multiple times. Acadela uses this
operator to define optional CP concepts having more than one sibling, e.g., a Precondition can
have multiple previousStep definitions to denote the conjunction (AND) relationship among them,
as shown in line 4 of the following rule:

1 Precondition :
2 PreconditionTerm
3 (
4 (’previousStep ’ Eq stepList += STRING)∗
5 (’condition ’ Eq entryCondition = STRING)?
6)#
7 ;

2. One or more (+): An expression must appear at least once. Acadela leverages this rule to define
a pattern that must have at least one repetition. For example, a color code definition in the uiRef
attribute, e.g., "0<green<=80<yellow<=89<red<300", has a number followed by at least one or
more color bands defined as a "Comparator ColorName Comparator NUMBER" sequence. Com-
parator refers to the following operators: =, <>’, <=, >=, <, >. The below Stage rule snippet
shows how to enforce this constraint in line 8.

113

6 Implementation

1 Comparator :
2 ’=’ | ’<>’ | ’<=’ |’>=’ | ’<’ | ’>’
3 ;
4 ColorName :
5 ’red ’ | ’blue ’ | ’green ’ | ’orange ’ | ’yellow ’
6 ;
7 CompareExpression :
8 NUMBER (Comparator ColorName Comparator NUMBER)+
9 ;

3. Unordered group (#): Expressions can appear in any arbitrary sequence. Thanks to this rule,
child elements, directives, or attributes of any CP object in Acadela can appear in any order.
For example, the following Stage grammar snippet illustrates how the group of Stage directives
(WorkflowElementDirective) can appear in any order using the # operator in line 7.

1 WorkflowElementDirective :
2 (
3 (mandatory = Mandatory)?
4 (repeatable = Repeatable)?
5 (activation = Activation)?
6 (multiplicity = Multiplicity)?
7)#
8 ;
9
10 Stage:
11 (
12 StageTerm name = ID
13 directive = WorkflowElementDirective
14 (
15 // Other Stage attributes and child elements rules
16)#
17);

Assignments: textX supports creating object’s attributes in grammar rules. During the meta-model
construction process, textX creates a Python class for each rule along with their attributes defined in the
grammar.
Each attribute assignment has a left-hand side (LHS) and a right-hand side (RHS). The LHS declares
the attribute’s name, while the RHS determines the type. If the RHS is a BASETYPE of textX, i.e.,
STRING, ID, BOOLEAN, NUMBER, INT, FLOAT, then enforcing a Python primitive type (e.g., int,
string, boolean). Otherwise, the RHS refers to the matched rule. If the RHS is a regular expression, textX
assigns the string matched by the expression as the RHS value. Acadela uses the following assignment
operators of textX.

1. Plain assignment (=): assigned the matched rule defined in the RHS to the LHS attribute once.
Acadela uses plain assignment to declare keywords, directives, CP elements, or attributes that only
accept one matched rule expression, e.g., #mandatory, label, dueDateRef, Form.

2. Zero or more assignment (*=): An attribute is a list that can be empty. Acadela uses this operator
to define optional CP elements with zero or at least one sibling, e.g., Preconditions in a Stage.
A Stage can have zero or at least one Precondition, as enforced by the following rule:

1 Stage:
2 (
3 StageTerm name = ID
4 directive = WorkflowElementDirective
5 (
6 // Other stage attributes
7 (preconditionList ∗= Precondition)

114

6 Implementation

8 // Hook and Task(s) Rules
9)#
10);

3. One or more assignment (+=): An attribute is a list with at least one item. Acadela leverages
this rule to define mandatory CP elements that allow multiple siblings. For example, a Stage has
multiple Tasks, but every valid Stagemust contain at least one Task. The below Stage rule snippet
shows how to enforce this constraint in line 7.

1 Stage:
2 (
3 StageTerm name = ID
4 directive = WorkflowElementDirective
5 (
6 // Other stage attributes
7 taskList += Task
8 // Precondition and HttpHook Rules
9)#
10);

Optional: Instructs textX to match an expression if possible but does not throw an error for unmatched
cases. Placing a ? operator at the end of a statement triggers the optional rule. Acadela uses this rule to
define non-mandatory attributes or CP concepts in a CP element. The below example shows that a
Stage can contain an optional additionalDescription attribute and a Trigger section containing HttpHook
definitions.

1 Stage:
2 (
3 StageTerm name = ID
4 directive = WorkflowElementDirective
5 (
6 // Other stage attributes
7 (additionalDescription = AdditionalDescription)?
8 (TriggerTerm hookList ∗= HttpHook)?
9 // Precondition and Task(s) Rules
10)#
11);

Ordered choice: To specify alternative rules at a particular position, textX provides a | operator to
express the disjunction (OR) relationship among the rules. Acadela leverages the ordered choice to define
possible options of a rule. For example, the following grammar snippet states that the BasicArithmetic-
Operator construct can contain one of the plus, minus, multiplication, and division symbols.

1 BasicArithmeticOperators :
2 ’+’ | ’−’ | ’∗’ | ’/’
3 ;

textX maps the expressions in the ordered choice from left to right; thus, it takes the first matching
expression.
Another usage of ordered choice is for importing elements. Acadela leverages the textX import by
reference to state that a CP element can be defined within the same grammar or imported from an external
file. The following example shows that a Stage rule accepts an internal definition or an imported Stage
element (FQN) satisfying the Stage’s constraints. The FQN states that textX finds the imported Stage by
its ID (See Import Scoping Definition in Section 6.4).

115

6 Implementation

1 Ref:
2 /(use)\s/
3 ;
4 RefStage :
5 Ref StageTerm
6 ;
7 Stage:
8 (
9 StageTerm name = ID
10 directive = WorkflowElementDirective
11 (
12 // Stage attributes and child elements
13)#
14)
15 // Import element with command "use Stage <StageID >"
16 // or "< importAlias >.< StageID >"
17 | (RefStage ref =[Stage|FQN])?
18 ;

In line 17, ref is a textX attribute to declare a reference for a given construct. The first part states the rule
name to verify the imported object syntactically. The second part is a (FQN) (FullyQualifiedName) that
defines the location of the referred object, which is typically the name attribute’s value in a grammar rule.
Since Acadela uses this name attribute as the CP element ID, all imported CP items are referrable by their
ID.

6.3.2 Grammar Speci�cation for Modeling Clinical Pathways

Acadela leverages the textX rules described in the previous subsection to define the terminals and non-
terminals in its CP modeling grammar. Terminals are symbols that construct the alphabet of a language
(Shinan, 2020). They are leaf-level rules; hence the grammar derivation terminates at their position
(Umrigar, 1997). Terminals in Acadela are string, number, alphabet characters, and arithmetic symbols
(e.g., "+", "/", "<").
A nonterminal is a language part consisting of terminals or productions, which are rules defining how to
expand a nonterminal in the LHS with terminals or nonterminals on the RHS (Fender, 2018). Acadela
uses nonterminals to declare CP modeling concepts, their attributes, and child elements. Listing 6.1
shows an excerpt of the Acadela grammar that contains representative nonterminals.
The entire grammar in Appendix AZ contains other nonterminal rules specifying similar terminal pat-
terns. For example, StageTerm and TaskTerm nonterminals define a regular expression of the keyword
("Stage" or "Task"), thus the excerpt only includes StageTerm. The next subsection reflects on the gram-
mar’s capability to address CP modeling requirements presented in Section 5.1.

1 Start:
2 (versionTag = AcaVersion)?
3 (importList ∗= Import)?
4 (
5 (defWorkspace = DefWorkspace)
6 | (/(define)\s/ objList ∗= Obj)∗
7)
8 ;
9
10 Obj:
11 (Case | CaseSetting | Stage | Task | Form | InputField |

OutputField | Hook | AttributeValue)
12 ;
13
14
15 AcaVersion : /(# aca)\d\.\d/ ;

116

6 Implementation

16
17 // Define import by ID and support Import from file.
18 FQN: ID+[’.’];
19 FQNI: ID+[’.’](’.∗ ’)?;
20
21 // Import Definition Level
22 Import :
23 ’import ’ importURI =FQNI (’as’ name=ID)?
24 ;
25
26 DefWorkspace :
27 workspace = Workspace
28 (/(define)\s/) case = Case
29 ;
30
31 Workspace :
32 WorkspaceTerm BasicIdentity
33 ;
34
35 BasicIdentity :
36 name = ID
37 (’staticId ’ Eq staticId = STRING)?
38 ;
39
40 GroupIdentity :
41 name = ID
42 (
43 (’staticId ’ Eq staticId = STRING)?
44 (’name ’ Eq groupName = STRING)
45)#
46 ;
47
48 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
49 ∗∗∗∗∗∗∗ CASE ∗∗∗∗∗∗∗∗
50 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
51
52 Case:
53 (
54 CaseTerm name=ID
55 (
56 casePrefix = CasePrefix
57 (
58 (’version ’ Eq version = INT)
59 description = Description
60 responsibilities = Responsibilities
61 setting = CaseSetting
62 summary = SummaryPanel
63 (’Trigger ’ hookList += CaseHook)?
64 (entityDefinitionId = STRING)?
65 (entityAttachPath = STRING)?
66 (notes = STRING)?
67 stageList += Stage
68)#
69)#
70) | (Ref /(Case)\s/ ref =[Case|FQN])?
71 ;
72
73 Responsibilities :
74 /(Responsibilities)\s/
75 (
76 groupList ∗= Group

117

6 Implementation

77 userList ∗= User
78)#
79 ;
80
81 Group: GroupTerm GroupIdentity ;
82
83 User: UserTerm BasicIdentity ;
84
85 CaseSetting :
86 (
87 SettingTerm
88 (description = Description)?
89 (
90 caseOwner = CaseOwner
91 (attrList ∗= Attribute)
92 (casePatient = CasePatient)?
93 (attrList ∗= Attribute)
94)#
95) | (RefSetting ref =[CaseSetting |FQN])?
96 ;
97
98 CaseOwner :
99 /(CaseOwner)\s/ group = TextNoQuote
100 attrProp = AttributeProp
101 ;
102
103 CasePatient :
104 /(CasePatient)\s/ group = TextNoQuote
105 attrProp = AttributeProp
106 ;
107
108 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
109 ∗∗∗∗∗∗∗∗ STAGE ∗∗∗∗∗∗∗∗∗
110 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
111
112 Stage:
113 (
114 StageTerm name = ID
115 directive = WorkflowElementDirective
116 (
117 (description = Description)
118 (ownerPath = OwnerPath)?
119 (clientPath = ClientPath)?
120 (dynamicDescriptionPath = DynamicDescriptionPath)?
121 (externalId = ExternalId)?
122 (additionalDescription = AdditionalDescription)?
123)#
124 (
125 (preconditionList ∗= Precondition)
126 (TriggerTerm hookList ∗= HttpHook)?
127 taskList += Task
128)#
129) | (RefStage ref =[Stage|FQN])?
130 ;
131
132 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
133 ∗∗∗∗∗∗∗∗ TASK ∗∗∗∗∗∗∗∗∗
134 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
135
136 Task: HumanTask | AutomatedTask | DualTask ;
137

118

6 Implementation

138 HumanTask :
139 (
140 HumanTaskTerm name = ID
141 directive = WorkflowElementDirective
142 attrList = SharedTaskAttrs
143 (
144 (TriggerTerm hookList ∗= HttpHook)?
145 form = Form
146)#
147) | (RefTask ref =[HumanTask |FQN])?
148 ;
149
150 AutomatedTask :
151 (
152 AutoTaskTerm name = ID
153 directive = WorkflowElementDirective
154 attrList = AutomatedTaskAttrs
155 (
156 (TriggerTerm hookList ∗= HttpHook)?
157 form = Form
158)#
159) | (RefTask ref =[AutomatedTask |FQN])?
160 ;
161
162 DualTask :
163 (
164 DualTaskTerm name = ID
165 directive = WorkflowElementDirective
166 attrList = SharedTaskAttrs
167 (
168 (TriggerTerm hookList ∗= DualTaskHttpHook)?
169 form = Form
170)#
171) | (RefTask ref =[DualTask |FQN])?
172 ;
173
174 AutomatedTaskAttrs :
175 (
176 description = Description
177 (ownerPath = OwnerPath)?
178 (externalId = ExternalId)?
179 (dynamicDescriptionPath = DynamicDescriptionPath)?
180 (additionalDescription = AdditionalDescription)?
181 (preconditionList ∗= Precondition)
182)#
183 ;
184
185 SharedTaskAttrs :
186 (
187 description = Description
188 (ownerPath = OwnerPath)?
189 (dueDatePath = DueDatePath)?
190 (externalId = ExternalId)?
191 (additionalDescription = AdditionalDescription)?
192 (dynamicDescriptionPath = DynamicDescriptionPath)?
193 (preconditionList ∗= Precondition)
194)#
195 ;
196
197
198

119

6 Implementation

199 Precondition :
200 PreconditionTerm
201 (
202 (’previousStep ’ Eq stepList += STRING)∗
203 (’condition ’ Eq entryCondition = STRING)?
204)#
205 ;
206
207 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
208 ∗∗∗∗∗∗∗∗∗ FORM ∗∗∗∗∗∗∗∗∗
209 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
210
211 Form:
212 (
213 FormTerm name = ID
214 (directive = FormDirective)?
215 fieldList += FormField
216) | (RefForm ref =[Form|FQN])?
217 ;
218
219 FormDirective :
220 (
221 (mandatory = Mandatory)?
222 (readOnly = ReadOnly)?
223)#
224 ;
225
226 FormField :
227 InputField /[\s\n]∗/
228 | OutputField /[\s\n]∗/
229 ;
230
231 InputField :
232 (
233 InputFieldTerm name = ID
234 directive = InputFieldDirective
235 (
236 (
237 description = Description
238 | question = Question
239)
240 (path = CustomElementRefPath)?
241 (uiRef = UiReference)?
242 (externalId = ExternalId)?
243 (additionalDescription = AdditionalDescription)?
244 (defaultValue = DefaultValue)?
245 (defaultValues = DefaultValues)?
246)#
247) | (Ref InputFieldTerm ref =[InputField |FQN])?
248 ;
249
250 CustomElementRefPath : ’ElementPath ’ Eq value= STRING ;
251
252 Question :
253 ’Question ’ Eq text= STRING
254 optionList += Option
255 ;
256
257 Option :
258 /(Option)\s/ (
259 (key= STRING)

120

6 Implementation

260 (’value ’ Eq value= STRING)
261 (additionalDescription = AdditionalDescription)?
262 (externalId = ExternalId)?
263)#
264 ;
265
266 OutputField :
267 (
268 OutputFieldTerm name = ID
269 directive = OutputFieldDirective
270 (
271 description = Description
272 (additionalDescription = AdditionalDescription)?
273 (uiRef = UiReference)?
274 (path = CustomElementRefPath)?
275 (expression = OutputFieldExpression)?
276 (externalId = ExternalId)?
277 (defaultValue = DefaultValue)?
278 (defaultValues = DefaultValues)?
279)#
280) | (Ref OutputFieldTerm ref =[OutputField |FQN])?
281 ;
282
283
284 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
285 ∗∗∗∗∗ SETTING ATTRIBUTE SECTION ∗∗∗∗∗∗
286 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
287
288 Attribute :
289 AttributeTerm name = ID
290 attrProp = AttributeProp
291 ;
292
293 AttributeProp :
294 directive = AttributeDirective
295 (
296 description = Description
297 (externalId = ExternalId)?
298 (additionalDescription = AdditionalDescription)?
299 (uiRef = UiReference)?
300 (defaultValue = DefaultValue)?
301 (defaultValues = DefaultValues)?
302)#
303 ;
304
305 AttributeDirective :
306 (multiplicity = Multiplicity)?
307 (type = Type)?
308 ;
309
310 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
311 ∗∗∗∗∗ SUMMARY SECTION ∗∗∗∗∗∗
312 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
313
314 SummaryPanel : /(SummaryPanel)\s/ sectionList += SummarySection ;
315
316 SummarySection :
317 /(Section)\s/ name = ID
318 (directive = SummarySectionPosition)?
319 description = Description
320 paramList += SummaryParam

121

6 Implementation

321 ;
322
323 SummaryParam :
324 /(InfoPath)\s/ path = TextNoQuote
325 ;
326
327 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
328 ∗∗∗∗∗ HTTPHOOK ∗∗∗∗∗∗
329 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
330
331 Hook: CaseHook | HttpHook | DualTaskHttpHook ;
332
333 CaseHook :
334 (
335 (/(Hook)\s/ name = ID)?
336 /(On)\s/ event = CaseHookEvent
337 /(invoke)\s/ url = STRING
338) | (RefHook ref =[CaseHook |FQN])?
339 ;
340
341 HttpHook :
342 (
343 (/(Hook)\s/ name = ID)?
344 /(On)\s/ event = BaseEvent
345 (
346 (/(invoke)\s/ url = STRING)
347 (/(method)\s/ method = HttpMethod)
348 (/(with failureMessage)\s/ failureMessage = STRING)?
349)#
350) | (RefHook ref =[HttpHook |FQN])?
351 ;
352
353 DualTaskHttpHook :
354 (
355 (/(Hook)\s/ name = ID)?
356 /(On)\s/ event = DualTaskEvent
357 (
358 (/(invoke)\s/ url = STRING)
359 (/(method)\s/ method = HttpMethod)
360 (/(with failureMessage)\s/ failureMessage = STRING)?
361)#
362) | (RefHook ref =[DualTaskHttpHook |FQN])?
363 ;
364
365 SharedEvent :
366 ’available ’ | ’enable ’ | ’activate ’ | ’complete ’ | ’terminate ’
367 ;
368
369 CaseHookEvent : SharedEvent | ’delete ’ ;
370
371 BaseEvent : SharedEvent | ’correct ’ ;
372
373 DualTaskEvent :
374 ’activatehumanpart ’ | ’activateautopart ’ | ’completehumanpart ’
375 | ’completeautopart ’ | ’correcthumanpart ’ | ’correctautopart ’
376 | BaseEvent
377 ;
378
379 CasePrefix : ’prefix ’ Eq value = STRING ;
380
381 Description : (’label ’ Eq value = STRING) ;

122

6 Implementation

382
383 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
384 ∗∗∗∗∗∗∗∗∗∗ DIRECTIVES ∗∗∗∗∗∗∗∗∗
385 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
386
387 InputFieldDirective :
388 (
389 (mandatory = Mandatory)?
390 (readOnly = ReadOnly)?
391 (position = Position)?
392 (multiplicity = Multiplicity)?
393 (part = Part)?
394 (type = FieldType)?
395)#
396 ;
397
398 OutputFieldDirective :
399 (
400 (mandatory = Mandatory)?
401 (readOnly = ReadOnly)?
402 (position = Position)?
403 (explicitType = Type)?
404)#
405 ;
406
407
408 WorkflowElementDirective :
409 (
410 (mandatory = Mandatory)?
411 (repeatable = Repeatable)?
412 (activation = Activation)?
413 (multiplicity = Multiplicity)?
414)#;
415
416 Multiplicity :
417 Hash (’maxOne ’ | ’exactlyOne ’ | ’atLeastOne ’ | ’any ’)
418 ;
419
420 Type:
421 Hash (
422 LinkType | DocumentLinkType | ’notype ’ | ’text ’
423 | ’longtext ’ | ’string ’ | ’boolean ’ | NumType
424 | ’singlechoice ’ | ’multiplechoice ’
425 | DateType | ’json ’ | ’custom ’
426);
427
428 FieldType : Type ;
429
430 LinkType :
431 ’link ’ ’.’ (linkType =’Users ’ | linkType =’Entity ’)
432 ’(’ linkObj += TextNoQuote (’,’ linkObj += TextNoQuote)? ’)’
433 ;
434
435 DocumentLinkType : ’documentlink ’ ’(’ url= STRING ’)’ ;
436
437 DateType :
438 ’date.after(TODAY)’
439 | /(date)\s/
440 ;
441
442

123

6 Implementation

443 // support number , number (<Comparator > INT), number (INT −INT)
444 NumType :
445 ’number ’ (
446 ’(’
447 ((comparator = Comparator num=INT) | (min=INT ’−’ max=INT))
448 ’)’
449)?
450 ;
451
452 Part:
453 Hash (’humanDuty ’ | ’systemDuty ’)
454 ;
455
456 Repeatable :
457 Hash (’repeatSerial ’ | ’noRepeat ’
458 | ’repeatParallel ’ (’(’ INT ’)’)?)
459 ;
460
461 Mandatory : Hash (’mandatory ’ | ’notmandatory ’) ;
462
463 Activation :
464 Hash (’manualActivate ’ | ’autoActivate ’
465 | ’activateWhen ’ ’(’ STRING ’)’)
466 ;
467
468 ReadOnly : Hash (’readOnly ’ | ’notReadOnly ’) ;
469
470 SharedPosition : ’stretched ’ | ’left ’ | ’center ’ | ’right ’;
471
472 SummarySectionPosition : Hash SharedPosition ;
473
474 Position :
475 Hash (’leftcenter ’ | ’centerright ’ | SharedPosition)
476 ;
477
478 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
479 ∗∗∗∗∗ SHARED ATTRIBUTES ∗∗∗∗∗
480 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
481
482 AdditionalDescription : " additionalDescription " Eq value = STRING ;
483
484 DefaultValues : ’defaultValues ’ Eq value = WrapValue ;
485
486 DefaultValue :
487 (
488 ’defaultValue ’ Eq
489 (
490 (value= STRING)
491 | (Ref ref =[AttributeValue |FQN])
492)
493);
494
495 OwnerPath : ’owner ’ Eq value = STRING ;
496
497 ClientPath : ’client ’ Eq value = STRING ;
498
499 UiReference :
500 ’uiRef ’ Eq
501 (
502 (value= STRING)
503 | (Ref ref =[AttributeValue |FQN])

124

6 Implementation

504)
505 ;
506
507 DueDatePath : ’dueDateRef ’ Eq value= STRING ;
508
509 OutputFieldExpression : ’expression ’ Eq value = STRING ;
510
511 AttributeValue : name=ID Eq value = STRING | INT | FLOAT ;
512
513 // ... Other user − defined attribute definitions
514
515 TextNoQuote : /([a−zA −Z0 −9−_.]) ∗/ ;
516
517 Eq: ’=’ ; // Assignment Symbol
518
519 Hash: ’#’ ; // Directive Symbol
520
521 Ref: /(use)\s/ ;
522
523 RefStage : Ref StageTerm ;
524
525 Comment :
526 (/\/\/.∗ $/
527 | /\/\∗.∗ $/
528 | /\∗.∗$/
529 | /.∗[\∗\/] $/)
530 ;
531
532 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
533 ∗∗∗∗∗∗∗ CP ELEMENT KEYWORDS ∗∗∗∗∗
534 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
535
536 WorkspaceTerm : /(Workspace)\s/ ;
537
538 CaseTerm : /(Case)\s/ ;
539
540 StageTerm : /(Stage)\s/ ;
541
542 // Other keywords definitions

Listing 6.1:Excerpt of the Acadela grammar specifications with nonterminal and representative terminals.

6.3.3 Re�ection on Addressing CP Modeling Requirements

Considering the CP modeling requirements (F1 - F13), Acadela grammar addresses the constructions of
medical processes (F1) with aCase (line 52) containing multiple Stages (line 67), each Stage (line 112)
comprising Tasks (line 136) storing InputFields (line 231) that medical professionals collected during the
treatment. Moreover, the InputFields and OutputFields (line 266) can be used to store data of medical
evidence (F3). In this use case, the Task represents the gathering of medical evidence, and OutputFields
hold the computed value based on the InputField(s). Another usage of InputFields is constructing check-
lists (F7) using the #multiplechoice directive (line 424) combined with the question attribute, Question
andOption element (lines 238, 252, and 257). Moreover, thanks to the generic schema definition of Tasks
as an object with properties, they can represent various types of information (F8). For example, medical
documents using the #documentLink(<UrlToDocument>) directive (line 435) on an InputField, or dy-
namic data presentation (F12) as an OutputField based on a SVG template and rendering logic defined
as InputFields. Finally, resources (e.g., medicine or medical devices) are also declarable as InputFields of
an equipment allocation Task, as required by F9.

125

6 Implementation

Considering the definition of alternative workflows and their triggering conditions (F2), Acadela provides
a Precondition element (line 199) attached to a Stages or Task as a prerequisite to activate alternative
treatment processes. A Precondition defines the previous Stages or Task that must be finished (previ-
ousStep), along with an optional boolean expression that must be true to trigger the Stages or Task (con-
dition). Furthermore, Acadela can construct serial repetitive or parallel Stages or Tasks when combining
the repeatable directive (line 456) and Precondition, as required by F4.
To model the goals of treatment processes (F5), modelers can create a Task to collect the treatment goals
in InputFields. Declaring a SummaryPanel (line 314) containing SummaryParam storing the reference
path (line 323) to these InputFields displays the treatment objective in the patient case summary.
Assigning medical professionals to CP processes (F6) is possible thanks to the Responsibilities (line 73),
CaseOwner (line 98), Setting Attribute (line 288) elements, and the owner attribute of a Stages or Task
(lines 118 and 188). First, the Responsibilities section state references to existing medical groups or users
in the database of a medical institution. Assigning one of these references to the CaseOwner of the
Setting sets a Group or User with read and write access rights to all CP processes. Next, declaring an
alias to these references as a Setting Attribute enables modelers to assign a group or medical professional
to a Stages or Task under the owner attribute.
Modeling time constraints (F10) for a Task requires a combination of defining a due date Attribute in the
Setting and declaring a reference to the Attribute as a value of the dueDatePath Task attribute (line 189).
However, time-lapsed events are not definable in Acadela.
Communication with external systems for integration or orchestration purposes (F11) is possible with
CaseHook, HttpHook, and DualTaskHttpHook (lines 333, 341, and 353) rules grouped under the Trigger
section. These constructs enable modelers to define which type of event triggers the sending of a HTTP
request to a given URL of a partner system using a HTTP method. In addition, an optional error message
is declarable to provide a user-friendly bug description to medical professionals.
Finally, the Import element (line 22) helps modelers include CP elements defined from other files into the
current CP meta-model (F13). Using theFQN and FQNI features (lines 18 and 19) of textX, Acadela also
supports import by name and by alias; hence modelers can assign a namespace to a particular imported
file. The syntax for alias import is <alias>.<elementId>.
When the Acadela backend receives a CP meta-model, it creates a parser based on the Acadela grammar.
The parser aims to generate Python classes representing the structure of the input CP meta-model.

6.4 Parser

textX parser helps Acadela to 1) recognize syntax errors and 2) access CP elements and their attributes
by generating a textX meta-model of the input CP definition. Acadela uses the meta_model_from_file to
instruct textX to generate the parser and Python class meta-model from the Acadela grammar file. textX
clones a new parser every time it parses an input CP definition (Dejanović, n.d.d). The parser reads the
CP definition source code and creates a graph of Python classes representing CP concepts at runtime
(Dejanović et al., 2017, p. 3).

Import Scoping De�nition: Acadela declares a FQNImportURI rule from the scoping_provider
of textX to locate a file path (URI) and import an element based on their name attribute into the current
CP definition. The scoping_provider can have a custom converter to extract the modules declared in a
file path. For example, in Acadela, a file path at the location /folder/file1.aca is written as folder.file1; the
custom converter replaces the "/" character with the "." and removes the ".aca" file extension. Furthermore,
Acadela sets the importAs property to True to enable alias import. An imported object has a ref attribute
pointing to its original Python object containing the properties parsed by textX.

Parsing the CP De�nition: Because the parser’s Python classes correspond to the ones of the textX
meta-model, textX can convert the CP definition string into a model using the meta-model_from_str func-

126

6 Implementation

tion. The generated model is a Python object containing the meta-model, parser (tx_parser), first and final
lines, attributes, and the CP hierarchy, i.e., A CP has a Workspace and imports, a Workspace contains
Case, a Case includes Responsibilities, Setting, Stages, SummaryPanel, and CaseHook. Each ele-
ment in the hierarchy is also a Python object that stores its attributes and parent. The Acadela interpreter
traverses through this textX model to construct a Python class of the CP for semantic validation and com-
pilation to SACM CP format.
The following Listings show an example of parsing a CP Definition to generate its textX model. Listing
6.2 shows the reduced code snippet of a Stage definition that imports a Hook element defined in Listing
6.3. Listing 6.4 presents the generated Python object of the Evaluation Stage in the textX model. Finally,
Listing 6.5 and 6.6 respectively demonstrate the Python objects of the referenced Hook in the Stage and
its Hook definition.

1 import extfile .hook
2
3 workspace Demo
4
5 define Case Hypertension
6 prefix = ’ST1 ’
7 // Case Attributes
8 Stage Identification // ... Stage Definition
9 Stage Evaluation
10 owner = ’Setting . CaseOwner ’
11 label = ’Identification ’
12 externalId = ’BpEvaluation ’
13
14 Precondition previousStep = ’Identification ’
15
16 Trigger use Hook hook1
17
18 HumanTask RequestMedicalTest // ... HumanTask Definition
19 HumanTask MeasureBloodPressure // ... HumanTask Definition

Listing 6.2: Code Snippet of a Stage Definition in a Case (Hypertension) of a Workspace (Demo)

1 define Hook hook1
2 On activate method Post
3 invoke ’http :// partnersystem .com/ activate ’

Listing 6.3: Definition of a Hook under the file path ./extfile/hook.aca imported in line 1 of Figure 6.2

127

6 Implementation

1 / / Access by c a l l i n g model . defWorkspace . c a s e . s t a g e L i s t [1] . _ _ d i c t _ _
2 { ’ _ t x _ p o s i t i o n ’ : 2631 ,
3 ’ _ t x _ po s i t i o n _ e n d ’ : 4455 ,
4 ’ d e s c r i p t i o n ’ : < t e x t x : AcadelaGrammar . D e s c r i p t i o n i n s t a n c e a t 0x2006684d9b0 > ,
5 ’ d i r e c t i v e ’ : None ,
6 / / O the r a t t r i b u t e s
7 ’ e x t e r n a l I d ’ : < t e x t x : AcadelaGrammar . E x t e r n a l I d i n s t a n c e a t 0x2006684d9e8 > ,
8 ’ hookL i s t ’ : [<HttpHook : >] ,
9 ’name ’ : ’ Eva l u a t i o n ’ ,
10 ’ ownerPath ’ : < t e x t x : AcadelaGrammar . OwnerPath i n s t a n c e a t 0x2006684d550 > ,
11 ’ p a r en t ’ : <Case : Hype r t en s i on > ,
12 ’ p r e c o n d i t i o n L i s t ’ : [< t e x t x : AcadelaGrammar . P r e c o n d i t i o n i n s t a n c e a t 0x2006684d320 >] ,
13 ’ r e f ’ : None ,
14 ’ t a s k L i s t ’ : [<HumanTask : Reque s tMed i ca lTe s t > , <HumanTask : Measu reBloodPre s su re >]

}

Listing 6.4: A generated Python object of the Stage Evaluation from Listing 6.2

1 { ’ _ t x _ p o s i t i o n ’ : 2864 ,
2 ’ _ t x _ po s i t i o n _ e n d ’ : 2878 ,
3 ’ even t ’ : None ,
4 ’ f a i l u r eMe s s a g e ’ : ’ ’ ,
5 ’method ’ : None ,
6 ’name ’ : ’ ’ ,
7 ’ p a r en t ’ : <S t age : Eva l u a t i o n > ,
8 ’ r e f ’ : <HttpHook : hook1 > ,
9 ’ u r l ’ : ’ ’ }

Listing 6.5: A Python object of the imported Hook in the hookList attribute (line 8) of the Stage Evalu-
ation object in Listing 6.4

1 { ’ _ t x _ p o s i t i o n ’ : 7 ,
2 ’ _ t x _ po s i t i o n _ e n d ’ : 106 ,
3 ’ even t ’ : ’ a c t i v a t e ’ ,
4 ’ f a i l u r eMe s s a g e ’ : ’ ’ ,
5 ’method ’ : ’ pos t ’ ,
6 ’name ’ : ’ hook1 ’ ,
7 ’ p a r en t ’ : < t e x t x : AcadelaGrammar . S t a r t i n s t a n c e a t 0 x1a6485aa390 > ,
8 ’ r e f ’ : None ,
9 ’ u r l ’ : ’ h t t p : / / p a r t n e r s y s t em . com / a c t i v a t e ’ }

Listing 6.6: The Python object of the imported Hook definition when accessing the ref attribute at line 8
of Listing 6.5

The coming section describes how the Acadela interpreter traverses the textX model of the CP for vali-
dating the semantics, compiling the CP to SACM-compatible JSON format, and returning the compiled
meta-model to the Acadela frontend for visualizing the CP.

6.5 Interpreter

From the textXmodel of the CPDefinition code, the Acadela Interpreter performs the following operations
to compile the CP into a SACM-compatible JSON format:

1. CP Meta-model Construction: Acadela defines each CP concept (e.g., Case, Setting, Stage,
Task) as a Python class representing its schema, i.e., attributes and child components. The Acadela

128

6 Implementation

Interpreter traverses the textXmodel to extract each model item’s properties. These properties store
the attributes and child elements corresponding to their Python schema class. The final result is
a Python object containing the CP definition, Workspace, lists of Groups, Users, Stages, Tasks,
Setting Attributes, and Entities with their Attributes.

2. Constraint Validation: The CP definition and lists of CP elements from step one serves as the
ground truth for verifying semantic and SACM-exclusive syntactic constraints applied to different
CP elements. For instance, the Acadela interpreter identifies the existence of attributes defined in
SACM syntax (e.g., expression, uiRef) and calls the corresponding sub-grammar to verify their
syntax. Additionally, the list of Stages and Tasks helps the semantic checker quickly detect dupli-
cated Stage or Task names without analyzing the CP object.

3. Compilation: If the CP object is error-free, Acadela translates each element into a JSON object
conforming to the structure required by SACM. The final result is a JSON CP meta-model proces-
sible by the SACM system.

The following subsections explain the execution of each operation in detail.

6.5.1 CP Meta-model Construction

CP Meta-model Schema: The Acadela syntax relieves modelers from declaring default attribute
values and calling data manipulation functions, e.g., prefixing Case, Stages, and Tasks ID, or converting
a String InputField to a numeric type in a mathematical formula. Furthermore, Acadela must express
shortened directives’ values in the SACM language. These features require the Acadela backend to define
the missing default or undeclared values in the CP object. Nevertheless, the modified CP definition should
not overwrite the textX model because it is the ground truth of the CP structure. Therefore, Acadela
defines the SACM CP meta-model from Python objects in the textX model to express CP elements. Each
CP element’s attributes and child objects conform to the SACM syntax and Acadela grammar. Figure 6.7
illustrates the structure of the CP meta-model.

CP Meta-model Initialization: The Acadela Interpreter defines sub-interpreters to analyze each
CP element in the meta-model. When traversing the textX model, Acadela invokes the corresponding
sub-interpreter to extract a CP element’s attributes and child elements. For instance, when iterating the
stageList property of a Case object, Acadela calls the Stage interpreter to identify the Stage’s attributes
(e.g., mandatory, label) and child elements, i.e., Precondition, Task, HttpHook. Then, Acadela invokes
the corresponding sub-interpreters to extract the attributes and constructs Python objects for the child
elements of the Stage. Finally, the Stage interpreter outputs a Stage object with Stage’s attributes and
child objects as properties. Figure 6.8 illustrates a Stage interpretation from Listing 6.4.

Automatic ID Pre�xing: SACM distinguishes CaseDefinition and its elements by unique IDs,
thus, modelers need to prefix the IDs of Case, Setting, Stages, and Tasks. However, Acadela relieves the
users from prefixing IDs by 1) defining a prefix attribute in the Case and 2) prepending this prefix string
to the element ID when interpreting the four types of CP elements. This automatic prefixing mechanism
also applies to reference paths defined in the condition attribute of Preconditions.

Automatic Number Conversion: Defining a mathematical expression of OutputField requires
converting any Input/OutputField of type text to number using the number() function. To offer conve-
nience for modelers, Acadela automatically searches for Input/OutputFields by their ID in the expres-
sion and extracts their type. If the Input/OutputFields are of type text, enumeration, longtext, or notype,
Acadela wraps the ID of the Input/OutputFields with the number() function.
Noticeably, Acadela and SACM do not round the computed value; hence the result can contain multiple
decimal points. Modelers can round the result by wrapping the mathematical expression with a round()
function.

129

6 Implementation

Figure 6.7: The Acadela CP meta-model based on the SACM schema and Acadela grammar. The default
multiplicity is one, e.g., One Case has only one Setting.

Line Number Inclusion: The Acadela frontend has a feature that focuses the IDE on the line
of a CP element definition when modelers double-click on the CP element node in the graph. There-
fore, the schema of each CP element in the meta-model contains its line number in the CP definition
code. Acadela extracts this line number from the parser (tx_parser) of the textX model by calling the
pos_to_linecol(<cpElement>._tx_position) function, which obtains the line of a CP element in the code
from its node position in the AST.

130

6 Implementation

Figure 6.8: Example of how the Acadela Interpreter traverses through attributes in a Stage object of the
textX model (top left) to create an Acadela Stage object with attributes and objects of child elements
(HumanTasks, Precondition, and HttpHook) on the right. 1) and 2): Extract the Stage attributes from
the corresponding textX model object, such as description (1) and ownerPath (2). 3) Construct a Stage
object from the extracted attribute values. 4) Access each Task in the Stage to collect Task’s properties.
5a) Construct a Task Object from the Task properties identified in Step 4. 5b) Construct other Tasks in the
Stage by repeating Step 4. 6) Extract the previous Stage or Task ID and condition in the Precondition
textX model object. 7) Construct the Precondition object based on the attributes extracted in Step 6. 8)
For imported elements, e.g., HttpHook, access the reference (ref) attribute to 9) extract the attributes of
the imported element. Finally, 10) Construct the HttpHook from the extracted attributes in Step 9.

Entity and Attribute De�nition of Task, Stage, and Case Data: Acadela automatically
creates an Entity for each Stage and Task. For Tasks, Acadela instructs the Field interpreter to construct
each InputField as an Attribute from the ID, label, multiplicity, type, uiReference, externalId, addition-
alDescription, defaultValue, and defaultValues attributes. Additionally, each OutputField is constructed
as a DerivedAttribute from the ID, label, multiplicity, type, uiReference, externalId, additionalDescrip-
tion, and expression attributes. Finally, Acadela uses the Task ID and label to define a SACM Entity with
the Attributes and DerivedAttribute. The Task interpreter also sets the Task type as an EntityLink to the
Task Entity ID and outputs a Task Attribute using the Task ID, label, multiplicity, type, additionalDescrip-
tion, and externalId.
Similarly, Acadela creates a Stage EntityDefinition from the Stage name, label, and list of Task Attribut-
eDefinitions. For each Task, the Task interpreter extracts its properties to generate an AttributeDefinition
of a Stage EntityDefinition.
Next, Acadela forms the EntityDefinition of the Case Setting by defining its ID and description as "Set-
ting", and constructs AttributeDefinitions from the properties of Setting Attributes.

131

6 Implementation

The CaseData Entity represents the Setting and all Stages in a CP. Acadela creates this Entity with ID
as CaseData and description as "Case Data", with the Attributes generated from the Setting and Stages
attributes.

Default Attributes De�nition: Acadela automatically declares typical or default attributes for the
following CP elements:

1. StaticId of Workspace, Users, and Groups: find the staticId of theWorkspace and each User or
Group defined in the CP. Acadela calls a SACM API to get the list of Workspaces, then extract
the ID of the Workspace having the same name as the declared Workspace. When interpreting
the Case, Acadela calls another SACM API to collect the groups from the permission list of the
Workspace and retrieve the ID of groups with the same name as the declared Groups in the CP.
Similarly, Acadela pulls the staticId of Users by checking the matched the ID of each group’s
member.

2. Owner of Stage and Task: If a Stage has no owner, i.e., no assigned group or user, Acadela
automatically assign the CaseOwner in the Case Setting as the Stage owner. If a Task has no
owner, Acadela sets the Stage owner as the Task owner.

3. Multiplicity, mandatory, and repeatable attributes of Stage and Task: If not declared, Acadela
sets the default value as exactlyOne, true, and ONCE for the three attributes. Acadela contains a
configuration file to store the default values of these attributes.

4. Mandatory and readOnly attributes of Input/OutputFields: If undefined, set mandatory to true
and readOnly to false by default.

5. entityDefinitionId and entityAttachPath of Stage and Task: The two attributes state the Entity-
Definition ID and path from the root Case to the Entity, respectively. Typically, the entityDefini-
tionId of a Stage and Task is its ID. The entityAttachPath of a Stage is its ID since the Stage is
a child of a Case; the entityAttachPath of the Task is <ParentStageId>.<TaskId> as the Task is a
child of a Stage. If the two attributes are not declared, Acadela automatically assigns those typical
values into the entityDefinitionId and entityAttachPath when interpreting a Stage or Task.

Order of CP Elements Interpretation: When modelers submit a CP Definition to SACM, the
Acadela interprets the textX model to construct CP elements in the following order:

1. Extract theWorkspace ID and its staticId from the root object of the textXmodel, which represents
the Workspace definition.

2. Retrieve theCase object of theWorkspace, then find the staticId of eachGroup and User defined
under the Responsibilities section.

3. Access the Stage List of the Case to collect Task objects in the textX model. The Task interpreter
executes the following operations:

a) Constructs a Python Object storing the Task attributes declared in the CP Definition
b) Initializes default attribute values if undefined
c) Calls the Field Interpreter to construct the Input/OutputFields andAttribute/DerivedAttribute

objects. The Input/OutputField Interpreter validates the syntax of uiReference andOutput-
Field’s expression (See 6.5.2 in 6.5.2)

d) Creates the Task as an Entity and as an Attribute.
In step c), the Field interpreter takes the Input/OutputField object in the Form of a Task; the path
to the Input/OutputField from the Stage, i.e., <StageId>.<TaskId>.<FieldId>; global Form
directive(s) definition; and the textX model of the CP definition as parameters. The last parameter
helps Acadela get each Field’s line number and declares it as an Input/OutputField attribute. The
other parameters enable Acadela to define declared or default attributes.

132

6 Implementation

For example, Acadela sets the Form directives to all Input/OutputFields, except the ones that
specify their directive value. For instance, defining a global #readOnly directive in the Form will
set all Input/OutputFields’ readOnly attribute as true. However, if a Input/OutputField has a
#notReadOnly directive, then its readOnly value is false.

4. Read the Stage object in the textX model to extract its attributes. Then construct a Stage object, a
Stage as Entity, and a Stage asAttribute. Acadela uses the latter as theAttribute of theCaseData.

5. Interpret the Setting of the Case by creating a Setting Entity containing the Setting Attributes.
Acadela also constructs an Attribute object from the Setting to include it in the CaseData Entity.

6. Create aCaseDefinitionwithCaseOwner and references to the patient list (CasePatient) declared in
the Setting. Set the prefixed Setting as the entityDefinitionId and entityAttachPath of theCaseDef-
inition.

7. Construct the CaseData Entity from Attributes of the Setting and Stages.
8. InterpretCase’sHttpHooks and SummarySectionDefinition from the corresponding textXmodel.
9. Generate a Case Object containing the Workspace and echFont(CaseDefinition) objects, along

with seven separate lists of Users, Groups, Entities, Attributes, Setting attributes, Stages, and
Tasks. This object serves as a cache for the syntax and semantic error analyzers to retrieve necessary
data without traversing the Case object.

After interpreting the CP definition as a Case Object, Acadela validates the semantic constraints of the
CP elements.

6.5.2 Syntax Error Validation

Syntax Analyzer of the textX Parser: The textXmeta-model contains the syntax rules (Dejanović
et al., 2017, p. 4), to verify if the model infringes any syntactic constraints and consequently throws
a textXSyntaxErrorException. By catching the exception during parsing, Acadela extracts the violated
rule name, surrounding code snippet, line, and column of the error in the textXSyntaxErrorException.
Additionally, the Acadela syntax analyzer stores an enhanced description dictionary as a key-value pair
data structure, with violated rule names as keywords and their explanation as values. Appendix A.10
presents the content of the enhanced description dictionary.
Furthermore, Acadela extracts the lists of directives and attributes keywords from a dedicated rule defined
in the grammar. These keywords serve as the dictionary for detecting typos by comparing the distance of
the erroneous text with every keyword.
When a textXSyntaxErrorException occurs, Acadela reformats the error message as follows:

1. Check if the violated rule name is a missingEqual sign (Eq), STRING, or INT type. The STRING
rule indicates that the syntax error occurs when a text is not wrapped with a pair of single or double
quotes. Meanwhile, the INT rule suggests that Acadela expects a number at the error location.
Acadela replaces the rule name with the corresponding human-readable messages in these three
cases and prepends the "Expected" word. For example, replacing ’STRING’ with ’Text with quo-
tation marks ("", ”)’. The final error cause is Expected Text with quotation marks ("", ”).

2. Verify if a typo causes the syntax error. A misspelled word is the word at the column number of
the error string. The Acadela syntax analyzer extracts the misspelled word and uses the correction
function to return the keyword in the dictionary with the Levenshtein distance of less than three
(Norvig, 2022) compared to the misspelled word. This Levenshtein distance constraint means
Acadela can suggest the correct keyword if the typo has at most two characters different from
any word in the dictionary. If no such keyword exists, the correction function returns the typo, and
the error message only displays the typo without any suggested keyword.

3. For other errors, replace the violated rule name with a user-friendly explanation from the enhanced
description dictionary, and remove redundant whitespaces.

133

6 Implementation

Finally, Acadela crafts an custom syntax error message with its enhanced description of the error cause.
If a typo is detected, this message includes the potentially correct Acadela keyword. Additionally, the
syntax error handler inserts the line and column numbers and the erroneous code snippet extracted from
the textXSyntaxErrorException.

Custom Syntax Error Analyzer: To reduce the length and complexity of the base grammar after
interpreting an Input/OutputField. Acadela verifies the syntax of uiReference and expression attributes
which must conform to an exclusive syntactic rule of SACM. The uiReference can contain the color band
applied to a numeric value by calling the SACM colors function. For example, colors(5 <= red <= 10 <
green < 15) means a red background color is applied to the Input/OutputField if its value is from 5 to
10. Otherwise, SACM paints a green background if the Field value is larger than 10 and less than 15.
Listing 6.7 defines the sub-grammar to verify the uiReference value.

1 UiRef :
2 ColorCodeDef | ’privatelink ’ | ’hidden ’ | ’svg ’ | ’linediagram ’
3 ;
4
5 ColorCodeDef :
6 ’colors ’ ’(’ (CompareExpression) ’)’
7 ;
8
9 CompareExpression :
10 NUMBER (Comparator ColorName Comparator NUMBER)+
11 ;
12
13 ColorName :
14 ’red ’ | ’blue ’ | ’green ’ | ’orange ’ | ’yellow ’
15 ;
16
17 Comparator :
18 ’=’ | ’<>’ | ’<=’ | ’>=’ | ’<’ | ’>’
19 ;

Listing 6.7: Sub-grammar to verify the uiReference value in SACM

The grammar states that a color band function rule (ColorCodeDef), link (privatelink), hidden, graphical
template (svg), and linediagram are legitimate values of the uiRef. The ColorCodeDef rule starts with
the colors function that accepts a CompareExpression that begins with a number, followed by at least
one Comparator ColorName Comparator number sequence. A valid Comparator is one of the six
comparison symbols, while an acceptable ColorName is red, blue, green, orange, and yellow.
Validating a conditional statement in the expression attribute follows a similar approach. The syntax of
the conditional statement in SACM is as follows:

1 i f (< boo l e anExp r e s s i on >) t h en <ou tpu tVa lue1 >
2 e l s e i f (< boo l e anExp r e s s i on >) t h en <ou tpu tVa lue2 >
3 e l s e <ou tpu tVa lue3 >

SACM accepts zero or multiple else-if clauses. The parentheses wrapped around a boolean expression are
compulsory. Listing 6.8 presents the grammar used to verify the syntax of conditional statements.

1 IfElseStatement :
2 ifStatement elseIfStatement ∗ elseStatement
3 ;
4
5 ifStatement :
6 /(if)\s/ conditionalExpr thenStatement
7 ;
8

134

6 Implementation

9 elseIfStatement :
10 /(else\sif)\s/ conditionalExpr thenStatement
11 ;
12
13 elseStatement :
14 /(else)\s/ STRING
15 ;
16
17 conditionalExpr :
18 (compoundStatement | complexStatement)
19 ;
20
21 complexStatement :
22 ’(’ compoundStatement (andOr compoundStatement)∗ ’)’
23 ;
24
25 compoundStatement :
26 ’(’ Condition (andOr Condition)∗ ’)’
27 ;
28
29 Condition :
30 TextNoQuote Comparator (NUMBER | STRING)
31 ;
32
33 Comparator :
34 ’=’ | ’<>’ | ’<=’ |’>=’ | ’<’ | ’>’
35 ;
36
37 TextNoQuote : /([a−zA −Z]) ∗/ ;
38
39 andOr: /(and)\s/ | /(or)\s/ ;
40
41 thenStatement : "then" STRING ;

Listing 6.8: Sub-grammar to verify the conditional statement of expression attribute in SACM

The first four rules from lines 1 to 15 define the structure of if, else if, and else clauses in the conditional
statement. The next three rules from lines 17 to 27 enforce the structure of compound and complex con-
ditional statements. A compound statement consists of two boolean expressions connected by the and or
or operator. A complex statement consists of a boolean expression and compound statements grouped by
parentheses. The Condition rule declares the syntax of a boolean expression, which accepts text on the
LHS, a Comparator, and a number or string on the RHS, e.g., Field1 < 5.
If a syntax error occurs, the syntax analyzer applies the enhanced description dictionary (See Syntax Error
Validation in Section 6.4) to display text from regular expressions in the grammar. For example, in the
returned error message, replace the rule (if∖s) of the grammar by the if word.

6.5.3 Semantic Error Validation

ID Uniqueness After interpreting the CP, Acadela stores lists of Groups, Users, Setting Attributes,
Stages, and Tasks. The Acadela semantic analyzer traverses these lists to verify that their elements’ ID
satisfies the following constraints:

1. Each Group, User definition has a unique ID.
2. No two Attributes in the Setting have the same ID. Attribute ID is not the same as any Stage ID.
3. Each Stage ID is unique among other Stages and Tasks. The semantic analyzer examines IDs in

the two lists of Stages and Tasks for this detection.

135

6 Implementation

4. Each Task ID is unique among Tasks in the same Stage. Acadela extracts the list of Tasks in every
Stage object and checks that no two Tasks have the same ID.

5. Each Input/OutputField ID is unique among others in the same Task. The semantic analyzer
iterates through each Task and extracts its Input/OutputFields, then verifies that no ID is defined
twice among the Input/OutputFields.

Violating any of the above constraints triggers Acadela to generate an error message stating:
"[duplicated element type] ID should be unique! [duplicated ID] at line [line number] and column
[column number] is a duplicate. Please verify that the IDs are unique for each [duplicated element
type".

For example, if two Stages share the same ID Evaluation, and the position of the first Evaluation Stage
is line 54 and column 5, then the error message is:
"Stage IDs should be unique! Evaluation at line 54 and column 5 is a duplicate. Please verify that the
IDs are unique for each Stage."

If a Task ID is the same as a Stage, the error message has the following pattern:
Task IDs should be unique! [Task Name] at line [line number] and column [column number] is dupli-
cated. Please verify that the Task ID does not match with a Stage ID.")

Valid Reference Path The Acadela semantic analyzer ensures that references declared in any CP
element point to an existing object by performing the following verifications:

1. For each Task and Stage, the dueDateRef and owner attributes must point to the corresponding Set-
ting Attributes. The dueDateRef and owner values are typically Setting.<AttributeID>. Acadela
splits the text to extract the <AttributeID>part and searches in the list of Setting Attributes for
elements having the same ID.
For the owner attribute, Acadela further checks if the Setting Attribute links to an existing User
or Group in the Responsibilities section. Meanwhile, the dueDatePath reference must point to an
Attribute of type date.

2. For each Precondition in a Stage or Task, each ID defined in the previousStep list must match
an existing Task or Stage ID. Acadela extracts every element in the previousStep attribute and
searches in the lists of Stage IDs and Task IDs.
Furthermore, each reference in the boolean expression of the condition attribute must point to
an existing Setting Attribute or Input/OutputField. To verify this constraint, the semantic an-
alyzer extracts reference paths in the condition attribute value. Acadela uses the Python regu-
lar expression to split and filter the references from other characters, i.e., comparators, and, or,
textit+. The final result is a list of paths that conform to either the Setting.<AttributeID> or
<StageID>.<TaskID>.<FieldID> pattern.
For each reference path, if it starts with "Setting", Acadela extracts the second part and searches
for a matched Attribute ID. Otherwise, it is a reference pointing to an Input/OutputField. Thus,
Acadela checks if the first part is in the list of Stages, the second part is the same with any Task ID
of the Stage, and the third path corresponds to an Input/OutputField of the matched Task.

3. For the custom ElementPath) in an Input/OutputField and InfoPaths in SummaryPanels, Acadela
uses the path validation mechanism described in the previous paragraph to verify the references.

4. If an OutputField’s expression attribute contains a conditional statement, Acadela uses regular
expressions to extract Input/OutputFields ID inside boolean expressions. Afterward, the semantic
analyzer checks if each extracted ID refers to an Input/OutputField in the same Task Form.

136

6 Implementation

Regarding the generated errormessage content, considering the owner and dueDateRef attributes, Acadela
crafts a semantic error message containing the line number and unfound Setting Attribute ID as fol-
lows:

Semantic Error at line [line number]! Owner [Attribute ID] not found in Settings.
Furthermore, if the owner Setting Attribute links to a non-existing Group or User, the error message
states the line number and the Group ID or User ID not found in the declared Groups or Users.

Semantic Error at line [line number]! CaseOwner ’[Group ID]’ not found in groups.

Turning to the Precondition element, if any step element in the previousStep does not match with any
Stage or Task ID, then the error message is as follows:

Semantic Error at line [line number]! Task or Stage ’[step]’ in precondition not found.

Regarding the reference path, if Acadela detects the phrase "Setting" in the first part but the second part
does not match any Setting Attribute ID, then the error message states the erroneous ID and reminds the
user of the correct reference pattern:
Semantic Error at line [line number]!
Invalid precondition path ’[reference path]’. The path does not point to an existing element. Make
sure your path follows the below rules:
Setting.<AttributeName>

Otherwise, Acadela expects a pattern pointing to an Input/OutputField. Therefore, if the pattern does
not have three parts, the outputted error is:
Semantic Error at line [line number]!
Invalid precondition path ’[reference path]’. The path does not point to an existing element. Make
sure your path follows one of these rules:
1.<StageName>.<TaskName>.<FieldName>
2.<Setting>.<AttributeName>

If any part of the Input/OutputField reference path is incorrect, Acadela includes the faulty part in the
error message. For example, including a Task ID that does not correspond to any child Task of any Stage
results in the below error message:
Semantic Error: Invalid reference path at line [line number]! ’[Declared Task ID]’ Task does not exist.
Expect the ID of a defined Task in the Case.

If an Input/OutputField ID declared in the expression attribute of an OutputField does not exist, Acadela
constructs the following error message:
Semantic Error at line [line number]! Invalid field [Unfound Input/OutputField ID] found in the expres-
sion of OutputField [expression’s OutputField ID]. Expected the ID of an InputField or OutputField
declared in the same Form as OutputField [expression’s OutputField ID]."

137

6 Implementation

Trusted API Validation Acadela persists a table of trusted API URLs and their legitimate HTTP
methods for each Workspace (i.e., medical institution). An e-Health system can store this table inside a
database or a file. In the current implementation, Acadela persists the trusted API tables as a CSV file, as
shown in Table 6.1.

Workspace URL Allowed HttpMethod
StPaul http://connecare.de:3001/connecare "POST"
StPaul http://partnersystem.de/record/bloodpressure "POST"
Demo https://externalsystem.com/monitor "POST , GET"

Table 6.1: Example of a trusted API table as a CSV file. Each row stores the Workspace ID, the API
URL of an external system, and its eligible HTTP method(s).

The (Workspace) column refers to the Workspace ID declared at the beginning of the CP Definition.
TheWorkspace represents medical institutions that require external communications. The URL column
represents the APIs the partner systems provide to the medical institution. Modelers need to declare the
complete URL of each communicable API endpoint. Finally, the HttpMethod column represents the
HTTP method that the partner system authorizes the medical institution to use. For example, if the per-
mitted HTTP method to a URL is GET, then the e-Health system can not request the URL with a DELETE
HTTP method. This feature prevents calling unauthorized services from an e-Health system.
HttpHook Validation: Acadela applies the trusted API table to verify each HttpHook object of anyCase,
Stage, or Task. For each HttpHook, the semantic analyzer checks if the CP Workspace and HttpHook
URL match the Workspace and URL value, respectively. Finally, the analyzer verifies whether the
HttpHook method is in the list of permitted methods.
Generate Error Messages: Acadela crafts an error message stating that the declared URL is not in the
list of trusted URLs for a Workspace if the semantic analyzer cannot find any matched URL for a given
Workspace in the table. The structure of the error message is as follows:
The URL [HttpHook URL] at line [line number] is not in the list of trusted sources for the workspace
[CP’s Workspace]. Please check the trusted sources list for the permitted URLs.

If the HttpHook URL is among the trusted URLs of a Workspace, but the declared HttpHook method
does not apply to the URL, then Acadela generates the following error message:
The URL [HttpHook URL] at line [line number] does not accept the HTTP method [declared HTTP
method]. Allowed methods: [trusted HTTP methods]. Please further check the trusted sources list for
the permitted methods.

After transforming the input CP definition to a Python object, Acadela starts the compilation process to
represent the CP object in the SACM JSON structure.

6.6 Compilation to SACM Clinical Pathway

The objective of the compilation step is to create a CP meta-model compatible with SACM from the CP
Definition Python Object produced by the interpreter. Thanks to the CP meta-model, SACM can generate
CP models for treating patients according to the guidelines of the CP.
Acadela compiles the attributes and child elements of each CP concept in the CP Definition object into
the JSON structure required by SACM. Listing 6.9 provides an overview of the SACM JSON structure
for representing the CP Definition.

138

6 Implementation

1 {2 "jsonTemplate": {3 "SACMDefinition": {4 "Workspace": [5 {6 "$": {7 "staticId": "<WorkspaceStaticId >",8 "id": "<WorkspaceId >"9 },10 "EntityDefinition": [11 {12 "$": {13 "id": "<prefix >_CaseData",14 "description": "Case Data"15 },16 "AttributeDefinition": [17 { "$": { <Stage1 properties > } },18 { "$": { <StageN properties > } },19 { "$": { <Setting properties > } }20]21 },22 {23 "$": {24 "id": "<prefix >_Setting",25 "description": "Setting"26 },27 "AttributeDefinition": [28 { "$": { <Case Owner properties > } },29 { "$": { <Setting Attribute1 properties > } },30 { "$": { <Setting AttributeN properties > } }31]32 },33 {34 "$": {35 "id": "<prefix >_Stage1Id",36 "description": "<Stage1Description >"37 },38 "AttributeDefinition": [39 {40 "$": { <Stage1 Task1 properties > },41 "$": { <Stage1 TaskN properties > }42 }43]44 },45 {46 "$": {47 "id": "<prefix >_Stage1Task1Id",48 "description": "Stage1Task1Description"49 },50 "AttributeDefinition": [51 {52 "$": { <Stage1Task1InputField1 properties > },53 "$": { <Stage1Task1InputFieldN properties > }54 }55],56 "DerivedAttributeDefinition": [57 {58 "$": { <Stage1Task1OutputField1 properties > },59 "$": { <Stage1Task1OutputFieldN properties > }60 }61]62 },63 {64 "$": {65 "id": "<prefix >_Stage1TaskNId",66 "description": "Stage1TaskNDescription"67 },68 "AttributeDefinition": [69 {

139

6 Implementation

70 "$": { <Stage1TaskNInputField1 properties > },71 "$": { <Stage1TaskNInputFieldN properties > }72 }73],74 "DerivedAttributeDefinition": [75 {76 "$": { <Stage1TaskNOutputField1 properties > },77 "$": { <Stage1TaskNOutputFieldN properties > }78 }79]80 },81 { <Entity Definition of StageN as lines 33-44> },82 { <Entity Definitions of StageN 's Tasks as lines 45-80> },83],84 "CaseDefinition": [85 {86 "$": { <CP properties and Case HttpHook definitions > },87 "SummarySectionDefinition": [88 {89 "$": { <SummarySection1 properties > },90 "SummaryParamDefinition": [91 { "$": { "path": "<ReferencePath.To.Input/OutputField1 >" } }92 { "$": { "path": "<ReferencePath.To.Input/OutputFieldN >" } }93]94 },95 {96 "$": { <SummarySectionN properties > },97 "SummaryParamDefinition": [98 {99 { "$": {"path": "<ReferencePath.To.Input/OutputFieldY >"} }100 { "$": {"path": "<ReferencePath.To.Input/OutputFieldZ >"} }101 }102]103 }104],105 "StageDefinition": [106 {107 "$": { <Stage1 properties > },108 "SentryDefinition": [109 {110 "precondition": [111 { "$": { <Precondition1 PreviousStep1 and Condition > } },112 { "$": { <Precondition1 PreviousStepN and Condition > } }113]114 },115 {116 "precondition": [117 { "$": { <PreconditionN PreviousStep1 and Condition > } },118 { "$": { <PreconditionN PreviousStepK and Condition > } }119]120 }121],122 "HttpHookDefinition": [123 { "$": { <Stage1 HttpHook1 properties > } },124 { "$": { <Stage1 HttpHookN properties > } }125],126 "$$": [127 {128 "$": { <Task1 properties > },129 "#name": "<TaskType >",130 "SentryDefinition": [131 // Same declaration structure as lines 109-120132],133 "HttpHookDefinition": [134 { "$": { <Task1 HttpHook1 properties > } },135 { "$": { <Task1 HttpHookN properties > } }136],137 "TaskParamDefinition": [138 { "$": { <Task1 Input/OutputField1 properties > } },139 { "$": { <Task1 Input/OutputFieldN properties > } },

140

6 Implementation

140]141 },142 { // Other Task declarations follows the structure of lines 127

-141 }143]144 }145 }146]147 }148],149 "Group": [150 {151 "$": {152 "staticId": "<Group1StaticId >",153 "id": "Group1Name"154 }155 },156 {157 "$": {158 "staticId": "<GroupNStaticId >",159 "id": "GroupNName"160 }161 }162],163 "User": [164 {165 "$": {166 "staticId": "<User1StaticId >",167 "id": "<User1Id >"168 }169 },170 {171 "$": {172 "staticId": "<UserNStaticId >",173 "id": "<UserNId >"174 }175 }176]177]} // End of Workspace Scope178 }179 }

Listing 6.9: Structure of a CP Definition in SACM JSON format. Variables are wrapped inside < and >
symbols.

The SACM CP Definition stores the attribute of a CP element in the $ object. The SACM CP Definition
starts with a Workspace containing its properties, a CaseDefinition, and three lists of EntityDefinitions,
Groups, and Users. The EntityDefinitions list stores the CP structure (i.e., Setting and Stages); CP Set-
ting; Stages; and Tasks as SACM EntityDefinitions. Every EntityDefinition has its AttributeDefinitions;
TheAttributeDefinitions of a Setting EntityDefinition are SettingAttributes; A Stage EntityDefinition has
Tasks as AttributeDefinitions; a Task EntityDefinition has InputFields as AttributeDefinitions andOutput-
Fields as DerivedAttributeDefinitions. Each Attribute/DerivedAttributeDefinition stores the properties
of its object.
Turning to the CaseDefinition, it stores the CP properties, SummarySectionDefinitions, and StageDef-
initions. Each SummarySectionDefinition stores SummarySections with their properties and path(s) to
CP elements. Meanwhile, the StageDefinition list stores the Stage properties and SentryDefinitions
(Preconditions), HttpHookDefinitions, and TaskDefinitions of every CP Stage. Each TaskDefinition
contains the Task properties, HttpHookDefinitions, SentryDefinitions, and TaskParamDefinitions. Each
TaskParamDefinition holds an Input/OutputField mandatory, readOnly, and path properties. The latter
is the reference to the Input/OutputField from its parent Stage and Task.
Finally, the Workspace stores the Groups, each with a group name and staticId as properties. Similarly,
the properties of each User in the Users list are an internal ID and the global staticId.

141

6 Implementation

In addition, to support the feature of focusing on a code when double-clicking a CP object in the visual-
ization, Acadela stores the line and row number as a property in each StageDefinition, TaskDefinition,
HttpHookDefinition, SentryDefinition, and TaskParamDefinition (InputField and OutputField).
To compile the CP conforming to the above structure, Acadela traverses through the CP Definition Python
Object to construct JSON objects for each CP element from their properties and child items. The step of
traversal is as follows:

1. Compile the CaseDefinition: Acadela creates a JSON object from the Case object to represent
the CaseDefinition with attributes in the below format:
1 {2 "\$": {},3 "SummarySectionDefinition": [],4 "StageDefinition": []5 }

Acadela constructs key-value pairs from the Case properties, with the key as the property name
and the value as the property data. These properties include theCase HttpHook definitions. Figure
6.9 illustrates an example of constructing the Case properties as the $ JSON object (right) from
the interpreted Case Python Object (left).

" $ " : {
" i d " : " HYP_Hypertension " ,
" d e s c r i p t i o n " : " Hype r t e n s i o n Trea tmen t " ,
" ownerPa th " : " HYP_Set t ing . CaseOwner " ,
" e n t i t y D e f i n i t i o n I d " : "HYP_CaseData " ,
" n ewEn t i t yD e f i n i t i o n I d " : " HYP_Set t ing " ,
" n ewEn t i t yA t t a c hP a t h " : " HYP_Set t ing " ,
" c l i e n t P a t h " : " HYP_Set t ing . C a s e P a t i e n t " ,
" onActivateHTTPHookURL " : " h t t p s : / /

e x t e r n a l S y s t em : 7 8 7 8 / c a s e " ,
" onCompleteHTTPHookURL" : " h t t p s : / /

e x t e r n a l S y s t em : 7 8 7 8 / c a s e / f i n i s h " ,
" v e r s i o n " : 2

}

Figure 6.9: Example of compiling properties of an interpreted Case object (left) into SACM JSON
format (right).

2. Insert SummarySectionDefinitions: Acadela accesses each Summary in the SummarySection
list of theCase to extract the Summary properties and its SummaryParam, which stores the list of
reference paths to CP elements. Finally, Acadela constructs each SummarySection into an SACM
JSON structure, as illustrated by Figure 6.10.

3. Compile StageDefinitions: For each Stage in the interpreted Stages list, Acadela constructs the
following JSON elements:

4. Compile TaskDefinitions for each StageDefinition: Acadela retrieves the list of Task objects in
each Stage. Next, Acadela creates a TaskDefinition JSON object to store the properties and child
elements in each interpreted Task. Specifically, the TaskDefinition contains a "$" JSON object
representing Task properties as key-value pairs. The TaskDefinition has a #name key to indicate
the Task type, i.e., HumanTask, AutomatedTask, or DualTask. Like StageDefinitions, Acadela
expresses HttpHooks and Preconditions in the Task as HttpHookDefinition and SentryDefinition
arrays. Finally, a TaskParamDefinition array stores the properties of Input/OutputFields of the
Task.

142

6 Implementation

" SummarySec t i onDe f i n i t i o n " : [
{

" $ " : {
" i d " : " MRI_Medica l In fo rma t ion " ,
" d e s c r i p t i o n " : " Medica l I n f o rma t i o n : " ,
" p o s i t i o n " : "STRETCHED"

} ,
" SummaryParamDef in i t ion " : [

{
" $ " : {

" pa t h " : " MR I _ I d e n t i f i c a t i o n . MRI_Medical Info . Age"
}

} ,
{

" $ " : {
" pa t h " : " MR I _ I d e n t i f i c a t i o n . MRI_Medical Info . Gender "

}
}

]
} ,
{

" $ " : {
" i d " : " MRI_P a t i e n t P r e f e r e n c e s " ,
" d e s c r i p t i o n " : " P a t i e n t P r e f e r e n c e s : " ,
" p o s i t i o n " : "STRETCHED"

} ,
" SummaryParamDef in i t ion " : [

{
" \ $ " : {

" p a t h " : " MR I _ I d e n t i f i c a t i o n . MRI_P a t i e n t P r e f e r e n c e s
. T rea tmen tGoa l "

}
}

]
}

]

Figure 6.10: Example of compiling an interpreted SummarySection object (left) into SACM JSON
format (right). The SummarySection code snippet is from lines 42 to 49 of Listing 5.23.

5. Compile Input/OutputFields as TaskParamDefinitions: Acadela retrieves the list of Input/Out-
putFields in a Task and extracts their ID, path, readOnly, mandatory, position, line and row num-
bers, Field type (InputField or OutputField) properties. The Field type helps the Acadela IDE to
choose the appropriate color for painting the InputField or OutputField box. Meanwhile, the ID
saves the IDE effort in extracting the Input/OutputField ID from the SACM path value. Figure
6.11 shows an example of constructing a MeasureBmi HumanTask with two InputFields (Height
and Weight) and one OutputField.
Next, Acadela generates a "$" JSON object to store these properties. The compilation of In-
put/OutputFields for all Tasks completes the construction of the StageDefinition array.

a) A "$" JSON object of the Stage properties.
b) AHttpHookDefinition JSON arraywith each element containing the properties ofHttpHooks

in the Stage.
c) A SentryDefinition JSON array storing Precondition definitions, each containing the ID of

Stage or Task as previousStep, and the transition condition.
d) The child Tasks array wrapped under a "$$" object, which stores an array of TaskDefinitions.

Figure 6.12 demonstrates an example of compiling an interpreted Stage object into SACM JSON
structure.

143

6 Implementation

" S t a g eD e f i n i t i o n " : [
{

" $ " : { <Pa r e n t S t age A t t r i b u t e s > } ,
" $$ " : [
{

" $ " : {
" i d " : "OB1_MeasureBmi " ,
" d e s c r i p t i o n " : " Measure BMI" ,
" ownerPa th " : " OB1_Set t ing . D i e t i c i a n " ,
" dueDa tePa th " : " OB1_Set t ing . WorkplanDueDate " ,
" r e p e a t a b l e " : "SERIAL" ,
" e x t e r n a l I d " : " BmiMeasurement " ,
" i sManda to ry " : " t r u e " ,
" a c t i v a t i o n " : "MANUAL" ,
" e n t i t y D e f i n i t i o n I d " : "OB1_MeasureBmi " ,
" e n t i t y A t t a c h P a t h " : " OB1_Evalua t ion .

OB1_MeasureBmi " ,
" l ineNumber " : [110 , 9]

} ,
" #name " : " HumanTaskDef in i t i on " ,
" S e n t r yD e f i n i t i o n " : [

{
" p r e c o n d i t i o n " : [

{
" $ " : {

" p r o c e s s D e f i n i t i o n I d " : "
OB1_MeasureBloodPressure " ,

" e x p r e s s i o n " : " OB1_Evalua t ion .
OB1_Examina t i onCheck l i s t .
BodyMassIndex : 1 " ,

" s i m p l i f i e d E x p r e s s i o n " : " E v a l u a t i o n .
E x am i n a t i o nCh e c k l i s t . BodyMassIndex
: 1 " ,

" l ineNumber " : [130 , 13]
}

}
]

}
] ,
" H t t pHookDe f i n i t i o n " : [

{
" $ " : {

" on " : "COMPLETE" ,
" u r l " : " h t t p : / / p a r t n e r s y s t em . com / bmi " ,
" method " : "POST" ,
" f a i l u r eMe s s a g e " : " F a i l t o sync BMI s c o r e " ,
" l ineNumber " : [135 , 17]

}
}

] ,
" T a s kPa r amDe f i n i t i o n " : [

{
" $ " : {

" pa t h " : " OB1_Evalua t ion .
OB1_Reques tMedica lTes t . He igh t " ,

" i sReadOnly " : " f a l s e " ,
" i sManda to ry " : " t r u e " ,
" p o s i t i o n " : "LEFT" ,
" l ineNumber " : [158 , 19] ,
" a c a d e l a I d " : " He igh t " ,
" f i e l dTy p e " : " i n p u t f i e l d "

}
} ,
{

" $ " : {
" pa t h " : " OB1_Evalua t ion .

OB1_Reques tMedica lTes t . Weight " ,
" i sReadOnly " : " f a l s e " ,
" i sManda to ry " : " t r u e " ,
" p o s i t i o n " : "LEFT" ,
" l ineNumber " : [164 , 19] ,
" a c a d e l a I d " : "Weight " ,
" f i e l dTy p e " : " i n p u t f i e l d "

}
} ,
{

" $ " : {
" pa t h " : " OB1_Evalua t ion .

OB1_Reques tMedica lTes t . BmiScore " ,
" i sReadOnly " : " f a l s e " ,
" i sManda to ry " : " t r u e " ,
" p o s i t i o n " : "STRETCHED" ,
" l ineNumber " : [173 , 19] ,
" a c a d e l a I d " : " BmiScore " ,
" f i e l dTy p e " : " o u t p u t f i e l d "

}
}

]
}

}]

Figure 6.11: Example of compiling properties of an interpreted HumanTask object (left) into SACM
JSON format (right). The HumanTask is activated when the Dietician asks for a BMI check in the
ExaminationChecklist Task of the same Evaluation Stage.

144

6 Implementation

" S t a g eD e f i n i t i o n " : [
{

" $ " : {
" i d " : " OP1_Eva lua t ion " ,
" d e s c r i p t i o n " : " E v a l u a t i o n " ,
" ownerPa th " : " OP1_Se t t i ng . Surgeon " ,
" r e p e a t a b l e " : "ONCE" ,
" manda tory " : " t r u e " ,
" a c t i v a t i o n " : "AUTOMATIC" ,
" e n t i t y D e f i n i t i o n I d " : " OP1_Eva lua t ion " ,
" e n t i t y A t t a c h P a t h " : " OP1_Eva lua t ion " ,
" e x t e r n a l I d " : " OpEva lua t i on " ,
" l ineNumber " : [87 , 5]

} ,
" S e n t r yD e f i n i t i o n " : [

{
" p r e c o n d i t i o n " : [

{
" $ " : {

" p r o c e s s D e f i n i t i o n I d " : " OP 1 _ I d e n t i f i c a t i o n " ,
" e x p r e s s i o n " : " number (OP 1 _ I d e n t i f i c a t i o n .

OP1_GetConsent . OP1_Pa t i en tConsen t , 2) = 1 " ,
" s i m p l i f i e d E x p r e s s i o n " : " I d e n t i f i c a t i o n .

Ge tConsen t . P a t i e n t C o n s e n t = 1 " ,
" l ineNumber " : [98 , 9]

}
} ,
{

" $ " : {
" p r o c e s s D e f i n i t i o n I d " : " OP1_Eva lua t ion " ,
" e x p r e s s i o n " : " number (OP 1 _ I d e n t i f i c a t i o n .

OP1_GetConsent . OP1_Pa t i en tConsen t , 2) = 1 " ,
" s i m p l i f i e d E x p r e s s i o n " : " I d e n t i f i c a t i o n .

Ge tConsen t . P a t i e n t C o n s e n t = 1 " ,
" l ineNumber " : [98 , 9]

}
}

]
} ,
{

" p r e c o n d i t i o n " : [
{

" $ " : {
" p r o c e s s D e f i n i t i o n I d " : " OP1_Opera t ion " ,
" l ineNumber " : [103 , 9]

}
}

]
}

] ,
" H t t pHookDe f i n i t i o n " : [

{
" $ " : {

" on " : "ACTIVATE" ,
" u r l " : " h t t p : / / p a r t n e r s y s t em . com / o p e r a t i o n / a c t i v a t e " ,
" method " : "POST" ,
" f a i l u r eMe s s a g e " : " F a i l t o a c t i v a t e Ope r a t i o n . " ,
" l ineNumber " : [108 , 13]

}
} ,
{

" $ " : {
" on " : "TERMINATE" ,
" u r l " : " h t t p : / / p a r t n e r s y s t em . com / o p e r a t i o n " ,
" method " : "DELETE" ,
" f a i l u r eMe s s a g e " : " F a i l t o d e l e t e Ope r a t i o n . " ,
" l ineNumber " : [113 , 13]

}
}

] ,
" $$ " : [

{
" $ " : {

" i d " : " OP1_Reques tLabTest " ,
" d e s c r i p t i o n " : " Reques t Lab Te s t " ,
. . . / / O the r Task a t t r i b u t e s

}
. . . / / D e f i n i t i o n o f c h i l d e l emen t s i n t h e Task

} ,
{

" $ " : {
" i d " : " OP1_MeasureHear tBeat " ,
" d e s c r i p t i o n " : " Measure Hea r t Bea t " ,
. . . / / O the r Task a t t r i b u t e s

}
. . . / / D e f i n i t i o n o f c h i l d e l emen t s i n t h e Task

}
]

}]

Figure 6.12:Example of compiling properties of an interpreted Stage object (left) into SACM JSON
format (right).

145

6 Implementation

6. Compile Workspace properties: Construct aWorkspace object with a "$" object storing the ID
and staticId of the interpretedWorkspace. Additionally, theWorkspace contains EntityDefinition
and CaseDefinition array. The array contains a CaseDefinition with Case properties and CP
elements produced from steps 1 to 5. The JSON object of theWorkspace at this step is as follows:
"Workspace": [

"$": {

"staticId": "<WorkspaceStaticId >",

"id": "<WorkspaceId >"

},

"EntityDefinition": [],

"CaseDefinition": [{

<Case properties and CP elements generated from steps 1 to 5>

}]

]

7. Compile EntityDefinitions and their AttributeDefinitions: From the list of interpreted Entities,
Acadela constructs the corresponding EntityDefinition comprises a "$" object storing the Entity
properties and an array of AttributeDefinitions generated from the Entity’s Attribute. Each At-
tributeDefinition contains a "$" object holding the Attribute properties. Section 6.5.1 describes
the creation of EntityDefinitions and AttributeDefinitions of the CaseData, Setting, Stages, and
Tasks. Since the generation of CaseData, Setting, and Stages follows the same mechanic, Figure
6.13 illustrates the EntityDefinition compilation of a Stage, which is similar to compiling the ones
of Setting and CaseData.

" E n t i t y D e f i n i t i o n " : [
{

" $ " : {
" i d " : " OP1_Eva lua t ion " ,
" d e s c r i p t i o n " : " E v a l u a t i o n " ,

} ,
" A t t r i b u t e D e f i n i t i o n " : [

{
" $ " : {

" i d " : " OP1_Reques tLabTest " ,
" d e s c r i p t i o n " : " Reques t Lab Te s t " ,
" dueDa tePa th " : " OP1_Se t t i ng . WorkplanDueDate " ,
" ownerPa th " : " OP1_Se t t i ng . Surgeon " ,
" e x t e r n a l I d " : " OpReques tLabTes t " ,
" a d d i t i o n a l D e s c r i p t i o n " : " Reques t

s upp l emen t a r y med i ca l t e s t s t o a n a l y z e
t h e p a t i e n t c o n d i t i o n " ,

" m u l t i p l i c i t y " : " exac t l yOne " ,
" t ype " : " Link . E n t i t y D e f i n i t i o n .

OP1_RequestLabTest " ,
}

} ,
{

" $ " : {
" i d " : " OP1_MeasureHear tBeat " ,
" d e s c r i p t i o n " : " Measure Hea r t Bea t " ,
" dueDa tePa th " : " OP1_Se t t i ng . WorkplanDueDate " ,
" ownerPa th " : " OP1_Se t t i ng . Nurse " ,
" e x t e r n a l I d " : " OpHear tBea t " ,
" m u l t i p l i c i t y " : " any " ,
" t ype " : " Link . E n t i t y D e f i n i t i o n .

OP1_MeasureHear tBeat " ,
}

}
]

}]

Figure 6.13: Example of compiling a interpreted Stage (left) into SACM JSON structure of Enti-
tyDefinition (right). The Attribute-related properties of HumanTasks in the Stage constitute their
AttributeDefinitions.

146

6 Implementation

If the EntityDefinition specifies the Schema of a Task, Acadela creates a DerivedAttributeDefini-
tions array to store dedicated DerivedAttribute properties of the Task’sOutputFields. Meanwhile,
the AttributeDefinition expresses the properties of InputFields in the Task. For single- or multiple-
choice InputFields, Acadela compiles an EnumerationOption JSON array to store the options, as
illustrated in Figure 6.14.

8. Compile Groups and Users: Generates two arrays of Group and Users declared in the CP. Each
Group or User JSON object contains a "$" object storing their ID and staticId. The completion of
the Users and Groups construction marks the finish of the Workspace compilation.

9. Construct a SACM CP Definition: Creates a SACMDefinition object storing the completeWork-
space object. Acadela wraps the SACMDefinition inside a jsonTemplate JSON object. When
SACM receives the jsonTemplate, it directly process the CP meta-model sent from Acadela.

Finally, Acadela sends the final SACM CP Definition JSON object as a POST request to the SACM CP
generation API. Upon receiving the request, SACM analyzes and persists the CP elements. If any error
occurs, SACM returns an error response to the Acadela backend, which notifies the Acadela IDE that an
internal error occurs.
A successful compilation or validation returns the SACMCP Definition JSONObject to the Acadela IDE,
which renders a "successfully compiled" message and constructs the CP visualization accordingly.

147

6 Implementation

" E n t i t y D e f i n i t i o n " : [
{

" $ " : {
" i d " : " OB1_Reques tMedica lTes t " ,
" d e s c r i p t i o n " : " Reques t Medica l Te s t "

} ,
" A t t r i b u t e D e f i n i t i o n " : [

{
" $ " : {

" i d " : "AgeRange " ,
" d e s c r i p t i o n " : "What i s your age r ange ? " ,
" t ype " : " enume r a t i on "

} ,
" Enumera t i onOp t ion " : [

{
" $ " : {

" v a l u e " : " 1 " ,
" d e s c r i p t i o n " : " l e s s t h an 12 " ,
" a d d i t i o n a l D e s c r i p t i o n " : " c h i l d " ,
" e x t e r n a l I d " : " BmiChild "

}
} ,
{

" $ " : {
" v a l u e " : " 2 " ,
" d e s c r i p t i o n " : " 12−25 "

}
} ,
{

" $ " : {
" v a l u e " : " 3 " ,
" d e s c r i p t i o n " : " ove r 25 "

}
}

]
} ,
{

" $ " : {
" i d " : " He igh t " ,
" d e s c r i p t i o n " : " He igh t o f p a t i e n t i n m" ,
" a d d i t i o n a l D e s c r i p t i o n " : " 1m = 3 .28 f t " ,
" m u l t i p l i c i t y " : " exac t l yOne " ,
" d e f a u l tV a l u e " : " 0 " ,
" t ype " : " number "

}
} ,
{

" $ " : {
" i d " : "Weight " ,
" d e s c r i p t i o n " : "Weight o f p a t i e n t i n kg " ,
" a d d i t i o n a l D e s c r i p t i o n " : " 1kg = 2 .205 l b s " ,
" m u l t i p l i c i t y " : " exac t l yOne " ,
" d e f a u l tV a l u e " : " 0 " ,
" t ype " : " number "

}
}

] ,
" D e r i v e dA t t r i b u t e D e f i n i t i o n " : [

{
" $ " : {

" i d " : " BmiScore " ,
" d e s c r i p t i o n " : "BMI C a l c u l a t i o n i n k i l og r am and

me t e r s " ,
" e x p r e s s i o n " : " round (Weight / (He igh t ∗ He igh t)

) " ,
" e x p l i c i t A t t r i b u t e T y p e " : " number "
" u iR e f e r e n c e " : " c o l o r s (0 < ye l l ow < 18 < green

< 25 < orange < 30 < red < 100) "
}

}
]

}]

Figure 6.14: Example of compiling a interpreted HumanTask (left) into SACM JSON structure of
EntityDefinition (right). The Attribute-related properties of Input/OutputField in the Stage form
their AttributeDefinitions.

148

6 Implementation

6.7 Model Visualization

A successfully compiled CP returns its SACM JSON structure to the Acadela frontend, which analyzes
the CP elements and applies the corresponding template to render them as nodes in a graph. Additionally,
the Acadela visualizer examines Preconditions to represent transition conditions as links between two
nodes. This section first describes the node templates defining the graphical notation of each CP element,
followed by creating nodes and links from the CP JSON structure. Figure 6.15 illustrates an example of a
CP visualization.

Figure 6.15: Example of a CP Visualization in Acadela using the GoJS tool.

6.7.1 Graphical Notation De�nition

De�ning Templates of Visual Elements: Acadela leverages the GoJS Group, Node, Shape,
and Panel definitions to design the appearance of CP elements. Specifically, the Group template config-
ures an object containing child elements, such as Stages and Tasks. A Node template shapes the layout of
InputFields andOutputFields, as they are the leaf elements in a CP. The Shape specifies the background
color and form (e.g., rectangle, circle) of boxes representing Groups or Nodes. The Group template
uses a Panel to define the internal design, such as the arrangements of child elements, font style of labels
as a TextBlock, expandability of the Group (i.e., minimize and expand), and padding. Acadela defines
a Group template with a RoundedRectangle Shape and Panel to render the name of a Stage or Task.
Meanwhile, a Node template displays HttpHook and Input/OutputField as a Rectangle Shape.

GoJS Data Binding: A remarkable feature of GoJS is binding its object properties with the attributes
of an element in the domain concept. For example, to render the label of a Stage, Task, or Input/Out-
putFields, GoJS can bind the text property of a TextBlock with the label attribute of CP elements.
Additionally, GoJS can create a new property to map with an attribute of CP elements. For example,
Acadela can insert the line number of a CP object into the GoJS Groups or Nodes, so the IDE knows
which line shall be focused when double-clicking a Group or Node.

De�ning Link Templates: Acadela renders Preconditions in Stage and Tasks as a GoJS Link be-
tween two graphical elements. If a Precondition does not specify any transition condition, Acadela sets
the link as a black line. Otherwise, the link’s endpoint has a yellow diamond shape at the activated Node,
with the ID of the prerequisite Stage or Task written above the endpoint. Acadela manipulates the style
of the endpoint by specifying the toArrow and fill properties, which respectively define the shape (e.g.,
Standard or Diamond) and background color.

149

6 Implementation

GoJS Graph Components: A GoJS graph comprises two lists of nodes and links. The nodes and
links are JSON objects containing the rendering properties defined in the corresponding template.
Considering the nodes list, GoJS determines how to render a node object as a Group or Node from
the boolean isGroup attribute. Furthermore,Groups and Nodesmust have a unique ID, with sub-Groups
(Tasks) and Nodes (Fields) having an attribute group that stores the parentGroup ID. This group attribute
instructs GoJS to render sub-Groups or Nodes in the parent Group element.

6.7.2 Rendering CP Elements

Stage and Task Visualization: When the Acadela frontend receives the valid SACM CP meta-
model, it analyzes the JSON structure to retrieve all Stages and Tasks. Next, Acadela extracts the Stage
and Task ID and line number to create a Node with a unique key. A Task Group has an additional group
attribute storing the ID of the parent Stage. Finally, Acadela creates bgColor and textColor attributes to
define the background and text colors. Listing 6.10 and 6.11 demonstrate the GoJSGroup object structure
of Stage and Task, respectively.

1 const stageNode = {2 key: stage.$.id,3 label: stage.$.id,4 // background color is dark blue5 bgColor: GRAPH_COLOR_CODE.STAGE ,6 textColor: "white",7 isGroup: true ,8 lineNumber: stage.$.lineNumber['0']9 };

Listing 6.10: Structure of a StageGroup object
constructed from the SACM CP meta-model.

1 const taskNode = {2 key: stageId + "_" + task.$.id ,3 label: task.$.id ,4 // background color is light blue5 bgColor: GRAPH_COLOR_CODE.TASK ,6 textColor: "white",7 group: stageId ,8 isGroup: true ,9 lineNumber: task.$.lineNumber['0']10 };

Listing 6.11: Structure of a Task Group object
constructed from the SACM CP meta-model.

GoJS maps the Groups objects to the Group template in Listing 6.12 for rendering Stages and Tasks.
First, line 2 instructs GoJS to create a lineNumber Node property bound to the lineNumber attribute of a
Stage or Task. Lines 4 to 11 define the styling, with fromSpot specifying that outbound links start from
the right side of the Group. Meanwhile, the toSpot property states that inbound links end at the left side
of the Group. Lines 12 to 15 define the Group shape as a rounded rectangle. Line 13 is a data binding
from the fill property to the bgColor attribute that states the background color. Line 14 states the curve
degree of the four corners.
Next, lines 16 to 31 define how to render theGroup content. Line 18 enforces theGroup to be collapsible
and expandable. Lines 19 to 27 express the style of the Group label (lines 20-24), with foreground color
andmessage at lines 25 and 26. Finally, line 29 specifies the padding on the four sides of theGroup.

1 static constructGroupTemplate = ($) => {2 return $(go.Group , "Auto",3 new go.Binding("lineNumber").makeTwoWay (),4 {5 alignment: go.Spot.Center ,6 layout: $(go.LayeredDigraphLayout ,7 { direction: 180, columnSpacing: 10 }8),9 fromSpot: go.Spot.RightSide ,10 toSpot: go.Spot.LeftSide ,11 },12 $(go.Shape , "RoundedRectangle",13 new go.Binding("fill", "bgColor"),14 { parameter1: 20 },15),16 $(go.Panel , "Vertical",17 { defaultAlignment: go.Spot.Top },18 $("SubGraphExpanderButton"),

150

6 Implementation

19 $(go.TextBlock , // Stage or Task label style20 {21 font: "Bold 12pt Sans -Serif",22 verticalAlignment: go.Spot.Top ,23 margin: 224 },25 new go.Binding("stroke", "textColor"),26 new go.Binding("text", "label")27),28 $(go.Placeholder , { padding: 10 })29) // End of Panel30); // End of Group Template Definition31 };

Listing 6.12: The GoJS Group Template to represent Stage and Task elements.

Control Flow Visualization: During the construction of Stage and Task Groups, Acadela creates
Link objects by extracting the prerequisite Stage or Task ID and transitioning condition in Precondition(s).
If the Precondition does not have any conditional expression, the Link object sets the from property as
the prerequisite Stage or Task ID and the to property as the current Stage or Task ID. Additionally, the
Link object sets the shape of the destination endpoint as a black arrow by configuring the toArrow property
as "Standard" and the fill property as "black". By default, a Link starts from the right side of a Group
and arrives at the left side of the destinated Group. However, for repeatable Stages and Tasks, the Link
starts at the top left and ends at the top of the same Group. In this case, the Link object sets the fromSpot
property to "TopLeft" and toSpot to "Top".
If the Precondition has a transition condition, Acadela creates a condText property to display the prereq-
uisite Stage or Task ID on top of the endpoint. Furthermore, the Link object sets the toArrow property as
"Diamond" and the fill property as "yellow". Listing 6.13 and Listing 6.14 demonstrate the structure of a
Link object for Precondition with and without the condition attribute, respectively.

1 linkNode = {2 // fromProcess: unprefixed ID of

previous Stage or Task3 from: fromProcess ,4 to: stage.$.id, // current Stage ID5 toArrow: "Diamond",6 fill: "yellow",7 condText: "from " + rootElement8 lineNumber: precondition.$.

lineNumber[0]9 };

Listing 6.13: Structure of
a Link object constructed from a Precondition
with transitioning condition.

1 linkNode = {2 // fromProcess: unprefixed ID of

previous Stage or Task3 from: fromProcess ,4 to: stage.$.id, // current Stage ID5 toArrow: "Standard",6 fill: "black"7 lineNumber: precondition.$.

lineNumber[0]8 };

Listing 6.14: Structure of
a Link object constructed from a Precondition
without transitioning condition.

Finally, GoJS requires a Link template to visualize the flow controls in the workflow, as illustrated in
Listing 6.15. Lines 3-5 define the bound attributes to the Link object. Lines 6 to 12 set the Link rendering
behaviors as follows:

1. Routing: a Link shall take a detour around a blocking Node. In other words, the Link shall not
cross through a Node.

2. Curve: the Link has a bridge shape at the intersection with another Link. This configuration helps
users to trace the link path easier.

3. End Segments’ Length: the minimum length of the starting and end segments of the Link.
4. Corner: specifies how many times a Link can change its direction while reaching the destination,

i.e., the maximum amount of times that GoJS can bend a link.

151

6 Implementation

Lines 13 to 18 configure the visual appearance of the Links, i.e., the line size and shape of the destination
endpoint. Finally, lines 19 to 26 state how to render the ID of the prerequisite Stage or Task above the
destination endpoint.

1 static constructLinkTemplate = ($) => {2 return $(go.Link ,3 new go.Binding("fromSpot", "fromSpot", go.Spot.parse),4 new go.Binding("toSpot", "toSpot", go.Spot.parse),5 new go.Binding("lineNumber").makeTwoWay (),6 {7 routing: go.Link.AvoidsNodes ,8 curve: go.Link.JumpOver ,9 toEndSegmentLength: 30,10 fromEndSegmentLength: 30,11 corner: 212 },13 $(go.Shape , {strokeWidth: 2}),14 $(go.Shape ,15 new go.Binding("toArrow").makeTwoWay (),16 new go.Binding("fill").makeTwoWay (),17 {scale: 3}18),19 $(go.TextBlock ,20 new go.Binding("text", "condText"),21 {22 segmentIndex: -1,23 segmentOffset: new go.Point(-70, NaN),24 segmentOrientation: go.Link.OrientUpright25 }26)27); // End Link Template28 };

Listing 6.15: The GoJS Link Template to represent Preconditions as control flows of the CP.

Input/OutputField and HttpHook Visualization: Since the three elements do not contain any child
object, Acadela defines a separate Node template. The Acadela frontend reads the fieldtype attribute in
each TaskParamDefinition to determine whether it refers to an InputField or OutputField, thus choosing
the appropriate background color. The background color is light purple for InputFields, dark purple for
OutputField, and yellow for HttpHook.
The structure of an Input/OutputField or HttpHook object is similar to the Task object. However, the
ID of the Input/OutputField Node object follows the <StageID>.<TaskID>.<Field.path>. Using a
Field path alone as a unique ID is not sufficient because two Fields in different Tasks can refer to the
same Setting Attribute or Input/OutputField. Likewise, The ID of the HttpHook Node follows the
<StageID>.<TaskID>.<Hook.url>.<Hook.method> pattern as the same Task or Stage can call the same
API URL but with different HTTPmethods. Additionally, theNode label of an Input/OutputField Node
is the Field ID, while a HttpHook label contains the triggered lifecycle state and the first 15 characters
of the URL. Listing 6.16 shows the JSON structure of an Input/OutputField Node, while Listing 6.17
demonstrates the JSON schema of an HttpHook Node.

152

6 Implementation

1 const fieldNode = {2 key: `${stageId}_${task.$.id}_${

field.$.path}`,3 text: field.$.acadelaId ,4 // light purple background for

InputField5 // dark purple background for

OutputField6 color: colorCode ,7 stroke: "white",8 group: stageId + "_" + task.$.id,9 lineNumber: field.$.lineNumber['0']10 };

Listing 6.16: Structure of
an Input/OutputField object constructed from
a TaskParamDefinition in the SACM CP meta-
model.

1 const hookNode = {2 key: `${stageId}_${task.$.id}3 _${hook.$.url}_${hook.$.

method}`,4 text: `On ${hook.$.on}\n5 Call ${shortenedUrl}`,6 color: GRAPH_COLOR_CODE.

EXTERNALCOMM , // yellow7 group: stageId + "_" + task.$.id,8 lineNumber: hook.$.lineNumber['0']9 };

Listing 6.17: Structure of an HttpHook object
constructed from its HttpHookDefinition in the
SACM CP meta-model.

GoJS constructs the graphical notations of the Input/OutputFields and HttpHook elements based on a
Node template described in Listing 6.18. Line 3 binds a lineNumber to the GoJSNode object. Line 4 to 6
defines the appearance of the Node box, which has 1) a Rectangle shape without border, i.e., strokeWidth
is 0, and 2) the background color is determined by the color property of the Node object. Finally, lines
7 to 10 define the Node label appearance with a margin of 8 pixels, plus the label message and color
defined by the text and stroke properties, respectively.

1 static constructNodeTemplate = ($) => {2 return $(go.Node , 'Auto ',3 new go.Binding("lineNumber").makeTwoWay (),4 $(go.Shape , 'Rectangle ',5 { strokeWidth: 0 },6 new go.Binding('fill ', 'color ')),7 $(go.TextBlock ,8 { margin: 8 }, // some room around the text9 new go.Binding('text ').makeTwoWay (),10 new go.Binding('stroke ').makeTwoWay (),11)12); // End Shape definition13 }; // End Node template definition14 }

Listing 6.18: The GoJS Node Template to represent Input/OutputField and HttpHook CP elements.

6.7.3 Double-clicking to Focus on the Code De�nition

TheAcadela frontend leverages the addDiagramListener function of GoJS and JavaScript CustomEvent to
provide this feature. Specifically, theGoJSGraph calls the addDiagramListener to register a CustomEvent
named graphClick containing the line number of the GoJS Node. Afterward, the GoJS Graph dispatches
this event, which reaches the Acadela IDE that registers a graphClick event Listener. Upon receiving the
event, the Acadela IDE calls the Monaco revealLineInCenter to focus the IDE on the line number of the
double-clicked Node.

153

7 Evaluation

This chapter presents the design, execution, and discussion of the DSL expressiveness and usability eval-
uations. First, Section 7.1 describes our evaluation approach. Next, we discuss the setup and results of the
two assessments in subsequent Sections 7.2 and 7.3. Finally, Section 7.2.5 and 7.3.7 present the analysis
of the result, while Section 7.4 reflects the DSL’s limitations drawn from the two evaluations.

7.1 Evaluation Approach

The process of our user study resembles the approach of Faber (2019), which adapts the guide of case
study research from Robert K. Yin (2009, p. 107). Figure 7.1 illustrates the activities conducted in our
user study.

7.1.1 De�ne Evaluation Goals and Scopes

The primary goal of the user study is to examine the applicability of Acadela in modeling a variety of
CPs while possessing characteristics of a user-friendly modeling tool for modelers. In other words, the
evaluation aims to find the answers for RQ3 and RQ4 regarding expressiveness and usability.

Figure 7.1: Suggestions to conduct user study in research from Robert K. Yin (top) and activities in
designing Acadela user study (bottom).

154

7 Evaluation

Research Question 3

Can the DSL model Clinical Pathways from different medical fields with diverse complexity
while being understandable to clinical experts?

We addressedRQ3 bymodeling CPs used in the daily routines of medical experts with the DSL. If Acadela
can construct CPs with different degrees of complexity and medical fields accurately, this implies the
DSL has the potential to model diverse medical processes. As a result, Acadela can support medical
professionals and modelers to develop, execute, and analyze their treatment procedures.
Following this direction, our study seeks to model CPs in any medical field without restriction to any
particular treatment or department.

Research Question 4

Domodelers regard theDSL and the development environment user-friendly and learnablewhen
modeling CPs?

Since the primary users of Acadela are modelers, the usability and learnability of the language sig-
nificantly influence their productivity and user experience. For this reason, the DSL evaluation invited
technical staff working in medical institutions to model and debug CPs. By experiencing the features
of Acadela, the experts can give empirical feedback on the user-friendliness and effectiveness of the CP
modeling and error handling capability.

7.1.2 Identify Units of Analysis

Expressiveness Evaluation: The evaluation target is CPs used by medical experts in different med-
ical facilities. The selected CPs shall contain complex control flows to test Acadela’s ability to model
unpredictable and adaptive transition conditions based on the patient’s medical status. Furthermore, the
chosen CPs shall contain repetitive activities to test the correct functioning of workflow and control flow
in different task’s iterations.

Usability Evaluation: Due to the limited time budget of technical staff, our experiment examines the
construction of a simplified CP with all modelable elements. This setup enables modelers to experience
all the features of Acadela and have an overview of the language’s capability. As a result, we created
a hypertension CP containing missing CP elements, thus, the task of each participant is to define the
missing CP elements according to a requirement description. The result from this modeling task implies
the practicality and user-friendliness of Acadela in constructing CPs.
Furthermore, our evaluation also considers the understandability of error messages (EMs) in helping mod-
elers correct their mistakes. For this reason, we developed a scenario that includes all catchable syntax and
semantic error types. Solving all the bugs implies that Acadela EMs are user-friendly to assist modelers
in handling semantic and syntax errors efficiently.

7.1.3 Design Evaluation Tasks

Expressiveness Assessment Tasks Before the interview with each medical expert, we executed
and visualized their CPmodel in the SACMGUI. Then, when the evaluation began, a new case was created
from the CP model and presented to the expert. We manipulated inputs from the first stage to show how
the workflow triggered different phases and activities. The medical experts then examined the accuracy
of the CP and gave us feedback regarding the strengths, limitations, and applicability of Acadela.

Usability Assessment Tasks The evaluation consists of three phases. The experts first attended a
training session, in which we 1) introduced the motivation of our research and the concepts of modelable

155

7 Evaluation

elements in SACM and 2) explained how to model CP elements using the Acadela IDE with a modeling
tutorial. Next, in the modeling session, the experts evaluated the usability of Acadela by defining Stages,
Tasks, control flow, and external request communications of an incomplete hypertension CP.
After finishing the above tasks, the participants were asked to validate their code and fix any bugs indicated
by the EMs. Eventually, when their code was error-free, we asked the experts to submit their CP model
and begin a debugging session.
The final tasks of the evaluation are validating and fixing a CP model containing six syntax and five
semantic errors from their EM.

7.1.4 User Study Setup

For both expressiveness and usability evaluation, we created questionnaires with Google Forms to store
Likert-scale statements for quantitative evaluation and free-text questions for qualitative assessment. We
collected the data by asking the participants to fill out this form after conducting their evaluation tasks.

Deployment for Expressiveness Evaluation Our study deploys Acadela and SACM ecosystem
on a PC because healthcare facilities and research institutions may have strict firewall policies that prevent
self-signed HTTPS or unsigned HTTP webpages. For this reason, we install the Acadela IDE and backend
compiler, SACM web application, SACM engine, Sociocortex, and its database on a laptop. Finally,
during the interview, we show how the CP workflow operates from our laptop.

Deployment for Usability Evaluation Similar to the setup of the previous evaluation, we de-
ployed the Acadela-SACM ecosystem on a laptop. However, we use ngrok1 to tunnel the Acadela frontend
IDE and backend compiler. Consequently, each component is publicly accessible with its ngrok tunneled
URL. Henceforth, the technical experts can load the Acadela IDE on their browser. Because ngrok pro-
duces a new URL in every tunneling setup, we manually configure the tunneled URL of the Acadela
backend compiler in the Acadela IDE’s setting. With this setup, the expert’s browser can send CP valida-
tion or compilation requests from their Acadela IDE to the backend compiler of our laptop.
During the evaluation, the firewall of several participants’ institutions blocked access to our Acadela IDE
webpage. In these cases, we enable the Remote Control feature of Zoom. Hence the participant could
directly use the Acadela IDE on our laptop. However, one disadvantage of this setup is a slight latency
when typing or dragging the mouse in the Acadela IDE.

7.1.5 Pilot Testing

To prepare for the usability evaluation, we tested the assessment tasks and user study setup with three
research assistants in Computer Science, who have background knowledge in modeling and programming.
These pilot testing sessions gave us insights into the intensity of the tasks. As a result, we optimized the
evaluation further by removing duplicated activities, such that participants model each type of CP element
once throughout their assessment. The pilot testers also shared with us the concepts that need further
explanation and their perception regarding the usability of Acadela. This information helps us improve
our training materials, evaluation tasks, and estimate possible concerns of our participants.

7.1.6 Schedule User Study

To recruit the participants, our study invited the medical and technical experts who cooperated with us in
previous projects or within our network circle. Furthermore, we also invite medical professionals working
in clinics or hospitals. First, we expressed our research motivation and briefly described the assessment
tasks. Then, if an expert agreed to join the evaluation, we proposed several time slots and decided the

1https://ngrok.com/

156

https://ngrok.com/

7 Evaluation

meeting time accordingly. Finally, we sent a Zoom meeting invitation to the participant if they prefer
online meeting. Otherwise, the interview session will occur at their workplace.

7.1.7 Data Collection

After the experts finished their assessment for each evaluation session, we collected the qualitative and
quantitative data from 1) Interviews, 2) Observations of system interactions, and 3) theGoogle Form.
In the expressiveness evaluation, we gathered data concerning the accuracy of the CP’s workflow and exe-
cution. For the usability evaluation, we collected data regarding the ease of use, learnability, effectiveness,
and applicability of Acadela and its error handler. Specifically, we asked participants whether:

1. Defining and editing CP elements using the Acadela syntax is straightforward
2. EMs help participants identify and fix semantic and syntactic errors
3. EMs are readable, accurate, consistent, and supportive.

Furthermore, to obtain an overview of Acadela’s usability, we included the System Usability Scale (SUS)
questionnaire in the evaluation. The SUS score reflects the overall usability of Acadela.

7.1.8 Draw Individual and Collective Results

After each evaluation, we identify trends and indications from the results and observations of the par-
ticipant’s performance or feedback. At the end of all evaluations, we collectively analyzed the data to
assess the expressiveness or usability of Acadela. Furthermore, we also derive the implications from the
results.
In the expressiveness evaluation, we focus on whether medical experts consider Acadela to construct
workflow elements such as Stages, Tasks, and stage transitions correctly. Additionally, we asked whether
the system correctly visualized the medical data of patient. Finally, to assess the applicability of CP
models, we asked medical experts whether the CP execution accurately provided the necessary treatment.
Our study also collects the experts’ feedback on how to improve the CP to provide practical support for
their treatment.
On the other hand, the usability evaluation focuses on whether Acadela is user-friendly and learnable to
technical staff, particularly those with basic programming knowledge. Furthermore, we would like to
explore the applicability of Acadela from the experts’ perspective. Hence our study collected suggestions
on additional CP elements that Acadela should model and whether the DSL can construct CPs used in
their medical institutions.

7.1.9 Identify Implications

From the overarching analysis of both expressiveness and usability evaluations, we discuss the limita-
tions and potential of Acadela for each aspect which are summarized in the Limitation and Discussion
chapters.

7.2 Expressiveness

We modeled five CPs used in the daily routines of six medical professionals. Afterward, we interviewed
the professionals to evaluate the accuracy of the modeled CPs. Our focus is on the correctness of Stages,
Tasks, and Stage Transitions. The evaluation goal is to examine the potential of Acadela in accurately
constructing the workflow of various treatment procedures of different complexity. To identify potential
improvements, the study also collects feedback about the strengths and shortcomings of Acadela from the
perspective of clinical experts.

157

7 Evaluation

7.2.1 Population

To facilitate the practicality of the research, our study only considered medical professionals who conduct
or research the treatment of diseases at medical or research institutions. We contacted 16 medical profes-
sionals and received the voluntary participation from one surgeon, gynecologist, physiotherapist, TCM
practitioner, and two psychotherapists. Hence the response rate is moderate at 37.5 percent. All of the
participants worked in Germany at the time of the study. The age of the participants ranges from 20 to 60
years old. Table 7.1 lists the background information of the participants.

ID Department Years of Experience Workplace Environment
ME1 Gynecologist More than 30 years Clinic
ME2 Traditional Chinese Medicine More than 25 years Clinic
ME3 Physiotherapist 4 years Clinic
ME4 Dermatologist 3 years Hospital
ME5 Psychotherapist 3 years Medical Research Institution
ME6 Psychotherapist 3 years Medical Research Institution

Table 7.1: Background of medical experts participated in the expressiveness evaluation.

7.2.2 Modeled Clinical Pathways

From the contact with six medical professionals, we collected and modeled five CPs with different com-
plexity, ranging from linear to dynamic, adaptive treatment procedures used in their daily routine. Three
CPs are linear descriptions of the workflow with repetitive stages and a forward variable flow, while the
other two guide the experts’ decisions with data from the previous steps. The cervical cancer screening
CP has backward variable flows (i.e., repeatable procedure), and compound transition conditions, which
are valuable to demonstrate the language ability in modeling complicate transition conditions and dy-
namic workflow for unpredictable, adaptive, and personalized treatment processes. Each CP ends with a
discharge of the patient.

COPD Breathing Exercise In Chronic Obstructive Pulmonary Disease (COPD) treatment, phys-
iotherapists instruct patients to conduct breathing exercises to improve their lung condition. Figure 7.2
shows the procedure for conducting the exercises. First, before the breathing exercises, patients specify
several health conditions such as their stress levels, breathing difficulty, sleeping condition, the presence
of mucus and whether the patient can cough the mucus out (See Figure 7.2a). The clinic used a Rating of
Perceived Exertion (RPE) scale to measure the intensity of these medical conditions (CDC, n.d.).
Afterward, patients start to conduct a breathing exercise. During the session, physiotherapists check
whether the patient inhales and exhales properly, sits upright, and does not raise their shoulder exces-
sively (above 1 cm). After finishing the exercise, the physiotherapists can ask the patient about their
medical state again for further evaluation (See Figure 7.2b (Cavusoglu, 2021)). The exercise sessions can
be repeated several times every week. Figure A.1 of Appendix A.2 visualizes the CP workflow defined in
Acadela.

Selection of Antipsychotics for Schizophrenia The care goal of this CP is to help psychother-
apists and patients cooperate to decide which medications are suitable to avoid or mitigate unwanted side
effects chosen by the patients (Siafis et al., 2022). First, patients read the textual description and video
about schizophrenia, aspects of treatment using antipsychotics, and the shared decision-making (SDM)
practice. Healthcare practitioners and former users produced these materials. Next, psychotherapists
collect the patient’s preferences (e.g., unwanted side effects, previous experience with antipsychotics),
medical condition, and personal data (e.g., age, sex, duration of illness) to the patient profile.

158

7 Evaluation

Figure 7.2: Execution procedure of the breathing exercise in a web application. a) The patient answers
questions about health status prior to the exercise. b) A post-questionnaire to record the patient’s condition
after the exercise (Cavusoglu, 2021).
Henceforth, the psychotherapists and patient organize a therapy session to discuss the efficacy and side
effects of antipsychotics on the patients. In this session, they jointly analyze a forest plot produced by a
SDM-assistant web application that shows the efficacy and risks of chosen side effects (See Figure 7.3).
The application expresses the effects of each antipsychotic using a line with a median value. The start and
end of the line denote the lowest and highest relative risk, respectively.
In the third step, the patient and physiotherapist select or exclude antipsychotics based on the goal and
preferences of the patient. Further discussion between the patient and medical experts about their se-
lections is possible. Finally, they conclude the selected medications and save the session. The therapy
sessions can be repeated multiple times in the CP. Figure A.2 of Appendix A.2 visualizes the CP workflow
defined in the Acadela language.

Figure 7.3: Forest plots present the effect sizes on efficacy, fatigue, and weight gain for comparisons of
antipsychotics and placebo. Relative risks are the measurement unit for effect size, except for weight gain
which uses mean differences in kilogram (Siafis et al., 2022).

159

7 Evaluation

Diagnosis of Class II Smoke Inhalation The CP submitted by the surgeon concerns the diag-
nosis of Class Two Smoke Inhalation (Karpov, 2018). Figure 7.4 presents the treatment activities of the
CP. First, dermatologists examine immediate signs, potential signs, symptoms, and the results of a laryn-
goscopy. Depending on the outcome, the medical expert can suggest further treatment for the patient. The
CP consists of seven stages. After admitting a patient, the situation of the patient is evaluated step by step
and conditionally decided whether the patient is diagnosed with class II smoke inhalation. Figure A.3 of
Appendix A.2 visualizes the CP workflow defined in the Acadela language.

Figure 7.4: CP of Smoke Inhalation Injury Assessment. The process is constraint-driven based on the
symptoms (Karpov, 2018).

Cervical Cancer Diagnosis Figure 7.5 describes a CP to diagnose cervical cancer from the gynecol-
ogist (Roche Diagnostics, 2018). The CP takes the 1) patient’s age and 2) the result of cytological and/or
HPV tests to determine the necessity and time of the next colposcopy, or advise the patients to follow
a routine screening procedure (e.g. every three, six or twelve months). Colposcopy is a cervix test that
uses a magnifying instrument (colposcope) to inspect abnormal cervical cells and take a sample (biopsy)
from them (Roche, 2016). The screening procedure involves sampling cervical cells and analyzing them
using cytology (Roche, 2016), which is an exam to diagnose or screen cancer in single cells (John Hopkins
Medicine, n.d.). Figure A.4 of Appendix A.2 visualizes the CP workflow defined in Acadela.

160

7 Evaluation

Figure 7.5: CP of Cervical Cancer Screening. The guideline suggests different treatment processes de-
pending on the patient’s age (Roche Diagnostics, 2018).

Chronic Headache Treatment Through contacting a TCM practitioner, we studied the treatment
of chronic headaches using (heated) massage, acupuncture, and Guasha techniques. First, the practitioner
observes the patient’s behaviors (e.g., handshake, or walking style) and mental state since the greeting mo-
ment. This initial observation reveals clues about the potential physical or mental causes of the headache.
Next, the practitioner asks questions regarding the headache, such as the history and frequency of the pain,
emotions or actions that worsen the headache, etc. These question reveal the factors (e.g., cold weather,
anxiety) causing the pain. Afterward, the practitioner discusses his treatment approach with the patient.
If the patient consents, the practitioner performs the proposed techniques. Otherwise, both sides discard
the disagreed method(s).

161

7 Evaluation

This CP demonstrates the application of a customizable graphical representation template. Specifically,
we render the massage positions on a human head in a SVG image based on the selected massage areas
of the practitioner. This visualization helps the patient sees which body locations will be massaged and
discuss any potential concern with the doctor before proceeding to the treatment. Figure 7.6 shows the
visualization of chosen massage positions in SACM. Listing A.9 in Appendix A.3.2 shows the code to
define the InputFields of the massage positions and the OutputFields to declare the SVG, Javascript style,
and the final graphic. Figure A.5 of Appendix A.2 visualizes the CP workflow defined in Acadela.

Figure 7.6: Illustration of InputField values (massage positions - left) affect the output image visualization
(right)

7.2.3 User Study Setup

Software Deployment We host the Acadela and SACM components in our computing devices and
show them offline to avoid being blocked by strict firewall policies in medical institutions. Due to the
Corona pandemic, depending on the participant’s condition, we presented the CP model, collected the
survey, and interviewed them on-site or via Zoom.

Survey Design We use Google Forms to develop an online questionnaire with free text questions and
Likert scale ratings of statements about the correctness of the modeled workflow items and control flow,
as shown in Figure 7.7. The answers from the first three statements reveal the accuracy of modeling CP
elements, while the last two refer to the appropriate visualization of CP elements. We grade each remark
on a scale of one (strongly disagree) to five (strongly agree).

7.2.4 Result

After modeling the CPs, we presented the models to the medical professionals using the web application
of SACM. First, we created a patient case from the CP model. Next, we activated Stages, Tasks, and pos-
sible Stage Transitions by manipulating the medical inputs of the case. We then asked the participants to
evaluate how accurately the system executed their CP. Furthermore, we also collected qualitative feedback
to learn the expectations of medical professionals.

Quantitative Accuracy Evaluation We presented a questionnaire to the participants with free text
questions and Likert scale ratings of statements about the correctness of the modeled workflow items and
control flow. The answers from the first three statements reveal the accuracy of modeling CP elements,
while the last two refer to the appropriate visualization of CP elements. Figure 7.7 shows the assessment
of the medical professionals on the accuracy of the modeled CP.
The quantitative result suggests that the system constructs CPs elements accurately. All participants
agreed or strongly agreed with each statement. This implies that Acadela has the potential to recon-
struct various medical procedures precisely, such that the SACM system can correctly show and execute
the treatment process accordingly.

162

7 Evaluation

Figure 7.7:Rating ofmedical professionals on Statements regarding the accuracy ofmodeled CP elements
(stage, task, and transition condition), visualization, and treatment process.

Qualitative Feedback from Medical Experts Figure 7.8 summarizes the feedback we collected
during the interview from the participants. We categorize the participants’ quotes primarily based on the
expressiveness and applicability of CP models. Overall, the professionals considered the modeled work-
flow as correct. However, our CP model does not reconstruct specific processes precisely, like displaying
the waiting period before the next cytological test (QE5) in the cervical cancer screening CP.
In addition, we learned several treatment variations after modeling the original CP, so our models did not
cover them in the final meeting with the medical professionals. Nevertheless, our models can reflect the
variations if we questioned these alternatives in the first contact and modeled them accordingly.
Regarding the applicability, participants state that the CP models need to address a range of variations to
be practically applicable in treatments. The TCM practitioner regarded the CP model appropriate to serve
as a treatment guideline and storage of medical data.

Figure 7.8: Excerpts of feedback towards the modeled CPs from medical professionals.

163

7 Evaluation

Considering suggestions for improvements, the psychotherapist wished to see 1) a combination of an
infographic and temporal display of medical data from the task, 2) inclusion of extra personal data from
the patient (e.g., occupation, family, education), 3) medical information like comorbidities (diabetes) and
their concomitant medication (insulin) and 4) an evaluation of the potential side-effects of the prescribed
antipsychotics by sending a request to an external system.
Overall, the psychotherapists are content with the system’s ability to document medical data. Noticeably,
the two psychotherapists who have experience in R programming language are willing to fix errors in the
code. One participant states their motivations arise from 1) the urgency of executing a correct treatment
procedure for the patients, and 2) he may forget to modify the CP afterward due to the intense workload
in the clinic.
Likewise, the physiotherapist considers the procedure accurate in general. She remarks on the ability to
add individual comments to tell if the patient was doing right or wrong. The physiotherapist states that
she is willing to make small changes to the code, such as a typo in the name of a Stage or Task.
When asked about possible improvements, she would like to see an inclusion of additional exercises and
medical practices in the CP, as they help her treat individual cases of COPD patients. Furthermore, she
suggested personalizing the post-exercise questionnaires to specify the treatment goals of different ex-
ercises. This ability enables physiotherapists to provide more precise treatments for individual patients
according to their medical conditions and preferences.
For the CP of the cervical cancer diagnosis, the gynecologist considers the workflow accurate, yet he
noted two necessary improvements. Firstly, a properly functioning Stage repetition that conditionally
unlocks a Stage outside of the iteration. This suggestion arises due to a SACM bug that prevents the
web page to render the latest stage iteration correctly, although the system accurately records the medical
inputs of each iteration. The second suggestion is to display proper advice about the next time for medical
re-examination, e.g., after three or six to twelve months.
The quantitative and qualitative results suggest that the medical professionals consider their reconstructed
CPs accurate. In other words, the system correctlymodels Stages, Tasks, and Stage Transitions in the treat-
ment procedures. However, the participants wish to see further enhancements to their CP in SACM.

7.2.5 Discussion

The results imply that Acadela has the potential to model CPs from various medical fields accurately.
However, we must consider several remarkable improvements to assist medical experts more effectively.
Additionally, we see the potential of using the language as a shared artifact for technical and domain
experts to communicate and co-create values.

Complex Modeling Potential Acadela offers a simplified syntax to model elements of CPs while
reducing the complexity of the original modeling concept of SACM. The language’s ability to model
workflow activities (Stages and Tasks), control flow, responsibilities assignment, and external communi-
cation is promising for constructing real-life executable CPs applied in various medical facilities. This
capability enables modelers to reconstruct complex medical procedures by conditional unlocking Stages
based on data from Tasks to model the decision-tree structure. Meanwhile, modeling linear CPs is usually
sufficient by connecting workflow activities with simple stage transition condition(s). Our CP models
demonstrate that technical experts can build accurate CPs from different medical departments and com-
plexity with Acadela. However, we were not informed about variations during the CP collection phase;
thus, our models did not include the handling of all alternative execution paths.

Potential Facilitation of Co-creation In the interview, four out of six medical experts expressed
willingness to fix minor mistakes in the executable CPs. This phenomenon suggests that medical pro-
fessionals can reason about the cause of minor errors after viewing the source code. This phenomenon
suggests that technical and domain experts may have a shared understanding of the artifact expressed by
the DSL, enabling them to discuss the workflow logic.

164

7 Evaluation

Integration with Existing e-Health Systems Our study demonstrates that Acadela can seam-
lessly export CP models in a SACM-compatible format. In other words, Acadela has the potential to
interpret the models in a structure that is processable by an e-Health system. This could foster collab-
oration among medical facilities as one Acadela CP model is executable in multiple different e-Health
systems without modifying their code base.

Applicability Four out of six experts considered Acadela has the potential to model CPs in e-Health
applications. One reason is because Acadela can model control flow to trigger specific treatment activities
depending on the patient’s condition. Furthermore, sending requests to external systems is useful to enable
communication between e-health services necessary for the treatment.

7.3 Usability Evaluation

Besides the capability of modeling various CPs, user-friendliness is also a crucial aspect that influences
the modelers’ satisfaction, productivity, and user experience. Therefore, we designed a field experiment
where modelers 1) construct a Hypertension CP model using Acadela in their working environment and
2) fix syntax and semantic errors in another CP model based on the error messages provided by Acadela.
After finishing the two sessions, we asked the participants to complete their usability evaluation survey
and begin the interview process, thus we can quantify the user-friendliness opinions and learn about the
limitations, improvements and advantageous features of Acadela.

7.3.1 Population

We invited 21 software developers or medical researchers with technical experience at medical or re-
search institutions to participate in our experiment voluntarily. We received responses from eight staff,
comprising five medical researchers, two technicians, and one physician with programming or modeling
experience. The response rate is moderate at 33.3 percent. All participants worked in medical research
institutions across Germany, Spain, or Italy. Figure 7.2 presents their background information.

7.3.2 Experiment Setup

Similar to the setup of the expressiveness evaluation, we host the Acadela and SACM components in our
computing devices. However, the experiment is conducted solely via the Zoom platform. Participants
joined our Zoom room from their workplace and used their devices to conduct the experiment.

7.3.3 Experiment Design

The evaluation consists of two phases. The participants first attended a training session, in which we
introduced how to model CP elements in Acadela. In the modeling session, the experts constructed el-
ements of an incomplete hypertension CP and fixed bugs of another CP model by examining their error
messages (EM). We controlled the evaluation tasks and bugs such that all participants modeled the same
CP elements and debugged the same syntax and semantic errors. Performing the same activities builds a
common baseline to gauge the usability and learnability of the language.
To assess our DSL usability primarily, we conducted a pilot study with three researchers in computer sci-
ence who are experienced in programming and UML modeling. After that, we analyzed and incorporated
the feedback in this phase to further refine the language syntax and experiment procedure.

7.3.4 Training

Language Introduction In about 20 minutes, we explain our research motivation and examples of
modelable CP elements. Afterward, we instructed the technical staff on how to model CP elements with

165

7 Evaluation

ID Occupation Age
Range

Expertise
(Years)

Programming
Experience

Experienced
Modeling
Language

Location

TE1 Research
Assistant

36-45 15 C, C++, Java,
JavaScript,
Python, R, SQL

XML, UML,
BPMN,
CMMN

Spain

TE2 Researcher 36-45 2 - PlantSimulation
(Siemens)

Spain

TE3 Research
Assistant

36-45 1 C#, Python BPMN Germany

TE4 Medical
Doctor

Over
46

20 Visual Basic, Pas-
cal, SQL

BPMN Germany

TE5 Technician 26-35 9 Java, Python, SQL XML, JSON Spain
TE6 Research

Assistant
26-35 3 C, C++, Java,

Python, Boogie,
SQL

UML, JSON Germany

TE7 Medical
Doctor &
Research
Assistant

26-35 2 R - Italy

TE8 Research
Assistant

26-35 4 R - Germany

Table 7.2: Background of technical staff participated in the usability evaluation

Acadela grammar and the auto-complete feature of the IDE. We emphasized that the participants can
copy-paste or auto-complete CP items to avoid memorizing the syntax.

Exercise To practice the language concepts, we asked the technical staff to construct the introduced
CP elements and attributes in an exercise with the Acadela IDE. The participants can ask for clarification
of any concept in this 20-minute exercise.

7.3.5 Modeling

After having a 5-minute break, we invited the technical staff to a 50-minute evaluation session. The tasks
are 1) complete a simplified hypertension CP by defining its missing elements, and 2) fix 11 semantic or
syntax errors inside a faulty model by analyzing their EMs. We read our script to each participant to inform
the experiment procedure and ask them to solve arising problems by themselves and refrain from asking
us questions during the evaluation period. Figure 7.9 shows the workflow of the hypertension CP.

CP completion Participants modeled the following missing elements in the CP:
1. Create a Stage and Task with an Input Field to discharge a patient. The Condition to discharge is

the completion of the Identification Stage.
2. Create an Input Field to record the numeric Systolic blood pressure (BP) value and visualize its

severity with color. For instance, apply the green color if the Systolic value is below 120. Add an
Overall Assessment Output Field to conditionally show the BP condition. For example, display a
"Normal" text if the Systolic value is below 120 and the Diastolic value is under 80.

166

7 Evaluation

Figure 7.9: The workflow of a simplified Hypertension CP
3. Add a Transition Condition for the Treatment Stage such that the patient must have a "High" BP

condition and already finished the Evaluation Stage.
4. Import a Prescribe Task from a file path into the Treatment Stage

5. Define a POST HTTP request to a URL endpoint when the Measure BP Task is completed. If the
request fails, display a user-defined EM.

After finishing the above tasks, we asked participants to validate their code and fix any bugs indicated
by the EMs. When their code was error-free, we asked the experts to submit the model and begin the
debugging task.

CP Debugging In this task, participants validated and fixed a CP model containing syntax and se-
mantic errors. For every bug validation request, the EM includes 1) error cause, 2) line and row number,
3) the code surrounding the bug location, and 4) solution suggestions.
The session finishes when the experts successfully correct six syntax and five semantic errors. Examples
of syntax errors are typos, unexpected element or attribute, missing parenthesis in the if statement. We
insert semantic mistakes such as duplicate stage name, invalid path reference to a Task or InputField, and
send requests to an unknown URL or using disallowed HTTP methods.

7.3.6 Result

Quantitative Accuracy Evaluation After the debugging session, we asked the experts to assess
the usability of Acadela and its error validation. We presented a questionnaire with statements regarding
the 1) Ease of use and learnability, 2) Usability of EMs, 3) Helpfulness of EMs, and 3) The overall usability
assessment using the System Usability Scale (SUS). Table A.1 in Appendix A.4 lists the statement in the
SUS questionnaire. We used a Likert scale from 1 (Strong Disagree) to 5 (Strongly Agree) to rate the
statements. Figure 7.10 summarizes the quantitative evaluation outcome.
The results from chart a) suggest that most technical experts consider Acadela syntax easy to use, under-
stand and learn. Chart b) displays the agreement from participants that EMs accurately explain the source
of errors with straightforward language and practical information to help them locate and fix the bugs.
In particular, the majority of technical experts strongly agreed that the EMs support them in solving the
semantic and syntactic errors as shown in chart c).
The overall SUS score in d) reflects the usability of Acadela. Following the SUS grade ranking of Bangor et
al. (2009) from Figure 7.11, with an average score 78.75, Acadela can be classified in the "Good" category.
The standard deviation of 15.11 implies that the participants’ opinions are highly distinctive.

167

7 Evaluation

ID Syntax Usability Statement
S1 The syntax for creating CP elements,

i.e. Stage, Task, Form, Field, is
straightforward

S2 Editing CP elements is easy with the
language

S3 Importing external modules is
straightforward

S4 The syntax of the language was easy to
learn and use

ID EM Usability Statement
EM1 The EM were easy-to-understand
EM2 I was easily able to locate the source of

error using the EMs
EM3 I was able to fix the errors easily using

the EMs
EM4 The language of the EMs is clean and

precise
EM5 The EMs were accurate
EM6 The EMs were consistent

Figure 7.10:Rating of experts on Statements regarding the a) Usability of the Acadela Syntax, b) Usability
of EMs, c) Usefulness of EMs, and d) Acadela SUS Score.

Figure 7.11: Grade Ranking of SUS Score.

168

7 Evaluation

Qualitative Feedback We also interviewed the participants to learn their opinions regarding the
applicability and user-friendliness of the language syntax and its EMs. Additionally, we asked the experts
for any negative experiences and suggestions for improvements.
Overall, the participants consider the syntax as "simple", "elegant", "easy to learn" for users with com-
petent programming experience. Three technical staff commented that 'the auto-complete feature is sup-
portive'. Three other participants shared an opinion that the language is "fairly easy to use, but this will
certainly depend on the background and education of the person in questions". Another participant noted,
"Successful repairing errors required basis programming skills/knowledge". The two statements imply
that modelers need strong fundamental programming knowledge to apply and debug CP meta-models
written in Acadela.
Furthermore, the participants state that EMs are "useful" as they "show the line number and the problem"
to help users "pinpoint the error". Additionally, syntax highlighting helps identify potential errors, like
"spotting (missing) string quote error".
Regarding limitations, one technical staff suggested "visualizing the model" to provide an overarching
view of the CP. Thanks to this suggestion, we developed the CP visualizer for Acadela. The second
remark is the auto-complete feature should "show the names of elements in the code". This option is
convenient for the users and prevents typing a non-existing CP component.

7.3.7 Discussion

The results imply that Acadela syntax is considerably learnable and usable. Additionally, it also assists
modelers in identifying and fixing errors in CP models effectively. However, we need to consider several
remarkable improvements to offer further support.

Intuitive Syntax From the usability assessment of the syntax, all participants regard Acadela as easy
to learn and use. Most technical staff agree that constructing and editing CP elements is straightforward
with the language syntax. When considering the time to finish the modeling and bug fixing sessions,
two participants who had basic programming experience spent around 50 and 60 minutes completing
their tasks; one participant with modeling experience but limited programming knowledge stopped the
evaluation after exceeding the session period; the other three participants with advanced programming
experience spent 20 to 30 minutes. The three participants who invested a longer duration for their eval-
uation considered the language is more straightforward if they could have more time to learn Acadela
syntax. This observation implies that Acadela can be user-friendly to modelers with solid fundamental
programming skills, while experienced ones can quickly understand the language concepts. The SUS
score with the mean of 78.75 and left-skewed data distribution consolidates the good usability result from
the majority of the population.
From the qualitative feedback, auto-completion of CP elements has a remarkable impact on the user-
friendliness of Acadela. First, it eliminates the need to memorize the syntax or check the Wiki to use
the correct definition. Second, an auto-complete saves time because it presents users with options for
a minimal or complete construction of a CP item. As a result, the users increase their productivity and
experience in modeling CPs.
The mean SUS score of 78.75 with high standard deviation (15.11) and left-skewed data distribution
demonstrates the majority of the participants consider the DSL to be user-friendly, while others believe
that modelers need strong foundational programming knowledge as a minimum to use Acadela. This result
implies that the concise syntax combined with IDE features could increase the productivity of experienced
modelers when developing CP models.

Supportive IDE and Error Messages From the qualitative feedback, auto-completion of CP
elements has a remarkable impact on the user-friendliness of Acadela. First, it eliminates the need to
memorize the syntax or consult the Wiki. Second, an auto-complete saves time because it suggests search
options to construct templates of CP items quickly.

169

7 Evaluation

Helpful Error Handling The population considered the EMs to indicate the source of error accu-
rately, consistently, and comprehensibly. To support participants in fixing various semantic and syntactic
errors, Acadela presents the problem statement, line of error, faulty code piece, and suggestions for pos-
sible fixes when applicable. The information saves the cognitive effort of participants to reason the cause
of errors in the code and make the necessary changes. As a result, the majority of participants agreed that
Acadela effectively supports modelers in handling the covered syntactic and semantic bugs.

7.4 Limitations

7.4.1 Need Supportive CP Elements

According to the technical experts, although Acadela can model the crucial and assistive elements neces-
sary for modeling executable CPs, it should also construct CP elements that increase the treatment quality.
For example, one expert stated that to support medical professionals in conducting effective treatments,
Acadela should include video, report monitoring, and gamification factors in its modeling concepts. Fur-
thermore, Acadela should also provide a summary for each Stage to display critical medical data of the
treatment phase.

7.4.2 Support Previewing CP Elements

Acadela does not display the properties and graphical representation of CP elements. For example, when
clicking on an InputField, the Acadela frontend should intuitively show the attributes of the InputField and
preview its UI appearance in the SACM system. This feature helps modelers and medical professionals
to verify the properties of CP elements and identify improper visual elements before generating the CP
meta-models.

7.4.3 Auto-complete CP Elements in Web-based IDE

The Acadela IDE can auto-complete CP elements but not the element’s ID. Providing this feature will help
modelers type the target element quickly or realize whether it exist in the CP definition’s scope.

7.4.4 Dependent on textX Error Handler

Since we rely on the textX syntax and error handler, several edge cases that textX cannot properly catch
can result in misleading error messages from Acadela. In these cases, textX does not reveal the exact
cause and location of the syntax error. As a result, modelers can be confused in identifying the cause of
bugs. However, in the cases we observed, the returned error code snippet location is still near the actual
position of the bug. Thus modelers may be able to recognize the source of error.

7.4.5 Mishandling of Special Characters

During the evaluation, one participant who worked in Italy created an unknown character error in the
compiler when he typed "fi", which his device converted to a special character. This event suggests that
Acadela may not handle unique characters in different languages correctly.

7.4.6 Limited Number of Participants

The numbers of participants in both the expressiveness and usability evaluation are humble to determine
the potential of Acadela. For the expressiveness evaluation, our study could expand to evaluate Acadela’s
ability to model CPs of other medical fields, e.g., Orthopedics, Cardiovascular, or Acupuncture.
Considering the usability evaluation, learning the opinions from novice software developers can provide
further insights into the DSL’s user-friendliness. A DSL should be easy-to-use and learnable to new or

170

7 Evaluation

potential technical staff joining the industry, thus new modelers can quickly adapt to the tool and capable
of modeling CPs for care professionals. Therefore, our study could have explored the usability aspect with
newly graduated students possessing qualified degrees, e.g., Computer Science or Bioinformatics.

7.4.7 Internal Validity

Since we did not question possible variations in several CPs, the accuracy of our model reflects the baseline
CPs but not their alternatives. Hence, we demonstrated that our CP model could serve as a guideline for
specific scenarios, but it only handles a subset of variations. Therefore, we shall evaluate our DSL in the
scope of CP variations management to thoroughly examine the expressiveness and applicability of the
modeled CP.

7.4.8 External Validity

Acadela leverages the SACM constructs to build CPs, yet other e-Health systems may require certain
concepts that do not exist in SACM or Acadela. To further demonstrate applicability, Acadela should
generate CPs compatible with other e-Health systems and support the modeling of their domain concepts
to provide healthcare services.

171

8 Conclusion and Future Work

This chapter recapitulates the findings, contributions, reflections, implications, and futurework ofAcadela,
a textual DSL for modeling clinical pathways (CPs) compatible with the Smart Adaptive Case Manage-
ment (SACM) engine that powers the CONNECARE integrated care system.

8.1 Summary

Research Goal: The author develops Acadela as a textual DSL for constructing generic CPs in e-
Health systems which can be interconnected with other services to deliver healthcare operations. The
DSL offers an online Integrated Development Environment (IDE) with syntax highlighting and auto-
completion to assist modelers in efficiently declaring CP models. Nevertheless, a critical drawback of
textual DSL is the absence of visualization to preview the generated CP metamodel. Therefore, Acadela
leverages the GoJS tool (Northwoods Software, 2022) to develop a simplified graphical presentation of the
CP definition built solely with color codes and common shapes. The motivation of a simple visualization
is to reduce the cognitive load of the domain and technical experts in understanding the CP concepts, thus
fostering their communication when discussing the accuracy or workflow of the CP.

Implementation: In this study, Acadela leverages the extended Case Management Model and No-
tation (CMMN) domain concepts of SACM to model unpredictable CPs containing unstructured with
pre-defined fragments, structured with ad-hoc exceptions, or structured processes following the Adaptive
Case Management (ACM) principles. By leveraging the textX meta-model language, guidelines of DSL
design, and error messages, the study implements the grammar, concrete syntax, and constraints validation
of Acadela to model CP elements while offering syntax and semantic error detections.

Contribution: Acadela supports modeling concepts to construct essential elements to operate work-
flows in CPs, along with communication to external services, dynamic graphical representation of data
and the import of these elements to foster reusability in CPs. The answer of RQ1 summarizes the sup-
ported modeling concepts in Acadela. Furthermore, Acadela provides a simplified CP visualization to
deliver an overarching yet intuitive overview of the CP definition code. In this case, the CP definition code
serves as the ground truth of the CP model, which modelers declare using the Acadela online Integrated
Development Environment (IDE) and syntax. Simultaneously, the visualization displays the process ele-
ments defined by the code; thus, double-clicking each graphical component triggers the IDE to focus on
the corresponding element declaration code. As a result, modelers can directly read the properties of the
elements in textual format and conveniently modify them in the code when applicable.
The below subsections present our findings as answers to the hypothesis and fourRQs in Section 1.2.

Hypothesis

It is possible to define a single DSL which can model and orchestrate CPs while fostering com-
munication between clinical and technical experts.

Acadela is a textual DSL capable of generating SACM-compatible CPmeta-models. SACMcan create and
manage CP models as patient cases from the meta-models. Furthermore, during the CP operation, SACM
successfully sends HTTP requests to a defined URL when reaching a process lifecycle. This phenomenon
suggests that Acadela can support the inter-service communication required in SACM.

172

8 Conclusion and Future Work

Considering the visualization, in our evaluations, technical and medical professionals state that the graph-
ical notation is understandable. Furthermore, technical professionals regard the visualization as helpful
for previewing the generated CP. This fact could imply that technical staff and medical professionals can
communicate the workflow accuracy based on graphical presentations.
Our study validates the hypothesis by identifying four RQs, with RQ1 and RQ2 explaining the identified
modeling concepts and DSL implementation. Meanwhile, RQ3 and RQ4 consider the applicability of
Acadela by exploring its expressiveness and usability, respectively.

Research Question 1

What elements are required to model and orchestrate executable Clinical Pathways for Adaptive
Case Management?

Through the study of SACM (Michel, 2020) and literature research on existing DSLs for CP modeling, we
identified 13 requirements for modeling CP concepts and two supporting features that assist modelers in
the modeling process, as described in Section 5.1. Acadela shares the requirements of modeling workflow
phases and activities, control flow, responsibilities, medical document resources, timing constraints with
other DSLs. In addition, Acadela also supports the modeling of three features not supported in existing
DSLs: communication to external services, dynamic graphical representation of data, and the import of
CP elements. The three concepts are necessary to model integrated, maintainable, and reusable CPs in
modern e-Health systems for the following reasons:

1. E-health systems can apply the microservice architecture or collaborate with external applications
to deliver digital healthcare services. CONNECARE is an example of synchronizing monitoring
data between the SACM and the SelfManagement System (SMS). Additionally, an e-Health system
may need to consult external services to collect medical data based on certain CP inputs, e.g., re-
trieve drug-drug interactions between two medicines. Enabling communications in these scenarios
requires the CP meta-model to send data to the URLs of the partners’ APIs at a particular lifecycle
event.

2. CPs may require visualization of medical status to capture an overarching overview of the patient’s
condition. With dynamic templates, e-Health systems can render adaptive graphical representations
based on the value of medical data. Declaring these dynamic templates in the CP definition code
enables modelers to create, reuse, and modify the visualization content directly.

3. Various CPs can use the same workflow processes, such as administrative or laboratory test proce-
dures. Therefore, declaring shared processes once and importing them into the required CP fosters
reusability and avoid code duplication. Furthermore, modifying the shared processes affects all
related CPs at once, thus avoiding cascading updates of the reusable process in different CPs.

Additionally, our study considers two supporting features necessary to ease the modeling process. First, a
DSL shall offer an IDE to helpmodelers declare CP elements. Typically, graphical DSLs require a diagram
UI representing graphical notations of CP elements, thus modelers can realize the mapping between visual
elements and CP modeling concepts. By assembling and editing the visual elements, modelers can build
the CP workflow as required by care professionals. In textual DSLs, the IDE is typically text-based with
syntax highlighting to help modelers realize CP concepts or syntactic elements. Auto-completion is also
necessary to accelerate the modeling process by creating the structure of any supported CP element from
several characters of the keyword.
The second supporting feature is the visualization of CP meta-models. Graphical DSLs UI already sup-
ports this feature as modelers see all the CP workflow and control flow during the CP definition. To the
best of our knowledge, textual DSLs for CPs typically do not offer the CP visualization feature. There-
fore, to compensate the disadvantage of textual DSLs, Acadela outputs a graphical representation of the
CP meta-model to provide an overview of the process to the technical and domain experts.

173

8 Conclusion and Future Work

Research Question 2

What are the syntax and semantics that enable a textual DSL to model executable Clinical Path-
ways for Adaptive Case Management?

Modeling Concepts: Acadela applies the CP domain concepts from SACM to formulate its model-
ing concepts. However, Acadela groups the schema and behavior definitions of each CP element into a
single object, while SACM requires the definitions of a schema, i.e., EntityDefinitions and AttributeDef-
initions, and the behavior in the CP execution, e.g., StageDefinitions, TaskDefinitions. As a result, the
Acadela grammar supports the definitions of Workspace, Case, Case Setting, Group, User, Stage,
Task, HttpHook (external communication), Precondition (control flow), InputField, and OutputField.
Each element is a production rule containing all attributes from the schema and behavior definitions of
SACM. The advantage of this feature is that modelers declare one CP element, but Acadela compiles the
two SACM definitions in the backend to further optimize the CP declaration effort.

Hierarchical Meta-model De�nition Structure: Acadela arranges declarations of CP elements
in a hierarchal structure. In other words, the CP definition starts with the concept at the highest abstract
level, i.e., Workspace, which subsumes concepts at the lower level. A Workspace contains a Case;
a Case contains Setting, Responsibilities (Groups and Users), Case HttpHooks, Summary Panel, and
Stages. Each Stage comprises Tasks, Preconditions, and HttpHooks. Finally, each Task consists of a
Form that includes InputFields or OutputFields.

Language Properties: Acadela is a case- and indent-insensitive language. For each CP element,
Acadela expresses user-defined attributes as key-value pairs, while attributes with predefined values are
in directive format, i.e., #<attributeValue>. Directives leverage the auto-complete feature of the IDE and
shorten the statement to declare an attribute.

Syntax Error Analyzer: Acadela can detect typos, unexpected elements, unexpected data types, and
SACM-specific string patterns (i.e., if-else statements and definition of a color band applied to different
ranges of numeric value). The analyzer identifies typos using a dictionary of Acadela keywords and
spellchecker library. Acadela suggests the most probable keyword by computing the Levenshtein distance
between the typo and keywords. Regarding the syntax errors of unexpected elements, unexpected data
types, and non-compliant SACM-specific string patterns, textX grammar provides mechanics to catch the
exceptions. However, the error messages can be confusing as they use grammar construct terms to explain
the error cause. Therefore, Acadela enhances the error messages by explaining grammar constructs in
human-readable modeling concepts.

Semantic Error Analyzer: Acadela has custom semantic analyzers to detect non-unique identifiers,
invalid references to a CP element, and the declaration of untrusted URL services. The latter exception
is to prevent communications with unidentified parties. The semantic validation starts after analyzing the
syntax errors of the CP definition code.

Research Question 3

Can the DSL model Clinical Pathways from different medical fields with diverse complexity
while being understandable to clinical experts?

Our research evaluates the DSL expressiveness (RQ3) by modeling various CPs in SACM and presenting
the executable workflow to six medical professionals in five fields of medicine. The result suggests that
Acadela can accurately model CP workflows in different medical departments and complexity. Further-
more, medical professionals can identify minor mistakes (e.g., typos) in the CP definition code, implying

174

References

that Acadela is understandable to domain experts to a certain extent. However, medical professionals
wished to see more modeling of visualization and variations in their CP. Additionally, further research as
a case study of modeling and applying CPs in medical institutions is necessary to investigate the possibility
of fostering communication using the Acadela IDE and visualization.

Research Question 4

Domodelers regard theDSL and the development environment user-friendly and learnablewhen
modeling CPs?

To evaluate Acadela’s usability (RQ4), we invited eight technical staff working in the healthcare industry
or research to model a simplified CP for hypertension treatment and fix bugs of another CP based on their
error messages (EMs). The result implies that Acadela is potentially usable and learnable to technical
staff. One reason stated by participants is that Acadela has a "simple" and "easy to learn" syntax. Most
participants deem the EMs help them locate, understand and fix syntactic and semantic errors. In addi-
tion, they considered the DSL applicable to model CPs in e-health applications. However, we reflected on
the result that Acadela is user-friendly given that the modeler has solid basic programming knowledge or
above. In addition, the participants wished to see more capabilities, especially the rendering of statistics.
Furthermore, the auto-completion should also apply to the CP elements’ ID, hence modelers can conve-
niently insert the element or realize its non-existence. Another concern is that we need more participants
to assess the DSL usability substantially.

8.2 Future Work

Evaluate CPs in other Medical Fields: To further validate the scope and practicality of our
DSL, one can expand the evaluation for modeling CPs in other medical fields, such as Orthopedics or
Traditional Chinese Medicine. In this regard, a longitudinal case study can reveal further drawbacks,
hindrances, or advantages of the DSL when modifying changes or incorporating variances in the actual
medical environment.

Evaluate Acadela in Di�erent e-Health Systems: Acadela demonstrates that its generated
CP is compatible with SACM. However, to become a potential system-independent DSL, Acadela should
produce processible CP metamodels in other e-Health systems. Furthermore, compiling an Acadela code
to different CP metamodel formats can reveal new challenges. First, can the current generic modeling
concepts sufficiently express the CPs of another e-Health system? Second, what adaptations shall apply
to the architecture design of the Acadela system, such that it can compile processible CPs in both SACM
and other e-Health systems?

References

Anders, R., Tomai, J., Clute, R., & Olson, T. (1997). Development of a scientifically valid
coordinated care path. The Journal of nursing administration, 27(5), 45–52.

Avgar, A., Tambe, P., & Hitt, L. M. (2018). Built to learn: How work practices affect employee
learning during healthcare information technology implementation. Mis Quarterly, 42(2),
645–660.

Baar, T. (2015). Verification support for a state-transition-dsl definedwith Xtext. In International
Andrei Ershov Memorial Conference on Perspectives of System Informatics (pp. 50–60).

Bailey, D. A., Litaker, D. G., & Mion, L. C. (1998). Developing Better Critical Paths in Health
Care: Combining" Best Practice" and the Quantitative Approach. Health Care Outcomes:
Collaborative, Path-based Approaches, 70, 34.

175

References

Bánáti, A., Kail, E., Karóczkai, K., & Kozlovszky, M. (2018). Authentication and authoriza-
tion orchestrator for microservice-based software architectures. In 2018 41st International
Convention on Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO) (pp. 1180–1184).

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean:
Adding an adjective rating scale. Journal of usability studies, 4(3), 114–123.

Barik, T., Smith, J., Lubick, K., Holmes, E., Feng, J., Murphy-Hill, E., & Parnin, C. (2017).
Do developers read compiler error messages? In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE) (pp. 575–585).

Becker, B. A. (2016). An effective approach to enhancing compiler error messages. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(p. 126–131). New York, NY, USA: Association for Computing Machinery. Retrieved
from https://doi.org/10.1145/2839509.2844584 doi: 10.1145/2839509.2844584

Becker, B. A., Murray, C., Tao, T., Song, C., McCartney, R., & Sanders, K. (2018). Fix the first,
ignore the rest: Dealing with multiple compiler error messages. In Proceedings of the 49th
ACM technical symposium on computer science education (pp. 634–639).

Berdal, K. G., Bøydler, C., Tengs, T., & Holst-Jensen, A. (2008). A statistical approach for
evaluation of PCR results to improve the practical limit of quantification (LOQ) of GMO
analyses (SIMQUANT). European Food Research and Technology, 227(4), 1149–1157.

Bernstein, D. (2014). Containers and cloud: From lxc to docker to kubernetes. IEEE cloud
computing, 1(3), 81–84.

Braun, R., Schlieter, H., Burwitz, M., & Esswein, W. (2014). BPMN4CP: Design and implemen-
tation of a BPMN extension for clinical pathways. In 2014 IEEE international conference
on bioinformatics and biomedicine (BIBM) (pp. 9–16).

Braun, R., Schlieter, H., Burwitz, M., & Esswein, W. (2016). BPMN4CP Revised–Extending
BPMN for Multi-perspective Modeling of Clinical Pathways. In 2016 49th Hawaii Inter-
national Conference on System Sciences (HICSS) (pp. 3249–3258).

Brown, K. J., Sujeeth, A. K., Lee, H. J., Rompf, T., Chafi, H., Odersky, M., & Olukotun, K.
(2011). A heterogeneous parallel framework for domain-specific languages. In 2011 Inter-
national Conference on Parallel Architectures and Compilation Techniques (pp. 89–100).

Brown, S. (n.d.). The C4 model for visualising software architecture. Retrieved 2022-11-22,
from https://c4model.com/

Büchner, T. (2007). Introspektive modellgetriebene Softwareentwicklung (Unpublished doctoral
dissertation). Technische Universität München.

Burns, E. V. (2011). Case management 101: 10 things you must know about case management.
Taming the Umpredictable, Real-world Adaptive Case Management: Case Studies and
Practical Guidance, 17–26.

Campbell, H., Hotchkiss, R., Bradshaw, N., & Porteous, M. (1998). Integrated care pathways.
Bmj, 316(7125), 133–137.

Cano, I., Dueñas-Espín, I., Hernandez, C., de Batlle, J., Benavent, J., Contel, J. C., . . . others
(2017). Protocol for regional implementation of community-based collaborative manage-
ment of complex chronic patients. NPJ primary care respiratory medicine, 27(1), 1–7.

Cavusoglu, E. (2021). A Web-based Breathing Exercise System for Assisting the Treat-
ment of Chronic Obstructive Pulmonary Disease (COPD) (Doctoral dissertation).
Retrieved from https://wwwmatthes.in.tum.de/pages/pmdeixilejky/Master-s

-Thesis-Elcin-Cavusoglu

CDC. (n.d.). Perceived Exertion (Borg Rating of Perceived Exertion Scale). Retrieved 2022-06-
17, from https://www.cdc.gov/physicalactivity/basics/measuring/exertion

.htm

176

https://doi.org/10.1145/2839509.2844584
https://c4model.com/
https://wwwmatthes.in.tum.de/pages/pmdeixilejky/Master-s-Thesis-Elcin-Cavusoglu
https://wwwmatthes.in.tum.de/pages/pmdeixilejky/Master-s-Thesis-Elcin-Cavusoglu
https://www.cdc.gov/physicalactivity/basics/measuring/exertion.htm
https://www.cdc.gov/physicalactivity/basics/measuring/exertion.htm

References

Cook, S., Jones, G., Kent, S., & Wills, A. C. (2007). Domain-specific development with visual
studio dsl tools. Pearson Education.

Córdoba-Sánchez, I., & De Lara, J. (2016). Ann: A domain-specific language for the effective
design and validation of Java annotations. Computer Languages, Systems & Structures,
45, 164–190.

De Bleser, L., Depreitere, R., Waele, K. D., Vanhaecht, K., Vlayen, J., & Sermeus, W. (2006).
Defining pathways. Journal of nursing management, 14(7), 553–563.

De Clercq, J. (2002). Single sign-on architectures. Infrastructure security, 40–58.
Dejanović, I., Milosavljević, G., & Vaderna, R. (2016). Arpeggio: A flexible PEG parser for

Python. Knowledge-based systems, 95, 71–74.
Dejanović, I., Vaderna, R., Milosavljević, G., & Vuković, Ž. (2017). TextX: a Python tool for

domain-specific languages implementation. Knowledge-based systems, 115, 1–4.
Dejanović, I. (n.d.a). Multi meta-model support. Retrieved 2022-07-19, from

https://textx.github.io/textX/3.0/multimetamodel/#use-case-meta-model

-referencing-another-meta-model

Dejanović, I. (n.d.b). textx grammar. Retrieved 2022-12-01, from https://textx.github.io/

textX/3.0/grammar/

Dejanović, I. (n.d.c). Reference resolving expression language (rrel). Retrieved 2022-07-21,
from http://textx.github.io/textX/3.0/rrel/

Dejanović, I. (n.d.d). textx meta-models. Retrieved 2022-12-03, from https://textx.github

.io/textX/3.0/metamodel/

Dejanović, I. (n.d.e). Robot tutorial. Retrieved 2022-07-19, from https://textx.github.io/

textX/3.0/tutorials/robot/#interpreting-model

Di Ciccio, C., Marrella, A., & Russo, A. (2012, 06). Knowledge-intensive processes: An
overview of contemporary approaches. In (Vol. 861, p. 33-47).

Di Ciccio, C., Marrella, A., & Russo, A. (2015). Knowledge-intensive processes: characteristics,
requirements and analysis of contemporary approaches. Journal on Data Semantics, 4(1),
29–57.

Di Lenarda, A., Casolo, G., Gulizia, M. M., Aspromonte, N., Scalvini, S., Mortara, A., . . . oth-
ers (2017). The future of telemedicine for the management of heart failure patients: a
Consensus Document of the Italian Association of Hospital Cardiologists (ANMCO), the
Italian Society of Cardiology (SIC) and the Italian Society for Telemedicine and eHealth
(Digital SIT). European Heart Journal Supplements, 19(suppl_D), D113–D129.

Du, G., Huang, L., & Zhou, M. (2020). Variance Analysis and Handling of Clinical Pathway:
An Overview of the State of Knowledge. IEEE Access, 8, 158208–158223.

Every, N. R., Hochman, J., Becker, R., Kopecky, S., & Cannon, C. P. (2000). Critical pathways:
a review. Circulation, 101(4), 461–465.

Faber, A. T. L. (2019). Collaborative modeling and visualizing of business ecosystems (Disser-
tation). Technical University Munich, Munich.

Fender, K. (2018). EBNF Overview. Retrieved 2022-12-02, from https://learn.microsoft

.com/en-us/dynamicsax-2012/developer/ebnf-overview

Fernández, J. M., Mamei, M., Mariani, S., Felip, M., Alexander, S., Vargiu, E., & Zambonelli,
F. (2017). Towards argumentation-based recommendations for personalised patient em-
powerment. In 2nd International Workshop on Health Recommender Systems.

Fernández-Llatas, C., Meneu, T., Benedí, J. M., & Traver, V. (2010). Activity-based Pro-
cess Mining for Clinical Pathways Computer aided design. In 2010 Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology (p. 6178-6181). doi:
10.1109/IEMBS.2010.5627760

177

https://textx.github.io/textX/3.0/multimetamodel/#use-case-meta-model-referencing-another-meta-model
https://textx.github.io/textX/3.0/multimetamodel/#use-case-meta-model-referencing-another-meta-model
https://textx.github.io/textX/3.0/grammar/
https://textx.github.io/textX/3.0/grammar/
http://textx.github.io/textX/3.0/rrel/
https://textx.github.io/textX/3.0/metamodel/
https://textx.github.io/textX/3.0/metamodel/
https://textx.github.io/textX/3.0/tutorials/robot/#interpreting-model
https://textx.github.io/textX/3.0/tutorials/robot/#interpreting-model
https://learn.microsoft.com/en-us/dynamicsax-2012/developer/ebnf-overview
https://learn.microsoft.com/en-us/dynamicsax-2012/developer/ebnf-overview

References

Ford, B. (2004). Parsing expression grammars: a recognition-based syntactic foundation. In Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (pp. 111–122).

Frank, U. (2010). Outline of a method for designing domain-specific modelling languages (Tech.
Rep.). ICB-research report.

Frank, U. (2011a). Multi-perspective enterprise modelling: Background and terminological
foundation (Tech. Rep.). ICB-Research Report.

Frank, U. (2011b). Some guidelines for the conception of domain-specific modelling languages.
Enterprise modelling and information systems architectures (EMISA 2011).

Frank, U. (2013). Domain-specific modeling languages: requirements analysis and design guide-
lines. In Domain engineering (pp. 133–157). Springer.

Frank, U. (2014). Multi-perspective enterprise modeling: foundational concepts, prospects and
future research challenges. Software & Systems Modeling, 13(3), 941–962.

Fudholi, D. H., & Mutawalli, L. (2018). An ontology model for clinical pathway audit. In 2018
4th International Conference on Science and Technology (ICST) (pp. 1–6).

García, M., Clemente, P. E., Moyano, A. F., Pinto, J. M. P., Jimeno,W. L., Urbita, J. A., . . . others
(2016). From the Pilot to the Project. Adding remote monitoring into an existing integrated
clinical pathway (COMPARTE) to manage COPD and/or HCF patients. International
Journal of Integrated Care (IJIC), 16(6).

Garde, S., & Knaup, P. (2006). Requirements engineering in health care: the example of
chemotherapy planning in paediatric oncology. Requirements Engineering, 11(4), 265–
278.

Günther, S. (2009). Agile DSL-Engineering with Patterns in Ruby. Univ., Fak. für Informatik.
Hai, J.-J., Wong, C.-K., Un, K.-C., Wong, K.-L., Zhang, Z.-Y., Chan, P.-H., . . . others (2019).

Guideline-based critical care pathway improves long-term clinical outcomes in patients
with acute coronary syndrome. Scientific Reports, 9(1), 1–9.

Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of" semantics"?
Computer, 37(10), 64–72.

Hauder, M., Münch, D., Michel, F., Utz, A., & Matthes, F. (2014b). Examining adaptive case
management to support processes for enterprise architecture management. In 2014 IEEE
18th International Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (pp. 23–32).

Hauder, M., Pigat, S., & Matthes, F. (2014a). Research challenges in adaptive case manage-
ment: a literature review. In 2014 IEEE 18th International Enterprise Distributed Object
Computing Conference Workshops and Demonstrations (pp. 98–107).

Healey, A. N., Nagpal, K., Moorthy, K., & Vincent, C. A. (2011). Engineering the system of
communication for safer surgery. Cognition, Technology & Work, 13(1), 1–10.

Hermans, F., Pinzger, M., & Deursen, A. v. (2009). Domain-specific languages in practice: A
user study on the success factors. In International Conference on Model Driven Engineer-
ing Languages and Systems (pp. 423–437).

Hernandez-Mendez, A., Michel, F., & Matthes, F. (2018). A practice-proven reference ar-
chitecture for model-based collaborative information systems. Enterprise Modelling and
Information Systems Architectures (EMISAJ), 13, 262–273.

Herrmann, C., & Kurz, M. (2011). Adaptive case management: Supporting knowledge inten-
sive processes with it systems. In International Conference on Subject-Oriented Business
Process Management (pp. 80–97).

Heß, M. (2013). Towards a domain-specific method for multi-perspective hospital modelling–
motivation and requirements. In International Conference on Design Science Research in
Information Systems (pp. 369–385).

178

References

Heß, M., Kaczmarek, M., Frank, U., Podleska, L., & Täger, G. (2015). A domain-specific mod-
elling language for clinical pathways in the realm of multi-perspective hospital modelling.

Hitt, L. M., & Tambe, P. (2016). Health care information technology, work organization, and
nursing home performance. Ilr Review, 69(4), 834–859.

Hollingsworth, D. (2010). Healthcare. In Keith D. Swenson, editor, Mastering the unpre-
dictable: how adaptive case management will revolutionize the way that knowledge work-
ers get thingsdone (pp. 163–179). Meghan-Kiffer Press Tampa.

Horsky, J., Zhang, J., & Patel, V. L. (2005).
Journal of biomedical informatics, 38(4), 264-266.

Hyett, K. L., Podosky, M., Santamaria, N., & Ham, J. C. (2007). Valuing variance: the im-
portance of variance analysis in clinical pathways utilisation. Australian Health Review,
31(4), 565–570.

International Organization for Standardization. (2013). Iso/iec 19510:2013, information tech-
nology - object management group business process model and notation. Retrieved 2022-
06-25, from https://www.iso.org/standard/62652.html

John Hopkins Medicine. (n.d.). Cytology. Retrieved 2022-06-10, from https://www

.hopkinsmedicine.org/health/treatment-tests-and-therapies/cytology

Jouault, F., Bézivin, J., & Kurtev, I. (2006). TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In Proceedings of the 5th international conference on
Generative programming and component engineering (pp. 249–254).

Karpov, A. (2018). Holy smokes! inhalation injury. Retrieved 2022-07-10, from https://

www.maimonidesem.org/blog/holy-smokes-inhalation-injury

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., & Völkel, S. (2014). Design
guidelines for domain specific languages. arXiv preprint arXiv:1409.2378.

Kauranen, K., Kim, A., & Osial, P. (2019). Prescriptive Grammar for Clinical Prescribing
Workflow. International Journal of Extreme Automation and Connectivity in Healthcare
(IJEACH), 1(1), 96–110.

Khodambashi, S. (2013). Business process re-engineering application in healthcare in a relation
to health information systems. Procedia Technology, 9, 949–957.

Kindlmann, G., Chiw, C., Seltzer, N., Samuels, L., & Reppy, J. (2016). Diderot: a Domain-
Specific Language for Portable Parallel Scientific Visualization and Image Analysis. IEEE
Transactions on Visualization and Computer Graphics, 22(1), 867-876. doi: 10.1109/
TVCG.2015.2467449

Kinsman, L., Rotter, T., James, E., Snow, P., & Willis, J. (2010). What is a clinical pathway?
Development of a definition to inform the debate. BMC medicine, 8(1), 1–3.

Kurz, M. (2013). Taming diversity: A distributed acm-based approach for cross-enterprise
knowledge work. In 2013 IEEE/WIC/ACM International Joint Conferences on Web Intel-
ligence (WI) and Intelligent Agent Technologies (IAT) (Vol. 3, pp. 87–91).

Kurz, M., Schmidt, W., Fleischmann, A., & Lederer, M. (2015). Leveraging CMMN for ACM:
examining the applicability of a new OMG standard for adaptive case management. In
Proceedings of the 7th international conference on subject-oriented business process man-
agement (pp. 1–9).

Li, W., Liu, K., Yang, H., & Yu, C. (2014). Integrated clinical pathway management for medical
quality improvement–based on a semiotically inspired systems architecture. European
Journal of Information Systems, 23(4), 400–417.

Mariani, S., Vargiu, E., Mamei, M., Zambonelli, F., & Miralles, F. (2019). Deliver intelligence
to integrate care: the Connecare way. International Journal of Integrated Care (IJIC), 19.

179

https://www.iso.org/standard/62652.html
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cytology
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cytology
https://www.maimonidesem.org/blog/holy-smokes-inhalation-injury
https://www.maimonidesem.org/blog/holy-smokes-inhalation-injury

References

Marin, M. A., Hauder, M., & Matthes, F. (2016). Case management: an evaluation of existing
approaches for knowledge-intensive processes. In International Conference on Business
Process Management (pp. 5–16).

Matthes, F., Neubert, C., & Steinhoff, A. (2011). Hybrid Wikis: Empowering Users to Collab-
oratively Structure Information. ICSOFT (1), 11, 250–259.

Matthias, J. T. (2010). Technology for case management. Mastering the Unpredictable, 63–88.
Matthias, J. T. (2011). User requirements for a new generation of case management systems.

Taming the Unpredictable–Real World Adaptive Case Management: Case Studies and
Practical Guidance. Future Strategies Inc., New York.

McCauley, D. (2011). Acm and business agility for the microsoft-aligned organization. Taming
the Unpredictable: Real World Adaptive Case Management: Case Studies and Practical
Guidance, 65–75.

Meijer, E., Beckman, B., & Bierman, G. (2006). Linq: reconciling object, relations and xml in
the. net framework. In Proceedings of the 2006 ACM SIGMOD international conference
on Management of data (pp. 706–706).

Merkle, B. (2010). Textual modeling tools: Overview and comparison of language work-
benches. InProceedings of the acm international conference companion on object oriented
programming systems languages and applications companion (p. 139–148). New York,
NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/1869542.1869564 doi: 10.1145/1869542.1869564
Michel, F. (2020). A collaborative purely meta-model-based adaptive case management ap-

proach for integrated care (Dissertation). Technical University Munich, Munich.
Michel, F., & Matthes, F. (2018). A holistic model-based adaptive case management approach

for healthcare. In 2018 IEEE 22nd International Enterprise Distributed Object Computing
Workshop (EDOCW) (pp. 17–26).

Microsoft. (2022). Monaco editor. Retrieved 2022-11-24, from https://microsoft.github

.io/monaco-editor/

Morgan, R., Grossmann, G., Schrefl, M., Stumptner, M., & Payne, T. (2018). VizDSL: a visual
DSL for interactive information visualization. In International Conference on Advanced
Information Systems Engineering (pp. 440–455).

Motahari-Nezhad, H. R., & Swenson, K. D. (2013). Adaptive case management: overview and
research challenges. In 2013 IEEE 15th conference on business informatics (pp. 264–269).

Msosa, Y. J. (2018). Modelling evolving clinical practice guidelines: a case of Malawi (Unpub-
lished doctoral dissertation). University of Cape Town.

Msosa, Y. J. (2019). FCIG grammar evaluation: A usability assessment of clinical guide-
line modelling constructs. In 2019 IEEE Symposium on Computers and Communications
(ISCC) (pp. 1141–1146).

Neumann, J., Rockstroh, M., Franke, S., & Neumuth, T. (2016). BPMNSIX–A BPMN 2.0 Sur-
gical Intervention Extension. In 7th workshop on modeling and monitoring of computer
assisted interventions (M2CAI), 19th international conference on medical image comput-
ing and computer assisted interventions (MICCAI 2016), Athens, Greece.

Neumann, J., Wiemuth, M., Burgert, O., & Neumuth, T. (2017). Application of activity seman-
tics and BPMN 2.0 in the generation and modeling of generic surgical process models.
Journal of the International Foundation for Computer Assisted Radiology and Surgery:
International Journal of Computer Assisted Radiology and Surgery, 12, 48–49.

Nielsen, J. (2001). Error message guidelines. Retrieved 2022-11-16, from https://www

.nngroup.com/articles/error-message-guidelines/

Northwoods Software. (2022). GoJS - A Web Framework for Rapidly Building Interactive Dia-
grams. Retrieved 2022-10-26, from https://gojs.net/latest/

180

https://doi.org/10.1145/1869542.1869564
https://doi.org/10.1145/1869542.1869564
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://www.nngroup.com/articles/error-message-guidelines/
https://www.nngroup.com/articles/error-message-guidelines/
https://gojs.net/latest/

References

Norvig, P. (2022). pyspellchecker 0.7.1. Retrieved 2022-12-15, from https://pypi.org/

project/pyspellchecker/

Object Management Group. (2015). Unified modeling language (uml). Retrieved 2022-08-19,
from https://www.omg.org/spec/UML/2.5/PDF

Object Management Group. (2016). About the case management model and notation specifica-
tion version 1.1. Retrieved 2022-07-13, from https://www.omg.org/spec/CMMN

Object Management Group. (2022). Case management model and notation™. Retrieved 2022-
07-13, from https://www.omg.org/cmmn/

Oracle. (2022). Controlling access to members of a class. Retrieved 2022-07-16, from https://

docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Panella, M., Marchisio, S., Barbieri, A., & Di Stanislao, F. (2008). A cluster randomized trial
to assess the impact of clinical pathways for patients with stroke: rationale and design of
the Clinical Pathways for Effective and Appropriate Care Study [NCT00673491]. BMC
health services research, 8(1), 1–8.

Panella, M., Marchisio, S., & Di Stanislao, F. (2003). Reducing clinical variations with clinical
pathways: do pathways work? International Journal for Quality in Health Care, 15(6),
509–521.

Pearson, S. D., Goulart-Fisher, D., & Lee, T. H. (1995). Critical pathways as a strategy for
improving care: problems and potential. Annals of internal medicine, 123(12), 941–948.

Perchetti, G. A., Nalla, A. K., Huang, M.-L., Jerome, K. R., & Greninger, A. L. (2020). Multi-
plexing primer/probe sets for detection of SARS-CoV-2 by qRT-PCR. Journal of Clinical
Virology, 129, 104499.

Preston, S., Markar, S., Baker, C., Soon, Y., Singh, S., & Low, D. (2013). Impact of a mul-
tidisciplinary standardized clinical pathway on perioperative outcomes in patients with
oesophageal cancer. Journal of British Surgery, 100(1), 105–112.

Reschenhofer, T., & Matthes, F. (2016). Supporting end-users in defining complex queries on
evolving and domain-specific data models. In 2016 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC) (pp. 96–100).

Rieger, C., Westerkamp, M., & Kuchen, H. (2018). Challenges and Opportunities of Modular-
izing Textual Domain-Specific Languages. MODELSWARD, 387–395.

Roche. (2016). A guide for journalist on cervical cancer and its treatment. Retrieved 2022-
07-10, from https://assets.cwp.roche.com/f/126832/x/92a7b380e2/cervical

-cancer-concise-guide-september-2016-pharma.pdf

Roche Diagnostics. (2018). Richtlinie zur gebärmutterhalskrebsvorsorge. Retrieved 2022-
06-10, from https://www.labor-duesseldorf.de/assets/Info-PDF-Sammlung/

830e06068e/Abklaerungsalgorithmus_GBA.pdf

Rotter, T., Kinsman, L., James, E. L., Machotta, A., Gothe, H., Willis, J., . . . Kugler, J. (2010).
Clinical pathways: effects on professional practice, patient outcomes, length of stay and
hospital costs. Cochrane database of systematic reviews(3).

RWTH Aachen Software Engineering Chair. (2022). Semantics of modeling languages. Re-
trieved 2022-12-30, from https://se-rwth.github.io/research/Semantics/

Sandkuhl, K., Stirna, J., Persson, A., & Wißotzki, M. (2014). Enterprise modeling. Springer.
Schlee, M., & Vanderdonckt, J. (2004). Generative programming of graphical user interfaces.

In Proceedings of the working conference on Advanced visual interfaces (pp. 403–406).
Schuld, J., Schäfer, T., Nickel, S., Jacob, P., Schilling, M. K., & Richter, S. (2011). Impact of

IT-supported clinical pathways on medical staff satisfaction. A prospective longitudinal
cohort study. International journal of medical informatics, 80(3), 151–156.

181

https://pypi.org/project/pyspellchecker/
https://pypi.org/project/pyspellchecker/
https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/CMMN
https://www.omg.org/cmmn/
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://assets.cwp.roche.com/f/126832/x/92a7b380e2/cervical-cancer-concise-guide-september-2016-pharma.pdf
https://assets.cwp.roche.com/f/126832/x/92a7b380e2/cervical-cancer-concise-guide-september-2016-pharma.pdf
https://www.labor-duesseldorf.de/assets/Info-PDF-Sammlung/830e06068e/Abklaerungsalgorithmus_GBA.pdf
https://www.labor-duesseldorf.de/assets/Info-PDF-Sammlung/830e06068e/Abklaerungsalgorithmus_GBA.pdf
https://se-rwth.github.io/research/Semantics/

References

Shen, L., Chen, X., Liu, R., Wang, H., & Ji, G. (2021). Domain-specific language techniques
for visual computing: a comprehensive study. Archives of Computational Methods in
Engineering, 28(4), 3113–3134.

Shinan, E. (2020). Grammar reference. Retrieved 2022-12-02, from https://lark-parser

.readthedocs.io/en/latest/grammar.html

Siafis, S., Bursch, N., Müller, K., Schmid, L., Schuster, F., Waibel, J., . . . others (2022).
Evidence-based Shared-Decision-Making Assistant (SDM-assistant) for choosing antipsy-
chotics: protocol of a cluster-randomized trial in hospitalized patients with schizophrenia.
BMC psychiatry, 22(1), 1–12.

Siau, K., & Rossi, M. (2011). Evaluation techniques for systems analysis and design modelling
methods–a review and comparative analysis. Information Systems Journal, 21(3), 249–
268.

Stroppi, L. J. R., Chiotti, O., & Villarreal, P. D. (2011). Extending BPMN 2.0: method and tool
support. In International Workshop on Business Process Modeling Notation (pp. 59–73).

Suduc, A.-M., Bizoi, M., & Filip, F. G. (2010). User awareness about information systems
usability. Studies in Informatics and Control, 19(2), 145–152.

Suganthi, S., & Poongodi, T. (2021). Interactive Visualization for Understanding and Analyzing
Medical Data. In Exploratory Data Analytics for Healthcare (pp. 101–123). CRC Press.

Swenson, K. (2013). State of the Art in Case Management. white paper. Fujitsu.
Swenson, K., & Palmer, N. (2010). Mastering the unpredictable: how adaptive case management

will revolutionize the way that knowledge workers get things done. Meghan-Kiffer Press.
Swenson, K., Palmer, N., & Pucher, M. (2012). Case management: contrasting production vs.

adaptive. How knowledge workers get things done, 109–118.
Tongchuan, L., & Deyu, Q. (2013). Dynamic workflow of clinical pathway system. In Proceed-

ings of the 2012 international conference on communication, electronics and automation
engineering (pp. 109–113).

Tractinsky, N., Katz, A. S., & Ikar, D. (2000). What is beautiful is usable. Interacting with
computers, 13(2), 127–145.

Umrigar, Z. D. (1997). Introduction to grammars and language analysis. Retrieved 2022-12-02,
from https://www.cs.binghamton.edu/~zdu/parsdemo/gramintro.html

United Kingdom National Health Service. (2021). Blood pressure test™. Retrieved 2022-11-03,
from https://www.nhs.uk/conditions/blood-pressure-test/

Valentijn, P. P., Schepman, S. M., Opheij, W., & Bruijnzeels, M. A. (2013). Understanding
integrated care: a comprehensive conceptual framework based on the integrative functions
of primary care. International journal of integrated care, 13.

Van Dam, P. A., Verheyden, G., Sugihara, A., Trinh, X. B., Van Der Mussele, H., Wuyts, H., . . .
Dirix, L. (2013). A dynamic clinical pathway for the treatment of patients with early breast
cancer is a tool for better cancer care: implementation and prospective analysis between
2002–2010. World journal of surgical oncology, 11(1), 1–9.

Van der Aalst, W. M., Weske, M., & Grünbauer, D. (2005). Case handling: a new paradigm for
business process support. Data & knowledge engineering, 53(2), 129–162.

Vanhaecht, K., Bellemans, J., De Witte, K., Diya, L., Lesaffre, E., & Sermeus, W. (2010).
Does the organization of care processes affect outcomes in patients undergoing total joint
replacement? Journal of evaluation in clinical practice, 16(1), 121–128.

Vanhaecht, K., De Witte, K., Panella, M., & Sermeus, W. (2009). Do pathways lead to better
organized care processes? Journal of evaluation in clinical practice, 15(5), 782–788.

Vanhaecht, K., WITTE, K. D., Depreitere, R., & Sermeus, W. (2006). Clinical pathway audit
tools: a systematic review. Journal of nursing management, 14(7), 529–537.

182

https://lark-parser.readthedocs.io/en/latest/grammar.html
https://lark-parser.readthedocs.io/en/latest/grammar.html
https://www.cs.binghamton.edu/~zdu/parsdemo/gramintro.html
https://www.nhs.uk/conditions/blood-pressure-test/

References

Vargiu, E., Fernàndez, J., Miralles, F., Cano, I., Gimeno-Santos, E., Hernandez, C., . . . others
(2017). Integrated care for complex chronic patients. International Journal of Integrated
Care, 17(5).

Vargiu, E., Fernández, J. M., Gonzales-Gonzales, M., Morales-Garzón, J. M., Prunera-Moreda,
K., & Miralles, F. (2019). A self-management system for complex chronic patients. In-
ternational Journal of Integrated Care (IJIC), 19.

Vargiu, E., Fernández, J. M., & Miralles, F. (2018). Patient empowerment in connecare. Inter-
national Journal of Integrated Care (IJIC), 18.

Wang, S., Yu, H., Liu, J., & Liu, B. (2011). Exploring themethodology and application of clinical
pathway in evidence-based Chinese medicine. Frontiers of medicine, 5(2), 157–162.

Wang, X., Chen, J., Peng, F., & Lu, J. (2021). Construction of clinical pathway information man-
agement system under the guidance of evidence-based medicine. Journal of Healthcare
Engineering, 2021.

Wentworth, D. A., & Atkinson, R. P. (1996). Implementation of an acute stroke program de-
creases hospitalization costs and length of stay. Stroke, 27(6), 1040–1043.

White, M. (2009). Case management: Combining knowledge with process. BPTrends, July.
Wienands, C., & Golm, M. (2009). Anatomy of a visual domain-specific language project in an

industrial context. In International Conference on Model Driven Engineering Languages
and Systems (pp. 453–467).

Wolff, A. M., Taylor, S. A., & McCabe, J. F. (2004). Using checklists and reminders in clinical
pathways to improve hospital inpatient care. Medical Journal of Australia, 181(8), 428–
431.

Wooster, L., & Forthman, M. (1996). Establishing a proper perspective on clinical pathways
before implementing a clinical improvement program. Best Practices and Benchmarking
in Healthcare: a Practical Journal for Clinical and Management Application, 1(2), 84–
88.

Yan, H., Van Gorp, P., Kaymak, U., Lu, X., Ji, L., Chiau, C. C., . . . Duan, H. (2017). Aligning
event logs to task-time matrix clinical pathways in BPMN for variance analysis. IEEE
journal of biomedical and health informatics, 22(2), 311–317.

Yang, W., & Su, Q. (2014). Process mining for clinical pathway: Literature review and future
directions. In 2014 11th international conference on service systems and service manage-
ment (ICSSSM) (pp. 1–5).

Ye, Y., Jiang, Z., Diao, X., & Du, G. (2009). Knowledge-based hybrid variance handling for
patient care workflows based on clinical pathways. In 2009 IEEE/INFORMS International
Conference on Service Operations, Logistics and Informatics (pp. 13–18).

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). sage.
Zander, K., Bower, K. A., & Etheredge, M. (1987). Nursing case management: blueprints for

transformation. Boston: New England Medical Center Hospitals, 3.

183

A Appendices

A.1 Acadela Complete Grammar

1 Start:
2 (versionTag = AcaVersion)?
3 (importList ∗= Import)?
4
5 (
6 (defWorkspace = DefWorkspace)
7 | (/(define)\s/ objList ∗= Obj)∗
8)
9 ;
10
11 AcaVersion :
12 /(# aca)\d\.\d/
13 ;
14
15 FQN: ID+[’.’];
16 FQNI: ID+[’.’](’.∗ ’)?;
17
18 Import :
19 ’import ’ importURI =FQNI (’as’ name=ID)?
20 ;
21
22 // Workspace Definition Level
23 DefWorkspace :
24 workspace = Workspace
25 (/(define)\s/) case = Case
26 ;
27
28 Workspace :
29 WorkspaceTerm BasicIdentity
30 ;
31
32 BasicIdentity :
33 name = ID
34 (’staticId ’ Eq staticId = STRING)?
35 ;
36
37 GroupIdentity :
38 name = ID
39 (
40 (’staticId ’ Eq staticId = STRING)?
41 (’name ’ Eq groupName = STRING)
42)#
43 ;
44
45 Obj:
46 (Case | CaseSetting | Stage | Task | Form | InputField |

OutputField | Hook | AttributeValue)
47 ;
48

184

A Appendices

49 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50 ∗∗∗∗∗∗∗ CASE ∗∗∗∗∗∗∗∗
51 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
52
53 Case:
54 (
55 CaseTerm name=ID
56 (
57 casePrefix = CasePrefix
58 (’version ’ Eq version = INT)
59 // clientPath and ownerPath is defined in CaseSetting
60 // Interpreter automatically finds the following

attributes :
61 // 1. entityDefinitionId (rootEntityDefinitionId):
62 // Case Schema : all entities of settings and stages
63 // 2. newEntityAttachPath (entityAttachPath): take path

to Settings entity by default
64 // 3. newEntityDefinitionId (entityDefinitionId): take

Settings entity by default
65 //
66 (
67 description = Description
68 responsibilities = Responsibilities
69 setting = CaseSetting
70 summary = SummaryPanel
71 (’Trigger ’ hookList += CaseHook)?
72 (entityDefinitionId = STRING)?
73 (entityAttachPath = STRING)?
74 (notes = STRING)?
75 stageList += Stage
76)#
77
78)#
79) | (Ref /(Case)\s/ ref =[Case|FQN])?
80 ;
81
82 CaseSetting :
83 (
84 SettingTerm
85 (description = Description)?
86 (
87 caseOwner = CaseOwner
88 (attrList ∗= Attribute)
89 (casePatient = CasePatient)?
90 (attrList ∗= Attribute)
91)#
92) | (RefSetting ref =[CaseSetting |FQN])?
93 ;
94
95 CaseOwner :
96 /(CaseOwner)\s/ group = TextNoQuote
97 attrProp = AttributeProp
98 ;
99
100 CasePatient :
101 /(CasePatient)\s/ group = TextNoQuote
102 attrProp = AttributeProp
103 ;
104
105 /∗ LinkUserGroupAttr :
106 directive = AttributeDirective

185

A Appendices

107 (
108 // description = Description
109 (attrProp = AttributeProp)?
110)#
111 ;∗/
112
113
114 Responsibilities :
115 /(Responsibilities)\s/
116 (
117 groupList ∗= Group
118 userList ∗= User
119)#
120 ;
121
122 Group:
123 GroupTerm GroupIdentity
124 ;
125
126 User:
127 UserTerm BasicIdentity
128 ;
129
130 AttributeValue :
131 name=ID Eq value= STRING |INT|FLOAT
132 ;
133
134 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
135 ∗∗∗∗∗ ATTRIBUTE SECTION ∗∗∗∗∗∗
136 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
137
138 Attribute :
139 AttributeTerm name = ID
140 //(
141
142 attrProp = AttributeProp
143 //)#
144 ;
145
146 AttributeProp :
147 directive = AttributeDirective
148 (
149 description = Description
150 (externalId = ExternalId)?
151 (additionalDescription = AdditionalDescription)?
152 (uiRef = UiReference)?
153 (defaultValue = DefaultValue)?
154 (defaultValues = DefaultValues)?
155)#
156 ;
157
158 AttributeDirective :
159 (multiplicity = Multiplicity)?
160 (type = Type)?
161 ;
162
163 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
164 ∗∗∗∗∗ SUMMARY SECTION ∗∗∗∗∗∗
165 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
166
167 SummaryPanel :

186

A Appendices

168 /(SummaryPanel)\s/ sectionList += SummarySection
169 ;
170
171 SummarySection :
172 /(Section)\s/ name = ID
173 (directive = SummarySectionPosition)?
174 description = Description
175 paramList += SummaryParam
176 ;
177
178 SummaryParam :
179 /(InfoPath)\s/ path = TextNoQuote
180 ;
181
182 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
183 ∗∗∗∗∗ HTTPHOOK ∗∗∗∗∗∗
184 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
185
186 Hook:
187 CaseHook | HttpHook | DualTaskHttpHook
188 ;
189
190 CaseHook :
191 (
192 (/(Hook)\s/ name = ID)?
193 /(On)\s/ event = CaseHookEvent
194 /(invoke)\s/ url = STRING
195) | (RefHook ref =[CaseHook |FQN])?
196 ;
197
198 HttpHook :
199 (
200 (/(Hook)\s/ name = ID)?
201 /(On)\s/ event = BaseEvent
202 (
203 (/(invoke)\s/ url = STRING)
204 (/(method)\s/ method = HttpMethod)
205 (/(with failureMessage)\s/ failureMessage = STRING)?
206)#
207) | (RefHook ref =[HttpHook |FQN])?
208 ;
209
210 DualTaskHttpHook :
211 (
212 (/(Hook)\s/ name = ID)?
213 /(On)\s/ event = DualTaskEvent
214 (
215 (/(invoke)\s/ url = STRING)
216 (/(method)\s/ method = HttpMethod)
217 (/(with failureMessage)\s/ failureMessage = STRING)?
218)#
219) | (RefHook ref =[DualTaskHttpHook |FQN])?
220 ;
221
222 SharedEvent :
223 ’available ’
224 | ’enable ’
225 | ’activate ’
226 | ’complete ’
227 | ’terminate ’
228 ;

187

A Appendices

229
230 CaseHookEvent :
231 SharedEvent
232 | ’delete ’
233 ;
234
235 BaseEvent :
236 SharedEvent
237 | ’correct ’
238 ;
239
240 DualTaskEvent :
241
242 ’activatehumanpart ’
243 | ’activateautopart ’
244 | ’completehumanpart ’
245 | ’completeautopart ’
246 | ’correcthumanpart ’
247 | ’correctautopart ’
248 | BaseEvent
249 ;
250
251 CasePrefix :
252 ’prefix ’ Eq value = STRING
253 ;
254
255 Description :
256 (’label ’ Eq value = STRING)
257 ;
258
259
260 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
261 ∗∗∗∗∗∗∗∗ STAGE ∗∗∗∗∗∗∗∗∗
262 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
263
264 Stage:
265 (
266 StageTerm name = ID
267 directive = WorkflowElementDirective
268 (
269 (description = Description)
270 (ownerPath = OwnerPath)?
271 (clientPath = ClientPath)?
272 (dynamicDescriptionPath = DynamicDescriptionPath)?
273 (externalId = ExternalId)?
274 (additionalDescription = AdditionalDescription)?
275)#
276 (
277 (preconditionList ∗= Precondition)
278 (TriggerTerm hookList ∗= HttpHook)?
279 taskList += Task
280)#
281) | (RefStage ref =[Stage|FQN])?
282 ;
283
284 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
285 ∗∗∗∗∗∗∗∗ TASK ∗∗∗∗∗∗∗∗∗
286 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
287
288 Task:
289 HumanTask

188

A Appendices

290 | AutomatedTask
291 | DualTask
292 ;
293
294 HumanTask :
295 (
296 HumanTaskTerm name = ID
297 directive = WorkflowElementDirective
298 attrList = SharedTaskAttrs
299 (
300 (TriggerTerm hookList ∗= HttpHook)?
301 form = Form
302)#
303)
304 | (RefTask ref =[HumanTask |FQN])?
305 ;
306
307 AutomatedTask :
308 (
309 AutoTaskTerm name = ID
310 directive = WorkflowElementDirective
311 attrList = AutomatedTaskAttrs
312 (
313 (TriggerTerm hookList ∗= HttpHook)?
314 form = Form
315)#
316) | (RefTask ref =[AutomatedTask |FQN])?
317 ;
318
319 DualTask :
320 (
321 DualTaskTerm name = ID
322 directive = WorkflowElementDirective
323 attrList = SharedTaskAttrs
324 (
325 (TriggerTerm hookList ∗= DualTaskHttpHook)?
326 form = Form
327)#
328) | (RefTask ref =[DualTask |FQN])?
329 ;
330
331 AutomatedTaskAttrs :
332 (
333 description = Description
334 (ownerPath = OwnerPath)?
335 (externalId = ExternalId)?
336 (dynamicDescriptionPath = DynamicDescriptionPath)?
337 (additionalDescription = AdditionalDescription)?
338 (preconditionList ∗= Precondition)
339)#
340 ;
341
342 SharedTaskAttrs :
343 (
344 description = Description
345 (ownerPath = OwnerPath)?
346 (dueDatePath = DueDatePath)?
347 (externalId = ExternalId)?
348 (additionalDescription = AdditionalDescription)?
349 (dynamicDescriptionPath = DynamicDescriptionPath)?
350 (preconditionList ∗= Precondition)

189

A Appendices

351)#
352 ;
353
354 Precondition :
355 PreconditionTerm
356 (
357 // aka. processDefinitionId in Thesis
358 (’previousStep ’ Eq stepList += STRING)∗
359
360 // aka. expression in Thesis
361 (’condition ’ Eq entryCondition = STRING)?
362)#
363 ;
364
365 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
366 ∗∗∗∗∗∗∗∗∗ FORM ∗∗∗∗∗∗∗∗∗
367 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
368
369 Form:
370 (
371 FormTerm name = ID
372 (directive = FormDirective)?
373 fieldList += FormField
374) | (RefForm ref =[Form|FQN])?
375 ;
376
377 FormDirective :
378 (
379 (mandatory = Mandatory)?
380 (readOnly = ReadOnly)?
381)#
382 ;
383
384 FormField :
385 InputField /[\s\n]∗/ | OutputField /[\s\n]∗/
386 ;
387
388 InputField :
389 (
390 InputFieldTerm name = ID
391 directive = InputFieldDirective
392 (
393 (
394 description = Description
395 | question = Question
396)
397 (path = CustomElementRefPath)?
398 (uiRef = UiReference)?
399 (externalId = ExternalId)?
400 (additionalDescription = AdditionalDescription)?
401 (defaultValue = DefaultValue)?
402 (defaultValues = DefaultValues)?
403)#
404) | (Ref InputFieldTerm ref =[InputField |FQN])?
405 ;
406
407 CustomElementRefPath :
408 ’ElementPath ’ Eq value= STRING
409 ;
410
411 InputFieldDirective :

190

A Appendices

412 (
413 (mandatory = Mandatory)?
414 (readOnly = ReadOnly)?
415 (position = Position)?
416 (multiplicity = Multiplicity)?
417 // There is no grammar for DualTask field
418 // to avoid overhead in computation , since
419 // we expect a large number of fields , and
420 // introducing a DualTaskField along with InputField
421 // will result in longer parsing time
422 // The interpreter will check whether a part
423 // is included in the DualTaskField instead .
424 (part = Part)?
425 (type = FieldType)?
426)#
427 ;
428
429 OutputField :
430 (
431 OutputFieldTerm name = ID
432 directive = OutputFieldDirective
433 (
434 description = Description
435 (additionalDescription = AdditionalDescription)?
436 (uiRef = UiReference)?
437 (path = CustomElementRefPath)?
438 (expression = OutputFieldExpression)?
439 (externalId = ExternalId)?
440 (defaultValue = DefaultValue)?
441 (defaultValues = DefaultValues)?
442)#
443) | (Ref OutputFieldTerm ref =[OutputField |FQN])?
444 ;
445
446 OutputFieldDirective :
447 (
448 (mandatory = Mandatory)?
449 (readOnly = ReadOnly)?
450 (position = Position)?
451 //(explicitType = PrimitiveDataType)?
452 (explicitType = Type)?
453)#
454 ;
455
456 Question :
457 ’Question ’ Eq text= STRING
458 optionList += Option
459 ;
460
461 Option :
462 /(Option)\s/ (
463 (key= STRING)
464 (’value ’ Eq value= STRING)
465 (additionalDescription = AdditionalDescription)?
466 (externalId = ExternalId)?
467)#
468 ;
469
470 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
471 ∗∗∗∗∗∗ COMMON DIRECTIVES ∗∗∗∗∗∗
472 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

191

A Appendices

473
474 WorkflowElementDirective :
475 (
476 (mandatory = Mandatory)?
477 (repeatable = Repeatable)?
478 (activation = Activation)?
479 (multiplicity = Multiplicity)?
480)#
481 ;
482
483 Multiplicity :
484 Hash (
485 ’maxOne ’
486 | ’exactlyOne ’
487 | ’atLeastOne ’
488 | ’any ’
489)
490 ;
491
492 Type:
493 Hash (
494 LinkType
495 | DocumentLinkType
496 | ’notype ’
497 | ’text ’ // string
498 | ’longtext ’
499 | ’string ’
500 | ’boolean ’
501 | NumType
502 | ’singlechoice ’ // aka. ’enumeration ’ in Thesis
503 | ’multiplechoice ’
504 | DateType
505 | ’json ’
506 | ’custom ’
507)
508 ;
509
510 FieldType :
511 Type
512 ;
513
514 LinkType :
515 ’link ’ ’.’ (linkType =’Users ’ | linkType =’Entity ’)
516 ’(’ linkObj += TextNoQuote (’,’ linkObj += TextNoQuote)? ’)’
517 ;
518
519 DocumentLinkType :
520 ’documentlink ’ ’(’ url= STRING ’)’
521 ;
522
523 DateType :
524 ’date.after(TODAY)’
525 | /(date)\s/
526 ;
527
528 NumType :
529 ’number ’ (’(’
530 ((comparator = Comparator num=INT) | (min=INT ’−’ max=INT))
531 ’)’)?
532 ;
533

192

A Appendices

534 Part:
535 Hash (
536 ’humanDuty ’
537 | ’systemDuty ’
538)
539 ;
540
541 Repeatable :
542 Hash (
543 ’repeatSerial ’
544 | ’repeatParallel ’ (’(’ INT ’)’)?
545 | ’noRepeat ’ // default
546)
547 ;
548
549 Mandatory :
550 Hash (
551 ’mandatory ’ // default
552 | ’notmandatory ’
553)
554 ;
555
556 Activation :
557 Hash (
558 ’manualActivate ’
559 | ’autoActivate ’ // default
560 | ’activateWhen ’ ’(’ STRING ’)’
561)
562 ;
563
564 ReadOnly :
565 Hash (
566 ’readOnly ’
567 | ’notReadOnly ’ // default
568)
569 ;
570
571 SharedPosition :
572 ’stretched ’ // Default
573 | ’left ’
574 | ’center ’
575 | ’right ’
576 ;
577
578 SummarySectionPosition :
579 Hash SharedPosition
580 ;
581
582 Position :
583 Hash (
584 ’leftcenter ’
585 | ’centerright ’
586 | SharedPosition
587)
588 ;
589
590
591 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
592 ∗∗∗∗∗ SHARED PROPS ∗∗∗∗∗
593 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
594

193

A Appendices

595 AdditionalDescription :
596 " additionalDescription " Eq value= STRING
597 ;
598
599 DefaultValues :
600 ’defaultValues ’ Eq value= WrapValue
601 ;
602
603 DefaultValue :
604 (
605 ’defaultValue ’ Eq
606 (
607 (value= STRING)
608 | (Ref ref =[AttributeValue |FQN])
609)
610)
611 ;
612
613 DynamicDescriptionPath :
614 ’dynamicDescriptionRef ’ Eq value= STRING
615 ;
616
617 ExternalId :
618 ’externalId ’ Eq value = STRING
619 ;
620
621 OwnerPath :
622 ’owner ’ Eq value = STRING
623 ;
624
625 ClientPath :
626 ’client ’ Eq value = STRING
627 ;
628
629 UiReference :
630 ’uiRef ’ Eq
631 (
632 (value= STRING)
633 | (Ref ref =[AttributeValue |FQN])
634)
635 ;
636
637 DueDatePath :
638 ’dueDateRef ’ Eq value= STRING
639 ;
640
641 OutputFieldExpression :
642 ’expression ’ Eq value = STRING
643 ;
644
645 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
646 ∗∗∗∗∗∗∗ TERMINAL ∗∗∗∗∗
647 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
648
649 HttpMethod :
650 ’get ’
651 | ’post ’
652 | ’put ’
653 | ’delete ’
654 ;
655

194

A Appendices

656 Comparator :
657 ’=’
658 | ’<>’
659 | ’<=’
660 | ’>=’
661 | ’<’
662 | ’>’
663 ;
664
665 Quote:
666 ’"’ | "’"
667 ;
668
669 Text:
670 STRING
671 ;
672
673 TextNoQuote :
674 /([a−zA −Z0 −9−_.]) ∗/
675 ;
676
677 // Assignment Sign
678 Eq:
679 ’=’
680 ;
681
682 // Directive Sign
683 Hash:
684 ’#’
685 ;
686
687 WrapValue :
688 ’[’ (STRING | TextNoQuote) (’,’ (STRING | TextNoQuote))∗ ’]’
689 ;
690
691 Ref:
692 /(use)\s/
693 ;
694
695 RefSetting :
696 Ref SettingTerm
697 ;
698
699 RefStage :
700 Ref StageTerm
701 ;
702
703 RefTask :
704 Ref TaskTerm
705 ;
706
707 RefField :
708 Ref InputFieldTerm
709 ;
710
711 RefForm :
712 Ref FormTerm
713 ;
714
715 RefHook :
716 Ref HookTerm

195

A Appendices

717 ;
718
719 Comment :
720 (/\/\/.∗ $/
721 | /\/\∗.∗ $/
722 | /\∗.∗$/
723 | /.∗[\∗\/] $/)
724 ;
725
726 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
727 ∗∗∗∗∗∗∗ I18N TERMINAL ∗∗∗∗∗
728 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
729
730 WorkspaceTerm :
731 /(Workspace)\s/
732 ;
733
734 CaseTerm :
735 /(Case)\s/
736 ;
737
738 SettingTerm :
739 /(Setting)\s/
740 ;
741
742 StageTerm :
743 /(Stage)\s/
744 ;
745
746 TaskTerm :
747 /(Task)\s/
748 ;
749
750 HumanTaskTerm :
751 /(HumanTask)\s/
752 ;
753
754 AutoTaskTerm :
755 /(AutoTask)\s/
756 ;
757
758 DualTaskTerm :
759 /(DualTask)\s/
760 ;
761
762 FormTerm :
763 /(Form)\s/
764 ;
765
766 InputFieldTerm :
767 /(InputField)\s/
768 ;
769
770 OutputFieldTerm :
771 /(OutputField)\s/
772 ;
773
774 TriggerTerm :
775 /(Trigger)\s/
776 ;
777

196

A Appendices

778 HookTerm :
779 /(Hook)\s/
780 ;
781
782 UserTerm :
783 /(User)\s/
784 ;
785
786 GroupTerm :
787 /(Group)\s/
788 ;
789
790 PreconditionTerm :
791 /(Precondition)\s/
792 ;
793
794 FormTerm :
795 /(Form)\s/
796 ;
797 AttributeTerm :
798 /(Attribute)\s/
799 ;
800
801 /∗ ∗∗∗
802 ∗∗∗∗ ERROR DETECTION ASSISTANT RULES ∗∗∗∗∗∗∗∗
803 ∗∗ ∗/
804
805 // These are the foundational object in SACM. When the
806 // Syntax Detector scan the lines upward from the error line ,
807 // if it reaches one of these keywords , it will stop scanning
808
809 BuildingBlockObject :
810 WorkspaceTerm
811 | CaseTerm
812 | SettingTerm
813 | StageTerm
814 | HumanTaskTerm | DualTaskTerm | AutoTaskTerm
815 | FormTerm
816 | InputFieldTerm | OutputFieldTerm
817 | GroupTerm | UserTerm
818 | PreconditionTerm | HookTerm
819 ;

Listing A.1: The complete Acadela grammar specification.

197

A Appendices

A.2 CP Model De�nition and Visualization in Acadela

This section presents the Acadela code and visualization of the six CPs presented in Section 7.2.2. The
groups and CP ID in the workspace is anonymized to avoid exposing the identity of the medical institu-
tions.

A.2.1 COPD Breathing Exercise

Figure A.1: Visualization of the CP model generated by Listing A.2.

1 aca0 .1
2 workspace Demo
3 define case PII1_COPD
4 prefix = ’PII1 ’
5 version = 1
6 label = ’COPD Treatment ’

8 Responsibilities
9 group DemoPhysicians name = ’Demo Physician ’ // staticId = ’

asdf234 ’
10 group DemoClinicians name = ’Demo Clinician ’
11 group DemoProfessionals name = ’Demo Professional ’
12 group DemoPatients name = ’Demo Patient ’
13 group DemoNurses name = ’Demo Nurse ’

15 Setting
16 CaseOwner DemoProfessionals
17 #exactlyOne
18 label = ’Demo Professionals ’

198

A Appendices

20 Attribute WorkplanDueDate
21 #exactlyOne #date.#after(TODAY)
22 label = ’Workplan Due Date ’
23 externalId = ’dueDateConnie ’

25 CasePatient DemoPatients
26 #exactlyOne
27 label = ’Patient ’

29 Attribute Clinician
30 #exactlyOne #Link.#Users(DemoClinicians)
31 label = ’Clinician ’

33 Attribute Nurse
34 #exactlyOne #Link.#Users(DemoNurses)
35 label = ’Nurse ’

37 SummaryPanel
38 Section PrevExerciseShoulder #left
39 label = " Shoulder was increased accurately ?"
40 InfoPath Exercise . BreathingExercise . ShoulderIncrease

42 Section PrevBellyExpansion #left
43 label = "Belly was expanded properly ?"
44 InfoPath Exercise . BreathingExercise . BellyExpansion

46 Section PrevSittingPosture #left
47 label = " Sitting posture was correct ?"
48 InfoPath Exercise . BreathingExercise . SittingPosture

50 Section DoctorNote #left
51 label = " Recommendations "
52 InfoPath Discharge . DischargePatient . DoctorNote

54 Stage Identification
55 #mandatory
56 owner = ’Setting . CaseOwner ’
57 label = ’Identification ’

59 HumanTask SelectPatient
60 #mandatory
61 label = ’Assign Patient ’
62 owner = ’Setting .Nurse ’
63 dueDateRef = ’Setting . WorkplanDueDate ’
64 externalId = ’SelectPatient ’

66 Form PatientAssignForm
67 #mandatory

69 InputField SelectPatient
70 #custom
71 ElementPath = " Setting . CasePatient "
72 label = " Assigned Patient "

74 InputField SelectDoctor
75 #custom
76 ElementPath = " Setting . Clinician "
77 label = " Assigned Clinician "

79 Stage Exercise
80 #mandatory #repeatSerial #atLeastOne

199

A Appendices

81 label = " Exercise "

83 Precondition
84 previousStep = ’Identification ’

86 Precondition
87 previousStep = ’Exercise ’

89 HumanTask QuestionPreExercise
90 #mandatory #atLeastOne
91 label = "Pre − exercise Questionnaire "

93 Form PreExerciseForm
94 #mandatory
95 InputField StressOrShortBreath
96 #singlechoice #stretched
97 question = ’Do you feel stressed or short of breath today

?’
98 option ’Not at all ’ value = ’4’
99 option ’A little ’ value = ’3’
100 option ’So −so’ value = ’2’
101 option ’Yes ’ value = ’1’
102 option ’Too much ’ value = ’0’
103 uiRef = " colors (0<=red <=1< yellow <=2 <= green <=4)"

105 InputField BreathingStruggle
106 #singlechoice #stretched
107 question = ’Do you struggle to breath ?’
108 option ’Not at all ’ value = ’4’
109 option ’A little ’ value = ’3’
110 option ’So −so’ value = ’2’
111 option ’Yes ’ value = ’1’
112 option ’Too much ’ value = ’0’
113 uiRef = ’colors (0<=red <=1< yellow <=2 <= green <=4) ’

115 InputField SleepStatus
116 #singlechoice #stretched
117 question = ’How was your sleep last night?’
118 option ’Good ’ value = ’2’
119 option ’Medium ’ value = ’1’
120 option ’Bad ’ value = ’0’
121 uiRef = ’colors (0<=red <1<= yellow <2<= green <=10) ’

123 InputField HaveMucus
124 #left #singlechoice
125 question = ’Do you have mucus today?’
126 option ’No’ value = ’0’
127 option ’Yes ’ value = ’1’

129 InputField CoughOutMucus
130 #left #singlechoice
131 question = ’Can you cough your mucus out?’
132 option ’No’ value = ’0’
133 option ’Yes ’ value = ’1’

136 HumanTask BreathingExercise
137 #mandatory #atLeastOne
138 label = ’Conduct Breathing Exercise ’

140 precondition

200

A Appendices

141 previousStep = ’QuestionPreExercise ’

143 Form ExerciseEvalForm
144 #mandatory
145 InputField ShoulderIncrease
146 #left #singlechoice
147 question = ’The shoulder position is accurate .’
148 option ’No’ value = ’0’
149 option ’Almost ’ value = ’1’
150 option ’Yes ’ value = ’2’

152 InputField BellyExpansion
153 #left #singlechoice
154 question = ’The belly contraction and expansion is

accurate .’
155 option ’No’ value = ’0’
156 option ’Almost ’ value = ’1’
157 option ’Yes ’ value = ’2’

159 InputField SittingPosture
160 #stretched #singlechoice
161 question = ’The sitting posture of the patient is

accurate .’
162 option ’No’ value = ’0’
163 option ’Almost ’ value = ’1’
164 option ’Yes ’ value = ’2’
165 option ’Not Applicable ’ value = ’ −1’

167 InputField ExerciseComment
168 #stretched #notmandatory
169 label = ’Comment ’

171 HumanTask QuestionPostExercise
172 #mandatory #atLeastOne
173 label = ’Post − exercise Questionnaire ’

175 precondition
176 previousStep = ’BreathingExercise ’

179 Form PostExerciseForm
180 #mandatory
181 InputField StressOrShortBreath
182 #singlechoice #stretched
183 question = ’Do you feel stressed or short of breath today

?’
184 option ’Not at all ’ value = ’4’
185 option ’A little ’ value = ’3’
186 option ’So −so’ value = ’2’
187 option ’Yes ’ value = ’1’
188 option ’Too much ’ value = ’0’
189 uiRef = ’colors (0<=red <=1< yellow <=2 <= green <=4) ’

191 InputField BreathingStruggle
192 #singlechoice #stretched
193 question = ’Do you struggle to breath ?’
194 option ’Not at all ’ value = ’4’
195 option ’A little ’ value = ’3’
196 option ’So −so’ value = ’2’
197 option ’Yes ’ value = ’1’
198 option ’Too much ’ value = ’0’

201

A Appendices

199 uiRef = ’colors (0<=red <=1< yellow <=2 <= green <=4) ’

201 InputField CoughOutMucus
202 #left #singlechoice
203 question = ’Can you cough your mucus out?’
204 option ’No’ value = ’0’
205 option ’Yes ’ value = ’1’

208 Stage Discharge
209 #mandatory #manualActivate
210 owner = ’Setting . CaseOwner ’
211 label = ’Discharge ’

213 precondition
214 previousStep = ’Identification ’

216 HumanTask DischargePatient
217 #mandatory
218 owner = ’Setting . CaseOwner ’
219 label = ’Discharge Patient ’

221 Form DischargeForm
222 InputField DoctorNote
223 #text
224 label = ’Post − Treatment Recommendation :’

Listing A.2: Acadela code to define the CP of COPD Breathing Exercise

A.2.2 Selection of Antipsychotics for Schizophrenia

Figure A.2: Visualization of the CP model generated by Listing A.3.

202

A Appendices

1 aca0 .1
2 workspace Demo

4 define case STP_Schizophrenia
5 prefix = ’STP ’
6 version = 2
7 label = ’Schizophrenia Treatment ’

9 Responsibilities
10 group DemoPhysicians name = ’Demo Physician ’ // staticId = ’asdf234 ’
11 group DemoClinicians name = ’Demo Clinician ’
12 group DemoProfessionals name = ’Demo Professional ’
13 group DemoPatients name = ’Demo Patient ’
14 group DemoNurses name = ’Demo Nurse ’

16 // A comment
17 /∗ a multiline
18 ∗ Comment
19 ∗/

21 Setting
22 // label = "Case Configuration "
23 CaseOwner DemoProfessionals #exactlyOne
24 label = ’Demo Professionals ’

26 Attribute WorkplanDueDate
27 #exactlyOne #date.#after(TODAY)
28 label = ’Workplan Due Date ’
29 externalId = ’dueDateConnie ’

31 CasePatient DemoPatients #exactlyOne
32 label = ’Patient ’

34 Attribute Clinician
35 #exactlyOne #Link.#Users(DemoClinicians)
36 label = ’Clinician ’

38 Attribute Nurse
39 #exactlyOne #Link.#Users(DemoNurses)
40 label = ’Nurse ’

42 SummaryPanel
43 Section MedicalInformation #stretched
44 label = " Medical Information :"
45 InfoPath Identification . MedicalInfo .Age
46 InfoPath Identification . MedicalInfo . Gender
47 InfoPath Identification . MedicalInfo . PsychosisTime
48 InfoPath Identification . MedicalInfo . ConcomitantDisease
49 InfoPath Identification . MedicalInfo . RiskGroup

51 Section PatientPreferences #stretched
52 label = " Patient Preferences :"
53 InfoPath Identification . PatientPreferences . TreatmentGoal
54 InfoPath Identification . PatientPreferences . PreviouslyUsedDrugs
55 InfoPath Identification . PatientPreferences . AvoidSideEffect
56 InfoPath Identification . PatientPreferences . PreferredDrugType
57 InfoPath Identification . PatientPreferences . OtherImportances

59 Section LastTherapySession #stretched
60 label = " Patient Preferences :"

203

A Appendices

61 InfoPath ShareDecisionMaking . OpenTherapySession .
SelectedAntipsychotics

62 InfoPath ShareDecisionMaking . OpenTherapySession . AvoidSideEffect
63 InfoPath ShareDecisionMaking . OpenTherapySession .

TolerableSideEffect

65 Stage Identification
66 #mandatory
67 owner = ’Setting . CaseOwner ’
68 label = ’Identification ’

70 HumanTask SelectPatient
71 #mandatory
72 label = ’Assign Patient ’
73 owner = ’Setting .Nurse ’
74 dueDateRef = ’Setting . WorkplanDueDate ’
75 externalId = ’SelectPatient ’

77 Form PatientAssignForm
78 #mandatory

80 InputField SelectPatient
81 #custom
82 ElementPath = " Setting . CasePatient "
83 label = " Assigned Patient "

85 InputField SelectDoctor
86 #custom
87 ElementPath = " Setting . Clinician "
88 label = " Assigned Clinician "

90 HumanTask MedicalInfo
91 #mandatory
92 label = " Medical Information "
93 Form MedicalInfoForm
94 #mandatory
95 InputField Age
96 #number
97 label = ’Age:’

99 InputField Gender
100 #singlechoice
101 question = ’Gender :’
102 option ’Male ’ value = ’0’
103 option ’Female ’ value = ’1’
104 option ’Other ’ value = ’2’

106 InputField PsychosisTime
107 #number
108 label = ’Length of Psychosis (Months):’

110 InputField ConcomitantDisease
111 #multipleChoice #left
112 additionalDescription = ’Is any of the following concomitant

diseases known to you?’
113 question = ’Known Concomitant Disease :’
114 Option " Cardiac Diseases " value = "1"
115 Option " Epilepsy " value = "2"
116 Option "Liver Diseases " value = "3"
117 Option " Kidney Diseases " value = "4"
118 Option " Adipositas " value = "5"

204

A Appendices

119 Option " Diabetes " value = "6"
120 Option "Fat Metabolism Disorder " value = "7"
121 Option "Blood Count Changes " value = "8"
122 Option " Cognitive Changes / Dementias " value = "9"

124 InputField RiskGroup
125 #multipleChoice #left
126 question = ’Which sub − group does the patient belongs to?’
127 option ’Adolescence ’ value = ’1’
128 option ’Senior ’ value = ’2’
129 option ’Comorbid Substance Abuse ’ value = ’3’
130 option ’Predominantly Negative Symptoms ’ value = ’4’
131 option ’Psychologically Stable Patient ’ value = ’5’
132 option ’Therapy resistance ’ value = ’6’
133 option ’Pregnant ’ value = ’7’

135 HumanTask PatientPreferences
136 #mandatory
137 label = ’Record Medical Profile ’

139 Form PrefForm
140 #mandatory

142 InputField TreatmentGoal
143 #text
144 label = ’What would I like to achieve after the treatment ? (

Treatment Goal):’

146 InputField PreviouslyUsedDrugs
147 #singlechoice #left #atLeastOne
148 Question = ’Previously Used Antipsychotics :’
149 Option " Amisulprid " value = "1"
150 Option " Aripirazol " value = "2"
151 Option " Cariprazin " value = "3"
152 Option " Clozapin " value = "4"
153 Option " Haloperidol " value = "5"
154 Option " Olanzapin " value = "6"
155 Option " Paliperidon " value = "7"
156 Option " Risperidon " value = "8"
157 Option " Perphenazin " value = "9"
158 Option " Quetiapin " value = "10"
159 Option " Sertindol " value = "11"
160 Option " Ziprasidon " value = "12"

163 InputField RetakePreviouslyUsedDrugs
164 #multipleChoice #center
165 Question = ’Which Drugs would be Used again:’
166 Option " Amisulprid " value = " Amisulprid "
167 Option " Aripirazol " value = " Aripirazol "
168 Option " Cariprazin " value = " Cariprazin "
169 Option " Clozapin " value = " Clozapin "
170 Option " Haloperidol " value = " Haloperidol "
171 Option " Olanzapin " value = " Olanzapin "
172 Option " Paliperidon " value = " Paliperidon "
173 Option " Risperidon " value = " Risperidon "
174 Option " Perphenazin " value = " Perphenazin "
175 Option " Quetiapin " value = " Quetiapin "
176 Option " Sertindol " value = " Sertindol "
177 Option " Ziprasidon " value = " Ziprasidon "

205

A Appendices

179 InputField PrepareDrugTypeTaken
180 #singlechoice #stretched
181 Question = ’Medications can be administered as tablets , drops

, or injections (usually several weeks apart). Do you want to start
thinking about this now?’

182 Option "Yes" value = "1"
183 Option "No" value = "0"

185 InputField PreferredDrugType
186 #singlechoice #left #atLeastOne
187 Question = ’Preferred Drug Types:’
188 Option " Syringes " value = "1"
189 Option "Pills" value = "2"
190 Option "Drops" value = "3"

192 InputField AvoidSideEffect
193 #stretched #multipleChoice
194 Question = ’Side Effects to be Avoided :’
195 Option ’Dry Mouth , Blurred Vision , Constipation ’ value = ’1

’
196 Option ’Muscular Stiffness , Movement Disorders , Tremor ’

value = ’2’
197 Option ’Reduction of Sexual Desire , Sexual Dysfunction ,

Menstrual Cramps ’ value = ’3’
198 Option ’Weight Gain ’ value = ’4’
199 Option ’Fatigue ’ value = ’5’
200 Option ’Restless Legs ’ value = ’6’

202 InputField OtherImportances
203 #text #notmandatory
204 label = ’Other Important Notes:’

206 Stage ShareDecisionMaking
207 #mandatory #repeatSerial
208 owner = ’Setting . Clinician ’
209 label = ’Share Decision Making ’

211 Precondition
212 previousStep = ’Identification ’

214 Precondition
215 previousStep = ’ShareDecisionMaking ’

217 HumanTask OpenTherapySession
218 #mandatory #repeatParallel #atLeastOne
219 label = ’Arrange Therapy Session ’
220 owner = ’Setting . Clinician ’
221 dueDateRef = ’Setting . WorkplanDueDate ’

223 Form SDMForm
224 #mandatory
225 InputField SelectedAntipsychotics
226 #multipleChoice
227 Question = ’Selected Antipsychotics :’
228 Option " Amisulprid " value = "1"
229 Option " Aripirazol " value = "2"
230 Option " Cariprazin " value = "3"
231 Option " Clozapin " value = "4"
232 Option " Haloperidol " value = "5"
233 Option " Olanzapin " value = "6"
234 Option " Paliperidon " value = "7"

206

A Appendices

235 Option " Risperidon " value = "8"
236 Option " Perphenazin " value = "9"
237 Option " Quetiapin " value = "10"
238 Option " Sertindol " value = "11"
239 Option " Ziprasidon " value = "12"

241 InputField PsiacCheck
242 #longtext
243 label = ’PSIAC Verification of Conflicted Drugs ’

245 InputField AvoidSideEffect
246 #left #multipleChoice #notmandatory
247 Question = ’Side Effects to be Avoided :’
248 Option ’Dry Mouth , Blurred Vision , Constipation ’ value = ’1

’
249 Option ’Muscular Stiffness , Movement Disorders , Tremor ’

value = ’2’
250 Option ’Reduction of Sexual Desire , Sexual Dysfunction ,

Menstrual Cramps ’ value = ’3’
251 Option ’Weight Gain ’ value = ’4’
252 Option ’Fatigue ’ value = ’5’
253 Option ’Restless Legs ’ value = ’6’
254 Option ’Epilepsy ’ value = ’7’

256 InputField TolerableSideEffect
257 #right #multipleChoice #notmandatory
258 Question = ’Side Effects to be Tolerated :’
259 Option ’Dry Mouth , Blurred Vision , Constipation ’ value = ’1

’
260 Option ’Muscular Stiffness , Movement Disorders , Tremor ’

value = ’2’
261 Option ’Reduction of Sexual Desire , Sexual Dysfunction ,

Menstrual Cramps ’ value = ’3’
262 Option ’Weight Gain ’ value = ’4’
263 Option ’Fatigue ’ value = ’5’
264 Option ’Restless Legs ’ value = ’6’

266 InputField Comment
267 #notmandatory #stretched
268 label = ’Comment :’

270 Stage Discharge
271 #mandatory #manualActivate
272 owner = ’Setting . CaseOwner ’
273 label = ’Discharge ’

275 precondition
276 previousStep = ’Identification ’

278 HumanTask DischargePatient
279 #mandatory
280 owner = ’Setting . CaseOwner ’
281 label = " Discharge Patient "

283 Form DischargeForm
284 InputField DoctorNote
285 #text
286 label = "Post − Treatment Recommendation :"

Listing A.3: Acadela code to define the CP of Selection of Antipsychotics for Schizophrenia

207

A Appendices

A.2.3 Diagnosis of Class II Smoke Inhalation Injury

Figure A.3: Visualization of the CP model generated by Listing A.4.

1 workspace Demo
2 define case SPI_SmokeInhalation
3 prefix = ’SPI ’
4 version = 1
5 label = ’Assessment Of Smoke Inhalation Injury ’

7 Responsibilities
8 group DemoPhysicians name = ’Demo Physician ’
9 group DemoClinicians name = ’Demo Clinician ’

10 group DemoProfessionals name = ’Demo Professional ’
11 group DemoPatients name = ’Demo Patient ’
12 group DemoNurses name = ’Demo Nurse ’

14 Setting
15 CaseOwner DemoProfessionals #exactlyOne
16 label = ’Demo Professionals ’
17 Attribute WorkplanDueDate
18 #exactlyOne #date.#after(TODAY)
19 label = ’Workplan Due Date ’
20 externalId = ’dueDateConnie ’

22 CasePatient DemoPatients #exactlyOne
23 label = ’Patient ’

25 Attribute Clinician
26 #exactlyOne #Link.#Users(DemoClinicians)

208

A Appendices

27 label = ’Clinician ’

29 Attribute Nurse
30 #exactlyOne #Link.#Users(DemoNurses)
31 label = ’Nurse ’
32 SummaryPanel
33 Section Risks #left
34 label = " Immediate Signs for Class II?"
35 InfoPath EvaluationIntermediate . ImmediateRisks . ImmediateFactor1
36 InfoPath EvaluationIntermediate . ImmediateRisks . ImmediateFactor2
37 InfoPath EvaluationIntermediate . ImmediateRisks . ImmediateFactor3
38 Section Risks #left
39 label = " Potential Signs for Class II?"
40 InfoPath Evaluation . AssessRisk . Factor1
41 InfoPath Evaluation . AssessRisk . Factor2
42 InfoPath Evaluation . AssessRisk . Factor3
43 InfoPath Evaluation . AssessRisk . Factor4
44 Section Risks #left
45 label = " Symptoms for Class II?"
46 InfoPath Symptomatic . AssessSymptomatic . Symptoms1
47 InfoPath Symptomatic . AssessSymptomatic . Symptoms2
48 InfoPath Symptomatic . AssessSymptomatic . Symptoms3
49 InfoPath Symptomatic . AssessSymptomatic . Symptoms4
50 InfoPath Symptomatic . AssessSymptomatic . Symptoms5
51 InfoPath Symptomatic . AssessSymptomatic . Symptoms6
52 Section Risks #left
53 label = " Results of laryngoscopy "
54 InfoPath ClassTwo . AssessClassTwo . ClTwo1
55 InfoPath ClassTwo . AssessClassTwo . ClTwo2
56 Section Risks #right
57 label = " Actions taken for Class II diagnosed patient "
58 InfoPath ClassTwoDiagnosed . AssessClassTwoDiagnosed . CLDiagnosed1
59 InfoPath ClassTwoDiagnosed . AssessClassTwoDiagnosed . CLDiagnosed2
60 InfoPath ClassTwoDiagnosed . AssessClassTwoDiagnosed . CLDiagnosed3
61 Section Risks #right
62 label = " Actions taken for Class II not diagnosed patient "
63 InfoPath ClassTwoNotDiagnosed . AssessClassTwoNotDiagnosed .

CLNotDiagnosed1
64 InfoPath ClassTwoNotDiagnosed . AssessClassTwoNotDiagnosed .

CLNotDiagnosed2

66 Stage Identification
67 #mandatory
68 owner = ’Setting . CaseOwner ’
69 label = ’Identification ’

71 HumanTask SelectPatient
72 #mandatory
73 label = ’Assign Patient ’
74 owner = ’Setting .Nurse ’
75 dueDateRef = ’Setting . WorkplanDueDate ’
76 externalId = ’SelectPatient ’

78 Form PatientAssignForm
79 #mandatory

81 InputField SelectPatient
82 #custom
83 ElementPath = " Setting . CasePatient "
84 label = " Assigned Patient "

209

A Appendices

86 InputField SelectDoctor
87 #custom
88 ElementPath = " Setting . Clinician "
89 label = " Assigned Clinician "

91 Stage EvaluationIntermediate
92 #mandatory
93 owner = ’Setting . Clinician ’
94 label = ’Intermediate Signs ’

96 Precondition
97 previousStep = ’Identification ’

99 HumanTask ImmediateRisks
100 #mandatory #exactlyOne
101 label = ’Assess immediate signs for smoke inhalation injury (

Class II)’
102 owner = ’Setting . Clinician ’
103 dueDateRef = ’Setting . WorkplanDueDate ’
104 externalId = ’ImmediateRisks ’

106 Form ImmediateRisksForm

108 InputField ImmediateFactor1
109 #singlechoice
110 question = ’Visible burns or edema of the oropharnyx ’
111 Option ’No’ value=’0’
112 Option ’Yes ’ value=’1’
113 InputField ImmediateFactor2
114 #singlechoice
115 question = ’Full thickness nasolabial burns ’
116 Option ’No’ value=’0’
117 Option ’Yes ’ value=’1’
118 InputField ImmediateFactor3
119 #singlechoice
120 question = ’Circumfeerential neck burns ’
121 Option ’No’ value=’0’
122 Option ’Yes ’ value=’1’
123 Stage Evaluation
124 #mandatory
125 owner = ’Setting . Clinician ’
126 label = ’Potential Signs ’

128 Precondition
129 previousStep = ’EvaluationIntermediate ’
130 condition = ’EvaluationIntermediate . ImmediateRisks .

ImmediateFactor1 + EvaluationIntermediate . ImmediateRisks .
ImmediateFactor2 + EvaluationIntermediate . ImmediateRisks .
ImmediateFactor3 = 0’

132 HumanTask AssessRisk
133 #mandatory #exactlyOne
134 label = ’Assess potential signs for smoke inhalation injury (

Class II)’
135 owner = ’Setting . Clinician ’
136 dueDateRef = ’Setting . WorkplanDueDate ’
137 externalId = ’AssessRisk ’

139 Form AssessRiskForm
140 InputField Factor1
141 #singlechoice

210

A Appendices

142 question = ’Burns in a closed space ’
143 Option ’No’ value=’0’
144 Option ’Yes ’ value=’1’
145 InputField Factor2
146 #singlechoice
147 question = ’Singed nasal hair ’
148 Option ’No’ value=’0’
149 Option ’Yes ’ value=’1’
150 InputField Factor3
151 #singlechoice
152 question = ’Facial burns ’
153 Option ’No’ value=’0’
154 Option ’Yes ’ value=’1’

156 InputField Factor4
157 #singlechoice
158 question = ’Soot in the mouth ’
159 Option ’No’ value=’0’
160 Option ’Yes ’ value=’1’

162 Stage Symptomatic
163 #mandatory
164 owner = ’Setting . Clinician ’
165 label = ’Symtopmatic ’
166 Precondition
167 previousStep = ’Evaluation ’
168 condition = ’Evaluation . AssessRisk . Factor1 + Evaluation .

AssessRisk . Factor2
169 + Evaluation . AssessRisk . Factor3 + Evaluation . AssessRisk .

Factor4 >0’

171 HumanTask AssessSymptomatic
172 #mandatory #exactlyOne
173 label = ’Evaluate symptoms ’
174 owner = ’Setting . Clinician ’
175 dueDateRef = ’Setting . WorkplanDueDate ’
176 externalId = ’Symptomatic ’

178 Form SymptomaticForm
179 InputField Symptoms1
180 #singlechoice
181 question = ’signss of respiratory ’
182 Option ’No’ value=’0’
183 Option ’Yes ’ value=’1’
184 InputField Symptoms2
185 #singlechoice
186 question = ’throat pain ’
187 Option ’No’ value=’0’
188 Option ’Yes ’ value=’1’
189 InputField Symptoms3
190 #singlechoice
191 question = ’odynophagia ’
192 Option ’No’ value=’0’
193 Option ’Yes ’ value=’1’
194 InputField Symptoms4
195 #singlechoice
196 question = ’drooling ’
197 Option ’No’ value=’0’
198 Option ’Yes ’ value=’1’
199 InputField Symptoms5
200 #singlechoice

211

A Appendices

201 question = ’stridor ’
202 Option ’No’ value=’0’
203 Option ’Yes ’ value=’1’
204 InputField Symptoms6
205 #singlechoice
206 question = ’hoarseness ’
207 Option ’No’ value=’0’
208 Option ’Yes ’ value=’1’
209 Stage ClassTwo
210 #mandatory
211 owner = ’Setting . Clinician ’
212 label = ’Laryngoscopy ’

214 Precondition
215 previousStep = ’Symptomatic ’
216 condition = ’Symptomatic . AssessSymptomatic . Symptoms1 +

Symptomatic . AssessSymptomatic . Symptoms2 + Symptomatic .
AssessSymptomatic . Symptoms3 + Symptomatic . AssessSymptomatic .
Symptoms4 + Symptomatic . AssessSymptomatic . Symptoms5 + Symptomatic .
AssessSymptomatic . Symptoms6 =0’

218 HumanTask AssessClassTwo
219 #mandatory #exactlyOne
220 label = ’Direct or indirect laryngoscopy ’
221 owner = ’Setting . Clinician ’
222 dueDateRef = ’Setting . WorkplanDueDate ’
223 externalId = ’AssessClassTwo ’

225 Form ClassTwoForm
226 InputField ClTwo1
227 #singlechoice
228 question = ’Erythema at upper airway ’
229 Option ’No’ value=’0’
230 Option ’Yes ’ value=’1’
231 InputField ClTwo2
232 #singlechoice
233 question = ’Blisters of the palate ’
234 Option ’No’ value=’0’
235 Option ’Yes ’ value=’1’

237 Stage ClassTwoDiagnosed
238 #mandatory
239 owner = ’Setting . Clinician ’
240 label = ’Class II Diagnosed ’

242 Precondition
243 previousStep = ’EvaluationIntermediate ’
244 condition = ’EvaluationIntermediate . ImmediateRisks .

ImmediateFactor1 + EvaluationIntermediate . ImmediateRisks .
ImmediateFactor2 + EvaluationIntermediate . ImmediateRisks .
ImmediateFactor3 > 0’

245 Precondition
246 previousStep = ’Symptomatic ’
247 condition = ’Symptomatic . AssessSymptomatic . Symptoms1 +

Symptomatic . AssessSymptomatic . Symptoms2 + Symptomatic .
AssessSymptomatic . Symptoms3 + Symptomatic . AssessSymptomatic .
Symptoms4 + Symptomatic . AssessSymptomatic . Symptoms5 + Symptomatic .
AssessSymptomatic .Symptoms6 >0’

248 Precondition
249 previousStep = ’ClassTwo ’

212

A Appendices

250 condition = ’ClassTwo . AssessClassTwo . ClTwo1 + ClassTwo .
AssessClassTwo .ClTwo2 >0’

252 HumanTask AssessClassTwoDiagnosed
253 #mandatory #exactlyOne
254 label = ’Next steps for patient Diagnosed with Class II’
255 owner = ’Setting . Clinician ’
256 dueDateRef = ’Setting . WorkplanDueDate ’
257 externalId = ’AssessClassTwoDiagnosed ’

259 Form ClassTwoDiagnosedForm
260 InputField CLDiagnosed1
261 #singlechoice
262 question = ’Early intubation for airway protection ’
263 Option ’Yes ’ value=’0’
264 Option ’Yes ’ value=’1’
265 InputField CLDiagnosed2
266 #singlechoice
267 question = ’Admit to ICU for bronchoscopy or consider to

transfer to burn center ’
268 Option ’Yes ’ value=’0’
269 Option ’Yes ’ value=’1’
270 InputField CLDiagnosed3
271 #singlechoice
272 question = ’Transfer to burn center ’
273 Option ’Yes ’ value=’0’
274 Option ’Yes ’ value=’1’

276 Stage ClassTwoNotDiagnosed
277 #mandatory
278 owner = ’Setting . Clinician ’
279 label = ’Class II not Diagnosed ’

281 Precondition
282 previousStep = ’Evaluation ’
283 condition = ’Evaluation . AssessRisk . Factor1 + Evaluation .

AssessRisk . Factor2 + Evaluation . AssessRisk . Factor3 + Evaluation .
AssessRisk . Factor4 = 0’

284 Precondition
285 previousStep = ’ClassTwo ’
286 condition = ’ClassTwo . AssessClassTwo . ClTwo1 + ClassTwo .

AssessClassTwo . ClTwo2 =0’

288 HumanTask AssessClassTwoNotDiagnosed
289 #mandatory #exactlyOne
290 label = ’Next steps for patient not Diagnosed with Class II’
291 owner = ’Setting . Clinician ’
292 dueDateRef = ’Setting . WorkplanDueDate ’
293 externalId = ’AssessClassTwoNotDiagnosed ’

295 Form ClassTwoNotDiagnosedForm
296 InputField CLNotDiagnosed1
297 #singlechoice
298 question = ’If high −risk , consider 24− hour observation to

rule out lower airway injury ’
299 Option ’No’ value=’0’
300 Option ’Yes ’ value=’1’
301 InputField CLNotDiagnosed2
302 #singlechoice
303 question = ’If high −risk , bronchoscopy to rule out lower

airway injury ’

213

A Appendices

304 Option ’No’ value=’0’
305 Option ’Yes ’ value=’1’

Listing A.4: Acadela code to define the CP of Smoke Inhalation Injury

A.2.4 Cervical Cancer Diagnosis

Figure A.4: Visualization of the CP model generated by Listing A.5.

1 workspace Demo
2 define case SPI_CervicalCancer
3 prefix = ’SPI ’
4 version = 12
5 label = ’Cervical Cancer ’

7 Responsibilities
8 group DemoPhysicians name = ’Demo Physician ’
9 group DemoClinicians name = ’Demo Clinician ’

10 group DemoProfessionals name = ’Demo Professional ’
11 group DemoPatients name = ’Demo Patient ’
12 group DemoNurses name = ’Demo Nurse ’

14 Setting
15 CaseOwner DemoProfessionals #exactlyOne
16 label = ’Demo Professionals ’
17 Attribute WorkplanDueDate
18 #exactlyOne #date.#after(TODAY)
19 label = ’Workplan Due Date ’
20 externalId = ’dueDateConnie ’

214

A Appendices

22 CasePatient DemoPatients #exactlyOne
23 label = ’Patient ’

25 Attribute Clinician
26 #exactlyOne #Link.#Users(DemoClinicians)
27 label = ’Clinician ’

29 Attribute Nurse
30 #exactlyOne #Link.#Users(DemoNurses)
31 label = ’Nurse ’

33 SummaryPanel
34 Section Risks #left
35 label = " Immediate Signs for Class II?"
36 InfoPath Identification . SelectPatient . PatientAge

38 Stage Identification
39 #mandatory
40 owner = ’Setting . CaseOwner ’
41 label = ’Identification ’

43 HumanTask SelectPatient
44 #mandatory
45 label = ’Assign Patient ’
46 owner = ’Setting .Nurse ’
47 dueDateRef = ’Setting . WorkplanDueDate ’
48 externalId = ’SelectPatient ’

50 Form PatientAssignForm
51 #mandatory

53 InputField SelectPatient
54 #custom
55 ElementPath = " Setting . CasePatient "
56 label = " Assigned Patient "

58 InputField PatientAge
59 #number
60 label = " Patient age"

62 InputField SelectDoctor
63 #custom
64 ElementPath = " Setting . Clinician "
65 label = " Assigned Clinician "

67 Stage CY
68 #mandatory #repeatserial
69 owner = ’Setting . Clinician ’
70 label = ’Cytological − Testing ’

72 Precondition
73 previousStep = ’Identification ’

75 Precondition
76 previousStep = ’CY’
77 condition = ’(CY. AssessCY .Colp = 2 or CY. AssessCY .Colp = 3) and

Identification . SelectPatient . PatientAge < 30’

79 HumanTask AssessCY
80 #mandatory

215

A Appendices

81 label = ’Evaluate test results ’
82 owner = ’Setting . Clinician ’
83 dueDateRef = ’Setting . WorkplanDueDate ’
84 externalId = ’AssessRisk ’

86 Form CYForm
87 InputField Colp
88 #singlechoice
89 question = ’Cytological testing ’
90 Option ’Pap I’ value=’0’
91 Option ’Pap II −a’ value=’1’
92 Option ’Pap II −p,g’ value=’2’
93 Option ’Pap IIID −1’ value=’3’
94 Option ’Pap IIID −2’ value=’4’
95 Option ’Pap III −p,g’ value=’5’
96 Option ’Pap IV’ value=’6’
97 Option ’Pap V’ value=’7’
98 Stage HPVT
99 #mandatory
100 owner = ’Setting . Clinician ’
101 label = ’HPV − Testing ’

103 Precondition
104 previousStep = ’CY’
105 // condition = ’(CY. AssessCY .Colp = 2 or CY. AssessCY .Colp = 3)

and Identification . SelectPatient . PatientAge > 29’
106 condition = ’(CY. AssessCY .Colp = 2 or CY. AssessCY .Colp = 3) and

(Identification . SelectPatient . PatientAge >= 30 and Identification .
SelectPatient . PatientAge <= 34) ’

108 Precondition
109 previousStep = ’Identification ’
110 condition = ’Identification . SelectPatient . PatientAge >= 35’

113 HumanTask AssessHPV
114 #mandatory
115 label = ’Evaluate test results ’
116 owner = ’Setting . Clinician ’
117 dueDateRef = ’Setting . WorkplanDueDate ’
118 externalId = ’AssessRisk ’

120 Form HPVForm
121 InputField HPV
122 #singlechoice
123 question = ’Cytological testing ’
124 Option ’Negative ’ value=’0’
125 Option ’Positive ’ value=’1’

127 Stage KO
128 #mandatory
129 owner = ’Setting . Clinician ’
130 label = ’KO − Testing ’

132 // Precondition
133 // previousStep = ’Identification ’
134 // condition = ’Identification . SelectPatient . PatientAge > 34’

136 Precondition
137 previousStep = ’HPVT ’
138 previousStep = ’CY’

216

A Appendices

139 condition = ’Identification . SelectPatient . PatientAge >= 35 and
((HPVT. AssessHPV .HPV = 1 and CY. AssessCY .Colp = 0) or (HPVT.
AssessHPV .HPV = 0 and CY. AssessCY .Colp = 3))’

141 HumanTask AssessKO
142 #mandatory #exactlyOne
143 label = ’Evaluate test results ’
144 owner = ’Setting . Clinician ’
145 dueDateRef = ’Setting . WorkplanDueDate ’
146 externalId = ’AssessRisk ’

148 Form KOForm
149 InputField HPV
150 #singlechoice
151 question = ’HPV ’
152 Option ’Negative ’ value=’0’
153 Option ’Positive ’ value=’1’
154 InputField Colp
155 #singlechoice
156 question = ’Cytological testing ’
157 Option ’Pap I’ value=’0’
158 Option ’Pap II −p,g’ value=’2’
159 Option ’Pap IIID −1’ value=’3’
160 Option ’Pap IIID −2’ value=’4’
161 Option ’Pap III −p,g’ value=’5’
162 Option ’Pap IV’ value=’6’
163 Option ’Pap V’ value=’7’
164 Stage KOII
165 #mandatory
166 owner = ’Setting . Clinician ’
167 label = ’KO − Testing II’

169 Precondition
170 previousStep = ’KO’
171 condition = ’KO. AssessKO .HPV = 1 and KO. AssessKO .Colp = 0 or KO

. AssessKO .HPV = 0 and KO. AssessKO .Colp = 3’

173 HumanTask AssessKOII
174 #mandatory #exactlyOne
175 label = ’Evaluate test results ’
176 owner = ’Setting . Clinician ’
177 dueDateRef = ’Setting . WorkplanDueDate ’
178 externalId = ’AssessRisk ’

180 Form KOIIForm
181 InputField HPV
182 #singlechoice
183 question = ’HPV ’
184 Option ’Negative ’ value=’0’
185 Option ’Positive ’ value=’1’
186 InputField Colp
187 #singlechoice
188 question = ’Cytological testing ’
189 Option ’Pap I’ value=’0’
190 Option ’Pap II −a’ value=’1’
191 Option ’Pap II −p,g’ value=’2’
192 Option ’Pap IIID −1’ value=’3’
193 Option ’Pap IIID −2’ value=’4’
194 Option ’Pap III −p,g’ value=’5’
195 Option ’Pap IV’ value=’6’
196 Option ’Pap V’ value=’7’

217

A Appendices

199 Stage CO
200 #mandatory
201 owner = ’Setting . Clinician ’
202 label = ’Colposcopy ’

204 Precondition
205 previousStep = ’CY’
206 condition = ’CY. AssessCY .Colp = 5 or CY. AssessCY .Colp = 4 or CY

. AssessCY .Colp = 6 or CY. AssessCY .Colp = 7’
207 Precondition
208 previousStep = ’KO’
209 condition = ’KO. AssessKO .HPV = 1 and KO. AssessKO .Colp = 3 or KO

. AssessKO .HPV = 1 and KO. AssessKO .Colp = 2’
210 Precondition
211 previousStep = ’KO’
212 condition = ’KO. AssessKO .Colp = 5 or KO. AssessKO .Colp = 4 or KO

. AssessKO .Colp = 6 or KO. AssessKO .Colp = 7’
213 Precondition
214 previousStep = ’KOII ’
215 condition = ’KOII. AssessKOII .HPV = 1 or KOII. AssessKOII .Colp >

2’
216 Precondition
217 previousStep = ’HPVT ’
218 condition = ’HPVT. AssessHPV .HPV = 1’

220 HumanTask AssessCO
221 #mandatory #exactlyOne
222 label = ’Recommendation : Colposkopy ’
223 owner = ’Setting . Clinician ’
224 dueDateRef = ’Setting . WorkplanDueDate ’
225 externalId = ’AssessRisk ’

227 Form COForm
228 InputField PSAgeRef
229 #custom
230 ElementPath = " Identification . SelectPatient . PatientAge "
231 label = " Patient Age"
232 Stage PS
233 #mandatory
234 owner = ’Setting . Clinician ’
235 label = ’Primary Screening ’

237 Precondition
238 previousStep = ’HPVT ’
239 condition = ’HPVT. AssessHPV .HPV = 0 and (CY. AssessCY .Colp = 0

or CY. AssessCY .Colp = 2) and Identification . SelectPatient .
PatientAge >= 35’

241 Precondition
242 previousStep = ’HPVT ’
243 condition = ’HPVT. AssessHPV .HPV = 0 and (CY. AssessCY .Colp = 2

or CY. AssessCY .Colp = 3) and (Identification . SelectPatient .
PatientAge >= 30 and Identification . SelectPatient . PatientAge <= 34)
’

245 Precondition
246 previousStep = ’CY’
247 condition = ’(CY. AssessCY .Colp = 0 or CY. AssessCY .Colp = 1) and

Identification . SelectPatient . PatientAge < 35’

218

A Appendices

249 Precondition
250 previousStep = ’KO’
251 condition = ’KO. AssessKO .HPV = 0 and (KO. AssessKO .Colp = 0 or

KO. AssessKO .Colp = 2) and Identification . SelectPatient . PatientAge
>= 35’

252 Precondition
253 previousStep = ’KOII ’
254 condition = ’KOII. AssessKOII .HPV = 0 and KOII. AssessKOII .Colp <

3’

256 HumanTask AssessPS
257 #mandatory #exactlyOne
258 label = ’Recommendation : Primary Screening ’
259 owner = ’Setting . Clinician ’
260 dueDateRef = ’Setting . WorkplanDueDate ’
261 externalId = ’AssessRisk ’

263 Form PSForm
264 #mandatory

266 InputField PSAgeRef
267 #custom
268 ElementPath = " Identification . SelectPatient . PatientAge "
269 label = " Patient Age"

271 InputField NextTestRecommendation
272 #singlechoice
273 question = ’Recommended Time for the Next Test:’
274 option ’none ’ value = ’0’
275 option ’every 3 month ’ value = ’1’
276 option ’every 6 month ’ value = ’2’
277 option ’every year ’ value = ’3’
278 option ’every 3 year ’ value = ’4’
279 option ’other ’ value = ’5’

281 InputField OtherRecommendationTime
282 #text
283 label = ’Other Recommendation Time:’

Listing A.5: Acadela code to define the CP of Cervical Cancer

219

A Appendices

A.2.5 Chronic Headache Treatment

Figure A.5: Visualization of the CP model generated by Listing A.6.

1 aca0 .1
2 import extfile . redGreenUiRef as rgu
3 import extfile . template . body3ViewsTemplate as bTemplate
4 workspace Demo

6 define case MI1_Headache
7 prefix = ’MI1 ’
8 version = 5
9 label = ’Chronic Headache Treatment ’

11 Responsibilities
12 group DemoPhysicians name = ’Demo Physician ’ // staticId = ’asdf234 ’
13 group DemoClinicians name = ’Demo Clinician ’
14 group DemoProfessionals name = ’Demo Professional ’
15 group DemoPatients name = ’Demo Patient ’
16 group DemoNurses name = ’Demo Nurse ’

18 Setting
19 CaseOwner DemoClinicians #exactlyOne
20 label = ’MI Clinician ’

22 Attribute WorkplanDueDate
23 #exactlyOne #date.#after(TODAY)
24 label = ’Workplan Due Date ’

26 CasePatient DemoPatients #exactlyOne
27 label = ’Patient ’

29 Attribute Clinician
30 #exactlyOne #Link.#Users(DemoClinicians)
31 label = ’Clinician ’

33 SummaryPanel

220

A Appendices

34 Section PainAreaSummary #left
35 label = "Pain Area:"
36 InfoPath Questioning . QuestionPatientCondition . PainArea

38 Stage Observation
39 #mandatory
40 owner = ’Setting . CaseOwner ’
41 label = ’Observation ’

43 HumanTask CheckBreath
44 #mandatory
45 label = ’Observe Breath Pattern ’
46 dueDateRef = ’Setting . WorkplanDueDate ’

48 Form BreathCheckForm
49 #mandatory

51 InputField BreathPattern
52 #singleChoice
53 question = "What is the breathing pattern of the patient ?"
54 option ’Light ’ value = ’0’
55 option ’Short ’ value = ’1’
56 option ’Chest breathing ’ value = ’2’
57 option ’Diaphragmatic breathing ’ value = ’3’
58 option ’Deep ’ value = ’4’

60 InputField BreathPatternNote
61 #text
62 question = "What is the breathing pattern of the patient ?"
63 option ’Light ’ value = ’0’
64 option ’Short ’ value = ’1’
65 option ’Chest breathing ’ value = ’2’
66 option ’Diaphragmatic breathing ’ value = ’3’
67 option ’Deep ’ value = ’4’

69 HumanTask CheckBehavior
70 #mandatory
71 label = ’Observe Behaviors ’
72 dueDateRef = ’Setting . WorkplanDueDate ’

74 Form BehaviorCheckForm
75 #mandatory

77 InputField WalkPattern
78 #singleChoice
79 question = "How does the patient walk?"
80 option ’Stiff ’ value = ’0’
81 option ’Fragmentated ’ value = ’1’
82 option ’Bent over ’ value = ’2’
83 option ’Smooth ’ value = ’3’
84 option ’Stretched ’ value = ’4’
85 option ’Heavy ’ value = ’5’
86 option ’Upstraight & head up’ value = ’6’

88 InputField ShakeHandPattern
89 #multipleChoice #notMandatory
90 question = "How does the patient shake hand?"
91 option ’Weak ’ value = ’0’
92 option ’Normal ’ value = ’1’
93 option ’Strong ’ value = ’2’
94 option ’With eye contact ’ value = ’3’

221

A Appendices

95 option ’No eye contact ’ value = ’4’
96 option ’Brief ’ value = ’5’

98 InputField PatientTension
99 #singleChoice
100 question = "How tense is the patient ?"
101 option ’Confused ’ value = ’0’
102 option ’Fluffy ’ value = ’1’
103 option ’Relaxed ’ value = ’2’
104 option ’Tense ’ value = ’3’
105 option ’Chaotic ’ value = ’4’

108 Stage Questioning
109 #mandatory
110 owner = ’Setting . Clinician ’
111 label = ’Questioning ’

113 Precondition
114 previousStep = ’Observation ’

116 HumanTask QuestionPatientCondition
117 #mandatory
118 owner = ’Setting . Clinician ’
119 dueDateRef = ’Setting . WorkplanDueDate ’
120 label = ’Question Patient Condition ’

122 Form PatientConditionForm
123 #mandatory
124 InputField HowHeadacheStart
125 #text #left
126 label = "How did it start?"

128 InputField WhenHeadacheStart
129 #text #center
130 label = "When did it start?"

132 InputField HeadacheFrequency
133 #text #left
134 label = "How often is the headache ?"

136 InputField PainQuality
137 #multipleChoice #left
138 question = "What is the pain quality ?"
139 option "Wavy" value = ’1’
140 option " Tingling " value = ’2’
141 option " Burning " value = ’3’
142 option " Stinging (like a needle pointing)" value = ’4’
143 option "Pain around the head" value = ’5’
144 option "Pain on the eyes" value = ’6’

146 InputField PainArea
147 #multipleChoice #left
148 question = "Where is/are the location of the pain(s)?"
149 option " Shoulder " value = ’SHOULDER ’
150 option "In the head" value = ’INHEAD ’
151 option "On top of the head" value = ’TOPHEAD ’
152 option " Temple " value = ’TEMPLE ’
153 option " Forehead " value = ’FOREHEAD ’
154 option "Head Crown" value = ’HEADCROWN ’
155 option "Nape" value = ’NAPE ’

222

A Appendices

157 InputField WorseningSituation
158 #multipleChoice
159 question = "What emotion (s) makes your pain worse?"
160 option "Angry" value = ’1’
161 option "Fear" value = ’2’
162 option "Sad/ Sorrow " value = ’3’
163 option " Stressful " value = ’4’

165 InputField OtherWorseningSituation
166 #text #notmandatory
167 Label = "Are their other emotions or things that worsen

your headache ?"

169 InputField SleepCondition
170 #singleChoice
171 question = "How is your sleep condition ?"
172 option "I got nightmare frequently " value = ’1’
173 option "I cannot sleep well" value = ’2’
174 option " Rarely sleep well" value = ’3’
175 option "Often sleep well" value = ’4’
176 option "Good" value = ’5’
177 option "Very good" value = ’6’

179 InputField WhatMakesBetter
180 #text
181 label = "What can help you feel less painful ?"

183 InputField TreatmentProposal
184 #text
185 label = " Proposed Treatment :"

187 OutputField bodystyle
188 #string
189 label = " Massage Style"
190 uiRef = " hidden "
191 expression = ’let massageSites = PainArea in
192 let styleShoulder = if massageSites . contains (" SHOULDER ")
193 then ". shoulder {fill: orange } "
194 else "" in

196 let styleTopHead = styleShoulder + if massageSites .
contains (" TOPHEAD ")

197 then ". topHead {fill: orange } "
198 else "" in

200 let styleInHead = styleTopHead + if massageSites . contains
(" INHEAD ")

201 then ". inHead {fill: orange } "
202 else "" in

204 let styleTemple = styleInHead + if massageSites . contains
(" TEMPLE ")

205 then ". temple {fill: orange }"
206 else "" in

208 let styleForehead = styleTemple + if massageSites .
contains (" FOREHEAD ")

209 then ". forehead {fill: orange }"
210 else "" in

223

A Appendices

212 let styleHeadCrown = styleForehead + if massageSites .
contains (" HEADCROWN ")

213 then ". headCrown {fill: orange }"
214 else "" in

216 let styleNape = styleHeadCrown + if massageSites . contains
(" NAPE ")

217 then ". nape{fill: orange }"
218 else "" in styleNape
219 ’

221 InputField bodytemplate
222 #string #exactlyOne
223 label = "Body Template "
224 uiRef = ’hidden ’
225 defaultValue = use bTemplate . body3ViewsTemplate

227 OutputField bodyVisual
228 #string
229 label = " Potential Massage Points "
230 uiRef = ’svg ’
231 expression = ’replace (bodytemplate , " dynamicstylevars {}",

bodystyle)’

233 Stage TreatmentApproval
234 #mandatory
235 label = " Treatment Approval "

237 Precondition
238 previousStep = " Questioning "

240 HumanTask DiscussTreatment
241 #mandatory
242 label = " Discuss Treatment With Patient "

244 Form TreatmentDiscussionForm
245 #mandatory
246 InputField PatientConsent
247 #singleChoice
248 question = "Does the patient agree with the proposed

treatment ?"
249 option "No" value = ’0’
250 option "Yes" value = ’1’
251 option " Undecided " value = ’2’
252 option "Other" value = ’3’

254 InputField DisagreementReason
255 #text #notmandatory
256 label = "What is the patient ’s concern with the treatment

process ?"

258 InputField MassageConsent
259 #singleChoice
260 question = "Does the patient agree to massage ?"
261 option "No" value = ’0’
262 option "Yes" value = ’1’

264 InputField MassageTime
265 #text
266 label = "How much time you would like to massage ?"

224

A Appendices

268 InputField AcupunctureConsent
269 #singleChoice
270 question = "Does the patient agree with using Acupuncture ?"
271 option "No" value = ’0’
272 option "Yes" value = ’1’

274 InputField AcupunctureTime
275 #text
276 label = "How much time you would like to acupuncture ?"

278 InputField GuashaConsent
279 #singleChoice
280 question = "Does the patient agree with using Guasha ?"
281 option "No" value = ’0’
282 option "Yes" value = ’1’

286 Stage Massaging
287 #mandatory
288 label = " Massaging "

290 Precondition
291 previousStep = " TreatmentApproval "
292 condition = " TreatmentApproval . DiscussTreatment . MassageConsent =

1"

294 HumanTask MassageHead
295 #mandatory
296 label = ’Massage Head ’

298 Form HeadMassageForm
299 #mandatory

301 InputField HeadMassagePosition
302 #multipleChoice
303 question = " Massage the following positions :"
304 option " Shoulder " value = ’SHOULDER ’
305 option " Center Upper Back" value = ’CENTERUPPERBACK ’
306 option "On top of the head" value = ’TOPHEAD ’
307 option "Nape" value = ’NAPE ’
308 option "Neck" value = ’NECK ’
309 option "Jaw" value = ’JAW ’
310 option "Upper Eyes" value = ’UPPEREYES ’
311 option " Occipital Bone" value = ’OCCIBONE ’
312 option "Head Crown" value = " HEADCROWN "
313 option "Close to Kidney " value = " KIDNEY "
314 option " Temple " value = " TEMPLE "
315 option " Forehead " value = " FOREHEAD "
316 option " Others " value = "OTHER"

318 OutputField massageLocationStyle
319 #string
320 label = " Massage Style"
321 uiRef = " hidden "
322 expression = ’let massageSites = HeadMassagePosition in
323 let styleShoulder = if massageSites . contains (" SHOULDER ")
324 then ". shoulder {fill: orange } "
325 else "" in

225

A Appendices

327 let styleCenterUpperBack = styleShoulder + if
massageSites . contains (" CENTERUPPERBACK ")

328 then ". centerUpperBack {fill: orange } "
329 else "" in

331 let styleTopHead = styleCenterUpperBack + if massageSites
. contains (" TOPHEAD ")

332 then ". topHead {fill: orange } "
333 else "" in

335 let styleNeck = styleTopHead + if massageSites . contains ("
NECK ")

336 then ". neck{fill: orange } "
337 else "" in

339 let styleJaw = styleNeck + if massageSites . contains (" JAW
")

340 then ". jaw{fill: orange } "
341 else "" in

343 let styleUpperEyes = styleJaw + if massageSites . contains
(" UPPEREYES ")

344 then ". upperEyes {fill: orange } "
345 else "" in

347 let styleOcciBone = styleUpperEyes + if massageSites .
contains (" OCCIBONE ")

348 then ". occipitalBone {fill: orange } "
349 else "" in

351 let styleHeadCrown = styleOcciBone + if massageSites .
contains (" HEADCROWN ")

352 then ". headCrown {fill: orange }"
353 else "" in

355 let styleKidney = styleHeadCrown + if massageSites .
contains (" KIDNEY ")

356 then ". kidney {fill: orange }"
357 else "" in

359 let styleTemple = styleKidney + if massageSites . contains
(" TEMPLE ")

360 then ". temple {fill: orange }"
361 else "" in

363 let styleForehead = styleTemple + if massageSites .
contains (" FOREHEAD ")

364 then ". forehead {fill: orange }"
365 else "" in

367 let styleNape = styleForehead + if massageSites . contains
(" NAPE ")

368 then ". nape{fill: orange }"
369 else "" in styleNape
370 ’

372 InputField massageLocationTemplate
373 #string #exactlyOne
374 label = " Meridian Template "
375 uiRef = ’hidden ’
376 defaultValue = use bTemplate . body3ViewsTemplate

226

A Appendices

378 OutputField massageLocationVisual
379 #string
380 label = " Potential Massage Points "
381 uiRef = ’svg ’
382 externalId = ’massageLoc ’
383 expression = ’replace (massageLocationTemplate , "

dynamicstylevars {}", massageLocationStyle)’

385 InputField OtherMassagePosition
386 #text #notMandatory
387 label = ’Apply massage to the other following positions :’

389 InputField ApplyHeat
390 #singleChoice
391 question = "Using Heat Lamp during the massage :"
392 option "No" value = ’0’
393 option "Yes" value = ’1’

395 Stage Acupuncture
396 #mandatory
397 label = " Acupuncture "

399 Precondition
400 previousStep = " TreatmentApproval "
401 condition = " TreatmentApproval . DiscussTreatment .

AcupunctureConsent = 1"

403 HumanTask AcupuncturePosition
404 #mandatory
405 label = ’Apply Acupuncture :’

407 Form AcuPosForm
408 #mandatory
409 InputField AcupuncturePos
410 #multiplechoice
411 Question = ’Apply Acupuncture to Positions :’
412 Option "Below Left Ear" value = ’1’
413 Option "Below Right Ear" value = ’2’
414 Option "Left Nape" value = ’3’
415 Option "Right Nape" value = ’4’

417 Stage Guasha
418 #mandatory
419 label = " Guasha "

421 Precondition
422 previousStep = " TreatmentApproval "
423 condition = " TreatmentApproval . DiscussTreatment . GuashaConsent = 1

"

425 HumanTask ApplyGuasha
426 #mandatory
427 label = ’Apply Guasha :’

429 Form ApplyGuashaForm
430 #mandatory
431 InputField GuashaUsage
432 #text
433 label = ’Apply Guasha to the following positions :’

227

A Appendices

435 Stage Discharge
436 #mandatory
437 label = " Discharge "

439 Precondition
440 previousStep = " Observation "

442 HumanTask DischargePatient
443 #mandatory
444 label = ’Discharge ’

446 Form DischargeForm
447 #mandatory
448 InputField DoctorNote
449 #text
450 label = ’Doctor Note:’

Listing A.6: Acadela code to define the CP of Chronic Headache

A.3 Code Snippets

A.3.1 Responsibilities Declaration and Assignment

This section shows how to declare and assign Group and User to a phase or activity in Acadela. In Listing
A.7 from line 1 to line 4, Acadela declares a Group with ID is StPaulPhysicians. The name attribute
specifies the group name in the database of the e-Health system. We did not assign the group name to
the group ID because the group name can contain space, which can cause confusion when referencing
the group and complicate the grammar. staticId is an optional attribute representing the group ID in the
SACM system. Similarly, line 5 declares a User group with ID as the username. Lines 7 to 10 set the
Case Owner as the StPaulPhysicians group declared in line 2. The Case Owner is the entity that has both
the read and write privileges to data in a case.

1 Responsibilities
2 Group StPaulPhysicians
3 name = ’StPaul Physicians ’
4 staticId = ’x5saefs ’
5 User williamst staticId = ’

ag25smb ’
6
7 Setting
8 CaseOwner StPaulPhysicians

#exactlyOne
9 label = ’Physician ’

Listing A.7: Group and User Declaration Syntax

1 Stage Diagnosis
2 owner = ’Setting .

CaseOwner ’
3 ...

Listing A.8:Responsibility Assignment
example: appointing the CaseOwner in
the Setting of Listing A.7 to execute the
Diagnosis Stage

A.3.2 Dynamic Template De�nition

Listing A.9 shows how Acadela defines an InputField to collect massage positions (lines 1-6). In the Tem-
plate definition (lines 8-20), modelers specify 1) CSS style placeholder, in this case is #dynamicstylevars;
2) the SVG image data with 3) hidden circles at the corresponding body or head positions in the image
using the cx and cy attributes. The OutputField massageLocationStyle defines a dynamic rendering by
adding a CSS style to fill the orange color to a circle with a class name matching the selected body part.

228

A Appendices

The final OutputField replaces the CSS style placeholder with the dynamic rendering mechanism defined
in the massageLocationStyle OutputField.
1 InputField HeadMassagePosition #multipleChoice
2 question = " Massage the following positions :"
3 option " Temple " value = " TEMPLE "
4 option "Nape" value = ’NAPE ’
5 option "Jaw" value = ’JAW ’
6 // ... − Options for other head or body areas
7 option " Forehead " value = " FOREHEAD "
8
9 InputField massageLocationTemplate #string #exactlyOne // Import SVG

Template
10 label = " Meridian Template "
11 uiRef = ’hidden ’
12 defaultValue = ’<svg ...> // SVG metadata attributes
13 <style > # dynamicstylevars {} </style > // style placeholder
14 <g ...> ... </g> // SVG image data
15
16 <circle class =" temple " cx ="114" cy ="57" r="2" fill =" none "/>
17 <circle class =" temple " cx ="144" cy ="57" r="2" fill =" none "/>
18 <circle class =" temple " cx ="277" cy ="57" r="2" fill =" none "/>
19
20 <circle class =" nape" cx ="431" cy ="93" r="4" fill =" none "/>
21 <circle class =" nape" cx ="445" cy ="93" r="4" fill =" none "/>
22
23 // ... − Other custom shapes and location definition ’
24
25 OutputField massageLocationStyle #string // Dynamic Style based on

inputs
26 label = " Massage Style"
27 uiRef = " hidden "
28 expression = ’let massageSites = HeadMassagePosition in
29 let styleTemple = if massageSites . contains (" TEMPLE ")
30 then ". temple {fill: orange }" else "" in
31 let styleNape = styleTemple + if massageSites . contains (" NAPE ")
32 then ". nape{fill: orange }" else "" in
33 // ... − code to define style for each body part
34 let styleForehead = styleNeck + if massageSites . contains (" FOREHEAD ")
35 then ". forehead {fill: orange }"
36 else "" in styleForehead ’
37
38 OutputField massageLocationVisual #string
39 label = " Potential Massage Points " uiRef = ’svg ’
40 // Replace the placeholder in SVG with the dynamic style
41 expression = ’replace (massageLocationTemplate , "# dynamicstylevars {}",

massageLocationStyle)’

Listing A.9: Dynamic Template Rendering Definition code in Acadela

229

A Appendices

A.4 System Usability Scale Questionnaire

ID Statement
1 I think that I would like to use this language frequently.
2 I found this language unnecessarily complex.
3 I think that this language is easy to use.
4 I think that I would need assistance to be able to use this language.
5 I found the various functions such as defining elements, importing modules, error val-

idations in this language were well integrated.
6 I thought there was too much inconsistency in this language.
7 I would imagine that most people would learn to use this language very quickly.
8 I found this language very cumbersome to use.
9 I felt very confident using this language.
10 I needed to learn a lot of things before I could get going with this language.

Table A.1: SUS Statements to Rate Acadela Syntax and Error Validator.

A.5 Syntax and Semantic Error Analyzer

A.5.1 Mapping of Violated Rules and their Human-readable
Representation

1 {
2 " ID " : " i d e n t i f i e r (ID) " ,
3 "STRING " : ’ Text wi th q u o t a t i o n marks (" " , \ ’ \ ’) ’ ,
4 "Eq " : " Equal s i g n (=) " ,
5 " INT " : " I n t e g e r (Number) " ,
6 "STRICTFLOAT " : " Number i n c l u d i n g f r a c t i o n " ,
7 "FLOAT" : "Number i n c l u d i n g f r a c t i o n " ,
8 "HASH" : "Hash s i g n (#) " ,
9 "Hash " : "Hash s i g n (#) " ,
10 "NUMBER" : ’Number ’ ,
11 " c o n d i t i o n " : ’ c o n d i t i o n ’ ,
12 ’ (i f) \ s ’ : " i f " ,
13 ’ (e l s e \ s i f) \ s ’ : " e l s e i f " ,
14 ’ (e l s e) \ s ’ : " e l s e " ,
15 ’ (and) \ s ’ : " and " ,
16 ’ (o r) \ s ’ : " o r " ,
17 "WorkspaceTerm " : " Workspace " ,
18 ’CaseTerm ’ : " Case " ,
19 ’ Se t t i ngTerm ’ : " S e t t i n g " ,
20 ’ StageTerm ’ : " S t age " ,
21 ’ TaskTerm ’ : " Task " ,
22 "HumanTaskTerm " : " HumanTask " ,
23 " AutoTaskTerm " : " AutoTask " ,
24 " DualTaskTerm " : " DualTask " ,
25 "FormTerm " : " Form " ,
26 " I npu tF i e l dTe rm " : " I n p u t F i e l d " ,
27 " Ou tpu tF i e ldTe rm " : " Ou t p u t F i e l d " ,
28 "HookTerm " : " Hook " ,
29 " UserTerm " : " User " ,

230

A Appendices

30 "GroupTerm " : " Group " ,
31 " P r e cond i t i o nTe rm " : " P r e c o n d i t i o n " ,
32 "FormTerm " : " Form " ,
33 " A t t r i b u t eT e rm " : " A t t r i b u t e " ,
34 }

Listing A.10: Key-value pairs of violated rule name and their Translations

A.6 HttpHook Example Content

1 {
2 " i sOve rdue " : f a l s e ,
3 " s t a t e T r a n s i t i o n s " : {
4 "ENABLED" : {
5 " by " : {
6 " i d " : "2 c9480845bee03e7015bfcad28990010 " ,
7 " ema i l " : " p r a c t i t i o n e r . ema i l@c l i n i c . de " ,
8 " name " : " Doc to r James " ,
9 " r e s ou r c eType " : " u s e r s "
10 } ,
11 " d a t e " : "2022−11−04 1 9 : 0 0 : 5 6 . 0 "
12 } ,
13 "TERMINATED" : {
14 " by " : n u l l ,
15 " d a t e " : n u l l
16 } ,
17 "COMPLETED" : {
18 " by " : {
19 " i d " : "2 c9480845bee03e7015bfcad28990010 " ,
20 " ema i l " : " p r a c t i t i o n e r . ema i l@c l i n i c . de " ,
21 " name " : " Doc to r James " ,
22 " r e sou r c eType " : " u s e r s "
23 } ,
24 " d a t e " : "2022−11−04 1 9 : 0 1 : 2 5 . 0 "
25 } ,
26 "ACTIVE " : {
27 " by " : {
28 " i d " : "2 c9480845bee03e7015bfcad28990010 " ,
29 " ema i l " : " p r a c t i t i o n e r . ema i l@c l i n i c . de " ,
30 " name " : " Doc to r James " ,
31 " r e sou r c eType " : " u s e r s "
32 } ,
33 " d a t e " : "2022−11−04 1 9 : 0 0 : 5 6 . 0 "
34 } ,
35 "AVAILABLE" : {
36 " by " : {
37 " i d " : "2 c9480845bee03e7015bfcad28990010 " ,
38 " ema i l " : " p r a c t i t i o n e r . ema i l@c l i n i c . de " ,
39 " name " : " Doc to r James " ,
40 " r e sou r c eType " : " u s e r s "
41 } ,
42 " d a t e " : "2022−11−04 1 9 : 0 0 : 5 6 . 0 "
43 }
44 } ,
45 " p a r e n t S t a g e " : "1 x f d r f g 9 2 5 r l 6 " ,
46 " c l i e n t " : n u l l ,
47 " workspace " : "2 c9480885d1737ef015d74deed260006 " ,
48 " nex t " : n u l l ,

231

A Appendices

49 " s t a t e " : "COMPLETED" ,
50 " i E x t e r n a l I d " : n u l l ,
51 " e x t e r n a l I d " : " measureBmiOpera t ion " ,
52 " i s H i g h l i g h t e d " : f a l s e ,
53 " i d " : " u j a 8x6ouh6c i " ,
54 " p o s s i b l eA c t i o n s " : [
55 "CORRECT"
56] ,
57 " i sManu a lA c t i v a t i o n " : f a l s e ,
58 " n r A l e r t s " : 0 ,
59 " a l e r t s " : [] ,
60 " d e s c r i p t i o n " : " Measure BMI" ,
61 " name " : " ST1_MeasureBmi " ,
62 " nrLogs " : 0 ,
63 " dueDate " : n u l l ,
64 " owne rCon s t r a i n t " : [] ,
65 " i ndex " : 0 ,
66 " r e sou r c eType " : " humantasks " ,
67 " p rev " : n u l l ,
68 " p r o c e s s D e f i n i t i o n " : "1 b97eyv0qo9ot " ,
69 " i sV i s i b l eOnDashboa r d " : t r u e ,
70 " t a skPa r ams " : [
71 {
72 " p o s i t i o n " : "STRETCHED" ,
73 " i sD e r i v e d " : f a l s e ,
74 " t a s k " : " u j a 8x6ouh6c i " ,
75 " a d d i t i o n a l D e s c r i p t i o n " : n u l l ,
76 " m u l t i p l i c i t y " : " exac t l yOne " ,
77 " a t t r i b u t e T y p e " : " number " ,
78 " e x t e r n a l I d " : n u l l ,
79 " r e sou r c eType " : " t a s kpa r ams " ,
80 " i d " : " v k d g z a 9 t r e v j " ,
81 " a t t r i b u t e T y p e C o n s t r a i n t s " : {} ,
82 " v a l u e s " : [
83 1 . 8
84] ,
85 " d e f a u l t V a l u e s " : [] ,
86 " d e s c r i p t i o n " : " He igh t (m) : " ,
87 " i sManda to ry " : t r u e ,
88 " name " : " He igh t " ,
89 " i sReadOnly " : f a l s e ,
90 " u iR e f e r e n c e " : n u l l
91 } ,
92 {
93 " p o s i t i o n " : "STRETCHED" ,
94 " i sD e r i v e d " : f a l s e ,
95 " t a s k " : " u j a 8x6ouh6c i " ,
96 " a d d i t i o n a l D e s c r i p t i o n " : n u l l ,
97 " m u l t i p l i c i t y " : " exac t l yOne " ,
98 " a t t r i b u t e T y p e " : " number " ,
99 " e x t e r n a l I d " : n u l l ,
100 " r e sou r c eType " : " t a s kpa r ams " ,
101 " i d " : "1 nybzswudgjv2 " ,
102 " a t t r i b u t e T y p e C o n s t r a i n t s " : {} ,
103 " v a l u e s " : [
104 83
105] ,
106 " d e f a u l t V a l u e s " : [] ,
107 " d e s c r i p t i o n " : "Weight (kg) : " ,
108 " i sManda to ry " : t r u e ,
109 " name " : "Weight " ,

232

A Appendices

110 " i sReadOnly " : f a l s e ,
111 " u iR e f e r e n c e " : n u l l
112 } ,
113 {
114 " p o s i t i o n " : "STRETCHED" ,
115 " i sD e r i v e d " : t r u e ,
116 " t a s k " : " u j a 8x6ouh6c i " ,
117 " e v a l u a t i o n E r r o r " : n u l l ,
118 " a d d i t i o n a l D e s c r i p t i o n " : n u l l ,
119 " a t t r i b u t e T y p e " : " number " ,
120 " e x t e r n a l I d " : " BmiVa lueEx te rna l " ,
121 " r e sou r c eType " : " t a s kpa r ams " ,
122 " i d " : " s l 1p2 i 7w4 jx3 " ,
123 " v a l u e s " : [
124 26
125] ,
126 " d e s c r i p t i o n " : "BMI C a l c u l a t i o n : " ,
127 " i sManda to ry " : t r u e ,
128 " name " : " BmiScore " ,
129 " i sReadOnly " : t r u e ,
130 " u iR e f e r e n c e " : n u l l
131 }
132] ,
133 " f o o t n o t e " : n u l l ,
134 " r e p e a t a b l e " : "ONCE" ,
135 " i sManda to ry " : t r u e ,
136 " owner " : n u l l ,
137 " n rA l e r t sUn s e en " : 0 ,
138 " c a s e " : "1 o t eh56xcg5s1 " ,
139 " i sAu t oD r a f t " : t r u e ,
140 " mayEdit " : t r u e
141 }

233

A Appendices

A.7 Complete SACM Meta-model

Figure A.6: Detailed meta-model with focus on the case definition (Michel, 2020, p.190).

234

A Appendices

Figure A.7: Detailed meta-model with focus on the schemata and data (Michel, 2020, p.191).

235

A Appendices

Figure A.8: Detailed meta-model with focus on the case. (Michel, 2020, p.192).

236

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Research Questions
	1.3 User Study
	1.4 Dissertation Structure

	2 Foundations
	2.1 Clinical Pathways (CP)
	2.1.1 Goals
	2.1.2 Characteristics

	2.2 Adaptive Case Management (ACM)
	2.2.1 Concerns of Production Case Management
	2.2.2 Suitability for Clinical Pathways Modeling
	2.2.3 Challenges

	2.3 Case Management Model and Notation (CMMN)
	2.3.1 Applicability to ACM and CP Modeling
	2.3.2 Concepts and Graphical Notations

	2.4 Domain Specific Language (DSL)
	2.4.1 Modeling Language Elements
	2.4.2 Advantages of Domain Specific Modeling Languages
	2.4.3 Graphical Domain Specific Languages
	2.4.4 Textual Domain Specific Languages

	2.5 textX Meta-Language (Compiler-compiler)
	2.5.1 Motivation
	2.5.2 Features

	3 Related Work
	3.1 Graphical Domain-Specific Modeling Languages
	3.1.1 DSML4CPs - Modeling Clinical Pathways in Oncology Using Extended MEMO OrgML Process Modeling Language
	3.1.2 BPMN4CP - Modeling Clinical Pathways by Extending BPMN
	3.1.3 BPMNSIX - Modeling Surgical Workflow by Extending BPMN

	3.2 Textual Domain-Specific Language
	3.2.1 FCIG - Modeling Clinical Guidelines using Xtext
	3.2.2 Prescriptive Grammar for Clinical Describing Workflow

	4 Smart Adaptive Case Management (SACM)
	4.1 Problem Description
	4.2 Requirements
	4.2.1 R1: Support a Purely Meta-Model-Based Approach
	4.2.2 R2. Integration with External Services
	4.2.3 R3: Support Communication and Coordination

	4.3 Architecture
	4.3.1 Conceptual Layers of SACM Backend
	4.3.2 The CONNECARE Project
	4.3.3 SACM-CONNECARE Integration

	4.4 Meta-model Elements in SACM
	4.4.1 schemata Schemata and AVLCG Data
	4.4.2 accControl Actors
	4.4.3 caseProcessModel Case Definition
	4.4.4 uiModel User Interface
	4.4.5 caseExec Case

	5 Language Design
	5.1 Requirements for Modeling Clinical Pathways
	5.2 Language Specification
	5.2.1 Flexible Syntactic Rules
	5.2.2 Automatic Execution of Default Behaviors
	5.2.3 Concise Constructs

	5.3 Concrete Syntax for Clinical Pathway Element Definition
	5.3.1 Data Type
	5.3.2 Mandatory Attribute
	5.3.3 Input Field
	5.3.4 Output Field
	5.3.5 Form
	5.3.6 Precondition
	5.3.7 Trigger (HttpHook)
	5.3.8 Task
	5.3.9 Stage
	5.3.10 Summary Panel
	5.3.11 Responsibilities
	5.3.12 Setting
	5.3.13 Case
	5.3.14 Workspace
	5.3.15 Import

	5.4 Constraint Validation
	5.4.1 Syntax Errors
	5.4.2 Semantic Errors

	5.5 Syntax Optimization Effect

	6 Implementation
	6.1 Architecture Design
	6.1.1 Acadela System Components

	6.2 Integrated Development Environment (IDE)
	6.3 Grammar Definition
	6.3.1 textX Grammar Rule Expressions
	6.3.2 Grammar Specification for Modeling Clinical Pathways
	6.3.3 Reflection on Addressing CP Modeling Requirements

	6.4 Parser
	6.5 Interpreter
	6.5.1 CP Meta-model Construction
	6.5.2 Syntax Error Validation
	6.5.3 Semantic Error Validation

	6.6 Compilation to SACM Clinical Pathway
	6.7 Model Visualization
	6.7.1 Graphical Notation Definition
	6.7.2 Rendering CP Elements
	6.7.3 Double-clicking to Focus on the Code Definition

	7 Evaluation
	7.1 Evaluation Approach
	7.1.1 Define Evaluation Goals and Scopes
	7.1.2 Identify Units of Analysis
	7.1.3 Design Evaluation Tasks
	7.1.4 User Study Setup
	7.1.5 Pilot Testing
	7.1.6 Schedule User Study
	7.1.7 Data Collection
	7.1.8 Draw Individual and Collective Results
	7.1.9 Identify Implications

	7.2 Expressiveness
	7.2.1 Population
	7.2.2 Modeled Clinical Pathways
	7.2.3 User Study Setup
	7.2.4 Result
	7.2.5 Discussion

	7.3 Usability Evaluation
	7.3.1 Population
	7.3.2 Experiment Setup
	7.3.3 Experiment Design
	7.3.4 Training
	7.3.5 Modeling
	7.3.6 Result
	7.3.7 Discussion

	7.4 Limitations
	7.4.1 Need Supportive CP Elements
	7.4.2 Support Previewing CP Elements
	7.4.3 Auto-complete CP Elements in Web-based IDE
	7.4.4 Dependent on textX Error Handler
	7.4.5 Mishandling of Special Characters
	7.4.6 Limited Number of Participants
	7.4.7 Internal Validity
	7.4.8 External Validity

	8 Conclusion and Future Work
	8.1 Summary
	8.2 Future Work
	References

	A Appendices
	A.1 Acadela Complete Grammar
	A.2 CP Model Definition and Visualization in Acadela
	A.2.1 COPD Breathing Exercise
	A.2.2 Selection of Antipsychotics for Schizophrenia
	A.2.3 Diagnosis of Class II Smoke Inhalation Injury
	A.2.4 Cervical Cancer Diagnosis
	A.2.5 Chronic Headache Treatment

	A.3 Code Snippets
	A.3.1 Responsibilities Declaration and Assignment
	A.3.2 Dynamic Template Definition

	A.4 System Usability Scale Questionnaire
	A.5 Syntax and Semantic Error Analyzer
	A.5.1 Mapping of Violated Rules and their Human-readable Representation

	A.6 HttpHook Example Content
	A.7 Complete SACM Meta-model

