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As was predicted at the beginning of the Human Genome Project, getting the sequence will 

be the easy part as only technical issues are involved. The hard part will be finding out what 

it means, because this poses intellectual problems of how to understand the participation of 

the genes in the functions of living cells. 

Sydney Brenner (1995) 
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Summary 

The small nematode Caenorhabditis elegans (C. elegans) is one of the premier model 

organisms in biomedical research. Metabolomics and Lipidomics have been recently added 

to the toolbox to explore the worm's biology. Despite years of research in C. elegans 

metabolism, only a small part of the metabolome and lipidome is known, and even fewer 

metabolites can be annotated in typical metabolomics experiments. The correct annotation 

and identification remain one of the major bottlenecks in metabolomics, possessing a 

problem not specific to C. elegans. In order to make metabolomics and lipidomics more 

attractive as a functional read-out for C. elegans experiments, several obstacles need to be 

overcome. 

This work summarizes work conducted by supervised bachelor, master, and PhD students 

and me to develop solutions for different parts of the workflow in C. elegans metabolomics 

and lipidomics. First, the exact number of metabolites and lipids in the nematode remains 

unknown. A genome-scale metabolomics model called WormJam was developed based on 

previously published models to form a resource on currently known metabolic pathways in C. 

elegans. This model was further corrected and enlarged with C. elegans-specific reactions to 

form a rich knowledge base, which also includes information on metabolites and lipids 

present. Second, metabolite and lipid identification approaches have been developed to 

enable the systematic and reproducible analysis of metabolomics datasets. This included 

retention time indexing as a new approach to normalize retention information and employing 

ion mobility and analysis of tandem MS data in the case of lipids. Third, the structural 

diversity of lipids is often underappreciated and large-scale identification to generate a 

blueprint for the C. elegans lipidome has been performed, which included the curation of 

lipids from literature as well as the in-depth analysis of different obtained C. elegans 

lipidomics datasets. Lastly, new analytical approaches are required to delve deeper in the 

metabolome and lipidome. A tandemLC setup has been developed to allow the combined 

analysis of polar and non-polar metabolites from a single injection. Furthermore, a method 
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for analyzing fatty acids from single worms has been developed, paving the way toward 

single-worm analysis of metabolomes. 

All methods together will allow in the future a more comprehensive analysis of the C. elegans 

metabolome and lipidome, especially from a lower number of worms. This represents a 

significant development to integrate metabolomics and lipidomics in large-scale experiments, 

such as genetic screens. 
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Chapter-related publications: 

Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and 
Applications to Explore Metabolism in the Nematode  

Salzer L., M. Witting 

Metabolites. 2021 Apr 29;11(5):284. doi: 10.3390/metabo11050284 

This review summarizes the current state of the art in C. elegans metabolomics and 
lipidomics. It was written by my Ph.D. student Liesa Salzer and myself in collaboration. As 
part of this review, we also performed a curation of metabolites found in different 
publications. 
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1.1. Caenorhabditis elegans – A versatile model organism 

The nematode Caenorhabditis elegans (C. elegans) was first described by Emile Maupas as 

Rhabditides elegans and further studied by Victor Nigon on reproduction, meiosis, and 

development [1-3]. In 1952 it was placed into the subgenus Caenorhabditis, and in 1955 this 

was raised to the genus level. The name is derived from Greek and Latin words and means 

elegant and rod-like (rhabditis = rod-like, elegans = elegans, caeno = recent). It was 

introduced in 1969 by Sidney Brenner as a model organism for development and genetics 

[4]. C. elegans is among the most commonly used laboratory animals and one of the easiest 

to handle. 

C. elegans is found in humid, temperate areas virtually globally [5, 6]. It is typically isolated 

as a stress-resistant dauer stage (see below) from rich soil and rotten fruits [7, 8]. The worm 

has a boom-and-bust lifestyle and can migrate over short distances, but longer distances are 

possible through hosts like birds, rodents, or humans [9]. In the wild several bacterial genera, 

such as Pseudomonas, Stenotrophomonas, Ochrabactum, and Sphingomonas are 

associated with C. elegans forming its native microbiome [10]. Sterols required by the worm 

are potentially supplied by yeast or rotten plant material in the wild. 

In the laboratory, C. elegans is cultivated on solid agar plates monoxenically using 

Escherichia coli, another model organism, readily available in many laboratories at the time 

of introduction, as food source. Since C. elegans is auxotrophic on sterols, cultivation plates 

must be supplemented with a suitable sterol source, such as cholesterol. Usually, the uracil 

auxotrophic E. coli strain OP50 is used, which was introduced by Sydney Brenner since it 

grows in thin lawns allowing better microscopic visualization of C. elegans [4]. 

C. elegans has several nutritional requirements. Typical E. coli fed to C. elegans consists of 

55% protein, 23% nucleic acids, 7-9% lipids, 6% carbohydrates, and 4% vitamins, cofactors 

and ions (dry weight, numbers from [11]). The exact biomass of C. elegans has not yet been 

characterized but differs from the E. coli food source and is closer to mammalian 

compositions. It comprises roughly 60% protein, 20% lipids, 6.5% nucleic acid, and 6% 
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carbohydrates (dry weight). Examples of essential nutrients for C. elegans are the amino 

acids arginine, histidine, lysine, tryptophan, methionine, phenylalanine, leucine, isoleucine, 

valine, and threonine, heme, and sterols, as well as different B vitamins. Detailed nutritional 

requirements have been reviewed by Zečić et al. [11]. Although genetic approaches and 

research are well-developed in C. elegans, biochemistry lacks a bit behind, primarily due to 

the lack of axenic cultivation possibilities. In purely axenic media, worms show slow growth 

and development. However, the addition of particulate matter improved growth [12]. New 

biochemical and systems biology approaches like transcriptomics, proteomics, 

metabolomics, and lipidomics are increasingly applied and will help close this gap and readily 

support nutritional studies. 

C. elegans has two sexes, hermaphrodites (⚥) and males (♂); both sexes are diploid and 

have five autosomal chromosomes. Hermaphrodites have two X chromosomes (XX), while 

males have only one (XO). Males occur by spontaneous non-disjunction of the X 

chromosome at a low frequency of 0.1-0.2% or higher frequencies (up to 50%) through 

mating. The life cycle is fast, roughly three days at 25°C from fertilized egg to adult. At 20°C, 

embryogenesis takes about 16 hours. The first stages of development take place within the 

mother and are independent of her due to a practically impermeable eggshell. Eggs are 

typically retained within the mother until the 24-cell stage. Upon hatching, the first larval 

stage (L1) is produced, which has an approximate duration of 16 hours. All following larval 

stages (L2-L4) last about 12 hours (see Figure 1). Under harsh environmental conditions, the 

worm can enter an alternative development stage called the dauer stage (from German 

“dauer” for enduring), which can survive up to several months. Once conditions ameliorate, 

the dauer stages develop through L4 larvae to normal adults without compromise in total life 

span. C. elegans develops from fertilized eggs through different larval stages into adult 

animals capable of laying eggs again. 
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Figure 1: C. elegans develops into reproductive adults through four larval stages. Under harsh environmental 
conditions, L1 larvae can enter an alternative live cycle and develop into dauer larvae, which can survive several 
months without feeding. Once conditions improve, they develop into L4 larvae. 

The hermaphrodite produces sperm and stores them in spermatacea in the L4 stage. During 

selfing, hermaphrodites use the sperm produced by themselves. About 200-300 eggs are 

laid, while when mating with males, ~1000 worm offspring can be made, indicating that 

sperm produced by the hermaphrodite is the limiting factor. Twelve hours after the L4 to adult 

molt, hermaphrodites begin to lay eggs for two to three days until all self-produced sperm is 

used. However, sperm-depleted hermaphrodites can still mate with males. After their 

reproductive phase, worms live for several weeks before dying of senescence. The 

development of C. elegans is invariant, and the complete cell lineage is known [13-15]. The 

adult hermaphrodites consist of 959 somatic cells, and the male of 1031 cells contain defined 

tissues. Of these 959, 302 cells are neurons belonging to two distinct and independent 

nervous systems. The worm was the first unicellular organism with a completely sequenced 

genome [16]. In 2019 the complete connectome of both sexes was published, making C. 

elegans the first organism with a wholly known neuronal wiring diagram [17]. The transparent 

body makes it easy to study cellular and subcellular details, e.g., visualized by Nomarski 

microscopy. 

Several features make the nematode a widely used model organism employed in biomedical 

research, e.g., aging, neurobiology, development, host-pathogen and host-microbe 

interactions, and metabolism [18-21]. The small size, large brood size, ease of cultivation, 



 

6 
 

low maintenance, long-term cryopreservation, invariant cell number and development, known 

cell lineage, and several available genetic tools make C. elegans an ideal model organism 

for basic and applied research. Selfing and mating hold unique opportunities for genetic 

studies. Any non-lethal mutation can be maintained through self-propagation, and 

populations are essentially isogenic. Furthermore, since selfing follows the standard 

Mendelian segregation rules, parental heterozygous strains of a recessive trait will produce 

the standard 1:2:1 pattern, meaning that 25% of the progeny will be homozygotes of the 

mutant allele and display the recessive trait. Crossing of different genetic backgrounds is 

easily achievable through mating. Since male sperm is used before hermaphrodite sperm, 

defined crossings can be obtained. Lastly, C. elegans suffers not from inbreeding depression 

[22]. 

Several genetic tools exist in C. elegans, and the possibility of maintaining a genetically 

constant population in a relatively simple cultivation system allowed large-scale genetic 

investigations [23-27]. The transparent body enables the localization of different dyes or 

fluorescent proteins and protein fusions in the body. RNAi enables the silencing of genes at 

specific time points and allows to study also the function of genes for which the total loss 

would be lethal. CRISPR/Cas-9 is also used in C. elegans for genetic modification. From the 

C. elegans genome, about 38% have a predicted human ortholog, while 60-80% of human 

genes have an ortholog in the worm [28, 29]. About 40% of human disease genes have an 

ortholog in C. elegans [30]. However, also several drawbacks exist. For example, many 

genes of the Hedgehog signaling pathway are missing [31]. Furthermore, no cell culture lines 

of C. elegans cells exist, and the axenic culture of the nematode is only poorly developed. 

Currently, WormBase contains 48433 genes, of which 20184 are protein-coding and 26720 

are non-coding RNA and pseudogenes [32]. 
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Table 1: Comparison of different model organisms (adapted from [33]). Distinct advantages (+) and 
disadvantages (-) are listed and compared. The genome size and the number of protein-coding genes are listed 
for relative comparison. 

Organism Advantages / Disadvantage 
Genome 
Size (Mb) 

Number of 
protein-
coding 
genes 

Mus musculus (mouse) (+) Genome is available 

(+) Strong genetic, physiological overall with 

humans 

(-) Ethical concerns 

(-) Expensive 

(-) Long generation time (2-3 months) 

(-) Not amenable to HT screens 

2689.66 20,000 

Drosophila melanogaster 

(fruity fly) 

(+) Inexpensive/easy to grow 

(+) Genome is available 

(+) Straightforward genetic tools exist 

(+) short generation time ( ~ 10 days) 

(+)/(-) 50-80% of fly genes homologous to 

human genes 

137.688 14,000 

Caenorhabditis elegans 

(round worm) 

(+) Inexpensive/easy to grow 

(+) genome is available 

(+) Straightfoward genetic tools exist 

(+) Short generation time (2-3 days) 

(+) short lifespan (2-3 weeks) 

(+) small, exactly 959 somatic cells 

(+) invariant development 

(+) transparent 

(+) has organs / differentatiated tissues 

(+) mutants can be frozen 

(+)/(-) 50-80% of worm genes homologous to 

human genes 

102.042 20,000 

Danio rerio (zebrafish) (+) draft genome is available 

(+) small 

(+) embryos are transparent 

(-) long generation time (2-4 months) 

(-) isogenic strains are not available 

1427.29 26,200 

Saccharomyces cerevisiae 

(budding yeast) 

(+) simple model of eukaryotic cell 

(+) genome is available 

(+) straightforward genetic tools exist 

(+) simple development (sporulation) 

(+) some intercellular interaction (mating) 

11.8643 6600 
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Organism Advantages / Disadvantage 
Genome 
Size (Mb) 

Number of 
protein-
coding 
genes 

Escherichia coli (+) inexpensive/easy to grow 

(+) genome is available 

(+) straightforward genetic tools exist 

(+) best studied organism 

(+) model for molecular genetics 

(-) limited differentiation 

(-) limited intercellular interaction 

5.13951 4300 

 

1.2. Systems Biology, Metabolomics and Lipidomics 

1.2.1. Definition of Systems biology 

Living biological systems represent complex systems. These complex systems are built of 

many different building blocks which interact to make up life and carry out biological 

functions. Only the concerted action of all these building blocks can carry out correct 

functions. Systems biology aims to understand biological systems or organisms as a whole. 

Its goal is to integrate knowledge of regulatory processes on all levels and be able to predict 

potential outcomes upon perturbation of a given system. Systems biology combines 

approaches used in biology with mathematical modeling and bioinformatics to deduce novel 

knowledge and be able to predict future outcomes of treatment, genetic modification, etc.  

In contrast to the reductionist view of molecular biology, systems biology is a holistic 

approach. In order to fulfill its promises, it is necessary to quantify all biological entities and 

their interactions in a given system at a given time, which includes DNA, RNA, proteins, and 

metabolites. In the classical view of biology, information flows from DNA via RNA to proteins, 

which then execute biological functions. Metabolites are converted into each other by 

enzymes encoded in the genome, providing energy and building blocks for an organism to 

survive. Quantitative information can be obtained by using so-called “omics” approaches 

genomics, transcriptomics, proteomics, and metabolomics. In early 2010 Sydney Brenner 

stated in his article “Sequences and consequences”: “The new science of Systems Biology 
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[…] will fail because deducing models of function from the behavior of a complex system is 

an inverse problem that is impossible to solve.” [34]. Systems biology is often believed to be 

only possible using high throughput techniques generating a lot of data which is then used in 

modeling approaches to deduce novel knowledge, which was the main criticism of Sydney 

Brenner. However, systems biology integrates a lot of molecular biology knowledge created 

before in the models and relies on the foundation of molecular biology and biochemistry. 

Although the genome as the blueprint of life is known, our understanding of how a living 

organism works is minimal. It requires a detailed understanding of each molecular entity and 

its action and the concerted actions of all entities. This level is not yet reached in biology. 

Lazebnik was working on apoptosis and compared the way biological knowledge is 

generated to the way electrical engineers work [35]. While engineers know the function of 

each part and how they work together. Once biology reaches this level of understanding, we 

can predict outcomes of mutations, changes in the environment, etc., and how they relate to 

health and disease. 

One way to reach this level of understanding is to employ the aforementioned “omics”-

technologies. The different "omics" aim to characterize DNA and its modification, changes in 

transcription and RNA, translation and protein levels, and metabolism comprehensively. 

While DNA represents a relatively static blueprint, metabolism is highly dynamic. Therefore, 

the study of metabolism is of great interest since, from the attributes defining life, it is one of 

the most important since it delivers energy and building blocks or acts as signaling 

molecules. Furthermore, metabolism is typically one of the first to react to an external 

stimulus. 

1.2.2. Definition and History of Metabolomics 

Metabolomics focuses on the holistic study of metabolism in a given biological system. 

Metabolism has been studied for centuries, but only recent technological advances made it 

possible to study the metabolism more holistically. The term “metabolome” was first time 

mentioned by Oliver et al. in 1998 and describes in accordance with the genome (the entire 
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set of all genes), all metabolites present in a living system [36]. Different definitions of 

metabolomics exist. Fiehn defined metabolomics as “[…] comprehensive analysis in which all 

the metabolites of a biological system are identified and quantified […]” [37]. Nicholson 

defined the field of metabonomics as “[…] the quantitative measurement of the dynamic 

multiparametric metabolic response of living systems to pathophysiological stimuli or genetic 

modification.” [38]. Metabolomics flourished in the last years because of the development of 

newer and better analytical systems and the development of bioinformatics approaches, 

which made it possible to cover more metabolites in a single analysis. 

The different “omes” are very different based on the underlying chemical structures and 

physicochemical properties. While DNA, RNA, and proteins are linear polymers of defined 

building blocks, metabolites do not follow such a large-scale organizational principle (Figure 

2). DNA consists of a backbone made from deoxyribose and phosphate groups. Attached to 

the sugar are four different bases, adenine, cytosine, guanine, and thymine. The DNA is 

organized in a double helix and nucleotides from the characteristic base pairs, A and T and 

G and C, which interact based on either 2 or 3 hydrogen bridges. RNA consists of a single 

strand based on ribose and phosphate groups and contains uracil instead of thymine. 

Analytical tools for DNA and RNA analysis are based on the same underlying principle: 

complementarity of strands and hydrogen bonding. Furthermore, DNA and RNA can be 

amplified from limited starting material. Proteins are based on 20 different proteinogenic 

amino acids, which form a linear polymer of amide bonds with different residues. The 

functional diversity of proteins is derived from the different 3D structures that can be formed 

based on the amino acid sequence. In contrast to DNA and RNA, proteins cannot be 

amplified. 

Metabolites don’t follow such a common structural motif and cover a large range of 

physicochemical properties ranging from very polar metabolites (e.g. tri methylamine-N-oxide 

TMAO, logP = -2.57) to non-polar lipids (e.g. tristearine TG(18:0/18:0/18:0), logP = 21.59). 

Each metabolite has its own unique chemical structure, which leads to a large complexity of 
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the metabolome. Single reactions converting metabolites into each other can greatly impact 

the molecular structures and properties. For example, a transamination reaction produces 

glutamine by transferring an amino group from the amino group of glutamate to produce the 

amid group in glutamine. Although metabolites show some core structures, their properties 

are highly different. For example, while the amino acids glutamic acid and glutamine 

represent zwitterionic structures, 2-oxo-glutarate is an acid that has no iso-electric point. 

Also, their logP values are very different (see Table 2). 

Table 2: Comparison of Glutamic acid, Glutamine, and 2-oxo-glutaric acid, all members of the same reaction 
sequence. The Tanimoto similarity is a measure of the chemical similarity. Even within this single reaction 
sequence, metabolites show differences in their chemical properties, exemplifying the problem of large chemical 
complexity metabolomics has to deal with. 

Metabolite 
Tanimoto similarity 

pI logP 
Glutamic acid Glutamine 

2-Oxo-glutaric 
acid 

Glutamic acid 1 0.72 0.46  2.80 -3.24 

Glutamine 0.72 1 0.37  5.73 -4.00 

2-Oxo-glutaric acid 0.46 0.37 1  --- -0.11 

 

Although this is only a relatively simple example, it demonstrates the large variety a single 

reaction can introduce in the properties of metabolites. Due to the extensive structural 

variation of metabolites and the lack of standardization in metabolomics, it is still regarded as 

“complicated”. No single analytical method is capable of covering the entire metabolome. 

Additionally, the large polarity range of metabolites can span several orders of magnitude in 

concentration. Glucose can be found even in millimolar concentrations in plasma for 

example, while potent signaling metabolites are only present a very low concentrations, e.g. 

endocannabinoids like anandamide [39, 40]. 

In order to tackle the complexity of the metabolome and lipidome, different analytical 

approaches are required. Mass Spectrometry (MS) and Nuclear Magnetic Resonance 

spectroscopy (NMR) represent the two most commonly employed methods for the analysis 

of the metabolome/lipidome, which are described below [41]. 
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Figure 2: The genome, transcriptome, proteome, metabolome and lipidome are following different chemistries and 
different in their complexity. While for DNA, RNA and proteins, a common underlying chemical structure is 
present, for metabolites and lipids this is not the case. DNA, RNA and proteins represent linear polymers with 
repeating units (referred in the figure as backbone). For analysis of these molecules are restricted chemical space 
is covered and utilizes common physicochemical principles (e.g. hybridization of complementary strands for DNA 
or RNA) or the restricted chemical spaces (peptides in case of proteins). Metabolites and lipids in contrast show a 
high diversity of structures, which cannot be analyzed by a single analytical method. 

1.2.3. NMR based metabolomics 

NMR spectroscopy is based on the interaction between the magnetic moment of atomic 

nuclei and an external magnetic field and their perturbation by a weak oscillating 

electromagnetic field. First, the nuclei are polarized by the external, constant magnetic field, 

followed by perturbation of this polarization using an oscillating electromagnetic field. Then, 

the relaxation of the perturbed nuclei is measured due to an induced current in a detection 
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coil. The free induction decay (FID) is obtained, which is the magnetic resonance response in 

a unit of time. The NMR spectra are generated via Fourier-transformation (FT), consisting of 

signal intensities of NMR active compounds depending on their resonance frequency. Only 

nuclei that have a non-zero nuclear spin do have a magnetic moment and thus are NMR 

active. The most important nuclei in the analysis of biomolecules are 1H, 13C, 15N, 19F, and 

31P. The sensitivity of NMR analysis is influenced by the natural abundance of the nuclei, e.g. 

13C is only present at 1.1%. Thus 13C-NMR requires longer times. 

In metabolomics, mostly one-dimensional 1H NMR spectroscopy is used since it is fast and 

very convenient for the universal detection of organic compounds. NMR is quantitative and 

nondestructive, with minimal sample preparation and interference, resulting thus to the 

lowest analytical variation compared to other techniques [42]. Its high precision allows the 

detection of even small changes in metabolite abundances. NMR delivers qualitative 

(structure) and quantitative information in a single run. Its strengths are particularly evident in 

substances that are difficult to ionize in MS or require derivatization. However, a significant 

disadvantage of NMR compared to MS is the lower sensitivity. Therefore only a few tens to 

hundreds of high abundant compounds are covered by 1D-1H NMR [43]. Besides profiling, 

NMR is often used in metabolite identification for structure elucidation. It’s often combined 

with Liquid Chromatography (LC) in an online or offline (fractionation) approach to lower the 

complexity of the individual samples and can be combined with MS [44, 45]. 

1.2.4. MS-based metabolomics 

MS is a premier tool in (bio)medical and chemical research, environmental, forensic, and 

medical analysis. A mass spectrometer is a device that ionizes substances and determines 

their mass-to-charge ratio (m/z). MS is beside NMR, one of the major analytical technologies 

used in metabolomics. Ions are separated due to different physical approaches, depending 

on the type of mass spectrometer being used. In MS, m/z ratios of ions are measured 

together with their corresponding intensities, combining both qualitative (m/z) and 

quantitative (intensity) information. However, metabolites with the same molecular formula 
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have the same mass and, therefore the same m/z value and are called isomers (e.g.[M+H]+ 

Leucine and Isoleucine, C6H13NO2, m/z 132.1019). Likewise, several ions might have very 

similar but not identical m/z values (isobars, e.g. [M+Na]+ adduct of PC(34:1), m/z 782.5670 

and [M+H]+ adduct of PC(36:4), m/z 782.5694). Their separation depends on the resolution 

of the employed MS instrument. Metabolites may be further analyzed using tandem MS 

(sometimes called MS2 or MS/MS) experiments. Here, the ions of interest are fragmented, 

mostly using collision-induced dissociation (CID), and fragment ion m/z values are analyzed, 

yielding information on potential substructures. This allows to potentially differentiate 

isomeric and isobaric structures. In non-targeted metabolomics, data-dependent acquisition 

(DDA) is used to generate and acquire MS/MS data. In DDA the n most intense ions in an 

MS1 scan, meeting specific user-defined thresholds, are selected and fragmented in the 

following n scans. Coverage of metabolites selected for fragmentation depends on the scan 

speed and duty cycle of the used MS instrument (typically top 5 to 25 are used). Another 

approach that is increasingly used in non-targeted metabolomics is data-independent 

acquisition (DIA), such as Sequential Window Acquisition of all Theoretical fragment ion 

spectra (SWATH) MS or All ions [46]. These techniques don’t rely on a previous selection of 

precursor m/z but fragment either all ions at the same time or scan the m/z range in defined 

windows. The benefit of DIA is that there is no need to repeat analysis when interested in 

different compounds since every precursor was already fragmented, which allows 

retrospective data analysis without the need of reacquisition. 

Different types of mass analyzers exist, and they can be combined in different ways. The 

most commonly used MS in metabolomics are triple quadrupole MS (QqQ) for targeted 

analysis and quantification and quadrupole time of flight MS (qTOF), Orbitrap or Quadrupole-

Orbitrap and quadrupole Fourier transform-Ion cyclotron resonance-MS (qFT-ICR) for 

untargeted analysis. qToF, Orbitrap, and FT-ICR-MS offer very high or even ultra-high 

resolution. This high resolution enables better separating different m/z values and better 

determining potential sum formulae candidates. Together with an accurate isotope pattern 



 

15 
 

detection, this enables the calculation of sum formulae, improving searches in databases 

compared to accurate mass alone [47]. Metabolite identification benefits not only from high 

mass resolution and accuracy in full MS analysis but also during fragment analysis. 

MS is either employed without or with prior chromatographic or electrophoretic separation. 

The employed ionization source depends on the upfront sample introduction system, e.g. 

electron ionization (EI) or chemical ionization (CI) for Gas Chromatography (GC), 

electrospray ionization (ESI), and atmospheric-pressure chemical ionization (APCI) for direct 

infusion, Liquid Chromatography (LC) or Capillary Electrophoresis (CE). MS hyphenated to a 

separation method reduces the complexity of mass spectra, providing separation of isomeric 

and isobaric structures and additional information about physicochemical properties of 

detected metabolites based on the respective separation characteristics. The use of DI- or 

FIA-MS allows high-throughput analysis of metabolomes, e.g. of a genome-wide 

metabolomics screen in E. coli [48]. The limitation of this approach is the missing separation 

of isomeric structures. 

Chromatography is based on the differential partitioning of metabolites between a mobile and 

stationary phase. Based on the employed mobile phase different methods are differentiated. 

GC uses a gas, typically helium or hydrogen, as mobile and a thin immobilized liquid file as 

stationary phase. GC was one of the earliest adopted analytical technologies for the analysis 

of the metabolome, although at this time this term was not existent. Pauling et al. applied GC 

for the analysis of endogenous substances in human urine and breath [49]. Separation of 

metabolites in GC is based on the different volatility and portioning of substances. Since the 

separation takes place in the gas phase, analytes of interest have to be volatile and need to 

be made volatile by derivatization. This is typically the case for metabolites with a mass lower 

than 400 Da. Separations in GC show a high efficiency and narrow peaks. Furthermore, a 

wide range of metabolites can be analyzed on a single stationary phase. Dependent on the 

employed MS instrumentation, different types of information can be obtained, ranging from 

nominal masses and molecular formulae to fragmentation patterns. Coupling with MS is 
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achieved since molecules are already in the gas phase and must only be ionized. EI is the 

premier choice for ionization in GC-MS. Metabolites are ionized by the impact of a high 

energetic electron, typically 70eV. Since this energy is much higher than typical chemical 

bonds, this process leads to not only ionization but also fragmentation of the molecule. Often 

the parent ion cannot be seen or is of very low intensity. However, the fragmentation process 

under EI conditions is highly reproducible, and libraries of fragmentation spectra are 

available and universally useable, independent of the instrument vendor. This improves 

metabolite identification and is a major advantage of GC-MS. GC-MS involves the additional 

step of metabolite derivatization, which can increase variability. Furthermore, the 

derivatization analysis of GC-MS also involves several more steps for data analysis. 

If metabolites are not volatile or cannot be made volatile by derivatization LC can be 

employed for separation. LC utilizes different solvents and stationary phases (typically based 

on a silica gel support), and different separation methods are available. Normal phase (NP) 

separations use silica gel and apolar organic solvents like hexane or chloroform. This 

separation method is not widely applied but has some advantages for lipid analysis. 

Reversed-phase (RP) separation is the most employed separation method in metabolomics. 

The name relates to the reversed polarity compared to NP with an apolar stationary phase 

(e.g. octadecyl modified silica gel, C18) and polar mobile phases like water, MeOH, or ACN, 

and their mixtures. This method is well suited for analyzing non-polar metabolites like fatty 

acids, acyl-carnitines, or secondary metabolites. To overcome this, methods such as ion-pair 

chromatography (IP) have been developed. In the mobile phases, an ion pair reagent, such 

as tertiary amines for anionic substances [50]. Metabolites of interest form a stable ion-pair 

with the reagent, which increases their retention. Although very powerful, this technique is 

not commonly used because the use of ion pairing reagents “contaminates” the MS for the 

opposite ion mode. For example, tertiary amines for retention of anionic substances are only 

used if the MS is operated in negative ionization mode, where they don’t interfere with the 

analysis. Switching to positive ionization mode would lead to a very high signal of these 

amines and ion-suppression. 
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For analysis of polar metabolites, Hydrophilic Liquid interaction Chromatography (HILIC) is 

employed. This method combines the polar stationary phases of NP with the solvents of RP 

and is well-suited for the analysis of amino acids, nucleotides, sugars, and other polar 

metabolites. Despite a large number of possible separation chemistry available, RP columns 

are used most. However, very polar metabolites are not retained on RPLC columns. 

Therefore, hydrophilic interaction liquid chromatography (HILIC) is frequently used. HILIC 

columns are either silica or derivatized silica columns [51, 52]. The different separation 

methods cover different parts of the metabolome. In order to achieve a thorough, 

comprehensive overview, several methods need to be combined. 

Furthermore, different other stationary phases employing combinations of different retention 

mechanisms are available but not widespread in metabolomics, e.g. PFP. These columns 

can be used in different separation modes but is mostly used in RP mode. The PFP rings 

show a slight anion exchange characteristic, which leads to increased retention of polar 

metabolites, such as amino acids or organic acids [53]. A recent review investigation he uses 

of different chromatographic methods in metabolomics by curating information from the two 

public metabolomics repositories, MetaboLights and Metabolomics Workbench [54-56]. The 

analysis showed that RP is still the most prominent mode of analysis for metabolites and 

lipids. 

Many metabolites carry (strong) ionic functional groups (such as carboxylic acid or 

phosphate groups) and are highly polar. These metabolites still often show broad and 

asymmetric peaks in HILIC. Capillary Electrophoresis (CE) coupled to MS is another 

powerful analytical technique in metabolomics [57]. In CE, charged molecules migrate in a 

liquid background electrolyte along an electrical field. Separation occurs due to different 

velocities of the metabolites, depending on the ion mobility and the electric field strength. 

However, CE-MS is often regarded as not as stable as LC-MS. This is particularly true for 

biofluids such as urine, which vary a lot in their salt content. Methods for the analysis of 

cations, anions, and nucleotides have been developed and applied to different matrices. 
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Although not as widespread as GC- or LC-MS, CE-MS offers several advantages, which 

makes this method an interesting alternative for metabolomics, especially if the sample 

amount or volume is limited. CE was originally adapted for Human Genome Project to 

replace slab sequencing gels. Coupling with MS requires dedicated ion sources, but the low 

flow rates and volumes make it ideal for hyphenated analysis, especially for low-volume 

samples. Since most metabolites contain at least one ionizable functional group, 

electrophoretic separation might be possible. Migration times are based on a metabolite's 

mass, shape, volume, and charge. Potential variation of migration times can be normalized 

by converting them to electrophoretic mobilities using migration marker substances [58, 59]. 

Analysis of the same samples using HILIC and CE has shown that the two methods provide 

orthogonal separation. 

Lastly, ion mobility (IM) is another separation technique to enhance MS. However, in contrast 

to all previous techniques, it is used post-ionization and can also be combined with other 

separation techniques, yielding two-dimensional separations. IM describes ions traveling 

through a tube filled with gas along an electrical field. Ions are accelerated along the 

electrical field, and their velocity is reduced by collision with neutral gas molecules, e.g. 

nitrogen or helium. The amount of this reduction is dependent on the size and shape of the 

ion. Based on this different ions have different traveling velocities; hence they are separated 

based on their size and shape. Using IM, it is possible to separate isomeric and isobaric 

structures, which cannot be separated otherwise. The value measured by ion mobility is 

called collisional cross section (CCS), which refers to a molecule's rotationally averaged 

cross section. It is measured in Å² (angstrom square). This value is dependent on the adduct 

of a molecule; hence [M+H]+ and [M+Na]+ ions of the same metabolite have different CCS 

values. In contrast to retention time, which represents a system property defined by the 

analyte of interest, column, solvent, etc., the CCS value is a molecular property and, is 

therefore comparable between different instruments (within a certain error range). 
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1.2.5. Targeted and non-targeted metabolomics 

Metabolomics experiments can be setup in two different ways. Although metabolomics was 

originally defined as a holistic approach, the different terminologies are often mixed or 

misused. To avoid confusion, the terms non-targeted and targeted metabolomics are used 

throughout this work. Non-targeted (or un-targeted) metabolomics aims to detect and 

(semi)quantify as many metabolites as possible in a given sample. No prior selection of 

metabolites or metabolite classes is made, nor does it require prior knowledge or hypothesis. 

This approach is typically used for exploratory studies and compares minimum of two sample 

sets, e.g. healthy and diseased against each other. Different methods are combined to 

achieve good coverage of the metabolome, e.g. HILIC-MS and RP-MS. Comparison 

between different metabolites is not directly possible due to differences in ionization behavior 

(e.g. phenylalanine and tyrosine are only separated by one reaction, but their ionization 

properties are quite different). Non-targeted metabolomic workflows include several steps 

like data processing, metabolite identification, and extensive statistical and bioinformatic 

analysis. Based on the obtained results, hypotheses on the involved metabolic pathways and 

their alteration are generated. These hypotheses should be followed up and validated by 

targeted metabolomics analysis. 

In targeted metabolomics, several metabolites are preselected (e.g. from one or several 

pathways or a class of metabolites). Single methods are optimized toward the optimal 

detection and quantification of these selected metabolites. Typically, absolute concentrations 

of metabolites are obtained, which also allows the analysis of single samples. Furthermore, 

different metabolites can be compared due to absolute quantification. The selection of non-

targeted or targeted metabolomics depends on the biological question. 

1.2.6. Lipidomics 

Lipidomics represents a sub-field of metabolomics, dealing with the comprehensive analysis 

of lipids. Lipids are hydrophobic or amphipathic molecules produced through thioester or 

isoprene unit condensations [60]. All lipids and related compounds within a biological model 
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form the lipidome. Lipids are believed to represent a relatively homogenous group of 

molecules having in common being soluble in organic solvents such as chloroform. However, 

they show an enormous diversity with many different side chain lengths and degrees of 

unsaturation possible, leading to an ample combinatorial space of structures. 

Additionally, lipids span a wide range of concentrations [61]. Lipidomics has emerged in the 

past few decades as a promising field for developing applications in medicine and industry 

[62, 63]. Analysis of lipids has entered the main stage due to recent developments in MS 

technology, which made it possible to analyze a large number of lipids simultaneously. Two 

main approaches exist in lipidomics: shotgun and LC-MS-based lipidomics. 

1.2.6.1. Shotgun lipidomics 

Shotgun lipidomics directly infuses the raw lipid extract without prior chromatographic 

separation into an MS. The direct infusion enables continuous delivery of lipid samples, with 

a constant lipid concentration at all times. These constant conditions are beneficial for lipid 

quantification since ion suppression is constant and lipid analytes and internal standards are 

analyzed under identical analytical conditions. Lipid identification and quantification are 

performed on characteristic fragmentation patterns specific to lipid classes and species. If 

enough sample is available long infusion times can be used to increase the signal-to-noise 

ratio and enable, enough time for detailed tandem MS analysis is available. Due to missing 

chromatographic separation no isomers can be distinguished, and low abundant lipids arebe 

suppressed by higher abundant ones. However, the method is fast, highly reproducible, and 

has been employed even in large-scale cohorts [64]. Infusion can be performed using a gas-

tight syringe and a syringe pump. However, this does not allow automation. Typically for 

automated infusion LC systems using the autosampler and pumps without a separation 

column or the Advion TriVersa NanoMate (a chip-based nanoESI device that is capable of 

spraying up to 1 hour from only a few µLs of lipid extract) are used. 

Different shotgun lipidomics approaches have been developed. Tandem MS-based shotgun 

lipidomics uses neutral loss or product ion scans to detect specific lipid classes. This 
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methodology is often realized on low-resolution instrumentation such as triple quadrupole 

QqQ. Since lipids are filtered two times (in the first and third quadrupole), a high S/N can be 

achieved. Multidimensional shotgun lipidomics (MDSL) also uses DI-MS for lipid analysis 

[65]. However, differences in sample preparation allow for separating lipid classes upfront of 

analysis and combining different scanning techniques, such as neutral loss or precursor ion 

scans. The combination enables the identification of isomeric and isobaric lipid species still 

present within one extract. 

Developing high-resolution hybrid instruments such as QqToF or Q-Orbitrap with increased 

duty cycles and higher resolving power enabled to reduce false positive identification in 

tandem MS analysis (e.g., the overlap of isobaric lipid species). Since from the obtained 

data, any neutral loss or product ions can be extracted from this type of analysis also allows 

retrospective interpretation for novel, previously unknown lipid classes or modifications. High-

resolution MS enables the better separation of isobaric species leading to greater depth and 

more accurate quantification in lipid analysis [66]. Another possibility for the separation of 

isobaric lipid species is ion mobility [67]. 

1.2.6.2. LC-MS based lipidomics 

LC-MS based lipidomics approaches are employed if separation of isomers and the analysis 

of low abundant lipids is required. Lipids are separated on a reversed-phase C8, C18, or C30 

column using an ACN-iPrOH gradient, with variations in exact composition and/or used 

additives and modifiers [62, 68, 69]. Using RP, lipids are separated based on their 

hydrophobicity, which is determined by the length of acyls in the different lipids. Extensive 

coverage of different lipid classes is achieved, starting from polar lipids like 

lysophospholipids, fatty acids to non-polar lipids like triacylglycerols or cholesteryl ester. 

Along homologous series of lipids, typically linear trends are observed, which allows a more 

accurate lipid identification. Major drawbacks are the longer run-times (up to 30 minutes) and 

the elevate pressure caused by the use of iPrOH in the strong eluent. In contrast to RP, 

HILIC separates lipids based on their polar headgroup and class [70]. Since separation is 
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based on lipid class, internal standards are eluting with the analytes of interest, which in 

contrast, RP allows a more accurate quantification [71]. However, no separation of isomeric 

lipid species is achieved. Supercritical fluid chromatography (SFC) represents an interesting 

alternative to HILIC since separations are performed at higher efficiency leading to narrower 

peaks and short analysis times [72, 73]. 
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1.3. C. elegans metabolomics & Lipidomics 

Combining a genetically tractable and easily cultivatable model organism like C. elegans with 

global analytical approaches like metabolomics and lipidomics holds great promise to 

advance the knowledge of metabolic regulation, metabolism, and its role in health and 

disease. Several publications on C. elegans metabolomics and lipidomics have been 

published in the past years, and the number is steadily increasing. Both MS and NMR have 

been applied to C. elegans research question. 

1D-1HNMR is well suited for the analysis of highly concentrated metabolites, such as amino 

acids, organic acids, sugars, and others and has also been employed in C. elegans [74-78]. 

However, overlapping signals in 1D-1H NMR results sometimes in ambiguous metabolite 

identification and can interfere with exact quantification. The use of 2D NMR in different ways 

helps improve the identification rates and has been used in C. elegans metabolomics [79-

82]. In order to further enhance heteronuclear multidimensional NMR based on 13C, labeling 

of C. elegans with 13C can be performed to overcome the low natural abundance of 13C. 

Labeled bacteria are used as food for the worm and can increase the sensitivity by two 

orders of magnitude, which enables the detection of much more metabolites than in one-

dimensional NMR metabolomics [83, 84]. The major drawback of performing 2D 13C HSQC 

experiments using 13C labeled metabolites is additional structures arising in the spectrum 

from 13C/13C couplings, which are non-existent at natural 13C abundance. These additional 

structures can reduce the possible sensitivity gain of 13C labeling and increase the chances 

of peak overlap. Geier et al. investigated different HSQC pulse programs for fully 13C labeled 

tissue extracts from C. elegans and found at constant time HSQC (ct-HSQC) leads to an 

improved peak shape and better peak detection of metabolites [85-89]. 

Differential analysis by 2D-NMR (DANS) has been developed using C. elegans and overlays 

and subtracts 2D-NMR spectra from two different conditions, enabling structural elucidation 

of differentially regulated compounds, even for minor components in complex matrices [90, 

91]. 
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As an alternative to the extraction of metabolites, direct analysis of nematodes using high-

resolution magic-angle spinning (HR-MAS) NMR spectroscopy has been described [92, 93]. 

In this technique, the sample is spun at about 54.74° to the magnetic field to overcome 

magnetic field heterogeneities within solid samples responsible for broadening resonance 

lines. Though no extraction is required, around 1000 nematodes are necessary for standard 

HR-MAS analysis due to the general insensitivity of NMR. The usage of 1H NMR 

microprobes can enhance sensitivity, as demonstrated by Wong et al. for the metabolic 

phenotyping of a low number of C. elegans [94, 95]. In non-targeted metabolomics 1D-1H 

NMR has been combined with other analytical platforms such as DI-MS, GC-FID, GC-MS, or 

LC-MS to increase the metabolite coverage [75, 76, 96, 97]. 

GC has been used early on in metabolomics, though not named like this at that time; for 

example Pauling et al. used GC for the analysis of urine and breath [98]. EI is typically used 

as an ionization method in GC-MS. EI yields highly reproducible but fragmentation-rich 

spectra. These spectra are useful for the dereplication of known and previously measured 

metabolites, and several EI spectra libraries are available. However, m/z of intact molecules 

is only occasionally observed, making unknown identification difficult. Chemical ionization 

(CI) as a soft ionization technique yields intact precursor ion m/z, which can be subjected to 

fragmentation in tandem MS. Therefore CI is preferred for analysis of unknown substances, 

as shown by Jaeger et al., who were using GC-APCI-MS for metabotyping in C. elegans [99]. 

Different MS tools were proven as effective tools for the analysis of the C. elegans 

metabolome, e.g. DI-MS for analysis of lipids [80, 100]. Lipid annotation was achieved by 

accurate mass and/or MS/MS characterization. Central carbon metabolites, such as organic 

acids or amino acids and fatty acids in C. elegans, have been analyzed by GC-MS [76, 81, 

90, 96, 99, 101-105]. The latter, fatty acids, have also been analyzed by GC using a flame 

ionization detector (FID) to determine the fatty acid composition [75, 76, 96]. 

Like other metabolomics applications, MS is frequently coupled with UPLC to separate C. 

elegans metabolites before mass spectrometric analysis [82, 97, 103, 106]. RP is a dominant 
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separation mode for the analysis of non-polar metabolites and lipids. Lipids are typically 

analyzed on C18 column, but also C8 columns have been used [76, 96, 102, 106-109]. 

Analysis of polar metabolites is achieved by HILIC [51, 52] or ANP [110]. A less widespread 

method is ion-pairing RP in negative ionization mode, e.g. using tributylamine as ion-pairing 

reagent. [104]. Another possibility for analysis of polar metabolite is CE, which requires only 

a small sample amount, only a few nL per injection. Still, it has not been applied to C. 

elegans so far. However, its general usability in metabolomics has been reviewed 

extensively [111]. 

1.3.1. C. elegans metabolomics & lipidomics method development 

Metabolite and lipid extraction is the first step in metabolomics and lipidomics. C. elegans 

represents an interesting case for sample preparation since it contains a hard cuticula. Geier 

et al. compared different homogenization and extract methods [82]. Six different tissue 

disruption techniques were combined with two solvent systems, 80% MeOH or a modified 

Bligh and Dyer extraction. Analysis was performed by GC-MS, LC-MS, and NMR. 80% 

MeOH in combination with a bead beater was found to represent the best solution for 

analysis of the polar metabolome. For NMR analysis high resolution magic angle spinning 

(HRMAS) represents an interesting alternative to laborious sample preparation. Blaise et al. 

used this method to study wildtype N2 and sod-1(tm776) [112]. Worms were washed off the 

plates and fixed with 3.7% formaldehyde. After extensive washing, including a final wash with 

D2O. About 1000 worms were filled into an HR-MAS rotor. 

C. elegans has a rich lipidome with several lipid classes present. Extraction of all lipids within 

a single method is complicated. Therefore, several extraction methods have been described. 

MTBE extraction has been developed using C. elegans samples and showed similar yields to 

chloroform-based methods [113]. The method is widespread and has been used in different 

studies, but it was also compared against different other extraction methods, such as Folch, 

Bligh & Dyer, or BUME [114]. Recently this method has been further developed to be 

combined with metal analysis from the aqueous phase [115]. However, several metabolites 
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or lipid classes might be of low abundance and require additional sample preparation steps 

such as preparative chromatography, TLC, or SPE. For example, using TLC, major lipid 

classes can be separated and further enhanced by using 2D-TLC, e.g. for the purification of 

glycolipids or other classes [80, 108]. Similarly, SPE based on anion exchange material has 

been used by Hänel et al. for the enrichment of sphingolipids [116]. 

1.3.2. C. elegans aging and longevity 

C. elegans is a premier model system to study aging and longevity, with several genetic 

modifications increasing or decreasing lifespan [117]. Several metabolomics studies have 

been employed to study the effects of mutation of daf-2, which encodes for the orthologue of 

the insulin/insulin-like growth factor (IGF) receptor. Fuchs et al. used NMR-based 

metabolomics to study three different alleles of daf-2 (e1370, m21 and m596) as well as daf-

28(sa191) and ife-2(ok306) [118]. Additionally, dauer larvae have been included in the 

analysis. A common trend for all alleles of daf-2 and daf-28 (which disrupts a DAF-2 ligand) 

is the increase of branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Out of 

all tested alleles, m41 showed the highest increase. Further analysis showed that these 

changes are dependent of the transcription factor DAF-16/FOXO, which acts downstream of 

DAF-2 and is activate upon daf-2 mutation. daf-2(e1370);daf-16(m26) double mutants 

showed similar levels to wildtype or daf-16(m26) single mutants. Combination with 

transcriptomic analysis revealed several major shifts in carbohydrate and central carbon 

metabolism. Martin et al. similarly compared daf-2(e1370) and daf-2(e1370);daf-16(m26) 

mutants but additionally included mutation of pept-1(lg601), which encodes for an intestinal 

di- and tripeptide transporter [74]. The additional mutation of pept-1 even further enhances 

the lifespan of daf-2 mutants. Analysis of C. elegans and their excreted exometabolome 

showed that worms carrying mutations of pept-1 have a decreased one-carbon metabolism. 

Consistent with Fuchs et al. increased levels of BCAA were found. mRNA expression levels 

also showed increased activity of BCAA metabolic genes. 
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A time course analysis of metabolites across the age of wildtype and daf-2(m41) mutants 

was performed by Davies et al. using NMR [119]. Metabolite levels were correlated with age 

and several differences and patterns were detected in daf-2(m41) compared to wildtype 

worms. While several metabolites change in the wildtype worms and only show modest or no 

changes in daf-2(m41), others show strong changes or even opposite responses. Similar to 

earlier studies BCAAs were found higher in young adult daf-2(m41) worms, but levels drop to 

the wildtype level at later stages. Another interesting trend was seen for trehalose, which is 

increased in daf-2 mutants but not in the m41 allele in young adults, but shows a strong 

increase throughout aging also in daf-2(m41) mutants. Trehalose has been previously shown 

to increase the lifespan of wild-type worms but has not further extended the lifespan of daf-2 

mutant worms [120]. Lipid analysis showed an increase in triacylglycerols, especially those 

containing branched and monounsaturated fatty acids. 

Castro et al. performed a metabolomic analysis of daf-2 mutants using NMR, GC-MS and 

LC-MS [121]. NMR was used for the study of polar metabolites. GC-MS analysis was used 

for amino, and fatty acids and LC-MS was used for the analysis of lipids. Based on their 

obtained data, correlation analysis was performed. This analysis showed a correlation 

between the catabolism of BCAAs and e.g. 15-methyl hexadecanoic acid. Prasain et al. 

performed lipidomic analysis of daf-1 and daf-2 mutants using a workflow called MSMSALL 

[122]. They identified changes in several phospholipid classes as well as di- and 

triacylglycerols. daf-2 mutants are described to show a fat phenotype with a higher number of 

lipid droplets. This is mirrored by the lipidomic analysis showing that daf-2(e1370) has higher 

triacylglycerol levels than wildtype. Lourenço et al. investigated prohibitin deficiency in WT 

worms and daf-2(e1370) mutants [75]. They observed that prohibitin deficiency shortens the 

lifespan of wild-type nematodes while it significantly extends the lifespan of the already long-

lived daf-2 mutants. GC-FID analyses showed that prohibitin depletion of daf-2 results in 

changes of polyunsaturated fatty acid contents, which are already linked to longevity. Fatty 

acid composition and amino acid and carbohydrate metabolism, which was analyzed by 
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NMR, were more deeply affected by prohibitin depletion in wild-type nematodes compared to 

daf-2 mutants. 

Metabolomics is able to produce a static snapshot of the current metabolic state. However, in 

most cases, it remains elusive how this state was reached regarding which pathway was 

active. Using isotopic tracers can help capture the dynamic nature of metabolism. Tracer 

analysis in C. elegans represents a complicated task since no axenic medium is available, 

and always co-metabolism of tracers between E. coli and C. elegans is determined. Perez 

and van Gilst developed an interesting approach that allows following lipogenesis in C. 

elegans based on feeding a mixture of isotopically non-labeled or labeled E. coli [123]. The 

E. coli food source is grown in either non- or fully labeled growth medium. C. elegans was 

fed with a 50/50 mixture of non-labeled and labeled E. coli. Fatty acids from C. elegans have 

been analyzed with GC-MS. Fatty acids directly derived from E. coli are either 100% non-

labeled or labeled, while all fatty acids that are produced by C. elegans show a mixed 

labeling pattern. Based on the degree of labeling, it can be determined if complete de novo 

synthesis or elongation has been performed. This method was applied to different alleles of 

daf-2: m577, e1368, m596, e1371, e1370, and m41. Interestingly, not all alleles showed the 

same extent in de novo fatty acid synthesis changes, with the highest levels found in daf-

2(1370) and daf-2(m41). 

Although the exact way how changes in metabolism support longevity are not entirely 

understood, all results point toward a major rearrangement in the central metabolism. 

Depuydt et al. performed proteomic analysis of daf-2(e1370) mutants [124]. Consistent with 

metabolomics results, they have seen major changes in central metabolic pathways. 

Interestingly, the rewired metabolism is reminiscent of the metabolism in dauer larvae and 

points towards efficient use of internal nutrients. 

Beside mutation in daf-2 different other mutations can lead to an extension in lifespan. Butler 

et al. performed GC-MS-based analysis of the exometabolome of mutants in the 

mitochondrial electron transport chain [125]. An increase of branched-chain α-keto acids and 
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their reduction products was seen explicitly in mutants of mitochondrial electron transport 

chain genes but not in daf-2(e1370), clk-2(qm37), eat-2(ad465), and slcf-1(tm2258), which 

are also long-lived. Furthermore, their profile is different from worms cultured under 

anaerobic conditions. Further analysis showed that inhibition of dihydrolipoamide 

dehydrogenase resembles the observed metabolic phenotypes. 

One of the metabolomics's significant advantages, but also obstacles, is that metabolism is 

one of the first things to react upon a stimulus. Therefore, great care needs to be taken when 

samples are taken and processed. Furthermore, chemicals used e.g. during cultivation, 

might lead to unexpected results. 5-Fluoro-2-deoxyuridine (FUdR) is used in C. elegans 

cultivation to maintain synchronous culture [126]. It inhibits DNA synthesis and the 

production of offspring. Davies et al. evaluated the effect of FUdR on the metabolic response 

in daf-2 mutant worms [127]. C. elegans were cultivated with or without FUdR and 

metabolites were analyzed via NMR. Interestingly, PCA separated worms grown with or 

without FUdR on the first principal components. Only if the dataset was divided into two 

separate sets with or without FUdR a separation between wildtype and daf-2 mutants was 

visible. Treatment with FUdR let to different changes between wildtype and daf-2 mutant 

worms, e.g. for glutamate. 

Different signatures in changes might be shared between other long-lived mutants, for 

example, daf-2 and eat-2 mutants. The latter is used as a model for dietary restriction (DR). 

Gao et al. compared both mutants using metabolomics and transcriptomics [101]. Both 

mutants show an increase of glycerolipid and purine degradation intermediates and AMP, 

while amino acid levels and certain fatty acids decreased. Longevity signatures in the 

transcriptome and metabolome observed in both mutants show an increase in amino acid 

metabolism, potential due to lower protein synthesis and an up-regulation of purine 

metabolism. Another model for longevity are dauer larvae, which can live about eight times 

longer than WT worms, and changes in metabolism can be studied using metabolomics [77, 

128]. Significant differences to non-dauer worms, but similar changes to long-lived mutants 
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were found. Comparable to other studies changes, dauer larvae contain metabolites of 

distinct central carbon metabolic pathways such as carbohydrate, amino acid, and choline 

metabolism. 

Sirtuins are NAD+-dependent protein deacetylases, and mutation of the sir-2.1 gene in C. 

elegans also leads to a lifespan extension of up to 50% [83]. Using 13C-HMN-NMR 

comparing sir-2.1 mutant and WT C. elegans revealed differences in BCAAs, triacylglycerols, 

carnitine and acetyl-CoA, all elevated in WT worms. In contrast, lactate, glutamate, alanine, 

fatty acids, and AMP were increased in the mutant worms pointing to changes in glycolysis, 

nitrogen catabolism, and lipolysis. 

Mutation in the glp-1 gene leads to the ablation of germline stem cells and, therefore, 

infertility, but also an extension of lifespan [129]. glp-1 mutants show an altered lipid 

metabolism, and many age-related metabolites, including increased levels of pyrimidine and 

purine metabolism intermediates and decreased concentration of citric acid cycle 

metabolites, were also differentially regulated in glp-1 mutants worms [97]. NMR and UPLC-

MS showed that glp-1 mutant worms show similar changes as WT during ageing. However, 

dysregulation of some metabolites (e.g. GSSG, valine, leucine, malate and serine) was 

observed, while others (e.g. cystathionine, glycine, arginine and trehalose) didn’t change. In 

order to pinpoint common metabolic signatures in aging and longevity in the future more 

meta-analysis of the previously collected data is required. 

Elevated trehalose has been observed in almost all long-lived C. elegans mutants. It was 

therefore tested if supplementation with trehalose positively affects the lifespan of C. elegans 

[119]. Such a positive effect was only observed for middle-aged WT worms treated with 

trehalose but not for early adults. Comparing worms at different ages (10-day adults vs. 

young adults), differences in reduced and oxidized glutathione were observed. While the first 

one was reduced, the second one increased. The antioxidants taurine and hypotaurine 

declined with age. Phosphocholine and trehalose showed higher concentrations in aged 

worms, while purine metabolism intermediates decreased. Intermediates of pyrimidine 
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metabolism and TCA cycle were variable, with no apparent pattern. This is in contrast to 

short-lived mutants such as mev-1(kn1) studied by Jaeger et al. with GC-EI- and GC-APCI-

MS [99]. The found an upset TCA cycle balance, elevated lactic acid fermentation, and 

increased amino acid catabolism. The effect of aging was also studied by HR-MAS-NMR 

comparing young adults and seven days old adults [93]. While saturated and unsaturated 

lipids, glycerophosphocholine, phosphocholine, glutamine, and glycine increased with age, 

several amino acids such as alanine, arginine, leucine, isoleucine, lysine, phenylalanine, 

tyrosine, valine and glutamate and other metabolites such as acetate, lactate, glycerol, 

formiate, and cystathionine decreased. 

Analysis of age-related metabolites has been performed using HILIC-UPLC-MS combined 

with flux balance analysis (FBA) with a new approach called MetaboFBA [52]. Changes 

similar to earlier publications have been observed with levels of some amino acids (serine, 

threonine, leucine, lysine, glutamine/ glutamic acid, methionine, tryptophan, arginine, 

homoserine, cystathionine) and nucleotides (guanosine, cytidine, uridine, GMP) decreased 

over time, while guanosine, cytidine, uridine, GMP decreased. Betaine, carnitine, leucic acid, 

pantothenate, kynurenic acid, xanthurenic acid, and degradation products of both nucleotides 

hypoxanthine, xanthosine, and allantoin increased over time. 

Changes in metabolism have not only been studied during aging but also development. 

Analysis of fatty acids using DI-MS and targeted metabolomics using HPLC-MS has been 

performed in embryos and L1 to L4 larvae [130]. Fatty acids showed the lowest abundance 

in the larval stages and increased in adult worms. Amino acids peaked in L3 and in early 

adults and decreased throughout aging. The only exception was asparagine, which showed 

the highest levels in eggs and larvae but then decreased. Phosphatidylcholines (PCs) and 

phosphatidylethanolamines (PEs) were present in higher abundance in larval stages and 

young adults and decreased during the adult lifespan. Lysophosphatidylethanolamines 

(LPEs) showed a similar trend, while cardiolipins (CLs) were low in L2 and increased during 
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early adulthood. Phosphatidylglycerols (PGs) and sphingomyelins (SMs) showed an opposite 

pattern. 

The nuclear hormone receptor DAF-12 regulates both adult lifespan and larval development. 

Using 2D-NMR and DANS between daf-22 and daf-9;daf-12 mutants have been combined 

with activity-guided fractionation to identify DAF-12 ligands, including Δ4- and Δ7-dafachronic 

acid already known, but also new derivatives [90]. Separation and independent quantification 

of both isomers are important since they are derived from different branches of a pathway 

involving different enzymes [131]. A method based on a 1.3 µm particle column, showing 

high efficiency, was developed to separate the two isomers and quantify them in dietary-

restricted worms [132, 133]. 

Wang et al. used UPLC-MS and GC-MS to find metabolic changes in pnc-1 mutants that are 

deficient in nicotinamidase and show slow reproductive development [104]. The targeted 

analysis identified NAD+ and glycolytic intermediate levels suggesting that efficient glycolysis 

seems to be mandatory for reproductive growth. 

1.3.3. C. elegans ascaroside signaling 

Individual C. elegans communicate with each other using a blend of small molecules 

excreted into the environment. The best-known example is ascarosides, which constitute the 

dauer pheromone. Chemically, they have been identified as glycosides of the di-deoxy-sugar 

ascarylose. They regulate development and the (coordinated) behavior of the nematode, 

such as dauer formation, male or male or hermaphrodite attraction or repulsion, or 

aggregation. Ascarosides contain a hydrophobic tail derived from long and very long chain 

fatty acids and can contain several modifications at various positions. Metabolomics 

approaches have been used to identify different members of this class. Srinivasan et al. used 

activity-guided fractionation, 2D-NMR, and targeted LC-MS measurements to identify mating 

signals, which were excreted by L4, YA, and adult hermaphrodites [79]. Three ascarosides 

called ascr#2, ascr#3 and ascr#4 were identified, and the attraction seemed to be 
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concentration-dependent. While males were attracted at low concentrations, deterrence 

occurred at higher concentrations. 

Further investigations using differential analysis by 2D-NMR in combination with LC-MS led 

to the discovery of previously unknown ascaroside species called ascr#6.1, ascr#6.2, ascr#7, 

and ascr#8 [91]. It has been shown that DANS is well suitable for discovering ascarosides 

since it can resolve them from a chemical background in the spent cultivation media such as 

amino acids, peptides, and other compounds that otherwise dominate the total ion 

chromatogram (TIC) at LC-MS. However, LC-MS was more beneficial for the detection of 

low-concentrated ascarosides as ascr#1, ascr#6.1, and ascr#6.2. 

Pungaliya et al. employed differential 2D-NMR to the exometabolome of N2 wildtype worms 

and daf-22 mutants and identified three known and four unknown ascarosides [134]. One of 

these molecules contained an unusual p-aminobenzoic acid moiety. Interestingly, this 

residue seems to be specifically attached to ascr#7, which features a seven carbon long side 

chain, although the nine carbon side chain member acsr#3 is found in higher amounts. 

A similar 2D-NMR approach was used by Izrayelit et al. to identify the interaction between 

the ascarosides and another class of bioactive molecules endocannabinoids [135]. Analysis 

of the daf-22 exometabolome revealed the presence of several ethanolamide-modified 

ascarosides. These molecules are longer compared to commonly found ascarosides with 

chain lengths between 21 and 29 carbons. HPLC-MS analysis confirmed the presence of 

long-chain ascarosides and ethanolamides. Von Reuss et al. identified several other 

modified ascarosides using LC-MS/MS-based comparative metabolomics [136]. Ascarosides 

are putatively synthesized by peroxisomal β-oxidation of long-chain precursors. The 

enzymes ACOX-1, MAOC-1, DHS-28 and DAF-22 are required for their correct biosynthesis. 

Based on the LC-MS/MS analysis, they profiled different ascarosides, including saturated, 

α,β-unsaturated and β-hydroxylated species in mutants of the above-mentioned enzymes. 

Results proved the suggestion that ascarosides are produced by β-oxidation since particular 

profiles were obtained for the respective mutants. In addition to the normally found ω-1 
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hydroxylated side chains, molecules also containing ω-hydroxylated species have been 

identified, together with indole, p-hydroxybenzoic, or tiglic acid-modified molecules. Indole-

containing ascarosides serve as potent attraction and aggregation signals for 

hermaphrodites. By using isotope labeling experiments, it was shown that the indole moieties 

derived from Tryptophan are produced by C. elegans. Again, the indole containing 

ascarosides show a very specific chain distribution, which was the basis for the investigation 

of different proposals for biosynthetic pathways [137, 138]. One of the largest analyses of 

ascarosides was performed by von Reuss et al. using GC-MS [139]. Using a specific 

ascarylose-derived fragment together with fragments specific to the side chain, they were 

able to identify about 200 ascarosides. These included previously known ω-1 linked acyl 

saturated, α,β-unsaturated, β-hydroxylated and β-keto derivates together with ω-linked, 

ethanolamides, and others. Parallel to GC-MS, LC-MS/MS analysis has been applied for 

further confirmation. Also, applying LC-MS/MS Artyukhin et al. used molecular network 

analysis to study the metabolomic “dark matter” [140]. Many previously unknown structures 

have been detected by performing analysis in positive and negative ionization modes. 

Interestingly, some new molecules related to the ethanolamide containing ascarosides have 

been detected, including N-acylethanolamides, glycerophosphoethanolamides, and 

glycerphosphoethanolamides glucosides. 

1.3.4. C. elegans lipidomics 

C. elegans is a premier model organism for the study of lipid metabolism. Regulation of fatty 

acid and lipid metabolism has been extensively studied in C. elegans [141]. The transparent 

body makes it easy to follow fat storages or the expression of lipid-related genes using 

reporter constructs. Additional techniques and different to analysis methods for polar 

metabolites are necessary due to the very different physicochemical properties of lipids. 

Various possibilities for the analysis of fatty acids and lipids exist and have been applied to 

C. elegans. GC-FID or GC-MS are most widely used to analyze fatty acids and sterols, while 

intact lipids are analyzed through shotgun or LC-MS-based lipidomics. Methods for the 

analysis of lipids and lipid metabolism are reviewed elsewhere [142]. Analysis of fatty acids 
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has been performed by many research groups using GC-FID or GC-MS. The genetic basis 

for the biosynthesis of fatty acids has been unraveled by Watts and Browse using GC-FID 

[143]. Another technique that has been used quite extensively is thin-layer chromatography 

(TLC) [144]. Analysis of the total or lipid class-specific fatty acid composition of C. elegans 

has been carried out several times [76, 105, 145-151]. Most recently, Henry et al. determined 

the fatty acid composition of WT worms using EI and CI at GC-QToF-MS utilizing the high 

separation power of GC with high resolution of TOF-MS identify in total of 28 fatty acids 

based on exact mass and isotope pattern in CI [105]. Fragmentation in EI was used for 

further verification and identification. However, the actual fatty acid content is highly 

dependent on culture conditions and the bacterial diet [147]. The nematode is able to 

synthesize all required fatty acids, including monounsaturated (MUFA), polyunsaturated 

(PUFA), and branched-chain fatty acids (BCFA) on its own, although the majority of 

saturated fatty acids are directly taken up from the food. Interestingly, mono-methyl BCFAs 

(mmBCFAs) are produced by 99.9% by the worm itself [152]. While the E. coli diet of C. 

elegans is rich in the saturated fatty acids lauric acid, myristic acid and palmitic acid, they are 

only minor species in C. elegans. Interestingly, palmitic acid and stearic acid have high 

percentages in phosphatidylinositols (PIs) [151]. The cyclopropane fatty acids cis-9,10-

methylene hexadecanoic acid (FA 17:0[9-10cy3:0]) and cis-11,12-methylene octadecanoic 

acid (FA 19:0[11-12cy3:0]) are taken up exclusively from the bacterial diet and are enriched 

in triacylglycerols. Castro et al. investigated the regulation of the lipid content in fat-5, fat-6, 

and fat-7 mutants [76]. They used GC-FID to analyze fatty acid profiles and LC-MS for the 

analysis of intact lipids. Common to most of the studied mutants was an increase in 

triacylglycerols and a decrease in phosphatidylcholines with unsaturated fatty acids, 

consistent with the role of these genes in the biosynthesis of PUFAs. 

Despite the long history of C. elegans lipid analysis, the analysis of intact lipids and complete 

lipidomes only recently entered the C. elegans toolbox. One of the first analyses of intact 

phospholipids in C. elegans was conducted by Ishida et al. using nano Electrospray-Fourirer 

Transform Ion Cyclotron Resonance Mass Spectrometry (nanoESI-FT-ICR-MS) [153]. 



 

36 
 

Utilizing the ultrahigh resolution of FT-ICR-MS, they were able to distinguish between diacyl 

and alkyl-acyl species solely on mass. Different other groups used direct infusion or shotgun 

lipidomics approaches to study the C. elegans lipidome. Schwudke et al. performed a lipid 

analysis on C. elegans undergoing the knockdown of two putative methyltransferases, PMT-

1 and PMT-2 [100]. Knockdown of the two genes showed the increase of either monomethyl-

PEs or dimethyl-PEs, proofing the putative gene annotation and their involvement in the 

biosynthesis of PCs from PEs in C. elegans. pmt-1 and pmt-2 are homologs to plant 

methyltransferase. pmt-1 deficient worms arrest their development at the L4/early adult stage 

and pmt-2 worms at the L3 stage. Upon silencing of pmt-1 a decrease in MMPE and DMPE 

was observed, while RNAi of pmt-2 led to an increase of only MMPE. 

Lipid extraction is a crucial first step in the analysis of lipids. The extraction protocols 

according to Folch or Bligh and Dyer are the gold standards for lipid extraction. However, the 

lipid-containing organic chloroform phase forms the lower phase, with the interphase 

containing DNA, RNA, and proteins floating on it. This makes the recovery of the lower 

phase complicated. Matyash et al. developed a protocol using MTBE, which shows a lower 

density than water and forms the upper phase [113]. C. elegans eggs were used as a sample 

for the comparison of the Folch and the MTBE extraction protocols. Shotgun lipidomics using 

a qToF-MS was used for analysis. Different lipids from several lipid classes have been 

detected. The results showed that the two extraction methods have comparable yields. 

Based on TLC and shotgun lipidomics, Penkov et al. identified maradolipids as a new lipid 

class exclusively found in C. elegans dauer larvae [80]. 2D-TLC was performed for lipid class 

separation, and spraying with Molisch reagent identified a class of glycolipids in dauer larvae. 

Chemical analysis with MS and NMR identified these lipids as 6,6’-diacyl trehaloses. Papan 

et al. performed shotgun lipidomics comparing L3 with dauer larvae and identified lyso-

maradolipids, potentially representing a biosynthetic intermediate or degradation product of 

maradolipids [154]. Recently this class has also been investigated using UHPLC-IM-TOF-MS 

[155]. 
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Sphingolipids are an important class in C. elegans. The nematode produces C17iso 

branched chain sphingoid bases using FA 14:0(13Me) instead of palmitic acid. Different 

studies used lipidomics to study ceramides and other sphingolipids. Ceramides are produced 

by three different ceramide synthases. One of these, HYL-2, has been shown to be 

protective under anoxic conditions [156]. The two enzymes HYL-1 and HYL-2 have different 

substrate specificity in regard to N-Acyl bound fatty acids. A further study showed that HYL-1 

is required for the synthesis of sphingolipids with ≥ C24, while HYL-2 is for the synthesis of 

ceramides with ≤ C22 [157]. 

The fatty acid profile of sphingolipids shows a different fatty acid profile compared to glycero- 

and glycerophospholipids. Typically, mild alkaline saponification is used to generate free fatty 

acids from glycero- and glycerophospholipids, which are in turn, analyzed as their methyl 

esters by GC-MS. Amide-bound fatty acyls in sphingolipids are inert under this condition and 

require a different strategy. Therefore, total fatty acid profiles normally represent ester-bound 

fatty acids ignoring fatty acyls from sphingolipids. Chitwood et al. and Gerdt et al. performed 

an analysis of glucosylceramides in C. elegans and identified several 2-hydroxy fatty acids, 

which are not found in glycero- and glycerophospholipids. These fatty acids represent long-

chain saturated fatty acids ranging from 16 to 26 carbons and include odd-numbered chains. 

Interestingly, also even numbered mmBCFAs were reported [158, 159]. Recently, UPLC-

UHR-TOF-MS in combination with extensive fractionation of the lipidome, has been used to 

study sphingolipids in more detail [116]. Besides different ceramides, glycosylceramides, and 

sphingomyelins, unusual PE or mono-methyl-PE-modified glucosyl ceramides have been 

identified in a screen searching for molecules important under sterol deprivation [160]. 

Structural elucidation of such novel lipids is an important topic. Zhao et al. studied the 

fragmentation of SM species in C. elegans detected as [M+HCO3]- adduct, which led to a 

radical-directed dissociation for detailed elucidation of N-acyl chains and sphingoid bases 

[161]. 
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Another specificity in the C. elegans is the high amount of plasmenyl-PE (PE-P) and 

plasmanyl-PE (PE-O), with 5.1 and 4.9% of the phospholipid content, respectively. In 

mammals, ether lipids normally belong to PCs. In C. elegans, PE ether lipids mostly 

contained an 18:0 side chain at the sn1 position linked as ether or vinyl-ether [162]. The 

biosynthesis of ether lipids was investigated by Shi et al. [149]. Key enzymatic gene mutation 

leads to an increase in de novo fatty acid biosynthesis and reduction in the desaturases fat-5 

and fat-7, which potentially represents an orchestrated response to remodeling the lipidome 

composition. 

Different treatments lead to profound changes in the lipidome, dietary restrictions (DR), for 

example. Klapper et al. studied additional supplementation with choline during DR and they 

have seen that lipid stores are utilized at a later time point [108]. While choline 

supplementation changed the lipid composition, it was not able to reverse the lifespan 

increase under DR. Excessive energy in C. elegans is stored in triacylglycerols, the primary 

lipid class found in lipid droplets, energy storage organelles. Typically, triacylglycerols are 

believed to be relatively inert and are only utilized if energy is required. However, the can 

serve as a buffer and reserve for specific fatty acids or can store cytotoxic fatty acids, e.g. 

large amounts of saturated fatty acids. Embryos rely on the energy stored in yolk during their 

development. A genetic screen searching for large lipid droplet phenotype in embryos was 

performed by Schmökel et al. [109]. 

Interestingly, asm-3, a member of the acid sphingomyelinase gene family, was identified as 

an interesting candidate. Interestingly, the large lipid droplet phenotypes were specific to 

asm-3, and not effect was observed in the closely related genes asm-1 and asm-2. 

Performing lipid analysis by LC-MS/MS, changes in particular lipid species were found, while 

the total lipid content and the relative class composition didn’t change extensively. 

Several genes coordinate lipid metabolism and have important regulatory functions. A vital 

regulator is the transcription factor SREBP-1 (sterol regulatory element binding protein), 

which has important role in lipogenesis. For example, low levels of PCs stimulate SBP-
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1/SREBP-1. Smulan et al. identified lpin-1 and arf-1.2 as essential genes for the activation of 

SBP/SREBP-1 under low PC conditions [163]. Another important is lipl-5, a lipase-like gene, 

important during starvation. Macedo et al. studied mutants lacking LIPL-5 under ad libitum or 

starvation conditions by LC-MS analysis [164]. Four hundred nine different lipid species were 

detected, and differences in the activity of mitochondria accompanied the most prominent 

differences in detected cardiolipins. Generally, there is an intimate link between 

mitochondrial activity, lipid metabolism, and longevity. Mitochondrial dynamics can influence 

lipid profiles [165]. fzo-1 mutants showed fragmented mitochondria, decreased mitochondrial 

membrane potential, and induced mitochondrial unfolded protein response. The lipidome 

analysis by UPLC-UHR-ToF-MS revealed a specific signature of changes in TGs, with fewer 

carbons and double bonds down-regulated in fzo-1 mutants, while longer and more 

unsaturated TG species were upregulated. A further important transcription factor is HLH-30 

linking mitochondrial dynamics and translation to longevity [166]. Furthermore, HLH-30 is 

central to the response to starvation, as hlh-30 mutants are susceptible to starvation. 

Metabolite and lipid profiles of wildtype and hlh-30 mutants have been compared over 

starvation and changes in long-chain acyl-carnitines and cardiolipins with an increase over 

the starvation time course. In contrast, hlh-30 mutants showed no change [167]. Using 

assays to measure mitochondrial β-oxidation a shift towards peroxisomal β-oxidation was 

observed in hlh-30 mutant. The additional knockdown of prx-5 leads to hypersensitivity of 

hlh-30 mutants to starvation. prx-5 mutants have also been studied, and changes in TGs and 

ether PEs were observed [168]. 

The role of lipids in aging has also been studied. Combinations of different drugs, which 

extend the lifespan of the nematodes, were used, and the lipid profiles were compared by 

LC-MS/MS [169, 170]. The effects of the drugs depended on the presence of SBP-1/SREBP-

1, and changes in the MUFA to PUFA ratio have been linked to this extension. Generally, the 

regulation of PUFAs is important in many aspects of C. elegans biology. Polar metabolites 

and lipids have been studied over a period of ten days under different feeding conditions 

[130]. Changes in fatty acids and phospholipids were regulated by MDT-15, which controls 
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the expression of fat-7, and differences were identified on the fatty acid and lipid species 

levels. In a similar fashion, changes in the lipid metabolism of dauer larvae were studied by 

LC-MS/MS [171]. Dauer larvae membranes are enriched in PUFAs, and the release of 

PUFAs and production of downstream metabolites such as eicosanoids are observed upon 

the end of the dauer stage. 

Perez and van Gilst used GC-MS to study differences in fatty lipogenesis between different 

alleles of daf-2 mutation [152]. The same approach was used to further study membrane 

dynamics [172]. Comparing the percentage of newly incorporated fatty acids into either 

phospholipids or neutral lipids, they showed higher turnover rates for phospholipids. 

However, the amount of fatty acids from de novo synthesis was only for palmitic acid 

significantly different. Turnover rates were determined in different mutants and identified fat-

5, fat-6 and fat-8 as membrane maintenance regulators. Furthermore, 15N tracers were used 

to follow the phospholipid turnover in more detail. This analysis revealed that fat-7 also 

influences the turnover of lipids towards slower metabolism. 

1.3.5. Nutrition and other topics 

The metabolome of C. elegans is highly dependent on the food source and nutritional status 

[42]. One central point influenced by the bacteria strain used for feeding is the fatty acid 

composition [76]. Higher levels of the odd chain fatty acids of lengths 15 and 17 were found 

when C. elegans was fed with Bacillus subtilis instead of E. coli. A large portion of the fatty 

acid composition reflects the bacterial diet, but several fatty acids are also absent in bacteria 

and are therefore synthesized de novo in the worm. In contrast, levels of amino acids are 

almost identical between the different feeding conditions, suggesting that amino acid 

metabolism and their levels are tightly controlled and regulated. 

Besides the topics covered so far, several others have been studied in C. elegans using 

metabolomics. For example, Hughes et al. studied the response of C. elegans to exposure of 

cadmium using LC-MS [173]. Different genotypes, WT, and pcs-1 mutants, mtl-1;mtl-2 

double mutants and mtl-1;mtl-2;pcs-1 mutants were used and decreased levels of 



 

41 
 

cystathionine, and increased levels of phytochelatins were found. This is due to the 

upregulation of the methionine transsulfuration pathways as a response to cadmium 

exposure. Likewise, the metabolic response to nickel and chlorpyrifos has been investigated 

and similar changes have been found for both exposures, suggesting a common 

detoxification response [174]. Schlipalius et al. investigated the metabolome of WT and dld-1 

mutants after exposure to phosphine [78]. Lastly, Sudama et al. investigated changes in 

metabolites due to lead exposure, but instead of LC-MS, they employed HPLC with a 

coulometric array to find after lead exposure, changes in tryptophan, tyrosine, and purine 

were observed in WT worms [175]. 

Different transgenic models of diseases are possible in C. elegans. One of them is 

Alzheimer’s disease. Van Assche et al. studied changes in the metabolism after induced 

expression of the human amyloid-β peptide by GC-MS and LC-MS using RP and aqueous 

normal phase (ANP) -MS separation [176]. Previous results from experiments in alzheimers 

disease were also obtained in humans, as, for instance, increased levels of allantoin could 

be confirmed [110]. Moreover, Teo et al. combined metabolomics data with transcriptomics 

and computational modeling and linked amyloid-β expression to TCA cycle [102]. The fast 

development and reproduction of C. elegans make it also an ideal organism to study the 

accumulation of mutations. The effect of the mutation accumulation has been studied by GC-

MS and 29 metabolites have been identified, which vary in their vulnerability to mutation 

[177]. Additionally, new metabolite classes are identified on a routine basis in C. elegans, 

beside ascarosides. One example are anthranilic glucosyl esters, which show a blue 

fluorescence and accumulate during cell death [178].  
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1.4. Embedding C. elegans metabolomics and lipidomics in systems biology 

C. elegans integrates several features that make it an interesting organism for systems 

biology approaches, including different forward and reverse genetic tools and the possibility 

to grow a large number of worms in a short time. Integrating metabolomics and lipidomics 

into the systems biology landscape requires that many samples and/or conditions can be 

measured with experimental setups, e.g., in genome-wide or drug screens. This translates 

into an increased number of samples, but a decrease in sample amount or volume per 

sample, since standard growth conditions are often hard to parallelize to reach the required 

throughput. While it is relatively easy to cultivate several thousands of worms for an 

experiment with a few single genotypes or conditions, genetic screens in C. elegans are 

typically carried out in 96-well plate format. Under these conditions, 10-15 worms can be 

cultivated in a single well without overcrowding. This means, on average, about a 100-fold 

reduction of biological starting material compared to standard culture conditions. So far, most 

of the C. elegans metabolomics and lipidomics studies used standard culture conditions of 

worms with several thousand individual worms per sample or even liquid cultures to obtain 

even higher numbers. Typical numbers from selected publications are summarized in Table 

3. Depending on the metabolites of interest and their abundance, the number of required 

worms and culture plates must be increased and potentially pooled for a single replicate, 

lowering throughput. No direct correlation between the number of employed worms and 

reported metabolites exists. The detection of highly abundant lipids, for example, is possible 

with about 500 worms, while the detection of dafachronic acids, for example, requires larger 

amounts (> 10.000 worms) [132]. 

It can be concluded that either a reduction in biological information obtained from 

metabolomics and/or lipidomics experiments is expected or that more sensitive appraoches 

must be employed. Besides the required increase in sensitivity, the time needed for the 

analysis becomes another critical issue. Using longer runtimes (e.g. 15-30 minutes or above) 

in such large-scale experiments is unrealistic, which might introduce additional unwanted 

variation, either on the long storage time of samples or on more significant differences in 
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growth conditions along the time axis (e.g. different batches of cultivation media, etc.). A 

further important aspect is biological variation. Using standard cultivation techniques, 

variation between animals is averaged out on the population level, but if the number of 

animals is reduced, variation is potentially increased.  

Table 3: Comparison of number of worms used for metabolomics and lipidomics analysis against the number of 
reported metabolites and the used analytical technique for publications indicating the number of used worms. The 
number of worms is very heterogenous as well as the number of metabolites reported. This number does not 
reflect the number of detected features, but only the number of metabolites reported in figures, tables and 
supplementary information. Furthermore, the abundance of the metabolites of interest plays an important role 
determining the required amount of worms. Lipids can be easily analyzed from a lower number of worms, while 
for example detection of dafachronic acids requires several hundreds of thousands. 

Publication 
Amount of worms / per 
sample 

Number of 
metabolites 
reported 

Technique 

Blaise et al., 2007 [179] unknown 58 NMR 

Atherton et al., 2008 [180] 2000 worms 77 NMR / GC-MS 

Hughes et al., 2009 [181] 8000 worms / sample 10 NMR / LC-MS 

Jones et al., 2011 [182] 2000 worms / sample 65 NMR / GC-MS 

Lucanic et al., 2011 [101] ~ 5 x 10e6 worms / sample 6 GC-MS 

Butler et al., 2012 [183] 80-100,000 worms / sample 66 GC-MS 

Butler et al., 2013 [125] 120,000 worms /sample 69 GC-MS 

Wong et al., 2014 [94] 
1000 worms / sample down 

to 1 worm / sample 
49 NMR 

Jaeger et al., 2014 [99] 500 worms / samples 113 GC-MS 

Gao et al., 2017 [130] 2000 worms / sample 64 LC-MS 

Gao et al., 2018 [51] 2000 worms / sample 104 LC-MS 

Folick et al., 2015 [184] 200,000 worms / sample 71 LC-MS / GC-MS 

Schmökel et al., 2016 [109] 100.000 eggs 81 LC-MS 

Schwudke et al., 2007 [100] 12,000 worms 164 Other 

Mahanti et al., 2014 [90] 
540,000 worms (estimated 

from 540 10 cm plates) 
6 NMR 

Mosbech et al., 2013 [157] 1000 worms 47 Other 
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Publication 
Amount of worms / per 
sample 

Number of 
metabolites 
reported 

Technique 

Hastings et al. 2019 [52] 2000 worms / sample 104 LC-MS 

Witting et al., 2015 [185] 1000 worms / sample 2 Other 

Witting et al., 2014 [68] 5000 worms / sample  LC-MS 

Witting et al., 2017 [186] 5000 worms / sample  LC-MS 

Witting et al., 2015 [132] 20,000 worms / sample  LC-MS 

Thondamal et al., 2014 [133] 20,000 worms / sample 2 LC-MS 

Papan et al., 2014 [154] 30000 worms / sample 16 Other 

Dall et al., 2021 [187] 500 worms / sample 1244 LC-MS 

Häußler et al., 2020 [165] 500 worms / sample 540 LC-MS 

Rackles et al., 2021 [168] 500 worms / sample 844 LC-MS 

 

The increase in sensitivity of analytical instrumentation allows the decrease of the required 

amount of biological starting material. A clear trend towards a lower number of worms is 

visible for standard metabolomics applications. The first steps in this regard have been 

performed by the use of DI-FT-ICR-MS, for example [185]. Metabolite extracts of 1000 

worms have been produced, with an approximate concentration of 1000 worms / mL, but for 

optimal data acquisition, this extract had to be diluted 1:50, yielding a sample of 20 worms / 

mL. From this extract, only a few µl have been used for direct infusion, translating to the 

equivalent of less than a worm used. This result encourages that it is possible to perform 

metabolomics and lipidomics on a small amount of biological starting material. In extreme 

cases, analysis of the metabolome and/or lipidome of single worms might become possible 

in the future. To analyze the limited protein/metabolite amount within one worm, technical 

issues have to be overcome to enable single-worm proteomics or metabolomics. A first 

glimpse of single-worm metabolomics was published in 2014. Wong and co-workers 

employed a µHR-MAS-NMR system for the analysis of metabolites from intact C. elegans 
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[94]. They could identify 31 metabolites from only 12 animals. However, the measurement 

time was 2.5 hours for one sample. Using just a single worm, signals from choline moieties, 

glucose, tyrosine, and phenylalanine could be detected, but 15 hours of the acquisition were 

required. More recently, in a groundbreaking paper, Bensaddek et al. described the 

proteome analysis from single worms using a tailored microproteomics method [188]. Using 

this method, they were able to detect ~ 3000 proteins from a single C. elegans compared to 

~5000 proteins from a standard macro-proteomics approach employing ~40,000 pooled 

animals. This new approach is powerful compared to previous microscopic studies using only 

a limited number of reporter systems for single proteins, while proteomics is able to analyze 

thousands of proteins in parallel. 

These obtained results indicate that the inclusion of metabolomics and lipidomics in large-

scale C. elegans experiments such as genome-wide screens, will be possible. This will 

generate new insights into the role of metabolism, its regulation, and implications for different 

aspects of the nematode's biology. However, various elements need to be developed better 

before entering this stage of analytical method development and applications. 
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1.5. Goals of this work 

Metabolites show a large diversity in structure, and no unifying physicochemical principle like 

for the analysis of DNA and RNA exists. Therefore it is advantageous to first identify and 

define the composition of the metabolome and lipidome of the organism to study (even if it is 

only a draft). Such a collection of metabolites and lipids enables the estimation and to project 

into required methods for analysis. Likewise, methods for bioinformatic analysis are 

necessary to be able to cope with the large scale of obtained data. 

The goal of the culminated work presented in this work is to develop further metabolomics 

and lipidomics approaches and data analysis strategies that allow delving deeper into the 

metabolism of C. elegans. Here the first goal it to better understand the complexity of the 

metabolic network of the nematode. No C. elegans-specific metabolome or lipidome 

database currently exists, though several genome-scale metabolic models have been 

described. However, scattered efforts lead to suboptimal performance and incompatibilities. 

Therefore, metabolic models were integrated into a single model, which serves as the basis 

for a C. elegans metabolic pathway database, including metabolite and lipid structures. 

Genomics, transcriptomics, and proteomics benefited from joint efforts in creating 

community-accepted standards. Some effort is also made in C. elegans towards harmonized 

metabolomics, but a central resource is required to foster further standardization and 

comparability. Since only limited material will be available in large-scale studies, the 

identification of metabolites and lipids from this material will be important because no 

repeated analysis might be possible. Furthermore, standardized and reproducible methods 

with extensive coverage of metabolite and lipids are required. 

The first question relates to the metabolome and lipidome of C. elegans and its constituents. 

So far, no C. elegans metabolome database exists. Therefore, it is crucial to compile 

metabolites that have been detected so far or are expected to present in the nematode. 

Chapter 2 covers this topic by reviewing different genome-scale metabolic models available 

for the nematode as well as their consolidation into a single consensus model. Several 
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manual curation steps were undertaken to add as much knowledge on C. elegans' metabolic 

pathways as possible. The end of chapter 2 summarizes a draft C. elegans metabolome and 

lipidome database, which will be used throughout the later chapters as the basis for 

metabolite and lipid identification. The reconstructed metabolic pathways are not only a 

blueprint to define the metabolites but also enable the interpretation of metabolomics and 

lipidomics results in the context of metabolic pathways. Chapter 3 describes approaches for 

the annotation and identification of metabolites and lipids in C. elegans with the aim of 

generating a reproducible workflow. This workflow is used in all following chapters for the 

annotation of the obtained metabolomics and lipidomics data. Such a workflow allows robust 

annotation and identification in large-scale experiments. The fourth chapter covers the 

identification of lipids in different obtained C. elegans lipidomics datasets. Although on the 

rise, lipidomics applications in C. elegans are still a minor part of C. elegans research, and 

even less is known about the lipidome composition. Lipids curated from previous lipidomics 

publications as well as lipids predicted from the WormJam GSMN, have been compared 

against lipids identified in three datasets. Taken together, they allow the construction of a 

draft lipidome database for C. elegans. This list of lipids enables fast dereplication in future 

C. elegans lipidomics experiments. Chapter 5 deals with the development of advanced 

analytical techniques, such as a tandem LC-MS setup for improved coverage in metabolite 

analysis. It combines RP and HILIC separation from a single injection and allows the analysis 

of polar and non-polar metabolites in a single analysis. Another method covers the analysis 

of fatty acids from single worms, which is an additional step towards single C. elegans 

metabolomics, allowing the study of the metabolic individuality of worms. The final chapter 

contains the conclusion of this work and gives an outlook on future steps required to 

establish C. elegans metabolomics and lipidomics in large-scale systems biology studies. 

Several parts of the thesis have been published in different articles. Publications related to 

each chapter are indicated at the beginning of each chapter as well as my contribution to the 

individual publications. 
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2. The C. elegans metabolic reconstruction and knowledge base 
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Chapter-related publications: 

Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for Metabolic 
Studies in the Model Organism Caenorhabditis elegans 

Witting M., J. Hastings, N. Rodriguez, CJ. Joshi, JPN. Hattwell, PR. Ebert, M. van Weeghel, 
AW. Gao, MJO. Wakelam, RH. Houtkooper, A. Mains, N. Le Novère, S. Sadykoff, F. 
Schroeder, NE. Lewis, HJ. Schirra, C. Kaleta, O. Casanueva 

Front Mol Biosci. 2018 Nov 14;5:96. doi: 10.3389/fmolb.2018.00096 

This article describes the initial merging of several C. elegans genome-scale metabolic 
models into a consensus model called WormJam. With Prof. Dr. Horst Joachim Schirra, I’m 
leading the WormJam consortium and led the efforts for manual curation of metabolites, 
genetic information and reactions, especially regarding lipid metabolism. After the initial 
merge, I performed manual curation and correction of reactions, metabolites, and gene 
associations and added several C. elegans-specific pathways such as ascaroside 
biosynthesis. 

 

Suggestions for Standardized Identifiers for Fatty Acyl Compounds in Genome Scale 
Metabolic Models and Their Application to the WormJam Caenorhabditis elegans Model 

Witting M. 

Metabolites. 2020 Mar 28;10(4):E130. doi: 10.3390/metabo10040130 

This article describes a new nomenclature for acyl-based compounds, such as fatty acids, 
acyl-CoAs, acylcarnitines and others in genome-scale metabolic models. This nomenclature 
improves the readability of reactions and makes manual curation less tedious. I’m the sole 
author of this article, and I have developed the nomenclature and applied it to the WormJam 
consensus model. 
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2.1. Introduction 

Knowledge about metabolites potentially present in an organism and their relation with each 

other, and their interconversion in metabolic pathways is crucial for correctly identifying 

metabolites and interpreting metabolomics results. The metabolism consists of a dense 

network of metabolic reactions, each catalyzed by one or several enzymes or enzymatic 

complexes. Several metabolic reactions form a pathway, and different pathways form a 

metabolic network. To study metabolism holistically, it is necessary to collect these reactions 

and the associated genes, enzymes, and metabolites for the specific organism that shall be 

studied. Still, many gaps exist, and often, metabolites not (yet) part of the metabolic network 

of the organism studied are identified by metabolomics and need to be integrated. 

While genomics databases and protein databases are well developed and exist for different 

organisms or pan-organism, metabolism is underexplored [189]. Different types of knowledge 

bases or databases for metabolites exist. Metabolite and compound database store chemical 

information of small molecules and metabolites, such as names and synonyms, chemical 

structures, formulae, and other physicochemical properties. Metabolic pathway databases 

store information on reactions and enzymes catalyzing them. These databases are typically 

independent of organisms. Finally, Genome-Scale Metabolic Networks (GSMNs) are 

organism-specific depictions of metabolic pathways integrating information from the 

previously mentioned databases. 

2.1.1. Metabolite and compound databases 

Different metabolite databases exist and are used routinely in metabolomics. One of the 

most used databases is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [190-193], 

which was also one of the earliest databases adopted for metabolomics. KEGG offers 

different interactive pathway maps and options to color them individually. They can be 

browsed, and each node is linked to the respective entry (e.g. a protein/enzyme or a 

metabolite). Different metabolomics annotation tools have used these pathways for the 

analysis of data [194-197]. However, for a few years, KEGG has a subscription model that 
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does not allow freely downloading information. KEGG contains information on C. elegans 

metabolic pathways and compounds, but the data must be retrieved manually, cannot be 

accessed programmatically, and is missing certain C. elegans-specific aspects. 

The Human Metabolome Database (HMDB) stores information on metabolites from human 

metabolism and related substances, e.g. from the nutrition or the microbiome [86, 87, 198, 

199]. At the current stage, this database contains 220,945 metabolites. These cover the 

complete range of polar to non-polar metabolites. Each metabolite is associated with rich 

metadata, such as formula, structure (e.g. SMILES, InChI, and InChIKey), and more. 

Furthermore, information on the concentration of metabolites in different biofluids is available 

for different conditions, e.g. healthy and diseased individuals. Therefore, HMDB also serves 

as reference value database. There is no direct link between human metabolism and 

metabolites stored in HMDB for C. elegans. However, it can be used to compare the 

metabolites in both organisms. The Yeast Metabolome Database (YMDB) follows the same 

structure as the HMDB and contains information on metabolites found in S. cerevisiae [200]. 

Likewise, the E. coli Metabolome Database (ECMDB) has been built around the E. coli K-12 

strain [201]. The last one is of general interest for C. elegans since E. coli represent the 

standard diet in the laboratory for the worm, and metabolites produced by E. coli will also be 

ingested and are, therefore part of the C. elegans metabolome. 

ChEBI is one of the best-curated metabolite databases of general interest and is 

independent of organisms [202, 203]. While other databases typically only store neutral, non-

charged metabolite structures, ChEBI also differentiates between non-charged and charged 

versions of metabolites. This is particularly useful when working with metabolomics and 

GSMNs. While GSMNs contain molecular formulae and structures of metabolites present at 

the cytosolic pH of 7.3, in metabolomics experiments, neutral species are reported. Although 

scientists might refer to the same entity, in a chemical sense, they are not strictly the same, 

e.g. acetate is not acetic acid. Having different identifiers for the different charge species 

allows unequivocal identification of them. ChEBI links them together by a rich ontology, e.g. 
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acetate is the conjugate base of acetic acid. This ontology not only contains information on 

charge states but also on chemical classes and their relations. Furthermore, species-

specificity is also stored in this ontology. Recently an approach was presented to use this 

ontology to map lipids to nodes in GSMNs [204]. The LipidMaps database stores information 

on different lipid classes and species based on a unique classification system. Lipids are 

classified into eight different classes: fatty Acyls [FA], glycerolipids [GL], 

glycerophospholipids [GP], sphingolipids [SP], sterol lipids [ST], prenol lipids [PR], 

saccharolipids [SL] and polyketides [PK] [205]. The LipidMaps structure database (LMSD) 

stores in total 47718 structures, from which 22043 are computationally generated and 25675 

are curated from the literature. LipidMaps contains several lipids of interest for C. elegans 

and can be used as a database for annotation in C. elegans. SwissLipids is another 

database storing information on lipids [206]. In contrast to LipidMaps, which focuses only on 

reported lipid structures, SwissLipids used knowledge of lipid biosynthesis to generate 

potential lipids in silico. SwissLipids is curated by experts and links with other databases 

such as UniProt, ChEBI, Rhea, and Gene Ontology (GO). Lipid classes and their biosynthetic 

routes are curated from the literature and are based on the shorthand notation by Liebisch et 

al. [207]. At the moment, 779577 lipid species are covered in this database [206]. SMID-DB 

is a database of secondary metabolites in C. elegans and related species, such as C. 

briggsae or P. pacificus [140]. The goal is to supply shorthand identifiers for the large 

biochemical spaces covered by C. elegans secondary metabolites, e.g. different 

ascarosides. Recently, information on retention times and MS2 has been added, making 

SMID-DB also an exciting resource for metabolite identification. 

2.1.2. Metabolic reaction and pathway databases and Genome Scale Metabolic Models 

Analysis of metabolomics data not only requires information on the metabolites but also on 

their relationship with each other. This information is typically stored in metabolic reaction 

and pathway databases. KEGG is not only a metabolite database but also contains 

information on metabolic reactions [190]. Genes and proteins are linked to enzymatic 

reactions. Similar to the metabolite database, the reaction database is not publicly available. 
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Reactions in KEGG are ordered in a hierarchical system loosely following the enzyme 

commission (EC) nomenclature, and association with species-specific genes and proteins 

are made. EC numbers, their hierarchy, and catalyzed reactions are also stored in the 

BRENDA [208]. RheaDB emerged as a recent alternative to storing information on metabolic 

reactions [209]. Mass and charge balanced reactions typically represent structures at the 

cytosolic pH of 7.3. Metabolite entries are thoroughly linked to ChEBI and catalyzing proteins 

to UniProt [189]. The Wikipathways database is a fast-growing collection of all kinds of 

pathways, including metabolic, interaction, and signaling pathways [210]. Reactome is 

another metabolic pathway database which contains information on metabolic pathways from 

16 different organisms [211]. C. elegans-related entries cover 4376 proteins which are 

assembled into 4500 complexes. They catalyze 3587 reactions in 1296 pathways. MetaCyc 

is also manually curated and contains 2766 different pathways from 3067 different organisms 

[212]. However, it does not include information on C. elegans' metabolic pathways. The 

underlying software Pathway Tools was used for the construction of ElegCyc [213]. 

PathBank is a collection of human-curated pathways for ten different model organisms, 

including C. elegans [214]. Pathways were assembled with the PathWhiz illustrator. In total 

PathBank contains 110234 machine-readable pathways. Of these, 4244 belong to C. 

elegans, all being metabolic pathways. Information can be downloaded in different formats, 

e.g. SBML or BioPax 

However, the above-mentioned pathways are of general interest, contain generic, integrated 

information from multiple species, and do not go deeper for single organisms. In order to 

close this gap and to enable better analysis of metabolism in biomedical model organisms, 

different metabolic reconstructions have been constructed from the genome of many 

organisms, including human, mouse, yeast, and others [215-217]. While the first GSMN of 

the gram-negative bacteria Haemophilus influenzae was rather small, currently, a trend 

towards more complex, multicellular organisms and full-body metabolic reconstructions is 

visible [218-220]. GSMNs represent the current knowledge on the metabolism of a given 

organism or superorganism. They group metabolites, genes, enzymes, and reactions 
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together to form a metabolic network that can be used to analyze metabolic networks in silico 

or used for the analysis of omics data. Typically, they are derived from in silico predictions 

from annotated genomes using different methods, followed by manual curation to improve 

annotations and close potential gaps networks can be used for various purposes [221-223].. 

An important step is the accurate depiction of individual molecular players used in the 

reaction network. Crucial is the correct curation of metabolites. They have to be represented 

at the correct charge state and correct molecular formula to define mass- and charge-

balanced reactions. 

As advancements in omics technologies continue to reveal the complexity of biological 

systems, different ways to analyze metabolism have evolved. Genetic manipulation of 

metabolic genes allows the study of their influence on different phenotypic traits, while 

metabolomics enables the characterization of the metabolic status of a given organism or 

biological system. Both techniques can be performed with decent throughput, but each only 

captures a small part of what is a genome-wide multi-omic system. Typically, metabolomics 

captures only a part of the metabolism from GSMNs by methodological constraints or 

stability of metabolites GSMNs and an accompanying technique, flux balance analysis 

(FBA), which allows the computational prediction of intracellular turnover rates (or fluxes) for 

all metabolic reactions in a cell or an organism, therefore overcoming some of the limitations 

of traditional techniques [224]. In addition, FBA can be informed by metabolomics results 

[52]. While GSMNs represent large knowledge bases of metabolism in a given organism, the 

discrepancies between these models and metabolomic measurements can be significant 

[20]. One of the key challenges for the use of GSMNs in conjunction with metabolomic data 

is the accurate mapping of measured metabolites to the metabolites present in the model. 

For example, metabolites found in a GSMN may fall below the limit of detection of current 

metabolomics techniques, or it may be present under specific conditions. Conversely, due to 

a large gap in the knowledge on metabolites and the large number of unknowns, many of 

them might be not yet be annotated and incorporated into the GSMN.  
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Different databases store GSMNs, e.g. BiGG contains a collection of GSMNs from various 

organisms [225]. MetExplore is a tool for the storage and collaborative curation of metabolic 

networks [226]. It hosts several metabolic networks from different organisms. Besides the 

actual storage, it offers rich visualization and allows mapping of different types of omics data 

to the network. 

2.1.3. C. elegans metabolic reconstruction 

For C. elegans, five different reconstructions have been published so far. The first one was 

published as part of the Path2Models approach to converting KEGG metabolic pathways into 

SBML models [227]. Models were gap-filled and checked if they were able to carry fluxes. In 

2016 two metabolic reconstructions specifically focusing on C. elegans were published. 

Gebauer et al. performed reconstruction of the C. elegans metabolism using the 

PathwayTools software [213]. The final model consisted of 1921 reactions and 2357 

metabolic compounds. The second model was published by Yilmaz et al. and used an own 

developed curation pipeline called SACURE [222]. The final model contained 1985 metabolic 

reactions and 1718 metabolic compounds. CeCon was published in 2017 and is also based 

on the PathwayTools software [228]. More recently, Worm1 as part of the reconstruction of 

GSMNs from multiple model organisms [229]. This is the by far currently the biggest model 

for C. elegans and has been derived from a human GSMN. Table 4 compares the different 

available C. elegans GSMNs. Since all these models are based on the same genome and 

the same genetic annotation, a community effort named WormJam was established which 

aims to reconcile and combine the different metabolic models into a single consensus 

reconstruction [230]. 
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Table 4: Summary of published C. elegans GSMNs. Different GSMNs of different quality have been published so 
far. BMID000000141468 for example, was only based on automatic reconstruction, and no additional curation has 
been performed. Current Worm1 represents the largest model of C. elegans metabolism 

Name Compounds Reactions Reference Notes 

BMID000000141468 3207 2272 
Büchel et al., 2013 

[227] 

Automatic reconstruction 

from KEGG PATHWAYS, 

MetaCyc and gap-filling 

ElegCyc axenic 2357 1893 
Gebauer et al., 2016 

[213] 

Bacteria-free growth 

media 

ElegCyc E coli 2357 1921 
Gebauer et al., 2016 

[213] 

E. coli OP50, E.coli 

biomass composition 

(Orth et al., 2011)  serves 

as the growth media. 

iCEL1273 1718 1985 
Yilmaz & Walhout 

2016 [222] 
 

CeCon 2166 2085 Ma et al., 2017 [228]  

Worm1 8150 12817 
Wang et al., 2021 

[229] 
Derived from Human GEM 
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2.2. Creation of The WormJam Consensus Metabolic Reconstruction 

The reconstruction and maintenance of several models in inefficient and split the community 

effort towards a standardized representation of the current knowledge on C. elegans 

metabolism. For this reason, the WormJam community was built to enable the merging and 

further joint development of existing C. elegans metabolic models. Four of the published 

models have been integrated into the WormJam model at the current stage. These models 

have been merged automatically to form a version of a consensus reconstruction [231]. 

Several errors have been corrected, and new pathways have been added. The merging 

process is depicted in Figure 3. 

 

Figure 3: Depiction of the merging process to obtain the WormJam consensus metabolic reconstruction. 
iCEL1273 and ElegCyc merging has been performed by the group of Nathan Lewis and served the basis 
WormJam. The merged model WormCon derived from ElegCyc and CeCon served as additional information 
basis for manual curation. 

On the basis of this model, several rounds of manual curation and correction of pathways 

have been conducted, which are partially presented in later paragraphs. A major step was 

the harmonization of names, identifiers etc., for genes, metabolites, and reactions since they 

were derived from different names spaces used by the various tools. Furthermore, new 

reactions and pathways have been added, and the curation of chemical structures was 

performed. 
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2.2.1. Reconciling Existing Models 

In order to avoid merging too many models at once, a stepwise approach was used. Models 

based on the same curation tools or previously compared were merged first. By this already, 

several duplicated reactions and entries could be removed, leading to cleaner intermediate 

models for the final merging process. 

2.2.1.1. Merging iCEL1273 and ElegCyc 

The merging of these two previously published worm reconstructions ElegCyc and 

iCEL1273, involved using databases and standards for nomenclature since the two models 

used different identifier namespaces [213, 222]. For genes, first, a list of unique genes in 

each model was identified and linked. In WormJam, the WormBase gene identifiers (e.g. 

WBGene00001397 for fat-5) were selected for genes for the sake of their simplicity in 

parsing and formatting and accompanying ease of access to the online WormBase database 

[32]. If the gene was not found in gene mapping obtained from the GO website, KEGG was 

queried to obtain potential gene information [190]. The gene-protein-reaction association 

matrix was updated accordingly in case of duplicated gene entries due to the different 

namespaces. Gene rules are encoded in a text field describing the relation of genes with 

each other. Isoenzymes are separated by an “or” while subparts of multimers are separated 

by an “and”. 

Similar to genes, several different namespaces for metabolites were used. Unique 

metabolites were identified by using BiGG, KEGG, and MetaNetX [190, 232, 233]. For 

metabolites present in BiGG, additional information such as ChEBI, KEGG, and MetaNetX 

IDs were extracted together with chemical formulae and charge states. In cases where no 

information was found, a manual search was performed. Duplicate metabolite entries within 

the model were fixed by removing one of the instances and resolving in-model 

metainformation and stoichiometry.  

An automatic script was used to perform a comparison of reactions (available from 

https://github.com/LewisLabUCSD/celegans_reconciliation). If reactions were found to be the 

https://github.com/LewisLabUCSD/celegans_reconciliation
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same, the reaction from the first model was kept and updated with the information from the 

second. Furthermore, stoichiometry was compared and checked. This initial list was further 

used for manual curation steps explained below. 

2.2.1.2. Merging of CeCon and ElegCyc 

The merging of CeCon and ElegCyc has been performed using the COMMGEN toolbox 

[234]. Both models were translated to the MetaNetX namespace to perform semi-automated 

merging [233]. After completely merging the two models into a single COMMGEN entity in 

MATLAB, the biomass reaction of ElegCyc was set as the objective function for flux balance 

analysis testing of the model’s validity, as CeCon, which was previously only used for the 

mapping of “-omics” data, does not contain a biomass reaction. Next, the following steps 

were performed semi-automatically through COMMGEN functions. 

1. Merging of duplicate reactions 
2. Merging of reactions with similar species 
3. Removal of nested reactions 
4. Alteration of invalid transport reactions 
5. Removal of invalid external reactions 
6. Checking of reactions with the same metabolites, but differing 
stoichiometry 
7. Merging of similar transport reactions 
8. Merging of duplicate reactions 
 

In each function, COMMGEN suggested potential merge candidates, and a decision was 

manually made on whether to merge the reactions or keep both based on literature and 

databases such as KEGG [190]. After every merge, the model was exported to COBRA 

Toolbox format and checked for viability by ensuring flux was able to be carried through the 

merged model’s biomass reaction in a “free growth” simulation. If the merges were inviable, 

the change would be reverted. At the end of this process, the resulting model, named 

WormCon, was exported to SBML format, and further merging was halted in favor of manual 

curation as part of WormJam. 
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2.2.2. WormJam Infrastructure 

After merging all available models into a single consensus model, future curation steps 

should be streamlined and harmonized to avoid scattering of efforts and duplication of 

curation steps. The WormJam consensus model is maintained on a dedicated GitHub page 

with public access (https://github.com/wormjam-consortium/wormjam). Although originally 

developed for version control and tracking in software development, this system can be used 

for virtually any text-based file format. This allows automated monitoring of all changes made 

to the model. The use of GitHub follows the recently published Yeast8 consensus model for 

S. cerevisiae [217]. Besides the actual model files, several utility scripts written in Python, 

Java, or R are stored with the model, which are used for data cleaning and quality control. 

Metabolic models are typically stored in the SBML format, an XML derivative customized for 

use in systems biology [235-237]. However, this format is hardly human-readable and 

contains a lot of information to aid the computer in processing the file. In contrast to SBML 

files, the Systems Biology Table (SBtab) format allows humans to work directly with the 

model, which is of great advantage for manual curation. Both formats are interconvertible, 

and free web tools for conversion are available 

(https://www.sbtab.net/sbtab/default/converter.html) [238]. The SBtab format comprises a 

series of separate files that individually contain the reactions, metabolites, genes, and other 

information present in the GSMN. Because the data in the individual data files are related to 

each other, the same identifiers are used across all individual files. This makes it possible to 

cross-reference and search for information e.g. isolate metabolites from a single reaction and 

retrieve information on them from the compound. The WormJam data in the SBTab format is 

organized in different tables, summarized in Table 5. 

In order to enable further development of the model without interfering with stable model 

versions, different branches are used in the GitHub repository. The master branch contains 

the major release versions, while the devel branch allows the generation of new model 

versions for curation and testing. Different users have to create their own branches and 

https://github.com/wormjam-consortium/wormjam
https://www.sbtab.net/sbtab/default/converter.html
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contribute via the git system using commits containing their changes. Once finished, pull 

requests into the devel branch are performed. These pull requests are checked 

automatically and reviewed by experts to avoid inconsistencies between branches. A pull 

request triggers a series of GitHub actions, which perform the conversion of the SBtab files 

into SBML, followed by automatic checks using the memote test suite for GSMNs [239]. Most 

importantly, the charge and mass balance of reactions and duplicated reactions are reported. 

Results are then reported to the user/curator for further checking. If the model is consistent, a 

PR into the main repository can be performed, and changes will be integrated into the devel 

branch of the main model. Finally, after the model is sufficiently advanced, a development 

version can be merged into the master branch leading to a new release version. Since all 

changes are logged, potential errors can be tracked for corrections. 

Table 5: Different tables of the WormJam model in SBtab format. The tabular and human-readable format allows 
easy manual curation. Different parts of the model are stored and linked via unique identifiers for reactions, 
genes, metabolites, curators, etc. 

Table Content 

Compartment-SBtab.tsv Contains definitions of compartments in the model 

Compound-SBtab.tsv 
Contains all information on metabolites, incl. charge 

state, formula, chemical structure 

Curator-SBtab.tsv 
Contains information on involved curators and their 

eMail addresses 

Definition-SBtab.tsv 
Contains information on the individual columns 

present in all other SBtab files 

Gene-SBtab.tsv 
Contains information on all involved genes, including 

gene symbols, WormBase gene identifier etc 

Pathway-SBtab.tsv 
Contains information on pathways and how they 

relate to pathways from other databases 

Reaction-SBtab.tsv Contains all metabolic reactions 
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Figure 4: (A) The three most common classes of entities in GSMNs are genes, metabolites and reactions. Gene 
association to reactions forms the basis of GSMNs and metabolites can be either substrates or products in 
reactions In this representation, Genes 1 and 2 are metabolic genes required for the catalysis of the reaction, 
which converts A and B into C. (B) The used SBTab format is based on distinct tables for each entity (compare 
Table 5). Example of indiviual tables from SBTab format linked entries between tables are highlighted. 

 

Figure 5: GitHub is used for the storage of different versions of the model. From a master branch (blessed 
repository) different developmental version can be generated, which allow the public or private development in the 
model. By pull requests, new changes are integrated once tested. The master branch is only changed by 
integration managers to avoid introduction of errors or duplications. 

2.2.3. Metabolite structure curation, namespace, and metabolite nomenclature 

Standardizing the representation of metabolites in GSMNs is an important issue to enhance 

reuse (also for scientists not involved in developing the specific model) and facilitate 

comparison across different GSMNs. Furthermore, using the same and consistent name 

space allows merging other models into larger models (e.g. host-microbiome models). 
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Several GSMNs have been integrated into the WormJam consensus model, each with a 

different identifier namespace, metabolite naming, and detail of structural curation [213, 222, 

228, 231]. Therefore, after automatic merging, conflicts in namespaces and potential 

duplications had to be resolved. In GSMNs, often only the chemical formula is curated since 

the exact chemical structure is not essential for typical modeling issues, such as FBA. 

Furthermore, several new metabolites have been introduced during the manual curation 

steps, which must be integrated into existing namespaces (see 2.2.5 and following). Lastly, 

integration of GSMNs specific databases such as BiGG or MetaNetX is important for cross-

model comparison [232, 240]. While each metabolite has a unique chemical structure, which 

allows its unambiguous identification, GSMNs often rely on simple identifiers, and sum 

formulae and only a few metabolic reconstructions have detailed curation of chemical 

structures associated with the model. Examining nearly 100 published GSM, Ravikrishnan 

and Raman found that over 60% of these models were lacking standard metabolite identifiers 

such as KEGG IDs, PubChem IDs, or InChIs [241]. Currently, a significant community effort 

toward the standardization of metabolic models has been started [242, 243]. 

Detailed structural curation is performed in WormJam. GSMNs use the major microspecies of 

metabolites at the cytosolic pH of 7.3 metabolite structures and mass and charged balanced 

reactions, i.e., reactions in which atoms are neither created nor destroyed. One example is 

acetic acid, which is present as acetate in the model. In a chemical sense, the two are 

separate entities with different chemical properties. The ChEBI database also stores the two 

in individual entries, while KEGG, for example, contains only one single entry for acetic acid 

and acetate stored as a synonym. Therefore, WormJam uses ChEBI as the central 

repository for metabolite structures [202]. 

 Both, charged and uncharged, structures are curated within the WormJam model and have 

been added to ChEBI if they were missing. ChEBI IDs served as reference identifiers for the 

charged and neutral structures. Still, KEGG, MetaCyc, HMDB, LipidMaps, SwissLipids, 

Wikidata, PubChem, Metabolights, and Chemspiders IDs have been additionally curated for 
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the neutral metabolite version to allow cross-mapping between databases. IDs are fetched 

from the most current version of BridgeDB using the BridgeDbR package [244, 245]. 

Searches in BridgeDB are based on the InChIKey of the neutral molecule. To not have to 

use the full chemical name in reactions, metabolite identifiers are used, and WormJam uses 

identifiers from BiGG [232]. If no identifiers have been found in BiGG, new ones have been 

created. According to the BiGG models ID specification and guidelines, IDs for metabolites 

should be human-readable, short, and memorable. However, when curating reactions 

manually, it is also essential to derive (at least partial) structural information from the ID to 

simplify the manual curation process. This is especially true for long reaction sequences, e.g. 

biosynthesis or β-oxidation of fatty acids. Inconsistencies between different namespaces 

from parent models have mainly been observed for fatty acids, acyl-CoAs, acyl-Carnitines, 

and acyl-ACPs. Although the different classes often had consistent naming within one class, 

it was not always directly comparable to other classes, e.g. acyl-CoAs and acyl-carnitines. 

Searching for reactions and metabolites, it was found that different classes of metabolites 

required for the biosynthesis and elongation of fatty acids and β-oxidation had very different 

“namespaces” and used various abbreviations for the same acyl moiety. Inspecting IDs used 

in other BiGG models, different levels of structural details in the different IDs and naming 

have been observed. IDs and chemical names of acyl-based metabolites have been 

downloaded from BiGG, and where available, associated chemical information, such as 

ChEBI IDs etc., was used. Interestingly, many metabolites had no structural information 

associated with the BiGG DB nor IDs from chemical structure databases. 

First, an overview of the data available from BiGG was generated. In order to evaluate if IDs 

and naming enable unambiguous identification of the molecular entities within the different 

classes, they were grouped into different categories. The first group was called “full structural 

information” if structural information could be derived from the ID, name, or links to unique 

chemical structures were available, “partial structural information” if minor information was 

missing, or “no structural information” if major information, e.g. position and/or 

stereochemistry of a double bond or functional group was missing. An example of an ID and 
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name pair that was classified as “full structural information” is lnlccoa, which is the ID for 

Linoleyl-CoA. ttdcrn, tetradecanoyl carnitine, was classified as “partial structural information” 

since the stereochemistry of the carnitine is missing. In contrast, ttdcea, Tetradecanonate (n-

C14:1) is classified as “no structural information” because important information like the 

position and stereochemistry of the double bond was absent. 

For fatty acids, acyl-CoAs and ACPs from BiGG >66% had complete structural information 

available. Acyl-carnitines showed the highest number of partial structural details, mostly 

because the stereochemistry of the carnitine moiety was missing. Analysis of names, IDs, 

and potentially linked chemical information revealed that for most metabolites, structural 

information could be deduced. Still, several metabolites with only partial or no structural 

information are present. To explore if annotations of metabolites grouped as “no structural 

information” can be improved, the reactions in which these metabolites occur were checked. 

It might be possible that an upstream metabolite contained the full structural information, but 

this information was not propagated correctly. As an example, the metabolite ttdcea, 

annotated as tetradecenoate, was searched for in BiGG. This metabolite is used in many 

different models. The E. coli model iJO1366 was selected, where this metabolite occurs in 

the cytosol and is linked to 9 reactions [23]. Selecting the reaction “FA141ACPHi” (Fatty-acyl-

ACP hydrolase), it could be seen that ttdcea is derived from a more detailed tdeACP, which 

is described as “cis-tetradec-7-enoyl-[acyl-carrier-protein] (n-C14:1)”. Using this information 

ttdcea should be annotated as “cis-7-tetradecenoate acid” instead of “Tetradecenoate (n-

C14:1)”. “Cis-7-tetradecenoate” can be found as metabolite M00117 in BiGG derived from 

Recon 3D [246]. 

Based on the idea that the reaction network can be used to check for connections between 

identifiers of different quality, reactions from BiGG were used to isolate pairs of acyl-based 

metabolites as they occur as substrates and products of reactions. All pairs that contained 

hub metabolites such as CoA, Acetyl-CoA, Carnitine, or ACP and pairs derived from 

transport reactions were removed. Metabolites were then labeled according to their group, 
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and the connection of metabolites of different groups was checked. Following counts for 

pairings of the different categories were found: no structural information<-> no structural 

information = 135, partial structural information <-> no structural information: 8, partial 

structural information <-> partial structural information: 36, full structural information <-> no 

structural information: 96, full structural information <-> partial structural information: 161, full 

structural information <-> full structural information: 897. Based on these pairings, it was 

determined that metabolites grouped into the category “full structural information” are mostly 

connected to metabolites of the same group. However, also several connections between 

metabolites classified as “full structural information” and “no structural information” 

metabolites exist. These connections with known biochemistry can be used to improve the 

annotation of metabolites with no structural. Furthermore, plotting all pairings as a network 

showed several long-distance possibilities for improvement exists. As a result of this 

comparison the annotation of specific metabolites can be improved. A particular example is 

the metabolite arachdcoa_c, which is annotated as “C20:4-CoA”. However, the identifier 

suggests that this metabolite might be “Arachidonoyl-CoA”; no supporting information is 

supplied. Looking into connected metabolites, arachd_c was identified as a metabolite 

classified as “full structural information”. The name “Arachidonic acid” identifies it with 

specific positions and stereochemistry of the double bonds (FA 20:4(5Z,8Z,11Z,14Z)), which 

identifies arachdcoa_c as “arachidonyl-CoA”. As a second reaction in links arachdcoa_c to 

adrncoa_c, “adrenyl-CoA” is also grouped as “full structural information”, which in turn is 

linked again to adrn_c, “adrenic acid”. This example shows how the network can be used to 

improve the structural annotation of different metabolites to full structural detail. 

Results have shown a considerable heterogeneity in the use of IDs with different degrees of 

structural curation. Although several IDs exist for which complete structural information can 

be retrieved, even IDs that have full structural details from other models are very different in 

the way the encode this structural information. All investigations have shown that a more 

systematic way of naming IDs of such acyl-based metabolites is required to avoid future 

confusion. 
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In lipidomics, the use of shorthand notations instead of long, systematic IUPAC names is 

widespread to describe lipids. This shorthand notation has been standardized by Liebisch et 

al. and is the most widespread notation, continuously improving to cover more lipid classes 

and modifications [207, 247]. Such a systematic notation would resolve problems of cross-

mapping between models; however, it is not compliant with the specifications for BiGG 

metabolite identifiers. Transfer and adoption of this nomenclature for BiGG IDs will improve 

the readability of IDs as well as structural details. A similar idea was already followed in the 

Chinese hamster ovary cell consensus model iCHOv1, where, for example, c81_5Zcrn_m 

was used to describe a carnitine molecule with a C8 chain and a cis-double bond at position 

5, but no rules how to generate the IDs nor an automatic way have been proposed [248]. 

A typical example of a shorthand notation used in lipidomics to describe a fatty acid or acyl-

CoA is shown in Figure 6. Structural features of an acyl chain are encoded in human-

readable abbreviations. First, the class of the molecule is denoted, and afterwards, structural 

features are encoded. Next, the number of carbons of the longest chain is followed by the 

number of double bonds separated by a “:”. In a pair of brackets, structural details like the 

position and geometry of double bonds or the position and potential stereochemistry of 

functional groups are given. At the current stage, the following functional groups are 

supported in the lipidomics shorthand notation: keto (O), hydroxy (OH), peroxy (OOH), amino 

(NH2), and methyl (Me) groups. If the groups have stereocenters, it is defined directly after 

the functional group in square brackets, e.g. OH[S]. Each group additionally needs a number 

indicating the position, for example, 3OH[S]. Individual groups are separated by a comma. 

The order of function groups is double bonds, hydroxy groups, peroxy groups, keto groups, 

amino groups, and methyl groups (DB > OH > OOH > O > NH2 > Me). 

Similar rules are also applied to generate IDs for GSMNs following the guidelines for valid 

BiGG IDs. First, the class of the molecule is denoted in lower case letters directly followed by 

the number of carbons and the double bonds separated by an underscore “_” (e.g. fa18_2). 

After a second underscore “_” the functional groups are followed as a combination of position 
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and lower-case letters with no separator (e.g. fa18_2_9z12z). If the functional group, e.g. a 

hydroxyl group, represents a stereocenter, the stereochemistry is directly indicated with the 

functional group as a capital letter (e.g. coa18_0_3ohS). Stereocenters of the base 

molecules, such as carnitine, are denoted similarly to amino acids at the end with two 

underscores “__” (e.g. carn18_1_9z__L). Nomenclatures for stereocenters shall not be 

mixed, and only either R/S or D/L nomenclature should be used within one identifier. 

 

Figure 6: Example of structures, shorthand notation based on Liebisch et al. and the systematic nomenclature for 
acyl-based IDs. 

The use of the newly suggested identifiers should follow certain rules. First, the abbreviation 

shall be only used for metabolites with more than five carbons (>= six carbons), which avoids 

the need to change IDs for metabolites involved in pathways other than fatty acid 

metabolism, e.g. central carbon or amino acid metabolisms such as acetyl-CoA (accoa), 

isovaleryl-CoA (ivcoa) or others. Second, if an abbreviation of a trivial metabolite name is 

easier to understand and allows unambiguous identification, this abbreviation should be 

used. For example the oxidized fatty acid 5(S),15(R)-DiHETE (CHEBI:91138, 

FA(20:4(6E,8Z,11Z,13E,5OH[S],15OH[S])) shall be abbreviated as dihete_515__SR instead 

of fa20_4_6e8z11z13e5oh15oh__SR. BiGG contains only a generic metabolite ID for this 

metabolite CE7096, which shall be renamed to a generic version dihete_515. Third, it is 

suggested to use this nomenclature, especially in long reaction sequences like fatty acid 
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biosynthesis, elongation, or β-oxidation. Fourth, consistent naming shall be used across the 

model for all classes of acyl-based metabolites, e.g. fatty acids should be named the same 

way as acyl-CoAs, e.g. fa18_1_9z should be used together with coa18_1_9z and not with 

coa18_1. If generic metabolites like coa18_1 shall be used in the model, pseudo reactions 

converting explicit metabolites to generic versions (coa18_1 <=> coa18_1_9z) have to be 

added. An example of the different identifiers before and after harmonization is given in 

Table 6. 

Table 6: Comparison of different identifier for acyl-based metabolomics from iCEL1273 and ElegCyc as parent 
model of WormJam as well as from the WormJam model before the manual curation step and BiGG. The 
identifiers have been transferred to the new more systematic identifier. 

Metabolite iCel1273 ElegCyc WormJam BiGG New id 

Tetradecanoic 

acid (Myrstic 

acid) 

ttdca ttdca ttdca ttdca fa14_0 

Tetradecanoyl-

Acyl-Carrier 

Protein 

(Myristoyl-ACP) 

Myristoyl_ACPs --- myrsACP myrsACP acp14_0 

Tetradecanoyl-

Coenzyme A 

(Myristoyl-CoA) 

tdcoa tdcoa tdcoa tdcoa coa14_0 

Tetradecanoyl-

Carnitine 

(Myristoyl-

Carnitine) 

ttdcrn CPD909_16 ttdcrn 

Ttdcrn 

M02973 

 

carn14_0 

Tetradecanoyl-

Ethanolamide 

(Myristoyl-

ethanolamide) 

--- --- --- tetdecaeth nae14_0 

 

Similar to acyl-based metabolites, identifiers of lipid classes suffer from limited systematic 

and comparability. Although several identifiers from BiGG were reused wherever possible, 

new identifiers were required to be introduced in some instances. This includes IDs for 

complex lipids, such as PCs, PEs, etc. Since BiGG shows some inconsistencies in the 

naming of lipids, the nomenclature of different lipid classes within WormJam was revised, 

and clearer IDs have been introduced, which enhance readability and clearness of reactions 



 

71 
 

and allow more effortless manual curation. For example, after merging, the WormJam model 

contained different lysolipids with no further defined structure (e.g. sn1 and sn2 lysolipids). 

The generic metabolites M_acg3pe_c represented both 1-Acyl-sn- or 2-Acyl-sn-glycerol-3-

phosphoethanolamine. Therefore, no specificity could be encoded in the reactions. An 

additional example is 1-acyl-sn-glycerol-3-phosphate for which 3 IDs are used dependent on 

the biosynthetic origin. The intention behind this was to generate different pools from which 

PA can be derived, but as understood so far, cells and organisms generally do not 

differentiate, and all molecules are part of the same pool. The new nomenclature of the lipids 

IDs is based on different sn-glycero-phospho-lipids, like sn-3-glycero phosphocholine or sn-

3-glycero-phosphoethanolamine, which use standard abbreviations such as g3pc or g3pe. In 

the new nomenclature, acyl, alkyl, or alkenyl moieties are abbreviated as ac, alk, or alken, 

respectively. A number indicates the position. Therefore, the metabolite 1,2-diacyl-sn-

glycero-3-phosphocholine would be abbreviated as 1ac2acg3pc. All new IDs can be found in 

Table 7. To allow back tracing and backward compatibility of the new metabolites IDs, in the 

compound table, a new column called “!Notes:Old_ID” has been added, which holds 

previously used identifiers. Based on the suggested new nomenclature IDs within WormJam 

have been updated, and duplicated entries in both metabolites and reactions have been 

identified and removed. 

Table 7: Table of corrected or newly introduced IDs for different lipid classes. In GSMNs only generic nodes for 
entire lipid classes exists. Different models used in WormJam used different nomenclature. This has been 
harmonized to a common systematic nomenclature. 

Class Metabolite 
Old/ Wrong / 
Duplicated ID 

Correct / New ID 

MG 
1-acyl-sn-glycerol 1magol 1acglyc 

2-acyl-sn-glycerol mag 2acglyc 

MG-O 1-alkyl-sn-glycerol --- 1alkglyc 

MG-P 1-(Z)-alk-1-enyl-sn-glycerol alkenglyc 1alkenglyc 

DG 1,2-diacyl-sn-glycerol 12dag 1ac2acglyc 
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Class Metabolite 
Old/ Wrong / 
Duplicated ID 

Correct / New ID 

DG-O 1-alkyl-2-acyl-sn-glycerol akac2g 1alk2acglyc 

DG-P 1-(Z)-alk-1-enyl-2-acyl-glycerol alkenac2g 1alken2acglyc 

TG Triacyl-glycerol tag tag / 1ac2ac3acglyc 

TG-O 1-alkyl-2,3-diacylglycerol --- 1alk2ac3acglyc 

TG-P 1-(Z)-alk-1-enyl-2,3-diacylglycerol --- 1alken2ac3glyc 

DHAP 1-acylglycerone 3-phosphate Adhap 1acdhap 

DHAP-O 1-alkylglycerone 3-phosphate akdhap 1alkdhap 

PA 1,2-diacyl-sn-glycero-3-phosphate 
pa_pl 

12dag3p 
1ac2acglyc3p 

LPA 
1-acyl-sn-glycero-3-phosphate 

alpa 

alpa_tag 

1ag3p_SC 

1acglyc3p 

2-acyl-sn-glycero-3-phosphate --- 2acglyc3p 

LPA-O 1-alkyl-sn-glycero-3-phosphate alkgp 1alkglyc3p 

PA-O 
1-alkyl-2-acyl-sn-glycero-3-

phosphate 
akac2gp 1alk2acglyc3p 

LPA-P 
1-(Z)-alk-1-enyl-sn-glycero-3-

phosphate 
--- 1alkenglyc3p 

PA-P 
1-(Z)-alk-1-enyl-2-acyl-sn-glycero-3-

phosphate 
--- 1alken2acglyc3p 

PC 
1,2-diacyl-sn-glycero-3-

phosphocholine 
pchol 1ac2acg3pc 

LPC 1-acyl-sn-glycero-3-phosphocholine ag3pc 1acg3pc 

LPC 2-acyl-sn-glycero-3-phosphocholine 2agpc 2acg3pc 

PC-O 
1-alkyl-2-acyl-sn-glycero-3-

phosphocholine 
akac2gchol 1alk2acg3pc 

LPC-O 1-alkyl-sn-glycero-3-phosphocholine ak2lgchol 1alkg3pc 

PC-P 
1-(Z)-alk-1-enyl-2-acyl-sn-glycero-3-

phosphocholine 
--- 1alken2acg3pc 

LPC-P 
1-(Z)-alk-1-enyl-sn-glycero-3-

phosphocholine 
--- 1alkeng3pc 

PE 1,2-diacyl-sn-glycero-3- pe 1ac2acg3pe 
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Class Metabolite 
Old/ Wrong / 
Duplicated ID 

Correct / New ID 

phosphoethanolamine pe_BAC 

LPE 
1-acyl-sn-glycero-3-

phosphoethanolamine 
acg3pe 1acg3pe 

LPE 
2-acyl-sn-glycero-3-

phosphoethanolamine 
--- 2acg3pe 

PE-O 
1-alkyl-2-acyl-sn-glycero-3-

phosphoethanolamine 
akac2gpe 1alk2acg3pe 

LPE-O 
1-alkyl-sn-glycero-3-

phosphoethanolamine 
--- 1alkg3pe 

PE-P 
1-(Z)-alk-1-enyl-2-acyl-sn-glycero-3-

phosphoethanolamine 
alkenac2gpe 1alken2acg3pe 

LPE-P 
1-(Z)-alk-1-enyl-sn-glycero-3-

phosphoethanolamine 
alken2gpe 1alkeng3pe 

PS 
1,2-diacyl-sn-glycero-3-phospho-L-

serine 
ps 1ac2acg3ps 

LPS 

1-acyl-sn-glycero-3-phospho-L-

serine 
acg3ps 1acg3ps 

2-acyl-sn-glycero-3-phospho-L-

serine 
--- 2acg3ps 

PI 
1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol 
pail 1ac2acg3pi 

LPI 

1-acyl-sn-glycero-3-phospho(1)-D-

myo-inositol 
--- 1acg3pi 

2-acyl-sn-glycero-3-phospho(1)-D-

myo-inositol 
--- 2acg3pi 

PIP 

1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-3-phosphate 
pail3p 1ac2acg3pi3p 

1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-4-phosphate 
pail4p 1ac2acg3pi4p 

1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-5-phosphate 
pail5p 1ac2acg3pi5p 

PIP2 

1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-3,4-bisphosphate 
pail34p 1ac2acg3pi3p4p 

1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-3,5-bisphosphate 
pail35p 1ac2acg3pi3p5p 

1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-4,5-bisphosphate 
pail45p 1ac2acg3pi4p5p 

PIPI3 
1,2-diacyl-sn-glycero-3-phospho(1)-

D-myo-inositol-3,4,5-trisphosphate 
pail345p 1ac2acg3pi3p4p5p 

PGP 
1,2-diacyl-sn-glycero-3-phospho-(1ʼ-

sn-glycero-3ʼ-phosphate) 
pgp 1ac2acg3pg3p 
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Class Metabolite 
Old/ Wrong / 
Duplicated ID 

Correct / New ID 

PG 
1,2-diacyl-sn-glycero-3-phospho-(1'-

sn-glycerol) 

pg 

pg_BAC 
1ac2acg3pg 

 

2.2.4. Charge states 

Metabolites in GSMNs are used as charged versions, and reactions are typically mass and 

charged-balanced. Charges state a pH of 7.3 is calculated using the major microspecies 

present at this pH. Incorrect charge states influence the reaction balance, leading to false 

results in FBA. In order to validate the charge states of all metabolites, an Excel sheet, which 

utilizes functions from JChem for Excel, was developed. Chemical structures based on the 

SMILES representation are used as input. In a specific part, the complete compound table in 

SBtab format is pasted, and all values are calculated automatically and compared against 

the charge states currently present in WormJam. 

First, based on the given neutral SMILES for a molecule, the major microspecies at pH 7.3 is 

calculated. Afterward, for this microspecies, the charge state is calculated. In parallel, the 

charge state is calculated from the SMILES of the charged species given in the compound 

table. If the two calculated charge states and the charge state in the compound table match, 

no action is required; otherwise, charge states need to be verified manually and corrected. 

After structural curation of the different metabolites, this sheet is used to validate correct 

charge states or calculate charge states for new molecules. For all metabolites, the charge 

state has been recalculated, and the correct charge state as well as the correct charged 

structure (major microspecies), added to the table. In parallel charge states have been cross-

validated using BiGG. In case of inconsistency, entire reactions were checked to use the 

most consistent charge states. 

2.2.5. Metabolic pathway curation 

After the initial automatic draft reconstructions and the automatic merging of the different 

models into the WormJam model, additional steps of manual curation have been performed. 

This included the curation of missing metabolic pathways and reactions, correction of wrong 
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gene assignments, and others. Extensive literature is available on different metabolic 

pathways in C. elegans. However, often this knowledge is not reflected in electronic 

databases or automated reconstructions. Therefore, the manual curation of metabolic 

pathways represents an important step towards better coverage of the C. elegans GSMN 

and improves the understanding of metabolism in this model organism.  

Repetitive reaction sequences, such as fatty acid elongation or β-oxidation are often 

shortened into lumped reactions. This is a convenient way of reducing the number of 

reactions but does not reflect the true reaction details. Often several genes are then 

associated with one lumped reaction, which does not directly allow assessment of effects, 

e.g. in silico knock-out simulations. A major goal was the removal of lumped reactions since 

the use of the AND notation for different genes shall be used only for complexes. This 

operator shall be only used to account for reactions that require multiple gene products, e.g. 

multienzyme complexes, etc. The switch to detailed reactions instead of lumped reactions 

also allows better to identify effects of gene mutations or flux analysis. The next paragraphs 

discuss the curation of different pathways which needed improvement or have been 

completely missing. This includes the correction of already existing reactions and pathways 

or the addition of novel ones. 

2.2.5.1. Propionate metabolism 

Vitamin B12 is an important molecule and cofactor in many enzymes, including enzymes 

required for the degradation of the short-chain fatty acid propionate. Under B12 deficiency, 

an alternative pathway is used, which produces Acrylyl-CoA, which in turn can hydrolyze to 

produce toxic acrylate [249]. Most of the reactions were present in the WormJam model and 

had correct assignments but were missing the assignment to the right pathway definition. 

Only the hydroxy propionate dehydrogenase reaction was missing the correct gene 

assignment. 
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2.2.5.2. Fatty acid biosynthesis 

Fatty acids represent important building blocks in, e.g. different lipids or secondary 

metabolites such as ascarosides. C. elegans takes up fatty acids from its food and 

incorporates nutritional fatty acids into its biomass. However, different fatty acids can be 

synthesized by the worm itself de novo, including BCFAs. These fatty acids are almost 

exclusively (>99%) produced by the worm itself [123]. BCFAs are important molecules and 

are required for the biosynthesis of sphingoid bases in C. elegans [116, 250, 251]. The 

biosynthesis of fatty acids in C. elegans can be split into different steps. First, palmitic acid 

(FA 16:0 ) or 11-methyl dodecanoic acid (FA 12:0(11Me)) are produced by FASN-1 in 7 or 5 

cycles of 4 fatty acid synthesis, respectively. Both are then further elongated and desaturated 

to produce different other fatty acids. 

The merged model initially showed different details of the curation of fatty acid metabolism. 

In the frame of the WormJam reconciliation, the level of detail was harmonized, and all 

intermediate steps were added. Fatty acid biosynthesis is well established based on the work 

of Watts and Browse [252]. In their seminal paper, Watts and Browse constructed a 

biosynthetic pathway for PUFAs in C. elegans. Using GC-FID in combination with an EMS 

screen, they identified several genes that alter the fatty acid composition [252]. As the first 

step, all fatty acid-related metabolites have been curated to the new nomenclature for acyl-

based metabolites as described above. This harmonized the namespace for all fatty acyls 

and allowed the identification of duplicated reactions for downstream curation. Fatty acid 

biosynthesis covers different aspects, e.g., synthesis of straight chain even numbered fatty 

acids as well as iso-branched chain odd numbered fatty acids. Searching for reactions 

associated with branched chain fatty several lumped/nested reactions have been identified, 

e.g. the following reaction which produces the fatty acid 11-methyldodecanoic acid (FA 

12:0(11Me)) catalyzed by FASN-1 (WBGene00009342). The following reaction formula was 

found: 

11.0 M_h_c + 8.0 M_nadph_c + M_ivcoa_c + 4.0 M_malcoa_c 
<=> 
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4.0 M_co2_c + 3.0 M_h2o_c + 5.0 M_coa_c + 8.0 M_nadp_c + 
M_fa13p0iso_c 

 

This reaction is stoichiometrically correct but misses several important aspects of fatty acid 

biosynthesis, e.g., the Acyl-Carrier-Protein (ACP) involvement. Biosynthesis is performed 

within a complex, and the growing fatty acyl is covalently bound to ACP. Checking for further 

elongation following reactions were found, elongation FA(12:0(11Me)) to FA(14:0(13Me)) 

and FA(16:0(15Me)). 

3.0 M_h_c + 2.0 M_nadph_c + 2.0 M_malcoa_c +  M_fa13p0iso_c 
<=> 

M_co2_c + M_h2o_c + M_coa_c + 2.0 M_nadp_c + M_fa15p0iso_c 
 

3.0 M_h_c + 2.0 M_nadph_c +  M_malcoa_c +  M_fa15p0iso_c 
<=> 

M_co2_c + M_h2o_c + M_coa_c + 2.0 M_nadp_c + M_fa17p0iso_c 
 

Likewise, these reactions miss the critical fact that elongation reactions are carried on Acyl-

CoAs, not free fatty acids. All these reactions were inferred from iCel1273 because ElegCyc 

did not contain any reactions related to BCFA biosynthesis. To correct these errors and have 

a more detailed depiction, reactions related to BCFAs were created from scratch using 

textbook knowledge and published gene associations. All previous (lumped) reactions have 

been deleted. In parallel, the biosynthesis and elongation of straight chain fatty acids were 

also corrected. These reactions were also missing the involvement of ACP. Reactions have 

been separated into individual steps also to have unique gene-reaction relationships. 

Furthermore, C. elegans also contains mitochondrial fatty acid biosynthesis. To allow more 

specific pathway assignment, reactions are sorted into pathways depicted in Table 8: 

Number of reactions associated with newly generated metabolic pathways related to fatty 

acid biosynthesis, elongation and desaturation. 

Reactions for each step of fatty acid biosynthesis have been added, including condensation, 

1st reduction, dehydration, and 2nd reduction. The specific Acyl-ACPs have been added to the 

metabolite list. Since the ACP rest represents a generic rest for which the structure cannot 



 

78 
 

be represented, SMILES structures with (*) denoting the ACP rest as well as molecular 

formulas containing an R group for the ACP rest has been added for all intermediates. Fatty 

acid biosynthesis is performed until a length of 16 carbons is reached for straight-chain fatty 

acids and 13 carbons in the case of branched-chain fatty acids. Afterward, fatty acids are 

elongated in the ER. Both cytosolic and mitochondrial fatty acid synthesis has been added. 

Evidence exists that C. elegans contains a function mitochondrial fatty acid biosynthesis 

pathway [253]. Another problem that emerged by merging the models was mixing the 

different forms of ACP. Mistakenly, all reactions used the apo-ACP version, which represents 

the freshly synthesized protein. This protein has to be modified with a 4'-phosphopantetheine 

residue to form the active protein. The corresponding reactions have been added and 

corrected. 

Table 8: Number of reactions associated with newly generated metabolic pathways related to fatty acid 
biosynthesis, elongation and desaturation. 

Pathway Number of reaction 

Fatty acid biosynthesis (odd, iso chain, cytosolic) 19 

Fatty acid biosynthesis (odd, iso chain, mitochondrial) 19 

Fatty acid elongation and desaturation (odd, iso chain, ER) 41 

Fatty acid biosynthesis (even, straight chain, cytosolic) 36 

Fatty acid biosynthesis (even, straight chain, mitochondrial) 36 

Fatty acid elongation and desaturation (even, straight chain, ER) 67 

 

Further elongation of fatty acids follows the same principle as fatty acid biosynthesis. 

However, it occurs in the endoplasmatic reticulum (ER) and uses acyl-CoAs instead of acyl-

ACPs. C. elegans harbors nine genes encoding for elongases, named elo-1 to -9. They are 

homologous to the human ELOVL genes. These transferases catalyze the first reaction of 

the elongation, the condensation of the fatty acyl CoA with malonyl CoA. C. elegans 

enzymes for condensation also show substrate specificity. Palmitic acid is elongated to 
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stearic acid by ELO-2, while γ-linolenic acid and stearidonic are elongated to dihomo-γ-

linolenic acid and eicosatetraenoic acid, respectively by ELO-1 and ELO-2 [252, 254, 255]. 

ELO-5 and ELO-6 are working on the elongation of monomethyl-branched chain fatty acids. 

For all other ELOs, the specificity remains to be elusive. The remaining step of the 

elongation, the 1st reduction, dehydration, and 2nd reduction, are catalyzed by the LET-767 β-

keto-acyl reductase [256], and most like HPO-8 (dehydratase) and ART-1 enoyl reductase. 

Fatty acid desaturation is another important reaction in fatty acid biosynthesis to produce 

mono- (MUFA) and polyunsaturated fatty acids (PUFA). In contrast to mammals, C. elegans 

can produce all required PUFAs on its own and does not have to take them up from food. 

The fat gene family encodes for different fatty acyl desaturases and has in total of seven 

members. fat-1 encodes for an ω-3 desaturase preferentially working with length from C16 to 

C20. It is known to produce α-linolenic acid from linoleic acid, stearidonic acid from γ-

linolenic acid, eicosatetraenoic acid from dihomo-γ-linolenic acid and eicosapentaenoic acid 

from arachidonic acid. Mutation of fat-1 leads to an increase in arachidonic compared to wild-

type worms [252]. FAT-5, -6- and -7 have a Δ9 desaturation activity, while FAT-3 is a Δ6 

desaturase and FAT-4 is a Δ5 desaturase [257, 258]. Most important for correct metabolic 

modeling is the correct reaction balance. Protons and water have been added to the reaction 

to balance all reactions correctly. 

Desaturation is an important reaction to produce unsaturated fatty acids. Interestingly, 

Browse et al identified alternative biosynthetic pathways in fat-6;fat-7 double mutants [258]. 

An alternative pathway for fatty acid desaturation and elongation has been described by 

Brock et al. in fat-6;fat-7 double mutants. In this double mutant the unusual fatty acids FA 

18:1(13Z), FA 18:3(8Z,11Z14Z), FA 18:4(5Z,8Z,11Z,14Z) and FA 18:4(8Z,11Z,14Z,17Z) 

have been detected using GC-MS. A pathway for the synthesis of these fatty acids has been 

proposed. These new reactions potentially compensate for the loss of both desaturases and 

produce new and unknown fatty acids. These reactions have been curated, but under normal 

conditions, they are not active. They can be inserted if a double mutant of fat-6 and fat-7 
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shall be studied using the GSMNs, or their flux can be set per default to 0 to not influence 

fatty acid production under normal conditions. These reactions should be only used if the 

double mutant is studied. 

Besides these well-known reactions for elongation and desaturation in C. elegans, potential 

further reactions exist. Very long-chain fatty acids and 2-hydroxy derivates are found in C. 

elegans sphingolipids. Furthermore, different very long chain ascarosides with chain lengths 

of up to 33 carbons have been found in C. elegans [139]. Very long-chain fatty acids and 2-

OH fatty acids are required for sphingolipid metabolism. It remains elusive at the current 

stage which genes are required for the biosynthesis of these long-chain fatty acids. 

Several other fatty acids have been detected; for example, Gao et al. detected the presence 

of a FA(24:6) [130]. Such a fatty acid can be produced by two further elongation steps 

starting from eicosapentaenoic acid (FA 20:5(5Z,8Z,11Z,14Z,17Z)) and desaturation at 

position 6. Also, intermediates like FA(22:5) and FA(24:5) have been detected, suggesting 

that this pathway might be present in C. elegans. However, no enzymes for these reactions 

have been characterized in the nematode. 

2.2.5.3. Fatty acid β-oxidation 

Fatty acids can undergo β-oxidation upon energy demands in C. elegans. Reactions for both 

versions of β-oxidation, peroxisomal and mitochondrial, have been included in the previous 

C. elegans models and the merged WormJam model. Parts of the metabolism take place in 

the peroxisomes, especially the breakdown of long-chain fatty acids, while the mitochondria 

metabolize shorter chains, but certain overlaps in substrates exist. However, similar to the 

biosynthesis of fatty acids, both pathways have been curated in different detail, with several 

lumped reactions found. In order to improve the representation of these pathways, they have 

been normalized to the same level of detail as fatty acid biosynthesis. In both versions of β-

oxidation, one cycle consists of four individual reactions, and all reactions have now been 

explicitly added with all intermediate metabolites to allow more detailed mapping. 
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Since C. elegans theoretically also contains very long fatty acids until 30 carbons. Therefore 

fatty acid β-oxidation also starts from C30 in the WormJam model. The degradation is split 

into different parts, whereas long- and very-long-chain fatty acids are degraded in the 

peroxisome until a length of about eight carbons. Afterward, they are shuttled to the 

mitochondria for further breakdown. An inevitable overlap in chain length between the 

peroxisome and the mitochondria exists. In order to model this correctly, an overlap of the 

peroxisomal and mitochondrial beta-oxidation was allowed. Fatty acids of a length from 18 to 

8 carbons can be oxidized in both compartments. Iso-branched chain fatty acids are 

exclusively oxidized in the peroxisome producing Isovaleryl-CoA.  

The individual reactions between the peroxisome and mitochondria are very similar but are 

catalyzed by different enzymes. The major difference is found in the first reaction. In the case 

of peroxisomes, this reaction is catalyzed by Acyl-CoA oxidases (ACOX). The FAD required 

in this reaction is recovered by converting O2 to H2O2. In contrast to this, the mitochondrial 

version relies on Acyl-CoA dehydrogenase recycling FAD by the electron-transferring 

flavoprotein (ETF). All ACOX enzymes are located in the peroxisome and are also used in 

ascaroside biosynthesis, which also relies on peroxisomal β-oxidation. The enoyl-CoA 

catalyzes the second step of the β-oxidation cycle. C. elegans harbors different ech genes. In 

order to identify which ones are part of the peroxisomal β-oxidation the subcellular location of 

the protein product was inferred from the UniProt database. 

Fatty acids are imported into the peroxisome as Acyl-CoA. Since the peroxisome is currently 

not treated as an individual cellular compartment in the WormJam, all these reactions have 

been added to the cytosol. In total, 92, 44 for the breakdown of saturated straight chain fatty 

acids from C30:0 to C10:0 and 48 for the β-oxidation of iso-branched chain fatty acids, 

reactions have been written to replace all old reactions related to peroxisomal β-oxidation in 

WormJam. The old reactions were mostly lumped reactions. They have been completely 

replaced with new reactions. 
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In the case of the mitochondria, fatty acids are imported as Acyl-Carnitines. On the cytosolic 

side of mitochondria, Acyl-CoAs are converted to Acyl-Carnitines by cpt-1 

(WBGene00012907), cpt-3 (WBGene00021703), cpt-4 (WBGene00019644), cpt-5 

(WBGene00008629) and cpt-6 (WBGene00020911). Afterward they are imported into the 

mitochondria by antiport with free carnitine. A significant mistake in the merged model was 

the missing antiport with carnitine. From the overall elemental balance, the addition of 

carnitine does not change the mass balance but the cellular location of specific metabolites. 

The human GSMN Recon3D relies on the same reaction stoichiometry (example 

http://bigg.ucsd.edu/models/Recon3D/reactions/HMR_2661). These changes, therefore, 

make this reaction more comparable to the human version. Inside the mitochondria, acyl-

carnitines are converted back to acyl-CoA by cpt-2 (WBGene00011122). 

Several fatty acids undergo this conversion in the merged model, but not all are correctly 

imported. Additionally, VLCFAs are also imported into the mitochondria, although they are 

not used there because they are oxidized in the peroxisome. Therefore, these reactions have 

been deleted and replaced with new reactions. Only fatty acids used by mitochondrial β-

oxidation are imported by the carnitine shuttle in the updated model. To improve the import 

reactions for fatty acids into mitochondria reactions have been newly created. All fatty acids 

that are produced by the C. elegans biosynthesis and imported from the E. coli biomass have 

been added to undergo β-oxidation. However, based on the length, they either first undergo 

peroxisomal β-oxidation and are then imported to mitochondria or are directly β-oxidized in 

the mitochondria. In the merged model, 106 reactions are related to carnitine or the carnitine 

shuttle. With the corrected and cleaned version, this number was reduced to 39. 
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Figure 7: (A) Difference between peroxisomal and mitochondrial β-oxidation. Both reaction sequences are simliar, 
except for the first step. Peroxisomes use Acyl-CoA oxidases for desaturation, while mitochondria use Acyl-CoA 
dehydrogenases. A certain overlap in the length of fatty acids used as substrates exist. In WormJam peroxisomes 
break down fatty acids with a length from 8 to 30 carbons and mitochondria use 4 to 18 carbons. 

The β-oxidation of unsaturated fatty acids requires additional enzymes. Double bonds in 

unsaturated fatty acids are typically found in the cis configuration and cannot be utilized by 

enoyl-CoA hydratases. In the case of β-oxidation of monounsaturated fatty acids, often a cis-

3-enoyl is yielded after a few rounds of β-oxidation. This double bond is converted to trans-2-

enoyl configuration by the action of enoyl-CoA isomerases. Reactions for the β-oxidation of 
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unsaturated fatty acids were found in the merged model. However, they were exclusively 

present in the form of lumped reactions. Therefore, individual reaction sequences were 

written. The β-oxidation reactions of palmitoleic (FA 16:1(9Z)), oleic (FA 18:1(9Z)), vaccenic 

(FA 18:1(11Z) and linoleic acid (FA 18:2(9Z,12Z)) have been added to merge model. For all 

these, all steps have been added explicitly, and no lumped reactions are used. At certain 

points, e.g. once all double bonds have been eliminated, the further oxidation of these fatty 

acids feeds into the normal β-oxidation or reaction sequences of β-oxidation of other 

unsaturated fatty acids. For example, one round of β-oxidation of vaccenic acid produces 

palmitoleic acid. Table 9 summarizes all reactions related to beta-oxidation that have been 

added. Now, these represent an accurate depiction of the metabolism of fatty acids in C. 

elegans. 

Table 9: Number of reactions related to fatty acid β-oxidation. The table summarizes the final number of reactions 
related to the individual pathways. 

Pathway Number of Reactions 

Fatty acid β-oxidation (straight chain, even, peroxisomal) 44 

Fatty acid β-oxidation (iso chain, odd, peroxisomal) 48 

Fatty acid β-oxidation (mitochondrial) 32 

Carnitine Shuttle 39 

β-oxidation of FA 18:1(9Z) (mitochondrial) 13 

β-oxidation of FA 18:1(11Z) (mitochondrial) 4 

β-oxidation of FA 18:2(9Z,12Z) (mitochondrial) 19 

β-oxidation of FA 16:1(9Z) (mitochondrial) 13 

 

2.2.5.4. Hydroxy fatty acids and Eicosanoids 

Hydroxy fatty acids are required for different aspects of C. elegans biology. C. elegans has 

been shown to produce several F-series prostaglandins, which are involved in sperm 

guidance [259]. However, no COX or LOX homologs have been identified in C. elegans so 
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far [260, 261]. 2-hydroxylated fatty acids are part of sphingolipids in C. elegans [116]. The 

enzyme FATH-1 was shown to catalyze the reaction converting fatty acids to 2-hydroxy 

derivates. fath-1 deficient animals were fed with 2-hydroxy palmitic acid in rescue 

experiments. Interestingly, the 2R enantiomer showed higher rescue. This is consistent with 

findings identifying that mammalian FA2H produces (R)-2-OH fatty acids [262]. A reaction 

producing (R)-2-OH fatty acids has been added to the model. 

ω- and ω-1 hydroxy fatty acids are required for the biosynthesis of ascarosides. However, no 

CYPs responsible for the ω- or ω-1 hydroxylation have been identified so far. The C. elegans 

genome contains 97 putative CYP P450 oxidases from which one or several might be 

responsible for ω/ω-1 hydroxylation. To connect the biosynthesis of ascarosides (see below) 

with fatty acid metabolism, a mock hydroxylation reaction has been added to the model. 

2.2.5.5. Ascaroside metabolism 

Ascarosides are important secondary metabolites in C. elegans responsible for worm-to-

worm communication. Chemically, ascarosides are O-glycosides of ω- or ω-1-hydroxy fatty 

acids and the dideoxy sugar ascarylose. Additionally, different peripheral moieties derived 

from different parts of the metabolism, including amino acid and nucleotide metabolism, are 

integrated, and modular biosynthesis of different ascarosides forms a dense network of 

reactions [137]. Ascarosides of different chain lengths are produced by peroxisomal ω-

oxidation. The biosynthesis is dependent on different genes, e.g. acox, maoc, daf-22, and 

dhs-28 [136]. Different models of ascaroside biosynthesis exist and the first idea was that 

shortened fatty acids are attached to ascarylose. However, it turned out that the enzymes 

work directly on ascaroside-CoAs [263]. 

The ascaroside metabolism is closely related to fatty acid metabolism. Ascarosides are β-

oxidized in the peroxisome, where also long-chain fatty acids are degraded. Von Reuss et al. 

have shown the presence of ascarosides with side chains of up to 33 carbons [139]. 

Consistent with findings by Gao et al., which have detected up to C30 fatty acids in C. 

elegans metabolite extracts machinery for producing very long-chain saturated fatty acids 
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might exist [130, 264]. Additionally, Hänel et al., a systematic study of sphingolipids has 

shown that they contain exclusively long-chain saturated N-acyl with chain length up to C26 

[116]. E. coli food source is known not to produce such long-chain fatty acids. Therefore C. 

elegans has to produce these fatty acids on its own. So far, all the fatty acids found in the 

ascarosides were straight-chain fatty acids. So far, only very low amounts and trace levels of 

these fatty acids have been detected in C. elegans using GC-MS [105]. Therefore, all derived 

fatty acids might also be only present in trace amounts and are specifically synthesized in 

low quantities to produce the desired molecules, such as ascarosides or sphingolipids. 

Interestingly, ascarosides contain similar or higher levels of odd-chain fatty acids compared 

to even-chain fatty acids [136]. Biosynthesis of long-chain, saturated fatty acids has been 

added to fatty acid biosynthesis (see 2.2.5.2). However, these reactions only cover even-

numbered straight-chained and odd-numbered is-branched chain fatty acids. The 

ascarosides contain odd-numbered straight-chain derivates, and their biosynthetic origin is 

not known so far. 

Different blocks of reactions have been added to the WormJam model to account for the 

biosynthesis of ascarosides. According to the position and if the attached fatty acid has an 

even or odd numbered length, the reactions were split into four different pathways. Besides 

these basic ascarosides, complex ascarosides with additional modifications are produced by 

C. elegans. An important class of these molecules are indole-3-carboxylic acid-modified 

ascarosides (icas). Dependent on their length, different icas molecules have different 

biological activity. A short chain icas named icas#9, having five carbons in the fatty acyl 

induce the dauer stage and is one of the primary components of the dauer pheromone [265]. 

In contrast, icas#3 induces worm aggregation on food [266]. Recently the involvement of 

ACS-7 in the biosynthesis of indole-containing ascarosides was suggested [137]. 

Interestingly, the distribution of the chain length of indole-containing ascarosides does not 

mirror the distribution of basic ascarosides. This means that this moiety is not simply 

attached to existing ascarosides, but selective biosynthesis takes place. Zhou et al. 

described a biosynthetic pathway for the biosynthesis of icas#10, icas#1 and icas#9, which 
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has been added to the WormJam model [138]. So far, no pathways for other modified 

ascarosides (such as hydroxybenzoic acid modified) exist; however, isotopic labeling has 

shown that moieties attached to the ascarosides are produced by C. elegans. Since these 

pathways are working on CoA derivates of the different ascarosides for each step, the 

structures of the CoA- derivates have to be generated and added to ChEBI. Afterward, 

correct stochiometric versions of all reactions were generated and grouped according to the 

glycosidic bond and the type of fatty acid (ω or ω-1 hydroxylation). Table 10 summarizes the 

number of reactions added to the WormJam model. 

Table 10: Number of reactions related to ascaroside biosynthesis. The table summarizes the final number of 
reactions related to the individual pathways. 

Pathway Number of Reactions 

Ascaroside β-oxidation (even, straight chain, ascr, peroxisomal) 57 

Ascaroside β-oxidation (odd, straight chain, ascr, peroxisomal) 70 

Ascaroside β-oxidation (odd, straight chain, oscr, peroxisomal) 36 

Ascaroside β-oxidation (even, straight chain, oscr, peroxisomal) 58 

Ascaroside biosynthesis (icas biosynthesis) 13 

 

2.2.5.6. Bile acid metabolism 

C. elegans requires only low amounts of cholesterol, which so far has been suggested to 

have no structural function, but essential signaling molecules are derived from it, e.g. 

dafachronic acids [267]. These bile acid-like molecules have different roles in C. elegans 

diapause and adult longevity [131]. Although it was initially believed that dafachronic acid is a 

single molecule, it turned out that different structures exist, with Δ4- and Δ7-dafachronic acid 

representing the most studied ones. Different enzymes have been linked to the biosynthesis 

of the two isomers. A putative biosynthesis pathway has been described by Mahanti et al. 

[90]. 
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Biosynthesis has two branches, one for each isomer, although interconversion of them is 

possible. The first step in the biosynthesis of Δ7-dafachronic acid is catalyzed by the Rieske 

oxygenase DAF-36, which converts cholesterol to 7-dehydrocholesterol [268]—potentially 

followed by an enzyme harboring Δ5 reductase activity to produce lathosterol from 7-

dehydrocholesterol. Lathosterol is then converted to lathosterone by DHS-1, finally DAF-9 

produces Δ7-dafachronic acid. In the second branch, cholesterol is converted to Cholest-4-

en-3-one, which then gets converted to Δ4-dafachronic acid. 

Reactions for the production of Δ4- and Δ7-dafachronic acids have been added. 

Stochiometry of all reactions was inferred from reactions annotated in SwissLipids and 

RheaDB. Since the exact reactions for the productions of the other dafachronic acids Δ0-DA 

and Δ1,7-DA are unknown, they are not curated. Likewise, the actual enzyme converting 7-

dehydrocholesterol to lathosterol is not known, and therefore this reaction contains no gene 

association so far. 

Besides the biosynthesis of dafachronic acids, the first evidence from metabolomics data that 

C. elegans produces different other bile acids exists [97, 184, 269]. Based on the homology 

of several enzymes to mammalian one’s reactions producing these molecules have been 

added to the different models and also the merged model. These reactions are kept for the 

moment to account for the production of bile acids other than dafachronic acids. 

Table 11: Number of reactions related to dafachronic biosynthesis. The table summarizes the final number of 
reactions related to the individual pathways. 

Pathway Number of reaction 

Biosynthesis of dafachronic acids 6 

 

2.2.5.7. Biosynthesis and Degradation of PA, DG, and TG 

Lipid metabolism generally tends to be only poorly covered in GSMNs, which was also the 

case in the different models merged into WormJam. Biosynthesis of glycero- and 

glycerophospholipids starts with the transfer of a fatty acyl to the sn1 position of glycerol-3-
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phosphate to form lysophosphatidic acid (LPA). In C. elegans, this reaction can take place in 

the ER or the mitochondria. The WormJam model contained only the cytosolic version 

(corresponding to the ER, since it is not present as an individual compartment), but not the 

mitochondrial. According to UniProt, products of the genes acl-4 and acl-6 are localized in 

the mitochondria, while the protein expressed by acl-5 localizes in the ER. The 

corresponding reaction for the mitochondrial versions has been added. The next step is the 

transfer of a second acyl group forms lysophosphatidic acid. Similar to the previous reaction, 

also a cytosolic and a mitochondrial version exists. The location of the mitochondrial version 

was wrong, and gene associations have been corrected to correctly represent the location of 

the different enzymes using information from UniProt. Diacylglycerol is produced from PA by 

LPIN-1 and can be converted back to PA by diacylglycerol kinases. Diacylglycerol lipases 

can produce 2-acyl-mono-glycerol, with spontaneously interconverts to 1-acyl-mono-glycerol. 

This molecule can be later phosphorylated to produce lysophosphatidic acid, which can re-

enter biosynthesis. Furthermore, both monoacylglycerol forms can be re-acylated to form 

DGs. Several reactions have been deleted, which included a nuclear version of the re-

acylation of MGs to DGs as well as the nuclear and mitochondrial MG-kinase reactions. For 

both types of reaction, no evidence exists so far in C. elegans. Lastly, the final acylation step 

to produce TG from DG has been added, and existing duplicated TG lipase reactions have 

been removed and replaced by a single reaction. In total, the corrected version contains 16 

reactions related to the biosynthesis and degradation of PA, DG, and TG. 

2.2.5.8. Biosynthesis of PC, PE and PS 

The glycerophospholipids PC, PE, and PS are synthesized from DG. PC and PE are 

synthesized by the transfer of either phosphocholine or phosphoethanolamine headgroup 

from CDP-Choline or CDP-Ethanolamine to DG yielding PC and PE. Both reactions are 

catalyzed by the same Choline/Ethanolamine transferases CEPT-1 and CEPT-2. PS is 

synthesized from PC and PE by exchange of the respective headgroup moieties with L-

serine. In mammals, PTDSS1, the mammalian homolog of C. elegans PSSY-1, accepts PC 

and PE as substrate, and PSSY-2 homolog PTDSS2 accepts only PE. However, if the same 
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substrate specificity exists for C. elegans PSSY-1 and PSSY-2 is unknown. The reaction 

related to the synthesis of PS from PE was missing and has been added. PE can also be 

synthesized from PS by decarboxylation. The merged model contained two versions of these 

reactions, one in the cytosol and one in the mitochondria, but the respective enzyme PSD-1 

is known to only localize in the mitochondria. Therefore, the cytosolic version was deleted. 

Several wrongly annotated reactions producing phospholipids from CDP-DAG have been 

removed. This pathway is present in bacteria but not in animals. In total, eight reactions have 

been added or corrected. 

2.2.5.9. Degradation and Remodeling of PE, PC, and PS 

Typically, nascent glycerophospholipids are not used directly in membranes but are 

extensively remodeled according to the cells or organisms' needs. Fatty acids at the sn2 

position are cleaved from intact lipids by the action of phospholipase A2, and the free sn2 

position is subsequently re-acylated by a lysophospholipid acyltransferase. This reaction 

cycle is known as the Lands cycle [270]. Due to the merging process, several duplicated 

reactions exist also using different namespaces for the lysolipids. For example, two different 

identifiers have been used for putatively annotating 1-acyl-sn-glycerophosphocholine, lpchol, 

and ag3pc. The automatic merging process could not correctly identify this duplication and 

had been removed manually and several other mistakes have been corrected. According to 

UniProt, no phospholipase C for PCs or PEs exists in C. elegans so far. Therefore, all 

reactions related to this have been deleted. A nuclear reaction was present in the model for 

phospholipase D, but no evidence exists, and it has been removed from the model. Further 

downstream reactions hydrolyzing lysophospholipids were correctly annotated and have 

been renamed for consistent reaction naming. Although lipid class-specific fatty acid profiles 

have been generated, so far, substrate specificity for different O-acyltransferases has not 

been demonstrated. C. elegans encodes seven mboa genes encoding membrane-bound O-

acyltransferases. Only MBOA-6 has been shown so far to incorporate PUFAs into PC, PE, 

and PS [271]. The total remodeling of glycerophospholipids yielded 12 reactions, which have 

been either corrected or newly added. 
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2.2.5.10. CL biosynthesis and remodeling 

Reactions belonging to cardiolipin biosynthesis have been annotated as cytosolic and 

mitochondrial. However, the only cytosolic reaction in this pathway is the biosynthesis of 

CDP-DAG from PA. All other wrongly cytosolic annotated reactions have been removed. 

Similar to other phospholipids, cardiolipins are also extensively remodeled. No reaction that 

catches this aspect of cardiolipin biosynthesis has been found in the merged model. From 

newly synthesized CL, saturated acyl is removed by the action of a cardiolipin-specific 

phospholipase A2. The resulting monolysocardiolipin is then re-acylated with a PUFA to 

produce a mature CL. In humans, this reaction is catalyzed by tafazzin (TAZ) [272]. acl-3 is 

the closest homolog that is similar to tafazzin and is located in the mitochondria and 

potentially catalyzes this reaction. The identity of the cardiolipin-specific phospholipase A2 

remains elusive. Seven reactions specific to CL biosynthesis have been added to the model. 

2.2.5.11. PI and PIP biosynthesis and degradation 

The biosynthesis of PI and its phosphorylated variants forms a dense network of reactions. 

PI is synthesized from CDP-DAG and the sugar myo-inositol. PI shows a very specific fatty 

acid composition and is remodeled similarly to other phospholipids. MBOA-7 is used 

explicitly for the incorporation of PUFAs in PIs [151]. However, most of the reactions are 

associated with phosphorylation and dephosphorylation of the PI headgroup, which plays an 

important role in signaling, e.g. involving DAF-18/PTEN [273]. The merged model contained 

the mitochondrial version of reactions, which have been deleted since no evidence for them 

exists. Altogether, 26 reactions are related to PI and PIP biosynthesis. 

2.2.5.12. Maradolipid metabolism 

Maradolipids represent a novel lipid class that is found exclusively in C. elegans dauer 

larvae. Chemically maradolipids are 6,6’-diacyl trehaloses and have been identified for the 

first time by Penkov et al. [80]. Interestingly, these lipids contain a large number of BCFAs. 

Almost 70% of the molecular species contain at least one branched-chain fatty acid, and 

close to 40% two. The most abundant fatty acid was FA 15:0, most likely FA 14:0(13Me), 
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followed by FA 18:1 and FA 17:0. Lysomaradolipids were identified by Papan et al. represent 

potential intermediates in the biosynthesis as well as degradation products [154]. In order to 

incorporate the biosynthesis of maradolipids into the GSMN, putative biosynthetic reactions 

were added. The first reaction uses Acyl-CoA to acylate trehalose, producing 

lysomaradolipids, and the second reaction performs a second acylation. Similar reactions for 

the breakdown of maradolipids yielding a lysomaradolipid and a fatty acid have been added. 

Recently OAC-39 has been shown to be important for the biosynthesis of maradolipids, but it 

is not clear if it transfers both acyl groups [274]. Currently, four reactions are related to 

maradolipid biosynthesis and degradation. 

2.2.5.13. Ether lipid biosynthesis and degradation 

Reactions related to the biosynthesis of ether lipids in the automatically merged model 

contained many mistakes and were only partly annotated. First, reactions directly produced 

phosphatidylcholine ether lipids, and second, production of other ether lipids was completly 

decoupled from them. All reactions have been redesigned based on known reactions found 

in C. elegans [149, 162]. Interestingly, in comparison to mammals C. elegans, ether lipids 

consist mainly of PE species. The PC fraction contains only a minor amount of ether-linked 

lipids [149]. Furthermore, Drechsler et al. found that alkenyl bond containing PCs are virtually 

non-existent in the worm [162]. 

Several reactions were not balanced and contained major mistakes. One particular example 

was the fatty acyl-CoA reductase reaction producing a fatty alcohol, which was not mass and 

charged balanced due to the missing free CoA. Furthermore, mitochondrial version of 

different reactions has been found. The first step, ether lipid biosynthesis occurs in the 

peroxisome, and further biosynthesis is conducted in the ER. Since neither the peroxisome 

nor the ER is currently present in the model as distinct compartments, all reactions have 

been located in the cytosol, and all mitochondrial versions have been deleted. Although 

several enzymes of the biosynthesis of ether lipids are known, one of the key enzymes 1-
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acyl-glycerone phosphate reductase converting Acyl-DHAP to LPA-O remains elusive in C. 

elegans. 

The newly curated reaction sequence produces LPA-Os followed by acylation of the sn2 

position to produce PA-O, followed by reactions similar to the biosynthesis of DGs and 

downstream phospholipids with first the dephosphorylation by LPIN-1 and the transfer of the 

different headgroups. First, the phosphate head group is removed to produce DG-O, and 

then different head groups are attached using either CDP-Ethanolamine or -Choline to 

produce PE-O or PC-O, respectively. Nine reactions were added. Similar to diacyl PE and 

PC species, lipids can be remodeled, which adds four more reactions. The exact pathways 

for the degradation of ether lipids are currently unknown in C. elegans. 

2.2.5.14. NAPE and NAE biosynthesis 

C. elegans uses different N-Acyl-Ethanolamides (NAE) for signaling functions, which have 

been shown to mediate the effect of diet on the lifespan [101]. However, so far, no complete 

pathway for their biosynthesis has been described. The added pathway is, therefore, 

hypothetical and helps to link NAE production to other metabolic pathways. Two enzymes of 

this pathway have been characterized. So far, NAPE-1 and NAPE-2 have been 

biochemically characterized as N-Acyl-Phosphoethanolamide specific phospholipase D by 

purification and enzymatic testing [275]. Furthermore, these enzymes are essential for axon 

regeneration and other processes [276]. Additionally, it has been shown that the knockdown 

of faah-1, encoding a fatty acid amide hydrolase, leads to increased levels of NAEs [101]. 

Still, no enzymes for the first biosynthetic steps are known in C. elegans. Two different 

biosynthetic pathways are known. While plants directly acylate the nitrogen of the PE head 

group using free fatty acids or acyl-CoA, animals use a transacylase which transfers an acyl 

from the sn2 position of a PC to the headgroup. In humans, NAEs are derived from N-Acyl-

Phosphoethanolamides (NAPEs). 

In the first step, an acyl group from PC is transferred to the nitrogen of PE, yielding different 

NAPE and LPC species. Some evidence for the existence of NAPE in C. elegans exists. In 
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their untargeted lipidomics analysis, Prasain et al. detected some NAPEs, although further 

structural characterization was not possible due to their low abundance [277]. Other parallel 

pathways for the synthesis of NAE exist. Besides phospholipase D, other phospholipases are 

able to cleave NAPEs at different positions, yielding different other molecules. Recent work 

from the Schroeder lab identified some glycerosphospho-N-Acyl-ethanolamides (GPNAEs), 

which are potentially part of a more extensive metabolic network connected to 

endocannabinoid synthesis [140] (Figure 8). Izrayelit et al. have shown that endocannabinoid 

and ascaroside biosynthesis are both linked to daf-22 and dhs-28, enzymes from the 

peroxisomal β-oxidation [135]. 

Based on these findings, a pathway similar to the one proposed by Maccarone et al. for the 

endocannabinoid anandamide is proposed for C. elegans [278]. First, an acyl from the sn2 

position of a PC is transferred to the PE headgroup producing NAPE. This molecule can then 

undergo different metabolic routes. Enzymatic activity of NAPE-1 and NAPE-2 can produce 

NAE directly from NAPE yielding an additional PA molecule. The activity of a putative 

phospholipase C yields phosphoethanolamides (PNAE) and diacylglycerols (DGs). By further 

enzymatic action, the phosphate group is removed, and NAE is produced. Another possible 

pathway removes the fatty acyl bound to the sn2 position by the activity of a PLA2 and 

produces lysoNAPE, on which a lysoPLD acts to produce NAE and LPA. A last alternative 

route removes both fatty acids from the original PE and produces a 

glycerophosphoethanolamide (GPNAE), from which, in successive steps, glycerol 3-

phosphate is removed to produce NAE. The relation between NAE and ascarosides is 

currently not known. Ethanolamide containing ascarosides might be produced from 

ascarosides that are transferred to the PE headgroup and released upon the activity of 

NAPE-PLD. In total eight reactions have been added to the WormJam model. However, most 

of the pathways require extensive biochemical validation. 
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Figure 8: (A) Potential biosynthetic pathways of NAPEs and NAEs. One fatty acid side chain is transferred from 
phosphatidylcholine (PE) to the nitrogen in the head group of phosphatidylethanolamine (PE). Different routes to 
produces NAEs from NAPEs are possible. The most likely one is producing NAEs directly by means of a N-Acyl-
Phosphoethanolamide specific phospholipase D. (B) Extracted ion chromatogram and tandem MS of 
Eicosapentaenoyl-ethanolamide (EPEA). 

 

2.2.5.15. Sphingolipid metabolism 

Sphingolipids play important roles in lipid rafts, distinct membrane areas that are required for 

the correct function of specific membrane-bound proteins. These rafts floating in the fluidic 

mosaic of the membrane and are enriched in cholesterol, sphingolipids, and saturated 

glycerophospholipids. However, membranes of C. elegans contain only low amounts of 

cholesterol, but sphingolipids in C. elegans are different from mammalian counterparts [267]. 

In 1995 Chitwood et al. showed that Glucosylceramides (GlcCer) from C. elegans contain a 

17 carbon long and iso-branched-chain sphingoid base [279]. The same paper also has 

shown that N-Acyl band fatty acids contain long straight and iso-branched chained 2-hydroxy 

fatty acids. Interestingly, they were of odd and even numbers. The most abundant fatty acids 

with FA 22:0(2OH) make up 31.6 % of total GlcCer. Two years later, neutral 

glycosphingolipids from C. elegans were studied by Gerdt et al. [280]. In addition to iso-

branched chains, they also found ante-iso-branched chain sphingoid bases. Like Chitwood et 

al., they found that N-Acyls contain 2-hydroxy fatty acids, and again FA 22:0(2OH) was the 

most abundant. Glycosphingolipids of the Glc(beta)1Cer, Man(beta)4Glc(beta)1-Cer, and 

GlcNAc(beta)3Man(beta)4Glc(beta)1Cer series were also identified. Zhu et al. established a 

relation between the TORC-1 pathway and sphingolipids in postembryonic development of 

the worm [250]. Intact GlcCer are required for correct development. elo-5 producing FA 

14:0(13Me), sptl-1 and fath-1 were required for correct development. if one of these enzymes 
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was missing worms arrested at the L1 stage. Missing elo-5 could be rescued by supply with 

an exogenous C17iso-branched chain sphingoid base. fath-1 is required for the production of 

2-hydroxy fatty acids and neither C15iso nor C17iso branched chain sphingoid base could 

rescue fath-1 loss of function from L1 arrest. The same was true for cgt-1 and cgt-3 loss of 

function mutants. More recently, Hannich et al. showed that C17iso branched chain 

sphingoid bases are produced by C. elegans from Leucine using degradation products as a 

primer for fatty acid biosynthesis [251, 279].  

In contrast to this known biology, all initial, automatically generated metabolic reconstructions 

contained sphingolipids with a C18 sphingoid base since gene function was inferred from 

homology to human genes. Based on published results, reactions have been corrected and 

added based on reactions supplied by the initial merged WormJam model. First, all 

sphingolipid structures have been corrected from C18 to C17iso sphingoid bases. Second, 

already in the fatty acid biosynthesis part, a reaction for the production of 2-OH fatty acids 

has been added (see 2.2.5.2 and 2.2.5.4). Mammals contain six different isoenzymes for the 

production of ceramides, named CERS1-6. All of them have a preferred substrate. The worm 

harbors three ceramide synthase genes, hyl-1, hyl-2 and lagr-1. hyl-1 and hyl-2 are orthologs 

of CERS4, CERS2 and CERS5. They also show specificity towards different lengths of the 

acyl chains. HYL-1 produces ceramides with very long chains of >= 24 carbons, while HYL-2 

prefers shorter chains with <= 22 carbons [157]. However, since reactions are only using 

generic metabolites for fatty acids, this behavior cannot be modeled in the model so far 

unless adding explicit reactions for all possible fatty acids. In total WormJam contains 28 

reactions associated with sphingolipid metabolism. 

2.2.5.16. tRNA metabolism 

Several reactions of the tRNA metabolism were flagged to have imbalanced reactions. This 

was mostly due to missing formulae for the tRNA molecules. Different solutions and formulae 

have been proposed in BiGG. However, the solution from the RheaDB was favored since it 

most correctly depicted reality, using the terminal 3’-AMP residue and the respective 
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aminoacyl-residue as structure. tRNA-related metabolites in the model have been corrected 

towards this functional group, which included the addition of formulae for all tRNA and 

correction of all amino-acyl-tRNAs. 

2.2.6. Grouping of reactions into pathways 

Reactions are typically organized in pathways, which in turn can be organized in larger 

assemblies. In order to allow the analysis of such larger assemblies, different definitions of 

pathways have been added. In total WormJam contains at the moment 139 pathway 

definitions, e.g. “ascaroside β-oxidation (even, straight chain, oscr, peroxisomal)” or 

“palmitoleic acid β-oxidation”. These have been based on other pathway definitions inferred 

from KEGG, Reactome, and others. Reactions have been grouped as far as possible into 

these groups. The highest counts or reactions per pathway definition are associated with 

transport and exchange reactions, which do not represent true biochemical reactions but are 

important for metabolic fluxes across compartments. Most true reactions are associated with 

different parts of the ascaroside metabolism. This is due to the repetitive nature of the β-

oxidation; a high number is achieved. The same is true for the biosynthesis, elongation and 

desaturation of fatty acids. Likewise, specific reactions are shared between different 

pathways. Examples are conversions of CoAs or malate dehydrogenase reactions. 

Additionally, to further group reactions in larger networks, super pathways have been 

defined. Examples of super pathway definitions are “lipid metabolism”, “fatty acid 

metabolism” or “ascaroside metabolism” collecting several smaller pathway definitions. 

These superpathway definitions are used for filtering or interpretation of data. 

2.2.7. Statistics and comparison against other GSMNs 

After several rounds of curation, WormJam was compared against the previous models and 

Worm 1.3, which represents the most current version of Worm 1 [229]. From all models, 

Worm 1.3.0 contained the most reactions and metabolites. This model was inferred from the 

previously published human reconstruction by homology. Additionally, some worm-specific 

reactions e.g. for some ascarosides, have been added. Despite the size of the Worm 1.3.0 
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model, it still contains several errors, which have been corrected in WormJam. One of the 

most obvious is the sphingolipid metabolism; in Worm 1.3.0 still, C18-based sphingolipid are 

present due to homology with human reactions. Though only a low of reactions in WormJam 

were inferred from the suggestion in ascaroside related papers, it represents the current best 

model and most complete model for ascaroside biosynthesis. 

Comparing all models WormJam presents the most accurate depiction of C. elegans 

metabolism as it covers most of the C. elegans specific aspects. The model combines the 

knowledge from different models and integrates them into a consensus reconstruction. In the 

next steps, WormJam will be more closely integrated with RheaDB and Uniprot. Uniprot 

moved away from EC notation towards reaction annotation based on RheaDB reactions. 

First attempts for WormJam have been made to recover and compare all reactions for C. 

elegans proteins in Uniprot against current reactions. This allows assigning RheaDB reaction 

IDs to WormJam reactions as well as identifying gaps and potential errors in reactions. 

CeCon has been based on UniProt and will help in this integration. Statistics of different 

models are summarized in Table 12 This will be followed by a more detailed comparison 

against Worm 1.3.0. Since reactions are inferred from human models, a direct comparison 

against the human situation will be possible to identify which aspects of metabolism can be 

studied well. Lastly, since C. elegans is typically fed on E. coli or even a mixture of bacteria 

mimicking the microbiome, integration of bacterial models will be foreseeable. For the 

moment, WormJam serves as a reference database for metabolites present in C. elegans. 

Extensive validation of its modeling capabilities, e.g. being able to identify essential genes, 

etc., will be performed in the future using FBA. 

2.2.8. Curation of metabolites detected in C. elegans 

Currently, metabolomics can detect much more features or metabolites than metabolic 

models might contain, but it also often misses metabolites that are present in the metabolic 

modes. Different reasons for this exist. First, the choice of analytical method might not be 

optimal for the detection of these metabolites (e.g. RP vs. HILIC or positive vs. negative 
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ionization mode). Second, metabolites are not stable enough to be detected. Third, 

metabolites are converted with high turnover rates, making measuring them impossible. 

Lastly, specific metabolites simply fall below the limit of detection of the employed analytical 

setup. 

Table 12: Statistics of different C. elegans GSMNs. WormJam shows higher numbers compared to iCel1273 or 
elegCyc but is still very small compared to Worm 1.3.0. Larger numbers in comparison to iCel1273 and elegCyc 
are explained by the number explicit reactions used in WormJam. 

Category WormJam iCel1273 ElegCyc Worm 1.3.0 

Number of reactions 3668 1985 1914 12174 

Number of genes 1301 1273 979 1732 

Number of metabolites 3000 887 1640 8138 

 

In order to get an overview of the coverage of current metabolomics approaches used in C. 

elegans, metabolites detected in the different publications have been curated. Publications 

were screened for detected metabolites, and a list was compiled for each one individually. In 

order to avoid overannotation, the closest metabolite structure has been curated. Reported 

identities were treated as all potentially correct without further verification. Metabolites might 

have been identified at different MSI levels [281]. However, these levels are often not 

reported. Several studies might have reported, for example, L-Tryptophan, though no chiral 

chromatography or analysis has been performed to prove this assumption. Nevertheless, this 

information was curated as, at a later stage, the comparison was only performed on the 2D 

structure of molecules. 

In total, 65 publications have been curated. Associations between articles and metabolites 

have been established using the PMID or DOI as a unique identifier for the article and 

structural information for metabolites, which included formula, SMILES, InChI, and InChIKey, 

as well as database identifiers, if available. In total, 6508 associations with 3694 unique 

metabolites and 1399 with an explicit structure based on the presence of SMILES have been 
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found. The discrepancy is explained by the number of lipids curated, which often don’t have 

an explicit structure associated with the entries due to the level of identification. 

Metabolites from the curated list and WormJam were compared on different levels. First, only 

metabolites with an explicit structure were selected. When comparing exact matches based 

on the full InChIKey, 397 matches were found, while 418 matches were found based only on 

the first block of the InChIKey. Comparison of the first block of the InChIKey allows for ruling 

out ambiguity based on the stereochemistry and exact 3D structure of molecules but also 

collapses specific metabolites into a single entry (for example, all hexoses will have the same 

2D structure). 

The list of non-matching metabolites was further investigated. In the case of predicted but not 

detected metabolites from the WormJam model, several CoA derivates were found. The high 

number of CoAs is explained by different β-oxidation pathways of fatty acids and 

ascarosides, which contain intermediates which might be only present in very low amounts or 

metabolites metabolized too fast to be detected. Other metabolites that have not been 

detected so far include very hydrophobic substances such as retinol and derivates, ubiquinol 

and ubiquinones, or different steroids. These metabolites are typically detected using APCI, 

which is not routinely used in metabolomics. Interestingly also, a number of acyl-carnitines 

have not been detected so far. On the other side, metabolites detected but not present in the 

model so far contain several fatty acids and hydroxy fatty acids. Free 3-hydroxy fatty acids 

might represent breakdown products from acyl-CoAs in the biosynthesis or β-oxidation of 

fatty acids. Other examples are ascaroside derivatives, for which so far, no biosynthesis 

pathway has been added to WormJam. Likewise, several di- and tripeptides have been 

detected, which are non-specific breakdown products of proteins and can be, therefore, not 

mapped to specific entries in the model. 

2.2.9. Metabolite database 

In order to make all the curated metabolite lists publicly available, they have been added to a 

GitHub repository (https://github.com/wormjam-consortium/wormjam-db), which can be 
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further extended at any time. Furthermore, all scrips for data filtering and comparison against 

WormJam can be retrieved for (re-)analysis once new curations of metabolite lists or the 

WormJam model become available. So far, no C. elegans metabolome database exists. The 

curated data served as input for an initial version of such a database, which can be used for 

the annotation of LC-MS-based metabolomics data. All explicit and no generic metabolites 

are included by filtering out all compounds with an InChIKey. Since subcellular location is not 

required, duplicated entries have been removed. Based on the curated literature data and 

data from WormJam, different libraries have been generated. The first one represents the 

merge between both data sources and contains 2192 unique entries based on the full 

InChIKey. This library is used in all later chapters for the annotation of metabolites. One 

specialized library is the ascaroside library. It contains 462 unique metabolites in total, 

including CoA derivatives. SMID-DB represents an online resource of ascarosides curated by 

the Schroeder laboratory, but for example, does not contain the CoA derivates nor the 

ethanolamide ascarosides detected previously. Therefore the two libraries are 

complementary to each other and can be merged to yield a more comprehensive library of 

secondary metabolites. Likewise, not all entries in SMID-DB are related to C. elegans, but 

they have different close relatives. Lipids have been a big part of the curation of literature, 

but no explicit structures in the form of SMILES could be curated. However, lipid curation is 

discussed in the following chapter. 

  



 

102 
 

2.3. Detailed lipid metabolism network and lipid structure curation 

The inclusion of lipids in GSMNs is a reoccurring problem. Lipids are an important class of 

molecules that serve as building blocks of membranes, energy storage metabolites, or 

signaling molecules and have to be included in the biomass equations of GSMNs for correct 

metabolic modeling. However, complex lipids such as PEs, PCs, etc., are typically depicted 

as single nodes ignoring the vast chemical complexity of this molecule class. Mostly lipid 

demand is constrained by the measurement of fatty acid methyl esters based on a total lipid 

extract. The acyl composition of all lipid classes is assumed to be the same. In order to 

improve the modeling of lipids, the SLIMEr approach has been developed for the yeast 

metabolic model [282]. This approach enhances the model by defining new pseudo reactions 

for the primary building blocks of lipids, the headgroups, and the acyl chains. The new model 

was able to predict abundances of different lipids correctly. 

However, besides correct integration into biomass equations, the depiction of the exact 

metabolism of individual lipid species is an important aspect. Several lipid-related enzymes 

show specificities toward specific lipid classes and fatty acid compositions. Therefore, it is 

not correct to assume a homogenous distribution of acyl chains across all lipid classes. 

Furthermore, the possibility of mapping lipids to GSMNs is nearly impossible since most 

models only include generic lipid species, such as PC, and don’t consider the structural 

diversity. Poupin et al. developed a methodology to use ontologies (e.g. ChEBI ontology) to 

map between lipids identified in lipidomics datasets and lipid species in the GSMNs [204]. 

Effectively, the shortest distance between the measured lipid and the species present in the 

model. The closer they are in the ontology the smaller the distance. 

Although this improves the matching and analysis of lipids in the context of GSMNs, it is only 

applicable to lipid species that can be found in the ChEBI database. So far, no exact 

knowledge about the number of different lipid species that can be found in C. elegans exists, 

as well is no database on C. elegans lipids. Different measurements of lipids in the worm 

have been performed, but they are currently far from being complete. An exact depiction of 
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lipid metabolism and all involved enzymes and lipid species is required to solve this problem. 

A first step has been made by improving lipid-related reactions in WormJam. However, they 

are still based on generic lipids. Since lipids are made of modular building blocks, lipid 

structures can be predicted from the combination of these different building blocks using 

generic reactions as a template. 

In the WormJam model presented in the previous paragraphs, lipids are represented as 

generic nodes consuming different building blocks. These generic reactions can be used as 

a template to generate more specific reactions producing lipids at different levels of detail. 

Such a network can be used to predict the composition of individual lipidomes in different 

mutants or in the future, determine how fluxes in lipid pathways are changing to maintain lipid 

compositions. Furthermore, theoretical possible lipid structures can be predicted and used 

for the annotation of lipidomics data. However, detailed quantitative analyses of the C. 

elegans lipidome to compare against are still missing. Several non-targeted lipidomics 

analyses have been performed, and several lipids have been detected. Still, biosynthetic 

origin of all individual species must be connected to the rest of the metabolic pathways. 

Furthermore, analysis of lipidomics analysis would be significantly enhanced using lipid 

biosynthetic and degradation networks. The group of Michael Wakelam developed an 

algorithm for independent pathway analysis of lipidomics data based on the Prize-collecting 

Steiner tree problem on graphs [283, 284]. This method uses a given lipid metabolic network 

with a given lipidomics data set and extracts the optimal subnetwork [285]. Another 

possibility for lipid network analysis is Linex [286]. In contrast to a previously described 

pathway analysis, this approach takes into account the different lipid species instead of lipid 

classes [287]. 

Different tools for the creation of lipids exist, e.g. LipidCreator allows to the creation of virtual 

libraries of lipids and generate assays for targeted lipid analysis or spectral libraries for 

identification [288]. SwissLipids is based on the combinatorial generation of lipids. Six 

hundred twenty publications have been curated to generate a comprehensive knowledge on 
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lipid metabolism. Data was primarily based on data from human, mouse, C. elegans, and 

yeast. Based on the obtained lipid-related reactions and feasible fatty acids lipid structures 

were created. Furthermore, lipids are arranged in a hierarchical structure representing the 

different levels of identification [289]. However, it does not allow the flexible adaptation to 

create new lipidomes on the fly, e.g. removing enzymes to simulate mutations or changing 

fatty acid input. 

The goal was to develop a flexible framework derived from the available knowledge on the 

biosynthesis of lipids from different sources. WormJam was leveraged to predict lipid species 

potentially present in C. elegans. The developed codebase can be used not only for the 

prediction of C. elegans lipids but also for other species. Generic templates have been 

generated based on reactions found in WormJam and RheaDB. Since UniProt uses Rhea 

reactions for functional annotation of enzymes, potential reactions can be extracted by 

comparing entries for a specific organism and retrieving the respective RheaDB reaction 

identifiers. In the case of C. elegans, this information is retrieved from the gene identifiers in 

the WormJam model and UniProt. 

2.3.1. Template-based lipid reaction and structure generation 

Following the example of SwissLipids, lipids that might be present in C. elegans are going to 

be generated in silico based on reactions present in WormJam. Instead of using plain 

chemical combinatorics, the creation is guided by the lipid-related metabolic pathways 

present in RheaDB. Reactions in metabolic models contain generic metabolites, e.g. 

M_fataccoa_c can be any Acyl-CoA. This generic metabolite can be exchanged for a more 

specific metabolite, e.g. oleoyl-coenzyme A (CoA(18:1(9Z))). Replacing all generic 

metabolites in all lipid biosynthetic reactions creates a multiple of new reactions. For lipids, 

the accepted shorthand nomenclature by Liebisch et al. is used [207]. This shorthand 

nomenclature is well suited for this purpose because it allows the identification of lipid 

building blocks within the notation. The individual building blocks can be isolated and used to 

create new lipids. 
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The reaction below is the SBTab representation of the glycerol-3 phosphate acyl transferase 

reaction. 

M_glyc3p_c + M_fataccoa_c <=> M_coa_c + M_1acglyc3p_c 
 

M_glyc3p_c represents glycerol 3-phosphate and M_coa_c free coenzyme A, both with 

fixed structures. M_fataccoa_c and M_alpa_pl_c represent the variable substrate and 

product. If this reaction were expressed as a distinct reaction using an oleoyl-residue as an 

example, it would look as follows: 

Glycerol 3-P + CoA(18:1(9Z)) <=> CoA + PA(18:1(9Z)/0:0) 
 

Reaction templates have been made independent of the BiGG metabolite ID namespace for 

easy curation. Furthermore, RheaDB differentiates between different possible directionalities 

for reactions: undefined, left to right, right to left, or bidirectional. This is also represented in 

different template reactions, each one associated with the respective RheaDB ID. To 

differentiate the reaction formula, =, =>, <=, or <=> are used. The reaction templates for the 

example above look like following: 

Glycerol-3-P + AcylCoA = CoA + LPA 
Glycerol-3-P + AcylCoA => CoA + LPA 
Glycerol-3-P + AcylCoA <= CoA + LPA 
Glycerol-3-P + AcylCoA <=> CoA + LPA 

 

Based on the “template reactions” with generic metabolites, more detailed versions of the 

complete lipid metabolism can be generated. In order to correctly identify lipid species, 

shorthand notations, according to Liebisch et al. were used [207]. To not have to generate all 

possible reactions manually, an R-based workflow was created that replaces generic 

metabolites with specific ones. As a starting point, lipid reactions from WormJam were used, 

and the respective RheaDB reactions have been curated and templates generated. 

In several instances, different building blocks need to be isolated from lipid abbreviations. 

Liebisch annotation made it possible to generate different regular expressions for this task. 
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The following nomenclature rules were used for acyl groups and sphingoid bases. The 

longest carbon chain and double bonds are used as the basis, e.g. 18:0. The number of 

carbons is separated by “:” from the number of double bonds. If double bonds are present, 

they are encoded with the position and their stereo chemistry, e.g. 9Z. For example, an 

oleoyl moiety would be encoded as 18:1(9Z). Functional groups are used in the following 

order: double bond (DB) > OH > OOH > O > NH2 > Me. They have to be encoded with the 

position, and if the atom is a stereocenter, the configuration has to be added with squared 

brackets. For example, 2-hydroxy palmitoyl moiety would be 16:0(2OH[R]). Individual 

functional groups are separated from each by a comma “,”. Since the prediction works on 

exact structures, full details for all lipids are given. The coding of sphingoid bases follows the 

same rules. For example, 16:1(4E,1OH,3OH[R],2NH2[S],15Me) is the predominant 

sphingoid base in C. elegans. Lipid classes are based on the accepted code used by 

different databases, e.g. LipidMaps or SwissLipids, e.g. phosphatidyl cholines are 

abbreviated as PC. In the simplest case of reaction creation, the backbone remains the 

same; only the lipid classes need to be changed, for example, when creating Acyl-CoAs from 

fatty acids. However, if specific groups have to be extracted, regular expressions are used. 

Acyl groups and sphenoid bases are isolated using the same regular expression 

"(O-|P-
)*\\d+:\\d+(\\((\\d*(E|Z|Me|OH|OOH|O|NH2|delta)(\\[(S|R)\\])*,*)*\\)
)*" 
 

Since functions for the isolation of functional groups are of general interest beyond the 

template-based reaction generation, they have been externalized to a package called 

lipidomicsUitls, available from GitHub 

(https://github.com/michaelwitting/lipidomicsUtils). In addition, all generated functions have 

been bundled into an R package called LipidNetworkPredictR. This package is 

available for GitHub (https://github.com/michaelwitting/LipidNetworkPredictR). 
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2.3.2. Substrates for generation of networks 

Major substrates for the generation of lipids are fatty acids in the form of acyl-CoAs. The 

combinatorial space of lipids is defined by the fatty acyls used by the organism at a given 

time point for de novo synthesis or remodeling of lipids. In order to get an impression of fatty 

acids found in C. elegans, and (potentially) bound in different lipid classes, data from several 

publications analyzing the fatty acid content of C. elegans has been collected. Fatty acids 

have been categorized into saturated, monounsaturated, polyunsaturated, monomethyl 

branched chain and cyclopropane fatty acids. Several publications describe the analysis of 

either total fatty acids or lipid class-specific profiles typically determined by GC-FID or GC-

MS. Figure 9 shows profiles selected from different publications [105, 147-149, 290-292]. 

Several fatty acids are directly taken up from the food bacteria, while others are synthesized 

entirely by C. elegans. In order to estimate the significance of the amount of fatty acid, an 

arbitrary cut-off of 5% of total fatty acids was used. Fatty acids below 5% were considered 

minor species, while above 5% they were considered major species. While the E. coli diet of 

C. elegans is rich in the saturated fatty acids lauric acid (FA 12:0), myristic acid (FA 14:0), 

and palmitic acid (FA 16:0), they are only minor species in C. elegans. Interestingly, palmitic 

acid and stearic acid have high percentages in PIs [151]. The nutritional fatty acids cis-9,10-

methylene hexadecanoic acid (FA 17:0[9-10cy3:0]) and cis-11,12-methylene octadecanoic 

acid (FA 19:0[11-12cy3:0]) are enriched in triacylglycerols compared to other lipid classes 

but are also found to a certain extent in other lipid classes. Some differences between lipid 

classes in their fatty acid composition exist. PC and PE are the primary building blocks of 

membranes, but they differ in their fatty acid composition. Significant differences are found in 

several saturated and polyunsaturated fatty acids. While PCs only contain 2.17% palmitic 

and 2.61% stearic acid, PEs contain 6.43% and 11.43%, respectively. A further striking 

difference is the amount of eicosapentaenoic acid. While PC contains 33.58%, PEs only 

contain 12.60% [149]. 
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Figure 9: (A) Fatty acid profiles from different selected publications as established by GC-FID or GC-MS using 
saponification. Fatty acids are grouped according to their classification into saturated, monounsaturated, 
polyunsaturated, monomethyl branched or cyclopropane fatty acids. (B) Fatty acid profiles of different lipid 
classes as measured by Shi et al. [149]. 

Branched-chain fatty acids 13-Methylmyristic acid (FA 14:0(13Me)), and 15-Methylpalmitic 

acid (FA 16:0(15Me)) are exclusively produced by C. elegans [123]. However, in most fatty 

acid profiles of most lipids classes, they were only found as minor species. One exception is 
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maradolipids exclusively found in dauer larvae. FA 14:0(13Me) plays an important role as a 

precursor for sphingoid bases in C. elegans sphingolipids. 

The fatty acid profile of sphingolipids shows different patterns. Typically, mild alkaline 

saponification is used to generate free fatty acids, which are in turn analyzed as their methyl 

esters by GC-MS or direct transmethylation followed by GC-MS. Amide-bound fatty acyls in 

sphingolipids are inert under these conditions and require a different strategy. Therefore, 

total fatty acid profiles normally represent ester-bound fatty acids ignoring fatty acyls from 

sphingolipids. Chitwood et al. and Gerdt et al. performed an analysis of glucosylceramides in 

C. elegans and identified several 2-OH fatty acids, which are not found in glycero- and 

glycerophospholipids [279, 280]. These fatty acids are long-chain saturated fatty acids 

ranging from 16 to 26 carbons and also include odd-numbered chains. Interestingly, also 

even numbered iso branched-chain fatty acids were reported. 

Based on the list of detected fatty acids from the different discussed publications, a list that is 

used for in silico lipid network and structure generation was built. Shorthand notation by 

Liebisch et al. has been used for this list and all further downstream lipids. This list contained 

fatty acids, which are part of the glycero- and glycerophospholipids. For the generation of 

sphingolipids, a second list has been compiled. This list is based on the description of fatty 

acyl distributions by Gerdt et al. and Chitwood et al. and includes several different possible 

candidates for acyl groups based on fatty acid biosynthetic pathways, including 2-OH 

modified fatty acids. 

2.3.2.1. Draft lipid network 

Based on the generated list of fatty acids, a draft lipid network is created using the two 

different fatty acid pools for glycero- and glycerophospholipids and sphingolipids. In order to 

store as much chemical information as possible rgoslin has been used for parsing of lipid 

shorthand notations [293, 294]. The output delivers a data frame containing the shorthand 

notation on different levels as well as the sum formula and buildings block, which can be 

used for the prediction of MS2 spectra, for example. 
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In the first draft of the network, 38 fatty acids were used as input for the biosynthesis of 

glycero- and glycerophospholipids and 56 fatty acids for the biosynthesis sphingolipids. No 

constraints were applied to the generation of reactions and lipids. 2161280 lipid structures 

were predicted using 38 and 56 fatty acids, respectively, and 61 reaction templates as input. 

The model yielded 2299902 reactions in total. This initial model ignored the subcellular 

localization of enzymes and lipids, including their site of production. The intention was to 

generate a list of possible theoretical lipids that can be used for the annotation of lipidomics 

experiments in C. elegans. No specificity in side chain position or preferential side chains in 

different lipid classes was included. However, the model was able to generate a 

comprehensive list of lipid structures and their biosynthetic routes. 

Several reactions include the transfer of certain groups from one lipid class to another. In the 

simplest case, this group is transferred from a single metabolite, e.g CDP-Choline transfers a 

phosphocholine headgroup. In some other cases, a group might be transferred from different 

lipids, e.g. migration of acyl chains or the transfer of the phosphocholine headgroup from 

PCs to Cers to produce SMs. Here, the exact lipid species that transfers the headgroup is 

not known, and it is possible that multiple lipid species are accepted as a donor.  

The produced network is much larger than most GSMNs and, therefore will be hard to model. 

Some possibilities to reduce the number of reactions exist, such as reducing the number of 

substrates for reactions by constraining the fatty acyls used as input. 

2.3.3. Constraining the lipid reactions 

Using the developed workflow, a large number of possible lipid species from different classes 

were generated. Since reactions were unconstrained, potentially several lipids that are not 

produced by C. elegans have been generated. Currently, little is known about the substrate 

specificity of C. elegans lipid enzymes. One exception is mboa-7 which has been shown to 

incorporate PUFAs into PIs [151]. 

At the current stage, the method considers no specificity of enzymes, and fatty acyl residues 

are equally distributed across all classes. Hence all lipids have the same probability of being 
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synthesized. However, measurements show that each lipid class has a distinct fatty acid 

profile. 

A very extensive combinatorial explosion is yielded for CL species. Using the unconstrained 

model, 2,085,136 different CL species are predicted. This is way over what has been 

currently detected in C. elegans. CL species have been seen in several lipidomics 

applications in C. elegans [114, 163, 164, 295]. The composition of C. elegans CLs is shown 

to be different from other species. Recently, the structural diversity of cardiolipins across 

different organisms has been investigated [296]. At the same time, the most abundant fatty 

acyl species in the different organisms were FA 16:0, FA 16:1, FA 18:1, FA 18:2, and FA 

18:3, similar to humans with FA 18:2, one of the major species. C. elegans shows high levels 

of FA 20:3, FA 20:4 and FA 20:5. In all C. elegans studies, CL(80:15) was the highest 

abundant species. Results suggest that the production of CL species can be constrained 

towards species containing several poly-unsaturated fatty acids. Investigating the fatty acyl 

groups that were identified, it would be determined that most species contain C18 and C20 

unsaturated fatty acids. Therefore, reactions were constrained towards PG and CDP-DG 

species containing only these fatty acyls, as they represent the most representative ones. 

However, CLs are typically extensively remodeled, and to what extent remodeling takes 

place in C. elegans and which species of PGs and CDP-DGs are preferred for the synthesis 

of nascent CLs remains elusive. Using the constraints led to a roughly 40-fold reduction of 

CLs species. 

Another possibility for constraining reactions was identified for ether lipids. Drechsler et al. 

and Shi et al. analyzed ether lipid metabolism and showed that they mostly contain alkyl and 

alkenyl groups of 18 and 20 carbons [149, 162]. Therefore, reactions of ether lipids have 

been constrained to only produce lipids with 16, 18, and 20 carbons at the sn1 position. This 

reduced ether lipids for all classes from 1444 species to 114. 

Even with constraining, in total, 161700 lipids were predicted. This number is still highly 

dominated by complex species such as TGs and CLs. In a later chapter, predictions will be 
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compared against measurements from the different measured projects as well as lipids 

curated from the literature. Run times for the prediction are remarkably long for lipid classes 

with multiple acyl chains, such as TGs or CLs. However, predictions can be performed within 

less than half a day. The best possibility for an increase of speed is the restriction of possible 

substrates and constraining of reactions. 
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2.4. Conclusion 

GSMNs are important tools for better understanding of metabolism. They integrate all the 

current knowledge about the metabolism of a specific organism. For C. elegans, different 

GSMNs are available and the WormJam model represents one of the best-developed 

models in terms of the accuracy of the nematode’s biochemistry. 

Metabolomics data can help to complement findings based on GSMNs and allow to expand 

models by adding previously missing metabolites. However, the overlap between metabolites 

predicted by WormJam and measured in different publications is relatively low. Especially a 

lot of metabolites have been detected which couldn’t be mapped to the metabolic networks. 

Various possibilities exist, e.g. wrong annotation or missing metabolic pathways in the model. 

Refinement of models such as WormJam needs to follow current metabolomics approaches 

in the future. Likewise, resources such as GMSNs can be used as a first-line database for 

the annotation of metabolomics data. 

A major blind spot of GMSNs, not only WormJam, are lipids. In most models, complex lipids 

are treated as single entities, which does not reflect real life. An approach to creating lipid-

specific reaction networks was developed to predict lipid species potentially present in an 

organism and their associated lipid metabolic pathways. However, the number of predicted 

reactions outnumbers even the largest GSMNs, which is not realistic to be used in modeling 

approaches. These lipid models need further refinement to be of greater use. Lipidomics in 

C. elegans will also help to develop these models further. 

The usability of WormJam and the metabolites and lipids predicted will be demonstrated in 

the following chapters. All generated databases serve as input for annotation purposes and 

allow to link of metabolites directly to their respective pathways. Upon constant improvement 

of the WormJam GSMN as well as the developed lipid prediction workflow significant 

knowledge gaps, especially for the biosynthesis of secondary metabolites, will be closed. 

Lastly, it is aimed to make all the collected information more accessible to other C. elegans 

scientists, e.g. designing a specific webpage similar to the HMDB.
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3. Metabolite and Lipid Identification 
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Chapter-related publications: 

N-Alkylpyridinium sulfonates for retention time indexing in reversed-phase-liquid 
chromatography-mass spectrometry-based metabolomics 

Stoffel R., M. Quilliam, N. Hardt, A. Fridstrom, M. Witting 

Analytical and Bioanalytical Chemistry, 2021 Dec 15. doi: 10.1007/s00216-021-03828-0 

This article presents the initial description of an LC-MS retention time indexing system for 
reversed-phase separation. This system is based on the use of N-Alkylpyridinium sulfonates 
developed by Dr. Michael Quilliam. Together with Dr. Quilliam I discussed the use of this 
system in metabolomics. In this work, I created the study design and supervised Rainer 
Stoffel during his bachelor thesis performing all measurements. In addition, I analyzed the 
obtained data. 

 

UHPLC-IMS-Q-ToF-MS analysis of Maradolipids, found exclusively in Caenorhabditis 
elegans dauer larvae 

Witting M., U. Schmidt, H.-J. Knölker 

Analytical and Bioanalytical Chemistry, 2021 Mar;413(8):2091-2102. doi: 10.1007/s00216-
021-03172-3 

Ion mobility is a powerful tool that can be used to identify lipids. In this article, I performed the 
analysis of C. elegans dauer larvae and identified different maradolipids. I completed the 
growth, extraction, and analysis of the C. elegans samples and the measurement of the 
reference standards synthesized by Dr. Ulrike Schmidt and Prof. Dr. Hans-Joachim Knölker. 

 

LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the 
Caenorhabditis elegans lipidome 

Witting M., C. Ruttkies, S. Neumann, P. Schmitt-Kopplin 

PLoS One. 2017 Mar 9;12(3):e0172311. doi: 10.1371/journal.pone.0172311 

This article describes the adaption of MetFrag for the annotation of lipids using C. elegans as 
an example. In this work, I have performed the measurement of reference lipid standards 
and materials as well as the extraction and analysis of C. elegans samples, and the initial 
annotation of lipids based on manual interpretation and data analysis. 

 

The metaRbolomics Toolbox in Bioconductor and beyond 

Stanstrup J., CD. Broeckling, R. Helmus, N. Hoffmann, E. Mathé, T. Naake, L. Nicolotti, K. 
Peters, J. Rainer, RM. Salek, T. Schulze, E. Schymanski, MA. Stravs, EA. Thévenot, H. 
Treutler, RJM. Weber, E. Willighagen, M. Witting, S. Neumann 

Metabolites. 2019 Sep 23;9(10). pii: E200. doi: 10.3390/metabo9100200 

This review describes metabolomics-related packages in the R programing language. The 
idea to collect all available packages started in 2016 during a workshop I organized with Dr. 
Steffen Neumann and Dr. Jan Stanstrup at the metabolomics conference in Dublin. In this 
review, I helped to collect packages related to the annotation and identification of metabolites 
from LC-MS data. 
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A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R 

Rainer J., A. Vicini, L. Salzer, J. Stanstrup, J. M Badia, S. Neumann, M. A Stravs, V. V. 
Hernandes, L. Gatto, S. Gibb, M. Witting 

Metabolites. 2022 Feb 11;12(2):173. doi: 10.3390/metabo12020173. 

This article describes the R packages MetaboCoreUtils, MetaboAnnotation, and 
CompoundDb. I have been involved in developing the functions in MetaboCoreUtils and 
MetaboAnnotation for annotating MS1 and MS2 data and have written all related functions 
and unit tests. 
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3.1. Introduction 

Metabolite or lipid identification represents one of the major bottlenecks in non-targeted 

metabolomics and lipidomics. Different analytical technologies deliver different degrees of 

information for identification. The LC-MS-based non-targeted analysis creates a matrix 

containing RT – m/z pairs as well as the respective intensity or peak area for each sample. 

Without identification, this matrix contains only a collection of numbers without biological 

meaning. To derive biological knowledge, these numbers need to be translated into 

biological entities such as metabolites. Ultimately identified metabolites can be mapped to 

biological pathways, and knowledge about pathway activity and regulation can be derived. 

Metabolite identification uses different types of information, which includes MS1 (isotope 

pattern and adducts), MS2 to MSn (fragmentation pattern), retention time (RT) and ion 

mobility data as well as NMR data of purified metabolites, if possible. The different level of 

information allows deducing different levels of identification ranging from sum formulae to 

complete structures, dependent on the methods employed. The most accurate identification 

is achieved by comparison of measured signals with a chemical reference standard under 

identical analytical conditions. For correction identification, two independent physicochemical 

properties must match (e.g. RT, MS1 and MS2). This is referred to as level 1 identification 

according to the Metabolomics Standard Initiative (MSI) identification scheme [281]. Lower 

levels rely on matching fragmentation or NMR spectra against spectra from a different 

database, not measured under the same conditions (level 2). All other levels are referred to 

as putative annotations. It must be mentioned that annotation is not identical to the 

identification. Although this scheme partially enabled the judgment of the “goodness” of 

metabolite identifications, it still has several shortcomings. For example, D- and L-

Tryptophan can have the same RT, m/z, and fragmentation pattern on achiral 

chromatographic separation. If L-Tryptophan was measured as standard and compared 

against the unknown substances and parameters matches, it might be reported as L-

Tryptophan. However, as long as no chiral analysis was conducted, this result is 

overreporting. Therefore, the scheme might be partially misleading. Several other schemes 
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have been invented, e.g. by Schymanski et al. [297]. This scheme was initially described for 

the identification of substances in the non-targeted screening of environmental samples but 

is also more and more applied in metabolomics. Typically, only metabolites on level 1 are 

called identified, while the lower levels refer to annotated metabolites. In this work, the levels 

according to Schymanski et al. as summarized in Table 13, are used. 

Table 13: Confidence in identification of metabolites can be reported by using the level system developed by 
Schymanski et al. [297]. While levels 2 to 4 are only called annotation, metabolites on level 1 are referred as 
identified. The level for metabolite annotation/identification depends on the experimental effort and the information 
used in the process. Level 1 identifications require a reference standard and are normally only achieved for a low 
number of metabolites. 

Level Identification confidence Minimum data requirements 

1 Confirmed structure MS1, MS2, RT, Reference Std. 

2a Probable structure by library spectrum match MS1, MS2, Library MS2 

2b Probable structure by diagnostic evidence MS1, MS2, Exp. data 

3 Tentative candidate(s) 
Structure, substituent, class MS1, MS2, Exp. data 

4 Unequivocal molecular formula MS1 isotope/adduct 

5 Exact mass MS1 

 

An essential question in metabolite identification is the relevance of the identification for the 

organism studied. Different databases contain a different number of metabolites, but not all 

metabolites might be present in all organisms, which is especially true for metabolites from 

secondary pathways. Metabolite identification in other organisms, therefore highly relies on 

the availability of curated metabolite databases for this specific organism. A major example is 

the Human Metabolome Database, which serves as a reference for human metabolomics 

investigations [86, 87, 298]. This database not only stores metabolites but also has a rich 

metadata section associated with each metabolite. This includes information on 



 

120 
 

concentration in different specimens, e.g. plasma or urine. Such databases are missing for 

many organisms. In the case of C. elegans so far, no specific database has been described. 

Therefore, the WormJam model described in chapter 2 serves as the first instance of a C. 

elegans Metabolome Database. While HMDB contains MS2 and NMR spectra of several 

metabolites, such data is not available for C. elegans-specific metabolites. Only recently, 

SMID-DB.org added MS2 spectra for C. elegans secondary metabolites such as ascarosides 

[140]. However, these spectra are not available in an open format for metabolite annotation 

at the moment. 

Besides organism-specific metabolite and metabolic pathway databases, reference 

databases for tandem MS and/or NMR data are required. Different databases are available, 

e.g. MassBank, MassBank of North America, GNPS, Metlin, and others [299-301]. These 

databases can help to identify metabolites by comparison of measured spectra against 

spectra stored in the different databases. 

3.1.1. Metabolite and lipid identification workflows 

Identification of metabolites and lipids needs to integrate as much available data as possible. 

Below, the information content that can be derived from each type of data is discussed. 

Typical metabolite identification workflows start from annotating MS1 data with putative 

metabolites and sum formula calculation from isotope patterns. Based on these, further steps 

are then undertaken. In most cases, dereplication is performed, which means that 

metabolites and lipids that have been previously identified are annotated and identified. This 

is typically accomplished with an in-house database that contains m/z values, retention 

times, and tandem MS spectra of standards measured under identical conditions to the 

sample. Different properties of molecules measured by LC-MS can be used for the 

identification of parts of the identification. 

3.1.1.1. MS1 

The information from the MS1 level includes information of the type of adduct, the isotopes 

and also on potential in-source fragments. The isotopic pattern can be used for formula 
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calculation. Based on the resolution and mass accuracy of the employed MS analyzer, the 

resulting list might differ in length. Likewise, from a molecular sum formulae the isotopic 

pattern can be predicted. It is understood that the accurate m/z of a small molecule is 

insufficient for its structural elucidation following the example of Kind and Fiehn: Searching 

ChemSpider with m/z 378.1678 Da and ten ppm mass accuracy returns more than 9,500 

structures, but even searching the exact molecular formula C20H26O7 results in 300 possible 

structures [47]. Hence, the accurate mass of a small molecule cannot provide information 

beyond its potential molecular formula. Trying to identify a small molecule based on its mass 

will result in a long list containing the putatively correct identity and numerous false 

annotations. Also, especially in the case of lipids, potential isobaric overlap, e.g. between 

[M+H]+ and [M+Na]+ adducts, exist, which can be only resolved by ultrahigh resolution MS. 

Fiehn and Kind have shown that at higher m/z range even one ppm mass accuracy is not 

sufficient for correct calculation of sum formulae, however, if 5% error in the isotopic pattern 

is allowed results are sufficiently unique [47]. The most important factor in avoiding a 

combinatorial explosion of possible sum formulae is the restriction of possible elements. 

With the advent of ultrahigh-resolution MS instrumentation isotopic fine structures are now 

within reach. While older or lower resolution instruments do not differentiate between the 

different possible isotopic species, the latest generation of Orbitrap and ICR-FT-MS can be 

distinguished if a peak is related to 13C or 15N or 13C2, or 34S, for example. This accuracy 

allows for determining elemental ratios directly from detected isotope patterns [302]. 

Together with the seven golden rules stated by Kind and Fiehn, an easy calculation is 

possible [303]. Although the current generation of time of flight (ToF) instruments does not 

allow this degree of detail, the obtained data is sufficiently good to narrow down the list to a 

reasonable number of candidates. The list of potential sum formulae can be further reduced 

by incorporating MS2 data. This is done e.g. by Bruker SmartFormula 3D or Sirius [304]. 

Information content of the MS1 level is limited since several structures can have the same 

molecular formula and are dependent on the resolution of isobaric overlap. However, 
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network approaches such as NetCalc or MetNet can help group m/z values or chemical 

formulae into a biological context [305, 306]. Both tools follow the idea that a (bio)chemical 

transformation is associated with a difference in mass between two related metabolites, e.g. 

elongation of fatty acids would lead to a mass difference of 28 Da or C2H4 as a formula. If 

exact m/z are measured on a high-resolution MS (HR-MS), then exact mass differences can 

be calculated and compared against a list of known mass differences from (bio)chemical 

transformations. NetCalc uses this information together with seed formulas of known 

metabolites for the calculation of sum formulae. MetNet combines mass differences with 

other metrics, such as correlation analysis, to derive meaningful biochemical networks from 

MS data. For a more comprehensive overview, see Amara et al. [307]. 

3.1.1.2. MS2 

MS2 information can also be used to inform sum formula calculation. In the case of exact 

mass, MS1 and MS2 sum formulae can be calculated for each fragment, which must 

represent a valid sub-formula of the MS1 formula and potentially can be explained by a 

specific neutral loss formula. The Sirius software uses the MS1 and MS2 information and 

generates fragmentation trees with sub-formulae for each possible fragment [304, 308]. By 

this integration, typically, a higher number of correct sum formulae are achieved. However, 

formula calculation is becoming more problematic for molecules > 500 Da due to the large 

combinatorial explosion of elements. ZODIAC has been recently integrated into the Sirius 

software and uses Gibbs sampling for molecular formula annotation based on the idea that 

metabolites do not represent isolated identities but are part of metabolic networks [309]. 

Molecular formulas are reranked by consideration of joint fragments and losses between 

fragmentation trees of metabolites detected within the same dataset. This improves correct 

molecular formula identification because similar structures should produce similar fragments 

and, therefore, similar fragmentation trees. 

MS2 can provide information on substructures present in a molecule. Specific neutral losses 

and fragmentation rules can be used to identify structural motifs. Different databases contain 
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a myriad of MS2 spectra for other metabolites. The most used MS2 databases are Metlin, 

MassBank, MassBank of North America, and GNPS libraries [299, 300, 310, 311]. Compared 

to structural databases such as PubChem, these databases are several orders of magnitude 

smaller. Furthermore, the chemistry of molecules covered is somewhat limited. Most 

laboratories that build and share mass spectral libraries focus on metabolites of interest for 

them and compounds commercially available. Several metabolite substance libraries have 

been commercialized in recent years, but often contain only metabolites that are cheap and 

stable. Although shared spectral libraries increase in the number of spectra, the number of 

new compounds only grows slowly. Though spectral libraries are considered as “gold 

standard” in identification, there are several problems associated with them. First, often the 

exact instrument used is not covered by public libraries. Differences in instrumentation can 

cause slight or large differences in spectra. In most cases, the collision energies are 

calculated on a different basis between different vendors. Ramped or stepped spectra, which 

collate multiple collision energies, allow much better comparison and often also contain more 

information compared to single collision energies. 

Besides library matching, different in silico tools have been generated to speed up initial 

annotation and to narrow down potential candidate lists. Among the most used tools are 

MetFrag, CSI:FingerID, and CFM:ID [312-314]. For example, their performance has been 

evaluated in the CASMI 2016 contest [315]. The advantage of these tools is that they only 

rely on spectral data for training but allow the search in structural databases, which are much 

larger afterward. Recent developments allow tools to rival library matching, e.g. the COSMIC 

confidence score allows the separation of true from bogus annotations [316]. 

Another possibility for the analysis of MS2 is the construction of molecular networks, e.g. 

using Global Natural Products Social Molecular Networking (GNPS) [317]. Here spectra 

similarities are calculated based on different scores to infer chemical similarity. Similar 

structures yield similar fragments or contain the same neutral losses. Following this idea, 

spectral similarity should be a proxy for structural similarity. However, while similar structural 
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parts would yield the same fragments, another variable part could lead to different fragments, 

e.g. different lengths of side chains. To account for this fact, the similarity measure in GNPS 

uses the mass difference between the precursor m/z of the two spectra to be compared. 

Fragments are considered matching between the spectra if they either match directly within a 

specific mass error or the difference between the precursor m/z values and a specific mass 

error. Different other tools have been built around this approach and enable in-depth 

elucidation of metabolomics data, e.g. MolNetEnhancer [318]. 

In the case of C. elegans no comprehensive MS2 spectral database exists. Most central 

metabolites from the WormJam model that at least one MS2 spectra in any of the above-

mentioned databases,s but secondary metabolites like the ascarosides are entirely missing 

from these databases. Recently SMID-DB added reference spectra for different ascarosides, 

which are not commercially available [140]. 

3.1.1.3. Retention time (RT) 

m/z values and tandem MS data are often not enough to identify metabolites. For example, 

the two ascarosides ascr#3 and oscr#3 have the same molecular formula and, therefore the 

same m/z and almost identical fragmentation spectra but very different retention times on a 

typical reversed-phase separation. RTs represent important orthogonal information for 

metabolite identification, which can be incorporated at various stages of the metabolite 

identification workflow. However, it usually is used at the end when comparing a reference 

standard against the measured metabolite. Knowledge about the employed chromatographic 

system enables to improve the metabolite identification at an early stage. Reversed-phase 

separation, for example, performs separation based on hydrophobicity, with polar 

metabolites eluting first and non-polar metabolites later. For example, this fact can be utilized 

using the octanol-water-partition coefficient for filtering annotations [319, 320]. 

Since metabolites cover a wide range of polarity, no single analytical method can cover the 

entire metabolome of a given sample or organism. Reversed-phase separation (RP) is used 

for the separation of hydrophobic substances. Two separation methods are commonly used: 
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The first one uses a gradient from water to organic solvents like acetonitrile (ACN) or 

methanol (MeOH) for the chromatographic separation of mid-hydrophobic metabolites, 

whereas the second uses gradients from water/ACN to 2-Propanol (iPrOH) and is typically 

employed for the separation of lipids.  

The main driver for metabolite separation in RP is the partitioning between the hydrophobic 

stationary phase, e.g. octadecyl-modified silica particles and the hydrophilic mobile phase. 

Gradient elution toward solvents with higher elution strength (hydrophobicity, e.g. MeOH, 

ACN or iPrOH) also allows for eluting non-polar metabolites. Selectivity of separation can be 

fine-tuned by the addition of different functional groups or other ligands (e.g. phenyl-hexyl).  

Analysis of hydrophilic metabolites can be performed using Hydrophilic Liquid Interaction 

Chromatography (HILIC). In contrast to RP, the separation mechanism of HILIC is not 

entirely understood. While the main driver is also the partitioning between two phases, the 

water-enriched hydrophilic stationary phase and the hydrophobic mobile phase, several 

secondary interactions also play important roles. These include ionic interaction, hydrogen 

bonds, and others. Therefore, the exact separation mechanism in HILIC is less well-defined 

and relies on the employed column and solvent. Metabolomics does not allow for a “one-

size-fits-all” experimental protocol; hence, a diverse set of separation conditions are used in 

different laboratories. Additionally, comprehensive separation methods such as GCxGC and 

LCxLC are gaining more attention; they are mostly used by specialist laboratories [321, 322]. 

RTs are highly reproducible under identical chromatographic conditions within a single 

laboratory but can vary between different labs due to different factors like different equipment 

used or different separation conditions. Even when using nominally the same separation 

system, meaning the same column, solvent, and gradient, other LC systems yield different 

RTs due to differences in dwell volume, gradient delay volume, etc. Normalizing these 

differences would help boost metabolite identification by incorporating retention times in an 

early stage. 
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Recently, PredRet was introduced as a possibility to map RTs between different laboratories 

and chromatographic systems. This approach uses commonly identified metabolites between 

two systems to calculate a mapping function between them and use them to project retention 

times from one system to the other. Based on extensive cross-validation, the authors could 

show that this system helps to improve metabolite identification [323]. However, this system 

only works if several common metabolites are identified between two similar 

chromatographic methods. Projection between different LC-MS systems has been described 

by Abate-Pella et al., using a test mixture to enable retention projection and back-calculation 

of retention times between multiple systems [324]. Different multi-segment gradients have 

been used, and different instrumental setups have been compared. Using the test mixture 

and retention projection enabled the accurate comparison between the participating 

laboratories. However, projection is only possible if commonly detected substances exist. 

Therefore, the prediction of retention times for substances that have not been measured 

before is of great interest. Different approaches for retention time prediction have been 

applied in metabolomics. Predicting RTs using Quantitative Structure-Retention 

Relationships (QSRR) can be seen as a particular case of Quantitative Structure-Property 

Relationships (QSPR) [325]. Predictions often focus on reversed phase (RP) separation, 

which is employed for the analysis of pharmaceutically active substances; here, retention 

times show a good correlation with the octanol/water partition coefficient logP. (Notably, logP 

values are usually only predicted via QSPR models, such as the XLOGP3 method [326]). 

HILIC was introduced by Alpert et al. and is gaining popularity due to its “orthogonal” analyte 

retention, compared to classical RP separations allowing the analysis of polar metabolites 

[327]. In contrast to RP, this correlation of logP with retention time in HILIC is only modest. 

Early papers on QSRR date back to 1977; see [325, 328] for reviews. Since then, numerous 

articles have addressed the prediction of LC retention times for small molecules; Héberger 

[325] lists more than 100 papers from 1996 to 2006. Modern methods usually rely on 

supervised machine learning techniques such as linear regression, Support Vector 

Regression (SVR), random forests and regression trees, Neural Networks, partial least 
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squares regression, and feature selection for this purpose [329-334]. Usually, 

physicochemical parameters of the compounds are used as features, such as logP, charge, 

number of rotatable bonds, etc. Some methods are restricted to particular compound 

categories, such as nucleic acids, peptides, lipids, or polycyclic aromatic hydrocarbons [331, 

335-341]. These methods reach much better prediction quality, as can be expected but are 

of limited use in general metabolomics. As noted, most papers focus on RP separation but 

fewer on HILIC separation [329, 342]. Randazzo et al. described a QSRR approach 

combining molecular descriptors with a Linear Solvation Energy Relationship model to 

predict retention times for steroid identification [343]. Three recent papers apply RT 

prediction for two-dimensional gas chromatography [344-346]. Most approaches use 

predicted retention times to filter candidate structures for metabolite identification and report 

results such as “half of the candidate structures were removed, and 95% of the correct 

identifications were retained”[347]. 

A significant problem of RT data, in contrast to MS data, is the only minimal and often 

incomplete collection of associated metadata. RT is influenced by many different parameters 

and is not an inherent property of the molecule but represents a property of the combination 

of the whole chromatographic system and the analytes of interest. Therefore, reporting of a 

single RT value is insufficient. Beside the analyte, the column with its exact stationary phase, 

dimensions, temperature, used solvents, flow rate, and gradient must be reported. Accurate 

reporting of the stationary phase is essential since several types of reversed-phase, and 

even C18 columns exist. Some of them have additional functional groups to enhance 

selectivity further. Reporting of chromatographic metadata needs to be improved, and 

standards have to be developed to make the use of RT in metabolite identification more 

widespread and reproducible. 

3.1.1.4. Collisional Cross Section (CCS) 

Another orthogonal parameter that can be utilized for metabolite and lipid identification is the 

Collisional Cross Section (CCS) measured by ion mobility. Ion mobility separation (IMS) 
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recently joined the metabolomics and lipidomics toolbox and different types of ion mobility 

instruments are available. IMS is a gas phase ion separation technique, often also referred to 

as gas-phase electrophoresis, separating ions by their differential travel through a drift cell 

filled with a buffer gas (typically N2 or He) under the influence of an electrical field. Ions are 

separated based on their different mobility, which can be related to the molecules' CCS 

values. The use of drift tube ion mobility (DTIMS), traveling wave ion mobility (TWIMS), or 

trapped ion mobility (TIMS) allows determining a molecule’s CCS. IM instruments can be 

classified according to their measurement principles. The DTIMS and TWIMS instruments 

are classified as time-dispersive, while TIMS is classified as field-dispersive (scanning), and 

DMA and FAIMS are spatially dispersive. CCS reflects the two-dimensional projection of the 

sphere that is formed by the randomly rotating ionized molecule in the gas phase. Ion 

mobility experiments can determine CCS values under low-field conditions by either 

calibrating or direct measurements using low-field uniform DTIMS. 

In contrast to RT, CCS represents a molecular property. While the RT is dependent on the 

employed chromatographic system, including column, solvents, temperature, and others, 

CCS is more stable to changing instrumental conditions and can be compared within a 

specific range, even between different laboratories and instrumentations. CCSs are partially 

dependent on the m/z ratio of the measured molecule, but similar masses with different 3D 

structures can be resolved. At the current stage, it is not known how much exactly the CCS 

value adds to metabolite identification since databases are relatively small in comparison to 

MS2 data. However, different in silico tools have been developed for the prediction with 

different accuracies. Due to the currently limited resolution of ion mobility instruments, it is 

mostly combined with chromatographic separation. In a theoretical investigation, Causon et 

al. calculated that at least a 1.5-1.8% difference in the CCS values is required for a resolution 

of 0.6, while baseline separation requires a minimum of 3.7-4.4% difference. 

In drift tube IM, a uniform DC voltage gradient along the drift cell is used. The drift velocity 𝑉𝑉𝑑𝑑 

is proportional to the electric field E. In DTIMS, ions are separated in a static drift gas along 
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an electric field. The field is uniform with E/N values between 1 and 15 Td (1Td = 10-17 

Vcm2). 

𝑉𝑉𝑑𝑑 = 𝐾𝐾 ∙ 𝐸𝐸 

The ion mobility can be calculated experimentally by measuring the ion's velocity or drift time, 

the time an ion requires to travel a drift cell with a known length L, and an applied field 

strength E. If the pressure in the drift cell, the drift time, and the voltage are known, the CCS 

can be calculated. Compared to drift times, CCS have the advantage that they are 

instrument independent and can be used as unique identifiers. The relation between the 

CCS value Ω and the drift time is determined by the Mason-Schamp equation 

Ω =
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In TWIMS, ions are separated by a sequence of symmetric potential waves which propagate 

through the drift cell. The E/N values are therefore varying with peal values between 50-160 

Td. While in DTIMS and TWIMS, the drift gas is static, in TIMS, a pressure gradient is 

established in a differentially pumped area. Ions are held in place by an electric field 

counteracting the pressure difference. Ions are eluted sequentially by lowering the electrical 

field in a time-dependent manner. Typical E/N values are 45-85 Td. 

CCS values can be used for metabolite identification in addition to MS and MS/MS and RT 

information and add an additional layer of security for annotations and identifications. It also 

allows for improving the analysis of unknown substances. If the CCS is plotted against m/z, 

typical trendlines for specific metabolite classes are observed, which can be used for 

enhanced annotation, even for lower-level annotations. In contrast to RT, CCS values can be 

predicted much easier. Different tools for using ab initio prediction utilizing different machine 

learning algorithms or quantum chemistry have been used [348-351]. 

3.1.1.5. NMR 

In contrast to MS, NMR can be used for de novo structural elucidation. MS can give valuable 

information on potential building blocks present in a molecule, while NMR provides 
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information about their connectivity. However, NMR typically requires much more material 

compared to NMR. In the case of limited sample material, often the amount is not sufficient 

for structural elucidation or the material is not sufficiently pure. In this case, samples are 

typically pre-fractionated, e.g. using Flash or preparative chromatography. Since this 

contradicts the goal of systems biology and large-scale screening approaches, the use of 

NMR is not further discussed here. A possible solution is to fractionate reference samples 

and generate reference spectra of defined fractions and, in parallel, analyze them via LC-MS 

to achieve a cross-mapping and enable identification via NMR at a later stage. Since NMR is 

not covered in this thesis, it is not explained further. 

3.1.2. Structural ambiguity 

Although the combination of different methods can help to narrow down the number of 

potential metabolites, often a complete identification to a fully defined structure is not or only 

hardly possible. This is primarily true for stereochemistry. In cases of specific metabolites 

classes, such as flavonoids or lipids, only certain building blocks can be identified in typical 

non-targeted metabolomics approaches since the complete structure of small molecules 

cannot be fully established with current mass spectrometric methods, even with the highest 

resolution and precision and multistage MS experiments. Several types of ambiguities exist, 

which cannot be resolved solely based on MS, e.g. position of a double bond and its 

stereochemistry in lipids or the exact position of hydroxyl groups in flavonoids. Often this 

requires specialist methods, not available at every metabolomics/lipidomics laboratory, e.g. 

Ozone-induced dissocation (OzID) [352]. Missing full identification leads to a problem in 

reporting metabolites and lipids, e.g. using standard data exchange formats such as mzTab 

[353]. This format requires an identifier from a common compound database, e.g. HMDB, 

ChEBI, PubChem, LipidHome, or LIPID MAPS, and optionally a chemical formula, SMILES 

or InChI. Structural databases, like most of the above mentioned, allow only entire molecule 

structures to be deposited. ChEBI goes beyond this by allowing the deposition of general 

group structures or more general structures [202]. Ideally, structures should be 

unambiguously resolvable down to the complete structural level. However, in metabolomics 
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and lipidomics, it is still common to report full structural details, although no experimental 

evidence was collected, which leads to an overestimation of the identification and following 

biological interpretation. Different schemes for reporting the level of identification have been 

proposed, and even numerical systems have been suggested (see above). Typically, the 

highest identification level is achieved by comparing the compound of interest and a 

reference standard based on two orthogonal and independent physicochemical properties. 

But often, this still leaves open different stereochemical isomers (e.g. D- and L-Tryptophan) 

since they will have identical retention times and fragmentation patterns in standard achiral 

separation conditions used in metabolomics and lipidomics. 

For lipids specifically, ambiguities exist concerning the position of fatty acid side chains, the 

position of double bonds inside chains, their stereochemistry, and how to encode them in a 

consistent naming scheme. The current terminology uses lipid category abbreviations (e.g. 

PC) and different levels of structural details [205, 207, 247]. This nomenclature and 

classification scheme groups lipids into defined categories (e.g. Glycerophospholipids), main 

lipid classes (e.g. PC), subclass (Diacylglycerophospholipid), species, fatty acids scan 

species, sub-species and isomer level. The most detailed level (isomer) identifies the exact 

position of side chains, double bonds, and stereochemistry, which cannot be achieved for 

high-throughput applications with current analytical methods. Therefore, a more functional 

and MS-friendly nomenclature has been invented, dividing lipids according to their class and 

acyl side chains. The nomenclature considers the structural detail that specific experiments 

can capture. Often only the lipid class and its sum composition can be deduced from MS1 

and MS2 experiments. The identified lipid would be reported accordingly, e.g. for a 

triacylglycerol with a total of 52 Carbon atoms and one double bond; the name would be 

reported as TG 52:1. If MS2 analysis was able to reveal fatty acid bound to the glycerol 

backbone, the identification can be reported as TG 16:0_18:0_18:1 if is known that one of 

the fatty acid chain consists of sixteen carbon atoms, the second fatty acid chain of eighteen, 

and the third one of eighteen carbon atoms with one double-bond at an arbitrary position. 

More detailed experiments finally resolve the position of the fatty acids and the position of the 
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double bond (e.g. MS3, etc.…) [354]. However, LipidMaps only contains full structures; 

ChEBI links different chemical entities in its database via an ontology system. Using this 

system, chemically related compounds are linked via functional parents. A similar system is 

used by LipidMAPS, which groups lipids according to their lipid classes. However, both 

systems are missing important intermediate steps in their hierarchy or lack structural 

representation. For example, ChEBI contains an entry for the lipid PC(36:2) (ChEBI:64433) 

and links PC(18:0/18:2) (ChEBI:136063) and other more detailed structures to it, but has 

only generic SMILES for diacyl phosphatidylcholine associated with it, while molecular 

formula and mass are matching. Furthermore, different species like PC(16:0/20:2) are 

missing, which make up the same sum composition. This discrepancy must be resolved by 

allowing extended SMILES to be deposited in databases. The so far best hierarchical 

representation is provided by the SwissLipids database [289]. Ontologies like these can be 

used for enhanced mapping of lipid structures onto metabolic pathways [204]. 

In principle, the same issues arise not only in lipidomics but similarly for other small 

molecules (<1kDa) in environmental chemistry, glycomics, natural product chemistry 

(flavonoids and terpenes), and metabolomics. In these fields, it can be referred to unknown 

stereochemistry, the unknown position of functional groups, unknown sugar moieties, etc. 

While a neutral loss in a fragmentation spectrum of 162.0528 Da is often indicated for a 

hexose group position in case of multiple possible sites, and the identity of the hexose 

cannot be revealed. One prominent example of such structural ambiguity in metabolite 

identification is flavonoids and their glycosides. Using MS/MS, often only the number, but not 

the specific position of hydroxyl groups attached to different rings of the flavonoid structure or 

the number of glycosylations but not their position nor their identity can be determined. One 

example would be quercetin (ChEBI:16243) and morin (ChEBI:75092). Both are classified as 

pentahydroxy flavones (CHEBI:25883), a rather general description for identification 

purposes. A typical example for C. elegans would be Δ4- (CHEBI:78686) and Δ7-dafachronic 

acid (CHEBI:78699), which cannot be separated with generic LC-MS methods as used in 

non-targeted metabolomics nor can they be separated by different fragmentation. 
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Further examples are oscr and ascr molecules, which show a similar fragmentation pattern 

but have a difference in their linkage of the fatty acid tail to the ascarylose core (either ω- or 

ω-1-). One future possibility would be to report, for example, Markush structures instead of 

complete structures [355]. Such structures are typically used in patent applications to cover 

all possible structures in a single depiction instead of drawing each structure individually. 

Multiple structures can be collapsed into a single Markush structure. However, no open-

source chemoinformatics tools exist at the moment; depending on the input structures, 

results might not be human-readable anymore. 

3.1.3. The need for metabolites identification for systems biology 

Systems biology approaches require metabolite identification. In most cases the analysis is 

performed on the pathway level, and combined mapping of transcriptomics, proteomics, and 

metabolomics/lipidomics on pathways will be performed, and results will be analyzed in 

combination. Without correct metabolite identification, such mapping cannot be performed. 

Though ambiguities might still exist, ontology-based approaches allow mapping even with 

only partial structures and to judge the goodness of mapping [204]. Besides pathway 

mapping, correlation analysis, and other tools are important for the analysis of large-scale 

systems biology studies. Although correlation values can be established between two 

completely unknown molecules, a biological relation can only be established after the 

identification of at least one of the partners. Likewise, molecular networks such as those 

generated by GNPS can be used [317, 356]. In such networks, metabolite identities can be 

used to enhance the identification of other non-identified nodes [318, 357]. 

Lastly, metabolite identifications allow combining different datasets based on the metabolites, 

which is not or only partially possible based on mass spectrometric raw data. This will 

become more and more important as more studies on C. elegans will become publicly 

available. Integration of different studies increases the power of statistical analysis and the 

information content but currently suffers from the missing standardization of metabolomics 
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methods. Standardized metabolite identification and reporting represent one of the first and 

most important steps toward this integration.  
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3.2. Retention time indexing 

Sharing of RTs for cross-laboratory comparison would be helpful for enhanced metabolite 

identification. However, the lack of standardization of chromatographic conditions and 

different analytical instrumentation complicate the (re-)use of retention information. In 

contrast to m/z or CCS, which represent molecular properties, RTs are system properties 

that arise from the combination of chromatographic equipment, employed column and 

solvent, and separation conditions (e.g. flow rate, temperature, etc.). Even nominally the 

same separation conditions on two different instruments can yield differences in RTs due to 

experimental factors like dead volume, gradient delay volume, etc. Furthermore, even within 

a single lab RTs can shift substantially due to column and solvent batches (differences in 

solvent composition, pH adjustment etc.) and the degree of deterioration of the 

chromatographic column. Therefore, retention information is not used regularly for cross-

laboratory metabolite identification. Different approaches to tackle this problem have been 

developed. 

In GC RTs are normalized to retention indices (RI) by referencing the retention time of a 

given substance to a set of reference substances. This retention time indexing (RTI) is well 

established and allows cross-referencing different separations performed under similar but 

not the same conditions. The Kovats index is the most used RTI system in GC and has also 

been applied in metabolomics and uses a homologous series of n-alkanes spiked to the 

sample as references [358, 359]. 

Different RTI systems have been proposed for LC-based separation, each providing distinct 

advantages and disadvantages. Aderjan & Bogusz introduced an RTI system based on a 

series of 1-nitroalkanes [360]. This substance class shows strong absorbance between 200 

and 230 nm. However, they ionize only in negative ionization mode in electrospray MS. 

Different other substances have been suggested as RTI markers, e.g. alkyl phenones, 

phenolic esters, and others reviewed elsewhere [361]. Nitroalkanes and fatty acid amides 

have also been used for RTI in metabolomics [362]. These RTI systems have also been 
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combined with different in silico analysis methods for tandem MS spectra, CFM-ID, 

CSI:FingerID, MassFrontier, and MetFrag [313, 363, 364]. Based on a set of measured RI 

values, an artificial neural network was trained to predict RI values for candidates from in 

silico methods. This combined method was able to improve the average rank of candidate 

molecular structures [365]. Recently, Zheng et al. established an RTI system for derivatized 

molecules. 2-dimethylamino ethylamine (DMED) labeled fatty acids served as indexing 

substances for DMED-labeled carboxylic acids [366]. Amine compounds were labeled with 4-

(N,N-dimethylamino)phenyl isothiocyanate (DMAP), and DMAP-labeled fatty amines served 

as RI standards. Based on their RTI system, the authors compared different 

chromatographic setups and could show that RI is much more comparable then RT. 

However, most metabolomic experiments detect metabolites in their native, underivatized 

state. Therefore, a solution for RTI for unlabeled substances is required. A further 

disadvantage of the presented substances for RTI is that for positive and negative ionization 

modes, different substances are used, resulting in two different sets of RI databases. N-alkyl 

pyridinium 3-sulfonates (NAPS) have been suggested as promising candidates for the 

normalization of RT data by conversion to RI. Recently, they have been used for the 

normalization of LC-MS mycotoxin determination [367]. The properties of the NAPS make 

them an ideal candidate for testing as an RTI system for the normalization of retention time 

information in LC-MS-based metabolomics. In different studies, the suitability for 

normalization within single laboratory or multiple laboratories was examined. 

3.2.1. Material and Methods 

3.2.1.1. Chemicals 

Acetonitrile (ACN), methanol (MeOH), formic acid, and chloroform (CHCl3) were purchased 

from Sigma-Aldrich and were of LC-MS grade (Sigma-Aldrich, Taufkirchen, Germany). 

Metabolite standards used in this study were derived from the Mass Spectrometry Metabolite 

Library of Standards (MSMLS) (Sigma-Aldrich, Taufkirchen, Germany). Standards were 

prepared as indicated in the MSMLS manual. Metabolites are summarized in SI Table 1. 

Additional solutions from individual metabolites were prepared as 1 mg/mL stock solutions in 
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suitable solvents. Additional metabolites are summarized in SI Table 2. The NAPS RI 

standards in the form of a reference material (RM-RILC) composed of a mixture of 20 NAPS 

in solution (100 µM each) were provided by the National Research Council Canada (Halifax, 

NS, Canada, (https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/crm/list_product.html). This 

mixture is referred to as NAPS in the following paragraphs. Different chromatographic 

columns have been used in different studies. Table 14 summarizes the information on the 

employed columns and the respective studies they were used in. 

Table 14: Chromatographic columns used in the different studies related to retention time indexing. 

Column Study 

Supelco Ascentis Express C18 column (100 mm x 2.1 mm, 2.0 µm) Intra-lab pilot 

Supelco Acsenctis Express C18 column (150 mm x 2.1 mm, 3.0 µm) Intra-lab pilot 

Waters Acquity BEH C18, 100 mm x 2.1 mm, 1.7 µm (Batch 1) 
Cross-column pilot 

Interlab pilot 

Waters Acquity BEH C18, 100 mm x 2.1 mm, 1.7 µm (Batch 2) Cross-column pilot 

Waters Acquity BEH Shield RP 18, 100 mm x 2.1 mm, 1.7 µm Cross-column pilot 

Waters Acquity BEH CSH C18, 100 mm x 2.1 mm, 1.7 µm Cross-column pilot 

Waters Acquity Cortecs C18, 100 mm x 2.1 mm, 1.6 µm Cross-column pilot 

Waters Acquity Cortecs C18+, 100 mm x 2.1 mm, 1.6 µm Cross-column pilot 

Phenomenex Kintex C18, 150 mm x 2.1 mm 1.7 µm Interlab full 

 

3.2.1.2. Intra-laboratory pilot study 

For the first intra-laboratory pilot study, three different LC-MS setups were used. The first 

setup consisted of a Waters Acquity UPLC (Waters, Eschborn, Germany) coupled to Bruker 

maXis UHR-ToF-MS (Bruker Daltonics, Bremen, Germany). Metabolite standards were 

separated on a Supelco Ascentis Express C18 column (100 mm x 2.1 mm, 2.0 µm) (Sigma-

Aldrich, Taufkirchen, Germany). Eluent A consisted of 100% H2O + 0.1% formic acid and 

eluent B of 100% ACN + 0.1% formic acid. The flow rate was set to 0.3 ml/min, and column 
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temperature was maintained at 40°C. After 2 minutes of 5% B, %B was increased linearly to 

99.9% within 15 min and held for 3 minutes. After returning to the initial conditions, the 

column was re-equilibrated for 3 minutes. 5µL of the sample were injected via partial loop 

injection. Different methods for systematic evaluation of flow rate and temperature influences 

were derived from this standard method. Metabolite standards were detected in positive and 

negative ionization mode with data-dependent acquisition (DDA) of tandem MS. Source 

parameters were as follows: End Plate Offset = 500 V, Capillary = 4500 V, Nebulizer = 2.0 

bar, Dry Gas = 10.0 L/min, Dry Temp = 200°C, Mass Range = 50 – 1500. The second LC-

MS setup was an Agilent 1200 HPLC equipped with a quaternary pump (Agilent 

Technologies, Waldbronn, Germany) coupled to a Bruker maXis UHR-ToF-MS (Bruker 

Daltonics, Bremen, Germany). Separation of metabolites standards was performed on a 

Supelco Acsenctis Express C18 column (150 mm x 2.1 mm, 3.0 µm) (Sigma-Aldrich, 

Taufkirchen, Germany) using the same eluents as above. Flowrate was set to 0.4 mL/min. 

After 4.5 minutes of 5% A, %B was increased linearly to 99.9% within 35.5 min and held for 6 

minutes. MS parameters were the same as for the first system. The third LC-MS setup used 

the same column and gradient as the second but performed the separation on the hardware 

from the first setup (Waters Acquity UPLC), differing in the gradient formation and delay 

volume. MS parameters were the same as for the first system.  

Fifty-two mixtures of up to eight non-isomeric or -isobaric metabolite standards were 

prepared from the MSMLS and measured for the initial database construction. NAPS were 

injected before and after samples of one plate. For all other experiments, mixtures from one 

plate were injected. Peaks were manually picked in Data Analysis 4.4 (Bruker Daltonics, 

Bremen, Germany) by creating extracted ion chromatograms. MS and MS/MS spectra were 

used for verification. All further analyses and calculations were performed in Microsoft Excel 

365 and R 4.2.1 [368]. 

As biological samples, extracts from C. elegans and mouse plasma were used. Mixed-stage 

C. elegans were grown in a liquid culture fed with E. coli NA22 and harvested by 
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centrifugation. Metabolites were extracted with 50% MeOH, according to Witting et al. [185]. 

After the extraction solvent was evaporated, samples were redissolved in 20% ACN to 

achieve an estimated concentration of ~10.000 worms/mL. Proteins from mouse plasma 

were precipitated by mixing 500 µL plasma with 1500 µL ice-cold ACN. Samples were 

vigorously vortexed and centrifuged for 15 min at 13,000 rpm at 4°C. The supernatant was 

transferred to a fresh reaction tube, and the solvent was evaporated. The sample was 

redissolved in 500 µL 20% ACN. Aliquots of C. elegans metabolite and mouse plasma 

extracts were spiked with NAPS at levels of 1:20, 1:40, and 1:80. 

Data were processed with Genedata Expressionist for MS 13.5, which included m/z 

recalibration, noise reduction, RT alignment, peak picking, and isotope grouping. Results 

were exported as a .xlsx file and further processed in R as described below. Annotation of 

metabolites was performed with the MetaboAnnotation package 

(https://github.com/rformassspectrometry/MetaboAnnotation) [369]. 

3.2.2. Cross-Column pilot study 

In this study, a Waters Acquity UPLC (Waters, Eschborn, Germany) was coupled to a Bruker 

maXis UHR-ToF-MS (Bruker Daltonics, Bremen, Germany). The MS parameters were the 

same as above. Eluents were 100% H2O + 0.1% formic acid and 100% ACN + 0.1% formic 

acid. Three different gradients were used, as summarized in Table 15. 

Table 15: Gradients used in the Cross-column pilot study. Individual steps of %B were kept and only times were 
varied. 

 Time (min) 

%B Gradient 1 Gradient 2 Gradient 3 

5 0 0 0 

5 1.12 1.12 1.12 

99.5 6.4 11.7 17 

99.5 10 15.3 20.6 
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Columns listed in Table 14 and referred to be used in the cross-column study were used. 

Standard solutions from 99 metabolites (SI Table 2) were pooled into five mixes which do not 

contain any isomeric or isobaric substances. Peaks were manually picked in Data Analysis 

4.4 (Bruker Daltonics) by creating extracted ion chromatograms. MS and MS/MS spectra 

were used for verification. All further calculations were performed in R 4.2.1 [368]. 

3.2.2.1. Interlaboratory pilot study 

In this pilot study, five different LC-MS systems in five other laboratories were used. The first 

laboratory used a Waters Acquity UPLC (Waters, Eschborn, Germany) coupled to a Bruker 

maXis UHR-ToF-MS (Bruker Daltonics, Bremen, Germany). The second lab utilized a Waters 

Acquity H-Class UPLC (Waters, Milford, MA, USA) coupled to Bruker maXis 3G UHR-ToF-

MS (Bruker Daltonics, Bremen, Germany). The third lab used a Waters Acquity H-Class 

UPLC (Waters, Milford, MA, USA) coupled to a Waters Xevo TQ (Water, Manchester, UK), 

while the fourth lab employed an Agilent 1290 UHPLC (Agilent Technologies, Waldbronn, 

Germany) coupled to a Leco Citius HR-ToF (Leco, St. Joseph, MI, USA). The last laboratory 

used a Thermo Scientific Dionex Ultimate 3000 (Thermo Scientific, Germering, Germany) 

coupled to a Bruker impact II Q-TOF-MS (Bruker Daltonics, Bremen, Germany). 

Retention times of the same 99 metabolite standards as in the cross-column comparison 

were determined using a Waters Acquity BEH C18 column (100 mm x 2.1 mm, 1.7µm) and a 

water-ACN gradient with eluent A begin 100% H2O + 0.1% formic acid and B 100% ACN + 

0.1% formic acid. Gradient conditions were as follows, after an initial isocratic phase of 5% B 

for 1.1 minutes, %B was increased linearly to 99.5% B in 5.3 minutes and held for 4.6 

minutes. Each participating lab received prepared stock solutions made from metabolite 

standards at a concentration of 1 mg/mL in order to tune MS parameters or MRM transitions 

individually. NAPS were supplied as a ready-to-use reference mixture. 

3.2.2.2. Interlaboratory study 

The interlaboratory study was performed between 3 laboratories running 4 different LC-MS 

systems. The first lab conducted experiments using an Agilent 1290 Infinity II UHPLC 
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coupled to an Agilent 6560 IM-QTOF-MS (Agilent Technologies, Waldbronn, Germany) or a 

Waters Acquity UPLC (Waters, Eschborn, Germany) coupled to a Bruker maXis UHR-ToF-

MS (Bruker Daltonics, Bremen, Germany). The second laboratory used a Waters H-Class 

Acquity UPLC coupled to a Waters Vion TWIMS-QToF-MS (Waters, Manchester, UK). The 

third laboratory used a Waters Acquity UPLC (Waters, Eschborn, Germany) coupled to a 

Thermo LTQ XL ion trap MS (Thermo Scientific, Bremen, Germany). 

In all laboratories, a Phenomenex Kinetex C18 column (150 mm x 2.1 mm ID, 1.7 µm particle 

size) (Phenomenex, Aschaffenburg, Germany) with a fitting SecurityGuard Ultra was used. 

Eluent A consisted of 100% H2O + 0.1 % formic acid and eluent B of 100 % ACN + 0.1% 

formic acid. The following gradient was used: 2% B at 0 min, 100% B at 14 min, 100% B at 

17 min, 2% B at 17.1 min, and 7.9 minutes column re-equilibration. The column temperature 

was set to 30°C and the flow rate to 0.3 mL/min. MS detection was performed in positive and 

negative ionization modes. 

Metabolites from the MSMLS library (Sigma-Aldrich, Taufkirchen, Germany) were used. 

Each laboratory was supplied with a pool from each plate together with NAPS standard 

solution. After some initial blank injections, NAPS was injected, followed by the seven plate 

pools. This was repeated five times and one final NAPS injection, so every plate injection 

was bracketed by two NAPS injections. 

Peaks were picked individually in each laboratory, and RT data were collected in a central 

Excel sheet for further processing. In the first laboratory, additional injections of a C. elegans 

extract prepared as mentioned above were performed. Data from these experiments, 

together with NAPS injection, were processed using Genedata Expressionist for MS 13.5 as 

described above. Further handling of all data was performed in R 4.2.1 [368]. 

3.2.2.3. Retention time indexing 

A function for the conversion of RT to RI has been implemented in the MetaboCoreUtils 

package (https://github.com/rformassspectrometry/MetaboCoreUtils) [369]. This function 

accepts a vector of retention times, a data.frame with two columns, one corresponding 
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to the RT and the other to the RI of reference substances, and a conversion function. The 

default function uses linear interpolation between the two bracketing RI standards according 

to the following equation: 

𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅0 + (𝑅𝑅𝑅𝑅1 − 𝑅𝑅𝑅𝑅0)
𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑇𝑇0
𝑅𝑅𝑇𝑇1 − 𝑅𝑅𝑇𝑇0

 

RI0 and RI1 denominate the RI of the bracketing NAPS, which is the number of carbons in the 

alkyl chain multiplied by 100, and RT0 and RT1 are the corresponding retention time. RT is the 

retention time of the substance for which the RI shall be calculated. However, custom 

functions can be supplied, e.g. using spline functions. A vector of the same length as the 

input RTs with the respective RI values is returned. 

Two alternative functions for indexing have been implemented. The first one uses spline() 

for interpolation, while the second is based on the aspline() function from the Akima 

package [370]. 

3.2.3. Results and Discussion 

3.2.3.1. Intra-laboratory pilot study 

NAPS have been proposed by Quilliam et al. as applicable reference standards for indexing 

in reversed-phase LC-MS [367, 371]. Their properties and easy access due to simple 

synthetic procedures make them ideal candidates for this purpose. Synthesis and use of 

NAPS have been patented, and they can only be obtained from the NRC Canada. 

Synthetically they can be produced from 3-pyridine sulfonic acid reacting with N-alkyl halides. 

Due to the two permanent and oppositely charged groups (quaternary, aromatic imine, and 

sulfonate), the retention of NAPS is virtually independent of the separation pH. Furthermore, 

they can be detected in positive and negative ionization modes and UV detectors due to the 

aromatic ring. In the employed chromatographic setups, NAPS ionize as protonated [M+H]+ 

ions in positive ionization mode and as [M-H]- and [M+HCOO]- adduct ions in negative 

ionization mode. Collision-induced fragmentation yields a common fragment of m/z 160.0063 

in positive mode ([C5H6NO3S]+) and m/z 79.9579 in negative mode ([SO3]-), which makes the 
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substances also useful for MRM or DIA-MS/MS workflows. Typical fragmentation patterns of 

C10-NAPS are depicted in Figure 10. At higher concentrations also, gas-phase multimer 

formation (e.g. [2M+H]+) as well as sodium adducts [M+Na]+ and sodiated multimers (e.g. 

[2M+Na]+) can be observed. The employed NAPS mixture (RM-RILC) consists of 20 

homologs with a length of the N-alkyl chain from 1 to 20. The retention indices of the 

standards are denoted as 100 times the number of carbons in the alkyl chain (i.e., RI = 100 

to 2000). The first three standards (C1-3, RI 100-300) elute in or close to the void volume, 

and RTs of the C1-C3 analogs were nearly identical under all separation conditions studied 

in this and the following sections. Therefore, robust RIs could only be calculated for 

substances for which RTs were higher than the RT of the C3-NAPS standard. 

Initial experiments were conducted on a setup equipped with a high-pressure binary gradient 

pump capable of pumping at a maximum back-pressure of 1034 bar (LC-MS System 1). An 

initial RT/RI library was constructed by measuring the metabolite standards contained in the 

commercial MSMLS library. This library is sold in 96-well plates, and to reduce the number of 

injections, the rows of each of the seven 96-well plates were pooled to yield mixtures of 

standard not containing any isomeric or isobaric metabolites. The injections from one 96-well 

plate (e.g. Plate 1 A-H) were bracketed by one injection of NAPS before and after each 

block. From a total of 619 metabolite standards, 490 could be detected with the employed 

settings, 313 in both ion modes, 153 only in positive ion mode, and 24 only in negative ion 

mode. RTs were highly reproducible with a maximum of 6.1% and 5.4% relative standard 

deviation in positive and negative modes, respectively. Filtering for metabolites only eluting 

after C3-NAPS, a total of 219 metabolites remained for further analysis. 
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Figure 10: (A) General structure of the NAPS standards; (B) Positive and negative MS and MS/MS spectra of C10 
NAPS. Fragments m/z 160.0067 in positive and 79.9579 are common to all NAPS. In case of negative ionization 
the [M+HCOO]- was fragmented. (C) Elution pattern of NAPS C1-C20 on the employed C18 conditions. NAPS 
C1-C3 elute in the void volume. (D) Different fitting functions can be used to convert RTs to RI. For higher RT 
linear interpolation, cubic splines or Akima cubic splines lead to almost identical results. However, for lower RTs, 
cubic splines can overshoot due to strong changes in the gradient due to the requirement of steadiness at each 
nodal point. This is specific to the employed analysis conditions. Use of RP columns compatible with 100% 
aqueous eluents might increase retention of C1- to C3-NAPS and early eluting analytes, which should improve 
fitting 
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Next, different possibilities for the conversion of RT to RIs were examined. The above-

described functions from the MetaboCoreUtils package have been employed. For 

conversion to RI, either the NAPS injection before, after, or the average RT of both was used 

together with linear interpolation, spline, or Akima splines interpolation. Each of the three 

performed replicate injections was converted individually, and the mean, standard deviation, 

and relative standard deviation were calculated from the three replicates. Using either the 

injections of NAPS before, after, or their average had no significant influence, and the 

difference was in the range of the standard deviations, ranging between 1 and 6 RI units. 

Throughout all the following work, only the average of the bracketing NAPS injections was 

used. Subsequently, the different interpolation functions were compared. Akima splines were 

selected since they were suggested by Renaud et al. [367]. The comparison showed that, 

especially for RI values <750, systematic differences could be observed. Spline interpolation 

tends to overshoot in the region from the C4-NAPS to C6-NAPS due to big changes in the 

gradient and the requirement of steadiness at each nodal point. This requirement is dropped 

in the case of Akima splines, leading to a lower overshooting and better agreement with 

linear interpolation. In order to also make use of metabolite in the range between the C3- to 

C6-NAPS, linear interpolation was used throughout all remaining work and studies. 

After the construction of an initial RT/RI library, it was first checked if the normalization of 

RTs to RIs can compensate for differences in experimental settings such as flow rate. Based 

on the method for the construction of the initial RT/RI library, the flow rate was systematically 

varied. Four different additional flow rates were tested (0.20, 0.25, 0.35, and 0.40 mL/min) on 

the same column with otherwise the same settings. Changes in flow rate do not interfere with 

the elution order, which is known from the previous experiments. Therefore, a pooled sample 

per plate was used. As suspected, a systematic shift of RTs based on the flow rate was 

observed, with lower flow rates showing a shift towards higher RTs, while higher flow rates 

resulted in faster elution. Differences ranged from +50% to -30%, which makes the use of RT 

for cross-separation system identification not possible. Conversion of RT to RI was able to 

normalize the data, and deviations were reduced to ≤ 5%. Eighteen substances were 
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excluded since they showed variations higher than 5%, and investigating their raw data 

showed that they were of very low abundance with low-quality MS1 and MS2 data, which 

potentially led to the wrong determination of their RT. Plotting the RIs of the different 

conditions against each other, slopes close to 1 and R2 > 0.9 were obtained. 

 

Figure 11: Deviation of RT under different flowrates compared to standard condition (0.30 mL/min). The upper 
row shows the scatter plot of the RTs from each different flow rate plotted against the reference condition. The red 
dashed line indicates the diagonal, which represents a perfect fit. The lower row show histograms of the deviation 
in %. (B) Deviation of RI under different flowrates. Plots are similar to (A), except that RI is used instead of RT. All 
plots indicate that the conversion of RT to RI enables the normalization of the different flow rates. 
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A further experiment was conducted to check how far RI allows the comparison of data 

obtained on different types of LC setups. As a second system, a low-pressure gradient 

quaternary pump with a maximum pressure of 400 bar was used. The same column 

chemistry and eluents were used, and similar to the previous experiment, standards were 

injected as pools for each plate. As anticipated a strong difference between the UHPLC and 

HPLC systems was observed for the RT, but a good agreement for the RI was observed. 

The slope of the plot of the different RIs was 1.004, and the R2 was 0.998, with 74% of all 

detected standards shared between the two setups having a deviation between -5.0 and 

+5.0%. 

So far, only mixtures of chemical standards have been analyzed. In the next step, the 

performance of the NAPS RTI system in combination with biological samples was tested. 

The most accurate application of NAPS would be to spike or co-inject them with all samples 

individually; however, due to the two strong permanent charges of the NAPS they can cause 

ion suppression. To test to which extent NAPS lead to ion suppression and to generate an 

independent data set for the evaluation of the RI, the HPLC format column was used in the 

UHPLC system. This setup has different characteristics compared to the previous two, and 

obtained RTs were different. For the following evaluations, C. elegans and mouse plasma 

metabolite extract have been used as biological matrices. NAPS were diluted with the two 

matrices or with 20% ACN at factors of 1:20, 1:40, and 1:80 and injected into the LC-MS. No 

significant shift in RTs of the NAPS between injections in pure solvent or in the matrix was 

observed. 
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Figure 12: Comparison of HPLC and UHPLC on the basis of RT shows the expected deviation, while 
normalization using NAPS RTI made data comparable between the different column formats with most deviations 
between -5% and +5%. 

First, the ion species detected in biological samples were evaluated. Following adducts were 

included: [M+H]+, [2M+H]+, [3M+H]+, [M+Na]+, [2M+Na]+ and [3M+Na]+ in positive ion mode 

and [M-H]-, [2M-H]-, [3M-H]-, [M+HCOO]-, [2M+HCOO]- and [3M+HCOO]- in negative ion 

mode. At a dilution of 1:20, most of the tested adducts in positive and negative ion mode 

could be detected, with the exception of NAPS 100 to 300, for which only the [M+H]+ or 

[M+HCOO]- could be detected. [3M-H]- adducts were not detected, and [2M-H]- only for 

middle and long chains (C8-20). 

Second, potential ion suppression was evaluated by comparing the intensity of metabolite 

features of unspiked with the spiked matrix. The first three NAPS standards (100-300) are 

coeluting together with many polar metabolites in or near the void volume, where high 

suppression is usually observed. Therefore, only NAPS standards with an RI > 300 were 

evaluated. Peaks eluting in the range of ± 0.20 min around the RT of the respective NAPS 

were evaluated, and their maximum intensities were compared against the non-spiked 

matrix. Internal m/z recalibration, chromatographic alignment, peak peaking, and isotope 

clustering have been performed in Genedata Expressionist for MS 13.5, and the maximum 

intensity for each isotope cluster was exported. Relative values compared to the non-spiked 

matrix were calculated for each cluster, and 100% would indicate no ion suppression, values 
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<100% ion suppression, and values >100% ion enhancement. NAPS chromatographic peaks 

generally span a width of about 0.2 minutes. To investigate the effect of ion suppression, the 

RT distance of a feature to the RT of the respective NAPS was plotted. With increasing, 

dilution factor ion suppression is reduced, as shown in Figure 4 for the C15 NAPS in positive 

ionization mode. For both investigated matrices, higher dilutions lead to reduced ion 

suppression, although 100% is never fully achieved (Figure 13A). Similar trends were seen in 

negative ionization mode (data not shown). However, ion suppression effects must be 

evaluated carefully for each matrix and LC-MS setup. If suppression effects might still be too 

strong, a separate batch of QC samples could be spiked with NAPS to determine RTs in 

matrix but not directly affect the biological and QC samples of the metabolomics studies. This 

spiked QC could be injected after each QC sample every ten samples. 

Finally, as part of this intra-laboratory study the usability of RIs for annotation of metabolites 

was tested. The data obtained from the biological matrices was used as test case. Compared 

to the measurements on the second LC-MS setup NAPS showed RT differences of up to 3 

min, which is due to reduced dead volume and differences in the formation of the gradient 

(high-pressure binary gradient vs. low-pressure gradient quaternary pump). Annotation of 

features detected in C. elegans was performed using the matchMz() function from the 

MetaboAnnotation package using m/z alone, or m/z and RI combined. The database for 

annotation was either the metabolites detected on the first (UHPLC) or the second setup 

(HPLC). 
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Figure 13: (A) Ion suppression effects of NAPS spiked into C. elegans or plasma metabolite extracts at different 
dilution factors were evaluated by comparison against unspiked matrix. The effect of suppression was checked in 
relation to the distance of a metabolite feature to the apex of the closest NAPS standard. The example shows the 
% suppression between -0.2 and 0.2 mins from the apex of the C15-NAPS. (B) Selection of annotation results 
from positive ionization mode of detected C. elegans metabolites. First matching was performed on m/z and RI. 
MS2 spectra have been compared with library spectra from MoNA. N-Acetyl-Phenylalanine was only matched 
based on m/z and RI values. 

Using only m/z values with an error of 0.005 Da, 108 features were putatively annotated with 

one or several metabolites from the database in positive ionization mode. This number is 

reduced to 40 if, additionally, the RI is used with a maximum error of 10 RI units. Some of the 

annotated features were examined in more detail. First, a peak at 5.03 min with m/z 
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205.0970 was annotated as the [M+H]+ adduct of tryptophan. The RI in the initial databases 

were 475 and 474, respectively, and the RI in the C. elegans sample was 472, which reflects 

an error of 2 RI units or 0.4%. When comparing the RT obtained on the same column with 

the same gradient on the Agilent 1200 HPLC system, a difference of 5% was observed, while 

for the RT used in the initial DB construction using a Waters Acquity UPLC, a difference of 

46% was found. This peak has been selected for fragmentation using the data-dependent 

acquisition of MS/MS, and we, therefore, compared also obtained MS2 spectrum. Spectra 

from the standard found in the MSMLS and the peak detected in C. elegans showed a 

perfect match. An additional spectral similarity search was performed on the MassBank of 

North America (MoNA). The closest hit was indeed tryptophan measured on a similar 

instrument (MoNA Accession FIO00631). Cosine similarity was 0.85. The second example 

was a feature with m/z 377.1459 detected at 9.69 min annotated as [M+H]+ of riboflavin. 

Likewise, checking MS/MS data that was available matched a fragmentation spectrum of 

riboflavin (MoNA Accession PT110040). Lastly, m/z 208.0967 at 11.26 min was annotated as 

N-acetyl phenylalanine. This peak was low in intensity, and no MS/MS collection was 

triggered. Beside the m/z value, RI was used for annotation, which increased the confidence 

of the identification. 

All examples so far had only one putative annotation in the used database. However, RI shall 

be used as orthogonal information for metabolite identification, which allows the filtering of 

false positive annotations from m/z values alone and/or MS2 spectra. Therefore, the 

annotated data was checked for detected features that initially showed multiple annotations 

based on m/z alone. A signal with m/z 139.0389 detected at 6.51 min was annotated as 

[M+H]+ of either salicylic acid (2-hydroxybenzoic acid), 3-hydroxybenzoic acid or 4-

hydroxybenzoic acid. All three are isomers with the same sum formula, C7H6O3, and very 

similar fragmentation patterns, only differing in the abundance of different fragments. 

Therefore, differences in retention behavior are required to identify the correct isomer. In 

addition, the RI results were reduced to a single hit, 4-hydroxybenzoic acid, known to be 

present in C. elegans, where it is one of the building blocks of complex ascaroside signaling 
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molecules [136]. Identifications of 4-hydroxybenzoic acid and riboflavin could also be 

confirmed in the negative ionization mode using matching m/z and RI values. All results are 

summarized in Table 16. 

Table 16: Results of metabolite annotation of selected features detected in C. elegans using the constructed RI 
database. Matching is based m/z and either RT or RI. Matching has been performed on the basis of m/z values 

Ionization 
Mode 

Feature Annotation Type 
UPLC 

(Std DB) 
HPLC 

positive 

m/z 205.0970 

5.03 min 

RI 473 

Tryptophan [M+H]+ 

RT 2.71 (46%) 5.29 (5%) 

RI 475 (0.4%) 477 (0.8%) 

m/z 377.1459 

9.69 min 

RI 586 

Riboflavin [M+H]+ 

RT 4.66 (52%) 12.31 (27%) 

RI 583 (0.5%) 595 (1.5%) 

m/z 208.0967 

11.26 min 

RI 634 

N-acetylphenylalanine [M+H]+ 

RT 5.38 (52%) 13.8 (23%) 

RI 634 (0%) 637 (0.55) 

m/z 139.0389 

6.51 min 

RI 513 

4-hydroxy benzoic acid [M+H]+ 

RT 3.4 (47%) 6.87 (5.5%) 

RI 512 (0.2%) 512 (0.2%) 

3-hydroxy benzoic acid [M+H]+ 

RT 4.30 (33.9%) 9.8 (50.5%) 

RI 562 (9.5%) 557 (8.6%) 

Salicylic acid [M+H]+ 

RT 4.30 (33.9%) 9.8 (50.5%) 

RI 562 (33.9%) 557 (50.5%) 

negative 

m/z 137.0250 

6.53 min 

RI 513 

4-Hydroxybenzoic acid [M-H]- 

RT 3.4 (47%) 6.83 (4.5%) 

RI 512 (0.2%) 512 (0.2%) 

m/z 375.1306 

9.69 min 

RI 586 

Riboflavin [M-H]- 

RT 4.65 (52%) n.d. 

RI 583 (0.5%) n.d. 
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3.2.3.2. Cross-column pilot study 

RIs in GC-MS can be used across the same column from different vendors, e.g. 5%-phenyl-

95%-dimethylpolysiloxane, because their stationary phase preparation is very similar and 

well-defined. [359]. However, these columns typically show very narrow specifications and 

are almost identical. In contrast to this, different LC columns show different selectivity, even 

within one type of column (e.g. USP L1 or C18 columns). Though the general separation 

mechanism is not changed, different secondary interactions can lead to differences in 

selectivity and local changes in elution order and retention times. In order to check how far RI 

can normalize for different columns, in the first step different C18 columns from Waters were 

compared (compare Table 14). All columns were of the same dimensions with 100 mm 

length and 2.1 mm inner diameter. Three different gradient lengths were used with each 

column. Ninety-nine metabolite standards were injected, and indexing was performed, as 

mentioned in the previous study. Separation was achieved on a Waters Acquity UPLC 

system coupled to a Bruker maXis (same system as LC System 1 above). Although all 

columns are nominally all USP L1 phases, they exhibit different selectivity, which is 

influenced by the solid support, carbon load, end-capping, etc.  

In order to get an overview of how close the different columns are regarding their selectivity, 

the hydrophobic subtraction model was used [372]. This model described the 

physicochemical nature of a particular stationary phase by five parameters, which are 

specifically 𝐻𝐻 parameter as a measure of the phase hydrophobicity, 𝑆𝑆∗ as a measure of the 

resistance of the stationary phase to penetration by a solute molecule, 𝐴𝐴 as a measure of the 

hydrogen-bond acidity of the phase, 𝐵𝐵 as a measure of the hydrogen-bond basicity of the 

phase, and 𝐶𝐶 as a measure of the interaction of the phase with ionized solute molecules. 

Together with the characteristics for a given solute (η as a parameter of the solute 

hydrophobicity, σ as a measure of the bulkiness of the solute molecule, β as a measure of 

hydrogen-bond basicity of the solute, α as a measure of the hydrogen-bond acidity of the 

solute, κ as a measure of the ionization state of the solute), they are related to the retention 

of the solute (kx) and retention of a given reference compound (e.g. ethylbenzene) (kEB). 
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� = 𝜂𝜂𝐻𝐻 − 𝜎𝜎𝑆𝑆∗ + 𝛽𝛽𝐴𝐴 + 𝛼𝛼𝐵𝐵 + 𝜅𝜅𝐶𝐶 

The different columns can be compared using the similarity factor Fs calculated by the 

following equation. w represents weighting factors and standard values are wH = 12.5, ws* = 

100, wA =30, wB = 143, wC2.8 = 83. An Fs value of close to 0 means similar selectivity, while 

bigger values indicate different selectivity. 

𝐹𝐹𝑠𝑠 = ��𝑤𝑤𝐻𝐻(𝐻𝐻1 − 𝐻𝐻2)�2 + �𝑤𝑤𝑆𝑆∗(𝑆𝑆1∗ − 𝑆𝑆2∗)�
2 + �𝑤𝑤𝐴𝐴(𝐴𝐴1 − 𝐴𝐴2)�2 + �𝑤𝑤𝐵𝐵(𝐵𝐵1 − 𝐵𝐵2)�2 + �𝑤𝑤𝐶𝐶2.8�𝐶𝐶2.81 − 𝐶𝐶2.82��

2
 

For a fair comparison between the column, only substances detected in all conditions were 

used. The mean was used between positive and negative modes if the individual RI values 

did not differ by more than 5 RI units, and only substances with a RI > 300 were considered. 

In total, only 16 compounds were commonly detected between all the measurements. 

Although this number is relatively low, it allowed a first comparison. 

First, two batches of BEH C18 columns were compared. As already expected, the RT as well 

as the RI, are highly reproducible and can be used to normalize between different column 

batches. Second, using the 16 compounds, it could be observed that between column pairs 

with high 𝐹𝐹𝑠𝑠 value, the differences in RIs also show a tendency toward higher values. One 

particular example is sphingosine on the BEH C18 and BEH CSH C18 columns. The CSH 

columns have an additional positive charge on the surface. While the NAPS is virtually 

unaffected by this, sphingosine retention decreases by 21.29% in the used acidic conditions 

sphingosine is positively charged, leading to lower retention. Another example is Tryptophan 

as an early eluting substance showing a decrease of retention by 8.51%, likewise positively 

charged. One point to potentially correct for differences between columns is an additional 

two-point correction according to the following equation: 

𝐶𝐶𝑥𝑥 = 𝑆𝑆1 + (𝑀𝑀𝑥𝑥 −𝑀𝑀1)
(𝑆𝑆2 − 𝑆𝑆1)

(𝑀𝑀2 −𝑀𝑀1)
 

With 𝐶𝐶𝐶𝐶 as the corrected RI of a given analyte x, 𝑀𝑀1 and 𝑀𝑀2 the measured RI values of 2 

internal standards, 𝑆𝑆1 and 𝑆𝑆2 the standard RI values of 2 internal standards and 𝑀𝑀𝑥𝑥 the 
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uncorrected RI value of analyte x. Two-point correction with phenylpyruvic acid as early 

eluting and linoleyl ethanolamide as late eluting reference was carried out. However, this 2-

point correction was not able to improve cross-column comparison. Investigating the data in 

more detail, a compound class-specific effect is visible. While both sphingosine and 

tryptophan show a decrease comparing BEH C18 to BEH CSH C18, myristic acid, ferulic 

acid, chorismic acid, 2-hydroxyphenyl acetic, and arachidonic acid show an increase. 

Therefore, changes in RIs are substance-class-specific. If normalization can be carried out 

for specific substance classes, this might increase accuracy. Two-point correction with 3-

Hydroxyphenylacetic acid and Myristic acid partially improved accuracy, e.g. deviation 3-

Methylhippuric was reduced from 3.34% to 0.38% or deviation of Arachidonic acid was 

reduced from 6.70% to 0.68%. However, the deviation of sphingosine was increased from -

21.29% to -24.67%, and the deviation of tryptophan was increased from -8.51% to -9.05%. 

 

Figure 14: Comparison of retention of NAPS and Sphingosine on different columns. The upper two panels 
correspond to a Waters BEH C18 column, while the lower two correspond to a Waters CSH 18 column. While the 
retention of NAPS is virtually unaffected, sphingosine shows are large shift in retention and therefore also in the 
RI. 

These results show that a cross-column comparison is only partially possible and only 

substance class specific. Since in non-targeted metabolomics, the identity and substance 

class is not known upfront, normalization of RT to RI is only useful for comparison within a 

single column chemistry. However, the database used is very small, and further 
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investigations are required to draw final conclusions. Likewise, the initial comparison 

between columns from different vendors showed only partial agreement, similar to the 

comparison described here. 

3.2.3.3. Interlaboratory pilot study 

After showing that RTI is useful for the normalization of retention information within one lab 

and a single separation chemistry, different laboratories shall be compared. This represents 

the typical use case one would expect for using an RI library to annotate metabolites in non-

targeted metabolomics. Five different LC-MS systems in five different laboratories have been 

used for the evaluation of RIs to normalize differences between laboratories. The different LC 

systems are based on different pumping systems (LPG vs. HPG) and have different dead 

volumes. 

The number of detected compounds in each laboratory ranged from 45 to 70. The number of 

pairwise overlapping compounds ranged from 33 to 59. To investigate how well the RIs 

matched between different laboratories, they were plotted against each other (Figure 15). For 

most laboratory pairs, a good fit has been observed. Errors were in the range between -20 

and 20% relative deviation, with most of the error between -5 and 5%, which agrees to the 

first experiments from the intralaboratory pilot study. Larger errors might be attributed to 

wrong peak picking and are not further discussed. The only exceptions were found for 

laboratory 5, for which generally lower values were found. After discussion with the 

laboratory, it has been confirmed that they used a large injection loop, which caused a much 

larger dead volume and gradient delay volume compared to all other systems. Therefore, 

although the nominally the same gradient was programmed, the exact gradient conditions 

were very different. In order to make the data of laboratory five comparable, a 2-point 

correction as described above was used, using 4-Hydroxybenzoic acid and 25-

Hydroxyvitamin D2 as the reference standard. After correction, values for laboratory 5 were 

comparable to others, with mostly 0-5% deviation, while for all other laboratories, no 

systematic shift was observed after correction. The 2-point correction didn’t affect the 
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performance in the case of the other laboratories and even improved the performance for 

certain metabolites.  

 

Figure 15: (A) Scatter plot comparing the obtained RI of metabolites between the different laboratories. Dotted 
halfline indicates the diagonal, which referes to a perfect match.  Laboratory E shows a systematic deviation 
compared to all other laboratories (B) Histogram of relative differences of laboratory E to all other laboratories 
without 2-point correction (upper row) or with 2-point correction (lower row). 2-point correct was able to remove 
the systematic deviatoin present in the data. 
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3.2.3.4. Interlaboratory study 

A larger ring trial was conducted based on the initial observation from the interlaboratory pilot 

study above that RTI can be used to normalize RT information between laboratories. The 

metabolites contained in the MSMLS used in the first study were used, but this time in a 

different column. RTs of compounds contained in this library on a Phenomenex Kinetex C18 

column have been previously measured by Pezzatti et al. [373] 

While in laboratory A pooled row mixes were measured, all other participating laboratories 

measured pooled mixes for the entire plates. After the injection of 5 blanks, one NAPS 

injection was followed by the seven mixes. The NAPS and the plate mixes were injected five 

times, followed by a final injection of the NAPS. RTIs were calculated by using the bracketing 

NAPS injections for the respective sample. Here the average of the RT of the respective 

NAPS standards from the injection before and after the standard mix was used for the 

calculation of the RI. 

Laboratory A detected 419 out of 647, while laboratory B detected 320, laboratory C 371, 

and laboratory D 337 in positive and negative modes combined. If substances were detected 

in positive and negative ionization mode, the average of the calculated RIs was used if the 

individual values did not differ more than 10 RI units. After filtering for RI values > 300 and 

removing obvious outliers, 110, 69, 95, and 72 metabolites remained in laboratories A, B, C, 

and D, respectively. Similar to the pilot study, most errors were between -5 and +5%, 

indicating with this second independent study that comparison of RIs between different 

laboratories is possible. 

In the next step, the possibility for annotation using RI cross laboratories was checked. 

Laboratory A measured a C. elegans metabolite extract, and annotation was performed 

based on the databases obtained from all other laboratories. Annotation was performed 

using the MetaboAnnotation package and an absolute m/z error of 0.005 Da and an RI 

error of 10 units. Data from the standards measured in parallel to the C. elegans extracts 

were used as ground truth and confirmed by MS2 data. No secondary correction was 
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performed. Several metabolites could be identified using the databases from all laboratories, 

e.g. biotin. A sizeable systematic trend was found for laboratory B, which used a different LC 

system, a low-pressure quaternary pump. However, most of the systematic trends were 

removed by converting RT to RI. For most metabolites, the databases from the different 

laboratories yielded the same annotation, indicating that RIs can be used for cross-laboratory 

identification. 

3.2.4. Conclusion 

RT information represents valuable, orthogonal information to MS1 and MS2 data for 

metabolite identification. However, since no standard chromatographic setup exists the use 

of RT is restricted to single (mostly laboratory-specific) methods. Even between different 

laboratories using nominally the same chromatographic setup different RTs can be obtained 

due to factors like dead volume, pumping system, etc. RTI is used in GC to account, for 

example, for differences in column length. Using a mixture of NAPS homologs this approach 

was transferred to RP-based LC-MS and allowed to convert RT to RI and therefore, to 

normalize for different experimental setups. Based on the measurement of chemical 

reference standards, the approach was evaluated, and normalization could be achieved for 

differences in flow rate and temperature. Furthermore, separations were carried on different 

formats (UPLC vs. HPLC). This comparison showed very low deviations in the RIs, making it 

possible in the future to compare retention data from different systems using the same 

separation chemistry (same column and eluents). NAPS can be co-injected with the sample 

for the most accurate RTI, but ion suppression might be an issue. Obtained results indicate 

that at a sufficient dilution, NAPS are still detectable within biological matrices, but ion 

suppression effects are reduced. However, the dilution factor must be tested and optimized 

for each individual matrix and LC-MS setup. RIs can be used to improve the annotation and 

identification of metabolites by adding an additional orthogonal parameter to m/z and 

fragmentation pattern. Results have shown that isomeric species can be filtered RIs obtained 

on a different LC-MS setup. 
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The similarity of RTI values between different C18 columns was evaluated. All columns were 

used with ACN gradients and 0.1% formic acid as an additive. Nominally, all columns were 

classified as USP L1 columns (C18 column). However, the results were vastly different and 

some larger shifts in RT occurred RTI couldn’t normalize that. A secondary correction could 

achieve improvements within single metabolite classes, but no global improvement could be 

observed. Individual correction is possible due to shared chemical properties within a single 

class, but the structural diversity of metabolites makes it not possible to find a good common 

normalization. Based on the results, it can be concluded that RIs cannot be used across 

different columns. Still, the number of tested columns is comparably small to the number of 

available C18 columns. Columns that are very similar on the basis of the hydrophobic 

subtraction model might lead to more similar results. 

Still, comparison of RIs within one separation chemistry is possible, which is not only 

possible within a single laboratory but also allows the normalization of RT information 

between different laboratories. An initial ring trial conducted between 5 laboratories showed 

good agreement of RIs between the laboratories using similar separation systems. A second 

larger ring trial confirmed these results using a different column and a larger set of 

metabolites. The usability of RI for cross-laboratory annotation was checked by annotating 

metabolites from C. elegans metabolite extracts, indicating comparable results between the 

databases from the different laboratories. 

Based on the findings, it can be concluded that RTI in reversed-phase LC-MS will help to 

share RT information between laboratories and help to standardize the reporting. The current 

databases generated are of limited size, and in the future, they have to be populated with 

additional data on further metabolites and separation conditions. It might be risky to use m/z 

and RI values alone for metabolite identification. Instead, matching of RIs shall be used to re-

rank results from tandem MS search or combined with accurate mass and tandem MS 

matching in an integrated (consensus) scoring function. So far, RTI has been only evaluated 

for C18 columns. If this or a similar approach will work for HILIC-based separations remains 
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to be elusive. Even if C18 columns already show some deviations, the variety of HILIC 

columns is much larger with different stationary phases and selectivities. All initial results 

show that conversion of RT to RI can help to normalize data to allow cross-laboratory 

comparison without the need to calculate mapping functions such as PredRet is using [323]. 

For example, MassBank already supports the NAPS-based RI in their database. 
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3.3. Ion mobility information 

Ion mobility separation (IMS) is increasingly integrated into metabolomics and lipidomics 

workflows. While RT represents a system property dependent on the metabolites of interest, 

stationary and mobile phase, and experimental parameter employed, CCS represents a 

molecular property and only shows minor variation across different ion mobility systems. 

Different types of ion mobility instruments have been used in metabolomic and lipidomics. 

One of the first applications was described by Paglia et al. [374]. CCS values were employed 

on top of RT for the annotation of metabolomics from epithelial and mesenchymal cells. CCS 

were determined for 125 metabolites using TWIMS, and an RSD of < 2% for the CCS values 

was observed. Using the stepped-field method, Zheng et al. used DTIMS to measure CCS 

values for over 500 small molecules [375]. Different examples showed the possibilities for 

separation of molecules, e.g. α- and β-muricholic acid had very similar drift times while the 

isobaric molecules tyrosine and glufosinate were baseline separated in positive and negative 

ionization mode. Lastly, confidence in annotation on the MS1 level could be improved by 

combining accurate mass search with CCS matching. 

However, to be useful for metabolite identification, CCS values must be comparable between 

different laboratories and instruments. Different cross-laboratory comparisons have been 

performed, e.g. Stow et al. performed a comparison of substances from different classes 

using DTIMS [376]. Results from four laboratories were compared, and errors were within 

1.5% absolute percent error for all classes. Nye et al. performed a comparison of TWIMS 

instruments located at two different sites [377]. They found good agreement of TWCCSN2 

values between the instruments in direct infusion and LC separation hyphenated to IM-MS. 

Errors within 1% for DI-IM-IMS and +/- 2% for UHPLC-IM-MS were found. However, both 

publications compared CCS values within a single type of instrumentation. In contrast to this, 

Hinnenkamp et al. compared DTCCSN2 and TWCCSN2 values for 124 substances [378]. Mean 

deviations of 1.0% for [M+H]+ and 1.1% for [M+Na]+ ions were found, but also deviations up 

to 6.2% were observed. 
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While the deposition of MS2 data in repositories such as MassBank or GNPS is becoming 

more common, only a few databases for CCS values are available. One of the most 

prominent examples is the CCS compendium storing information independent of the used 

instrumentation [379]. Likewise, the websites for the CCS prediction tools CCSBase and 

AllCCS, have associated databases used as training datasets, which can also be searched 

[350, 380]. Likewise, similar resources have been built for lipids [381, 382]. Ion mobility and 

CCS are particularly interesting for the annotation of lipids. Based on their structure, they are 

large enough to show a difference in their confirmation. Trendlines along the plot of CCS vs. 

m/z can be used to filter false positive annotations. Additionally, potential isomers can be 

separated if the IMS resolution is large enough. 

In this work, the usability of DTIMS for the analysis of small molecules as well as lipids is 

examined. Since ion mobility represents a second separation dimension leading to less 

crowded MS data, the possibility of combining IMS and DIA for lipid analysis was explored as 

well. 

3.3.1. Material and Methods 

3.3.1.1. Chemicals 

HPLC-grade methyl-tert-butyl ether (MTBE) and LC-MS-grade methanol (MeOH), iso-

propanol (iPrOH), acetonitrile (ACN), ammonium formate, and formic acid were obtained 

from Sigma-Aldrich. Water was purified using a Merck Millipore Integral water purification 

system with a resistance of 18 MΩ and TOC < 5 ppb. Reference standards were purchased 

from different chemical vendors (e.g. Sigma-Aldrich, Merck, Cayman, etc.) and dissolved in 

an appropriate solvent. Aliquots of stock solutions were stored at -20°C until further analysis. 

Lipid reference standards were purchased from Avanti Polar lipids and are summarized in SI 

Table 3. Maradolipid standards have been synthesized by the Knölker group [383]. A mix 

standard consisting of 6-O-myristoyl-6’-O-myristoyltrehalose (Mar 14:0/14:0), 6-O-(13-

methylmyristoyl)-6’-O-(13-methylmyristoyl)trehalose (Mar 15:0/15:0), 6-O-myristoyl-6’-O-

oleoyltrehalose (Mar 14:0/18:1), 6-O-palmitoyl-6’-O-palmitoyltrehalose (Mar 16:0/16:0), 6-O-
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(13-methylmyristoyl)-6’-O-(15-methylpalmitoyl)trehalose (Mar 15:0/17:0), 6-O-(13-

methylmyristoyl)-6’-O-oleoyltrehalose (Mar 15:0/18:1), 6-O-palmitoyl-6’-O-oleoyltrehalose 

(Mar 16:0/18:1), 6-O-(15-methylpalmitoyl)-6’-O-oleoylterhalose (Mar 17:0/18:1), 6-O-oleoyl-

6’-O-oleyoltrehalose (Mar 18:1/18:1) and 6-O-oleoyl-6’-O-(2-octyl-

cyclopropaneoctanoyl)trehalose (Mar 18:1/19:1) was dissolved in MeOH. 

3.3.1.2. Stepped field method lipids 

CCS of lipid standards and maradolipid standards were collected using the stepped field 

method by Stow et al. using an Agilent 6560 DT-IM-Q-ToFMS equipped with a Dual Agilent 

Jet Stream ESI source (Agilent Technologies, Waldbronn, Germany) [376]. Ionization source 

parameters were as follows: positive ionization mode: Vcap 4000 V, Nozzle Voltage 2000 V, 

Fragmentor 400 V, Gas Temperature 250°C, Gas Flow 12 L/min, Nebulizer 40 psig, Sheath 

Gas Temperature 320 °C, Sheath Gas Flow 11 L/min; negative ionization mode: Vcap 5500 

V, Nozzle Voltage 2000 V, Fragmentor 400 V, Gas Temperature 250°C, Gas Flow 12 L/min, 

Nebulizer 40 psig, Sheath Gas Temperature 320 °C, Sheath Gas Flow 11 L/min. The 

instrument was operated with N2 as drift gas at a pressure of 3.95 Torr. The arrival time of 

ions in the IMS-Q-ToF-MS represents the sum of the time spent inside and outside the drift 

region. To accurately determine the correct drift time (td = tD- t0), the electrical field is varied. 

This leads to changes in tD, since t0 is constant, the varying part represents the actual drift 

time. By plotting tD over 1/V t0 can be determined as an intercept. Electrical fields were varied 

by keeping the rear funnel at constant potential and varying the drift tube entrance voltage. 

The maradolipid standard mix was diluted in a 50/50 mixture of eluent A and eluent B (see 

below) and infused using a syringe pump with a flow rate of 500 µL / min. All other lipid 

standards were diluted in iPrOH / CHCl3 / MeOH (4/2/1, v/v/v) with 7.5 mM ammonium 

formate and infused using a syringe pump. In negative ionization mode, a flow rate of 1000 

µl/h and in positive ionization mode, 500 µl/h were used. Each lipid standard was infused 

three times, and the average was calculated. Data was analyzed using the Agilent 

MassHunter Workstation IM-MS Browser 10.0. IM data has been referenced using either 
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using the [M+H]+ adduct of Hexakis(1H,1H,3H-perfluoropropoxy)phosphazene (m/z 

922.0098, DTCCSN2 243.64 Å²) or the [M+TFA-H]- adduct of Hexakis(1H,1H,3H-

perfluoropropoxy)phosphazene (m/z 1033.9870, DTCCSN2 255.34 Å²) from the reference 

mass solution in positive and negative ionization mode respectively. 

3.3.1.3. C. elegans cultivation and extraction 

daf-2(e1370) mutants were obtained from the Caenorhabditis Genetics Center (CGC) and 

grown under standard conditions according to Brenner et al. on Nematode Growth Medium 

(NGM) [4]. To obtain dauer larvae, synchronized L1 larvae were obtained by bleaching and 

seeded onto NGM plates and grown at 25°C. Once sufficient amounts of dauer larvae were 

obtained, worms were washed off the plates using an M9 buffer and washed three times. 

Lipids were extracted, according to Bligh and Dyer [384]. The chloroform phase was 

evaporated to dryness and redissolved in H2O/ACN/iPrOH (5/35/60, v/v/v) prior to analysis. 

3.3.1.4. LC-IMS-MS, single field method lipids 

Lipid analysis was performed using two different methods. All lipids standards were analyzed 

with the method published by Witting et al. [68]. Briefly, lipids were separated on Waters 

CORTECS UPLC C18 column (150 mm x 2.1 mm ID, 1.6 µm particle size) using a linear 

gradient from eluent A (40% H2O / 60% ACN + 10 mM ammonium formate / 0.1 % formic 

acid) to eluent B (10% ACN / 90% iPrOH + 10 mM ammonium formate / 0.1% formic acid). 

The following gradient was used: 68/32 at 0 min, 68/32 at 1.5 min, 3/97 at 21 min, 3/97 at 25 

min, 68/32 at 25.1 min with a flow rate of 0.250 mL/min and a temperature of 40°C. The 

column was re-equilibrated for 2.5 minutes. 

Additionally, all lipids except the maradolipids were analyzed according to the LC method 

adopted from Knittelfelder et al. [385]. Briefly, solvents were similar, but a different column 

was employed. Lipid separation was performed using an Agilent ZORBAX RRHT Extend 

C18 column (2.1 x 50 mm, 1.8 µm, Agilent Technologies, Waldbronn Germany). Eluent A 

consisted of 100% water + 10 mM ammonium acetate / 0.1% formic acid / 8 µM phosphoric 

acid and eluent B of 100% iPrOH + 10 mM ammonium acetate / 0.1% formic acid / 8 µM 
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phosphoric acid. The following gradient conditions were used: 60/40 at 0 min and 0.2 

mL/min, 60/40 at 1.00 min and 0.2 mL/min, 60/40 at 1.05 min and 0.4 mL/min, 60/40 at 1.5 

min, 40/60 at 3.0 min, 12/88 at 12.0 min, 0/100 at 14.50 min, 0/100 at 15.25 min, 60/40 at 

15.30 min, 60/40 at 15.62 min, 60/40 at 15.70 min and 0.2 mL/min, 60/40 at 16.0 min at 0.2 

mL/min. 

Detection was performed in positive and negative ionization modes using an Agilent 6560 

IMS-QToF-MS equipped with a Dual-Jetstream ESI source (Agilent Technologies, 

Waldbronn, Germany). A reference mass solution was infused using an additional isocratic 

pump. Lipid separation was performed on an Agilent 1290 Infinity II UHPLC. At the beginning 

of each measurement batch, the ESI-L tune Mix was injected for 1 minute for CCS 

calibration. 

3.3.1.5. LC-IMS-MS, single field method metabolites 

Metabolites were analyzed on a Phenomenex Kinetex C18 column (150 mm x 2.1 mm ID, 

1.7 µm particle size) using a linear gradient from eluent A (100% H2O + 0.1% formic acid) to 

eluent B (100% ACN + 0.1% formic acid). The following gradient was used: 98/2 at 0.0 min, 

0/100 at 14 min, 0/100 at 17 min, 98/2 at 17.1 min with a flow rate of 0.300 mL/min and a 

temperature of 30°C. The column was re-equilibrated for 7.9 minutes. Detection was 

performed in positive and negative ionization modes using an Agilent 6560 IMS-QToF-MS 

equipped with a Dual-Jetstream ESI source (Agilent Technologies, Waldbronn, Germany). A 

reference mass solution was infused using an additional isocratic pump. Lipid separation was 

performed on an Agilent 1290 Infinity II UHPLC. A the beginning of each measurement batch 

1 minute of ESI-L tune Mix was injected for CCS calibration. 

3.3.2. Results 

3.3.2.1. Theoretical considerations 

CCS values, in contrast to MS1, MS2, MSn, and RT, are not covered in current metabolite 

identification schemes, e.g. MSI levels or levels according to Schymanski et al. [281, 297, 

386]. First, ion mobility instruments are not as widely used as other instrumentation, despite 
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the fact they were introduced some time ago. While RT, for example, represents a system's 

property resulting from the combination of analyte, stationary and mobile phase as well as 

the instrumentation, CCS is nearly independent of the instrumentation. However, slight 

variations between different instrument types can be observed. Generally, DTIMS and TIMS 

are in good agreement, while TWIMS shows some systematic offset. This offset is typically in 

the range of a few percent. Causon and Hann derived from some theoretical considerations 

that a minimal difference in CCS values of 1.5 to 1.8%for a resolution Rs = 0.6, while a 

baseline separation with a resolution Rs = 1.5 requires 3.7 to 4.4% [387]. 

In order to evaluate the usefulness of CCS values, metabolites in the CCS compendium 

were compared based on their m/z, CCS, and logP as a proxy for chromatographic retention 

time [379]. Based on structural information, the XlogP was calculated using the R package 

rcdk [388]. Since in metabolomics and lipidomics, metabolites are measured using a 

combination of IMS and MS, only m/z values that fall in a window of 0.01 Da were compared 

against each other. m/z values with corresponding charges between -3 and +3 were 

considered. In total, 2344 and 1231 metabolites fulfilled this criterion in positive and negative 

ionization modes, respectively. 

In positive and negative ionization modes all possible pairs with a mass difference < 0.5 Da 

were examined. Since CCS shall be used as an orthogonal identifier for metabolite 

identification, it should help to distinguish between isomeric and isobaric structures. In 

positive ionization mode, 4204 and in negative ionization mode, 2284 pairs were examined. 

Differences in CCS were expressed as relative differences. In negative mode, differences up 

to almost 80% were observed. However, this difference was observed for an m/z difference 

over 0.2 Da. Positive ionization mode yielded differences over 100%, but only for higher 

mass differences. Therefore, the focus was on pairs with a mass difference smaller than 0.01 

Da. Data were categorized into distinct groups for the m/z and CCS differences. In both 

cases, positive and negative ionization mode pairs fall into the category with an m/z 

difference < 0.005 Da and a relative CCS difference < 2.5 % (61.3% and 79.6 % of all pairs 
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in positive and negative mode, respectively). One particular example of great interest is the 

pair L-Leucine and L-Isoleucine. These molecules have the same chemical formula and the 

same mass. Additionally, their fragmentation spectra are almost identical. Therefore, 

orthogonal data such as RT and CCS are essential. However, in positive and in negative 

ionization modes, differences in CCS were below 2% in most cases. In contrast, they have a 

slight difference in their logP and some chromatographic methods can baseline resolve these 

isomers. 

In contrast to MS2 and RT, CCS can be predicted relatively simply. Different tools for this 

task have been described. Mobcal is one of the premier tools that has been used for the 

calculation of CCS values [389, 390]. This software has also been improved for higher 

throughput and more accurate predictions [391]. The new ISiCLE workflow refactors some of 

the Mobcal functionalities and enables improved predictions [348]. However, ab initio 

prediction as performed by this software still takes a long time, often not compatible with the 

time scale of metabolomics and lipidomics experiments, where several hundreds or 

thousands of CCS values for potential lipids need to be predicted. Several tools for the 

prediction of CCS from molecular descriptors have been described. One of the first tools was 

MetCCS [392]. This tool allows the prediction of CCS values from 14 molecular descriptors, 

including the m/z value, which is one of the most important descriptors. A median relative 

error of 3% was achieved. A web service for prediction has been established as well for 

custom predictions [351]. A version specific to the prediction of lipid CCS values has been 

developed by the same group with an increased median relative error of ~1% [393]. Lastly, 

CCSbase has been described using molecular quantum numbers as structural 

characteristics together with machine learning for CCS prediction [350]. 

3.3.2.2. Ion mobility and CCS values for metabolite identification 

Though the use of CCS might be limited, it was to test if they can be used for metabolite 

identification. Two different experiments were conducted, one within the domain of 

metabolites and one for lipids. First metabolites from the previously mentioned RI 
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interlaboratory study (see chapter 3.2) have been measured using a DTIMS instrument, and 

besides RT also, the CCS for the [M+H]+ and [M-H]-. In order to use the CCS value for 

metabolite identification, a reference database for CCS values is required. The employed 

Agilent 6560 IMS-Q-ToF-MS uses a DT and allows the determination of absolute CCS 

values experimentally without the need for calibration. As a second instrument, a TWIMS, 

has been used by the group of Serge Rudaz. One condition yielded CCS values for 211 

metabolites and the second for 322. The overlap yielded 182 metabolites. While for the 

calculation of the RI, only metabolites with sufficient retention were evaluated, CCS values 

from all detected metabolites were used for comparison of the two instruments. Generally, a 

good agreement was found. However, a slight systematic deviation was found. TWCCSN2 had, 

on average, a 2-3% small value compared to DTCCSN2. Such behavior is well known since 

the results of CCS determination in TWIS are dependent on the used calibrant, which can 

lead to systematic deviations [394]. For all metabolites covered in the MSMLS library, CCS 

values were predicted using CCSbase and AllCCS [350, 380]. For comparison of both 

prediction tools against the DTIMS, a good agreement was found with most of the relative 

deviations between -5 and +5%, though a trend towards higher predicted CCS in AllCCS was 

observed. The same results were observed when comparing TWIMS-derived CCS values. 

Generally, CCS is an additional parameter addition additional confidence in identification but 

does not have the power to improve metabolite identification. The resolution and accuracy of 

the current instrumentation are too low, and therefore, CCS often can often remove only 

obvious wrong annotations but does not point toward the correct annotation. Therefore, the 

use of CCS in metabolite identification is not further discussed. 

3.3.2.3. Ion mobility and CCS values for lipid identification 

A lipid CCS reference data set for the employed LC-IMS-MS setup was collected from 

authentic lipid standards from Avanti Polar lipids. CCS values from lipids have been 

determined using different analytical strategies. First, the multifield or stepped-field method 

was used as a reference method, and lipids were directly infused using a syringe pump. In 

parallel, two different LC-IMS-MS methods have been used. The first method represents a 
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reference method supplied by Thomas Eichmann, and measurements have been performed 

in the frame of an interlaboratory ring trial on lipid DTCCSN2 values (unpublished). This 

method uses a short column and a faster gradient and can separate lipid species only 

partially, while the second method, according to Witting et al., uses a longer column and 

separation time [68, 385]. Table 17 shows results from the measurement of PCs in positive 

mode as an example. Other values can be found in SI Table 4 and SI Table 5. 

As the first step, the deviation between the stepped and single measurements was 

determined. Generally, DTCCSN2 values from the different methods were in good agreement. 

However, a higher variation was observed for [M+H]+ and [M+Na]+ adducts of PCs. While 

variations for all other lipid classes generally were in the range of an error of 0.8%, PCs 

showed higher deviations of 1% and above. DTCCSN2 calibration of the system was correct, 

and the DTCCSN2 value of m/z 922.0098 from the reference mass mix was determined 

correctly. A potential reason for the higher deviation might be overfilling of the trapping funnel 

before the ion mobility separation. Since all other used lipid classed values matched well 

between the multi- and single-field methods, it can be concluded that single-field 

measurements are usually sufficient for determining accurate DTCCSN2 values, as shown 

before [376]. Values between the two different single-field methods obtained from LC-IMS-

MS showed a good agreement. 

In the next step, CCS values between different instruments were compared. Values from the 

University Graz were provided by Thomas Eichmann and used for comparison (personal 

communication, unpublished). They have been determined using LC-IMS-Q-ToF of reference 

lipid extracts. Lipids were identified based on MS2 data. Therefore, no detail on the sn1 and 

sn2 position as well as specific fatty acid composition or stereochemistry of double bonds, is 

known available for these measurements. Since one set of single field DTCCSN2 values were 

obtained with the same LC method as in Graz RTs can be used as additional matching 

criteria, although isomers are generally eluting close to each other. Additionally, also using 
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some tolerance for RT is often still multiple isomers matched. On average, an RT offset 

between 0.2 and 0.3 minutes was observed. 

Since several included reference standards represent isobaric species the possibility for 

separation in the chromatographic and ion mobility domain was examined. Examples are  

PC 16:0/18:0, PC 18:0/16:0, and PC 17:0/17:0. For the three reference standards, the 

following DTCCSN2 values have been obtained respectively: 292.80 Å2, 292.20 Å2 and 292.40 

Å2 and 7.56 min, 7.54 min, and 7.54 min. Such values render the separation with the short 

method virtually impossible. Differentiation was only possible because lipids were injected 

independently from each other. Likewise, also the longer separation method yields identical 

retention times. Other examples are PC 16:0/18:1(9Z) and PC 18:1(9Z)/16:0 and  

PC 18:0/18:1(9Z) and PC 18:1(9Z)/18:0. While the short LC method again yields the same 

retention time, the longer method is able to separate the first pair with 0.2 minutes difference. 

Table 17: Comparison of DTCCSN2 values obtained using the stepped field and single field methods with two 
different LC-IMS-MS methods. Values are obtained from the method also used by Thomas Eichmann and by the 
LC-MS method from Witting et al. [68]. 

Lipid Adduct m/z 

DTCCSN2 
Multifield 
(Å2) 

DTCCSN2 
Single 
Field (Å2, 
Eichmann 
et al.) 

DTCCSN2 
Single 
Field 2 (Å2, 
Witting et 
al.) 

PC 14:0/14:0 [M+H]+ 678.5068 271.42 
274.40 

(1.10%) 

273.33 

(0.70%) 

PC 15:0/15:0 [M+H]+ 706.5381 277.67 
280.60 

(1.06%) 

278.93 

(0.46%) 

PC 16:0/16:0 [M+H]+ 734.5694 283.54 
286.80 

(1.15%) 

285.43 

(0.67%) 

PC 16:0/18:0 [M+H]+ 762.6007 289.51 
292.80 

(1.14%) 

291.97 

(0.85%) 

PC 16:0/18:1(9Z) [M+H]+ 760.5851 286.74 
289.60 

(1.00%) 

289.50 

(0.96%) 

PC 16:0/18:2(9Z,12Z) [M+H]+ 758.5694 283.79 
287.10 

(1.17%) 

285.87 

(0.73%) 
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Lipid Adduct m/z 

DTCCSN2 
Multifield 
(Å2) 

DTCCSN2 
Single 
Field (Å2, 
Eichmann 
et al.) 

DTCCSN2 
Single 
Field 2 (Å2, 
Witting et 
al.) 

PC 16:0/20:4(5Z,8Z,11Z,14Z) [M+H]+ 782.5694 287.37 
290.10 

(0.95%) 

289.07 

(0.59%) 

PC 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+H]+ 806.5694 289.93 
292.90 

(1.02%) 

291.37 

(0.50%) 

PC 17:0/17:0 [M+H]+ 762.6007 289.57 
292.20 

(0.91%) 

291.43 

(0.64%) 

PC 18:0/16:0 [M+H]+ 762.6007 289.64 
292.40 

(0.95%) 

291.67 

(0.70%) 

PC 18:0/18:0 [M+H]+ 790.6320 295.41 
298.80 

(1.15%) 

297.20 

(0.61%) 

PC 18:0/18:1(9Z) [M+H]+ 788.6164 292.70 
295.90 

(1.09%) 

295.47 

(0.94%) 

PC 18:0/18:2(9Z,12Z) [M+H]+ 786.6007 290.16 
293.30 

(1.08%) 

293.17 

(1.04%) 

PC 18:0/20:4(5Z,8Z,11Z,14Z) [M+H]+ 810.6007 293.78 
296.30 

(0.86%) 

296.80 

(1.03%) 

PC 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+H]+ 834.6007 296.68 
299.70 

(1.02%) 

299.93 

(1.10%) 

PC 18:1(9Z)/16:0 [M+H]+ 760.5851 287.37 
290.00 

(0.92%) 

299.17 

(1.32%) 

PC 18:1(9Z)/18:0 [M+H]+ 788.6164 293.32 
296.20 

(0.98%) 

297.03 

(1.26%) 

PC 20:0/20:0 [M+H]+ 846.6946 307.80 
310.80 

(0.97%) 

310.67 

(0.93%) 

PC 22:0/22:0 [M+H]+ 902.7572 319.01 --- 
321.47 

(0.77%) 

 

For several lipids present in the obtained dataset, reference values have been deposited in 

the CCS compendium [379]. For all species with detailed side chain composition available 
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good agreement between the measured values and the reference values was obtained in 

both ionization modes. LipidCCS was used to perform the prediction of CCS values for all 

lipids [393]. In positive mode very good agreement between the predictions for [M+H]+ and 

[M+Na]+ was found with an average relative error of ~0.3%. Error in negative mode was 

higher, with an average relative error of ~-1.45%. The higher error might be due to lower 

prediction performance because, generally, less training data is available in negative 

ionization mode. 

3.3.2.4. CCS database creation for C. elegans lipids 

Only a few lipids are available as standards and can be therefore used for the determination 

of CCS values. Since the prediction of CCS values using LipidCCS matched well with the 

measured CCS values for all predicted and supported lipids, CCS values were predicted 

[393]. Lipids classes for which a prediction was possible included: LPAs, PAs, MGs, DGs, 

TGs, PCs, LPCs, PEs, LPEs, PSs, LPA-Os, PA-Os, DG-Os, PE-Os, LPE-Os, PE-Ps, LPE-

Ps, PC-O and LPC-Os. Prediction of lipids with one or more branched chain fatty acids was 

not supported by LipidCCS, yielding 272.7 Å² as a result. CCS values of lipids producing this 

predicted value were set to 0. 

The predicted CCS values were used to investigate the possibilities for the use of CCS 

values in lipid identification, for which different scenarios of isomerism need to be discussed. 

The first case are sn-positional isomers, e.g. PC 16:0/18:1(9Z) and  

PC 18:1(9Z)/16:0. Second, double bond positional isomers exist like PC 16:0/18:1(9Z) and 

PC 16:0/18:1(11Z) and third case are cis/trans isomers, for example, PC 16:0/18:1(9Z) and 

PC 16:0/18:1(9E). Besides isomers, isobaric structures might exist, e.g. lipids from different 

classes having the same molecular formula (PC 16:0/18:1(9Z) and PE 17:0/20:1(11Z)) or PC 

33:1 ([M+FA-H]-) and PS 36:0 ([M-H]-) in negative ion mode. Furthermore, isobaric masses of 

different adducts have to be deciphered. For example, the [M+Na]+ ion of PC 34:1 is close to 

the [M+H]+ ion mass of PC 36:4. The mass difference equals roughly the mass difference 

between two CH2 groups and three double bonds (Δm/z = 0.002). 
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In the next step all possible combinations of lipids from either only PCs (ionized as [M+H]+ or 

[M+Na]+), only PEs or PEs and PCs were examined in positive ionization mode while PC and 

PS were examined in negative ionization mode. In all further discussion, an isomeric overlap 

is defined as lipids that have exactly the same m/z value and isobaric overlap as lipids that 

have an m/z difference smaller than 0.02, which equals about the mass difference that can 

be separated with a resolution of Rs = 40.000 in mass range for lipid analysis. For the 

isomeric overlap within PCs and PEs individually, but also the isomeric overlap between PE 

and PC, the relative difference between the CCS values (ΔCCS) was always below 1.5%. In 

the case of the isobaric overlap, some pairs exceeded the 1.5%, but never the 4.5% required 

for baseline separation as defined by Causon and Hann [387]. Additionally, to the CCS 

values, the logP value was predicted and was used as a proxy for the difference in retention. 

While only small differences between the isomeric and isobaric overlap within the same class 

were observed, large differences were found between the lipid classes. In the case of the 

negative ionization mode isomeric overlap between PCs ionized as [M+FA-H]- and PS 

ionized as [M-H]- more pairs exceeded the 1.5% difference in CCS but also never exceeded 

the 4.5% threshold. In the case of logP large differences were observed. Differences in logP 

values arise from the difference in the headgroups and chain length. PC headgroups have a 

permanently charged headgroup which increases polarity compared to PE species of similar 

elemental composition. This is also partially in agreement with the findings of Blazenovic et 

al. [395]. Their work used different classification models based on m/z, RT, and CCS in 

different combinations to predict the lipid class or the lipid class and carbon number. The 

highest scores were achieved when combining m/z, RT, and CCS, indicating that RT is 

valuable information for lipid identification. 

Since the observation so far is based, predicted values measured CCS values of lipids 

identified from C. elegans samples using LC-IMS-MS were compared. Identification of lipids 

was performed using obtained MS/MS spectra matched against a publicly available version 

of LipidBlast and inspected manually. All possible pairs of positive identifications were 

generated and filtered for a mass difference small 0.02 Da, similar to the predicted data. The 
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relative difference between the measured CCS values (ΔCCS) and the absolute difference in 

RT was calculated and compared. The pairs were grouped into isomeric and isobaric overlap 

and intra- or inter-lipid classes based on the identifications. Since the reported lipid features 

were already grouped according to adducts in the positive ionization mode, the table only 

contained [M+H]+ adducts as main features. Therefore, only the isomeric overlap within or 

between lipid classes could be evaluated. In total 435 non-duplicate pairs were examined in 

positive ion mode. Out of these, 209 were pairs within the same lipid classes. Similar to the 

predicted values, the majority of the pairs had a ΔCCS small than 1.5%, and no pair showed 

values higher than 4.5%. However, retention time differences ranged from 0.1 to 2 minutes 

for most pairs. For the pairs between different lipid classes, the difference in CCS values 

spread between 0 and 2.3%, but RT differences of mostly larger than 1 minute were 

observed. In negative ionization mode, 100 pairs, of which 96 were within the same lipid 

classes, were examined. The results mirrored the positive mode results, and all ΔCCS 

values of the pairs were below 1%, while the RT difference ranged from 0.1 to 2.5 minutes. 

These results suggest that m/z and CCS values alone are not sufficient for the preliminary 

annotation of lipids and do not improve annotation problems for isomeric and isobaric 

overlaps. RT adds an important additional dimension to the correct putative annotation. 

Another use of the CCS value instead of single values is to create trend lines along lipids of 

the same class. Groessl et al. used such trendlines to show that lipids that are very close in 

m/z (differing by 0.03 Da), e.g. PC-Os and PE can be grouped according to such lines [396]. 

Investigating such trendlines for different lipid classes examined no significant difference in 

slope could be found. However, lipids of the same class were generally closer to the line of 

their own lipid class compared to the overlapping class. Therefore, such trendlines might be 

useful for manual interpretation. 
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Figure 16 Evaluation of CCS values for the separation of isomeric and isobaric lipid species. (A) Comparison of 
CCS values for different ions obtained from [M+H]+ of PCs and PEs. A certain overlap between the two classes in 
m/z and ion formula exist for C. elegans lipids. Within a lipid class, clear trendlines are visible, but separation 
within a single ion formula between the two lipid classes is often not possible due to the limited resolution. (B) 
Examples of isomeric and isobaric overlap for C. elegans lipids. (C) Differences in CCS were plotted against the 
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isomeric and isobaric overlap within and between PCs and PEs. Additionally, the difference in logP is used as 
proxy for the chromatographic separability of lipids. (D) Same as (C) but for negative mode and isomeric overlap 
between [M+FA-H]- adducts of PC and [M-H]- adduct of PS. Red dashed lines indicate differences of 1.5 and 
4.5% as discussed by Causon et al. [387]. 

Recently, ion mobility has been combined with MALDI imaging. Although the additional 

separation dimension improves data quality, great care has to be taken when identifying 

lipids solely on m/z and CCS value. A prototype MALDT timsToF IMS has been used to 

analyze a whole-body mouse pup tissue has been reported. The instrument was able to 

show a beginning separation in the mobilogram between the isobaric PC 32:0 ionized as 

[M+Na]+ and PC 34:3 [M+H]+. Although peaks were separated, the resolution was not 

sufficient for baseline separation. Results indicate that at the current stage, resolution and 

accuracy are not high enough for unambiguous identification of lipids based on m/z and CCS 

values, but they provide a useful addition to RT, m/z, and MS2 data. Especially trendlines, but 

also the additional separation can help in identification. 

3.3.2.5. DTIMS-AllIons for identification of maradolipids. 

The use of CCS values beyond dereplication by matching with known or predicted CCS 

values is possible. Trendlines and the additional separation dimension are potential 

additional filters for lipid identification and the reduction of false positive annotations. IM can 

be combined with data-independent fragmentation and can enhance the reconstruction of 

MS2 spectra from this acquisition mode. One use case is maradolipids from C. elegans dauer 

larvae. To characterize the IM separation of maradolipids, DTCCSN2 values of authentic 

reference standards were determined. Maradolipid standards were infused in a 50/50 mixture 

of eluent A and B of the later employed chromatographic method. In positive ionization mode 

maradolipids are ionizing as [M+NH4]+ adducts during direct infusion as well as [M+FA-H]- 

adducts in negative mode. This is in agreement with Penkov et al., who detected acetate 

adducts of maradolipids in negative ion mode [80]. Although [M+Na]+ adducts were detected 

during chromatographic analysis, they were not detected in the direct infusion experiments. 

DTCCSN2 values of the maradolipid standards were determined using the stepped field 

method according to Stow et al., similar to the phospholipids above [376]. Consistent with 

other lipid classes examined above, increasing chain length led to increased DTCCSN2. 



 

178 
 

In the next step, UHPLC-IM-QToFMS was performed using a single-field drift tube 

experiment. This allowed the collection of RT and DTCCSN2 in parallel. DTCCSN2 values from 

the single-field experiment were in good agreement with values derived from the multifield 

method (SI Table 6). Since lipids are based on defined building blocks, with increasing chain 

length in the fatty acid tails, this fact can be used to identify trends e.g. using KMD and 

RKMD and plotting it against m/z, RT, or CCS. They are calculated according to the following 

equations. 

𝐾𝐾𝑀𝑀 = 𝑧𝑧𝐶𝐶𝑒𝑒𝑒𝑒𝑡𝑡 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 ∙
14

14.015650
 

𝐾𝐾𝑀𝑀𝐾𝐾 = 𝐾𝐾𝑀𝑀 − 𝑛𝑛𝑙𝑙𝑚𝑚𝑛𝑛𝑛𝑛𝑒𝑒𝑙𝑙 𝐾𝐾𝑀𝑀 

𝑅𝑅𝐾𝐾𝑀𝑀𝐾𝐾 =  
(𝑧𝑧𝐶𝐶𝑒𝑒𝑧𝑧𝑒𝑒𝑛𝑛𝑚𝑚𝑧𝑧𝑛𝑛𝑡𝑡𝑒𝑒𝑙𝑙 𝐾𝐾𝑀𝑀𝐾𝐾 − 𝑒𝑒𝑧𝑧𝑟𝑟𝑧𝑧𝑒𝑒𝑧𝑧𝑛𝑛𝑒𝑒𝑧𝑧 𝐾𝐾𝑀𝑀𝐾𝐾)

0.013399
 

KMDs can be calculated for representative species of a lipid class. The KMDs for PCs, PEs, 

and PSs as [M+H]+ are 0.7358239, 0.7357739, and 0.6765544. The KMD for maradolipids as 

[M+H]+ is 0.6676465. To identify potential trends for investigations in natural samples, the 

KMD for CH2 and RKMD for different lipid classes against the m/z, RT, and DTCCSN2. As 

expected, homologous series form horizontal lines at 0, -1, -2, etc. In contrast to 

glycerophospholipids, the maradolipids have no distinct sn1, or sn2 position since the 6 and 

6’ positions on the trehalose are equal. Therefore, only single chromatographic peaks will be 

measured throughout the measurements, while for glycerophospholipids, two peaks might be 

found in the RT and IM dimension. However, as mentioned above, several isomers cannot 

be separated. Similar to PCs or PEs, maradolipids show a linear increase in DTCCSN2 with 

growing chain length. Slopes of trendlines for DTCCSN2 vs. m/z plots are slightly smaller for 

maradolipids compared to PCs and PEs (data not shown). In contrast to IM-MS alone, 

UHPLC-IM-Q-ToFMS was able to separate the isobaric structures Mar 16:0/16:0 and  

Mar 15:0/17:0. Trendlines along RT, m/z, RKMD, and DTCCSN2, therefore, can be combined 

to identify potential members of specific lipid classes. Potential isomeric and isobaric overlap 

might exist, depending on the induvial lipid class and ionization mode. In the case of 
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maradolipids, putative isomeric overlap within a five mDa window in negative ion mode with 

theoretical PE-Cers and SMs with a high number of hydroxyl groups was found using the 

LipidMaps search against CompDB [397]. Since such lipids are currently not known in C. 

elegans and not expected, collective information on the MS1 level (m/z, RKMD, and DTCCSN2) 

allows identifying of putative maradolipid candidates in dauer larvae lipid extracts. 

Still, this information is not sufficient to achieve higher identification levels, according to 

Schymanski et al., and needs to be combined with MS2. Fragmentation patterns of 

maradolipid standards were investigated using UHPLC-IM-Q-ToFMS/MS with a 4 Da 

isolation window and targeted fragmentation. First, fragmentation in negative mode was 

investigated. Fragmentation pathways of acetate adducts of maradolipids have been 

described by Papan et al. [154]. Upon fragmentation, first, the [M-H]- ion is formed from 

which the fatty acids are lost and can be detected as free acyl or as neutral losses. 

Subsequently, fragments with m/z 323.0984 and 305.0878 derived from trehalose are 

formed, corresponding to [trehalose-H2O-H]- and [trehalose-2 H2O-H]-. 

Investigating the fragmentation of, in this case, [M+FA-H]- adducts, similar fragmentation was 

observed. Fragmentation data of Mar 14:0/14:0 and Mar 14:0/18:1 was closely examined, 

both representing a symmetrical and an unsymmetrical maradolipid. Similar to the 

fragmentation observed by Papan et al., first, the fragmentation of the [M+FA-H]- to the [M-

H]- ion was observed [154]. This further fragments by losing one of the two possible fatty 

acids attached at the 6- or 6’-position, which leads to [M-R1COOH]- or [M-R2COOH]- 

fragments. In the case of Mar 14:0/14:0, only one single fragment was and in the case of  

Mar 14:0/18:1, two fragments were observed. The corresponding [R1COO]- and [R2COO]- 

fragments were also observed. The fragments [M-R1COOH]- and [M-R2COOH]- were only 

observed upon fragmentation with 20 eV. 40 eV yielded the highest intensities of [R1COO]- 

and [R2COO]- fatty acyl fragments. 
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Figure 17: MS2 spectra are reconstructed using correlation of drift time filtered EICs. Different fragmentation 
energies yield different amount of fragments with different intensities. Candidate peaks with a high correlation 
coefficient as well as an explainable fragment m/z are used for identification. The plots show the EICs for  
Mar 14:0/14:0 and Mar 14:0/18:1 as example. 

In the used instrumentation, data-dependent fragmentation could not be combined with ion 

mobility separation. Therefore, data were collected using DIA fragmentation with alternating 

frames switching between low and high collision energy. Three different runs with either 10, 

20, or 40 eV collision energy were produced. The aim was to investigate if UHPLC and IM-

MS combined with DIA allow obtaining sufficient information for maradolipid identification. In 

this mode, RT, m/z, RKMD, and DTCCSN2 can be obtained from a single run without the need 

for multiple injections from the same sample. While DIA generally suffers from the loss of the 

precursor-fragment relationship, co-elution and similarity in drift times allow to filter the DIA 

MS2 data and excluding false positive fragments, and re-establish such a relationship by 

correlation analysis. Based on the measurement of all available maradolipid standards, the 

elution profiles of precursors and fragments were investigated. EICs for the respective 

fragment m/z and drift region were generated and correlated against the EIC of the precursor 

in the respective retention time region. Generally, high correlation coefficients above 0.9, 
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indicating that, indeed, the correct fragments are assigned, were observed. Figure 17 shows 

examples for the two standards, Mar 14:0/14:0 and Mar 14:0/18:1. Investigation of positive 

ion mode fragmentation data showed that major fragments derived from [M+NH4]+ adducts 

are [M-H2O+H]+ as well as [R1CO]+ and [R2CO]+ of the two respective acyl groups. Since no 

additional information can be derived from combined positive and negative mode analysis, 

only negative mode data was further investigated. 

Based on the obtained results, 20 eV was the most informative collision energy when 

performing non-targeted analysis and search for maradolipids since it yielded the most 

explainable fragments in a single collision energy. 40 eV yielded the highest intensity for fatty 

acyls and trehalose fragments and might be, therefore, the best choice for quantification 

workflows, e.g. using MRM or MRM-like approaches.  

Next, to prove that the combination of RT, m/z, RKMD, DTCCSN2, and DIA MS2 can also 

identify maradolipids in biological extracts, C. elegans dauer larvae were generated from daf-

2(e1370) mutants by growing them at 25 °C. Worms were harvested and extracted using a 

Bligh and Dyer extraction. Analysis of dauer larvae was performed by UHPLC-IM-Q-ToFMS 

using DIA fragmentation with either 10, 20, and 40 eV only in negative ionization mode. 

Detection of potential maradolipids in dauer larvae extracts was first performed with EICs for 

m/z 323.0972 and 305.0877 in the high collision energy frames generated (Figure 18). 

Coelution of these two m/z indicates the presence of potential maradolipids. Since 20 eV 

spectra contained the highest information content, they were investigated first. Indeed, 

coelution of the two m/z was observed in the range of 12 to 17 minutes, being in the same 

range where the standards are eluting. Interestingly, additional peaks for the m/z 323.0972 

were observed in the range from 2.5 to 6.5 minutes but not for m/z 305.0867. 
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Figure 18: (A) Extracted ion chromatograms for m/z 305.0877 and 323.0972 in high collision energy frames of the 
UHPLC-IM-Q-ToFMS AllIons experiments. Coelution of both masses indicates presence of of maradolipids, while 
m/z 323.0972 alone indicates potential lysomaradolipids (B) RT and DTCCSN2 trendlines used for identification of 
Mar(14:0/16:0). Yellow points represent reference standards, while all others are derived from maradolipids 
detected in dauer larvae extracts. (C) RT and DTCCSN2 trendlines constructed for lysomaradolipids. For 
LysoMar(17:0), two peaks are visible. Two trendlines have been constructed, one for saturated and one for mono-
unsaturated lysomaradolipids. 
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Indicating the presence of potential maradolipids in the dauer extract, non-targeted peak 

picking of lipid features was performed. In total, 1349 features were detected in all three 

replicates of dauer larvae lipid extract in negative ion mode. Based on the obtained m/z, RT, 

and DTCCSN2 library from reference standards, 31 phospholipids could be annotated. To 

identify potential maradolipids, the KM, KMD, and RKMD were calculated from the m/z 

values according to the equations above. Using an error of ± 0.1 for the RKMD the total list 

was narrowed down to 123 potential maradolipid candidates based on MS1 information. The 

list was further condensed by filtering on the RT region of eluting maradolipid standards and 

compared against a computer-generated list of potential maradolipids using potential fatty 

acids present in maradolipids based on results from Penkov et al. [80]. Using MS1 annotation 

to filter potential maradolipids, 33 candidates remained. Of these, ten could be matched with 

the used standards based on m/z, RT, and DTCCSN2 values as well as fragmentation pattern. 

Investigating peaks that are putatively annotated as additional maradolipids, several 

interesting candidates were found. For example, m/z 835.5424 showed a small side peak in 

addition to the peak matched with the Mar 15:0/15:0 standard, which might represent an 

isobaric species with a different fatty acid composition. Investigating the DIA fragmentation 

data, it was putatively identified as Mar 14:0/16:0. To confirm further this putative 

identification, trends along RT and DTCCSN2 values were checked for maradolipids that 

contained 14:0 and 16:0 fatty acyl side chains. Mar 14:0/14:0 and Mar 16:0/16:0 have been 

measured as a reference standard. The putative Mar 14:0/16:0 falls between these 

standards in regard to RT and DTCCSN2. Although the Mar 16:0/16:0 standard deviation from 

the RT trendline was higher, trends along DTCCSN2 trend lines were fitting. Generally, a 

higher deviation of RT from standards was observed for maradolipids in C. elegans samples, 

but errors were generally below 2%, while the highest error for DTCCSN2 was 0.4%. 

Furthermore, DTCCSN2 trend lines showed good linear trends, while for RT, this was only the 

case for very limited examples and typically showed quadratic behavior. Combining all 

available information, the peak can be putatively to be Mar 14:0/16:0 based on DIA 
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fragmentation data, RT and DTCCSN2. Penkov et al. also detected Mar 14:0/16:0, and 

compared to Mar 15:0/15:0, it also showed lower levels [80]. 

While searching for potential maradolipids using DIA fragmentation, an additional region 

between 2.5 and 6.5 minutes showing the fragment m/z 323.0972 was identified. However, 

no corresponding fragment m/z 305.0877 was found. Therefore, it was hypothesized that the 

peaks in this area might represent lysomaradolipids. Papan et al. have identified 

lysomaradolipids using shotgun-based lipidomics analysis of lipid extracts from C. elegans 

dauer larvae [154]. The fragmentation pattern they have obtained shows strong similarities 

compared to the ones found in the present publication. Their proposed fragmentation 

matches the observation of the peaks eluting in this RT range. Using the obtained DIA 

fragmentation data, it was observed that a collision energy of 10 eV is more useful for the 

non-targeted search because the [M+FA-H]- and [M-H]- ions, as well as the [trehalose-H2O-

H]- fragments are present in the high collision energy data. For further structural elucidation, 

20 eV collision energy was used since both the [trehalose-H2O-H]- fragment, as well as fatty 

acyl fragments were visible, while 40 eV mostly produced the fatty acyl fragment. Using a 

similar filtering approach and putative annotation on the MS1 level with masses of theoretical 

lysomaradolipids we identified a list of 12 potential candidates. Coelution of MS1 m/z, the 

[trehalose-H2O-H]- fragment, as well as specific fatty acyl fragments, were used for 

identification. Fragment m/z EICs were isolated for the specific drift time regions of the intact 

molecule, and peak correlation was performed. Figure 5A shows trendlines for 

lysomaradolipids. 

Interestingly, for the m/z of LysoMar(17:0), two chromatographic peaks were found. While for 

the first and higher peak fragmentation data identified a fragment at m/z 269.2486 

corresponding to a C17 acyl group, no fragmentation data confirming the putative ID was 

available for the second peak due to the low intensity of the precursor. However, while 

checking for co-elution with m/z 323.0972, perfect coelution could be observed for both 

peaks. C. elegans is able to produce mono-methyl-branched chain fatty acids on its own, and 
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most maradolipids contain a branched-chain fatty acid. One peak might be possible to 

represent a lysomaradolipid containing 15-methyl palmitic acid (FA 16:0(15Me)) and the 

other one heptadecanoic acid (FA 17:0). Both fatty acids have been detected in the analysis 

of total fatty acids, but heptadecanoic acid only in low amounts [292]. Investigating trendlines 

for both RT and CCS using odd-numbered LysoMar showed that both peaks match the 

trends between LysoMar 15:0 and LysoMar 19:0. However, if only higher peak eluting earlier 

is used, the fits increased. The DTCCSN2 value of the second peak is slightly higher (247.72 

Å² compared to 247.44 Å²), which indicates a slightly larger structure. Since the two peaks 

showed good chromatographic separation, the logP value for both possibilities was 

calculated to measure hydrophobicity. The logP value of the hypothetical straight chain 

LysoMar 17:0 is 2.66, and the logP of the hypothetical iso-branched chain version is 2.50. 

This would fit with the trends seen based on DTCCSN2, indicating that the branched-chain 

version is eluting before the straight chain version. However, these identifications are only 

putative and need to be confirmed with authentic standards. Since no reference standards 

are currently available for lysomaradolipids these identifications cannot be further validated. 

3.3.3. Conclusion 

The usability of CCS for metabolite and lipid identification has been evaluated. While in the 

case of small molecules, CCS values are only of partial help, for lipids, they can be useful to 

reduce the number of false positive annotations. Investigations showed that for metabolites, 

CCS values of isomeric species are often too close to be separated in standard non-targeted 

experiments. Settings can be tuned towards the separation of specific isomeric species, 

which might be helpful for the quantification of individual species. No reference standards for 

C. elegans-specific metabolites are available; therefore, no measured CCS for e.g. 

ascarosides exist. However, prediction tools such as CCSBase or AllCCS can close this gap 

since predictions are typically accurate enough [350, 380]. However, RT, m/z, and MS2 

spectra are still of greater use for metabolite identification. 
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In the case of lipids, separation of isomeric and structures can be achieved for certain 

species, but for the large part, it is not possible. However, since lipids are made of defined 

building blocks with increasing chain length, they show a trend along a plot of CCS against 

m/z. These trendlines can be used to filter false positive annotations. While CCS alone might 

not be sufficient, in addition to m/z, it can help to remove potential false positive annotation. 

While CCS is often not enough to separate isomeric species, it can help in removing isobaric 

species. Both theoretical considerations and measurements proved this fact. Current 

developments like Structures for Lossless Ion Manipulations (SLIM) have shown that they 

have the potential for higher separation power. For example base line separation of the 

isomeric lipids PC 18:1(6Z)/18:1(6Z) and PC 18:1(9Z)/18:1(9Z) has been shown [398]. 

IM can be separated with DIA for lipid identification, as shown for the identification of 

maradolipids in C. elegans dauer larvae lipid extracts. In such cases, the IM dimension 

serves as an additional filter criterium for the reconstruction of MS2 spectra from DIA data. 

Using a dedicated workflow, novel lysomaradolipids could be identified, including putative 

isomeric structures. IM for lipids works best when combined with chromatographic 

separation. However, the use of IMS leads to cleaner spectra, which can be used for better 

identifications. New developments like Parallel Accumulation-Serial Fragmentation (PASEF) 

enabled on TIMS instrumentation allows the fast collection of DDA spectra [399]. 
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3.4. LipidFrag 

Interpretation of the resulting MS2 spectra, especially in high-throughput studies, is rather 

limited, and manual analysis of several hundred to thousands of MS/MS spectra is not 

feasible. To speed up identification, comparison against spectral reference databases is 

possible, but the lipid coverage in these databases is sparse. Lipid Maps currently contains 

only a few hundred low-resolution MS2 spectra, while MassBank has 3,158 records on both 

low and high-resolution instruments covering 707 unique lipids [299]. Lipid identification is a 

major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid 

tandem MS spectra are rather limited. While the comparison against spectra in reference 

libraries is one of the preferred methods, these libraries are far from complete. In silico 

fragmentation has been suggested as a possible solution to analyze MS2 spectra without the 

need for spectral reference databases [364]. LipidBlast is a spectral library that includes 

212,516 in silico-generated tandem mass spectra covering 119,200 compounds from 26 lipid 

classes [400]. More recently, Greazy, an approach for the identification of phospholipids from 

MS/MS data, was presented, which includes the estimation of false discovery rates (FDR) 

[401]. The module LipidLama, integrated into Greazy, uses kernel density estimation to fit 

non-parametrized models to distinguish false and true lipid assignments. The cutoff score for 

a putative correct lipid assignment can then be defined by using a pre-defined FDR of e.g. 5 

%. 

LipidFrag is a workflow to improve the reliability of in silico MS2 annotations of lipids. To 

achieve this, a bayesian classifier based on parametrized distributions and maximum-

likelihood estimation was introduced to calculate a reliability score for a result to be a correct 

annotation among its lipid class, which is based on training data obtained from lipid standard 

materials and true positive manual identifications. This workflow consists of the annotation of 

precursor masses with possible lipid structures using MassTRIX [194, 195], followed by 

MetFrag batch processing of candidates retrieved via the putative neutral masses derived 

from ion species annotation results. The performance was evaluated using MS/MS spectra 

obtained previously with UPLC-UHR-ToF-MS/MS and data-dependent acquisition (DDA) 
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[68]. Results from this training allowed the development of the central new feature in 

LipidFrag, the classifiers to predict the probability of a reliable MetFrag annotation for an 

unknown lipid class. This is used to differentiate between good and poor identification results 

and to predict the underlying lipid main class of the precursor in high-throughput MS/MS 

experiments like in this case study performed with the lipid extract of C. elegans. 

3.4.1. Material and Methods 

3.4.1.1. Chemicals 

HPLC-grade methyl-tert-butyl ether (MTBE), HPLC-grade chloroform (CHCl3), LC-MS-grade 

methanol (MeOH), iso-propanol (iPrOH), acetonitrile (ACN), ammonium formate, and formic 

acid were obtained from Sigma-Aldrich (Sigma-Aldrich, Taufkirchen, Germany). Water was 

purified using a Merck Millipore Integral water purification system with a resistance of 18 MΩ 

and TOC < 5 ppb. 

3.4.1.2. Lipid standard material preparation 

Phosphatidylcholine preparation from chicken egg (840051P, Avanti Polar Lipids), 

Escherichia coli polar lipid extract (100600P, Avanti Polar Lipids), phosphatidyl serines from 

the porcine brain (840032P, Avanti Polar Lipids), ceramide from the porcine brain (860052P, 

Avanti Polar Lipids) and ceramide from chicken egg (860051P, Avanti Polar Lipids) were 

obtained from Avanti Polar Lipids (Otto Nordwald GmbH, Germany) and dissolved in MeOH 

at a concentration of 1 mg/mL. Additionally, L-alpha-Phosphatidylinositol sodium salt from 

Glycine max (P0639), Triglyceride mix (17811-AMP), 1,3-Dioleoyl-2-palmitoyl-glycerol 

(D1657), Glyceryl tritricosanoate (T1412), Glyceryl trioleate (T7140) and 1,2-Dilinoleoy-3-

palmitoyl-rac-glycerol (D0301) were obtained from Sigma-Aldrich (Sigma-Aldrich, 

Taufkirchen, Germany) and dissolved in either MeOH, MTBE, CHCl3 or solvent mixtures, 

depending on solubility. Different samples for analysis were prepared and diluted in 

H2O/ACN/iPrOH (5/65/30, v/v/v) to 10 µg/mL for analysis. 
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3.4.1.3. Lipid extraction from C. elegans 

Lipids were extracted from young adult C. elegans using a modified method from Matyash et 

al. [113], described in [68]. The worms were washed off the plates and their metabolism was 

quenched with 500 µL -20°C MeOH. Samples were flash-frozen in liquid nitrogen and stored 

at -80°C prior to extraction. Samples were then thawed on ice, 1.7 ml MTBE was added, and 

samples were vortexed vigorously. C. elegans were lysed for 30 minutes in an ice-cold 

ultrasonic bath, after which 420 µl of water was added, and samples were sonicated for 

further 15 minutes. Phases were separated by centrifugation at four °C and 14,000 rpm for 

15 minutes. The upper organic phase was transferred to a 4 ml glass vial, and the remaining 

lower phase was re-extracted with an additional 650 µl MTBE for 15 minutes. After 

centrifugation, the organic layers were combined and evaporated in a SpeedVac vacuum 

concentrator at 30°C for 0.5-1h. The residue was redissolved in 500 µl H2O/ACN/iPrOH 

(5/65/30, v/v/v). 

3.4.1.4. UPLC-UHR-TOF-MS/MS-based lipid profiling 

Lipid analysis was performed using two different methods. PCs were analyzed with the 

method published by Witting et al. [68]. Briefly, lipids were separated on Waters CORTECS 

UPLC C18 column (150 mm x 2.1 mm ID, 1.6 µm particle size) (Waters, Eschborn, 

Germany) using a linear gradient from eluent A (40% H2O / 60% ACN + 10 mM ammonium 

formate / 0.1 % formic acid) to eluent B (10% ACN / 90% iPrOH + 10 mM ammonium formate 

/ 0.1% formic acid) using a Waters Acquity UPLC (Waters, Eschborn, Germany) coupled to a 

Bruker maXis UHR-ToF-MS (Bruker Daltonics, Bremen, Germany). The following gradient 

was used: 68/32 at 0 min, 68/32 at 1.5 min, 3/97 at 21 min, 3/97 at 25 min, 68/32 at 25.1 min 

with a flow rate of 0.250 mL/min and a temperature of 40°C. The column was re-equilibrated 

for 2.5 minutes. Detection was carried out in positive and negative ionization modes with 

data-dependent acquisition with a scan rate of 5 Hz and selection of 2 precursors. Masses 

were excluded from DDA after three spectra and released from exclusion after 0.15 min. An 

absolute threshold of 1500 was used for selection. 
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3.4.1.5. MS data processing 

MS data was imported to Genedata Expressionist for Mass Spectrometry 8.2 (Genedata, 

Basel, Switzerland) for internal re-calibration, retention time alignment, and peak picking. 

Files were exported to .xlsx format, and further data handling was carried out in MS Excel. 

Lipids were annotated with lipids from LipidMaps using the adducts [M+NH4]+ and 

[M+HCOO]-, as well as [M+H]+, [M+Na]+ and [M-H]- and an absolute error of 0.005 Da. 

MS2 spectra were exported from the calibrated and aligned chromatograms from Genedata 

Expressionist for MS 8.2 as a .mgf file. Only spectra associated with a detected feature were 

kept and converted to MetFrag batch files (available at http://msbi.ipb-halle.de/msbi/lipidfrag) 

using a custom Perl script. The neutral mass and formula for the batch file were obtained by 

annotation with lipids for all possible annotation results. Finally, spectra in batch files were 

de-isotoped using the CAMERA package with a custom R script [402]. 

3.4.1.6. Manual lipid identification 

Manual lipid identification was performed using known lipid fragmentation pathways. 

Information from both ionization modes was combined and matched via identical retention 

times, where available. For phospholipids, fragments used for identification included head 

group fragments and their respective neutral loss, loss of fatty acid side chains, and their 

carboxylate fragment. In the case of triacylglycerols, neutral losses of fatty acid side chain as 

an ammonium salt and the respective fragments were used. Ceramide species were 

identified based on typical sphingolipid fragments, e.g. loss of N-bound fatty acid and 

sphingoid base fragments. Since the exact position and stereochemistry of double bonds 

cannot be deduced from these experiments, all possible isomers were reported as potential 

identification for further processing with LipidFrag. 

3.4.1.7. LipidFrag identification 

Batch query files were processed with the MetFrag command line tool (version 2.4 available 

at https://c-ruttkies.github.io/MetFrag/). Lipid Maps (LMSDFDownload18Mar14) was used as 

a structure database. Candidates were considered within 20 ppm of the theoretical mass, 
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and measured MS2 peaks were matched against in silico fragments, generated with tree 

depth 3, with an error window of 0.01 Da + 15 ppm. The ion mode for the generated 

fragments were set according to the acquisition of the processed MS2 peak list, and the 

minimum peak intensity was set to 1000 arbitrary units. The resulting ranked candidate lists 

were filtered by the first part of the molecules’ InChIKey to eliminate stereoisomers and 

stored as CSV files, with the calculated MetFrag scores stored in the CSV columns. CSV 

files for MS2 peak lists containing less than two informative MS/MS peaks were excluded 

from the evaluation. The score calculated by MetFrag was used to rank the known 

candidates of the standard spectra, and the pessimistic (worst case) ranking result when 

candidates, including the correct one, shared equal MetFrag scores were used. Hence all 

potential isomers, e.g. double bond positional isomers, which usually have identical MetFrag 

scores, are covered and reported. 

The original MetFrag scoring function considers the bond dissociation energy (BDE) of bonds 

that are cleaved during the in silico fragmentation. As the cleavage of C-C bonds of the fatty 

acid chains is unlikely to occur under the given conditions in the mass spectrometer, the BDE 

of this bond type was set to the arbitrarily high value of 10e9, which effectively eliminates 

fragments generated by a C-C cleavage. 

3.4.1.8. Lipid class-specific classifiers for reliability calculation 

LipidFrag uses classifiers for the reliability calculation of the MetFrag result. The distribution 

of the MetFrag raw scores depends on both the query spectra and the lipid classes of the 

candidates. Generally, in metabolomics, this structural compound class classification is 

neither always obvious nor easy to obtain for small molecules, but for lipids, there is the 

structural categorization initiated by the International Lipid Classification and Nomenclature 

Committee (ILCNC), available on the LipidMaps website [207, 247]. This classification was 

used here to obtain well-defined ranges of MetFrag raw scores for particular lipid classes. 

Therefore, a training step was implemented to predict the reliability of MetFrag results based 

on the training of classifiers with MS2 spectra of the lipids standard material for different lipid 
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subclasses. For this task, one classifier was created for each lipid subclass, where raw 

scores of correctly identified structures from the lipid standard materials served as 

foreground data. The same spectra were queried with deliberately wrong precursor 

candidates in the same mass range (up to 150 ppm), originating from the other lipid 

subclasses respectively, to obtain a decoy database and, subsequently, the MetFrag scores 

for the background data set. This approach was inspired by proteomics, where foreground 

and background training data are used to assign significance values to peptide identifications 

[403]. 

Gamma distributions were used to model the scores for the foreground and background 

data. The model parameters for the distributions were calculated by maximum-likelihood 

estimation on the fore- and background datasets. For each lipid class, a separate classifier 

was trained because the MetFrag scores exhibit large differences between the classes. 

The following equation shows the calculation of the foreground class probabilities (FCP) of a 

MetFrag result with the bayesian approach, where P (score | Foreground, Θ) is the likelihood 

of the foreground model represented by a gamma distribution of the lipid subclass for the 

present score and P (score | Background, Θ) is the corresponding likelihood of the present 

score in the background model which is also represented by a gamma distribution. The 

estimated parameters of the distributions are represented by Θ. 

𝐹𝐹𝐶𝐶𝑃𝑃 =
𝑒𝑒(𝑚𝑚𝑒𝑒𝑙𝑙𝑒𝑒𝑧𝑧 ∨ 𝐹𝐹𝑙𝑙𝑒𝑒𝑧𝑧𝑙𝑙𝑒𝑒𝑙𝑙𝐹𝐹𝑛𝑛𝐹𝐹,𝜃𝜃)

𝑒𝑒(𝑚𝑚𝑒𝑒𝑙𝑙𝑒𝑒𝑧𝑧|𝐹𝐹𝑙𝑙𝑒𝑒𝑧𝑧𝑙𝑙𝑒𝑒𝑙𝑙𝐹𝐹𝑛𝑛𝐹𝐹, 𝜃𝜃) + 𝑒𝑒(𝑚𝑚𝑒𝑒𝑙𝑙𝑒𝑒𝑧𝑧 ∨ 𝐵𝐵𝑒𝑒𝑒𝑒𝑘𝑘𝑙𝑙𝑒𝑒𝑙𝑙𝐹𝐹𝑛𝑛𝐹𝐹,𝜃𝜃) 

For testing, 10-fold cross-validation was applied. FCPs of the lipid classes were used to 

calculate the true positive and false negative rates on the test dataset to determine a 

Receiver Operating Characteristic curve (ROC) and the Area under Curve (AUC) as a quality 

measure of the different classifiers. 

3.4.1.9. Reliability of MetFrag results 

After training, the classifiers were used to predict the reliability of MetFrag candidate 

identifications for the C. elegans MS/MS spectra, where the correct candidate is unknown. 
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Given a candidate list processed by MetFrag as SDF or CSV file, LipidFrag calculates the 

FCP for each candidate lipid in this result list by first selecting the appropriate classifier 

based on the candidate’s Lipid Maps ID. The selected classifier, together with the calculated 

MetFrag raw score, is used to calculate the FCP value. Those results, where no candidate 

exceeds a defined FCP threshold (of e.g. 0.95), have to be treated as unreliable or not 

identified. 

3.4.1.10. LipidBlast identification 

For comparison, lipid annotations were performed using the LipidBlast in silico tandem MS 

library [18]. The provided LipidBlast fork (v2 Hiroshi Tsugawa fork) was downloaded and 

converted by the Lib2NIST tool (v1.0.4.38 (beta), options: “Include Synonyms”: Yes, “MW 

from chem. formula”: Yes, “MS/MS spectra only”: Yes, “2008 MS Search compatible”: Yes) to 

NIST format and used as a spectral library for LipidBlast annotation of all standards used for 

LipidFrag available in MGF format obtained from Genedata Expressionist for MS 8.2.  The 

NIST MSPepSearchGUI (v0.91, options: defaults except for “Q-TOF”: Yes, “Min. match 

factor”: 100, “Presearch mode”: Standard, “Load libraries in memory”: No, “Max. number of 

output hits”: 10, “Presearch mode”: Standard, “Precursor ion tolerance”: 0.02, “Fragment 

peak m/z tolerance”: 0.02) was used to process input spectra in batch mode. LipidMaps 

identifiers provided for the correct identifications were mapped to common names annotated 

by LipidBlast for comparison with the LipidFrag annotations. The pessimistic rankings 

(among the top 10 reported candidates) were calculated based on the Rev-Dot (reverse dot) 

scores and compared with the LipidFrag results. 

3.4.2. Results and Discussion 

LipidFrag uses the result scores of a lipid candidate list retrieved from MetFrag, which 

performs in silico fragmentation of lipids. Then the matching classifier is selected based on 

the lipid subclass of a currently considered lipid candidate in the candidate list. Using the 

bayesian equation, LipidFrag calculates the posterior probability of the MetFrag score under 

the assumption to come from the foreground distribution of the selected bayesian classifier. 
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This probability value can then be used as a prediction of the lipid class of the regarded 

MS/MS spectrum and, secondly, as a measure of the reliability of the current MetFrag lipid 

annotation to filter out false positive lipid assignments. 

3.4.2.1. Analysis of lipid standard materials 

For the positive ionization mode spectra, classifiers were built for the following lipid 

subclasses: PC (LMGP0101), PE (LMGP0201), PS (LMGP0301), PI (LMGP0601), Cer 

(LMSP0201/ LMSP0202) and TG (LMGL0301). As the scores for the Cer species (LMSP02) 

show a bimodal distribution in positive ion mode, two separate classifiers were trained for the 

available ceramide subclasses (LMSP0201 and LMSP0202) for the foreground data. 

Compared to a single classifier for the whole Ceramide main class, this captures the 

multimodal score ranges of the lipid subclasses in a better way (SI Figure 1). For the 

negative ionization mode spectra, the lipid subclasses: PC (LMGP0101), PE (LMGP0201), 

PS (LMGP0301), PG (LMGP0401), PI (LMGP0601), and Cer (LMSP0201/ LMSP0202) were 

used for training. As candidates for the LMGP0101 subclass show similar MetFrag scores on 

LMGP0201 subclass MS2 spectra, a combined classifier was trained. This resulted in six 

different classifiers for positive and five for negative ionization mode. With these classifiers, 

LipidFrag is able to cover already over one-third of the lipid species in the Lipid Maps 

database. 

The classifiers were extensively cross-validated on the lipid standards spectra to generate 

receiver operating characteristic (ROC) curves and the corresponding area under the curve 

(AUC) values as a measure of identification performance. For clarity, results are grouped into 

three lipid types: ceramides, glycerophospholipids, and glycerolipids, and presented 

separately in the following paragraphs. Mean ranks shown in Table 18 and Table 19 are 

calculated with and without an FCP threshold to highlight the performance using the 

LipidFrag classifiers. To reduce the false negative rate an FCP threshold of 0.6 was set 

within LipidFrag. With this value, the number of false positive assignments could be reduced 

from 91% to 57% for positive ion mode and from 93% to 27% for negative mode. 
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Table 18: Results of the MetFrag identification and the classifier testing. The mean values of the FCPs retrieved 
from the cross-validation for the foreground (FCP+, higher is better) and the background (FCP-, lower is better) 
scores are shown. An AUC of 1.0 represents the best possible classification result for the corresponding lipid 
main/sub class. Additionally, the mean rank of the correct candidate (Rank) using MetFrag and LipidFrag with a 
FCP threshold of 0.6 together with the discarded proportion of false positives (FP-Rate) and the mean number of 
candidates retrieved (Cand) are given. 

Metric 
LMGL0301 
(TG) 

LMGP0101, 
LMGP0201 
(PC, PE) 

LMGP0201 
(PE) 

LMGP0301 
(PS) 

LMGP0401 
(PG) 

LMGP0601 
(PI) 

LMSP0201, 
LMSP0202 
(Cer) 

FCP+ --- 0.871 --- 0.979 0.888 0.834 0.817 

FCP- --- 0.098 --- 0.009 0.164 0.154 0.236 

AUC --- 0.979 --- 1.0 0.901 0.961 0.931 

Mean 

Rank 
--- 2.2 --- 1.8 1.8 2.6 1.3 

Mean 

Rank 

(FCP 

>= 

0.6) 

--- 
2.3 

(68%) 
--- 1.8 (55%) 

1.8 

(94%) 
2.4 (78%) 1.2 (63%) 

Cand --- 31.3 --- 15.8 15.3 14.6 2.3 

 

Table 19. Results of the MetFrag identification and the classifier testing. The mean values of the FCPs retrieved 
from the cross-validation for the foreground (FCP+, higher is better) and the background (FCP-, lower is better) 
scores are shown. An AUC of 1.0 represents the best possible classification result for the corresponding lipid 
main/sub class. Additionally, the mean rank of the correct candidate (Rank) using MetFrag and LipidFrag with a 
FCP threshold of 0.6 together with the discarded proportion of false positives (FP-Rate) and the mean number of 
candidates retrieved (Cand) are given. 

Metric 
LMGL0301 
(TG) 

LMGP0101 
(PC) 

LMGP0201 
(PE) 

LMGP0301 
(PS) 

LMGP0401 
(PG) 

LMGP0601 
(PI) 

LMSP0201, 
LMSP0202 
(Cer) 

FCP+ 1.000 0.551 0.994 0.969 --- 1.000 0.908 

FCP- 0.000 0.442 0.000 0.000 --- 0.000 0.095 

AUC 1.0 0.799 1.0 1.0 --- 1.0 0.935 
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Metric 
LMGL0301 
(TG) 

LMGP0101 
(PC) 

LMGP0201 
(PE) 

LMGP0301 
(PS) 

LMGP0401 
(PG) 

LMGP0601 
(PI) 

LMSP0201, 
LMSP0202 
(Cer) 

Mean 

Rank 
3.1 5.8 1.7 1.9 --- 1.0 1.17 

Mean 

Rank 

(FCP 

>= 

0.6) 

(FP-

Rate) 

1.7 (16%) 3.0 (45%) 1.7 (49%) 1.9 (9%) --- 1.0 (100%) 
1.0 

(68%) 

Cand 33.9 26.5 26.5 14.9 --- 15.3 2.2 

 

3.4.2.2. Ceramides 

Ceramides have quite distinct molecular formulas compared to other lipid classes (i.e. 

glycerophospholipids); therefore, the overlap with other classes and the number of potential 

candidates is low. Major differences between different ceramide species are the length of the 

sphingoid base, the number of hydroxyl groups in the sphingoid base, the length of the N-

linked fatty acid, and the total number of double bonds. The fragmentation of ceramides has 

been studied extensively by Hsu et al., focusing mainly on the [M-H]- ions, whereas here 

ceramides were observed predominantly as [M+HCOO]- adducts in negative ionization mode 

[404]. Both positive and negative ionization modes were used to characterize the ceramides. 

In total, 17 ceramides were identified manually from obtained MS2, with 11 found in both ion 

modes, 2 in negative and 4 in positive ion mode only.  

LipidFrag shows the best ceramide results in positive ionization mode, indicated by the AUCs 

of 0.935 for the two ceramide classes (LMSP0201 /LMSP0202). In negative ionization mode, 

the AUC is also good, with a value of 0.931. The mean rank of the correct solution is 1.17 in 

positive and 1.3 in negative ionization mode, which is also due to the low number of potential 

candidates. 
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3.4.2.3. Glycerophospholipids 

Different classes of glycerophospholipids were subjected to fragmentation, including PC 

(LMGP0101), PE (LMGP0201), PS (LMGP0301), PG (LMGP0401), and PI (LMGP0601). 

The molecular formulas of PCs and PEs overlap considerably, which can lead to ambiguous 

results if only the accurate mass of the precursor is used for the annotation with potential 

structures. Ekroos et al. studied the use of fragmentation and fatty acid scanning using an 

ion trap MS for elucidation of the fatty acid composition of PCs [405]. Fragmentation is very 

class and ion mode specific, e.g. PCs yield mainly m/z 184.07 as the head group fragment in 

positive ionization mode, whereas in negative ionization mode, fragments originating from 

[M+HCOO]- adducts provide information about fatty acid composition. Diagnostic fragments 

indicating fatty acid composition were only detected for very highly abundant species in 

positive ion mode. Several studies have shown that the carboxylate anion from the sn2 fatty 

acid is up to three times higher compared to sn1 [406]. PEs in contrast, show mainly the 

diacylglycerol fragment derived from the neutral loss of the head group in positive ionization 

mode and side chain fragments of very low intensity (usually below 2%). Therefore, MS3 of 

the diacylglycerol fragment is needed for side chain identification in positive ion mode. In 

negative ion mode, fragmentation of PE species yields carboxylate anions from sn1 and sn2 

fatty acids similar to PCs. Most of the glycerophospholipids show very good identification 

results with LipidFrag. This is indicated with the mean rank values 2.24, 1.8, 1.8 and 2.6 for 

the available PC/PE (LMGP0101 /LMGP0201), PS (LMGP0301), PG (LMGP0401) and PI 

(LMGP0601) species in negative ion mode. The AUCs of 0.979, 1.0, 0.901, and 0.961 also 

show excellent classification results. In positive ionization mode, the PE (LMGP0201), PS 

(LMGP0301), and PI (LMGP0601) species show similar results with mean ranks of 1.7, 1.9, 

and 1.0 and the AUCs of 1.0. Though the PC (LMGP0101) species show a similar 

performance with a mean rank of 1.69 when using an FCP filter with a threshold of 0.6, the 

filter sorted out 58 of the 71 spectra caused by the limited fragmentation, which also 

indicated by a lower AUC of 0.799. 
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3.4.2.4. Glycerolipids 

Glycerolipids (LMGL0301) were mainly detected in positive ionization mode as [M+NH4]+ 

adducts. From this adduct, typical fragmentation is the neutral loss of fatty acid side chains 

plus ammonia, yielding a diacylglycerol-like fragment [407]. This loss can occur for all side 

chains and lead to a pattern that allows the identification of composition but rarely provides 

sufficient information to determine the position of fatty acids in the intact lipid. Five different 

TG standards were employed as training data, showing previously known fragmentation 

pathways. These five compounds had different fatty acid compositions and, therefore 

different retention times. However, in C. elegans samples, many possible isomers and 

isobars are co-eluting with many different fatty acid combinations that can be deduced from 

fragmentation data. The TG species are observable in positive ionization mode, and the 

related classifier shows a good result with an AUC of 1.0. However, the mean rank indicates 

a lower performance for the identification results with 3.1, as the typical loss of a fatty acid 

side chain during fragmentation is not only explained by the correct candidate but also by 

structurally very similar TG species. The fragment peaks of these types of losses seem to be 

very specific for the main lipid class, indicated by the high AUC, but this does not help to 

distinguish between different TG lipids sharing the same molecular formula. 

3.4.2.5. Handling of mixed spectra 

One potential problem, not only for LipidFrag, is non-pure spectra arising from the co-

isolation of co-eluting isomeric/isobaric lipids during the MS measurement. In order to test 

how well LipidFrag can deal with this, we created such spectra in silico using measured 

spectra as a template. Overlap especially occurs for glycerolipids in the later elution range of 

the chromatogram but might also occur for other lipids. Although the UPLC method used can 

separate major isobars of the glycerophospholipids [23], overlap might also occur with major 

interference most likely coming from isomers/isobars within the same lipid class. Interference 

from different lipid classes having the same molecular formula can be neglected because 

polarity, and hence retention time is very different (e.g. PE 18:0/20:2 has a logP of 13.12, 

whereas the isobaric PC 18:0/17:0 has a logP of 11.47). Measured lipid MS2 served as the 
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target, and interfering MS/MS peaks at the intensity ratios of 10:1, 2:1, and 1:1 were added, 

and the MetFrag raw score of the true candidate was evaluated. Mixtures included binary, 

ternary, and even quaternary mixes of isobaric lipids. Results indicate that mixtures with an 

equal amount of target and interference cause a drop in the score and rank of the true 

candidate, as expected. The target substances still rank in the upper quarter. Results from 

one particular example in C. elegans samples having two isomeric PC species in one MS2 

spectrum are discussed in a later section. 

3.4.2.6. Analysis of publicly available MSMS spectra 

To test the performance of the LipidFrag approach on an independent second dataset, we 

used 415 negative ion mode lipid MS/MS spectra retrieved from MassBank, where a Lipid 

Maps ID was available for the correct candidate. Although these spectra were measured on 

a different instrument with higher mass error than the data used for classifier training, they 

served as an additional validation of the workflow. Altogether, the spectra were annotated by 

the submitters to be from ten different subclasses (LMGL0301, LMGP0101, LMGP0102, 

LMGP0103, LMGP0105, LMGP0201, LMGP0202, LMGP0203, LMGP0601, and LMSP0301). 

Table 20 shows the ranking results obtained from LipidFrag. The mean ranks within the lipid 

subclasses were 4.4, 6.0, 2.9, 3.9, 2.3, 2.8, 1.0, 1.0, 2.0, and 1.8, respectively. Only two 

classifiers were available for the spectra originating from PC/PE (LMGP0101 /LMGP0201) 

and PI (LMGP0601) species. For the 180 MS/MS spectra, 157 have been identified with the 

correct lipid subclass based on the foreground class probability (FCP), which is a true 

positive rate of ~87% for the low-resolution spectra where a classifier was available. The 

LMGP0601 classifier calculated a subclass FCP which reached this threshold for all cases 

(9) and the LMGP0101/LMGP0201 classifier for 148 out of the 171 cases. 

3.4.2.7. Comparison with LipidBlast annotations 

The results of LipidBlast compared with the mean ranks of LipidFrag are shown in Table 21 

and Table 22 for the negative and positive ionization modes, respectively. The values 

indicate that results are comparable between both software tools. Nevertheless, there are 
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slight deviations for some lipid classes, and LipidFrag usually annotates more spectra (FCP 

threshold 0.6) for both ionization modes.  

Table 20: LipidFrag rankings on the 415 MassBank spectra 

Lipid sub 
class 

Mean rank Median rank Mean candidates Median candidates Number MS/MS 

LMGL0301 

(TG) 
4.4 2.0 15.0 15.0 7 

LMGP0101 

(PC) 
6.0 3.5 22.0 23.0 118 

LMGP0102 

(PC) 
2.9 3.0 9,2 8.0 36 

LMGP0103 

(PC) 
3.9 2.5 15.7 14.0 18 

LMGP0105 

(PC) 
2.3 2.0 4.2 4.0 30 

LMGP0201 

(PE) 
2.8 2.0 17.2 19.0 53 

LMGP0202 

(PE) 
1.0 1.0 7.0 7.0 12 

LMGP0203 

(PE) 
1.0 1.0 12.5 14.5 24 

LMGP0601 

(PI) 
2.0 2.0 11.3 11.0 9 

LMSP0301 

(SM) 
1.8 1.0 18.9 14.0 108 

All 3.3 2.0 16.6 16.0 415 

 

In positive ionization mode, on average LipidFrag could annotate 69 and LipidBlast 49.7 

spectra across all lipid classes. Considering the mean ranks, LipidBlast showed better results 

for TG (LMGL0301) (1.0 to 3.1) species. No results were annotated for PI spectra, as the 

predictions are missing in the current spectral database mirror of LipidBlast. Developers of 
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LipidBlast indicated that predictions are in progress for several missing lipid classes and will 

be added to the library in the near future. LipidFrag showed better mean ranks for PE 

(LMGP0201) (1.7 to 1.8) and PS (LMGP0301) (1.9 to 7.8) species. Equal mean ranks for 

both software tools could be assigned to the Ceramide classes (LMSP0201 and LMSP0202) 

with a value of 1.0. Both software tools filtered out a large proportion of the PC spectra 

(LipidFrag: 58 spectra, LipidBlast: 62 spectra) as this lipid class shows sparse fragmentation 

in positive ionization mode resulting in less informative MS2 spectra. 

For negative ionization mode, LipidFrag and LipidBlast could annotate an almost equal 

number of MS/MS spectra with mean values of 81 and 83.6 across all lipid classes. 

LipidBlast performed slightly better for the Cer (LMSP0201) (1.0 to 1.6) and the PI 

(LMGP0601) species, whereas LipidFrag showed better mean ranks for PC/PE (LMGP0101 

/LMGP0201) (2 to 2.3) and PG (LMGP0401) (1.0 to 1.8) species. 

Table 21: Comparison against LipidBlast (negative ionization mode) 

Mean 
Rank 

TG 
(LMGL0
301) 

PC/PE 
(LMGP0101/LM
GP0201) 

PC 
(LMGP0
101) 

PE 
(LMGP0
201) 

PS 
(LMGP0
301) 

PG 
(LMGP0
401) 

PI 
(LMGP0
601) 

Cer 
(LMSP02/LMS
P0202) 

LipidFr

ag 
--- 2.3 (112) --- --- 1.8 (35) 1.8 (41) 2.4 (62) 1.2 (155) 

LipidBl

ast 
--- 1.2 (116) --- --- 1.0 (34) 1.0 (40) 2.3 (70) 1.0 (158) 

 

Table 22: Comparison against LipidBlast positive ionization mode 

Mean 
Rank 

TG 
(LMGL
03) 

PC/PE 
(LMGP0101/LMGP
0201) 

PC 
(LMGP
01) 

PE  
(LMGP
02) 

PS 
(LMGP
03) 

PG 
(LMGP
04) 

PI  
(LMGP
06) 

Cer 
(LMSP0201/LMSP
0202) 

LipidFr

ag 
3.1 (25) --- 1.7 (13) 1.7 (88) 1.9 (50) --- 1.0 (82) 1.0 (156) 

LipidBl

ast 
1.0 (13) --- 1.0 (9) 1.8 (75) 7.8 (43) --- NA (0) 1.0 (158) 
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3.4.2.8. Analysis of C. elegans samples 

To demonstrate the applicability to biological data, lipids extracted from C. elegans were 

used, representing a real challenge for LipidFrag. Several lipid classes are present in the 

worm, and different fatty acid combinations, including odd-numbered side chains, are 

possible in glycerol- and glycerophospholipids. Shotgun lipidomics was applied for the 

analysis of a novel class of lipids only present in dauer larvae [80]. LipidFrag was then 

applied to MS2 spectra obtained from C. elegans lipid extracts. Table 23 gives an overview of 

detected lipid features in positive and negative ion mode runs. Altogether 1,518 MS/MS 

spectra acquired in negative, and 2,355 MS/MS spectra in positive ion mode were 

processed. Results with a foreground class probability (FCP) of ≥ 0.95 can be found across 

the whole intensity range, although higher intensities seem to lead to better results in positive 

ion mode. More important than precursor intensity is to detect diagnostic fragments, 

especially in negative ion mode, where fatty acyl side chains can be directly detected. Good 

results in this mode were also obtained for most of the middle-intensity range. Table 23 gives 

an overview of the number of detected lipid features, their corresponding MS/MS information, 

and LipidFrag results. 

Table 23: Number of detected features in C. elegans samples with corresponding MS/MS and LipidFrag results 

Ionization 
mode 

No. of 
detected 
features 

With accurate mass 
annotation 

With 
MS/MS 

Manually identified in 
standards 

Reliable 
LipidFrag (FCP 

cut-off) 

Positive 1655 1297 685 65 

108 (0.7) 

106 (0.8) 

100 (0.9) 

98 (0.95) 

Negative 505 358 228 52 

45 (0.7) 

43 (0.8) 

43 (0.9) 

40 (0.95) 

 

For the 3,873 (1,518 + 2,355) C. elegans spectra used, the MetFrag in silico fragmentation 

and scoring took altogether ~31 hours (user+system time) on a single core CPU, i.e. 30 

seconds per spectrum. Using the calculated classifiers, which are based on the standard lipid 
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spectra, the FCP calculation for all 3,873 C. elegans spectra took less than 10 minutes or 

0.15 seconds per spectrum. 

For the positive ionization mode, LipidFrag detected 452 spectra as TG (LMGL0301), and 69 

as PE (LMGP0201). Additional 3 PE and 1 PC (LMGP0101) species were added by 

decreasing the FCP threshold to 0.9. In negative ion mode, LipidFrag found 206 spectra with 

PC/PE (LMGP0101/LMGP0201lipid subclass annotations having an FCP ≥ 0.95. With a 

lower FCP threshold of 0.9, additional 47 PC/ PE species were annotated. Irrespective of the 

ionization mode, over 22% of the LipidFrag results have an FCP ≥ 0.75. 

One example is the spectrum of PE 18:0/20:5. The most prominent peaks show the 

corresponding fatty acids, with higher intensities for 20:5 bound at the sn2 position. A further 

diagnostic fragment [M-sn2-H]- at m/z 480.3096 is detected, and with lower intensities also 

the [M-sn1-H]- at m/z 498.2626 ions. Precursor mass, these four peaks, and their respective 

ratios allow manual identification as PE 18:0/20:5. Furthermore, the head group was 

detected as a fragment with a fragment containing the head group and the glycerol 

backbone. MetFrag was able to explain 8 of 9 fragments for identification. Additionally, small 

fragments derived from 20:5 were found. LipidFrag calculated an FCP of 0.91 for the result 

being a PE. The fatty acid positional isomer showed a similar score and probability. Because 

the scoring does not take any intensity ratios into account, both isomers obtain the same 

score. At this point, manual interpretation of intensities is required to determine which 

annotation is correct. The isobaric PC 15:0/20:5 was ranked third, with a similar MetFrag raw 

score (103.49998 for the correct PE and 96.64367 for the PC) but a lower FCP of 0.86 and 

only 7 of 9 peaks correctly explained. The number of explained peaks was used as an 

additional metric for correct identification in case scores and probabilities are similar. Lipids 

in the used biological samples subjected to fragmentation by DDA were almost exclusively 

from the class of glycerophospholipids, di- and triacylglycerols. Using C. elegans lipid 

extracts, it was shown that the developed approach could be applied to biological samples. 

Coverage of features with one or more associated MS/MS spectra has to be improved, e.g. 
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using pseudo-targeted methods, data-independent approaches, and spectra reconstruction 

or improved DDA [408-410]. 

3.4.3. Conclusion 

Although the number of tools for the automatic identification of lipids is increasing, most 

research still performs manual inspection of MS2 spectra or automated comparison against 

rather small reference libraries. In silico fragmentation offers an elegant, automatic way to 

tentatively identify metabolites and lipids if no standard is available by reducing the number 

of possible candidates or even proposing just a single reliable match. A workflow was 

developed and validated for analysis of lipid MS2 spectra derived from data-dependent 

acquisition on a UPLC-UHR-TOF-MS/MS system. This workflow is based on annotation of 

potential lipids to the precursor mass, isotope clean-up of MS2 spectra, and identification 

using the in-silico fragmentation tool MetFrag in combination with a novel reliability 

calculation based on bayesian classifiers. Lipid standard materials were used for validation 

purposes, and the in-silico analysis was compared against manual identification. 

Cross-validation of the obtained results showed that the true, correct identification could be 

easily separated from background spectra for most cases. Scores of correctly identified lipids 

and deliberately wrong candidates as decoys were used to generate fore- and background 

datasets to calculate the FCP giving reliability of a result of an unknown to be correct. Using 

lipid standard materials, the good performance of LipidFrag was shown, with high relative 

rankings of the correct candidate, high probabilities, and high AUC values obtained from the 

cross-validation. Furthermore, a comparison with LipidBlast, one of the most utilized tools for 

lipid spectra prediction, showed comparable results for both tools, with the main difference 

that the LipidFrag approach needs an initial training step for its classifiers but no ab initio 

information on fragmentation compared to LipidBlast. The workflow was applied to a lipid 

extract of C. elegans. From the obtained spectra, about 20% had high foreground class 

probabilities of ≥ 0.9. Higher identification rates could be achieved in future investigations by 

measuring more lipid standards from different classes to train more classifiers. However, 
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even with only 11 classifiers, the application of LipidFrag to MS2 spectra derived from lipid 

extracts from C. elegans was successful and showed the advantage of this workflow. 

An advantage here is that MetFrag does not rely on previously known fragmentation 

pathways and is therefore also applicable to novel lipid classes, currently not present in 

databases. In this case, candidate structures can be scored by generating potential 

structures, e.g. using theoretical lipids from LipidHome or even structures from a molecular 

structure generator like MOLGEN as an input database [411]. One particular example is the 

sphingolipids of C. elegans, containing a branched-chain C17 sphingoid base, which are not 

present in LipidMaps. 

For the results retrieved from the C. elegans data, a comparison of the LipidFrag annotation 

with high probabilities and the manual identification for randomly-selected spectra showed 

excellent agreement with most of the peaks correctly explained by the in silico fragmentation. 

For application to complete lipidomics studies, the results from LipidFrag can serve as first 

filtering and interpretation for further manual investigation, especially for potential marker 

peaks. A major limitation is the co-elution of isomeric species leading to mixed MS2 spectra. 

Although the chromatographic method is able to resolve several isomeric, not all of them can 

be resolved, especially for lipids like TGs, where several isomers exist. Where identified 

spectra as training data are available, e.g. through authentic standards, LipidFrag can help in 

high-throughput identification. With the standard MS setups, as employed in this study, lipid 

class and fatty acid composition can be deduced. Our selected example with the PE 

18:0/20:5 species from the biological dataset showed that the MetFrag score alone could not 

distinguish ambiguous results. Here, the wrong candidate had a similar score to the correct 

one, but their FCPs were significantly different and enhanced the annotation confidence. 

Manual interpretation of obtained data often allows to additionally identify fatty acid position 

based on intensity ratios of fatty acid fragments, which is not possible with MetFrag.  

The resulting output could be simplified by the lipid annotation scheme proposed by Liebisch 

et al., which combines different lipid isomers under a common identifier [207, 247]. For mass 
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spectrometry using UHR-ToF-MS, the fatty acid scan level, and fatty acid positional isomer 

are relevant. The former represents lipid identification of the fatty acid composition, but their 

position is not determined. This level is well suited for LipidFrag identification. For example, 

all isomeric results can be collapsed under a common identifier, which would be easier to 

interpret. Unfortunately, the Liebisch annotation is currently not widespread in structural 

databases. LipidHome is an in silico database using this nomenclature, whereas no structural 

representation of the chemical structure is available, which would be needed for MetFrag 

[412]. Currently, no chemoinformatics representation of molecules exists to encode 

ambiguity in the position of double bonds. 
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3.5. wormLipidBlastR 

For lipids known to occur in specific species, MS2 spectra from reference standards can be 

used to be matched against the measured spectra, if available. This allows a fast first-line 

identification of previously detected lipids. However, the number of commercially available 

lipid standards is low (with only a few tens to hundreds). Even specialized companies offer 

only a limited number of reference standards, which cannot cover the entire range. In silico 

tools, such as LipidFrag described above, can help to close this gap. However, one major 

disadvantage of LipidFrag is that it relies on lipid structures present in structural databases, 

such as LipidMaps [205, 397]. Typically, only fully structurally elucidated lipids are added to 

such databases. Since often lipid characterization is not performed until full structure, certain 

identified lipids will never be added to such a database. However, such partial identifications 

can be used and might be of further interest in other datasets. Fragmentation patterns of 

lipids are often known and can be used to annotate lipids. 

While in shotgun and targeted lipidomics, known fragmentation pattern and transitions of 

specific building blocks are used, non-targeted lipid profiling generates a large number of 

MS2 spectra. While metabolites are highly diverse in their structure, which complicates the 

prediction of their fragmentation pattern, lipids in contrast, are made of defined building 

blocks, and their fragmentation follows a certain set of rules. The fragmentation of different 

lipid classes and species has been extensively studied. For example, Hsu and Turk 

published a collection of papers studying the fragmentation of different lipid classes and 

different ionization modes and adducts [406, 413, 414]. They collected extensive knowledge 

on fragmentation pathways. Once established, these rules can be used to generate in silico 

MS2 spectra for unknown lipids. However, at the current stage, only the m/z value can be 

predicted accurately. For precise matching of library spectra and measured spectra, the 

intensity also plays an important role. However, the intensities of the different fragments are 

heavily influenced by the geometry of the collision cell, the type of collision gas, and the 

collision energy. Therefore, spectra generated on the same machine under identical 

analytical conditions represent the best option for spectral matching. In the case of lipids, 
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fragment spectra from measured lipid species can serve as a template to predict the spectra 

of different species. This is performed by LipidBlast [415, 416]. Identification of lipids relies 

on one side on known fragmentation pathways and building blocks and on the other on 

available reference spectra to derive data. LipidBlast is based on measurements of lipids 

from different LC-MS platforms together with rules of lipid fragmentation. In the first iteration, 

in total, 212516 spectra were generated from 119200 compounds from 26 lipid classes. 

Several add-on libraries have been generated, e.g. for glucuronosyldiacylglycerol (GlcADG) 

or FAHFAs [416, 417]. 

These libraries are either generated with a rather broad coverage or focus on specific lipid 

classes. However, it is unlikely that a specific organism will synthesize all possible lipid 

structures; this approach might lead to a too large search space. C. elegans is known to 

produce several lipids that are different from mammalian lipids (e.g. sphingolipids). 

Therefore, a subbranch named WormLipidBlast was developed. This library is based on 

lipids that are predicted from lipid reactions in WormJam, as discussed in Chapter 3. In 

contrast to LipidBlast, WormLipidBlast has been programmed in R instead of Excel, which 

allows more flexibility in its use. The core of this implementation is parsers for lipid shorthand 

notations that allow the generation of specific fragments based on lipid fragmentation rules 

and use template spectra to reconstruct the ion intensities. The basic principle is similar to 

the original LipidBlast, but it can handle different lipids in a simpler manner compared to the 

large Excel files. However, if required, new databases can be generated on the fly during 

data analysis. 

3.5.1. Material and Methods 

3.5.1.1. Chemicals 

Methanol (MeOH), 2-Propanol (iPrOH), and acetonitrile (ACN) were of LC-MS grade (Sigma-

Aldrich, Taufkirchen, Germany). All other solvents and chemicals were of the highest 

available purity, usually analytical grade. Water was purified on Merck Millipore Integral 3 

water purification system with TOC < 3 ppb, 18 MOhm. Reference standards were 
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purchased from different chemical vendors (e.g. Sigma-Aldrich, Merck, Cayman etc) and 

dissolved in an appropriate solvent. Aliquots of stock solutions were stored at -20°C until 

further analysis. Lipid reference standards were purchased from Avanti Polar lipids. All used 

lipids are summarized in SI Table 3. 

3.5.1.2. Lipid Template measurements on LC-MS 

Two different LC-MS systems have been employed. First, a Waters Acquity UPLC was 

coupled to a Bruker maXis UHR-ToF-MS, and second, an Agilent 1290 Infinity II UHPLC was 

coupled to an Agilent 6560 IMS-Q-ToF-MS. Briefly, lipids were separated on Waters 

CORTECS UPLC C18 column (150 mm x 2.1 mm ID, 1.6 µm particle size) using a linear 

gradient from eluent A (40% H2O / 60% ACN + 10 mM ammonium formate / 0.1 % formic 

acid) to eluent B (10% ACN / 90% iPrOH + 10 mM ammonium formate / 0.1% formic acid). 

The following gradient was used: 68/32 at 0 min, 68/32 at 1.5 min, 3/97 at 21 min, 3/97 at 25 

min, 68/32 at 25.1 min with a flow rate of 0.250 mL/min and a temperature of 40°C. The 

column was re-equilibrated for 2.5 minutes. Detection was carried out in positive and 

negative ionization modes. MS2 spectra were collected with fragmentation energies of 10, 20, 

and 40 eV using MRM-like workflows. LC-MS runs were converted to .mzML files using 

MsConvert and further processed using the R package RMassBank [418]. For each setup, 

MassBank records were generated independently. 

3.5.1.3. Detailed fragmentation studies using DI-MS 

Additionally, for LC-MS analysis, lipid reference standards were infused manually using a 

syringe pump. A working solution of lipids has been prepared by dilution with 

iPrOH/CHCl3/MeOH + 7.5 mM ammonium formate. Fragmentation studies were performed 

on the same two MS platforms as above. Collision energies from 10 to 50 eV with 2.5 eV 

steps were collected for either 1 or 2 minutes. The syringe pump was operated at 500 µL/h or 

1000 µL/h in positive and negative modes, respectively. Data was exported to .mzML files 

using MsConvert, and further processing was performed using the R package Spectra 

[369]. 
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3.5.1.4. Computational resources 

Spectra inspection and generation were carried out in R using RStudio and R 4.2. All 

functions written for parsing and working with lipid shorthand notations have been bundled 

into a package called lipidomicsUtils. This package is available from GitHub 

(https://github.com/michaelwitting/lipidomicsUtils). Functions for the generation of in silico 

spectra are collected in a package called wormLipidBlastR. This package is freely 

available from GitHub (https://github.com/michaelwitting/wormLipidBlastR). The full 

functionality is described in the following paragraphs. 

3.5.1.5. C. elegans sphingolipid extraction and measurement 

C. elegans were grown in liquid culture to obtain sufficient biomass. Worms were grown in S-

medium at 20 °C and fed with concentrated E. coli NA22. Worms were regularly checked, 

and E. coli NA22 was added to prevent starvation. After one week, worms were harvested 

and separated from bacteria by filtration using a 2.7 μm Millipore glass fiber filter (Sigma-

Aldrich, Taufkirchen, Germany). After two times washing with 10 mL cold M9, worms were 

frozen at -80 °C until extraction and analysis. 

Lipids were extracted according to the Folch method [419]. A pellet of about 750 mg (wet 

weight) of mixed stage worm samples was mixed with 1 mL of MeOH and homogenized in a 

Precellys Evolution bead beater (Bertin Instruments, Montigny-le-Bretonneux, France) at 

about 0 °C and 8000 rpm for three times 10 s with 20 s pause between. After the addition of 

2 mL CHCl3, the sample was shaken for one hour at room temperature and 500 rpm using an 

Eppendorf Thermo- Mixer C (Eppendorf, Hamburg, Germany). Phase separation was 

induced by the addition of 1 mL H2O and centrifugation at an RCF of 15294 × g and four °C 

for 15 min. The polar phase was re-extracted with 2 mL of CHCl3 / MeOH / H2O (v/v, 86 / 14 / 

1) for 15 min. After phase separation, organic phases were combined and dried in two 

aliquots in a SpeedVac Savant centrifugal evaporator (Thermo Scientific, Dreieich, 

Germany). One aliquot was re-dissolved in 50 μL iPrOH / ACN / H2O (v/v, 60 / 35 / 5) prior to 

analysis with UPLC-UHR-ToF-MS and the other in CHCl3 for lipid fractionation. 
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Sphingolipids were fractionated, according to Bodennec et al. [420]. Briefly, different 

sphingolipids were eluted from either separated or piggy-backed LC-NH2 (Supelclean LC-

NH2 SPE tubes, 1 mL, 100 mg sorbent, Supelco) and LC-WCX (Supelclean LC-WCX SPE 

tubes, 1 mL, 100 mg sorbent) SPE columns. Eight different solvent mixtures were used to 

obtain seven fractions. Fractionation was exactly performed as described in Bodennec et al. 

[420]. 

Depletion of glycerol- and glycerophospholipids was adapted from [421]. A 50 μL aliquot of 

each lipidome fraction was dried and resuspended in 450 μL MeOH and 50 μL 1M KOH in 

MeOH. The samples were incubated at 37 °C for two h in a Thermomixer and shaken at 

1000 rpm. After this time, samples were neutralized with glacial acetic acid (~ 1 μL), 1000 μL 

CHCl3 was added, and the sample was shaken at 1000 rpm and 20 °C for one h. After the 

addition of 500 μL H2O, samples were vortexed, and phases were separated by 

centrifugation. The lower organic phase was dried in a SpeedVac and redissolved in 50 μL 

iPrOH / ACN / H2O (v/v, 60 / 35 / 5) for UPLC-UHR-ToF-MS analysis. Analysis of lipids was 

performed as described above. 

3.5.2. Results and Discussion 

3.5.2.1. Analysis of lipid standards 

High-quality MS2 data was generated based on the direct infusion of lipid reference 

standards and targeted fragmentation using collision energies from 10 to 50 eV in 2.5 eV 

steps. Spectra were collected for 1 or 2 minutes and exported to .mzML files using 

MsConvert. All files were then further processed in R using the Spectra package. Multiple 

collected spectra from one precursor and collision energy were combined, and intensities 

were summed. Peaks needed to be presented at a minimum of 70% of all collected spectra. 

The resulting spectra were exported to MassBank records. These spectra served as a 

reference for the construction of the database and definition of fragmentation rules for the 

covered lipid classes. 
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The collection of spectra with the stepping collision energy allows identifying optimal collision 

energies for different tasks. While for non-targeted analysis, a higher number of informative 

peaks for the identification of lipid species is required, for targeted analysis, the highest 

possible intensities for quantifier and qualifier ions should be achieved. Plotting fragment 

intensities against the collision energy can help find optimal collision energies for both tasks. 

Below, PC 18:0/18:1(9Z) is shown as an example. First, the [M+H]+ was examined. PCs are 

identified based on the phosphocholine fragment m/z 184.07. In positive ionization mode, 

this is the main fragment. Sometimes lysophosphatidyl choline fragments are observed. For 

higher collision energies, additional fragments at m/z 104.1 and 125.01 can be observed. 

These are further fragments of the PC headgroup but don’t give additional structural 

information. Neutral losses of acyl groups are only low in positive ionization mode and can 

only be detected for highly abundant species. 

In negative ionization mode, more structural information can be obtained, e.g. fragments 

corresponding to the acyl groups bound. However, no position specificity can be achieved. 

Though the loss of the sn2- position over the sn1-position is preferred, the actual preferences 

depend on the bound fatty acid and its length and degree of saturation. 

3.5.2.2. Parsing of shorthand notations 

In order to correctly calculate m/z values of lipid fragments for the prediction of spectra, the 

respective different building blocks need to be determined. Therefore, a package has been 

created in R called lipidomicsUtils. This package can parse a given lipid shorthand 

notation and determine different groups within the lipid. A similar functionality is available 

from the R package rgoslin [293]. 

The functionalities are based on the shorthand notation suggested by Liebisch et al. [207, 

247]. Besides, differences in carbon length and degree of unsaturation of acyl groups can 

also show different functional groups. Currently supported additional functional groups are 

hydroxy groups (OH), keto groups (O), hydroperoxy groups (OOH), and amino groups (NH2). 

Based on the shorthand notation the lipid category, main class, and subclass can be 
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determined. Membership of lipid main classes to different lipid categories is hard coded. 

Currently, supported lipid categories are fatty acyls (FA, LMFA), glycerolipids (GL, LMGL), 

glycerophospholipids (GP, LMGP), and sphingolipids (SP, LMSP). Following main lipid 

classes are mapped to the different categories: FA, CoA, NAE, and PNAE are members of 

fatty acyls. MG, DG, and TG belong to GL. PC, PE, PS, PG, PGP, PI, PIP, PIP2, PIP3, PA, 

PPA, CL, CDP-DG, and NAPE are members of GP. SPH, Cer, CerP, SM, GlcCer, GalCer, 

and LacCer are mapped to SP. From the subclasses currently, di- and triacyl, as well as 1-

alkyl and 1-alkenyl species, are supported. Four different parsing functionalities for shorthand 

notations are available: Lipid category, Acyl, alkyl and alkenyl groups, sphingoid bases, and 

functional groups. 

The first block of functions determines the lipid category, main class, or subclass. For 

example, PC 16:0/18:1(9Z) and PC O-16:0/18:1(9Z) would be classified as GP 

(glycerophospholipids) as category and as PC in the main class but would yield PC and PC-

O as a subclass. This is necessary since fragmentation can differ between these classes. In 

the next step, building blocks can be isolated from the shorthand notation. Acyl, alkyl, and 

alkenyl groups in glycero- and glycerophospholipids can be isolated using the following 

regular expression in R: 

(m|d|t|O-|P-
)*\\d+:\\d+(\\((\\d*(E|Z|Me|OH|OOH|O|NH2)(\\[(S|R)\\])*,*)*\\))* 
 

Based on this, all sphingoid base and acyl groups are returned, and the list is sub-filtered 

using to not contain m, d, or t (notation of hydroxy group on sphingoid base). This 

functionality returns all strings that match this regular expression. PC 16:0/18:1(9Z) would 

return 16:0 and 18:1(9Z) and PC O-16:0/18:1(9Z) return O-16:0 and 18:1(9Z). Likewise, 

sphingoid bases are isolated with the same regular expression and further filtered to start 

with either m, d, or t. Further functions allow determining the position and number of 

different functional groups. Supported functional groups are also isolated as a regular 

expression. Each functional group has to be accompanied by a number indicating the 
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position in the respective lipid or acyl, alkyl, or alkenyl, e.g. OH would not be recovered but 

needs to be defined as 2OH. If the respective group introduces a chiral center to the 

molecule, this can be defined by adding either R or S in square brackets after the functional 

group (e.g. 2OH[S]). The functions take any input, but it is recommended to first parse the 

individual lipids into acyl, alkyl, alkenyl, or sphingoid groups and then perform the detection 

of functional groups on them individually. Different functions allow the return of the number of 

a specific functional group or return the complete block (e.g. 16:0(2OH[R]) returns 2OH[R]). 

Parsing lipids into their functional groups allows for calculating the mass of individual building 

blocks and intact lipids. Based on the number of carbons, double bonds, and potentially 

present functional groups, the number of each element in the acyl, alkyl, and alkenyl groups 

can be determined. Based on this, a molecular formula is generated from which in turn, the 

exact mass is calculated. Furthermore, masses of fixed building blocks like the sn-glycerol-3-

phosphocholine are hardcoded within the package. This allows the calculation of lipid 

masses directly from the shorthand notation without the need to generate a molecular 

structure first. 

Furthermore, shorthand notations from lipids at the isomeric subspecies level can be 

normalized to a common nomenclature. From the shorthand notation of the isomeric 

subspecies, notations for the structural and the molecular level can be generated using 

different functions for either fatty acyls, glycerolipids, glycerophospholipids, or sphingolipids. 

In the case of glycosphingolipids, headgroups are simplified to Hex or Hex2 for mono- or di-

hexosyl sugars. The simplification to lower levels of the shorthand notation hierarchy 

currently only allows the use of unmodified acyl, alkyl, or alkenyl groups, since the rules for 

handling functional groups like hydroxy groups or others are underdeveloped. For example, 

the two acyl groups 16:0(2O) and 16:1(2OH[R]) would yield the same mass and cannot be 

differentiated. However, rules to encode this ambiguity are not yet systematically defined. 

Different systems have been proposed. One of the best-developed but currently not widely 

used systems is generated by the epiLION software [422]. Once the rules for handling 
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functional groups in complex lipids have been standardized by the Lipidomics Standard 

Initiative, they can be encoded into the lipidomicsUtils package. 

Lastly, functionalities to calculate adduct masses, ion formulas, and parsing of chemical 

formulas have been added. Based on the supplied functions, the package is flexible and can 

handle lipid shorthand notations within the R environment directly without changing to 

different programming languages. 

3.5.2.3. Template spectra 

Similar to LipidBlast, the developed spectral prediction tools requires measured template 

spectra that are used for the generation of in silico spectra. These templates can come from 

published or measured spectra but need to be coded in a specific way to be useful within R. 

Templates are either stored in text files and can be read or coded into R. They contain 

instructions on how to calculate the m/z value of a fragment and its intensity, scaled to the 

maximum peak having an intensity of 999. For the here-developed tools, templates are 

represented as named lists in R, where the names serve as calculation formulas for the m/z 

values of the fragment, and the values represent the respective intensities. The developed 

tool supplies different fixed building blocks that can be used to calculate fragment m/z 

values, e.g. glycerol backbone, phosphate group, etc. The names of the supplied template 

list contain the calculation formula and are evaluated in R using the function 

eval(parse(text = x )). Adduct_mass represents the calculated ion mass from the 

exact mass of the lipid, which is calculated from its shorthand and the supplied adduct. 

sn1_mass and sn2_mass (and optionally sn3_mass for triacylglycerols) are the masses of 

the intact, non-charged acyl residues as a fatty acids. Furthermore, different lipid class-

specific masses are supplied. For example, in the case of PCs, these include gpc_mass, 

pc_mass, and choline_mass. Other constant building blocks are water_mass or 

proton_mass, for example. The masses of these building blocks are supplied by the 

lipidomicsUtils package and are hardcoded, and a complete list of all hardcoded building 

blocks can be found in the appendix (SI Table 7). If a certain constant mass is not supplied, it 
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can be either invoked by a number or via calculation from a formula using rcdk [388]. Since 

the package is loaded in the background, functions like get.formula() can be used to 

calculate masses from formulas. Variable masses, such as acyl side chains or sphingoid 

bases, are calculated from the parsed building blocks. The example below shows the 

template for the fragmentation of PCs as [M+FA-H]- adducts as it would be constructed. 

template <- list( 
  "adduct_mass" = 10, 
  "adduct_mass - rcdk::get.formula('C2H4O2')@mass" = 750, 
  "adduct_mass - sn1_mass + water_mass - 
rcdk::get.formula('C2H4O2')@mass" = 10, 
  "adduct_mass - sn2_mass + water_mass - 
rcdk::get.formula('C2H4O2')@mass" = 10, 
  "adduct_mass - sn1_mass - rcdk::get.formula('C2H4O2')@mass" = 10,  
  "adduct_mass - sn2_mass - rcdk::get.formula('C2H4O2')@mass" = 10, 
  "sn1_mass - proton_mass" = 999, 
  "sn2_mass - proton_mass" = 999 
) 
 

Templates can be either directly generated in R or read from text files. The following format 

for text files was defined. First, the calculation formula similar to the hardcoding in R is 

supplied, and the intensity is separated from the formula by a ->. If mass calculations based 

on rcdk functions are required, they can also be included. The example above for a PC as 

[M+FA-H]- adduct would like in a text file like this: 

adduct_mass->10 
adduct_mass - rcdk::get.formula('C2H4O2')@mass->870 
adduct_mass - sn1_mass + water_mass - 
rcdk::get.formula('C2H4O2')@mass->150 
adduct_mass - sn2_mass + water_mass - 
rcdk::get.formula('C2H4O2')@mass->150 
adduct_mass - sn1_mass - rcdk::get.formula('C2H4O2')@mass->10 
adduct_mass - sn2_mass - rcdk::get.formula('C2H4O2')@mass->10 
sn1_mass - proton_mass->999 
sn2_mass - proton_mass->999 
 
 

The function read_template() reads a template stored in a text file and returns a named 

list as required by wormLipidBlastR. Different templates are hardcoded and serve as fallback 

and default templates, if users don’t supply their custom templates. They are based on 
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measurements of lipid standards on a Bruker maXis UHR-ToF-MS at a collision energy of 

40eV. 

3.5.2.4. Spectra generation 

For the generation of spectra for different species, the templates are used together with a 

shorthand notation on the molecular, structural, or isomer subspecies level. However, since 

so far differences between sn1 and sn2 are not incorporated into the model, the different 

levels would yield the same results. Therefore, it is recommended to use the molecular 

subspecies level (e.g. PC 16:0_18:1). 

Based on the supplied shorthand notation, adduct definition, and the respective template, the 

masses of the different building blocks are calculated and supplied to the function to correct 

fragment m/z values based on the supplied template formula, and a spectrum is generated. 

With this, a vector of m/z values together with a vector of their respective intensities is 

generated. Spectral data is stored in Spectra object from the Spectra R package 

(https://github.com/rformassspectrometry/Spectra), which can be exported into different 

formats, such as .mgf, .msp, or MassBank records. All related metadata is stored in defined 

metadata columns, which include the chemical formula of the molecule, internal ID, or the 

SPLASH, which is a unique identifier for spectra generated based on the splashR package 

[423]. The currently implemented metadata columns allow the export to a correctly annotated 

MassBank record. The export() function from the MsBackendMassbank allows exporting 

generated records into valid Massbank record files. The Spectra objects can be 

concatenated to generate a list of several spectra. Therefore, large libraries can be 

generated and stored in a single variable which is available for further use in R or can be 

exported to specific file formats. This allows the direct use of the generated spectra within R, 

e.g. for comparison against measured spectra using compareSpectra() from the Spectra 

package. Most of the metadata is generated by the code or comes from the user input, e.g. 

adduct and formula. Users can additionally set the collision energy in the Spectra object if 
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they want to have a different collision energy set. Additional fields such as RT or CCS can be 

set optionally. 

As benchmarking, predicted lipid species for C. elegans were used. In total, spectra for 1545 

lipids from different classes were generated within 3322.53 seconds. This means on 

average, prediction takes about 2 seconds per lipid. However, the code is not parallelized at 

the current stage, which would further improve speed. Spectra can be generated during each 

new session based on a list of shorthand notations. However, for reproducible research, it is 

advantageous to store generated spectra 

3.5.2.5. Validation of predicted spectra 

Validation of predicted spectra is performed by comparison against well-analyzed and 

annotated spectra from C. elegans. Particularly sphingolipids have been recently 

investigated in C. elegans, and several new species from different sphingolipid classes have 

been described [116]. The worm uses an unusual C17iso sphingoid base in all its 

sphingolipids [251, 279]. Since also no reference spectra based on authentic standards exist 

for these sphingolipids and no structures are present in LipidMaps, which makes the use of 

LipidFrag not possible, they represent an ideal use case for validation. 

Since the exact number of sphingolipids and their structure is unknown, potential lipid 

structures have been generated in silico using the ChemAxon JChem for Excel based on 

different sphingoid bases and potential fatty acids. Analysis of sphingolipids so far has shown 

that they typically contain saturated straight chain N-acyl bound fatty acids with or without 

hydroxylation of the second carbon. A list of suitable fatty acids has been compiled, and in 

total, 510 sphingolipids at the isomeric subspecies, 324 at the structural or molecular 

subspecies, and 282 at the species level have been generated. Sphingolipidome data from 

Hänel et al. was used as a validation set [116]. In this data, fragmentation data from 10 and 

40 eV have been combined. Fragmentation of mammalian sphingolipids with C18 sphingoid 

bases was obtained from chemical standards and served as input for the templates (data not 

shown). Additionally, literature data have been uses, since the fragmentation of sphingolipids 
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has been extensively studied in the negative ionization mode and only partially in the positive 

ionization mode [340, 413, 414, 424, 425]. For all predicted sphingolipids, the shorthand 

notation was generated, and spectra were predicted. 

Predicted spectra with a precursor matching within 0.005 Da were chosen for spectral 

comparison. Data from fractionated C. elegans sphingolipids were used for testing. Using 

these spectra, it was found that dihydro ceramides were not matching well with cosine scores 

around 0.5, while other sphingolipid classes showed good agreement. This is mostly 

attributed to differences in the intensities of different fragments. Dihydroceramides are 

missing the double bound position 4 of the sphingoid base. This double bond adds a 

mesomery-based stabilizing effect. Therefore, the intensity of fragments is in DhCer lower 

compared to ceramides. Since no dihydro ceramides were included in the templates, this 

mismatch can be explained. Spectra of some specific matches have been examined in more 

detail. Figure 19 shows an example of a ceramide fragmentation spectrum obtained from C. 

elegans samples. This spectrum is a composite spectrum of two collision energies (10 eV 

and 40eV) generated and merged during acquisition with DDA. The highest fragment peak is 

the loss of a water molecule from the precursor. This fragmentation usually occurs at low 

collision energies. Typical fragments for Cers are the loss of a water molecule, which is 

possible for both hydroxyl groups. This fragmentation requires low energy, since it is often 

already observed as an in-source fragment. Both obtained structures can lose the N-Acyl, 

again yielding fragments of similar masses. One of these fragments is losing an additional 

water molecule, while the other is losing formaldehyde. The fragments yield a typical peak 

triplet with the m/z 238.2529, 250.2529 and 268.2635. These three fragments can identify a 

molecule as a sphingolipid containing a C17:1 sphingoid base. The N-Acyl can be identified 

by the difference between the [M-H2O+H]+ fragment and m/z 268.2635 (see Figure 19). In 

contrast to Cers, DhCers show the typical water loss to a lesser extent. This suggests that 

the loss of the hydroxyl group at position 3 is the favored one in ceramides because of the 

stabilizing effect of the neighboring double bond. Additionally, m/z 288.2897 is observed for 

DhCers, which represents the loss of the fatty acyl as ketene directly from the [M+H]+. In 
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DhCers, this double bond is missing; therefore DhCers tend to show lower intensities for the 

[M-H2O+H]+ fragment. Interestingly, DhCers show an N-Acyl fragment corresponding to an 

N-Acyl amide. These fragments can also be found in highly abundant Cer fragmentation 

spectra, but only at low intensities. Similar N-Acyl amide fragments as the ones observed for 

DhCers were found in GlcCers. GlcCers showed different fragments related to the loss of the 

hexosyl headgroup. Neutral losses of 162.0528 Da were observed from the [M+H]+ and [M-

H2O+H]+ peaks. DhSMs and SMs yield a fragment of m/z 184.0733 corresponding to the 

phosphocholine headgroup. This was the only observed fragment, and therefore no further 

structural characterization was possible for SMs. Examples from matching results are 

summarized in Table 24. 

  

Figure 19: (A) Example spectrum for a C. elegans ceramide (Cer d17:1/16:0) (B) Fragmentation pathway of 
Cer d17:1/16:0 
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Table 24: Results from spectral matching using confirmed sphingolipid identifications from Hänel et al. [116] as 
query spectra and spectra predicted by wormLipidBlastR based on the lipids predicted in chapter 2.3 as target 
database. Differences in nomenclature for the lipids are based on the reporting. Full structural details are reported 
for the WormLipidBlastR results since they were used for spectra generation. 

Sphingolipid from Hänel 
et al. [116] 

Best Matching lipid from wormLipidBlastR 
Forward 
Score 

Revere 
Score 

Cer d17:0/22:0 Cer 16:0(3OH,4OH,15Me)/22:0 488 524 

Cer d17:0/22:0(OH) Cer 16:0(3OH,4OH,15Me)/22:0(2OH[R]) 536 568 

Cer d17:0/23:0 Cer 16:0(3OH,4OH,15Me)/23:0 514 545 

Cer d17:0/23:0 Cer 16:0(3OH,4OH,15Me)/22:0(21Me) 514 545 

Cer d17:0/24:0 (isomer 1) Cer 16:0(3OH,4OH,15Me)/24:0 556 619 

Cer(d17:0/24:0 (isomer 2) Cer 16:0(3OH,4OH,15Me)/24:0 533 577 

Cer d17:0/26:0 Cer 16:0(3OH,4OH,15Me)/26:0 492 537 

Cer d17:1/16:0 Cer 16:1(4E,3OH,4OH,15Me)/16:0 969 993 

Cer d17:1/18:0 Cer 16:1(4E,3OH,4OH,15Me)/18:0 968 994 

Cer d17:1/20:0 Cer 16:1(4E,3OH,4OH,15Me)/20:0 972 994 

Cer d17:1/20:0(OH) 

(isomer 1) 
Cer 16:1(4E,3OH,4OH,15Me)/20:0(2OH[R]) 932 982 

Cer d17:1/22:0(OH) 

(isomer 2) 
Cer 16:1(4E,3OH,4OH,15Me)/22:0(2OH[R]) 955 976 

Cer d17:1/22:0(OH) Cer 16:1(4E,3OH,4OH,15Me)/22:0(2OH[R]) 952 995 

Cer d17:1/24:0 (isomer 1) Cer 16:1(4E,3OH,4OH,15Me)/24:0 933 968 

Cer d17:1/24:0 (isomer 2) Cer 16:1(4E,3OH,4OH,15Me)/24:0 949 974 

Cer d17:1/24:0(OH) 

(isomer 1) 
Cer 16:1(4E,3OH,4OH,15Me)/24:0(2OH[R]) 949 988 

Cer d17:1/24:0(OH) 

(isomer 2) 
Cer 16:1(4E,3OH,4OH,15Me)/24:0(2OH[R]) 878 965 

Cer d17:1/26:0 Cer 16:1(4E,3OH,4OH,15Me)/26:0 921 945 

Cer d17:1/26:0(OH) 

(isomer 1) 
Cer 16:1(4E,3OH,4OH,15Me)/26:0(2OH[R]) 959 994 

Cer d17:1/26:0(OH) 

(isomer 2) 
Cer 16:1(4E,3OH,4OH,15Me)/26:0(2OH[R]) 937 987 
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Sphingolipid from Hänel 
et al. [116] 

Best Matching lipid from wormLipidBlastR 
Forward 
Score 

Revere 
Score 

HexCer d17:1/21:0(OH) 

(isomer 1) 
GlcCer 16:1(4E,3OH,4OH,15Me)/21:0(2OH[R]) 843 951 

HexCer d17:1/21:0(OH) 

(isomer 2) 
GlcCer 16:1(4E,3OH,4OH,15Me)/20:0(2OH[R],19Me) 843 951 

HexCer d17:1/23:0(OH) 

(isomer 1) 
GlcCer 16:1(4E,3OH,4OH,15Me)/23:0(2OH[R]) 860 972 

HexCer d17:1/23:0(OH) 

(isomer 2) 
GlcCer 16:1(4E,3OH,4OH,15Me)/22:0(2OH[R],21Me) 860 972 

HexCer d17:1/24:0(OH) 

(isomer 1) 
GlcCer 16:1(4E,3OH,4OH,15Me)/24:0(2OH[R]) 780 939 

HexCer d17:1/24:0(OH) 

(isomer 2) 
GlcCer 16:1(4E,3OH,4OH,15Me)/24:0(2OH[R]) 799 947 

 

3.5.3. Conclusion 

The framework developed for the prediction of lipid MS2 spectra for C. elegans represents a 

modular system, which can be easily expanded to further lipid classes. While the original 

LipidBlast implementation relies on an Excel sheet, which is useful for users with limited 

programming experience, the customization of spectra required some serious effort in 

reprogramming parts of the underlying VBA code. The presented implementation in R is easy 

to handle and allows customization of predicted lipid spectra based on a building block 

approach. Furthermore, new libraries can be created during data analysis using the R code 

within a running session, which offers higher flexibility. Users can define their own calculation 

rules for the calculation of fragment m/z values. Further lipid classes can be added at any 

time. A prerequisite for successful integration is that the package lipidomicsUtils can 

parse the new lipid class. Therefore, a defined shorthand notation as well as rules to derive 

building blocks from them, are required. The further development of the framework and 

lipidomicsUtils go hand in hand. 

A potential additional feature for future integration is the inclusion of intensity modeling to 

predict the intensity of acyl-derived fragments correctly. For example, Schumann et al. 
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recently provided models for data obtained on Orbitrap instrumentation to harmonize the 

abundances of fatty acid anion fragments derived from the sn1 and sn2 position of 

glycerophospholipids [426]. Based on their model, it was possible to adjust after the data 

acquisition for instruments settings and collision energy. Since lipidomicsUtils is able to 

supply further information of building blocks like the number of double bonds or their position, 

similar modeling can be achieved. However, several lipid standards must be measured 

systematically in order to obtain valid models. 

Another potential application for further improvement is the prediction of spectra for oxidized 

lipids. Specialized software for the prediction of spectra of these lipids exists, but no generic 

framework that integrates non-oxidized and oxidized lipids in one package exists [427]. 
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3.6. Integrated annotation and identification pipeline 

Using different available information, such as m/z, RT, CCS, and fragmentation data, 

metabolites and lipids can be annotated and identified on different levels. Annotation of 

measured m/z values is still one of the first steps in metabolite annotation for metabolites not 

covered in in-house databases. First, an exact mass search can be performed by comparing 

measured m/z values are compared against theoretical m/z values calculated from a 

compound database and adduct definitions. The MassTRIX server was one of the first tools 

for exact mass searching and was initially developed for the annotation of ultra-high 

resolution MS data coming from FT-ICR-MS-based measurements [194]. While the next 

version also allowed the annotation of LC-MS-based data and integration of transcriptomics, 

it was still only available as a web server [195]. Another tool is Paintomics, which offers 

functionalities similar to MassTRIX [197, 428]. Likewise, the tool CEU Mass Mediator follows 

the same line, but the latest version also integrates MS2 spectra matching [429, 430]. 

However, annotation solely based on m/z values is very weak since several potential 

isomeric and isobaric structures for a single m/z might exist. Several tools have been 

developed to overcome this issue. The tool metDNA integrates annotation with a metabolic 

reaction network using well-identified metabolites as seeds for the annotation of further 

metabolites [431]. Multiple recursive rounds are performed, and each improves annotation. 

Another application for the exploration of MS2 data is metCirc [432]. It groups metabolites 

based on the similarity of MS2 spectra and compound familial groupings. 

Once the number of potential candidates has been narrowed down, tandem MS is applied to 

identify metabolites of interest. Dereplication of previously identified metabolites is a critical 

issue to not re-identify the same metabolites repeatedly. Typically, reference databases are 

constructed using metabolite standards, and their MS1 and MS2 spectra and retention 

behavior, are stored in an in-house database. Metabolites from the database can be then 

identified by matching m/z values, RTs, and fragmentation spectra of measured metabolites 

against the reference database. 
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In order to enable large-scale automatic annotation on the MS1 and MS2 levels an R-based 

workflow has been implemented. This workflow is based on functions implemented in 

different packages from the RforMassSpectrometry environment. Most of these functions 

have been implemented in MetaboCoreUtils and MetaboAnnotation [369, 433, 434]. 

3.6.1. Material and Methods 

3.6.1.1. Implementation 

Different functionalities for the annotation rely on existing packages from the 

RforMassSpectrometry environment, specifically on the Spectra, MetaboCoreUtils, and 

MetaboAnnotation packages as well as MsBackendMassBank, MsBackendMgf, and 

MsBackendMsp for the import of measured and library spectra [369]. Inputs are provided in 

the form of a .yaml file containing paths to all input data and folder and all necessary 

parameters to perform the annotation, e.g. ppm or absolute errors, RT tolerances and 

minimum dot-product, etc. The workflow is freely available from GitHub 

(https://github.com/michaelwitting/MetaboliteAnnotationWorkflow), contains all required 

functions, and performs installation of all required packages. Additionally, test data is 

available for testing the workflow without the need to provide own data. The complete 

workflow is described in the result section. 

3.6.2. Results and Discussion 

The metabolite annotation server MassTRIX previously worked with relatively static 

databases that required an administrator to update them if changes occurred, which lowers 

its flexibility. Furthermore, filtering to specific classes of metabolites has been done post-

annotation. This is often time-consuming since the full annotation must be performed all the 

time. Flexibility was increased by allowing the input of an arbitrary data frame containing 

metabolites of interest and their specific m/z values. Additionally, since annotation on the 

MS1 level results in very ambiguous results, MS2 spectra matching has been integrated into 

the new workflow. The developed workflow relies on several blocks of code performing 

different tasks. The individual blocks are discussed below. The presented workflow is based 
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on functions available from different packages from the RforMassSpectrometry consortium. 

Since the defined input consists of structured folders and data, it can also be used in 

workflow tools. 

3.6.2.1. MS1 and MS2 data import 

In the first step, data is imported from different sources. MS1 data can be imported in the 

form of simple .tsv or .csv files. Positive and negative ionization mode data are stored in 

separate QFeatures objects within R. Since data often contains isotope cluster and adduct 

group information, but no MS1 spectra are exported from different software tools such as 

Genedata Expressionist for MS, a function that reconstructs the MS1 isotope pattern from 

ungrouped and grouped has been added. MS1 spectra are returned as Spectra objects with 

one averaged isotope pattern per spectrum. In case MS1 spectra are available, they can be 

imported from .mgf files, and the reconstruction step is skipped. 

MS2 data is imported from .mgf or .msp files. In order to be able to link MS1 and MS2 data, 

either unique identifiers for the MS1 feature are created, or existing identifiers are used to flag 

the corresponding MS2 spectra with them. This happens by either using existing 

correspondence between the level stored in the files or by checking if precursor m/z and RT 

values fall into a specific region around an MS1 feature m/z and RT. 

3.6.2.2. MS1 metabolite annotation 

One of the core functionalities of MassTRIX or CEU Mass Mediator is to annotate m/z values 

with potential metabolites using databases of theoretical m/z values from different 

metabolites. This function is further available in the newly developed workflow, though it has 

to be mentioned that this way of annotation yields highly ambiguous annotations with many 

false positives. Annotation on the MS1 level is based on the matchMz() function from the 

MetaboAnnotation package. As Input is the rowData from the respective QFeatures 

objects, as well as databases with metabolites, is used. Annotation using multiple compound 

databases is possible since several databases can be stored in the input folder. Parameters 

for the annotation, such as m/z or RT tolerance, are read from the .yaml file storing all 
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configuration parameters. Two cases can be distinguished, either in-house databases, which 

contain RTs, or external compound databases, with no RT information. Data is supplied as a 

simple .tsv file with the columns id, name, formula, exact_mass, and optionally rt. Only 

neutral compounds shall be provided since the calculation of m/z is performed during the 

annotation process. Furthermore, valid adduct names according to the adduct names defined 

in MetaboCoreUtils are required. Based on the type of library (in-house or external), a 

parameter object for the matchMz function is constructed. If an in-house library is used, a 

Mass2MzRtParam is created; otherwise, a Mass2MzParam. Both objects give instructions to 

the matchMz function on how the annotation shall be performed. In both cases, neutral 

masses are converted to m/z values using the adduct definitions. In contrast to previously 

used static m/z tables, this allows more flexibility in the annotation process. Results are 

stored in dedicated output folders for external or in-house libraries. Data is stored as .tsv or 

.rds files for further use in the downstream data analysis workflows. Table 25 summarizes all 

currently supported adducts for annotation. 

Table 25: Summary of all currently supported adducts in MetaboCoreUtils. The adduct list has been adopted 
from Huang et al. [435]. Adducts are stored a list that is read upon loading of the package and can be extended 
anytime. Calculation is split into a multiplicative and an additive part. 

Ionization 
mode 

Common Adduct 
Name 

MetaboCoreUtils 

adduct name 
Charge Calculation 

positive 

[M+3H]3+ [M+3H]3+ 3+ M / 3 + 3 * 1.007276 / 3  

[M+2 H+Na]3+ [M+2H+Na]3+ 3+ M / 3 + (2 * 1.007276 + 1 * 22.98922) / 3 

[M+H+2 Na]3+ [M+H+2Na]3+ 3+ M / 3 + (1 * 1.007276 + 2 * 22.98922) / 3 

[M+3Na]3+ [M+3Na]3+ 3+ M / 3 + (3 * 22.98922) / 3 

[M+2 H]2+ [M+2H]2+ 2+ M / 2 + (2 * 1.007276) / 2 

[M+H+NH4]2+ [M+H+NH4]2+ 2+ M / 2 + (1.007276 + 18.03383) / 2 

[M+H+K]2+ [M+H+K]2+ 2+ M / 2 + (1.007276 + 38.96316) / 2 

[M+H+Na]2+ [M+H+Na]2+ 2+ M / 2 + (1.007276 + 22.98922) / 2 

[M+ACN+2H]2+ [M+C2H3N+2H]2+ 2+ M / 2 + (2 * 1.007276 + 41.02655) / 2 
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Ionization 
mode 

Common Adduct 
Name 

MetaboCoreUtils 

adduct name 
Charge Calculation 

[M+2 Na]2+ [M+2Na]2+ 2+ M / 2 + 2 * 22.98922 / 2 

[M+2 ACN+2 H]2+ [M+C4H6N2+2H]2+ 2+ M / 2 + (2 * 1.007276 + 2 * 41.02655) / 2 

[M+3 ACN+2 H]2+ [M+C6H9N3+2H]2+ 2+ M / 2 + (2 * 1.007276 + 3 * 41.02655) / 2 

[M+H]+ [M+H]+ 1+ M + 1.007276 

[M+Li]+ [M+Li]+ 1+ M + 7.015456 

[M+2 Li-H]+ [M+2Li-H]+ 1+ M + 2 * 7.015456 - 1.007276 

[M+NH4]+ [M+NH4]+ 1+ M + 18.03383 

[M+H2O+H]+ [M+H2O+H]+ 1+ M + 19.01784 

[M+Na]+ [M+Na]+ 1+ M + 22.98922 

[M+CH3OH+H]+ [M+CH4O+H]+ 1+ M + 1.007276 + 32.02621 

[M+K]+ [M+K]+ 1+ M + 38.96316 

[M+ACN+H]+ [M+C2H3N+H]+ 1+ M + 1.007276 + 41.02655 

[M+2 Na-H]+ [M+2Na-H]+ 1+ M + 2 * 22.98922 - 1.007276 

[M+2K-H]+ [M+2K-H]+ 1+ M + 2 * 38.96316 - 1.007276 

[M+iPrOH+H]+ [M+C3H8O+H]+ 1+ M + 1.007276 + 60.05751 

[M+ACN+Na]+ [M+C2H3N+Na]+ 1+ M + 22.98922 + 41.02655 

[M+DMSO+H]+ [M+DMSO+H]+ 1+ M + 1.007276 + 78.01394 

[M+2 ACN+H]+ [M+C4H6N2+H]+ 1+ M + 1.007276 + 2 * 41.02655 

[2M+H]+ [2M+H]+ 1+ 2 * M + 1.007276 

[2M+NH4]+ [2M+NH4]+ 1+ 2 * M + 18.03383 

[2M+Na]+ [2M+Na]+ 1+ 2 * M + 22.98922 

[2M+K]+ [2M+K]+ 1+ 2 * M + 38.96316 

[2M+ACN+H]+ [2M+C2H3N+H]+ 1+ 2 * M + 1.007276 + 41.02655 
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Ionization 
mode 

Common Adduct 
Name 

MetaboCoreUtils 

adduct name 
Charge Calculation 

[2M+ACN+Na]+ [2M+C2H3N+Na]+ 1+ 2 * M + 22.98922 + 41.02655 

[3M+H]+ [3M+H]+ 1+ 3 * M + 1.007276 

negative 

[M-3H]3- [M-3H]3- 3- M / 3 – 3 * 1.007276 / 3 

[M-2H]2- [M-2H]2- 2- M / 2 – 2 * 1.007276 / 2 

[M-H]- [M-H]- 1- M – 1.007276 

[M+Na-2H]- [M+Na-2H]- 1- M - 2 * 1.007276 + 22.98922 

[M+Cl]- [M+Cl]- 1- M + 34.9694 

[M+K-2H]- [M+K-2H]- 1- M - 2 * 1.007276 + 38.96316 

[M+ACN-H]- [M+C2H3N-H]- 1- M + 41.02655 - 1.007276 

[M+FA-H]- [M+CHO2]- 1- M + 44.9982 

[M+HAc-H]- [M+C2H3O2]- 1- M + 59.01385 

[M+Br]- [M+Br]- 1- M + 78.91889 

[M+TFA-H]- [M+C2F3O2]- 1- M + 112.9856 

[2M-H]- [2M-H]- 1- 2 * M - 1.007276 

[2M+FA-H]- [2M+CHO2]- 1- 2 * M + 44.9982 

[2M+HAc-H]- [2M+C2H3O2]- 1- 2 * M + 59.01385 

[3M-H]- [3M-H]- 1- 3 * M – 1.007276 

 

3.6.2.3. MS2 data processing, library search, and spectra analysis 

MS2 spectral library matching represents the current gold standard for metabolite annotation. 

Using in-house libraries, annotation can be performed based on the precursor m/z, RT, and 

spectral similarity resulting in high confidence annotations. For metabolites not present in the 

in-house database matching against reference spectra from other databases represents an 

additional alternative for annotation. 
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Similar to the MS1 annotation, the MS2 annotation decides on the origin of the library if 

additional RT matching shall be performed. A comparison of spectra is performed using the 

matchSpectra function from MetaboAnnotation. Spectral comparison is performed 

using the forward and reverse dot products. Libraries can be supplied as .mgf, .msp, or 

MassBank records. If the latter is used, all spectra must be supplied in one file with all 

records. Both query and target spectra are normalized according to their base peak to have a 

maximum intensity of 100. Additionally, low-intensity peaks, which might interfere with 

comparison, can be removed using an intensity threshold supplied with all other parameters. 

Library spectra are filtered using the precursor m/z of the query spectrum before the actual 

spectral comparison is performed. The actual spectral similarity is calculated using the 

normalized dot-product described by Scott and Stein [436]. 

𝐾𝐾𝑃𝑃 =  
(∑𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎.𝑊𝑊𝑙𝑙𝑖𝑖𝑏𝑏)²
∑𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎

2 ∑𝑊𝑊𝑙𝑙𝑖𝑖𝑏𝑏
2  

For matching, the forward and reverse dot products are calculated. The forward dot-product 

takes all peaks into account, while the reverse dot-product only uses peaks matching to 

library peaks. In addition, the number of matching peaks is reported. Results from each 

individual spectrum are combined, and a data frame with all results is returned. If matching 

against an in-house library containing RT information is also performed, the RT difference 

between query and library spectra is reported. 

The results of matching can be stored as .tsv or .rds files. The latter has the advantage that 

they contain the original matchSpectra object, which can be loaded again into R for further 

processing and data evaluation. This object contains all the query and target spectra used. 

Manual evaluation of spectral matching results can be performed using the 

validateMatchedSpectra function from MetaboAnnotation, which opens as a Shiny 

app that can display all query spectra and their associated results. This allows manual 

validation of all results and improves data quality. 
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3.6.2.4. General utility functions 

Besides the annotation of MS1 and MS2 data, several additional functions are available. 

These include, for example, the matching of features between ionization modes. If the same 

chromatographic system is used in positive and negative ionization modes and metabolites 

can be ionized in both ionization modes, RTs can be used to match between them. This 

would allow the comparison and the transfer of annotations between the ionization modes. 

The matchMz function is also used for this, together with the Mz2MassParam or 

Mz2MassRtParam object. Using the parameter objects, m/z values are converted to neutral 

masses for all defined adducts in positive and negative ionization modes. The neutral 

masses are then compared against each other for all combinations of adducts from both ion 

modes. Matches are stored with the adduct combination as a string for further processing. 

Feature-based molecular networking represents a powerful tool alternative to molecular 

networking [437]. The main improvement is that MS2 spectra of features with the same 

precursor m/z but different RTs are no longer merged together, and therefore, the complete 

networking becomes aware of isomeric structures. The developed workflow contains export 

functions that generate files that can be directly uploaded to GNPS into the FBMN workflow. 

Furthermore, upon import of MS1 data, isotope patterns are reconstructed and stored in a 

separate Spectra object. Both MS1 and MS2 data are used to export Sirius .ms files, which 

can be directly imported into Sirius for fragmentation tree calculation and spectral analysis. 

3.6.2.5. Utility functions for lipidomics 

Besides the annotation workflow, some utility functions specifically for the analysis of lipids 

have been developed. The two functions containsMz() and containsNeutralLoss(), 

allowing to search for certain m/z values that are typical for lipids (examples are listed in 

Table 26). Both functions would return a vector of TRUE or FALSE if a matching m/z value 

was found in the Spectra object. These functions have been implemented in the Spectra 

package. Furthermore, for identifying different lipid classes, functions to work with referenced 

Kendrick mass defects (RKMDs) have been integrated. This approach has been developed 
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by Lerno et al. and first calculates the Kendrick mass defect and then references this to mass 

defects of lipid classes [438] (compare chapter 3.3.2.5). The functions calculateKm(), 

calculateKmd(), and calculateRkmd() perform the respective steps and have been 

integrated into the MetaboCoreUtils package. 

Table 26: Lipid class specific product ions and neutral losses that can be used in conjunction with the 
containsMz and containsNeutralLoss functions from the Spectra package. Masses for sphingolipids 
assume a C17 sphingoid base. 

Ionization mode Lipid class Adduct Fragment / neutral loss 

positive 

PC 

[M+H]+ 
m/z 184.0733 

NL 183.0661 

[M+Na]+ 
m/z 146.984 

NL 183.0661 

PE 

[M+H]+ NL 141.0191 

[M+Na]+ 

m/z 120.9661 

m/z 150.005 

NL 44.0392 

PS 
[M+H]+ NL 185.0089 

[M+Na]+ m/z 207.998145 

PG 

[M+H]+ NL 172.0137 

[M+Na]+ m/z 195.0029 

[M+NH4]+ NL 189.0402 

PA 

[M+H]+ NL 97.976896 

[M+Na]+ --- 

[M+NH4]+ 
NL 115.0035 

NL 17.0266 

PI 

[M+H]+ NL 260.0297 

[M+Na]+ --- 

[M+NH4]+ NL 277.0563 

DG 

[M+Na]+ --- 

[M+NH4]+ 
NL 35.0371 

NL 17.0266 
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Ionization mode Lipid class Adduct Fragment / neutral loss 

SM [M+H]+ m/z 184.0733 

Cer [M+H]+ 

NL 18.0106 

m/z 238.2529 

m/z 250.2529 

m/z 268.2635 

HexCer [M+H]+ 

NL 18.0106 

NL 162.0528 

m/z 238.2529 

m/z 250.2529 

m/z 268.2635 

Hex2Cer [M+H]+ 

NL 18.0106 

NL 162.0528 

NL 342.1162 

m/z 238.2529 

m/z 250.2529 

m/z 268.2635 

Negative 

PC [M+FA-H]- NL 60.0211 

PE [M-H]- 
m/z 140.0118 

m/z 196.0380 

PG [M-H]- 
m/z 152.9958 

m/z 171.0063 

PA [M-H]- m/z 152.9958 

PI [M-H]- 

m/z 241.0119 

m/z 223.0013 

m/z 152.9958 

m/z 259.0224 

PS [M-H]- 
m/z 152.9958 

NL 87.0320 

SM [M+FA-H]- 
m/z 168.0431 

NL 60.0211 

 

3.6.3. Conclusion 

The developed annotation workflow allows a first-line automatic annotation of LC-MS/MS 

data on the MS1 and MS2 levels as well as several utility functionalities. It is based on the 

package from the RforMassSpectrometry environment and can handle positive and negative 

mode data from the same experimental setup. Export of results to multiple file formats as 
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well as export data for external tools, allows easy integration. This workflow is used to 

annotate metabolomics and lipidomics data in the following chapters. The workflow also 

integrates other external tools, such as GNPS or Sirius, by exporting data in the required 

format. Since consistent identifiers are generated and used for each feature, export results 

can be cross-matched between the tools. In the future the integration of additional tools such 

as MetFrag is possible. 
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4. Large-scale identification of lipids in C. elegans 
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Chapter-related publications: 

HLH-30 dependent rewiring of metabolism during starvation in C. elegans 

Dall K. B., J. F. Havelund, E. B. Harvald, M. Witting, N. J. Færgeman 

Aging Cell, 2021 Apr;20(4):e13342. doi: 10.1111/acel.13342. 

This article describes the role of the transcription factor HLH-30/TFEB in the starvation 
response of C. elegans. Metabolomic and lipidomic analysis has been performed to study 
starvation-related changes in WT and hlh-30 mutants. In collaboration with the group from 
Odense, I performed lipidomics analysis, including lipid annotation and statistical analysis. 
This is one of three datasets used in this chapter for in-depth lipid annotation. 

 

Reduced peroxisomal import triggers a peroxisomal retrograde signaling 

Rackles E., I. Forné, C. Fischer, X. Zhang, S. Schrott, J. Zacherl, M. Witting, J. Ewbank, C. 
Osman, A. Imhof, S. G. Rolland 

Cell Reports, 2021 Jan 19;34(3):108653. doi: 10.1016/j.celrep.2020.108653. 

Lipidomics was used to study the effect of knocking down prx-5/PEX5, causing peroxisomal 
import stress. In the lipid analysis of C. elegans samples, lipid annotation, and statistical 
analysis were performed by myself. This is one of three datasets used in this chapter for in-
depth lipid annotation. 

 

Autophagy compensates for defects in mitochondrial dynamics 

Haeussler S., F. Köhler, M. Witting, M. F. Premm, S. G. Rolland, C. Fischer, L. Chauve, O. 
Casanueva, B. Conradt 

PLoS Genetics, 2020 Mar 19;16(3):e1008638 

Mitochondrial dynamics are essential for mitochondrial and cellular homeostasis. Lipidomic 
analysis revealed changes in triacylglycerols with specific chain length and degree of 
desaturation. I performed lipid analysis including lipid annotation and statistical analysis. This 
is one of three datasets used in this chapter for in-depth lipid annotation. 

 

Comparison of lipidome profiles of Caenorhabditis elegans – Results from an inter-laboratory 
ring trial  

Spanier B., A. Laurençon, A. Weiser, N. Pujol, S. Omi, A. Barsch, S. W. Meyer, J. J. Ewbank, 
F. Paladino, S. Garvis, H. Aguilaniu, M. Witting 

Metabolomics, 2021 Feb 17;17(3):25. doi: 10.1007/s11306-021-01775-6. 

Differences between metabolomics and/or lipidomics results from different laboratories can 
be attributed to differences in the culture of C. elegans, e.g. different nutritional value of 
feeding bacteria. The aim of this study was to find out how strong such differences are 
reflected in lipidomics results. I planned and oversaw the entire research and performed lipid 
analysis, annotation, and statistical analysis.  
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4.1. Introduction 

Lipids play important roles in different aspects of C. elegans biology. However, so far, no C. 

elegans-specific lipidome database exists. The analysis of C. elegans lipid metabolism until 

now was mostly driven by the analysis of fatty acids based on the methodology and pathway 

delineated by Watts and Browse [252]. Beside GC-MS, several other methods have been 

used for the analysis of lipid-related phenotypes or lipid read-outs. Since the worm is 

transparent, different techniques can quickly assess internal lipid storage. Nile red, a 

phenoxazone dye or BODIPY-labeled fatty acids, can be used for imaging lipid deposits 

[439, 440]. However, analysis has shown that these dyes do not label major fat stores in C. 

elegans, and oil red O should be used instead, which shows good agreement with 

biochemical methods [441]. Several other techniques for imaging live animals exist [442, 

443]. Lipidomics has been recently applied to different fields of C. elegans biology. MS-

based lipid analysis in C. elegans is now relatively advanced, and various methods are used 

to access different lipid classes and obtain results [68, 130]. LC-MS-based lipidomics is the 

most used analysis method to analyze lipids from the worm [68, 130]. However, also shotgun 

analysis is used [100, 113, 154, 277]. No systematic investigation to define the C. elegans 

lipidome has been performed, which a few exceptions with a few exceptions. One example 

are sphingolipids, which have been recently investigated in a systematic manner. Eighty-two 

different sphingolipids have been detected in mixed-stage C. elegans cultures, including 18 

that have not been detected before [116]. Another example is the in-depth investigation of 

maradolipids using either shotgun lipidomics or LC-IMS-MS [80, 154]. 

Lipidome atlases and collections are becoming increasingly important in defining the 

lipidomes of different cells or organisms. They serve as a reference for future investigations 

and advance the current knowledge on lipids and their regulation. One particular example is 

AdipoAtlas, published by Lange et al. [444]. White adipose tissue from several lean and 

obese people has been analyzed using different analytical approaches to define the lipidome 

of this tissue. Over 1500 lipid species have been identified and semi-quantified. Symons et 

al. performed the analysis of different mammalian cell membranes to define a lipidomic atlas 
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[445]. In another example, Oemer et al. performed an analysis of cardiolipins between 

different organisms and tissues [296]. Lastly, the HMDB contains a large number of lipids in 

the latest version and can also be regarded as a reference for the human lipidome [87]. 

In order to construct a first blueprint of the C. elegans lipidome, lipids either predicted by the 

workflow developed in chapter 2.3, curated from literature, or detected in different datasets 

created in the last years were compared. Three datasets from different laboratories and 

publications have been reprocessed with a workflow for detailed lipid curation and analyzed 

in detail. Using different annotation tools and databases, as many lipids as possible have 

been identified and manually verified. Generated reference lists were compared against the 

literature to identify lipids species stably identified in C. elegans forming the core lipidome of 

the nematode. 
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4.2. Lipid identification in LC-MS/MS datasets 

4.2.1. Material and Methods 

4.2.1.1. Chemicals 

HPLC-grade methyl-tert-butyl ether (MTBE), HPLC-grade chloroform (CHCl3), LC-MS-grade 

methanol (MeOH), iso-propanol (iPrOH), acetonitrile (ACN), ammonium formate, and formic 

acid were obtained from Sigma-Aldrich (Sigma-Aldrich, Taufkirchen, Germany). Water was 

purified using a Merck Millipore Integral water purification system with a resistance of 18 MΩ 

and TOC < 5 ppb. 

4.2.1.2. C. elegans samples 

C. elegans samples from different studies have been used, and the BUME extraction with 

some minor modifications was used [165, 168, 187, 446]. Briefly, 50 µL ice-cold methanol 

was added to each sample and transferred to beat-beating tubes (NucleoSpin Bead Tubes 

Type A, Macherey Nagel). The samples were beat beaten three times 10 s with 20 s pause 

in a Precellys Beat Beating system (Bertin Technologies). The additional Cryolys module 

was used with liquid nitrogen to prevent excessive heating of samples during disruption. 150 

µl butanol and 200 µl heptane/ethyl acetate (3:1, v/v) were added to each sample 

sequentially, which were then incubated for 1 h at 500 rpm/RT. 200 µl 1% acetic acid in H2O 

was added to each sample, followed by centrifugation for 15 min at 17949 × g/4°C. The 

upper organic phase was transferred to a fresh Eppendorf tube, and the lower aqueous 

phase was re-extracted by the addition of 200 µl heptane/ethyl acetate (3:1, v/v) followed by 

incubation and centrifugation as described above. The upper organic phase was combined 

with the previously obtained organic phase. Samples were evaporated to dryness and stored 

at −20°C until further analysis. Samples were re-dissolved in 50 µl H2O/ACN/iPrOH (5/35/60, 

v/v/v) vortexed, and 40 µl were transferred to an autosampler vial. The remaining 10 µl were 

pooled to form a QC sample for the entire study. The precipitated proteins were used for the 

determination of protein content using a Bicinchoninic Acid Protein Assay Kit for 

normalization (Sigma-Aldrich). 
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4.2.1.3. UPLC-UHR-ToF-MS analysis 

Lipids were analyzed as previously described [68]. Briefly, lipids were separated on a Waters 

Acquity UPLC (Waters, Eschborn, Germany) using a Waters Cortecs C18 column (150 mm x 

2.1 mm ID, 1.6 µm particle size, Waters, Eschborn Germany) and a linear gradient from 68% 

eluent A (40% H2O/60% acetonitrile + 10 mM ammonium formate / 0.1% formic acid) to 97% 

eluent B (10% acetonitrile/90% isopropanol + 10 mM ammonium formate/0.1% formic acid). 

Mass spectrometric detection was performed using a Bruker maXis UHR-ToF-MS (Bruker 

Daltonic, Bremen Germany) in positive and negative ionization modes using data-dependent 

acquisition to obtain MS1 and MS2 information. For every ten samples, a pooled QC was 

injected to check the performance of the UPLC-UHR-ToF-MS system and was used for 

normalization. 

4.2.1.4. Data processing UPLC-UHR-ToF-MS 

Raw data were processed with Genedata Expressionist for MS 12.0 (Genedata AG). 

Preprocessing steps included noise subtraction, m/z recalibration, chromatographic 

alignment, and peak detection and grouping. Data were exported for Genedata Expressionist 

for MS 12.0 Analyst statistical analysis software and as .xlxs for further investigation. 

Maximum peak intensities were used for statistical analysis, and data were normalized on 

the protein content of the sample, and an intensity drift normalization based on QC samples 

was used to normalize for the acquisition sequence. 

4.2.1.5. Lipid identification 

Lipid identification was performed using the workflow described in chapter 3.6 in combination 

with the predicted lipid database from chapter 2.3 and wormLipidBlastR from chapter 3.5. 

Annotations from the different levels were integrated into a consensus annotation and 

manually verified. Additionally, Sirius was used for the annotation of sum formulae for lipids 

not covered by the annotation process [309, 313]. For annotation on the MS1 level, predicted 

lipids, LipidMaps and SMID-DB. Annotation on the MS2 level was performed with the library 

generated by wormLipidBlastR as well as different versions of LipidBlast [400, 416]. To 
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ensure high-quality annotations, all automatically generated annotations have been manually 

checked and filtered by trends along the RT dimension. 

4.2.2. Results and Discussion 

4.2.2.1. Curation of lipids from literature 

In order to generate a first version of a C. elegans lipid database, lipids have been curated 

from the literature. Forty-five articles from the years 2007 to 2022 have been included in this 

curation. Lipids were searched in figures, tables, and supplementary information. Since lipids 

are reported on different levels of detail all of them have been normalized using the most 

recent Liebisch shorthand notation [207, 247]. In each article, different levels of identification 

have been achieved. For example, some articles reported sn-specificity, which typically 

cannot be achieved by the employed analytical methods. Such over-annotation has to be 

avoided not to overestimate biological outcomes. In order to allow a fair comparison between 

the literature, prediction, and detected lipids, all lipids have been normalized to the species 

level. In certain cases, this might collapse two different lipids (e.g. having different fatty acyl 

compositions) into a single entry. In total, 16347 lipid-literature associations have been 

collected, with over 2700 unique lipid species from 38 lipid classes. In several articles, 

different isomeric species of lipids have been potentially detected and reported. For 

comparison, the number of single distinct isomers has been counted per publication (Figure 

20). Numbers ranged from 11 to 1444 detected lipid species (Figure 20). The highest 

numbers were found in Savini et al., Smulan et al., Liu et al., Molenaars et al., and Gao et al. 

[130, 163, 447, 448]. From all lipids, the total number of carbons, double bonds and oxygens 

have been isolated for comparison of the combinatorial space cover by the different lipid 

classes. 
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Figure 20: Number of unique detected lipid species per publication. 

An extensive range of different lipids was detected. Therefore, it was checked how often lipid 

species were detected in the various publications. Certain and particular lipid classes have 

been only detected in single publications specifically dealing with them. However, single 

detections also included specific lipid species from classes covered in multiple publications. 

Numbers ranged from detection in single publications up to maximum of 26 publications. 

However, only a single species was detected 26 times (PC 36:5). Filtering for lipids detected 

in 5 publications, 715 lipid species remained. If ten publications are used for filtering, only 

368 species remain. These lipid species might represent the highest abundant lipids. This 

included 124 TGs, 81 PEs, and 80 PCs. Differences in detected lipids can be explained by 

different experimental setups, which included the number of worms used for lipid extraction, 

the exact extraction method as well as the employed analytical setups. Furthermore, 

differences in genetic backgrounds and culture conditions can lead to changes in the 

lipidome. Though most of the experiments used E. coli OP50 as a food source, several 

studies performed RNAi, which used the E. coli strain HT115. It is known that nutritional 

differences between them can lead to changes in the C. elegans metabolome and lipidome. 
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Different mutants used in the different studies might produce different lipids, which are only 

detected in this condition and potentially not found in other conditions. 

4.2.2.2. Overview of used data sets 

Different datasets from collaborative projects have been used for the identification and in-

depth investigation of lipid species in C. elegans. Though the culture conditions of C. elegans 

have been defined by Sidney Brenner, differences in the metabolome and lipidome can be 

observed based on the exact laboratory-specific protocol [4]. This effect has been examined 

by Spanier et al., for example, studying the differences in the lipidome of wildtype N2 and 

daf-2 mutants [449]. Four different laboratories produced similar samples, and lipidomics was 

performed centrally on all of them using the same UPLC-UHR-ToF-MS method. Though 

results were similar and similar “biomarkers” could be retrieved, differences in exact fold 

changes and p-values could be observed. This is due to the difference in food and feeding 

behavior of C. elegans. Different exact media compositions due to different used chemicals 

and growth conditions for feeding bacteria have been used, leading to differences in the 

nutritional value of E. coli and also the fatty acid profile, which in turn leads to differences in 

the C. elegans lipidome. 

This effect is advantageous in defining the lipidome of C. elegans since lipids that might be 

missed in the analysis of samples from one laboratory might be detected in another. Here, 

three data sets obtained from the same UPLC-UHR-ToF-MS platform were used. Similar to 

the points raised above, different culture conditions in different laboratories have been used. 

Lipids found in all studies will form the C. elegans core lipidome, while all additional lipids are 

the auxiliary or pan lipidome. In the first study, Haeussler et al. studied changes in lipid 

metabolism in mitochondrial dynamics [165]. The second study by Rackles et al., 

peroxisomal retrograde signaling was studied, while the third study focused on the role of the 

HLH-30 transcription factor in starvation [168, 187]. 

Raw data from all studies have been reprocessed using an optimized Genedata 

Expressionist for MS workflow, and the same annotation workflow and databases have been 
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used. Table 27 summarizes the overview of all datasets. Data were filtered for lipid features 

present in all QC samples and with an RSD < 30%. Since this optimized workflow for in-

depth investigation has been developed number of lipid features and identified lipids can 

deviate from the values reported in the original publications. 

Table 27: Overview on the three used datasets. Each dataset was reprocessed with an optimized Genedata 
Expressionist for MS workflow QC was performed as indicated above. 

Dataset Polarity All After QC 

Haeussler et al. 
(+) 8698 5390 

(-) 764 585 

Rackles et al. 
(+) 7708 5150 

(-) 861 591 

Dall et al. 
(+) 12339 6645 

(-) 3445 1738 

 

4.2.2.3. Lipid identification 

Lipids in the different datasets were identified by matching features against different lipid 

compound libraries on the MS1 level, e.g. in silico generated C. elegans lipids, LipidMaps 

computational database, and SMID-DB and their associated MS2 spectra against MS2 

spectral libraries derived from wormLipidBlastR or LipidBlast. All IDs were manually 

combined and compared in unified in consensus identifications. First, all features with an 

associated MS2 spectrum were investigated. They serve as anchor point for all further 

investigations and their identifications from different libraries were compared against each 

other and manually verified based on known fragmentation pathways. In parallel Sirius and 

CSI:FingerID were used for verification of the formula and fragmentation pattern. In a second 

step, features with no MS2 were checked. Annotation is based on m/z and RT has been used 

as a secondary filter, checking for RT trends from MS2-verified hits. For features where no 

MS2 spectra were available or that didn’t match a library spectrum MS1 data was used. 
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Though this way of annotation yields many false positive annotations, lipids follow a specific 

trend along the RT dimension. Annotations were manually filtered for entries that are not 

fitting these lines. First, trends for the expected main adducts were checked by plotting the 

m/z against RT for groups of lipids having the same number of carbons in all side chains. 

Second, all candidates not fitting this specific trendline were eliminated. In a third step, data 

from secondary adducts were checked for the corresponding main adduct; if it has been 

found, annotations were kept or otherwise removed. Several features were detected in 

positive and negative ionization modes. This allowed transferring annotations from one to the 

other ionization mode since the same chromatographic method was used. Specifically, 

glycerophospholipids were often detected in both modes. This improved annotation in 

several cases and resolved different fatty acyl chains. 

Often lipids ionize as multiple adducts. The adduct grouping in Genedata Expressionist for 

MS allows only defining a single main adduct and secondary adducts are derived from this 

annotation. In positive mode, this main adduct was set to [M+H]+ and in negative ionization 

mode to [M-H]-. However, for certain lipid classes, other main adducts might be observed, 

e.g. for DG and TG, which ionize mainly as [M+NH4]+, but also form often [M+Na]+ adduct for 

highly abundant species. MS1, MS2 annotations and similarity in RT were used to manually 

identify secondary adducts. 

This data was used as input for comparing the different datasets. This vigorous filtering 

enabled the highest data quality. For example, in the hlh-30 dataset, initial annotations for 

DGs were reduced from 383 to 283. While only wrong MS2-based annotations not fitting the 

retention time trends were removed, mostly wrong MS1 annotations have been filtered. 

These represent potential false positive annotations and shows how useful the secondary 

filtering step using RT was. Similar results were obtained for all other lipid classes as well. 

4.2.2.4. Comparison of predicted, curated, and detected lipid species 

In the next step, lipids from the different datasets were compared against the predicted and 

curated lipids. All lipids have been normalized to the species level. By this, different lipid 
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isomers might be merged into single lipids species entries. The number of potential isomers 

are discussed later. An initial comparison was performed by plotting the covered lipid space. 

On the x-axis the number of carbons in all side chains and on the y-axis. If a lipid with the 

corresponding composition was detected, a tile is plotted at the respective position. 

Figure 21 summarizes the covered space for PAs, DGs, PCs, PEs, and PS. These lipid 

classes are synthesized from each other and allow easy comparison. While for the 

prediction, always exactly the same space was covered, due to no restrictions or constraints, 

for the curated and detected lipids, differences between the different classes were observed. 

If all lipids found in the literature are allowed, a similar or larger space is covered. Upon 

restriction to 5 or 10 detections in individual publications this space is reduced drastically. 

Since not all publications used for curation performed global lipid analysis and some focused 

only on specific lipid classes, the filter with five publications is used. This filtering step is 

necessary to avoid potential “one-hit-wonders” and therefore stabilizes the entire dataset and 

adds some stability to the data, limiting it to only commonly detected lipid species. PCs 

generally showed the most significant chemical space, while PA showed the smallest. 

Following the biosynthetic route of these lipids, they all derive from PA. DGs are yielded 

either from PA by removal of the phosphate group or from other lipids, e.g. TGs, by the 

action of different lipases. However, larger in the covered space, the DG space of curated 

and detected lipids is still smaller than the predicted one. A large space is covered by PCs 

and PEs, and comparable spaces are covered by the literature curation and the lipids 

detected in the used datasets. Interestingly, the space covered by PS is very limited. 

Comparison of the spaces covered by shows that lipids are potentially synthesized from a 

limited pool of substrates producing PA and then variety in fatty acyls is added to different 

lipid classes by remodeling. This is also further substantiated by the limited space covered by 

DGs. 

PGs and PIs are synthesized on different routes compared to other phospholipids, and both 

are derived from CDP-DGs. Comparing the covered space with, for example, PCs, a much 
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narrower distribution is observed. Unfortunately, PGs could not be detected in the datasets 

used in this chapter. However, PIs showed limited distribution in carbons ranging from 36 to 

40 carbons but some variation in the number of double bonds. GC-based analysis of fatty 

acid analysis has already demonstrated high proportions of FA 18:0 and FA 20:5 [151]. 

Comparing the PIs in more detail between the used datasets, the most common species are 

found for 38 and 40 carbons in total. Consistent with previous GC-MS analysis, 

fragmentation in negative ionization mode showed all species detected, for example, in the 

data set from Dall et al. contained a saturated or monounsaturated fatty acyl in combination 

with a polyunsaturated fatty acyl. Only two exceptions were found (PI 18:2_20:5 and PI 

20:5/20:5). 

 

Figure 21: Lipid species covered by the different approaches to curate the C. elegans lipidome. As example the 
lipid classes PA, DG, PC, PE and PS are shown. These lipid classes are converted into each other and form a 
dense metabolic network. A tile is drawn if minimum once the lipid species with the number of carbon and number 
of double bonds has been predicted, curated or detected. 

CLs, mitochondrial lipids, are produced on the same biosynthetic pathway as PI and PG and 

are also derived from CDP-DGs. CLs represent an interesting case since this lipid class is 

the only one that has been constrained in the prediction of lipid species. Since CLs contain 

four acyl chains, they can cover ample combinatorial space. CLs have not been extensively 

detected in the different publications. Only a few species are covered in 5 publications, and 

no species was found to be present 10 publications. The space covered by the CLs detected 

in the three different datasets is also comparably small, indicating a very narrow distribution 

of possible species in this lipid class. The composition of CLs has been recently studied by 

Oemer et al., comparing CLs from different branches of the tree of life [296]. Each organism 
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showed a very distinct distribution. Interestingly, C. elegans has a very distinct composition 

to the CLs described by Oemer et al., with CL species showing 74 carbons and more, even 

up to 80. Likewise, a high degree of desaturation is observed. C. elegans cardiolipins show a 

very distinct fatty acid profile and lipids annotated as cardiolipins are mirroring this 

composition. First, it was examined if the different detected species followed a specific trend 

along the RT dimension. Indeed, a clear trend was visible, indicating that all detected lipid 

features are probably belonging to the same lipid class; for all six putative cardiolipins 

MS/MS spectra were available. Second, these fragmentation patterns were analyzed. All of 

them showed prominent fragments, which were equal to a [M+H-H2O]+ of the corresponding 

DGs. Therefore, a neutral loss of the phosphorylated glycerol backbone with two attached 

fatty acids in combination with the NH4 occurs. Thus, “symmetric” cardiolipins would show 

only one specific fragment, while asymmetric ones have different fragments. The 

fragmentation pattern of the lipid feature annotated as CL 80:16 showed only one fragment 

corresponding to a composition of 40:8. In contrast, the clustered annotated as CL 80:14 

showed three different peaks corresponding to the compositions of 40:8, 40:7, and 40:6. 

Using this information two possibilities to form CL 80:14 exist and peaks are co-eluting. 

Based on the fragment intensities, the symmetric CL is the major species. Fragments of all 

other lipid clusters were in agreement with the described fragmentation described in 

LipidBlast [382]. 

One of the missing lipid classes found in the literature but not predicted nor detected is TG-

O. In contrast to TGs in which all three side chains are bound acyl, in TG-Os, one of them is 

bound as alkyl or alkenyl. They are derived from DG-Os potentially by the promiscuity of 

diacylglycerol acyl transferases, also accepting DG-O in addition to DGs. DG-Os, in contrast, 

are derived from alkyl phospholipids such as PC-O or PE-O. Comparing the chemical space 

of TGs and TG-Os, it is visible that the alkyl species cover a much smaller chemical space. 

This is also the case when comparing PE-O and PC-O between the prediction, curation, and 

detected lipids. The limited space in the TG-O is explained by the limited space of the 

substrates DG-O. The dataset from Dall et al. was inspected for potential TG-Os. Indeed m/z 
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values potentially indicate the presence of TG-Os. Unfortunately, only the MS1 could be 

checked since no MS2 data collection has been triggered due to low intensities. 

Two other lipid classes were only found so far in the literature so far, PE-NMe and PE-NMe2. 

They have been only detected by Schwudke et al. [100]. This lipid class could not be 

identified so far in any of the datasets used. These lipids have been observed in mutants of 

pmt-1 and pmt-2. It is not entirely clear if PMT-1 and PMT-2 act on the precursor of the 

headgroups (free phosphoethanolamine) or on the complex lipids. So far, the intermediates 

seem to be only found under these conditions. Therefore, also no pathway can be added to 

WormJam, and the lipid species are therefore not predicted. Likewise, maradolipids have 

been only found in the literature so far in three articles [80, 154, 155]. Also, cholesteryl esters 

have not been added to the metabolic model, though they were detected in different 

publications and in all three used datasets. Different lipid classes have been detected, but no 

predictions are available for them, e.g. lyso cardiolipins. Since the remodeling of CLs is 

currently missing in the prediction, no lysoCL are covered. Likewise, no remodeling of PI 

and, therefore, no LPIs are covered in the WormJam GSMN. Another lipid class not covered 

so far in the model is Bis(monoacylglycerol)phosphate (BMP), representing isomer structures 

to PGs. BMPs are low-abundant species and rare in most mammalian tissues [450]. They 

typically show enrichment in endosomal and lysosomal vesicles. They have been only 

detected in two publications [448, 451]. In the case of Molenaars et al. a normal phase 

separation has been employed, which allows the separation of PGs and BMPs 

chromatographically [448]. No biosynthetic route has been proposed in C. elegans, and only 

17 species have been detected. It remains elusive how important this class will be in the 

nematode and in which tissues it might be enriched. Other lipids reported in the literature are 

acylcarnitine and N-Acylethanolamides, which are normally covered by methods for non-

polar metabolites and are therefore only partially considered as part of the lipidome and not 

further discussed here, though their importance (e.g. NAEs are important signaling 

molecules). 
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One particular lipid class was described by Boland et al. [452]. They described for the first 

time phosphorylated glycosphingolipids, which are required for the mobilization of 

cholesterol. These molecules are derived from GlcCer and have an additional 

phosphoethanolamine or monomethyl phosphoethanolamine group attached to the sugar 

moiety. So far, this class of molecules which are named PEGC or mmPEGC, have been only 

identified by this group. Interestingly, this class of sphingolipids contains a hydroxy 

sphinganine base normally referred to as phytosphingosine, which is not detected in other 

sphingolipids. Since this class of lipids represents a novel derivate of sphingolipids, the 

datasets were manually searched for potential candidate features. No reference database for 

MS2 spectra of these lipids nor their structures has been deposited. However, fragmentation 

is extensively explained, and reference spectra are found in the supplementary information of 

Boland et al. [452]. 

Table 28: Names, sum formula, and m/z of most abundant PEGC and mmPEGC according to Boland et al. [452]. 

Name Formula m/z 

PEGC-C22  C47H95N2O13P 
[M+H]+ 927.6645 

[M+Na]+ 949.6464 

PEGC-C24  C49H99N2O13P 
[M+H]+ 955.6958 

[M+Na]+ 977.6777 

mmPEGC-C22  C48H97N2O13P 
[M+H]+ 941.6801 

[M+Na]+ 963.6620 

mmPEGC-C23  C49H99N2O13P 
[M+H]+ 955.6958 

[M+Na]+ 977.6777 

mmPEGC-C24  C50H101N2O13P 
[M+H]+ 969.7114 

[M+Na]+ 991.6933 

 

The dataset from Dall et al. was first examined. Several features with fitting m/z values were 

found. However, they were generally low in intensity, and MS2 has been only triggered for 

two features, potentially annotated as mmPEGC-C22 and -C24. The fragmentation of both 

has been described. Common fragments are m/z 156.042, 282.073, and 300.0842, which 

correspond to the “headgroup”, the monomethyl phosphoethanolamine glucose moiety. 

Other fragments correspond to the ceramide and vary between the species. Other species 
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could be only identified via their accurate m/z. Further variants with shorter and longer fatty 

acyl side chains were checked. However, when checking the trendline along the RT, it was 

found that all of them are forming a trendline. In total, five species of mmPEGC were 

putatively annotated (C21 to C25). In the datasets from Häusler et al. and Rackles et al., C22 

to C24 and C22 to C25 could be putatively annotated. This indicates that PEGC and 

mmPEGC are more widespread, and missing referencing in the database is potentially a 

main cause of missing identifications. 

Three lipid classes, namely CerP, CDP-DG, and PGP, were only found in the prediction from 

WormJam. CerP is an important precursor for the highly potent signaling molecules 

sphingosine-1- phosphate [453]. CDP-DG is an essential intermediate for the synthesis of PI 

and PGP, PG, and CL. The lipids themselves might be present only low in concentration and 

are potentially unstable and, therefore, not detectable. 

So far, the comparison has been carried out on the species level. However, several more 

lipids are present on the higher detail levels, such as molecular or structural subspecies. For 

example, Admasu et al. detected 11 different isomers for TG 55:3 [170]. Based on the 

theoretical predictions, 552 isomers would be possible for this sum composition on a full 

structural level. Other examples include species such as PC 38:5 with up to 13 isomers and 

28 theoretical possible. The use of reversed-phase chromatography allows the separation of 

such isomers. Detailed analysis in negative ionization mode normally allows for deriving 

information on the bound acyl groups. However, often chromatographic separation is not 

perfect, and peaks might overlap. Deconvolution of peaks with different compositions is a 

difficult task. Underneath one chromatographic peak potential, several further isomers are 

found, but often only the most abundant molecular subspecies is reported instead of all 

detected, or only the species level is used. Using the example of PC 38:5 following 

compositions have been reported in different publications, which reported molecular species: 

18:0_20:5, 18:1_20:4, and 18:2_20:3. These findings have been verified by the 

identifications in all three used datasets. However, in an MS2 for PC 18:1_20:4 in the hlh-30 
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data, traces of other acyl groups have been detected. Comparing the number of isomeric 

species across different lipid classes, similar numbers were obtained between the different 

used datasets. The highest numbers of isomers were observed for TGs, followed by PCs, 

PEs, and DGs. However, the numbers are not comparable to the number of predicted 

isomers. 

4.2.2.5. Acyl side chains detected 

Besides the comparison of detected lipid species, in the next step, the acyl chains contained 

in the lipids were compared. Since not all publications report acyl chain species, Savini et al., 

Smulan et al., and Lam et al. were selected as examples since they reported lipids with fatty 

acyl compositions [163, 171, 447]. Detection in negative ionizatoin mode allowed to identify 

acyl side chains in glycerophospholipids, and positive ionization mode neutral losses specific 

to the different acyl side chains have been used. Fatty acid analysis by GC-FID or GC-MS 

enabled the detailed description of fatty acyls in C. elegans lipids and served as a 

comparison. While analysis with LC-MS/MS does not allow to derive as detailed description 

regarding the double bond position and stereochemistry as GC-MS, a comparison on the 

“species” level of the acyl chains is possible. Sometimes multiple mapping between isomers 

detected by GC-FID or -MS and acyl side chains exist. For example, 19:1 can be mapped to 

FA 19:1(10Z) or FA 19:0;[9-10cy3:0]. 

Interestingly, much more acyl side chains than expected have been detected, including 

several unusual ones, which included, for example, 16:1, 16:2: 16:3, 16:4 or 19:2, 19:3, 19:5. 

These unusual side chains have been detected in all of the here used publications, but so far 

not in the datasets. A recent metabolomics study focused on hacl-1 and different acyl-based 

metabolites [454]. Several acyl groups also found in lipids were detected in this study as well. 

Checking the three generated datasets, fragments corresponding to FA 19:3 was searched 

in the negative ionization mode data. Indeed, traces of fragment m/z values corresponding to 

this acyl group could be detected from complex lipids. While all major acyl groups which 

have been previously also detected by GC-FID or -MS are identified in all selected 
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publications and datasets, the more unusual acyl groups represent minor species. It remains 

to be elucidated if these acyl groups are of functional relevance or represent only artifacts 

arising from the promiscuity of enzymes. Furthermore, the source of the fatty acyls is 

unknown. HACL-1 is required from α-oxidation of fatty acids, which is involved in the 

degradation of unusual fatty acids. Brock et al. identified alternative, unique fatty acids in fat-

6;fat-7 mutants, which included 16:2 and 16:3 produced by FAT-2 and FAT-3 [258]. A further 

potential source might be the β-oxidation of longer polyunsaturated fatty acids and the 

possible release of the acyl groups from Acyl-CoAs. Since most of the unusual fatty acids are 

only minor species, they are only possible side products. Brock et al. performed GC-MS 

analysis of total fatty acids; therefore, it is still unclear how these unusual fatty acids 

distribute across different lipid classes. Interestingly, when checking lipid classes in which 

these fatty acids were annotated, it was mostly PCs. These fatty acids might be also present 

in other lipid classes. However, PCs are the most abundant lipids. 

4.2.2.6. New detected lipid classes 

Since spectra matching has also been performed against different external libraries, not only 

in-silico spectra for predicted species in C. elegans, several more lipids could be identified, 

including new lipid classes previously not detected in C. elegans. One example is fatty acid 

esters of hydroxy fatty acids (FAHFAs). FAHFAs have been initially described in adipose 

tissue, and their concentration correlates with insulin sensitivity [455]. Typically, these lipids 

contain a long chain hydroxy fatty acid, e.g. C16 or C18 fatty acids, and to the hydroxy group 

a second fatty acid is esterified. However, the FAHFAs detected in C. elegans showed 

different compositions and contained a C9:0;O fatty acid and have been annotated using 

LipidBlast [456]. LipidBlast uses various fatty acids, including some unusual ones, to 

generate possible lipid species. First, spectra putatively annotated as FAHFAs were 

additionally inspected using Sirius for calculation of the sum formula for precursors and 

fragments. In the case of all putative C9:0;O containing FAHFAs, the correct and expected 

sum formulas were calculated for the precursor and fragments. Next, retention times were 

examined. All detected FAHFAs elute between 10 to 15 minutes. This area is typically 
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covered by highly unsaturated glycerophospholipids such as PC 40:10, etc. Comparing logP 

values as predicted by MarvinSketch for representative structures, this elution range is fitting. 

For most of the detected FAHFAs, multiple chromatographic peaks were found. Often three 

peaks eluting very close to each other with no baseline separation were observed. These 

peaks might represent different isomers of the detected FAHFAs, and all showed very similar 

fragmentation spectra with only differences found in the intensity ratios. Recently, peaks 

potentially annotated as FAHFAs in the non-targeted analysis have been described to be 

artifacts of fatty acid dimers and do not represent true hits [457]. The most important 

indicator for correctly identifying a FAHFA is the presence of the [M-H]- and [M-H2O-H]- 

fragments of the hydroxylated acyl chain. This was the case for all detected FAHFAs (m/z 

155.1078 and m/z 173.1183). 

Additionally, no evidence of the presence of the individual free fatty acids detected at the 

specific retention time range was found. The separation of different isomers of FAHFAs has 

been described but requires long gradients and optimized conditions [458]. It has been 

shown that FAHFA isomers elute according to the position of the hydroxy group and the 

esterified fatty acid. In the case of palmitic acid ester of hydroxy stearic acid (PAHSA), the 

elution order was 12-, 11-, 10-, 9-, 6-, 5-, and 4-PAHSA. Additionally, ratios of different 

fragments were different, e.g. the ratio of m/z 255.2329 and m/z 299.2592, corresponding to 

the esterified palmitic acid and intact hydroxystearic acid fragment increased with the 

hydroxy position moving closer to the carboxy group. Plotting the ratio of the respective 

fragments against the retention time, first, an increase and then a decrease was observed. 

Since no reference standards for the detected FAHFAs are, available further identification at 

higher MSI levels was not possible. However, it is intriguing that the hydroxy fatty acid in C. 

elegans FAHFAs is C9:0;O. The most abundant ascarosides in WT C. elegans are ascr#3 

and ascr#10, which are also C9 species that have an α,ß-unsaturation, or are completely 

saturated. No FAHFAs containing a C9:1;O fatty acid could be found. However, searching for 

further potential FAHFAs by searching for spectra containing m/z 173.1183, several 

additional candidates were detected. These lipids are eluting in the range of TGs towards the 
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end of the gradient but are only detected in negative ionization mode. Manual inspection of 

their fragmentation pattern showed the loss of an additional C9:0;O fatty acid from the 

precursor followed by a similar fragmentation to FAHFAs. Based on the increased RT and 

the additional loss of C9:0;O a structure in which an additional hydroxy fatty acid is esterified 

is suggested. Sirius predicted the correct formula for the precursor and the fragments of 

these peaks. For each formula multiple isomers with different intensity ratios of fragments 

exist, which also suggests the presence of multiple species with different positions of the 

hydroxyl group. 

Besides these FAHFA, several further unknown lipids exist. Only a small part of the detected 

lipids could be annotated. For example, very long ascarosides have been putatively 

annotated on the MS1 level. Furthermore, some evidence for more acyl-based lipids, such as 

N-acyl amino acids, have been found but have not been further followed up. 

4.2.2.7. Database of lipids 

To enlarge the database of lipids found in C. elegans, the list of the curate, predicted, and 

detected lipids has been combined. This combined database has been built on the species 

level. The number of potential lipids covered will increase even further if more detailed levels 

are incorporated. From the initial 1690 lipids predicted the list was enlarged to 3284 lipids in 

total. This included new lipids from classes that were not included in the prediction and new 

species. For example, TGs increased from 222 to 422; PCs increased from 95 to 187; PEs 

from 96 to 176; and PE-O from 52 to 89. 

 



 

256 
 

 

Figure 22: (A) Putative structures for C. elegans FAHFAs. The isomeric structures differ in the position of the 
hydroxyl group on the C9 fatty acid. (B) Extracted ion chromatograms for different FAHFA species indicate 
several isomeric species. The ratio of the acyl chain anion over m/z 173.1172 (FA 9:0;O) is different for each 
isomer indication different positions of the hydroxyl group. (C) putative structure of FAHFAs with an additional 
hydroxy fatty acid esterified. 

For all lipids in the combined database, molecular formulae are available, which enables the 

calculation of theoretical masses and m/z values from them for annotation of lipids in future 
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experiments. Furthermore, for all cases in which compositions are available, they can be 

used for the prediction of MS2 spectra. In total, 2825 unique chemical formulae are 

contained. Interestingly, the different lipid classes often also contain oxidized species for 

certain lipids. These oxidized lipids play important roles in messaging and are potentially 

present only in low amounts compared to nascent species. Oxidation can occur during 

biological processes or as an artifact of improper sample preparation. A more detailed 

characterization of these species will be required in the future. 

4.2.2.8. Biological results 

Many identified lipids also showed significant differences between the conditions studied in 

the specific experimental setups. All used datasets deal with mitochondria and peroxisomes 

as organelles for energy production. First mitochondrial dynamics have been studied in fzo-

1/MFN2 loss of function mutants. FZO-1 is involved in mitochondrial fusion, and loss of 

function leads to mitochondrial fragmentation, which induces mitochondrial unfolded proteins 

response (UPRmt). Investigating this mutation using lipid profiling, it was found that mostly 

TGs are affected. Within TGs, a clear separation of different species and their associated 

changes were found. While TGs species with a lower number of carbons and double bonds 

are downregulated, species with a higher number of carbons and double bonds are 

upregulated. In parallel to fzo-1 also drp-1 loss of function mutants were examined. DRP-1 is 

involved in mitochondrial fission. Also, in drp-1 mutants, some TGs are changing, but no 

clear trend similar to fzo-1 could be identified. As additional control spg-7, encoding for a 

mitochondrial metalloprotease required for the correct mitochondrial function was used. spg-

7 mutant worm showed down-regulation of several TG species. Using the sum of all features 

identified as TGs as a proxy for the lipid droplet content no significant differences between 

wildtype and fzo-1 loss-of-function were found, while drp-1 showed a slight but significant 

increase and spg-7 a considerable decrease. A genome-wide RNAi screen for genes 

suppressing the induction of UPRmt in fzo-1 mutants has been conducted. vps-4 and cogc-2 

have been identified. 
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Figure 23: (A) PCA of lipidomics data comparing different RNAi in different genetic backgrounds (N2 and fzo-
1(tm1133)). vps-4 RNAi treated animals show profound differences by forming a separate cluster. (B) TGs 
species covered and changed between N2 and fzo-1(tm1133) worms. Generally, lipids with lower number of 
carbons and double bonds are downregulated, while longer and more unsaturated species show and increase (C) 
Bar plot of TG 54:8 as example of one changed lipid. (D) lipids changed in the additional treatment with vps-4 
RNAi. 

The results indicate mitochondrial dynamics in fzo-1 loss of function mutants might affect, to 

a certain extent, mitochondria-associated with lipid droplets, the storage organelles for TGs. 

These peri-droplet mitochondria might have unique morphology and function to support the 

synthesis of TGs and generation of lipid droplets. Indeed, Benador et al. have isolated such 

peri-droplet mitochondria from mouse brown adipose tissue (BAT) [459]. Compared to 

cytoplasmic mitochondria, these mitochondria have increased pyruvate oxidation, electron 

transport, and ATP synthesis but reduced β-oxidation capacities. Furthermore, the protein 

composition is different. All results suggest that peri-droplet mitochondria are a separated 

population supporting TG biosynthesis and lipid droplet generation. fzo-1 mutation might 

especially affect this subpopulation of mitochondria. CLs are important lipids for the correct 

function of mitochondria.  
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As an important organelle for energy production, mitochondria are also crucial for the 

response to changes in nutritional conditions. The dataset from Dall et al. studied the role of 

the HLH-30/TFEB transcription factor during starvation. Multiple time points have been 

analyzed from fed and starved WT worms or hlh-30 loss of function mutants. While in WT 

worms, different changes along the different timepoints of starvation were found, most of 

these changes were absent in hlh-30 mutants. This included features annotated as CLs. 

Interestingly, in WT, these peaks were significantly upregulated across all examined time 

points except for 16 hours, while in the hlh-30 mutants, they should consider a 

downregulation trend, which was not significant at any time point. Using published RNAseq 

data, it was found that hlh-30 has no known target genes in cardiolipin metabolism, although 

in influences several genes of mitochondrial β-oxidation. Therefore, the mechanism by which 

HLH-30 is influencing CL levels remains elusive and further experiments are required. Upon 

starvation, a typical response is the mobilization of storage fats for energy production. Only a 

few TGs were identified to change significantly differently in the WT worms. It seems that 16 

hours of starvation were not enough, and this change is only found at later time points. The 

increase in CLs might represent a first line of changes to cope with starvation, changing 

mitochondria morphology and their energy production capacity. In further experiments, it was 

shown that hlh-30 mutants switch from mitochondrial to peroxisomal β-oxidation [187]. 

Additional knockdown of prx-5, required for biogenesis of peroxisomes, renders hlh-30 

mutants even more sensitive to starvation. 
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Figure 24: (A) Changes in CL species across 16 hours of starvation in WT and hlh-30 worms. While WT worms 
show an increase when comparing fed against starved worms with an upregulation of CLs, now changes were 
found in hlh-30 mutants. Changes in hlh-30 dataset (B) CL species were identified by m/z and RT as well as MS2, 
if available. Trendlines along the RT dimension were used for filter false positive annotations. (C) Fragmentation 
spectra of selected CL species show that different possibilities for CL are hidden below a single chromatographic 
peak. 

The peroxisomal matrix import receptor prx-5 is required for the protein import into 

peroxisomes and their biogenesis. The dataset from Rackles et al. studied the effect of the 

knockdown of prx-5. Lipid profiling showed several significantly changed lipids, including 

several TGs. Specifically, several TGs with a higher number of carbons have been found to 

be upregulated. This is consistent with the role of peroxisomes in the breakdown of long-
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chain fatty acids. Upon a defective or reduced number of peroxisomes, they are no longer 

degraded and potentially sequestered into TGs. Furthermore, peroxisomes are required for 

the biosynthesis of ether lipids. In line with this function, all detected PE-Os, the major ether 

lipid class in C. elegans, were found to be downregulated. 

 

Figure 25: (A) Volcano plot comparing lipid features between N2 and prx-5 worms. (B) Different TG species were 
upregulated in prx-5 worms, which contain long saturated fatty acyls. The selected MS2 showed the neutral losses 
for the acyls FA 24:0 and FA 26:0. 

4.2.3. Discussion 

Lipidomics is a fast-growing application in C. elegans research, and several articles have 

been published in this field. However, a central database containing the C. elegans lipidome 

is still missing. A first attempt was made to generate such a database by comparing lipids 

detected in the literature, predicted by the tools presented in chapter 2.3 and identified in 

own measurements. Several interesting observations have been made. One of the most 

important is that the prediction of lipid species needs further adjustment. In the case of 

several lipid classes, the covered lipid space has been vastly overpredicted, with many 

species that might not be present in the nematode, e.g. in the case of PIs or PSs. Here the 
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prediction needs to be further fine-tuned by the incorporation of rules for constraining 

potential substrates. However, these can only be established if the enzymes are studied in 

more detail. 

Furthermore, although a certain substrate specificity might be established, other substrates 

might be simply accepted due to enzyme promiscuity. A potential way in the future might be 

to associate a numerical score with the prediction, reflecting the likelihood of producing this 

lipid. This score can include the abundance of the used acyl group and the potential 

promiscuity of enzymes and incorporates the abundance of other precursor lipids. The 

performed comparison has shown that already the comparison on a qualitative level between 

the prediction, literature curation, and measurement can help to identify gaps. 

The curation of the literature cannot be regarded as perfect. First, the different publications 

have used many different “flavors” of lipid shorthand notations. This requires normalization of 

them to a common shorthand nomenclature, which can be performed by tools such as 

rGoslin [293, 294]. The comparison here has been performed based on the species level. 

In regard to the different publications, this seemed to be the fairest way of comparison, since 

this was the level at which most publication reported their results. Second, many different 

analytical approaches have been used, which do not allow a direct comparison of obtained 

results. Dependent on the chromatographic separation and used MS detection, different 

depths of lipid annotation can be achieved. In negative ionization mode, for example, the 

molecular subspecies for phospholipids can be determined, while in positive ionization mode 

this is possible for DGs or TGs. Class-wise separation such as HILIC allows determining the 

lipid class on typical elution patterns, while RP-based separation allows separating more 

isomeric species. Both have been employed for C. elegans, and no systematic differences in 

reporting have been found in the literature. Third, in many cases the data was curated from 

figures, tables, and supplementary information, which often was not a table with the raw 

data. It is important to link the data to its origin to allow the judging of the reader on the 

identifications, e.g. by submission to different repositories such as MetaboLights, 



 

263 
 

Metabolomics Workbench, or GNPS [54, 300, 437]. Several lipids in the publication might be 

detected multiple times, e.g., in both positive and negative ionization modes. If no retention 

times are reported matching between them cannot be performed. Raw data would allow to 

compare results and clean annotations. 

Using selected examples from different publications which reported molecular subspecies, a 

comparison of detected acyl chains was performed. This comparison was mostly based on 

phospholipid annotations since the composition could often be determined in this case. 

Several unusual acyl groups have been detected, not only in the literature but also in the own 

measurements. These acyl groups were not included in the prediction and might represent 

some minor species that are only present in low concentrations. Generally, most of the 

measurements in the literature have been carried out in a semiquantitative manner, only 

reporting peak intensities, integrals, or similar. An important step in the future will be the 

quantitative analysis of lipids. This would not only allow comparison on a qualitative level but 

could ultimately lead to the integration of multiple datasets and better comparison of results. 

This would also show the percentage of lipids with unusual side chains. However, to develop 

targeted methods for exact quantification of lipid species, first, a list of lipids is required. The 

database compiled here will be the first step. 

The lipidome, similar to the metabolome, is very condition dependent and, therefore will vary 

between different laboratories. A recent study by Spanier et al. has shown although general 

trends are conserved between different laboratories and their different culture conditions, 

exact fold changes and recovery of “biomarker” depends on the laboratory [449]. The exact 

composition of the lipidome will be dependent on the culture conditions and the bacterial food 

supplied. Based on GC-MS analysis, differences in the fatty acid composition of C. elegans 

from different bacterial strains have been shown [147]. To allow better comparison in the 

future between different C. elegans lipidomics studies it might be advantageous to also 

report the lipidome of the food bacteria and their fatty acid composition. Another level of 

quality control is the use of reference materials. For human studies, the NIST SRM 1950 
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(Metabolites in Frozen Human Plasma) is widely used. Bowden et al. compared results from 

different laboratories performing lipidomics on this SRM [460]. It has been shown that the 

inclusion of shared reference materials helps in the harmonization of MS-based lipidomics 

[461]. Reference material for C. elegans has been developed by Gouveia et al. [462]. The 

long-term stability of this material is ensured by the pooling of multiple reference samples 

from different batches on a rolling average. The inclusion of this material can facilitate the 

comparability between different studies in the future. 

At the current stage, lipidomics is applied to a limited number of conditions. In the case of the 

dataset from Häussler et al., lipidomics was applied to the final conditions identified after the 

initial RNAi screen. Integration of lipidomics directly in this screen might have revealed 

additional interesting candidates which would not have been identified otherwise. Lipidomics 

in this regard can be seen as a multiparametric read-out, while typical screens using 

fluorescent reporters can only probe for a handful. 

In the future, data can be organized in a lipid atlas as an online resource. The use of 

common names can link data between the different studies. This would also include the 

studied conditions to allow more elaborate data mining. Different levels of lipid annotations 

can be bridged by an ontology system as used by ChEBI or SwissLipids. Such an atlas 

would represent an important resource for all C. elegans scientists aiming to understand lipid 

metabolism better. The current numbers of unique lipid species per lipid class are 

summarized in Table 29.  

Table 29: Number of unique lipids species per lipid class in the combined database. 

Lipid Class Number of species 

BMP 17 

CAR 82 

CDPDAG 95 

Cer 106 



 

265 
 

Lipid Class Number of species 

CerP 38 

CL 165 

CoA 53 

DG 140 

DG-O 95 

FA 71 

Hex2Cer 2 

HexCer 76 

LCL 7 

LPA 27 

LPC 56 

LPC-O 38 

LPE 43 

LPE-O 18 

LPG 16 

LPI 12 

LPS 16 

LSM 2 

LysoMar 16 

Mar 25 

MG 57 

MG-O 2 

NAE 22 
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Lipid Class Number of species 

PA 111 

PA-O 39 

PC 187 

PC-O 83 

PE 176 

PE-O 89 

PE-NMe 41 

PE-NMe2 41 

PG 101 

PG-O 2 

PGP 95 

PI 102 

PI-O 1 

PIP 2 

PS 134 

PS-O 6 

CE 30 

SM 133 

SPB 39 

SPBP 4 

TG 422 

TG-O 140 
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4.3. Conclusion 

So far, the C. elegans lipidome remains to be elusive. Based on predicted, curated, and 

measured lipid species, a first blueprint of this lipidome has been constructed, which includes 

several novel lipids, which have been only detected in single publications. The data-driven 

reconstruction of the lipidome represents an interesting approach and can generate living 

data, which can be refined at any time. However, at the current stage, this is all based on 

manual effort since the raw data is not available in public repositories for most studies. If 

correct annotations are supplied in repositories, they could be automatically retrieved and 

checked. For example, annotations can be checked for plausibility regarding previous 

publications, and spectra of unknown lipids can be compared against others to prioritize 

potential features for identification. 
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5. Novel analytical concepts/approaches 
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Chapter-related publications: 

Tandem HILIC-RP liquid chromatography for increased polarity coverage in food analysis 

Hemmler D., SS. Heinzmann, K. Wöhr, P. Schmitt-Kopplin, M. Witting 

Electrophoresis. 2018 Jul;39(13):1645-1653. doi: 10.1002/elps.201800038 

The presented tandem-LC setup was developed by Daniel Hemmler and myself and further 
optimized by the jointly supervised master thesis of Katharina Wöhr. All work has been 
carried out under my supervision. 
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5.1. Introduction 

5.1.1. Metabolome coverage and LC column coupling approaches 

Successful application of metabolomics relies to a certain extent on the number of 

metabolites detected and the metabolic pathways covered. However, metabolites span an 

extensive range of polarity and concentrations (over several orders of magnitude). Therefore, 

no single analytical method can currently cover all metabolites in a single run. To overcome 

the coverage issue, multiple analytical methods must be combined, e.g. HILIC and RP 

separation of metabolites. By this, the covered polarity range is greatly enhanced. However, 

multiple data tables from different methods are generated, and integration for statistical 

analysis is time-consuming and tedious. In a typical chromatographic setup, only retained 

substances are analyzed, while metabolites that elute in or close to the void volume are 

removed from further analysis. These are the typical metabolites that are analyzed in the 

complementary chromatographic separation, e.g. metabolites from the void volume in an RP 

separation are retained on a HILIC column. However, several metabolites can be retained 

under RP and HILIC conditions. In the case of known metabolites merging of multiple data 

tables can be performed, e.g. selecting the analysis mode yielding the best results for a 

particular metabolite [373]. However, unknown metabolites can often not be directly 

matched, or several matching possibilities might exist due to the presence of isomeric 

structures with the same m/z in the different separation modes. If MS2 data are available, 

features can be matched based on these. Lastly, analysis on multiple analytical setups 

requires a more significant amount of biological starting material, which might be unavailable 

in the case of sample-limited studies, such as large-scale genetic screens. 

Furthermore, it requires analysis more time due to multiple injections. Combining analytical 

methods that can cover a more extensive range of metabolites represents an excellent 

solution to overcome this obstacle. This includes novel analytical setups such as parallel LC, 

tandem LC or multidimensional separation techniques. Analysis using multiple 

chromatographic methods can be sped up by the use of parallel analysis on multiple LC-MS 

systems. These systems either operate in positive and negative ionization modes using the 



 

272 
 

same or different chromatographic methods. Often, a significant time frame of the analytical 

sequence is dedicated to column re-equilibration in which no useful data is collected. In order 

to increase the idle time of an MS, injections and analyses can be intercalated between 

different LC systems coupled to the same MS so that during the re-equilibration of one 

system, another or the same sample is measured on another system. This setup is called 

parallel LC. Klavins et al. developed a single injection method that allows parallel analysis of 

hydrophilic and hydrophobic metabolites [463]. Use of a ten-port-2-position valve and two 

pumps allowed to connect an RP and a HILIC column to a single injection loop. After loading 

samples, both methods can run individually through individual pumps. An additional valve 

was used for selecting the effluent which should be directed to the MS. Parallel LC showed 

an excellent analytical performance comparable to the individual methods. A similar setup 

has been realized for the parallel analysis of metabolites and lipids from NIST SRM 1950 

[464]. In both applications, one column can be re-equilibrated while the other is used for 

analysis, saving valuable measurement time. 

However, in parallel LC, the only parameter optimized for is the analysis time, not the amount 

of sample used. In contrast, tandem LC setups combine two orthogonal separation columns 

in a single chromatographic setup allowing analysis in both separation modes from a single 

injection. Typically, an RP and a HILIC column are coupled in series with a T-piece between 

the columns, via which a second pump delivers solvents for trapping and separation on the 

second column. Chalcraft and McCarry coupled together different HILIC and RP columns 

and compared the number of detected features from a pooled mouse serum sample [465]. A 

combination of an RP-Amide with a ZIC-HILIC yielded the highest number of metabolite 

features. Wang et al. described a fully automatic HILIC-RP switching in combination with 

data-dependent fragmentation on a linear ion trap [466]. Urine samples were analyzed, and 

in total, 5686 polar and 1808 non-polar features were detected. In 2013 Greco et al. 

proposed a serial coupling of RP and HILIC for the simultaneous analysis of polar and non-

polar phenols in wine [467]. A short C18 column (50 x 3.0 mm) was coupled serially to a 

zwitterionic HILIC column via a T-piece. The first pump delivering the solvents through the 
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complete system experiences a higher pressure due to the serial coupling; therefore, a 

superficially porous material with a larger particle diameter was used lower the back pressure 

while maintaining high efficiency in separation. Different phenols from wine spanning a large 

polarity range could be analyzed. The system was also tested for robustness, and results 

indicate that it is robust and reliable over one year, with > 1100 injections performed [468]. 

Retention time shifts of phenols were <30 s. A similar setup was applied by Haggarty et al., 

analyzing metabolites from beer [469]. Standards of different polarities were used to evaluate 

the performance of the system. RSDs were comparable to individual column separations. 

A significant disadvantage of this particular setup is that both columns are never independent 

of each other, and both effluents are directed through the second column (HILIC in most 

cases). This restricts the number of employed separation systems, and the compatibility of 

solvents and additives is an important issue. Furthermore, HILIC columns require a long re-

equilibration time, and in the represented setup, they can only be re-equilibrated after the 

entire analytical run has been completed. Tandem-LC follows the same idea of the serial 

coupling of columns using the metabolites that elute in the void volume and trap them on a 

second orthogonal separation chemistry. The setup employs a first trapping column on which 

the portioning into hydrophilic and hydrophobic metabolites is performed. Different setups are 

possible. In the case of an RP column, hydrophilic metabolites are eluting in the void volume 

and are diluted with ACN to be trapped on a following HILIC column. The difference is that a 

switching valve isolates the RP trapping column from the HILIC column after the trapping 

phase and makes independent separations possible. This setup was proposed by Pyke et al. 

and combined RP with ANP separation [470]. Using their method, they were able to detect 

from 1212 features in human urine to 4248 in mouse tissue extract over a large polarity 

range. The tandem-LC configuration was in good agreement with the separation on the 

individual columns showing that combined analysis is possible. Lv et al. combined three 

different columns for the comprehensive coverage analysis of metabolites and lipids from 

different samples using pseudo targeted detection on the MS2 level [471]. 
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Lastly, 2D-LC exist as possibility to increase peak capacities and coverage of the 

metabolome and lipidome. 2D-LC can used in different modes. First, heart-cutting 2D-LC 

uses a defined window in the first dimension, which is then transferred to the second 

dimension for analysis with an orthogonal separation method. One example was performed 

by Helmer et al. for the analysis of cardiolipins and their oxidation products in C. elegans 

[295]. Cardiolipins were separated from other lipid classes using a HILIC separation in the 

first dimension and then transferred to the second dimension using a RP column for 

separation of individual cardiolipin species. If multiple windows are transferred the method is 

called multiple heart cutting. Scholz et al. used such a system for the profiling of 

sphingolipids in C. elegans [472]. Lastly, comprehensive 2D-LC collects consecutive 

fractions of the first dimension and transfers them to the second dimension. High peak 

capacities can be achieved, especially of the two dimensions are orthogonal to each other, 

but data analysis is much more complicated. Therefore this method is only used by specific 

laboratories [473]. 

5.1.2. Miniaturization and throughput 

Besides the increase in metabolite coverage, the required amount of biological start material 

is also an important factor. To enable large-scale metabolomics and lipidomics experiments 

with C. elegans, the amount of biological starting material required needs to be reduced, 

which might need to be reduced down to several hundreds or only tens of C. elegans. The 

required amount of worms has already been reduced for certain analyses; for example 

Witting et al. have used 5000 worms in their publication from 2014, while currently only 500 

are required [68, 168, 187]. The final endpoint of this development would be the analysis of 

single worms. C. elegans show a certain degree of heterogeneity, although they are typically 

referred to as isogenic, which in theory should result in a uniform outcome. Under normal 

“population-based” metabolomics and lipidomics approaches, this heterogeneity is averaged 

to a population mean by pooling several hundreds to thousands of worms into a single 

sample. The smaller the population will get, the more the individuality of the worm will play a 

role. 
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Therefore, an important question is if the response of individual worms can be compared. 

The most prominent example of heterogeneity in C. elegans biology is survival. A typically 

survival curve shows a sigmoid shape, with a few induvial still alive while others already 

ceased. In order to be able to study differences throughout aging and even extremely long-

lived individuals, approaches that can analyze small amounts of biological material are 

required. A simple calculation expresses this need. For a standard metabolomics or 

lipidomics experiment, 500 worms are required as a minimal amount. If a time point at which 

only 10% of worms are alive shall be analyzed, 5000 worms, which equals ten standard 

NGM plates, is required for one biological replicate. Worms are scattered across these 10 

plates. Simple washing of the plates is not possible because also dead worms would be 

washed off the plates and contaminate the sample. Methods to separate alive from dead 

worms are possible but require time and potentially alter the metabolome. Picking 500 worms 

again requires a lot of time. This demonstrates the strong need for methods with high 

sensitivity or miniaturized methods in C. elegans research, not only metabolomics and 

lipidomics but also other technologies. The first examples showed that analysis of a low 

amount of worms is possible. For example, DI-FT-ICR-MS analysis of C. elegans samples by 

Witting et al. first hints that single C. elegans metabolomics might be possible [185]. Extracts 

of 1000 worms were required to be diluted 50 times to yield a concentration of 20 worms / 

mL. From this diluted extract, only a few µL were required for the actual analysis. 

Furthermore, Bensaddek et al. described a microproteomics approach for the analysis of 

single C. elegans [188]. Likewise, Wong et al. performed an analysis of single C. elegans 

using NMR [94]. However, a long analysis time was required, and only a handful of 

metabolites could be measured. 
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5.2. TandemLC for increased metabolite coverage in a single method 

Several presented tandem-LC setups combined their effluent after separation via an 

additional T-piece. To not mix effluents flow from the respectively not used separation mode 

is switched off. Similar to the serial column setup, columns can only be re-equilibrated after 

the complete run is over, which represents a significant drawback. For the realization of a 

tandem-LC setup for the analysis of C. elegans sample, the setup of Pyke et al. was adapted 

but included an additional valve post column, which allows selecting the effluent which is 

directed to the MS, while to other is directed to the waste [470]. The basic setup is shown in 

Figure 26. Metabolite extracts are first injected into a short column used as a trap, and 

hydrophilic and hydrophobic metabolites are separated. Hydrophilic metabolites not retained 

elute in the void volume are diluted with ACN mixed via a T-piece and trapped on the head of 

the HILIC column. After the trapping phase, the first valve is switched and isolates the HILIC 

column from the RP separation system and switches the trap column with the RP separation 

column in series. First, the HILIC separation is performed by running a suitable gradient. 

After this separation is done, the second valve is switched, and the effluent from the HILIC 

part is directed to the waste, while the RP part is connected to the MS. While RP separation 

on the mid- to non-polar metabolites is performed, the HILIC column is re-equilibrated. 

The metabolome of C. elegans is complex, as shown in Chapter 2. No single 

chromatographic method is able to cover the entire polarity range. So far, the most employed 

chromatographic method for the analysis is RP, and only a few applications of HILIC have 

been published, e.g. the use of ZIC-cHILIC column by Molenaars et al. or others [51, 52, 

448]. In order to analyze the complete metabolic network, a combination of different 

chromatographic methods is required. However, integration from multiple methods is 

complicated, especially for unknowns. The combined analysis of polar and non-polar 

metabolites is of great interest for C. elegans metabolomic investigations. The tandem LC 

setup described above was used for the comparison of N2 and daf-2 worms. Previous 

research on daf-2 has shown that metabolites are from different metabolite classes that show 

significant differences. The branched-chain amino acids leucine, isoleucine, and valine are 
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the most prominent examples. However, also different fatty acids and lipids have been linked 

to the changed metabolism in daf-2 mutants. Data from the used tandem-LC-MS setup 

separated wild type from mutant worms based on metabolites detected in the entire 

chromatographic range or only in the RP or HILIC parts. 

5.2.1. Material and Methods 

5.2.1.1. Instrument setup 

The first prototype of this Tandem-LC system was realized on a Thermo Dionex Ultimate 

3000 (Thermo Scientific, Dreieich, Germany) consisting of a Dual gradient pump with two 

vacuum degassers, a WPS sampler, a flow manager with two 10-port-2-position valves and a 

Variable Wavelength Detector. The instrument was coupled to a Bruker maXis UHR-ToF-MS 

(Bruker Daltonic, Bremen, Germany). The pump was able to deliver up to 3 solvents per 

pump. Connections between the individual modules were realized with stainless-steel Viper 

capillaries of 180 µm inner diameter (Thermo Scientific, Dreieich, Germany). A Kinetex C18 

(2.1 x 30 mm, 2.6 µm, Phenomenex, Aschaffenburg, Germany) was employed as a trap 

column, while a ZIC-cHILIC (2.1 x 100 mm, 3 µm, Merck-Sequant, Darmstadt Germany) and 

a Kinetex C18 (2.1 x 100 mm, 2.6 µm, Phenomenex, Aschaffenburg, Germany), were 

employed as separation columns. Samples were stored at four °C in the autosampler, and 

injection was performed via full-loop injection of 20 µL. Columns were kept at 40°C. The 

exact flow path is shown in Figure 26. MS detection was carried out using the Bruker maXis 

UHR-TOF-MS equipped with an Apollo II ESI source in positive and negative ionization 

modes. Each run contained a segment of diluted ESI Low Concentration Tune Mix (Agilent 

Technologies, Waldbronn, Germany) for internal recalibration. 

Separation on the RP part was carried out using water + 0.1% formic acid and ACN + 0.1% 

formic acid as eluents, while the HILIC separation was carried out with 95% H2O / 5% CAN + 

5 mM ammonium formate and pure ACN. The exact gradient conditions are shown in Table 

30. 
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Figure 26: Schematics of the used tandemLC system. (A) During the injection and trapping phase the 
autosampler is connected to a short RP trapping column, the void volume is diluted with ACN and transferred to a 
HILIC column on which polar metabolites are trapped. (B) After the trapping the right valve is switched bringing 
the RP trap and separation column in line and the HILIC pump directly connected to the HILIC column. First the 
HILIC separation is performed. (C) After the HILIC separation is finished, the left column is switched and the RP 
separation is performed, while the HILIC column is reequilibrated. 

 

 

Table 30: Gradient program used for the separation of metabolites and C. elegans extracts. Valves are referred 
as in Figure 26. 
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Range Time 
RP Pump HILIC Pump 

Valve 
positions 

%B Flow %B Flow Left | Right 

Trapping 
0.0 2.5 50 100.0 350 1_2 | 1_2 

5.0    350 1_2 | 1_2 

HILIC 

5.1  50 100 400 1_2 | 10.1 

18   40   

24   40 400  

24.9  400   1_2 | 10.1 

RP 

25.0     10_1 | 10_1 

26 2.5  90.0 200  

40.0 100     

45.0 100     

(Re)Equilibration 
48.0 2.5     

60 2.5 400 90.0 200 10_1 | 10_1 

 

5.2.1.2. C. elegans culture and extraction 

C. elegans strains N2 and daf-2(e1370) were cultivated according to standard protocols on 

NGM using E. coli OP50 as the sole food source at 20°C. Worms were synchronized by 

bleaching and grown until the young adult stage. Worms were collected by washing them off 

the plate with M9 and two additional washing steps to remove any remaining bacteria. 

Samples were snap-frozen in liquid N2 and stored at -80°C. Extraction was performed 

according to Witting et al. [185]. 
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5.2.1.3. Tandem-LC-MS setup for C. elegans analysis 

The setup was similar to the one described above. However, the ZIC-cHILIC column was 

replaced by an iHILIC-Fusion(P) (100 mm x 4.6 ID, 5.0 µm particle size, HILICON, Umea, 

Sweden). Solvents were similar to the initial setup. 

5.2.1.4. Data preprocessing 

Data from metabolites standards were manually extracted using Data Analysis 4.4 (Bruker 

Daltonics, Bremen, Germany). Data preprocessing of C. elegans was performed in Genedata 

Expressionist for MS 13.5 (Genedata, Basel, Switzerland), which included m/z-recalibration, 

noise subtraction, chromatographic alignment, peak picking, and isotope clustering. Data 

was exported as a .gda file for further statistical analysis in the Analyst module or as .xlsx for 

processing in Microsoft Excel. MS2 spectra were exported as a .mgf file. 

5.2.1.5. Statistical analysis 

Data were imported into the Analyst module and first normalized using an intensity drift 

normalization, followed by a Probabilistic Quotient normalization (PQN) using the averaged 

QC samples as a reference. Only features detected in all QC samples with an RSD < 30% 

were further analyzed. To compare the wildtype N2 and daf-2 mutant, a Welch test was used 

and features with a log2 foldchange <-1 or > 1 and a p-value < 0.05 were referred to as 

statistically significant between the groups. 

5.2.1.6. Metabolite annotation 

Metabolite annotation was performed using the workflow developed in chapter 3.6. An in-

house spectral library, the Fiehn HILIC, and MassBank spectral libraries were used for 

annotation on the MS2 level. Additional annotation on the MS1 level was performed using a 

database of metabolites curated from literature, the WormJam model, ECMDB, HMDB, and 

SMID-DB. Furthermore, in silico annotation using Sirius 4.8.2 with CSI:FingerID and 

COSMIC [316]. Hits with a COSMIC score above 0.6 were considered high-confidence 

annotations. A molecular network was created using the Feature-Based Molecular 

Networking (FBMN) workflow on GNPS [300, 437]. Data were transformed to mimic the 
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tables exported from xcms 3 in order to be loaded into the FBMN workflow. The data were 

filtered by removing all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS 

spectra were window filtered by choosing only the top 6 fragment ions in the +/- 50 Da 

window throughout the spectrum. The precursor ion mass tolerance was set to 0.02 Da, and 

the MS/MS fragment ion tolerance to 0.02 Da. A molecular network was then created where 

edges were filtered to have a cosine score above 0.6 and more than three matched peaks. 

Further, edges between two nodes were kept in the network if and only if each of the nodes 

appeared in each other's respective top 10 most similar nodes. Finally, the maximum size of 

a molecular family was set to 100, and the lowest-scoring edges were removed from 

molecular families until the molecular family size was below this threshold. The spectra in the 

network were then searched against GNPS spectral libraries [299, 300]. The library spectra 

were filtered in the same manner as the input data. All matches kept between network 

spectra and library spectra were required to have a score above 0.6 and at least three 

matched peaks. The DEREPLICATOR was used to annotate MS/MS spectra [474]. The 

molecular networks were visualized using Cytoscape software [475]. 

5.2.2. Results and Discussion 

5.2.2.1. Reproducibility of Tandem-LC 

Reproducibility in regard to the RT stability has been extensively validated by injecting twenty 

replicates of standards eluting in the HILIC or the RP part of the setup. Results are 

summarized in Table 31. The HILIC showed higher deviations in RTs compared to RP. 

However, this is typically also the case for isolated HILIC separations. Likewise, RTs were 

highly reproducible for different matrices such as plant extracts, wine, and C. elegans 

metabolite extracts. Detailed descriptions can be found in Hemmler et al. as well as in the 

master thesis of K. Wöhr [476]. 

5.2.2.2. Overview of C. elegans dataset 

To validate if the developed TandemLC-MS setup is able to deliver valid metabolomics 

results, a comparison of N2 wildtype and daf-2 mutant worms was performed. Samples were 
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analyzed in positive and negative ionization modes. The number of features after peak 

detection and isotope grouping, as well as after QC-based filtering, were as follows: In total, 

13837 and 1308 features were detected in positive and negative ionization modes, 

respectively. After normalization and QC filtering, 8929 and 1092 remained for further 

statistical analysis. The lower number of features in the negative ionization mode can be 

potentially explained by the generally lower sensitivity in this mode. In positive mode, out of 

the 8929 features, 590 were detected in the trapping part, 5320 in the HILIC part, and 3019 

in the RP part. In negative mode, out of 1092, 111, 762, and 219 were detected in the 

trapping, HILIC, or RP part, respectively. 

PCA was able to separate both genotypes from each other in both ionization modes, and a 

Welch-test was used to identify statistically significant different metabolites. Metabolites with 

a log2 fold-change >1 or <-1 and a p-value < 0.05 were regarded as significantly different 

between the two genotypes. Nine hundred thirty-five were found to be higher in N2 and 385 

in daf-2 in positive ionization mode. Most of the significantly different metabolites were found 

in the HILIC part. From 385 specific for daf-2, 40 were detected in the trapping part, 315 in 

the HILIC part, and 30 in the RP part. N2-specific metabolites were 88, 621, and 226 in the 

trapping, HILIC and RP parts, respectively. In negative ionization mode, the proportions were 

similar. From 191 specific for daf-2, 13 were found in the trapping, 149 in the HILIC, and 29 

in the RP part. From 91 metabolites specific to N2, the numbers were 13, 56, and 22. 

5.2.2.3. Metabolite annotation and molecular networking 

The obtained data is rich in MS2 data since many different peaks were selected for 

fragmentation due to prolonged separation times and high efficient separation. In the 

negative ionization mode, 617 out of 1092, and in the positive ionization mode, 1859 out of 

8929, features had a minimum of one MS2 spectrum associated with it. The maximum 

number of MS2 per feature was observed in negative mode, with 2636 for a single feature. In 

positive ionization mode, the highest number was 181. The lower coverage in positive mode 

can be explained by the high number of low-intensity features and higher density of features 



 

283 
 

in general. Annotations from different sources were combined into single consensus 

annotations. Additionally, GNPS FBMN was used. To correctly use this workflow, the output 

from Genedata Expressionist for MS 13.5 was used and converted to an output mimicking 

processing with xcms to be able to use the xcms-based workflow. R functions are used to 

directly read and convert .gda and .mgf files from the Expressionist output. The resulting 

feature table and annotated .mgf file were uploaded to the FBMN workflow. 

Table 31: Reproducibility of RTs for standards of different polarity. Each standard was injected ten times. 

Separation Metabolites RT (min) RSD (%) 

HILIC 

Xanthosine 9.4 2.46 

L-Phenylalanine 10.6 2.14 

L-Tryptophan 11.1 1.87 

L-Valine 11.8 1.94 

L-Tyrosine 12.0 1.94 

L-Proline 12.2 1.95 

L-Asparagine 13.5 1.77 

RP 

C10 NAPS 30.2 0.07 

C11 NAPS 31.7 0.07 

C12 NAPS 32.7 0.00 

C13 NAPS 33.6 0.00 

C14 NAPS 34.5 0.13 

C15 NAPS 35.3 0.00 

C16 NAPS 36.1 0.06 

C17 NAPS 36.8 0.00 

C18 NAPS 37.6 0.00 

C19 NAPS 38.3 0.00 
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In negative ionization mode, 13 network clusters with more than five members were found, 

while in positive ionization mode, 57 were found. Since the network contains all edges, even 

across different parts of the tandemLC setup, the number of edges within one region or 

across has been counted (Table 32). Interestingly, the highest number of edges were 

observed within one range, e.g. RP to RP. However, no significant differences in the actual 

cosine similarity were observed. Similarities in FBMN are established based on spectral 

similarity using a modified cosine score which considers the difference between the 

precursor m/z and searches for fragments showing the same m/z difference. However, mass 

differences might not always be meaningful. Therefore, observed m/z differences were 

counted. In both ionization modes, most edges were found to be mass differences related to 

homologs series of lipid-like species such as 2.016 (H2), 14.015 (CH2), 28.031 (C2H4) or 

combinations of them (e.g. 26.015 C2H2). These might be mostly related to fatty acids or 

molecules having alkyl chains. Such molecules might be preferentially detected in the RP 

range. In negative ionization mode, 33 of the 53 edges related to CH2 were found in the RP 

range, and 35 of 38 were related to H2 in the RP range as well in negative ion mode. In 

positive ionization mode, 61 of 142 and 85 of 138 were found in the RP range for the same 

mass differences, respectively. Other mass differences with high counts were related to 

oxidation e,g. 15.99 (O). Results indicate that molecular families of similar molecules are 

eluting within a specific chromatographic segment. 

5.2.2.4. Investigating known markers 

First, the recovery of known markers previously reported to be different between N2 and daf-

2 were investigated. The most prominent example are the BCAAs leucine, isoleucine, and 

valine. All three could be identified on MSI level 2 with matches against library spectra from 

different libraries, and isoleucine was additionally annotated using CSI:FingerID with a 

COSMIC score of 0.56, slightly below the set threshold for automated analysis. Interestingly, 

none of them showed an increase in daf-2, as described previously. Another marker 

increased in daf-2 worms is trehalose. Two peaks significantly upregulated in daf-2 have 

been putatively assigned to be the [M+H]+ and [M+Na]+ adduct of trehalose, detected in the 



 

285 
 

HILIC part of the tandem LC setup. Betaine (or better glycine betaine) is a metabolite 

showing different trends between publications investigating metabolic changes in daf-2. In 

Martin et al., betaine showed a substantial reduction upon daf-2 mutation, while Fuchs et al. 

changes depended on the allele [74, 477]. Betaine showed lower levels in daf-2 worms in the 

tandem LC-MS results. Likewise, glutamic acid has been shown to have lower levels in daf-2 

mutants. A highly significant change with a low p-value was found, but the fold change was 

only modest. GPC and O-PC were both downregulated in daf-2 mutants in Fuchs et al., while 

choline was up. Choline was down-regulated in Martin et al. Consistent with this, both were 

found to be downregulated in daf-2 worms in this analysis as well. 

Table 32: Distribution of edges in molecular network across the different separation ranges. Ranges were defined 
according to the time of the specific interval in the gradient time. Molecular networks were calculated using GNPS 
and the number of connections within a specific separation range or between ranges were counted. Generally, 
the most edges were found within a specific separation range, indicating that molecular families of similar 
molecules are eluting in the same segment. 

From Range To Range negative mode positive mode 

HILIC 

HILIC 283 873 

RP 30 64 

Trapping 10 51 

RP 

HILIC 11 29 

RP 258 1205 

Trapping 3 9 

Trapping 

HILIC 10 60 

RP 4 8 

Trapping 37 86 

 

5.2.2.5. Changes in amino acids 

In total, 18 amino acids were detected, 12 of them belonging to the proteinogenic amino 

acids. Six were significantly changed between N2 and daf-2 worms. One of them is glutamic 

acid, as indicated above. Interestingly, the aromatic amino acids phenylalanine and tyrosine 
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were decreased in daf-2 worms. In contrast to this result, Fuchs et al. found an increase, 

while no changes were observed by Martin et al.. Aspartic acid was in line with Fuchs et al. 

showing higher levels in N2 wild-type worms. Aspartic acid was not detected by Martin et al. 

Lastly, citrulline and pyroglutamic acid showed higher levels in N2 wild-type worms. 

5.2.2.6. Metabolite features with highest changes 

In the next step, features showing the highest changes between the two genotypes were 

investigated. One positive ionization mode example is ophthalmic acid, which is a tripeptide 

analog of glutathione in which the cysteine residue is replaced by 2-aminobutyric acid, found 

in higher levels in N2. Ophthalmic acid is discussed as a potential biomarker of oxidative 

stress. However, glutathione and glutathione disulfide showed no significant differences. 

Interestingly, aminobutyric acid is also increased in N2 worms. Further metabolites elevated 

in N2 were identified as Carn(3:0), Carn(5:0), and succinyl carnitine. All of them can be 

linked to the degradation of BCAAs. Though leucine, isoleucine, and valine were not found to 

be significantly different higher levels of these carnitines might indicate higher activity of 

BCAA degradation in N2 compared to daf-2. Carn(2:0) and Carn(4:0), in contrast, were not 

changed. Metabolites increased in daf-2 showed a high number of peptides containing 

proline. 

In negative ionization mode, several fatty acids were detected and annotated via MS1, 

formula calculation via Sirius, and checking of retention time trends. Out of the 11 detected, 

six were found in significantly higher levels in N2 worms (FA 18:1, FA 18:3, FA 18:4, FA 

20:3, and two times FA 20:4) and one was only exclusively detected in N2 (FA(18:5)). Of 

these, FA 20:4 and FA 20:3 have also been found in higher levels in N2 by Castro et al. 

[121]. Similar results were also found by Lourenco et al. [75]. Higher levels of Trehalose-6-

phosphate were found in daf-2 worms, consistent with higher levels of Trehalose detected in 

positive ionization mode. Another molecule to be found higher in daf-2 was tyglu#2, a 

secondary metabolite from the SMID-DB. No reference spectrum has been deposited in 

known MS2 databases, but a spectrum was available from the SMID-DB webpage. Manual 
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comparison of peaks showed an overlap of m/z 78.9591, 96.9696, and 223.0020. Spectral 

similarity was 0.8. More peaks were detected in the measured spectrum, which can help with 

interpretation. A fragmentation tree has been constructed using Sirius to help with 

identification. The two fragments at m/z 378.0955 and 360.0863 correspond to the loss of the 

4-aminobenzoic acid moiety followed by the loss of the tyramine residue. Further fragments 

correspond to the sugar and phosphate group. 

 

Figure 27: (A) Comparison of tyglu#2 reference spectrum from SMID-DB (upper panel) against the measured 
spectrum (lower panel). Three fragments matched, namely m/z 78, 96 and 223. (B) structure of tyglu#2. (C) 
Fragmentation tree computed by Sirius. The first two fragments, m/z 378 and 360, correspond to the loss of the 4-
aminobenzoic acid moiety, while the next fragment also lost the tyramine residue. All further fragment belong to 
the sugar and phosphate structures. 

5.2.2.7. Glycerophosphoethanolamides 

One particular metabolite detected and down-regulated in daf-2 mutant worms was detected 

at m/z 470.23 at 31.28 min in negative ionization mode. A metabolite with the same m/z was 
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shown to be upregulated upon infection with Pseudomonas aeruginosa or Salmonella 

enterica [185]. Investigating the MS2 spectra associated with this feature showed a pattern 

specific for glycerophosphoethanolamides (GPNEA), as described by Artyukhin et al. [478]. 

The fragmentation of this class of molecules has been described in this publication. The most 

abundant fragments identifying this class of molecules are a combination of m/z 78.9603, 

96.9704, 152.9958, and 171.0063. GPNAEs are isomeric structures to LPEs. In contrast to 

GPNEAs, LPEs yield a fragment specific to the fatty acid attached in negative ionization 

mode. Interestingly, the molecule detected yielded lower intensities of m/z 96.9696 and 

different intensity ratios for the other fragments. In order to identify further members of this 

metabolite class, all MS2 spectra were searched for spectra containing all of the following 

exact m/z: 78.959054 ([PO3]-), 96.969619 ([H2PO4]-), 152.995834 ([C3H6O5P]-) and 

171.006399 ([C3H8O6P]-). Using this, 79 additional features as potential candidates for 

GPNAEs were identified. Checking for the typical intensity patterns, finally, 23 remained. 

Further examination in Sirius revealed mostly the correct sum formulae, but often features 

were wrongly annotated as LPEs. In order to avoid the wrong annotation of the isomeric 

classes LPE and GPNAE, also the fragmentation of LPEs was examined. Based on the 

fragmentation, 16 GPNAEs could be identified. Positive ionization mode data was searched 

for the corresponding peaks, and 13 GPNAEs could also be identified in this mode as well. 

Similar to the negative ionization mode, LPEs, and GPNAE yield different fragments and can 

also be differentiated by their retention time. Using the logP as proxy GPNAEs are more 

polar, followed by LPE species. For example, the predicted logP of GPNAE 14:0 is 3.03, 

while for both LPE 14:0/0:0 and LPE 0:0/14:0 the logP is 3.65. This is also reflected in the 

RTs, as GPNAEs typically elute before the two LPE peaks. While LPEs typically show the 

loss of the PE headgroup in positive mode, GPNAEs mostly yield a fragment corresponding 

to the respective N-Acylethanolamide with an additional loss of H2O. GPNAEs formed a 

dense cluster in the GNPS network with mass differences related to the elongation of the 

fatty acid tail. Of the 16 identified, seven were significantly different between N2 and daf-2. 4 

were specific for daf-2 and 3 specific for N2. These three all contained PUFAs. The feature 



 

289 
 

with m/z 470.23 contains an unusual PUFA FA 18:5. To verify if this fatty acid is possible, the 

presence of free FA18:5 was checked. Indeed, a low-intensity peak was detected, but since 

it was very low in abundance, no MS2 with good quality was collected. However, the identity 

could be confirmed by using a trendline along the RT for all identified members of the C18 

fatty acids. Besides the GPNAEs also, their glycosyl variants (HexGPNAEs) have been 

described. Described fragmentation includes the previously known fragments and additional 

fragments derived from the sugar moiety (59.01256 ([C2H3O2]-), 71.01260 ([C3H3O2]-), 

78.95783 ([PO3]-), 89.02332 ([C3H5O3]-), 96.96854 ([H2PO4]-), 101.02341 ([C4H5O3]-), 

113.02357 ([C5H5O3]-), 119.03416 ([C4H7O4]-), 152.99548 ([C3H6PO5]-), 171.00616 

([C3H8PO6]-), 333.05972 ([C9H18PO11]-)). Interestingly, GPNAEs and HexGPNAEs were not 

connected within the GNPS network and formed separate clusters. The addition of the 

hexosyl moiety changed fragmentation in such a way that no similarity could be found. 

GPNAEs are potential intermediates on the synthetic route to produce NAE. NAEs have 

been shown to mediate the effect of diet on lifespan, for example [101]. NAEs have been 

detected as [M+H]+ and [M+Na]+ adducts in positive ionization mode. Their fragmentation 

spectra could confirm several. Several of them have been found to be significantly higher in 

N2 worms. The highest fold change was found for NAE 20:5, the species also studied by 

Lucanic et al. [101]. 

Differences in the changes between GPNAEs and HexGPNAEs can be observed; for 

example, GPNAE 18:5 is significantly higher in N2, while HexGPNAE 18:5 is not significantly 

changed. Additionally, species differing in double bonds are often differentially regulated, e.g. 

GPNAE 16:2 and HexGPNAE 16:2 are higher in daf-2, and GPNAE 16:3 and HexGPNAE 

16:3 are higher in N2. Consistent with this, NAE 16:3 and NAE 18:5 are also higher in N2. In 

the case of the 20:5 tail, no GPNAE nor HexGPNAE have been detected. Levels might be 

low since they might be directly metabolized to NAE 20:5, which seems to have an important 

signaling function. 
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No metabolic pathway has been for the biosynthesis of NAEs in C. elegans, except for a 

hypothetical one also added to WormJam. This pathway integrates multiple levels of 

regulation. The biosynthetic precursors for all metabolites are PEs and NAPEs. Fatty acyls 

are derived from PCs, which are transferred to the PE headgroup. Interestingly the different 

GPNAEs and HexGPNAE are based on unusual fatty acyls, such as 16:2, 16:3, and 18:5. 

Helf et al. also detected this species in a recent study [454]. Furthermore, different fatty acids 

and NAEs have been identified, suggesting that the entire network is more complex than 

expected. 1-glycero-3-phospho-hexose as a potential degradation product of HexGPNAE 

was also detected in the HILIC part of the tandem-LC setup but was not significantly different 

between the conditions. 

5.2.3. Conclusion 

Increased coverage of metabolomics and lipidomics methods represents an important topic 

to enable a truly comprehensive analysis of the metabolome and lipidome. Different ways, 

such as parallel LC, tandem LC or two-dimensional LC, have been used to achieve this. The 

presented optimized tandem LC setup combined RP and HILIC separation to enable the 

analysis of the polar and non-polar metabolome from a single injection. The method utilizes 

the column coupling to fractionate the metabolome and use the metabolites eluting in the 

void volume of an RP separation and transfers them to a HILIC separation. The system was 

optimized in such a way that the two separation methods could be performed independently 

from each other. This first allows for improving the instrumentation's duty cycle because the 

HILIC column is re-equilibrated after the separation while RP separation is performed. 

Although the setup involves several switching valves and connections, it was proven during 

routine analysis to represent a robust alternative to classic separated separations. The 

suggested setup is easier to use in comparison to 2D-LC setups, for example. Typically for 

metabolomic or lipidomics analysis, multiple heart-cutting or comprehensive 2D-LC are used. 

In both cases, the second-dimension separation characteristics need to be optimized to scale 

with the first dimension. Multiple heart-cutting modules to park peaks in sample loops have 



 

291 
 

been developed, enabling the decoupling of the first and second dimensions. In the case of 

comprehensive 2D-LC the major limitation is the data analysis due to the high dimensionality 

(1D-RT, 2D-RT, m/z, and intensity). Therefore, advanced data processing methods, similar 

to ion mobility software, are required. In contrast, the data obtained from the tandem-LC 

setup is of lower dimensionality and can be processed similarly to standard 1D-LC. 

Compared to individual separation on separate RP and HILIC methods, particular 

metabolites either elute in the trapping, RP, or HILIC part. No duplication of metabolites has 

been found so far, which makes metabolite annotation and data analysis easier. The use of 

C. elegans metabolite extracts shows that the tandem-LC setup is capable of coping with 

complex extracts and generates valid biological insights. The developed tandem-LC setup 

allowed the comprehensive analysis of the C. elegans metabolome from single injections per 

ionization mode. Together with the developed annotation workflow, it allowed the analysis of 

the N2 and daf-2 metabolome and the comparison. Additionally, dedicated workflows such 

as FBMN in GPNS helped further annotate specific secondary metabolites. The results 

obtained are in line with previously published results. Combining the data, it was possible to 

identify members of a new class of metabolites only recently described in C. elegans and not 

present in metabolite databases at the moment. These molecules were defined as GPNAEs 

and their glycosyl variants, HexGPNAEs. In the GNPS network, both formed two dense 

clusters, which were separated. The chemical modification caused a difference in 

fragmentation based on which both clusters could not be connected by using the modified 

cosine score from GNPS. In future different approaches might be required to combine such 

clusters and make (bio)chemical sense of them. Amara et al. recently described different 

networking approaches in metabolomics and how they can be potentially combined [307]. 

Besides these new molecules, previously identified metabolites, which also have been 

associated with daf-2 mutation, have been detected. This included several amino acids, fatty 

acids, trehalose, and trehalose-6-phosphate. Results were contrasted against different 

publications performing similar comparisons. Interestingly, results were different between the 



 

292 
 

measurements performed with the tandem LC setup and the literature but also between the 

different publications. The metabolome is very condition-dependent, and the nutritional status 

of worms has a considerable impact. In all cases, E. coli has been used as food bacteria, but 

potentially the exact density on the plates, as well as the nutritional content, might not be 

comparable, leading to different results—for example, Spanier et al. compared C. elegans 

grown in different laboratories using lipidomics [449]. Although several general trends were 

conserved, the exact fold changes between the different laboratories could not reproduce. So 

far, no good axenic culture of C. elegans is possible, which would enable more detailed 

studies of C. elegans metabolism using a defined medium. Nevertheless, the results have 

shown that the daf-2 mutation causes a major shift in metabolism, which is potentially also 

(at least in part) for the longevity of this mutant. 

TandemLC-MS shows several advantages but is currently not used in a routine setup. First, 

the usage of multiple pumps and method development and optimization represent a 

significant barrier for laboratories aiming to adopt this workflow. Additionally, several 

additional valves are required, which adds a potential source for leakage or blocking. 

Troubleshooting of such a system can become cumbersome. The currently used setup uses 

HPLC columns. The next step will be the transfer to UHPLC format columns with sub-2-µm 

particles for increased efficiency. In such a system, the correct use of connection capillaries 

becomes very important not to lose the advantage of efficient separation. In a further step, 

such a system can be further miniaturized to enable the analysis of a lower amount of C. 

elegans per sample. 
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5.3. Single C. elegans fatty acid analysis 

Fatty acids are an important class of molecules in C. elegans. Many critical biological 

pathways converge toward fatty acid metabolism and signaling. For example 

monounsaturated fatty acids have been linked to lifespan extension [479]. Total fatty acid 

profiles are typically measured using GC-FID or -MS methods. For analysis with GC, 

derivatization of fatty acids is required. Volatile fatty acid methyl ester (FAMEs) can be 

prepared directly from esterified fatty acids, e.g. with methanolic BF3 [480]. Separation of 

FAMEs on a GC yields a high-resolution separation that is also able to separate different 

isomeric fatty acids. However, if isotopic labeling data of fatty acids shall be analyzed the 

fragmentation of PUFAs with more than 18 carbons in the EI source yields many different 

peaks, which can be typically not deconvoluted into isotopic distributions [123]. 

Furthermore, the sensitivity of this method is limited. Typically, several thousand worms are 

used for this type of analysis [252]. CI allows the analysis of intact fatty acids and is generally 

used with high-resolution instruments such as GC-CI-ToF-MS [105]. Other possibilities 

include the study of free fatty acids. However, the isolation of free fatty acids requires more 

sample preparation and great care since fatty acids can be present in different chemicals and 

surfaces, which increases the background. Analysis of nonesterified fatty acids (NEFAs) can 

be performed using LC-MS/MS in negative ionization mode [481]. However, free fatty acids 

in negative mode show only very limited fragmentation, especially for saturated species. 

Therefore often, only pseudo transitions in MRM mode are used. 

Derivatization can increase the sensitivity of the fatty acid analysis. For example, most MS 

show higher sensitivity in positive ionization mode, but fatty acids are only amenable to this 

mode after derivatization. Charge-reversal derivatization making fatty acid analysis in 

positive ionization mode is therefore of great interest. One possibility is the derivatization with 

2-dimethylamino ethylamine (DMED), which has been widely used [482, 483]. Another 

example was developed by Bollinger et al. as a charge reversal derivatization using N-(4-

aminomethyl phenyl)pyridinium (AMPP) for the analysis of eicosanoids [484]. This 
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derivatization reagent converts the negative carboxylic group into a permanently positively 

charged group, allowing high-sensitivity detection. This derivatization technique has also 

been used for the analysis of fatty acids using LC-MS/MS or direct infusion [485, 486]. A 

similar derivatization strategy, based on N-(4-1’-aminoethylphenyl)pyridinium (AEPP), has 

been used by Li et al. to study the physiological function of FATH-1 in C. elegans [487]. 

FATH-1 produces 2-hydroxy fatty acids used in sphingolipid biosynthesis. 

Since charge-reversal derivatization yields increased sensitivity, it raises the possibility of 

analyzing fatty acids from a low amount of C. elegans or even single worms. Here the 

extraction, saponification, derivatization, and detection of fatty acids from single C. elegans 

were developed and tested. The final method allowed the detection of several fatty acids, 

including different isomers of odd-numbered iso-branched-chain fatty acids. 

5.3.1. Material and Methods 

5.3.1.1. Chemicals 

HPLC-grade hexane, LC-MS-grade methanol (MeOH), acetonitrile (ACN), and formic acid 

were obtained from Sigma-Aldrich (Sigma-Aldrich, Taufkirchen, Germany). Water was 

purified using a Merck Millipore Integral water purification system with a resistance of 18 MΩ 

and TOC < 5 ppb. Hydrochloric acid and potassium hydroxide were of analytical grade and 

also obtained from Sigma-Aldrich. 

5.3.1.2. C. elegans culture 

C. elegans were cultured according to standard protocols using NGM and E. coli OP50 as 

the sole food source. Worms were grown to the adult stage and then individually picked to an 

empty NGM plate to allow them to empty their guts. After a few minutes, worms were directly 

picked into the extraction solvent, as described below. 

5.3.1.3. Total Fatty acid extraction 

Potential contaminating fatty acids were washed off all glass material with LC-MS-grade 

MeOH. Adult worms were directly picked into 50 µL 1M KOH in MeOH which was placed in a 

total recovery LC-MS vial (Waters, Eschborn, Germany). To avoid contamination, the worm 
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picker was first heated in an ethanol flame and then washed in LC-MS grade MeOH before 

individual C. elegans were picked. Samples were closed tightly, and fatty acids were 

extracted at 60°C for 1 hour. After cooling, 1 µL of concentrated HCl was added to neutralize 

fatty acids, and 50 µL of H2O was added. Next, fatty acids were extracted into 500 µL of 

hexane by shaking. After phase separation, the hexane was transferred to a fresh glass vial, 

and the solvent evaporated to dryness. 

5.3.1.4. Fatty acid derivatization 

Extracted fatty acids were derivatized with the AMP+ kit (Caymen Biochemicals, Michigan, 

USA). Instead of the original procedure, only half of the indicated volumes were used. To the 

dried fatty acids, 10 µL ACN/DMF, 10 µL EDC, 5 µL HOBt, and 15 µL AMP+ derivatization 

reagent were added. The sample vials were sealed tightly, and the reaction was conducted 

at 60°C for 30 minutes. After cooling, the vial was directly used for injection 

5.3.1.5. UPLC-MS analysis 

Derivatized fatty acids were separated on a Waters Acquity UPLC (Waters, Eschborn, 

Germany) using a Waters Acquity UPLC BEH C8 column (150 mm x 2.1 mm ID, 1.7 µm 

particle size) (Waters, Eschborn, Germany) and a 100% H2O + 0.1% formic acid and 100% 

ACN + 0.1% formic acid as eluents. The column temperature was set to 40°C and flow rate 

to 0.25 mL/min. The following gradient was used: 60/40 at 0 min, 60/40 at 2 min, 0.1/99.9 at 

20 min, 0.1/99.9 at 25 min, and 60/40 at 25.1 min. Detection was carried out using a Bruker 

maXis UHR-ToF-MS (Bruker Daltonic, Bremen, Germany) in positive ionization mode. 

5.3.2. Results and Discussion 

5.3.2.1. Method development and validation 

The commercially available AMP+ kit from Cayman Chemicals has been selected for charge-

reversal derivatization. It uses AMPP as a derivatization reagent and supplies all necessary 

chemicals. AMPP showed high gains in sensitivity in previous applications [484, 485]. In the 

first step, fatty acids are activated using 1-Ethyl-3-(3-dimethyl aminopropyl)carbodiimide 

(EDC) and 1-hydroxy benzotriazole to form an active ester. This active ester is then 
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converted into a stable amide with AMP (see Figure 28). A significant advantage of this 

method is a relative increase in mass and hydrophobicity to a certain extent that also allows 

the measurement of short-chain fatty acids such as butyrate [488]. First, free fatty acids were 

used to test the derivatization efficiency. As suggested, reactions are complete with over 

95% yields (data not shown). 

Chromatographic separation of derivatized fatty acids was optimized by testing different 

reversed-phase columns. The preselection of columns indicated that a BEH C8 worked best 

and could cover the complete anticipated fatty acid range from FA 12:0 to FA 30:0. Two 

different gradients were tested. An essential aspect for the analysis of  C. elegans fatty acids 

is the separation of straight- and branched-chain fatty acids. Therefore, different free fatty 

acids were derivatized in three mixes, and separation was tested. The first gradient was a 

linear increase from 40% to 99.9% eluent B, while the second gradient first increased from 

40% to 60%, followed by a second step from 60% to 99.9%. Already the first gradient was 

able to separate FA 15:0 and FA 14:0(13Me) as an example of isomeric species. However, 

the second gradient increased the resolution of isomeric species and was therefore selected 

for all further investigations. 

First, the elution behavior of fatty acid standards was studied. The first part of the gradient 

roughly covers the range until C18:0. In this range, an increase in carbon chain by C2H4 

yields a retention time difference of about 3.7 minutes. Fatty acids with a higher number of 

carbons elute in the second, steeper part and only have a difference of 0.2 minutes. One 

additional double bond reduced the retention time by about 2.3 minutes for the first and the 

second double bond, while the effect from the third onwards was dependent on the position 

of the double bond. For example, the series of FA 18:0, FA 18:1(9Z), FA 18:2(9Z,12Z), FA 

18:3 (9Z,12Z,15Z), and FA 18:3 (6Z,9Z,12Z) eluted at 18.5, 16.2, 13.9, 11.9 and 12.4 

minutes respectively. 

Next, fragmentation spectra of the fatty acid derivates were examined. In the original article 

by Wang et al., extensive fragmentation was described [486]. However, this analysis 
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observed no fragmentation, potentially because 35 eV is too low to yield the common 

fragments described. Instead, very low-intensity peaks at These fragments allow identifying 

peaks as derivatized fatty acids and, together with RT trends, different species for which no 

reference standard was measured can be identified. 

 

Figure 28: (A) Scheme of derivatization reaction used in the AMP+ kit. An active ester is formed, which then 
reacts with amino groups to form an amide. (B) Reaction product of AMP+ kit. The permanent cation allows 
sensitive detection in positive ionization mode. (C) Extracted ion chromatograms related to FA 15:0 and isomers. 
Good separation of FA 14:0(13Me) and FA 15:0 was achieved for the reference standards (upper panel) and in C. 
elegans samples (lower panel). Additionally, FA 14:0(12Me) was detected in C. elegans samples. 

In the following step, the derivatization conditions for single C. elegans were tested. A single 

one-step extraction and saponification using methanolic KOH were selected to avoid 
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potential losses of material due to multiple steps and excessive handling. After neutralization, 

fatty acids were extracted into hexane and dried. Only half of the volumes originally 

described in the AMP+ kit were used not to dilute the sample too much. This procedure 

allowed still handling of low volumes with standard pipettes. After derivatization and cooling, 

the sample was directly injected into the UPLC-MS system. Results indicate that this 

procedure yields detectable signals from different fatty acids and was applied to multiple 

worms, as described below. 

5.3.2.2. Application to single C. elegans and heterogeneity in fatty acid levels 

As a proof-of-concept, the final method was used to profile fatty acids from several individual 

worms. Young adult worms from a mixed-stage culture were first picked to an empty NGM 

plate with no bacteria to remove excessive bacteria and defecate bacteria in the gut. Worms 

were then picked individually into the extraction solution and treated the same way, for this 

first proof-of-concept, in total, ten worms were processed. 

Theoretical m/z values for in-silico derivatized fatty acids have been used to search for the 

corresponding peaks. In total, 15 different fatty acids were identified. Peak areas were used 

and normalized to the sum of all peak areas to normalize potential differences during sample 

preparation and measurements. The primary fatty acid detected was palmitic acid (FA 16:0), 

mostly over 50% of the total peak area, followed by stearic acid (FA 18:0). Interestingly, three 

different isomeric peaks for FA15:0 and FA 17:0 were detected, potentially representing 

anteiso, iso, and straight chain variants. Furthermore, two isomers of FA 18:1 were detected. 

However, it is important to mention that no absolute quantification has been performed. 

Therefore, the numbers are only rough indicators. Though derivatization might help 

normalize ionization behavior, differences in the eluent composition and the fatty acid itself 

can lead to differences. Therefore, a comparison between fatty acids is not made, and 

worms are only compared within one fatty acid. 

Investigating the individual profiles, differences for all worms could be observed. To account 

for differences in the abundance of the individual fatty acids, the relative difference to the 
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average of all worms was depicted. Interestingly, Worm 1 showed large differences in the 

second peak of FA 15:0, the second peak of FA 17:0, as well as FA 16:1, the first peak of FA 

18:1, FA 18:2, and FA 20:5. However, the latter was only detected in two samples. The 

peaks for FA 15:0 and FA 17:0 are based on the elution pattern of the iso-forms. It makes 

sense that both are increased since FA 17:0 is the elongation product of FA 15:0. 

Furthermore, the higher abundance of FA 18:1 and FA 18:2 and 16:1 are related as they can 

also be produced from each other. Similar increases can be seen in Worm 7, but not as 

extensive. Though worms generally tend to have similar fatty acid composition, selected 

worms show distinct profiles. Since these different profiles make sense biochemically, they 

represent real differences rather than extraction, derivatization, or measurement artifacts. 

How this difference would have translated, e.g., into differences in lifespan, remains elusive. 

Since the extraction for metabolomics and lipidomics is destructive, no further information on 

future lifespan could be obtained, nor can the worm be sampled a second time. 

 
Figure 29: Fatty acid profiles from 10 individual worms obtained by LC-MS/MS analysis. The upper panel shows 
the % of total peak area for each fatty acids. Using the % of total peak area differences based on sample 
preparation from the individual worms are normalized. The lower panel indicates the differences of the single 
worms to the mean of all 10 worms. Worm 01 shows particular differences in branched chain fatty acids as well 
as unsaturated species. 
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5.3.3. Conclusion 

Fatty acids are typically analyzed using GC-FID or GC-MS but can also be analyzed with LC-

MS. However, native fatty acids analyzed in negative ionization mode show none to only 

weak fragmentation. Therefore, charge switch derivatization was developed to enable a more 

sensitive analysis of fatty acids in positive ionization mode. This derivatization adds a 

constant group, yielding a constant fragmentation, which can be used for quantification. 

Additionally, the sensitivity is greatly enhanced. 

This derivatization was applied to samples of single C. elegans. Total fatty acids have been 

extracted by boiling in methanolic KOH, and saponified fatty acids have been derivatized. 

The sensitivity allowed obtaining fatty acid profiles with 15 detected fatty acids. 

Chromatographic separation separated anteiso-, iso- and straight-chain fatty acids. Using ten 

worms as proof-of-concepts, their profiles were compared. Using the averaged profile of all 

as a reference, particularly one worm was found to have a different profile. 

However, the number of samples is still quite low, so further experimentation will be required. 

A significant point for improvement is the switch to absolute quantification. This would allow 

the comparison between different fatty acids and the calculation of ratios between direct 

substrates and products, e.g., of elongation or desaturation reactions. In order to further 

increase the sensitivity of a column with a smaller inner diameter would be possible. While 

the development of such technology holds great promise to explore more interesting aspects 

of C. elegans biology, several questions remain. First, the heterogeneity of worms cannot be 

neglected at this level of analysis. So while the amount of biomaterial might be reduced to a 

single worm, the number of replicates has to be increased to obtain stable read-outs for 

statistical analysis. It remains unknown at the moment how many replicates might be 

required. The question is, what amount is sufficient and practicably feasible? Second, limited 

biological starting material also limits the number of possible analyses. In a worst case, it 

might be possible to analyze a single sample only once. This demands that the information 

obtained from this sample must be as comprehensive as possible. Lastly, due to the 
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destructive nature of the extraction, no further analysis of the lifespan of C. elegans can be 

performed. One possibility is to grow a parallel cohort of worms or use worms grown on the 

same plate as references. However, these cohorts must be linked. Potential read-outs are 

either different reporter genes or autofluorescence, for example. 
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6. Conclusion and Outlook 
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6.1. C. elegans as model organism for metabolism research 

C. elegans is one of the premier models to study metabolism and its effects on different 

phenotypes. Despite the fact that it is studied since a few decades now, surprisingly little is 

known about the complete metabolism and its regulation in health and disease. 

Metabolomics and lipidomic aim to close this gap by generating a comprehensive overview 

on metabolism from a given sample. By combining them with genetics and other functional 

assays new avenues for metabolism research are being created. While metabolomics and 

lipidomics are well-developed in human research with the availability of rich resources such 

as the HMDB such resources are missing for C. elegans [86, 87, 198, 489]. 

This work aimed to close this gap to enable the further development of C. elegans as model 

organism for metabolism research. This included the creation of a consensus GSMN, 

WormJam, for unified in silico analysis of the nematode’s metabolism. Different GMSNs have 

been generated for C. elegans, but common to all they lack the C. elegans-specificity (e.g. 

the use of C17iso sphingoid bases or inclusion of ascaroside metabolism). 

Still several major gaps have been identified. One particular example from this work is the 

biosynthesis of N-acyl-ethanolamides (NAE) in C. elegans. In the literature these metabolites 

have been described several times, e.g. in Lucanic et al. [101]. GPNAEs as intermediates of 

the biosynthesis NAEs have been detected was well [140, 478]. Furthermore, 

hexosylvariants of the GPNAEs, HexGPNAEs, have been described and detected in this 

work. However, the first steps of the biosynthesis remain to be elusive. Although tow N-acyl-

phosphatidylethanolamine-specific phospholipase D orthologs, named nape-1 and nape-2, 

have been described, their activity has been only shown in vitro. However, the first step such 

as the N-acyl-transferase are missing. Especially, NAPEs have not been detected so far in 

C. elegans lipid extracts and due to their low levels in other organisms (typically less than 

0.1% of total phospholipids) they might require additional sample preparation steps [490, 

491]. Elucidation of the complete biosynthetic pathway might represent an important task 

given that several pathways converge on NAE signaling. 



 

305 
 

The combination of the WormJam in silico model, prediction of lipid metabolic pathways and 

curation of metabolites and lipids allowed to construct a first version of a C. elegans 

metabolome/lipidome database. As anticipated the metabolism of the nematode forms a 

dense network with several thousand possible metabolites and lipids. This database will 

server as blue-print for further investigations into the metabolism of C. elegans. Since for 

metabolites present in WormJam direct association with pathways are available, systematic 

analysis of metabolism will become possible. 

While this represents a compound database, reference spectra for several C. elegans-

specific metabolites are still missing in publicly available databases such as MassBank. 

Though several spectra a available via the SMID-DB database, they have to copied manually 

and data files for spectra matching need to be generated by the user. In case of lipid spectra 

this missingness can be circumvented by the prediction of spectra using rules from the 

fragmentation of known lipids. This has been proven previously to very successful for 

LipidBlast and the generated lipid spectra within this work showed good matching with known 

lipids and helped to identify several lipid species in C. elegans. Rule based annotation of 

lipids is also generally increasing in commercial software, e.g. Bruker MetaboScape, or in 

open-source software, e.g. mzMine 3.0. 

Several possible next steps for the improvement of the WormJam GSMN are possible. First, 

it misses several compartments, e.g. the peroxisome. Refinement of reactions and their 

subcellular location will be an important next step. Since, C. elegans has differentiated 

tissues it will be important to incorporate this information as well. A first step in this direction 

has been performed by Yilmaz et al. [492]. Single-cell RNA sequencing has been used to 

reconstruct tissue specific metabolic pathways for seven different tissues. Models and flux 

analysis are consistent with previous knowledge on the metabolic function of these tissues. 

Lastly, interaction of C. elegans with its natural microbiome is an important and upcoming 

topic. Dirksen et al. presented CeMbio, a resource containing different culturable bacterial 

strains of the C. elegans microbiome [493]. 
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6.2. Systems biology approaches in C. elegans metabolism 

Experimental setups in C. elegans are becoming larger, with multiple conditions, genotypes, 

etc. While large-scale experiments such as genome-wide screens are typically combined 

with other read-outs such as fluorescence microscopy. In future, more and more applications 

of C. elegans in systems biology approaches of metabolism will be observed. Genomics 

approaches are currently capable of using low number of worms cultivated in for example 96-

well plates. Metabolomics and lipidomics offers a multiparametric read-out, which in future 

can be combined with large-scale experiments. While the power of MS analysis is increasing, 

several obstacles need to be removed. Throughput is the major factor which needs to be 

optimized. Several examples for successful application exist. 

For example for the analysis of a E. coli KO library a high-throughput FIA-ToF-MS has been 

developed [48]. Throughput is an important topic in metabolomics and lipidomics and 

methods are constantly improved in terms of speed [494-496]. Run times below 5 minutes 

are now feasible. Such approaches are required to embed C. elegans metabolomics and 

lipidomics in the systems biology landscape to be on par with other approaches such as 

imaging or phenotypic screens. Calculating a library of 15.000 theoretical knockouts (not all 

KOs are viable or develop normal), a method using RP column with 15 minutes per ionization 

mode would require 156.25 days pure measurement time per ionization mode. No included 

are additional required system samples, such as blanks, QC or reference samples. 

Reduction to 5 minutes per ion mode yield 104 days measurement time, and a 3-minute 

method 63 days. With such a timescale the screening of multiple conditions becomes 

possible. 

An important factor is sample preparation as well as QC aspects. Within each batch several 

controls that enable comparability between the different batches are required. Furthermore, 

reference materials shall be used for control of each batch. A recently introduced reference 

material for C. elegans can help to improve data quality and comparability [462]. 
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However, interpretation of data becomes a bottleneck. Using the approaches developed in 

this work for metabolite annotation can significantly speed up the process of data analysis. 

Furthermore, the workflow consists of defined steps and the is reproducible. Together with 

version-controlled libraries and database it is allows the consistent annotation and 

identification. The annotation of novel, unknown metabolites and lipids will remain a major 

bottle. Since, C. elegans can be grown in larger quantities the purification of metabolites and 

lipids for NMR is typically possible using analytical or preparative scale chromatography. 

Pathway level interpretation of obtained data will become an important topic. GSMNs such 

as WormJam, will allow the large-scale interpretation, but no tools are available for example 

for pathway enrichment in C. elegans. MetaboAnalyst for example supports pathway 

enrichment for C. elegans, but the origin of the background pathways is unclear [497]. Since 

the entire metabolome and lipidome is currently not known it is hard construct a correct 

background dataset for enrichments. 

6.3. C. elegans metabolome and lipidome database drafts 

Reference databases for species-specific metabolomes and lipidomes are becoming more 

popular and available. The species-specificity circumvents over-annotation of metabolomics 

data using generic large databases. Different trends are visible, either single databases 

dedicated to a single organism are created or larger databases adopt some kind of 

information which can link a metabolite or lipid to an organism. One recent example is 

LOTUS, which stores information of natural products and their links to producing organisms 

[498]. Other examples such as SMID-DB for C. elegans specific secondary metabolites have 

been mentioned earlier. 

The chemical curation of the WormJam GSMNs as well as the lipid prediction workflow 

allowed to generate a first draft of the C. elegans metabolome and lipidome database. 

Comparison against detected metabolites has shown that still a large part is missing, which 

is especially true for secondary metabolites. This represents an interesting field and new 

secondary metabolites are described on a routine basis, e.g. by the Schroeder group. 
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6.4. New analytical approaches 

The increased demand in metabolomics and lipidomics analysis will require the refinement of 

methods such as the ones presented here as well as the development of new methods. In 

parallel to the increase of number of samples a reduction in the biological start material (due 

to different culture conditions in 96-well plates for example) will be required. Together with 

the improvement of analytical capabilities this will create new avenues in C. elegans 

metabolomics and lipidomics. A major point is the increased sensitivity required for the 

analysis of smaller amounts of biological material. Miniaturization, especially of the LC 

component is a major target point for improvements. While nanoLC is readily used in 

proteomics and represents the standard technique, its use in metabolomics and lipidomics is 

underexplored. Ultimately this will allow to determine the metabolome and lipidome of a 

single worm, similar to the determination of a single worm proteome [188]. 

In this work a tandem-LC setup was developed which combines RP and HILIC separation in 

a single setup. This allowed to increase the coverage of metabolites from a single injection. 

This setup has been successfully applied to study metabolic differences between N2 and 

daf-2 worms. This setup has been realized on an older model of the LC system allowing a 

maximum pressure of only 400 bars. A prototypic setup with higher pressure ranges has 

been tested in collaboration with Thermo Fisher Scientific. This setup was working and first 

results have been obtained with C. elegans. However, the injection volumes are still rather 

large and requires larger amounts of C. elegans and therefore make it only partially useful for 

large-scale studies such as genetic screens. Ultimately realizing this tandem-LC setup in 

form of a nanoLC-MS system will yield sensitivity and coverage for the analysis of single 

worms. 

Generally the switch towards smaller inner diameters increases the sensitivity of analysis 

(compare Table 33). For example moving from a 2.1 mm ID column to a nanoLC column with 

75µm ID and theoretical sensitivity increase of 743-fold can be achieved. With MicroLC-

systems an increase of 4.2 to 41 fold is possible, but stability in much higher compared to 
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nanoLC. MicroLC systems have been used in the past for example for the analysis of polar 

and non-polar metabolites and lipids [494, 499-501]. Even nanoLC has been used for the 

analysis of lipids [502, 503]. However, nanoLC-MS suffers from lower (chromatographic) 

reproducibility compared to analytical flow LC-MS. In proteomics as shifts towards the use of 

microLC-MS is visible since modern MS systems offer higher sensitivities on the MS side. 

The lower flow rates also aid the ionization process in ESI source potential yielding a further 

gain in sensitivity. However, exact increases in sensitivity are specific to metabolites and 

metabolite classes and can be very different among then. Potentially, metabolomics, 

lipidomics and proteomics will converge towards the use of micro-flow systems with 

increased robustness. Especially robustness is required for large-scale analysis such as 

genome-wide screens. 

Table 33: Theoretical comparison of different columns dimensions. Columns with 2.1 mm have been set as 
standard and the table is scaled to this columns. 

ID (mm)* Flow Rates 
Injection 
Volume 

Sensitivity 
Mobile Phase 
Consumption 

Typical Flow Rates 

4.6 4.8 4.8 0.2 4.8 >= 1 mL/min 

3 2 2 0.49 2 0.4-0.6 mL/min 

2.1 1 1 1 1 0.2-0.4 mL/min 

1 0.22 0.22 4.2 0.22 50-100 μL/min 

0.5 0.056 0.056 17 0.056 10-20 μL/min 

0.32 0.022 0.022 41 0.022 5-10 μL/min 

0.18 0.0078 0.0078 129 0.0078 1-5 μL/min 

0.075 0.00136 0.00136 743 0.00136 0.2-1 μL/min  

 

For example, in Häussler et al., which data has been used in here a genome-wide RNAi 

screen has been performed. In this screen imaging has been performed and 10-20 L4 larvae 

of the F1 generation were used. Lipid profiling was only performed after hit-verification using 

larger cultures and populations. Direct integration of lipid analysis in the screen would have 
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been of great interest. First, potential candidates, which might not influence the used 

reporter, but lipids might have been identified and lead to a larger number of potential hits for 

further downstream experimentation. Lipidomics in this regard can be seen as multi-reporter 

read-out. Instead of focusing on a single GFP-tagged protein or a selection of fluorescently 

labeled proteins these multiple read-outs might lead to a better understanding and a more 

systems biology (holistic) view. Second, differences between culture conditions, which are 

known to influence the outcome of lipid profiling experiments, can be reduced [449]. 

6.5. Further analytical requirements 

Although many new metabolites and lipids could be identified in this work and large-scale 

dereplication of know metabolites has been performed, still many unknown metabolites 

remain. One particular reason is that not all features have an associated MS2 spectra, 

especially lower intensity features or low quality. Though newer generation of MS 

instruments have increased duty cycles and improved ion optics. The way of data acquisition 

has not fundamentally changed within the last years. DDA is still the dominant way to collect 

MS2 spectra for detected m/z values. However, in many cases no further information is used 

to select precursor except for abundance and potential isotopic pattern. Major problems are 

the detection of adducts or potential in-source fragments as well as the selection of the 

optimal fragmentation energy. Especially the later is important for untargeted analysis, since 

the structures are not known, the optimal collision energy is often also not known. 

Furthermore, in silico tools such as Sirius and CSI:FingerID perform better when information 

from multiple collision energies is supplied. Therefore, either multiple spectra from the same 

precursor with different collision energies (10, 20 and 40 eV for example) or ramped or 

stepped spectra are collected. The first one has the advantage that induvial spectra are 

collected and can be also used for comparison against library spectra, which are often 

collected at individual collision energies. However, the number of precursors covered is 

reduced to increased time required for the multiple spectra. When using a low amount of 

material potentially not enough material is available for reanalysis. 
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DIA might represent a promising alternative approach to DDA in metabolomics and 

lipidomics in future. First results presented here show that in combination with ion mobility it 

is a useful tool for identification of lipids. However, the presented study focused on specific 

lipid class. The used DIA approach represents a single window approach combined with ion 

mobility. Other possibilities include multiple sequential windows or a scanning approach. 

Though the potential applications are broad, DIA is not widespread in metabolomics and 

lipidomics. The major reason is the limited data analytical possibility. Reconstruction of 

spectra represents a huge deconvolution problem, which is similar to EI-GC-MS. However, 

the better chromatographic separation in GC allows easier reconstruction. Most approaches 

so far are limited to targeted analysis of previously known and characterized substances. 

One possibility is the DIAMetAlyzer approach [504]. Results have been shown to be similar 

to manual processing. In case of unknown metabolites for which no reference spectrum is 

available reconstruction of fragmentation spectra from raw data becomes complicated. 

Reconstructed spectra will be different to DDA spectra. Dependent on the used window size 

it will contain isotopes as well as represent a chimeric spectrum of different adducts, if they 

fall into the same window or bin. This complicates analysis and requires further 

deconvolution approaches. Newer DIA approaches such as SONAR or scanning SWATH 

might represent suitable alternatives, since they are using small windows of only a few 

Daltons. In proteomics the timsTOF is often used, which allows combination of ion mobility 

and DIA. Several approaches such as diaPASEF, Synchro-PASEF and midiaPASEF have 

been developed to deconvolute complex peptide spectra [505-507]. However, none of these 

approaches has been used for the analysis of metabolites or lipids so far. Generally, DIA is a 

useful approach to create a “digital archive” of a sample and data can be retrospectively 

analyzed once new hypothesis have been generated. 

In addition so far only metabolites detected under the employed conditions can be analyzed. 

ESI is employed in the majority of metabolomics and lipidomics analysis. However, certain 

metabolites might not be ionized or only show low intensity in ESI. APCI for example is a 

suitable alternative for the analysis of steroids and other compound classes [508, 509]. 
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Structure elucidation and dereplication of small molecules remains an important question in 

the near future. Fast dereplication, meaning the identification of previously detected and 

quantified metabolites and lipids, will be the main task to allow to focus on truly novel 

structures to be elucidated. In proteomics for example Parallal Database Search Engine in 

Real Time (PASER) is used for real time identification of peptides during an analytical run. 

Similar approaches will be required in metabolomics and lipidomics. Furthermore, several 

new approaches are required to speed up the identification of novel metabolites. This 

requires more analytical depth, such as novel fragmentation mechanisms. Electron activated 

dissociation (EAD) has been recently described for the analysis of lipids [510]. This type of 

fragmentation allows the determination of the position of fatty acyls as well as the location of 

double bonds reaching a deep lipid annotation. First results show that EAD might be also 

helpful for the annotation and identification of metabolites, e.g. identifying positions of 

hydroxy or methyl groups. Since this type of fragmentation produces radical ions, which are 

normally not observed under CID conditions, most of the software tools cannot be directly 

used. Similar to CID database need to be compiled to be used a training and test data for the 

development of new data analysis approaches. So far EAD has not been applied to C. 

elegans or C. elegans specific metabolites, but it can help especially with the analysis of 

secondary metabolites such as ascarosides. 

GSMNs are striving towards the analysis of metabolism of context of differentiated tissues. 

However, for proving of predicted metabolic functions spatial approaches are required. So far 

C. elegans metabolomics and proteomics has been performed on the level of entire cultures 

with several hundreds to thousands of worms. Even when developments will allow the 

reduction towards a few tens of worms or a single worm, after extraction the information on 

tissue specificity is no longer available. MS imaging has been developed as tools to analyze 

metabolomics in spatial context. In combination with the ever-increasing sensitivity of MS 

instrumentation the spatial resolution for imaging experiments in increasing as well. Newest 

generation instruments of MALDI-MS reach now spatial resolutions of 5 µm, research 

instruments even lower. An adult C. elegans has a diameter of 65 µm. High spatial 
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resolutions will allow to analyze metabolites in context of specific organs. Lastly, single-cell 

proteomics and metabolomics have gained popularity. Using techniques such as 

fluorescence labeling it will be possible to isolate specific cell populations from C. elegans 

and subject them to metabolomics/lipidomics analysis. 

6.6. Data analysis requirements 

Increase in analytical throughput or deeper analysis with higher coverage or spatial analysis 

will require new data analysis approaches as well. Different workflows have been developed 

as part of this work, which are now used in routine setup that allows the reproducible 

analysis of the C. elegans metabolome and lipidome using LC-MS/MS. 

Sharing of data, which includes raw will become more and more important in future. 

Especially data from large scale screens will represent valuable community resources. First 

and foremost sharing on the chemical information and reference spectra from C. elegans 

specific metabolites and detected in C. elegans needs to be improved. For curation of data in 

this work metabolites and lipids were retrieved from SI or figures and often not accompanied 

with machine-readable formats, such as IDs from different database or structural 

representations such as SMILES or InChI. Submission of data to repositories such as 

MetaboLights or Metabolomics Workbench will enable faster and most important automatic 

curation. Furthermore, spectra for species-specific metabolites such as ascarosides or others 

can be easier retrieved. 

Data analysis and metabolite identification are often processes intimately linked to each 

other. Changes of metabolites can be only explained in the light of neighboring metabolites 

and metabolic pathways. However, unknown metabolites can be often not directly linked to 

pathways. Network approaches such as feature based molecular networks from GNPS hold 

great promises, e.g. as shown here for the analysis of daf-2 and WT worms using tandemLC. 

However, at the current stage this approach is only limited to metabolite features with an 

associated MS2. Different other network approaches have been described to link features, 

e.g. mass difference or correlation networks [185, 305, 511]. So far all these are typically 
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used individually, but each network is focusing on a specific aspect of biology. Their 

combination will be a powerful multilayer approach, as recently suggested in a review by 

Amara et al. [307]. Despite classical spectra similarity measures such as the cosine score, 

other measures will be used in future. The modified cosine score used by GNPS is one 

example, but further examples such as neutral loss spectral matching and other have been 

described. Furthermore, machine-learning based scores such as spec2vec will be used. In 

order to make full use of all possibilities, fast processing is required since typically several 

hundreds to thousands of spectra associated with features will be compared against each 

other. Different measures are available in the Spectra or MetaboCoreUtils packages, 

but also newer packages such SpectriPy enable the bridging to python and python-based 

approaches [369]. 
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09/2016 – 05/2018: “ProLehre Intensiv 2016” (organized by TUM ProLehre) 

07/2016: “Grundlagen professioneller Hochschullehre” (organized by 
TUM ProLehre) 

07/2016: “Student-Centered Learning als Antwort auf die Heterogenität 
Studierender?” (organized by LMU Profil) 

06/2016: “Lehren im Labor” (organized by TUM ProLehre) 

04/2016: “Rhetorik und Präsentation” (organized by LMU Profil) 
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8.1.2. Publication list 

8.1.2.1. Under Review / Under Revision / Preprints 

SIN-3 transcriptional coregulator maintains mitochondrial hormesis and polyamine flux 

Giovannetti M., P. Fabrizio, O. Nicolle, C. Bedet, M. Rodríguez-Palero, G. Michaux, M. Artal-

Sanz, M. Witting, F. Palladino 

J Cell Biol, under review 

 

RepoRT: A comprehensive repository for small molecule retention times 

Kretschmer F., E.-M. Harrieder, M. Hoffmann, S. Böcker, M. Witting 

ChemRxiv, https://chemrxiv.org/engage/chemrxiv/article-details/64a5a08c9ea64cc1677e120f 

Nature Methods, under review 

 

APEX – an annotation propagation workflow through multiple experimental networks to 
improve the annotation of new metabolite classes in Caenorhabditis elegans 

Salzer L., E. M. Novoa-del-Toro, C. Frainay, K. A. B. Kissoyan, F. Jourdan, K. Dierking, M. 
Witting 

Anal Chem, under review 

 

(Re-)use and (re-)analysis of publicly available metabolomics data 

Witting M. 

Proteomics, under review 

 

(Metabolomic analysis of the mouse host reveals glutamyl-glutamate as mediator of pro-
reproductive effects of Lactiplantibacillus plantarum SNI3 

Sun N., B. Juhász, K. Horváth, D. Kuti, I. Bata-Vidács, J. Shen, A. Feuchtinger, I. Nagy, J. 
Kukolya, S. Ferenczi, M. Witting, A. Walch, K. J. Kovács 

elife, under review 

 

https://chemrxiv.org/engage/chemrxiv/article-details/64a5a08c9ea64cc1677e120f
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8.1.2.2. 2023 

Capillary Electrophoresis - Mass Spectrometry as tool for Caenorhabditis elegans 
metabolomics research 

Salzer L., P. Schmitt-Kopplin, M. Witting 

Metabolomics. 2023 Jun 23;19(7):61 

 

Lipidomic and Metallomic Alteration of Caenorhabditis elegans after Acute and Chronic 
Manganese, Iron, and Zinc Exposure with a Link to Neurodegenerative Disorders 

Blume B., V. Schwantes, M. Witting, H. Hayen, P. Schmitt-Kopplin, P. O. Helmer, B. 
Michalke 

J Proteome Res. 2023 Mar 3;22(3):837-850. 

 

8.1.2.3. 2022 

Providing metabolomics education and training: pedagogy and considerations 

Winder C. L., M. Witting, F. Tugizimana, W. Dunn and S. N. Reinke, on behalf of the 
Metabolomics Society Education and Training Committee 

Metabolomics. 2022 Dec 13;18(12):106. 

 

Critical assessment of chromatographic metadata in publicly available metabolomics data 
repositories 

Harrieder E.-M., F. Kretschmer, W. Dunn, S. Böcker, M. Witting 

Metabolomics. 2022 Nov 27;18(12):97. 

 

Quality Assurance and Quality Control Reporting in Untargeted Metabolic Phenotyping: 
mQACC Recommendations for Analytical Quality Management 

Kirwan J., H. Gika, R. Beger, D. Bearden, W. Dunn, R. Goodacre, G. Theodoridis, M. Witting, 
L.-R. Yu, I. Wilson 

Metabolomics. 2022 Aug 27;18(9):70. 

 

Introducing the Lipidomics Minimal Reporting Checklist. 

McDonald J., C Ejsing, D. Kopczynski, M. Holcapek, R. Ahrends, J. Aoki, M. Arita, M. Arita, 
E. Baker, J. Bertrand-Michel, J. Bowden, B. Brügger, S. Ellis, M. Fedorova, W. Griffiths, X. 
Han, J. Hartler, N. Hoffmann, J. Koelmel, H. Koefeler, T. Mitchell, V. O'Donnell, D. Saigusa, 
D. Schwudke, A. Shevchenko, C. Ulmer, M. Wenk, M. Witting, D. Wolrab, Y. Xia, G. Liebisch 

Nat Metab. 2022 Sep;4(9):1086-1088. 
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MobilityTransformR: An R package for effective mobility transformation of CE-MS data 

Salzer L., M. Witting, P. Schmitt-Kopplin 

Bioinformatics. 2022 Jul 4;btac441 

 

Networks and graph discovery in metabolomics data analysis and interpretation 

Amara A., C. Frainay. F. Jourdan T. Naake, S. Neumann, E. M. Novoa-del-Toro, R. Salek, L. 
Salzer, S. Scharfenberg, M. Witting 

Front Mol Biosci. 2022 Mar 8;9:841373. 

 

DIAMetAlyzer: Automated, false-discovery rate controlled analysis for data-independent 
acquisition in metabolomics 

Alka O., P. Shanthamoorthy, M. Witting, K. Kleigrewe, O. Kohlbacher, H. L. Röst 

Nat Commun. 2022 Mar 15;13(1):1347 

 

 

A modular and expandable ecosystem for metabolomics data annotation in R 

Rainer J., A. Vicini, L. Salzer, J. Stanstrup, J. M. Badia, S. Neumann, M. Stravs, V. V. 
Hernandes, L. Gatto, S. Gibb, M. Witting 

Metabolites. 2022 Feb 11;12(2):173. 

 

Impaired phosphocreatine metabolism in white adipocytes promotes inflammation 

Maqdasy S., S. Lecoutre, G. Renzi, S. Frendo-Cumbo, D. Rizo-Roca, T. Moritz, M. Juvany, 
O. Hodek, H. Gao, M. Couchet, M. Witting, A. Kerr, M. O. Bergo, R. P. Choudhury, M. 
Aouadi, J. R. Zierath, A. Krook, N. Mejhert, M. Rydén 

Nat Metab. 2022 Feb;4(2):190-202 

 

8.1.2.4. 2021 

Novel extraction method for combined lipid and metal speciation from Caenorhabditis 
elegans with focus on iron redox status and lipid profiling 

Blume B., M. Witting, P. Schmitt-Kopplin, B. Michalke 

Front Chem. 2021 Dec 9;9:788094. 
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N-Alkylpyridinium sulfonates for retention time indexing in reversed-phase-liquid 
chromatography-mass spectrometry-based metabolomics 

Stoffel R., M. Quilliam, N. Hardt, A. Fridstrom, M. Witting 

Anal Bioanal Chem. 2021 Dec 15 

 

Current state-of-the-art of separation methods used in LC-MS based metabolomics and 
lipidomics 

Harrieder E.-M., F. Kretschmer, S. Böcker, M. Witting 

J Chromatogr B Analyt Technol Biomed Life Sci. 2022 Jan 1;1188:123069. 

 

High-confidence structural annotation of metabolites absent from spectral libraries 

Hoffmann M. A, L. F. Nothias, M. Ludwig, M. Fleischauer, E. C. Gentry, M. Witting, P. C. 
Dorrestein, K. Dührkop, S. Böcker 

Nat Biotechnol. 2021 Oct 14. doi: 10.1038/s41587-021-01045-9. 

 

Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and 
Applications to Explore Metabolism in the Nematode 

Salzer L., M. Witting 

Metabolites, 2021 Apr 29;11(5):284 

 

HLH-30 dependent rewiring of metabolism during starvation in C. elegans 

Dall K. B., J. F. Havelund, E. B. Harvald, M. Witting, N. J. Færgeman 

Aging Cell, 2021 Apr;20(4):e13342 

 

Comparison of lipidome profiles of Caenorhabditis elegans – Results from an inter-laboratory 
ring trial  

Spanier B., A. Laurençon, A. Weiser, N. Pujol, S. Omi, A. Barsch, S. W. Meyer, J. J. Ewbank, 
F. Paladino, S. Garvis, H. Aguilaniu, M. Witting 

Metabolomics, 2021 Feb 17;17(3):25. 

 

UHPLC-IMS-Q-ToF-MS analysis of Maradolipids, found exclusively in Caenorhabditis 
elegans dauer larvae 



 

378 
 

Witting M., U. Schmidt, H.-J. Knölker 

Analytical and Bioanalytical Chemistry, 2021 Mar;413(8):2091-2102. 

 

IL-17 controls central nervous system autoimmunity through the intestinal microbiome 

Regen T., S. Isaac, A. Amorim, N. G. Núñez, J. Hauptmann, A. Shanmugavadivu, M. Klein, 
R. Sankowski, I. A. Mufazalov, N. Yogev, J. Huppert, F. Wanke, M. Witting, A. Grill, E. J. C. 
Gálvez, A. Nikolaev, M. Blanfeld, I. Prinz, P. Schmitt-Kopplin, T. Strowig, C. Reinhardt, M. 
Prinz, T. Bopp, B. Becher, C. Ubeda, A. Waisman  

Science Immunology, 2021 Feb 5;6(56):eaaz6563 

 

Reduced peroxisomal import triggers a peroxisomal retrograde signaling 

Rackles E., I. Forné, C. Fischer, X. Zhang, S. Schrott, J. Zacherl, M. Witting, J. Ewbank, C. 
Osman, A. Imhof, S. G. Rolland 

Cell Reports, 2021 Jan 19;34(3):108653. 

 

8.1.2.5. 2020 

Comprehensive vitamer profiling of folate mono- and polyglutamates in baker’s yeast 
(Saccharomyces cerevisiae) as a function of different sample preparation procedures 

Gmelch L., D. Wirtz, M. Witting, N. Weber, L. Striegel, P. Schmitt-Kopplin, M. Rychlik 

Metabolites, 2020 Jul 23;10(8):E301. 

 

Metabolomic adjustments in the orchid mycorrhizal fungus Tulasnella calospora during 
symbiosis with Serapias vomeracea 

Ghirardo A., V. Fochi, B. Lange, M. Witting, J.-P. Schnitzler, S. Perotto, R. Balestrini 

New Phytologist, 2020 Jul 15. doi: 10.1111/nph.16812 

 

Feature-based Molecular Networking in the GNPS Analysis Environment 

Nothias L. F., D. Petras, R. Schmid, K. Dührkop, J. Rainer, A. Sarvepalli, I. Protsyuk, M. 
Ernst, H. Tsugawa, M. Fleischauer, F. Aicheler, A. Aksenov, O. Alka, P.-M. Allard, A. Barsch, 
X. Cachet, M. Caraballo, R. R. Da Silva, T. Dang, N. Garg, J. M. Gauglitz, A. Gurevich, G. 
Isaac, A. K. Jarmusch, Z. Kameník, K. B. Kang, N. Kessler, I. Koester, A. Korf, A. Le 
Gouellec, M. Ludwig, M. H. Christian, L.-I. McCall, J. McSayles, S. W. Meyer, H. Mohimani, 
M. Morsy, O. Moyne, S. Neumann, H. Neuweger, N. H. Nguyen, M. Nothias-Esposito, J. 
Paolini, V. V. Phelan, T. Pluskal, R. A. Quinn, S. Rogers, B. Shrestha, A. T., J. J. J. van der 
Hooft, F. Vargas, K. C. Weldon, M. Witting, H. Yang, Z. Zhang, F. Zubeil, O. Kohlbacher, S. 
Böcker, T. Alexandrov, N. Bandeira, M. Wang, P. C. Dorrestein 
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Nature Methods, 2020 Sep;17(9):905-908 

 

Suggestions for Standardized Identifiers for Fatty Acyl Compounds in Genome Scale 
Metabolic Models and Their Application to the WormJam Caenorhabditis elegans Model 

Witting M. 

Metabolites. 2020 Mar 28;10(4):E130. doi: 10.3390/metabo10040130. 

 

Current status of retention time prediction in metabolite identification 

Witting M., S. Böcker 

Journal of Separation Science, 2020 Mar 7. 

 

Autophagy compensates for defects in mitochondrial dynamics 

Haeussler S., F. Köhler, M. Witting, M. F. Premm, S. G. Rolland, C. Fischer, L. Chauve, O. 
Casanueva, B. Conradt 

PLoS Genetics, 2020 Mar 19;16(3):e1008638. 

 

In-vivo targeted tagging of RNA isolates cell specific transcriptional responses to 
environmental stimuli and identifies liver-to-adipose RNA transfer 

Darr J., M. Lassi, A. Tomar, R. Gerlini, F. Scheid, MH de Angelis, M. Witting, R. Teperino 

Cell Reports, 2020 Mar 3;30(9):3183-3194.e4. 

 

8.1.2.6. 2019 

Development and application of a HILIC UHPLC-MS method for polar fecal metabolome 
profiling 

Sillner N., A. Walker, EM. Harrieder, P. Schmitt-Kopplin, M. Witting 

J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Mar 1;1109:142-148. doi: 
10.1016/j.jchromb.2019.01.016.. 

 

The metaRbolomics Toolbox in Bioconductor and beyond 

Stanstrup J., CD. Broeckling, R. Helmus, N. Hoffmann, E. Mathé, T. Naake, L. Nicolotti, K. 
Peters, J. Rainer, RM. Salek, T. Schulze, E. Schymanski, MA. Stravs, EA. Thévenot, H. 
Treutler, RJM. Weber, E. Willighagen, M. Witting, S. Neumann 

Metabolites. 2019 Sep 23;9(10). pii: E200. doi: 10.3390/metabo9100200. 



 

380 
 

 

The sphingolipidome of the model organism Caenorhabditis elegans 

Hänel, V., C. Pendleton, M. Witting 

Chem Phys Lipids. 2019 Aug;222:15-22. doi: 10.1016/j.chemphyslip.2019.04.009. 

 

8.1.2.7. 2018 

Mycorrhiza-Triggered Transcriptomic and Metabolomic Networks Impinge on Herbivore 
Fitness 

Kaling M., A. Schmidt, F. Moritz, M. Rosenkranz, M. Witting, K. Kasper, D. Janz, P. Schmitt-
Kopplin, JP. Schnitzler, A. Polle 

Plant Physiol. 2018 Apr;176(4):2639-2656. doi: 10.1104/pp.17.01810. Epub 2018 Feb 8. 

 

 

 

Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for Metabolic 
Studies in the Model Organism Caenorhabditis elegans 

Witting M., J. Hastings, N. Rodriguez, CJ. Joshi, JPN. Hattwell, PR. Ebert, M. van Weeghel, 
AW. Gao, MJO. Wakelam, RH. Houtkooper, A. Mains, N. Le Novère, S. Sadykoff, F. 
Schroeder, NE. Lewis, HJ. Schirra, C. Kaleta, O. Casanueva 

Front Mol Biosci. 2018 Nov 14;5:96. doi: 10.3389/fmolb.2018.00096. 

 

Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-
Aged Whisky 

Roullier-Gall C., J. Signoret, D. Hemmler, M. Witting, B. Kanawati, B. Schäfer, RD. Gougeon, 
P. Schmitt-Kopplin P 

Front Chem. 2018 Feb 22;6:29. doi: 10.3389/fchem.2018.00029. 

 

Metabotype variation in a field population of tansy plants influences aphid host selection. 

Clancy MV., SE. Zytynska, F. Moritz, M. Witting, P. Schmitt-Kopplin, WW. Weisser, JP. 
Schnitzler 

Plant Cell Environ. 2018 Dec;41(12):2791-2805. doi: 10.1111/pce.13407. Epub 2018 Aug 17 
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Pharmacometabolic response to pirfenidone in pulmonary fibrosis detected by MALDI-
FTICR-MSI 

Sun N., IE. Fernandez, M. Wie, M. Witting, M. Aichler, A. Feuchtinger, G. Burgstaller, SE. 
Verleden, P. Schmitt-Kopplin, O. Eickelberg, A. Walch 

Eur Respir J. 2018 Sep 15;52(3). pii: 1702314. doi: 10.1183/13993003.02314-2017 

 

Metformin impacts cecal bile acid profiles in mice 

Sillner N., A. Walker, W. Koch, M. Witting, P. Schmitt-Kopplin 

J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Apr 15;1083:35-43. doi: 
10.1016/j.jchromb.2018.02.029. 

 

Tandem HILIC-RP liquid chromatography for increased polarity coverage in food analysis 

Hemmler D., SS. Heinzmann, K. Wöhr, P. Schmitt-Kopplin, M. Witting 

Electrophoresis. 2018 Jul;39(13):1645-1653. doi: 10.1002/elps.201800038. 

 

8.1.2.8. 2017 

Amniotic Fluid and Maternal Serum Metabolic Signatures in the Second Trimester 
Associated with Preterm Delivery 

Virgiliou C., HG. Gika, M. Witting, AA. Bletsou, A. Athanasiadis, M. Zafrakas, NS. Thomaidis, 
N. Raikos, G. Makrydimas, GA. Theodoridis 

J Proteome Res. 2017 Feb 3;16(2):898-910. doi: 10.1021/acs.jproteome.6b00845. 

 

Metabolic Profile of Human Coelomic Fluid 

Virgiliou C., L. Valianou, M. Witting, F. Moritz, C. Fotaki, P. Zoumpoulakis, AC. 
Chatziioannou, L. Lazaros, G. Makrydimas, K. Chatzimeletiou, N. Raikos, GA. Theodorids 

Bioanalysis. 2017 Jan;9(1):37-51. doi: 10.4155/bio-2016-0223. 

 

Identification of a High-Affinity Pyruvate Receptor in Escherichia coli 

Behr S., I. Kristoficova, M. Witting, EJ. Breland, AR. Eberly, C. Sachs, P. Schmitt-Kopplin, M. 
Hadjifrangiskou, K. Jung 

Sci Rep. 2017 May 3;7(1):1388. doi: 10.1038/s41598-017-01410-2 
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LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the 
Caenorhabditis elegans lipidome 

Witting M., C. Ruttkies, S. Neumann, P. Schmitt-Kopplin 

PLoS One. 2017 Mar 9;12(3):e0172311. doi: 10.1371/journal.pone.0172311 

 

Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-
proteobacteria 

Behr S., S. Brameyer, M. Witting, P. Schmitt-Kopplin, K. Jung 

PLoS One. 2017 Aug 10;12(8):e0182993. doi: 10.1371/journal.pone.0182993 

 

QSRR Modeling for Metabolite Standards Analyzed by Two Different Chromatographic 
Columns Using Multiple Linear Regression 

Zisi C., I. Sampsonidis, S. Fasoula, K. Papachristos, M. Witting, HG. Gika, P. Nikitas, A. 
Pappa-Louisi 

Metabolites. 2017 Feb 9;7(1). pii: E7. doi: 10.3390/metabo7010007. 

 

8.1.2.9. 2016 

Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of 
hormesis 

Roullier-Gall C., M. Witting, F. Moritz, RB. Gil, D. Goffette, M. Valade, P. Schmitt-Kopplin, 
RD. Gougeon 

Food Chem. 2016 Jul 15;203:207-215. doi: 10.1016/j.foodchem.2016.02.043. 

 

The Caenorhabditis elegans lipidome: A primer for lipid analysis in Caenorhabditis elegans 

Witting M., P. Schmitt-Kopplin 

Arch Biochem Biophys. 2016 Jan 1;589:27-37. doi: 10.1016/j.abb.2015.06.003, 3.559 

 

The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis 
elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry 

Aguilaniu H., P. Fabrizio, M. Witting 

Front Endocrinol (Lausanne). 2016 Feb 11;7:12. doi: 10.3389/fendo.2016.00012. 
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8.1.2.10. 2015 

DI-ICR-FT-MS-based high-throughput deep metabotyping: a case study of the 
Caenorhabditis elegans-Pseudomonas aeruginosa infection model 

Witting M., M. Lucio, D. Tziotis, B. Wägele, K. Suhre, R. Voulhoux, S. Garvis, P. Schmitt-
Kopplin 

Anal Bioanal Chem. 2015 Feb;407(4):1059-73. doi: 10.1007/s00216-014-8331-5. 

 

Integrating analytical resolutions in non-targeted wine metabolomics 

Roullier-Gall C., M. Witting, D. Tziotis, A. Ruf, RD. Gougeon, P. Schmitt-Kopplin 

Tetrahedron. 2015 May;71(20):2983-2990. 

 

Computational analysis and ratiometric comparison approaches aimed to assist column 
selection in hydrophilic interaction liquid chromatography-tandem mass spectrometry 
targeted metabolomics 

Sampsonidis I., M. Witting, W. Koch, C. Virgiliou, HG. Gika, P. Schmitt-Kopplin, GA. 
Theodoridis 

J Chromatogr A. 2015 Aug 7;1406:145-55. doi: 10.1016/j.chroma.2015.06.008. Epub 2015 
Jun 14. 

 

Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by 
evolutionary overprinting 

Fellner L., S. Simon, C. Scherling, M. Witting, S. Schober, C. Polte, P. Schmitt-Kopplin, DA. 
Keim, S. Scherer, K. Neuhaus 

BMC Evol Biol. 2015 Dec 18;15:283. doi: 10.1186/s12862-015-0558-z. 

 

Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing 
tastes from the past 

Jeandet P., SS. Heinzmann, C. Roullier-Gall, C. Cilindre, A. Aron, MA. Deville, F. Moritz, T. 
Karbowiak, D. Demarville, C. Brun, F. Moreau, B. Michalke, G. Liger-Belair, M. Witting, M. 
Lucio, D. Steyer, RD. Gougeon, P. Schmitt-Kopplin. 

Proc Natl Acad Sci U S A. 2015 May 12;112(19):5893-8. doi: 10.1073/pnas.1500783112 

 

Fast separation and quantification of steroid hormones Δ4- and Δ7-dafachronic acid in 
Caenorhabditis elegans 

Witting M., HC. Rudloff, M. Thondamal, H. Aguilaniu, P. Schmitt-Kopplin 
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J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Jan 26;978-979:118-21. doi: 
10.1016/j.jchromb.2014.12.005. 

 

8.1.2.11. 2014 

Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 
strains under high-fat diet 

Walker A., B. Pfitzner, S. Neschen, M. Kahle, M. Harir, M. Lucio, F. Moritz, D. Tziotis, M. 
Witting, M. Rothballer, M. Engel, M. Schmid, D. Endesfelder, M. Klingenspor, T. Rattei, WZ. 
Castell, MH. de Angelis, A. Hartmann, P. Schmitt-Kopplin 

ISME J. 2014 Dec;8(12):2380-96. doi: 10.1038/ismej.2014.79. 

 

Molecular and structural characterization of dissolved organic matter during and post 
cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass 
spectrometry 

Zhang F., M. Harir, F. Moritz, J. Zhang, M. Witting, Y. Wu, P. Schmitt-Kopplin, A. Fekete, A. 
Gaspar, N. Hertkorn 

Water Res. 2014 Jun 15;57:280-94. doi: 10.1016/j.watres.2014.02.051. 

 

 

High-resolution metabolite imaging of light and dark treated retina using MALDI-FTICR mass 
spectrometry 

Sun N., A. Ly, S. Meding, M. Witting, SM. Hauck, M. Ueffing, P. Schmitt-Kopplin, M. Aichler, 
A. Walch  

Proteomics. 2014 Apr;14(7-8):913-23. doi: 10.1002/pmic.201300407. 

 

Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum 
as a disturbed region in two animal models 

Lin S., B. Kanawati, L. Liu, M. Witting, M. Li, J. Huang, P. Schmitt-Kopplin, Z. Cai 

Talanta. 2014 Jan;118:45-53. doi: 10.1016/j.talanta.2013.09.019. Epub 2013 Oct 5. 

 

Phenotype of htgA (mbiA), a recently evolved orphan gene of Escherichia coli and Shigella, 
completely overlapping in antisense to yaw 

Fellner L., N. Bechtel, M. Witting, S. Simon, P. Schmitt-Kopplin, DA. Keim, S. Scherer, K. 
Neuhaus 

FEMS Microbiol Lett. 2014 Jan;350(1):57-64. doi: 10.1111/1574-6968.12288. 
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High precision mass measurements for wine metabolomics 

Roullier-Gall C.*, M. Witting*, RD. Gougeon, P. Schmitt-Kopplin 

Front Chem. 2014 Nov 13;2:102. doi: 10.3389/fchem.2014.00102. 

* equally contributed 

 

Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis 
elegans 

Thondamal M., M. Witting, P. Schmitt-Kopplin, H. Aguilaniu 

Nat Commun. 2014 Sep 11;5:4879. doi: 10.1038/ncomms5879. 

 

Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry 
approach using a novel sub-2μm core-shell particle for in depth lipidomic profiling of 
Caenorhabditis elegans 

Witting M., TV. Maier, S. Garvis, P. Schmitt-Kopplin 

J Chromatogr A. 2014 Sep 12;1359:91-9. doi: 10.1016/j.chroma.2014.07.02. 

 

8.1.2.12. 2012 

MassTRIX reloaded: combined analysis and visualization of transcriptome and metabolome 
data 

Wägele B., M. Witting, P. Schmitt-Kopplin, K. Suhre 

PLoS One. 2012;7(7):e39860. doi: 10.1371/journal.pone.0039860. 

 

8.1.3. Book Chapter 

8.1.3.1. 2020 

Using Genome-Scale Metabolic Networks for Analysis, Visualization, and Integration of 
Targeted Metabolomics Data 

Hattwell J. P.N., J. Hastings, O. Casanueva, H. J. Schirra, M. Witting 

Methods Mol Biol. 2104; 361-386. doi: 10.1007/978-1-0716-0239-3_18 
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8.1.3.2. 2018 

Bio- and Chemoinformatics Approaches for Metabolomics Data Analysis 

Witting M. 

Methods Mol Biol. 2018;1738:41-61. doi: 10.1007/978-1-4939-7643-0_4 

 

8.1.3.3. 2015 

Combined Nontargeted Analytical Methodologies for the Characterization of the Chemical 
Evolution of Bottled Wines 

Roullier-Gall C., M. Witting, D. Tziotis, A. Ruf, M. Lucio, P. Schmitt-Kopplin, R. D. Gougeon 

Advances in Wine Research, Chapter 2, 13-27 

 

8.1.3.4. 2014 

Transcriptome and Metabolome Data Integration – Technical Perquisites for Successful Data 
Fusion and Visualization 

Witting M., P. Schmitt-Kopplin 

Fundamentals of Advanced Omics Technologies: From Genes to Metabolites. C. Simo, A. 
Cifuentse, V. Garcia-Canas, Elsevier Heidelberg: 421-442. 

 

8.1.3.5. 2012 

Ultrahigh Resolution Mass Spectrometry Based Non-targeted Microbial Metabolomics 

Witting M., M. Lucio, D. Tziotis and P. Schmitt-Kopplin 
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Identification of molecules from non-targeted analysis 

Junot C., M. Witting 
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10.1016/j.jchromb.2017. 
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basierte-metabolomik-und-lipidomik 

 

Landmark Literature 2018: Part I – Phosphate to the Rescue 

Witting M. 

The Analytical Scientist 

https://theanalyticalscientist.com/fields-applications/landmark-literature-2018 

 

Investigating the increased lifespan in C. elegans daf-2 mutants by 4D-Lipidomics 

Witting M., A. Barsch, S. W. Meyer, U. Schweiger-Hufnagel, N. Kessler, P. Schmitt-Kopplin 

Bruker Application Note 

 

Combination of stationary phase selectivity in SFC method development 

Bieber S., P. Schmitt-Kopplin, M. Witting, T. Letzel 

AFIN-TS Forum; April (3): 1-18. 
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8.2. Supplementary Tables 

The following tables summarize all metabolites and lipids used in chapter 3 for the analysis 

of RT, RI and CCS. 

8.2.1. Metabolites 

SI Table 1: Metabolites contained in the MSMLS standard collection used for analysis of RT, RI and CCS 
throughout chapter 3. 

Name formula 
exact 
mass 

logP Mix 

β-Nicotinamide adenine dinucleotide C21H27N7O14P2 663.1091 -9.87 P1_A 

Glutamine C5H10N2O3 146.0691 -4.00 P1_A 

Hypotaurine C2H7NO2S 109.0197 -2.70 P1_A 

IMP C10H13N4O8P 348.0471 -2.93 P1_A 

Citric acid C6H8O7 192.0270 -1.32 P1_A 

Threonine C4H9NO3 119.0582 -3.47 P1_A 

Purine C5H4N4 120.0436 -0.34 P1_A 

N-Acetylneuraminic acid C11H19NO9 309.1060 -3.56 P1_A 

Kynurenine C10H12N2O3 208.0848 -1.91 P1_A 

Pyrimidine C4H4N2 80.0374 0.05 P1_A 

Aspartic acid C4H7NO4 133.0375 -3.50 P1_A 

Uric acid C5H4N4O3 168.0283 -1.54 P1_A 

Cytidne C9H13N3O5 243.0855 -2.80 P1_B 

Serine C3H7NO3 105.0426 -3.89 P1_B 

Cysteine C3H7NO2S 121.0197 -2.79 P1_B 

Citrulline C6H13N3O3 175.0957 -3.93 P1_B 

Taurine C2H7NO3S 125.0147 -2.61 P1_B 

Gluconolactone C6H10O6 178.0477 -2.75 P1_B 
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Name formula 
exact 
mass 

logP Mix 

Nicotinic acid C6H5NO2 123.0320 -0.17 P1_B 

Inosine C10H12N4O5 268.0808 -2.48 P1_B 

γ-Aminobutyric acid C4H9NO2 103.0633 -2.89 P1_B 

Cytosine C4H5N3O 111.0433 -1.15 P1_B 

Isoleucine C6H13NO2 131.0946 -1.51 P1_B 

Pyrazole C3H4N2 68.0374 0.28 P1_B 

Glutamic acid C5H9NO4 147.0532 -3.24 P1_C 

Ascorbic acid C6H8O6 176.0321 -1.91 P1_C 

p-Hydroxyphenylacetic acid C8H8O3 152.0468 -3.17 P1_C 

N-Acetylglucosamine C8H15NO6 221.0899 -3.22 P1_C 

Glycolic acid C2H4O3 76.0160 -1.04 P1_C 

Sarcosine C3H7NO2 89.0477 -3.19 P1_C 

Gluconic acid C6H12O7 196.0583 -3.41 P1_C 

Quinic acid C7H12O6 192.0634 -2.70 P1_C 

Dihydroorotic acid C5H6N2O4 158.0328 -1.52 P1_C 

Malonic acid C3H4O4 104.0110 -0.33 P1_C 

Pipecolic acid C6H11NO2 129.0790 -2.12 P1_C 

Formamide CH3NO 45.0215 -1.08 P1_C 

Glycine C2H5NO2 75.0320 -3.41 P1_D 

Methionine C5H11NO2S 149.0510 -2.19 P1_D 

Tetrahydrofolic acid C19H23N7O6 445.1710 -2.22 P1_D 

Adenine C5H5N5 135.0545 -0.57 P1_D 

Mehtylthioadenosine C11H15N5O3S 297.0896 -0.61 P1_D 
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Name formula 
exact 
mass 

logP Mix 

Thymidine C10H14N2O5 242.0903 -1.12 P1_D 

Glyceric acid C3H6O4 106.0266 -1.52 P1_D 

Orotic acid C5H4N2O4 156.0171 -1.23 P1_D 

Ethanolamine phosphate C2H8NO4P 141.0191 -2.45 P1_D 

Xanthine C5H4N4O2 152.0334 -0.21 P1_D 

Dihydrofolic acid C19H21N7O6 443.1553 -1.44 P1_D 

Cystine C6H12N2O4S2 240.0238 -5.90 P1_D 

Alanine C3H7NO2 89.0477 -2.84 P1_E 

Tryptophan C11H12N2O2 204.0899 -1.09 P1_E 

UMP C9H13N2O9P 324.0359 -2.54 P1_E 

Proline C5H9NO2 115.0633 -2.57 P1_E 

Thymine C5H6N2O2 126.0429 -0.46 P1_E 

Succinate Semialdehyde C4H6O3 102.0317 -0.56 P1_E 

Lactic acid C3H6O3 90.0317 -0.47 P1_E 

Uridine C9H12N2O6 244.0695 -2.42 P1_E 

Fructose bisphosphate C6H14O12P2 339.9960 -3.01 P1_E 

Carnosine C9H14N4O3 226.1066 -4.48 P1_E 

Nicotinamide C6H6N2O 122.0480 -0.39 P1_E 

Shikimate C7H10O5 174.0528 -1.64 P1_E 

Succinic acid C4H6O4 118.0266 -0.40 P1_F 

Phenylalanine C9H11NO2 165.0790 -1.18 P1_F 

Uracil C4H4N2O2 112.0273 -0.86 P1_F 

Malic acid C4H6O5 134.0215 -1.11 P1_F 
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Name formula 
exact 
mass 

logP Mix 

Aspartic acid C4H7NO4 133.0375 -3.50 P1_F 

dCMP C9H14N3O7P 307.0569 -2.28 P1_F 

Hypoxanthine C5H4N4O 136.0385 -0.05 P1_F 

Creatine C4H9N3O2 131.0695 -2.86 P1_F 

Dopamine C9H11NO4 197.0688 -1.79 P1_F 

Guanosine C10H13N5O5 283.0917 -2.71 P1_F 

Dihydrouracil C4H6N2O2 114.0429 -1.21 P1_F 

Malic acid C4H6O5 134.0215 -1.11 P1_F 

Lysine C6H14N2O2 146.1055 -3.21 P1_G 

Tyrosine C9H11NO3 181.0739 -1.49 P1_G 

Glycerol C3H8O3 92.0473 -1.84 P1_G 

Asparagine C4H8N2O3 132.0535 -4.29 P1_G 

Valine C5H11NO2 117.0790 -1.95 P1_G 

Guanine C5H5N5O 151.0494 -0.59 P1_G 

Homoserine C4H9NO3 119.0582 -3.83 P1_G 

Pyridoxine C8H11NO3 169.0739 -0.95 P1_G 

dAMP C10H14N5O6P 331.0682 -3.85 P1_G 

Tartaric acid C4H6O6 150.0164 -1.83 P1_G 

Nicotinamide mononucleotide C11H15N2O8P 334.0566 -6.24 P1_G 

Folic acid C19H19N7O6 441.1397 -0.68 P1_G 

Isocitric acid C6H8O7 192.0270 -1.45 P1_H 

Thiourea CH4N2S 76.0095 -0.47 P1_H 

Diethanolamine C4H11NO2 105.0790 -1.57 P1_H 
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Name formula 
exact 
mass 

logP Mix 

Aminoisobutanoic acid C4H9NO2 103.0633 -2.63 P1_H 

Cys-Gly C5H10N2O3S 178.0412 -3.90 P1_H 

2-phosphoglyceric acid C3H7O7P 185.9929 -1.64 P1_H 

Guanidinoacetic acid C3H7N3O2 117.0538 -3.13 P1_H 

Creatinine C4H7N3O 113.0589 -1.06 P1_H 

N-Acetyltryptophan C13H14N2O3 246.1004 1.00 P1_H 

Trans-aconitic acid C6H6O6 174.0164 -0.52 P1_H 

N-Acetylmannosamine C8H15NO6 221.0899 -3.22 P1_H 

Glucose 6-phosphate C6H13O9P 260.0297 -3.06 P1_H 

Diaminopimelic acid C7H14N2O4 190.0954 -5.55 P2_A 

Aminoadipic acid C6H11NO4 161.0688 -2.80 P2_A 

Deoxycytidine C9H13N3O4 227.0906 -1.90 P2_A 

Noradrenaline C8H11NO3 169.0739 -0.68 P2_A 

Glucosamine 6-phosphate C6H14NO8P 259.0457 -4.18 P2_A 

Tartric acid C4H6O6 150.0164 -1.83 P2_A 

3-Dehydroshikimic acid C7H8O5 172.0372 -1.02 P2_A 

Norspermidine C6H17N3 131.1422 -1.67 P2_A 

Homocysteine C4H9NO2S 135.0354 -2.58 P2_A 

Theophylline C7H8N4O2 180.0647 -0.77 P2_A 

Leucine C6H13NO2 131.0946 -1.59 P2_A 

Trehalose C12H22O11 342.1162 -4.70 P2_A 

Betaine C5H11NO2 117.0790 -4.49 P2_B 

Tryptophan C11H12N2O2 204.0899 -1.09 P2_B 
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Name formula 
exact 
mass 

logP Mix 

3-Sulfinoalanine C3H7NO4S 153.0096 -4.62 P2_B 

O-Succinyl-homoserine C8H13NO6 219.0743 -3.61 P2_B 

Allantoin C4H6N4O3 158.0440 -2.36 P2_B 

Glyceraldehyde C3H6O3 90.0317 -1.68 P2_B 

D-Glucuronolactone C6H8O6 176.0321 -1.95 P2_B 

(2-aminoethyl)phosphonate C2H8NO3P 125.0242 -3.17 P2_B 

Selenomethionine C5H11NO2Se 196.9955 -3.30 P2_B 

Maleimide C4H3NO2 97.0164 -0.64 P2_B 

N,N-dimethyl-arginine C8H18N4O2 202.1430 -2.67 P2_B 

Glucosamine C6H13NO5 179.0794 -3.04 P2_B 

Paraxanthine C7H8N4O2 180.0647 0.24 P2_C 

Adenosine 5'-diphosphate C10H15N5O10P2 427.0294 -4.71 P2_C 

2-Deoxy-D-glucose C6H12O5 164.0685 -2.85 P2_C 

1-methyl-l-histidine C7H11N3O2 169.0851 -3.07 P2_C 

Galactitol C6H14O6 182.0790 -3.73 P2_C 

Oxoproline C5H7NO3 129.0426 -0.89 P2_C 

4-pyridoxic acid C8H9NO4 183.0532 -0.75 P2_C 

Quinolinic acid C7H5NO4 167.0219 -1.03 P2_C 

Methylguanidine C2H7N3 73.0640 -0.96 P2_C 

Caffeine C8H10N4O2 194.0804 -0.55 P2_C 

3-hydroxy-3-methylglutaryl-CoA C27H44N7O20P3S 911.1575 -6.41 P2_C 

Glucuronic acid C6H10O7 194.0427 -2.61 P2_C 

1-methyladenosine C11H15N5O4 281.1124 -2.09 P2_D 
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Name formula 
exact 
mass 

logP Mix 

Deoxyuridine C9H12N2O5 228.0746 -1.51 P2_D 

Trans-4-hydroxy-l-proline C5H9NO3 131.0582 -3.72 P2_D 

Urocanic acid C6H6N2O2 138.0429 -1.01 P2_D 

Kynurenine C10H12N2O3 208.0848 -1.91 P2_D 

Pyroglutamic acid C5H7NO3 129.0426 -0.89 P2_D 

4-acetamidobutanoic acid C6H11NO3 145.0739 -0.80 P2_D 

Trans-cyclohexanediol C6H12O2 116.0837 0.21 P2_D 

Melanin C18H10N2O4 318.0641 -0.27 P2_D 

Dopamine C8H11NO2 153.0790 0.03 P2_D 

Putrescine C4H12N2 88.1000 -0.85 P2_D 

Lysine C6H14N2O2 146.1055 -3.21 P2_D 

Citicoline C14H26N4O11P2 488.1073 -7.11 P2_E 

1,3-diaminopropane C3H10N2 74.0844 -1.36 P2_E 

Phosphoserine C3H8NO6P 185.0089 -3.18 P2_E 

1-aminocyclopropanecarboxylic acid C4H7NO2 101.0477 -2.72 P2_E 

Glutarylcarnitine C12H21NO6 275.1369 -4.18 P2_E 

Cystathionine C7H14N2O4S 222.0674 -5.82 P2_E 

Norvaline C5H11NO2 117.0790 -1.87 P2_E 

3-hydroxymethylglutaric acid C6H10O5 162.0528 -0.75 P2_E 

Phosphonoacetic acid C2H5O5P 139.9875 -1.60 P2_E 

Picolinic acid C6H5NO2 123.0320 -0.65 P2_E 

Ethanolamine C2H7NO 61.0528 -1.32 P2_E 

Arginine C6H14N4O2 174.1117 -3.24 P2_E 
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Name formula 
exact 
mass 

logP Mix 

trans-4-hydroxy-L-proline C5H9NO3 131.0582 -3.72 P2_F 

Fucose C6H12O5 164.0685 -1.89 P2_F 

Homocystine C8H16N2O4S2 268.0551 -5.32 P2_F 

N-Methylglutamic acid C6H11NO4 161.0688 -3.00 P2_F 

D-Ornithine C5H12N2O2 132.0899 -3.66 P2_F 

Xanthosine C10H12N4O6 284.0757 -1.19 P2_F 

3-methylcrotonyl-CoA C26H42N7O17P3S 849.1571 -4.26 P2_F 

Thyrotropin releasing hormone C16H22N6O4 362.1703 -3.27 P2_F 

Cytidine monophosphate C9H14N3O8P 323.0519 -3.15 P2_F 

N-Methylaspartic acid C5H9NO4 147.0532 -3.27 P2_F 

Galactaric acid C6H10O8 210.0376 -3.09 P2_F 

Histidine C6H9N3O2 155.0695 -3.29 P2_F 

Nicotinic acid adenine dinucleotide phosphate C21H27N6O18P3 744.0595 -9.60 P2_G 

N-Acetylasparagine C6H10N2O4 174.0641 -2.21 P2_G 

Pipecolic acid C6H11NO2 129.0790 -2.12 P2_G 

Glucose 6-phosphate C6H13O9P 260.0297 -3.06 P2_G 

NADP C21H28N7O17P3 743.0755 -10.40 P2_G 

Carbamoyl phosphate CH4NO5P 140.9827 -1.21 P2_G 

Isopentenyl pyrophosphate C5H12O7P2 246.0058 0.20 P2_G 

GTP C10H16N5O14P3 522.9907 -3.67 P2_G 

dDTP-D-glucose C16H26N2O16P2 564.0758 -3.70 P2_G 

Agmatine sulfate C5H14N4 130.1218 -1.23 P2_G 

Glycolaldehyde C2H4O2 60.0211 -1.20 P2_G 
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Name formula 
exact 
mass 

logP Mix 

dGTP C10H16N5O13P3 506.9957 -3.23 P2_G 

N-acetylglycine  C4H7NO3 117.0426 -1.33 P2_H 

N-acetylaspartic acid C6H9NO5 175.0481 -1.40 P2_H 

IDP C10H14N4O11P2 428.0134 -3.58 P2_H 

Palmitoylcarnitine C23H45NO4 399.3349 2.03 P2_H 

dGMP C10H14N5O7P 347.0631 -2.23 P2_H 

Nicotinamide hypoxanthine dinucleotide C21H26N6O15P2 664.0931 -7.73 P2_H 

S-Adenosylmethionine C15H22N6O5S 398.1372 -5.32 P2_H 

6-phosphogluconic acid C6H13O10P 276.0246 -3.53 P2_H 

α-hydroxyisobutyric acid C4H8O3 104.0473 -0.04 P2_H 

Cysteic acid C3H7NO5S 169.0045 -2.96 P2_H 

Adenosine-monophosphate C10H14N5O7P 347.0631 -4.74 P2_H 

Gluconic acid C6H12O7 196.0583 -3.41 P2_H 

Putrescine C4H12N2 88.1000 -0.85 P3_A 

Deoxycarnitine C7H15NO2 145.1103 -3.97 P3_A 

Adenosine 2',3'-cyclic phosphate C10H12N5O6P 329.0525 -3.45 P3_A 

Mevalolactone C6H10O3 130.0630 -0.43 P3_A 

Uridine diphosphate glucose C15H24N2O17P2 566.0550 -5.00 P3_A 

Gamma,gamma-dimethylallyl pyrophosphate C5H12O7P2 246.0058 0.30 P3_A 

Deoxyuridine triphosphate C9H15N2O14P3 467.9736 -2.48 P3_A 

Phosphorylcholine C5H14NO4P 183.0660 -4.79 P3_A 

Uridine triphosphate C9H15N2O15P3 483.9685 -3.38 P3_A 

6-hydroxydopamine C8H11NO3 169.0739 -0.15 P3_A 
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Name formula 
exact 
mass 

logP Mix 

Thiamine C12H17N4OS 265.1118 -3.10 P3_A 

dGDP C10H15N5O10P2 427.0294 -2.52 P3_A 

5-methylcytosine C5H7N3O 125.0589 -0.75 P3_B 

Glyceric acid C3H6O4 106.0266 -1.52 P3_B 

Cytidine 2',3'-cyclic phosphate C9H12N3O7P 305.0413 -2.12 P3_B 

N,N,N-trimethyllysine C9H20N2O2 188.1525 -6.20 P3_B 

Phosphoenolpyruvic acid C3H5O6P 167.9824 -0.64 P3_B 

Uridine diphosphate glucose C15H24N2O17P2 566.0550 -5.00 P3_B 

Galactose 1-phosphate C6H13O9P 260.0297 -3.06 P3_B 

Pyridoxal-phosphate C8H10NO6P 247.0246 -2.09 P3_B 

Dihydroxyacetone phosphate C3H7O6P 169.9980 -1.65 P3_B 

Phosphoenolpyruvic acid C3H5O6P 167.9824 -0.64 P3_B 

Mannose 6-phosphate C6H13O9P 260.0297 -3.06 P3_B 

3-phosphoglyceric acid C3H7O7P 185.9929 -1.64 P3_B 

L-carnitine C7H15NO3 161.1052 -4.89 P3_C 

O-phosphoethanolamine C2H8NO4P 141.0191 -2.45 P3_C 

O-Acetylserine C5H9NO4 147.0532 -3.45 P3_C 

Thymidine-monophosphate C10H15N2O8P 322.0566 -1.24 P3_C 

Cyclic AMP C10H12N5O6P 329.0525 -3.39 P3_C 

ADP-glucose C16H25N5O15P2 589.0822 -6.77 P3_C 

Fructose 6-phosphate C6H13O9P 260.0297 -3.39 P3_C 

Adenosine 3',5'-diphosphate C10H15N5O10P2 427.0294 -4.80 P3_C 

3-Nitro-L-tyrosine C9H10N2O5 226.0590 -1.55 P3_C 
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Name formula 
exact 
mass 

logP Mix 

P-Octopamine C8H11NO2 153.0790 -0.32 P3_C 

N-α-Acetyllysine C8H16N2O3 188.1161 -3.15 P3_C 

Uridine diphosphategalactose C15H24N2O17P2 566.0550 -5.00 P3_C 

Spermidine C7H19N3 145.1579 -1.15 P3_D 

Pyridoxamine C8H12N2O2 168.0899 -1.61 P3_D 

5-aminolevulinic acid C5H9NO3 131.0582 -3.25 P3_D 

Deoxyuridine-monophosphate C9H13N2O8P 308.0410 -1.64 P3_D 

ATP C10H16N5O13P3 506.9957 -5.80 P3_D 

Ribose 1,5-bisphosphate C5H12O11P2 309.9855 -2.55 P3_D 

Xanthosine-monophosphate C10H13N4O9P 364.0420 -2.18 P3_D 

FAD C27H33N9O15P2 785.1571 -4.68 P3_D 

Deoxyguanosine C10H13N5O4 267.0968 -1.81 P3_D 

Orotic acid C5H4N2O4 156.0171 -1.23 P3_D 

Lauroylcarnitine C19H37NO4 343.2723 0.26 P3_D 

1-methylnicotinamide C7H9N2O 137.0709 -4.34 P3_D 

Spermine C10H26N4 202.2157 -1.45 P3_E 

N-Acetylmethionine C7H13NO3S 191.0616 -0.11 P3_E 

Carbamoyl phosphate CH4NO5P 140.9827 -1.21 P3_E 

Phosphoribosyl pyrophosphate C5H13O14P3 389.9518 -2.97 P3_E 

AICAR C9H15N4O8P 338.0628 -4.81 P3_E 

Uridine diphosphate-N-acetylgalactosamine C17H27N3O17P2 607.0816 -5.28 P3_E 

Glyceraldehyde 3-phosphate C3H7O6P 169.9980 -1.80 P3_E 

cGMP C10H12N5O7P 345.0474 -2.09 P3_E 
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Name formula 
exact 
mass 

logP Mix 

Homocysteine thiolactone C4H7NOS 117.0248 -0.25 P3_E 

O-phosphoserine C3H8NO6P 185.0089 -3.18 P3_E 

S-adenosylhomocysteine C14H20N6O5S 384.1216 -4.02 P3_E 

L-Ornithine C5H12N2O2 132.0899 -3.66 P3_E 

Adenine C5H5N5 135.0545 -0.57 P3_F 

Normetanephrine C9H13NO3 183.0895 -0.39 P3_F 

Uridine diphosphate-n-acetylglucosamine C17H27N3O17P2 607.0816 -5.28 P3_F 

Guanosine diphosphate C10H15N5O11P2 443.0243 -3.42 P3_F 

Phosphocreatine C4H10N3O5P 211.0358 -2.25 P3_F 

Uridine diphosphate glucuronic acid C15H22N2O18P2 580.0343 -4.68 P3_F 

N,N-dimethylarginine C8H18N4O2 202.1430 -2.67 P3_F 

Cytidine diphosphate C9H15N3O11P2 403.0182 -3.34 P3_F 

Selenocystamine C4H12N2Se2 247.9331 -1.70 P3_F 

Histamine C5H9N3 111.0796 -0.70 P3_F 

Indoxyl sulfate C8H7NO4S 213.0096 1.29 P3_F 

Ethyl 3-ureidopropionic acid C6H12N2O3 160.0848 -0.92 P3_F 

Deoxyribose C5H10O4 134.0579 -1.40 P3_G 

Phytic acid C6H18O24P6 659.8614 -4.52 P3_G 

Thiamine monophosphate C12H17N4O4PS 344.0708 -5.70 P3_G 

Uracil 5-carboxylic acid C5H4N2O4 156.0171 -1.27 P3_G 

S-hexyl-glutathione C16H29N3O6S 391.1777 -2.38 P3_G 

Glyoxylic acid C2H2O3 74.0004 -0.13 P3_G 

GMP C10H14N5O8P 363.0580 -3.13 P3_G 
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Name formula 
exact 
mass 

logP Mix 

N-Acetylalanine C5H9NO3 131.0582 -0.76 P3_G 

4-guanidinobutanoic acid C5H11N3O2 145.0851 -2.65 P3_G 

Hydroxypyruvic acid C3H4O4 104.0110 -0.75 P3_G 

D-mannosamine C6H13NO5 179.0794 -3.04 P3_G 

Cytochrome C C42H52FeN8O6S2 884.2801 0.76 P3_G 

O-Acetylcarnitine C9H17NO4 203.1158 -4.45 P3_H 

Riboflavin C17H20N4O6 376.1383 -0.92 P3_H 

Methyl galactoside C7H14O6 194.0790 -2.29 P3_H 

Glutaric acid C5H8O4 132.0423 0.05 P3_H 

Dihydroxyfumaric acid C4H4O6 148.0008 -0.01 P3_H 

Cytidine monophosphate C9H14N3O8P 323.0519 -3.15 P3_H 

Guanosine diphosphate mannose C16H25N5O16P2 605.0772 -5.29 P3_H 

5'-deoxyadenosine C10H13N5O3 251.1018 -1.04 P3_H 

Glutathione reduced C10H17N3O6S 307.0838 -4.88 P3_H 

Erythritol C4H10O4 122.0579 -2.47 P3_H 

Glucosaminic acid C6H13NO6 195.0743 -5.78 P3_H 

UTP C9H15N2O15P3 483.9685 -3.38 P3_H 

Deoxyadenosine C10H13N5O3 251.1018 -1.19 P4_A 

N-Acetylputrescine C6H14N2O 130.1106 -1.03 P4_A 

N-Acetylgalactosamine C8H15NO6 221.0899 -3.22 P4_A 

N-Acetylglutamic acid C7H11NO5 189.0637 -1.11 P4_A 

2,4-dihydroxypteridine C6H4N4O2 164.0334 -0.06 P4_A 

6-hydroxynicotinic acid C6H5NO3 139.0269 0.70 P4_A 



 

401 
 

Name formula 
exact 
mass 

logP Mix 

N-Acetylcysteine C5H9NO3S 163.0303 -0.71 P4_A 

IMP C10H13N4O8P 348.0471 -2.93 P4_A 

Pantothenic acid C9H17NO5 219.1107 -1.36 P4_A 

2-aminoisobutyric acid C4H9NO2 103.0633 -2.41 P4_A 

Aniline-2-sulfonate C6H7NO3S 173.0147 0.10 P4_A 

S-carboxymethylcysteine C5H9NO4S 179.0252 -3.30 P4_A 

Rhamnose C6H12O5 164.0685 -1.89 P4_B 

Thiamine pyrophosphate C12H18N4O7P2S 424.0371 -5.80 P4_B 

Histidinol C6H11N3O 141.0902 -1.67 P4_B 

Thymidine-monophosphate C10H15N2O8P 322.0566 -1.24 P4_B 

Ureidopropionic acid C4H8N2O3 132.0535 -1.43 P4_B 

5-aminopentanoic acid C5H11NO2 117.0790 -2.44 P4_B 

Norleucine C6H13NO2 131.0946 -1.43 P4_B 

N-formylglycine C3H5NO3 103.0269 -1.38 P4_B 

Adenosine C10H13N5O4 267.0968 -2.09 P4_B 

Raffinose C18H32O16 504.1690 -6.30 P4_B 

Meso-tartric acid C4H6O6 168.0270 -1.83 P4_B 

2-acetamido-2-deoxy-β-D-glucosylamine C8H16N2O5 220.1059 -3.33 P4_B 

Saccharic acid C6H10O8 210.0376 -3.09 P4_C 

ATP C10H16N5O13P3 506.9957 -5.80 P4_C 

3-methoxytyrosine C10H13NO4 211.0845 -1.65 P4_C 

Lactose C12H22O11 342.1162 -4.70 P4_C 

3-hydroxybutanoic acid C4H8O3 104.0473 -0.39 P4_C 
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Name formula 
exact 
mass 

logP Mix 

4-imidazoleacetic acid C5H6N2O2 126.0429 -1.40 P4_C 

Galacturonic acid C6H10O7 194.0427 -2.61 P4_C 

CTP C9H16N3O14P3 482.9845 -4.10 P4_C 

cAMP C10H12N5O6P 329.0525 -3.39 P4_C 

Methionine sulfoximine C5H12N2O3S 180.0569 -4.45 P4_C 

Cis-4-hydroxy-D-proline C5H9NO3 131.0582 -3.72 P4_C 

N1-Acetylspermine C12H28N4O 244.2263 -1.64 P4_C 

Mesoxalic caid C3H2O5 117.9902 0.03 P4_D 

NADPH C21H30N7O17P3 745.0911 -6.38 P4_D 

3-methylhistamine C6H11N3 125.0953 -0.82 P4_D 

Maleamic acid C4H5NO3 115.0269 -0.85 P4_D 

Choline C5H14NO 104.1070 -4.66 P4_D 

Methyl 4-aminobutyric acid C5H11NO2 117.0790 -0.48 P4_D 

N-formyl-L-methionine C6H11NO3S 177.0460 -0.16 P4_D 

Acetylcholine  C7H16NO2 146.1176 -4.22 P4_D 

Oxalic acid C2H2O4 89.9953 -0.26 P4_D 

5-hydroxytryptophan C11H12N2O3 220.0848 -1.39 P4_D 

D-alanine C3H7NO2 89.0477 -2.84 P4_D 

Theobromine C7H8N4O2 180.0647 -0.77 P4_D 

Guanidinosuccinic acid C5H9N3O4 175.0593 -3.27 P4_E 

Histidine C6H9N3O2 155.0695 -3.29 P4_E 

Allothreonine C4H9NO3 119.0582 -3.47 P4_E 

Phosphocreatine C4H10N3O5P 211.0358 -2.25 P4_E 
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Name formula 
exact 
mass 

logP Mix 

Spermidine C7H19N3 145.1579 -1.15 P4_E 

Adenosine diphosphate ribose C15H23N5O14P2 559.0717 -6.07 P4_E 

2-methoxyethanol C3H8O2 76.0524 -0.57 P4_E 

Citramalic acid C5H8O5 148.0372 -0.68 P4_E 

Anserine C10H16N4O3 240.1222 -4.27 P4_E 

Biliverdin C33H34N4O6 582.2478 3.17 P4_E 

5-hydroxylysine C6H14N2O3 162.1004 -4.41 P4_E 

Cysteamine C2H7NS 77.0299 -0.42 P4_E 

Ophthalmic acid C11H19N3O6 289.1274 -4.40 P4_F 

2,3-diaminopropionic acid C3H8N2O2 104.0586 -4.02 P4_F 

Trigonelline C7H7NO2 137.0477 -3.53 P4_F 

Epinephrine C9H13NO3 183.0895 -0.43 P4_F 

3,4-dihydroxyphenylglycol C8H10O4 170.0579 -0.03 P4_F 

Cadaverine C5H14N2 102.1157 -0.40 P4_F 

2-hydroxybutyric acid C4H8O3 104.0473 0.05 P4_F 

Coenzyme A C21H36N7O16P3S 767.1152 -5.72 P4_F 

Oxalomalic acid C6H6O8 206.0063 -1.09 P4_F 

ITP C10H15N4O14P3 507.9798 -2.69 P4_F 

CDP-ethanolamine C11H20N4O11P2 446.0604 -4.98 P4_F 

2,5-dimethylpyrazine C6H8N2 108.0687 -0.20 P4_F 

Stachyose C24H42O21 666.2219 -8.07 P4_G 

Deoxycytidine-diphosphate C9H15N3O10P2 387.0233 -2.59 P4_G 

2,3-butanediol C4H10O2 90.0681 -0.38 P4_G 
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Name formula 
exact 
mass 

logP Mix 

D-ribose 5-phosphate C5H11O8P 230.0192 -2.43 P4_G 

Hydroxykynurenine C10H12N2O4 224.0797 -2.21 P4_G 

Galactosamine C6H13NO5 179.0794 -3.04 P4_G 

Deoxyadenosine triphosphate C10H16N5O12P3 491.0008 -4.91 P4_G 

Glycerol 3-phosphate C3H9O6P 172.0137 -1.96 P4_G 

Cyanocobalamin C63H89CoN14O14P 
1354.567

4 
-2.18 P4_G 

4-hydroxy-L-phenylglycine C8H9NO3 167.0582 -1.78 P4_G 

N-Acetylserine C5H9NO4 147.0532 -1.81 P4_G 

Uridine 5'-diphosphate C9H14N2O12P2 404.0022 -2.96 P4_G 

Beta-glycerophosphate C3H9O6P 172.0137 -1.96 P4_H 

Glucose 1-phosphate C6H13O9P 260.0297 -3.06 P4_H 

Glucosamine 6-sulfate C6H13NO8S 259.0362 -3.99 P4_H 

Methyglutaric acid C6H10O4 146.0579 0.33 P5_A 

Sorbic acid C6H8O2 112.0524 1.45 P5_A 

Monoethylmalonic acid C5H8O4 132.0423 0.17 P5_A 

Gluconolactone C6H10O6 178.0472 1.22 P5_A 

4-hydroxybenzoic acid C7H6O3 138.0317 1.33 P5_A 

Tyramine C8H11NO 137.0841 0.68 P5_A 

Cortisol C21H30O5 362.2093 1.28 P5_A 

Prenol C5H10O 86.0732 0.84 P5_A 

3-hydroxybenzaldehyde C7H6O2 122.0368 1.38 P5_A 

Xanthurenic acid C10H7NO4 205.0375 -0.17 P5_A 

2-methylpropanal C4H8O 72.0570 0.87 P5_A 
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Name formula 
exact 
mass 

logP Mix 

Propionic acid C3H6O2 74.0368 0.48 P5_A 

Trimethylamine C3H9N 59.0735 0.19 P5_B 

Melatonin C13H16N2O2 232.1212 1.15 P5_B 

Maleic acid C4H4O4 116.0110 -0.04 P5_B 

Pentanoic acid C5H10O2 102.0681 1.37 P5_B 

Propanoic acid C3H6O2 74.0368 0.48 P5_B 

Bilirubin C33H36N4O6 584.2635 3.12 P5_B 

Nicotine C10H14N2 162.1157 1.16 P5_B 

Pregnenolone sulfate C21H32O5S 396.1970 3.64 P5_B 

Kynurenic acid C10H7NO3 189.0426 1.58 P5_B 

Isobutyric acid C4H8O2 88.0524 1.02 P5_B 

3-hydroxybenzyl alcohol C7H8O2 124.0524 0.90 P5_B 

Aniline C6H7N 93.0578 1.14 P5_B 

Acetoin C4H8O2 88.0519 1.31 P5_C 

3,5-diiodo-L-tyrosine C9H9I2NO3 432.8672 0.37 P5_C 

Mandelic acid C8H8O3 152.0473 0.90 P5_C 

Tryptamine C10H12N2 160.1000 1.49 P5_C 

Benzoic acid C7H6O2 122.0368 1.63 P5_C 

Glutaric acid C5H8O4 132.0423 0.05 P5_C 

Indole-3-acetic acid C10H9NO2 175.0633 1.71 P5_C 

Caffeic acid C9H8O4 180.0423 1.53 P5_C 

Lumichrome C12H10N4O2 242.0804 2.73 P5_C 

β-alanine C3H7NO2 89.0477 -3.17 P5_C 
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Name formula 
exact 
mass 

logP Mix 

N-Acetylphenylalanine C11H13NO3 207.0895 0.90 P5_C 

N-Acetylproline C7H11NO3 157.0739 -0.49 P5_C 

L-Tryptophanamide C11H13N3O 203.1059 0.37 P5_D 

Phenol C6H6O 94.0419 1.67 P5_D 

N-Methyltryptamine C11H14N2 174.1157 1.92 P5_D 

Oxaloacetic acid C4H4O5 132.0059 -0.04 P5_D 

2,3-dihydroxybenzoica cid C7H6O4 154.0266 1.67 P5_D 

2-propenoic acid C3H4O2 72.0211 0.53 P5_D 

Indole-3-ethanol C10H11NO 161.0841 1.59 P5_D 

Ferulic acid C10H10O4 194.0579 1.67 P5_D 

Glycocholic acid C26H43NO6 465.3090 1.38 P5_D 

Phenylethanolamine C8H11NO 137.0841 0.47 P5_D 

Thiopurine S-methylether C6H6N4S 166.0313 0.88 P5_D 

2-hydroxy-4-(methylthio)butanoic acid C5H10O3S 150.0351 0.18 P5_D 

Glycochenodeoxycholic acid C26H43NO5 449.3141 2.61 P5_E 

Benzoic acid C7H6O2 122.0368 1.63 P5_E 

3-amino-5-hydroxybenzoic acid C7H7NO3 153.0426 0.34 P5_E 

Pyrocatechol C6H6O2 110.0368 1.37 P5_E 

3,4-dihydroxybenzoic acid C7H6O4 154.0266 1.02 P5_E 

Cyclopentanone C5H8O 84.0575 1.04 P5_E 

Pantolactone C6H10O3 130.0630 0.18 P5_E 

Guaiacol C7H8O2 124.0524 1.51 P5_E 

2-hydroxyphenylacetic acid C8H8O3 152.0473 1.31 P5_E 
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Name formula 
exact 
mass 

logP Mix 

10-hydroxydecanoic acid C10H20O3 188.1412 2.15 P5_E 

Didecanoyl-glycerophosphocholine C28H56NO8P 565.3744 2.78 P5_E 

2-hydroxypyridine C5H5NO 95.0371 1.05 P5_E 

3,4-dihydroxyphenylacetic acid C8H8O4 168.0423 1.00 P5_F 

N6-(delta2-isopentenyl)-adenine C10H13N5 203.1171 1.09 P5_F 

Methyl vanillic acid C9H10O4 182.0579 1.52 P5_F 

2-oxobutanoic acid C4H6O3 102.0317 0.77 P5_F 

Lipoamide C8H15NOS2 205.0595 1.31 P5_F 

3-hydroxyanthranilic acid C7H7NO3 153.0426 1.15 P5_F 

3-(4-hydroxyphenyl)pyruvic acid C9H8O4 180.0423 1.60 P5_F 

Hexanoic acid C6H12O2 116.0837 1.81 P5_F 

Methylmalonic acid C4H6O4 118.0266 0.21 P5_F 

Serotonin C10H12N2O 176.0950 0.48 P5_F 

Cortisol 21-acetate C23H32O6 404.2199 1.72 P5_F 

Indole-3-acetamide C10H10N2O 174.0793 -0.92 P5_F 

Hippuric acid C9H9NO3 179.0582 0.53 P5_G 

Ethylmalonic acid C5H8O4 132.0423 0.66 P5_G 

3,5-diiodo-L-thyronine C15H13I2NO4 524.8934 1.87 P5_G 

Fumaric acid C4H4O4 116.0110 -0.04 P5_G 

Benzaldehyde C7H6O 106.0419 1.69 P5_G 

4-hydroxybenzaldehyde C7H6O2 122.0368 1.38 P5_G 

3-(2-hydroxyphenyl)propanoic acid C9H10O3 166.0630 1.75 P5_G 

3-methoxytyramine C9H13NO2 167.0946 0.53 P5_G 
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Name formula 
exact 
mass 

logP Mix 

Benzylamine C7H9N 107.0735 1.10 P5_G 

2-quinolinecarboxylic acid C10H7NO2 173.0477 0.79 P5_G 

Serotonin C10H12N2O 176.0950 0.48 P5_G 

Pterin C6H5N5O 163.0494 -0.96 P5_G 

4-aminobenzoic acid C7H7NO2 137.0477 0.80 P5_H 

2-aminophenol C6H7NO 109.0528 0.84 P5_H 

6-carboxyhexanoic acid C7H12O4 160.0736 0.94 P5_H 

Indole-3-pyruvic acid C11H9NO3 203.0582 2.00 P5_H 

Dehydroascorbic acid C6H6O6 174.0164 -0.67 P5_H 

3-amino-4-hydroxybenzoic acid C7H7NO3 153.0426 0.35 P5_H 

3,4 dihydroxymandelic acid C8H8O5 184.0372 0.29 P5_H 

Anthranilic acid C7H7NO2 137.0477 1.45 P5_H 

Dihydrobiopterin C9H13N5O3 239.1018 -2.29 P5_H 

Butanoic acid C4H8O2 88.0524 0.92 P5_H 

Indole-3-acetic acid C10H9NO2 175.0633 1.71 P5_H 

5-valerolactone C5H8O2 100.0524 0.59 P5_H 

2,5-dihydroxybenzoic acid C7H6O4 154.0266 1.67 P6_A 

4-quinolinecarboxylic acid C10H7NO2 173.0477 1.63 P6_A 

Hydroquinone C6H6O2 110.0368 1.37 P6_A 

Dethiobiotin C10H18N2O3 214.1317 0.73 P6_A 

3-methyl-2-oxovaleric acid C6H10O3 130.0630 1.75 P6_A 

Oxoglutaric acid C5H6O5 146.0215 -0.11 P6_A 

N-Acetylserotonin C12H14N2O2 218.1055 1.00 P6_A 
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Name formula 
exact 
mass 

logP Mix 

Allyl isothiocyanate C4H5NS 99.0137 1.05 P6_A 

Itaconic acid C5H6O4 130.0266 0.05 P6_A 

Azelaic acid C9H16O4 188.1049 1.82 P6_A 

Oxoadipic acid C6H8O5 160.0372 0.34 P6_A 

2-methylglutaric acid C6H10O4 146.0579 0.59 P6_A 

Phenylacetaldehyde C8H8O 120.0575 1.45 P6_B 

2-methylbutanal C5H10O 86.0732 1.31 P6_B 

Phenyl acetic acid C8H8O2 136.0524 1.58 P6_B 

Diacetyl C4H6O2 86.0368 0.40 P6_B 

Pyruvic acid C3H4O3 88.0160 0.07 P6_B 

Trans-cinnamaldehyde C9H8O 132.0575 1.98 P6_B 

2,6-dihydroxypyridine C5H5NO2 111.0320 0.15 P6_B 

Phenethylamine C8H11N 121.0891 1.39 P6_B 

Methyl acetoacetic acid C5H8O3 116.0473 0.14 P6_B 

Suberic acid C8H14O4 174.0892 1.38 P6_B 

Adipic acid C6H10O4 146.0579 0.49 P6_B 

Geranyl-PP C10H20O7P2 314.0684 1.96 P6_B 

N-Acetylleucine C8H15NO3 173.1052 0.49 P6_C 

2',4'-dihydroxyacetophenone C8H8O3 152.0473 1.57 P6_C 

Benzyl alcohol C7H8O 108.0575 1.21 P6_C 

Monomethylglutaric acid C6H10O4 146.0579 0.19 P6_C 

Indole-3-methyl acetic acid C11H11NO2 189.0790 1.86 P6_C 

Mevalonic acid C6H12O4 148.0730 0.18 P6_C 
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Name formula 
exact 
mass 

logP Mix 

3-methoxy-4-hydroxymandelic acid C9H10O5 198.0528 0.43 P6_C 

Homovanillic acid C9H10O4 182.0579 1.15 P6_C 

2-methylmaleic acid C5H6O4 130.0266 0.35 P6_C 

1-phenylethanol C8H10O 122.0732 1.62 P6_C 

Salsolinol C10H13NO2 179.0946 1.07 P6_C 

Salicylamide C7H7NO2 137.0477 1.17 P6_C 

3-hydroxybenzoic acid C7H6O3 138.0317 1.33 P6_D 

Ketoleucine C6H10O3 130.0630 1.50 P6_D 

3-alpha,11-beta,17-alpha,21-tetrahydroxy- 5-alpha-pregnan-

20-one 3,21-diacetate 
C21H34O5 366.2406 1.11 P6_D 

N,N-dimethyl-1,4-phenylenediamine C8H12N2 136.1000 1.25 P6_D 

Homogentisic acid C8H8O4 168.0423 1.00 P6_D 

Indoleacetaldehyde C10H9NO 159.0684 1.55 P6_D 

4-hydroxy-3-methoxyphenylglycol C9H12O4 184.0736 0.11 P6_D 

3-hydroxyphenylacetic acid C8H8O3 152.0473 1.31 P6_D 

4-methylcatechol C7H8O2 124.0524 1.88 P6_D 

Pyridoxal C8H9NO3 167.0582 0.18 P6_D 

Salicylic acid C7H6O3 138.0317 1.98 P6_D 

Sebacic acid C10H18O4 202.1205 2.27 P6_D 

3-methyl-2-oxindole C9H9NO 147.0684 1.62 P6_E 

3-methyladenine C6H7N5 149.0701 -0.31 P6_E 

Hydroxyphenyllactic acid C9H10O4 182.0579 0.88 P6_E 

Biotin C10H16N2O3S 244.0882 0.32 P6_E 

Mercaptopyruvic acid C3H4O3S 119.9881 0.29 P6_E 
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Name formula 
exact 
mass 

logP Mix 

Pyruvic aldehyde C3H4O2 72.0211 0.20 P6_E 

Pyrrole-2-carboxylic acid C5H5NO2 111.0320 0.63 P6_E 

5-hydroxyindoleacetic acid C10H9NO3 191.0582 1.41 P6_E 

Phenylacetic acid C8H8O2 136.0524 1.61 P6_E 

Resorcinol monoacetate C8H8O3 152.0473 1.28 P6_E 

Acetoacetic acid C4H6O3 102.0317 0.00 P6_E 

Acetylphosphate C2H5O5P 139.9875 -0.88 P6_E 

Ethyl 3-indoleacetic acid C12H13NO2 203.0946 2.21 P6_F 

Dehydroascorbate C6H6O6 174.0164 -0.67 P6_F 

Fructose C6H12O6 180.0634 -2.76 P6_F 

Sorbose C6H12O6 180.0634 -2.76 P6_F 

Xylitol C5H12O5 152.0685 -3.10 P6_F 

Ribitol C5H12O5 152.0685 -3.10 P6_F 

Myoinositol C6H12O6 180.0634 -3.78 P6_F 

Mannose C6H12O6 180.0634 -2.93 P6_F 

Arabinose C5H10O5 150.0528 -2.30 P6_F 

Xylose C5H10O5 150.0528 -2.30 P6_G 

Sucrose C12H22O11 342.1162 -4.53 P6_G 

Galactose C6H12O6 180.0634 -2.93 P6_G 

α-D-glucose C6H12O6 180.0634 -2.93 P6_G 

Allose C6H12O6 180.0634 -2.93 P6_G 

Mannitol C6H14O6 182.0790 -3.73 P6_G 

Melibiose C12H22O11 342.1162 -4.70 P6_G 
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Name formula 
exact 
mass 

logP Mix 

Sorbitol C6H14O6 182.0790 -3.73 P6_G 

Maltose C12H22O11 342.1162 -4.70 P6_G 

Tagatose C6H12O6 180.0634 -3.27 P6_G 

L-gulonolactone C6H10O6 178.0477 -2.75 P6_G 

Arabinose C5H10O5 150.0528 -2.94 P6_G 

Cellobiose C12H22O11 342.1162 -4.70 P6_H 

Psicose C6H12O6 180.0634 -2.76 P6_H 

Arabitol C5H12O5 152.0685 -3.10 P6_H 

Lyxose C5H10O5 150.0523 -2.61 P6_H 

Ribose C5H10O5 150.0528 -2.30 P6_H 

Palatinose C12H22O11 342.1162 -4.53 P6_H 

Vitamin D2 C28H44O 396.3392 7.05 P7_A 

Squalene C30H50 410.3913 10.42 P7_A 

4-coumaric acid C9H8O3 164.0473 1.83 P7_A 

Nonanoic acid C9H18O2 158.1307 3.14 P7_A 

Estradiol-17alpha C18H24O2 272.1776 3.75 P7_A 

Caprylic acid C8H16O2 144.1150 2.70 P7_A 

Ursodeoxycholic acid C24H40O4 392.2927 3.71 P7_A 

Petroselinic acid C18H34O2 282.2559 6.78 P7_A 

Dipalmitoylglycerol C35H68O5 568.5067 12.00 P7_A 

Deoxycholic acid C24H40O4 392.2927 3.79 P7_A 

Lithocholic acid C24H40O3 376.2977 5.02 P7_A 

Protoporphyrin C34H34N4O4 562.2580 6.58 P7_A 
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Name formula 
exact 
mass 

logP Mix 

Heptanoic acid C7H14O2 130.0994 2.26 P7_B 

Retinol C20H30O 286.2297 4.69 P7_B 

Menaquinone C41H56O2 580.4280 11.80 P7_B 

Elaidic acid C18H34O2 282.2559 6.78 P7_B 

Chenodeoxycholic acid C24H40O4 392.2927 3.71 P7_B 

Myristic acid C14H28O2 228.2089 5.37 P7_B 

Cholesteryl oleate C45H78O2 650.6002 14.56 P7_B 

Rosmarinic acid C18H16O8 360.0845 3.00 P7_B 

Glyceryl tripalmitate C51H98O6 806.7363 18.92 P7_B 

Cortexolone C21H30O4 346.2144 2.58 P7_B 

Lithocholyltaurine C26H45NO5S 483.3018 2.48 P7_B 

Palmitoleic acid C16H30O2 254.2246 5.89 P7_B 

Palmitic acid C16H32O2 256.2402 6.26 P7_C 

Liothyronine C15H12I3NO4 650.7900 2.80 P7_C 

Sphinganine C18H39NO2 301.2981 4.77 P7_C 

Lanosterol C30H50O 426.3862 7.71 P7_C 

Lauric acid C12H24O2 200.1776 4.48 P7_C 

Arachidic acid C20H40O2 312.3028 8.03 P7_C 

Erucic acid C22H42O2 338.3185 8.56 P7_C 

Deoxycholic acid C24H40O4 392.2927 3.79 P7_C 

Ketoleucine C6H10O3 130.0630 1.50 P7_C 

Eicosapentaenoic acid C20H30O2 302.2246 6.23 P7_C 

Heptadecanoic acid C17H34O2 270.2559 6.70 P7_C 
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Name formula 
exact 
mass 

logP Mix 

Glyceryl trimyristate C45H86O6 722.6424 16.26 P7_C 

Linoleic acid C18H32O2 280.2402 6.42 P7_D 

Sphingomyelin C41H83N2O6P 730.5989 7.87 P7_D 

7-dehydrocholesterol C27H44O 384.3392 6.71 P7_D 

Thyroxine C15H11I4NO4 776.6867 3.73 P7_D 

Bis(2-ethylhexyl)phthalate C24H38O4 390.2770 8.03 P7_D 

γ-linolenic acid C18H30O2 278.2246 6.06 P7_D 

ω-hydroxydodecanoic acid C12H24O3 216.1725 3.04 P7_D 

Methyl jasmonate C13H20O3 224.1412 2.56 P7_D 

Dipalmitoyl-phosphatidylcholine C40H80NO8P 733.5622 8.11 P7_D 

Hexadecanol C16H34O 242.2610 6.14 P7_D 

5,6 dimethylbenzimidazole C9H10N2 146.0844 2.29 P7_D 

Retinoic acid C20H28O2 300.2089 5.01 P7_D 

Indole C8H7N 117.0578 2.07 P7_E 

Cholic acid C24H40O5 408.2876 2.48 P7_E 

Phylloquinone C31H46O2 450.3498 9.70 P7_E 

Cholesteryl palmitate C43H76O2 624.5845 14.03 P7_E 

Quinoline C9H7N 129.0578 2.13 P7_E 

Docosahexaenoic acid C22H32O2 328.2402 6.75 P7_E 

Diethyl 2-methyl-3-oxosuccinate C9H14O5 202.0841 1.74 P7_E 

Retinyl palmitate C36H60O2 524.4593 11.62 P7_E 

2-undecanone C11H22O 170.1671 3.92 P7_E 

1-hydroxy-2-naphthoate C11H8O3 188.0473 2.97 P7_E 
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Name formula 
exact 
mass 

logP Mix 

Dipalmitoyl-phosphoethanolamine C37H74NO8P 691.5152 10.45 P7_E 

Phenylpyruvic acid C9H8O3 164.0473 1.90 P7_E 

Trans-cinnamic acid C9H8O2 148.0524 2.14 P7_F 

Oleic acid C18H34O2 282.2559 6.78 P7_F 

Stearic acid C18H36O2 284.2715 7.15 P7_F 

β-carotene C40H56 536.4382 11.12 P7_F 

25-hydroxycholesterol C27H46O2 402.3498 5.64 P7_F 

Nervonic acid C24H46O2 366.3498 9.45 P7_F 

Desmosterol C27H44O 384.3392 6.71 P7_F 

Deoxycorticosterone acetate C23H32O4 372.2301 3.77 P7_F 

Oleoyl-glycerol C21H40O4 356.2927 5.61 P7_F 

α-tocopherol C29H50O2 430.3811 10.51 P7_F 

Glycerol-myristate C17H34O4 302.2457 4.19 P7_F 

Tricosanoic acid C23H46O2 354.3498 9.37 P7_F 

Coenzyme Q10 C59H90O4 862.6839 17.16 P7_G 

Cortisone C21H28O5 360.1937 1.66 P7_G 

Decanoic acid C10H20O2 172.1463 3.59 P7-G 

Corticosterone C21H30O4 346.2144 2.02 P7_G 
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SI Table 2: Metabolites used in the interlaboratory study in chapter 3. 

Name formula exact mass logP Mix 

Glycine C2H5NO2 75.0320 -3.41 A 

L-Tryptophan C11H12N2O2 204.0899 -1.09 A 

L-Valine C5H11NO2 117.0790 -1.95 A 

L-Glutamine C5H10N2O3 146.0691 -4 A 

L-Proline C5H9NO2 115.0633 -2.57 A 

Glutathione, reduced (GSH) C10H17N3O6S 307.0838 -4.88 A 

Palmitic acid C16H32O2 256.2402 6.26 A 

Anthranilic acid C7H7NO2 137.0477 1.45 A 

Homogentisic acid C8H8O4 168.0423 1 A 

PC 16:0/0:0 C24H50NO7P 495.3325 1.19 A 

Benzoic acid C7H6O2 122.0368 1.63 A 

Cholesterol C27H46O 386.3549 7.11 A 

Vitamin K1 C31H46O2 450.3498 9.7 A 

gamma-Linolenic acid C18H30O2 278.2246 6.06 A 

Coenzyme Q2 C19H26O4 318.1831 3.88 A 

Kaempferol C15H10O6 286.0477 2.46 A 

3-Hydroxyphenylacetic acid C8H8O3 152.0473 1.31 A 

25-Hydroxyvitamin D2 C28H44O2 412.3341 5.66 A 

Ala-Phe C12H16N2O3 236.1161 -1.72 A 

N-Stearoyl Taurine C20H41NO4S 391.2756 4.64 A 

L-Alanine C3H7NO2 89.0477 -2.84 B 

L-Leucine C6H13NO2 131.0946 -1.59 B 
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Name formula exact mass logP Mix 

L-Threonine C4H9NO3 119.0582 -3.47 B 

L-Glutamic acid C5H9NO4 147.0532 -3.24 B 

L-Cysteine C3H7NO2S 121.0197 -2.79 B 

Glutathione, oxidized (GSSG) C20H32N6O12S2 612.1520 -10.11 B 

Myristic acid C14H28O2 228.2089 5.37 B 

2-Heptyl-3-hydroxy-4(1H)-quinolone C16H21NO2 259.1572 4.65 B 

4-Hydroxybenzoic acid C7H6O3 138.0317 1.33 B 

Pantothenic acid C9H17NO5 219.1107 -1.36 B 

Xanthine C5H4N4O2 152.0334 -0.21 B 

3-Methylhippuric acid C10H11NO3 193.0739 1.04 B 

Folic acid C19H19N7O6 441.1397 -1.2 B 

FAD C27H33N9O15P2 785.1571 -5.52 B 

L-Cystine C6H12N2O4S2 240.0238 -5.9 B 

Trehalose C12H22O11 342.1162 -4.7 B 

Isovaleric acid C5H10O2 102.0681 1.21 B 

2-Oxovaleric acid C5H8O3 116.0473 1.21 B 

Stearoyl ethanolamide C20H41NO2 327.3137 5.87 B 

Linoleyl ethanolamide C20H37NO2 323.2824 5.15 B 

L-Tyrosine C9H11NO3 181.0739 -1.49 C 

L-Serine C3H7NO3 105.0426 -3.89 C 

L-Lysine C6H14N2O2 146.1055 -3.21 C 

L-Asparagine C4H8N2O3 132.0535 -4.29 C 

L-Methionine C5H11NO2S 149.0510 -2.19 C 
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Name formula exact mass logP Mix 

Adenosine C10H13N5O4 267.0968 -2.09 C 

Ferulic acid C10H10O4 194.0579 1.67 C 

4-Hydroxyphenylpyruvic acid C9H8O4 180.0423 1.6 C 

Pyrocatechol C6H6O2 110.0368 1.37 C 

Xanthosine C10H12N4O6 284.0757 -1.81 C 

Hippuric acid C9H9NO3 179.0582 0.53 C 

Retinoic acid C20H28O2 300.2089 5.01 C 

CoA C21H36N7O16P3S 767.1152 -5.77 C 

N-Acetyl-D-Mannosamine C8H15NO6 221.0899 -3.86 C 

Luteolin C15H10O6 286.0477 2.4 C 

Suberic acid C8H14O4 174.0892 1.38 C 

3-Methyladipic acid C7H12O4 160.0736 0.78 C 

Lipoic acid, reduced C8H16O2S2 208.0592 2.2 C 

Pregnenolone sulfate C21H32O2 316.2402 3.58 C 

L-Phenylalanine C9H11NO2 165.0790 -1.18 D 

L-Isoleucine C6H13NO2 131.0946 -1.51 D 

L-Arginine C6H14N4O2 174.1117 -3.16 D 

L-Aspartic acid C4H7NO4 133.0375 -3.5 D 

L-Histidine C6H9N3O2 155.0695 -3.62 D 

Inosine C10H12N4O5 268.0808 -1.57 D 

Chorismic acid C10H10O6 226.0477 -0.13 D 

Phenylpyruvic acid C9H8O3 164.0473 1.9 D 

Arachidonic acid C20H32O2 304.2402 6.59 D 
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Name formula exact mass logP Mix 

cAMP C10H12N5O6P 329.0525 -4.02 D 

Riboflavin C17H20N4O6 376.1383 -0.92 D 

Uric acid C5H4N4O3 168.0283 0.75 D 

Acetyl-CoA C23H38N7O17P3S 809.1258 -5.92 D 

L-Cystathionine C7H14N2O4S 222.0674 -5.82 D 

Retinol C20H30O 286.2297 4.69 D 

4-Methylvaleric acid C6H12O2 116.0837 1.65 D 

α-Hydroxyhippuric acid C9H9NO4 195.0532 0.24 D 

7-Methylxanthine C6H6N4O2 166.0491 0.02 D 

Indolacetic acid C10H9NO2 175.0633 1.71 D 

L-tert-Leucine C6H13NO2 131.0946 -1.57 E 

L-Norleucine C6H13NO2 131.0946 -1.43 E 

Theobromine C7H8N4O2 180.0647 -0.77 E 

Quercetin C15H10O7 302.0427 2.16 E 

Decanoyl-L-carnitine C17H34NO4 316.2482 -0.63 E 

Palmitoyl-L-carnitine C23H46NO4 400.3421 2.03 E 

Oleoyl-L-carnitine C25H48NO4 426.3578 2.56 E 

Acetyl-L-carnitine C9H17NO4 203.1158 -4.45 E 

Octanoyl-L-carnitine C15H30NO4 288.2169 -1.52 E 

Tetradecanoyl-L-carnitine C21H42NO4 372.3108 1.14 E 

Hexanoyl-L-carnitine C13H26NO4 260.1856 -2.41 E 

Stearoyl-L-Carnitine C25H50NO4 428.3734 2.92 E 

Reserpine C33H40N2O9 608.2734 3.53 E 
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Name formula exact mass logP Mix 

Orotic acid C5H4N2O4 156.0171 -1.23 E 

all trans-Retinal C20H28O 284.2140 4.86 E 

D-Sphingosine C18H37NO2 299.2824 4.57 E 

Apigenin C15H10O5 270.0528 2.71 E 

2-Hydroxyphenylacetic acid C8H8O3 152.0473 1.31 E 

N-α-Acetyl-L-ornithine C7H14N2O3 174.1004 -3.6 E 

Leu-Gly-Gly C10H19N3O4 245.1376 -3.8 E 

Acetaminophen C8H9NO2 151.0633 0.91 E 

 

8.2.2. Lipids 

SI Table 3: Ordering information of lipids obtained from Avanti Polar Lipids 

Name Ordering Number Formula 

PC 14:0/14:0 850345C-25MG C36H72NO8P 

PC 15:0/15:0 850350C-25MG C38H76NO8P 

PC 16:0/16:0 850355C-25MG C40H80NO8P 

PC 16:0/18:0 850456C-25MG C42H84NO8P 

PC 16:0/18:1(9Z) 850457C-25MG C42H82NO8P 

PC 16:0/18:2(9Z,12Z) 850458C-25MG C42H80NO8P 

PC 16:0/20:4(5Z,8Z,11Z,14Z) 850459C-25MG C44H80NO8P 

PC 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 850461C-25MG C46H80NO8P 

PC 17:0/17:0 850360C-25MG C42H84NO8P 

PC 18:0/16:0 850465C-25MG C42H84NO8P 

PC 18:0/18:0 850365C-25MG C44H88NO8P 
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Name Ordering Number Formula 

PC 18:0/18:1(9Z) 850467C-25MG C44H86NO8P 

PC 18:0/18:2(9Z,12Z) 850468C-25MG C44H84NO8P 

PC 18:0/20:4(5Z,8Z,11Z,14Z) 850469C-25MG C46H84NO8P 

PC 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 850472C-25MG C48H84NO8P 

PC 18:1(9Z)/16:0 850475C-25MG C42H82NO8P 

PC 18:1(9Z)/18:0 850476C-25MG C44H86NO8P 

PC 20:0/20:0 850368C-25MG C48H96NO8P 

PC 22:0/22:0 850371C-25MG C52H104NO8P 

PE 14:0/14:0 850745P-25MG C33H66NO8P 

PE 15:0/15:0 850704P-25MG C35H70NO8P 

PE 16:0/16:0 850705P-25MG C37H74NO8P 

PE 16:0/18:1(9Z) 850757C-25MG C39H76NO8P 

PE 16:0/18:2(9Z,12Z) 850756C-25MG C39H74NO8P 

PE 16:0/20:4(5Z,8Z,11Z,14Z) 850759C-25MG C41H74NO8P 

PE 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 850801C-25MG C43H74NO8P 

PE 17:0/17:0 830756P-25MG C39H78NO8P 

PE 18:0/18:0 850715P-25MG C41H82NO8P 

PE 18:0/18:1(9Z) 850758C-25MG C41H80NO8P 

PE 18:0/18:2(9Z,12Z) 850802C-25MG C41H78NO8P 

PE 18:0/20:4(5Z,8Z,11Z,14Z) 850804C-25MG C43H78NO8P 

PE 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 850806C-25MG C45H78NO8P 

PS 14:0/14:0 840033P-10MG C34H66NO10P 

PS 16:0/16:0 840037P-10MG C38H74NO10P 
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Name Ordering Number Formula 

PS 16:0/18:1(9Z) 840034C-10MG C40H76NO10P 

PS 16:0/18:2(9Z,12Z) 840060C-10MG C40H74NO10P 

PS 16:0/20:4(5Z,8Z,11Z,14Z) 840061C-10MG C42H74NO10P 

PS 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 840062C-25MG C44H74NO10P 

PS 17:0/17:0 840028P-10MG C40H78NO10P 

PS 18:0/18:0 840029P-10MG C42H82NO10P 

PA 14:0/14:0 830845P-25MG C31H61O8P 

PA 16:0/16:0 830855P-25MG C35H69O8P 

PA 16:0/18:1(9Z) 840857C-25MG C37H71O8P 

PA 16:0/18:2(9Z,12Z) 840858C-25MG C37H69O8P 

PA 16:0/20:4(5Z,8Z,11Z,14Z) 840859C-25MG C39H69O8P 

PA 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 840860C-25MG C41H69O8P 

PA 17:0/17:0 830856P-25MG C37H73O8P 

PA 18:0/18:0 830865P-25MG C39H77O8P 

PG 14:0/14:0 840445P-25MG C34H67O10P 

PG 15:0/15:0 840446P-25MG C36H71O10P 

PG 16:0/16:0 840455P-25MG C38H75O10P 

PG 16:0/18:1(9Z) 840457C-25MG C40H77O10P 

PG 16:0/18:2(9Z,12Z) 840497C-25MG C40H75O10P 

PG 16:0/20:4(5Z,8Z,11Z,14Z) 840499C-25MG C42H75O10P 

PG 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) 840500C-25MG C44H75O10P 

PG 17:0/17:0 830456P-25MG C40H79O10P 

PG 18:0/18:0 840465P-25MG C42H83O10P 
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8.2.3. CCS values 

SI Table 4: CCS values of lipids obtained in positive ionization mode 

Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PC 14:0/14:0 [M+Na]+ 700.4888 273.30 NA 276.33 

PC 15:0/15:0 [M+Na]+ 728.5201 279.00 NA 281.50 

PC 16:0/16:0 [M+Na]+ 756.5514 284.30 NA 287.43 

PC 16:0/18:0 [M+Na]+ 784.5827 290.90 295.30 293.97 

PC 16:0/18:1(9Z) [M+Na]+ 782.5670 289.53 293.20 292.60 

PC 16:0/18:2(9Z,12Z) [M+Na]+ 780.5514 287.40 291.00 290.60 

PC 16:0/20:4(5Z,8Z,11Z,14Z) [M+Na]+ 804.5514 290.70 294.40 292.90 

PC 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+Na]+ 828.5514 293.00 297.20 295.47 

PC 17:0/17:0 [M+Na]+ 784.5827 290.93 294.80 293.40 

PC 18:0/16:0 [M+Na]+ 784.5827 291.47 294.90 293.50 

PC 18:0/18:0 [M+Na]+ 812.6140 296.03 300.80 298.90 

PC 18:0/18:1(9Z) [M+Na]+ 810.5983 295.40 299.00 298.30 

PC 18:0/18:2(9Z,12Z) [M+Na]+ 808.5827 293.40 297.00 296.83 

PC 18:0/20:4(5Z,8Z,11Z,14Z) [M+Na]+ 832.5827 296.40 300.30 300.37 

PC 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+Na]+ 856.5827 299.00 299.70 303.47 

PC 18:1(9Z)/16:0 [M+Na]+ 782.5670 290.43 293.90 294.47 

PC 18:1(9Z)/18:0 [M+Na]+ 810.5983 296.23 299.80 NA 

PC 20:0/20:0 [M+Na]+ 868.6766 309.73 313.70 NA 

PC 22:0/22:0 [M+Na]+ 924.7392 321.45 NA 323.90 

PE 14:0/14:0 [M+H]+ 636.4599 260.11 262.30 NA 

PE 15:0/15:0 [M+H]+ 664.4912 266.46 267.40 NA 
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Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PE 16:0/16:0 [M+H]+ 692.5225 272.45 273.10 NA 

PE 16:0/18:1(9Z) [M+H]+ 718.5381 275.30 277.00 NA 

PE 16:0/18:2(9Z,12Z) [M+H]+ 716.5225 273.21 274.60 NA 

PE 16:0/20:4(5Z,8Z,11Z,14Z) [M+H]+ 740.5225 276.90 278.30 NA 

PE 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+H]+ 764.5225 279.19 280.80 NA 

PE 17:0/17:0 [M+H]+ 720.5538 278.47 279.20 NA 

PE 18:0/18:0 [M+H]+ 748.5851 284.45 285.40 NA 

PE 18:0/18:1(9Z) [M+H]+ 746.5694 281.65 283.60 NA 

PE 18:0/18:2(9Z,12Z) [M+H]+ 744.5538 279.53 281.10 NA 

PE 18:0/20:4(5Z,8Z,11Z,14Z) [M+H]+ 768.5538 283.26 284.90 NA 

PE 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+H]+ 792.5538 285.72 287.40 NA 

PE 14:0/14:0 [M+Na]+ 658.4418 263.43 266.20 NA 

PE 15:0/15:0 [M+Na]+ 686.4731 269.37 271.20 NA 

PE 16:0/16:0 [M+Na]+ 714.5044 275.47 NA NA 

PE 16:0/18:1(9Z) [M+Na]+ 740.5201 281.03 283.10 NA 

PE 16:0/18:2(9Z,12Z) [M+Na]+ 738.5044 277.67 279.70 NA 

PE 16:0/20:4(5Z,8Z,11Z,14Z) [M+Na]+ 762.5044 282.53 284.20 NA 

PE 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+Na]+ 786.5044 285.23 287.10 NA 

PE 17:0/17:0 [M+Na]+ 742.5357 281.93 NA NA 

PE 18:0/18:0 [M+Na]+ 770.5670 288.60 NA NA 

PE 18:0/18:1(9Z) [M+Na]+ 768.5514 287.23 289.80 NA 

PE 18:0/18:2(9Z,12Z) [M+Na]+ 766.5357 284.50 286.20 NA 
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Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PE 18:0/20:4(5Z,8Z,11Z,14Z) [M+Na]+ 790.5357 288.73 290.60 NA 

PE 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+Na]+ 814.5357 291.57 293.90 NA 

PS 14:0/14:0 [M+H]+ 680.4497 268.12 269.40 NA 

PS 16:0/16:0 [M+H]+ 736.5123 NA 281.10 NA 

PS 16:0/18:1(9Z) [M+H]+ 762.5280 281.37 283.10 NA 

PS 16:0/18:2(9Z,12Z) [M+H]+ 760.5123 NA NA NA 

PS 16:0/20:4(5Z,8Z,11Z,14Z) [M+H]+ 784.5123 281.95 283.50 NA 

PS 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+H]+ 808.5123 284.71 285.70 NA 

PS 17:0/17:0 [M+H]+ 764.5436 285.95 287.20 NA 

PS 18:0/18:0 [M+H]+ 792.5749 NA 292.70 NA 

PS 14:0/14:0 [M+Na]+ 702.4317 NA 269.20 NA 

PS 16:0/16:0 [M+Na]+ 758.4943 NA 281.40 NA 

PS 16:0/18:1(9Z) [M+Na]+ 784.5099 NA 283.70 NA 

PS 16:0/18:2(9Z,12Z) [M+Na]+ 782.4943 NA NA NA 

PS 16:0/20:4(5Z,8Z,11Z,14Z) [M+Na]+ 806.4943 NA 287.40 NA 

PS 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+Na]+ 830.4943 NA 289.90 NA 

PS 17:0/17:0 [M+Na]+ 786.5256 NA 288.40 NA 

PS 18:0/18:0 [M+Na]+ 814.5569 NA 294.60 NA 

PG 14:0/14:0 [M+H]+ 667.4545 NA 275.40 NA 

PG 15:0/15:0 [M+H]+ 695.4858 NA 281.20 NA 

PG 16:0/16:0 [M+H]+ 723.5171 NA 286.90 NA 

PG 16:0/18:1(9Z) [M+H]+ 749.5327 NA 289.10 NA 



 

426 
 

Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PG 16:0/18:2(9Z,12Z) [M+H]+ 747.5171 NA 285.90 NA 

PG 16:0/20:4(5Z,8Z,11Z,14Z) [M+H]+ 771.5171 NA 289.40 NA 

PG 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+H]+ 795.5171 NA 292.00 NA 

PG 14:0/14:0 [M+Na]+ 689.4364 NA 270.40 NA 

PG 15:0/15:0 [M+Na]+ 717.4677 NA 276.90 NA 

PG 16:0/16:0 [M+Na]+ 745.4990 NA 283.10 NA 

PG 16:0/18:1(9Z) [M+Na]+ 771.5147 NA 284.10 NA 

PG 16:0/18:2(9Z,12Z) [M+Na]+ 769.4990 NA 281.90 NA 

PG 16:0/20:4(5Z,8Z,11Z,14Z) [M+Na]+ 793.4990 NA 286.20 NA 

PG 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+Na]+ 817.4990 NA 289.00 NA 

PG 17:0/17:0 [M+Na]+ 773.5303 NA 288.90 NA 

PG 18:0/18:0 [M+Na]+ 801.5616 NA 294.70 NA 
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SI Table 5: CCS values of lipids obtained in negative ionization mode 

Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PC 14:0/14:0 [M+FA-H]- 722.4978 275.34 275.20 NA 

PC 15:0/15:0 [M+FA-H]- 750.5291 281.30 280.30 NA 

PC 16:0/16:0 [M+FA-H]- 778.5604 286.67 285.30 NA 

PC 16:0/18:0 [M+FA-H]- 806.5917 291.95 290.70 NA 

PC 16:0/18:1(9Z) [M+FA-H]- 804.5760 290.59 289.20 NA 

PC 16:0/18:2(9Z,12Z) [M+FA-H]- 802.5604 289.66 287.90 NA 

PC 16:0/20:4(5Z,8Z,11Z,14Z) [M+FA-H]- 826.5604 292.76 291.10 NA 

PC 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+FA-H]- 850.5604 296.25 294.60 NA 

PC 17:0/17:0 [M+FA-H]- 806.5917 291.71 290.40 NA 

PC 18:0/16:0 [M+FA-H]- 806.5917 292.02 290.50 NA 

PC 18:0/18:0 [M+FA-H]- 834.6230 296.99 295.90 NA 

PC 18:0/18:1(9Z) [M+FA-H]- 832.6073 295.77 294.60 NA 

PC 18:0/18:2(9Z,12Z) [M+FA-H]- 830.5917 295.20 293.40 NA 

PC 18:0/20:4(5Z,8Z,11Z,14Z) [M+FA-H]- 854.5917 298.00 296.40 NA 

PC 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M+FA-H]- 878.5917 301.43 300.10 NA 

PC 18:1(9Z)/16:0 [M+FA-H]- 804.5760 290.69 289.10 NA 

PC 18:1(9Z)/18:0 [M+FA-H]- 832.6073 296.13 294.70 NA 

PC 20:0/20:0 [M+FA-H]- 890.6856 308.18 306.90 NA 

PC 22:0/22:0 [M+FA-H]- 946.7482 319.06 NA NA 

PE 14:0/14:0 [M-H]- 634.4453 249.17 249.30 NA 

PE 15:0/15:0 [M-H]- 662.4766 255.55 255.20 NA 

PE 16:0/16:0 [M-H]- 690.5079 262.46 262.10 NA 
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Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PE 16:0/18:1(9Z) [M-H]- 716.5236 267.37 266.50 NA 

PE 16:0/18:2(9Z,12Z) [M-H]- 714.5079 265.91 265.00 NA 

PE 16:0/20:4(5Z,8Z,11Z,14Z) [M-H]- 738.5079 270.00 269.10 NA 

PE 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M-H]- 762.5079 274.25 273.40 NA 

PE 17:0/17:0 [M-H]- 718.5392 268.70 269.20 NA 

PE 18:0/18:0 [M-H]- 746.5705 275.09 NA NA 

PE 18:0/18:1(9Z) [M-H]- 744.5549 273.76 273.30 NA 

PE 18:0/18:2(9Z,12Z) [M-H]- 742.5392 272.39 271.90 NA 

PE 18:0/20:4(5Z,8Z,11Z,14Z) [M-H]- 766.5392 276.11 275.70 NA 

PE 18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M-H]- 790.5392 280.53 280.00 NA 

PS 14:0/14:0 [M-H]- 678.4352 260.35 260.00 NA 

PS 16:0/16:0 [M-H]- 734.4978 272.14 273.10 NA 

PS 16:0/18:1(9Z) [M-H]- 760.5134 276.94 276.30 NA 

PS 16:0/18:2(9Z,12Z) [M-H]- 758.4978 #DIV/0! NA NA 

PS 16:0/20:4(5Z,8Z,11Z,14Z) [M-H]- 782.4978 279.21 278.70 NA 

PS 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M-H]- 806.4978 283.03 283.10 NA 

PS 17:0/17:0 [M-H]- 762.5291 278.14 278.80 NA 

PS 18:0/18:0 [M-H]- 790.5604 283.90 284.50 NA 

PG 14:0/14:0 [M-H]- 665.4399 256.60 257.20 NA 

PG 15:0/15:0 [M-H]- 693.4712 262.45 262.30 NA 

PG 16:0/16:0 [M-H]- 721.5025 269.11 268.30 NA 

PG 16:0/18:1(9Z) [M-H]- 747.5182 274.04 273.20 NA 
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Shorthand Adduct m/z 
DTCCSN2 
Multifield 

DTCCSN2 
Single 
Field 1 

DTCCSN2 
Single 
Field 2 

PG 16:0/18:2(9Z,12Z) [M-H]- 745.5025 272.34 271.40 NA 

PG 16:0/20:4(5Z,8Z,11Z,14Z) [M-H]- 769.5025 276.20 275.50 NA 

PG 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M-H]- 793.5025 280.31 279.80 NA 

PG 17:0/17:0 [M-H]- 749.5338 275.19 274.50 NA 

PG 18:0/18:0 [M-H]- 777.5651 281.15 281.00 NA 

PA 14:0/14:0 [M-H]- 591.4031 241.43 NA NA 

PA 16:0/16:0 [M-H]- 647.4657 254.35 NA NA 

PA 16:0/18:1(9Z) [M-H]- 673.4814 259.45 NA NA 

PA 16:0/18:2(9Z,12Z) [M-H]- 671.4657 257.91 NA NA 

PA 16:0/20:4(5Z,8Z,11Z,14Z) [M-H]- 695.4657 262.22 NA NA 

PA 16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z) [M-H]- 719.4657 265.97 NA NA 

PA 17:0/17:0 [M-H]- 675.4970 261.56 NA NA 

PA 18:0/18:0 [M-H]- 703.5283 267.81 NA NA 
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SI Table 6: CCS values of maradolipids 

Ionization 
mode 

Shorthand Species Adduct RT [min] 
DTCCSN2 
[Å²] 

m/z 

Positive 

Mar 14:0/14:0 Mar 28:0 [M+NH4]+ 12.98 284.00 780.5484 

Mar 15:0/15:0 Mar 30:0 [M+NH4]+ 13.90 290.60 808.5795 

Mar 14:0/18:1 Mar 32:1 [M+NH4]+ 14.38 294.20 834.5949 

Mar 16:0/16:0 Mar 32:0 [M+NH4]+ 15.10 296.57 836.6108 

Mar 15:0/17:0 Mar 32:0 [M+NH4]+ 15.47 296.63 836.6108 

Mar 15:0/18:1 Mar 33:1 [M+NH4]+ 14.78 297.37 848.6106 

Mar 16:0/18:1 Mar 34:1 [M+NH4]+ 15.52 300.70 862.6264 

Mar 17:0/18:1 Mar 35:1 [M+NH4]+ 15.85 303.17 876.6417 

Mar 18:1/18:1 Mar 36:2 [M+NH4]+ 15.56 304.20 888.6419 

Mar 18:1/19:1 Mar 37:2 [M+NH4]+ 16.23 307.67 902.6578 

Mar 14:0/14:0 Mar 28:0 [M+Na]+ 12.98 282.70 785.5032 

Mar 15:0/15:0 Mar 30:0 [M+Na]+ 13.90 289.43 813.5350 

Mar 14:0/18:1 Mar 32:1 [M+Na]+ 14.38 291.47 839.5501 

Mar 16:0/16:0 Mar 32:0 [M+Na]+ 15.09 295.30 841.5663 

Mar 15:0/17:0 Mar 32:0 [M+Na]+ 15.47 295.37 841.5660 

Mar 15:0/18:1 Mar 33:1 [M+Na]+ 14.78 294.93 853.5663 

Mar 16:0/18:1 Mar 34:1 [M+Na]+ 15.52 298.83 867.5820 

Mar 17:0/18:1 Mar 35:1 [M+Na]+ 15.85 301.73 881.5965 

Mar 18:1/18:1 Mar 36:2 [M+Na]+ 15.56 303.33 893.5975 

Mar 18:1/19:1 Mar 37:2 [M+Na]+ 16.23 306.70 907.6129 

negative 
Mar 14:0/14:0 Mar 28:0 [M+FA-H]- 12.94 284.40 807.5119 

Mar 15:0/15:0 Mar 30:0 [M+FA-H]- 13.87 290.77 835.5430 
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Mar 14:0/18:1 Mar 32:1 [M+FA-H]- 14.35 294.37 861.5591 

Mar 16:0/16:0 Mar 32:0 [M+FA-H]- 15.06 297.03 863.5748 

Mar 15:0/17:0 Mar 32:0 [M+FA-H]- 15.44 297.07 863.5750 

Mar 15:0/18:1 Mar 33:1 [M+FA-H]- 14.74 297.10 875.5748 

Mar 16:0/18:1 Mar 34:1 [M+FA-H]- 15.48 300.07 889.5905 

Mar 17:0/18:1 Mar 35:1 [M+FA-H]- 15.82 303.17 903.6063 

Mar 18:1/18:1 Mar 36:2 [M+FA-H]- 15.53 303.13 915.6059 

Mar 18:1/19:1 Mar 37:2 [M+FA-H]- 16.20 307.17 929.6219 

 

8.2.4. Building blocks in lipidomicsUtils and wormLipidBlastR 

SI Table 7 building blocks of lipids 

Name Formula charge Mass / m/z 

CoA (coa_mass) C21H36N7O16P3S 0 767.115210 

Water (water_mass) H2O 0 18.010565 

Phosphoric acid (h3po4_mass) H3PO4 0 97.976896 

Sulfuric acid (h2so4_mass) H2SO4 0 97.967380 

Hexose (hexose_mass) C6H12O6 0 180.063388 

Di-hexose (dihexose_mass) C12H22O11 0 342.116212 

Proton (proton_mass) H+ 1+ 1.007276 

Sodium ion (sodium_ion_mass) Na+ 1+ 22.989221 

Glycerophosphocholine (gpc_mass) C8H20NO6P 0 257.102824 

Phosphochline (pc_mass) C5H14NO4P 0 183.066045 

Choline (choline_mass) C5H13NO 0 103.099714 

Glycerophosphoethanolamine (gpe_mass) C5H14NO6P 0 215.055874 
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Name Formula charge Mass / m/z 

Phosphoethanolamine (pe_mass) C2H8NO4P 0 141.019095 

Ethanolamine (ethanolamine_mass) C2H7NO 0 61.052764 

Glycerophosphoserine (gps_mass) C6H14NO8P 0 259.045703 

Phosphoserine (ps_mass) C3H8NO6P 0 185.008924 

Serine (serine_mass) C3H7NO3 0 105.042593 

Glycerophosphoglycerol (gpg_mass) C6H15O8P 0 246.050454 

Phosphoglycerol (pg_mass) C3H9O6P 0 172.013675 

Glycerol C3H8O3 0 92.047344 

Glycerophosphoinositol (gpi_mass) C9H19O11P 0 334.066498 

Phosphoinositol (pi_mass) C6H13O9P 0 260.029719 

Inositol (inositol_mass) C6H12O6 0 180.063388 

Glycerophosphoinositolphosphate 

(gpip_mass) 
C9H20O14P2 0 414.032829 

Phosphoinositolphosphate (pip_mass) C6H14O12P2 0 339.996050 

Glycerophosphoinositol-di-phosphate 

(gpipp_mass) 
C9H21O17P3 0 493.999160 

Phosphoinositol-di-phosphate (pipp_mass) C6H15O15P3 0 419.962381 

Cardiolipin (cl_mass) C9H22O13P2  400.053565 
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SI Table 8 Lipid Class specific fragments positive ion mode 

Lipid class Adduct Fragment m/z / NL 

PC [M+H]+ 
m/z 184.0733 

NL 183.0661 

PE [M+H]+ NL 141.0191 

MMPE [M+H]+ NL 155.0347 

DMPE [M+H]+ 
NL 169.0503 

m/z 170.0576 

PS [M+H]+ NL 185.0089 

PG [M+NH4]+ NL 189.0402 

PA [M+NH4]+ 
NL 115.0035 

NL 17.0266 

PI [M+NH4]+ NL 277.0563 

DG [M+NH4]+ 
NL 35.0371 

NL 17.0266 

SM [M+H]+ m/z 184.0733 

Cer [M+H]+ 

m/z 250.2529 

m/z 268.2635 

m/z 238.2530 
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SI Table 9 Lipid Class specific fragments negative ion mode 

Lipid class Adduct Fragment m/z / NL 

PC [M+FA-H]- NL 60.0211 

PE [M-H]- 
m/z 140.0118 

m/z 196.0380 

PG [M-H]- 
m/z 152.9958 

m/z 171.0063 

PA [M-H]- m/z 152.9958 

PI [M-H]- 

m/z 241.0019 

m/z 223.0013 

m/z 152.9958 

m/z 259.0224 

PS [M-H]- 
m/z 152.9958 

NL 87.0320 

DMPE [M-H]- m/z 168.0431 

SM [M+FA-H]- 
m/z 168.0431 

NL 60.0211 
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SI Table 10: Fatty acids for prediction and search 

species level Formula exact mass PI, [M-H]- NL, NH4OOCR 

FA 12:0 C12H24O2 200.17763 199.170354 217.204179 

FA 12:0;OH C12H24O3 216.172545 215.165269 233.199094 

FA 13:0 C13H26O2 214.19328 213.186004 231.219829 

FA 13:0;OH C13H26O3 230.188195 229.180919 247.214744 

FA 14:0 C14H28O2 228.20893 227.201654 245.235479 

FA 14:0;OH C14H28O3 244.203845 243.196569 261.230394 

FA 15:0 C15H30O2 242.22458 241.217304 259.251129 

FA 15:0;OH C15H30O3 258.219495 257.212219 275.246044 

FA 16:0 C16H32O2 256.24023 255.232954 273.266779 

FA 16:0;OH C16H32O3 272.235145 271.227869 289.261694 

FA 16:1 C16H30O2 254.22458 253.217304 271.251129 

FA 17:0 C17H34O2 270.25588 269.248604 287.282429 

FA 17:0;OH C17H34O3 286.250795 285.243519 303.277344 

FA 17:1 C17H32O2 268.24023 267.232954 285.266779 

FA 18:0 C18H36O2 284.27153 283.264254 301.298079 

FA 18:0;OH C18H36O3 300.266445 299.259169 317.292994 

FA 18:1 C18H34O2 282.25588 281.248604 299.282429 

FA 18:2 C18H32O2 280.24023 279.232954 297.266779 

FA 18:3 C18H30O2 278.22458 277.217304 295.251129 

FA 18:4 C18H28O2 276.20893 275.201654 293.235479 

FA 19:0 C19H38O2 298.28718 297.279904 315.313729 

FA 19:0;OH C19H38O3 314.282095 313.274819 331.308644 
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species level Formula exact mass PI, [M-H]- NL, NH4OOCR 

FA 19:1 C19H36O2 296.27153 295.264254 313.298079 

FA 20:0 C20H40O2 312.302831 311.295555 329.32938 

FA 20:0;OH C20H40O3 328.297745 327.290469 345.324294 

FA 20:1 C20H38O2 310.28718 309.279904 327.313729 

FA 20:2 C20H36O2 308.27153 307.264254 325.298079 

FA 20:3 C20H34O2 306.25588 305.248604 323.282429 

FA 20:4 C20H32O2 304.24023 303.232954 321.266779 

FA 20:5 C20H30O2 302.22458 301.217304 319.251129 

FA 21:0 C21H42O2 326.318481 325.311205 343.34503 

FA 21:0;OH C21H42O3 342.313395 341.306119 359.339944 

FA 22:0 C22H44O2 340.334131 339.326855 357.36068 

FA 22:0;OH C22H44O3 356.329045 355.321769 373.355594 

FA 23:0 C23H46O2 354.349781 353.342505 371.37633 

FA 23:0;OH C23H46O3 370.344695 369.337419 387.371244 

FA 24:0 C24H48O2 368.365431 367.358155 385.39198 

FA 24:0;OH C24H48O3 384.360345 383.353069 401.386894 

FA 25:0 C25H50O2 382.381081 381.373805 399.40763 

FA 25:0;OH C25H50O3 398.375995 397.368719 415.402544 

FA 26:0; C26H52O2 396.396731 395.389455 413.42328 

FA 26:0;OH C26H52O3 412.391646 411.38437 429.418195 

FA 27:0 C27H54O2 410.412381 409.405105 427.43893 

FA 27:0;OH C27H54O3 426.407296 425.40002 443.433845 

FA 28:0 C28H56O2 424.428031 423.420755 441.45458 
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species level Formula exact mass PI, [M-H]- NL, NH4OOCR 

FA 28:0;OH C28H56O3 440.422946 439.41567 457.449495 

FA 29:0 C29H58O2 438.443681 437.436405 455.47023 

FA 29:0;OH C29H58O3 454.438596 453.43132 471.465145 

FA 30:0 C30H60O2 452.459331 451.452055 469.48588 

FA 30:0;OH C30H60O3 468.454246 467.44697 485.480795 
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