
Technische Universität München
TUM School of Computation, Information and Technology

Scalable Robust Controller Synthesis
for Computing Safe Sets

Felix Kevin Gruber

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Cristina Piazza

Prüfende der Dissertation:
1. Prof. Dr.-Ing. Matthias Althoff
2. Prof. Dr.-Ing. Sandra Hirche

Die Dissertation wurde am 27.11.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
18.06.2024 angenommen.

Abstract

Autonomous systems have the potential to permeate our day-to-day lives deeply. For instance,
such systems will transform mobility, increase productivity, reduce costs, and use limited
computational and environmental resources optimally. Formal safety guarantees must be
provided to leverage these systems in safety-critical applications where human lives are at
stake. Thus, the safety of the autonomous system must be formally ensured for an infinite time
horizon despite disturbances.

In this thesis, we address this issue by computing safe sets along with corresponding safety-
preserving controllers. If the initial state of the autonomous system lies within such a safe set,
the corresponding safety-preserving controller guarantees the safety of this system at all times.
In the literature, a wide variety of robust control approaches exist for computing safe sets.
However, these approaches typically suffer from an exponential computational complexity with
respect to the problem dimension or excessive conservativeness. To present scalable algorithms
for computing nonconservative safe sets, we combine scalable reachability analysis and convex
optimization. This combination allows us to efficiently determine safe sets with minimum or
maximum volume.

The efficient computation of these safe sets is beneficial not only for leveraging autonomous
systems in safety-critical applications but also for improving other popular control methods.
Thus, we also present a scalable robust model predictive control approach that uses our safe
sets as terminal sets. In particular, we constrain the state at the end of the finite prediction
horizon to lie within our safe set. In addition to model predictive control, we also integrate
our safe sets into supervisory safety filters. Such filters aim to minimally modify the desired
control input of an unverified high-performance controller while formally guaranteeing safety.
We achieve this goal by enforcing the state to always stay within our safe set. We also use
the concept of safe sets to verify the safety of autonomous vehicles quickly. In particular, the
corresponding safety-preserving controller overwrites the desired control input if the planned
trajectory of the controlled autonomous vehicle intersects the reachable set of another traffic
participant. To evaluate the performance of our different robust control approaches, we consider
various numerical examples taken from the literature.

iii

Zusammenfassung

Autonome Systeme haben das Potenzial, unser tagtägliches Leben tiefgreifend zu durchdringen.
Derartige Systeme werden beispielsweise unsere Mobilität transformieren, Produktivität steigern,
Kosten senken und die begrenzten Rechenleistungen sowie Umweltressourcen optimal nutzen.
Um diese Systeme in sicherheitskritischen Anwendungen einsetzen zu können, bei denen
Menschenleben auf dem Spiel stehen, müssen formale Sicherheitsgarantien gegeben werden.
Folglich muss die Sicherheit des autonomen Systems trotz Störungen für einen unendlichen
Zeithorizont formal gewährleistet sein.

Die vorliegende Dissertation befasst sich mit dieser Problemstellung, indem sichere Mengen
zusammen mit zugehörigen, sicherheitserhaltenden Reglern berechnet werden. Wenn sich
der Anfangszustand des autonomen Systems innerhalb einer solchen sicheren Menge befindet,
garantiert der zugehörige, sicherheitserhaltende Regler die Sicherheit dieses Systems zu jeder Zeit.
In der Literatur existiert eine Vielzahl von robusten Regelungsansätzen zur Berechnung sicherer
Mengen. Diese Ansätze leiden jedoch üblicherweise unter einer exponentiellen Komplexität
bezüglich der Dimension des Problems oder einer übermäßigen Konservativität. Um skalierbare
Algorithmen für die Berechnung nicht-konservativer, sicherer Mengen zu präsentieren, kombiniert
die vorliegende Dissertation skalierbare Erreichbarkeitsanalyse und konvexe Optimierung. Diese
Kombination ermöglicht die effiziente Bestimmung sicherer Mengen mit minimalem oder
maximalem Volumen.

Die effiziente Berechnung dieser sicheren Mengen ist nicht nur für den Einsatz von autonomen
Systemen in sicherheitskritischen Anwendungen von Vorteil, sondern auch für die Verbesserung
anderer weitverbreiteter Regelungsansätze. Deshalb wird auch ein skalierbarer Ansatz zur
robusten, modellprädiktiven Regelung präsentiert, der die sicheren Mengen als Endmengen
verwendet. Hierbei ist der Zustand am Ende des endlichen Prädiktionshorizonts derart be-
schränkt, dass er sich stets in einer sicheren Menge befinden muss. Neben der modellprädiktiven
Regelung werden die sicheren Mengen auch in übergeordnete Sicherheitsfilter integriert. Das
Ziel derartiger Filter ist es, den gewünschten Steuereingang eines ungeprüften, leistungsfähigen
Reglers minimal zu verändern und gleichzeitig die Sicherheit formal zu gewährleisten. Dieses Ziel
wird dadurch erreicht, dass sich der Zustand jederzeit innerhalb einer sicheren Menge befinden
muss. Darüber hinaus nutzt die vorliegende Dissertation das Konzept der sicheren Mengen, um
die Sicherheit von autonomen Fahrzeugen so schnell wie möglich formal zu verifizieren. Hierbei
überschreibt der zugehörige, sicherheitserhaltende Regler die gewünschten Steuereingänge, falls
die geplante Trajektorie des geregelten, autonomen Fahrzeugs die erreichbare Menge eines
anderen Verkehrsteilnehmers schneidet. Um die Leistungsfähigkeit der verschiedenen robusten
Regelungsansätze zu bewerten, wird eine Vielzahl numerischer Beispiele aus der Literatur
betrachtet.

v

Acknowledgments

First and foremost, I would like to thank Prof. Matthias Althoff for being a great advisor
and inspiring mentor. I highly appreciate the freedom he gave me to explore my intellectual
interests, the time he spent providing accurate feedback on my paper drafts, and the excellent
working environment in his research group. I am also profoundly grateful to all European
taxpayers who enable such independent research.

Thanks also to Prof. Murat Arcak, who supervised my Master’s thesis, taught me how to
define challenging research problems, and encouraged me to pursue a PhD. A big mahalo also
goes out to Prof. Markus Maurer, who gave me a warm and hearty welcome to the research
community at my first conference in Hawaii.

Special thanks to my awesome office mates Dr. Stefanie Manzinger, Anna-Katharina Rettinger,
and Egon Ye for having intellectually stimulating discussions, being brilliant wildlife observers,
and their (mostly) defensive Nerf gun use. For the great atmosphere at work, I am also grateful
to my excellent TUM colleagues Adrian Kulmburg, Prof. Amr Alanwar, Dr. Bastian Schürmann,
Carmella Schürmann, Dr. Christian Pek, Christina Miller, Constantin Dresel, Daniel Auge,
Edmond Irani Liu, Emeç Erçelik, Etienne Müller, Gerald Würsching, Hanna Krasowski, Prof.
Jagat J. Rath, Lukas Schäfer, Mark Wetzlinger, Dr. Markus Koschi, Matthias Mayer, Moritz
Klischat, Dr. Niklas Kochdumper, Paul Maroldt, Roman Hölzl, Sebastian Maierhofer, Dr. Silvia
Breşug, Stefan Liu, Victor Gaßmann, and Xiao Wang. I would also like to thank Dr. Ph.D.
Alexander Lenz, Amy Bücherl, Dr. Daniel Renjewski, Dr. Morteza Hashemi Farzaneh, Dr. Sina
Shafaei, and Ute Lomp for the major help regarding all administrative matters.

I am also genuinely fortunate to have supervised and instructed numerous excellent students
whose curiosity and actions broadened my horizon in many ways. In addition, I thank all M.Sc.
Informatics applicants that provided the module descriptions of their study program in paper
form for helping me to gain hands-on experience in search algorithms.

Finally, I want to thank my family very much for their unconditional love, encouragement,
and continuous support throughout my entire life. I am deeply grateful to my parents, Petra
and Karl, and my siblings, Kendra and Fabian, for always being there for me. In addition, I
would like to thank my grandmother Helga, who was always full of positive energy and sadly
passed away during my PhD. Thanks also to my brother-out-law Daniel for being the best agile
coach and my niece Happy for being such a good girl. My deepest thanks to my partner Alicia
for being my primary source of energy and a welcome distraction from writing this thesis.

vii

https://www.youtube.com/watch?v=2H5rusicEnc

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

List of Algorithms xiii

List of Figures xv

List of Symbols and Acronyms xvii

List of Tables xxi

List of Theorems xxiii

1 Introduction 1
1.1 Formal Methods . 1
1.2 Publications . 4
1.3 Organization of this Thesis . 5

2 Preliminaries 7
2.1 Convex Optimization . 7
2.2 Convex Sets . 9

2.2.1 Representations . 10
2.2.2 Conversions . 12
2.2.3 Operations . 14
2.2.4 Zonotope Containment . 16

2.3 Reachability Analysis . 17
2.4 Invariant Sets . 21
2.5 Software Setup . 25

3 Safe Sets 27
3.1 Introduction and State of the Art . 27
3.2 Problem Formulation . 29
3.3 Reachability Analysis . 30

3.3.1 State Feedback Control . 30
3.3.2 Disturbance Feedback Control . 36

ix

Contents

3.4 Small Safe Sets . 38
3.4.1 Simplified State Feedback Control . 38
3.4.2 Robust Control Invariance . 42
3.4.3 Disturbance Feedback Control . 44

3.5 Large Safe Sets . 46
3.5.1 Scaling of Safe Set . 46
3.5.2 Zero Terminal Constraint . 47
3.5.3 Safe Set Terminal Constraint . 50
3.5.4 Choice of Parameters . 52

3.6 Numerical Examples . 53
3.6.1 Continuous-Time Double-Integrator System 53
3.6.2 Discrete-Time Double-Integrator System 58
3.6.3 Vehicle Platooning System . 64
3.6.4 Chain of Mass-Spring-Damper Systems 68

3.7 Summary . 72

4 Model Predictive Control 75
4.1 Introduction and State of the Art . 75
4.2 Problem Formulation . 77
4.3 Preliminaries . 78

4.3.1 State Estimation and Control . 78
4.3.2 Reachability Analysis . 79
4.3.3 Safe Sets . 81

4.4 Robust Output Feedback Model Predictive Control 81
4.4.1 Computation Time Considerations . 82
4.4.2 Contraction Constraint . 82
4.4.3 Algorithm . 83
4.4.4 Simplifications . 85

4.5 Numerical Examples . 88
4.5.1 Vehicle Platooning System . 88
4.5.2 Quadrotor System . 91

4.6 Summary . 93

5 Safety Filter 95
5.1 Introduction and State of the Art . 95
5.2 Problem Formulation . 97
5.3 Model Conformance . 97
5.4 Robust Safety Filter . 100

5.4.1 Safe Sets . 101
5.4.2 Computation Time Considerations . 101
5.4.3 Algorithm . 104
5.4.4 Online Conformance Updates . 105

5.5 Numerical Examples . 105
5.5.1 Two-Dimensional System without Disturbances 106
5.5.2 Unstable Three-Dimensional System . 107

x

Contents

5.5.3 Nonlinear Continuous-Time Six-Dimensional System 110
5.5.4 Continuous-Time Twelve-Dimensional System 111

5.6 Summary . 113

6 Safety Verification of Autonomous Vehicles 115
6.1 Introduction and State of the Art . 115
6.2 Problem Formulation . 119
6.3 Traditional Safety Verification . 121
6.4 Anytime Safety Verification . 122

6.4.1 Algorithm . 123
6.4.2 Reuse of Occupancy Sets . 124
6.4.3 Fast Safety Verification . 125
6.4.4 Occupancy Set Refinements . 126

6.5 Numerical Examples . 127
6.5.1 Uncontrolled Intersection . 128
6.5.2 Three-Lane Highway . 128

6.6 Summary . 130

7 Conclusions and Future Work 131
7.1 Summary of Contributions . 131
7.2 Future Research Directions . 132

Bibliography 135

xi

List of Algorithms

2.1 RPI over-approximation of the mRPI set . 23
2.2 RCI under-approximation of the MRCI set . 24

3.1 Small safe set using simplified state feedback control 40
3.2 Small safe set using disturbance feedback control 45
3.3 Scaling of the safe set using binary search . 47

4.1 Robust output feedback dual-mode MPC . 84

5.1 Robust safety filter . 104

6.1 Traditional safety verification . 122
6.2 Anytime safety verification . 123

xiii

List of Figures

1 Unit balls in R2 corresponding to different p-norms xviii

1.1 Famous failures of control systems . 2
1.2 Reachability analysis . 3
1.3 Safe set and random state trajectories . 4

2.1 Convex and nonconvex sets . 8
2.2 Convex and nonconvex functions . 9
2.3 Step-by-step construction of a zonotope in R2 11
2.4 Convex set representations in R2 . 12
2.5 Set operations performed on two zonotopes . 17
2.6 RPI set and random state sequences . 22

3.1 Reachable sets defined in (3.5) . 31
3.2 Two-step safe set approach . 48
3.3 Small safe sets of CT double-integrator system obtained by executing Alg. 3.1 . 54
3.4 Small safe sets of CT double-integrator system 55
3.5 Scaled safe sets of CT double-integrator system obtained by executing Alg. 3.3 56
3.6 Large safe sets of CT double-integrator system obtained by solving (3.20) with

increasing initial time step . 57
3.7 Large safe sets of CT double-integrator system obtained by solving (3.20) with

converged initial time step . 59
3.8 Comparison of DT, large safe sets and MRCI set of CT double-integrator system 60
3.9 Large safe sets of CT double-integrator system obtained by solving (3.22) . . . 61
3.10 RCI sets of CT double-integrator system obtained by solving (3.23) 62
3.11 Evolution of the RCI set volumes of DT double-integrator system 63
3.12 Vehicle platooning system . 64
3.13 Small safe sets of vehicle platooning system . 66
3.14 Large safe sets of vehicle platooning system . 67

4.1 MPC concept . 76
4.2 Optimal correction input sequences . 82
4.3 Overview of optimal MPC problem . 83
4.4 Two-dimensional projections of sets and trajectories 90
4.5 State estimate, unknown state, and input trajectories 92

5.1 Safety filter concept . 95
5.2 Set-based safety filter . 102
5.3 Comparison of different safety filter approaches for the two-dimensional system 107

xv

List of Figures

5.4 Comparison of different system identification approaches for the two-dimensional
system . 108

5.5 Online conformance updates of the three-dimensional system 109
5.6 Evolution of estimated multidimensional disturbance interval of the three-

dimensional system . 109
5.7 Evolution of large safe sets of the three-dimensional system 110
5.8 Evolution of large safe sets of the six-dimensional system 112
5.9 Initial safe sets of the twelve-dimensional system 114

6.1 Safety verification concept . 116
6.2 Initial occupancy sets for uncontrolled intersection 117
6.3 Comparison of long-term and safe backup trajectory planning 118
6.4 Occupancy set intersection of different models 121
6.5 Reuse of occupancy sets . 125
6.6 Fast safety verification . 126
6.7 Refined occupancy sets . 127
6.8 Predicted occupancy sets for uncontrolled intersection 129
6.9 Initial occupancy sets for three-lane highway 130

xvi

List of Symbols and Acronyms

Sets
B set of Booleans
N set of natural numbers
N>0 set of positive natural numbers
N[m,n] set of natural numbers within [m,n], which is equivalent to {m,m+ 1, . . . , n} ⊆ N
R set of real numbers
R≥0 set of nonnegative real numbers
R>0 set of positive real numbers
Rn set of real n-vectors with n ∈ N
Rm×n set of real (m× n)-matrices with m,n ∈ N
2Rn set of all subsets of Rn, which is also known as the power set of Rn

Conventions
We use the following conventions throughout this thesis:

• Functions and operators are denoted by typewriter letters, e.g., diag(·) and center (·).

• The origin is denoted by {0}, the empty set is denoted by ∅, and sets in the Euclidean
space are denoted by calligraphic letters, e.g., X and Z.

• The set of Booleans B comprises two elements: “true” and “false”. The logical equality,
nonequality, conjunction, and disjunction are denoted by ≡, ̸≡, ∧, and ∨, respectively.

• The square identity matrix is denoted by I, a column vector of ones is denoted by 1, and
a matrix of zeros is denoted by 0. The dimensions of these matrices are determined from
the context.

• The ith element of the vector v ∈ Rn or of the list v of length n with i ∈ N[1,n] is denoted
by v(i).

• The absolute value, ≤, <, =, >, and ≥ are applied elementwise, e.g., |v| is equivalent to[∣∣v(1)∣∣ ∣∣v(2)∣∣ . . .
∣∣v(n)∣∣

]T
for any vector v ∈ Rn.

xvii

List of Symbols and Acronyms

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

v(1)

v
(2

)

p = ∞
p = 2
p = 1

Figure 1: Unit balls in R2 corresponding to different p-norms.

Norms and Functions
The p-norm of a vector v ∈ Rn with p ≥ 1 is defined by

∥v∥p =
(

n∑

i=1

∣∣∣v(i)
∣∣∣
p
)1/p

.

The unit balls in R2 corresponding to different p-norms are visualized in Fig. 1. In addition
to these vector norms, we introduce important matrix norms subsequently. The 1-norm of a
matrix M ∈ Rm×n is defined by

∥M∥1 = max
(
1T |M |

)
,

i.e., it is the maximum absolute column sum of M . Conversely, the infinity norm of M is
defined by

∥M∥∞ = max (|M |1) ,

i.e., it is the maximum absolute row sum of M . In addition, the Frobenius norm of M is defined
by

∥M∥F =
√

trace (MTM),

where trace returns the sum of the diagonal elements of the square input matrix.
The function diag returns a diagonal matrix with the input on the diagonal if the input is a

vector; otherwise, diag returns a vector of the diagonal elements of the square input matrix.
For instance, trace (M) equals 1T diag (M) for any square matrix M ∈ Rn×n.

xviii

Acronyms

Acronyms

Notation Description Page List
COP convex optimization problem 5, 7–9, 11, 15, 17,

20, 25, 28–30, 38,
42–46, 48–53, 55,
58, 63, 65, 67, 68,
72, 77, 84, 86, 89,
93, 98–101, 103–
106, 132

CT continuous-time xv, 18–20, 24, 25,
29–31, 33, 35–39,
42, 44, 46, 48–57,
59–62, 76, 77, 79,
80, 85, 87, 88, 97,
101, 110, 111, 119,
120

DT discrete-time xv, 20–25, 27, 29,
30, 39–42, 46, 49,
53, 58, 60, 63, 65,
69, 76, 78, 87, 97–
101, 104–106, 108,
110

LMI linear matrix inequality 64
LQR linear-quadratic regulator 28, 30, 41, 53–60,

68, 75, 79, 91, 106,
108, 111, 113

LTI linear time-invariant 3, 19–21, 28, 29,
77, 93

MPC model predictive control xv, 4, 5, 27, 41,
42, 74–77, 79, 81–
85, 88, 91–93, 96,
103, 131, 132

xix

Acronyms

Notation Description Page List
MRCI maximal robust control invariant xiii, xv, 24, 27, 28,

46, 58, 60, 63, 68,
105, 107, 109, 110

mRPI minimal robust positively invariant xiii, 21–23, 39–42,
46, 49, 69, 87

MSD mass-spring-damper xxi, 53, 68–71, 73,
74, 106

NASA National Aeronautics and Space Administration 1

PID proportional-integral-derivative 7

RCI robust control invariant xiii, xv, xxi, 24,
27–30, 38, 39, 42–
45, 51–53, 55, 58,
60, 62–65, 68–70,
72, 74, 96, 103,
105, 107, 109, 131

RPI robust positively invariant xiii, xv, 21–23, 27,
42, 78, 81, 87, 88

SDP semidefinite programming 28, 52, 63

xx

List of Tables

2.1 Minkowski addition of two unit balls represented in half-space representation . 26

3.1 State, input, and disturbance bounds of vehicle platooning system 65
3.2 Small safe sets of MSD chain obtained by executing Alg. 3.1 69
3.3 Small RCI sets of MSD chain obtained by solving (3.15) 70
3.4 Small safe sets of MSD chain obtained by executing Alg. 3.2 70
3.5 Large safe sets of MSD chain obtained by executing Alg. 3.3 71
3.6 Large safe sets of MSD chain obtained by solving (3.20) 73
3.7 Large RCI sets of MSD chain obtained by solving (3.23) 74

4.1 State, input, disturbance, and initial state estimation error bounds of vehicle
platooning system . 89

xxi

List of Theorems

Definition 2.1 (Convex Set) . 7
Definition 2.2 (Convex Function) . 8
Definition 2.3 (Convex Optimization Problem) . 8
Definition 2.4 (Ellipsoid) . 10
Definition 2.5 (Polytope) . 10
Definition 2.6 (Zonotope) . 10
Definition 2.7 (Multidimensional Interval) . 11
Definition 2.8 (Interval Matrix) . 12
Example 2.9 (Set Operations on Zonotopes) . 16
Definition 2.10 (Exact Reachable Set) . 18
Definition 2.11 (Robust Positively Invariant Set) . 21
Definition 2.12 (Minimal Robust Positively Invariant Set) 21
Lemma 2.13 (Minimal Robust Positively Invariant Set) 21
Definition 2.14 (One-Step Robust Backward-Reachable Set) 23
Definition 2.15 (k-Step Robust Backward-Reachable Set) 23
Definition 2.16 (Robust Control Invariant Set) . 24
Definition 2.17 (Maximal Robust Control Invariant Set) 24

Definition 3.1 (Safe Set) . 30
Theorem 3.2 (Set Propagation using State Feedback Control) 31
Lemma 3.3 (Separation of Generator Matrix) . 33
Proposition 3.4 (Separation of Convex Hull) . 34
Proposition 3.5 (Separation of Interval Matrix Multiplication) 35
Theorem 3.6 (Separation of State Feedback Reachable Sets) 35
Theorem 3.7 (Set Propagation using Disturbance Feedback Control) 37
Lemma 3.8 (Safe Set using (3.13)) . 39
Proposition 3.9 (Properties of Alg. 3.1) . 41
Proposition 3.10 (Properties of (3.15)) . 43
Lemma 3.11 (Properties of (3.16)) . 44
Proposition 3.12 (Safe Set from (3.20)) . 49
Theorem 3.13 (Properties of (3.20)) . 49
Proposition 3.14 (Properties of (3.22)) . 51
Proposition 3.15 (Properties of (3.23)) . 51

Proposition 4.1 (Set Propagation using Output Feedback Control) 79
Proposition 4.2 (Separation of Output Feedback Reachable Sets) 80
Theorem 4.3 (Properties of Alg. 4.1) . 85
Proposition 4.4 (Separation of Zonotope Containment Condition in (2.15)) 86

xxiii

List of Theorems

Proposition 4.5 (Separation of Zonotope Containment Condition in (2.14)) 87

Definition 5.1 (Conformant Model) . 97
Proposition 5.2 (Conformant Model with Parallelotopic Disturbance Set) 98
Proposition 5.3 (Conformant Model with Multidimensional Disturbance Interval) . . 99
Proposition 5.4 (Conformant Model with Zonotopic Disturbance Set) 99
Lemma 5.5 (Parallelotope-in-Zonotope Parameter Vector) 101
Theorem 5.6 (Properties of Alg. 5.1) . 104

Proposition 6.1 (Set Propagation using No Control) 119
Definition 6.2 (Occupancy Set of Other Traffic Participant) 120
Example 6.3 (Infinite-Acceleration-Based Model) . 120
Proposition 6.4 (Reuse of Occupancy Sets) . 124
Example 6.5 (Reuse of Occupancy Sets) . 125

xxiv

1 Introduction
The failure of control systems can have disastrous consequences [1], ranging from significant
financial losses to human deaths. For instance, the Lewis spacecraft was an Earth-orbiting
satellite launched by the National Aeronautics and Space Administration (NASA) on 23 August
1997, which lost contact three days later and burned up soon after [2]. The NASA Investigation
Board “found that the loss of the Lewis Spacecraft was the direct result of an implementation of
a technically flawed Safe Mode in the Attitude Control System. This error was made fatal to the
spacecraft by the reliance on that unproven Safe Mode by the on orbit operations team and by
the failure to adequately monitor spacecraft health and safety during the critical initial mission
phase” [2]. Because this unverified safe mode failed to expose the solar panels of the satellite
to sunlight, as shown in Fig. 1.1a, the onboard batteries quickly discharged, and millions of
dollars were lost.

Another example highlighting the dangers of using unverified control systems in safety-critical
applications is the radiation therapy machine Therac-25, shown in Fig. 1.1b. Between 1985
and 1987, at least six patients were exposed to massive radiation overdoses of this medical
device [3, Sec. 8.2], resulting in severe injuries and three deaths. An investigation revealed
that many software bugs were already present in predecessor devices [4], namely, the Therac-6
and the Therac-20. However, these issues were not detected in the older machines because
they used hardware safety interlocks instead of software checks to prevent dangerous radiation
overexposure. In summary, control systems can fail in catastrophic ways. Such failures are
unacceptable when using these systems in safety-critical applications where human lives are at
stake.

Traditionally, developing sophisticated control systems involves extensive simulating, testing,
and debugging. However, this standard procedure can only reveal the presence of errors but not
guarantee their absence [5], also known as “absence of evidence is not evidence of absence” [6].
In addition, only a tiny fraction of the state and input spaces can be covered because many
combinations typically exist. This problem is getting even more serious due to the growing
complexity of modern hybrid or cyber-physical systems, which exhibit not only discrete but
also continuous dynamics. To address these issues, formal methods have been proposed that
specify, verify, and synthesize systems in an automated and mathematically rigorous way. Thus,
these approaches can obtain correct-by-construction control systems suitable for safety-critical
applications. In the following section, a brief overview of formal methods is provided.

1.1 Formal Methods
Formal verification methods are widely used in computer science to formally verify the correct
behavior of software and hardware, such as computer programs and electronic circuits [7, 8].
For instance, these approaches formally verify that a system never reaches an unsafe state
or a deadlock state [9], i.e., a state in which it is trapped forever. These formal verification

1

1 Introduction

(a) Lewis spacecraft1. (b) Radiation therapy machine Therac-252.

Figure 1.1: Famous failures of control systems.

methods rigorously check the correctness of specified system properties, usually expressed as
logic specifications. Nowadays, there exists a wide variety of such methods.

One approach for formally verifying systems is automated theorem proving [10, 11]. This
technique uses deduction and a set of previously verified theorems to prove the correctness
of a given specification. Although theorem proving is a powerful tool that can deal with
large-scale systems, finite termination of the algorithm cannot be guaranteed. In addition, no
counterexample is provided in the case of falsification, resulting in a challenging error analysis.

Another popular formal verification approach is model checking [12,13]. Based on a model of
the underlying discrete dynamics, e.g., given by a simple finite state machine, it is exhaustively
checked whether the temporal logic specification is met; otherwise, in contrast to theorem
proving, a counterexample is provided. However, model checking approaches typically suffer from
an infamous exponential computational complexity with respect to the state space dimension [14],
which is also known as the state explosion problem or the curse of dimensionality:

“In view of all that we have said in the foregoing sections, the many obstacles we
appear to have surmounted, what casts the pall over our victory celebration? It is
the curse of dimensionality, a malediction that has plagued the scientist from the
earliest days.” (Richard E. Bellman [15, p. 94])

Formally verifying cyber-physical systems is an even more challenging task because they exhibit
not only discrete but also continuous dynamics. Thus, verifying these systems would require a
standard model checker to verify infinitely many combinations. To address this issue, a finite
state system abstraction of the continuous dynamics is constructed, i.e., a discrete one suitably
approximates the original continuous system. Then, model checking can be applied to this
finite abstraction.

As an alternative for formally verifying cyber-physical systems, set-based reachability analysis
can be used [16]. This method computes reachable sets of a system, i.e., the set of states that
contains all possible state trajectories starting from a set of initial states, as illustrated in
Fig. 1.2. Thus, reachability analysis is also crucial in abstraction-based approaches for suitably
approximating the continuous system by a finite abstraction. Moreover, if the reachable set of
a system never intersects a given forbidden or unsafe region of the state space, the safety of

1Picture is taken from https://space.skyrocket.de/doc sdat/lewis.htm.
2Picture is taken from https://interestingengineering.com/when-bad-programming-turns-deadly.

2

https://space.skyrocket.de/doc_sdat/lewis.htm
https://interestingengineering.com/when-bad-programming-turns-deadly

1.1 Formal Methods

reachable set

random trajectories

initial
set

Figure 1.2: Reachability analysis. The reachable set of a system contains all possible state trajectories
that start from a set of initial states, which is also known as the initial set.

the system is formally guaranteed despite bounded disturbances. Thus, reachability analysis
is widely used in safety-critical applications, such as autonomous driving [17, 18], biological
and medical systems [19,20], power systems [21,22], and robotics [23, 24]. In addition, dealing
with linear time-invariant (LTI) systems having up to a billion dimensions can be achieved by
tailored system order reduction and decomposition techniques [25–27]. Therefore, reachability
analysis is well suited for formally verifying the safety of large-scale dynamical systems.

Up to now, we have mainly focused on the verification of different system classes. Nevertheless,
formal methods can be used not only to verify systems but also to synthesize controllers that
enforce the closed-loop system to satisfy temporal logic specifications [28, 29]. Using model
checking algorithms, correct-by-construction controllers have been synthesized for discrete
systems [30]. As for the verification, dealing with continuous dynamics is achieved by con-
structing a finite state system abstraction and synthesizing a controller based on this system
approximation [31–33]. Because the construction of discrete system approximations typically
relies on discretizing the continuous state space, abstraction-based methods severely suffer from
the curse of dimensionality [34,35].

One of the essential temporal logic specifications is safety, as seen by the failures of the
Lewis spacecraft and the radiation therapy machine Therac-25 in Fig. 1.1. In the robust
controller synthesis setting, safety refers to the robust satisfaction of the state and input
constraints for an infinite time horizon in an uncertain environment, i.e., it can be seen as a
formal robustness guarantee against bounded disturbances. A straightforward way to achieve
safety is the construction of a safe set along with a corresponding safety-preserving controller.
Such controllers formally guarantee robust constraint satisfaction at all times if the initial
state of the system lies within the safe set, as illustrated in Fig. 1.3. A wide variety of
approaches exist to compute safe sets, which are often desired to have minimum or maximum
volume, depending on the specific application. However, these approaches typically suffer
from an exponential computational complexity with respect to the problem dimension or an
excessive conservativeness [36–40]. Thus, the characterization and efficient computation of
nonconservative safe sets is an open research problem.

In this thesis, we address this issue by proposing scalable algorithms for computing noncon-
servative safe sets along with corresponding set-based, safety-preserving controllers. Because we
combine scalable reachability analysis and convex optimization, the computational complexity of
our algorithms is only polynomial with respect to the problem dimension. This low complexity
allows us to compute safe sets for higher-dimensional systems compared to existing approaches
in the literature. The efficient computation of safe sets is beneficial not only for leveraging
autonomous systems in safety-critical applications but also for enhancing other popular control

3

1 Introduction

state constraint set

safe set

random
trajectories

Figure 1.3: Safe set and two random state trajectories. The trajectories start in the safe set and never
leave the state constraint set, which is the set of admissible states.

approaches. Thus, we also integrate our safe sets into model predictive control (MPC) [41–43].
In particular, we constrain the state at the end of the finite prediction horizon to lie within our
safe set. In addition to MPC, we integrate our safe sets into supervisory safety filters [44,45].
Such filters aim to minimally modify the desired control input of an unverified controller while
formally guaranteeing safety. We achieve this goal by enforcing the state to always stay within
our safe set. In this thesis, we also use the concept of safe sets to quickly verify the safety of
autonomous vehicles. In particular, the corresponding safety-preserving controller overwrites the
desired control input if the planned trajectory of the controlled autonomous vehicle intersects
the reachable set of another traffic participant. Before we propose our novel robust control
approaches, we present our publications contributing to this thesis in the following section.

1.2 Publications
This thesis is based on the following publications:

• [46] F. Gruber and M. Althoff. Anytime safety verification of autonomous vehicles. In
IEEE Conference on Intelligent Transportation Systems, pages 1708–1714, 2018. doi:
10.1109/ITSC.2018.8569950

• [47] F. Gruber and M. Althoff. Scalable robust model predictive control for linear
sampled-data systems. In IEEE Conference on Decision and Control, pages 438–444,
2019. doi:10.1109/CDC40024.2019.9029873

• [48] N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat, and M. Althoff.
AROC: A toolbox for automated reachset optimal controller synthesis. In Conference
on Hybrid Systems: Computation and Control, pages 1–6, 2021. doi:10.1145/3447928.
3456703

• [49] F. Gruber and M. Althoff. Computing safe sets of linear sampled-data systems.
IEEE Control Systems Letters, 5(2):385–390, 2021. doi:10.1109/LCSYS.2020.3002476

4

http://dx.doi.org/10.1109/ITSC.2018.8569950
http://dx.doi.org/10.1109/ITSC.2018.8569950
http://dx.doi.org/10.1109/CDC40024.2019.9029873
http://dx.doi.org/10.1145/3447928.3456703
http://dx.doi.org/10.1145/3447928.3456703
http://dx.doi.org/10.1109/LCSYS.2020.3002476

1.3 Organization of this Thesis

• [50] F. Gruber and M. Althoff. Scalable robust output feedback MPC of linear sampled-
data systems. In IEEE Conference on Decision and Control, pages 2563–2570, 2021.
doi:10.1109/CDC45484.2021.9683384

• [51] F. Gruber and M. Althoff. Scalable robust safety filter with unknown disturbance
bounds. IEEE Transactions on Automatic Control, 68(12):7756–7770, 2023. doi:10.
1109/TAC.2023.3292329

• [52] L. Schäfer, F. Gruber, and M. Althoff. Scalable computation of robust control
invariant sets of nonlinear systems. IEEE Transactions on Automatic Control, 69(2):755–
770, 2024. doi:10.1109/TAC.2023.3275305

1.3 Organization of this Thesis
This thesis is organized as follows: In Chapter 2, we present essential mathematical concepts
used throughout this thesis. To ensure the scalability of our robust control algorithms, the
computational complexity of our approaches is always polynomial with respect to the problem
dimension. In particular, we obtain the optimal control inputs as the solution of an efficiently-
solvable convex optimization problem (COP). Because the constraint set of such an optimization
problem must be convex, we present important representations of convex sets. Using zonotopes
as a set representation, the computational complexity of our over-approximative reachability
analysis is only cubic with respect to the state space dimension. Thus, solving COPs and using
such reachability analysis enables the scalability of our robust control methods. Finally, we
introduce important invariant sets and give an overview of the used software toolboxes.

In Chapter 3, we compute zonotopic safe sets along with corresponding safety-preserving
controllers of sampled-data systems. These cyber-physical systems evolve in continuous time and
are controlled by clocked digital controllers. We use state and disturbance feedback controllers
to obtain a simple controller structure, which provides piecewise constant control inputs at
periodic sampling times. Incorporating these controllers into our reachability analysis allows us
to compute safe sets of large-scale sampled-data systems. Because safe sets are usually desired
to have minimum or maximum volume, we propose several approaches for computing such sets.
Finally, to evaluate the performance of the approaches and to validate the safety guarantees
of their safety-preserving controllers, we consider multiple numerical examples taken from the
literature.

In Chapter 4, we incorporate our safe sets along with corresponding safety-preserving
controllers into (robust) MPC, which is one of the most popular control methods these days3.
Thus, we first present the important concept of MPC, where an optimal control problem is
iteratively solved online on a moving horizon. We explicitly consider all online computation
times because such online computational delays would inevitably invalidate our formal safety
guarantees. Moreover, because the exact measurement of the system state is unavailable, we
propose an output feedback MPC approach, which exploits noisy measurements of the system.
Based on these measurements, we use a simple linear state observer to estimate the inaccessible
state of the system. Finally, we consider a vehicle platooning system to demonstrate the
effectiveness of our real-time robust output feedback MPC approach.

3Google Scholar provides more than 7 million results for “model predictive control” (accessed: 20 April 2023).

5

http://dx.doi.org/10.1109/CDC45484.2021.9683384
http://dx.doi.org/10.1109/TAC.2023.3292329
http://dx.doi.org/10.1109/TAC.2023.3292329
http://dx.doi.org/10.1109/TAC.2023.3275305
https://scholar.google.com/scholar?q=model+predictive+control

1 Introduction

In Chapter 5, we incorporate our safe sets along with corresponding safety-preserving
controllers into minimally invasive safety filters, also known as supervisory control. Such filters
aim to modify the desired input of a high-performance controller in a minimally invasive way
so that safety is always guaranteed. Thus, safety filters serve as supervisory mediators between
a simple, safety-preserving backup controller and a sophisticated, unverified high-performance
controller, which is obtained, e.g., using machine learning techniques. Based on a finite set of
training data, we first perform offline set membership identification to identify models that
are conformant to the data. Because we make no assumptions about the availability of a
model along with its corresponding disturbance set, a new measurement obtained online might
invalidate the model conformance. Thus, we quickly update the model, the safety-preserving
backup controller, and the safe set online to restore formal safety guarantees. Finally, we
demonstrate the usefulness and scalability of our safety filter approach by considering multiple
numerical examples from the literature.

In Chapter 6, we perform online safety verification of autonomous vehicles while considering
the uniqueness of each traffic situation. A challenging aspect of online safety verification is
the varying number of surrounding traffic participants, which causes significant variations in
computational demand. To guarantee timely, safe trajectories of the controlled autonomous
vehicle, we propose an anytime approach that quickly provides conservative formal verification
results and continually refines them until the available computation time is elapsed. Thus,
our anytime algorithm can be interrupted at any time while optimally using the available
computational resources. Moreover, if the safety of the desired trajectory cannot be verified in
time, the safety-preserving backup controller overwrites the desired control inputs. Finally, we
consider multiple traffic scenario benchmarks to demonstrate the effectiveness of our anytime
safety verification approach.

In Chapter 7, we conclude this thesis. In addition, we provide suggestions for promising
future research directions.

6

2 Preliminaries

In this chapter, we present important mathematical concepts and overview the software toolboxes
used throughout this thesis. First, we introduce the class of convex optimization problems
(COPs) in Section 2.1. Because the constraint set of such an optimization problem must be
convex, we present important representations of convex sets in Section 2.2. In Section 2.3, we
give an overview of our reachability analysis that uses zonotopes as a set representation. After
defining important invariant sets and presenting standard algorithms for their computation in
Section 2.4, we provide an overview of the used software toolboxes in Section 2.5.

2.1 Convex Optimization
How quickly an optimization problem can be solved depends on many factors, such as the
number of optimization variables and constraints and the exploitable structure of the problem.
It has long been recognized that “the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity” [53]. In contrast to most nonconvex optimization
algorithms, which typically suffer from an exponential computational complexity with respect
to the problem dimension, there exist algorithms for many COPs that have a polynomial
computational complexity [54–56]. In this thesis, we call an algorithm, method, procedure, or
approach “efficient” if its computational complexity is polynomial with respect to the problem
dimension, i.e., if it is scalable.

The efficient COP algorithms allow us to quickly and reliably solve large COPs arising in
a wide variety of applications, such as portfolio optimization, statistical estimation, and data
fitting [55]. Regarding applications in control, it was claimed that a “tuned convex optimization
control policy is the proportional-integral-derivative (PID) controller of the 21st century” [57].

To define the important class of COPs, we first introduce convex sets and convex functions [58].

Definition 2.1 (Convex Set): A set S ⊂ Rn is convex if

αs1 + (1− α)s2 ∈ S

for any s1, s2 ∈ S and any α ∈ [0, 1], i.e., if the line segment between any s1 and s2 lies within
S. ■

Examples of convex and nonconvex sets are shown in Fig. 2.1. Important convex sets are the
empty set ∅, the origin {0}, and the Euclidean space Rn. Moreover, operations that preserve
the convexity of sets are, e.g., intersections and affine functions. Thus, we also say that convex
sets are closed under intersections and affine functions.

To define convex functions, we first introduce the domain domain (f) ⊆ Rn of a real-valued
function f : Rn → R as the subset of Rn for which f is defined. For instance, the domain of the

7

2 Preliminaries

(a) Convex set. (b) Nonconvex set.

Figure 2.1: Convex and nonconvex sets.

logarithmic function log : R→ R is domain (log) = R>0. After defining the domain of functions,
we introduce convex functions in the following definition.

Definition 2.2 (Convex Function): A function f : Rn → R is convex if domain (f) ⊆ Rn is
a convex set and if

f(αs1 + (1− α)s2) ≤ αf(s1) + (1− α)f(s2)

for any s1, s2 ∈ domain (f) and any α ∈ [0, 1], i.e., if the line segment between any (s1, f(s1))
and (s2, f(s2)) lies on or above the graph of f . A function f is concave if −f is convex. ■

Examples of convex and nonconvex functions are shown in Fig. 2.2. Often used convex
functions of one or more variables with their corresponding domains are, e.g., the absolute
value (R), the maximum (Rn), the cubic function (R≥0), the p-norm (Rn), and the Frobenius
norm (Rn×n). Conversely, often used concave functions are, e.g., the minimum (Rn), the square
root (R≥0), the logarithm (R>0), and the geometric mean

(
Rn

>0
)
. Moreover, affine functions are

the only functions that are not only convex but also concave. Similar to convex sets, a variety
of operations also exist that preserve the convexity of functions, e.g., nonnegative weighted
sums, compositions with an affine mapping, and the elementwise maximum [55].

After introducing convex sets and functions, we finally define the important class of COPs,
which includes least-squares and linear programming problems [59,60].

Definition 2.3 (Convex Optimization Problem): An optimization problem

minimize
s

f(s)

subject to s ∈ S
⇔

maximize
s

− f(s)

subject to s ∈ S

is convex if f : Rn → R and S ⊂ Rn are convex. Moreover, this optimization problem is feasible
if domain (f) ∩ S is nonempty; otherwise, it is infeasible. In addition, s⋆ = inf {f(s) | s ∈ S} is
called optimal or the solution of this optimization problem. ■

Because of the convexity, every local optimum of a COP is also a global optimum [61,
Thm. 3.4.2]. This fundamental property is exploited by efficient convex optimization algorithms,
such as the interior-point, subgradient, and ellipsoid methods [55, 56]. These algorithms are

8

2.2 Convex Sets

s

f(s)

s1 s2

(a) Convex and nonconcave.

s

f(s)

s1 s2

(b) Nonconvex and concave.

s

f(s)

s1 s2

(c) Nonconvex and nonconcave.

s

f(s)

s1 s2

(d) Convex and concave.

Figure 2.2: Convex and nonconvex functions.

implemented in both freeware [62,63] and commercial solvers [64,65] for certain classes of COPs,
e.g., linear, quadratic, second-order cone, and semidefinite programs. To invoke one of these
solvers, the COP must be reformulated appropriately to match the solver-specific interfaces,
i.e., transformed into an equivalent COP in standard form [55, Ch. 4]. Instead of reformulating
COPs by hand, convex optimization modeling frameworks offer a convenient way to do this
transformation procedure automatically [66–68].

To ensure the scalability of our control approaches in this thesis, we exclusively solve COPs
to obtain optimal control inputs. Because the constraint set of any COP must be convex, as
stated in Definition 2.3, we introduce important representations of convex sets in the following
section.

2.2 Convex Sets
In this section, we introduce important representations of convex sets that are compact, i.e.,
closed and bounded. In addition, we present exact and over-approximative conversions between
the convex set representations. Finally, we introduce corresponding set operations and present
two approaches to solve the zonotope containment problem.

9

2 Preliminaries

2.2.1 Representations
To efficiently perform operations on convex sets, choosing a suitable set representation is
crucial. Subsequently, we introduce ellipsoids [69], polytopes [70, 71], zonotopes [72], and
multidimensional intervals as valuable representations of closed, bounded, convex sets.

An ellipsoid can be seen as an affine transformation of a hypersphere and is introduced in
the following definition.

Definition 2.4 (Ellipsoid): An ellipsoid E ⊂ Rn is defined by

E =
{
s ∈ Rn

∣∣ (s− c)TS−1(s− c) ≤ 1
}

=
{
s ∈ Rn

∣∣∣ s = c+ S1/2b, ∥b∥2 ≤ 1
}
,

where c ∈ Rn is the center, S ∈ Rn×n is the symmetric positive definite shape matrix, and the
symmetric positive definite matrix S1/2 denotes the root of S [39, Sec. 3.2], i.e., (S1/2)2 = S.
We use E = ⟨c, S⟩E to obtain a more concise notation for representing an ellipsoid. ■

A polytope can be seen as the intersection of half-spaces and is introduced in the following
definition.

Definition 2.5 (Polytope): A polytope P ⊂ Rn in half-space representation is defined by

P = {s ∈ Rn | Hs ≤ h} ,

where H ∈ Rm×n and h ∈ Rm are the data representing the half-spaces, and m ∈ N>0 is
the number of these half-spaces. We use P = ⟨H,h⟩P to obtain a more concise notation for
representing a polytope. ■

Polytopes can alternatively be expressed as the convex hull of a finite set of points, also
known as the vertex representation. As the number of vertices for representing a general set
grows exponentially with respect to the dimension, we restrict our attention to the half-space
representation when proposing scalable control approaches. A special case of a polytope is a
zonotope, which is centrally symmetric and introduced in the following definition.

Definition 2.6 (Zonotope): A zonotope Z ⊂ Rn in generator representation is defined by

Z = {s ∈ Rn | s = c+Gλ, |λ| ≤ 1} ,

where c ∈ Rn is the center, G ∈ Rn×gen(Z) is the generator matrix with gen (Z) ∈ N denoting
the number of generators, and λ ∈ Rgen(Z) is the parameter vector. The order of Z is
order (Z) = gen(Z)

n . We use Z = ⟨c,G⟩Z to obtain a more concise notation for representing a
zonotope. ■

Zonotopes can be constructed by the Minkowski addition of line segments, as illustrated in
Fig. 2.3. Alternatively, zonotopes can also be seen as an affine transformation of a cube.

10

2.2 Convex Sets

s1
c

(a)
〈

c,
[
s1

]〉
Z

.

s2

(b)
〈

c,
[
s1 s2

]〉
Z

.

s3

(c)
〈

c,
[
s1 s2 s3

]〉
Z

.

Figure 2.3: Step-by-step construction of the zonotope
〈
c,
[
s1 s2 s3

]〉
Z

in R2. By adding more
generators to the generator matrix of the zonotope, the area increases.

For Z = ⟨c,G⟩Z ⊂ Rn and any point s ∈ Z, the corresponding parameter vector λ ∈ Rgen(Z)

with |λ| ≤ 1 can be obtained by solving the COP

minimize
λ

Jλ(λ) (2.1a)

subject to s = c+Gλ (2.1b)
|λ| ≤ 1, (2.1c)

where Jλ is a convex cost function, e.g., ∥λ∥2 or 0. Thus, λ is not necessarily unique for
parameterizing any s unless G is invertible. In this special case, the zonotope is called a
parallelotope, its order is 1, and the unique parameter vector is

λ = G−1(s− c). (2.2)

Moreover, a parallelotope with a diagonal generator matrix is called a multidimensional interval,
also known as an axis-aligned box, hyperrectangle, and orthotope. For these multidimensional
intervals, (2.2) can be efficiently computed because the inverse of an invertible diagonal
matrix is obtained by replacing each element on the diagonal with its reciprocal. In addition,
multidimensional intervals can be equivalently represented by their lower and upper bounds, as
introduced in the following definition.

Definition 2.7 (Multidimensional Interval): A multidimensional interval I ⊂ Rn in interval
representation is defined by

I =
{
s ∈ Rn

∣∣ I ≤ s ≤ I
}
,

where I ∈ Rn and I ∈ Rn denote the lower and upper bound of I, respectively. We use
I =

[
I, I

]
to obtain a more concise notation for representing a multidimensional interval, and

11

2 Preliminaries

−4 −2 0 2 4 6 8 10 12 14 16 18 20 22 24−4

−2

0

2

4

<



−1 0
0 1
0 −1
1 1
1 −1




,




4
4
4
8
8


>

P

[[
8

−4

]
,

[
16
4

]]

〈[
12
0

]
, 4I

〉

Z

〈[
20
0

]
, 16I

〉

E

〈[
20
0

]
, I

〉

E

s(1)

s(2
)

Figure 2.4: Convex set representations in R2. In particular, a polytope, a multidimensional interval
that a zonotope can also represent, and two ellipsoids are shown.

define

min (I) = I (2.3a)
max (I) = I (2.3b)

center (I) = 0.5
(
I + I

)
(2.3c)

radius (I) = 0.5
(
I − I

)
. (2.3d)

as the minimum, maximum, center, and radius of I, respectively. ■

Multidimensional intervals can be seen as the Cartesian product of multiple intervals or as
vectors whose elements are intervals. A straightforward generalization of these multidimensional
intervals is interval matrices [73], as introduced in the following definition.

Definition 2.8 (Interval Matrix): A square interval matrix M ⊂ Rn×n is defined by

M =
{
M ∈ Rn×n

∣∣ M ≤M ≤M}
,

where M ∈ Rn×n and M ∈ Rn×n denote the lower and upper bound of M, respectively. We
use M =

[M,M]
to obtain a more concise notation for representing an interval matrix, and

define the minimum, maximum, center, and radius of M analogously to (2.3). ■

Finally, we visualize ellipsoids, polytopes, zonotopes, and multidimensional intervals in
Fig. 2.4. After defining these important convex set representations, we consider the exact and
over-approximative conversion between some.

2.2.2 Conversions
Because multidimensional intervals are special cases of zonotopes, they can be equivalently
expressed in both generator and interval representation. For instance, both [−1,1] ⊂ R2 and
⟨0, I⟩Z ⊂ R2 represent the unit ball corresponding to the infinity norm in R2, as shown in Fig. 1
on page xviii. A conversion from the generator representation ⟨cI , GI⟩Z of the multidimensional

12

2.2 Convex Sets

interval I ⊂ Rn to its interval representation
[
I, I

]
is achieved by

I = cI − diag (|GI |) (2.4a)
I = cI + diag (|GI |) (2.4b)

and vice versa by

cI = center (I) (2.5a)
GI = diag (radius (I)) . (2.5b)

Similarly, a conversion from the interval representation
[
I, I

]
to its half-space representa-

tion ⟨HI , hI⟩P is achieved by

HI =
[

I

−I

]
(2.6a)

hI =
[
I
−I

]
. (2.6b)

The conversions in (2.4) to (2.6) follow directly from Definitions 2.5 to 2.7. Converting
multidimensional intervals to the generator and half-space representation is particularly ben-
eficial because multidimensional intervals generally represent most constraint sets. Thus,
under-approximations of the constraint sets are required when choosing ellipsoids as set repre-
sentations.

Because zonotopes are special cases of polytopes, they can be equivalently expressed
in both half-space and generator representations. For instance, both ⟨0, I⟩Z ⊂ R2 and〈[
I −I

]T
,1
〉

P

⊂ R2 represent the unit ball corresponding to the infinity norm in R2,

as shown in Fig. 1 on page xviii. However, the half-space conversion of general zonotopes is
combinatorially complex with respect to the order of the zonotope [74, 75]. Conversely, the
interval conversion of a zonotope can be efficiently performed in an over-approximative way.
According to [76, Prop. 2.2] and (2.4), the smallest multidimensional interval enclosure of the
zonotope Z = ⟨c,G⟩Z ⊂ Rn is

interval (Z) = ⟨c, diag(|G|1)⟩Z
= [c− |G|1, c+ |G|1] , (2.7)

which is also known as an axis-aligned bounding box. Similarly, the smallest multidimensional
interval enclosure of the polytope P = ⟨H,h⟩P ⊂ Rn can be computed by solving 2n linear
programming problems [59, 60, 77], e.g., the ith element of the lower bound is obtained by
solving

minimize
s

s(i)

subject to Hs ≤ h,
where i ∈ N[1,n]. We also want to mention that the error when approximating the unit ball
corresponding to the Euclidean norm ⟨0, I⟩E ⊂ Rn by a zonotope can be made arbitrarily small
by increasing the zonotope order [78].

13

2 Preliminaries

2.2.3 Operations
After introducing suitable convex set representations and conversions between them, we present
some important set operations. For a matrix M ∈ Rm×n1,2 and three closed, bounded, convex
sets S1,S2 ⊂ Rn1,2 and S3 ⊂ Rn3 , we define the following set operations:

• Matrix multiplication: MS1 = {Ms1 | s1 ∈ S1} (2.8a)

• Set-based multiplication: S1S2 = {s1s2 | s1 ∈ S1, s2 ∈ S2} (2.8b)

• Minkowski addition: S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2} (2.8c)

• Minkowski difference: S1 ⊖ S2 = {s | s⊕ S2 ⊆ S1} (2.8d)

• Cartesian product: S1 × S3 =
{[

s1

s3

] ∣∣∣∣∣ s1 ∈ S1, s3 ∈ S3

}
(2.8e)

• Convex hull: conv (S1,S2) = {αs1 + (1− α)s2 | s1 ∈ S1, s2 ∈ S2, α ∈ [0, 1]} (2.8f)

• Directed Hausdorff distance: dist (S1,S2) = min {δ ∈ R≥0 | S1 ⊆ S2 ⊕ δ ⟨0, I⟩Z} (2.8g)

Based on the definition of the directed Hausdorff distance in (2.8g) [79], it follows that S1 ⊆ S2
if and only if dist (S1,S2) = 0. Instead of using the unit ball corresponding to the infinity
norm in (2.8g), other norms can also be used [79]. Moreover, to account for different orders
of magnitude of the dimensions, they can also be weighted accordingly, e.g., using a suitable
diagonal matrix instead of I in (2.8g).

Open-source software toolboxes are available to efficiently and accurately operate on, e.g.,
ellipsoids [80], polytopes [77], and zonotopes [81]. Subsequently, we present the computations
of some set operations introduced in (2.8) on different convex set representations and comment
on their corresponding computational complexity.

As we will see in Section 2.3, the two most critical set operations for our reachability analysis
are the matrix multiplication and the Minkowski addition. According to [80], the multiplication
of the ellipsoid ⟨c, S⟩E ⊂ Rn by a matrix M ∈ Rm×n is computed by

M ⟨c, S⟩E =
〈
Mc,MSMT

〉
E
,

i.e., ellipsoids are closed under linear transformations. However, ellipsoids are not closed
under Minkowski additions, which results in an over-approximation error when performing this
operation.

In contrast to ellipsoids, polytopes are closed under both set operations. According to [77], the
multiplication of the polytope ⟨H,h⟩P ⊂ Rn with n ∈ N>0 by an invertible matrix M ∈ Rn×n

is computed by
M ⟨H,h⟩P =

〈
HM−1, h

〉
P
,

i.e., this set operation has a polynomial computational complexity with respect to n [82].
However, performing the Minkowski sum of two general polytopes suffers from an exponential
computational complexity [25, 83], which makes polytopes an unsuitable set representation for
performing reachability analysis of large-scale systems. Nevertheless, polytopes are typically
used for representing state and input constraint sets. Thus, we additionally introduce some other

14

2.2 Convex Sets

important set operations on polytopes subsequently. The Chebyshev center center (P) ∈ Rn

of the polytope P ⊂ Rn is the center of the largest Euclidean ball that lies in P [55, Sec. 8.5.1],
which can be efficiently determined by solving the COP

maximize
c,r

r (2.9a)

subject to ⟨c, rI⟩E ⊆ P. (2.9b)

Thus, P is a lower-dimensional polytope if the radius of the Euclidean ball obtained by solving
(2.9) is zero. Moreover, the Minkowski addition of ⟨H,h⟩P and a vector s ∈ Rn, and the
multiplication of ⟨H,h⟩P by a scalar α ∈ R>0 are computed by

{s} ⊕ ⟨H,h⟩P = ⟨H,h+Hs⟩P
α ⟨H,h⟩P = ⟨H,αh⟩P ,

which follows directly from Definition 2.5. Thus, scaling P = ⟨H,h⟩P by α with respect to any
s ∈ P is achieved by the function

scalePolytope(P, α, s) = α
(
P ⊕ {−s}

)
⊕ {s}

= ⟨H,α(h−Hs) +Hs⟩P .

In addition to polytopes, zonotopes are closed under matrix multiplications and Minkowski
additions. According to [72], the Minkowski addition of two zonotopes ⟨c1, G1⟩Z ⊂ Rn and
⟨c2, G2⟩Z ⊂ Rn, and the multiplication by a matrix M ∈ Rm×n with m,n ∈ N>0 are computed
by

⟨c1, G1⟩Z ⊕ ⟨c2, G2⟩Z =
〈
c1 + c2,

[
G1 G2

]〉
Z

(2.10a)

M ⟨c1, G1⟩Z = ⟨Mc1,MG1⟩Z . (2.10b)

Because the computational complexity of these two crucial set operations is polynomial with
respect to m and n [16], zonotopes are well suited as set representations for our efficient
reachability analysis. Based on (2.10a), performing Minkowski additions increases the order
of the resulting zonotope. To limit the storage space requirements, tight over-approximative
zonotope order reduction techniques exist [84,85]. For a given zonotope Z ⊂ Rn and a scalar α ∈
N[1,⌈order(Z)⌉−1], these methods compute a reduced order zonotope Zred = reduce (Z, α) such
that Z ⊆ Zred and order (Zred) = α. Subsequently, we introduce more set operations on
zonotopes used throughout this thesis.

Based on Definition 2.6, the Cartesian product of ⟨c1, G1⟩Z ⊂ Rn and ⟨c2, G2⟩Z ⊂ Rm is
computed by

⟨c1, G1⟩Z × ⟨c2, G2⟩Z =
〈[

c1

c2

]
,

[
G1 0
0 G2

]〉

Z

,

i.e., zonotopes are also closed under Cartesian products. In addition, we define the stacking of
⟨c1, G1⟩Z and ⟨c2, G2⟩Z by

〈
⟨c1, G1⟩Z
⟨c2, G2⟩Z

〉

Z

=
〈[

c1

c2

]
,

[
G1

G2

]〉

Z

, (2.11)

15

2 Preliminaries

where the number of generators of both zonotopes must be equal. Generally, the convex hull of
two zonotopes is not a zonotope, and finding a tight enclosing zonotope is a complex task [86].
According to [87], an over-approximation of the convex hull conv (Z1,Z2) of Z1 = ⟨c1, G1⟩Z ⊂
Rn and Z2 = ⟨c2, G2⟩Z ⊂ Rn with gen (Z1) = gen (Z2) is

convover (⟨c1, G1⟩Z , ⟨c2, G2⟩Z) = 0.5
〈
c1 + c2,

[
G1 +G2 c1 − c2 G1 −G2

]〉
Z
. (2.12)

Typically, the over-approximation in (2.12) is reasonably tight if Z2 is obtained by multiplying
Z1 with a matrix whose eigenvalues are close to 1. According to [76, Thm. 3.3], the set-
based multiplication MZ of an interval matrix M =

[M,M]
⊂ Rn×n and a zonotope Z =

⟨c,G⟩Z ⊂ Rn can be tightly over-approximated by

M⊗over ⟨c,G⟩Z =
〈
Cc,

[
CG diag

(
R
∣∣∣
[
c G

]∣∣∣1
)]〉

Z
, (2.13)

where C = center (M) ∈ Rn×n is the center of M and R = radius (M) ∈ Rn×n
≥0 is the radius

of M. To visualize some of the presented set operations on two zonotopes in R2, we present
Example 2.9.

Example 2.9 (Set Operations on Zonotopes): In Fig. 2.5, we illustrate some set operations
performed on the two zonotopes

Z1 =
〈[

3
0

]
,

[
0 3 1
3 0 1

]〉

Z

Z2 =
〈[

20
6

]
,

[
3 3 1
0 −3 1

]〉

Z

using the matrices

M =
[

0.8 0
0 0.4

]

M =
[

[0.8, 1.2] [−1.2,−0.8]
[−1.2,−0.8] [−0.2, 0.2]

]
.

To compute the parallelotope reduce (Z1, 1), we use the principle component analysis zonotope
order reduction method [84]. ■

2.2.4 Zonotope Containment
After introducing all set operations that are needed for later computations, we present two
approaches for determining if a zonotope Z1 ⊂ Rn is contained or included within another
zonotope Z2 ⊂ Rn, which is co-NP-complete [75]. The first zonotope containment approach
transforms Z2 from generator to half-space representation [74], which is usually a computation-
ally complex task for high-order zonotopes [75]. According to [88], Z1 = ⟨c1, G1⟩Z is contained
in Z2 = ⟨H2, h2⟩P if and only if

H2c1 + |H2G1|1 ≤ h2. (2.14)

16

2.3 Reachability Analysis

−10 −5 0 5 10 15 20 25 30 35−10

−5

0

5

10

15

MZ1

interval (Z1 ⊕ Z2)

Z1 ⊕ Z2

convover (Z1, Z2)

reduce (Z1, 1)

Z1

Z2

MZ1

s(1)

s(2
)

Figure 2.5: Set operations performed on the two zonotopes Z1,Z2 ⊂ R2 that are defined in Example 2.9.

In the special case of Z2 being expressed in interval representation Z2 =
[
Z2,Z2

]
, the condition

in (2.14) simplifies to

Z2 ≤ c1 − |G1|1
Z2 ≥ c1 + |G1|1.

The second zonotope containment approach directly solves a linear feasibility problem,
allowing us to efficiently incorporate such constraints into COPs. According to [52, 79, 89],
Z1 = ⟨c1, G1⟩Z is contained in Z2 = ⟨c2, G2diag(s)⟩Z with arbitrary scaling factor s ∈ Rgen(Z2)

>0
if a matrix Γ ∈ Rgen(Z2)×gen(Z1) and a vector γ ∈ Rgen(Z2) exist such that

G1 = G2Γ (2.15a)
c2 − c1 = G2γ (2.15b)∣∣∣

[
Γ γ

]∣∣∣1 ≤ s. (2.15c)

In contrast to (2.15), (2.14) is a necessary and sufficient condition for zonotope containment.
Nevertheless, (2.15) can be solved for comparably higher-order zonotopes by using efficient
convex optimization algorithms without involving the computationally demanding half-space
conversion.

2.3 Reachability Analysis
Because zonotopes are concise set representations and essential operations are performed
efficiently and accurately, they are becoming increasingly popular in various applications.

17

2 Preliminaries

For instance, zonotopes are used in, e.g., state estimation [90–93], hybrid systems verifica-
tion [74,94], robust control [50, 95, 96], and collision detection [86]. Similar to ellipsoids [97, 98]
and polytopes [99, 100], zonotopes are also widely used as set representation in reachability
analysis [27,72,87], as presented subsequently.

In this thesis, we consider continuous-time (CT), time-invariant systems that evolve according
to

ẋ(t) = f (x(t), u(t), w(t)) , (2.16)
where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the control input, and w(t) ∈ Rnw is
the unknown disturbance at time t ∈ R≥0. The disturbance trajectory w(·) is unknown but
bounded by the disturbance set W ⊂ Rnw , i.e., w(t) ∈ W at all times t. To obtain a more
concise notation for representing such constraints, we use w(·) ∈ W, i.e., we refer by w(·) to
the whole disturbance trajectory and by w(t) to the value of this trajectory at time t. We also
use this concise notation for other trajectories and their values at specific points in time. In
addition, we define the model M = (f (x, u, w) ,W,CT) for compactly representing the CT
dynamics in (2.16) with corresponding disturbance set W.

In contrast to the CT dynamics, the digital controller of our cyber-physical system provides
a piecewise constant control input only at periodic sampling times tk = k∆t with k ∈ N and
fixed sampling period ∆t ∈ R>0 [101], i.e.,

u(t) = u(tk) for t ∈ [tk, tk+1). (2.17)

Such systems, composed of a physical plant evolving in continuous time and a digital controller
being implemented in discrete time, are also known as sampled-data systems [102]. To account
for (2.17) in the reachability analysis, we augment the state space according to

[
ẋ(t)
u̇(t)

]
=
[
f (x(t), u(t), w(t))

0

]
(2.18)

and update the piecewise constant control input at sampling times. Conversely, to project a set
of augmented states onto the lower-dimensional original state and input space [103], we define
the two matrices

Πx =
[
I 0

]
∈ Rnx×(nx+nu) (2.19a)

Πu =
[
0 I

]
∈ Rnu×(nx+nu). (2.19b)

For instance, the center and generator matrix of the zonotope Πu ⟨c,G⟩Z ⊂ Rnu is obtained by
erasing the first nx rows of c and G, respectively.

We denote the solution of (2.18) at time t ∈ [0,∆t) by χ̃
(
t, x̃(0), w(·)

)
, where x̃(0) =[

xT (0) uT (0)
]T

is the augmented initial state. Based on this solution, the set of augmented
states that the system in (2.18) can reach is called the exact reachable set and is introduced in
the following definition [76, Defs. 3.1 and 3.2].

Definition 2.10 (Exact Reachable Set): For the model M = (f (x, u, w) ,W,CT) and the
augmented initial state set Z̃0 ⊂ Rnx+nu , the exact reachable set at time t ∈ [0,∆t) is

R̃M
exact

(
t, Z̃0

)
=
{
x̃(t) ∈ Rnx+nu

∣∣∣ x̃(t) = χ̃
(
t, x̃(0), w(·)

)
, x̃(0) ∈ Z̃0, w(·) ∈ W

}
,

18

2.3 Reachability Analysis

which is also known as the robust forward-reachable set. Similarly, the exact reachable set over
the time interval [0,∆t) is defined by

R̃M
exact

(
[0,∆t), Z̃0

)
=

⋃

t∈[0,∆t)
R̃M

exact

(
t, Z̃0

)
,

i.e., it is the union of exact reachable sets at all times within [0,∆t). ■

Because exact reachable sets cannot be obtained for general systems [104, 105], we settle
for tight over-approximations R̃M

over

(
·, Z̃0

)
⊇ R̃M

exact

(
·, Z̃0

)
to enclose all possible system

trajectories. These over-approximations can be computed efficiently and accurately when
restricting the CT system in (2.16) to be linear time-invariant (LTI) and using zonotopes as set
representation, as presented subsequently.

In the LTI case, the CT, time-invariant system evolves according to

ẋ(t) = Ax(t) +Bu(t) + w(t), (2.20)

where A ∈ Rnx×nx is the system matrix and B ∈ Rnx×nu is the input matrix. To compactly
represent the CT dynamics in (2.20) with corresponding disturbance set W ⊂ Rnx , we use
the model M = (A,B,W,CT) as a shorthand for M = (Ax+Bu+ w,W,CT) for concisely
specifying LTI systems. When considering this important class of dynamical systems, the
augmented system in (2.18) simplifies to

[
ẋ(t)
u̇(t)

]
=
[
A B

0 0

]

︸ ︷︷ ︸
Ã

[
x(t)
u(t)

]
+
[
w(t)

0

]
, (2.21)

where Ã ∈ R(nx+nu)×(nx+nu) is the augmented system matrix. The well-known solution of (2.21)
at time t ∈ [0,∆t) is

χ̃
(
t, x̃(0), w(·)

)
= eÃtx̃(0) + eÃt

∫ t

0
e−Ãτ

[
w(τ)

0

]
dτ,

where the superposition principle is exploited. Although exact reachable sets cannot be
computed for general LTI systems [104, 105], tight zonotopic over-approximations can be
efficiently obtained for this important class. According to [76, Sec. 3.2], the over-approximative
reachable sets of (2.21) for the point in time ∆t and the time interval [0,∆t) are

R̃M
over

(
∆t, Z̃0

)
= eÃ∆tZ̃0 ⊕ W̃ (2.22a)

R̃M
over

(
[0,∆t), Z̃0

)
= convover

(
Z̃0, e

Ã∆tZ̃0
)
⊕FZ̃0 ⊕ W̃, (2.22b)

where W̃ =
〈
cW̃ , GW̃

〉
Z
⊂ Rnx+nu is the augmented reachable disturbance set [76, Thm. 3.1]

and F ⊂ R(nx+nu)×(nx+nu) is the correction interval matrix that accounts for the curvature of
trajectories during [0,∆t) [76, Prop. 3.1]. The computations in (2.22) are valid if 0 ∈ W , which

19

2 Preliminaries

can typically be satisfied by performing a suitable coordinate transformation. Nevertheless, an
extension for incorporating 0 ̸∈ W also exists [76, Sec. 3.2]. Because zonotopes are not closed
under the convex hull operator, the over-approximation in (2.12) is used in (2.22b). As all
operations in (2.22) have a polynomial computational complexity with respect to the augmented
state space dimension nx + nu [106], the presented reachability analysis of sampled-data LTI
systems is well suited to be integrated into scalable robust control algorithms.

Subsequently, we construct the equivalent discrete-time (DT) system of the CT system in (2.20)
at sampling times. Based on (2.22a), there exists an augmented disturbance sequence w̃(·) ∈ W̃
with not necessarily unique parameter vector sequence λw̃,(·) ∈ Rgen(W̃) such that

[
x(tk+1)
u(tk)

]
= eÃ∆t

[
x(tk)
u(tk)

]
+ w̃(tk) (2.23a)

w̃(tk) = cW̃ +GW̃λw̃,k (2.23b)

with
∣∣λw̃,k

∣∣ ≤ 1 and k ∈ N. Obtaining λw̃,k in (2.23b) can be achieved by solving (2.1) for w̃(tk)
and W̃, i.e., by solving the COP

minimize
λw̃,k

Jλw̃,k
(λw̃,k) (2.24a)

subject to
[
x(tk+1)
u(tk)

]
− eÃ∆t

[
x(tk)
u(tk)

]
(2.23)= cW̃ +GW̃λw̃,k (2.24b)

∣∣λw̃,k

∣∣ ≤ 1, (2.24c)

where Jλw̃,k
is a convex cost function. Based on λw̃,(·), we define the concatenated disturbance

parameter vector

λW̃,k
=
[
λT

w̃,0 λT
w̃,1 . . . λT

w̃,k

]T
∈ R(k+1)gen(W̃) (2.25a)

λW̃,−1 ∈ R0 (2.25b)

with
∣∣∣λW̃,k

∣∣∣ ≤ 1. Moreover, the matrix exponential eÃ∆t ∈ R(nx+nu)×(nx+nu) can be expressed
by

eÃ∆t =
[
AD BD

0 I

]
, (2.26)

where

AD = eA∆t (2.27a)

BD =
(∫ ∆t

0
eAτ dτ

)
B (2.27b)

are the DT system and input matrices, respectively. Then, the equivalent DT system of the
CT system in (2.20) at sampling times is

x(tk+1) = ADx(tk) +BDu(tk) + Πxw̃(tk)
= ADx(tk) +BDu(tk) + wD(tk), (2.28)

20

2.4 Invariant Sets

where wD(tk) lies within the DT disturbance set WD = ΠxW̃ ⊂ Rnx for all k ∈ N, i.e.,
wD(·) ∈ WD. To compactly represent these DT dynamics with corresponding DT disturbance
set WD, we use the model M = (AD, BD,WD,DT).

Instead of implementing the presented reachability analysis by hand, many freely available
software toolboxes can be used. For instance, reachable sets of LTI systems can be computed
using, e.g., C2E2 [107], CORA [81], HyDRA [108], HyLAA [109], JuliaReach [110], SpaceEx [111],
and XSpeed [112]. To compare the performance of these tools, they regularly participate in the
friendly competition of the ARCH workshop [113]. In addition, there exist approaches that
perform reachability analysis not only for LTI systems but also for, e.g., linear time-varying
systems [114], nonlinear systems [115], and hybrid systems [94].

2.4 Invariant Sets
If the initial state x(t0) ∈ Rnx lies within an invariant set, future states are guaranteed to stay
within this set indefinitely. Because invariant sets are fundamental for many control approaches,
there exists a vast body of literature that focuses on the characterization and computation
of such sets [39, 42, 116–119]. Subsequently, we define important invariant sets and present
standard algorithms for computing such sets [38,40].

First, we consider autonomous, DT, LTI systems. They can be obtained from DT, LTI
systems with controllable inputs, e.g., by choosing the simple control law u(tk) = Kx(tk) with
state feedback matrix K ∈ Rnu×nx . By closing the control loop with such a state feedback
controller, the system in (2.28) evolves according to

x(tk+1) = (AD +BDK)x(tk) + wD(tk)

with AD +BDK being the overall system matrix. For a general model M = (AD,0,WD,DT),
a set of states whose sequences stay within this set indefinitely despite all possible disturbances
contained in WD is a robust positively invariant (RPI) set, also known as disturbance invariant
set, and introduced in the following definition [38, Def. 1].

Definition 2.11 (Robust Positively Invariant Set): The set S ⊂ Rnx is an RPI set for
M = (AD,0,WD,DT), if ADS ⊕WD ⊆ S, i.e., if the reachable set of S is contained in S. ■

Thus, if the initial state x(t0) lies within an RPI set, the DT state sequence will never leave
this set. An important RPI set is the one that cannot be under-approximated by another
RPI set, which is introduced in the following definition [38, Def. 2].

Definition 2.12 (Minimal Robust Positively Invariant Set): The set S ⊂ Rnx is the
minimal robust positively invariant (mRPI) set for M = (AD,0,WD,DT), if S is the RPI set
in Rnx that is contained in every closed RPI set for M. ■

An illustration of the mRPI set along with another RPI set is shown in Fig. 2.6. In the
following lemma, which is taken from [37, Sec. IV], we show that the mRPI set can be expressed
as a series.

21

2 Preliminaries

RPI set

mRPI set

Figure 2.6: RPI set and two random state sequences, which never leave this set and converge to the
mRPI set.

Lemma 2.13 (Minimal Robust Positively Invariant Set): Let AD ∈ Rnx×nx be asymp-
totically stable and WD ⊂ Rnx be closed, bounded, and contain the origin. Then, the
set
⊕∞

i=k A
k
DWD is the mRPI set for M = (AD,0,WD,DT) [37, Sec. IV]. ■

Proof. Because 0 ∈ WD, we choose x(t0) = 0 and perform reachability analysis for the DT
system:

x(t1) ∈ AD{0} ⊕WD =WD

x(t2) ∈ ADWD ⊕WD

x(t3) ∈ AD(ADWD ⊕WD)⊕WD = A2
DWD ⊕ADWD ⊕WD

...
x(tk) ∈ Ak−1

D WD ⊕Ak−2
D WD ⊕ . . .⊕ADWD ⊕WD︸ ︷︷ ︸⊕k−1

i=0 Ai
DWD

.

As k goes to infinity, we obtain the set
⊕∞

i=0A
i
DWD.

It can be shown that
⊕∞

i=0A
i
DWD exists, contains the origin, and is unique, closed, and

bounded [37,38]. In addition, for any closed, bounded initial state set, the sequence of reachable
sets converges to the mRPI set exponentially fast with respect to the Hausdorff distance [102].
Thus, the mRPI set is the limit set for all state sequences [37, Rmk. 4.1]. Due to the Minkowski
sum of infinitely many terms,

⊕∞
i=0A

i
DWD is not finitely determined unless AD is a nilpotent

matrix, i.e., unless Ai
D = 0 for some i ∈ N [103]. Nevertheless, there exist approaches to

compute tight RPI over-approximations of the mRPI set [38,120–122]. For instance, Alg. 2.1
computes the RPI set 1

1−α

⊕k
i=0A

i
DWD with k <∞ and suitable α ∈ [0, 1) to over-approximate

the mRPI set.
Before extending the notion of invariant sets to systems with controllable inputs, we define

the DT state and input constraints

x(·) ∈ X (2.29a)
u(·) ∈ U , (2.29b)

where X ⊂ Rnx and U ⊂ Rnu are the state and input constraint sets, respectively. Thus, the
state and input sequences must always stay within the constraint sets X and U , respectively.

22

2.4 Invariant Sets

Algorithm 2.1 RPI over-approximation of the mRPI set [38]
Input: AD,WD, ϵ ∈ R>0 ▷ ϵ is the convergence tolerance
Output: SRPI

1: i← 0
2: α←∞
3: β ← 0
4: S(1) ← {0}
5: while ϵ

ϵ+β < α do
6: i← i+ 1
7: α← min

{
δ ∈ R≥0

∣∣ Ai
DWD ⊆ δWD

}

8: S(i+1) ← S(i) ⊕Ai−1
D WD

9: β ← min
{
δ ∈ R≥0

∣∣ S(i+1) ⊆ δ [−1,1]
}

10: end while
11: SRPI ← 1

1−αS(i+1)

Based on (2.29), we introduce robust backward-reachable sets for a given terminal set, which
are closely related to the robust forward-reachable sets for a given initial set in Definition 2.10.
For M = (AD, BD,WD,DT), the set of states that can be robustly steered into a given terminal
set in a single time step despite all possible disturbances contained inWD is the one-step robust
backward-reachable set and introduced in the following definition [42, Def. 10.15].

Definition 2.14 (One-Step Robust Backward-Reachable Set): The one-step robust
backward-reachable set for the terminal set Ω ⊂ Rnx and the model M = (AD, BD,WD,DT) is

RM
back (Ω) = {x ∈ Rnx | ∃u ∈ U such that {ADx+BDu} ⊕WD ⊆ Ω} ,

which is also known as the robust precursor set to Ω. ■

By iterating the one-step robust backward-reachable set computations k times with k ∈ N>0,
the k-step robust backward-reachable set is obtained. This set is introduced in the following
definition [42, Def. 10.18].

Definition 2.15 (k-Step Robust Backward-Reachable Set): The k-step robust backward-
reachable set for k ∈ N>0, the terminal set Ω ⊆ X , and the model M = (AD, BD,WD,DT), is
recursively defined by the set sequence

S(1) = Ω (2.30a)

S(i+1) = X ∩RM
back

(
S(i)

)
, (2.30b)

where i ∈ N[1,k]. The k-step robust backward-reachable set is also known as the k-step robust
controllable set. ■

Thus, all states in the k-step robust controllable set can be robustly steered into a given
terminal set in k steps despite the presence of disturbances while satisfying the constraints in
(2.29). Subsequently, we introduce invariant sets for systems with controllable inputs.

23

2 Preliminaries

For M = (AD, BD,WD,DT), a set of states for which there exists a controller such that its
state and input sequences never violate the constraints in (2.29) despite all possible disturbances
contained in WD is a robust control invariant (RCI) set and introduced in the following
definition [42, Def. 10.22].

Definition 2.16 (Robust Control Invariant Set): The set S ⊆ X is an RCI set for M =
(AD, BD,WD,DT), if for any x ∈ S there exists a u ∈ U such that {ADx+BDu}⊕WD ⊆ S. ■

Thus, if the initial state x(t0) lies within an RCI set, there always exists at least one
control input in U such that the DT state sequence will never leave this set. An important
RCI set is the one that contains all other RCI sets, which is introduced in the following
definition [42, Def. 10.23].

Definition 2.17 (Maximal Robust Control Invariant Set): The set S ⊆ X is the maximal
robust control invariant (MRCI) set for M = (AD, BD,WD,DT), if S is an RCI set and contains
all RCI sets contained in X . ■

To compute the MRCI set, the recursively defined set sequence in (2.30) with terminal set X
was proposed over 50 years ago [36], i.e.,

S(1) = X (2.31a)

S(i+1) = X ∩RM
back

(
S(i)

)
, (2.31b)

where i ∈ N>0. It can be shown that the set sequence in (2.31) converges to the MRCI set with
respect to the Hausdorff distance as i goes to infinity [36]. However, the sets of the sequence
in (2.31) are usually not RCI sets, and the MRCI set is typically not finitely determined [39].
Nevertheless, there exist approaches for computing tight RCI under-approximations of the
MRCI set, such as Alg. 2.2 [40].

Algorithm 2.2 RCI under-approximation of the MRCI set [40]
Input: AD, BD,X ,U ,WD, ϵ ∈ R>0 ▷ ϵ is the convergence tolerance
Output: SRCI

1: i← 1
2: S(1) ← X
3: while “true” do
4: S(i+1) ← X ∩

{
x ∈ Rnx

∣∣ ∃u ∈ U such that {ADx+BDu} ⊕WD ⊕ ϵ [−1,1] ⊆ S(i)}

5: if S(i) ⊆ S(i+1) ⊕ ϵ [−1,1] then
6: break
7: end if
8: i← i+ 1
9: end while

10: SRCI ← S(i+1)

So far, we have mainly focused on important invariant sets for DT systems. Nevertheless, the
notion of invariant sets can be easily extended to deal with CT and sampled-data systems [39,
102,123,124]. For instance, a standard procedure to compute polytopic invariant sets for a CT

24

2.5 Software Setup

system is based on constructing its corresponding DT Euler auxiliary system [39, Def. 4.25]. As
a result, the presented approaches for DT systems can be exploited to compute invariant sets
for the original CT systems [39, Lemma 4.26]. However, these standard approaches typically
suffer from the curse of dimensionality due to using polytopes as underlying set representations.
Thus, there is a lack of scalable algorithms for computing nonconservative sets that guarantee
robust constraint satisfaction.

2.5 Software Setup
As reproducibility is crucially vital for advancing scientific research [125], we subsequently
give an overview of the software toolboxes used throughout this thesis. All simulations are
conducted on a Lenovo ThinkPad X1 Carbon Gen 9 laptop equipped with an Intel Core
i7-1185G7 and 32 GB memory running Microsoft Windows 10 Home (version 21H2) and
MATLAB (version R2021a Update 5). For performing reachability analysis using zonotopes as
set representation and for visualizing convex sets, we use the open-source continuous reachability
analysis toolbox CORA1 [81]. In addition, for performing reachability analysis using polytopes
as set representation, we use the open-source multi-parametric toolbox MPT32 [77].

To give an idea of the computational complexity when operating on polytopes [83], we report
the computation times for adding two unit balls corresponding to the infinity norm represented in
half-space representation

〈[
I −I

]T
,1
〉

P

in Table 2.1. Because this computation corresponds

to the most straightforward nontrivial Minkowski addition, it is evident that polytopic methods
are unsuitable for handling large-scale systems.

All COPs in this thesis are modeled using the open-source toolbox YALMIP3 [66] with the
parameter “allownonconvex” set to Boolean “false” and solved using the commercial mixed-
integer conic programming solver MOSEK [64] with default parameters. When reporting the
computation times for solving an optimization problem, we always exclude the time for modeling
the optimization problem, i.e., for transforming the original problem into an equivalent one
in standard form [55, Ch. 4]. To ensure that our simulations can be reproduced easily, most
robust control algorithms proposed in this thesis are integrated into our seminal automated
controller synthesis toolbox AROC4 [48].

1tumcps.github.io/CORA
2mpt3.org
3yalmip.github.io
4tumcps.github.io/AROC

25

https://tumcps.github.io/CORA
https://www.mpt3.org
https://yalmip.github.io
https://tumcps.github.io/AROC

2 Preliminaries

Table 2.1: Minkowski addition of two unit balls represented in half-space representation in Rn.

n computation time [s]

1 0.068
2 0.031
3 0.015
4 1.066
5 2.107
6 4.826
7 14.273
8 37.497
9 107.178

10 323.856
11 974.611
12 3464.203
13 20 208.689
14 118 398.148

26

3 Safe Sets
In this chapter, which is based on [47, 49–51], we synthesize zonotopic safe sets along with
corresponding safety-preserving controllers, which ensure the safety of the sampled-data system
for an infinite time horizon. After reviewing the relevant literature in Section 3.1, we formulate
the control goal of this chapter in Section 3.2. In Section 3.3, we perform reachability analysis
using a state and a disturbance feedback controller. These reachable set computations are
the core of our robust control approaches for computing safe sets with minimum or maximum
volume, as presented in Sections 3.4 and 3.5. To demonstrate the effectiveness of our safe set
approaches, we consider four numerical examples in Section 3.6. Finally, we summarize this
chapter in Section 3.7.

3.1 Introduction and State of the Art
Guaranteeing safety for an infinite time horizon is challenging to formally verify and yet
crucially important for leveraging autonomous systems or learning-based control in safety-
critical applications, such as autonomous driving or robot-assisted surgery [126, 127]. Thus,
the sets of safe states along with corresponding safety-preserving controllers, which guarantee
robust state and input constraint satisfaction at all times despite disturbances, are widely used
in the robust controller synthesis.

For instance, a large safe robust positively invariant (RPI) terminal set with a corresponding
terminal penalty is typically used for ensuring recursive feasibility in robust model predictive
control (MPC) [41–43,128], which is presented in more detail in Chapter 4. As soon as the
system state enters this safe set, the safety-preserving terminal controller guarantees the robust
satisfaction of the state and input constraints at all future times. Safe sets are also used in
learning-based control as part of a supervisory safety filter [129, 130], which is presented in
more detail in Chapter 5. This filter accepts only inputs that satisfy the input constraint and
cause the state of the system to stay within the safe set. If the desired control input is rejected,
the safety-preserving backup control is applied instead. To maximize the region of operation for
the robust MPC approach and the safety filter, it is desirable to use safe sets with maximum
volume, i.e., safe sets that are as large as possible.

The largest safe set is known as the discriminating kernel [119,131], infinite-time reachable
set [36], or maximal robust control invariant (MRCI) set [39, 40], which was introduced in
Definition 2.17. Because of its high relevance in robust controller synthesis, computing the
exact discriminating kernel and approximations thereof has a long history. The exact set
for discrete-time (DT) systems can be obtained by the standard set recursion in (2.31) [36].
However, this procedure fails to terminate in finite time in most cases [39]. Thus, various
approaches for computing approximations exist in the literature.

Polytopic robust control invariant (RCI) under-approximations and over-approximations of
the MRCI set are presented in [40], where arbitrarily small violations of the state and input

27

3 Safe Sets

constraints are tolerated in the case of an over-approximation. The corresponding algorithm
for computing an RCI under-approximation is presented in Alg. 2.2. To prevent the polytopic
representation of an RCI set from becoming too complex, its desired number of representing
half-spaces can be fixed or be chosen freely [132–135]. To obtain such RCI sets of desired
complexity, a sequence of semidefinite programming (SDP) problems is solved that enforces the
iterates to be RCI. In addition to explicit set representations, RCI sets are also represented
implicitly [136,137], e.g., by the Minkowski sum of a finite number of polytopes [138]. Then,
the corresponding safety-preserving control input is usually obtained by solving a convex
optimization problem (COP). However, recovering an explicit representation of such an RCI
polytope is typically intractable due to the exponential computational complexity of the required
set operations [25,83].

To decrease the computational complexity when constructing invariant sets, ellipsoids instead
of polytopes are widely used as set representation [39,139–141]. For instance, a scalable approach
for computing an under-approximation of the finite-horizon discriminating kernel is presented
in [142]. However, safety is ensured only for a finite time horizon. Nevertheless, compared to
the exponential computational complexity of the standard polytopic approach with respect
to the state space dimension, representing reachable sets by ellipsoids results in increased
scalability. As a scalable alternative, zonotopes and bundles of multidimensional interval over-
approximations of zonotopes are also used as set representation [143,144]. Because zonotopes
can exactly represent typical multidimensional interval constraints, zonotopic approximations
often produce significantly less conservative results compared to ellipsoidal ones [143]. In
summary, most existing approaches are unsuitable to ensure the safety of large-scale systems
due to their conservativeness, exponential computational complexity, or limitation to finite time
horizons.

In addition to safe sets that are as large as possible, it is also important to compute safe
sets that are as small as possible [37–39, 102, 120–122, 145]. For instance, these small safe
sets are widely used in compositional controller synthesis when treating the coupling between
subsystems as disturbances [146,147]. We also want to mention that a minimal RCI set that
is contained in all other RCI sets does not exist in general [148]. This nonexistence contrasts
the MRCI set, which contains all other RCI sets. To emphasize the importance of safe sets in
general, we also want to mention that even the computation of (nonrobust) control invariant
sets is an active area of research [149–151]. Similarly, the scalable computation of RCI sets of
nonlinear systems is a challenging task [52,152–154].

When considering stabilizable linear time-invariant (LTI) systems with full knowledge of
the state, a simple linear state feedback controller can be computed, e.g., by linear-quadratic
regulator (LQR)-based controller synthesis [155]. However, optimization problems that perform
set-based reachability analysis while treating such state feedback matrices as optimization
variables are nonconvex due to the multiplication of these matrices. Thus, the problem of
determining suitable state feedback matrices by optimizing over reachable sets is typically
intractable. Nevertheless, parameterizing the controller as an affine map of the past distur-
bances instead of the current state enables an equivalent convex optimization over disturbance
feedback matrices [156, 157]. Closely related control parameterizations include, e.g., system
level synthesis [158] and Youla parameterization [159].

It is clear from the presented literature review that guaranteeing safety for an infinite time
horizon is typically achieved by computing RCI sets. Nevertheless, providing formal safety

28

3.2 Problem Formulation

guarantees does not require a safe set to be RCI. In this chapter, we use this simple idea to
compute not necessarily RCI safe sets, which allows us to reduce the computational complexity
and use a simple set representation. In particular, we synthesize explicit, zonotopic safe sets
along with corresponding safety-preserving controllers, which ensure the safety of the sampled-
data system for an infinite time horizon. Thus, we guarantee robust constraint satisfaction not
only at but also between sampling times. This guarantee also contrasts most existing approaches,
which usually consider DT systems. Moreover, we use set-based state feedback controllers and
set-based disturbance feedback controllers to obtain a simple controller structure. Incorporating
these two controllers into our reachability analysis and using efficiently solvable COPs allows us
to compute safe sets of large-scale systems because the corresponding computational complexity
of our algorithms is polynomial with respect to the problem dimension. Because safe sets are
usually desired to have minimum or maximum volume, we propose several scalable approaches
for computing such sets in the following sections.

3.2 Problem Formulation
In this chapter, we consider a continuous-time (CT), LTI system that evolves according to
(2.20), i.e., it is compactly represented by the model M = (A,B,W,CT). Similar to the DT
constraints in (2.29), this system is constrained by

x(·) ∈ X (3.1a)
u(·) ∈ U , (3.1b)

where X = ⟨HX , hX ⟩P ⊂ Rnx and U = ⟨HU , hU ⟩P ⊂ Rnu are the given state and input
constraint sets, respectively. Without loss of generality, we assume that the disturbance
set W = ⟨cW , GW⟩Z contains the origin {0}, which can typically be satisfied by performing
a suitable coordinate transformation. Because X , U , and W are usually represented by
multidimensional intervals, they can be easily expressed in both half-space and generator
representations using (2.5) and (2.6). If other set representations are chosen, tight polytopic
under-approximations of X and U and a zonotopic over-approximation of W must be computed
to maintain the formal safety guarantees.

The initial state of the system x(t0) ∈ Rnx lies within the initial state set Zx(t0) =
⟨cx(t0), Gx(t0)⟩Z ⊆ X , i.e., it can be expressed by

x(t0) = cx(t0) +Gx(t0)λx,0, (3.2)

where a not necessarily unique initial parameter vector λx,0 ∈ Rgen(Zx(t0)) with |λx,0| ≤ 1 is
guaranteed to exist. Obtaining λx,0 can be achieved by solving (2.1) for x(t0) and Zx(t0), i.e.,
by solving the COP

minimize
λx,0

Jλx,0(λx,0) (3.3a)

subject to x(t0) = cx(t0) +Gx(t0)λx,0 (3.3b)
|λx,0| ≤ 1, (3.3c)

where Jλx,0 is a convex cost function.

29

3 Safe Sets

Before formulating the control problem we want to solve in this chapter, we define safe sets
associated with the safety constraints in (3.1). These sets are not necessarily RCI sets and are
crucial for guaranteeing robust constraint satisfaction for an infinite time horizon, as mentioned
in Section 3.1 and illustrated in Fig. 1.3.

Definition 3.1 (Safe Set): The set S ⊆ X is a safe set for the model M = (A,B,W,CT), if
a safety-preserving controller exists such that the safety constraints in (3.1) are satisfied for all
x(t0) ∈ S. ■

To formulate a meaningful sampled-data control problem, we assume that (AD, BD) is
stabilizable, where AD ∈ Rnx×nx and BD ∈ Rnx×nu are the DT system and input matrices
defined in (2.27). Then, the control goal of this chapter is to determine an initial state set Zx(t0)
along with a corresponding safety-preserving controller such that Zx(t0) is a safe set with
minimum or maximum volume.

3.3 Reachability Analysis
In this section, we perform reachability analysis for the augmented system in (2.21) when using
the following two piecewise constant controllers: a state feedback controller and a disturbance
feedback controller. These reachable set computations are the core of our scalable robust control
approaches for synthesizing safe sets, which we present in the subsequent sections.

3.3.1 State Feedback Control
To use a state feedback controller, we assume a stabilizing state feedback matrix K ∈ Rnu×nx

to be given. Because the tuple (AD, BD) defined in (2.27) is assumed to be stabilizable in
Section 3.2, a stabilizing K can be easily obtained, e.g., by LQR-based controller synthesis [155].
Based on this K and the not necessarily unique initial parameter vector λx,0 in (3.2), we use
the piecewise constant state feedback control law

u(t) = Kx(tk) + cu(tk) +Gu(tk)λx,0 for t ∈ [tk, tk+1), (3.4)

where Zu(tk) = ⟨cu(tk), Gu(tk)⟩Z ⊂ Rnu with generator matrix Gu(tk) ∈ Rnu×gen(Zx(t0)) is the
correction input zonotope at sampling time tk = k∆t. Thus, in addition to the zonotopic
parameterized interpolation-based control used in [143], our controller in (3.4) also consists of a
stabilizing state feedback component to enhance the control performance [156]. To explicitly
obtain the control law in (3.4) for any time t ∈ R≥0, the initial parameter vector λx,0 is
computed at the initial time t0 by solving the COP in (3.3).

Subsequently, we compute reachable sets when using the state feedback controller in (3.4)
for an arbitrary sampling time tk and time interval [tk, tk+1). To account for the piecewise
constant control law in (3.4), we first compute reachable sets for consecutive time steps of
size ∆t until the specified sampling time is reached. Based on Section 2.3, we introduce the
following recursively defined set sequence for the state feedback controller in (3.4) and the

30

3.3 Reachability Analysis

Zx(t0)

ΠxR̃M
Kx (t1, Zx(t0), Zu(·)) ΠxR̃M

Kx (t2, Zx(t0), Zu(·))

∆t ∆t

Figure 3.1: Reachable sets defined in (3.5) for the initial state set Zx(t0) ⊆ X and the specified time t2.

model M = (A,B,W,CT), which is illustrated in Fig. 3.1 for t2:

R̃M
Kx (tk,Zx(t0),Zu(·)) =

〈
cR̃M

Kx(tk,Zx(t0),Zu(·)), GR̃M
Kx(tk,Zx(t0),Zu(·))

〉
Z

=
〈[

cx(tk)
Kcx(tk) + cu(tk)

]
,

[
Gx(tk)

KGx(tk) +
[
Gu(tk) 0

]
]〉

Z

(3.5a)

⟨cx(tk+1), Gx(tk+1)⟩Z = ΠxR̃M
over

(
∆t, R̃M

Kx (tk,Zx(t0),Zu(·))
)

(2.22a)= Πx

(
eÃ∆tR̃M

Kx (tk,Zx(t0),Zu(·))⊕ W̃
)
, (3.5b)

where k ∈ N. In the following theorem, we prove that the sets in (3.5) are over-approximating
the augmented reachable sets of M when using the controller in (3.4).

Theorem 3.2 (Set Propagation using State Feedback Control): For all x(t0) ∈ Zx(t0),
applying the state feedback controller in (3.4) to M = (A,B,W,CT) results in

[
x(tk)
u(tk)

]
∈ R̃M

Kx (tk,Zx(t0),Zu(·)) ,

where k ∈ N. ■

Proof. First, we prove that applying the state feedback controller in (3.4) to M results in
[
x(tk)
u(tk)

]
= cR̃M

Kx(tk,Zx(t0),Zu(·)) +GR̃M
Kx(tk,Zx(t0),Zu(·))

[
λx,0

λW̃,k−1

]
, (3.6)

where λW̃,k−1 ∈ Rkgen(W̃) is defined in (2.25). We proceed by induction:

31

3 Safe Sets

Base case: For k = 0, we obtain
[
x(t0)
u(t0)

]
(3.2),(3.4)=

[
cx(t0)

Kcx(t0) + cu(t0)

]
+
[

Gx(t0)
KGx(t0) +Gu(t0)

]
λx,0

(3.5a)= cR̃M
Kx(t0,Zx(t0),Zu(·)) +GR̃M

Kx(t0,Zx(t0),Zu(·))λx,0

(2.25)= cR̃M
Kx(t0,Zx(t0),Zu(·)) +GR̃M

Kx(t0,Zx(t0),Zu(·))

[
λx,0

λW̃,−1

]
.

Induction hypothesis: (3.6) holds for some arbitrary k ∈ N.
Induction step: For k + 1, the state is

x(tk+1) (2.19),(2.23a)= Πx

(
eÃ∆t

[
x(tk)
u(tk)

]
+ w̃(tk)

)

(3.6)= Πx

(
eÃ∆t

(
cR̃M

Kx(tk,Zx(t0),Zu(·)) +GR̃M
Kx(tk,Zx(t0),Zu(·))

[
λx,0

λW̃,k−1

])
+ w̃(tk)

)

(2.23b)= Πx

(
eÃ∆tcR̃M

Kx(tk,Zx(t0),Zu(·)) + eÃ∆tGR̃M
Kx(tk,Zx(t0),Zu(·))

[
λx,0

λW̃,k−1

]

+ cW̃ +GW̃λw̃,k

)

(2.25)= Πx

(
eÃ∆tcR̃M

Kx(tk,Zx(t0),Zu(·)) + cW̃ +
[
eÃ∆tGR̃M

Kx(tk,Zx(t0),Zu(·)) GW̃

] [λx,0

λW̃,k

])

(2.10a),(2.19),(3.5a),(3.5b)= Πx

(
cR̃M

Kx(tk+1,Zx(t0),Zu(·)) +GR̃M
Kx(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

])
,

(3.7)

32

3.3 Reachability Analysis

where a not necessarily unique λw̃,k ∈ Rgen(W̃) with
∣∣λw̃,k

∣∣ ≤ 1 is guaranteed to exist because
w̃(tk) ∈ W̃. Similarly, the input at time step k + 1 is

u(tk+1) (3.4)= Kx(tk+1) + cu(tk+1) +Gu(tk+1)λx,0

(3.7)= KΠx

(
cR̃M

Kx(tk+1,Zx(t0),Zu(·)) +GR̃M
Kx(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

])

+ cu(tk+1) +Gu(tk+1)λx,0
(2.19),(2.25)= KΠxcR̃M

Kx(tk+1,Zx(t0),Zu(·)) + cu(tk+1)

+KΠxGR̃M
Kx(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

]
+
[
Gu(tk+1) 0

] [λx,0

λW̃,k

]

(2.10a),(3.5a),(3.5b)= ΠucR̃M
Kx(tk+1,Zx(t0),Zu(·)) + ΠuGR̃M

Kx(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

]

(2.19)= Πu

(
cR̃M

Kx(tk+1,Zx(t0),Zu(·)) +GR̃M
Kx(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

])
,

which completes the proof of (3.6). It also becomes clear from this proof that we horizontally
concatenate Gu(tk) ∈ Rnu×gen(Zx(t0)) and a matrix of zeros in (3.5a) to account for the Minkowski
addition resulting from the augmented reachable disturbance set W̃ ⊂ Rnx+nu .

Based on (3.6), |λx,0| ≤ 1,
∣∣∣λW̃,k−1

∣∣∣ ≤ 1, and Definition 2.6, it follows that the sets in
(3.5) are over-approximating the augmented reachable sets of M when using the controller in
(3.4).

We have focused on performing reachability analysis for discrete sampling times when using
the state feedback controller in (3.4). Nevertheless, the state and input constraints in (3.1)
must be satisfied not only at but also between sampling times. Thus, based on Theorem 3.2
and (2.22b), we compute reachable sets for an arbitrary time interval [tk, tk+1) according to

R̃M
Kx ([tk, tk+1),Zx(t0),Zu(·)) = R̃M

over

(
[0,∆t), R̃M

Kx (tk,Zx(t0),Zu(·))
)
. (3.8)

Then, the projection of the over-approximative reachable set onto the original state and input
space is obtained by ΠxR̃M

Kx (·,Zx(t0),Zu(·)) and ΠuR̃M
Kx (·,Zx(t0),Zu(·)), respectively. In

summary, we can efficiently compute the set of states and inputs that are reachable for all
x(t0) ∈ Zx(t0) when applying the state feedback controller in (3.4) to M = (A,B,W,CT).

Because the model M = (A,B,W,CT) is time-invariant, we can also separate the reachable
sets in (3.5) and (3.8) into controllable and uncontrollable parts based on the superposition
principle. To enable formal safety guarantees, we separate all involved set operations in an
over-approximative way, as presented subsequently.

Lemma 3.3 (Separation of Generator Matrix): For c ∈ Rn and G1, G2 ∈ Rn×m, the
following set relation holds:

⟨c,G1 +G2⟩Z ⊆
〈
c,
[
G1 G2

]〉
Z
.

33

3 Safe Sets

In addition, it holds with equality if G1 = 0 or G2 = 0. ■

Proof. By using the introduction of zonotopes in Definition 2.6, we obtain

⟨c,G1 +G2⟩Z = {s ∈ Rn | s = c+ (G1 +G2)λ, |λ| ≤ 1}
= {s ∈ Rn | s = c+G1λ+G2λ, |λ| ≤ 1}
⊆ {s ∈ Rn | s = c+G1λ1 +G2λ2, |λ1| ≤ 1, |λ2| ≤ 1}
=
〈
c,
[
G1 G2

]〉
Z
.

Moreover, vectors full of zeros in the generator matrix of a zonotope do not affect the zonotope
and, thus, can be erased. Because changing the order of the columns of the generator matrix also
has no effect on the zonotope, the relation above holds with equality if G1 = 0 or G2 = 0.

Lemma 3.3 is used in the following proposition to separate the over-approximative convex
hull operator in (2.12), which is required for computing (3.8).

Proposition 3.4 (Separation of Convex Hull): For M ∈ Rn×n, Z1 = ⟨c1, G1⟩Z ⊂ Rn, and
Z2 = ⟨c2, G2⟩Z ⊂ Rn with gen (Z1) = gen (Z2), the following over-approximative separation of
the over-approximative convex hull operator in (2.12) holds:

convover (Z1 ⊕Z2,M(Z1 ⊕Z2)) ⊆ convover (Z1,MZ1)⊕ convover (Z2,MZ2) .

In addition, the relation holds with equality if c1 = 0 or c2 = 0. ■

Proof. We prove this relation by

convover (Z1 ⊕Z2,M(Z1 ⊕Z2))
(2.10a),(2.10b)= convover

(〈
c1 + c2,

[
G1 G2

]〉
Z
,
〈
Mc1 +Mc2,

[
MG1 MG2

]〉
Z

)

(2.12)= 1
2

〈
c1 +Mc1 + c2 +Mc2,
[
G1 +MG1 G2 +MG2 c1 −Mc1 + c2 −Mc2 G1 −MG1 G2 −MG2

] 〉
Z

Lemma 3.3
⊆ 1

2

〈
c1 +Mc1 + c2 +Mc2,

[
G1 +MG1 G2 +MG2 c1 −Mc1 c2 −Mc2 G1 −MG1 G2 −MG2

] 〉
Z

(2.10a)= 1
2

〈
c1 +Mc1,

[
G1 +MG1 c1 −Mc1 G1 −MG1

]〉
Z

⊕ 1
2

〈
c2 +Mc2,

[
G2 +MG2 c2 −Mc2 G2 −MG2

]〉
Z

(2.12)= convover (Z1,MZ1)⊕ convover (Z2,MZ2) .

Based on Lemma 3.3, the relation holds with equality if c1 = 0 or c2 = 0.

In addition to the over-approximative convex hull operator, we also need to separate the over-
approximative interval matrix multiplication in (2.13), as presented in the following proposition.

34

3.3 Reachability Analysis

Proposition 3.5 (Separation of Interval Matrix Multiplication): For M ⊂ Rn×n,
Z1 = ⟨c1, G1⟩Z ⊂ Rn, and Z2 = ⟨c2, G2⟩Z ⊂ Rn, the following over-approximative separation of
the over-approximative interval matrix multiplication operator in (2.13) holds:

M⊗over (Z1 ⊕Z2) ⊆M⊗over Z1 ⊕M⊗over Z2.

In addition, the relation holds with equality if c1 = 0 or c2 = 0. ■

Proof. First, we need the following simple relations that follow from the triangle inequality and
the introduction of zonotopes in Definition 2.6 for s1, s2 ∈ R, c ∈ Rn, and v1, v2 ∈ Rn

≥0 with
v1 ≤ v2:

|s1 + s2| ≤ |s1|+ |s2| (3.9a)
⟨c, diag(v1)⟩Z ⊆ ⟨c, diag(v2)⟩Z (3.9b)
diag(v1 + v2) = diag(v1) + diag(v2) (3.9c)

⟨c, diag(v1) + diag(v2)⟩Z =
〈
c,
[
diag(v1) diag(v2)

]〉
Z
. (3.9d)

In addition, let C = center (M) ∈ Rn×n be the center of M and let R = radius (M) ∈ Rn×n
≥0

be the radius of M. Finally, we prove this relation by

M⊗over (Z1 ⊕Z2)
(2.10a)= M⊗over

〈
c1 + c2,

[
G1 G2

]〉
Z

(2.13)=
〈
Cc1 + Cc2,

[
CG1 CG2 diag

(
R
∣∣∣
[
c1 + c2 G1 G2

]∣∣∣1
)]〉

Z

(3.9a),(3.9b)
⊆

〈
Cc1 + Cc2,

[
CG1 CG2 diag

(
R
∣∣∣
[
c1 c2 G1 G2

]∣∣∣1
)]〉

Z

(3.9c)=
〈
Cc1 + Cc2,

[
CG1 CG2 diag

(
R
∣∣∣
[
c1 G1

]∣∣∣1
)

+ diag
(
R
∣∣∣
[
c2 G2

]∣∣∣1
)]〉

Z

(3.9d)=
〈
Cc1 + Cc2,

[
CG1 CG2 diag

(
R
∣∣∣
[
c1 G1

]∣∣∣1
)

diag
(
R
∣∣∣
[
c2 G2

]∣∣∣1
)]〉

Z

(2.10a)=
〈
Cc1,

[
CG1 diag

(
R
∣∣∣
[
c1 G1

]∣∣∣1
)]〉

Z
⊕
〈
Cc2,

[
CG2 diag

(
R
∣∣∣
[
c2 G2

]∣∣∣1
)]〉

Z

(2.13)= M⊗over Z1 ⊕M⊗over Z2.

Based on the triangle inequality, the relation holds with equality if c1 = 0 or c2 = 0.

Finally, we separate the reachable sets in (3.5) and (3.8) into controllable and uncontrollable
parts, as presented in the following theorem.

Theorem 3.6 (Separation of State Feedback Reachable Sets): The reachable sets in
(3.5) and (3.8) for M = (A,B,W,CT) can be separated by

R̃M
Kx (tk,Zx(t0),Zu(·)) = R̃(A,B,{0},CT)

Kx (tk,Zx(t0),Zu(·))⊕ R̃M
Kx (tk, {0}, {0})

R̃M
Kx ([tk, tk+1),Zx(t0),Zu(·)) ⊆ R̃(A,B,{0},CT)

Kx ([tk, tk+1),Zx(t0),Zu(·))
⊕ R̃M

Kx ([tk, tk+1), {0}, {0}) . ■

35

3 Safe Sets

Proof. For M ∈ Rm×n and Z1,Z2 ⊂ Rn, we obtain

M(Z1 ⊕Z2) (2.10a),(2.10b)= MZ1 ⊕MZ2.

This result shows that all operations required to compute the reachable set at sampling times in
(3.5) are linear functions. In addition to these operators, computing the reachable sets for time
intervals involves the over-approximative convex hull and over-approximative matrix interval
multiplication. Based on Propositions 3.4 and 3.5, the reachable sets for time intervals can be
separated over-approximatively as claimed.

We use Theorem 3.6 to efficiently compute safe sets when using the state feedback controller
in (3.4). Before presenting these computations, we perform reachability analysis when using
disturbance feedback control instead of state feedback control.

3.3.2 Disturbance Feedback Control
Based on the not necessarily unique initial parameter vector λx,0 in (3.2) and the concatenated
disturbance parameter vector λW̃,k−1 in (2.25), we use the piecewise constant disturbance
feedback control law

u(t) = cu(tk) +Gu(tk)
[
λx,0

λW̃,k−1

]
for t ∈ [tk, tk+1), (3.10)

where Zu(tk) = ⟨cu(tk), Gu(tk)⟩Z with generator matrix Gu(tk) ∈ Rnu×(gen(Zx(t0))+kgen(W̃)) is
the correction input zonotope at sampling time tk = k∆t. Thus, the size of Gu(tk) grows
linearly with k in contrast to the state feedback controller in (3.4). As a result, the disturbance
feedback controller in (3.10) is usually more flexible but also more complex compared to (3.4).
As for (3.4), we compute λx,0 by solving (3.3) at t0 to explicitly obtain the control law in (3.10)
for any time t ∈ R≥0. In addition, we also compute λW̃,k−1 at tk, which is defined in (2.25)
as the concatenation of the disturbance parameter vectors λw̃,i with i ∈ N[0,k−1]. Thus, we
compute λW̃,k−1 by determining λw̃,k−1 at tk based on (2.24) and appending λw̃,k−1 to λW̃,k−2.

Subsequently, we compute reachable sets when using the disturbance feedback controller
in (3.10) for an arbitrary sampling time tk and time interval [tk, tk+1). To account for the
piecewise constant control law in (3.10), we first compute reachable sets for consecutive time
steps of size ∆t until the specified sampling time is reached. Similar to (3.5), we introduce the
following recursively defined set sequence for the disturbance feedback controller in (3.10) and
the model M = (A,B,W,CT):

R̃M
Lw (tk,Zx(t0),Zu(·)) =

〈
cR̃M

Lw(tk,Zx(t0),Zu(·)), GR̃M
Lw(tk,Zx(t0),Zu(·))

〉
Z

=
〈[

cx(tk)
cu(tk)

]
,

[
Gx(tk)
Gu(tk)

]〉

Z

(3.11a)

⟨cx(tk+1), Gx(tk+1)⟩Z = ΠxR̃M
over

(
∆t, R̃M

Lw (tk,Zx(t0),Zu(·))
)

(2.22a)= Πx

(
eÃ∆tR̃M

Lw (tk,Zx(t0),Zu(·))⊕ W̃
)
, (3.11b)

36

3.3 Reachability Analysis

where k ∈ N. Similar to Theorem 3.2, we prove in the following theorem that the sets in (3.11)
are over-approximating the augmented reachable sets of M when using the controller in (3.10).

Theorem 3.7 (Set Propagation using Disturbance Feedback Control): For all x(t0) ∈
Zx(t0), applying the disturbance feedback controller in (3.10) to M = (A,B,W,CT) results in

[
x(tk)
u(tk)

]
∈ R̃M

Lw (tk,Zx(t0),Zu(·)) ,

where k ∈ N. ■

Proof. First, we prove that applying the disturbance feedback controller in (3.10) to M results
in [

x(tk)
u(tk)

]
= cR̃M

Lw(tk,Zx(t0),Zu(·)) +GR̃M
Lw(tk,Zx(t0),Zu(·))

[
λx,0

λW̃,k−1

]
, (3.12)

where λW̃,k−1 ∈ Rkgen(W̃) is defined in (2.25). We proceed by induction:
Base case: For k = 0, we obtain

[
x(t0)
u(t0)

]
(2.25),(3.2),(3.10)=

[
cx(t0)
cu(t0)

]
+
[
Gx(t0)
Gu(t0)

]
λx,0

(3.11a)= cR̃M
Lw(t0,Zx(t0),Zu(·)) +GR̃M

Lw(t0,Zx(t0),Zu(·))λx,0

(2.25)= cR̃M
Lw(t0,Zx(t0),Zu(·)) +GR̃M

Lw(t0,Zx(t0),Zu(·))

[
λx,0

λW̃,−1

]
.

Induction hypothesis: (3.12) holds for some arbitrary k ∈ N.
Induction step: For k + 1, the state is

x(tk+1) (2.19),(2.23a)= Πx

(
eÃ∆t

[
x(tk)
u(tk)

]
+ w̃(tk)

)

(3.12)= Πx

(
eÃ∆t

(
cR̃M

Lw(tk,Zx(t0),Zu(·)) +GR̃M
Lw(tk,Zx(t0),Zu(·))

[
λx,0

λW̃,k−1

])
+ w̃(tk)

)

(2.23b)= Πx

(
eÃ∆tcR̃M

Lw(tk,Zx(t0),Zu(·)) + eÃ∆tGR̃M
Lw(tk,Zx(t0),Zu(·))

[
λx,0

λW̃,k−1

]

+ cW̃ +GW̃λw̃,k

)

(2.25)= Πx

(
eÃ∆tcR̃M

Lw(tk,Zx(t0),Zu(·)) + cW̃ +
[
eÃ∆tGR̃M

Lw(tk,Zx(t0),Zu(·)) GW̃

] [λx,0

λW̃,k

])

(2.10a),(2.19),(3.11a),(3.11b)= Πx

(
cR̃M

Lw(tk+1,Zx(t0),Zu(·)) +GR̃M
Lw(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

])
,

37

3 Safe Sets

where a not necessarily unique λw̃,k ∈ Rgen(W̃) with
∣∣λw̃,k

∣∣ ≤ 1 is guaranteed to exist because
w̃(tk) ∈ W̃. Similarly, the input at time step k + 1 is

u(tk+1) (3.10)= cu(tk+1) +Gu(tk+1)
[
λx,0

λW̃,k

]

(2.10a),(2.19),(3.11a),(3.11b)= Πu

(
cR̃M

Lw(tk+1,Zx(t0),Zu(·)) +GR̃M
Lw(tk+1,Zx(t0),Zu(·))

[
λx,0

λW̃,k

])
,

which completes the proof of (3.12). It also becomes clear from this proof that the size of
Gu(tk+1) ∈ Rnu×(gen(Zx(t0))+(k+1)gen(W̃)) grows linearly with k to account for the Minkowski
addition resulting from the augmented reachable disturbance set W̃ ⊂ Rnx+nu .

Based on (3.12), |λx,0| ≤ 1,
∣∣∣λW̃,k−1

∣∣∣ ≤ 1, and Definition 2.6, it follows that the sets in
(3.11) are over-approximating the augmented reachable sets of M when using the controller in
(3.10).

We have focused on performing reachability analysis for discrete sampling times when using
the disturbance feedback controller in (3.10). Nevertheless, the state and input constraints in
(3.1) must be satisfied not only at but also between sampling times. Thus, similar to (3.8), we
compute reachable sets for an arbitrary time interval [tk, tk+1) according to

R̃M
Lw ([tk, tk+1),Zx(t0),Zu(·)) = R̃M

over

(
[0,∆t), R̃M

Lw (tk,Zx(t0),Zu(·))
)
.

Then, the projection of the over-approximative reachable set onto the original state and input
space is obtained by ΠxR̃M

Lw (·,Zx(t0),Zu(·)) and ΠuR̃M
Lw (·,Zx(t0),Zu(·)), respectively.

In summary, we can efficiently compute the set of states and inputs that are reachable
for all x(t0) ∈ Zx(t0) when applying the disturbance feedback controller in (3.10) to M =
(A,B,W,CT). In the following section, we use the presented reachable set computations for
both feedback controllers to construct safe sets with minimum volume, i.e., safe sets that are as
small as possible.

3.4 Small Safe Sets
In this section, we present three approaches to compute safe sets for M = (A,B,W,CT) that
are as small as possible. In Subsection 3.4.1, we determine a small safe set using a simplified
state feedback controller, i.e., by setting the correction input zonotope to zero. As a result,
no optimization problem must be solved, which renders this simple approach very efficient. In
Subsection 3.4.2, we compute a small sampled-data RCI set by solving a COP. Finally, we
construct small safe sets using disturbance feedback control in Subsection 3.4.3.

3.4.1 Simplified State Feedback Control
By setting ⟨cu(tk), Gu(tk)⟩Z = {0} in (3.4) for all k ∈ N, we obtain the simplified piecewise
constant state feedback controller

u(t) = Kx(tk) for t ∈ [tk, tk+1). (3.13)

38

3.4 Small Safe Sets

In the following lemma, we provide conditions for a set SKx ⊂ Rnx to be a safe set when using
the simplified controller in (3.13), i.e., the state and input constraints in (3.1) are satisfied for
all x(t0) ∈ SKx despite the presence of disturbances.

Lemma 3.8 (Safe Set using (3.13)): Let 0 ∈ X , 0 ∈ U , and let there exist a set SKx ⊆ X
and a corresponding time step kKx ∈ N>0 such that

ΠxR̃M
Kx (tkKx

,SKx, {0}) ⊆ SKx (3.14a)
ΠxR̃M

Kx ([tk, tk+1),SKx, {0}) ⊆ X for k ∈ N[0,kKx−1] (3.14b)
ΠuR̃M

Kx ([tk, tk+1),SKx, {0}) ⊆ U for k ∈ N[0,kKx−1]. (3.14c)

Then, SKx with corresponding safety-preserving controller in (3.13) is a safe set for M =
(A,B,W,CT) and, thus, SKx is an over-approximation of the corresponding DT minimal
robust positively invariant (mRPI) set. ■

Proof. Safe set: The condition in (3.14a) ensures that all states starting in SKx can be steered
into SKx in kKx steps. However, in contrast to invariant sets, the CT state trajectory x(·) might
leave SKx during [0, tkKx

). Nevertheless, during this time, the state and input constraints in
(3.1) are always fulfilled because of (3.14b) and (3.14c). Consequently, it follows by induction
that robust constraint satisfaction for all x(t0) ∈ SKx is achieved for an infinite time horizon
when applying the controller in (3.13) to M = (A,B,W,CT). Therefore, SKx is a safe set.

Over-approximation of DT mRPI set: Subsequently, we show by contradiction that SKx

is an over-approximation of the DT mRPI set SmRPI = ΠxR̃M
Kx (∞, {0}, {0}) [102], i.e., we

assume that SmRPI ̸⊆ SKx. Because 0 ∈ W and 0 ∈ X by assumption, we know that 0 ∈ SmRPI
and 0 ∈ SKx. As mentioned in Section 2.4, SmRPI is the limit set for all state trajectories at
sampling times when using the controller in (3.13) [37, Rmk. 4.1]. Therefore, there exists a
disturbance sequence that steers the state sequence starting at 0 to any point in SmRPI and
enforces the state to stay at this point. Because SmRPI ̸⊆ SKx, there exists a state sequence
starting in SKx that leaves SKx and never returns to SKx, which contradicts SKx being a
safe set. As a result, the assumption SmRPI ̸⊆ SKx is wrong, which shows that SKx is an
over-approximation of the DT mRPI set SmRPI.

Because the safe set SKx can be safely steered into itself in kKx steps, it is also known as
kKx-step recurrent set [136]. Similarly, invariant sets are also known as one-step recurrent
sets. Although the union

⋃kKx−1
k=0 ΠxR̃M

Kx (tk,SKx, {0}) ⊆ X is an RCI set, its complex set
representation typically prohibits its use in safe set applications. Subsequently, we propose a
scalable algorithm to construct safe sets when using the safety-preserving controller in (3.13).

We now present Alg. 3.1 to compute a small safe set SKx ⊂ Rnx along with a corresponding
time step kKx ∈ N>0. The algorithm has the following six inputs: M, K, X , U , W, and the
convergence tolerance ϵ ∈ R>0, which is usually chosen close to 0. Alg. 3.1 proceeds in two
steps: First, two zonotope sequences are computed that converge to an over-approximation of
the DT mRPI set [102]. Second, the zonotope order of this over-approximation is reduced as
much as possible while ensuring that the conditions in (3.14b) and (3.14c) are satisfied. This
second step reduces the complexity of subsequent computations involving SKx. Subsequently,
we describe both steps of Alg. 3.1 in more detail.

39

3 Safe Sets

Algorithm 3.1 Small safe set using simplified state feedback control
Input: M,K,X ,U ,W, ϵ
Output: SKx, kKx

1: X ← interval (X)
2: k ← 1
3: Z{0},k ← ΠxR̃M

Kx (tk, {0}, {0})
4: ZX ,k ← ΠxR̃M

Kx (tk,X , {0})
5: while ϵ ≤ dist

(
ZX ,k, interval

(
Z{0},k

))
do ▷ converge to DT mRPI set

6: k ← k + 1
7: Z{0},k ← ΠxR̃M

Kx (tk, {0}, {0})
8: ZX ,k ← ΠxR̃M

Kx (tk,X , {0})
9: end while

10: kKx ← k
11: SKx ← ∅
12: oKx ← 0
13: while oKx < order (ZX ,kKx

) do ▷ find smallest safe zonotope order
14: oKx ← oKx + 1
15: SKx ← reduce (ZX ,kKx

, oKx)
16: if (3.14b) and (3.14c) are satisfied for SKx, kKx,M,K,X ,U then
17: break
18: else
19: SKx ← ∅
20: end if
21: end while

40

3.4 Small Safe Sets

In line 1 of Alg. 3.1, we compute the smallest multidimensional interval enclosure interval (X)
of the polytopic state constraint set X and express it in generator representation using (2.5).
These computations are performed because we compute its reachable sets and our reachability
analysis in Section 2.3 requires the initial set to be expressed in generator representation. In
lines 2 to 9, we compute the set of reachable states for consecutive time steps corresponding
to the following two initial state sets, namely, the origin {0} and the over-approximated
state constraint set interval (X). We denote these zonotope sequences by Z{0},(·) and ZX ,(·).
Because the state feedback matrix of the simplified controller in (3.13) is stabilizing, Z{0},(·)
and ZX ,(·) would converge to the DT mRPI set in the Hausdorff distance as time goes to
infinity [102], if no over-approximation of reachable sets to reduce computational complexity
was used. To achieve low computation times, we use an easily computable convergence criterion
in line 5 based on the directed Hausdorff distance in (2.8g). Instead of directly computing
dist

(
ZX ,k,Z{0},k

)
using (2.15), we use multidimensional interval enclosures because they can

be obtained by (2.7) and transformed to half-space representation by (2.6) such that the simple
zonotope containment condition in (2.14) can be applied.

To reduce the complexity of the subsequent computations, we want the safe set SKx ⊇ ZX ,kKx

to have a reduced zonotope order compared to ZX ,kKx
[84, 85]. Thus, in lines 13 to 21 of

Alg. 3.1, we increment order (SKx) starting from 1 until the conditions in (3.14b) and (3.14c)
are satisfied eventually. However, if these two conditions are even violated for the tight over-
approximation ZX ,kKx

of the DT mRPI set, Alg. 3.1 returns an empty set as first output.

Proposition 3.9 (Properties of Alg. 3.1): Let 0 ∈ X , 0 ∈ U , and let the first output SKx ⊂
Rnx of Alg. 3.1 be nonempty. Then, SKx is a safe set with the second output kKx ∈ N>0 being
a corresponding time step, i.e., they satisfy the safe set conditions in (3.14). ■

Proof. Because SKx is assumed to be a nonempty set, we know that the check in line 16 of
Alg. 3.1 has been passed successfully. Therefore, the conditions in (3.14b) and (3.14c) are
fulfilled for SKx and kKx. Because (3.14b) is satisfied, it follows that

SKx ⊆ ΠxR̃M
Kx ([t0, t1),SKx, {0}) ⊆ X .

This relation results in

ΠxR̃M
Kx (tkKx

,SKx, {0}) ⊆ ΠxR̃M
Kx (tkKx

,X , {0})
⊆ ΠxR̃M

Kx (tkKx
, interval (X) , {0})

line 15 of Alg. 3.1
⊆ SKx,

which shows the satisfaction of (3.14a). Thus, all conditions in (3.14) are satisfied. Therefore,
SKx is a safe set with kKx being a corresponding time step.

For our subsequent computations, we assume that SKx obtained by executing Alg. 3.1 is
nonempty. This assumption is also widely used in robust MPC [41–43, 160], as discussed in
more detail in Chapter 4. Thus, if this assumption is violated, a different stabilizing state
feedback matrix K might be required, e.g., obtained by using LQR-based controller synthesis

41

3 Safe Sets

with different weighting matrices [155]. Similarly, the convergence tolerance ϵ ∈ R>0 could be
decreased to satisfy this assumption.

Instead of using Alg. 3.1 to construct a small safe set, Alg. 2.1 can also be used to obtain a
tight RPI over-approximation of the DT mRPI set. However, due to the involved Minkowski
additions in line 8 of Alg. 2.1, the number of generators of the resulting zonotope increases
with the number of performed Minkowski additions. To bound the complexity of the safe set
representation, zonotope order reduction operations are required. However, performing these
set operations invalidates the robust invariance guarantees of Alg. 2.1. Thus, Alg. 3.1 offers an
efficient way to compute a small safe set while bounding the complexity for representing this
safe set. Subsequently, we discuss potential computational speed-ups of Alg. 3.1.

To determine the time step kKx in Alg. 3.1, we use the two converging zonotope sequences
Z{0},(·) and ZX ,(·). Alternatively, we could also use only ZX ,(·) and terminate if the distance
between two consecutive zonotopes ZX ,k and ZX ,k+1 of this sequence is below the convergence
tolerance for some k ∈ N. By exploiting the superposition principle, we could alternatively also
compute the sequence ΠxR̃(A,B,{0},CT)

Kx

(
t(·), interval (X) , {0}

)
and terminate if the distance

between a set of this sequence and the origin is below the convergence tolerance. Although
both alternatives offer a potential computational speed-up, we opt for Alg. 3.1 because its steps
are easy to follow and the computation time is typically negligible.

In summary, if the initial state x(t0) lies within the safe set SKx, the simplified controller
in (3.13) ensures robust constraint satisfaction for an infinite time horizon. When using the
simplified controller in (3.13), a stabilizing state feedback matrix K is assumed to be given
such that SKx obtained by executing Alg. 3.1 is nonempty. Although this is also a widely
used assumption in robust MPC [41–43,160], it is unclear how to systematically and efficiently
find such a K. In particular, if both constraint sets X and U are small, it usually becomes
challenging to find a safe set at all. In the following subsection, we propose a robust control
method that addresses these issues.

3.4.2 Robust Control Invariance
In this subsection, we present an approach for computing a small RCI set. Thus, no stabilizing
state feedback matrix K is required in contrast to the presented state feedback control method
in Subsection 3.4.1. In addition, the assumption that both constraint sets X and U contain the
origin is no longer necessary, which offers more flexibility of this approach compared to the
state feedback control method.

In [147], a COP is presented to obtain a small RCI set for a DT system. This set is ob-
tained by directly minimizing a matrix norm over the generator matrix Gx(t0) ∈ Rnx×gen(Zx(t0))

of the initial state set Zx(t0) = ⟨cx(t0), Gx(t0)⟩Z and incrementing the number of genera-
tors gen (Zx(t0)) ∈ N>0 until feasibility of the optimization problem is detected. Inspired by
this approach, we solve a COP to compute a small RCI set for the model M = (A,B,W,CT).

42

3.4 Small Safe Sets

In particular, let s⋆
X , ⟨c⋆

x(t0), G⋆
x(t0)⟩Z , Z⋆

u(t0) be the solution of the COP

minimize
sX ,⟨cx(t0),Gx(t0)⟩Z ,Zu(t0)

sX (3.15a)

subject to 0 < sX (3.15b)
⟨cx(t0), Gx(t0)⟩Z ⊆ scalePolytope(X , sX , x̊) (3.15c)
⟨cx(t1), Gx(t1)⟩Z = ΠxR̃M

Lw (∆t, ⟨cx(t0), Gx(t0)⟩Z ,Zu(t0)) (3.15d)
[
cx(t1) Gx(t1)

]
=
[
cx(t0) 0 Gx(t0)

]
(3.15e)

ΠxR̃M
Lw ([0,∆t), ⟨cx(t0), Gx(t0)⟩Z ,Zu(t0)) ⊆ X (3.15f)

ΠuR̃M
Lw ([0,∆t), ⟨cx(t0), Gx(t0)⟩Z ,Zu(t0)) ⊆ U , (3.15g)

where x̊ ∈ X is a scaling point, e.g., the Chebyshev center center (X) of X . Because only a single
time step is considered, solving (3.15) by using the operator R̃M

Kx (·, ·, ·) with any stabilizing K
instead of R̃M

Lw (·, ·, ·) results in the same optimal RCI set Z⋆
x(t0) = ⟨c⋆

x(t0), G⋆
x(t0)⟩Z but different

Z⋆
u(t0). If the COP in (3.15) is feasible for a given number of generators gen (Z⋆

x(t0)) ∈ N>0,
Z⋆

x(t0) is a sampled-data RCI set, as shown in the following proposition.

Proposition 3.10 (Properties of (3.15)): Let s⋆
X , Z⋆

x(t0) = ⟨c⋆
x(t0), G⋆

x(t0)⟩Z , Z⋆
u(t0) be

the solution of (3.15) for a given number of generators gen (Z⋆
x(t0)) ∈ N>0. Then, Z⋆

x(t0) is
an RCI set, (3.15) is also feasible for gen (Z⋆

x(t0)) + i with i ∈ N, and the cost in (3.15a) is
monotonically decreasing with an increasing number of generators. ■

Proof. RCI set: If the constraint in (3.15e) is satisfied, both zonotopes ⟨cx(t1), Gx(t1)⟩Z
and

〈
cx(t0),

[
0 Gx(t0)

]〉
Z

represent the same set. Because horizontally concatenating the

generator matrix of any zonotope with 0 leaves the set unchanged,
〈
cx(t0),

[
0 Gx(t0)

]〉
Z

and ⟨cx(t0), Gx(t0)⟩Z also describe the same set. Thus, the constraint in (3.15e) ensures that
⟨cx(t1), Gx(t1)⟩Z ⊆ ⟨cx(t0), Gx(t0)⟩Z , which implies set invariance. In addition, the constraints
in (3.15f) and (3.15g) enforce robust constraint satisfaction during the time interval [0,∆t).

Recursive feasibility: Let ⟨c⋆
u(t0), G⋆

u(t0)⟩Z = Z⋆
u(t0). Subsequently, we show that s⋆,+

X ,〈
c⋆,+

x (t0), G⋆,+
x (t0)

〉
Z

,
〈
c⋆,+

u (t0), G⋆,+
u (t0)

〉
Z

is a solution for gen (Z⋆
x(t0)) + i with i ∈ N, where

s⋆,+
X = s⋆

X , c⋆,+
x (t0) = c⋆

x(t0), G⋆,+
x (t0) =

[
0 G⋆

x(t0)
]
, c⋆,+

u (t0) = c⋆
u(t0), and G⋆,+

u (t0) =
[
0 G⋆

u(t0)
]
. Because

〈
c⋆,+

x (t0), G⋆,+
x (t0)

〉
Z

= ⟨c⋆
x(t0), G⋆

x(t0)⟩Z and
〈
c⋆,+

u (t0), G⋆,+
u (t0)

〉
Z

=
⟨c⋆

u(t0), G⋆
u(t0)⟩Z , the constraint satisfaction follows directly from the set propagation in (3.11)

and from the feasibility for gen (Z⋆
x(t0)).

Monotonically decreasing cost: Because the optimization problem in (3.15) is convex and
recursively feasible, the cost in (3.15a) is monotonically decreasing with an increasing number
of generators of Z⋆

x(t0).

Based on Proposition 3.10, obtaining a small sampled-data RCI set can be achieved by
increasing the number of generators gen (Zx(t0)) of Zx(t0) starting from 1 until (3.15) is
feasible. However, it is unclear how much gen (Zx(t0)) must be increased to enable feasibility
of (3.15), similar to [138, 145, 147]. Thus, the generator matrix of the RCI set obtained by

43

3 Safe Sets

solving (3.15) can have a lot of columns, which results in a large zonotope order and limits its
use in efficient robust control approaches. In addition, using the constraint in (3.15e) instead of〈[
cx(t1) Gx(t1)

]〉
Z
⊆
〈[
cx(t0) 0 Gx(t0)

]〉
Z

enables convexity of the optimization problem
on the one hand but also results in an increased conservativeness on the other hand. In the
following subsection, we present an optimization-based approach using disturbance feedback
control to compute a small safe set with a fixed zonotope order.

3.4.3 Disturbance Feedback Control
In this subsection, we use the disturbance feedback controller in (3.10) to synthesize small safe
sets. By parameterizing the controller as an affine map of the past disturbances, we solve a
COP to optimize over the disturbance feedback matrices [156]. Thus, we are more flexible
when searching for a safety-preserving controller than the simplified controller in (3.13), which
typically comes at the cost of increased computation times.

To compute a small safe set whose zonotope order is ox,0 ∈ N>0, we solve a COP that directly
considers the shape of the state constraint set X and uses the generator scaling framework [143],
i.e., we fix the arbitrary orientations of the generators of Zx(t0) and optimize only their scaling
factors. In particular, let s⋆

X , s⋆
x,0, c⋆

x(t0), Z⋆
u(·) be the solution of the COP

minimize
sX ,sx,0,cx(t0),Zu(·)

sX (3.16a)

subject to 0 < sx,0 (3.16b)
Zx(t0) = ⟨cx(t0), Gfixeddiag(sx,0)⟩Z (3.16c)
ΠxR̃M

Lw

(
tkx,0 ,Zx(t0),Zu(·)

)
⊆ Zx(t0) (3.16d)

0 < sX (3.16e)
Zx(t0) ⊆ scalePolytope(X , sX , x̊) (3.16f)
ΠxR̃M

Lw ([tk, tk+1),Zx(t0),Zu(·)) ⊆ X for k ∈ N[0,kx,0−1] (3.16g)
ΠuR̃M

Lw ([tk, tk+1),Zx(t0),Zu(·)) ⊆ U for k ∈ N[0,kx,0−1], (3.16h)

where x̊ ∈ X is a scaling point, kx,0 ∈ N>0 is the initial time step, sx,0 ∈ Rnxox,0
>0 is a generator

scaling vector, and Gfixed ∈ Rnx×nxox,0 is a fixed generator matrix. Although any convex cost
function can be used in (3.16a), we choose the linear cost for simplicity. Before presenting
our heuristic for obtaining promising generator directions of the small safe set, i.e., promising
columns of Gfixed, we prove in the following lemma that

〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
⊂ Rnx is a

safe set.

Lemma 3.11 (Properties of (3.16)): Let s⋆
X , s⋆

x,0, c⋆
x(t0), Z⋆

u(·) be the solution of (3.16).
Then, Z⋆

x(t0) =
〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
is a safe set. If, in addition to the feasibility of

(3.16), the initial time step kx,0 = 1, Z⋆
x(t0) is an RCI set. ■

Proof. Safe set: The proof is similar to Lemma 3.8 and is presented subsequently for the sake
of completeness. The constraint in (3.16d) ensures that the CT state trajectory x(·) starting in
Z⋆

x(t0) ends in Z⋆
x(t0) at tkx,0 . Because x(·) might leave Z⋆

x(t0) during the time interval [0, tkx,0),
the constraints in (3.16g) and (3.16h) enforce robust constraint satisfaction during [0, tkx,0). By

44

3.4 Small Safe Sets

induction, it follows that robust constraint satisfaction can be achieved for an infinite time
horizon if x(t0) ∈ Z⋆

x(t0), which implies that Z⋆
x(t0) is a safe set.

RCI set: If, in addition to the feasibility of (3.16), the initial time step kx,0 = 1, (3.16d)
enforces the projected reachable set of Z⋆

x(t0) to lie within Z⋆
x(t0) at ∆t. Thus, Z⋆

x(t0) is an
RCI set.

To enable feasibility of (3.16), it is crucial to choose a suitable fixed generator matrix Gfixed ∈
Rnx×nxox,0 . Subsequently, we present a simple two-step approach to obtain promising generator
directions: First, for a given initial state set Zx(t0) ⊂ Rnx , let s⋆

X , Z⋆
u(·) be the solution of the

COP

minimize
sX ,Zu(·)

sX (3.17a)

subject to 0 < sX (3.17b)
ΠxR̃M

Lw (tk,Zx(t0),Zu(·)) ⊆ scalePolytope(X , sX , x̊) for k ∈ N[0,kx,0] (3.17c)
ΠuR̃M

Lw (tk,Zx(t0),Zu(·)) ⊆ U for k ∈ N[0,kx,0], (3.17d)

i.e., we minimize the expansion of the reachable sets around the scaling point x̊ ∈ X . We also
want to mention that kx,0 in (3.17) can be different compared to (3.16). Second, we compute
the zonotope

⟨cfixed, Gfixed⟩Z = reduce
(

ΠxR̃M
Lw

(
tkx,0 ,Zx(t0),Z⋆

u(·)
)
, ox,0

)
(3.18)

of reduced order ox,0 ∈ N>0, whose generator matrix is the desired Gfixed.
Finally, we propose Alg. 3.2 to compute a small safe set by combining (3.16) to (3.18).

Essentially, we iteratively update Gfixed until the feasibility of (3.16) is detected eventually.
If feasibility is not obtained, the two inputs ox,0 ∈ N>0 and kx,0 ∈ N>0 of Alg. 3.2 can be
increased or a more suitable scaling point x̊ ∈ X can be selected. Subsequently, we describe the
main steps of Alg. 3.2 in more detail.

Algorithm 3.2 Small safe set using disturbance feedback control
Input: M,X ,U , ox,0, kx,0, x̊
Output: Z⋆

x(t0),Z⋆
u(·)

1: ⟨cfixed, Gfixed⟩Z ← {x̊}
2: Z⋆

x(t0)← ∅
3: while Z⋆

x(t0) ≡ ∅ do
4: Zx(t0)← ⟨cfixed, Gfixed⟩Z
5: s⋆

X ,Z⋆
u(·)← solve (3.17) for kx,0,Zx(t0), x̊,M,X ,U

6: ⟨cfixed, Gfixed⟩Z ← insert kx,0,Zx(t0),Z⋆
u(·), ox,0,M into (3.18)

7: s⋆
X , s

⋆
x,0, c

⋆
x(t0),Z⋆

u(·)← solve (3.16) for kx,0, x̊, Gfixed,M,X ,U
8: Z⋆

x(t0)←
〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
9: end while

In line 1 of Alg. 3.2, we initialize the initial state set with the scaling point x̊ ∈ X , which is
given by, e.g., center (X). In lines 3 to 9, we iteratively solve COPs for updated initial state

45

3 Safe Sets

sets until feasibility of (3.16) is detected eventually, i.e., until Z⋆
x(t0) is nonempty. In particular,

we solve the COP in (3.17) to find promising generator directions in line 5 of Alg. 3.2. In
line 6, we perform a zonotope order reduction to keep the computational complexity of the
COP solved in line 7 constant. Finally, we update Z⋆

x(t0) in line 8.
In summary, if the initial state x(t0) lies within Z⋆

x(t0) =
〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
, the

disturbance feedback controller in (3.10) with optimal correction input zonotope sequence Z⋆
u(·)

ensures robust constraint satisfaction for an infinite time horizon. After presenting our three
approaches for computing safe sets that are as small as possible, we aim to maximize the volume
of safe sets in the following section.

3.5 Large Safe Sets
In this section, we present three scalable approaches to compute safe sets for M = (A,B,W,CT)
that are as large as possible. Based on the notion of robust control invariance for sampled-data
systems [102], the largest safe set is the MRCI set. Because the shape of the MRCI set can be
arbitrarily complex, our three approaches aim for a tight zonotopic under-approximation of
this set.

In Subsection 3.5.1, we determine a large zonotopic safe set by uniformly scaling the small
safe set SKx obtained by executing Alg. 3.1. This approach is very efficient because the optimal
scaling can be determined without solving an optimization problem. In Subsection 3.5.2, we
exploit the superposition principle to propose a COP with zero terminal constraint for obtaining
a tight under-approximation of the MRCI set. Computing large safe sets in Subsection 3.5.3
is achieved by ensuring that the last reachable set is contained within another safe set. This
approach is also closely related to the small safe set COPs proposed in Section 3.4, where we
aim for the minimization instead of the maximization of the volume of the safe set.

3.5.1 Scaling of Safe Set
Typically, the safe set SKx = ⟨cSKx

, GSKx
⟩Z ⊆ X obtained by executing Alg. 3.1 is a relatively

small safe set and its zonotope order is one, as it is a tight over-approximation of the DT mRPI
set [102]. To maximize the region of operation for our system, we want to find a safe set that is
as large as possible. Subsequently, we propose a simple approach for enlarging the volume of
SKx in a straightforward and scalable way.

We use the simplified controller in (3.13) and solve a COP that determines the maximum
scaling factor α⋆ ≥ 1 that ensures ⟨cSKx

, α⋆GSKx
⟩Z being a safe set. In particular, let α⋆ be

the solution of the COP

maximize
α

α (3.19a)

subject to α ≥ 1 (3.19b)
(3.14b) and (3.14c) are satisfied for ⟨cSKx

, αGSKx
⟩Z , kKx,M,K,X ,U , (3.19c)

where SKx = ⟨cSKx
, GSKx

⟩Z and kKx are the two outputs of Alg. 3.1. Because SKx is assumed
to be nonempty, (3.19) is always feasible by construction. In addition, S⋆

Kx = ⟨cSKx
, α⋆GSKx

⟩Z
is a safe set based on Proposition 3.9 and SKx ⊆ S⋆

Kx ⊆ X .

46

3.5 Large Safe Sets

Because α is scalar and X is bounded, the solution of (3.19) can be alternatively obtained
without solving an optimization problem. Instead, we perform a simple binary search, which
is also known as logarithmic search [161]. We now present the corresponding safe set scaling
method in Alg. 3.3, which has the following six inputs: the model M, the state feedback matrix K
used in (3.13), the safe set ⟨cSKx

, GSKx
⟩Z with corresponding kKx, the state constraint set X ,

and the maximum interval radius ϵ ∈ R>0, which is usually chosen close to 0. Subsequently, we
describe the main steps of Alg. 3.3 in more detail.

Algorithm 3.3 Scaling of the safe set using binary search
Input: M,K, ⟨cSKx

, GSKx
⟩Z , kKx,X , ϵ

Output: S⋆
Kx

1: I ←
[
1,max

{
α ∈ R>0

∣∣ ⟨cSKx
, αGSKx

⟩Z ⊆ X
}]

2: while ϵ < radius (I) do
3: if (3.14b) and (3.14c) are satisfied for ⟨cSKx

, center (I)GSKx
⟩Z , kKx,M,K,X ,U then

4: I ← [center (I) , max (I)]
5: else
6: I ← [min (I) , center (I)]
7: end if
8: end while
9: S⋆

Kx ← ⟨cSKx
, min (I)GSKx

⟩Z

In line 1 of Alg. 3.3, we initialize an admissible one-dimensional interval I ⊂ R such that (3.14)
is satisfied for ⟨cSKx

, min (I)GSKx
⟩Z , whereas it is generally violated for ⟨cSKx

, max (I)GSKx
⟩Z .

In lines 2 to 8, we perform a binary search to find an admissible scaling interval, whose maximum
radius is ϵ. Finally, in line 9 of Alg. 3.3, the scaled safe set is computed.

Because the scaling factor is scalar, the shape of the scaled safe set is unchanged compared
to SKx, which can produce conservative results. In the following subsection, we present an
approach to simultaneously optimize the shape of a large safe set and the controller, providing
more flexibility.

3.5.2 Zero Terminal Constraint
The simplified controller in (3.13) guarantees robust constraint satisfaction for an infinite
time horizon if the state of the system lies within the safe set SKx ⊂ Rnx , which is obtained
by Alg. 3.1 and Alg. 3.3, respectively. Thus, efficiently increasing the region of operation
can be achieved by ensuring the initial state set Zx(t0) ⊂ Rnx to be an under-approximation
of the sampled-data kx,0-step robust backward-reachable set for the terminal set SKx with
kx,0 ∈ N>0, also known as the robust sampled-data capture basin [129]. Thus, if the initial
state x(t0) ∈ Rnx lies within Zx(t0), it can be safely steered into SKx in kx,0 steps, which implies
Zx(t0) being a safe set. Therefore, the satisfaction of the safety constraints in (3.1) is also
ensured if x(t0) ∈ Zx(t0) despite disturbances. This two-step safe set approach is illustrated in
Fig. 3.2.

Ideally, we want to maximize the volume of the initial state set Zx(t0). However, computing
the volume of a general zonotope is combinatorially complex with respect to the number of
columns of the generator matrix [162]. Nevertheless, in the special case of Zx(t0) being a

47

3 Safe Sets

X

mRPI
set

SKx

ΠxR̃M
Kx

(
t(·), SKx, {0}

)

(a) The small safe set SKx can be safely steered into
itself. Thus, robust constraint satisfaction for an
infinite time horizon can be ensured.

X Zx(t0)

SKx

ΠxR̃M
Kx

(
t(·), Zx(t0), Zu,(·)

)

(b) The large safe initial set Zx(t0) can be safely
steered into SKx in 4 steps.

Figure 3.2: Two-step safe set approach. Projections of reachable sets ΠxR̃M
Kx

(
t(·), ·, ·

)
are shown, where

a lighter gray tone corresponds to a smaller prediction horizon.

parallelotope, maximizing the determinant of the generator matrix results in the maximum
volume. When constraining this generator matrix to be symmetric positive definite, the
maximization can be cast and efficiently solved as a COP [55, 163]. However, restricting Zx(t0)
to be a parallelotope can be conservative.

To cast the optimization of the zonotopic initial state set Zx(t0) as a COP, our approach
is based on the generator scaling framework [143], which has already been used in (3.16). In
particular, let s⋆

x,0, c⋆
x(t0), Z⋆

u(·) be the solution of the COP

maximize
sx,0,cx(t0),Zu(·)

JZx(t0)(Zx(t0)) (3.20a)

subject to Zx(t0) = ⟨cx(t0), Gfixeddiag(sx,0)⟩Z (3.20b)

ΠxR̃(A,B,{0},CT)
Kx

(
tkx,0 ,Zx(t0),Zu(·)

)
= {0} (3.20c)

ΠxR̃M
Kx ([tk, tk+1),Zx(t0),Zu(·)) ⊆ X for k ∈ N[0,kx,0−1] (3.20d)

ΠuR̃M
Kx ([tk, tk+1),Zx(t0),Zu(·)) ⊆ U for k ∈ N[0,kx,0−1], (3.20e)

where JZx(t0) is a concave cost function, sx,0 ∈ Rgen(Zx(t0))
≥0 is a generator scaling vector,

Gfixed ∈ Rnx×gen(Zx(t0)) is a fixed generator matrix, and kx,0 ∈ N>0 is the initial time step
when SKx is reached. To choose suitable parameters JZx(t0), Gfixed, and kx,0, we give some
recommendations in Subsection 3.5.4. Based on Z⋆

u(·), we define the correction input zonotope
sequence

Z⋆,◦
u (tk) =

{
Z⋆

u(tk) for k ∈ N[0,kx,0−1]
{0} for k ≥ kx,0

, (3.21)

which combines both steps of our two-step safe set approach. Z⋆,◦
u (tk) is used in the following

proposition to prove that Z⋆
x(t0) =

〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
is a safe set.

48

3.5 Large Safe Sets

Proposition 3.12 (Safe Set from (3.20)): Let 0 ∈ X , 0 ∈ U , SKx ⊆ X be a safe set,
and let s⋆

x,0, c⋆
x(t0), Z⋆

u(·) be the solution of (3.20) for any kx,0 ∈ N>0. Then, Z⋆
x(t0) =〈

c⋆
x(t0), Gfixeddiag(s⋆

x,0)
〉

Z
is a safe set with corresponding safety-preserving controller in (3.4)

and correction input zonotope sequence Z⋆,◦
u (·). ■

Proof. Control into SKx: We prove that all x(t0) ∈ Z⋆
x(t0) can be steered into SKx at tkx,0 by

ΠxR̃M
Kx

(
tkx,0 ,Z⋆

x(t0),Z⋆
u(·)
) Theorem 3.6= ΠxR̃(A,B,{0},CT)

Kx

(
tkx,0 ,Z⋆

x(t0),Z⋆
u(·)
)

⊕ΠxR̃M
Kx

(
tkx,0 , {0}, {0}

)

(3.20c)= ΠxR̃M
Kx

(
tkx,0 , {0}, {0}

)

[38, 102]
⊆ ΠxR̃M

Kx (∞, {0}, {0})
Lemma 3.8
⊆ SKx,

where the second last step follows from ΠxR̃M
Kx

(
t(·), {0}, {0}

)
being a monotonically increasing

sequence that converges to the DT mRPI set [38,102]. In addition, the constraints in (3.20d)
and (3.20e) ensure x(t) ∈ X and u(t) ∈ U for t ∈ [t0, tkx,0). Thus, the controller in (3.4) with
correction input zonotope sequence Z⋆

u(·) steers all x(t0) ∈ Z⋆
x(t0) safely into SKx at tkx,0 .

Control within SKx: For k ≥ kx,0, Z⋆,◦
u (tk) = {0}, which corresponds to the simplified

controller in (3.13). Because SKx is a safe set, Lemma 3.8 ensures robust constraint satisfaction
at all times t ≥ tkx,0 . Thus, Z⋆

x(t0) is a safe set.

In addition to being independent of the safe set SKx, the COP in (3.20) offers other important
properties, as shown in the following theorem.

Theorem 3.13 (Properties of (3.20)): Let 0 ∈ X , 0 ∈ U , and SKx ⊆ X be a safe set. Then,
the COP in (3.20) is always feasible, and the cost in (3.20a) is monotonically increasing with
increasing kx,0 ∈ N>0. ■

Proof. Feasibility: When choosing sx,0 = 0, cx(t0) = 0, Zu(·) = {0}, we always obtain
Zx(t0) = {0} in (3.20b). Because ΠxR̃(A,B,{0},CT)

Kx (tk, {0}, {0}) = {0} for any k ∈ N, the
constraint in (3.20c) is satisfied for any kx,0 ∈ N>0. In addition, the satisfaction of (3.20d)
and (3.20e) for any kx,0 follows from 0 ∈ SKx and Lemma 3.8. Thus, the COP in (3.20) is
always feasible.

Monotonically increasing cost: Let s⋆
x,0, c⋆

x(t0), Z⋆
u(·) be the solution of (3.20) for any

kx,0 ∈ N>0. Subsequently, we show that s⋆,+
x,0 , c⋆,+

x (t0), Z⋆,+
u (·) is feasible for kx,0 + 1, where

s⋆,+
x,0 = s⋆

x,0, c⋆,+
x (t0) = c⋆

x(t0), and Z⋆,+
u (·) is obtained by appending {0} to Z⋆

u(·). When the
previous solution is reused, the cost in (3.20a) of both optimization problems is the same. Thus,
when optimizing over all feasible sx,0, cx(t0), Zu(·), the cost in (3.20a) for kx,0 + 1 is always
at least as high as for kx,0, which implies that the cost is a monotonically increasing function.
Subsequently, we prove that s⋆

x,0, c⋆
x(t0), Z⋆,+

u (·) is actually feasible for kx,0 + 1. By reusing
s⋆

x,0 and c⋆
x(t0), the same Z⋆

x(t0) =
〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
is obtained in (3.20b) for both

kx,0 and kx,0 + 1. Because Z⋆,+
u (tkx,0) = {0} and ΠxR̃(A,B,{0},CT)

Kx (∆t, {0}, {0}) = {0}, the

49

3 Safe Sets

constraint in (3.20c) is also satisfied. We prove fulfillment of (3.20d) and (3.20e) for the last
time interval [tkx,0 , tkx,0+1) by

R̃M
Kx

(
[tkx,0 , tkx,0+1),Z⋆

x(t0),Z⋆,+
u (·)

) Theorem 3.6
⊆ R̃(A,B,{0},CT)

Kx

(
[tkx,0 , tkx,0+1),Z⋆

x(t0),Z⋆,+
u (·)

)

⊕ R̃M
Kx

(
[tkx,0 , tkx,0+1), {0}, {0}

)

(3.20c),Z⋆,+
u (tkx,0)={0}
⊆ R̃M

Kx

(
[tkx,0 , tkx,0+1), {0}, {0}

)

{0}⊆SKx

⊆ R̃M
Kx

(
[tkx,0 , tkx,0+1),SKx, {0}

)

Lemma 3.8
⊆ X × U .

Thus, s⋆
x,0, c⋆

x(t0), Z⋆,+
u (·) is actually feasible for kx,0 + 1.

In summary, we can efficiently compute large safe sets along with corresponding safety-
preserving state feedback controllers. We have proposed a two-step safe set approach, as
illustrated in Fig. 3.2. During [0, tkx,0), the general state feedback controller in (3.4) safely
steers any initial state x(t0) ∈ Zx(t0) into SKx and switches to the simplified controller in (3.13)
at tkx,0 . Thus, we are able to satisfy the state and input constraints in (3.1) while providing a
large region of operation for our system.

Based on Proposition 3.12 and Theorem 3.6, the zero terminal constraint in (3.20c) ensures
that ΠxR̃M

Kx

(
tkx,0 ,Zx(t0),Zu(·)

)
⊆ SKx. Instead of using SKx as a terminal set, we propose

COPs in the following subsection that use any safe set as a terminal set.

3.5.3 Safe Set Terminal Constraint
Because the structure of the subsequent COPs is independent of the controller choice, we
introduce R̃M

Kx|Lw (·, ·, ·) to represent both reachability analysis operators R̃M
Kx (·, ·, ·) and

R̃M
Lw (·, ·, ·). Closely related to the zero terminal constraint COP in (3.20), we propose a COP

that uses any safe set Ssafe ⊆ X as terminal set, which could be obtained by any of the
previously presented approaches for computing safe sets. In particular, let s⋆

x,0, c⋆
x(t0), Z⋆

u(·) be
the solution of the COP

maximize
sx,0,cx(t0),Zu(·)

JZx(t0)(Zx(t0)) (3.22a)

subject to Zx(t0) = ⟨cx(t0), Gfixeddiag(sx,0)⟩Z (3.22b)
ΠxR̃M

Kx|Lw

(
tkx,0 ,Zx(t0),Zu(·)

)
⊆ Ssafe (3.22c)

ΠxR̃M
Kx|Lw ([tk, tk+1),Zx(t0),Zu(·)) ⊆ X for k ∈ N[0,kx,0−1] (3.22d)

ΠuR̃M
Kx|Lw ([tk, tk+1),Zx(t0),Zu(·)) ⊆ U for k ∈ N[0,kx,0−1], (3.22e)

where JZx(t0) is a concave cost function, sx,0 ∈ Rgen(Zx(t0))
≥0 is a generator scaling vector,

Gfixed ∈ Rnx×gen(Zx(t0)) is a fixed generator matrix, and kx,0 ∈ N>0 is the initial time step
when Ssafe is reached. Then, Z⋆

x(t0) =
〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
is a safe set, as shown in the

following proposition that is closely related to Proposition 3.12.

50

3.5 Large Safe Sets

Proposition 3.14 (Properties of (3.22)): Let s⋆
x,0, c⋆

x(t0), Z⋆
u(·) be the solution of (3.22)

for kx,0 ∈ N>0 and Ssafe ⊆ X . Then, Z⋆
x(t0) =

〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
is a safe set. ■

Proof. The constraints in (3.22d) and (3.22e) enforce robust constraint satisfaction during
the time interval [0, tkx,0). In addition, the constraint in (3.22c) ensures that the CT state
trajectory x(·) starting in Z⋆

x(t0) ends in Ssafe at tkx,0 . Because Ssafe is a safe set by assumption,
the corresponding safety-preserving controller ensures robust constraint satisfaction at all
times t ≥ tkx,0 . Therefore, the state and input constraints in (3.1) are satisfied, which implies
Z⋆

x(t0) being a safe set.

The only difference between the two COPs in (3.20) and (3.22) is the terminal constraint
in (3.20c) and (3.22c), when choosing the same parameters, the same reachability analysis
operator R̃M

Kx (·, ·, ·), and Ssafe = SKx. If kx,0 ∈ N>0 is small, (3.22) is typically preferred over
(3.20) because the zero terminal constraint is somewhat restrictive. Nevertheless, if kx,0 is large,
many additional optimization variables and constraints must be introduced in (3.22c) compared
to (3.20c) for encoding the zonotope containment condition in (2.15), because the number of
constraints and optimization variables in (3.20) is independent of SKx.

The COP in (3.22) assumes that a safe set Ssafe ⊆ X is given. By slightly modifying (3.22),
we present a one-step approach to compute a large safe set without requiring this assumption,
similar to [52]. In particular, let s⋆

x,0, c⋆
x(t0), Z⋆

u(·) be the solution of the COP

maximize
sx,0,cx(t0),Zu(·)

JZx(t0)(Zx(t0)) (3.23a)

subject to Zx(t0) = ⟨cx(t0), Gfixeddiag(sx,0)⟩Z (3.23b)
ΠxR̃M

Kx|Lw

(
tkx,0 ,Zx(t0),Zu(·)

)
⊆ Zx(t0) (3.23c)

ΠxR̃M
Kx|Lw ([tk, tk+1),Zx(t0),Zu(·)) ⊆ X for k ∈ N[0,kx,0−1] (3.23d)

ΠuR̃M
Kx|Lw ([tk, tk+1),Zx(t0),Zu(·)) ⊆ U for k ∈ N[0,kx,0−1], (3.23e)

where sx,0 ∈ Rgen(Zx(t0))
>0 is a positive generator scaling vector. There are only two differences

between (3.22) and (3.23): First, to use the zonotope containment constraint in (2.15), the
elements of the generator scaling vector sx,0 must be greater than zero in (3.23). Second,
instead of using a given safe set Ssafe as terminal set in (3.22c), the terminal set in (3.23c) is
the initial state set Zx(t0) itself. Thus, this slightly modified approach is similar to the COP in
(3.16), which aims at finding a small instead of a large safe set. In the following proposition, we
show important properties of the COP in (3.23).

Proposition 3.15 (Properties of (3.23)): Let s⋆
x,0, c⋆

x(t0), Z⋆
u(·) be the solution of (3.23)

for kx,0 ∈ N>0. Then, Z⋆
x(t0) =

〈
c⋆

x(t0), Gfixeddiag(s⋆
x,0)
〉

Z
is a safe set. If, in addition to the

feasibility of (3.23), the initial time step kx,0 = 1, Z⋆
x(t0) is an RCI set. ■

Proof. The proof is similar to Lemma 3.11 and is presented subsequently for the sake of
completeness.

Safe set: The constraint in (3.23c) ensures that the CT state trajectory x(·) starting in
Z⋆

x(t0) ends in Z⋆
x(t0) at tkx,0 . Because x(·) might leave Z⋆

x(t0) during [0, tkx,0), the constraints
in (3.23d) and (3.23e) enforce robust constraint satisfaction during the time interval [0, tkx,0).

51

3 Safe Sets

By induction, it follows that robust constraint satisfaction can be achieved for an infinite time
horizon if x(t0) ∈ Z⋆

x(t0), which implies that Z⋆
x(t0) is a safe set.

RCI set: If, in addition to the feasibility of (3.23), the initial time step kx,0 = 1, (3.23c)
enforces the projected reachable set of Z⋆

x(t0) to lie within Z⋆
x(t0) at ∆t. Thus, Z⋆

x(t0) is an
RCI set in this case.

To construct a large RCI set, we can alternatively slightly modify the COP in (3.15). In
particular, the cost in (3.15a) can be changed to aim for a volume maximization of the safe set,
and the constraints in (3.15b) and (3.15c) can be removed.

In summary, we can efficiently determine zonotopic safe sets for M = (A,B,W,CT) that
are as large as possible to maximize the region of operation for our system. In the following
subsection, we present recommendations to choose suitable parameters of the presented COPs.

3.5.4 Choice of Parameters
To obtain large safe sets by solving the COPs proposed in Subsections 3.5.2 and 3.5.3, it is
crucial to select suitable parameters. Thus, we recommend suitable JZx(t0), Gfixed, and kx,0 in
this subsection.

Ideally, we want to maximize the volume of the safe set Zx(t0) ⊆ X . However, computing
the volume of a general zonotope is combinatorially complex with respect to the number of
columns of the generator matrix [162]. A commonly used heuristic for maximizing the volume
of polytopic RCI sets is the volume maximization of a contained ellipsoid [132,134]. Inspired
by this approach, we propose to maximize the volume of an ellipsoid E = ⟨c, S⟩E ⊂ Rnx that
suitably approximates Zx(t0), which results in an SDP problem [54, 163, 164]. The volume
of E is proportional to det(S), and the determinant is logarithmically concave on the set of
symmetric positive definite matrices [55]. Thus, maximizing the volume of E can be achieved
by choosing log(det(S)) for the concave cost function JZx(t0) [55, Sec. 8.4.2]. To ensure that E
is a suitable approximation of Zx(t0), we also add the cost-dependent constraint

c+ S1/2ei ∈ Zx(t0) for i ∈ N[1,nx]

to the constraints of the original COPs, where ei denotes the ith unit vector of the Euclidean
space in Rnx . Thus, instead of enforcing E ⊆ Zx(t0), we opt for this simple approximation to
keep the amount of additional constraints small [165]. Instead of using an ellipsoid, we can
also aim at maximizing the volume of a multidimensional interval I = ⟨cI , diag(sI)⟩Z ⊂ Rnx

contained in Zx(t0). In this case, we choose the geometric mean of sI ∈ Rnx
>0 for JZx(t0) because

it is a monotonic function of the volume of I. To ensure that I ⊆ Zx(t0), we use the zonotope
containment condition in (2.15) and add this cost-dependent constraint to the constraints of
the original COP. Alternatively, using the sum or the geometric mean of the generator scaling
vector sx,0 for JZx(t0) are reasonable heuristics to obtain large safe sets. For instance, the
geometric mean of sx,0 is a monotonic function of the volume of Zx(t0) if the fixed generator
matrix Gfixed ∈ Rnx×gen(Zx(t0)) is an identity matrix.

To cover the state constraint set X , we can uniformly sample from the unit hypersphere and
use the obtained points as columns of Gfixed. Because uniform sampling in high-dimensional
spaces is a complex task, it is worthwhile to examine the sparsity of the system and input

52

3.6 Numerical Examples

matrices [35,143]. Alternatively, a good choice for Gfixed can be the generator matrix of any
small safe set because it already incorporates some effects of the disturbance set W ⊂ Rnx .

The parameter kx,0 corresponds to the time step when all states starting in Zx(t0) reach the
other safe set. Thus, this parameter is used to balance accuracy and computational complexity.
Based on Theorem 3.13, we can also increase kx,0 until the cost in (3.20a) has converged if
the COP in (3.20) is solved. In this case, usually SKx ̸⊆ Z⋆

x(t0) or even Z⋆
x(t0) ⊆ SKx when

choosing kx,0 = 1.

3.6 Numerical Examples
In this section, we demonstrate the effectiveness of our proposed safe set approaches using
four numerical examples taken from the literature: We consider a CT double-integrator
system in Subsection 3.6.1, a DT double-integrator system in Subsection 3.6.2, a vehicle
platooning system in Subsection 3.6.3, and a chain of mass-spring-damper (MSD) systems in
Subsection 3.6.4. When simulating these systems to generate random trajectories, we use the
convex cost Jλ = ∥λ∥∞ in (2.1) to obtain the not necessarily unique parameter vectors that are
required for the control laws in (3.4) and (3.10), respectively.

3.6.1 Continuous-Time Double-Integrator System
To compare the performance of our presented safe set approaches, we consider the simple
double-integrator system

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
1

]
u(t) + w(t)

with disturbance set W = [−0.1, 0.1]2 and state and input constraint sets X = [−1, 1]2 and
U = [−1, 1], respectively. In addition, the sampling period is ∆t = 0.1 s. Subsequently, we show
the small and large safe sets obtained by following our proposed robust control approaches.

Small Safe Sets

First, we compute small safe sets by executing Alg. 3.1. We choose the convergence tolerance
to be ϵ = 0.01. The stabilizing state feedback matrix K ∈ R1×2 is obtained using LQR-based
controller synthesis [155]. In Fig. 3.3, we visualize the computed small safe sets when choosing
different state and input weighting matrices for the LQR-based controller. Thus, Alg. 3.1
obtains small safe sets for a wide range of state feedback matrices.

Second, we solve the COP in (3.15) to construct an RCI set. For the scaling point x̊ =
center (X), ensuring the feasibility of (3.15) requires the number of generators gen (Zx(t0))
to be at least 8. The corresponding RCI set is shown in Fig. 3.4a. In addition, we visualize
the safe sets that are obtained by executing Alg. 3.2 with ox,0 ∈ N>0 and kx,0 = 1, i.e., these
safe sets are also RCI sets based on Lemma 3.11. In particular, Alg. 3.2 determines a small
RCI set for ox,0 = 1 and the same small RCI set with only 4 generators for all ox,0 > 1. Thus,
fewer generators are needed for computing an RCI set compared to (3.15), which shows the
conservativeness of the robust control invariance approach in Subsection 3.4.2. In Fig. 3.4b,

53

3 Safe Sets

Z{0},(·) ZX ,(·) SKx X

−2 −1 0 1 2−1
−0.5

0
0.5

1

x(1)

x
(2

)

(a) Q = I and R = 1: kKx = 60.

−2 −1 0 1 2−1
−0.5

0
0.5

1

x(1)

x
(2

)

(b) Q = 1000I and R = 1: kKx = 48.

−2 −1 0 1 2−1
−0.5

0
0.5

1

x(1)

x
(2

)

(c) Q = I and R = 20: kKx = 165.

−2 −1 0 1 2−1
−0.5

0
0.5

1

x(1)

x
(2

)

(d) Q = diag
([

1 40
]T

)
and R = 1: kKx = 303.

Figure 3.3: Small safe sets of CT double-integrator system with corresponding time step kKx obtained
by executing Alg. 3.1. The stabilizing state feedback matrix K ∈ R1×2 is obtained using
LQR-based controller synthesis with different state and input weighting matrices Q ∈ R2×2

and R ∈ R, respectively. In addition, both zonotope sequences Z{0},(·) and ZX ,(·) of
Alg. 3.1 are shown.

54

3.6 Numerical Examples

−0.3 −0.15 0 0.15 0.3−0.3

−0.15

0

0.15

0.3

(3.15)

ox,0 = 1
ox,0 > 1

x(1)

x
(2

)

(a) RCI sets obtained by solving the COP in (3.15)
with gen (Zx(t0)) = 8 and by executing Alg. 3.2
with kx,0 = 1 and different ox,0 ∈ N>0.

−0.3 −0.15 0 0.15 0.3−0.3

−0.15

0

0.15

0.3

Z?
x(t0)

ΠxR̃M
Lw

(
tkx,0 , Z?

x(t0), Z?
u(·)
)

x(1)

x
(2

)
(b) Small safe set obtained by executing Alg. 3.2

with kx,0 = 5 and ox,0 = 1. In addition, reach-
able sets ΠxR̃M

Lw ([tk, tk+1), Z⋆
x(t0), Z⋆

u(·)) with
k ∈ N[0,kx,0−1] are shown, where a lighter gray
tone corresponds to a larger prediction horizon.

Figure 3.4: Small safe sets of CT double-integrator system with scaling point x̊ = center (X).

we show the small safe parallelotope that is obtained by executing Alg. 3.2 with ox,0 = 1 and
kx,0 = 5. Because robust control invariance is not enforced in this case, more flexibility is
available for optimizing a smaller safe set compared to the ones in Fig. 3.4a.

Large Safe Sets

First, we compute large safe sets using the safe set scaling method in Alg. 3.3. We choose the
corresponding maximum interval radius to be ϵ = 0.01. In Fig. 3.5, we visualize the computed
scaled safe sets when choosing the same state and input weighting matrices of the LQR-based
controller as in Fig. 3.3. As can be seen, the optimal scaling factors significantly depend on
the chosen weighting matrices Q ∈ R2×2 and R ∈ R. Because the reachable sets of SKx touch
the bounds of X for Q = I and R = 20, the corresponding optimal scaling factor obtained by
executing Alg. 3.3 is only 1.0, i.e., the small safe set is not enlarged.

Second, we solve the COP in (3.20) to construct large safe sets. To cover X ⊂ R2, we choose
the columns of the fixed generator matrix Gfixed ∈ R2×10 to be 10 uniformly distributed points
around the top half unit circle. In addition, we use the sum of the generator scaling vector sx,0
for the linear cost function JZx(t0) = 1T sx,0 in (3.20a), rendering the COP in (3.20) a simple
linear programming problem. Based on Theorem 3.13, the cost in (3.20a) is monotonically
increasing with increasing initial time step kx,0 ∈ N>0. Thus, we increment kx,0 starting from 1
until the difference between two consecutive optimal costs is smaller than 10−5. In Fig. 3.6,
we visualize the evolution of the corresponding large safe sets when choosing the same state
and input weighting matrices of the LQR-based controller as in Fig. 3.3. As can be observed,
the choice of the state and input weighting matrices has only a small influence on the rate of

55

3 Safe Sets

X ΠxR̃M
Kx

(
[t(·), t(·)+1),S⋆

Kx, {0}
) random trajectories

S⋆
Kx SKx ΠxR̃M

Kx (tkKx
,S⋆

Kx, {0})

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(a) Q = I and R = 1: min (I) = 2.7.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(b) Q = 1000I and R = 1: min (I) = 3.1.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(c) Q = I and R = 20: min (I) = 1.0.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(d) Q = diag
([

1 40
]T

)
and R = 1: min (I) = 1.2.

Figure 3.5: Scaled safe sets of CT double-integrator system with optimal scaling factor min (I) obtained
by executing Alg. 3.3. The state and input weighting matrices Q ∈ R2×2 and R ∈ R of the
LQR-based controller are chosen analogously to Fig. 3.3. In addition, reachable sets and
random trajectories are shown.

56

3.6 Numerical Examples

X Z⋆
x(t0) for kx,0 ∈ N>0 Z⋆

x(t0) for converged kx,0

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(a) Q = I and R = 1: converged kx,0 = 33.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(b) Q = 1000I and R = 1: converged kx,0 = 36.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(c) Q = I and R = 20: converged kx,0 = 32.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(d) Q = diag
([

1 40
]T

)
and R = 1: converged

kx,0 = 33.

Figure 3.6: Large safe sets of CT double-integrator system obtained by solving (3.20) with increasing
initial time step kx,0. The state and input weighting matrices Q ∈ R2×2 and R ∈ R of the
LQR-based controller are chosen analogously to Fig. 3.3. The large safe sets with a lighter
gray tone correspond to a larger kx,0.

57

3 Safe Sets

convergence and the shape of the optimal large safe sets. This observation indicates that a
wide range of stabilizing state feedback matrices can be chosen without affecting the large safe
sets. In Fig. 3.7, we show the converged large safe sets along with their reachable sets and
random trajectories. As can be seen, ΠxR̃M

Kx

(
tkx,0 ,Z⋆

x(t0),Z⋆
u(·)
)
⊆ SKx in all cases although

(3.20) only implicitly considers the small safe set SKx.
Third, we demonstrate that our safe set approach is not overly conservative. To achieve

this, we compute a tight RCI under-approximation of the DT MRCI set, which is obtained by
executing Alg. 2.2 with convergence tolerance ϵ = 10−10. In addition, we would like to solve a
DT version of the COP in (3.20). Thus, to ensure a fair comparison, we enforce satisfaction of
the state and input constraints in (3.20d) and (3.20e) only at sampling times but not between
them. Moreover, we choose the fixed generator matrix Gfixed ∈ R2×10, linear cost function
JZx(t0) = 1T sx,0, and stabilizing state feedback matrix K ∈ R1×2 analogously to the previous
paragraph. Similar to Fig. 3.6, we visualize in Fig. 3.8 the evolution of the large safe sets
when incrementing the initial time step kx,0 starting from 1 until the difference between two
consecutive optimal costs is smaller than 10−5. As can be observed, our safe sets are tight
under-approximations of the DT MRCI set, which shows that our approach is not conservative.
Similar to Fig. 3.6, the choice of the state and input weighting matrices has only a small
influence on the converged large safe set.

Fourth, we solve the COP in (3.22) to construct large safe sets when choosing the same
Gfixed ∈ R2×10 as before. In addition, the stabilizing state feedback matrix K ∈ R1×2 is obtained
using LQR-based controller synthesis with state and input weighting matrices Q = I and R = 1,
respectively. For the terminal constraint in (3.22c), we use the safe set Ssafe ⊆ X that is
obtained by executing the safe set scaling method in Alg. 3.3, which is shown in Fig. 3.5a. In
contrast to (3.20), the cost in (3.22) is not necessarily monotonically increasing with increasing
kx,0 ∈ N>0. Nevertheless, we increment kx,0 starting from 1 until the absolute difference
between two consecutive optimal costs is smaller than 10−5, which typically implies that the
terminal constraint in (3.22c) becomes inactive. In Fig. 3.9, we visualize the evolution of the
corresponding large safe sets when choosing the presented cost functions in Subsection 3.5.4.
As can be observed, the volume of the safe set can be significantly enlarged irrespective of the
chosen cost function, which mainly influences the shape of the safe sets.

Fifth, we solve the COP in (3.23) to construct large RCI sets when choosing the same
Gfixed ∈ R2×10 as before. Based on Proposition 3.15, the obtained large safe set is an RCI set if
(3.23) is feasible for the initial time step kx,0 = 1. In Fig. 3.10, we visualize such large RCI
sets when choosing the presented cost functions in Subsection 3.5.4. Compared to the large
safe sets in Fig. 3.9, all computed RCI sets result in smaller costs, i.e., in worse performance.
Nevertheless, these safe sets are RCI, a beneficial property that can be exploited.

3.6.2 Discrete-Time Double-Integrator System
To compare our safe set approaches with two other established techniques [132,134], we consider
a DT double-integrator system [166], which is used in [132, Sec. VI-A] and in [134, Sec. V-B].
The corresponding DT dynamics is

x(tk+1) =
[

1 1
0 1

]
x(tk) +

[
0
1

]
u(tk) +

[
1
1

]
wD(tk)

58

3.6 Numerical Examples

X ΠxR̃M
Kx

(
[t(·), t(·)+1),Z⋆

x(t0),Z⋆
u(·)
) random trajectories

Z⋆
x(t0) SKx ΠxR̃M

Kx

(
tkx,0 ,Z⋆

x(t0),Z⋆
u(·)
)

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(a) Q = I and R = 1: converged kx,0 = 33.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(b) Q = 1000I and R = 1: converged kx,0 = 36.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(c) Q = I and R = 20: converged kx,0 = 32.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(d) Q = diag
([

1 40
]T

)
and R = 1: converged

kx,0 = 33.

Figure 3.7: Large safe sets of CT double-integrator system obtained by solving (3.20) with converged
initial time step kx,0, which correspond to the green large safe sets in Fig. 3.6. The state
and input weighting matrices Q ∈ R2×2 and R ∈ R of the LQR-based controller are chosen
analogously to Fig. 3.6. In addition, reachable sets and random trajectories are shown.

59

3 Safe Sets

X MRCI set Z⋆
x(t0) for kx,0 ∈ N>0 Z⋆

x(t0) for converged kx,0

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(a) Q = I and R = 1: converged kx,0 = 32.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)
x

(2
)

(b) Q = 1000I and R = 1: converged kx,0 = 36.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(c) Q = I and R = 20: converged kx,0 = 31.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(d) Q = diag
([

1 40
]T

)
and R = 1: converged

kx,0 = 32.

Figure 3.8: Comparison of DT, large safe sets of CT double-integrator system and RCI under-
approximation of MRCI set, which is obtained by executing Alg. 2.2 with ϵ = 10−10.
The large safe sets are obtained by solving a DT version of (3.20). Moreover, the large safe
sets with a lighter gray tone correspond to a larger initial time step kx,0. In addition, the
state and input weighting matrices Q ∈ R2×2 and R ∈ R of the LQR-based controller are
chosen analogously to Fig. 3.6.

60

3.6 Numerical Examples

X Ssafe Z⋆
x(t0) for kx,0 ∈ N>0 Z⋆

x(t0) for converged kx,0

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(a) 1T sx,0: converged kx,0 = 18.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(b)
(∏n

i=1 s
(i)
x,0

) 1
n with n = gen (Z⋆

x(t0)): converged
kx,0 = 15.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(c) Volume of approximative ellipsoid (see Subsec-
tion 3.5.4): converged kx,0 = 11.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(d) Volume of enclosed multidimensional interval (see
Subsection 3.5.4): converged kx,0 = 17.

Figure 3.9: Large safe sets of CT double-integrator system obtained by solving (3.22) with increasing
initial time step kx,0 using different cost functions in (3.22a). The large safe sets with a
lighter gray tone correspond to a larger kx,0.

61

3 Safe Sets

X ΠxR̃M
Lw ([0,∆t),Z⋆

x(t0),Z⋆
u(·)) random trajectories

Z⋆
x(t0) ΠxR̃M

Lw (∆t,Z⋆
x(t0),Z⋆

u(·))

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(a) 1T sx,0.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(b)
(∏n

i=1 s
(i)
x,0

) 1
n with n = gen (Z⋆

x(t0)).

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(c) Volume of approximative ellipsoid (see Subsec-
tion 3.5.4).

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

(d) Volume of enclosed multidimensional interval (see
Subsection 3.5.4).

Figure 3.10: RCI sets of CT double-integrator system obtained by solving (3.23) using different cost
functions in (3.23a). In addition, reachable sets and random trajectories are shown.

62

3.6 Numerical Examples

1T sx,0
(∏n

i=1 s
(i)
x,0

) 1
n with n = gen (Z⋆

x(t0)) [132]
approximative ellipsoid enclosed multidimensional interval [134]

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

number of columns of Gfixed/rows of P [132, 134]
2

vo
lu

m
e

of
ob

ta
in

ed
R

C
I

se
t

vo
lu

m
e

of
M

R
C

I
se

t

Figure 3.11: Evolution of the RCI set volumes of DT double-integrator system. The sets are computed
by solving (3.23) using different cost functions in (3.23a) and by following the established
approaches in [132,134].

with DT disturbance set WD = [−0.1, 0.1] and state and input constraint sets X = [−1, 1]2 and
U = [−1, 1], respectively.

Both established methods require an initial guess for a matrix P [132,134] that is similar to the
transpose of the fixed generator matrix Gfixed in our presented safe set approaches. In [132], it
is proposed to choose P [132,134] such that a regular polytope is described. Similarly, the first
author of [134] suggests in his doctoral dissertation to sample uniformly distributed points
around the top half unit circle in the two-dimensional case and to use the sampled points as rows
of P [132,134] [167, Rmk. 4]. To provide a fair comparison of the three considered approaches,
we follow this suggestion for constructing P [132,134] and Gfixed, respectively.

Because both established approaches aim at computing large RCI under-approximations of
the MRCI set, we solve the COP in (3.23) with initial time step kx,0 = 1 to construct large
RCI sets as well. In particular, we use the presented cost functions in Subsection 3.5.4, which
have also been used for generating the plots in Fig. 3.10. Moreover, both established methods
solve a sequence of SDP problems to maximize the size of the RCI set. To detect convergence,
we terminate the algorithms as soon as the difference between two consecutive cost function
values is smaller than 10−5. In addition, to obtain an initial feasible solution for the approach
in [134], we choose the two scalar parameters ψ1 and ψ2 to be 100.

In Fig. 3.11, we show the evolution of the RCI set volumes with respect to the volume of
a tight RCI under-approximation of the MRCI set, which is obtained by executing Alg. 2.2
with convergence tolerance ϵ = 10−10. When choosing Gfixed = I ∈ R2×2, the COP in (3.23) is
infeasible and, thus, the volumes of our RCI sets are zero. In contrast to our generator-scaling-
based approach, both methods in [132, 134] achieve feasibility for Gfixed = I by optimizing
the orientations. Nevertheless, when increasing the number of columns of Gfixed and rows of

63

3 Safe Sets

3rd follower 2nd follower 1st follower leader

dref + e(3) dref + e(2) dref + e(1)

Figure 3.12: Vehicle platooning system. The safe reference distance dref and the relative position errors
between two vehicles are shown.

P [132,134], respectively, our approach outperforms the other two unless the simple enclosed
multidimensional interval approximation is chosen as cost function. When adding more columns
to an existing Gfixed, e.g., by doubling the number of uniformly distributed samples, the volumes
of our approach are typically increasing. This increase shows that our cost function heuristics
are reasonable. In contrast to this increase in volume, the approach in [134] achieves its highest
volume when P [132,134] has only four rows, which might be caused by the used linearization
techniques [134]. Thus, increasing the complexity of the RCI set does not necessarily result in
an increase in volume, which can also be observed in Fig. 3.11 for the approach in [132].

3.6.3 Vehicle Platooning System
To demonstrate the applicability of our safe set approaches to a larger system, we consider a
vehicle platooning system with nine states and three inputs [168], which is briefly summarized
subsequently. The dynamics corresponding to the relative motion of the ith following vehicle
with i ∈ N[1,3] and its vehicle ahead is

ë(i)(t) = a(i−1)(t)− a(i)(t), (3.24)

where the relative position error e(i) ∈ R denotes the difference between the two vehicles and
a given safe reference distance dref ∈ R>0, as illustrated in Fig. 3.12. In addition, a(i) ∈ R
corresponds to the ith effective acceleration described by the drivetrain dynamics

ȧ(i)(t) = − 1
Ti
a(i)(t) + 1

Ti
u(i)(t), (3.25)

where Ti ∈ R>0 represents a time constant that is assumed to be 0.5 s for all i ∈ N[1,3] and
u(i) ∈ R is the ith control input. In addition, the acceleration of the leading vehicle a(0) is
assumed to be an unknown but bounded disturbance. In summary, the state of the platoon
is described by x =

[
e(1) ė(1) a(1) e(2) ė(2) a(2) e(3) ė(3) a(3)

]T
, the control input is

u =
[
u(1) u(2) u(3)

]T
, and the state disturbance is w =

[
0 a(0) 0 . . . 0

]T
.

The sampling period is ∆t = 0.1 s, and the state, input, and disturbance bounds are presented
in Table 3.1. Because all relative position errors are bounded by [−10, 10] m, the distance
between two following vehicles is guaranteed to be within [0, 20] m when setting dref = 10 m.
Then, compared to a nonplatooning scenario, the air drag of the following vehicles is reduced
and the fuel consumption is decreased [169].

Because vehicle-to-vehicle communication is assumed [170, 171], a central controller with
stabilizing feedback matrix K ∈ R3×9 can be designed using a linear matrix inequality (LMI)-

64

3.6 Numerical Examples

Table 3.1: State, input, and disturbance bounds of vehicle platooning system.

Variables Bounds

e(1), e(2), e(3) [−10, 10] m
ė(1), ė(2), ė(3) [−5, 5] m

s
a(1), a(2), a(3) [−8, 8] m

s2

u(1), u(2), u(3) [−8, 8] m
s2

a(0) [−2, 2] m
s2

based controller synthesis [168], which results in

K =




0.8025 2.4340 −0.7877 −0.4099 0.2135 −0.0225 −0.0971 0.1813 −0.0473
0.4359 1.9070 −0.0377 0.5968 1.8129 −0.6198 −0.2975 0.0647 −0.0398
0.3566 1.7865 −0.0482 0.4236 1.6284 −0.0438 0.6363 1.5360 −0.5678


 .

(3.26)
We also want to mention that the overall system matrix (A+BK) ∈ R9×9 is a sparse matrix.
However, all entries of the matrix exponential e(A+BK)∆t are nonzero, making the exploitation
of the sparsity challenging. In addition, we ignore the underlying structure and consider the
system as a black box because we want to show the applicability of our robust control approach
to large-scale systems.

In Fig. 3.13, we visualize the small safe sets that are obtained by following the approaches
presented in Section 3.4 for the scaling point x̊ = center (X). In particular, we execute Alg. 3.1
with convergence tolerance ϵ = 0.01 to obtain a small safe set SKx, which takes 0.4 s. In
addition, we execute Alg. 3.2 with ox,0 = 1 to obtain a small safe parallelotope, which takes
3.8 s. Moreover, we solve the COP in (3.15) to construct a small RCI set, which takes 0.2 s.
Ensuring feasibility of (3.15) requires the number of generators gen (Zx(t0)) to be at least 26,
i.e., the order of this small RCI set is similar to the one in Subsection 3.6.1. As hardly visible
in the projection onto the e(2)-ė(2)-plane, the expansion of the RCI set is smaller than 10−3 in
both of these dimensions. This small expansion might cause numerical issues when using this
small RCI set in other robust control applications.

In Fig. 3.14, we visualize the large safe sets that are obtained by following some approaches
presented in Section 3.5. In particular, we execute Alg. 3.3 with maximum interval radius ϵ = 0.01
to obtain the scaled safe set S⋆

Kx ⊆ X , which takes 0.3 s. In addition, we use S⋆
Kx as safe

terminal set Ssafe when solving the COP in (3.22), which takes 30 s. In particular, we use
the geometric mean of the generator scaling vector sx,0 ∈ R27

≥0 for the cost function JZx(t0) in
(3.22a). Moreover, the fixed generator matrix Gfixed ∈ R9×27 is chosen as the generator matrix
of S⋆

Kx, and the initial time step is kx,0 = 30. We also want to mention that the COP in (3.23)
is infeasible when choosing the same Gfixed and kx,0 = 1, i.e., an RCI set is not computed
successfully based on Proposition 3.15. This infeasibility indicates that enforcing robust control
invariance is more sensitive to parameter choices than guaranteeing safety.

Similarly, we are unable to compute a DT RCI set using established techniques [40, 132,134].
In particular, the exponential computational complexity of polytopic set operations prevents

65

3 Safe Sets

X Alg. 3.1 with ϵ = 0.01
(3.15) with gen (Zx(t0)) = 26 Alg. 3.2 with ox,0 = 1 and kx,0 = 16

−10 −5 0 5 10−5

−2.5

0

2.5

5

e(1) [m]

ė(1
)
[m s
]

−10 −5 0 5 10−5

−2.5

0

2.5

5

e(2) [m]

ė(2
)
[m s
]

−10 −5 0 5 10−8

−4

0

4

8

e(1) [m]

a
(1

)
[m s2
]

−5 −2.5 0 2.5 5−8

−4

0

4

8

ė(1) [m
s
]

a
(3

)
[m s2
]

Figure 3.13: Two-dimensional projections of small safe sets of vehicle platooning system with scaling
point x̊ = center (X).

66

3.6 Numerical Examples

X ΠxR̃M
Kx

(
[t(·), t(·)+1),Z⋆

x(t0),Z⋆
u(·)
) random trajectories

Z⋆
x(t0) S⋆

Kx ΠxR̃M
Kx

(
tkx,0 ,Z⋆

x(t0),Z⋆
u(·)
)

−10 −5 0 5 10−5

−2.5

0

2.5

5

e(1) [m]

ė(1
)
[m s
]

−10 −5 0 5 10−5

−2.5

0

2.5

5

e(2) [m]

ė(2
)
[m s
]

−10 −5 0 5 10−8

−4

0

4

8

e(1) [m]

a
(1

)
[m s2
]

−5 −2.5 0 2.5 5−8

−4

0

4

8

ė(1) [m
s
]

a
(3

)
[m s2
]

Figure 3.14: Two-dimensional projections of large safe sets of vehicle platooning system, which are
obtained by executing Alg. 3.3 and by solving the COP in (3.22) with safe terminal
set S⋆

Kx. In addition, reachable sets and random trajectories are shown.

67

3 Safe Sets

the synthesis of an RCI under-approximation of the MRCI set [40], which is implemented by
Alg. 2.2. To use the methods in [132, 134], we proceed analogously to Subsection 3.6.2, i.e.,
we use the transpose of Gfixed as P [132,134] ∈ R27×9. Because a nine-dimensional set must be
converted from half-space to vertex representation in [134], this method also suffers from a
high computational complexity and an error is thrown by the used MATLAB toolbox [77]. In
addition, the number of scalar inequalities scales exponentially with the dimension of the state
space. Similarly, following the approach in [132] led to an initial infeasible solution, which can
also be observed for smaller dimensional systems.

3.6.4 Chain of Mass-Spring-Damper Systems
To demonstrate the scalability of our safe set approaches, we consider a chain of N ∈ N>0 MSD
systems [172,173], which is briefly summarized subsequently. The dynamics corresponding to
the ith MSD system with i ∈ N[2,N−1] is

[
ẋ(2i−1)(t)
ẋ(2i)(t)

]
=
[

0 1
−2k −2d

][
x(2i−1)(t)
x(2i)(t)

]
+
[

0
u(i)(t)

]

+
[

0 0
k d

][
x(2(i+1)−1)(t) + x(2(i−1)−1)(t)
x(2(i+1))(t) + x(2(i−1))(t)

]
+
[
w(2i−1)(t)
w(2i)(t)

]
,

where k = 3 and d = 3 are the spring and damper parameters of all systems. Similarly, the
dynamics corresponding to the first and the last MSD systems are

[
ẋ(1)(t)
ẋ(2)(t)

]
=
[

0 1
−k −d

][
x(1)(t)
x(2)(t)

]
+
[

0
u(1)(t)

]
+
[

0 0
k d

][
x(3)(t)
x(4)(t)

]
+
[
w(1)(t)
w(2)(t)

]

[
ẋ(2N−1)(t)
ẋ(2N)(t)

]
=
[

0 1
−k −d

][
x(2N−1)(t)
x(2N)(t)

]
+
[

0
u(N)(t)

]

+
[

0 0
k d

][
x(2(N−1)−1)(t)
x(2(N−1))(t)

]
+
[
w(2N−1)(t)
w(2N)(t)

]
.

The sampling period is ∆t = 0.1 s, and the disturbance, state, and input constraint sets are
W = [−0.1, 0.1]2N , X = [−1, 1]2N , and U = [−10, 10]N , respectively. Moreover, the stabilizing
state feedback matrix K ∈ RN×2N is obtained using LQR-based controller synthesis [155],
where both state and input weighting matrices are identity matrices. Subsequently, we report
the computation times of our small and large safe set approaches presented in Sections 3.4
and 3.5, respectively. As mentioned in Section 2.5, we always exclude the time for modeling a
COP with YALMIP [66] when reporting the computation time for solving it.

Small Safe Sets

Because no time-consuming optimization problem is solved in Alg. 3.1, the corresponding
computation times in Table 3.2 are always smaller than 1 s. In addition, when decreasing the
convergence tolerance ϵ ∈ R>0, the computation time and the corresponding time step kKx

usually increase while the zonotope order order (SKx) of the small safe set SKx ⊆ X decreases.

68

3.6 Numerical Examples

Table 3.2: Small safe sets obtained by executing Alg. 3.1 with varying convergence tolerance ϵ for a
chain of N MSD systems.

N ϵ computation time [s] order (SKx) kKx

2 10−1 0.079 1 42
2 10−2 0.029 1 60
2 10−3 0.041 1 96

3 10−1 0.026 1 42
3 10−2 0.045 1 60
3 10−3 0.120 1 96

4 10−1 0.039 3 42
4 10−2 0.070 2 60
4 10−3 0.173 2 96

5 10−1 0.061 10 42
5 10−2 0.135 5 66
5 10−3 0.280 3 97

6 10−1 0.122 18 43
6 10−2 0.251 13 71
6 10−3 0.567 12 102

7 10−1 0.207 21 43
7 10−2 0.407 17 74
7 10−3 0.747 16 104

This relationship holds because SKx becomes a tighter over-approximation of the DT mRPI set
based on Lemma 3.8.

The results for computing small RCI sets obtained by solving (3.15) with scaling point x̊ =
center (X) are shown in Table 3.3. As the dimension of the system increases, the number of
generators gen (Zx(t0)) of Zx(t0) must also be increased to ensure the feasibility of (3.15) based
on Proposition 3.10. Nevertheless, the computation time for solving (3.15) scales moderately
with the dimension of the state space nx = 2N when keeping gen (Zx(t0)) constant, as can be
seen in the penultimate column of Table 3.3. Moreover, the optimal cost s⋆

X , which we minimize
in (3.15), increases only slightly with the system dimension and seems to converge, as shown in
the last column.

The results for computing small safe sets obtained by executing Alg. 3.2 with scaling
point x̊ = center (X), initial time step kx,0 = 3, and varying zonotope order ox,0 ∈ N>0 are
shown in Table 3.4. For all systems, it is possible to compute a small safe set whose zonotope
order ox,0 is only 1. In contrast to these simple parallelotopes, the zonotope order of the small
RCI sets in Table 3.3 is always equal or greater than 4. This observation indicates that enforcing

69

3 Safe Sets

Table 3.3: Small RCI sets obtained by solving (3.15) with scaling point x̊ = center (X) for a chain of
N MSD systems.

N min gen (Zx(t0)) for feasibility gen (Zx(t0)) = 100

computation time [s] s⋆
X

2 16 0.184 0.130
3 38 0.229 0.142
4 56 0.419 0.144

5 68 0.634 0.145
6 84 7.837 0.145
7 98 2.974 0.146

Table 3.4: Small safe sets obtained by executing Alg. 3.2 with scaling point x̊ = center (X), initial
time step kx,0 = 3, and varying zonotope order ox,0 for a chain of N MSD systems.

N ox,0 computation time [s] s⋆
X

2 1 0.109 0.053
2 2 0.205 0.045
2 3 0.118 0.043

3 1 0.170 0.057
3 2 0.285 0.053
3 3 0.365 0.051

4 1 0.349 0.066
4 2 0.738 0.058
4 3 1.028 0.050

5 1 1.306 0.083
5 2 1.775 0.049
5 3 4.857 0.046

6 1 4.887 0.094
6 2 7.684 0.067
6 3 11.475 0.067

7 1 3.109 0.116
7 2 6.345 0.075
7 3 27.862 0.066

70

3.6 Numerical Examples

Table 3.5: Large safe sets obtained by executing Alg. 3.3 with varying maximum interval radius ϵ and
small safe set SKx from Table 3.2 for a chain of N MSD systems.

N ϵ order (SKx) kKx computation time [s] min (I)

2 10−1 1 42 0.017 1.475
2 10−2 1 60 0.052 1.826
2 10−3 1 96 0.155 1.859

3 10−1 1 42 0.016 1.165
3 10−2 1 60 0.094 1.420
3 10−3 1 96 0.380 1.451

4 10−1 3 42 0.001 1.000
4 10−2 2 60 0.115 1.134
4 10−3 2 96 0.549 1.161

5 10−1 10 42 0.001 1.000
5 10−2 5 66 0.086 1.018
5 10−3 3 97 0.239 1.005

6 10−1 18 43 0.002 1.000
6 10−2 13 71 0.003 1.000
6 10−3 12 102 1.119 1.025

7 10−1 21 43 0.004 1.000
7 10−2 17 74 0.313 1.013
7 10−3 16 104 1.219 1.015

robust control invariance is more complicated than guaranteeing safety, similar to the small
safe set results in Subsection 3.6.1. Similar to the computation times in Table 3.3, the ones
in Table 3.4 also scale moderately with the state space dimension while the optimal cost s⋆

X
decreases when increasing the zonotope order ox,0.

Large Safe Sets

The results for computing large safe sets obtained by executing Alg. 3.3 are shown in Table 3.5,
where the maximum interval radii are identical to the convergence tolerances in Table 3.2. Thus,
the third and fourth columns of Table 3.5 are identical to the last two columns of Table 3.2.
Because a simple binary search is performed in Alg. 3.3, the reported computation times in the
fifth column of Table 3.5 are always smaller than 1.3 s. Thus, Alg. 3.3 is well suited for quickly
computing safe sets of large-scale systems.

For the following large safe set approaches that solve an optimization problem, we choose
the concave cost function JZx(t0) to be log(det(S)) with S ∈ R2N×2N being the symmetric

71

3 Safe Sets

positive definite shape matrix of the approximative ellipsoid, as explained in Subsection 3.5.4.
In addition, Z⋆

x,(3.15)(t0) denotes the small RCI set obtained by solving (3.15) with scaling
point x̊ = center (X) and gen

(
Z⋆

x,(3.15)(t0)
)

= 100. Thus, the construction of Z⋆
x,(3.15)(t0)

corresponds to the last two columns of Table 3.3.
The results for computing large safe parallelotopes obtained by solving (3.20) are shown

in Table 3.6, where the square fixed generator matrix Gfixed ∈ R2N×2N equals the generator
matrix of a safe set of reduced zonotope order. As shown in the fourth and last columns of
Table 3.6 and proven in Theorem 3.13, the optimal cost log(det(S⋆)) is monotonically increasing
with increasing initial time step kx,0 ∈ N>0. For instance, the optimal cost has converged for
N = 2 with kx,0 = 15. In addition, the choice of the fixed generator matrix Gfixed influences
the optimal cost only slightly, and the computation time moderately increases when increasing
N or kx,0.

The results for computing large RCI sets obtained by solving (3.23) with initial time
step kx,0 = 1 are shown in Table 3.7. In contrast to the small RCI set results in Table 3.3,
the minimum zonotope order that is required to ensure feasibility of (3.23) is equal or smaller
than 2 for all systems, as shown in the second column of Table 3.7. This minimum zonotope
order indicates that the large RCI set approach is less conservative than the small RCI set one,
although a fixed generator matrix is used. As shown in the penultimate column of Table 3.7,
the computation time for solving (3.23) to obtain large safe sets scales moderately with the
state space dimension nx = 2N . Moreover, the optimal costs log(det(S⋆)) in the last column
of Table 3.7 are larger than the ones in Table 3.6, which is enabled, inter alia, by the bigger
zonotope order of 3 instead of 1.

3.7 Summary
In this chapter, we have presented efficient methods for synthesizing zonotopic safe sets along
with corresponding safety-preserving controllers, which ensure robust constraint satisfaction for
an infinite time horizon. First, we have computed reachable sets when using a simple state
feedback controller and a slightly more sophisticated disturbance feedback controller.

Based on the reachable set computations, we have proposed three different approaches for
computing safe sets that are as small as possible: The first one determines a small safe set
without solving an optimization problem but assumes a stabilizing state feedback matrix to be
given. This assumption is not required for our second method, which computes a small RCI set
whose number of generators must be large enough to ensure the feasibility of the corresponding
COP. To prevent the number of generators of a small safe set from becoming too large, the
third approach limits this number while using the disturbance feedback controller.

In addition to these small safe set methods, we have also proposed three different approaches
for computing safe sets that are as large as possible: The first one determines a large safe set by
uniformly scaling a small safe set without solving an optimization problem. By exploiting the
superposition principle, the second method solves a COP whose cost monotonically increases
with increasing horizon. Moreover, the third approach computes large safe sets by solving a
COP that ensures the last reachable set is contained within a safe set.

Finally, we have demonstrated the effectiveness of our proposed safe set approaches using
multiple numerical examples. In particular, to show the performance of all proposed approaches,

72

3.7 Summary

Table 3.6: Large safe sets obtained by solving (3.20) with varying initial time step kx,0 for a chain of
N MSD systems. The square fixed generator matrix Gfixed ∈ R2N×2N equals the generator
matrix of a safe set of reduced zonotope order.

N kx,0 reduce (S⋆
Kx, 1) with ϵ = 10−2 reduce

(
Z⋆

x,(3.15)(t0), 1
)

computation time [s] log(det(S⋆)) computation time [s] log(det(S⋆))

2 5 0.168 0.321 0.043 0.363
2 10 0.109 0.695 0.092 0.681
2 15 0.232 0.840 0.193 0.787
2 20 0.424 0.840 0.289 0.787

3 5 0.158 0.381 0.137 0.461
3 10 0.579 0.672 0.442 0.692
3 15 0.980 0.785 0.933 0.785
3 20 1.385 0.785 1.297 0.788

4 5 0.326 0.243 0.354 0.311
4 10 0.995 0.511 1.074 0.489
4 15 2.522 0.678 2.450 0.581
4 20 3.266 0.678 3.386 0.598

5 5 0.824 0.383 0.857 0.495
5 10 2.299 0.604 2.529 0.650
5 15 5.915 0.728 6.260 0.721
5 20 5.968 0.734 6.605 0.736

6 5 0.921 0.349 0.981 0.439
6 10 3.289 0.560 3.279 0.598
6 15 7.378 0.630 7.690 0.679
6 20 12.382 0.639 13.631 0.704

7 5 1.373 0.295 1.425 0.372
7 10 5.096 0.497 4.858 0.532
7 15 14.448 0.580 14.089 0.616
7 20 25.602 0.609 26.819 0.647

73

3 Safe Sets

Table 3.7: Large RCI sets obtained by solving (3.23) for a chain of N MSD systems. The fixed
generator matrix Gfixed ∈ R2N×gen(Zx(t0)) equals the generator matrix of the zono-
tope reduce

(
Z⋆

x,(3.15)(t0), order (Zx(t0))
)

.

N min order (Zx(t0)) for feasibility order (Zx(t0)) = 3

computation time [s] log(det(S⋆))

2 1 0.122 0.817
3 1 0.140 0.841
4 1 0.349 0.730

5 1 0.634 0.790
6 2 0.981 0.730
7 2 1.481 0.688

we have considered a simple two-dimensional system such that no projection is required to
visualize them along with their reachable sets. To demonstrate the scalability of our robust
control methods, we have also used a chain of MSD systems. Because all of our proposed
approaches use zonotopes as set representations and are based on scalable reachability analysis
and convex optimization, they scale moderately with the dimension of the system. In the
following chapter, we incorporate our large safe sets into one of the most popular control
methods, namely, MPC.

74

4 Model Predictive Control

In this chapter, which is based on [47,50], we propose a real-time robust output feedback model
predictive control (MPC) approach that uses our large safe sets presented in Section 3.5 as
terminal sets. After introducing the concept of MPC and reviewing the relevant literature
in Section 4.1, we formulate the control goal of this chapter in Section 4.2. In addition, we
present some preliminaries in Section 4.3. In Section 4.4, we propose our scalable robust output
feedback dual-mode MPC approach for sampled-data systems that explicitly considers the
computation time of the online optimal MPC problem. To demonstrate the effectiveness of
our approach, we consider two numerical examples in Section 4.5. Finally, we summarize this
chapter in Section 4.6.

4.1 Introduction and State of the Art
Over the past few decades, MPC has become a very successful approach for controlling complex
dynamical systems in industry [174, 175]. For instance, MPC is used in the automotive
industry [176], in health care [177], in power electronics [178], in air conditioning systems [179],
and in the field of finance [180]. Thus, MPC is also known as “most popular control”. Its
great popularity can be attributed to its simple concept and ability to effectively deal with
state and input constraints [41–43,128,181], which is impossible with linear-quadratic regulator
(LQR)-based controller synthesis [155].

Typically, (implicit) MPC follows a three-step iterative online scheme: At each sampling
time tk = k∆t, it

1. measures/estimates the current state of the system;

2. solves an online optimization problem on a moving horizon of N ∈ N>0 to obtain an
optimal input sequence, as illustrated in Fig. 4.1; and

3. applies only the first input of this sequence to the system until the next sampling time.

Because of the moving prediction window, MPC is also known as moving or receding horizon
control. Instead of iteratively solving an optimization problem online, explicit MPC solves
a reformulation of this problem offline as a function of the state [182, 183]. By solving this
offline multi-parametric programming problem once [77], the dependence of the controller on
the state is given explicitly instead of defining it implicitly by the online optimization problem.
Although explicit MPC is often used to achieve small sampling periods on embedded platforms,
it is usually limited to small problems due to its high computational complexity [184].

When using MPC in safety-critical applications, it is crucial to formally guarantee robustness
against disturbances. Thus, robust MPC approaches that ensure robust constraint satisfaction
despite unknown but bounded disturbances are required [160,185–187]. Initially, robust MPC

75

4 Model Predictive Control

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
−10

−5

0

5

10

∆t prediction horizon N

time t

past state predicted state
past input predicted optimal input

Figure 4.1: MPC concept. At current initial time t3, an optimization problem is solved on a moving
horizon of N = 7.

has been applied to linear systems with state feedback control. Because a min-max optimization
over general feedback controllers easily becomes impractical due to its high computational
complexity [188–191], tube-based MPC approaches have been proposed [192,193]. The key idea
is to ensure that the state of the system stays within a tube surrounding the nominal trajectory
that satisfies the state and input constraints. Thus, by tightening the constraints appropriately,
only the disturbance-free nominal prediction model is required for online computations, whereas
computationally expensive set operations are performed offline. In addition, many extensions
and generalizations of the traditional tube-based MPC approach exist [194–196].

Depending on the application, these robust MPC approaches have also been successfully
applied in real time. For instance, a system of oscillating masses with sampling periods in the
order of 1 ms and the trajectory tracking of a mobile robot with a sampling period of 350 ms
are studied [197,198]. To enable real-time computations, set-based reachability analysis can
also be used in a second step to formally verify that the solution of an approximate optimal
MPC problem robustly satisfies the state and input constraints [96].

When using MPC in real-world environments, the exact measurement of the system state
is typically unavailable. Thus, in addition to state feedback MPC, output feedback MPC
approaches that use noisy measurements of the system have been proposed. Based on these
measurements, a simple linear Luenberger state observer is often used in robust output feedback
MPC to estimate the inaccessible state of the system [199–202]. In addition, there also exist
more sophisticated methods that incorporate set-membership and moving horizon estimation
into MPC [203–207]. These methods use not only the a priori known error sets but also the
noisy measurements obtained online to provide more accurate state estimates at the expense of
increased computational complexity.

Most literature on robust MPC deals with discrete-time (DT) models. Thus, constraint
satisfaction is only guaranteed at discrete time steps while assuming that the solution of the
optimal MPC problem can be obtained instantaneously. However, most real-world control
applications can be accurately modeled by sampled-data systems, where a continuous-time (CT)
physical plant is controlled by a DT digital controller. Therefore, robust constraint satisfaction
must also be guaranteed between two discrete sampling times. Because of its high practical

76

4.2 Problem Formulation

relevance, the consideration of sampled-data robust MPC approaches has gained popularity
over the past few years [208, 209]. For instance, the approach in [193] has been extended to
deal with sampled-data systems in [210]. However, in this extension, the unknown but bounded
disturbance is assumed to be constant between two sampling times, which is quite unrealistic.

Because most robust MPC approaches suffer from high computational complexity, centralized
methods are usually unsuitable for handling large-scale systems. For instance, the computation
of a polytopic invariant terminal set is difficult for large-scale systems because performing the
required polytopic set operations becomes intractable [211], as shown in Table 2.1. Typically,
these problems can only be overcome if the original control problem can be decomposed into
simpler ones, as in distributed and decentralized MPC [146, 212, 213]. Instead of polytopes,
ellipsoids are also widely used in MPC approaches to analyze the evolution of the disturbance
based on scalable ellipsoidal reachability analysis [97,98]. However, ellipsoids under-approximate
typical constraints represented by multidimensional intervals in high dimensions very poorly [129,
142], increasing conservativeness.

It is clear from the presented literature review that it is an unresolved issue to provide
a scalable, real-time, robust output feedback MPC approach for sampled-data systems. In
this chapter, we address this issue by incorporating our efficient large safe set computations
proposed in Section 3.5 into robust output feedback MPC. In particular, we use our large
safe sets as terminal sets in the optimal MPC problem, which is iteratively solved online on a
moving horizon, as shown in Fig. 4.1. Because the computation time for solving this convex
optimization problem (COP) is nonnegligible, we explicitly consider it in our reachability
analysis to avoid invalidating the formal safety guarantees. In addition, we use a simple linear
Luenberger state observer to estimate the inaccessible state of the system. Before we present our
scalable, real-time, robust output feedback MPC approach, we formulate the control problem
of this chapter in the following section.

4.2 Problem Formulation
In this chapter, we consider a CT, linear time-invariant (LTI) system that evolves according to
(2.20), i.e., it is compactly represented by the model M = (A,B,W,CT). Instead of making
the simplifying assumption that the state of the system is directly measurable, as done in
Chapter 3, only noisy measurements

yD(tk) = CDx(tk) + vD(tk) (4.1)

are available at periodic sampling times tk, where CD ∈ Rny×nx is the output matrix and
vD(tk) ∈ Rny is the unknown output disturbance at tk. Similar to the zonotopic state disturbance
set W, the output disturbance set VD = ⟨cVD

, GVD
⟩Z ⊂ Rny contains the unknown output

disturbance at all times, i.e., vD(·) ∈ VD. As for the state and input constraints in (3.1), in
this chapter, the system in (2.20) is also constrained by

x(·) ∈ X (4.2a)
u(·) ∈ U , (4.2b)

where X = ⟨HX , hX ⟩P ⊂ Rnx and U = ⟨HU , hU ⟩P ⊂ Rnu are the state and input constraint
sets, respectively. Because W, VD, X , and U are usually represented by multidimensional

77

4 Model Predictive Control

intervals, they can be easily expressed in both half-space and generator representations using
(2.5) and (2.6). If other set representations are chosen, tight polytopic under-approximations of
X and U as well as zonotopic over-approximations of W and VD must be computed such that
the formal safety guarantees remain valid.

To formulate a meaningful sampled-data control problem, we assume that (AD, BD, CD) is
stabilizable and detectable, where AD ∈ Rnx×nx and BD ∈ Rnx×nu are the DT system and
input matrices defined in (2.27). Without loss of generality, we also assume that W, VD, X ,
and U contain the origin. Then, the control goal of this chapter is to steer the system in (2.20)
to a neighborhood of the origin while satisfying the safety constraints in (4.2).

4.3 Preliminaries
In this section, we present our clocked digital state estimator and controller. In addition, we
compute reachable sets for times tk + t with t ∈ R≥0 based on the noisy measurement yD(tk)
obtained at tk. Finally, we determine large safe sets along with corresponding safety-preserving
controllers by slightly modifying the approaches proposed in Section 3.5.

4.3.1 State Estimation and Control
The noisy measurements in (4.1) are used to compute state estimates at sampling times. To
obtain a DT state estimator, we consider the exactly discretized system dynamics in (2.28)
with corresponding model (AD, BD,WD,DT). Instead of using a computationally demanding
set-membership or strip-based observer [91,214], we choose a simple linear Luenberger state
estimator

x̂(tk+1) = ADx̂(tk) +BDu(tk) + L
(
yD(tk)− CDx̂(tk)

)
,

where L ∈ Rnx×ny is a stabilizing output injection matrix such that all eigenvalues of AD−LCD

are contained in the open complex unit disc [215]. As a result, the dynamics of the state
estimation error ξ(tk) = x(tk)− x̂(tk) and the corresponding error sets are

ξ(tk+1) = (AD − LCD)ξ(tk) + wD(tk)− LvD(tk) (4.3a)
E(tk+1) = (AD − LCD)E(tk)⊕WD ⊕ (−LVD), (4.3b)

where wD(tk) ∈ WD is the discretized state disturbance at tk, and the initial error ξ(t0) ∈ Rnx

lies within the zonotopic initial error set E(t0) ⊂ Rnx containing the origin. Thus, ξ(tk) ∈ E(tk)
for any k ∈ N, resulting in

x(tk) ∈ {x̂(tk)} ⊕ E(tk) (4.4a)
x̂(tk) ∈ {x(tk)} ⊕

(
−E(tk)

)
. (4.4b)

We also want to emphasize that we do not require E(t0) to be a robust positively invariant
(RPI) set [37,39], which would imply E(tk+1) ⊆ E(tk) and significantly simplify the reachability
analysis [200, 202]. Subsequently, we use the state estimate x̂(tk) for computing the output
feedback control input.

If x̂(tk) is guaranteed to lie within Zx̂(tk) = ⟨cx̂(tk), Gx̂(tk)⟩Z ⊂ Rnx , it can be expressed by

x̂(tk) = cx̂(tk) +Gx̂(tk)λx̂,k,

78

4.3 Preliminaries

similar to (3.2). The not necessarily unique parameter vector λx̂,k ∈ Rgen(Zx̂(tk)) with |λx̂,k| ≤ 1
can be obtained by solving (2.1) for x̂(tk) and Zx̂(tk), similar to (3.3). By generalizing the
piecewise constant state feedback controller in (3.4), we obtain the piecewise constant output
feedback control law

u(t) = Kx̂(tk) + cu(tk) +Gu(tk)λx̂,k for t ∈ [tk, tk+1), (4.5)

where Zu(tk) = ⟨cu(tk), Gu(tk)⟩Z ⊂ Rnu with generator matrix Gu(tk) ∈ Rnu×gen(Zx̂(tk)) is
the correction input zonotope at sampling time tk, and K ∈ Rnu×nx is a stabilizing feedback
matrix such that all eigenvalues of AD + BDK are contained in the open complex unit disc.
Because (AD, BD) is assumed to be stabilizable, a stabilizing K can be easily obtained, e.g., by
LQR-based controller synthesis [155].

In MPC, we iteratively solve an optimal control problem on a moving horizon at each
sampling time tk, as illustrated in Fig. 4.1 for t3. To extend our notation to account for these
iterations, we use (ti|tk) with i ∈ N to refer to the prediction for the time tk + ti made at tk. In
particular, we denote the prediction of the correction input zonotope sequence that is optimized
online based on the state estimate x̂(tk) at tk by Zu(·|tk) = ⟨cu(·|tk), Gu(·|tk)⟩Z . Analogously,
we denote the predictions of the future state and input trajectories based on x̂(tk) by x(·|tk)
and u(·|tk), respectively, where x(t0|tk) = x(tk). In Fig. 4.1, these state and input trajectory
predictions are shown in blue and green, respectively.

4.3.2 Reachability Analysis
Based on the state estimate x̂(tk) ∈ Zx̂(tk) = ⟨cx̂(tk), Gx̂(tk)⟩Z at tk, we predict reachable sets
when using the output feedback controller in (4.5) for arbitrary future sampling times ti and
time intervals [ti, ti+1) with i ∈ N. To account for the piecewise constant control law in (4.5),
we compute reachable sets for consecutive time steps of size ∆t until the specified time ti is
reached. Similar to (3.5), we introduce the following recursively defined set sequence for Zx̂(tk),
Zu(·|tk), and M = (A,B,W,CT):

R̃M
Kx̂ (t0,Zx̂(tk),Zu(·|tk), E(·))

=
〈[

cx̂(tk)
Kcx̂(tk) + cu(t0|tk)

]
,

[
Gx̂(tk)

KGx̂(tk) +Gu(t0|tk)

]〉

Z

⊕
〈
E(tk)
{0}

〉

Z

(4.6a)

⟨cx(ti|tk), Gx(ti|tk)⟩Z
= ΠxR̃M

over

(
∆t, R̃M

Kx̂ (ti−1,Zx̂(tk),Zu(·|tk), E(·))
)

(4.6b)

R̃M
Kx̂ (ti,Zx̂(tk),Zu(·|tk), E(·))

=
〈[

cx(ti|tk)
Kcx(ti|tk) + cu(ti|tk)

]
,

[
Gx(ti|tk)

KGx(ti|tk) +
[
Gu(ti|tk) 0

]
]〉

Z

⊕
〈

{0}
−KE(tk+i)

〉

Z

. (4.6c)

Similar to Theorem 3.2, we prove that the sets in (4.6) are over-approximating the augmented
reachable sets of M when using the controller in (4.5), as shown in the following proposition.

79

4 Model Predictive Control

Proposition 4.1 (Set Propagation using Output Feedback Control): For all x̂(tk) ∈
Zx̂(tk), applying the output feedback controller in (4.5) to M = (A,B,W,CT) results in

[
x(ti|tk)
u(ti|tk)

]
∈ R̃M

Kx̂ (ti,Zx̂(tk),Zu(·|tk), E(·)) ,

where i ∈ N. ■

Proof. The structure of the output feedback controller in (4.5) is identical to the structure of
the state feedback controller in (3.4). In addition, by using the relations in (4.4), the proof by
induction follows the same line of thoughts as Theorem 3.2.

We have focused on performing reachability analysis for discrete sampling times ti when using
the output feedback controller in (4.5). Nevertheless, the state and input constraints in (4.2)
must be satisfied not only at but also between sampling times. Thus, based on Proposition 4.1
and (2.22b), we compute reachable sets for an arbitrary time interval [ti, ti+1) with i ∈ N
according to

R̃M
Kx̂ ([ti, ti+1),Zx̂(tk),Zu(·|tk), E(·)) = R̃M

over

(
[0,∆t), R̃M

Kx̂ (ti,Zx̂(tk),Zu(·|tk), E(·))
)
. (4.7)

Then, the projection of the over-approximative reachable set onto the original state and
input space is obtained by ΠxR̃M

Kx̂ (·,Zx̂(tk),Zu(·|tk), E(·)) and ΠuR̃M
Kx̂ (·,Zx̂(tk),Zu(·|tk), E(·)),

respectively. In summary, we can efficiently compute the set of states and inputs that are
reachable for all state estimates x̂(tk) ∈ Zx̂(tk) at tk when applying the output feedback
controller in (4.5) to M = (A,B,W,CT).

Similar to Theorem 3.6, we can also separate the reachable sets in (4.6) and (4.7) into
controllable and uncontrollable parts based on the superposition principle. To enable formal
safety guarantees, we separate all involved set operations in an over-approximative way, as
presented in the following proposition.

Proposition 4.2 (Separation of Output Feedback Reachable Sets): The reachable sets
in (4.6) and (4.7) for M = (A,B,W,CT) can be separated by

R̃M
Kx̂ (ti,Zx̂(tk),Zu(·|tk), E(·)) = R̃(A,B,{0},CT)

Kx̂ (ti,Zx̂(tk),Zu(·|tk), {0})
⊕ R̃M

Kx̂ (ti, {0}, {0}, E(·))
R̃M

Kx̂ ([ti, ti+1),Zx̂(tk),Zu(·|tk), E(·)) ⊆ R̃(A,B,{0},CT)
Kx̂ ([ti, ti+1),Zx̂(tk),Zu(·|tk), {0})
⊕ R̃M

Kx̂ ([ti, ti+1), {0}, {0}, E(·)) . ■

Proof. The structure of the output feedback controller in (4.5) is identical to the structure
of the state feedback controller in (3.4). In addition, all operations required to compute the
reachable sets in (4.6) and (4.7) are identical to those in Theorem 3.6. Therefore, the proof
follows the same line of thoughts as Theorem 3.6.

In the following subsection, we use the presented reachable set computations to propose an
efficient output feedback control method to construct large safe sets based on the approaches in
Section 3.5.

80

4.4 Robust Output Feedback Model Predictive Control

4.3.3 Safe Sets
Ensuring the satisfaction of the safety constraints in (4.2) is typically achieved by using the
controller u(t) = Kx̂(tk) for t ∈ [tk, tk+1) and constructing a polytopic RPI set [37,39]. However,
the underlying set operations become intractable for large-scale systems, as shown in Table 2.1.

To overcome this scalability problem, we have proposed efficient approaches in Section 3.5
for computing large zonotopic safe sets based on the state feedback controller in (3.4). To
incorporate the output feedback controller in (4.5) into these safe set computations, we need to
consider the following main modifications:

• The reachable set sequence in (4.6) is used instead of (3.5).

• If x(tk) ∈ Zx(tk) at tk, Zx̂(tk) = Zx(tk)⊕
(
−E(tk)

)
is guaranteed to contain x̂(tk) based

on (4.4b).

• Because we do not require the initial error set E(t0) ⊂ Rnx to be an RPI set, we compute
time-variant optimal safe sets Z⋆

x(tk) ⊆ X with corresponding optimal correction input
zonotope sequence Z⋆,◦

u (·|tk).

By performing these slight modifications, we compute optimal large safe sets Z⋆
x(tk) ⊆ X along

with corresponding optimal correction input zonotope sequence Z⋆,◦
u (·|tk), which guarantee

satisfaction of the safety constraints in (4.2) if x(tk) ∈ Z⋆
x(tk) or x̂(tk) ∈ Z⋆

x(tk) ⊕
(
−E(tk)

)
.

In the following section, these large safe sets are used as terminal sets in our robust MPC
approach.

4.4 Robust Output Feedback Model Predictive Control
In this section, we present our scalable, real-time, robust output feedback dual-mode MPC
algorithm considering a finite prediction horizon of N ∈ N>0. In the first mode of our algorithm,
we iteratively solve an optimal MPC problem on a moving horizon, as shown in Fig. 4.1. We
switch to the second mode when the state of the system is guaranteed to lie within a large safe
set, which is efficiently computed based on Section 3.5. In this second mode, the corresponding
safety-preserving controller ensures robust constraint satisfaction at all future times.

Because solving an optimal MPC problem on a moving horizon must be achieved in real
time, it is usually too computationally expensive to optimize over general zonotopes online. To
overcome this problem, we slightly simplify the controller in (4.5) that is used for the online
optimal MPC optimizations. In particular, we set the correction input generator matrix Gu(ti|tk)
with i ∈ N[0,N−1] to zero, i.e., we use Zu(ti|tk) = ⟨cu(ti|tk),0⟩Z = cu(ti|tk) for all online optimal
MPC computations.

In this section, we explicitly consider the computation time for solving the optimal MPC
problem online, which is neglected by most existing robust MPC approaches. After introducing
the contraction constraint and stating the optimal MPC problem, we present our robust output
feedback dual-mode MPC algorithm that achieves the control goal of this chapter formulated
in Section 4.2. Finally, we propose some simplifications that significantly reduce the online
computational effort.

81

4 Model Predictive Control

· · · tk−1 tk tk+1 tk+2 tk+3 · · ·
t

c?
u(t0|tk−1) c?

u(t1|tk−1) c?
u(t2|tk−1)

c?
u(t0|tk) c?

u(t1|tk) c?
u(t2|tk)

[tk−1, tk) [tk, tk+1) [tk+1, tk+2) [tk+2, tk+3)

Figure 4.2: Optimal correction input sequences c⋆
u(·|tk−1) and c⋆

u(·|tk) for N = 3. Based on (4.8),
c⋆

u(t0|tk) = c⋆
u(t1|tk−1), which is shown in blue.

4.4.1 Computation Time Considerations
To ensure the satisfaction of the state and input constraints in (4.2), we explicitly consider the
nonzero computation time for solving the optimal MPC problem online [216]. Thus, our formal
safety guarantees remain valid despite such computational delays.

During the time interval [tk−1, tk), we solve an optimal MPC problem to optimize the
simplified correction input sequence Zu(·|tk−1) = ⟨cu(·|tk−1),0⟩Z = cu(·|tk−1), as shown in
Fig. 4.2 for N = 3. At the next sampling time tk = k∆t, the available computation time for
optimizing cu(·|tk−1) is elapsed. Then, we set

c⋆
u(t0|tk) = c⋆

u(t1|tk−1) (4.8)

and apply the input Kx̂(tk) + c⋆
u(t1|tk−1) to the system during [tk, tk+1) while we optimize

cu(ti|tk) for i ∈ N[1,N−1]. If the optimization solver requires a longer time than the sampling
period ∆t to complete, we abort the optimization prematurely. If the result of this optimization
is infeasible, we use the remainder of c⋆

u(·|tk−1) as a safe backup solution under the common
assumption that an initial feasible solution c⋆

u(·|t0) of the optimal MPC problem exists [203].
In this case, we set

c⋆
u(ti|tk) =

{
c⋆

u(t1 + ti|tk−1) for i ∈ N[0,N−2]
∅ for i = N − 1

. (4.9)

If c⋆
u(t1|tk⋆,◦−1) equals the empty set ∅ for some k⋆,◦ ∈ N, we apply the inputs of (4.5)

with optimal correction input zonotope sequence Z⋆,◦
u (·|tk⋆,◦) that guarantee robust constraint

satisfaction at all times t ≥ tk⋆,◦ based on Subsection 4.3.3. However, this approach is only valid
if x(tk⋆,◦) ∈ Z⋆

x(tk⋆,◦). Thus, we add a terminal constraint to the optimal MPC problem that
ensures the state at the end of the prediction horizon N to lie within a safe set, as visualized
in Fig. 4.3. Before we propose the optimal MPC problem that incorporates this terminal
constraint, we introduce a contraction constraint in the following subsection.

4.4.2 Contraction Constraint
Inspired by [95], we construct a simple contraction constraint such that the convergence of the
state trajectory x(·) to the origin in finite time is ensured. Based on the contraction distances

dx

(
ti, x̂(tk), cu(·|tk)

)
= α+ dist

(
ΠxR̃M

Kx̂ (ti, {x̂(tk)}, ⟨cu(·|tk),0⟩Z , E(·)) , {0}
)
, (4.10)

82

4.4 Robust Output Feedback Model Predictive Control

x̂(tk)

Z?
x(tk+2)

{x̂(tk)} ⊕ E(tk)

ΠxR̃M
Kx̂ (t1, {x̂(tk)}, 〈cu(·|tk), 0〉Z , E(·))

ΠxR̃M
Kx̂ (t2, {x̂(tk)}, 〈cu(·|tk), 0〉Z , E(·))

∆t ∆t

Figure 4.3: Overview of optimal MPC problem for N = 2 based on the state estimate x̂(tk) at tk. Our
reachability analysis guarantees that x(tk+2) ∈ ΠxR̃M

Kx̂ (t2, {x̂(tk)}, ⟨cu(·|tk),0⟩Z , E(·)) lies
within the safe set Z⋆

x(tk+2).

where α ∈ R>0 is a contraction parameter that is typically chosen close to zero, we add the
contraction constraint

N−1∑

i=1
dx

(
ti, x̂(tk), cu(·|tk)

)
−

N−1∑

i=1
dx

(
ti, x̂(tk−1), cu(·|tk−1)

)
< −α (4.11)

to the optimal MPC problem solved during [tk, tk+1). Thus, the constraint in (4.11) ensures
that

∑N−1
i=1 dx

(
ti, x̂(tk), cu(·|tk)

)
is a strictly decreasing function with respect to consecutive

time steps k, implying the convergence of the state trajectory to the origin. To disregard the
contraction constraint in (4.11) for the initial time, we define

∑N−1
i=1 dx

(
ti, x̂(t−1), c⋆

u(·|t−1)
)

=∞.
As stated in Subsection 4.4.1, we use the remainder of the previous solution c⋆

u(·|tk−1) as
a safe backup if the optimal MPC problem is infeasible. To be consistent with the update of
c⋆

u(·|tk) in (4.9), we set

dx

(
ti, x̂(tk), c⋆

u(·|tk)
)

=
{
dx

(
t1 + ti, x̂(tk−1), c⋆

u(·|tk−1)
)

for i ∈ N[1,N−2]
0 for i = N − 1

(4.12)

if the optimal MPC problem solved during [tk, tk+1) is infeasible. Instead of reusing the previous
contraction distances, we could also compute dx

(
ti, x̂(tk), c⋆

u(·|tk)
)

for i ∈ N[1,N−2] based on
(4.9) and (4.10). Nevertheless, we choose (4.12) to be consistent with the update of c⋆

u(·|tk) and
to make the contraction constraint less restrictive for the optimal MPC problem that is solved
during the following time interval.

4.4.3 Algorithm
By incorporating the computation time considerations, the terminal constraint, and the contrac-
tion constraint, the online optimal MPC problem that is solved during the time interval [tk, tk+1)

83

4 Model Predictive Control

is

minimize
cu(·|tk)

JMPC
(
x̂(tk), cu(·|tk)

)
(4.13a)

subject to (4.8) and (4.11) are satisfied (4.13b)
ΠxR̃M

Kx̂ (tN , {x̂(tk)}, ⟨cu(·|tk),0⟩Z , E(·)) ⊆ Z⋆
x(tk+N) (4.13c)

ΠxR̃M
Kx̂ ([ti, ti+1), {x̂(tk)}, ⟨cu(·|tk),0⟩Z , E(·)) ⊆ X for i ∈ N[0,N−1] (4.13d)

ΠuR̃M
Kx̂ ([ti, ti+1), {x̂(tk)}, ⟨cu(·|tk),0⟩Z , E(·)) ⊆ U for i ∈ N[0,N−1], (4.13e)

where JMPC is a convex cost function. When choosing JMPC to be a quadratic function, the
COP in (4.13) is a simple quadratic programming problem [55]. Finally, we present our robust
output feedback dual-mode MPC approach in Alg. 4.1, where we iteratively solve the optimal
MPC problem in (4.13) in a moving horizon fashion until the safety-preserving controller takes
over. Subsequently, we describe this algorithm in more detail.

Algorithm 4.1 Robust output feedback dual-mode MPC
1: k ← 1
2: while dx

(
t1, x̂(tk−1), c⋆

u(·|tk−1)
)
̸≤ α do ▷ 1. mode

3: u(t)← Kx̂(tk) + c⋆
u(t1|tk−1) for t ∈ [tk, tk+1)

4: c⋆
u(·|tk)← solve (4.13) for x̂(tk)

5: if c⋆
u(t0|tk) ̸≡ ∅ then

6: dx

(
·, x̂(tk), c⋆

u(·|tk)
)
← apply x̂(tk), c⋆

u(·|tk) to (4.10)
7: else
8: c⋆

u(·|tk)← apply c⋆
u(·|tk−1) to (4.9)

9: dx

(
·, x̂(tk), c⋆

u(·|tk)
)
← apply dx

(
·, x̂(tk−1), c⋆

u(·|tk−1)
)

to (4.12)
10: end if
11: k ← k + 1
12: end while
13: k⋆,◦ ← k
14: λx̂,k ← solve (2.1) for Z⋆

x(tk⋆,◦), x̂(tk⋆,◦)
15: while true do ▷ 2. mode
16: u(t)← Kx̂(tk) + c⋆,◦

u (tk − tk⋆,◦ |tk⋆,◦) +G⋆,◦
u (tk − tk⋆,◦ |tk⋆,◦)λx̂,k for t ∈ [tk, tk+1)

17: k ← k + 1
18: end while

In line 2 of Alg. 4.1, we implicitly check if the unknown state x(tk) ∈ Rnx is guaranteed
to lie within the optimal large safe set Z⋆

x(tk) ⊆ X at tk. If this is the case, we switch to
the second mode and apply the inputs of the safety-preserving controller with corresponding
Z⋆,◦

u (·|tk) =
〈
c⋆,◦

u (·|tk), G⋆,◦
u (·|tk)

〉
Z

to the system in lines 15 to 18. Otherwise, the input that
is applied to the system during [tk, tk+1) is updated in line 3 based on Subsection 4.4.1. In
addition, the optimal MPC problem in (4.13) is solved until tk+1 in line 4. In case of an infeasible
solution, c⋆

u(·|tk) and dx

(
·, x̂(tk), c⋆

u(·|tk)
)

are updated based on the safe backup solution of the
previous time step in lines 8 and 9. In the following theorem, we show that Alg. 4.1 achieves
the control goal of this chapter formulated in Section 4.2.

84

4.4 Robust Output Feedback Model Predictive Control

Theorem 4.3 (Properties of Alg. 4.1): If an initial feasible solution c⋆
u(·|t0) with corre-

sponding dx

(
·, x̂(t0), c⋆

u(·|t0)
)

is given at t1, Alg. 4.1 steers the disturbed system in (2.20) to a
neighborhood of the origin while satisfying the safety constraints in (4.2). ■

Proof. We must show two things: (i) The safety constraints in (4.2) are satisfied, and (ii) the
system reaches a neighborhood of the origin in finite time.

(i) This part of the proof is based on extending the optimized correction input sequence by
the safety-preserving control sequence and using the previous solution as a safe backup in case
of the infeasibility of the optimal MPC problem in (4.13). Because these ideas follow standard
proof techniques in robust dual-mode MPC [95], this part of the proof is omitted.

(ii) Based on Subsection 4.3.3, the safety-preserving controller steers the system to a neigh-
borhood of the origin if x(tk) ∈ Z⋆

x(tk) with k ∈ N. If

dx

(
t1, x̂(tk−1), c⋆

u(·|tk−1)
)
≤ α, (4.14)

i.e., if the condition in Alg. 4.1 is satisfied for switching to the safety-preserving controller, x(tk)
is guaranteed to be the origin or lie within Z⋆

x(tk) based on (4.10), (4.12), and (4.13c). Thus, it
remains to show that (4.14) is satisfied for some finite k.

On the one hand, if the optimal MPC problem in (4.13) solved during [tk, tk+1) is feasible, we
know that the contraction constraint in (4.11) is satisfied, i.e., the contraction rate of at least
α ∈ R>0 is guaranteed for

∑N−1
i=1 dx

(
ti, x̂(tk), cu(·|tk)

)
. On the other hand, if it is infeasible,

dx

(
·, x̂(tk), c⋆

u(·|tk)
)

is updated according to (4.12) in line 9 of Alg. 4.1, i.e., it is set equal to the re-
mainder of the previous contraction distance sequence dx

(
·, x̂(tk−1), c⋆

u(·|tk−1)
)
. By construction

of (4.12), the contraction constraint in (4.11) is simplified to −dx

(
t1, x̂(tk−1), c⋆

u(·|tk−1)
)
< −α.

This inequality holds because the condition in line 2 has been previously verified. Thus, the
contraction rate of α is also guaranteed in case of the infeasibility of (4.13). Therefore, (4.14)
is satisfied for some finite k.

4.4.4 Simplifications
Solving the optimal MPC problem in (4.13) for large-scale systems is often computationally
too expensive for real-time applications that require the sampling period ∆t to be in the order
of 100 ms. Thus, we propose some simplifications that reduce the online computational effort
while maintaining the formal safety guarantees of Theorem 4.3.

Terminal Constraint

Ideally, we want to use the terminal constraint in (4.13c), as visualized in Fig. 4.3. Although
the zonotope containment condition in (2.15) provides a way to solve (4.13c) for large-scale
systems, it is still computationally too expensive for most real-time applications. Nevertheless,
we know that the reachable set at the end of the prediction horizon can be separated by

ΠxR̃M
Kx̂ (tN , {x̂(tk)}, ⟨cu(·|tk),0⟩Z , E(·)) = ΠxR̃(A,B,{0},CT)

Kx̂ (tN , {x̂(tk)}, ⟨cu(·|tk),0⟩Z , {0})
⊕ΠxR̃M

Kx̂ (tN , {0}, {0}, E(·)) (4.15)

based on Proposition 4.2. Thus, to speed up the online computations, we also want to separate
the terminal constraint in (4.13c) based on (4.15). To achieve this goal, we decompose the

85

4 Model Predictive Control

zonotope containment condition in (2.15) into two COPs, as shown in the following proposition.

Proposition 4.4 (Separation of Zonotope Containment Condition in (2.15)): Let
Z1 = ⟨c1, G1⟩Z ⊂ Rn, Z2 = ⟨c2, G2⟩Z ⊂ Rn, and c3 ∈ Rn be given. In addition, let Γ⋆ ∈
Rgen(Z2)×gen(Z1) be the solution of the COP

minimize
Γ

JΓ(Γ) (4.16a)

subject to G1 = G2Γ (4.16b)
|Γ|1 ≤ 1, (4.16c)

where JΓ is a convex cost function. If a vector γ ∈ Rgen(Z2) exists such that

c2 − (c1 + c3) = G2γ (4.17a)∣∣∣
[
Γ⋆ γ

]∣∣∣1 ≤ 1, (4.17b)

the Minkowski addition of Z1 and {c3} is contained in Z2, i.e., Z1 ⊕ {c3} ⊆ Z2. ■

Proof. Based on (2.10a) and (2.15), Z1 ⊕ {c3} ⊆ Z2 if a matrix Γ ∈ Rgen(Z2)×gen(Z1) and a
vector γ ∈ Rgen(Z2) exist such that

G1 = G2Γ (4.18a)
c2 − (c1 + c3) = G2γ (4.18b)∣∣∣

[
Γ γ

]∣∣∣1 ≤ 1. (4.18c)

Because Γ⋆ satisfies the constraint in (4.16b), which is identical to (4.18a), feasibility of (4.17)
implies satisfaction of the zonotope containment condition in (4.18).

Based on (4.15) and Proposition 4.4, we separate the terminal constraint in (4.13c) into two
COPs: one COP corresponds to the uncontrollable part of the reachable set in (4.15) and is
solved offline, while the other COP corresponds to the controllable part and replaces (4.13c)
online. In particular, let Γ⋆

k+N of appropriate dimensions be the solution of the COP

minimize
Γk+N

∥Γk+N∥∞
subject to GRk+N,1 = GZ⋆

x(tk+N)Γk+N

|Γk+N |1 ≤ 1,

where
〈
cZ⋆

x(tk+N), GZ⋆
x(tk+N)

〉
Z
⊆ X is the large safe set at tk+N , and

〈
cRk+N,1 , GRk+N,1

〉
Z

=
ΠxR̃M

Kx̂ (tN , {0}, {0}, E(·)) is the uncontrollable part of the reachable set in (4.15). Then, we
replace the original terminal constraint in (4.13c) by

cZ⋆
x(tk+N) − (cRk+N,1 + cRk+N,3) = GZ⋆

x(tk+N)γk+N (4.19a)
∣∣∣
[
Γ⋆

k+N γk+N

]∣∣∣1 ≤ 1, (4.19b)

86

4.4 Robust Output Feedback Model Predictive Control

where γk+N ∈ Rgen(Z⋆
x(tk+N)) is an optimization vector and

〈
cRk+N,3 ,0

〉
Z

= ΠxR̃(A,B,{0},CT)
Kx̂ (tN , {x̂(tk)}, ⟨cu(·|tk),0⟩Z , {0})

is the controllable part of the reachable set in (4.15). Based on Proposition 4.4, it follows that
the original terminal constraint in (4.13c) is satisfied if (4.19) is feasible.

State and Input Constraints

Based on Proposition 4.2, we also want to tighten the state and input constraints in (4.13d)
and (4.13e) offline to further reduce the online computational effort [192,194]. The constraint
tightening can be achieved by computing Minkowski differences, which are defined in (2.8d).
Although the Minkowski differences of the polytopes X or U and a zonotope Z of appropriate
dimension can be computed exactly [217, Thm. 1], its representing number of half-spaces grows
exponentially with gen (Z). Alternatively, to maintain the scalability of our approach, we
directly separate the zonotope-in-polytope containment condition in (2.14), as shown in the
following proposition.

Proposition 4.5 (Separation of Zonotope Containment Condition in (2.14)): The
Minkowski addition of Z1 = ⟨c1, G1⟩Z ⊂ Rn and Z3 = ⟨c3, G3⟩Z ⊂ Rn is contained in
Z2 = ⟨H2, h2⟩P ⊂ Rn, i.e., Z1 ⊕Z3 ⊆ Z2, if and only if

H2c1 + |H2G1|1 ≤ h2 − (H2c3 + |H2G3|1) . ■

Proof. Based on (2.10a) and (2.14), Z1 ⊕Z3 ⊆ Z2 if and only if

H2(c1 + c3) +
∣∣∣H2

[
G1 G3

]∣∣∣1 ≤ h2

⇔ H2c1 +H2c3 + |H2G1|1 + |H2G3|1 ≤ h2

⇔ H2c1 + |H2G1|1 ≤ h2 − (H2c3 + |H2G3|1) .

Based on Proposition 4.5, tightening Z2 = ⟨H2, h2⟩P ⊂ Rn by Z3 = ⟨c3, G3⟩Z ⊂ Rn

is achieved by ⟨H2, h2 − (H2c3 + |H2G3|1)⟩P , which is an under-approximation of Z2 ⊖ Z3.
Advantageously, this under-approximation does not introduce more conservativeness because
the zonotope-in-polytope containment condition is necessary and sufficient. Thus, we can
accurately and efficiently tighten the state and input constraints in (4.13d) and (4.13e) offline
by considering the uncontrollable part of the reachable sets based on Propositions 4.2 and 4.5.

Error Sets and Safe Sets

As mentioned in Subsection 4.3.1, we do not require the initial error set E(t0) ⊂ Rnx to be
an RPI set of the autonomous, DT system in (4.3a), which would imply E(ti+1) ⊆ E(ti) for
any i ∈ N [200]. To avoid computing an infinite number of error sets, we exploit the fact
that the error set sequence E(·) usually converges quickly to the minimal robust positively
invariant (mRPI) set E(t∞) ⊂ Rnx . Computing a tight RPI over-approximation E∞ ⊇ E(t∞)
can be achieved by slightly modifying our invariant set approaches in Chapter 3 or by following

87

4 Model Predictive Control

standard methods [38, 120–122]. Based on E∞, let β⋆ ∈ R≥0 be the solution of the linear
programming problem

minimize
β

β (4.20a)

subject to 0 ≤ β (4.20b)
E (tk∞) ⊆ (1 + β)E∞, (4.20c)

where a finite k∞ ∈ N is given. Then, we can use (1 + β⋆)E∞ as RPI over-approximation for all
E (tk∞+i) with i ∈ N. Therefore, only a finite number of error sets must be computed.

Similarly, it suffices to compute only a finite number of optimal large safe sets. In particular,
we replace Z⋆

x (tk∞+i) ⊆ X with Z⋆
x (tk∞) ⊆ X for all i ∈ N. It is even sufficient to compute

only Z⋆
x(tN) ⊆ X when choosing k∞ = N and staying in the first mode for the first N time

steps in Alg. 4.1. In the following section, we use the simplifications proposed in this subsection
to enable the real-time capability of our robust output feedback MPC approach.

4.5 Numerical Examples
In this section, we demonstrate the effectiveness of our proposed robust MPC approach using
two numerical examples. In Subsection 4.5.1, we slightly modify the vehicle platooning system
considered in Subsection 3.6.3, where the state was assumed to be measurable. In addition, we
consider an under-actuated quadrotor model in Subsection 4.5.2.

For both numerical examples, we make the following choices: The sampling period is ∆t =
150 ms, the prediction horizon is N = 20, the applied correction input during [t0, t1) is 0, the con-
traction parameter used in (4.11) is α = 10−3, and the stabilizing output injection matrix L is ob-
tained by [218, Eq. 16]. In addition, to enable short computation times, we use the quadratic cost
function JMPC

(
x̂(tk), cu(·|tk)

)
=
∑N−1

i=1 LMPC
(
x̄(ti|tk), cu(ti|tk)

)
+ VMPC

(
x̄(tN |tk)

)
in (4.13a),

where LMPC(x̄, cu) = x̄T x̄+ 10cT
u cu is the stage cost, VMPC(x̄) = x̄T x̄ is the terminal cost, and

x̄(ti|tk) equals the undisturbed reachable set ΠxR̃(A,B,{0},CT)
Kx̂ (ti, {x̂(tk)}, cu(·|tk), {0}). Thus,

the optimal MPC problem in (4.13) is a simple quadratic programming problem [55]. Moreover,
we use (1 + β⋆)E∞ as RPI over-approximation for all E (tN+i) with i ∈ N, where E∞ ⊂ Rnx is
computed by Alg. 2.1 with convergence tolerance ϵ = 0.01 and β⋆ is the solution of (4.20) for
k∞ = N .

4.5.1 Vehicle Platooning System
In Subsection 3.6.3, we assumed that the state of the vehicle platoon is measurable. To
demonstrate the effectiveness of our output feedback approach, we extend the vehicle platoon
dynamics in (3.24) and (3.25) by the output equation in (4.1). In particular, the corresponding

88

4.5 Numerical Examples

Table 4.1: State, input, disturbance, and initial state estimation error bounds of vehicle platooning
system.

Variables Bounds

e(1), e(2), e(3) [−10, 10] m
ė(1), ė(2), ė(3) [−5, 5] m

s
a(1), a(2), a(3) [−8, 8] m

s2

u(1), u(2), u(3) [−8, 8] m
s2

a(0) [−1, 1] m
s2

v(1), v(3), v(5) [−0.05, 0.05] m
v(2), v(4), v(6) [−0.05, 0.05] m

s
ξ(1)(t0), ξ(4)(t0), ξ(7)(t0) [−0.5, 0.5] m
ξ(2)(t0), ξ(5)(t0), ξ(8)(t0) [−0.5, 0.5] m

s
ξ(3)(t0), ξ(6)(t0), ξ(9)(t0) [−0.5, 0.5] m

s2

output matrix CD ∈ R6×9 is chosen as

CD =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




,

i.e., the third, sixth, and ninth elements of the state vector cannot be measured directly,
which correspond to the effective accelerations of all three following vehicles. Moreover,
the state, input, state disturbance, output disturbance, and initial state estimation er-
ror bounds are presented in Table 4.1. The stabilizing feedback matrix K ∈ R3×9 is
the same as in (3.26). Moreover, the unknown initial state of the system is given by
x(t0) =

[
−9 m 4 m

s 7 m
s2 9 m −4 m

s 7 m
s2 3 m 3 m

s 0
]T

.
As described in Subsection 4.3.3, we slightly modify our large safe set approaches in Section 3.5

to incorporate output feedback control. Then, we execute Alg. 3.1 with convergence tolerance ϵ =
0.01 and Alg. 3.3 with maximum interval radius ϵ = 0.01 to obtain the scaled safe set S⋆

Kx̂(tN) ⊆
X . In addition, we use S⋆

Kx̂(tN) as safe terminal set Ssafe when solving the COP in (3.22).
In (3.22a), we use the geometric mean of the generator scaling vector sx,0 ∈ R18

≥0 for the cost
function JZx(t0). Moreover, the fixed generator matrix Gfixed ∈ R9×18 is chosen as the generator
matrix of reduce (S⋆

Kx̂(tN), 2) and the initial time step is kx,0 = 35. Then, solving this COP to
obtain the optimal large safe set Z⋆

x(tN) ⊆ X takes 1 min.
In Fig. 4.4, we show projections of sets and trajectories when sampling the state and output

disturbances randomly from the admissible bounds reported in Table 4.1. As can be observed,
the large safe set Z⋆

x(tN) covers the state constraint set X quite well, and the reachable sets

89

4 Model Predictive Control

X Z⋆
x(tN)

random trajectories for x̂(t0) ΠxR̃M
Kx̂

(
[t(·), t(·)+1), {x̂(t0)}, ⟨c⋆

u(·|t0),0⟩Z , E(·)
)

{x̂(t0)} ⊕ E(t0) ΠxR̃M
Kx̂ (tN , {x̂(t0)}, ⟨c⋆

u(·|t0),0⟩Z , E(·))
x̂(·) x(·)

−10 −5 0 5 10−5

−2.5

0

2.5

5

e(1) [m]

ė(1
)
[m s
]

−10 −5 0 5 10−5

−2.5

0

2.5

5

e(2) [m]

ė(2
)
[m s
]

−10 −5 0 5 10−8

−4

0

4

8

e(1) [m]

a
(1

)
[m s2
]

−5 −2.5 0 2.5 5−8

−4

0

4

8

ė(1) [m
s
]

a
(3

)
[m s2
]

Figure 4.4: Two-dimensional projections of sets and trajectories. In particular, 50 random trajectories
for the initial solution c⋆

u(·|t0) along with the corresponding reachable sets are visualized.
In addition, the unknown state trajectory x(·) and the corresponding state estimate
trajectory x̂(·) are shown for the first 20 s.

90

4.5 Numerical Examples

corresponding to the initial solution touch the bounds of X . This observation indicates that
our approach is not overly conservative. Because the maximum computation time for solving
the optimal MPC problem in (4.13) is 111 ms, which is less than ∆t, we never must abort the
online optimization prematurely.

In Fig. 4.5, we visualize the corresponding state estimate, unknown state, and input trajecto-
ries for the first 20 s. As can be observed, the system is successfully steered to a neighborhood
of the origin while satisfying the safety constraints in (4.2). In addition, the norm of cu(·)
diminishes within 1 s, resulting in a quick decrease of the cost LMPC. Moreover, the switch
to the second mode of our dual-mode MPC controller is barely visible, which results in a
comfortable driving experience for all vehicles.

4.5.2 Quadrotor System
To demonstrate the computational efficiency of our approach, we also consider the twelve-
dimensional, under-actuated quadrotor system proposed in [142,219]. The system dynamics is
linearized around the hover condition to obtain a linear model. The resulting twelve states are
given by

• the spatial positions
[
x(1) x(2) x(3)

]T
∈ [−3, 3]3;

• the spatial velocities
[
x(4) x(5) x(6)

]T
∈ [−3, 3]3;

• the angular positions
[
x(7) x(8)

]T
∈ [−π/4, π/4]2, x(9) ∈ [−π, π]; and

• the angular velocities
[
x(10) x(11) x(12)

]T
∈ [−3, 3]3.

In addition, the four control inputs are given by

• the total normalized thrust u(1) ∈ [−9.81, 2.38]; and

• the second-order derivatives of the angular positions
[
u(2) u(3) u(4)

]T
∈ [−0.5, 0.5]3.

The uncertain wind is modeled by the unknown, bounded disturbance
[
w(4) w(5) w(6)

]T
∈

[−0.01, 0.01]3 that affects only the three spatial velocities. In addition, the output ma-
trix CD ∈ R12×12 in (4.1) is chosen as identity matrix I, the output disturbance set is
VD = [−0.003, 0.003]12, and the initial error set is E(t0) = [−0.03, 0.03]12. The unknown initial
state of the system is given by x(t0) =

[
2 −2 2 −1 1 −2 0 0 1 0.2 0.2 −1

]T
.

Moreover, we compute the stabilizing feedback matrix K ∈ R4×12 using LQR-based controller
synthesis [155], where the state and input weighting matrices are Q = I and R = 100I.

Analogous to Subsection 4.5.1, we slightly modify our large safe set approaches in Section 3.5
to incorporate output feedback control. Then, we execute Alg. 3.1 with convergence tolerance ϵ =
0.1 and Alg. 3.3 with maximum interval radius ϵ = 0.1 to obtain the scaled safe set S⋆

Kx̂(tN) ⊆ X ,
which we use as large safe set Z⋆

x(tN) in our algorithm. Executing both algorithms takes 0.5 s.

91

4 Model Predictive Control

0 2 4 6 8 10 12 14 16 18 20−10
−5

0
5

10

t [s]

[m
]

X ê(1) e(1) ê(2) e(2) ê(3) e(3)

(a) Relative position errors and estimates.

0 2 4 6 8 10 12 14 16 18 20−5
−2.5

0
2.5

5

t [s]

[m s
]

X ˙̂e(1) ė(1) ˙̂e(2) ė(2) ˙̂e(3) ė(3)

(b) Relative velocity errors and estimates.

0 2 4 6 8 10 12 14 16 18 20−8
−4

0
4
8

t [s]

[m s2
]

X â(1) a(1) â(2) a(2) â(3) a(3)

(c) Effective accelerations and estimates.

0 2 4 6 8 10 12 14 16 18 20−8
−4

0
4
8

t [s]

[m s2
]

U c
(1)
u u(1) c

(2)
u u(2) c

(3)
u u(3)

(d) Control inputs.

Figure 4.5: State estimate, unknown state, and input trajectories. At sampling time step k = 54, i.e.,
at t = 8.1 s, our robust output feedback dual-mode MPC controller switches to the second
mode, which ensures robust constraint satisfaction at all future times.

92

4.6 Summary

Because the maximum computation time for solving the optimal MPC problem in (4.13) is
74 ms, which is less than ∆t, we never must abort the online optimization prematurely. As the
projections of sets and trajectories are qualitatively the same compared to Figs. 4.4 and 4.5, we
omit these plots.

4.6 Summary
In this chapter, we have proposed a scalable robust output feedback dual-mode MPC algorithm
for sampled-data LTI systems. In the first mode of this algorithm, we iteratively solve an
optimal MPC problem that uses a large safe set as a terminal set. We switch to the second mode
when the state of the system is guaranteed to lie within this safe set. Then, the corresponding
safety-preserving controller formally guarantees robust constraint satisfaction at all future
times.

Because the presented large safe set methods in Section 3.5 assume the state of the sampled-
data system to be measurable, we have slightly modified these computations to incorporate
output feedback control. Based on these modified safe sets, we have computed real-time
controllers that steer the system to a neighborhood of the origin and explicitly consider the
computation time of the online optimal MPC problem. Finally, we have demonstrated the
effectiveness of our proposed robust MPC approach on a slight modification of the vehicle
platooning system considered in Subsection 3.6.3, where the state was assumed to be measurable.
Because our approach uses zonotopes as set representation and is based on scalable reachability
analysis and convex optimization, a sampling period of 150 ms is achieved for this nine-
dimensional, sampled-data system, which is impossible for existing approaches.

In the following chapter, we present our supervisory safety filter approach that iteratively
solves a COP on a moving horizon to minimally modify a desired control input. Thus, the
core of this safety filter is a robust MPC problem whose finite prediction horizon is typically
only one. To formulate any robust MPC problem, the system model and its corresponding
disturbance set are usually assumed to be given. Because we remove this assumption in the
following chapter, we perform offline set membership identification to identify models that
are conformant to a finite set of training data. As a new measurement obtained online might
invalidate the model conformance, we quickly update this conformant model online to restore
formal safety guarantees.

93

5 Safety Filter

In this chapter, which is based on [49,51], we propose a minimally invasive supervisory safety
filter approach that makes no assumptions about the availability of a model along with its
corresponding disturbance set. After introducing the concept of safety filters and reviewing the
relevant literature in Section 5.1, we formulate the control goal of this chapter in Section 5.2.
In Section 5.3, we perform offline set membership identification to identify models that are
conformant to a finite set of training data. Based on these conformant models, we present
our safety filter algorithm and our online conformance updates in Section 5.4, followed by a
demonstration of its effectiveness using four numerical examples in Section 5.5. Finally, we
summarize this chapter in Section 5.6.

5.1 Introduction and State of the Art
Excellent control performance is typically achieved using sophisticated control methods with
fine-tuned parameters. Due to the high complexity of these high-performance controllers, which
are obtained, e.g., using machine learning techniques, it is usually cumbersome to formally verify
safety. Nevertheless, providing formal safety guarantees for any controller can be accomplished
using an additional supervisory safety filter along with a corresponding safety-preserving or
safe backup controller. Such a filter aims at modifying the desired input of the unverified
high-performance controller in a minimally invasive or least restrictive way so that safety is
guaranteed at all times. Therefore, safety filters serve as supervisory mediators between a
simple, safe backup controller and a sophisticated, unverified high-performance controller, as
illustrated in Fig. 5.1.

System High-Performance
Controller

Safety Filter with Safe Backup Controller

usafe = arg minimize
u(x)

‖udesired − u(x)‖p

subject to u(x) is safe

x, udesiredxusafe

Figure 5.1: Safety filter concept. The safety filter can be seen as a supervisory mediator between
performance and safety.

95

5 Safety Filter

Because the simple concept of safety filters is compelling, they are used in a wide variety
of areas, such as safe reinforcement learning [220,221], human-in-the-loop control [129], med-
ical systems [222], motion planning [17, 18, 46], collision avoidance [223], and fault tolerant
systems [224]. Moreover, different naming conventions have been introduced in the literature
because safety filters are widely used in several disciplines. For instance, they are closely related
to safety shields [225], verified control envelopes [226], and sandboxing control [227].

Safety filters can be efficiently implemented using, e.g., reachability analysis [45, 228], in-
variance control [229, 230], barrier functions [231, 232], or command governors [44]. These
implementations usually use model predictive control (MPC) techniques [41–43, 181], where
an optimal control problem is iteratively solved online on a moving horizon of length one. By
increasing this time horizon, the corresponding safe set of the safety filter can be enlarged [130],
i.e., the region of operation of the safe backup controller can be enlarged. Because the size of
its safe set mainly determines the conservativeness of a safety filter, we refer to Section 3.1 for
a brief literature overview of large safe sets.

Because formal safety guarantees are model-based, they are only valid as long as the identified
model of the unknown system is valid [233–235]. However, perfect models are typically
unavailable. Thus, control approaches using a finite training data set have gained interest over
the past few years. For instance, a conformant model and a robust control invariant (RCI)
approximation of the minimal RCI set are simultaneously computed in [148]. However, there is
no guarantee that an unseen measurement obtained online also lies within this RCI set because
only a finite training data set was used for its construction. Thus, additional assumptions
are required to provide formal safety guarantees for an infinite time horizon. For instance,
the disturbance set is assumed to be known while the system dynamics is unknown [236,237],
which is quite unrealistic. The availability of such a priori disturbance sets is also a standard
assumption in most robust MPC approaches [41–43,160], including our robust output feedback
MPC method in Chapter 4. Alternatively, to obtain a margin that also ensures safety online,
the tightest estimate of the disturbance set can be multiplied by a safety factor greater than
one [238, 239]. However, it is unclear how to choose this safety factor without introducing
excessive conservativeness to ensure safety for an infinite time horizon.

It is clear from the literature review that minimally invasive supervisory safety filters are of
great importance for many robust control applications. However, it is an unresolved issue to
provide a scalable safety filter approach that makes no assumptions about the availability of
a model along with its corresponding disturbance set. In this chapter, we address this issue
by incorporating our efficient large safe set computations proposed in Section 3.5 into safety
filters. In contrast to existing methods, our approach is scalable while making no assumptions
about the availability of the disturbance set. In particular, we perform offline set membership
identification to identify a conformant model based on a finite set of training data. Then, we
use this identified model to compute a large safe set with a corresponding safe backup controller.
Moreover, we quickly update the conformant model, the safe set, and the safe backup controller
online because a new measurement might invalidate the identified model due to the unknown
disturbance set. Thanks to the scalability of our safety filter algorithm, these updates are
performed in real time, even for medium-sized problems. As in Chapter 4, we also consider all
online computation times for solving optimization problems to guarantee safety despite such
computational delays. Before we present our scalable safety filter approach, we formulate the
control problem of this chapter in the following section.

96

5.2 Problem Formulation

5.2 Problem Formulation
Up to now, we have always assumed that a system and its corresponding disturbance set are
given. In this chapter, we consider an unknown, discrete-time (DT), time-invariant system that
evolves according to

x(tk+1) = f (x(tk), u(tk), wD(tk)) , (5.1)

i.e., it is compactly represented by the model M = (f (x, u, wD) ,WD,DT) with WD ⊂ Rnw

being the unknown, DT disturbance set. Similar to the continuous-time (CT) state and input
constraints in (3.1) and (4.2), the unknown, DT system in (5.1) is constrained by

x(·) ∈ X (5.2a)
u(·) ∈ U , (5.2b)

where X = ⟨HX , hX ⟩P ⊂ Rnx and U = ⟨HU , hU ⟩P ⊂ Rnu are the known state and input
constraint sets, respectively, which contain the origin.

To gain some knowledge about the unknown system in (5.1), sufficiently exciting training
data {x(tk), u(tk), x(tk+1)}Nk=1 is available offline [236,240], where N ∈ N>0 denotes the number
of measurements. In particular, we assume that the state of the system is directly measurable
in contrast to the problem in Chapter 4. To deal with unstable systems, the training data is
not required to be recorded from a single run of the system but can be obtained by performing
multiple short experiments. Then, the control goal of this chapter is the construction of a
scalable safety filter, i.e., the goal is to determine the minimal modification ∥ũ(tk)− u(tk)∥p of
a desired input ũ(tk) ∈ Rnu with k ∈ N such that the safety constraints in (5.2) are satisfied.

5.3 Model Conformance
In this section, we construct linear models that are conformant to or consistent with the
available offline training data. Throughout this section, we assume that the offline training
data has captured all possible system behaviors. Because the system in (5.1) is unknown, we
remove this unrealistic assumption in Section 5.4 by updating our conformant model online.

To enable formal safety guarantees, we first identify linear models that are conformant to the
offline training data [235].

Definition 5.1 (Conformant Model): Let {x(tk), u(tk), x(tk+1)}Nk=1 be a finite set of training
data. Then, M =

(
ÂD, B̂D, ŴD,DT

)
is a conformant model if for all k ∈ N[1,N]

x(tk+1) = ÂDx(tk) + B̂Du(tk) + ŵD(tk) (5.3a)
ŵD(tk) ∈ ŴD, (5.3b)

where ÂD ∈ Rnx×nx , B̂D ∈ Rnx×nu , and ŴD ⊂ Rnx are the estimated system matrix, input
matrix, and disturbance set, respectively. ■

To decrease the conservativeness of our safety filter, we want to find the conformant
model M =

(
ÂD, B̂D, ŴD,DT

)
whose estimated disturbance set ŴD has the smallest volume.

97

5 Safety Filter

For simplicity, this is typically achieved in two steps [238, 241]: First, a standard system
identification is performed to obtain ÂD and B̂D [234]. Second, an optimization problem is
solved to minimize the volume of ŴD. Instead of this two-step approach, we propose to address
both aspects simultaneously by solving

minimize
M=(ÂD,B̂D,ŴD,DT)

volume of ŴD (5.4a)

subject to M is a conformant model. (5.4b)

Hence, we use state-space representations in contrast to existing set membership identification
methods [239,242], which exploit autoregressive exogenous structures.

The volume of a general zonotope Z = ⟨c,G⟩Z ⊂ Rnx can be computed exactly [162] or
estimated using sampling-based techniques [243]. However, both approaches are computationally
too expensive for large-scale systems, so we must use a suitable heuristic to cast (5.4) as a
convex optimization problem (COP). For instance, suitable choices for the cost in (5.4a) are
the 1-norm of G, or the Frobenius norm of G [93]. Nevertheless, we can exactly solve (5.4)
when restricting ŴD =

〈
cŴD

, GŴD

〉
Z

to be a parallelotope with symmetric positive definite
generator matrix GŴD

, as shown in the following proposition.

Proposition 5.2 (Conformant Model with Parallelotopic Disturbance Set): Let
{x(tk), u(tk), x(tk+1)}Nk=1 be a finite set of training data. If A⋆

D, B
⋆
D, c

⋆, G⋆ is the solution of
the COP

minimize
AD,BD,c,G

− log(det(G)) (5.5a)

subject to G = GT ≻ 0 (5.5b)∣∣Gx(tk+1)−ADx(tk)−BDu(tk)− c
∣∣ ≤ 1 for k ∈ N[1,N], (5.5c)

M⋆ =
(
ÂD, B̂D, ŴD,DT

)
is the solution of (5.4), where ÂD = (G⋆)−1A⋆

D, B̂D = (G⋆)−1B⋆
D,

and ŴD =
〈
(G⋆)−1c⋆, (G⋆)−1〉

Z
is restricted to be a parallelotope with symmetric positive

definite generator matrix. ■

Proof. Model conformance constraint: Based on (2.2), the unique parameter vector λk ∈
Rgen(ŴD) for any ŵD(tk) ∈ ŴD =

〈
cŴD

, GŴD

〉
Z

is given by λk = G−1
ŴD

(
ŵD(tk)− cŴD

)
with

|λk| ≤ 1. By additionally using (5.3a), we obtain the model conformance constraint
∣∣∣G−1

ŴD
x(tk+1)−G−1

ŴD
ÂDx(tk)−G−1

ŴD
B̂Du(tk)−G−1

ŴD
cŴD

∣∣∣ ≤ 1,

which is equivalent to (5.5c) when choosing cŴD
= G−1c and GŴD

= G−1.
Cost function: Because GŴD

∈ Rnx×nx is symmetric positive definite, the volume of ŴD is
proportional to det

(
GŴD

)
[162]. In addition, log(det(M)) equals − log

(
det
(
M−1)) for any

symmetric positive definite matrix M ∈ Rn×n, the inverse of a symmetric positive definite
matrix is also symmetric positive definite, and the determinant is logarithmically concave on
the set of symmetric positive definite matrices [55,163]. Thus, the convex cost function in (5.5a)
selects the conformant model whose estimated disturbance set has the smallest volume.

98

5.3 Model Conformance

A matrix must be inverted when using Proposition 5.2 to obtain the optimal conformant
model M⋆. Numerical problems when computing the inverse of a matrix can be avoided by
further restricting ŴD to be a multidimensional interval, i.e., by restricting the corresponding
generator matrix to be a diagonal matrix. In this case, (5.4) is a simple linear programming
problem [59], as shown in the following proposition.

Proposition 5.3 (Conformant Model with Multidimensional Disturbance Interval):
Let {x(tk), u(tk), x(tk+1)}Nk=1 be a finite set of training data. If A⋆

D, B
⋆
D, c

⋆, g⋆ is the solution
of the linear programming problem

minimize
AD,BD,c,g

1T g (5.6a)

subject to
∣∣x(tk+1)−ADx(tk)−BDu(tk)− c

∣∣ ≤ g for k ∈ N[1,N], (5.6b)

M⋆ =
(
ÂD, B̂D, ŴD,DT

)
is the solution of (5.4), where ÂD = A⋆

D, B̂D = B⋆
D, and ŴD =

⟨c⋆, diag(g⋆)⟩Z is restricted to be a multidimensional interval. ■

Proof. Model conformance constraint: For any ŵD(tk) ∈ ŴD =
〈
cŴD

, GŴD

〉
Z

, there exists

a λk ∈ Rgen(ŴD) with |λk| ≤ 1 such that ŵD(tk) − cŴD
= GŴD

λk. These conditions can be
equivalently reformulated as

∣∣∣ŵD(tk)− cŴD

∣∣∣ ≤ diag
(∣∣∣GŴD

∣∣∣
)

because GŴD
∈ Rnx×nx is a

diagonal matrix and zonotopes are centrally symmetric sets. By additionally using (5.3a), the
model conformance constraint in (5.6b) is obtained.

Cost function: The volume of
〈
cŴD

, GŴD

〉
Z

equals the product of the elements of

diag
(∣∣∣GŴD

∣∣∣
)
∈ Rnx

≥0, which is a nonconvex function. Nevertheless, because the model confor-
mance constraint in (5.6b) is linear, it can be equivalently separated into a single constraint
for each of the nx dimensions. Thus, there is no coupling between any of the nx elements
of diag

(∣∣∣GŴD

∣∣∣
)

. Therefore, minimizing the sum of any nx convex functions whose single

arguments are the elements of diag
(∣∣∣GŴD

∣∣∣
)

also minimizes the product of these elements,
resulting in the smallest volume of ŴD. We choose these nx convex functions as identity maps
to obtain a simple COP, resulting in the linear cost function in (5.6a).

By restricting ŴD to be a parallelotope with a symmetric positive definite generator matrix
or a multidimensional interval, we can exactly and efficiently solve the optimization problem
in (5.4). However, using such restricted set representations might be too conservative for
some applications. To overcome this potential problem, we propose another set membership
identification approach that allows ŴD to be a general zonotope and approximates the volume
minimization of ŴD by finding the minimum scaling factor s⋆

X ∈ R≥0 such that ŴD ⊆ s⋆
XX ,

similar to (3.16). To cast this problem as a COP, we use the generator scaling framework [143],
i.e., we fix the arbitrary orientations of the generators of ŴD and optimize only their scaling
factors, as shown in the following proposition.

Proposition 5.4 (Conformant Model with Zonotopic Disturbance Set): Let
{x(tk), u(tk), x(tk+1)}Nk=1 be a finite set of training data. In addition, let A⋆

D, B
⋆
D, c

⋆, s⋆
X , λ

⋆
1,

99

5 Safety Filter

λ⋆
2, . . . , λ

⋆
N be the solution of the COP

minimize
AD,BD,c,sX λ1,λ2,...,λN

JM (sX , λ1, λ2, . . . , λN) (5.7a)

subject to λmax = max
(∣∣∣
[
λ1 λ2 . . . λN

]∣∣∣
)

(5.7b)

0 ≤ sX (5.7c)
⟨c,Gfixeddiag (λmax)⟩Z ⊆ sXX (5.7d)
x(tk+1)−ADx(tk)−BDu(tk) = c+Gfixedλk for k ∈ N[1,N], (5.7e)

where JM is a convex cost function, the function max(M) in (5.7b) returns a vector containing
the maximum value of each row of M ∈ Rgen(ŴD)×N , and Gfixed ∈ Rnx×gen(ŴD) is a fixed
generator matrix. Then, M⋆ =

(
ÂD, B̂D, ŴD,DT

)
is a conformant model, where ÂD =

A⋆
D, B̂D = B⋆

D, and ŴD = ⟨c⋆, Gfixeddiag (λ⋆
max)⟩Z with λ⋆

max = max
(∣∣∣
[
λ⋆

1 λ⋆
2 . . . λ⋆

N

]∣∣∣
)

.
Moreover, ŴD ⊆ s⋆

XX . ■

Proof. For any λk ∈ Rgen(ŴD), there exists a λk ∈ Rgen(ŴD) with |λk| ≤ 1 such that Gfixedλk =
Gfixeddiag(|λk|)λk. In addition, ⟨c̄, Gfixeddiag(|λk|)⟩Z ⊆

〈
c̄, Gfixeddiag

(∣∣λ̄k

∣∣)〉
Z

for any c̄ ∈ Rnx

and λ̄k ∈ Rgen(ŴD) with |λk| ≤
∣∣λ̄k

∣∣. By using these relations, the fact that |λk| ≤ λmax for
k ∈ N[1,N] because of (5.7b), the model conformance constraint in (5.7e), and the system
dynamics in (5.3a), it follows that the optimal M⋆ is a conformant model. In addition, the
constraints in (5.7c) and (5.7d) enforce ŴD ⊆ s⋆

XX .

It is straightforward to show that the optimal models obtained by solving (5.6) and (5.7) are
identical when choosing JM = 1T max

(∣∣∣
[
λ1 λ2 . . . λN

]∣∣∣
)

and Gfixed = I in (5.7). Thus,
the COP in (5.7) offers more flexibility at the expense of an increased computational cost.

In summary, we can efficiently compute an optimal linear model M⋆ =
(
ÂD, B̂D, ŴD,DT

)

that is conformant to the offline training data and has an estimated zonotopic disturbance set
of small volume. To define a meaningful control problem, we assume that the tuple

(
ÂD, B̂D

)

is stabilizable. If this assumption is violated, we could increase the number of measurements N ,
add more actuators, and follow more sophisticated experiment design approaches [234, 244]. In
the following section, we use the optimal conformant model M⋆ as an essential building block
in our supervisory safety filter.

5.4 Robust Safety Filter
We want to avoid having big spikes when switching between a desired control input and a
safe backup control input [245]. Thus, our safety filter aims to minimize modifying a desired
control input to ensure the satisfaction of the safety constraints in (5.2). We achieve this goal
by enforcing the state of the unknown system in (5.1) to stay within a DT, large safe set,
which is obtained by slightly modifying the approaches in Section 3.5. Because the desired
control inputs are only known during runtime, we solve an optimal control problem online,
which takes a nonnegligible amount of time [216]. Similar to Subsection 4.4.1, we explicitly

100

5.4 Robust Safety Filter

consider such computational delays instead of assuming that optimization problems can be
solved instantaneously. In addition, we present our safety filter algorithm. Finally, we propose
our online conformance update to restore formal safety guarantees as soon as we detect that
ŵD(tk) /∈ ŴD with k ∈ N for the optimal conformant model M⋆ =

(
ÂD, B̂D, ŴD,DT

)
.

5.4.1 Safe Sets
To provide the high-performance controller in Fig. 5.1 with a large region of operation, we
use the large safe set approach in Subsection 3.5.2, which is based on a CT model. To apply
this state feedback control method to the DT model M⋆ =

(
ÂD, B̂D, ŴD,DT

)
, we need to

consider the following main modifications:

• The relation between the CT system at sampling times and the equivalent DT system is
given in (2.26) and (2.27).

• The set-based state feedback controller in (3.4) is defined only at sampling times but not
between them.

• The constraints corresponding to the time interval [tk, tk+1) are enforced only at the
sampling time tk.

By performing these slight modifications and solving (3.20), we compute optimal large safe
sets Z⋆

x(t0) ⊆ X along with corresponding Z⋆,◦
u (·) in (3.21). Then, based on Proposition 3.12,

these safety-preserving or safe backup controllers guarantee the satisfaction of the constraints
in (5.2) for M⋆ if x(t0) ∈ Z⋆

x(t0).

5.4.2 Computation Time Considerations
To compute the safe backup control input in (3.4) for the initial set Z⋆

x(t0) ⊆ X , we must find
the not necessarily unique initial parameter vector λx,0 ∈ Rgen(Z⋆

x(t0)) satisfying (3.2). Obtaining
λx,0 can be achieved by solving the COP in (3.3), which causes a nonnegligible computational
delay that invalidates the formal safety guarantees [216]. Alternatively, if the extreme points of
Z⋆

x(t0) are given, closed-form expressions of λx,0 exist [246]. However, obtaining the extreme
points of a general zonotope is a computationally complex task [75]. To ensure the scalability
of our approach, we present an efficient method for computing λx,0 without assuming that an
optimization problem can be solved instantaneously at time step 0, as shown in the following
lemma.

Lemma 5.5 (Parallelotope-in-Zonotope Parameter Vector): Let a parallelotope P =
⟨c1, G1⟩Z ⊂ Rn and a zonotope Z = ⟨c2, G2⟩Z ⊂ Rn be given. In addition, let a matrix Γ ∈
Rgen(Z)×n and a vector γ ∈ Rgen(Z) exist such that (2.15) is satisfied, where the arbitrary scaling
factor is 1. Then, a valid parameter vector λZ ∈ Rgen(Z) of Z with |λZ | ≤ 1 for parameterizing
any s ∈ P is

λZ = −γ + ΓG−1
1 (s− c1), (5.8)

i.e., s can be expressed by s = c2 +G2λZ . ■

101

5 Safety Filter

x(tk)

u(tk)
ũ(tk+1)

ū(tk+1)Zx(tk+1)

Z̃x(tk+2)

Zx(tk+2)

Rnx \ Z?
x(t0)

Figure 5.2: Set-based safety filter. Because applying the desired input ũ(tk+1) at time step k+ 1 might
lead to leaving the optimal safe set Z⋆

x(t0) at time step k + 2, it is minimally modified to
obtain the safe input ū(tk+1).

Proof. Based on (2.2), any s ∈ P can be parameterized by the unique parameter vector λP =
G−1

1 (s− c1) of P with |λP | ≤ 1. If (2.15a) and (2.15b) are satisfied, it follows that

c1 +G1λP = c2 +G2(−γ + ΓλP)

for any λP ∈ Rn. In addition, satisfaction of (2.15c) implies |−γ + ΓλP | ≤ 1 for all λP with
|λP | ≤ 1. Thus, choosing

λZ = −γ + ΓλP

= −γ + ΓG−1
1 (s− c1)

results in a valid parameter vector of Z for any s = c1 +G1λP .

If we know that x(t0) ∈ Rnx lies within a small parallelotope that is contained in the zonotopic
optimal safe set Z⋆

x(t0), we can compute λx,0 at time step 0 based on Lemma 5.5 without
solving an optimization problem. Before presenting our optimal control problem that explicitly
considers all computation times for solving optimization problems online, subsequently, we give
an overview of our set-based safety filter approach.

Because the desired control inputs are only known during runtime, we must solve an optimal
control problem online. To explicitly consider such nonnegligible online computational delays,
we verify the desired input not for the current but for the next time step, as illustrated in Fig. 5.2.
In particular, at time step k ∈ N, the state x(tk) ∈ Rnx is measured, and the input u(tk) ∈ Rnu

that was previously verified as safe is applied until k + 1. During this time, we want to verify
safety when applying the desired input ũ(tk+1) ∈ Rnu at k + 1. If safety might be violated, we
minimally modify ũ(tk+1) to obtain the safe input ū(tk+1) ∈ U that ensures xk+2 ∈ Z⋆

x(t0). By
evaluating the system in (5.3a) in a set-based fashion, the reachable sets in Fig. 5.2 are

Zx(tk+1) =
{
ÂDx(tk) + B̂Du(tk)

}
⊕ ŴD

Z̃x(tk+2) = ÂDZx(tk+1)⊕
{
B̂Dũ(tk+1)

}
⊕ ŴD

Zx(tk+2) = ÂDZx(tk+1)⊕
{
B̂Dū(tk+1)

}
⊕ ŴD.

102

5.4 Robust Safety Filter

We also want to mention that it might be infeasible to find a safe input ū(tk+1) because the
optimal safe set Z⋆

x(t0) = ⟨c⋆
x(t0), G⋆

x(t0)⟩Z is usually not an RCI set.
To verify or, if necessary, minimally modify the desired input ũ(tk+1), we solve an optimal

control problem that considers all online computation times starting at time step k ∈ N. Let
ū⋆(tk+1), γ⋆(tk+2),Γ⋆(tk+2), c⋆

P(tk+2), G⋆
P(tk+2) be the solution of the COP

minimize
ū(tk+1),γ(tk+2),Γ(tk+2),

cP (tk+2),GP (tk+2)

∥ũ(tk+1)− ū(tk+1)∥p (5.9a)

subject to ū(tk+1) ∈ U (5.9b)

Zx(tk+2) =
{
Â2

Dx(tk) + ÂDB̂Du(tk) + B̂Dū(tk+1)
}

⊕ ÂDŴD ⊕ ŴD (5.9c)
⟨cP(tk+2), GP(tk+2)⟩Z = reduce

(
Zx(tk+2), 1

)
(5.9d)

GP(tk+2) = G⋆
x(t0)Γ(tk+2) (5.9e)

c⋆
x(t0)− cP(tk+2) = G⋆

x(t0)γ(tk+2) (5.9f)∣∣∣
[
Γ(tk+2) γ(tk+2)

]∣∣∣1 ≤ 1, (5.9g)

where any p-norm with p ≥ 1 can be chosen for the cost function in (5.9a). Then, the optimal
safe input at time step k + 1 is ū⋆(tk+1) ∈ U .

Instead of the standard constraint Zx(tk+2) ⊆ Z⋆
x(t0), we use (5.9d) through (5.9g) based on

Lemma 5.5 to ensure that the set-based safe backup control input in (3.4) with (3.21) can be
computed without solving an optimization problem at time step k + 2. In particular, based on
(5.8), the required initial parameter vector is

λx,0 = −γ⋆(tk+2) + Γ⋆(tk+2)
(
G⋆

P(tk+2)
)−1(

x(tk+2)− c⋆
P(tk+2)

)
. (5.10)

In addition, G⋆
P(tk+2) ∈ Rnx×nx only depends on the generator matrix of ÂDŴD ⊕ ŴD based

on (5.9d). Therefore, G⋆
P(tk+2) and its inverse

(
G⋆

P(tk+2)
)−1 are independent of the current

time step k and, thus, are computed only once. Because the inverse of a diagonal matrix can
be easily obtained, simple multidimensional interval over-approximations instead of general
parallelotopic ones can also be used in (5.9d). As a result, we only need to perform a few
simple matrix operations to compute the safe backup control input in (3.4) with (3.21) at time
step k + 2.

The COP in (5.9) is a robust MPC problem, where the length of the prediction horizon is
only one, the terminal set is not necessarily RCI, and all online computation times are explicitly
considered. Although we could easily incorporate a larger horizon that increases the region
of operation and the computation time [130], we opt for the small horizon for simplicity. In
addition, if solving (5.9) requires a longer time than the sampling period ∆t ∈ R>0 to complete,
we abort the optimization prematurely to maintain the validity of our formal safety guarantees,
similar to Subsection 4.4.1.

In summary, the optimal control problem in (5.9) minimally modifies the desired input ũ(tk+1)
while ensuring that the safe backup control input in (3.4) can be computed at time step k + 2
without solving an optimization problem. In the following subsection, we show how the COP
in (5.9) is integrated into our safety filter algorithm.

103

5 Safety Filter

5.4.3 Algorithm
We now present Alg. 5.1 that implements our supervisory safety filter. This algorithm proceeds
in two steps at each sampling time: First, the safe input u(tk) applied to the unknown system
in (5.1) at time step k ∈ N is computed. Second, the COP in (5.9) is solved to verify or, if
necessary, minimally modify the desired input ũ(tk+1). If (5.9) is infeasible, i.e., if ū(tk+1) equals
the empty set ∅, we use the safe backup control input at the subsequent time step k+ 1. In the
following theorem, we show that Alg. 5.1 achieves the control goal of this chapter formulated in
Section 5.2.

Algorithm 5.1 Robust safety filter
1: ū⋆(t0)← u(t0)
2: for k ← 0, 1, 2, . . . do
3: get x(tk) and ũ(tk+1)
4: if ū⋆(tk) ̸≡ ∅ then ▷ use solution of (5.9)
5: u(tk)← ū⋆(tk)
6: kx,0 ← 0 ▷ reset initial time step
7: else ▷ use safe backup control input
8: if kx,0 ≡ 0 then
9: λx,0 ← −γ⋆(tk) + Γ⋆(tk)

(
G⋆

P(tk)
)−1(

x(tk)− c⋆
P(tk)

)
▷ see (5.10)

10: kx,0 ← k ▷ update initial time step
11: end if
12: u(tk)← Kx(tk) + c⋆,◦

u

(
tk−kx,0

)
+G⋆,◦

u

(
tk−kx,0

)
λx,0 ▷ see (3.4) and (3.21)

13: end if
14: apply u(tk) to the unknown system in (5.1)
15: ū⋆(tk+1), γ⋆(tk+2),Γ⋆(tk+2), c⋆

P(tk+2), G⋆
P(tk+2)← solve (5.9) for x(tk), u(tk), ũ(tk+1)

16: end for

Theorem 5.6 (Properties of Alg. 5.1): Let SKx ⊆ X be a safe set, let Z⋆
x(t0) be the

optimal safe set obtained by solving (3.20), and let the corresponding optimal model M⋆ =(
ÂD, B̂D, ŴD,DT

)
be also conformant to all online obtained data. In addition, let x(t0) ∈

Z⋆
x(t0),

{
ÂDx(t0) + B̂Du(t0)

}
⊕ ŴD ⊆ Z⋆

x(t0), u(t0) ∈ U , and the COP in (5.9) be feasible for
x(t0), u(t0), ũ(t1). Then, the applied control inputs in Alg. 5.1 are minimal modifications of
the desired inputs so that the safety constraints in (5.2) are satisfied for the unknown system
in (5.1). ■

Proof. Because M⋆ is also conformant to all online obtained data, the satisfaction of the safety
constraints in (5.2) for the estimated system in (5.3a) implies constraint satisfaction for the
unknown system in (5.1). Thus, it is sufficient to consider (5.3a).

We use our safe backup controller to guarantee safety for an infinite time horizon. Because
the initial time was chosen to be zero during its construction in Subsections 3.5.2 and 5.4.1, we
appropriately shift the counter k ∈ N of the correction input zonotope Z⋆,◦

u (tk) in line 12 of
Alg. 5.1. Then, applying the resulting safe backup control inputs to the system ensures the
satisfaction of the safety constraints in (5.2) based on Proposition 3.12.

104

5.5 Numerical Examples

If the COP in (5.9) is feasible, the control inputs in line 5 of Alg. 5.1 are minimal modifications
of the desired inputs with respect to the cost function in (5.9a). In addition, the state and
input constraints are satisfied for the next time step because of the incorporated reachability
analysis in (5.9) and Z⋆

x(t0) ⊆ X . Moreover, if the COP in (5.9) is infeasible, we use the safe
backup controller until it is feasible again.

In summary, Alg. 5.1 ensures the satisfaction of the safety constraints in (5.2) while considering
all computation times for solving optimization problems. This statement is only valid if the
optimal conformant model M⋆ =

(
ÂD, B̂D, ŴD,DT

)
is valid at all times, which, however, is

constructed offline in Section 5.3 based on a finite set of training data. Because the system in
(5.1) is unknown, we have no guarantee that ŵD(tk) ∈ ŴD for all k ∈ N. Thus, we perform
conformance updates online to restore formal safety guarantees if a model invalidation is
detected, as presented in the following subsection.

5.4.4 Online Conformance Updates
We update M⋆, Z⋆

x(t0), and Z⋆,◦
u (·) online as soon as ŵD(tk) /∈ ŴD to restore formal safety

guarantees, similar to [45]. Restoring a conformant model can be achieved by solving the COPs
presented in Section 5.3 including not only the offline training data but also all online obtained
data. Although the number of constraints scales only linearly with the amount of data, this
approach quickly poses computational and memory problems as time proceeds. Therefore, to
ensure scalability, an update is needed that is independent of the amount of online data, which
implies independence of the elapsed time.

We address this issue by fixing ÂD and B̂D of our offline-constructed optimal conformant
model M⋆ =

(
ÂD, B̂D, ŴD,DT

)
and by minimally enlarging ŴD to restore model conformance.

To enable a fast update procedure, we restrict ŴD to be a multidimensional interval
[
ŴD, ŴD

]

with lower bound ŴD and upper bound ŴD. If we detect that ŵ(i)
D (tk) < Ŵ(i)

D or Ŵ(i)
D < ŵ

(i)
D (tk)

for any i ∈ Rnx , we set Ŵ(i)
D or Ŵ(i)

D equal to ŵ
(i)
D (tk) to restore model conformance. After

updating M⋆, we also check if there still exists a small safe set SKx ⊆ X . In addition, we update
Z⋆

x(t0) by solving (3.20) and compute the resulting correction input zonotope sequence Z⋆,◦
u (·)

in (3.21).
Because no conformant model is available during these online updates, the satisfaction of the

safety constraints in (5.2) can no longer be formally guaranteed. Thus, quickly performing these
updates and reducing the probability of constraint violation using the previous safe backup
controller is the best we can do in this situation. Therefore, if ŵD(tk) /∈ ŴD, we set the control
input ū⋆(tk) in Alg. 5.1 equal to ∅ as long as our online conformance update process is running.

5.5 Numerical Examples
In this section, we demonstrate the effectiveness of our safety filter approach using four numerical
examples taken from the literature [130, 142, 143, 236]. To show the low conservativeness of
our large safe sets, we also compute tight RCI under-approximations of the maximal robust

105

5 Safety Filter

control invariant (MRCI) set for the two low-dimensional examples by executing Alg. 2.2 with
convergence tolerance ϵ = 10−5.

For all four numerical examples, we make the following choices: The sampling period is
∆t = 0.1 s. In addition, we increment kx,0 ∈ N>0 based on Theorem 3.13 until the cost of the
COP in (3.20) is unchanged for two consecutive iterations or 50 iterations are reached, which is
done to ensure finite termination of the iterative procedure. This final kx,0 is then used for all
subsequent online conformance updates. The cost in (3.20a) is JZx(t0) = 1T sx,0 so that (3.20) is
a simple linear programming problem [59]. After solving (3.20) for the offline training data, we
erase the ith column of Gfixed if the ith element of the optimal generator scaling vector s⋆

x,0 is
smaller than 0.05. This erasure is done because these generators of Gfixed significantly increase
the computation times when solving (3.20) online to perform conformance updates, although
the shape of the optimal Z⋆

x(t0) is typically only slightly changed as ÂD and B̂D are fixed.
Moreover, we choose the 2-norm for the cost function in (5.9a), i.e., we choose the Euclidean
norm.

As mentioned in Section 5.2, the training data is not required to be recorded from a single
run of the system but can be obtained by performing multiple short experiments. This helpful
property allows us to efficiently handle unstable systems. Because the chosen experiment
design [234,244] for training data generation is irrelevant to our approach, for simplicity, we
generate the training data by sampling uniformly from X , U , and W.

5.5.1 Two-Dimensional System without Disturbances
We consider the mass-spring-damper (MSD) example presented in [130], which is briefly
summarized subsequently. The unknown system in (5.1) is described by

x(tk+1) =
[

1.0 0.1
−0.3 0.8

]
x(tk) +

[
0.0
0.1

]
u(tk) + wD(tk).

The disturbance set isWD = {0}, and the multidimensional input and state constraint intervals
are described by U = [−2.5, 2.5], X =

[
−1 −0.4

]T
, and X =

[
1 1

]T
, respectively. The

stabilizing feedback matrix K =
[
−4.12 −5.32

]
is computed using linear-quadratic regulator

(LQR)-based controller synthesis based on approximate system and input matrices that are
assumed to be known. In addition, it is assumed that training data {x(ti), u(ti), x(ti+1)}600

i=1 is
generated by sampling uniformly from X and U . The initial state is x(t0) =

[
−0.7 1

]T
and

the desired input is ũ(tk) = 2 sin(0.01πk) + 0.5 sin(0.12πk) for k ∈ N[0,200].
By solving the linear programming problem in (5.6), we obtain the optimal conformant

model M⋆ =
(
ÂD, B̂D, ŴD,DT

)
based on the available training data. Because M⋆ equals

the unknown model (A,B, {0},DT) up to floating-point precision, we never have to update
M⋆ online. To cover X , we choose the columns of Gfixed ∈ R2×20 in (3.20) to be 20 uniformly
distributed points around the top half unit circle.

In Fig. 5.3a, we present the simulation results when choosing u(t0) = −0.2 for the initial
input. As observed, our safety filter minimally modifies the desired input only in the first
two time steps. Thus, our method intervenes significantly less than the safety filter approach

106

5.5 Numerical Examples

−1 −0.5 0 0.5 1−0.5

0

0.5

1

Z?
x(t0)

x(1)

x
(2

)

(a) Our approach. A tight RCI under-approximation
of the MRCI set is visualized in blue, which
shows the low conservativeness of our large safe
set Z⋆

x(t0).

safe set

(b) This figure is taken from [130]. The dotted black
curve can be ignored.

Figure 5.3: Comparison of different safety filter approaches for the two-dimensional system. Red (black)
color corresponds to states for which the desired input is (is not) minimally modified to
guarantee safety at all times. Thus, our approach intervenes significantly less compared
to [130].

in [130], whose performance is shown in Fig. 5.3b. To illustrate the low conservativeness of our
optimal safe set Z⋆

x(t0) in Fig. 5.3a, we also visualize a tight RCI under-approximation of the
MRCI set.

To compare the set membership identification methods presented in Section 5.3, we subse-
quently assume that the unknown disturbance setWD is not the origin but given by [−0.1, 0.1]2,
i.e., the volume of WD is 0.04. In Fig. 5.4, we show the volumes of the estimated disturbance
sets ŴD,(5.5), ŴD,(5.6), and ŴD,LLS that are obtained by solving (5.5), (5.6), and a linear
least-squares system identification problem with subsequent parallelotopic volume minimization,
respectively. As can be observed in Fig. 5.4, the volume of ŴD,(5.5) is always smaller than the
volume of ŴD,(5.6). In addition, both volumes are monotonically increasing and converging to
the volume of the unknown disturbance set WD from below. In contrast to this monotonic
increase, the volume of ŴD,LLS fluctuates and even exceeds WD. This observation shows the
advantage when performing system identification and volume minimization in one step.

5.5.2 Unstable Three-Dimensional System
To demonstrate the usefulness of our online conformance updates proposed in Subsection 5.4.4,
we consider the unstable system presented in [236], which is briefly summarized subsequently.
The unknown system in (5.1) is described by

x(tk+1) =



−0.5 1.4 0.4
−0.9 0.3 −1.5

1.1 1.0 −0.4


x(tk) +




0.1 −0.3
−0.1 −0.7

0.7 −1.0


u(tk) + wD(tk),

107

5 Safety Filter

0 20 40 60 80 100 120 140 160 180 2000

0.02

0.04

0.06

amount of training data

vo
lu

m
e

WD ŴD,(5.5) ŴD,(5.6) ŴD,LLS

Figure 5.4: Comparison of different system identification approaches for the two-dimensional system.
In addition to the unknown disturbance set WD, we visualize ŴD,LLS, obtained by per-
forming linear least-squares system identification with subsequent parallelotopic volume
minimization. Moreover, ŴD,(5.5) and ŴD,(5.6) are obtained by solving (5.5) and (5.6),
respectively.

and the state feedback matrix is

K =
[
−2.45 −1.29 −2.40
−0.61 −0.03 −2.18

]
. (5.11)

We assume that the unknown disturbance set is WD = [−0.04, 0.04]3, and the known
state and input constraint sets are X = [−1, 1]3 and U = [−1, 1]2, respectively. The initial
state x(t0) ∈ R3 and the initial input u(t0) ∈ R2 are the origin. The desired input ũ(tk) ∈ R2 and
the disturbance wD(tk) ∈ R3 are uniformly sampled online from U and WD for all k ∈ N[0,105].

We generate training data {x(ti), u(ti), x(ti+1)}100
i=1 by sampling uniformly from X , U , and

WD. By solving the linear programming problem in (5.6), we obtain the optimal conformant
linear model M⋆ =

(
ÂD, B̂D, ŴD,DT

)
with

ÂD =



−0.5001 1.4013 0.3991
−0.8998 0.3001 −1.5004

1.0997 0.9997 −0.4020


 (5.12a)

B̂D =




0.0994 −0.2966
−0.0997 −0.6997

0.6983 −0.9977


 (5.12b)

ŴD =



−0.0392
−0.0395
−0.0361


 , ŴD =




0.0390
0.0389
0.0387


 . (5.12c)

Thus, the state feedback matrix in (5.11) stabilizes the estimated system
(
ÂD, B̂D

)
. Never-

theless, any stabilizing feedback matrix could be deployed, e.g., using LQR-based controller
synthesis [155]. Moreover, because ŴD ⊂ WD, model invalidation will likely occur, requiring
us to update ŴD online. To cover X , we choose the columns of Gfixed ∈ R3×70 in (3.20) to be
70 uniformly distributed points around the unit ball corresponding to the Euclidean norm.

108

5.5 Numerical Examples

100 101 102 103 104 105

Figure 5.5: Online conformance updates of the three-dimensional system. The time steps k ∈ N[0,105]

are marked when conformance updates are performed, i.e., when wD(tk) /∈ ŴD is detected.

0 5 10 15 20 25 30 35 400.03
0.035
0.04

0.045
0.05

number of conformance updates

Ŵ(1)
D Ŵ(2)

D Ŵ(3)
D

(a) Upper bounds of ŴD.

0 5 10 15 20 25 30 35 40−0.05
−0.045
−0.04

−0.035
−0.03

number of conformance updates

Ŵ(1)
D Ŵ(2)

D Ŵ(3)
D

(b) Lower bounds of ŴD.

Figure 5.6: Evolution of estimated multidimensional disturbance interval ŴD of the three-dimensional
system, which is initialized in (5.12c).

In Fig. 5.5, we plot the 38 time steps k ∈ N when wD(tk) /∈ ŴD is detected. At these
time steps, we update the model, the safe set, and the safe backup controller, as proposed in
Subsection 5.4.4. Using a logarithmic scale makes it clear that most updates occur early on.

In Fig. 5.6, we visualize the evolution of the lower and upper bounds of the estimated
disturbance set ŴD, which is initialized in (5.12c). As more uniformly sampled disturbances
are gathered online, the bound changes in all three dimensions become smaller.

In Fig. 5.7, we show two-dimensional projections of the initial optimal safe set and a tight
RCI under-approximation of the initial MRCI set based on the estimated disturbance bounds
in (5.12c). In addition, we visualize the 38 updated optimal safe sets corresponding to updated
conformant models. As can be seen in the x(1)-x(2)-plot in Fig. 5.7, the updated safe sets shrink
in some generator directions but also grow in some others. Because computing a tight RCI
under-approximation of the initial MRCI set takes more than 1 min, these computations are
unsuitable for online updating. Nevertheless, our online conformance updates, which include
updating ŴD, verifying the existence of a small safe set SKx ⊆ X , and updating Z⋆

x(t0) ⊆ X
along with corresponding Z⋆,◦

u (·), take 57 ms on average with a standard deviation of 4 ms.

109

5 Safety Filter

X initial MRCI set updated Z⋆
x(t0) initial Z⋆

x(t0) final Z⋆
x(t0)

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)

x
(2

)

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x(1)
x

(3
)

Figure 5.7: Evolution of large safe sets of the three-dimensional system. The updated optimal safe
sets corresponding to updated conformant models are shown, where a lighter gray tone
corresponds to a higher number of updates.

Because the sampling period is ∆t = 100 ms, our online conformance updates are performed in
real time.

5.5.3 Nonlinear Continuous-Time Six-Dimensional System
To demonstrate the generalizability of our DT safety filter approach, we consider the non-
linear, CT, longitudinal quadrotor model proposed in [143,247], which is briefly summarized
subsequently. The unknown system is described by the set of ordinary differential equations

ẋ(1) = x(3) (5.13a)
ẋ(2) = x(4) (5.13b)

ẋ(3) = u(1)n1 sin
(
x(5)

)
(5.13c)

ẋ(4) = u(1)n1 cos
(
x(5)

)
− g (5.13d)

ẋ(5) = x(6) (5.13e)
ẋ(6) = −d0x

(5) − d1x
(6) + n0u

(2), (5.13f)

where x(1) to x(6) represent the horizontal and vertical positions, horizontal and vertical
velocities, roll, and roll velocity, respectively. The constant parameters are g = 9.81, d0 = 70,
d1 = 17, n0 = 55, n1 = 0.89/1.4, and the multidimensional state and input constraint intervals

110

5.5 Numerical Examples

are described by

X =
[
−1.7 0.3 −0.8 −1 −π/12 −π/2

]T

X =
[

1.7 2.0 0.8 1 π/12 π/2
]T

U =
[
g/n1 − 1.5 −π/12

]T

U =
[
g/n1 + 1.5 π/12

]T
.

To satisfy our assumption that X and U contain the origin, we perform a simple coordi-
nate transformation, i.e., we shift x(2) by −1.15 and u(1) by −g/n1. We generate training
data {x(ti), u(ti), x(ti+1)}100

i=1 by using the MATLAB function ode451 to solve (5.13) and by
sampling uniformly from X and U . In addition, we compute the stabilizing feedback ma-
trix K ∈ R2×6 using LQR-based controller synthesis [155], where the state and input weighting
matrices are Q = 10I and R = I. The fixed generator matrix Gfixed ∈ R6×48 in (3.20) is
taken from [143]. The initial state is x(t0) =

[
0 1.15 0 0 0 0

]T
and the initial input is

u(t0) =
[
g/n1 0

]T
. Moreover, the desired input ũ(tk) ∈ R2 is uniformly sampled online from

U for all k ∈ N[0,105].
Because solving (3.20) initially for the offline training data takes 19 s, we slightly simplify

(3.20) to enable real-time conformance updates. In particular, we restrict Zx(t0) and Zu(·)
to be scaled versions of the optimal initial zonotopes, as shown in Fig. 5.8. As a result, our
update takes only 145 ms on average with a standard deviation of 8 ms. Thus, our approach
can update formal safety guarantees at sampling times for nonlinear, CT systems in real time.

To demonstrate the difficulty of this numerical example, we compare our results with two
existing methods for computing large safe sets. Because the approach in [40] has an exponential
computational complexity with respect to the state space dimension, we abort the corresponding
computations prematurely after 24 h. We also use the method in [137], which requires the linear
system to be presented in controller canonical form. Using the corresponding publicly available
code2, the transformation of our initial conformant model into this form involves the inverse
of a matrix whose condition number is greater than 106, which leads to significant numerical
errors.

5.5.4 Continuous-Time Twelve-Dimensional System
To demonstrate the scalability of our approach, we consider the twelve-dimensional, under-
actuated, CT quadrotor model presented in Subsection 4.5.2 [142,219]. Because the state of
the system is assumed to be measurable in this chapter, we ignore the output equations in
Subsection 4.5.2. In addition, we assume the uncertain wind to be modeled by the unknown,
bounded disturbance

[
w(4) w(5) w(6)

]T
∈ [−0.05, 0.05]3 that affects only the three spatial

velocities.

1https://mathworks.com/help/matlab/ref/ode45.html
2https://github.com/janis10/cis2m

111

https://mathworks.com/help/matlab/ref/ode45.html
https://github.com/janis10/cis2m

5 Safety Filter

X updated Z⋆
x(t0) initial Z⋆

x(t0) final Z⋆
x(t0)

−2 −1 0 1 20

0.5

1

1.5

2

x(1)

x
(2

)

−2 −1 0 1 2−0.8

−0.4

0

0.4

0.8

x(1)

x
(3

)

0 0.5 1 1.5 2−1

−0.5

0

0.5

1

x(2)

x
(4

)

− π
12 − π

24 0 π
24

π
12

−π
2

−π
4

0

π
4

π
2

x(5)

x
(6

)

Figure 5.8: Evolution of large safe sets of the six-dimensional system. The updated optimal safe
sets corresponding to updated conformant models are shown, where a lighter gray tone
corresponds to a higher number of updates.

112

5.6 Summary

We generate training data {x(ti), u(ti), x(ti+1)}1000
i=1 by using the MATLAB function ode45

to solve the system of linear differential equations and by sampling uniformly from the state
and input constraint sets. In addition, we compute the stabilizing feedback matrix K ∈ R4×12

using LQR-based controller synthesis [155], where the state and input weighting matrices
are Q = 10I and R = I. The fixed generator matrix Gfixed ∈ R12×52 in (3.20) is obtained
following the approach in [143], i.e., by examining the sparsity of the system matrix. The
initial state x(t0) ∈ R12 and the initial input u(t0) ∈ R4 are the origin. Moreover, the desired
input ũ(tk) ∈ R4 is uniformly sampled online from the input constraint set for all k ∈ N[0,105].

Two-dimensional projections of the initial solution of (3.20) are shown in Fig. 5.9. Because
solving (3.20) initially for the offline training data takes 40 min, we slightly simplify (3.20)
analogously to Subsection 5.5.3. As a result, our 20 updates take 1.01 s on average with a
standard deviation of 85 ms. In summary, our approach quickly updates formal safety guarantees
for medium-sized problems.

5.6 Summary
In this chapter, we have presented supervisory safety filters that enable formal safety guarantees
for any controller. Only if the desired input of the corresponding high-performance controller
might lead to leaving our large safe set in the future, it is modified in the least restrictive way.

Unlike most other work on robust controller synthesis, we make no assumptions about
the availability of a system model along with its corresponding disturbance set. Thus, we
perform offline set membership identification based on a finite set of available training data.
Because a new measurement obtained online might invalidate the formal safety guarantees of
our safety filter, fast online conformance updating is crucial. In contrast to existing work, our
updates are performed in real time, even for medium-sized problems, as shown in Section 5.5.
These real-time updates are enabled by designing our update procedure to be independent
of the number of measurements and by using scalable reachability analysis as well as convex
optimization algorithms. We have demonstrated our supervisory safety filter approach’s
effectiveness, generalizability, and scalability using four numerical examples taken from the
literature, including a six-dimensional, nonlinear quadrotor system.

113

5 Safety Filter

X ΠxR̃M
Kx

(
t(·),Z⋆

x(t0),Z⋆
u(·)
) Z⋆

x(t0) SKx

−3 −1.5 0 1.5 3−3

−1.5

0

1.5

3

x(1)

x
(4

)

−3 −1.5 0 1.5 3−3

−1.5

0

1.5

3

x(2)

x
(5

)

−3 −1.5 0 1.5 3−3

−1.5

0

1.5

3

x(3)

x
(6

)

−π −π
2 0 π

2
π

−3

−1.5

0

1.5

3

x(9)

x
(1

2)

Figure 5.9: Initial safe sets of the twelve-dimensional system. In addition, reachable sets are shown,
where a lighter gray tone corresponds to a larger prediction horizon.

114

6 Safety Verification of Autonomous Vehicles
In this chapter, which is based on [46], we verify the safety of autonomous vehicles online while
considering the uniqueness of each traffic situation. After reviewing the relevant literature in
Section 6.1, we formulate the safety verification goal in Section 6.2. In Section 6.3, we present
the traditional set-based verification approach. To guarantee timely, safe motion plans, we
propose an anytime approach that provides conservative safety verification results quickly and
continually refines them until the available computation time is elapsed. Thus, our algorithm
can be interrupted at any time while using the available computational resources optimally.
After presenting this anytime approach in Section 6.4, we demonstrate its effectiveness using two
traffic scenario benchmarks in Section 6.5. Finally, we summarize this chapter in Section 6.6.

6.1 Introduction and State of the Art
In the previous chapters, we have mainly focused on time-invariant systems affected by unknown
but bounded disturbances. For this setting, we have proposed multiple robust control approaches
that provide formal safety guarantees for an infinite time horizon. In this chapter, we extend this
setting by considering not only the system that we want to control but also other safety-relevant
agents that are located in the shared environment. Thus, we compute reachable sets not only
for the controlled system but also for models of the other uncontrolled agents to provide formal
safety guarantees, which claim that the intersections of reachable sets are empty. In addition,
we perform safety verification as a special case of a supervisory safety filter, as shown in
Fig. 6.1. Thus, we want to answer the question “Is the desired control input udesired safe?” while
assuming the existence of a safety-preserving or safe backup controller that provides a safe input
if udesired is unsafe [17,248,249]. Because of its high practical relevance and interdisciplinary
challenge [126,250], we consider autonomous driving in this chapter, i.e., we want to formally
verify that the desired trajectory of the controlled autonomous vehicle is safe.

Predicting the movement of other traffic participants is crucial for motion planning [251–254],
threat assessment [255, 256], and safety verification of autonomous vehicles [17, 18]. Several
techniques have been developed based on their intended use. Rather simple safety metrics have
been proposed to warn drivers based on predicting a single behavior of other traffic participants,
such as the time to collision [257, 258] and combinations of several metrics [259, 260]. In
addition, collision mitigation systems that typically require short prediction horizons often
rely on predicting a single future behavior [261, 262]. Moreover, threat assessments mainly
use stochastic predictions [263], either by performing Monte Carlo simulations [264, 265],
which consider a finite number of future trajectories, or by predicting occupancy probability
distributions [266–268], which account for infinitely many possible behaviors. However, none of
these methods can formally verify the safety of the desired trajectory.

When using the term safety in the context of not necessarily cooperative autonomous vehicles,
as considered in this chapter, we refer to legal safety [17, 269]. In this safety concept, the

115

6 Safety Verification of Autonomous Vehicles

System High-Performance
Controller

Is udesired safe?

usafe = udesired

Safe Backup Controller
usafe = ubackup(x)

x, udesiredx

yes

no

usafe

Figure 6.1: Safety verification concept.

ego vehicle must always be in a state that is not causing a collision while assuming that all
other traffic participants obey the traffic rules [270–272]. Based on the definition of legal safety
and induction, safe sets can be defined and constructed [248, 249], e.g., by realizing a safe
distance behind another traffic participant or a standstill [17,273]. Then, if the state of the ego
vehicle lies within such a safe set, safety for an infinite time horizon can be formally guaranteed.
In addition to legal safety, there exist other closely related definitions of safety [274, 275].
Moreover, these safety concepts are used not only in autonomous vehicles but also in, e.g.,
robotics [24,276–278].

In [269], the importance of set-based prediction of other traffic participants is highlighted.
However, no prediction algorithm is provided for formally computing reachable or occupancy
sets, i.e., sets of occupied X-Y -positions. In [17,279–281], reachability analysis is used to obtain
over-approximations of the occupancy sets of all surrounding safety-relevant traffic participants,
i.e., all possible behaviors that satisfy the traffic rule assumption are captured. When the
trajectory of the ego vehicle, i.e., the vehicle performing these predictions, does not intersect the
over-approximative occupancy sets of other traffic participants at any time, it can be deduced
that no collision occurs. In Fig. 6.2, we show an example of these predicted occupancy sets of
all surrounding safety-relevant traffic participants and the ego vehicle for a finite prediction
horizon N ∈ N>0.

On the one hand, considering all possible future behaviors of the other traffic participants
increasingly restricts the solution space of the ego vehicle’s trajectory, the larger N is chosen.
For instance, when doubling N in the example in Fig. 6.2, the occupancy sets of the third
traffic participant will intersect the desired trajectory of the ego vehicle, which wants to make
a left turn. Thus, set-based safety verification approaches are usually used to formally verify
trajectories of short time horizons.

On the other hand, there exist long-term trajectories of the ego vehicle that are initially unsafe
for some parts when considering all possible future behaviors. Nevertheless, such trajectories

116

6.1 Introduction and State of the Art

−100 −80 −60 −40 −20 0 20−40

−20

0

20

40

60

80

1st traffic
participant

3rd traffic
participant

2nd traffic
participant

ego
vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]

Figure 6.2: Initial occupancy sets for uncontrolled intersection, i.e., no traffic lights control the traffic
flow. The sampling period is ∆t = 0.1 s and the prediction horizon is N = 17, i.e., the over-
approximative occupancy sets of all other safety-relevant traffic participants are predicted
for the next 1.7 s. Because the desired trajectory of the ego vehicle does not intersect them
at any time, it can be safely executed.

117

6 Safety Verification of Autonomous Vehicles

formally verified part(
t ∈ [tk, tk+1)

) long-term trajectory(
t ∈ [tk, tlong-term)

)

safe backup trajectory(
t ∈ [tk+1, tbackup)

)

Figure 6.3: Comparison of long-term and safe backup trajectory planning of the white ego vehicle,
which wants to overtake the other blue traffic participant. The predicted occupancy set
of the other vehicle at tbackup ∈ R>0 and the most likely position of the other vehicle at
tlong-term ∈ R>0 are shown by the lighter blue rectangle and vehicle, respectively.

often become safe because uncertainty about the other traffic participants’ future behaviors is
reduced as time proceeds. For instance, the third traffic participant in Fig. 6.2 might slow down
significantly in preparation for making a right turn. Thus, an off-the-shelf motion planner can
compute a long-term trajectory based on the most likely maneuvers of the other safety-relevant
traffic participants, as shown in Fig. 6.3. Then, the introduced set-based safety verification
method is applied only to the first part of the desired motion plan, i.e., this method can be seen
as moving horizon verification or model predictive verification. If formally verified, this first
part of the long-term trajectory can be safely executed. Conversely, if the verification fails, the
previously verified safe backup or fail-safe maneuver of the safe backup controller is executed,
ensuring the safety of the ego vehicle for an infinite time horizon.

A challenging aspect of set-based prediction and verification that has not yet received much
attention is the high dependence of computation time on the varying number of surrounding
traffic participants, which causes significant variations in computational demand. For instance,
at a busy intersection in an urban area, this number can easily vary from only a few to more
than 100 because of many surrounding pedestrians, cyclists, and dog walkers. However, the
computing resources of the ego vehicle are limited. Using conventional prediction techniques
in such congested traffic scenarios requires, e.g., disregarding some safety-relevant traffic
participants from the prediction or performing fewer simulations in a Monte Carlo simulation.
However, these measures inevitably reduce the safety of the ego vehicle.

It is clear from the presented literature review that it is an unresolved issue to provide an online
safety verification approach that considers the uniqueness of each traffic situation. In this chapter,
we address this issue by proposing an anytime approach that quickly provides conservative
formal verification results and continually refines them until the available computation time
is elapsed. Thus, our algorithm aims to guarantee timely, safe trajectories of the controlled
autonomous vehicle and can be interrupted at any time while optimally using the available
computational resources. Moreover, if the safety of the desired trajectory cannot be verified in
time, the safety-preserving backup controller overwrites the desired control inputs. Before we

118

https://youtu.be/f51On-OQbqQ?si=kj1gtijGZT5H5QNK

6.2 Problem Formulation

present our anytime safety verification approach, we formulate the verification problem of this
chapter in the following section.

6.2 Problem Formulation
Typically, an exact model Mexact of another traffic participant is not known by the ego vehicle
unless, e.g., transmitted by vehicle-to-vehicle communication [170,171]. Thus, we use nM ∈ N>0

models of different complexities that are collected in the vector M =
[
M(1) M(2) . . . M(nM)

]

and that are based on physical constraints and traffic rules [270–272,281]. If M(i) with i ∈ N[1,nM]
is a conformant model [235], M(i) is also known as an abstraction of Mexact. In this chapter,
we assume that all models are abstractions of the unknown Mexact and that the reachable
set R̃M(i)

over (·, ·) ⊂ Rnxi can be efficiently computed. In addition, all safety-relevant traffic
participants are assumed to be detected by the sensors of the ego vehicle.

The ith model M(i) = (fi (xi,0, wi) ,Wi,CT) with i ∈ N[1,nM] represents the uncontrolled,
CT system in (2.16) that evolves according to

ẋi(t) = fi (xi(t),0, wi(t)) , (6.1)

where xi(t) ∈ Rnxi and wi(t) ∈ Rnwi denote the ith state and ith disturbance at time t ∈ R≥0,
respectively, whereas the control input is element of R0. The disturbances, such as the steering
rate or the acceleration of the other traffic participant, are unknown but bounded by the ith
disturbance set Wi ⊂ Rnwi .

Subsequently, we compute reachable sets for the ith model M(i), the initial state set Zxi(t0) ⊂
Rnxi , discrete sampling times tk = k∆t, and time intervals [tk, tk+1) with k ∈ N. Identical
to the reachability analysis in Section 3.3, this is achieved by computing reachable sets for
consecutive time steps of size ∆t until the specified time is reached. Similar to (3.5) and (3.11),
we introduce the following recursively defined set sequence:

R̃M(i)
0

(
t0,Zxi

(t0)
)

= Zxi
(t0) (6.2a)

R̃M(i)
0

(
tk,Zxi

(t0)
)

= R̃M(i)
over

(
∆t, R̃M(i)

0

(
tk−1,Zxi

(t0)
))

. (6.2b)

Similar to Theorems 3.2 and 3.7, we prove in the following proposition that the sets in (6.2)
are over-approximating the reachable sets of M(i) when using no control input.

Proposition 6.1 (Set Propagation using No Control): For all xi(t0) ∈ Zxi(t0), applying
no control input to M(i) = (fi (xi,0, wi) ,Wi,CT) results in

xi(tk) ∈ R̃M(i)
0

(
tk,Zxi

(t0)
)
,

where k ∈ N. ■

The proof is omitted because Proposition 6.1 follows directly from the definition of over-
approximative reachable sets and set propagation.

Up to now, we have focused on performing reachability analysis for discrete sampling times.
Nevertheless, the safety of the ego vehicle must be verified not only at but also between sampling

119

6 Safety Verification of Autonomous Vehicles

times. Thus, based on Proposition 6.1 and (2.22b), we compute reachable sets for an arbitrary
time interval [tk, tk+1) according to

R̃M(i)
0

(
[tk, tk+1),Zxi

(t0)
)

= R̃M(i)
over

(
[0,∆t), R̃M(i)

0

(
tk,Zxi

(t0)
))

.

In summary, we can efficiently compute the set of states that are reachable for all xi(t0) ∈ Zxi(t0)
when applying no control input to M(i) = (fi (xi,0, wi) ,Wi,CT).

Similar to the definitions of Πx and Πu in (2.19), we introduce the mapping ΠM(i)
XY : 2Rnxi →

2R2 to project a set of states of another traffic participant onto its set of occupied X-Y -positions.
By projecting the reachable set of another traffic participant onto the two-dimensional set of
occupied X-Y -positions, the occupancy set is obtained, which is introduced in the following
definition.

Definition 6.2 (Occupancy Set of Other Traffic Participant): The occupancy set
for the ith model M(i), the initial state set Zxi(tk) ⊂ Rnxi at tk, and the prediction time
interval [tj−1, tj) with j ∈ N[1,N] is ΠM(i)

XY

(
R̃M(i)

0 ([tj−1, tj),Zxi(tk))
)

. We use Q(j)
k

(
M(i)) to

obtain a more concise notation for representing this occupancy set. ■

Because all models are abstractions, it follows that

Q(j)
k (Mexact) ⊆

nM⋂

i=1
Q(j)

k

(
M(i)

)
(6.3)

for any j ∈ N>0 and k ∈ N [17, Prop. 5.1]. This set relation allows us to over-approximate
the exact occupancy set of another traffic participant by intersecting the occupancy sets of
nM different models. Thus, the over-approximation becomes tighter each time a new model
is added, as illustrated in Fig. 6.4. We also want to mention that, in general, Q(j)

k (M(i)) ⊈
Q(j)

k (M(i+1)) and Q(j)
k (M(i+1)) ⊈ Q(j)

k (M(i)) for any i ∈ N[1,nM−1], j, and k, as it is the case
for M(2) and M(3) in Fig. 6.4.

Example 6.3 (Infinite-Acceleration-Based Model): A simple first model M(1) can be con-
structed by modeling the other traffic participant as a point mass [282,283]. The corresponding
dynamics is

ẋ1(t) =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x1(t) + w1(t),

where x(1)
1 to x(4)

1 represent the X-position, Y -position, X-velocity, and Y -velocity, respectively.
Moreover, the first two elements w(1)

1 and w
(2)
1 of the disturbance vector are zero, and the last

two elements are constrained by
√(

w
(3)
1

)2
+
(
w

(4)
1

)2
≤ amax, where amax ∈ R>0 denotes a

maximum absolute acceleration. By allowing amax to be infinite and assuming a maximum
absolute velocity vmax ∈ R>0, the exact set of occupied X-Y -positions during [tj−1, tj) is

120

6.3 Traditional Safety Verification

Q(j)
k (Mexact)

Q(j)
k

(
M(1))

Q(j)
k

(
M(2))

Q(j)
k

(
M(3)) ⋂3

i=1 Q(j)
k

(
M(i))

Figure 6.4: Occupancy set intersection of different models M(i) with i ∈ N[1,3] to tightly over-
approximate the occupancy set of the unknown model Mexact.

〈
c, (tjvmax)2I

〉
E
⊂ R2, where c =

[
x

(1)
1 (0) x

(2)
1 (0)

]T
is the center of this circle. A simple

zonotopic over-approximation is ⟨c, tjvmaxI⟩Z , i.e., given by a square with length 2tjvmax and
center c. Finally, to obtain the occupancy set, the vehicle dimensions must be added by
Minkowski addition based on the orientation of the considered traffic participant. ■

Analogous to Definition 6.2, the occupancy set of the ego vehicle based on the desired
trajectory at tk and the prediction time interval [tj−1, tj) is denoted by T (j)

k ⊂ R2. We assume
that the uncertainties due to an imperfect tracking controller and the dimensions of the ego
vehicle are already included in the set T (j)

k [17]. Then, the goal in this chapter is to quickly
verify the safety of the desired trajectory of the ego vehicle, i.e., to quickly verify at sampling
time tk that Q(j)

k (Mexact) ∩ T (j)
k ≡ ∅ for all j ∈ N[1,N].

6.3 Traditional Safety Verification
In this section, we provide an overview of the traditional safety verification approach that
uses set-based predictions of other traffic participants [279,281]. The corresponding method
is presented in Alg. 6.1 and is executed in parallel for each surrounding safety-relevant traffic
participant at tk, where the function any returns Boolean “true” if any element of the Boolean
input vector is “true”; otherwise, it returns “false”. Essentially, this algorithm iterates over
all N prediction time intervals and checks if the occupancy sets of the ego vehicle and the
considered traffic participant intersect, indicating a potential future collision.

Alg. 6.1 has two outputs: The first output of Alg. 6.1 is Boolean “true” if there exists
a possible collision between the ego vehicle and the other traffic participant; otherwise, it
is “false”. The second output is the vector of occupancy sets of the other traffic participant
Ok =

[
O(1)

k O(2)
k . . . O(N)

k

]
. Analogous to Ok, we denote the vector of occupancy sets of

121

6 Safety Verification of Autonomous Vehicles

Algorithm 6.1 Traditional safety verification
Input: Tk,Qk,M, N
Output: ac,Ok

1: updateModelParameters()
2: for all j ∈ N[1,N] do
3: O(j)

k ← ⋂nM
i=1Q

(j)
k

(
M(i))

4: c(j) ← O(j)
k ∩ T

(j)
k ̸≡ ∅

5: end for
6: ac ← any(c)

the ego vehicle by Tk =
[
T (1)

k T (2)
k . . . T (N)

k

]
, which is the first input of Alg. 6.1. The

second, third, and fourth inputs are the vector of occupancy set operators Qk, the vector of
models M, and the prediction horizon N , respectively. Subsequently, we describe the main
steps of Alg. 6.1 in more detail.

As mentioned in Section 6.2, the parameters of the models collected in M are primarily
based on traffic rules and physical constraints [270–272,281]. For instance, some models check
traffic rule compliance of other traffic participants, such as staying in their lane or exceeding
a maximum velocity vmax ∈ R>0, e.g., given by an exact or relaxed speed limit. If the ego
vehicle detects a conformance violation, the corresponding parameter is adapted or removed to
restore model conformance online, similar to Subsection 5.4.4. For instance, restoring model
conformance is achieved by increasing the individual speed limit or removing the assumption
that the other traffic participant will follow lanes in the future. Otherwise, the models would
no longer be conformant to the real system. This conformance-preserving parameter updating
procedure is handled by the function updateModelParameters, which is called in line 1 of
Alg. 6.1. In line 3 of Alg. 6.1, the occupancy set O(j)

k for the other traffic participant at tk and
prediction time interval [tj−1, tj) is computed based on (6.3). Subsequently, collision checks
are performed in line 4, i.e., it is checked whether there exists a nonempty intersection for
any of the N time intervals. If no intersection is detected, the motion plan of the ego vehicle
is formally verified as safe with respect to the considered traffic participant. Otherwise, the
ego vehicle must repair the desired trajectory [284,285] or perform a safe backup maneuver to
ensure safety, as shown in Fig. 6.3.

6.4 Anytime Safety Verification
In this section, we present our anytime safety verification approach. In Subsection 6.4.1, we
propose our algorithm that aims to quickly verify that the desired motion plan of the ego vehicle
is collision-free. While previous works provide a formal concept, none of these algorithms are
anytime capable, i.e., the algorithm can be interrupted at any time after completing a short
start-up phase and the quality of the results improves until the available computation time is
elapsed [286]. To design an efficient anytime safety verification algorithm, we

• reuse the vector of occupancy sets Ok−1 obtained at tk−1 (Subsection 6.4.2);

122

6.4 Anytime Safety Verification

• sort the vector of models M based on their computational complexity and perform collision
checks immediately after a new occupancy set has been computed (Subsection 6.4.3); and

• refine the predicted occupancy sets O(j)
k for as long as computation time allows (Subsec-

tion 6.4.4).

6.4.1 Algorithm
Our anytime safety verification procedure is presented in Alg. 6.2. It has the same inputs and
outputs as Alg. 6.1 with the exception that we use the occupancy vector of the other traffic
participant of the previous time step Ok−1 for k ∈ N>0 as an additional input. Subsequently,
we describe the main steps of Alg. 6.2 in more detail.

Algorithm 6.2 Anytime safety verification
Input: Tk,Qk,M, N,Ok−1
Output: ac,Ok

1: if updateModelParameters() then
2: for all j ∈ N[1,N] do
3: O(j)

k ← R2

4: end for
5: else
6: Ok ← lazyUpdate (Ok−1) ▷ see Subsection 6.4.2
7: O(N)

k ← R2

8: end if
9: for all j ∈ N[1,N] do ▷ see Subsection 6.4.3

10: m(j) ← 0
11: c(j) ← O(j)

k ∩ T
(j)

k ̸≡ ∅
12: while c(j) ∧

(
m(j) < nM

)
do

13: m(j) ← m(j) + 1
14: O(j)

k ← O(j)
k ∩Q

(j)
k

(
M(m(j))

)

15: c(j) ← O(j)
k ∩ T

(j)
k ̸≡ ∅

16: end while
17: end for
18: ac ← any(c)
19: for all j ∈ N[1,N] do ▷ see Subsection 6.4.4
20: for all i ∈ N[m(j)+1,nM] do

21: O(j)
k ← O(j)

k ∩Q
(j)
k

(
M(i))

22: end for
23: end for

In line 1 of Alg. 6.2, we check if the updated model parameters at tk have changed compared to
those at tk−1 based on the newly available sensor measurements. If altered, the occupancy sets
of the other traffic participant computed at tk−1 are based on models that are possibly no longer
conformant to the real system, invalidating the formal safety guarantees. Thus, we slightly

123

6 Safety Verification of Autonomous Vehicles

modify the function updateModelParameters used in Alg. 6.1 by introducing a return value
that is Boolean “true” if the model parameters have changed or the current time t equals the
initial time t0; otherwise, it is “false”. If the model parameters have changed, all N occupancy
sets O(j)

k with j ∈ N[1,N] are initialized with R2 in line 3 of Alg. 6.2. Otherwise, we reuse the
occupancy vector of the previous time step Ok−1 to quickly obtain over-approximations of O(j)

k

with j ∈ N[1,N−1], as described in Subsection 6.4.2 in more detail.
In lines 9 to 17, we aim to quickly verify that no collision occurs for all N prediction time

intervals. The fast verification is achieved by ordering the vector of models M based on their
computational complexity. In addition, collision checks are performed in line 15 immediately
after a newly computed occupancy set has been intersected with the overall occupancy set
in line 14, as described in Subsection 6.4.3 in more detail. As in Alg. 6.1, the Boolean
collision vector c ∈ BN stores the safety verification result for all N prediction time intervals.
Furthermore, the scalar m(j) ∈ N[1,nM] with j ∈ N[1,N] in Alg. 6.2 corresponds to the number of
models required to verify safety for the prediction time interval [tj−1, tj).

If more computation time is available after verifying the safety of the ego vehicle, i.e., if
the safety verification takes less than ∆t, the remaining models are also used to refine the
occupancy sets O(j)

k in lines 19 to 23, as described in Subsection 6.4.4 in more detail. This
refinement is done to reduce the over-approximation of these occupancy sets for their potential
future reuse. Finally, Alg. 6.2 returns the safety verification result any(c) in addition to the
vector of occupancy sets Ok at tk.

6.4.2 Reuse of Occupancy Sets
We can quickly predict the occupancy sets of another traffic participant at tk for k ∈ N>0 by
reusing Ok−1 obtained at tk−1 if the model parameters are unchanged. As a result, we only need
to compute the occupancy set O(N)

k corresponding to the last prediction time interval [tN−1, tN)
while using elements of Ok−1 as over-approximations corresponding to all other intervals, as
shown in the following proposition.

Proposition 6.4 (Reuse of Occupancy Sets): Q(j−1)
k

(
M(i)) ⊆ Q(j)

k−1
(
M(i)) for j ∈ N[2,N],

k ∈ N>0, and any model M(i) with i ∈ N[1,nM]. ■

Proof. The considered absolute time intervals are the same, i.e., [tk+(j−1)−1, tk+(j−1)) equals
[t(k−1)+j−1, t(k−1)+j). Based on this equality, the set relation follows directly from Proposition 6.1
and Definition 6.2.

As defined in Section 6.3, the vector of occupancy sets of another traffic participant at tk−1

is given by Ok−1 =
[
O(1)

k−1 O(2)
k−1 O(3)

k−1 . . . O(N−1)
k−1 O(N)

k−1

]
. To perform a circular shift of

this vector, we introduce the lazy update function

lazyUpdate (Ok−1) =
[
O(2)

k−1 O(3)
k−1 . . . O(N−1)

k−1 O(N)
k−1 O(1)

k−1

]
,

which is called in line 6 of Alg. 6.2. By using lazyUpdate (Ok−1), we quickly obtain an over-
approximative result for all prediction time intervals [tj−1, tj) with j ∈ N[1,N−1] at tk based

124

6.4 Anytime Safety Verification

O(1)
0

O(2)
0

O(3)
0

t = t0 :

O(2)
0

O(3)
0 O(3)

1

t = t1 :

Figure 6.5: Reuse of occupancy sets. The occupancy sets O(2)
0 and O(3)

0 obtained at t0 are reused at t1
to over-approximate O(1)

1 and O(2)
1 , respectively. Thus, only O(3)

1 must be computed at t1
for obtaining the valid vector of occupancy sets O1 =

[
O(2)

0 O(3)
0 O(3)

1

]
.

on Proposition 6.4. Thus, only O(N)
k must be computed based on the newly available sensor

measurements at tk to obtain a valid vector of occupancy sets Ok.

Example 6.5 (Reuse of Occupancy Sets): In the upper plot of Fig. 6.5, all occupancy sets
at t0 for N = 3 and the rightward moving vehicle are illustrated. Based on Proposition 6.4,
we exploit the fact that O(1)

1 ⊆ O(2)
0 and O(2)

1 ⊆ O(3)
0 to quickly obtain an over-approximative

result for the first two prediction time intervals at t1, as shown in the lower plot of Fig. 6.5.
Thus, only the last occupancy set O(3)

1 must be computed at t1. ■

6.4.3 Fast Safety Verification
In lines 9 to 17 of Alg. 6.2, we aim at quickly verifying that the desired trajectory of the ego
vehicle is safe. For all j ∈ N[1,N−1], the occupancy set of the ego vehicle T (j)

k is checked for
a nonempty intersection with O(j)

k , which is possibly over-approximated by a reused set. If
O(j+1)

k−1 can be reused and the trajectory of the ego vehicle is unchanged, i.e., T (j)
k ⊆ T (j+1)

k−1 ,
the collision check in line 11 always returns Boolean “false”. Thus, the check can be omitted in
these cases. However, if a collision is detected in line 11 for a reused set and a changed motion
plan, it is unclear whether this is an actual or spurious collision due to the reuse of previously
computed occupancy sets. In this case, we verify safety for the first N − 1 prediction time
intervals exactly as done for the last one [tN−1, tN), which is described subsequently.

125

6 Safety Verification of Autonomous Vehicles

⋃N−1
j=1 O(j)

k−1

⋃N
j=1 T (j)

k

O(N)
k

E

(a) By using only the first model M(1), a nonempty intersection between T (N)
k and O(N)

k = Q(N)
k (M(1)) is

detected, indicating a potential future collision.

⋃N−1
j=1 O(j)

k−1

⋃N
j=1 T (j)

k

O(N)
k

(b) By using m(N) ∈ N[1,nM] models, an empty intersection between T (N)
k and O(N)

k =
⋂m(N)

i=1 Q(N)
k

(
M(i)

)
is

detected, verifying safety for the last prediction time interval [tN−1, tN).

Figure 6.6: Fast safety verification. The first N−1 occupancy sets of the other blue traffic participant at
tk are over-approximated by the collision-free reused sets O(j)

k−1 with j ∈ N[1,N−1] computed
at tk−1. Thus, only O(N)

k must be computed at tk.

To speed up the safety verification, we sort the vector of models M such that M(i) has a lower
computational complexity than M(i+1) for all i ∈ N[1,nM−1]. As a suitable complexity measure,
we use the number of floating point operations required to obtain the corresponding occupancy
set. Then, we compute Q(N)

k (M(1)) corresponding to the simplest model M(1) and intersect
this set with the occupancy set O(N)

k in line 14 of Alg. 6.2. Subsequently, a collision check is
performed in line 15. If a collision is detected for M(1), as illustrated in Fig. 6.6a, we compute
Q(N)

k (M(2)) for the second model M(2), intersect it with O(N)
k to reduce the over-approximation

based on (6.3), and perform a new collision check. This procedure is repeated until safety
is eventually verified for O(N)

k =
⋂m(N)

i=1 Q
(N)
k

(
M(i)) with m(N) ∈ N[1,nM], as illustrated in

Fig. 6.6b. Therefore, we formally verify the desired motion plan of the ego vehicle as safe using
as few models as possible, starting with the simplest ones.

This fast safety verification method produces different results for the same input data
depending on the available computation time. Nevertheless, our interruptible anytime Alg. 6.2
can formally verify the safety of the ego vehicle’s trajectory much faster than the traditional
Alg. 6.1, as shown in the subsequent numerical examples in Section 6.5. As for the traditional
verification approach, we execute the safe backup maneuver if we cannot formally verify a
desired trajectory in time, as shown in Fig. 6.3.

6.4.4 Occupancy Set Refinements
In lines 19 to 23 of Alg. 6.2, our anytime safety verification procedure continues computing the
occupancy sets Q(j)

k

(
M(i)) based on the more complex models M(i) for i ∈ N[m(j)+1,nM] and

126

6.5 Numerical Examples

⋃N−1
j=1 O(j)

k

⋃N
j=1 T (j)

k

O(N)
k

Figure 6.7: Refined occupancy sets.

the newly available sensor data obtained at tk, even though the safety verification result no
longer changes. These computations are performed to reduce the over-approximation of the
occupancy sets for their potential future reuse, i.e., at times tk+k̄ with k̄ ∈ N[1,N]. Thus, if more
computation time is available, the other models are additionally used to refine the occupancy
sets O(j)

k for all j ∈ N[1,N]. Finally, after all occupancy sets are refined, as illustrated in Fig. 6.7,
Alg. 6.2 returns the safety verification result and the vector of occupancy sets Ok. Then, if
enough computation time is available, these two outputs are identical to the ones of Alg. 6.1.

6.5 Numerical Examples
In this section, we compare the performance of both safety verification algorithms using two
numerical examples from the literature [287]. Our anytime Alg. 6.2 has been integrated into
the open-source MATLAB tool SPOT [280], which implements Alg. 6.1 and represents the
two-dimensional occupancy sets by polytopes. Because polytopic collision detection using the
MATLAB function polybool1 is relatively slow, we recommend to speed up these computations
in the future by incorporating, e.g., bounding volume hierarchies [288, 289], pre-computed
collision checks [290], and existing collision detection libraries [291,292].

To generate a long-term trajectory for the ego vehicle, as shown in Fig. 6.3, we use a standard
sampling-based approach [293]. In addition, we use the following three model abstractions for
all other traffic participants that are ordered by their computational complexity:

• an infinite-acceleration-based model M(1), as introduced in Example 6.3;

• a finite-acceleration-based model M(2) [279]; and

• a lane-following model M(3) [279].

When choosing these models, Q(j)
k (M(2)) ⊆ Q(j)

k (M(1)) for any j ∈ N>0 and k ∈ N, i.e., the
second model M(2) always produces tighter occupancy sets than M(1). Thus, M(1) is disregarded
by SPOT to speed up the traditional safety verification computations. However, in general,
Q(j)

k (M(2)) ⊈ Q(j)
k (M(3)) and Q(j)

k (M(3)) ⊈ Q(j)
k (M(2)). These typical set relations are also

illustrated in Fig. 6.4.
To determine the computational speed-up potential, we terminate Alg. 6.2 as soon as the

safety of the desired motion plan is verified. Because performance comparisons depend highly
on the specific traffic scenario, we use scenarios provided by the motion planning benchmark
suite CommonRoad [287]. This suite is a collection of composable benchmarks for motion

1https://mathworks.com/help/map/ref/polybool.html

127

https://mathworks.com/help/map/ref/polybool.html

6 Safety Verification of Autonomous Vehicles

planning of autonomous vehicles on roads that assigns each benchmark a unique identifier. This
identifier specifies detailed information about, e.g., the ego vehicle, the cost function, the road
network, and the other traffic participants. In addition to hand-crafted scenarios that provide
challenging safety-critical situations, real-world recorded traffic data is also available. Because
all benchmarks can be downloaded from the CommonRoad website2, the following numerical
experiments can be easily reproduced.

6.5.1 Uncontrolled Intersection
To compare the computed occupancy sets for two consecutive time steps, we use the Com-
monRoad benchmark PM1:MW1:DEU Muc-3 1 T-1:2018b. Here, the ego vehicle is modeled
as a point mass with maximum absolute acceleration of 11.5 m

s2 , the cost function is inspired
by [293, Eq. 2 and Sec. 5.B], and the CommonRoad release 2018b is used. The considered
traffic scenario comprises an uncontrolled intersection with three other traffic participants and
specifies the ego vehicle to turn left. The initial configuration and the occupancy sets computed
at t0 by SPOT are shown in Fig. 6.2, where the sampling period is ∆t = 100 ms and the
prediction horizon is N = 17. Thus, we predict the occupancy sets of all three safety-relevant
traffic participants for the next 1.7 s.

The predicted occupancy sets computed by our interruptible anytime Alg. 6.2 at t1 are shown
in Fig. 6.8. In addition to reusing the occupancy sets obtained at t0, it is sufficient to consider
only the simplest model M(1) for the first and second vehicles to verify safety at t1. However,
we must use all three model abstractions to formally verify the desired motion plan of the ego
vehicle as safe with respect to the third traffic participant. By averaging the simulation results
for t1 over 10 runs, we obtain computational speed-ups of Alg. 6.2 compared to SPOT of 26.1,
23.8, and 4.9 for the first, second, and third traffic participant, respectively. This results in an
overall speed-up of 9.6 while a single safety verification step takes 4.4 ms.

There are multiple reasons why our proposed anytime approach is not even faster. For
instance, the slow polytopic collision check is performed each time after a new Q(N)

k

(
M(i)) with

i ∈ N[1,3] is intersected with the overall O(N)
k in line 14 of Alg. 6.2. In contrast to these frequent

collision checks, SPOT only performs a single collision check for the final occupancy set O(N)
k .

Thus, if computing the occupancy set for a more complex model has a lower complexity than
performing the collision detection for a simpler model, which is true in this example for M(1) and
M(2), it may be beneficial to skip this check to optimize, e.g., the expected overall computation
time. Similarly important, some computations, e.g., obtaining the reachable lanes for M(3),
must be performed irrespective of whether the result is only used for the last prediction time
interval [tN−1, tN) or for all N intervals. However, the complexity of these computations will
be significantly reduced in a future C++ implementation of SPOT.

6.5.2 Three-Lane Highway
The second vehicular traffic scenario we consider is given by the CommonRoad benchmark
PM1:MW1:DEU A9-2 1 T-1:2018b. It features a three-lane highway, where the ego vehicle is
initially located in the middle lane and must perform a lane change to the right one, as shown

2commonroad.in.tum.de

128

https://commonroad.in.tum.de

6.5 Numerical Examples

−100 −80 −60 −40 −20 0 20−40

−20

0

20

40

60

80

1st traffic
participant

3rd traffic
participant

2nd traffic
participant

ego
vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]

Figure 6.8: Predicted occupancy sets for uncontrolled intersection obtained by interrupting Alg. 6.2
as soon as the safety of the desired trajectory is formally verified. The traffic scenario is
described by the CommonRoad benchmark PM1:MW1:DEU Muc-3 1 T-1:2018b.

129

6 Safety Verification of Autonomous Vehicles

−20 0 20 40 60 80 100−20

−10

0

10

20

1st traffic participant

2nd traffic participantego vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]

Figure 6.9: Initial occupancy sets for three-lane highway. The traffic scenario is described by the
CommonRoad benchmark PM1:MW1:DEU A9-2 1 T-1:2018b.

in Fig. 6.9. In addition, this scenario includes two other safety-relevant traffic participants. As
for the previous CommonRoad benchmark in Subsection 6.5.1, the prediction horizon is N = 17
and the sampling period is ∆t = 100 ms. Then, performing the whole lane change maneuver
takes 13 time steps.

As mentioned before, SPOT implements Alg. 6.1 and disregards the simplest model M(1).
To provide a fair comparison of both safety verification algorithms, i.e., to use the same
model abstractions, Alg. 6.2 also disregards M(1) subsequently, i.e., it considers only M(2)

and M(3). By averaging the simulation results for tk with k ∈ N[1,13] over 10 runs, we obtain
computational speed-ups of Alg. 6.2 compared to SPOT of 51.0 and 57.6 for the first and
second traffic participant, respectively. This results in an overall speed-up of 54.3 while a single
safety verification step takes 0.5 ms. In contrast to the previous benchmark, it is unnecessary
to consider the most complex model M(3) for either of the two other traffic participants to
guarantee safety, which is why a higher overall speed-up is obtained.

6.6 Summary
In this chapter, we have proposed an anytime safety verification approach, which attempts
to quickly verify that the desired trajectory of the ego vehicle is collision-free. In contrast to
existing methods, our approach is anytime capable, i.e., the algorithm can be interrupted at any
time after completing a short start-up phase and the quality of the results improves until the
available computation time is elapsed. In particular, we reuse the occupancy sets obtained at
the previous time step, sort the models of other traffic participants based on their computational
complexity, and refine the predicted occupancy sets for as long as computation time allows.
Finally, we have demonstrated the effectiveness of our proposed anytime safety verification
approach using an uncontrolled intersection and a three-lane highway traffic scenario. As shown,
our anytime method achieves significant computational speed-ups for verifying the safety of the
ego vehicle.

130

7 Conclusions and Future Work
In this chapter, we conclude this thesis. In Section 7.1, we summarize our main contributions.
Finally, we suggest promising future research directions and further improvements of our
proposed control approaches in Section 7.2.

7.1 Summary of Contributions
As seen by the failures of the Lewis spacecraft and the radiation therapy machine Therac-25 in
Chapter 1, guaranteeing the safety of autonomous systems for an infinite time horizon is crucial
when deploying these systems in safety-critical applications. To provide such safety guarantees,
a wide variety of approaches that compute robust control invariant (RCI) sets already exist
in the literature. However, these approaches typically suffer from exponential computational
complexity with respect to the problem dimension or excessive conservativeness.

To overcome these limitations, we have presented scalable algorithms for computing noncon-
servative safe sets of sampled-data systems along with corresponding set-based, safety-preserving
controllers. These controllers formally guarantee robust state and input constraint satisfaction
at all times if the initial state of the dynamical system lies within the safe set, which is not
necessarily RCI. Because safe sets are usually desired to have minimum or maximum volume, we
have proposed multiple methods to synthesize such sets. Because our computations are based
on scalable reachability analysis and convex optimization, the computational complexity of our
safe set approaches is only polynomial with respect to the problem dimension. To evaluate the
performance of these methods and validate the formal safety guarantees of their corresponding
safety-preserving controllers, we have considered multiple numerical examples taken from the
literature.

The efficient computation of nonconservative safe sets is beneficial not only for leveraging
autonomous systems in safety-critical applications but also for enhancing other popular control
methods, such as model predictive control (MPC). Thus, we have also proposed an efficient
robust output feedback MPC approach that uses our safe sets as terminal sets. In particular,
when iteratively solving an optimization problem on a moving horizon, the state at the end of
this horizon is constrained to lie within our safe set. In addition, we have used a simple linear
state observer to estimate the inaccessible state of the system based on noisy measurements
obtained online. To demonstrate the effectiveness of our real-time robust output feedback MPC
approach, we have used a nine-dimensional vehicle platooning system with a sampling period
of 150 ms.

In addition to MPC, supervisory control is another important control area that benefits
from our efficient safe set computations. Here, the goal is to guarantee the safety of the
controlled system at all times while minimally modifying the desired input of an unverified
high-performance controller, which is obtained, e.g., using machine learning techniques. We
have achieved this goal by enforcing the state of the system to stay within our safe set at all

131

7 Conclusions and Future Work

times. Because our approach makes no assumptions about the availability of a model along with
its corresponding disturbance bounds, a new measurement obtained online might invalidate the
formal safety guarantees, which were based on a finite set of training data. In this case, we
quickly update our safe set along with its corresponding safety-preserving controller online to
restore model conformance. We have considered multiple numerical examples taken from the
literature to demonstrate the usefulness and generalizability of our robust control approach.

The concept of safe sets along with corresponding safety-preserving controllers is also beneficial
for formally verifying the safety of autonomous vehicles online. In particular, if the desired
trajectory of the controlled autonomous vehicle intersects the predicted occupancy set of another
traffic participant, the safety-preserving controller overwrites the desired control input to ensure
safety. To guarantee timely, safe trajectories, we have proposed an anytime approach that
provides conservative formal verification results quickly and continually refines them until the
available computation time is elapsed. Thus, our algorithm can be interrupted at any time
while using the available computational resources optimally. We have considered two traffic
scenario benchmarks to demonstrate the effectiveness of our anytime safety verification method.

7.2 Future Research Directions
In this thesis, we have taken a step towards robustly controlling general, high-dimensional
systems in real-world, safety-critical applications. Subsequently, we identify several promising
directions for future work and further improvements of our proposed robust control approaches.

Computing safe sets of nonlinear or hybrid systems is a challenging task [152–154]. Thus,
computing safe sets for these classes of dynamical systems could benefit from our efficient linear
approaches [294, 295]. The first promising steps in this research direction have already been
made [52]. To make our safe set approaches more appealing for practitioners, the involved
algorithm parameters could also be tuned adaptively, as has been proposed for reachability
analysis over the past few years [296,297]. Although our algorithms are scalable, they might
still be computationally too demanding to tackle high-dimensional, real-world problems because
the modeling of large convex optimization problems (COPs) is too slow. For instance, it takes
more than 2 h to model some COPs in Section 3.6 using the MATLAB toolbox YALMIP [66].
This issue could be addressed by exploiting the underlying problem structure and using our
black-box approaches as building blocks in compositional controller synthesis [89,146], which
typically consider couplings between subsystems as disturbances. Instead of YALMIP, other
convex optimization modeling frameworks can also be used, e.g., CVX [67, 68]. Moreover,
optimizing the volume or an approximation thereof is often a good heuristic for obtaining useful
safe sets. As these safe sets are usually embedded in other robust control approaches, it is
useful to leverage other cost functions for improving the overall control performance [298].

Because safe sets play a crucial role in our robust output feedback MPC formulation,
exploring the research directions suggested above also directly benefits our MPC approach. In
addition, it is beneficial to extend our method to deal with event-triggered MPC. In particular,
instead of solving an optimal MPC problem at every sampling time, we only solve it if the
over-approximation error of a reachable set lies above a certain threshold [296]. Another
interesting direction for future work is to consider more sophisticated controller and prediction
structures [185], such as our set-based disturbance feedback controller in Subsection 3.3.2.

132

7.2 Future Research Directions

While these structures will improve the overall control performance, it must be ensured that
the corresponding set-based computations still have a polynomial computational complexity
with respect to the problem dimension and that they can be performed in real time.

There also exist great opportunities for further improving our supervisory safety filter
approach. Currently, our method decouples the safe set computations and the set membership
identification, which is performed based on a finite set of training data. Instead of this
modular approach, it might be beneficial to combine both steps to improve the overall control
performance [148], i.e., the construction of an explicit model could be avoided. In general,
minimally invasive safety filters provide formal safety guarantees for any controller, e.g., obtained
using machine learning techniques. Thus, it is interesting to further investigate the effects of this
least restrictive filtering on the resulting control performance [299]. Another promising direction
for future work is exploring more sophisticated online conformance update procedures instead
of minimally enlarging the estimated disturbance set. Moreover, to improve the real-time
capabilities of our safety filters, it is beneficial to construct low-dimensional model abstractions
of high-dimensional systems [300], i.e., to use suitable model order reduction techniques.

Regarding our anytime safety verification approach, there is room for further improvement
that calls for future work. Because the benefits of our approach are most apparent in complex
traffic scenarios when computational resources are particularly scarce, the further use of urban
traffic data might reveal the full potential of our anytime method. In addition, integrating
and evaluating our approach in an actual vehicle is of great importance [17, 18]. There also
exist many possibilities for further speeding up the computations, e.g., by using additional
model abstractions of different complexities and by suitably merging several other traffic
participants in the same proximity. Another interesting direction for future work is to use
our set-based anytime method to quickly verify not only autonomous vehicles but also other
safety-critical systems, such as robots, ships, and airplanes. Instead of verifying the desired
trajectory of the controlled autonomous vehicle, it is interesting to use an extension of our
safety filter for minimally modifying the desired motion plan. This extension could result in
smoother control input trajectories and, thus, more comfortable autonomous driving experiences.

133

Bibliography

[1] A. T. Bahill and S. J. Henderson. Requirements development, verification, and validation
exhibited in famous failures. Systems Engineering, 8(1):1–14, 2005. doi:10.1002/sys.
20017. 1

[2] NASA Investigation Board. Lewis spacecraft mission failure - Final report, 1998. URL:
https://llis.nasa.gov/llis_lib/pdf/1009461main1_0625-mr.pdf. 1

[3] S. Baase. A Gift of Fire: Social, Legal, and Ethical Issues for Computing Technology.
Pearson, 4th edition, 2013. 1

[4] N. G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents. Computer,
26(7):18–41, 1993. doi:10.1109/MC.1993.274940. 1

[5] G. J. Myers, T. Badgett, and C. Sandler. The Art of Software Testing. Wiley, 3rd edition,
2012. doi:10.1002/9781119202486. 1

[6] D. G. Altman and J. M. Bland. Statistics notes: Absence of evidence is not evidence of
absence. BMJ, 311:485, 1995. doi:10.1136/bmj.311.7003.485. 1

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification
using symbolic model checking. In ACM/IEEE Design Automation Conference, pages
46–51, 1990. doi:10.1145/123186.123223. 1

[8] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstraction for model
checking C programs. In Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 268–283, 2001. doi:10.1007/3-540-45319-9_19. 1

[9] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Conference on Computer Aided Verification, pages 585–591, 2011.
doi:10.1007/978-3-642-22110-1_47. 1

[10] W. Bibel. Automated Theorem Proving. Vieweg+Teubner Verlag, 2nd edition, 1987.
doi:10.1007/978-3-322-90102-6. 2

[11] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer, 2002. doi:10.1007/3-540-45949-9. 2

[12] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008. 2

[13] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model Checking:
Second Edition. MIT Press, 2nd edition, 2018. 2

135

http://dx.doi.org/10.1002/sys.20017
http://dx.doi.org/10.1002/sys.20017
https://llis.nasa.gov/llis_lib/pdf/1009461main1_0625-mr.pdf
http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1002/9781119202486
http://dx.doi.org/10.1136/bmj.311.7003.485
http://dx.doi.org/10.1145/123186.123223
http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-322-90102-6
http://dx.doi.org/10.1007/3-540-45949-9

Bibliography

[14] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model checking and the state
explosion problem. In LASER Summer School on Software Engineering, pages 1–30, 2012.
doi:10.1007/978-3-642-35746-6_1. 2

[15] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961. doi:10.1515/9781400874668. 2

[16] M. Althoff, G. Frehse, and A. Girard. Set propagation techniques for reachability
analysis. Annual Review of Control, Robotics, and Autonomous Systems, 4(1):369–395,
2021. doi:10.1146/annurev-control-071420-081941. 2, 15

[17] M. Althoff and J. M. Dolan. Online verification of automated road vehicles using
reachability analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014. doi:10.
1109/TRO.2014.2312453. 3, 96, 115, 116, 120, 121, 133

[18] C. Pek, S. Manzinger, M. Koschi, and M. Althoff. Using online verification to prevent
autonomous vehicles from causing accidents. Nature Machine Intelligence, 2(9):518–528,
2020. doi:10.1038/s42256-020-0225-y. 3, 96, 115, 133

[19] S. Kaynama, J. Maidens, M. Oishi, I. M. Mitchell, and G. A. Dumont. Computing
the viability kernel using maximal reachable sets. In Conference on Hybrid Systems:
Computation and Control, pages 55–64, 2012. doi:10.1145/2185632.2185644. 3

[20] T. Dang, T. Dreossi, E. Fanchon, O. Maler, C. Piazza, and A. Rocca. Set-based analysis for
biological modeling. In P. Liò and P. Zuliani, editors, Automated Reasoning for Systems Bi-
ology and Medicine, pages 157–189. Springer, 2019. doi:10.1007/978-3-030-17297-8_6.
3

[21] Y. C. Chen and A. D. Dominguez-Garcia. A method to study the effect of renewable
resource variability on power system dynamics. IEEE Transactions on Power Systems,
27(4):1978–1989, 2012. doi:10.1109/TPWRS.2012.2194168. 3

[22] Y. Li, P. Zhang, and P. B. Luh. Formal analysis of networked microgrids dynamics.
IEEE Transactions on Power Systems, 33(3):3418–3427, 2018. doi:10.1109/TPWRS.2017.
2780804. 3

[23] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking, and M. Althoff.
Provably safe motion of mobile robots in human environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1351–1357, 2017. doi:10.1109/
IROS.2017.8202313. 3

[24] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira. Effortless creation of safe robots from
modules through self-programming and self-verification. Science Robotics, 4(31):eaaw1924,
2019. doi:10.1126/scirobotics.aaw1924. 3, 116

[25] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. Reach set
approximation through decomposition with low-dimensional sets and high-dimensional
matrices. In Conference on Hybrid Systems: Computation and Control, pages 41–50,
2018. doi:10.1145/3178126.3178128. 3, 14, 28

136

http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1515/9781400874668
http://dx.doi.org/10.1146/annurev-control-071420-081941
http://dx.doi.org/10.1109/TRO.2014.2312453
http://dx.doi.org/10.1109/TRO.2014.2312453
http://dx.doi.org/10.1038/s42256-020-0225-y
http://dx.doi.org/10.1145/2185632.2185644
http://dx.doi.org/10.1007/978-3-030-17297-8_6
http://dx.doi.org/10.1109/TPWRS.2012.2194168
http://dx.doi.org/10.1109/TPWRS.2017.2780804
http://dx.doi.org/10.1109/TPWRS.2017.2780804
http://dx.doi.org/10.1109/IROS.2017.8202313
http://dx.doi.org/10.1109/IROS.2017.8202313
http://dx.doi.org/10.1126/scirobotics.aaw1924
http://dx.doi.org/10.1145/3178126.3178128

Bibliography

[26] S. Bak, H.-D. Tran, and T. T. Johnson. Numerical verification of affine systems with up
to a billion dimensions. In Conference on Hybrid Systems: Computation and Control,
pages 23–32, 2019. doi:10.1145/3302504.3311792. 3

[27] M. Althoff. Reachability analysis of large linear systems with uncertain inputs in the
Krylov subspace. IEEE Transactions on Automatic Control, 65(2):477–492, 2020. doi:
10.1109/TAC.2019.2906432. 3, 18

[28] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer,
2009. doi:10.1007/978-1-4419-0224-5. 3

[29] C. Belta, B. Yordanov, and E. Aydin Gol. Formal Methods for Discrete-Time Dynamical
Systems. Studies in Systems, Decision and Control. Springer, 2017. doi:10.1007/
978-3-319-50763-7. 3

[30] S. L. Smith, J. Tůmová, C. Belta, and D. Rus. Optimal path planning for surveillance with
temporal-logic constraints. The International Journal of Robotics Research, 30(14):1695–
1708, 2011. doi:10.1177/0278364911417911. 3

[31] B. Yordanov, J. Tůmová, I. Černá, J. Barnat, and C. Belta. Temporal logic control
of discrete-time piecewise affine systems. IEEE Transactions on Automatic Control,
57(6):1491–1504, 2012. doi:10.1109/TAC.2011.2178328. 3

[32] G. Reissig, A. Weber, and M. Rungger. Feedback refinement relations for the synthesis of
symbolic controllers. IEEE Transactions on Automatic Control, 62(4):1781–1796, 2017.
doi:10.1109/TAC.2016.2593947. 3

[33] C. Belta and S. Sadraddini. Formal methods for control synthesis: An optimization
perspective. Annual Review of Control, Robotics, and Autonomous Systems, 2(1):115–140,
2019. doi:10.1146/annurev-control-053018-023717. 3

[34] M. Zamani, A. Abate, and A. Girard. Symbolic models for stochastic switched systems:
A discretization and a discretization-free approach. Automatica, 55:183–196, 2015. doi:
10.1016/j.automatica.2015.03.004. 3

[35] F. Gruber, E. S. Kim, and M. Arcak. Sparsity-aware finite abstraction. In IEEE Conference
on Decision and Control, pages 2366–2371, 2017. doi:10.1109/CDC.2017.8263995. 3,
53

[36] D. P. Bertsekas. Infinite time reachability of state-space regions by using feedback control.
IEEE Transactions on Automatic Control, 17(5):604–613, 1972. doi:10.1109/TAC.1972.
1100085. 3, 24, 27

[37] I. Kolmanovsky and E. G. Gilbert. Theory and computation of disturbance invariant sets
for discrete-time linear systems. Mathematical Problems in Engineering, 4(4):317–367,
1998. doi:10.1155/S1024123X98000866. 3, 21, 22, 28, 39, 78, 81

[38] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invariant approximations
of the minimal robust positively invariant set. IEEE Transactions on Automatic Control,
50(3):406–410, 2005. doi:10.1109/TAC.2005.843854. 3, 21, 22, 23, 28, 49, 88

137

http://dx.doi.org/10.1145/3302504.3311792
http://dx.doi.org/10.1109/TAC.2019.2906432
http://dx.doi.org/10.1109/TAC.2019.2906432
http://dx.doi.org/10.1007/978-1-4419-0224-5
http://dx.doi.org/10.1007/978-3-319-50763-7
http://dx.doi.org/10.1007/978-3-319-50763-7
http://dx.doi.org/10.1177/0278364911417911
http://dx.doi.org/10.1109/TAC.2011.2178328
http://dx.doi.org/10.1109/TAC.2016.2593947
http://dx.doi.org/10.1146/annurev-control-053018-023717
http://dx.doi.org/10.1016/j.automatica.2015.03.004
http://dx.doi.org/10.1016/j.automatica.2015.03.004
http://dx.doi.org/10.1109/CDC.2017.8263995
http://dx.doi.org/10.1109/TAC.1972.1100085
http://dx.doi.org/10.1109/TAC.1972.1100085
http://dx.doi.org/10.1155/S1024123X98000866
http://dx.doi.org/10.1109/TAC.2005.843854

Bibliography

[39] F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Birkhäuser, 2nd edition,
2015. doi:10.1007/978-3-319-17933-9. 3, 10, 21, 24, 25, 27, 28, 78, 81

[40] M. Rungger and P. Tabuada. Computing robust controlled invariant sets of linear systems.
IEEE Transactions on Automatic Control, 62(7):3665–3670, 2017. doi:10.1109/TAC.
2017.2672859. 3, 21, 24, 27, 65, 68, 111

[41] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design. Nob Hill, 2nd edition, 2017. 4, 27, 41, 42, 75, 96

[42] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid
Systems. Cambridge University Press, 2017. doi:10.1017/9781139061759. 4, 21, 23, 24,
27, 41, 42, 75, 96

[43] S. V. Raković and W. S. Levine, editors. Handbook of Model Predictive Control. Control
Engineering. Birkhäuser, 2019. doi:10.1007/978-3-319-77489-3. 4, 27, 41, 42, 75, 96

[44] E. Garone, S. Di Cairano, and I. Kolmanovsky. Reference and command governors for
systems with constraints: A survey on theory and applications. Automatica, 75:306–328,
2017. doi:10.1016/j.automatica.2016.08.013. 4, 96

[45] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin.
A general safety framework for learning-based control in uncertain robotic systems. IEEE
Transactions on Automatic Control, 64(7):2737–2752, 2019. doi:10.1109/TAC.2018.
2876389. 4, 96, 105

[46] F. Gruber and M. Althoff. Anytime safety verification of autonomous vehicles. In
IEEE Conference on Intelligent Transportation Systems, pages 1708–1714, 2018. doi:
10.1109/ITSC.2018.8569950. 4, 96, 115

[47] F. Gruber and M. Althoff. Scalable robust model predictive control for linear sampled-
data systems. In IEEE Conference on Decision and Control, pages 438–444, 2019.
doi:10.1109/CDC40024.2019.9029873. 4, 27, 75

[48] N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat, and M. Althoff.
AROC: A toolbox for automated reachset optimal controller synthesis. In Conference
on Hybrid Systems: Computation and Control, pages 1–6, 2021. doi:10.1145/3447928.
3456703. 4, 25

[49] F. Gruber and M. Althoff. Computing safe sets of linear sampled-data systems. IEEE
Control Systems Letters, 5(2):385–390, 2021. doi:10.1109/LCSYS.2020.3002476. 4, 27,
95

[50] F. Gruber and M. Althoff. Scalable robust output feedback MPC of linear sampled-
data systems. In IEEE Conference on Decision and Control, pages 2563–2570, 2021.
doi:10.1109/CDC45484.2021.9683384. 5, 18, 27, 75

[51] F. Gruber and M. Althoff. Scalable robust safety filter with unknown disturbance bounds.
IEEE Transactions on Automatic Control, 68(12):7756–7770, 2023. doi:10.1109/TAC.
2023.3292329. 5, 27, 95

138

http://dx.doi.org/10.1007/978-3-319-17933-9
http://dx.doi.org/10.1109/TAC.2017.2672859
http://dx.doi.org/10.1109/TAC.2017.2672859
http://dx.doi.org/10.1017/9781139061759
http://dx.doi.org/10.1007/978-3-319-77489-3
http://dx.doi.org/10.1016/j.automatica.2016.08.013
http://dx.doi.org/10.1109/TAC.2018.2876389
http://dx.doi.org/10.1109/TAC.2018.2876389
http://dx.doi.org/10.1109/ITSC.2018.8569950
http://dx.doi.org/10.1109/ITSC.2018.8569950
http://dx.doi.org/10.1109/CDC40024.2019.9029873
http://dx.doi.org/10.1145/3447928.3456703
http://dx.doi.org/10.1145/3447928.3456703
http://dx.doi.org/10.1109/LCSYS.2020.3002476
http://dx.doi.org/10.1109/CDC45484.2021.9683384
http://dx.doi.org/10.1109/TAC.2023.3292329
http://dx.doi.org/10.1109/TAC.2023.3292329

Bibliography

[52] L. Schäfer, F. Gruber, and M. Althoff. Scalable computation of robust control invariant
sets of nonlinear systems. IEEE Transactions on Automatic Control, 69(2):755–770, 2024.
doi:10.1109/TAC.2023.3275305. 5, 17, 28, 51, 132

[53] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Review, 35(2):183–238,
1993. doi:10.1137/1035044. 7

[54] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. SIAM, 1994. doi:10.1137/1.9781611970791. 7, 52

[55] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
doi:10.1017/CBO9780511804441. 7, 8, 9, 15, 25, 48, 52, 84, 88, 98

[56] D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015. 7, 8

[57] S. Boyd, A. Agrawal, and S. Barratt. Embedded convex optimization for control. In
IEEE Conference on Decision and Control, 2020. URL: https://stanford.edu/˜boyd/
papers/cdc_20.html. 7

[58] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. 7

[59] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984. doi:10.1007/BF02579150. 8, 13, 99, 106

[60] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 4th edition,
2014. doi:10.1007/978-1-4614-7630-6. 8, 13

[61] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and
Algorithms. John Wiley & Sons, 3rd edition, 2006. 8

[62] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 - A MATLAB software package for
semidefinite programming. Optimization Methods and Software, 11(1-4):545–581, 1999.
doi:10.1080/10556789908805762. 9

[63] J. F. Sturm. Using SeDuMi 1.02, A MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11(1-4):625–653, 1999. doi:
10.1080/10556789908805766. 9

[64] MOSEK Aps. The MOSEK optimization toolbox for MATLAB manual. Version 9.2,
2021. URL: https://docs.mosek.com/9.2/toolbox/index.html. 9, 25

[65] Gurobi Optimization. Gurobi Optimizer Reference Manual. Version 9.1. URL: https:
//www.gurobi.com/documentation/9.1/refman/index.html. 9

[66] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In
IEEE Symposium on Computer Aided Control Systems Design, pages 284–289, 2004.
doi:10.1109/CACSD.2004.1393890. 9, 25, 68, 132

[67] M. C. Grant and S. P. Boyd. Graph implementations for nonsmooth convex programs.
In Recent Advances in Learning and Control, volume 371, pages 95–110. Springer, 2008.
doi:10.1007/978-1-84800-155-8_7. 9, 132

139

http://dx.doi.org/10.1109/TAC.2023.3275305
http://dx.doi.org/10.1137/1035044
http://dx.doi.org/10.1137/1.9781611970791
http://dx.doi.org/10.1017/CBO9780511804441
https://stanford.edu/~boyd/papers/cdc_20.html
https://stanford.edu/~boyd/papers/cdc_20.html
http://dx.doi.org/10.1007/BF02579150
http://dx.doi.org/10.1007/978-1-4614-7630-6
http://dx.doi.org/10.1080/10556789908805762
http://dx.doi.org/10.1080/10556789908805766
http://dx.doi.org/10.1080/10556789908805766
https://docs.mosek.com/9.2/toolbox/index.html
https://www.gurobi.com/documentation/9.1/refman/index.html
https://www.gurobi.com/documentation/9.1/refman/index.html
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1007/978-1-84800-155-8_7

Bibliography

[68] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming.
Version 2.2, 2021. URL: http://cvxr.com/cvx/. 9, 132

[69] A. B. Kurzhanskĭı and I. Vályi. Ellipsoidal Calculus for Estimation and Control. Systems
& Control: Foundations & Applications. Birkhäuser, 1997. 10

[70] G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer, 1995. doi:10.1007/978-1-4613-8431-1. 10

[71] B. Grünbaum. Convex Polytopes, volume 221 of Graduate Texts in Mathematics. Springer,
2nd edition, 2003. doi:10.1007/978-1-4613-0019-9. 10

[72] W. Kühn. Rigorously computed orbits of dynamical systems without the wrapping effect.
Computing, 61:47–67, 1998. doi:10.1007/BF02684450. 10, 15, 18

[73] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. SIAM,
2009. doi:10.1137/1.9780898717716. 12

[74] M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid systems
using a combination of zonotopes and polytopes. Nonlinear Analysis: Hybrid Systems,
4(2):233–249, 2010. doi:10.1016/j.nahs.2009.03.009. 13, 16, 18

[75] A. Kulmburg and M. Althoff. On the co-NP-completeness of the zonotope containment
problem. European Journal of Control, 62:84–91, 2021. doi:10.1016/j.ejcon.2021.06.
028. 13, 16, 101

[76] M. Althoff. Reachability analysis and its application to the safety assessment of au-
tonomous cars. Doctoral dissertation, Technical University of Munich, 2010. URL:
https://mediatum.ub.tum.de/doc/1287517/. 13, 16, 18, 19, 20

[77] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-parametric toolbox 3.0. In
European Control Conference, pages 502–510, 2013. doi:10.23919/ECC.2013.6669862.
13, 14, 25, 68, 75

[78] J. Bourgain and J. Lindenstrauss. Approximating the ball by a Minkowski sum of
segments with equal length. Discrete & Computational Geometry, 9(2):131–144, 1993.
doi:10.1007/BF02189313. 13

[79] S. Sadraddini and R. Tedrake. Linear encodings for polytope containment problems.
In IEEE Conference on Decision and Control, pages 4367–4372, 2019. doi:10.1109/
CDC40024.2019.9029363. 14, 17

[80] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox (ET). In IEEE Conference on
Decision and Control, pages 1498–1503, 2006. doi:10.1109/CDC.2006.377036. 14

[81] M. Althoff. An introduction to CORA 2015. In Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015. doi:10.29007/zbkv. 14, 21, 25

[82] F. Le Gall. Powers of tensors and fast matrix multiplication. In International Symposium
on Symbolic and Algebraic Computation, pages 296–303, 2014. doi:10.1145/2608628.
2608664. 14

140

http://cvxr.com/cvx/
http://dx.doi.org/10.1007/978-1-4613-8431-1
http://dx.doi.org/10.1007/978-1-4613-0019-9
http://dx.doi.org/10.1007/BF02684450
http://dx.doi.org/10.1137/1.9780898717716
http://dx.doi.org/10.1016/j.nahs.2009.03.009
http://dx.doi.org/10.1016/j.ejcon.2021.06.028
http://dx.doi.org/10.1016/j.ejcon.2021.06.028
https://mediatum.ub.tum.de/doc/1287517/
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.1007/BF02189313
http://dx.doi.org/10.1109/CDC40024.2019.9029363
http://dx.doi.org/10.1109/CDC40024.2019.9029363
http://dx.doi.org/10.1109/CDC.2006.377036
http://dx.doi.org/10.29007/zbkv
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664

Bibliography

[83] H. R. Tiwary. On the hardness of computing intersection, union and Minkowski sum
of polytopes. Discrete & Computational Geometry, 40(3):469–479, 2008. doi:10.1007/
s00454-008-9097-3. 14, 25, 28

[84] A.-K. Kopetzki, B. Schürmann, and M. Althoff. Methods for order reduction of zonotopes.
In IEEE Conference on Decision and Control, pages 5626–5633, 2017. doi:10.1109/CDC.
2017.8264508. 15, 16, 41

[85] X. Yang and J. K. Scott. A comparison of zonotope order reduction techniques. Automatica,
95:378–384, 2018. doi:10.1016/j.automatica.2018.06.006. 15, 41

[86] L. J. Guibas, A. Nguyen, and L. Zhang. Zonotopes as bounding volumes. ACM-SIAM
Symposium on Discrete Algorithms, pages 803–812, 2003. 16, 18

[87] A. Girard. Reachability of uncertain linear systems using zonotopes. In Workshop
on Hybrid Systems: Computation and Control, pages 291–305. Springer, 2005. doi:
10.1007/978-3-540-31954-2_19. 16, 18

[88] B. Schürmann, R. Vignali, M. Prandini, and M. Althoff. Set-based control for disturbed
piecewise affine systems with state and actuation constraints. Nonlinear Analysis: Hybrid
Systems, 36:100826, 2020. doi:10.1016/j.nahs.2019.100826. 16

[89] K. Ghasemi, S. Sadraddini, and C. Belta. Compositional synthesis via a convex parame-
terization of assume-guarantee contracts. In Conference on Hybrid Systems: Computation
and Control, pages 1–10, 2020. doi:10.1145/3365365.3382212. 17, 132

[90] C. Combastel. A state bounding observer based on zonotopes. In European Control
Conference, pages 2589–2594, 2003. doi:10.23919/ECC.2003.7085991. 18

[91] T. Alamo, J. M. Bravo, and E. F. Camacho. Guaranteed state estimation by zonotopes.
Automatica, 41(6):1035–1043, 2005. doi:10.1016/j.automatica.2004.12.008. 18, 78

[92] V. T. H. Le, C. Stoica, T. Alamo, E. F. Camacho, and D. Dumur. Zonotopic guaranteed
state estimation for uncertain systems. Automatica, 49(11):3418–3424, 2013. 18

[93] C. Combastel. Zonotopes and Kalman observers: Gain optimality under distinct un-
certainty paradigms and robust convergence. Automatica, 55:265–273, 2015. doi:
10.1016/j.automatica.2015.03.008. 18, 98

[94] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In Workshop on Hybrid Systems: Computation and Control, pages
215–228, 2008. doi:10.1007/978-3-540-78929-1_16. 18, 21

[95] J. M. Bravo, T. Alamo, and E. F. Camacho. Robust MPC of constrained discrete-time
nonlinear systems based on approximated reachable sets. Automatica, 42(10):1745–1751,
2006. doi:10.1016/j.automatica.2006.05.003. 18, 82, 85

[96] B. Schürmann, N. Kochdumper, and M. Althoff. Reachset model predictive control
for disturbed nonlinear systems. In IEEE Conference on Decision and Control, pages
3463–3470, 2018. doi:10.1109/CDC.2018.8619781. 18, 76

141

http://dx.doi.org/10.1007/s00454-008-9097-3
http://dx.doi.org/10.1007/s00454-008-9097-3
http://dx.doi.org/10.1109/CDC.2017.8264508
http://dx.doi.org/10.1109/CDC.2017.8264508
http://dx.doi.org/10.1016/j.automatica.2018.06.006
http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://dx.doi.org/10.1016/j.nahs.2019.100826
http://dx.doi.org/10.1145/3365365.3382212
http://dx.doi.org/10.23919/ECC.2003.7085991
http://dx.doi.org/10.1016/j.automatica.2004.12.008
http://dx.doi.org/10.1016/j.automatica.2015.03.008
http://dx.doi.org/10.1016/j.automatica.2015.03.008
http://dx.doi.org/10.1007/978-3-540-78929-1_16
http://dx.doi.org/10.1016/j.automatica.2006.05.003
http://dx.doi.org/10.1109/CDC.2018.8619781

Bibliography

[97] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In Workshop on Hybrid Systems: Computation
and Control, pages 73–88, 2000. doi:10.1007/3-540-46430-1_10. 18, 77

[98] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachability analysis of
discrete-time linear systems. IEEE Transactions on Automatic Control, 52(1):26–38, 2007.
doi:10.1109/TAC.2006.887900. 18, 77

[99] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis of
piecewise-linear dynamical systems. In Workshop on Hybrid Systems: Computation and
Control, pages 20–31, 2000. doi:10.1007/3-540-46430-1_6. 18

[100] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system verification.
IEEE Transactions on Automatic Control, 48(1):64–75, 2003. doi:10.1109/TAC.2002.
806655. 18

[101] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability
implies feedback stabilization. IEEE Transactions on Automatic Control, 42(10):1394–
1407, 1997. doi:10.1109/9.633828. 18

[102] S. V. Raković, F. A. C. C. Fontes, and I. V. Kolmanovsky. Reachability and invariance
for linear sampled-data systems. In IFAC World Congress, pages 3057–3062, 2017.
doi:10.1016/j.ifacol.2017.08.675. 18, 22, 24, 28, 39, 41, 46, 49

[103] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000. 18, 22

[104] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computation for
families of linear vector fields. Journal of Symbolic Computation, 32(3):231–253, 2001.
doi:10.1006/JSCO.2001.0472. 19

[105] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, 45(1):3–49, 2003. doi:10.1137/S00361445024180.
19

[106] J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication.
In ACM-SIAM Symposium on Discrete Algorithms, pages 522–539, 2021. doi:10.1137/
1.9781611976465.32. 20

[107] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2E2: A verification tool
for stateflow models. In Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 68–82, 2015. doi:10.1007/978-3-662-46681-0_5. 21

[108] S. Schupp, E. Ábrahám, I. B. Makhlouf, and S. Kowalewski. HyPro: A C++ library
of state set representations for hybrid systems reachability analysis. In NASA Formal
Methods Symposium, pages 288–294, 2017. doi:10.1007/978-3-319-57288-8_20. 21

[109] S. Bak and P. S. Duggirala. HyLAA: A tool for computing simulation-equivalent reacha-
bility for linear systems. In Conference on Hybrid Systems: Computation and Control,
pages 173–178, 2017. doi:10.1145/3049797.3049808. 21

142

http://dx.doi.org/10.1007/3-540-46430-1_10
http://dx.doi.org/10.1109/TAC.2006.887900
http://dx.doi.org/10.1007/3-540-46430-1_6
http://dx.doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/10.1109/9.633828
http://dx.doi.org/10.1016/j.ifacol.2017.08.675
http://dx.doi.org/10.1006/JSCO.2001.0472
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/1.9781611976465.32
http://dx.doi.org/10.1137/1.9781611976465.32
http://dx.doi.org/10.1007/978-3-662-46681-0_5
http://dx.doi.org/10.1007/978-3-319-57288-8_20
http://dx.doi.org/10.1145/3049797.3049808

Bibliography

[110] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. JuliaReach: A
toolbox for set-based reachability. In Conference on Hybrid Systems: Computation and
Control, pages 39–44, 2019. doi:10.1145/3302504.3311804. 21

[111] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems. In Conference on
Computer Aided Verification, pages 379–395, 2011. doi:10.1007/978-3-642-22110-1_
30. 21

[112] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu. XSpeed: Acceler-
ating reachability analysis on multi-core processors. In Haifa Verification Conference,
pages 3–18, 2015. doi:10.1007/978-3-319-26287-1_1. 21

[113] M. Althoff, E. Ábrahám, M. Forets, G. Frehse, D. Freire, C. Schilling, S. Schupp, and
M. Wetzlinger. ARCH-COMP21 category report: Continuous and hybrid systems with
linear continuous dynamics. In Workshop on Applied Verification of Continuous and
Hybrid Systems, pages 1–31, 2021. doi:10.29007/lhbw. 21

[114] M. Althoff, C. Le Guernic, and B. H. Krogh. Reachable set computation for uncertain
time-varying linear systems. In Conference on Hybrid systems: computation and control,
pages 93–102, 2011. doi:10.1145/1967701.1967717. 21

[115] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with
uncertain parameters using conservative linearization. In IEEE Conference on Decision
and Control, pages 4042–4048, 2008. doi:10.1109/CDC.2008.4738704. 21

[116] M. Nagumo. Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen.
Physico-Mathematical Society of Japan, 24:551–559, 1942. doi:10.11429/ppmsj1919.24.
0_551. 21

[117] P.-O. Gutman and M. Cwikel. Admissible sets and feedback control for discrete-time linear
dynamical systems with bounded controls and states. IEEE Transactions on Automatic
Control, 31(4):373–376, 1986. doi:10.1109/TAC.1986.1104270. 21

[118] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999. doi:
10.1016/S0005-1098(99)00113-2. 21

[119] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre. Viability Theory: New Directions. Springer,
2nd edition, 2011. doi:10.1007/978-3-642-16684-6. 21, 27

[120] C.-J. Ong and E. G. Gilbert. The minimal disturbance invariant set: Outer approximations
via its partial sums. Automatica, 42(9):1563–1568, 2006. doi:10.1016/j.automatica.
2006.04.019. 22, 28, 88

[121] S. V. Raković and K. I. Kouramas. The minimal robust positively invariant set for
linear discrete time systems: Approximation methods and control applications. In IEEE
Conference on Decision and Control, pages 4562–4567, 2006. doi:10.1109/CDC.2006.
377500. 22, 28, 88

143

http://dx.doi.org/10.1145/3302504.3311804
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-319-26287-1_1
http://dx.doi.org/10.29007/lhbw
http://dx.doi.org/10.1145/1967701.1967717
http://dx.doi.org/10.1109/CDC.2008.4738704
http://dx.doi.org/10.11429/ppmsj1919.24.0_551
http://dx.doi.org/10.11429/ppmsj1919.24.0_551
http://dx.doi.org/10.1109/TAC.1986.1104270
http://dx.doi.org/10.1016/S0005-1098(99)00113-2
http://dx.doi.org/10.1016/S0005-1098(99)00113-2
http://dx.doi.org/10.1007/978-3-642-16684-6
http://dx.doi.org/10.1016/j.automatica.2006.04.019
http://dx.doi.org/10.1016/j.automatica.2006.04.019
http://dx.doi.org/10.1109/CDC.2006.377500
http://dx.doi.org/10.1109/CDC.2006.377500

Bibliography

[122] P. Trodden. A one-step approach to computing a polytopic robust positively invariant
set. IEEE Transactions on Automatic Control, 61(12):4100–4105, 2016. doi:10.1109/
TAC.2016.2541300. 22, 28, 88

[123] S. Tarbouriech and C. Burgat. Positively invariant sets for constrained continuous-time
systems with cone properties. IEEE Transactions on Automatic Control, 39(2):401–405,
1994. doi:10.1109/9.272344. 24

[124] S. V. Raković and K. I. Kouramas. Invariant approximations of the minimal robust
positively invariant set via finite time Aumann integrals. In IEEE Conference on Decision
and Control, pages 194–199, 2007. doi:10.1109/CDC.2007.4434165. 24

[125] M. Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604):452–454, 2016.
doi:10.1038/533452a. 25

[126] P. Koopman and M. Wagner. Autonomous vehicle safety: An interdisciplinary challenge.
IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, 2017. doi:10.1109/MITS.
2016.2583491. 27, 115

[127] S. C. Ho, R. D. Hibberd, and B. L. Davies. Robot assisted knee surgery. IEEE Engineering
in Medicine and Biology Magazine, 14(3):292–300, 1995. doi:10.1109/51.391774. 27

[128] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000. doi:
10.1016/S0005-1098(99)00214-9. 27, 75

[129] I. M. Mitchell, J. Yeh, F. J. Laine, and C. J. Tomlin. Ensuring safety for sampled data
systems: An efficient algorithm for filtering potentially unsafe input signals. In IEEE
Conference on Decision and Control, pages 7431–7438, 2016. doi:10.1109/CDC.2016.
7799417. 27, 47, 77, 96

[130] K. P. Wabersich and M. N. Zeilinger. Linear model predictive safety certification for
learning-based control. In IEEE Conference on Decision and Control, pages 7130–7135,
2018. doi:10.1109/CDC.2018.8619829. 27, 96, 103, 105, 106, 107

[131] P. Cardaliaguet. A differential game with two players and one target. SIAM Journal on
Control and Optimization, 34(4):1441–1460, 1996. doi:10.1137/S036301299427223X. 27

[132] C. Liu and I. M. Jaimoukha. The computation of full-complexity polytopic robust control
invariant sets. In IEEE Conference on Decision and Control, pages 6233–6238, 2015.
doi:10.1109/CDC.2015.7403200. 28, 52, 58, 63, 64, 65, 68

[133] F. Tahir and I. M. Jaimoukha. Low-complexity polytopic invariant sets for linear
systems subject to norm-bounded uncertainty. IEEE Transactions on Automatic Control,
60(5):1416–1421, 2015. doi:10.1109/TAC.2014.2352692. 28

[134] A. Gupta and P. Falcone. Full-complexity characterization of control-invariant domains for
systems with uncertain parameter dependence. IEEE Control Systems Letters, 3(1):19–24,
2019. doi:10.1109/LCSYS.2018.2849714. 28, 52, 58, 63, 64, 65, 68

144

http://dx.doi.org/10.1109/TAC.2016.2541300
http://dx.doi.org/10.1109/TAC.2016.2541300
http://dx.doi.org/10.1109/9.272344
http://dx.doi.org/10.1109/CDC.2007.4434165
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1109/MITS.2016.2583491
http://dx.doi.org/10.1109/MITS.2016.2583491
http://dx.doi.org/10.1109/51.391774
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1109/CDC.2016.7799417
http://dx.doi.org/10.1109/CDC.2016.7799417
http://dx.doi.org/10.1109/CDC.2018.8619829
http://dx.doi.org/10.1137/S036301299427223X
http://dx.doi.org/10.1109/CDC.2015.7403200
http://dx.doi.org/10.1109/TAC.2014.2352692
http://dx.doi.org/10.1109/LCSYS.2018.2849714

Bibliography

[135] A. Gupta, H. Köroğlu, and P. Falcone. Computation of robust control invariant sets
with predefined complexity for uncertain systems. International Journal of Robust and
Nonlinear Control, 31(5):1674–1688, 2021. doi:10.1002/rnc.5378. 28

[136] A. Wintenberg and N. Ozay. Implicit invariant sets for high-dimensional switched
affine systems. In IEEE Conference on Decision and Control, pages 3291–3297, 2020.
doi:10.1109/CDC42340.2020.9303986. 28, 39

[137] T. Anevlavis, Z. Liu, N. Ozay, and P. Tabuada. Controlled invariant sets: Implicit
closed-form representations and applications, 2021. arXiv:2107.08566. 28, 111

[138] S. V. Raković and M. Barić. Parameterized robust control invariant sets for linear
systems: Theoretical advances and computational remarks. IEEE Transactions on
Automatic Control, 55(7):1599–1614, 2010. doi:10.1109/TAC.2010.2042341. 28, 43

[139] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM, 1994. doi:10.1137/1.9781611970777. 28

[140] A. Poznyak, A. Polyakov, and V. Azhmyakov. Attractive Ellipsoids in Robust Control.
Systems & Control: Foundations & Applications. Birkhäuser, 2014. doi:10.1007/
978-3-319-09210-2. 28

[141] S. Yu, Y. Zhou, T. Qu, F. Xu, and Y. Ma. Control invariant sets of linear systems
with bounded disturbances. International Journal of Control, Automation and Systems,
16(2):622–629, 2018. doi:10.1007/s12555-016-0745-8. 28

[142] S. Kaynama, I. M. Mitchell, M. Oishi, and G. A. Dumont. Scalable safety-preserving
robust control synthesis for continuous-time linear systems. IEEE Transactions on
Automatic Control, 60(11):3065–3070, 2015. doi:10.1109/TAC.2015.2411872. 28, 77,
91, 105, 111

[143] I. M. Mitchell, J. Budzis, and A. Bolyachevets. Invariant, viability and discriminating
kernel under-approximation via zonotope scaling, 2019. arXiv:1901.01006. 28, 30, 44,
48, 53, 99, 105, 110, 111, 113

[144] D. Althoff, M. Althoff, and S. Scherer. Online safety verification of trajectories for
unmanned flight with offline computed robust invariant sets. In IEEE/RSJ Conference
on Intelligent Robots and Systems, pages 3470–3477, 2015. doi:10.1109/IROS.2015.
7353861. 28

[145] S. V. Raković, E. C. Kerrigan, D. Q. Mayne, and K. I. Kouramas. Optimized robust
control invariance for linear discrete-time systems: Theoretical foundations. Automatica,
43(5):831–841, 2007. doi:10.1016/j.automatica.2006.11.006. 28, 43

[146] S. Riverso, M. Farina, and G. Ferrari-Trecate. Plug-and-play decentralized model predic-
tive control for linear systems. IEEE Transactions on Automatic Control, 58(10):2608–
2614, 2013. doi:10.1109/TAC.2013.2254641. 28, 77, 132

145

http://dx.doi.org/10.1002/rnc.5378
http://dx.doi.org/10.1109/CDC42340.2020.9303986
http://arxiv.org/abs/2107.08566
http://dx.doi.org/10.1109/TAC.2010.2042341
http://dx.doi.org/10.1137/1.9781611970777
http://dx.doi.org/10.1007/978-3-319-09210-2
http://dx.doi.org/10.1007/978-3-319-09210-2
http://dx.doi.org/10.1007/s12555-016-0745-8
http://dx.doi.org/10.1109/TAC.2015.2411872
http://arxiv.org/abs/1901.01006
http://dx.doi.org/10.1109/IROS.2015.7353861
http://dx.doi.org/10.1109/IROS.2015.7353861
http://dx.doi.org/10.1016/j.automatica.2006.11.006
http://dx.doi.org/10.1109/TAC.2013.2254641

Bibliography

[147] K. Ghasemi, S. Sadraddini, and C. Belta. Compositional synthesis of decentralized robust
set-invariance controllers for large-scale linear systems. In IEEE Conference on Decision
and Control, pages 2054–2059, 2019. doi:10.1109/CDC40024.2019.9028887. 28, 42, 43

[148] Y. Chen and N. Ozay. Data-driven computation of robust control invariant sets with
concurrent model selection. IEEE Transactions on Control Systems Technology, 30(2):495–
506, 2022. doi:10.1109/TCST.2021.3069759. 28, 96, 133

[149] M. Fiacchini and M. Alamir. Computing control invariant sets in high dimension is easy,
2018. arXiv:1810.10372. 28

[150] S. Munir, M. Hovd, and S. Olaru. Low complexity constrained control using higher degree
Lyapunov functions. Automatica, 98:215–222, 2018. doi:10.1016/j.automatica.2018.
09.030. 28

[151] B. Legat, S. V. Raković, and R. M. Jungers. Piecewise semi-ellipsoidal control invariant sets.
IEEE Control Systems Letters, 5(3):755–760, 2021. doi:10.1109/LCSYS.2020.3005326.
28

[152] M. Fiacchini, T. Alamo, and E. F. Camacho. On the computation of convex robust
control invariant sets for nonlinear systems. Automatica, 46(8):1334–1338, 2010. doi:
10.1016/j.automatica.2010.05.007. 28, 132

[153] M. A. Ben Sassi and A. Girard. Controller synthesis for robust invariance of polynomial
dynamical systems using linear programming. Systems & Control Letters, 61(4):506–512,
2012. doi:10.1016/j.sysconle.2012.01.004. 28, 132

[154] S. Yu, C. Maier, H. Chen, and F. Allgöwer. Tube MPC scheme based on robust control
invariant set with application to Lipschitz nonlinear systems. Systems & Control Letters,
62(2):194–200, 2013. doi:10.1016/j.sysconle.2012.11.004. 28, 132

[155] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, 1972. 28, 30, 42,
53, 68, 75, 79, 91, 108, 111, 113

[156] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski. Optimization over state feedback
policies for robust control with constraints. Automatica, 42(4):523–533, 2006. doi:
10.1016/j.automatica.2005.08.023. 28, 30, 44

[157] J. Skaf and S. P. Boyd. Design of affine controllers via convex optimization. IEEE
Transactions on Automatic Control, 55(11):2476–2487, 2010. doi:10.1109/TAC.2010.
2046053. 28

[158] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni. System level synthesis. Annual
Reviews in Control, 47:364–393, 2019. doi:10.1016/j.arcontrol.2019.03.006. 28

[159] D. Youla, H. Jabr, and J. Bongiorno. Modern Wiener-Hopf design of optimal controllers–
Part II: The multivariable case. IEEE Transactions on Automatic Control, 21(3):319–338,
1976. doi:10.1109/TAC.1976.1101223. 28

146

http://dx.doi.org/10.1109/CDC40024.2019.9028887
http://dx.doi.org/10.1109/TCST.2021.3069759
http://arxiv.org/abs/1810.10372
http://dx.doi.org/10.1016/j.automatica.2018.09.030
http://dx.doi.org/10.1016/j.automatica.2018.09.030
http://dx.doi.org/10.1109/LCSYS.2020.3005326
http://dx.doi.org/10.1016/j.automatica.2010.05.007
http://dx.doi.org/10.1016/j.automatica.2010.05.007
http://dx.doi.org/10.1016/j.sysconle.2012.01.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.automatica.2005.08.023
http://dx.doi.org/10.1016/j.automatica.2005.08.023
http://dx.doi.org/10.1109/TAC.2010.2046053
http://dx.doi.org/10.1109/TAC.2010.2046053
http://dx.doi.org/10.1016/j.arcontrol.2019.03.006
http://dx.doi.org/10.1109/TAC.1976.1101223

Bibliography

[160] D. Mayne. Robust and stochastic model predictive control: Are we going in the right
direction? Annual Reviews in Control, 41:184–192, 2016. doi:10.1016/j.arcontrol.
2016.04.006. 41, 42, 75, 96

[161] D. E. Knuth. The Art of Computer Programming, Volumes 1-4A. Addison Wesley, 3rd
edition, 2011. 47

[162] E. Gover and N. Krikorian. Determinants and the volumes of parallelotopes and zonotopes.
Linear Algebra and its Applications, 433(1):28–40, 2010. doi:10.1016/j.laa.2010.01.
031. 47, 52, 98

[163] L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix
inequality constraints. SIAM Journal on Matrix Analysis and Applications, 19(2):499–533,
1998. doi:10.1137/S0895479896303430. 48, 52, 98

[164] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,
1996. doi:10.1137/1038003. 52

[165] V. Gaßmann and M. Althoff. Scalable zonotope-ellipsoid conversions using the Euclidean
zonotope norm. In American Control Conference, pages 4715–4721, 2020. doi:10.23919/
ACC45564.2020.9147938. 52

[166] F. Blanchini. Ultimate boundedness control for uncertain discrete-time systems via set-
induced Lyapunov functions. IEEE Transactions on Automatic Control, 39(2):428–433,
1994. doi:10.1109/9.272351. 58

[167] A. Gupta. Control of constrained dynamical systems with performance guarantees. Doctoral
dissertation, Chalmers University of Technology, 2021. doi:10.13140/RG.2.2.29369.
29286. 63

[168] I. Ben Makhlouf and S. Kowalewski. Networked cooperative platoon of vehicles for testing
methods and verification tools. In Workshop on Applied Verification for Continuous and
Hybrid Systems, pages 37–42, 2014. doi:10.29007/zvkb. 64, 65

[169] A. Alam, A. Gattami, and K. H. Johansson. An experimental study on the fuel re-
duction potential of heavy duty vehicle platooning. In IEEE Conference on Intelligent
Transportation Systems, pages 306–311, 2010. doi:10.1109/ITSC.2010.5625054. 64

[170] D. Elliott, W. Keen, and L. Miao. Recent advances in connected and automated vehicles.
Journal of Traffic and Transportation Engineering, 6(2):109–131, 2019. doi:10.1016/j.
jtte.2018.09.005. 64, 119

[171] Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li, and M. J. Barth. A survey on
cooperative longitudinal motion control of multiple connected and automated vehicles.
IEEE Intelligent Transportation Systems Magazine, 12(1):4–24, 2020. doi:10.1109/MITS.
2019.2953562. 64, 119

[172] C. Conte, N. R. Voellmy, M. N. Zeilinger, M. Morari, and C. N. Jones. Distributed
synthesis and control of constrained linear systems. In American Control Conference,
pages 6017–6022, 2012. doi:10.1109/ACC.2012.6314654. 68

147

http://dx.doi.org/10.1016/j.arcontrol.2016.04.006
http://dx.doi.org/10.1016/j.arcontrol.2016.04.006
http://dx.doi.org/10.1016/j.laa.2010.01.031
http://dx.doi.org/10.1016/j.laa.2010.01.031
http://dx.doi.org/10.1137/S0895479896303430
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.23919/ACC45564.2020.9147938
http://dx.doi.org/10.23919/ACC45564.2020.9147938
http://dx.doi.org/10.1109/9.272351
http://dx.doi.org/10.13140/RG.2.2.29369.29286
http://dx.doi.org/10.13140/RG.2.2.29369.29286
http://dx.doi.org/10.29007/zvkb
http://dx.doi.org/10.1109/ITSC.2010.5625054
http://dx.doi.org/10.1016/j.jtte.2018.09.005
http://dx.doi.org/10.1016/j.jtte.2018.09.005
http://dx.doi.org/10.1109/MITS.2019.2953562
http://dx.doi.org/10.1109/MITS.2019.2953562
http://dx.doi.org/10.1109/ACC.2012.6314654

Bibliography

[173] P. Nilsson and N. Ozay. Synthesis of separable controlled invariant sets for modular
local control design. In American Control Conference, pages 5656–5663, 2016. doi:
10.1109/ACC.2016.7526557. 68

[174] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control technol-
ogy. Control Engineering Practice, 11(7):733–764, 2003. doi:10.1016/S0967-0661(02)
00186-7. 75

[175] M. G. Forbes, R. S. Patwardhan, H. Hamadah, and R. B. Gopaluni. Model predictive
control in industry: Challenges and opportunities. IFAC Symposium on Advanced Control
of Chemical Processes, 48(8):531–538, 2015. doi:10.1016/j.ifacol.2015.09.022. 75

[176] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky. The development of model
predictive control in automotive industry: A survey. In IEEE Conference on Control
Applications, pages 295–302, 2012. doi:10.1109/CCA.2012.6402735. 75

[177] P. Soru, G. De Nicolao, C. Toffanin, C. Dalla Man, C. Cobelli, and L. Magni. MPC
based artificial pancreas: Strategies for individualization and meal compensation. Annual
Reviews in Control, 36(1):118–128, 2012. doi:10.1016/j.arcontrol.2012.03.009. 75

[178] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena. Model pre-
dictive control for power converters and drives: Advances and trends. IEEE Transactions
on Industrial Electronics, 64(2):935–947, 2017. doi:10.1109/TIE.2016.2625238. 75

[179] A. Afram and F. Janabi-Sharifi. Theory and applications of HVAC control systems - A
review of model predictive control (MPC). Building and Environment, 72:343–355, 2014.
doi:10.1016/j.buildenv.2013.11.016. 75

[180] J. A. Primbs. Portfolio optimization applications of stochastic receding horizon control. In
American Control Conference, pages 1811–1816, 2007. doi:10.1109/ACC.2007.4282251.
75

[181] D. Q. Mayne. Model predictive control: Recent developments and future promise.
Automatica, 50(12):2967–2986, 2014. doi:10.1016/j.automatica.2014.10.128. 75, 96

[182] R. Oberdieck, N. A. Diangelakis, and E. N. Pistikopoulos. Explicit model predictive
control: A connected-graph approach. Automatica, 76:103–112, 2017. doi:10.1016/j.
automatica.2016.10.005. 75

[183] M. Kvasnica, P. Bakaráč, and M. Klaučo. Complexity reduction in explicit MPC: A
reachability approach. Systems & Control Letters, 124:19–26, 2019. doi:10.1016/j.
sysconle.2018.12.002. 75

[184] A. Alessio and A. Bemporad. A survey on explicit model predictive control. In L. Magni,
D. M. Raimondo, and F. Allgöwer, editors, Nonlinear Model Predictive Control., volume
384 of Lecture Notes in Control and Information Sciences, pages 345–369. Springer, 2009.
doi:10.1007/978-3-642-01094-1_29. 75

148

http://dx.doi.org/10.1109/ACC.2016.7526557
http://dx.doi.org/10.1109/ACC.2016.7526557
http://dx.doi.org/10.1016/S0967-0661(02)00186-7
http://dx.doi.org/10.1016/S0967-0661(02)00186-7
http://dx.doi.org/10.1016/j.ifacol.2015.09.022
http://dx.doi.org/10.1109/CCA.2012.6402735
http://dx.doi.org/10.1016/j.arcontrol.2012.03.009
http://dx.doi.org/10.1109/TIE.2016.2625238
http://dx.doi.org/10.1016/j.buildenv.2013.11.016
http://dx.doi.org/10.1109/ACC.2007.4282251
http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://dx.doi.org/10.1016/j.automatica.2016.10.005
http://dx.doi.org/10.1016/j.automatica.2016.10.005
http://dx.doi.org/10.1016/j.sysconle.2018.12.002
http://dx.doi.org/10.1016/j.sysconle.2018.12.002
http://dx.doi.org/10.1007/978-3-642-01094-1_29

Bibliography

[185] S. V. Raković. Invention of prediction structures and categorization of robust MPC
syntheses. In IFAC Nonlinear Model Predictive Control Conference, pages 245–273, 2012.
doi:10.3182/20120823-5-NL-3013.00038. 75, 132

[186] G. C. Goodwin, H. Kong, G. Mirzaeva, and M. M. Seron. Robust model predictive
control: Reflections and opportunities. Journal of Control and Decision, 1(2):115–148,
2014. doi:10.1080/23307706.2014.913837. 75

[187] M. B. Saltık, L. Özkan, J. H. A. Ludlage, S. Weiland, and P. M. J. Van den Hof. An
outlook on robust model predictive control algorithms: Reflections on performance and
computational aspects. Journal of Process Control, 61:77–102, 2018. doi:10.1016/j.
jprocont.2017.10.006. 75

[188] H. Witsenhausen. A minimax control problem for sampled linear systems. IEEE
Transactions on Automatic Control, 13(1):5–21, 1968. doi:10.1109/TAC.1968.1098788.
76

[189] J. H. Lee and Z. Yu. Worst-case formulations of model predictive control for systems with
bounded parameters. Automatica, 33(5):763–781, 1997. doi:10.1016/S0005-1098(96)
00255-5. 76

[190] P. O. M. Scokaert and D. Q. Mayne. Min-max feedback model predictive control for
constrained linear systems. IEEE Transactions on Automatic Control, 43(8):1136–1142,
1998. doi:10.1109/9.704989. 76

[191] M. Lazar, D. Muñoz de la Peña, W. P. M. H. Heemels, and T. Alamo. On input-to-state
stability of min-max nonlinear model predictive control. Systems & Control Letters,
57(1):39–48, 2008. doi:10.1016/j.sysconle.2007.06.013. 76

[192] L. Chisci, J. A. Rossiter, and G. Zappa. Systems with persistent disturbances: Predictive
control with restricted constraints. Automatica, 37(7):1019–1028, 2001. doi:10.1016/
S0005-1098(01)00051-6. 76, 87

[193] D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predictive control of
constrained linear systems with bounded disturbances. Automatica, 41(2):219–224, 2005.
doi:10.1016/j.automatica.2004.08.019. 76, 77

[194] A. Richards and J. How. Robust stable model predictive control with constraint tighten-
ing. In American Control Conference, pages 1557–1562, 2006. doi:10.1109/ACC.2006.
1656440. 76, 87

[195] S. V. Raković, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen. Parameterized
tube model predictive control. IEEE Transactions on Automatic Control, 57(11):2746–
2761, 2012. doi:10.1109/TAC.2012.2191174. 76

[196] S. V. Raković, W. S. Levine, and B. Açikmese. Elastic tube model predictive control. In
American Control Conference, pages 3594–3599, 2016. doi:10.1109/ACC.2016.7525471.
76

149

http://dx.doi.org/10.3182/20120823-5-NL-3013.00038
http://dx.doi.org/10.1080/23307706.2014.913837
http://dx.doi.org/10.1016/j.jprocont.2017.10.006
http://dx.doi.org/10.1016/j.jprocont.2017.10.006
http://dx.doi.org/10.1109/TAC.1968.1098788
http://dx.doi.org/10.1016/S0005-1098(96)00255-5
http://dx.doi.org/10.1016/S0005-1098(96)00255-5
http://dx.doi.org/10.1109/9.704989
http://dx.doi.org/10.1016/j.sysconle.2007.06.013
http://dx.doi.org/10.1016/S0005-1098(01)00051-6
http://dx.doi.org/10.1016/S0005-1098(01)00051-6
http://dx.doi.org/10.1016/j.automatica.2004.08.019
http://dx.doi.org/10.1109/ACC.2006.1656440
http://dx.doi.org/10.1109/ACC.2006.1656440
http://dx.doi.org/10.1109/TAC.2012.2191174
http://dx.doi.org/10.1109/ACC.2016.7525471

Bibliography

[197] M. N. Zeilinger, D. M. Raimondo, A. Domahidi, M. Morari, and C. N. Jones. On
real-time robust model predictive control. Automatica, 50(3):683–694, 2014. doi:10.
1016/j.automatica.2013.11.019. 76

[198] R. Gonzalez, M. Fiacchini, T. Alamo, J. L. Guzman, and F. Rodŕıguez. Online robust
tube-based MPC for time-varying systems: A practical approach. International Journal
of Control, 84(6):1157–1170, 2011. doi:10.1080/00207179.2011.594093. 76

[199] D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer. Robust output feedback
model predictive control of constrained linear systems. Automatica, 42(7):1217–1222,
2006. doi:10.1016/j.automatica.2006.03.005. 76

[200] D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer. Robust output feedback
model predictive control of constrained linear systems: Time varying case. Automatica,
45(9):2082–2087, 2009. doi:10.1016/j.automatica.2009.05.009. 76, 78, 87

[201] V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, and E. F. Camacho. Robust tube-
based constrained predictive control via zonotopic set-membership estimation. In IEEE
Conference on Decision and Control and European Control Conference, pages 4580–4585,
2011. doi:10.1109/CDC.2011.6161131. 76

[202] M. Kögel and R. Findeisen. Robust output feedback MPC for uncertain linear systems
with reduced conservatism. In IFAC World Congress, pages 10685–10690, 2017. doi:
10.1016/j.ifacol.2017.08.2186. 76, 78

[203] A. Bemporad and A. Garulli. Output-feedback predictive control of constrained linear
systems via set-membership state estimation. International Journal of Control, 73(8):655–
665, 2000. doi:10.1080/002071700403420. 76, 82

[204] L. Chisci and G. Zappa. Feasibility in predictive control of constrained linear systems:
The output feedback case. International Journal of Robust and Nonlinear Control,
12(5):465–487, 2002. doi:10.1002/rnc.658. 76

[205] D. A. Copp and J. P. Hespanha. Nonlinear output-feedback model predictive control
with moving horizon estimation. In IEEE Conference on Decision and Control, pages
3511–3517, 2014. doi:10.1109/CDC.2014.7039934. 76

[206] F. D. Brunner, M. A. Müller, and F. Allgöwer. Enhancing output-feedback MPC
with set-valued moving horizon estimation. IEEE Transactions on Automatic Control,
63(9):2976–2986, 2018. doi:10.1109/TAC.2018.2791899. 76

[207] Z. Dong and D. Angeli. Homothetic tube-based robust economic MPC with integrated
moving horizon estimation. IEEE Transactions on Automatic Control, 66(1):64–75, 2021.
doi:10.1109/TAC.2020.2973606. 76

[208] M. Farina and R. Scattolini. Tube-based robust sampled-data MPC for linear continuous-
time systems. Automatica, 48(7):1473–1476, 2012. doi:10.1016/j.automatica.2012.
03.026. 77

150

http://dx.doi.org/10.1016/j.automatica.2013.11.019
http://dx.doi.org/10.1016/j.automatica.2013.11.019
http://dx.doi.org/10.1080/00207179.2011.594093
http://dx.doi.org/10.1016/j.automatica.2006.03.005
http://dx.doi.org/10.1016/j.automatica.2009.05.009
http://dx.doi.org/10.1109/CDC.2011.6161131
http://dx.doi.org/10.1016/j.ifacol.2017.08.2186
http://dx.doi.org/10.1016/j.ifacol.2017.08.2186
http://dx.doi.org/10.1080/002071700403420
http://dx.doi.org/10.1002/rnc.658
http://dx.doi.org/10.1109/CDC.2014.7039934
http://dx.doi.org/10.1109/TAC.2018.2791899
http://dx.doi.org/10.1109/TAC.2020.2973606
http://dx.doi.org/10.1016/j.automatica.2012.03.026
http://dx.doi.org/10.1016/j.automatica.2012.03.026

Bibliography

[209] F. Blanchini, D. Casagrande, G. Giordano, and U. Viaro. Robust constrained model
predictive control of fast electromechanical systems. Journal of the Franklin Institute,
353(9):2087–2103, 2016. doi:10.1016/j.jfranklin.2016.03.009. 77

[210] F. A. C. C. Fontes, S. V. Raković, and I. V. Kolmanovsky. Rigid tube model predictive
control for linear sampled-data systems. In IFAC World Congress, pages 9840–9845, 2017.
doi:10.1016/j.ifacol.2017.08.903. 77

[211] I. Alvarado, D. Limon, D. Muñoz de la Peña, T. Alamo, and E. F. Camacho. Enhanced ISS
nominal MPC based on constraint tightening for constrained linear systems. In UKACC
International Conference on Control, pages 1–6, 2010. doi:10.1049/ic.2010.0258. 77

[212] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu. Distributed model
predictive control: A tutorial review and future research directions. Computers and
Chemical Engineering, 51:21–41, 2013. doi:10.1016/j.compchemeng.2012.05.011. 77

[213] J. M. Maestre and R. R. Negenborn. Distributed Model Predictive Control Made Easy.
Springer, 2014. doi:10.1007/978-94-007-7006-5. 77

[214] M. Althoff and J. J. Rath. Comparison of guaranteed state estimators for linear time-
invariant systems. Automatica, 130:109662, 2021. doi:10.1016/j.automatica.2021.
109662. 78

[215] C. Hu, C. Liu, and I. M. Jaimoukha. Computation of invariant tubes for robust output
feedback model predictive control. IFAC World Congress, 53(2):7063–7069, 2020. doi:
10.1016/j.ifacol.2020.12.455. 78

[216] V. M. Zavala and L. T. Biegler. The advanced-step NMPC controller: Optimality, stability
and robustness. Automatica, 45(1):86–93, 2009. doi:10.1016/j.automatica.2008.06.
011. 82, 100, 101

[217] M. Althoff. On computing the Minkowski difference of zonotopes, 2015. arXiv:1512.
02794. 87

[218] W. Tang, Z. Wang, Y. Wang, T. Raissi, and Y. Shen. Interval estimation methods for
discrete-time linear time-invariant systems. IEEE Transactions on Automatic Control,
64(11):4717–4724, 2019. doi:10.1109/TAC.2019.2902673. 88

[219] S. Kaynama and C. J. Tomlin. Benchmark: Flight envelope protection in autonomous
quadrotors. In Workshop on Applied Verification for Continuous and Hybrid Systems,
2014. 91, 111

[220] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe
reinforcement learning via shielding. In AAAI Conference on Artificial Intelligence, pages
2669–2678, 2018. 96

[221] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-based
model predictive control: Toward safe learning in control. Annual Review of
Control, Robotics, and Autonomous Systems, 3(1):269–296, 2020. doi:10.1146/
annurev-control-090419-075625. 96

151

http://dx.doi.org/10.1016/j.jfranklin.2016.03.009
http://dx.doi.org/10.1016/j.ifacol.2017.08.903
http://dx.doi.org/10.1049/ic.2010.0258
http://dx.doi.org/10.1016/j.compchemeng.2012.05.011
http://dx.doi.org/10.1007/978-94-007-7006-5
http://dx.doi.org/10.1016/j.automatica.2021.109662
http://dx.doi.org/10.1016/j.automatica.2021.109662
http://dx.doi.org/10.1016/j.ifacol.2020.12.455
http://dx.doi.org/10.1016/j.ifacol.2020.12.455
http://dx.doi.org/10.1016/j.automatica.2008.06.011
http://dx.doi.org/10.1016/j.automatica.2008.06.011
http://arxiv.org/abs/1512.02794
http://arxiv.org/abs/1512.02794
http://dx.doi.org/10.1109/TAC.2019.2902673
http://dx.doi.org/10.1146/annurev-control-090419-075625
http://dx.doi.org/10.1146/annurev-control-090419-075625

Bibliography

[222] M. Yousefi, K. van Heusden, N. West, I. M. Mitchell, J. M. Ansermino, and G. A.
Dumont. A formalized safety system for closed-loop anesthesia with pharmacokinetic
and pharmacodynamic constraints. Control Engineering Practice, 84:23–31, 2019. doi:
10.1016/j.conengprac.2018.11.009. 96

[223] A. Colombo and D. Del Vecchio. Least restrictive supervisors for intersection collision
avoidance: A scheduling approach. IEEE Transactions on Automatic Control, 60(6):1515–
1527, 2015. doi:10.1109/TAC.2014.2381453. 96

[224] L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28, 2001.
doi:10.1109/MS.2001.936213. 96

[225] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer, U. Topcu, and
C. Wang. Shield synthesis. Formal Methods in System Design, 51(2):332–361, 2017.
doi:10.1007/s10703-017-0276-9. 96

[226] N. Aréchiga and B. H. Krogh. Using verified control envelopes for safe controller design. In
American Control Conference, pages 2918–2923, 2014. doi:10.1109/ACC.2014.6859307.
96

[227] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo. Sandboxing controllers for cyber-
physical systems. In IEEE/ACM Conference on Cyber-Physical Systems, pages 3–12,
2011. doi:10.1109/ICCPS.2011.25. 96

[228] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha. Real-time reachability for verified
simplex design. In IEEE Real-Time Systems Symposium, pages 138–148, 2014. doi:
10.1109/RTSS.2014.21. 96

[229] J. Wolff and M. Buss. Invariance control design for nonlinear control affine systems under
hard state constraints. In IFAC Symposium on Nonlinear Control Systems, pages 555–560,
2004. doi:10.1016/S1474-6670(17)31282-X. 96

[230] M. Kimmel and S. Hirche. Invariance control for safe human-robot interaction in dynamic
environments. IEEE Transactions on Robotics, 33(6):1327–1342, 2017. doi:10.1109/
TRO.2017.2750697. 96

[231] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control,
62(8):3861–3876, 2017. doi:10.1109/TAC.2016.2638961. 96

[232] B. T. Lopez, J.-J. E. Slotine, and J. P. How. Robust adaptive control barrier functions:
An adaptive and data-driven approach to safety. IEEE Control Systems Letters, 5(3):1031–
1036, 2021. doi:10.1109/LCSYS.2020.3005923. 96

[233] M. Milanese, J. Norton, H. Piet-Lahanier, and É. Walter, editors. Bounding Approaches
to System Identification. Springer, 1996. doi:10.1007/978-1-4757-9545-5. 96

[234] L. Ljung. Perspectives on system identification. Annual Reviews in Control, 34(1):1–12,
2010. doi:10.1016/j.arcontrol.2009.12.001. 96, 98, 100, 106

152

http://dx.doi.org/10.1016/j.conengprac.2018.11.009
http://dx.doi.org/10.1016/j.conengprac.2018.11.009
http://dx.doi.org/10.1109/TAC.2014.2381453
http://dx.doi.org/10.1109/MS.2001.936213
http://dx.doi.org/10.1007/s10703-017-0276-9
http://dx.doi.org/10.1109/ACC.2014.6859307
http://dx.doi.org/10.1109/ICCPS.2011.25
http://dx.doi.org/10.1109/RTSS.2014.21
http://dx.doi.org/10.1109/RTSS.2014.21
http://dx.doi.org/10.1016/S1474-6670(17)31282-X
http://dx.doi.org/10.1109/TRO.2017.2750697
http://dx.doi.org/10.1109/TRO.2017.2750697
http://dx.doi.org/10.1109/TAC.2016.2638961
http://dx.doi.org/10.1109/LCSYS.2020.3005923
http://dx.doi.org/10.1007/978-1-4757-9545-5
http://dx.doi.org/10.1016/j.arcontrol.2009.12.001

Bibliography

[235] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff. Model conformance for cyber-
physical systems: A survey. ACM Transactions on Cyber-Physical Systems, 3(3):1–26,
2019. doi:10.1145/3306157. 96, 97, 119

[236] J. Berberich, A. Koch, C. W. Scherer, and F. Allgöwer. Robust data-driven state-
feedback design. In American Control Conference, pages 1532–1538, 2020. doi:10.
23919/ACC45564.2020.9147320. 96, 97, 105, 107

[237] S. K. Mulagaleti, A. Bemporad, and M. Zanon. Data-driven synthesis of robust invariant
sets and controllers. IEEE Control Systems Letters, 6:1676–1681, 2022. doi:10.1109/
LCSYS.2021.3130829. 96

[238] S. Sadraddini and C. Belta. Formal guarantees in data-driven model identification and
control synthesis. In Conference on Hybrid Systems: Computation and Control, pages
147–156, 2018. doi:10.1145/3178126.3178145. 96, 98

[239] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini. Learning-based predictive control
for linear systems: A unitary approach. Automatica, 108:108473, 2019. doi:10.1016/j.
automatica.2019.06.025. 96, 98

[240] H. J. van Waarde, C. De Persis, M. K. Camlibel, and P. Tesi. Willems’ fundamental
lemma for state-space systems and its extension to multiple datasets. IEEE Control
Systems Letters, 4(3):602–607, 2020. doi:10.1109/LCSYS.2020.2986991. 97

[241] S. B. Liu and M. Althoff. Reachset conformance of forward dynamic models for the
formal analysis of robots. In IEEE/RSJ Conference on Intelligent Robots and Systems,
pages 370–376, 2018. doi:10.1109/IROS.2018.8593975. 98

[242] E. Walter and H. Piet-Lahanier. Recursive robust minimax estimation for models linear
in their parameters. In IFAC Identification and System Parameter Estimation, pages
215–220, 1992. doi:10.1016/S1474-6670(17)50636-9. 98

[243] A. Chalkis, I. Z. Emiris, and V. Fisikopoulos. Practical volume estimation of zonotopes
by a new annealing schedule for cooling convex bodies. In International Congress on
Mathematical Software, pages 212–221, 2020. doi:10.1007/978-3-030-52200-1_21. 98

[244] M. Gevers. Identification for control: From the early achievements to the revival of
experiment design. European Journal of Control, 11(4-5):335–352, 2005. doi:10.3166/
ejc.11.335-352. 100, 106

[245] B. Schürmann, M. Klischat, N. Kochdumper, and M. Althoff. Formal Safety Net Con-
trol Using Backward Reachability Analysis. IEEE Transactions on Automatic Control,
67(11):5698–5713, 2022. doi:10.1109/TAC.2021.3124188. 100

[246] B. Schürmann, A. El-Guindy, and M. Althoff. Closed-form expressions of convex com-
binations. In American Control Conference, pages 2795–2801, 2016. doi:10.1109/ACC.
2016.7525342. 101

153

http://dx.doi.org/10.1145/3306157
http://dx.doi.org/10.23919/ACC45564.2020.9147320
http://dx.doi.org/10.23919/ACC45564.2020.9147320
http://dx.doi.org/10.1109/LCSYS.2021.3130829
http://dx.doi.org/10.1109/LCSYS.2021.3130829
http://dx.doi.org/10.1145/3178126.3178145
http://dx.doi.org/10.1016/j.automatica.2019.06.025
http://dx.doi.org/10.1016/j.automatica.2019.06.025
http://dx.doi.org/10.1109/LCSYS.2020.2986991
http://dx.doi.org/10.1109/IROS.2018.8593975
http://dx.doi.org/10.1016/S1474-6670(17)50636-9
http://dx.doi.org/10.1007/978-3-030-52200-1_21
http://dx.doi.org/10.3166/ejc.11.335-352
http://dx.doi.org/10.3166/ejc.11.335-352
http://dx.doi.org/10.1109/TAC.2021.3124188
http://dx.doi.org/10.1109/ACC.2016.7525342
http://dx.doi.org/10.1109/ACC.2016.7525342

Bibliography

[247] P. Bouffard. On-board model predictive control of a quadrotor helicopter: Design, imple-
mentation, and experiments. Technical Report UCB/EECS-2012-241, EECS Department,
University of California, Berkeley, 2012. 110

[248] C. Pek and M. Althoff. Efficient computation of invariably safe states for motion planning
of self-driving vehicles. In IEEE/RSJ Conference on Intelligent Robots and Systems,
pages 3523–3530, 2018. doi:10.1109/IROS.2018.8593597. 115, 116

[249] C. Pek. Provably safe motion planning for autonomous vehicles through online verification.
Doctoral dissertation, Technical University of Munich, 2020. URL: https://mediatum.
ub.tum.de/doc/1534013/. 115, 116

[250] N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy
and Practice, 94:182–193, 2016. doi:10.1016/j.tra.2016.09.010. 115

[251] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of motion planning
and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent
Vehicles, 1(1):33–55, 2016. doi:10.1109/TIV.2016.2578706. 115

[252] D. González, J. Pérez, V. Milanés, and F. Nashashibi. A review of motion planning
techniques for automated vehicles. IEEE Transactions on Intelligent Transportation
Systems, 17(4):1135–1145, 2016. doi:10.1109/TITS.2015.2498841. 115

[253] W. Schwarting, J. Alonso-Mora, and D. Rus. Planning and decision-making for au-
tonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems,
1(1):187–210, 2018. doi:10.1146/annurev-control-060117-105157. 115

[254] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser. A review of motion planning for
highway autonomous driving. IEEE Transactions on Intelligent Transportation Systems,
21(5):1826–1848, 2020. doi:10.1109/TITS.2019.2913998. 115

[255] S. Lefèvre, D. Vasquez, and C. Laugier. A survey on motion prediction and risk assessment
for intelligent vehicles. ROBOMECH Journal, 1(1):1–14, 2014. 115

[256] J. Dahl, G. Rodrigues de Campos, C. Olsson, and J. Fredriksson. Collision avoidance:
A literature review on threat-assessment techniques. IEEE Transactions on Intelligent
Vehicles, 4(1):101–113, 2019. doi:10.1109/TIV.2018.2886682. 115

[257] J. C. Hayward. Near-miss determination through use of a scale of danger. Highway
Research Record, 384:24–35, 1972. 115

[258] K. Vogel. A comparison of headway and time to collision as safety indicators. Accident
Analysis & Prevention, 35(3):427–433, 2003. doi:10.1016/S0001-4575(02)00022-2.
115

[259] A. Tamke, T. Dang, and G. Breuel. A flexible method for criticality assessment in
driver assistance systems. In IEEE Intelligent Vehicles Symposium, pages 697–702, 2011.
doi:10.1109/IVS.2011.5940482. 115

154

http://dx.doi.org/10.1109/IROS.2018.8593597
https://mediatum.ub.tum.de/doc/1534013/
https://mediatum.ub.tum.de/doc/1534013/
http://dx.doi.org/10.1016/j.tra.2016.09.010
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1146/annurev-control-060117-105157
http://dx.doi.org/10.1109/TITS.2019.2913998
http://dx.doi.org/10.1109/TIV.2018.2886682
http://dx.doi.org/10.1016/S0001-4575(02)00022-2
http://dx.doi.org/10.1109/IVS.2011.5940482

Bibliography

[260] S. Noh and W.-Y. Han. Collision avoidance in on-road environment for autonomous
driving. In International Conference on Control, Automation and Systems, pages 884–889,
2014. doi:10.1109/ICCAS.2014.6987906. 115

[261] M. Brännström, E. Coelingh, and J. Sjöberg. Model-based threat assessment for avoiding
arbitrary vehicle collisions. IEEE Transactions on Intelligent Transportation Systems,
11(3):658–669, 2010. doi:10.1109/TITS.2010.2048314. 115

[262] J.-H. Kim and D.-S. Kum. Threat prediction algorithm based on local path candidates
and surrounding vehicle trajectory predictions for automated driving vehicles. In IEEE
Intelligent Vehicles Symposium, pages 1220–1225, 2015. doi:10.1109/IVS.2015.7225849.
115

[263] M. Althoff and A. Mergel. Comparison of Markov chain abstraction and Monte Carlo
simulation for the safety assessment of autonomous cars. IEEE Transactions on Intelligent
Transportation Systems, 12(4):1237–1247, 2011. doi:10.1109/TITS.2011.2157342. 115

[264] A. Broadhurst, S. Baker, and T. Kanade. Monte Carlo road safety reasoning. In IEEE
Intelligent Vehicles Symposium, pages 319–324, 2005. doi:10.1109/IVS.2005.1505122.
115

[265] A. Eidehall and L. Petersson. Statistical threat assessment for general road scenes
using Monte Carlo sampling. IEEE Transactions on Intelligent Transportation Systems,
9(1):137–147, 2008. doi:10.1109/TITS.2007.909241. 115

[266] M. Althoff, O. Stursberg, and M. Buss. Model-based probabilistic collision detection in
autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 10(2):299–
310, 2009. doi:10.1109/TITS.2009.2018966. 115

[267] T. Gindele, S. Brechtel, and R. Dillmann. Learning driver behavior models from traffic
observations for decision making and planning. IEEE Intelligent Transportation Systems
Magazine, 7(1):69–79, 2015. doi:10.1109/MITS.2014.2357038. 115

[268] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang. Vehicle trajectory prediction by
integrating physics- and maneuver-based approaches using interactive multiple models.
IEEE Transactions on Industrial Electronics, 65(7):5999–6008, 2018. doi:10.1109/TIE.
2017.2782236. 115

[269] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar. Highly automated driving
on highways based on legal safety. IEEE Transactions on Intelligent Transportation
Systems, 14(1):333–347, 2013. doi:10.1109/TITS.2012.2225104. 115, 116

[270] United Nations Economic Commission for Europe. Convention on road traffic, 1968.
URL: https://unece.org/fileadmin/DAM/trans/conventn/Conv_road_traffic_EN.
pdf. 116, 119, 122

[271] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff, E. Hilgendorf,
and T. Nipkow. Formalising and monitoring traffic rules for autonomous vehicles in
Isabelle/HOL. In Conference on Integrated Formal Methods, pages 50–66, 2017. doi:
10.1007/978-3-319-66845-1_4. 116, 119, 122

155

http://dx.doi.org/10.1109/ICCAS.2014.6987906
http://dx.doi.org/10.1109/TITS.2010.2048314
http://dx.doi.org/10.1109/IVS.2015.7225849
http://dx.doi.org/10.1109/TITS.2011.2157342
http://dx.doi.org/10.1109/IVS.2005.1505122
http://dx.doi.org/10.1109/TITS.2007.909241
http://dx.doi.org/10.1109/TITS.2009.2018966
http://dx.doi.org/10.1109/MITS.2014.2357038
http://dx.doi.org/10.1109/TIE.2017.2782236
http://dx.doi.org/10.1109/TIE.2017.2782236
http://dx.doi.org/10.1109/TITS.2012.2225104
https://unece.org/fileadmin/DAM/trans/conventn/Conv_road_traffic_EN.pdf
https://unece.org/fileadmin/DAM/trans/conventn/Conv_road_traffic_EN.pdf
http://dx.doi.org/10.1007/978-3-319-66845-1_4
http://dx.doi.org/10.1007/978-3-319-66845-1_4

Bibliography

[272] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff. Formalization of interstate
traffic rules in temporal logic. In IEEE Intelligent Vehicles Symposium, pages 752–759,
2020. doi:10.1109/IV47402.2020.9304549. 116, 119, 122

[273] S. Magdici and M. Althoff. Fail-safe motion planning of autonomous vehicles. In
IEEE Conference on Intelligent Transportation Systems, pages 452–458, 2016. doi:
10.1109/ITSC.2016.7795594. 116

[274] S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a formal model of safe and scalable
self-driving cars, 2017. arXiv:1708.06374. 116

[275] S. Vaskov, H. Larson, S. Kousik, M. Johnson-Roberson, and R. Vasudevan. Not-at-fault
driving in traffic: A reachability-based approach. In IEEE Intelligent Transportation
Systems Conference, pages 2785–2790, 2019. doi:10.1109/ITSC.2019.8917052. 116

[276] T. Fraichard and H. Asama. Inevitable collision states - a step towards safer robots?
Advanced Robotics, 18(10):1001–1024, 2004. doi:10.1163/1568553042674662. 116

[277] S. Bouraine, T. Fraichard, and H. Salhi. Provably safe navigation for mobile robots with
limited field-of-views in dynamic environments. Autonomous Robots, 32(3):267–283, 2012.
doi:10.1007/s10514-011-9258-8. 116

[278] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and D. Walter.
Guaranteeing functional safety: Design for provability and computer-aided verification.
Autonomous Robots, 32(3):303–331, 2012. doi:10.1007/s10514-011-9271-y. 116

[279] M. Althoff and S. Magdici. Set-based prediction of traffic participants on arbitrary
road networks. IEEE Transactions on Intelligent Vehicles, 1(2):187–202, 2016. doi:
10.1109/TIV.2016.2622920. 116, 121, 127

[280] M. Koschi and M. Althoff. SPOT: A tool for set-based prediction of traffic participants. In
IEEE Intelligent Vehicles Symposium, pages 1686–1693, 2017. doi:10.1109/IVS.2017.
7995951. 116, 127

[281] M. Koschi and M. Althoff. Set-based prediction of traffic participants considering occlu-
sions and traffic rules. IEEE Transactions on Intelligent Vehicles, 6(2):249–265, 2021.
doi:10.1109/TIV.2020.3017385. 116, 119, 121, 122

[282] D. N. Godbole, V. Hagenmeyer, R. Sengupta, and D. Swaroop. Design of emergency
maneuvers for automated highway system: Obstacle avoidance problem. In IEEE
Conference on Decision and Control, pages 4774–4779, 1997. doi:10.1109/CDC.1997.
649770. 120

[283] R. Rajamani. Vehicle Dynamics and Control. Mechanical Engineering Series. Springer,
2nd edition, 2012. doi:10.1007/978-1-4614-1433-9. 120

[284] J. Ziegler, P. Bender, T. Dang, and C. Stiller. Trajectory planning for BERTHA - a
local, continuous method. In IEEE Intelligent Vehicles Symposium, pages 450–457, 2014.
doi:10.1109/IVS.2014.6856581. 122

156

http://dx.doi.org/10.1109/IV47402.2020.9304549
http://dx.doi.org/10.1109/ITSC.2016.7795594
http://dx.doi.org/10.1109/ITSC.2016.7795594
http://arxiv.org/abs/1708.06374
http://dx.doi.org/10.1109/ITSC.2019.8917052
http://dx.doi.org/10.1163/1568553042674662
http://dx.doi.org/10.1007/s10514-011-9258-8
http://dx.doi.org/10.1007/s10514-011-9271-y
http://dx.doi.org/10.1109/TIV.2016.2622920
http://dx.doi.org/10.1109/TIV.2016.2622920
http://dx.doi.org/10.1109/IVS.2017.7995951
http://dx.doi.org/10.1109/IVS.2017.7995951
http://dx.doi.org/10.1109/TIV.2020.3017385
http://dx.doi.org/10.1109/CDC.1997.649770
http://dx.doi.org/10.1109/CDC.1997.649770
http://dx.doi.org/10.1007/978-1-4614-1433-9
http://dx.doi.org/10.1109/IVS.2014.6856581

Bibliography

[285] Y. Lin, S. Maierhofer, and M. Althoff. Sampling-based trajectory repairing for autonomous
vehicles. In IEEE Intelligent Transportation Systems Conference, pages 572–579, 2021.
doi:10.1109/ITSC48978.2021.9565060. 122

[286] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83,
1996. doi:10.1609/aimag.v17i3.1232. 122

[287] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable benchmarks for
motion planning on roads. In IEEE Intelligent Vehicles Symposium, pages 719–726, 2017.
doi:10.1109/IVS.2017.7995802. 127

[288] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, 4(1):21–36, 1998. doi:10.1109/2945.675649. 127

[289] C. Ericson. Real-Time Collision Detection. CRC Press, 2005. doi:10.1201/b14581. 127

[290] A. Rizaldi, S. Söntges, and M. Althoff. On time-memory trade-off for collision detection.
In IEEE Intelligent Vehicles Symposium, pages 1173–1180, 2015. doi:10.1109/IVS.
2015.7225842. 127

[291] J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose library for collision and
proximity queries. In IEEE International Conference on Robotics and Automation, pages
3859–3866, 2012. doi:10.1109/ICRA.2012.6225337. 127

[292] C. Pek, V. Rusinov, S. Manzinger, M. C. Uste, and M. Althoff. CommonRoad Drivability
Checker: Simplifying the development and validation of motion planning algorithms. In
IEEE Intelligent Vehicles Symposium, pages 1013–1020, 2020. doi:10.1109/IV47402.
2020.9304544. 127

[293] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. Optimal trajectory generation for
dynamic street scenarios in a Frenét frame. In IEEE International Conference on Robotics
and Automation, pages 987–993, 2010. doi:10.1109/ROBOT.2010.5509799. 127, 128

[294] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. National
Academy of Sciences, 17(5):315–318, 1931. doi:10.1073/pnas.17.5.315. 132

[295] A. Mauroy, Y. Susuki, and I. Mezić. The Koopman Operator in Systems and Con-
trol: Concepts, Methodologies, and Applications. Springer, 2020. doi:10.1007/
978-3-030-35713-9. 132

[296] M. Wetzlinger, N. Kochdumper, and M. Althoff. Adaptive parameter tuning for reach-
ability analysis of linear systems. In IEEE Conference on Decision and Control, pages
5145–5152, 2020. doi:10.1109/CDC42340.2020.9304431. 132

[297] M. Wetzlinger, A. Kulmburg, and M. Althoff. Adaptive parameter tuning for reachability
analysis of nonlinear systems. In Conference on Hybrid Systems: Computation and
Control, pages 1–11, 2021. doi:10.1145/3447928.3456643. 132

157

http://dx.doi.org/10.1109/ITSC48978.2021.9565060
http://dx.doi.org/10.1609/aimag.v17i3.1232
http://dx.doi.org/10.1109/IVS.2017.7995802
http://dx.doi.org/10.1109/2945.675649
http://dx.doi.org/10.1201/b14581
http://dx.doi.org/10.1109/IVS.2015.7225842
http://dx.doi.org/10.1109/IVS.2015.7225842
http://dx.doi.org/10.1109/ICRA.2012.6225337
http://dx.doi.org/10.1109/IV47402.2020.9304544
http://dx.doi.org/10.1109/IV47402.2020.9304544
http://dx.doi.org/10.1109/ROBOT.2010.5509799
http://dx.doi.org/10.1073/pnas.17.5.315
http://dx.doi.org/10.1007/978-3-030-35713-9
http://dx.doi.org/10.1007/978-3-030-35713-9
http://dx.doi.org/10.1109/CDC42340.2020.9304431
http://dx.doi.org/10.1145/3447928.3456643

Bibliography

[298] V. F. Sokolov. Model evaluation for robust tracking under unknown upper bounds
on perturbations and measurement noise. IEEE Transactions on Automatic Control,
59(2):483–488, 2014. doi:10.1109/TAC.2013.2273295. 132

[299] S. Gros, M. Zanon, and A. Bemporad. Safe reinforcement learning via projection on
a safe set: How to achieve optimality? IFAC World Congress, 53(2):8076–8081, 2020.
doi:10.1016/j.ifacol.2020.12.2276. 133

[300] M. Althoff and J. M. Dolan. Reachability computation of low-order models for the safety
verification of high-order road vehicle models. In American Control Conference, pages
3559–3566, 2012. doi:10.1109/ACC.2012.6314777. 133

Thanks for reading ©

158

http://dx.doi.org/10.1109/TAC.2013.2273295
http://dx.doi.org/10.1016/j.ifacol.2020.12.2276
http://dx.doi.org/10.1109/ACC.2012.6314777
https://youtu.be/dQw4w9WgXcQ?si=pccB5PTaxX2z6bBw

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Algorithms
	List of Figures
	List of Symbols and Acronyms
	List of Tables
	List of Theorems
	1 Introduction
	1.1 Formal Methods
	1.2 Publications
	1.3 Organization of this Thesis

	2 Preliminaries
	2.1 Convex Optimization
	2.2 Convex Sets
	2.2.1 Representations
	2.2.2 Conversions
	2.2.3 Operations
	2.2.4 Zonotope Containment

	2.3 Reachability Analysis
	2.4 Invariant Sets
	2.5 Software Setup

	3 Safe Sets
	3.1 Introduction and State of the Art
	3.2 Problem Formulation
	3.3 Reachability Analysis
	3.3.1 State Feedback Control
	3.3.2 Disturbance Feedback Control

	3.4 Small Safe Sets
	3.4.1 Simplified State Feedback Control
	3.4.2 Robust Control Invariance
	3.4.3 Disturbance Feedback Control

	3.5 Large Safe Sets
	3.5.1 Scaling of Safe Set
	3.5.2 Zero Terminal Constraint
	3.5.3 Safe Set Terminal Constraint
	3.5.4 Choice of Parameters

	3.6 Numerical Examples
	3.6.1 Continuous-Time Double-Integrator System
	3.6.2 Discrete-Time Double-Integrator System
	3.6.3 Vehicle Platooning System
	3.6.4 Chain of Mass-Spring-Damper Systems

	3.7 Summary

	4 Model Predictive Control
	4.1 Introduction and State of the Art
	4.2 Problem Formulation
	4.3 Preliminaries
	4.3.1 State Estimation and Control
	4.3.2 Reachability Analysis
	4.3.3 Safe Sets

	4.4 Robust Output Feedback Model Predictive Control
	4.4.1 Computation Time Considerations
	4.4.2 Contraction Constraint
	4.4.3 Algorithm
	4.4.4 Simplifications

	4.5 Numerical Examples
	4.5.1 Vehicle Platooning System
	4.5.2 Quadrotor System

	4.6 Summary

	5 Safety Filter
	5.1 Introduction and State of the Art
	5.2 Problem Formulation
	5.3 Model Conformance
	5.4 Robust Safety Filter
	5.4.1 Safe Sets
	5.4.2 Computation Time Considerations
	5.4.3 Algorithm
	5.4.4 Online Conformance Updates

	5.5 Numerical Examples
	5.5.1 Two-Dimensional System without Disturbances
	5.5.2 Unstable Three-Dimensional System
	5.5.3 Nonlinear Continuous-Time Six-Dimensional System
	5.5.4 Continuous-Time Twelve-Dimensional System

	5.6 Summary

	6 Safety Verification of Autonomous Vehicles
	6.1 Introduction and State of the Art
	6.2 Problem Formulation
	6.3 Traditional Safety Verification
	6.4 Anytime Safety Verification
	6.4.1 Algorithm
	6.4.2 Reuse of Occupancy Sets
	6.4.3 Fast Safety Verification
	6.4.4 Occupancy Set Refinements

	6.5 Numerical Examples
	6.5.1 Uncontrolled Intersection
	6.5.2 Three-Lane Highway

	6.6 Summary

	7 Conclusions and Future Work
	7.1 Summary of Contributions
	7.2 Future Research Directions

	Bibliography

