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Abstract

The ever-growing demand for increased computational power due to exponential data growth in

recent years pushes the capabilities of traditional computational technology to their limits. To

reduce the consequent gap between the processing demands and the computational abilities,

many studies have been proposed over the years, redefining the principles of conventional compu-

tations. The research field of approximate computing introduces a quality-aware computation in

error-resilient applications such as image or signal processing by safely trading off the application

quality for resource savings on computing systems. Therefore, an additional quality-threshold

parameter determines the boundary of acceptable quality loss and redefines the concept of cor-

rectness in approximate computing applications. This thesis presents a comprehensive survey

and classification of various state-of-the-art approximate computing techniques that trade off

the application quality for better hardware resources. In real-world applications with distinct

system components, a careful selection and combination of multiple of these single-purpose

approximation techniques tailored to the target application can exploit the maximum benefits

from approximate computing. However, accuracy configurable parameters exposed from all these

approximate techniques in an application lead to a non-trivial multi-objective parameter opti-

mization task, where a global optimization on joint parametrization is necessary to include error

propagation effect between system components. Various approximate computing design flows

are proposed to address this problem. This thesis also presents a survey on such design flows that

combine multiple approximations in an application and determine the quality-resource trade-off.

Addressing the shortcomings of state-of-the-art approximate computing design flows, this thesis

proposes AxCGA: a design space exploration (DSE) framework for approximate computing that

combines parametrizable approximations in real-world field programmable gate array (FPGA)-

based image processing applications and explores the resulting design space to determine the

quality-resource trade-off. In AxCGA, a data flow graph based approach is adapted for combining

approximations in a target application, and the DSE is designed based on genetic algorithm and

non-dominated sorting genetic algorithm-II (NSGA-II) selection. A pre-characterized library of

approximate components is used in AxCGA with fast and accurate models for the fitness esti-

mation of each parameter combination during DSE. Different components in AxCGA, such as

genetic encoding, initial population formation, genetic operations to form the offspring popula-

tion, hyperparameter settings, selection mechanism, and stop condition are adapted to support

the generality and adaptability to different approximate computing applications. Additionally, a

novel approach adaptively provides genetic algorithm parameters during the DSE and can fur-

ther exclude the application-specific hyperparameter optimization. The usability of the AxCGA

framework is demonstrated on two different applications, such as RGB to Y C bCr conversion and

display rendering application, and the DSE experiments resulted in well-distributed Pareto fronts

where a designer can select desired configurations for implementation. An average hypervolume
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Abstract

comparison shows that the AxCGA outperforms the state-of-the-art autoAx DSE, and an addi-

tional performance comparison between adaptive and non-adaptive AxCGA shows a slightly better

average hypervolume in adaptive approach.

To improve the efficiency of AxCGA, this thesis proposes a novel three-phase region of interest

(ROI) based NSGA-II (ROI-NSGA-II) selection that can incorporate quality-threshold into a DSE

problem. Based on this quality-threshold and the resources from reference implementation, ROI

bounds in both resource and quality dimensions can be specified in approximate computing

applications. In ROI-NSGA-II, the first set of points within the desired ROI is identified in the

initialization phase. Thereafter, more points are aggregated within the ROI in the second invitation

phase. The final set of points is evolved within the ROI by maintaining both convergence and

diversity in the third conquest phase. A performance comparison in average hypervolume from the

ROI on both case studies shows that ROI-NSGA-II AxCGA outperforms both the NSGA-II AxCGA

and autoAx DSE. Additionally, an adaptive and non-adaptive comparison in average hypervolume

shows a marginal improvement in adaptive genetic algorithm.

The novel ROI-NSGA-II is verified and validated to show its capabilities of identifying Pareto

solutions in two objective Zitzler-Deb-Thiele (ZDT) benchmark problems with concave, convex,

and disconnected Pareto shapes and Deb-Thiele-Laumanns-Zitzler (DTLZ) problems with three

to ten objectives. A performance comparison with state-of-the-art preference-based R-NSGA-II

selection shows that ROI-NSGA-II performs equally or marginally better in two and three objective

problems, whereas it outperformed the R-NSGA-II in many objective problems and both the

approximate computing case studies.
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Zusammenfassung

Die stetig wachsende Anforderung nach höherer Rechenleistung aufgrund des exponentiellen

Datenwachstums in den letzten Jahren treibt die traditionelle Rechentechnologie an ihre Leistungs-

grenzen. Um die hieraus resultierende Lücke zwischen Rechenanforderungen und der möglichen

Rechenleistung zu reduzieren, wurden über die Jahre hinweg viele Studien vorgeschlagen, die

die Prinzipien konventioneller Rechentechnologie neu definierten. Das Forschungsgebiet des

Approximate Computing stellt eine qualitätsbewusste Berechnung fehlertoleranter Anwendungen,

wie Bild- oder Signalverarbeitung vor, indem sorgfältig zwischen der Anwendungsqualität und

Ressourceneinsparungen von Rechensystemen abgewogen wird. Zu diesem Zweck definiert ein

zusätzlicher Qualitätsschwellwert-Parameter die Grenze des maximal akzeptierbaren Qualitätsver-

lustes und definiert somit das Konzept von Korrektheit in Anwendungen von Approximate Comput-

ing neu. Diese Arbeit präsentiert eine umfassende Recherche und Klassifizierung unterschiedlicher

State-of-the-Art-Techniken des Approximate Computing, welche die Anwendungsqualität typis-

cherweise gegen eine bessere Ausnutzung der Hardware-Ressourcen eintauschen. In realen Anwen-

dungen mit unterschiedlichen Systemkomponenten kann eine sorgfältige Auswahl und Kombina-

tion mehrerer solcher Approximations-Techniken, jede davon maßgeschneidert für eine einzelne

Ziel-Anwendung, die maximalen Vorteile von Approximate Computing ausnutzen. Parameter

allerdings, die in ihrer Präzision konfigurierbar sind, und aus all diesen Approximations-Techniken

einer Anwendung hervorgehen, führen zu einem nicht-trivialen Parameter-Optimierungs-Problem

mit mehreren Zielfunktionen, wo eine globale Optimierung mittels gemeinsamer Parametrisierung

notwendig ist, um die Fortplanzungseffekte von Fehlern zwischen Systemkomponenten zu er-

fassen. Um dieses Problem zu adressieren werden unterschiedliche Design Flows für Approximate

Computing vorgeschlagen. Diese Arbeit stellt auch eine Recherche solcher Design Flows vor,

die mehrere Approximationen einer Anwendung miteinander verbinden, und sie bestimmt den

jeweiligen Qualitäts-Ressourcen-Trade-Off.

Um die Nachteile von State-of-the-Art Approximate Computing Design Flows zu addressieren,

stellt diese Arbeit AxCGA vor, ein Design Space Exploration (DSE)-Framework für Approximate

Computing, welches parametrisierbare Approximationen in realen Field Programmable Gate Ar-

ray (FPGA)-basierten Bildverarbeitungsanwendungen miteinander vereint und den sich daraus

ergebenden Design-Space analysiert, um den Kompromiss zwischen Qualität und Ressourcen zu

bestimmen. In AxCGA wird ein auf einem Datenflussgraphen basierender Ansatz angepasst, um Ap-

proximationen in einer Zielanwendung zu verbinden, und das DSE-Design basiert auf der Auswahl

eines genetischen Algorithmus und eines genetischen Algorithmus nicht-dominierter Sortierung –

II (engl. non-dominated sorting genetic algorithm-II (NSGA-II)). Eine vor-charakterisierte Biblio-

thek aus Approximierungs-Komponenten wird in AxCGA verwendet, mit schnellen und präzisen

Modellen für die Eignungs-Abschätzung jeder Parameter-Kombination während der DSE. Unter-

schiedliche Komponenten in AxCGA, wie die genetische Kodierung, die intiale Populations-Bildung,
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genetische Bearbeitungsschritte, um die Nachkommens-Population zu formen, Hyperparameter-

Einstellungen, Auswahl-Mechanismen, und die Stopp-Bedingung werden angepasst, um die All-

gemeinheit und Anpassbarkeit an unterschiedliche Approximate Computing-Anwendungen zu

unterstützen. Zusätzlich stellt ein neuer Ansatz Parameter für den genetischen Algorithmus anpass-

bar während der DSE zur Verfügung und kann ferner die anwendungsspezifische Hyperparameter-

Optimierung vermeiden. Die Benutzbarkeit des AxCGA-Frameworks wird mittels zweier unter-

schiedlicher Anwendungen demonstriert, wie der RGB-zu-Y C bCr -Konvertierung und der Anzeige

von Render-Anwendungen, und die DSE-Experimente resultierten in eine wohlverteilte Pareto-

Front, aus welcher der Designer die gwünschte Konfiguration für die Implementierung wählen

kann. Ein Vergleich des durchschnittlichen Hypervolumens zeigt, dass das AxCGA die Stand-der-

Technik-autoAx DSE übertrifft. Und ein zusätzlicher Leistungsvergleich zwischen adaptiver und

nicht-adaptiver AxCGA zeigt ein etwas besseres durchschnittliches Hypervolumen des adaptiven

Ansatzes.

Um die Effizienz von AxCGA zu verbessern, stellt diese Arbeit eine neuartige dreiphasige Region

of Interest (ROI)-basierte NSGA-II (ROI-NSGA-II)-Auswahl vor, welche den Qualitäts-Schwellwert

in die DSE mit aufnehmen kann. Basierend auf diesem Qualitäts-Schwellwert und den Ressourcen

der Referenz-Implementierung können Grenzwerte sowohl in der Ressourcen- als auch in der

Qualitäts-Dimension in Approximate Computing Anwendungen spezifiziert werden. In ROI-

NSGA-II wird das erste Set an Punkten innerhalb der gewüschten ROI in der Initialisierungs-

Phase identifiziert. Anschließend werden während der zweiten Einladungsphase weitere Punkte

innerhalb der ROI aggregiert. Das finale Set an Punkten entwickelt sich innerhalb der ROI durch

Beibehalten von sowohl Konvergenz als auch Diversität in der dritten Eroberungsphase. Ein

Leistungsvergleich des durchschnittlichen Hypervolumens der ROI in beiden Fallstudien zeigt,

dass ROI-NSGA-II AxCGA sowohl NSGA-II AxCGA als auch autoAx DSE überlegen ist. Zusätzlich

zeigt ein adaptiver wie nicht-adaptiver Vergleich des durchschnittlichen Hypervolumens leichte

Verbesserungen des adaptiven genetischen Algorithmus.

Der neuartige ROI-NSGA-II wird verifiziert und validiert, um seine Fähigkeiten darzustellen,

Pareto-Lösungen in zwei objektiven Zitzler-Deb-Thiele (ZDT)-Benchmark-Problemen mit konkaven,

konvexen und getrennten Pareto-Formen sowie Deb-Thiele-Laumanns-Zitzler (DTLZ)-Problemen

mit drei bis zehn Objektiven zu identifizieren. Ein Leistungsvergleich mit einer präferenzbasierten

State-of-the-Art-R-NSGA-II-Auswahl zeigt, dass sich ROI-NSGA-II gleich oder leicht besser in

zwei und drei objektiven Problemen verhält, wohingegen es der R-NSGA-II in vielen objektiven

Problemen und beiden Approximate Computing Fallstudien überlegen ist.
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CHAPTER 1
Introduction

1.1 Motivation

Growing demands for processing power on embedded computing systems outpace the technologi-

cal improvements in recent years. Since 1965 when Gordon E Moore forecasted that the number of

transistors on an integrated circuit would double about every two years [1], Moore’s law has driven

the transistor technology to shrink its size and pack more functionalities. A decade later, in 1974,

the MOSFET scaling by Robert Dennard states that MOSFET power density stays constant as the

transistor gets smaller [2], enabling circuits to operate at higher frequencies at the same power

consumption. Moore’s law combined with Dennard scaling have been driving semiconductor

technology over the past decades, increasing the number of transistors in a chip, computing per-

formance, and typical power consumption capabilities. The trends over 50 years of microprocessor

features are shown in Figure 1.1
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Figure 1.1: The trends over 50 years of microprocessor features (Original data up to 2010 collected
by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten, and
data between 2010-2021 collected by K. Rupp [3]: adapted under CC-BY-4.0)
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Chapter 1 Introduction

However, modern computing systems face multiple challenges due to the failure of Dennard

scaling from around 2004 [4] and the rising concerns about the failure of Moore’s law. Furthermore,

the data to be processed exponentially increased over the past decade with advancements in

data-intensive applications such as artificial intelligence, augmented reality, machine vision, big

data, and internet of things. These challenges together create a gap between the processing power

demands and the improvements in technology, especially in mobile devices that have to fulfill

significant requirements on power consumption. The deprivation of the computational capabilities

of current systems, along with power and energy restrictions, pushes researchers to reconsider

traditional computing methodologies.

To address these issues, the research field of approximate computing has gained much traction in

recent years. Approximate computing is a digital design paradigm that exploits the inherent error

resilience of applications such as image processing or signal processing. The application quality is

leveraged in approximate computing for efficient usage of computational resources such as power,

area, and performance. An increased degree of approximations in error-resilient applications often

facilitates improved benefits over computing resources. Therefore, a quality-resource trade-off

analysis is required in approximate computing applications, and Figure 1.2 shows the typical

design space exposed in such applications. With an additional quality-threshold introduced in

approximate computing, approximate designs with resource benefits that meet this minimum

quality bound are considered "good enough" designs. In an application, a designer can analyze

this trade-off within this region and choose desired designs based on preferences.

Figure 1.2: Approximate computing design space (adapted from [5])

To apply the approximate computing techniques successfully in an application, the application

itself or a part of the application needs to be resilient to the inexactness introduced by the approxi-

mations. Therefore, it is essential to identify the applications that can tolerate such inexactness.

Recent studies have shown that different types of applications are error-resilient in their nature,

inspiring computing methodologies like stochastic computing, probabilistic computing, or approx-

2



1.1 Motivation

imate computing [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Several factors can determine this error resiliency

in an application [6, 7, 8, 9], and these factors can be classified based on input characteristics,

computing patterns, and output characteristics, as shown in Figure 1.3.

Figure 1.3: Factors affecting inherent error resiliency of the application (inspired from [6, 7, 8, 9])

Input characteristics such as noise robustness or redundancy make an application tolerant to

errors in the inputs. The error introduced by the approximate computing techniques often resem-

bles the effect of input noise and its propagation over the application components. Therefore, the

inherent robustness of an application to such input noise makes it error-resilient. Similarly, input

redundancy often makes an application prone to input errors. Secondly, applications with com-

puting patterns that use statistical or probabilistic computations and self-healing applications are

also inherently error-resilient. A degradation of application quality from the approximations might

recover in the subsequent processing steps in the former case. In contrast, an error introduced by

the approximate computation might not be significantly reflected in the final results in the latter

case. Finally, the applications that do not have a specific golden output that reflects the reference

output quality or have multiple golden outputs, such as cloud search or recommendation systems,

are also inherently error-resilient. Furthermore, applications that produce errors beyond the hu-

man perceptual limit are also error-resilient. Many image, sound, or video processing applications

are error-resilient due to the perceptual limit of humans, and a wide range of output is considered

equally acceptable in these applications. Applications with one or more of these characteristics are

often suitable candidates for approximate computing.

Processing images with a high dynamic range or spatial-temporal resolution is inevitable in mod-

ern image processing applications. However, these applications often have to fulfill performance or

power consumption requirements in embedded devices, especially in mobile devices. Since image

processing applications often possess multiple error-resilient criteria, such as pixel redundancy

among spatial and temporal neighbors, robustness to Gaussian, salt-and-pepper, or shot noises,

and perceptual limitations to small output changes, these applications can be considered for

approximate computing to achieve better resource utilization and fulfill the processing demands.

3
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The quality of resulting images are either evaluated subjectively with visual experience in motion

picture or professional photography cameras or with specific measurements in industrial cameras

or other image processing applications. Due to error-resilient characteristics, errors introduced in

such applications in a controllable way are often acceptable. For example, images with slightly

different peak signal-to-noise ratio (PSNR) produce a similar visual experience to human eyes, as

shown in Figure 1.4. In general, many image processing applications possess the properties of

inherent application resilience and are often good candidates for approximate computing to fulfill

additional resource demands. However, it is important to ensure that the quality-threshold is met

in these applications.

(a) Reference image (taken from Kodak image set [16]) (b) Image with PSNR = 50.11 dB

(c) Image with PSNR = 40.20 dB (d) Image with PSNR = 30.89 dB

Figure 1.4: Example 8-bit images with different PSNR levels. In both (b) and (c), the loss of quality
is difficult to distinguish with human eyes compared to the reference image in (a).
However, in (d), the loss of quality is more evident.

To exploit the error-resiliency in applications for better hardware resource utilization, many

approximate computing techniques focusing on different embedded computing hardware such

as field-programmable gate array (FPGA), application specific integrated circuit (ASIC) or cen-

tral processing unit (CPU) have been proposed over the years [9, 13, 14, 15, 17, 18, 19]. These

techniques comprise single-purpose methods such as approximate arithmetic units or precision

scaling, targeting a specific system component or a single functionality and general-purpose

methods such as SASIMI [20] or ABACUS [21] for arbitrarily approximating circuits or combining

multiple approximation techniques in a single application. Most of these single-purpose methods
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have been demonstrated well using different applications, and the general-purpose methods

combining several single-purpose methods could yield higher benefits in real-world applications.

However, combining multiple approximations in an application exposes various design challenges.

When multiple approximation techniques are used in conjunction, the design space size grows

exponentially with the number of employed techniques due to distinct parameters exposed by

each technique. In addition, the propagation of approximation error through different system

components and their collective influence on the output quality need to be controlled in order to

guarantee acceptable application quality. Due to the conflicting resource and quality objectives in

approximate computing, an effective multi-objective DSE, guided by an appropriate optimization

algorithm, is necessary where an exhaustive search becomes infeasible due to the high complexity

of the design space. To ensure timely evaluation of the solutions, the estimation of quality and

resources, such as power consumption, area and performance, should be fast and avoid the time-

consuming synthesis of the system for each parametrization. Furthermore, for a designer to make

valid choices regarding acceptable quality degradation, the employed quality model should be

interpretable and suitable for the targeted application. Addressing these challenges in FPGA-based

image processing applications, A DSE Framework for Approximate Computing Using Genetic Al-

gorithm (AxCGA) is proposed that can combine multiple approximations in an application and

explore the resulting design space using genetic algorithm (GA) to determine the quality-resource

trade-off for suitable design decisions.

1.2 Scope of the Thesis

This thesis work is conducted as part of a collaborative project, ACIP - approximate computing for

professional image processing, which aims to create resource-efficient FPGA-based approximate

image processing applications [22]. In this project, the AxCGA framework is jointly developed with

the project partners to combine multiple approximation techniques and achieve resource benefits

in image processing applications. The overall work involved in developing the framework can be

broadly categorized into: 1) a modeling part responsible for providing resources and quality values

and 2) a DSE part responsible for determining the quality-resource trade-off.

The core contribution of this thesis is the DSE methodology used in AxCGA which efficiently

explores complex design spaces, enabling an application designer to assess the quality-resource

trade-off to make accurate design decisions in an application. A data flow graph (DFG)-based

approach is adopted in AxCGA to define an application where each node represents a specific

operation or component which can be replaced by an approximate component or a function

from a pre-characterized library of approximate components. The proposed AxCGA framework

configures and optimizes exposed parameters from all the approximations techniques in conjunc-

tion using GA and Non-dominated Sorting Genetic Algorithm-II (NSGA-II)-based selection. The

parameters from different components are encoded by considering the interdependencies, and the

GA-based optimization is performed on the joined parameter set in the AxCGA. Due to this global

optimization on the combined parameter set, interactions and error propagation between different

system components are implicitly considered in AxCGA. This thesis additionally contributes a

novel Region of Interest Non-dominated Sorting Genetic Algorithm-II (ROI-NSGA-II) approach,
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which replaces the classical NSGA-II and helps AxCGA to concentrate the search pressure into

specific regions in a design space. These regions are derived from the additional quality-threshold

parameter introduced in approximate computing, and ROI-NSGA-II efficiently determines the

quality-resource trade-off within this region where a designer is particularly interested. Addition-

ally, a novel approach is proposed to provide hyperparameters adaptively during the DSE, which

avoids the time-consuming hyperparameter optimization for each application. To further increase

the efficiency, AxCGA framework uses fast models to estimate application quality and resource

usage without the need for time-consuming synthesis during optimization. These models and the

library of the approximate components are mainly developed by Simon Conrady and Arne Kreddig

as a part of the collaboration and are not contributions of this thesis. However, a brief description

of these models and the approximate computing library is also included in this thesis for a better

understanding of the AxCGA framework.

Currently, AxCGA framework is limited for FPGA-based image processing applications that

stream pixels without any feedback loops since the models are developed explicitly for the FPGA

platform. However, using suitable approximate components and resource quality models, the

proposed DSE part can easily support other application domains and target platforms.

1.3 Research Questions

This thesis primarily aims to address the complex DSE problem to determine the quality-resource

trade-off in FPGA-based image processing applications when multiple approximation techniques

are combined. The following research questions are addressed to achieve this targeted goal.

• How well do the state-of-the-art approaches perform in the context of FPGA-based approxi-

mate image processing applications?

Many state-of-the-art approximate computing methods exist in the literature, targeting different

platforms, application scopes, or abstraction levels. Addressing this research question, this thesis

investigates state-of-the-art single-purpose approximate computing techniques and general-

purpose design flows which combine multiple single-purpose approximations in an application

in Chapter 2. The characteristics and shortcomings of these approaches are discussed in the

context of approximate image processing on FPGA. Additionally, performance comparisons

between one of the prominent state-of-the-art methods, namely autoAx, and proposed AxCGA

variants are included in Chapter 3 and 4.

• How to effectively explore a design space exposed by multiple approximations and determine

the quality-resource trade-off in an FPGA-based application?

Combining multiple approximate computing methods in an application increases the design

space size exponentially due to various parameters exposed by each approximation. Due to the

complexity of design space and lack of an effective DSE approach, a comprehensive quality-

resource trade-off analysis is often missing in state-of-the-art approaches that combine multiple

approximation techniques. Therefore, possible benefits from the combined approximations are

usually not well exploited. Hence, the second research question aims to address the problem
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of effective exploration of complex design spaces exposed by combined approximations for

quality-resource analysis. Due to the structural cross-dependencies between different system

components in an application, the design space exploration methods should globally optimize

the parameters exposed from combined approximation methods to accommodate forward or

backward dependencies of subsequent parameters. The proposed AxCGA framework based

on NSGA-II selection addresses these problems in Chapter 3, and multiple experiments are

performed to demonstrate the usability and effectiveness of AxCGA in real-world FPGA-based

image processing applications.

• How to incorporate the quality-threshold into the DSE for an efficient exploration?

Approximate computing introduces an additional quality-threshold parameter in applications,

and a region of interest (ROI) in the design space can be derived based on this threshold value,

where a designer can select configurations for practical implementation. Therefore, integrating

this parameter into the DSE is necessary to concentrate exploration efforts into a desired region

and improve computational efficiency. Addressing this research question in Chapter 4, a novel

ROI-NSGA-II is proposed and integrated to AxCGA for an effective and efficient DSE in real-world

approximate image processing applications.

• How well do the ROI-NSGA-II scalable to problems with different Pareto-optimal shapes and

dimensions?

Real-world approximate computing DSE problems often have complex Pareto-optimal shapes

and multiple exploration targets. Therefore, it is essential to demonstrate the scalability of novel

ROI-NSGA-II in solving problems with different Pareto-optimal shapes and dimensions to prove

its generality. Addressing this problem, verification and validation of ROI-NSGA-II is performed

on a set of optimization benchmark problems in Chapter 5.

• How to avoid time-consuming application dependent hyperparameter tuning in AxCGA?

The proposed AxCGA exposes different hyperparameters to explore a design space effectively,

and tuning these parameters for each target application is either very time-consuming or pro-

hibitively long. Therefore, a suitable strategy is necessary to supply these parameters adaptively

during the optimization. In Chapter 3, a novel adaptive GA approach is presented, which dynam-

ically adjusts the hyperparameters during optimization.

1.4 Contributions

This thesis contributes concepts and methods for efficient DSE in approximate image processing

on FPGA. The contributions of this thesis can be summarized as:

• The first contribution of this thesis is a comprehensive survey of single-purpose approximate

computing approaches and general-purpose approximate computing design flows that

combine multiple approximations in an application. Each general-purpose design flow is

analyzed and briefly discussed its shortcomings in addressing the problem of combining

multiple approximation techniques in an application.
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• Overcoming limitations of may state-of-the-art approaches, secondly, this thesis contributes

a GA-based approach for an effective DSE in AxCGA framework. Additionally, the AxCGA

approach is demonstrated on two FPGA-based image processing applications that combine

multiple approximation techniques, and the AxCGA DSE performance is compared with a

state-of-the-art autoAx DSE. The genetic operations are proposed to efficiently explore the

design spaces introduced in these applications.

• The most important contribution of this thesis is a novel ROI-NSGA-II optimization approach

that integrates the user preference into a DSE. The ROI-NSGA-II is integrated to AxCGA for an

efficient and effective DSE and demonstrated with the same applications mentioned above.

Additionally, the ROI-NSGA-II is verified and validated on a broader set of optimization

benchmark problems to demonstrate the scalability and compare its performance with a

relevant state-of-the-art approach.

• Another important contribution in this thesis is a novel adaptive approach that can dynam-

ically supply hyperparameters during the DSE. This approach avoids the need for time-

consuming and application-specific hyperparameter optimizations in AxCGA.
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1.6 Outline

The proposed AxCGA framework has been developed over the past years and was presented at

distinct stages in several publications [23, 24, 25, 26, 27, 28, 29]. Therefore, the following chapters

in this thesis are inherited from these publications. However, this thesis uses the name AxCGA for

the proposed framework for the first time, includes an updated version of the DSE methodologies,

and presents the improved results from these publications. In general, the remaining chapters in

this thesis are organized as follows.

Chapter 2: Chapter 2 gives an overview of various state-of-the-art approximate computing

methods targeting different application scopes and abstraction levels. These approaches are

classified broadly into single-purpose and general-purpose methods based on the scope, where

the single-purpose methods often target a specific system component or functionality, and the

general-purposed methods often combine multiple single-purpose methods in an application.

Finally, the characteristics of the state-of-the-art general-purpose methods and the necessity of a

renewed approach are discussed in detail for approximations in FPGA-based applications.

Chapter 3: The proposed AxCGA framework, which uses NSGA-II to explore complex design

space and determine quality-resource trade-off, is explained in Chapter 3. This chapter introduces

two different image processing case studies and demonstrates the application of AxCGA in these

two case studies. This chapter also describes the approximate computing techniques used in

these case studies, the corresponding design space formed from their parameters, and the DSE

results from multiple experiments. Additionally, a performance comparison between proposed

AxCGA and autoAx DSE approach and a comparison between adaptive and non-adaptive AxCGA

approaches are also performed in this chapter.

Chapter 4: In Chapter 4, the ROI-NSGA-II AxCGA, which incorporates the quality-threshold

parameter to the search, is presented. In addition, the three-phase implementation of the ROI-

NSGA-II approach is described in detail. Thereafter, the ROI-NSGA-II AxCGA experimental results

on the case studies are compared with both the NSGA-II AxCGA and autoAx DSE. Finally, a com-

parison between adaptive and non-adaptive ROI-NSGA-II AxCGA is also performed in this chapter.

Chapter 5: In Chapter 5, verification and validation of the novel ROI-NSGA-II are performed

on different test problems to demonstrate its scalability. A set of ZDT and DTLZ optimization

benchmark problems with two to ten objectives and different shapes and structures of the Pareto-

optimal front are considered. Additionally, the optimization results of ROI-NSGA-II are compared

with a relevant state-of-the-art approach.

Chapter 6: Finally, Chapter 6 concludes this thesis briefly by summarizing the AxCGA approach

and highlights the advantages of using AxCGA for approximate image processing on FPGA. In

addition, this section summarizes the limitations of the current version of AxCGA and gives a short

outlook on future work to overcome these limitations.
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CHAPTER 2
Related Work

Modern computing systems face numerous challenges due to the overwhelming demands for com-

puting resources. The research fields like approximate computing aim to address these challenges

by introducing new computing measures, gaining wider research attention in recent years. Due to

the rising interest from researchers, multiple surveys on approximate computing techniques have

already been published [9, 13, 14, 15, 17, 18, 19], and these surveys provide a broader overview of

the main research categories and numerous techniques proposed before. The existing surveys use

different taxonomies to classify the approximate computing techniques. Overall, state-of-the-art

approximate computing techniques can be broadly classified into five categories based on the ap-

proximation scopes, abstraction levels, error types, target computing platforms, and approximation

objectives, as shown in Figure 2.1.

Figure 2.1: Approximate computing taxonomies in literature

The first approximation scopes classifies the state-of-the-art techniques into single-purpose or

general-purpose approaches. Approximate computing methods that use a specific technique, such
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as precision scaling or voltage overscaling, or target a particular system component, such as an

adder or multiplier, are known as single-purpose approximation methods. On the other hand,

general-purpose approaches have been proposed to approximate arbitrary circuits, approximate

multiple system components, or employ one or more single-purpose techniques simultaneously

in an application. Additionally, the general-purpose methods that approximate arbitrary circuits

can potentially be applied to produce a single-purpose approximation technique such as an

adder, multiplier, or divider as well. A search heuristic is often associated with these methods to

identify a suitable combination of involved approximation methods and their tunable parameters.

The second abstraction levels categories the state-of-the-art approximate computing techniques

based on the level of abstraction where a specific technique is targeting, such as algorithm or

software level, memory level, circuit level, and device or transistor level. Since different types of

approximation techniques are often involved in general-purpose methods, some approaches can

simultaneously consider approximation techniques in multiple levels of abstraction [21, 30, 31].

The third error types classification is based on the reproducibility of errors in an approximation

technique for the given specific inputs. The deterministic approaches always exhibit the same out-

put behavior for the same set of inputs, whereas the non-deterministic approaches might behave

differently. Due to this limited reproducibility, applications with non-deterministic techniques are

challenging in testing and debugging. Therefore, a designer must carefully consider the quality

degradation in such techniques during the design phase to meet the quality-threshold. On the

other hand, since the error behavior is predictable in deterministic methods, a designer can directly

specify a quality-threshold in an application and consistently evaluates whether the threshold is

met for the desired set of inputs. The fourth target computing platforms classification is based on

the type of platform an approximation technique can be applied, such as FPGA, ASIC, graphics

processing unit (GPU) or CPU. Finally, the state-of-the-art techniques can further be classified

based on the desired approximation objectives such as performance, area, and power or energy at

the expense of application quality.

This chapter provides a comprehensive survey of promising state-of-the-art works in approxi-

mate computing research and classifies them based on the scope of approximation and targeted

level of abstraction, as shown in Figure 2.2. This chapter is further structured into two main

sections based on the scope to describe each technique briefly. The first Section 2.1 investigates

state-of-the-art single-purpose approximate computing techniques, which are demonstrated well

in isolation, whereas the second Section 2.2 reviews state-of-the-art general-purpose design flows

that consider multiple techniques simultaneously in an application.

2.1 Single-Purpose Approximate Computing Methods

Over the last decades, various single-purpose approximation techniques have been proposed to

exploit the error resilience of applications. These approaches can be further classified based on the

other taxonomy dimensions, such as abstraction levels, error types, target computing platforms

or approximation objectives. However, the boundaries within each taxonomy dimension often

overlap each other, especially within target computing platforms or approximation objectives. For

example, circuit-level techniques optimized for a reduced number of gates in an ASIC design can
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also reduce the resource utilization in FPGA. Similarly, approximation techniques that reduce the

area in a design often reduce power consumption as well. Additionally, the majority of approximate

computing techniques in the literature are deterministic in nature since the quality-threshold

bounds in an application have to be met importantly. Therefore, this thesis further classifies the

single-purpose approximate computing techniques based on the targeting abstraction level in an

application. The following sections briefly describe each level of abstraction and the approximate

computing techniques that can be applied to these levels.

2.1.1 Algorithm or Software Level Approximations

Approximate computing at the algorithm level often utilizes statistical properties of data, such

as data sampling, or parts of an algorithm being implemented at a coarser granularity, such as

loop iterations, to trade in quality for hardware resources. These methods often benefit resources

such as performance, power, or area, irrespective of the target computing platforms. For example,

implementing an algorithm by skipping some tasks or iterations of a loop might potentially benefit

in terms of performance or reduced power consumption across various target platforms, including

in the FPGA applications. Since many of these approaches approximate a specific part of the

algorithm or functionality that does not significantly affect the final application quality, these

methods are sometimes categorized as software-level functional approximation techniques in

the literature. Different types of algorithm or software level approximation techniques are briefly

described in the forthcoming subsections.

2.1.1.1 Loop Perforation

One of the most commonly used algorithm level approximation techniques, loop perforation [32,

33, 34, 35, 36, 37, 38, 39, 40], selectively skips iterations in a loop. Most of the loop perforation

methods determine approximable loop candidates using certain preliminary mechanisms that

analyze the instructions or operations in an application and then transform these loops to skip

certain iterations in a controlled manner. However, despite the traditional approaches that skip

iterations in a fixed manner, dynamic perforation methods can skip iterations adaptively at different

computations phases. Li et al. developed Sculptor tool, which uses both selective perforation,

where the loops are transformed to skip a subset of their iterations during program execution, and

dynamic perforation, where loops are transformed to skip a flexible subset of their iterations using a

built-in scheduler [39]. The Sculptor trades these selective and dynamic perforations techniques in

runtime for error management, and the system adjusts the skip rate based on the error difference

between the measured and target error. Similarly, Mitra et al. [40] presented OPPROX, which

identifies different computation phases in a program and performs a phase-specific trade-off space

exploration to determine the most profitable perforation settings at each phase.

2.1.1.2 Polynomial Approximation

Elementary mathematical functions and transcendental functions are ubiquitous, including in

images or signal processing applications. However, accurately evaluating such functions is often

computationally expensive on a system, both at the software and hardware level. Therefore, these
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computations are frequently replaced with polynomial functions of a specific degree, and such

approximations can bring considerable benefits to computations. In 1996, Jean-Michel Muller

presented various polynomial approximation techniques for computing elementary functions [41].

This proposal includes both least-squares approximations, where the approximations minimize

the average error and least maximum polynomial, which targets to minimize the worst-case error

in computations. The polynomial functions can be implemented on hardware with a number

of multiplications and additions, and the multiplier size is often a significant concern in terms

of hardware resources. A straightforward way to improve the resource utilization is to lower

the degree of approximating polynomial in a controlled manner. The benefits of changing the

polynomial order in FPGA resource utilization have been demonstrated by Nagayama et al. [42].

Additionally, forcing the polynomial coefficients to fit into a small number of bits also reduces the

further multiplication efforts [43]. Brisebarre et al. used sparse coefficients to achieve small-

size multiplications in polynomial approximations [44]. Chevillard et al. presented Sollya, a

complete toolchain that can generate fixed- and floating-point software and hardware design

for mathematical functions with approximations [45]. Similarly, FloPoCo, proposed by Dinechin

[46], is an automated code generator for FPGAs that tries to minimize the size of the coefficient and,

thereby, multiplier size in polynomial approximation. The resulting architecture efficiently uses the

resource on FPGAs. Later, Lauter proposed Metalibm, which divides the calculation interval into

several sub-intervals and then employs Sollya in each interval to obtain an approximate polynomial

that meets the target accuracy [47]. However, in very large intervals, Metalibm faces difficulty

in detecting the properties of target transcendental functions, resulting in reduced performance.

Overcoming this issue, TGen proposed by Hao et al. [48], an automatic generator of a variable

precision transcendental function, first converts the target function to a combination of basic

functions and then uses Sollya to complete the polynomial approximation in the sub-interval

[48]. Decades later, in 2020, Muller performed a review of approximate computing techniques

for the polynomial approximations and concluded that continuous arbitrary functions could be

approximated within the desired accuracy using polynomial approximations [49]. However, the

freedom of approximation using simple coefficients is tailored to the implementing function and

accuracy target within the target bounds of the functions.

2.1.1.3 Table-Based Approximation

Table-based approximate computing techniques are generally used for implementing complex con-

tinuous functions. Many methods have already been proposed, ranging from simple approaches

that store values of a function for all the inputs to more sophisticated approaches that keep a few

values in a table and interpolate the intermediates using arithmetic operations.

In general, based on the size of the table and computation complexity, the table-based methods

are further classified into three categories such as compute-bound methods, table-bound methods,

and in-between methods. First, compute-bound methods primarily use arithmetic computations

to evaluate a function with a small table lookup to store essential parameters. A bunch of methods

proposed by Ping-Tak Peter Tang [50, 51, 52, 53] are typical examples of compute-bound and are

used widely in general-purpose computing systems. Secondly, the table-bound methods store

large tables and use very few computations, such as simple additions, to reconstruct the function
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value. Bipartite table methods are typical examples of this class and consist of two tables and an

addition [54]. The symmetric bipartite table [55] and multipartite table methods with more than

two tables [56, 57] are also further modifications of bipartite table methods. Since the table size

increases exponentially with an increase in accuracy, these methods are suitable for low-precision

applications. Lastly, in-between methods use a medium-sized table lookup with a significant

yet reduced computation. The in-between methods are popular for a better trade-off between

accuracy and resources for middle-to-high-precision applications. These methods are further

categorized into linear and polynomial based on the type of employed approximations.

A commonly used in-between approximation method is a piecewise approximation technique.

The input of a target function is divided into several segments, and each segment is approximated

using linear or polynomial functions. The piecewise linear (PWL) approximation techniques

generally require storing only the starting point of each segment, slope, and y-intercept in a table

[58]. In many piecewise polynomial (PWP) approximations, the input is split into two parts: a most

significant part X1 and a least significant part X2. The target function is uniformly divided into

the power of 2 (2X1 ) segments. Then each segment is approximated using a quadratic polynomial

aX 2
2 +bX2 + c. The coefficients a,b, and c can be indexed directly using X1 on the hardware level

[59]. Hsiao et al. proposed two-level approximations to reduce the total area and delay [60]. A

piecewise degree-one polynomial is used in the first level of approximation and another piecewise

quadratic interpolation or table lookup is used in the second phase of refined approximations.

Depending on the type of segmentation, the piecewise approximation can be further divided into

uniform segment based, non-uniform segment based, and error-flattened on how the input ranges

are divided. The uniform segment based approximations divide the input range into equal-length

segments, and then a linear or polynomial function approximates each uniform segment [61, 62].

However, the slope or variation rates of nonlinear target functions are different in distinct input

regions. Therefore, these methods need more segments in regions with significant variations,

and this might lead to the use of additional computing resources than they actually require in

low-variation regions. The non-uniform piecewise approximations are proposed for overcoming

these drawbacks, and Nam et al. [63, 64] used 15 segments to compute a logarithmic function.

Even though a relatively better accuracy is achieved with fewer resources, the error ranges are still

uncontrollable in certain regions. This category includes multi-level hierarchical segmentation, in

which each segment can be further divided into sub-segments [65, 66, 67]. Such techniques have

finer sub-segments in high-variation regions and only a few sub-segments in low-variation regions,

thereby reducing overall resource utilization. The error-flattened piecewise approximations guide

the division of segments in a way that each segment satisfies error bounds and guarantees the

same error rates in each region. Zhu et al. demonstrated an approach that uses maximum relative

error to convert logarithmic functions [68]. Lie et al. proposed an input segmentation method

based on the maximum absolute error on corresponding equally divided output segments, which

is more suitable for hardware efficiency [69]. A few other methods by Sun et al. [58] Dong et al. [70]

generalize the piecewise approximations by decoupling the characteristics of target functions from

the segmentation scheme.
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2.1.1.4 Incremental Refinement

Incremental refinement approximate computing approaches often consist of a succession of com-

putation stages and improve the accuracy over these stages. The name incremental refinement is

often synonymously used as iterative or successive refinement in the literature. A typical example

of incremental refinement is Newton’s root-finding method, in which a required accuracy deter-

mines the number of iterations has to be performed. Winograd and Nawab initially presented a

class of multistage algorithms that use incremental refinement for signal processing applications

such as discrete Fourier transform (DFT) and short-time Fourier transform (STFT) approximations

[71]. The same research group later demonstrated how the existing recursive structures could be

adapted as incremental refinement approaches on applications such as signal detection using fast

Fourier transform (FFT), spectral analysis using DFT, discrete cosine transform (DCT)-based image

encoding or decoding, and digital filters [72, 73]. Andreopoulos and Patras employed incremental

refinement for the salient-point detection with reduced computational complexity and energy

consumption [74]. Several iterative refinement algorithms are published with reduced precision

in intermediate computations [75, 76, 77, 78], and a same quality of results can be achieved with

additional iterations. However, early termination in the iterative refinement can further improve

computation performance.

2.1.1.5 Task Skipping

Task skipping is also a popular algorithm level approximate computing technique for trading the

accuracy for computational resources. However, it requires a careful selection of approximable

parts to skip some computations and keep the induced error in a controlled manner. The loop

perforations in the previous section that skip particular iterations are also a task skipping ap-

proach. Martin Rinard proposed an approach for task skipping that allows a designer to identify

the quality distortions that fall within the acceptable bounds using probabilistic models [79]. This

approach characterizes the quality distortion and execution time as a function of the task failure

rates, enabling the accuracy-execution time trade-off. Similarly, Goiri et al. presented a framework

ApproxHadoop for creating and running approximations such as task skipping and estimating the

corresponding error bound in MapReduce programs [80]. The ApproxHadoop is demonstrated

in a class of MapReduce programs and could significantly reduce the execution time and energy

consumption. Byna et al. showed that dropping non-critical tasks in supervised semantic in-

dexing algorithms improves the performance in GPU [81]. However, this approach exploits the

unique characteristics of an application and is, therefore, an application-specific approach. SAGE

proposed by Samadi also targets GPUs by automatically detecting and systematically skipping

computationally expensive operations, and this approach trade-offs the computation accuracy

for the performance [37]. Several other approaches are also successfully demonstrated the task

skipping approaches in different application domains [82, 83, 84].

2.1.1.6 Data Sampling

Data sampling approximate computing techniques utilize a subset of actual data to be processed

by a computational system and trade the computational accuracy for system performance. Data
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sampling techniques are used in many applications, such as machine learning or deep learning,

big data, or database management systems. Approximate queries from databases widely use data

sampling-based techniques to leverage the accuracy for the query processing time [85, 86, 87,

88]. Ansel et al. proposed a novel programming model incorporating variable accuracy choices to

the algorithms where the approach automatically searches and finds optimal algorithmic closes

for each target accuracy level [89]. This approach includes varying input sizes for the accuracy-

performance trade-off and demonstrates the applicability on six benchmark problems. Similarly,

Paraprox, proposed by Samadi et al. applied data-sampling on data-parallel programs that contain

common computation patterns [36]. Goiri et al. integrated an approximation mechanism that

uses data sampling together with task skipping to the MapReduce paradigm and demonstrated the

approach in applications from different domains, including data analytics, scientific computing,

video encoding, and machine learning [80].

2.1.1.7 Neural Approximation

Neural approximation is a general-purpose function approximation method that approximates an

unknown underlying function from available observations in an application. The research about

using artificial neural network (ANN) in the functional approximation started many decades ago.

In 1987, Wieland and Leighton [90], and in 1988, Irie and Miyake [91] studied the capabilities of

multilayer perception in approximating the functions. Later, multiple pieces of research were

published addressing the neural approximation techniques for approximating arbitrary functions

[92, 93, 94, 95]. In 2012, Esmaeilzadeh et al. proposed a neural approximation approach that

accelerates general-purpose programs with the support of a reconfigurable digital neural pro-

cessing unit (NPU) [96]. Their approach uses a Parrot transformation technique that converts a

region of code the designer annotates into a common neural intermediate representation. Due

to the high-level parallelism of the neural networks, the NPU accelerates the execution of code

energy efficiently. This work considers a set of error-resilient benchmark applications, and the

NPUs achieved an average 2.3x speedup and 3.0x energy saving on these applications. A similar

algorithmic transformation approach by Amant et al. automatically converts approximable code

regions to a limited precision analog neural representation for accelerating on analoge neural

processing unit (A-NPU) [97]. Their analog acceleration technique could achieve an average of 3.7x

speedup and 6.3x energy saving on the benchmark applications. McAfee and Olukotun presented a

neural network based platform for emulation and acceleration of applications called EMEURO [98].

Their approach emulates an application by breaking it into several subtasks and determining the

suitability of approximation for each subtask using an approximate programming model proposed

by Ansel et al. [89]. Afterward, a large set of hybrid task graphs, including a mixture of exact and

approximate subtasks with various errors and latency for different input characteristics, is deter-

mined during the compilation process. This phase uses a large set of simple 2-layer linear neural

network to approximate these subtasks. Finally, the EMEURO efficiently selects one of the subtasks

that meet the design preference during the runtime. The EMEURO system is demonstrated using

different applications and could achieve a significant 109x speedup with a bounded error between

0.1% to 10%. Eldridge et al. employed neural network based approximation for floating-point
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transcendental functions [99]. Their approach trains a model for approximating a function in a

limited range, and they compute the function value for any interval using this model.

2.1.1.8 Fuzzy Memorization

Fuzzy memorization is an approximation technique that combines instruction memorization [100],

where the operands and results of certain operations such as multiplication or division are stored in

a reusable table with fuzzy computation [101], which tolerates inexactness in computation results

to reduce the latency and saves power consumption. Álvarez et al. proposed a fuzzy memorization

technique for floating-point multimedia applications [102]. Their approach uses a conventional

floating-point unit and a memory table to store a fixed number of input operands, operations, and

the results of floating-point operations. When executing a floating-point operation, it searches

first in the table. However, n LSB bits are removed from mantissa before searching the table.

Therefore, a range of similar inputs hits the entries in the table without executing the floating-point

operation. The tolerance level and table sizes can vary with different n, and different quality-

resource trade-offs can be obtained. To improve the output quality of fuzzy memorization, Ono

and Usami proposed an approach that adds a value calculated using a simplified formula to the

table result to produce the final output in case of a table hit [103]. The difference between the

actual input operands and the input operands in the table is used for the simplified formula. This

approach is demonstrated on an FPGA using a grayscale conversion application and could improve

the performance and energy savings at the expense of quality.

2.1.2 Memory Level Approximations

Memory units are critical components in a computational system to store instructions or data, and

the memory types vary depending on the technology used in storage. The modern FPGA-based

systems comprise multiple memories such as logic blocks or logic elements inside the FPGA fabric,

which configure for implementing logic functionalities, and block RAMs (BRAMs), which use for

storing large amounts of data within FPGA, and often includes other external memory units such

dynamic random-access memory (DRAM) or static random access memory (SRAM). The memory

costs such as size, performance, or energy consumption are often bottlenecks in many data-

intensive applications, especially in the edge or mobile applications. Therefore, these components

are strong candidates for approximate computing, and different memory level techniques have

been proposed that exploit the application quality for the resource benefits.

2.1.2.1 Memory Data Approximation

The bandwidth or energy consumption throttles the capabilities of memory systems in many

applications. Addressing this issue, memory data approximate mechanisms approximate the data

that is stored, loaded from, or written to the memory for relaxed application quality. Either the

typical memory operations or the storage mechanisms are altered in the literature to achieve

approximate memory data. Fang et al. proposed an approach for reducing energy-expensive write

operations of data to a phase change memory in video applications [104]. Before writing new

data, it first reads the old data in the exact location and computes the absolute difference between
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them. This approach cancels the write operation if the difference is below a certain threshold.

Ranjan et al. proposed approximate storage for energy-efficient spintronic memories by employing

specific read or write operations [105]. After the characterization of the energy-quality trade-off, a

quality-configurable memory array is used to perform read or write operations for approximating

data. Depending on the application requirements, various predefined accuracy levels can be

chosen in runtime. Targeting the solid-state memories, Sampson et al. presented two different

approximate storage mechanisms in multi-level cell memory to improve the energy efficiency,

performance, lifetime, and capacity of the memory component [106]. The first mechanism uses a

reduced number of programming pulses to write data at the cost of occasional inaccuracies, and

the second mechanism uses worn-out or faulty memory cells from the development cycle to store

approximate data together with an error correction mechanism based on bit position significance.

To obtain similar benefits, Ganapathy et al. used the faulty cells to store the lower significant bits

using a hardware mechanism that circular shifts the data [107]. Therefore, the error distribution

is skewed towards the lower-order bit. Tian et al. presented a framework, ApproxMA, to identify

the required precision of data to be accessed from the external memory using a runtime precision

controller and load the scaled data for computation using a memory access controller [78]. This

scaled memory access and the further computations with reduced precision decrease the overall

memory resource utilization.

2.1.2.2 Memory Access Skipping

Memory access often significantly consumes energy, and Zhang et al. proposed ApproxANN, which

incorporates memory access skipping in ANN applications [108]. Their approach initially performs

a criticality analysis of each neuron by considering the influence of injected error on the output.

Thereafter, skip several uncritical neurons by ignoring the reading of specific rows in a weight matrix

to improve the overall energy savings. A set of ANN applications are considered for the experiments

and achieved 34.11% to 51.72% energy benefit with less than 5% quality loss. Similarly, Qin and

Idreos proposed an idea for adaptive data skipping from main memory for various applications,

and their initial results showed 1.4x performance improvement [109].

2.1.2.3 Refresh Rate Scaling

The technologies used to store data in memories often lead to certain technology-dependent

constraints. DRAMs are commonly used main memories for storing very large amounts of data

in computational systems, and an FPGA based system usually associates with an external DRAM

module. The DRAM technology requires memory refresh to periodically rewrites the data to

the memory cells, thereby often leading to high energy consumption. Approximations can be

incorporated in this energy-expensive refresh rate mechanism at the expense of data error in

error-resilient of applications.

Liu et al. introduced Flikker to reduce DRAM refresh power [110]. This approach allows a de-

signer to specify the critical or non-critical data in programs, and the data is assigned to different

memory locations. The non-critical data is then refreshed at a lower rate to save energy by keeping

the refresh rate of the critical data at regular intervals. Therefore, the corresponding error in the
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non-critical data is often tolerated by the error resilience of applications. The Flikker approach

is experimented with different applications and saved DRAM memory power up to 25% with less

than 1% performance degradation and no loss in application reliability. Chao et al. proposed

Tiered Reliability Memory (TRM) approach to save power in embedded DRAM buffers in video

applications [111]. Similar to the Flikker approach, the DRAM buffers are divided into multiple

segments with different refresh rates. However, the data is stored in each segment on sub-pixel

granularity such that the most significant bits (MSBs) are stored on the most reliable segment

whereas least significant bits (LSBs) are stored on the least reliable segment. The experiments

showed that the TRM saves 48% refresh power without any significant loss of visual quality. Ganap-

athy et al. relaxed the constraints that allow the embedded DRAM refresh rate to move beyond the

worst-case point of failure and thereby improved the memory availability and energy efficiency in

data-intensive error-resilient applications with a slight loss in application quality [112]. Quality

configurable approximate DRAMs are proposed by Raha et al. based on extensive error character-

ization using refresh rate as a quality control knob [113]. Improving the Flikker approach, their

technique proposed four sorting strategies for staggering data into different quality bins, which are

used for systematically allocating critical and non-critical data. This approach also showed savings

on DRAM power up to 73% on average from different applications with minimal error in quality.

2.1.2.4 Voltage Overscaling

Voltage overscaling is an approximate computing technique in which the supply voltage to the

memory cells is overscaled to reduce power consumption. This approximation technique can be

applied to both the device and the memory levels, and multiple variants have been proposed to

achieve power savings. Chang et al. proposed a hybrid memory array for SRAM with a mixture

of 6 transistor (6T) and 8 transistor (8T) cells to store the pixels in video applications [114]. The

lower-order bits are stored in the conventional 6T cells, whereas the most significant part is

stored in the robust 8T cells. Thereafter, the scaling of voltage is performed where the data in

6T cells are approximated, and 8T cells are relatively unaffected. Additionally, due to the area

overhead of 8T cells, this approach optimized the number of bits that need to be stored in 8T cells,

minimizing the overall approximation error. Their experiments showed that the voltage overscaling

with a hybrid memory array could save at least 32% of power compared with traditional 6T only

memories. Esmaeilzadeh proposed Truffle, a microarchitecture design where the components

use dual-voltage SRAM cells in a way that the precise operations use high voltages domains and

approximate operations use low voltage domains [115]. Their approach includes an instruction

set architecture (ISA) extension for specifying the instructions that can be approximated with the

extension of typical in-order and out-of-order processors. Additional dual-voltage multiplexers

and voltage level shifters multiplex the signals and enable data movement between these high and

low voltage domains. Experiments with a set of benchmark problems showed energy savings up to

43% with a low degradation in output quality. Salami et al. used voltage scaling to lower the voltage

guardband of BRAMs to achieve energy savings in commercial FPGAs [116]. The corresponding

error behavior is characterized and stored in a fault variation map during a preprocessing step,

and this map is used to assign data to BRAMs based on the importance of data. The significance of

their approach is demonstrated using a neural network (NN) accelerator.
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2.1.3 Circuit Level Approximations

Approximate computing at the circuit level often involves a functional simplification of circuits to

achieve benefits in resources at the expense of application quality. Many approaches have been

proposed targeting individual arithmetic components such as adders, multipliers, or dividers. In

contrast, the methods like circuit pruning, approximate synthesis, or precision scaling can be

employed generally to approximate the entire circuit or different circuit components. Since these

methods simplify the functionality at the circuit level, these approaches are synonymously termed

circuit-level functional approximation in the literature. The following sections briefly explain

different types of state-of-the-art circuit level approximation techniques.

2.1.3.1 Precision Scaling

Precision scaling reduces the amount of data to be handled by a system by changing the bitwidth

of the inputs or intermediate results, thereby saving the computational efforts and the memory

needed to store data. Generally, this approximation technique can be applied at the algorithm

and the circuit levels. The precision can be altered effortlessly at the algorithm level by using

dedicated library operations such as rounding or ceiling and implicit datatype conversion such

as i nt64 to i nt32. In contrast, the precision scaling at the circuit level ignores a specific number

of the least significant bits. Numerous approximate computing works reduce the precision at the

circuit level to achieve resource benefits [14]. Many of these works combine precision scaling with

other approximation techniques, while some use it as a stand-alone technique with different types

of scaling. Dynamically scaling the precision during runtime, Yeh et al. designed a hierarchical

floating-point unit where precision is incrementally reduced at runtime and compared the energy

difference with threshold precision to control any instability [117]. Multiple techniques, such as

converting floating-point operations to trivial ones, use of smaller floating-point unit, and reduced

precision to increase the coverage of memorization lookup are used to achieve the dynamic

precision scaling. Hsiao et al. proposed a hybrid precision selection framework that employs both

reduced floating-point precision and variable precision fixed point states to reduce the energy

consumption in mobile GPUs [118]. Similarly, Rubio-González presented Precimonious that

searches the floating-point variables in a program and reduces the precision to achieve the design

goals [119]. Han et al. demonstrated the use of reduced precision in distributed deep learning

applications [120], where the first few epochs use 32-bit floating-point gradients, and the last set of

epochs uses 8-bit floating-point to achieve significant speed-up in training with no or only a little

loss of accuracy. Similarly, several neural networks or deep learning approaches or accelerators

exploited the use of reduced precision to achieve better efficiency with a slight loss of accuracy

[97, 121, 122, 123, 124, 125]. Custom circuit implementations on FPGAs or ASICs often use fixed

point representation. Therefore, the precision of data or signal can be controlled at the bit-level,

and arbitrary precision scaling can be directly applied on the global level or to specific system

components. An FPGA-based multi-precision floating-point architecture presented by Zhang et al.

uses three different precision and three matrix operation modes to accelerate large-scale matrix

computing [126]. Similarly, Licht et al. presented a deeply pipelined design that arbitrarily scales

the precision of floating-point arithmetic to accelerate fundamental operators on FPGA [127].
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Targeting FPGAs, non-linear functions, such as logarithm, can be approximated with fixed-point

arithmetic, which implicitly reduces the precision and saves area [128]. However, such a fixed-point

implementation at the software level might increase the execution time of such applications [13].

2.1.3.2 Approximate Adders

Adders are essential building blocks in the digital image and signal processing applications. There-

fore, approximations in adder circuits have high interest from researchers, and many prior works

surveyed approximate adder techniques proposed over the years [19, 129]. On the circuit level,

the input operand bits are successively added from LSB to MSB with a propagating carry bit to get

the final result in a typical addition. Based on the bit-level granularity of adder components used

for approximations, this work generally classifies the approximate adders into three categories.

The first category is single-bit approximate adders, where the approximations are performed on a

single-bit full adder. The second category is multiple-bit approximate adders, where the approxi-

mations techniques consider a number of bits or a segment of an adder together. Finally, generic

adders approximate the entire adder circuit or consider all the adder bits.

Single-Bit Approximate Adders: Simplifying a single-bit full adder circuit, Gupta et al. proposed

imprecise adders for low-power approximate computing (IMPACT) [130] that integrate three

different approximation techniques to conventional mirror adder (MA) [131]. Transistors of the

MA are removed judiciously by ensuring no open or short circuit occurs to exploit the quality-

power trade-off. Later, their approach is extended with two additional approximate mirror adders

(AMAs) [132]. Such AMA cells are then used in the LSBs of a multiple-bit adder. Similarly, three

approximate XOR/XNOR-based adders (AXAs) are proposed by Yang et al. by carefully removing

the transistors from the accurate design [133]. The transistor removal is also used by Nanu et al. to

approximate adders using complementary pass transistor logic (CPL) [134] and Gogoi and Kumar

to approximate adders using both CPL and transmission gate (TG) [135]. Almurib et al. simplified

the full adder logic to introduce approximations and proposed three inexact adder (InXA) versions

[136]. Prabakaran et al. presented a novel design methodology for building approximate adders

denoted as DeMAS, by considering the architectural feature of FPGAs [137]. Using this generic

methodology, they proposed eight different one- two-bit approximate adders for Xilinx 7-series

FPGAs and demonstrated the approximation capabilities using various 16-bit approximate adders

built from them. Babu and Balaji et al. used cartesian genetic programming (CGP), an evolutionary

approximate circuit design method, to create one- and two-bit approximate adders [138].

Multiple-Bit Approximate Adders: One of the common types of multiple-bit approximate adder

is a segment-based adder, where the actual adder is split into multiple sub-adder segments and

then performs the approximation on specific segments. A large number of techniques split an

n-bit adder into two segments where the accurate part (n-1 to k) and inaccurate parts (k-1 to

0) are computed separately. The Error-Tolerant Adder (ETA)-I proposed by Zhu et al. performs

a normal addition in the accurate part, whereas the inaccurate part performs a special addition

without propagating the carry bits by simply checking the input bits [139]. This could reduce

the overall delay and the power consumption of the adder. To further improve the accuracy of

addition, an enhanced ETA-II is proposed where the carry propagation path is divided into several
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short paths, and the carry bits are concurrently computed on these paths [139]. Gupta et al. also

used a two-segment addition similar to ETA-I, where the adder components in the inaccurate

part are completely removed [132]. Instead, one of the inputs is directly selected as the sum of

the inaccurate part. This thesis adapted their approach and named it as lower-select adder (LSA)

in the following chapters. The median adder proposed by Celia et al. approximates the lower

k bits in inaccurate part to a value 2k − 1 by simply setting the these bits to 1 [140]. In cases

where the probability distribution of inputs is known exactly, a constant value can be set instead

of the median. The lower-OR adder (LOA) approach also uses a similar two-part computation,

approximating the inaccurate part with a simple bitwise OR function [141]. Additionally, a carry bit

to the accurate adder part is provided by simple AND operation of k −1th bits of inputs. Similar to

LOA, sloppy adders proposed by Albicocco et al. use bitwise OR for the inaccurate part, whereas

the carry input bit is provided as 0 [142]. The optimized lower part constant-OR adder (OLOCA)

proposed by Dalloo et al. generalizes and optimizes the error produced using LOA and thereby

outperforms LOA [143]. Targeting the FPGA design directly, other approximate adder approaches

such as hardware optimization and a near-normal error distribution (HOAANED) adder [144],

Fast and Error-Optimized Approximate (FAU) adder [145], a hardware efficient approximate adder

proposed by Balasubramanian and Maskell [146], and a look-up table (LUT)-based approximate

adder by Becher et al. [147] also use two-segment additions where the inaccurate part and carry

prediction to the accurate part are effectively approximated.

Mohapatra et al. proposed a dynamic segmentation with error compensation that divides an

n-bit adder into multiple independent sub-adders by bit slicing in the data path and invokes

the error compensation once an overflow of carry tracking counters of each sub adders occurs

[148]. Their approach reduces the critical path of adders due to the segmentation and performs

additional voltage overscaling on sub-adders to save resources further. Accuracy-Configurable

Approximate (ACA) adder proposed by Kahng et al. enables a runtime configuration of computation

accuracy [149]. Their approach also divides the adder into multiple sub-adders, and each has

a certain overlap in the considered input bits. The segmentation reduces the critical path, and

the overlap improves computation accuracy. By varying this carry chain depth of sub-adders, the

performance or power consumption can be traded off with accuracy. In addition, an error detection

and correction mechanism further detects the error in the sub-adders and corrects them using a

simple incremental circuit. Therefore, a correct result can be achieved with the same approximate

implementation at the expense of multiple error-correction stages. The Gracefully-Degrading

Adder (GDA) is a reconfigurable approximate adder where multiple sub-adder units with variable

length are employed [150]. A hierarchical carry-in prediction logic is multiplexed with simple

carry-in computation for each sub-adder component. Additionally, the carry-in prediction can

be reconfigured by varying the number of prediction components used in the prediction logic.

However, this approach does not have any error prediction or correction mechanism. Shafique

et al. proposed a Generic Accuracy Configurable (GeAr) adder with multiple sub-adder units of

equal length where the number of result bits produced per adder segment and the number of

previous bits used for the carry prediction can be varied for quality-resource trade-off [151]. A

configurable error correction unit also ensures accurate results when required. The quality-area
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optimal Low-Latency approximate adder (QuAd) approach proposed by Hanif et al. also uses

sub-adders of variable lengths with arbitrary combinations of results and prediction bits [152].

Many other techniques are designed for approximating the speculation of carry bits for sub-

adder segments. The speculative carry select addition (SCSA) proposed by Du et al. [153], the carry

skip scheme by Kim et al. [154], high-performance low-power carry speculative adder (CSPA) by

Lin et al. [155], consistent carry approximate adder (CCA) by Li and Zhou [156], exploitation of

generate signal for carry speculation by Hu and Qian [157] are also used different approximation

techniques to the carry speculation to save computing resources.

Generic Approximate Adders: Addressing the challenge of implementing approximate adders

with varying quality-resource requirements, generic adders are proposed. Designing application-

specific approximate operators (AppAxO) for FPGA-based embedded systems proposed by Ullah

et al. disables the LUTs used for carry-chains of FPGAs to introduce approximations [158]. For

an n-bit adder implemented with n LUTs, 2n possible combination of LUTs can be disabled for

accuracy-performance trade-off analysis. A library of approximate adders and multipliers, named

EvoApprox8b, proposed by Mrazek et al. contains 430 different 8-bit approximate adders created

from 13 accurate adders using CGP [159]. In CGP, a circuit is encoded into genes for evolutionary

operations, and then the evolutionary operations are performed by randomly removing some

connections to form different approximated versions. Later, this library was extended with more

complex adders and named EvoApproxLib [160].

2.1.3.3 Approximate Multipliers

Multiplier circuits are one of the basic building blocks in digital signal processing (DSP) applica-

tions, and modern System-on-Chips (SoCs) have dedicated DSP processors for high-performance

multiplication. However, using this dedicated DSPs might not always be efficient and, in many

applications, consume higher power than a non DSP-based multiplier. Therefore, approximating

the multiplier circuits is an important area of research in approximate computing, and multiple

techniques have already been proposed. A typical combinational multiplier has three different

processing phases such as partial product (PP) generation, PP accumulation, and a carry prop-

agate addition. The PP can be obtained with simple AND operations of multiplier bits, and the

accumulation of these PPs typically uses a carry-save adder array, a Wallace tree, or a Dadda tree.

Different approximation techniques can be integrated into these three processing phases. Based

on the approximation type and processing phase where a specific technique target, the state-of-

the-art approximate multipliers can be classified into approximate PP generation, approximate PP

accumulation, and functional approximation where the multiplication function is simplified. The

following sections briefly summarize different methods proposed in each category.

Approximate PP Generation: Approximate PP generation integrates approximations into smaller

multiplier cells that generate PP, and then reuses these cells to create larger multipliers for a higher

design benefit. The underdesigned multiplier (UDM) proposed by Kulkarni et al. uses a modified

Karnaugh Map (K-Map) to design a 2x2 multiplier cell [161]. This method saves an output bit by

approximating the multiplication of 112 and 112 to 1112 instead of 10012, thereby introducing

(1/2)4 = 1/16 error rate. Vasudevan et al. extended approximations into a similar block by keeping

25



Chapter 2 Related Work

the LSB of the output bit zero, and this further reduced the area [162]. Additionally, they introduced

a three-level approximation in large multipliers in a way that the least significant PP bits have the

maximum degree of approximation, the middle product has a medium level of approximation,

and the most significant PP has no approximation. This improves the overall accuracy when

large numbers are multiplied by each other. Addressing the research challenge of approximate

multiplication in LUT-based FPGA systems, Ullah et al. proposed a 4x2 approximate multiplier

as an elementary module for Xilinx 7-series FPGAs with optimized logic equations for each PP

bit [163]. They further combined two 4x2 multipliers and formed a 4x4 approximate multiplier,

and introduced additional approximation by discarding one of the two carry propagation signals.

Their analysis also includes an evaluation of higher-order multipliers constructed using these basic

multiplier blocks.

Approximate PP Accumulation: Various techniques have been proposed for the approximate

summation of PPs in a multiplier. Mahdiani et al. proposed Bio-inspired Imprecise Computational

blocks (BICs) and integrated this into the multiplier architecture for effective approximations

[141]. These blocks consist of a Broken-Array Multiplier (BAM), which has a horizontal-broken

level (HBL) and a vertical-broken level (VBL) that eliminates a desired number of bits horizontally

and vertically from the PP tree. Therefore, this technique saves AND gates corresponding to the

eliminated product bits and Full Adder (FA) cells that use these product bits, thereby saving area

and power and reducing latency. Farshchi et al. extended the idea of BAM to the Booth multiplier

[164] by keeping only the VBL and proposed broken-Booth multiplier (BBM) [165]. Error Tolerant

Multiplier (ETM) proposed by Kyaw et al. splits the input operands into a multiplication part where

higher order bits are multiplied precisely and a non-multiplication part with remaining lower

order bits are approximated [166]. The non-multiplication part ignores carry propagation, and

the input operand bits are inspected for "1" from MSB to LSB. From the position where one of the

input bits is "1", the output bits of this non-multiplication part is set to "1". The Static Segment

Multiplier (SSM) approach takes a number of consecutive bits from each input operand with a

size greater than or equal to half of their size [167]. These segments can be chosen either from

the MSB or LSB side and include leading ones bit. Finally, these selected segments are accurately

multiplied. The experimental results showed that SSM could reduce overall energy consumption at

the expense of a little loss in computational accuracy. The Accuracy Configurable Multiplier (ACMA)

proposed by Bhardwaj et al. approximates the intermediate bits with a carry-in prediction for better

power consumption and performance [168]. However, this approach renders the MSB part, which

preserves the important information and the lower bits, which do not require extensive hardware

resources, accurately. Similarly, the Dynamic Range Unbiased Multiplier (DRUM) identifies the

leading ones in the n-bit operands, and a user-defined k number of bits are selected based on

the desired accuracy [169]. In addition, the LSB of the selected parts are set to "1" for unbiased

approximation and then use these k-bit operands for accurate multiplication. The Truncation and

rounding-based scalable approximate multiplier (TOSAM) proposed by Vahdat et al. truncates

each input operand based on their leading one-bit position to reduce the number of PPs [170].

Their implementation includes a small multiplier with inputs rounded to the nearest odd number

to compensate for the error from the truncation.
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Approximate counters and compressors are used in the accumulation of PPs in approximate

multipliers. Lin and Lin approximated both carry and sum using a 4:2 counter in an inaccurate 4x4

Wallace multiplier [171]. Momeni et al. simplified 4:2 compressors for the Dadda multiplier with

a relatively low error probability [172]. Similarly, Ansari et al. proposed an approximate 4:2 com-

pressor for multipliers, and they improved it by encoding the inputs to form 4x4 multipliers [173].

Using these multipliers as basic building blocks, they formed larger 16x16 and 32x32 multipliers.

Strollo et al. compared different 4:2 compressors used in low-power approximate multipliers with

their novel extension, and larger multiplier circuits were designed using their proposal [174].

Functional Approximation: The functional approximation often simplifies the logical operation

behind a multiplication function to improve hardware resource utilization. Redefines multi-

plication function, a Rounding-Based Approximate Multiplier (RoBA) uses the rounding of in-

put operands nearest to the power of two [175]. A simple multiplication can be re-written as

A×B = (Ar − A)×(Br −B)+Ar ×B +Br ×A−Ar ×Br , whereas Ar and Br are the rounded values. In

RoBA, the first term (Ar − A)× (Br −B) is omitted because the value of this term is small compared

to the other terms. Due to the power of two rounding, the remaining multiplication operations

can be computed with simple shift operations in hardware. Additionally, an efficient Kogge-Stone

adder [176] and a simplified subtraction operation are also used for addition and subtraction

terms. The experimental results show that the RoBA can effectively trade-off accuracy for the

hardware resources. Extending the RoBA approach, Garg and Patel proposed Energy efficient

Rounding-Based Approximate Multiplier (RBA) by simplifying the multipliers for further reducing

implementation complexity at the expense of computation accuracy [177], and the efficacy of their

approach was demonstrated using a Gaussian filter application.

Further approximating the multiplication function, Logarithmic Multipliers (LMs) are introduced,

which replace the multiplication operation with a simple addition in the logarithmic domain. In

early 1960, Mitchell proposed a logarithm-based algorithm for multiplication and division, which

approximates logarithmic and antilogarithmic conversion [178]. A simple LM implementation

requires leading one detector and encoders to use Mitchell’s algorithm for each operand [19]. After

a simplified logarithmic conversion, these operands are added, and the final multiplier product is

obtained by converting the sum using an antilogarithmic converter. Many variants of LM have been

proposed over the past decades, simplifying the operation or addition of error correction. These

include a truncated logarithmic multiplier, which truncates the mantissa using a configurable width

[179], an improved Mitchell-based logarithmic multiplier with an error correction term before the

antilog conversion [180], a minimally biased multiplier (MBM), which combines the truncation

and a constant error correction term [181], a reduced-error approximate logarithmic multiplier

(REALM) with a correction coefficient table for each power of two intervals [182], and an improved

logarithmic multiplier (ILM) by replacing the leading one detector with nearest-one detector

corresponds to the closest power of two [183]. Additionally, Liu et al. proposed a set of approximate

logarithmic multipliers (ALMs) by further replacing the adder with approximate adders [184].

Ebrahimi et al. proposed Leading-one Detection-based Softcore Approximate Multipliers (LeAp) for

FPGAs, which efficiently utilizes 6-input LUTs and fast carry chains for an approximate logarithm

calculator to implement Mitchell’s algorithm [185].

27



Chapter 2 Related Work

A generic functional approximation has been performed on gate-level multiplier circuits using

CGP to obtain different approximate multiplier variants in EvoApprox libraries [159, 160]. Together

with approximated adders, EvoApprox8 proposed by Mrazek et al. includes 471 8-bit approximate

multipliers [159]. Later, the extended EvoApproxLib also includes a total of 101405 n-bit and

mxn-bit approximate multiplier circuits [160].

2.1.3.4 Approximate Dividers

Approximate dividers are not frequently used as adders or multipliers in digital image processing

applications. However, these components often consume considerable resources when they are

used. A typical array divider uses a multiplexer and a subtractor cell to retain a partial reminder and

generally requires n2 subtractor cells for a 2n
n division. Several efficient implementations have been

proposed to reduce the critical path at the expense of hardware overhead [19], and approximate

computing further improves resource savings. Approximate dividers are generally classified based

on subtractor cell approximations for array dividers, exact dividers with reduced bitwidth, and

functional approximation of division operation.

In the first category, approximate unsigned nonrestoring divider (AXDnr) by Chen et al. used

circuit simplification to approximate subtractors cells, and different AXDnr are proposed either by

replacing accurate divider cells in a divider array with these approximated versions or by removing

some divider cells itself [186]. Later, the same research group extended the divider cell, named

approximate unsigned nonrestoring array divider cell (AXDCnr), which shows a better quality-

resource trade-off [187].

Secondly, an approximate dynamic divider proposed by Hashemi et al. routes the selected bits

of operands to a small accurate divider using a steering logic that dynamically detects the most

significant bits of each operand [188]. They introduced approximations in the steering logic where

each operand is approximated by truncation of some lower bits and showed a better average

error-resource trade-off than the AXDnrs.

Similar to approximate multipliers, the third functional approximation uses Mitchell’s algorithm

that can simplify dividing operation by using a logarithmic and antilogarithmic conversion [178].

An approximate integer divider (INZeD) and approximate floating-point divider (FaNZeD) pro-

posed by Saadat et al. are also employed Mitchell’s algorithm with error-correction techniques

[189]. A non-iterative high-speed division proposed by Low and Jong introduced a new antilogarith-

mic algorithm to merge multiple stages of Mitchell’s algorithm into a single one for approximate

division [190]. Analysis of their approach showed a better speed and area-delay product at the

expense of some area overhead. An approximate hybrid divider (AXHD) proposed by Liu et al.

combines a restoring array and logarithmic dividers to get a better quality-resource trade-off [191].

A division operation is simplified by a multiplication which can be obtained by rounding the

divisor to a form of 2K+L

D , where K is the leading one position, and L and D are constants obtained

by simulation with the lowest relative error in High speed yet Energy Efficient Rounding-based

Approximate divider (SEERAD) approach [192]. Overall, the above transformation simplifies the

division operation to some add and shift operations, and by varying the constants L and D, a

better quality-resource trade-off can be obtained. Similarly, Imani et al. proposed Configurable
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Approximate Divider (CADE) in which division operation is approximated with a subtraction of the

input operand mantissa [193], and the accuracy can be configured at run-time.

2.1.4 Device or Transistor Level Approximations

The device or transistor level approximations are often performed globally on a device or modify

the transistor behavior, which generally affects an entire device. Voltage overscaling is a com-

monly used approximation technique in this category, and such approximations are often non-

deterministic in behavior.

2.1.4.1 Voltage Overscaling

Similar to the memory level approximations, the voltage overscaling technique reduces the supply

voltage more than a level typically safe for a given clock frequency. Therefore, the overscaled

voltages cause the critical paths to violate the clock period and introduce errors. Many approaches

have exploited this for an energy-efficient system design. Hegde et al. used voltage overscaling

in which an introduced error is compensated by a low complexity error control that exploiting

the signal statistics [194]. Similarly, Marković et al. proposed a sensitivity-based optimization

framework that uses supply and transistor threshold voltage as tuning knobs for determining the

energy-delay trade-off [195]. Another approach proposed by Kahng et al. enlarges the range at

which the error is acceptable using a technique called power-aware slack redistribution [196].

This technique iteratively finds frequently used non-critical paths and shifts to maximize power

benefit for a predefined error rate. Mohapatra identified coarse-grained meta-functions that are

iteratively executed across multiple cycles in an application and applied voltage overscaling for a

better energy-quality trade-off [148]. Additionally, a dynamic segmentation of components in the

meta-functions reduces the critical path, thereby allowing aggressive voltage overscaling. In an

attempt to develop a framework for fast and accurate simulation of voltage overscaling, Zervakis et

al. introduced VOSsim for the estimation of error-power approximate design trade-offs [197]. Later,

another research by Zervakis et al. extended the idea of voltage overscaling to different voltage

islands and minimize power consumption by grouping and assigning different supply voltage for

approximate circuits in the islands [31]. Since the errors introduced by the voltage overscaling

methods are non-deterministic, special care must be given during the designing phase to ensure

the quality-threshold requirement in an approximate computing application.

2.2 General-Purpose Approximate Computing Methods

In past years, multiple research has already been published addressing the problem of arbitrarily

approximating circuits or multiple system components or combining specific approximations

in an application. Many of such general-purpose design flows consider different approximation

techniques in the same or multi-level abstraction, requiring only a little or no designer intervention.

Similar to our proposed AxCGA, some of these approaches are proposed directly for FPGA designs,

while most of them are presented for ASIC designs. However, many of these ASIC-based methods,

such as high-level synthesis (HLS)-based approaches, can either be partially or fully translated for
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FPGAs designs. The following sections describe different state-of-the-art approximate computing

design flows that primarily aim to integrate multiple approximations in an application. The general

characteristics of these methods are summarized in Table 2.1. Each design flow is further analyzed

based on seven different criteria: type of approximation methods that can be integrated, abstraction

levels where the approximation methods can be applied, type of error control mechanisms that

consider quality-threshold, search method that identifies the optimal parameter configuration,

claimed or analyzed design objectives, and finally, the design platforms where these design flows

can be targeted.

2.2.1 SALSA: Systematic Logic Synthesis of Approximate Circuits

Systematic methodology for Automatic Logic Synthesis of Approximate circuits (SALSA) is an

approximate circuit synthesis framework that takes register-transfer level (RTL) description of a

circuit and error bounds as user inputs and saves hardware resources such as area or power by

adhering to these error bounds [198]. The core methodology of SALSA lies in the formulation of

a Quality Constraint Circuit (QCC), composed of the original and an approximate circuit and a

quality function. The quality function output is computed from these two versions of circuits and

returns "1" if the approximate circuit fulfills the error bounds, otherwise returns a logic "0". A

reliable approximate synthesis using SALSA is considered when this output should be "1" for all

input combinations. The approximation circuit is iteratively evolved during the synthesis process

using Observability Don’t Care (ODC) concept while keeping the quality function output at "1".

The ODCs are the input values for which the primary outputs of a circuit are insensitive to the

output of a considered circuit node. Therefore, the quality function output of QCC will also remain

unaffected. Such ODCs are called Approximation Don’t Cares (ADCs) in SALSA and give a set of

inputs that an output bit of an approximate circuit and thereby the QCC output are insensitive. By

using these ADCs as external don’t care, a standard don’t care based synthesis technique synthesis

an approximate circuit. In this approach, a DSE is missing for an effective trade-off analysis

between the objectives. Instead, for each user-defined error bounds, SALSA identifies ADCs and

synthesizes using standard tools to estimate the hardware resources such as area or power.

2.2.2 SASIMI: A Unified Design Paradigm for Approximate Circuits

Substitute-And-SIMplIfy (SASIMI), proposed by Venkataramani et al. judiciously identifies signal

pairs in a circuit with a high probability of having the same value and substitutes one for the other

[20]. Such a target signal is successively substituted by a substitute signal, which might be logic zero,

logic one, other signals, or their compliments until the target error constraints are met. SASIMI

takes the original circuit and target error as inputs from a user, and the best target signal-substitute

signal pair is identified in each iteration. The error is computed in each iteration as a weighted

sum of normalized logic deletion potential and downsizing potential. These potential values are

estimated from the size of logic removed from substitution and the signal arrival times with and

without substitutions, respectively. The iteration moves towards the next level only if the error

constraints are met, and this DSE resembles a hill climbing algorithm. SASIMI can also synthesize

quality configurable circuits that can dynamically operate at different accuracy levels depending

32



2.2 General-Purpose Approximate Computing Methods

on the application requirements. Even though an area overhead is introduced by the runtime

substitution, clock expansion, and quality selection circuits, SASIMI could achieve considerable

area savings compared with the original circuits. Since the focus of SASIMI is on the functional

approximation by logic simplification, this approach can be translated well to the FPGA designs.

However, it cannot maximize the potential savings due to the architectural differences.

2.2.3 ABACUS: Approximate HLS using Approximate Functional Units

Automated Behavioral Synthesis of Approximate Computing Systems (ABACUS) proposed by Nepal

et al., is an approximate circuit synthesis method from the behavioral description of a circuit

[21]. ABACUS first generates an abstract synthesis tree (AST) from the behavioral description.

Thereafter, approximate design variants are obtained by applying transformations to this AST. Five

different transformations are employed for the approximation: 1) data type simplification, which

involves truncation of bits or resetting a number of LSB to zero, 2) operation transformation, in

which arithmetic operations are replaced with corresponding approximate versions, 3) arithmetic

expression transformations, where near similar structures share a transformed similar structure, 4)

variable to constant substitution, and finally 5) loop transformation by perforation and iteration

skipping. An iterative stochastic greedy algorithm is performed to explore resulted design space,

and the fitness value of each parameter configuration is computed as a weighted sum of power,

area, and accuracy. Additionally, ABACUS keeps individual resource usage and accuracy from these

iterations and finally forms Pareto-optimal solutions based on these values. However, ABACUS

requires both simulation and synthesis to determine the fitness of a parameter configuration

during the greedy search. Therefore, using ABACUS is time-consuming for large applications with

many parametrizable approximations.

2.2.4 ASLAN: Synthesis of Approximate Sequential Circuits

Automatic Methodology for Sequential Logic ApproximatioN (ASLAN), proposed by Ranjan et al., is

an automated approach for the synthesis of approximate sequential circuits [199]. Similar to SALSA,

this approach also relies on a sequential QCC circuit, which includes an original sequential circuit,

an approximate sequential circuit, and a Quality Evaluation Circuit (QEC). The QEC evaluates

the quality and generates two output bits, such as quality (Q) and quality valid (V). To ensure the

quality constraints, ASLAN sequentially check whether the V bit is true for all the possible QCC

states, and if it is true for all the states, then the Q is also set as true. In ASLAN, combinatorial

components which are amendable for approximation are identified, and each of this component is

approximated with existing techniques to determine a local energy-quality trade-off. The ASLAN

algorithm heuristically identifies suitable candidates to approximate using these pre-generated

trade-offs. Thereafter, the identified candidates are sorted, and the first component on the sorted

list is replaced by its approximate version. Afterward, this approximate circuit is verified for quality

constraints using QEC and moves to the next iteration only if the quality constraints are met.

Otherwise, the current approximation is ignored, and the algorithm selects the next one from the

sorted list for the following approximation. This approach uses functional simplification with

SALSA and precision scaling as the approximation techniques. Even though this approach identifies
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the overall energy-quality trade-off from the identified approximated versions, the search approach

resembles a local hill climbing algorithm. Therefore, an extensive and global quality-resource

trade-off exploitation is not feasible with this approach.

2.2.5 CGP: Approximate Computing using Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is an evolutionary algorithm suitable for various appli-

cations, including digital circuit design and optimization [200]. Different researches have been

published which use CGP for functional approximation of digital circuits [201]. Therefore, this

section provides a high-level overview of CGP principle.

In CGP, a circuit is modeled as a two-dimensional array of nodes with a number of rows and

columns, and these nodes can be elementary logic functions, transistors, or arithmetic components.

Each node in the circuit can be connected either to a circuit input or to an output of certain

previous nodes. Such an array is encoded using three integers for every node, where the first

integer represents the functionality, and the last two integers represent the inputs to the node. The

encoded representation is called a genotype or chromosome in CGP, and each integer represents

a typical gene. Additionally, a number of integers in the last part of the chromosome represents

the output connections to the circuit. In general, the size of the genotype is always constant,

while the phenotype, which represents the actual circuit implementation, can have different

sizes during the CGP optimization. The CGP employs a (1+λ) evolution strategy and a mutation

operation that randomly replaces a number of encoded genes with other valid ones. The mutated

chromosome is compared with the reference circuit without approximation for the number of

gates representing the resource utilization and the error computation with every possible input

stimulus. The evolutionary operation with the mutation iteratively continues until a termination

condition is satisfied.

Approximations can be integrated into CGP design flow mainly using three different techniques.

The first resource-oriented method searches for a circuit with a target of ki gates, where ki < K and

K is the number of gates in a reference circuit [202]. Therefore, this approach is more resource

controllable for a designer. Thereafter, the CGP is executed several times with different ki for the

trade-off estimation. In the second error-based method, different error values are estimated using

the output of fully functional and approximate circuits during the evolutionary iteration, and then

find a chromosome with minimal gate count which satisfies a certain user-given error rate [203].

Finally, the third type of method replaces the single-objective optimization with multi-objective

NSGA-II to identify a good compromise between error, area, and delay [204]. Even though most of

the CGP approaches use gate-level design for approximation and optimization, some approaches

extend this to the FPGA system by synthesizing the obtained design from the initial gate-level

approximation and optimizations [205, 206]. In general, these methods are directly proposed for

the circuit level approximation and are not suited for methods that target other abstraction levels,

such as algorithm or memory levels.
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2.2.6 GRATER: An Approximation Workflow for FPGA Acceleration

Lotfi et al. proposed an approximation workflow, GRATER, specifically targeting accelerators

in FPGA applications [207]. The core methodology involves a source-to-source compiler that

applies precision scaling to the input kernels using a novel optimization technique. The GRATER

compiler uses OpenCL kernel transformation for integrating the approximations and takes an

exact OpenCL kernel, a set of input test cases, and quality metrics as user inputs. Thereafter,

GRATER automatically identifies variables in a way that generates separate kernels for checking the

compliance of each variable. In each kernel, the precision of one variable is lowered by a level, and

the precision of all other variables is kept unchanged to determine the quality loss with the help of

profiling feedback. For example, GRATER uses four precision levels for a variable with data type

change from float to char, i.e. {4, 3, 2, 1} for {float, int, short, and char} respectively. If the quality

loss is acceptable, that particular variable is added to a safe-to-approximate variable list. For all the

variables in this list, the lowest precision is computed in a similar way by generating a separate

kernel and varying the precision from the lowest until the quality result falls in the acceptable

region. Using these bound of each variable, a single objective GA-based DSE is performed for

minimizing the FPGA resource utilization, which is estimated from the precision level of variables.

The DSE stops when the best chromosome with the lowest fitness, i.e., resource on FPGA, is

determined. In this way, GRATER enables more kernels to run parallelly on target FPGA platforms.

However, GRATER uses only precision scaling as the approximation technique. Therefore, this

approach is missing the possibility of exploiting maximum benefit from multiple approximations

on different abstraction levels.

2.2.7 Approximate Computing Optimizations from Behavioral to Gate-Level

Xu and Schafer proposed a multi-level approximate computing design flow for HLS [30]. Their

approach involves a four phase approximation, and each phase is dedicated to approximations

on a specific abstraction level. Initially, a designer has to specify behavioral description of a

design, provide a library of exact and approximate functional units for different bitwidths, an

application-specific error bound, and finally, input stimuli with chosen data distribution. In the

first phase, all the loops are identified and automatically unrolled at the software level based on

a specified pragma in C. However, depending on the unroll factor specified by the pragma, this

unrolling can be done either partially or fully or even not unroll at all. Subsequently, the unrolled

code is profiled using the input stimuli, and infrequent code lines are pruned away. In addition,

a signal-to-signal and a signal-to-constant simplifications are applied, and profiling of internal

signals helps to prune parts of circuits that need to calculate some internal signals. Thereafter,

each functional unit is replaced with an individual approximate functional unit from the library,

and the modified behavioral description is characterized using HLS in terms of resources such

as area, delay or latency, and error estimated from cycle-accurate system C models. A greedy

algorithm iteratively adds multiple replacements, and a Pareto-optimal trade-off is estimated for

minimizing weighted sum of error and resource consumption. Furthermore, dependency analysis

is also performed to check the relation between each functional operation, and the dependent

operations require HLS of all functional unit combinations that have an error below the target

35



Chapter 2 Related Work

error. In the third phase, a variable-to-variable and a variable-to-constant substitutions at the RTL

are performed, together with forcing of different signal bits to logic "1" or "0". Such substitution in

the RTL is beneficial since all the internal signals are exposed for further approximations, in fact,

a synthesis and gate-level simulation for profiling are time-consuming. A final stability analysis

is also performed on the selected approximate circuits at the gate level using input stimuli with

various distributions. In general, this approach involves the sequential application of the different

approximation methods in multiple abstraction levels and does not include any resource modeling

for fast profiling. Additionally, a clever DSE method is also missing, especially in the case of

parameter dependency. Rather, this approach requires HLS of all approximate functional unit

combinations that meet the target error bound.

2.2.8 SCALS: Statistically Certified Approximate Logic Synthesis

Liu and Zhang proposed Statistically Certified Approximate Logic Synthesis (SCALS) technique

using stochastic optimization approach. The SCALS synthesizes approximate designs with user-

specified error constraints and input distributions after mapping the technology-independent

logic gates for a specific technology library such as LUT-based FPGAs or ASIC-based standard

cells [208]. Their approach starts with normal technology mapping, and then the mapped netlist

for a target technology is divided into several sub-netlists for logic optimization. An iterative

logic optimization is performed on each sub-netlist in isolation, together with a set of exact and

approximate transformation moves. The exact transformations include logic operations such as

balance, rewrite, and refactoring that does not change the functionality, whereas they optimize the

gate count or balance the logic depth. However, the approximate transformations simplify the logic

and might generate errors in the output. The approximate transformation moves include reduce,

flip, or add, which randomly removes or inverts an input of a logic gate or adds a random logic with

arbitrarily selected inputs. Initially, a transformation move is selected with a certain probability,

and after each transformation, a new netlist is mapped to the target technology to estimate the

area. Similarly, the netlist is simulated using inputs with user-given error distribution to compute

the error metrics. A single quality value is estimated based on this area and error. Thereafter, the

quality metric is compared to the previous iteration using the Markov Chain Monte Carlo method

to determine whether the current move is acceptable. Although this approach can be directly

employed to FPGAs, the single objective optimization limits an effective trade-off analysis.

2.2.9 Accelerator Synthesis Under Voltage Island Constraints

A multi-level approximate accelerator synthesis under voltage island constraints proposed by

Zervakis et al. considered several approximate arithmetic components together with a voltage over-

scaling technique [31]. Their approach initially creates a multi-level approximate arithmetic library

which includes approximations at the algorithmic level, such as perforation or truncation, and at

the circuit level, such as functional approximation. Each of the library components also contains a

Pareto-optimal implementation with error-power characteristics. For the approximate accelerator

synthesis, a designer has to specify a behavioral description and a DFG of the accelerator, global

error bounds, and a number of voltage islands which has different degree of voltage overscaling. In
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this approach, the global error is distributed to different DFG nodes at first. Thereafter, a selection

of appropriate approximation techniques and their configuration is applied to each DFG node. This

second phase includes generating a number of random DFG configurations by replacing accurate

arithmetic components in each node with approximate ones from the library. Each of these DFG

instances is synthesized and simulated for the power and error values. Using these values, an ANN

is trained to model the error values. The overall power of a DFG instance is estimated as the sum of

power dissipation over each node. With these error and power models, they estimated the fitness

of all DFG configurations and finally determined optimal DFG using a binary search technique. As

a final step, the voltage islands are formed iteratively to limit the number of different supply voltage

levels using a greedy algorithm. This approach originally targets ASIC designs, which support

different supply voltages to individual components. However, the voltage overscaling with locally

different voltages is not possible on current commercial FPGAs, and therefore, this approach can

only be partially applied to the FPGAs.

2.2.10 autoAx: Automatic Design Space Exploration and Circuit Building

An automatic DSE and circuit building methodology using libraries of approximate components

(autoAx) proposed by Mrazek et al. aims to combine multiple approximate circuits from state-of-

the-art approximate component libraries into a target design [209]. Their approach proposed a

three-phase methodology for searching, selecting, and combining multiple approximate methods

in an application. For a target application, the approximate circuits from the state-of-the-art

libraries are preprocessed initially to remove all the irrelevant circuits. This preprocessing phase

profiles application-specific error and hardware cost for each approximate component using

benchmark data, and only a subset of components that lies in the Pareto front is preserved for fur-

ther phases. In the second phase, the computational models for the quality of results and hardware

cost are trained using machine learning algorithms after synthesis and simulations of hundreds

or thousands of randomly selected configurations of a target application. A fast and exhaustive

model-based DSE is performed in the next step using these models to identify Pareto-optimal

solutions. Due to numerous possible parameter combinations, they proposed an iterative heuristic

algorithm, similar to a hill climbing approach, with a restarting mechanism to avoid stagnation in

local optima. The DSE Pareto solutions are then simulated and synthesized for the final Pareto front,

enabling a designer to select reliable approximate designs in an application. The autoAx approach

is specifically targeting ASIC platforms and considers only circuit level approximate arithmetic

components, which prevents exploiting benefits from multiple abstraction layers. Additionally, the

modeling phase requires a time-consuming synthesis of multiple configurations for each target

design. However, their DSE approach is scalable with a large number of approximation parameters,

capable of estimating the quality-resource trade-off, and can consider multiple trade-off objectives.

Therefore, this thesis uses the autoAx DSE approach to compare the performance of the DSE

approaches proposed for AxCGA.
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2.2.11 CIRCA: Modular and Extensible Framework for Approximate Circuits

A concept for a modular and extensible framework for approximate circuit generation, named

CIRCA, was proposed by Witschen et al. uses a three-phase operation to approximate circuits

from a library of approximate components [210]. The first input stage processes user-provided

information such as Verilog description of a circuit and a configuration file. The configuration file

includes information for the next phase, such as target metrics, quality constraints, and employed

functionality. Additionally, a user can specify an input vector for quality assurance as well. The

second stage, called Quality Assurance, Approximation, Estimation, and Search Space Exploration

(QUAES), is the central part of the framework. A candidate, which is an annotated subcircuits in the

Verilog code, can be replaced with different approximate variants from the library. The search space

exploration is iteratively explored by expanding circuit configurations using approximate candi-

dates and evaluating them for quality error and hardware resources such as area, delay, and power.

The search algorithm determines the configuration which has to be selected and expended for

further steps. Subsequently, this configuration is validated to check whether the quality constraints

are met. If the constraints do not meet, the search algorithm picks the next best configuration for

the validation, and this process will continue until no more valid configurations exist. Even though

this approach claims that it supports a wide range of search algorithms, the experiments use hill

climbing for the search space exploration. All the valid configurations identified in the QUAES

stage are stored, and the final output stage postprocess these configurations for a Pareto front

or the best target circuit with given quality constraints. Similar to other single-objective search

approaches, an effective quality-resource trade-off analysis is therefore missing in this approach.

2.2.12 ApproxFPGAs: ASIC-Based Approximate Arithmetic Components for FPGAs

ASIC-based approximate arithmetic components for FPGA-based systems (ApproxFPGAs) proposes

an automated arithmetic approximation design flow for FPGA designs [211]. The approximation

techniques proposed for ASICs can often be employed on the FPGAs to save resources. However,

due to the architectural differences, it causes asymmetrical gain on FPGAs for Pareto configurations

identified for ASIC. The ApproxFPGAs is an extension of autoAx proposed by Mrazek et al. [209]

to effectively approximate FPGAs using the state-of-the-art approximate component libraries

proposed for ASICs. Similar to autoAx, the preprocessing phase removes all irrelevant components

for a target application from the approximate component library. However, the accurate resource

estimation on FPGA is time-consuming due to the extensive synthesis time of entire library compo-

nents for FPGA. Therefore, the ApproxFPGAs uses statistical and machine learning-based models

for determining hardware cost and identifying preprocessed Pareto-optimal approximate compo-

nents. In the first part, hardware resource models are trained with synthesis results of a randomly

extracted subset of approximate components from the state-of-the-art libraries. The resource

models for FPGAs are trained for power, latency, and area in terms of LUTs. Due to limited fidelity

of these models, initially, a pseudo Pareto front is identified using the models for varying bitwidth

of approximate arithmetic components. Thereafter, the components that lie in the pseudo front are

synthesized for the target FPGA to generate the accurate Pareto-optimal approximate components.

Finally, to generate an approximate target application, autoAx methodology is applied by replacing
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the preprocessed Pareto-optimal ASIC library with the new FPGA library and estimator for DSE

models with FPGA resource estimators. Even though the ApproxFPGAs construct an FPGA-based

library for approximate arithmetic components and directly targets FPGA applications, the sub-

sequent autoAx DSE requires synthesis and simulation of multiple parameter configurations of

target applications to train the application-specific models.

2.2.13 AxHLS: DSE and HLS of Approximate Accelerators

Castro-Godínez et al. proposed AxHLS, an automated framework for HLS of approximate acceler-

ators using approximate arithmetic functional units such as adders and multipliers [212]. Their

framework uses a library of approximate functional units and a set of analytical models named

AxME, which is developed by characterizing individual components in the library for hardware

resources such as area, dynamic and static power, and delay. Based on analytical studies, they

proposed simple resource models for target applications using individual approximation compo-

nents involved in the application. The total area of a target system is approximated as a sum of

the area from individual system components. Similarly, the total static power is approximated as a

sum of the static power of individual components. The dynamic power is estimated as a sum of

individual dynamic power normalized with the dynamic power of the accurate design without any

approximations. The delays are modeled using operations located in the critical path of the circuit.

A tabu search based optimization approach is used in the proposed DSE methodology, named

DSEWam. The DSEWam iteratively replaces the approximate components based on a combined

fitness value from resource models and forms a Pareto front with corresponding error values. The

proposed methodology is integrated into an HLS design flow to generate approximate accelerators

from a behavioral description in C and demonstrated using a few image filter applications. As the

core of all these approaches lies in the combination of different arithmetic units, this method is

also restricted to the circuit-level approximation. In addition, the DSEWam is a single-objective

local search metaheuristic, limiting the possible exploitation of quality-resource trade-off.

2.2.14 E-IDEA: Multi-Objective Application-Driven Approximate Design Method

Barone et al. proposed a two-level multi-objective application-driven approximation method, E-

IDEA, that combines multiple approximations in different abstraction levels [213]. The framework

takes a circuit in C/C++, a set of approximate operators called mutator, and fitness functions

which comprise error and gain metrics as inputs and return a set of non-dominated configurations

obtained with best mutator configurations. The first phase of the framework is a source-to-source

manipulation tool, named Clang-Chimera, that analysis the circuit to apply approximations using a

Match and Mutate operation. The Match identifies the code that can be replaced with approximate

operators using the Mutate operation. This approach considers multiple approximations such as

loop perforation, precision scaling for both floating-point and integer arithmetic, and approximate

arithmetic components. The second phase, Bellerophon, identifies the best approximation version

of a given C/C++ code according to target design goals. Bellerophon explores the design space

using NSGA-II with different possible mutator configurations and forms a set of Pareto-optimal

solutions trading off the defined objective functions. This approach is demonstrated using different
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target designs and identified Pareto-optimal solutions for these designs. Additionally, an HLS is also

used to get the actual hardware implementations of the circuit. Therefore, this approach can be

employed for both software and hardware implementations, including FPGA designs. However, this

approach cannot consider any architectural features of FPGAs in optimizations. Additionally, even

though this framework performs typical approximations on different abstraction levels, combining

multiple approximations on the same abstraction level or multi-level is missing.

2.3 Summary and Discussion

This chapter reviews various state-of-the-art approximate computing techniques presented in the

literature. These techniques are broadly classified as single-purpose or general-purpose based

on the scope of approximation in an application, and the core concept of each technique is

explained with suitable examples. Initially, the single-purpose techniques that approximate a

specific type of system component or functionality are described and further classified into four

categories based on the targeted level of abstraction in an application, such as algorithm or software

level, memory level, circuit level, and device or transistor level. Thereafter, the general-purpose

design flows that arbitrarily approximate a complete circuit or combine multiple approximation

techniques in a single system are discussed. These design flows are analyzed further based on the

considered approximation strategies and their target abstraction levels, employed search heuristics

and search type, the number of objectives as single or multi-objective, claimed or considered

trade-off objectives, and finally, the target computing platforms.

This thesis aims to develop a framework for approximate image processing applications on

FPGAs that can effectively trade-off application quality for hardware resources. The majority of

the analyzed single-purpose methods are proposed for the ASIC designs. However, most of such

methods translate well for the FPGAs, even though the approximation benefits are not linearly

scaled. Algorithmic techniques typically benefit irrespective of the target platform, including

FPGAs, although many researchers did not estimate the benefits directly on FPGAs. For example,

table-based approximation methods storing only a subset of data can reduce memory usage

in DRAM in ASIC-based designs and can potentially save DRAM usage or the BRAMs in FPGA-

based designs which have a different architecture. Similarly, a circuit level approximation which

reduces gate count or length of the critical path can often save some LUTs and registers or reduces

latency in FPGAs as well. Since external memories are often coupled with FPGAs, memory level

approximations can also be integrated into an approximate FPGA design. Additionally, global

voltage overscaling techniques can also be applied to FPGAs in a controlled way. Therefore, the

approximate component library as a part of our proposed AxCGA framework adapts multiple of

these techniques, which are parametrizable for quality-resource trade-off and deterministic to

reproduce similar error behavior in an application.

Many real-world signal and image processing systems with multiple processing stages can

integrate different approximations simultaneously on various abstraction levels. Therefore, single-

purpose methods, such as algorithmic approximations or circuit-level approximations alone, can

not exploit all of the potentials of approximation. While most of these single-purpose techniques in

literature target the characterization and implementation of a specific type of system component

40



2.3 Summary and Discussion

or functionality, the general-purpose approximate computing design flows are introduced that

arbitrarily approximate circuits or combine multiple approximation techniques on an application

level. The general-purpose methods proposed in the literature are demonstrated their potential to

integrate approximations into error-resilient applications with specific examples. Some of these

approaches are proposed for the FPGAs applications, and many others proposed for platforms like

ASIC, CPU, or GPU might translate well for FPGA designs. However, these approaches do not often

include multiple significant attributes to exploit the maximum quality-resource trade-off, instead

relying on some essential features.

In real-world applications, the choice of approximation technique depends strongly on the char-

acteristics of the target application. Depending on the specific application, different methods might

be most beneficial for a better quality-resource trade-off. For example, when signal calibrations or

complex non-linear functions are implemented using pre-calculated look-up tables, table-based

approximations are highly efficient, especially for reducing memory consumption. On the other

hand, systems that perform many linear calculations benefit most from approximate arithmetic

units or precision scaling. Therefore, a careful selection of specialized single-purpose techniques

tailored to an application is necessary for a better quality-resource trade-off in real-world ap-

plications. In addition, the design flows should offer the possibility to support approximation

techniques on multiple abstraction levels in an application as well. In literature, the design flows

such as ABACUS [21], Xu and Schafer approach [30], and Zervakis et al. approach [31] offer the

possibilities of combining multiple approximations on different abstraction levels, among them

the first two approaches can be adopted for FPGAs designs. However, combining such multiple

approximations often exponentially increases the possible configurations with the number of

exposed tuning parameters from each individual method. Therefore, an efficient design space

search technique is required in this case to identify the possible quality-resource trade-off. Many

state-of-the-art design flows, including ABACUS, Xu and Schafer, and Zervakis approach, rely on

a single objective search technique and can not perform an extensive trade-off analysis between

conflicting design objectives. During the search, such single-objective optimization approaches

often combine multiple design objectives into a single value with specific weights and consider

only the convergence of this combined values to analyze the search performance. Therefore, these

approaches cannot take into account the diversity of identified designs to form Pareto solutions for

extensive trade-off analysis. However, the state-of-the-art design flows such as CGP [201], autoAx

[209], ApproxFPGAs [211] and E-IDEA [213] consider multi-objective optimization for an effective

trade-off analysis.

Addressing the shortcoming of the existing approximate computing works, this thesis presents an

AxCGA framework that considers multiple relevant features to perform extensive trade-off analysis

in approximate computing applications. The proposed AxCGA framework can simultaneously

combine multiple approximations in various abstraction levels in an application and explore

complex design spaces using a multi-objective genetic algorithm. We adopted the search technique

in autoAx to explore the approximation parameters from multi-level abstractions and compared the

performance of the autoAx DSE with AxCGA approach. Additionally, our novel search technique,

ROI-NSGA-II, enhances both the diversity and convergence of explored Pareto solutions and helps

a designer to make suitable design decisions.
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CHAPTER 3
AxCGA: A DSE Framework for Approximate

Computing Using Genetic Algorithm

This chapter describes our proposed framework AxCGA, a DSE framework for approximate com-

puting on FPGA using GA, which effectively explores the design space exposed by combined

approximations on different abstraction levels in FPGA-based applications. The core methodology

has previously been published in "Model-Based Design Space Exploration for Approximate Image

Processing on FPGA" @IEEE 2020 [23] and extended in "Model-Based Design Space Exploration

for FPGA-based Image Processing Applications Employing Parameterizable Approximations" @El-

sevier 2021 [29] with an additional case study. The optimization approach employed in AxCGA

is further described in "Parameter Optimization of Approximate Image Processing Algorithms in

FPGAs" @IEEE 2020 [27]. The figures, texts, and structure from these publications are adapted and

extended for this thesis.

3.1 Introduction

Digital image or signal processing applications successively process the incoming data acquired

either with sensor systems or from a preprocessing stage with multiple operations to achieve the

desired application outcome. For example, an image filter or a color space conversion application

involves a number of arithmetic operations such as multiplications and additions. Therefore, such

an application offers the possibility to replace these accurate operations with their approximate

counterparts, which expose parameters to tune their degree of inaccuracy. Additionally, the signals

that connect these operations can also be subjected to the approximations, such as precision

scaling. Combining such parametrizable multiple approximations in an application can deliver a

better quality-resource trade-off for designers to make suitable decisions.

A careful approximation of various operations at multiple abstraction levels is required to maxi-

mize the benefits of approximate computing on an application level. Depending on the charac-

teristics of these operations, typical single-purpose approximate computing methods have to be

applied to trade in the accuracy for resource benefits effectively. However, this leads to a multi-

objective DSE problem for which brute-force searches become infeasible as the design space size
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grows exponentially with the number of employed methods. Therefore, an efficient and effective

search method is required to explore such a design space with fewer evaluations of possible solu-

tions for resource usage and quality degradation. Additionally, the DSE approach has to avoid the

time-consuming synthesis of the system for each parametrization and consider the architectural

characteristics of the target platform for fast and reliable resource estimation. Furthermore, for a

designer to make valid choices regarding acceptable quality degradation, the employed quality

model should be suitable for the targeted application and interpretable for the designer. In general,

the requirements for a successful approximation of an FPGA-based application can be summarized

as follows:

• combining suitable approximations at multiple abstraction levels

• an efficient and effective multi-objective search to estimate the resource-quality trade-off

• application-specific quality models and fast and simple FPGA resource models are required

Many approximation methods focusing on different embedded computing hardware have been

proposed, comprising single-purpose methods and general-purpose design flows that approximate

multiple operations as described in Chapter 2. Many of these general-purpose design flows, either

directly proposed for FPGAs or translating ASIC based methods to FPGAs, can be employed at an

application level to approximate FPGA designs. However, none of these design-flows address all

the primary requirements to exploit the maximum approximation benefits.

Approximate computing design flows proposed by Xu and Schafter [30], Zervakis et al. [31] and

ABACUS [21] consider multiple approximations on different abstraction levels in an application.

However, none of these approaches employs a multi-objective optimization approach for an

efficient and effective quality-resource trade-off estimation. Additionally, Zervakis et al. employed

voltage overscaling with locally different voltages, which is not applicable on current commercial

FPGAs. Similarly, ABACUS requires a time-consuming synthesis of system configurations for

resource estimation during each search iteration. The approach proposed by Xu and Schafter works

with HLS and can not apply to established FPGA-based design flows that exploit the architectural

characteristics of a target platform.

State-of-the-art approaches often primarily consider the cogency of approximate computing

approaches. However, scrutinizing the effectiveness of DSE problem from an optimization per-

spective is yet missing. A single-objective DSE requires defining suitable weights for conflicting

objectives to form an aggregated cost function and often makes the trade-off determination a

challenging task. Instead, a multi-objective DSE bypass such a task and can effectively determine

the trade-off. Considering various multi-objective state-of-the-art DSE approaches proposed

for approximate computing, approximate computing using CGP [201] and E-IDEA by Barone et

al. [213] uses NSGA-II for optimizing approximate parameter configuration and identifying the

trade-off. Similarly, autoAx by Mrazek et al. [209] and ApproxFPGAs by Prabakaran et al. [211]

employ a modified hill climbing algorithm that considers multiple objectives during the search

to form Pareto configurations. In fact, these methods consider only circuit-level approximations,

which prevent the exploitation of approximation benefits on other abstraction levels. The CGP

approximates an entire gate-level circuit, and E-IDEA approximation is coupled with the HLS

design flows. Therefore, these approaches do not take into the architectural characteristics of
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FPGAs during the approximations. Similar to the DSE methodology employed in E-IDEA, our

proposed AxCGA is also using NSGA-II for the exploration of the design space. However, NSGA-II

based DSE in AxCGA was introduced already before E-IDEA was originally published. Even though

autoAx and ApproxFPGAs consider only approximating arithmetic components, the search spaces

explored in their demonstrated applications are complex due to a large number of approximate

variants they consider. In addition, the DSE in their approaches is able to identify a wide range of

Pareto-optimal solutions. Therefore, this work uses the DSE approach employed in autoAx/Ap-

proxFPGAs to compare our proposed AxCGA and further denoted as autoAx DSE in the following

sections.

Even though many of the ASIC-based approximations can trade-off resources for application

quality on FPGAs, the approximation benefits do not linearly translate to the FPGAs. An optimal

approximation parameter conflagration on ASIC does not necessarily be optimal in FPGAs. There-

fore, approximate computing design flows that consider architectural characteristics of FPGAs can

better exploit the resource-quality trade-off in an application. Additionally, a common character-

istic of many state-of-the-art approximate computing designs flows is that they use basic signal

difference metrics such as an absolute or relative error, an error rate, or a hamming distance for

the quality estimation. While these metrics are capable of assessing general trade-off between

accuracy and resources, these are often useful in the characterization of single-purpose approxi-

mate components. However, their relevance to real-world applications is often limited. Addressing

these resource-quality requirements, only ApproxFPGAs models the resources on FPGAs and uses

structural similarity measure (SSIM) as quality metrics for an image filter application. However,

their approach considers only arithmetic components, and the area model accounts for only the

number of LUTs. The information on how to handle the resources for different approximations,

which use dedicated DSPs or BRAMs, is not specified in their approach. Similarly, GRATER, pro-

posed for FPGAs, uses OpenCL kernel transformation for integrating the approximations, and this

approach considers only multi-level precision scaling as an approximation technique. Therefore,

this approach cannot extensively exploit the resource benefit of approximate computing on FPGA.

Addressing the above requirement for maximizing approximate computing benefits, we propose

AxCGA, which differs from previous works in several ways. Using AxCGA, a designer can select

and combine appropriate single-purpose approximation techniques across different abstraction

layers and globally optimize tunable parameters exposed by each technique in conjunction using

multi-objective optimization (MOO). We adapted GA, which globally explores highly complex

design spaces with a reasonable number of fitness evaluations and non-dominated sorting selec-

tion, NSGA-II [225] to obtain Pareto-optimal or near Pareto-optimal solutions. Due to the global

optimization approach, AxCGA implicitly considers interactions and error propagation between

different system components during the optimization. Similarly, NSGA-II can inherently maintain

the convergence and diversity in the obtained Pareto solutions. Therefore, an effective trade-off

analysis is feasible for a designer to exploit the maximum approximation benefit with desired

quality level. In contrast to of other GA-based approaches which often require time-consuming

hyperparameter optimization, we proposed an adaptive GA approach that dynamically provides

hyperparameters during the DSE. This adaptive approach avoids repeating the DSE experiments

to fine-tune the hyperparameters for each target application and make the AxCGA generic. Addi-
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tionally, AxCGA directly targets FPGA designs using established design flows. Our approach uses

a library of reusable approximate components whose resources are estimated at the beginning

as a one-time effort. This library includes resource models for each component which take into

account the specific FPGA architectural characteristics, including the use of dedicated DSP units,

BRAMs, and adaptive LUTs. During the DSE, AxCGA estimates the total resource utilization as a

sum of each of these resources from all the system components, and the total power consumption

is predicted directly from these estimated resources. These simple yet accurate models estimate the

resource utilization during the DSE without any time-consuming iterative synthesis of parameter

configurations for each target application. Furthermore, multiple established quality metrics are

available in the framework, and designers can choose desired quality metrics, allowing them to

rely on application-specific metrics.

To demonstrate the uses of AxCGA, we consider two image processing case studies, such as an

RGB to Y C bCr color space conversion and a display rendering pipeline typically used in digital

cameras to adapt images for display on a specific monitor. The DSE experimental results on these

applications show that the AxCGA is able to construct a suitable Pareto front with respect to the

quality-resource trade-off. We additionally employed autoAx DSE on these two case studies for

comparing the performance of AxCGA. Since the modeling part is not a contribution of this thesis,

we use the same resource and quality models in both the AxCGA and autoAx DSE experiments, and

the comparison primarily considers the performance of the exploration strategy in determining the

quality-resource trade-off. The performance of each DSE approach is analyzed individually based

on the hypervolume indicator, which reflects both convergence and diversity of evolved Pareto-

optimal solutions. The performance comparison shows that AxCGA achieves similar performance

to autoAx with only around 5% and 25% of the computational effort, respectively, in the above

applications. Finally, in order to estimate the actual savings on an FPGA, we selected a number of

parameter configurations from the Pareto fronts and performed synthesis & fitting using standard

FPGA design flow.

The remaining sections in this chapter are organized as follows. Section 3.2 formulates the

DSE problem, and Section 3.3 gives a high-level overview of our proposed AxCGA methodology.

Thereafter, Section 3.5 describes the modeling approach for resource, power, and quality. Then,

the GA-based DSE is explained in detail in Section 3.6. The Section 3.7 explains the two case

studies considered in this work, such as RGB to Y C bCr conversion and display rendering pipeline,

and discusses the DSE experiments and results from approximations on these applications. The

Section 3.8 compares performance of adaptive and non-adaptive version of AxCGA, and Section

3.9 compares AxCGA with the state-of-the-art autoAx DSE. Finally, Section 3.10 summarizes our

findings and concludes this chapter.

3.2 Problem Formulation

The goal of the AxCGA is to determine the quality-resource trade-off in an FPGA application

when multiple approximate computing techniques are employed. In AxCGA, we use a DFG-based

approach to represent signal flow in an application. The signal flow in a target application N is

represented as a DFG in which each node n ∈ N constitutes a typical signal operation or an input
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or output signal. Figure 3.1a shows an exemplary DFG that includes different input nodes ni ,

an output node no , and multiple intermediate nodes ni nt , and these nodes are connected using

directed signal or data flow. In general, DFG of an application N is defined as:

N ∈ {ni {1,..,a},ni nt {1,..,b},no{1,..,c}}, (3.1)

where a,b,c represents the respective number of each node type. With an application DFG,

a designer can annotate nodes that can be approximated and specify suitable state-of-the-art

approximation techniques, if applicable. Additionally, the designer can add specific nodes or

approximations such as precision scaling to the directed signal flow as shown in Figure 3.1b. Such

a modified DFG with user specifications is named as annotated DFG. In general, nodes in the

annotated DFG exposes a set of parameters p ∈ P , which are used to a) select among different

variants of state-of-the-art approximation techniques, if applicable, and b) tune the strength of the

approximation. Therefore, the parameter set P is defined as:

P ∈ {p{11,..,1y },..,{x1,..,xy }}, (3.2)

where x is the number of nodes considered for the approximation, and y represents the number of

approximation parameters considered for each annotated node. In the annotated DFG example

3.1b, three different approximation types are specified. Even though the same approximations

are used to annotate multiple nodes, their designer-specified parameters and their ranges might

be different. In general, an annotated DFG includes a list of parameters P that configure all

the annotated nodes in the target application N . Therefore, together with these parameters, an

annotated DFG represents the design space, and the DFG with a typical parameter configuration

of an application is denoted as a candidate DFG.

(a) Data flow graph (DFG) (b) Annotated data flow graph

Figure 3.1: An exemplary application with a number of intermediate nodes represents specific
operations

In AxCGA, the trade-off estimation is formulated as a MOO problem since the target is to identify

the Pareto-optimal points that trade in application quality for the resource benefits. Because of

possible interactions and error propagation between the nodes in a DFG, an effective trade-off

analysis is not feasible by optimization of individual nodes with their possible configurations.

Therefore, a global DSE is necessary, considering the combined parameter sets from all the anno-

tated nodes. However, the design space complexity increases exponentially with the number of
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annotated nodes and their exposed parameters in the case of a global optimization approach. The

overall objective of this work is to identify the Pareto trade-off for a target FPGA-based application

N , which is represented with an annotated DFG with P possible parameters.

3.3 Methodology Overview

The proposed AxCGA addresses the problem of resource-quality trade-off estimation in an approx-

imate computing application. An overview AxCGA design flow is depicted in Figure 3.2.

Figure 3.2: Overview of AxCGA design flow
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To facilitate DSE of complex FPGA applications, we employed a divide and conquer approach

in which an application is represented as a directed DFG with nodes representing different com-

ponents or operations in the application. Therefore, a designer first creates an application DFG

by specifying the input and output signals of the application as input nodes and output nodes.

In addition, successive operations on the input signals are represented as different intermediate

nodes, and these nodes are connected each other using directed data flows. Different parts of the

AxCGA framework are implemented in Python using various open-source libraries, and standard

graphic libraries such as NetworkX [214] can be used to create DFG of an application.

While creating the DFG, a designer can specify one or more suitable approximation techniques

and their parameters that can be added to the directed data flows or replace the nodes as described

in Section 3.2. These approximations are selected from a predefined library that contains multiple

variants of approximate components for different signal or image processing operations. The

resulting annotated DFG uses an instance of an approximate component class taken from the

approximate component library to define the functionality of the annotated nodes. To estimate

the resource utilization during the DSE, each library component includes a resource model that

defines resource utilization as a function of its configuration parameters. Additionally, each

component includes a behavioral model that performs a bit-accurate software simulation for

quality estimation.

In an annotated DFG, a typical annotated node can be switched between an accurate and one

among the specified approximate component class using their object properties. Additionally, each

approximate component class can be parametrized using its object properties. With multiple ap-

proximation choices and their parameters for each node, the annotated DFG produces numerous

candidate DFGs. Therefore, identifying the candidate DFGs corresponding to parameter combina-

tions that effectively trade-off application quality for resource benefits is challenging. Addressing

this issue, AxCGA performs an efficient GA-based DSE search and identifies the Pareto-optimal

candidate DFGs or solutions.

During a DSE, different candidates DFG have to be evaluated for their fitness values. Therefore,

fast and accurate fitness estimation is required for an efficient and effective search. Since each

candidate DFG is a typical parameter configuration of an application, these fitness values must be

estimated on an application level. An application model should provide fitness values as resources,

such as area or power and quality values specific to an application. For the area estimation,

we employ a simple divide-and-conquer approach. Initially, the area of each node in a typical

candidate DFG is estimated, and such values from all the nodes in a candidate DFG are summed

up for an overall area estimation. The power consumption of the candidate DFG is estimated

directly from this total area. For each annotated node, this information is taken from the resource

models corresponding to each approximate component. However, for quality estimation, a divide-

and-conquer approach is not feasible due to error propagation between the components, whereas

a global quality estimation is necessary. The quality models use behavioral models associated with

each component node which can simulate both approximate and reference versions of a specific

node. The characterization of different approximation techniques and modeling on component

and application levels are already published in [216] and not a contribution of this thesis. However,

the library of approximate components used in AxCGA is explained in the following section, and
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the core idea of application-level modeling is described in Section 3.5 to guide a reader through

the AxCGA methodology.

In addition to fast models, a clever search technique is also required for an efficient and ef-

fective DSE. In AxCGA, we employed a GA-based approach, which can find optimal parameter

configurations with a few fitness evaluations. We encode parameter configurations with real value

genes considering forward and backward parameter dependencies to avoid non-useful fitness

evaluations. Additionally, the inherent convergence and diversity mechanism in NSGA-II finds well-

distributed Pareto-optimal solutions after a few search iterations. To avoid application-specific GA

hyperparameter optimization, an adaptive approach is proposed that supplies the hyperparameter

values on the fly during the DSE. The different phases of GA-based DSE approach is explained

detailed in Section 3.6. Overall, the formation of candidate DFGs, fitness estimation, and DSE

search together forms an iterative cycle in AxCGA.

3.4 Approximate Component Library

We selected different state-of-the-art approximate computing techniques to form a library of

approximate components in AxCGA. Each component in the library contains three major elements:

a parametrizable hardware implementation, a behavioral model, and a resource model. A hardware

implementation of a specific component is provided as a VHDL entity that is parametrizable by

varying the I/O width and configuring the approximation via generics. Multiple approximation

variants of a specific operation often exist in the library for an intermediate node. For example,

an addition operation can be replaced with multiple types of approximate adders. In such cases,

a top-level entity of this node is a generic wrapper that instantiates the selected components in

VHDL. However, VHDL generics are used to control the width of the internal signals for methods

like precision scaling, which applies to a directed signal flow in a DFG.

Both the component and behavioral models are implemented as Python classes. A process()

method can access the behavioral model, which provides a bit-accurate simulation result, and

a report_area() can fetch the resource model, which supplies the consumed FPGA resources.

Such resource models can be formed either with a one-time effort using an analytical or machine-

learning approach or directly taken from published libraries like in [215]. Table 3.1 shows the

approximation methods selected and implemented in the AxCGA approximate component library.

These methods are altered for better parametrization, for example, configurable input bitwidths

for arithmetic components. The characterization and modeling approach of these methods are

detailed in [216]. A designer can easily append more approximation component classes to this

library with their models if desired.

3.5 Application Models

Each candidate DFG with a typical parameter configuration represents an application with a

certain degree of approximation. Such candidate DFGs are characterized by their fitness values

in terms of resource usage and application quality. The classical hardware description language

(HDL) flow requires time-consuming synthesis, fitting, and place & route operation to estimate
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Table 3.1: Overview of approximation methods available in the component library. Some of the
methods are modified from the original proposal for better parametrization.

Technique Methods Configurable Parameters

Circuit Level

Accurate Width

LSA [132] Width, Split, Input Select

Median Adder [140] Width, Split

LOA [141] Width, Split

Sloppy Adder [142] Width, Split

OLOCA [143] Width, Split

Adder

HOAANED [144] Width, Split

Accurate Width

BAM [141] Width, HBL, VBL

DRUM [169] Width, Core Size

RoBA [175] Width, Operation Mode

RBA [177] Width, Truncation Width

Multiplier

LM [179] Width, Truncation Width

Algorithm/Software level

Table Based Method Hierarchical segmentation [67] No. of Section and Sub-segments

Precision Scaling Adapting signal widths [14] Width

the resource usage of an FPGA design. Similarly, quality estimation using gate-level simulations of

such a design is also inefficient. Therefore, fast estimation of these fitness values is necessary to

perform an efficient DSE that involves an iterative search heuristic. The following sections explain

the resource and quality models used to estimate the fitness of candidate DFGs in AxCGA.

3.5.1 Resource Models

In our AxCGA, the resource consumption of a candidate DFG with different nodes is estimated

using a divide-and-conquer approach. Figure 3.3 shows an overview of a two-step application-level

resource modeling approach. The total area consumed by a specific design configuration is initially

estimated from resources corresponding to individual nodes in a candidate DFG. After that, the
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total power consumption is estimated from this area using an approach similar to HAPE [217]. The

following subsections explain each step in resource modeling in detail.

Figure 3.3: Two-step application-level resource modeling

3.5.1.1 Area Model

Contemporary FPGAs have different types of resources available, such as LUTs, registers, DSP units

and BRAMs to implement complex digital image or signal processing applications. Depending on

the characteristics of an application and type of available resources on a target FPGA, a specific

design uses one or many such resources to implement different operations. For example, arithmetic

operations such as multiply or multiply-accumulate can be directly implemented using DSPs.

However, due to the customizable logic of LUTs, these same functionalities can be implemented

using LUTs as well. Similarly, both the BRAMs and the registers can be used to store data on an FPGA.

However, BRAMs often stores large data, whereas resisters are often used to store intermediate

signals. Due to these architectural characteristics of FPGAs, the area of a design cannot be estimated

as a single chip area value. Therefore, the area model estimates a vector R, representing the total

number of each FPGA resources consumed by a design configuration.

R = [RDSP ; RBR AM ; RLU T ; RREG ], (3.3)

Since a typical node in a candidate DFG represents a component or operation, the resources

consumed by such nodes are estimated individually first using the resource models provided with

the approximate component in the library. The resource consumed by any non-approximated

nodes in an application DFG can be estimated from a one-time synthesis of the design and added

to corresponding resource of all candidate DFGs evaluated during the DSE. However, for any DSE

problem, the fidelity, which represents the degree to which the trend across a model estimation is

similar to traditional HDL resource estimation, is more important than the accuracy of models.

Therefore, constant resource numbers from non-approximated components can be safely ignored

in the resource estimation. For each component in the library, a resource model offers a function

to calculate the resource consumption rn based on possible approximation parameter pn .

rn = f (pn). (3.4)

where r represents each resource types on an FPGA.

r = [rDSP ; rBR AM ; rLU T ; rREG ]. (3.5)
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A function call to the report_area() of each component class provides these numbers corre-

sponding to individual resources. Finally, the overall system resources can be expressed as a sum

of resources from all individual component nodes n ∈ N .

R = ∑
n∈N

rn , (3.6)

Such a divide-and-conquer approach facilitates an instantaneous area estimation of candidate

DFGs during a DSE.

3.5.1.2 Power Model

A fast power estimation is necessary to perform an efficient DSE in complex applications with

multiple approximation parameters. Therefore, we adopted a power model similar to HAPE

proposed by Makni et al. [217] that uses analytical models for a high-level power estimation

without any RTL implementation.

Power consumption on any semiconductor devices, including FPGAs, consists of two main parts:

static and dynamic power. Therefore, the total power P is a sum of both the static and dynamic

power of all resources a design consume. The static power corresponds to the power dissipated

by underlying transistors when they are not switching, whereas the dynamic power depends on

the switching activity of transistors over time. The core idea of our power modeling approach is to

identify the per-unit power consumption for each FPGA resource type as the static and dynamic

power and then store these values in the model in advance. Thereafter, the total power is estimated

during the model evaluation as the sum of these two components from all the different resources

used in a design. For a specific candidate DFG, the static power Pst ati c of a typical resource type

t ∈ r is estimated as a product of the number of such resource type from the area model R and the

per-unit static power Qst ati c of the specific resource type.

Pst ati c,t = Rt ∗Qst ati c,t (3.7)

Due to the dependency on underlying transistor switching, dynamic power estimation considers

both toggle rate α and clock frequency fclk . The switching activity is estimated as a number of

signal transitions per seconds fcl k ∗α. Therefore, the dynamic power Pd ynami c of each resource

type t ∈ r is estimated as:

Pd ynami c,t = Rt ∗Qd ynami c,t ∗ fclk ∗α, (3.8)

where Qd ynami c is the per-unit dynamic power of the specific resource type t . The clock frequency

fclk depends on the design target and can be directly specified by a designer. However, the

toggle rate α estimation depends on different factors such as the target application, employed

approximation techniques, and the data it processes, and an accurate estimation of this value for

each possible parameter configuration is time-consuming. Therefore, we estimate the toggle rate
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as an average bit-level switching of all internal signals using behavioral simulation of the reference

DFG with an input dataset.

Finally, the total power P is estimated as a sum of static and dynamic power from all resource

units corresponding to each FPGA resource type.

P = ∑
t ∈r

(Pst ati c,t +Pd ynami c,t ). (3.9)

The per-unit power consumption Qst ati c and Qd ynami c can be obtained for different FPGA

resources t ∈ r either using a generic method or with an application-specific method. In the

generic method, we estimate these values from specific vendor tools such as Early Power Estimator

(EPE) [218] for Intel FPGAs or Xilinx Power Estimator (XPE) [219] for Xilinx FPGAs. These tools are

spreadsheet-based and allow for estimating the power consumption of an FPGA design based on

the number of instantiated resource units. We can directly set the parameters such as the name

of target FPGA and operating temperature based on the design target. However, for the unknown

routing factor, we used a standard value at this stage.

In the second application-specific method, we include the routing effect also to improve the

model accuracy further. Initially, a few random approximation parameter configurations and the

reference design are synthesized and performed place & route. Thereafter, the power reports are

generated using tools such as Power Analyzer from Intel [220]. By averaging the power consumption

per number of resource units consumed for each resource type across all the configurations, the

per-unit power consumption can be estimated in terms of both Qst ati c and Qd ynami c . Our test

and verification of both methods across the 100 random configurations show that the application-

specific method is more accurate than the generic model. However, the fidelity is comparable in

both methods, which is essential for a DSE.

The scope of this dissertation is limited to the approximation of pixel streaming applications. Due

to the simplicity of our power models, which estimate power from the consumed FPGA resources,

the current version of AxCGA supports only such streaming applications without any retrospective

communication between DFG nodes. However, with appropriate resource models, the AxCGA

methodology can be extended in future to various applications.

3.5.2 Quality Model

In approximate computing applications, appropriate quality metrics are important to provide

reliable quality-thresholds and make suitable design decisions. A quality model should be fast,

accurate, and interpretable for a designer. In many state-of-the-art approximate computing

research, quality is often measured using basic metrics such as mean squared error (MSE), absolute

error, or Hamming distance. However, the relevance of these metrics to real-world applications is

often limited in making valid design decisions.

In AxCGA, we provide different state-of-the-art reference metrics such as PSNR, CIELAB ∆E

[221], or SSIM [222], together with other basic metrics such MSE, mean and maximum absolute

error for the quality estimation. Similarly, other quality metrics can also be integrated easily into

the framework. The overall idea is that designer can choose a quality metric depending on the

individual needs of an application. For example, a color processing application whose quality is

54



3.6 Design Space Exploration

subjectively evaluated with human eyes requires metrics such as CIELAB ∆E , which measure color

difference in a perceptually uniform color space.

Figure 3.4: Overview of global quality modeling approach using reference metrics

Due to the error propagation through intermediate nodes of a design, quality metrics are globally

estimated from the output nodes of a DFG. Figure 3.4 shows an overview of the AxCGA quality

modeling approach. First, a suitable image dataset is processed with a reference system DFG

without any approximations, and the resulting golden output images are stored in the quality

model. Then, during the DSE, each candidate DFG is processed with the same image dataset

to estimate the quality of individual approximation configurations. The golden output and the

approximate output from a candidate DFG are used by the selected metric to estimate a quality

value. A process() function call on the application level can provide a bit-accurate software

simulation of a DFG, and thereby, the quality values of each candidate DFG can be estimated on

the fly during the DSE.

3.6 Design Space Exploration

An approximation technique in an application exposes different parameters to configure the

strength of approximations and introduce errors that often propagate over successive application

components. Due to this error propagation, each component cannot be optimized in isolation,

necessitating a global DSE approach on a joint parametrization of all the approximate components

in an application. However, combining multiple such parametrizable methods on different ab-

straction levels exponentially increases potential parameter configurations in the design space. For

example, a simple approximate 16-bit two-input adder with input bitwidth varying between 1−16

can have 162 = 256 different parameter combinations. Combining this with a subsequent precision

scaling, where the adder output bitwidth can vary between 1−16, ideally, exposes 256∗16 = 4096

different parameter configurations. A typical configuration has to be evaluated for fitness values

using the quality and resource models to estimate its approximation potential. Due to the extensive

time for fitness evaluation in a complex application with multiple such approximation methods, a

brute-force search is realistically impossible. This demands an intelligent DSE that searches highly

complex design spaces with fewer fitness evaluations to determine the quality-resource trade-offs.
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Even though with precision scaling, the bitwidth of the adder output can vary between 1−16, the

range of bitwidth, where precision scaling has an influence, depends on the actual output bitwidth

of the first adder. Due to this dependency, valid parameter configurations are only 2600 from these

two approximations. Therefore, the DSE has to consider potential interactions between different

approximation parameters to avoid irrelevant fitness evaluations.

Addressing these challenges, we use a global GA-based DSE in AxCGA to efficiently explore the

complex design spaces. We used this DSE methodology in our different publications from the

joint project [23, 24, 25, 27, 28, 29]. However, this thesis presents a refined version of the DSE with

updated genetic operations and an adaptive hyperparameter setting technique to avoid application-

specific hyperparameter tuning. The subsequent sections define approximate computing as a

MOO problem and explain how our GA-based DSE solves this MOO problem in detail.

3.6.1 Approximate Computing as Multi-Objective Optimization (MOO)

Approximate computing improves resource utilization in an application, often at the expense of

application quality. Therefore, the quality and resource objectives invariably conflict in the context

of approximate computing, which makes approximate computing a multi-objective optimization

problem by definition. Many state-of-the-art techniques listed in Table 2.1 address this problem

using single-objective optimization techniques by transforming the multiple objectives into an ag-

gregated single-cost function. In addition, specific weights for each objective are often used in this

transformation to incorporate a bias toward search directions in a design space. However, defining

these weights is a non-trivial problem and restricts the potential of a DSE in finding globally optimal

solutions. Nevertheless, a multi-objective optimization approach excludes the difficulty of defining

weights to form an aggregated objective value. Furthermore, a suitable multi-objective optimiza-

tion can efficiently and effectively determine the trade-off between conflicting design objectives.

An in-depth analysis of approximate computing as a multi-objective optimization is often missing

in state-of-the-art works. This thesis fills the gap between approximate computing techniques

and quality-resource trade-off analysis by proposing a suitable GA-based multi-objective DSE

to effectively explore the design space and determine this trade-off in approximate computing

applications.

An approximate computing problem can be defined as minimizing or maximizing specific objec-

tives and determining Pareto-optimal solutions that show the trade-off between these objectives.

In AxCGA, GA-based DSE is implemented with the support of the DEAP framework [223], and

AxCGA intrinsically treats all the applications as multi-objective minimization problems. The

hardware resources such as power or area must be minimized. In contrast, application quality

can either be estimated directly, for example as PSNR, where a maximization is necessary or be

evaluated as error values such as MSE or CIELAB ∆E where a minimization is essential. A designer

can configure various DSE options using GaOptions and GaSelection class in AxCGA. During the

instantiation of GaSelection, the designer can optionally specify weights for each objective irre-

spective of default weight -1 for minimization. Therefore, a weight of +1 treats the corresponding

target objective as maximization during the DSE in AxCGA.

56



3.6 Design Space Exploration

In general, approximate computing as an m objectives minimization problem is formulated as:

minimize: f (x) = ( f1(x), f2(x), . . . , fm(x))T , (3.10)

subject to x ∈ S,

where x = (x1, x2, ..., xn)T is a vector of optimization variables named decision vector, z = f (x) ⊂Rm

is an objective vector, and S ⊂ Rn is an n-dimensional design space. To identify a Pareto front

in such a MOO problem, Goldberg originally suggested the use of non-domination ranking and

selection in 1989 [224], and later in 2001, Deb et al. proposed the well-known NSGA-II selection

[225] which is the core of our GA-based DSE in AxCGA.

3.6.2 GA-based DSE Approach

GA is an evolutionary metaheuristic optimization approach inspired by Charles Darwin’s natu-

ral evolution [226]. Genetic operations such as mutation and crossover, together with suitable

selection methods, mimic the survival of the fittest in the evolution theory. Transferring this to

optimization problems, the GA can evolve optimal solutions by selecting the fittest decision vectors

over generations of an iterative heuristic. Therefore, defining appropriate genetic operations and a

selection method is essential for successful optimization. GA is distinguishable and beneficial from

other optimization approaches in complex optimization problems. GA with non-dominated selec-

tion methods consider multiple competing objectives simultaneously during the optimization to

form Pareto-optimal solutions. The non-dominated selection methods such as NSGA-II inherently

maintain convergence and diversity in selected solutions from a generation for a highly explorative

and exploitive search. In general, evolutionary algorithms can be used to optimize problems with

various Pareto shapes, such as convex, concave, continuous, or disconnected [227]. Therefore, GA

can handle optimization problems with complex Pareto front shapes. A typical decision vector

represented in GA is called an individual or a chromosome, and GA is a population-based approach

where many independent individuals are evaluated for their fitness at the same time. Therefore, a

high parallelization of computation-intensive fitness evaluations is feasible on multiple comput-

ing threads during the optimization, depending on the available computational resources. This

increases the optimization speed approximately by a factor of available computational cores for

fitness estimation. In contrast, a reasonable number of such fitness evaluations is a bottleneck

for optimization techniques commonly used in state-of-the-art approximate computing, such

as hill climbing, tabu search, or greedy search, which iteratively evaluate a single individual at a

time. Additionally, GA is a global optimization approach that aims to identify globally optimal solu-

tions in a complex optimization problem. Instead, local search methods ideally find the globally

optimal solution if there are no local optima existing. Therefore, a local search technique has a

higher chance to stuck on local optima in complex problems with multiple local optima. Other

well-known population-based optimization techniques, such as particle swarm optimization (PSO)

[228] or simulated annealing (SA) [229] can also be used for the MOO. However, these methods

need additional mechanisms for improved diversity in identified solutions. In general, GA with

NSGA-II algorithm is relatively simple and easy to implement, can handle many decision variables

and multiple conflicting objectives, and can explore Pareto-optimal solutions by maintaining both
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the convergence and diversity at the same time. In addition, elitism in NSGA-II helps to maintain

good solutions throughout the optimization generations. Even though other metaheuristics or

problem-specific optimizations might perform well in some problems, the above properties make

GA and NSGA-II popular in many real-world optimization problems.

3.6.3 AxCGA DSE Overview

An overview of GA-based DSE in AxCGA is shown in Figure 3.5. The design flow starts with AxCGA

initialization, where both application-specific and GA-specific initialization are performed. As

a result, an initial population, a set of individuals representing candidate DFGs with different

parameter configurations is formed. In the first DSE generation, the initial population undergoes

genetic operation such as crossover and mutation and produces new individuals, named offspring,

by inheriting the genetic properties of their parents. The individuals in the initial population serve

as the parents in the first generation. After that, the application models estimate the fitness values

of each offspring in terms of area, power, and quality. Since the fitness of the initial population is

unknown in the first generation, initial population is also evaluated for their fitness. Subsequently,

a non-dominated sorting selection is performed on a combined set of parents and offspring based

on their fitness values to determine the fittest individuals in the first generation. As a result, a subset

of individuals is selected, serving as parent population of the second DSE generation. A Pareto front

is created using the fitness values of this non-dominated subset, which will be iteratively updated

over the DSE generations. Thereafter, the DSE checks whether the desired stop condition is met,

which often depends on how good is the evolving Pareto front. Closing the cycle, the selected

parent population undergoes genetic operation if the stop condition does not meet. This will result

in a new set of offspring, and the DSE cycle repeats until the stop condition is satisfied. Finally, a set

of evolved Pareto-optimal configurations are returned, which trade-off the target design objectives.

We use well-known (µ+λ) evolution strategy [230], where µ number of offspring are evolved in a

generation from λ number of individuals selected from the previous generation. Each of these DSE

phases is explained in detail below.

3.6.3.1 AxCGA Initialization

A designer can define an application, selects appropriate approximation techniques from the

component library, and specify the DSE objectives in the initialization phase. In general, different

initializations in AxCGA can be broadly categorized into an application-specific and a GA specific

initialization.

Application-Specific Initialization

In the application-specific initialization, a designer has to create an application DFG first, as

explained in Section 3.2. The input and output bitwidth of the target application, relevant training

data for DSE, and intermediate node related inputs also have to be specified while creating the

DFG. Subsequently, annotated DFG is created to incorporate the relevant approximate computing

techniques. The specified bitwidth of both the input and output often defines the parameter

ranges of many of these approximate computing techniques. This initialization phase also includes
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Figure 3.5: GA-based DSE in AxCGA

specifying a desired reference metric in the quality model and a one-time estimation of the per-unit

power consumption of each resource in the case of an application-dependent power model and a

global toggle rate from the input training data.

GA-Specific Initialization

GA specific initialization primarily includes defining the DSE objective function, encoding the

annotated application DFG into genes or chromosomes, formation of the initial population, and

setting up the GA specific hyperparameters. Additionally, a Pareto front class is initialized, which

will be iteratively updated over the DSE generations. The following sections describe each GA-

specific initialization in detail.

Objective Function: The first step in the GA specific initialization is defining the objective func-

tion in a DSE. The output quality is one of the DSE objectives that must always be optimized due to

the nature of approximation computing applications. Multiple quality measures can be chosen

for a single application to ensure a valid design decision in an application. In an example pixel

processing application, reference metrics like CIELAB ∆E can be expressed as both the mean and

maximum values, where the mean value provides the quality estimate over an entire training image

dataset, whereas the maximum error gives the worst-case error from individual pixels. The re-

sources can be specified as either power or individual area resources. However, this thesis is limited

to pixel streaming applications where power can be directly derived from the area components.

Therefore, the case studies considered in this dissertation use power as the resource objective.
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GA Encoding: A candidate DFG corresponding to a typical parameter configuration needs to

be encoded into a chromosome or individual to perform genetic operations in GA. Some of the

intermediate nodes in an application DFG may be interdependent, and the genetic operations

need to consider these dependencies in addition to other application constraints. The classical

binary encoding of parameters into a gene is often not useful in real-world approximate computing

applications. Therefore, the parameters of an application DFG are encoded as a nested list of

real-value genes in AxCGA.

An application may contain different processing stages with specific functionalities, and each

stage is treated independently, considering its characteristics for the genetic operations. For

example, among the two case studies presented in this thesis, the first RGB to Y C bCr color space

conversion is a single-stage application, whereas the second case study display rendering pipeline

contains three different processing stages, including a color space conversion stage. Therefore,

with a nested list of real-value gene encoding, the first hierarchical level groups the parameters

from each application stage if more than one stage exists. Within each application stage, a group

of interdependent nodes or a specific intermediate node without any dependency represents a

module. Therefore, such modules within a stage are independent of each other and are grouped

in the second hierarchical level. In case of a module with a group of interdependent nodes, a

third-level sublist groups these dependent nodes in each module. Finally, a fourth-level sublist

clusters the parameters exposed by each node within a module that may influence the parameter

of another node in the same module.

A real-value encoding is illustrated with an example annotated DFG with three processing stages,

each containing three independent modules. Initially, these three application stages are grouped

to form the first-level list in an individual or chromosome.

Individual (I ) = [P Stage 1,P Stage 2,P Stage 3] (3.11)

Similarly, the second-level sub-list groups the modules from each stage, further represented as

P Stage = [P Module 1,P Module 2,P Module 3] (3.12)

Each module contains nodes A,B ,C , where the node parameters depend on each other and have

x, y , z number of independent instances within a module. Therefore, the third-level sub-list cluster

such nodes by maintaining the dependency.

P Module = [P A,P B,P C] (3.13)

Finally, the fourth-level list groups the parameters p exposed by independent instances of these

nodes within the same module.

P Module = [[pA
1 , .., pA

x ], [pB
1 , .., pB

y ], [pC
1 , .., pC

z ]] (3.14)

Each node parameter p defines either an approximation variant, for example, the type of ap-

proximate adders in case of an adder component, or the strength of a specific approximation, for

example, the bitwidth of a signal in precision scaling. While grouping the interdependent nodes
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within a module, the priority order in this dependency propagates over the DFG nodes needs to

be considered. An example module with two dependent nodes, such as an approximate adder

followed by a precision scaling, is shown in Figure 3.6, illustrating the direction in which the param-

eters propagate. The precision scaling node has a lower order Priority-1 among the two nodes since

its parameter ranges depend on the adder node with higher Priority-0, where Priority-0 > Priority-1.

Therefore, during the real-value encoding, parameters of the Priority-0 node encode first, and

thereafter, the node with lower Priority-1 encodes by constraining its parameters with the previous

higher order node.

Figure 3.6: An example DFG module with approximate adder followed by precision scaling

In general, for large DFG modules with multiple such dependent nodes, the parameters of a

lower-priority node are defined by the output of the nodes with one higher-level priority. Therefore,

the priority order of parameter propagation within the modules in Equation 3.13 is

Priority pA > Priority pB > Priority pC. (3.15)

A typical hierarchical level in this real-value encoding scheme vanishes if the level contains only

a single entry. Other examples of hierarchical sub-list-based real-value encoding can be seen in

Section 3.7.1.4 and Section 3.7.2.4 from the case studies considered in this thesis.

Initial Population: The initial population in AxCGA is formed by selecting random parameters p

for each node n in an annotated DFG. While choosing parameters p, the interdependence within

a module according to the priority order has to follow. Additionally, each parameter has to meet

its user-defined constraints and the constraints added from a higher-priority node. The initial

population act as the parent population in the first DSE iteration.

Designers usually have a certain quality-threshold in an application and analyze trade-offs within

a region defined between maximum quality and this quality-threshold for suitable design decisions.

The quality-threshold value varies with a specific target quality level in an application. However,

maximum quality can be obtained from a reference design by selecting the approximation param-

eters with zero approximation strength. In AxCGA, one individual within the initial population

can be optionally created with parameters corresponding to the reference design. If more than

one approximation variant exists for any node, a random type with zero approximation strength is

selected for the reference design. By seeding such a reference individual into the initial population,

the AxCGA biases the GA-based DSE to explore a region near to the maximum quality, which often

might be interesting to a designer.
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Hyperparameter Settings: In a classical GA approach, specific hyperparameters such as the

number of individuals in a parent population µ, the number of offspring generated from the parent

population λ, probabilities of genetic operation such as crossover probabilities Pc and mutation

probabilities Pm are supplied by the designer. However, finding optimal hyperparameters would

be time-consuming and need to repeat DSE multiple times for every target application. To avoid

this hyperparameter optimization and make AxCGA generic to different applications, we used

commonly used hyperparameter values in our previously published works [23, 24, 25, 27, 28,

29]. These parameters are provided during the instantiation of GaOptions class in AxCGA. To

further improve the performance and generality of AxCGA in distinct approximate computing

applications, the current version of AxCGA uses a reinforcement-based self-adaptive approach that

provides hyperparameters dynamically during the DSE (cp. Section 3.6.4). A designer can set a flag

adaptive = true for using the adaptive version in AxCGA. Finally, the parameters determining

the stop condition of the DSE are also specified during the GA initialization.

3.6.3.2 Fitness Estimation

The fitness estimation phase in AxCGA design flow estimates the fitness values in terms of initialized

DSE objectives using application models explained in Section 3.5. In the first DSE generation, the

fitness values are estimated for individuals in both the initial and offspring populations. From the

second generation onwards, the parent population is a subset selected from already evaluated

individuals in a previous generation. Therefore, fitness estimation is only required for individuals

in newly generated offspring. However, both the parent and offspring population are passed to the

subsequent selection processes to maintain the elitism in GA.

3.6.3.3 NSGA-II Selection

The core of the DSE approach in AxCGA lies in the selection process, which guides the AxCGA

to identify better Pareto solutions in a design space. During an iterative DSE cycle, λ number of

offspring are generated from µ number of parents in each generation. The selection process selects

µ best Pareto points as new parents based on the fitness values of both the previous parents and

the evolved offspring from these parents. As a result, elitism in evolution is preserved as the best-fit

individuals are selected repeatedly over the DSE generations. In AxCGA, we use a fast and elitist

NSGA-II, proposed by Deb et al., that selects non-dominated points in each generation and forms

well-distributed Pareto-optimal solutions at the end of the DSE [225].

During each generation of the evolution, the NSGA-II performs a Pareto dominance sorting on

the points based on their fitness values. The dominance relation is defined for decision vectors

x and x ′, for which x is said to dominate x ′ if and only if:

zi (x ′) ≤ zi (x) ∀i ∈ {1, ...,m} and (3.16)

z j (x ′) < z j (x) ∃ j ∈ {1, ...,m}. (3.17)
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The decision vectors which are not dominated by any other vectors in the design space S are called

non-dominated vectors, and with the fitness values of all the non-dominated decision vectors, a

Pareto front is formed.

Figure 3.7: Overview of the two-phase selection process in classical NSGA-II with an example
(inspired from [231])

The NSGA-II selection involves mainly two phases. Initially, all the (µ+λ) individuals in a

combined parent and offspring population are sorted based on their dominance in fitness values.

As a result, different Pareto ranks or non-domination levels from R1 to RN are formed where the

Pareto ranks R1 > RN , and each non-domination level contains different number of individuals.

During the selection process, µ number of individuals are selected for the subsequent genetic

operations to form the next generation offspring, starting from the first non-dominated level R1.

However, to select precisely µ individuals from (µ+λ) individuals, a subset of individuals often

has to be selected from an intermediate Pareto rank. We will further denote this front as final

relevant non-domination level. Given a design space in the figure, with µ= 7 and λ= 14, the first

non-domination level R1 has one point, and the second level R2 has two points. These points from

the first two levels are selected directly in Phase 1. However, to select further four points, the R3
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contains more individuals than the selection requires. Therefore, individuals from this final relevant

non-domination level are passed to Phase 2 to select the required number of individuals based on

crowding distance computation. All individuals in the high-ranked non-domination levels than

the final relevant non-domination level are unambiguously selected for genetic operations, and all

the low-ranked non-domination levels are directly rejected in Phase 1.

In Phase 2, the crowding distance is calculated for all individuals in the final relevant non-

domination level to select points with maximum diversity. Figure 3.8 shows an exemplary Pareto

front or non-domination level P , and the crowding distance of the i -th individual in P is estimated

as

∆i =
m∑

j=1

d i
j

∆ f j
, (3.18)

where

∆ f j = | f max
j − f mi n

j |, j ∈ [1,m], (3.19)

d i
j = | f i+1

j − f i−1
j |,∀i ∈ P . (3.20)

The [ f max
j , f mi n

j ] are the maximum and minimum fitness values evaluated for the j -th objective,

and [ f i+1
j , f i−1

j ] are the values of i +1 and i −1 points in the same objective. Since the extreme

points have only one neighbor, the crowding distance of these points is assigned as ∞. During the

crowding distance based selection in Phase 2, the points are selected in the order of the higher

crowding distance. Therefore, the extreme points are selected first, followed by intermediate points

with a higher crowding distance until the µ number of individuals are selected from both phases.

Figure 3.8: Example Pareto front for crowding distance calculation
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3.6.3.4 Stop Condition

The stop condition often depends on the performance of a DSE, which can be measured from

evolved Pareto-optimal configurations. The quality of a Pareto front can be accounted using a

well-known metric called hypervolume indicator [230]. Hypervolume represents both convergence

and diversity of Pareto solutions as a single value. During the DSE, AxCGA computes hypervol-

ume over each generation, and often hypervolume saturates the improvements after a number

of generations. Therefore, the DSE can be stopped after a number of generations without any

considerable improvement in the hypervolume value. However, in each case study considered in

this dissertation, we used a fixed number of generations Ng en as the stop condition to demonstrate

the consistency of the results obtained with AxCGA. A designer can invoke a performance-based

stop condition in an actual application by selecting the number of generations as None.

3.6.3.5 Genetic Operations

Genetic operations are performed on selected parents to produce offspring in the next generation.

In AxCGA, we use genetic operations such as reproduction, mutation, and crossover. The repro-

duction operation randomly picks one individual from the parent population as a next-generation

offspring. Mutation operation corresponds to random changes in a chromosome and results in a

single offspring. In crossover operation, two random parent chromosomes mate and form two new

offspring with combined genetic characteristics.

For the evolution of λ offspring from µ parents, we adopted varOr() methodology from the

DEAP library. To perform the genetic operation, a loop iterates λ times, where each time it chooses

individuals randomly from the parent populationµ, and one of the genetic operations is performed.

Initially, each iteration chooses a random probability value between 1 and 0. If this random

probability value is less than the crossover probability pc , a crossover operation is performed with

two randomly selected individuals and keeps one of the two new individuals as a next-generation

offspring. Similarly, a mutation operation is performed on a randomly selected parent individual if

the random probability value is between pc and pc +pm , where pm is the mutation probability.

In varOr(), pc +pm is always defined to be less than 1. Therefore, a reproduction is performed

when the random probability value is greater than pc +pm , where the reproduction probability

pr = 1− (pc + pm). Finally, each iteration results in one offspring, and λ number of offspring

together forms an offspring population.

Among different genetic operations, the reproduction is a straightforward operation, whereas

both the mutation and crossover operations need to consider the encoding style. Therefore, the

mutation and crossover operations used in AxCGA are explained in detail below.

Mutation: Mutation operation in AxCGA is introduced as a generic operation in a way that it

handles the parameter dependencies. Initially, with a sublist-based real-value encoding, the sublist

of one of the independent pipeline stages is randomly chosen. Subsequently, one of the modules

within this stage is selected if multiple modules exist. Finally, a randomly selected parameter within

this module or stage is replaced with a random parameter choice by keeping the constraints of

the chosen parameter. Due to the dependency propagation within a module, all the subsequent

parameters affected by the mutated parameter are adjusted accordingly. As an example, a random
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stage 2 is selected from the equation 3.11. Among three different modules within stage 2, a random

module B is selected. Finally, i th parameter pB
i is randomly chosen from the module B , where

i ∈ (1, ..y). Afterward, replace the pB
i with one of the random feasible values, and thereafter, all the

parameters from i to y are checked for dependency and adjusted accordingly.

Crossover Crossover operation is performed modularly on each application pipeline stage. Since

the modules within a pipeline stage are independent, a split point can be chosen within each stage

based on the number of modules, and classical crossover operations such as one-point, n-point,

or uniform crossover operations can be performed. However, a designer can provide custom

operations for the crossover operation considering the characteristics of a specific application

stage. In addition, similar independent modules often exist on each channel in image processing

applications that process multiple image channels simultaneously. In such cases, a channel-based

crossover can be employed in which modules representing a channel in a parent are combined

with modules corresponding to a different channel in the second parent and vice versa to form two

new offspring. Relevant examples of such application-aware custom crossover can be seen in our

case studies (cp. Section 3.7.1.5).

3.6.4 Adaptive GA Hyperparameters

The optimal GA hyperparameters that result in the best DSE performance are often bounded

to a specific application. In AxCGA, the hyperparameter set includes both parent and offspring

population size µ and λ as well as crossover and mutation probabilities pc and pm , and a designer

can optionally specify these GA parameters. Finding the best combination of these parameters in

a specific DSE problem is challenging, as the interaction between these parameters is complex.

In simple applications, a hyperparameter tuning is performed to compare the effect of these

parameters on the DSE and identify a promising combination. This is often achieved by performing

the DSE iteratively on a set of possible parameter combinations and selecting the hyperparameter

set that maximizes the DSE performance in a specific application. However, such an iterative

hyperparameter tuning is not realistically feasible in complex DSE problems with large design

spaces. To address this issue, many approaches use common hyperparameter values from the

literature with high crossover and low mutation probabilities for better exploration and exploitation

of a design space [232]. However, using such parameter values does not always give a consistent

DSE performance across multiple DSE problems.

To avoid extensive hyperparameter tuning in complex DSE problems, AxCGA uses an approach

that adaptively supplies the hyperparameter values during the DSE. We jointly developed this

adaptive hyperparameter approach for GA, further denoted as adaptive GA, as part of a master

thesis by Jakub Jaskólski [233]. This adaptive approach is inherited from effective mutation rate

adaptation through group elite selection proposed by Kumar et al. for single-objective problems,

which adapts the mutation rate based on the fitness improvement of offspring over the parents

in each GA generation [234]. We modified the original approach to adapt multiple parameters

with an updated feedback mechanism that handles multi-objective optimization problems. The

overall idea of our adaptive GA is that hyperparameters such as crossover probability pc and
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mutation probability pm are adaptively supplied by keeping parent population size µ and offspring

population size λ as constant in DSE problems.

In a typical generation, adaptive GA uses a set of different pc and pm and generates different

number of individuals k with each parameter set. A specific pci and pmi together with a number

of required offspring ki that have to be generated using these specific probabilities are named

as metaparameters. During a DSE, together with the evolution a new offspring population, a

group of metaparameters are also evolved. The metaparameters corresponds to the group which

produces offspring with a best feedback score are preserved for elitism in each generation, whereas

metaparameters of other groups are evolving. Combining all the individuals created from each

metaparameter group together forms λ offspring in a generation.

The algorithmic flow of our adaptive GA approach is described in Algorithm 1. The adaptive

initialization starts with the GA-specific initialization in AxCGA. We used commonly employed µ=
50 and λ= 100 as constant parameters [232] and adapted other parameters pc and pm adaptively

in our approach. The only input parameter required for our adaptive approach is a group size

parameter σ, which determines the number of independent metaparameter groups K involved in

DSE. However, this value can be specified based on µ, and does not need additional parameter

tuning [234]. During the initialization, pm is chosen as a random number linearly distributed

between 0 and 1, and pc is estimated as 1− pm for each independent group in K . As a result,

the reproduction operation in varOr() will never occur in adaptive GA, and only mutation and

crossover operations can be performed. However, due to elitist selection in NSGA-II, all individuals

in the parent population are also considered for the selection process together with the generated

offspring. Therefore, redundant individuals in the selection process due to the reproduction

operation can be avoided in adaptive GA. Afterward, λ/K number of offspring required to be

generated from each group, where the first group might contain (λ mod K ) more individuals than

other groups to precisely produce a total of λ individuals from all the groups. Subsequently, an

initial population is also formed, and fitness is evaluated with respect to the initialized objectives.

An iterative DSE cycle starts with producing offspring O from the initial population using varOr()

function and initialized metaparameters. The evaluated fitness values of each newly generated

offspring define its offspring score SO , and the fitness values of the parents used to produce the

offspring define the parent score SP . Since two parents are involved in the crossover operation, SP

can be estimated from one of the parents involved. Upon the generation of λ offspring, the spread

of the scores are computed based on the maximum and minimum scores from a combined list

of parent and offspring populations. In the subsequent step, the scores are normalized using this

spread, and a feedback score SF is computed as the difference between the parent and offspring

scores after the normalization. Additionally, to calculate a single feedback score from multiple

objectives, the fitness values from individual objectives are multiplied before computing the

difference between the scores. A group score SG for each specific metaparameter group is then

determined as the maximum SF among all members belonging to this group. After that, the

metaparameter groups are sorted based on this group scores, and the pc and pm of the best group

are preserved for elitism in the next generation. The probabilities pm of remaining K −1 groups

for the next iteration are replaced with a randomly selected value from a triangular distribution of

[0, pm ,1], and the new pc is estimated from the new pm similarly as before. Finally, the number of
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Algorithm 1: Adaptive group elite crossover and mutation rate control mechanism

Input :parent population P , µ, λ , group size parameter σ
Output :Pareto front F

1 initializations
2 µ= 50,λ= 100, number of metaparameter groups K =µσ ;
3 pm =linear distribution [0,1] , pc = 1−pm ;
4 metaparameters Mi∈K = [pci , pmi ] ;
5 number of required offspring ki=1 = (λ/N )+ (λ mod K ) ;
6 ki∈[2,..K ] = λ/K ;
7 P = i ni t i al Popul ati on();
8 fitnessEvaluation(P);

/* main loop representing AxCGA DSE cycles */

9 do
/* offspring generation based on metaparameters */

10 for i ← 1 to K do
11 for j ← 1 to ki do
12 offspring Oi , j = var Or () genetic operations with Mi ;
13 offspring score SOi , j = f i tnessEvaluati on(Oi , j );

14 parent score SPi , j = g etF i tness(individual in P used for var Or () evolution);

15 end
16 end

/* group score estimation based on the parent and offspring scores */

17 spr ead = maxi mum([SP +SO])−mi ni mum([SP +SO]);
18 for i ← 1 to K do
19 for j ← 1 to ki do
20 SPi , j = (SPi , j −mi ni mum([SP +SO]))/spr ead ;

21 SOi , j = (SPi , j −mi ni mum([SP +SO]))/spr ead ;

22 feedback score SFi , j = pr oduct (SPi , j )−pr oduct (SOi , j ) ;

23 end
24 group score SGi = maxi mum(SFi );

25 end
/* generation of new metaparameter set for non-elitist groups */

26 sor tGr oups(SG );
27 total score T = sum(SG );
28 for i ← 2 to K do
29 pmi = triangular distribution ([0, pmi ,1]) ;
30 pci = 1−pmi ;
31 Mi = [pci , pci ] ;
32 percentage contribution Xi = (SGi −mi n(SG ))/T ;
33 ki = Xi ∗λ
34 end
35 ki=1 =λ− sum(ni∈[2,..N ]) ;
36 P = sel ect i on(P +O) ;
37 Pareto front F = par etoUpd ate(P ) ;

38 while (stop condition does not meet);
39 return Pareto front F
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offspring that have to be produced from each group in the next generation is estimated based on

the percentage contribution of group scores. The number of additional offspring to produce exact

λ offspring in a generation is added to the elite group. These new metaparameters are used for

the evolution of offspring in the next cycle. The GA search continues with the selection and Pareto

update operations until the stop condition is met and final configurations are evolved.

3.6.5 AxCGA Runtime Complexity

The DSE runtime often varies depending on the target applications. The overall DSE time in AxCGA

can be estimated as the sum of time required for all the fitness evaluations and time to perform the

algorithmic execution. Therefore, with a sequential evaluation of fitness, the time needed for the

DSE tAxCG A can be approximately estimated as

tAxCG A ≈ time for fitness evaluations+ time for algorithmic execution (3.21)

≈ [(µ+λ×Ng en)× t f ]+ [Ng en × ta], (3.22)

where µ, λ and Ng en are initial population size, offspring population size, and the total number of

DSE generations, and t f and ta are the average time required for a single fitness evaluation and

average algorithmic time needs to run a single DSE generation. However, due to the independent

fitness evaluation of individuals in a generation, these evaluations can be parallelized based on

the number threads or cores available on a computing system. Ideally, the fitness evaluations can

be parallelized by a factor of mi n(Ncor es ,λ), where Ncor es is the number of available system cores.

Therefore, the tAxCG A can be redefined as

tAxCG A ≈ [(µ+λ×Ng en)× t f ]

mi n(Ncor es ,λ)
+ [Ng en × ta]. (3.23)

The algorithmic time ta mainly includes the time required for the genetic operations, NSGA-II

selection, and adaptive GA. Even though the fitness models used in our approach are fast enough

compared to the state-of-the-art techniques, most of the time in the DSE is spent on fitness

evaluations, especially for the quality evaluation using a training image set in approximate image

processing applications. Therefore, ta is the multiple orders of magnitude less than t f , which

makes [Ng en × ta] negligible in real-world applications such as the case studies considered in this

work. Accordingly, the tAxCG A can be approximately computed as

tAxCG A ≈ (µ+λ×Ng en)× t f

mi n(Ncor es ,λ)
. (3.24)

3.7 Case Studies

To demonstrate our proposed AxCGA methodology, this section presents two image processing

case studies that stream pixels over different processing components. These case studies are

already introduced in our previous publications [23, 24, 25, 26, 27, 28, 29]. The first case study

is a color space conversion, converting pixel values from one representation to another. The

second case study is a display rendering application that transforms images to adopt specific
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characteristics of digital displays and involves a sequence of processing stages, including a color

space conversion stage. These case studies demonstrate how to reuse a specific processing stage of

an application in a more complex application. In digital image processing, a pipeline bitwidth often

ranges from 8-bit in typical applications to 16-bit in high-end applications like motion picture

cameras. Therefore, our case studies use a bitwidth b = 12 bits per color channel. The experiments

in the following sections target implementations of these case studies on a 10AS066N3F40E2SG

FPGA from the Intel Arria 10 device family [235], with an operating frequency of 266.66 MHz and

temperature of 50°C .

In the following subsections, each case study and how AxCGA is applied to these case studies

are briefly explained. In addition, we describe DFG representation of applications, employed

approximations and their parameter ranges, and respective design space complexities of each case

study. We further explain genetic encoding and operations used to guide the AxCGA search. Finally,

Pareto-optimal solutions obtained from multiple experiments are depicted, and the performance

of AxCGA is evaluated and compared in different scenarios based on these results.

3.7.1 Case Study 1: RGB to YCbCr Color Space Conversion

An image color space defines and quantifies visual stimulation and is often represented with

3-different coordinates. Depending on the nature of an application, various color spaces such as

RGB , LUV , Y C bCr , HSV , and so on can be employed to represent the visual stimulation. The

color spaces such as Y C bCr approximate visual perception uniformly where Y coordinates store

luminous information independently of chromaticity information C b and Cr , whereas RGB is

more appropriate for digital devices where each channel R, G , and B represent luminance and

chromaticity together. Therefore, applications sometimes require converting the colors from one

representation to another. We consider such an RGB to Y C bCr color space conversion as the first

case study to demonstrate our AxCGA approach.

An overview of RGB to Y C bCr color space conversion is shown in Figure 3.9. The RGB triplets in

an input image are multiplied with 3-by-3 color space constants to form an output Y C bCr image,

and Equation 3.25 formulate this conversion as matrix multiplication. Each output coordinate

is independently obtained by summing up the product of RGB triplets with three different color

space constants. Therefore, this application includes only arithmetic operations such as multipliers

and adders.

Figure 3.9: Overview of the RGB to Y C bCr color space conversion

70



3.7 Case Studies


.R.

G

B

x


0.299 0.587 0.114

−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813


︸ ︷︷ ︸

color space constants

=


Y

C b

Cr

 (3.25)

3.7.1.1 DFG Representation

Each independent output in Y C bCr color space is obtained after three multiplication and two

addition operations, further denoted as a channel mixer. On a hardware platform, these three

multiplications can be implemented simultaneously, whereas the additions are performed in

two levels in each channel mixer. The RGB to Y C bCr conversion mentioned in Equation 3.25

comprises three independent channel mixers, and hardware implementation resulted in total 9

different multiplications and 6 addition operations. During AxCGA initialization phase, we create

DFG for a single channel mixer which can be further replicated for other channels since mixer

components are independent of input values. The resulting application DFG is shown in Figure

3.10, and it contains scalable arithmetic operations implemented in fixed-point arithmetic.

Figure 3.10: Application DFG and annotated DFG of the RGB to Y C bCr color space conversion
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3.7.1.2 Approximation Techniques and Parameters

To create RGB to Y C bCr conversion designs with reduced power consumption, we apply suitable

approximation methods for each intermediate node n ∈ N of the application DFG. Approximation

choices are incorporated during annotation of the application DFG, and the annotated DFG

with specific approximation nodes is also shown in Figure 3.10. The nodes corresponding to

arithmetic operations, such as adders and multipliers, are replaced with their approximate variants.

Additionally, precision of intermediate signals resulting from each multiplication and the fractional

part of each matrix coefficient are scaled to approximate the design further.

Multiple variants of approximate arithmetic components are selected from the approximate

component library described in Section 3.4. An overview of different approximate computing

techniques that are employed to RGB to Y C bCr color space conversion is listed in Table 3.2.

These methods expose different parameters that have to be optimized in conjunction to determine

the quality-power trade-off effectively. The following sections briefly describe each approximate

computing technique employed in this case study and their possible approximation parameters.

Table 3.2: List of approximation parameters of RGB to Y C bCr color space conversion

Parameters Symbols and Ranges

Instances

Modular Level (i )

Node Level ( j )

Fractional bits of

matrix coefficients
Fco(i , j ) ∈ [0,Fco,ref], where Fco,ref = 13

i = {1,2,3}

j = {1,2,3}

multiplier types Mt(i , j ) ∈ {Acc, BAM}
i = {1,2,3}

j = {1,2,3}

BAM HBL Mh(i , j ) ∈
{[

0, maxHBL(i , j )
2

]
, if Mt(i , j ) = BAM

{ignored}, otherwise

i = {1,2,3}

j = {1,2,3}

BAM VBL Mv(i , j ) ∈
{[

0, maxVBL(i , j )
2

]
, if Mt(i , j ) = BAM

{ignored}, otherwise

i = {1,2,3}

j = {1,2,3}

Fractional bits of

intermediate results
Fin(i , j ) ∈ [0,max(Fco(i , [1,3]))]

i = {1,2,3}

j = {1}

adder types At(i , j ) ∈ {Acc, LSA, MA}
i = {1,2,3}

j = {1,2}

adder split points Ap(i , j ) ∈
{

[0, (b +Fin(i ))], if Ap(i , j ) ∈ {MA, LSA}

{ignored}, otherwise

i = {1,2,3}

j = {1,2}

LSA input select As(i , j ) ∈
{

[0,1], if At(i , j ) = LSA

{ignored}, otherwise

i = {1,2,3}

j = {1,2}
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Precision Scaling

Precision scaling is a simple approximation technique in which the precision of data or signal varies

by changing its bitwidth, as explained in Section 2.1.3.1. The matrix coefficients have fractional

parts in the RGB to Y C bCr conversion case study, and multiplying such a fractional number with

an integer pixel value is also resulted in fractional parts. Therefore, we vary the fractional bitwidth

of each matrix coefficient Fco independently between 0 and reference precision Fco,r e f . Similarly,

we vary the fractional bitwidth of intermediate signals from the multiplication operation between

0 and the maximum precision Fco within each channel mixer. The reduction in precision leads to a

smaller number of bits used for the signals, which reduces the number of registers in FPGA designs

and often decreases the size of subsequent arithmetic operations.

Approximate Multipliers

To perform AxCGA experiments, we consider both an approximate multiplier component and

an accurate multiplier Acc . The accurate multiplier can be either implemented using DSPs or with

LUT logic, depending on the lower power consumption for the incoming input bitwidths and target

frequency. Based on the characterization and comparison of different approximate multipliers,

the BAM outperformed all other alternatives in the approximate component library. Therefore, we

consider only BAM as an approximate multiplier in this case study.

Figure 3.11: Overview of BAM multiplier

BAM is an approximate PP accumulation technique used to approximate a multiplier as de-

scribed in Section 2.1.3.3. In BAM, the PP arrays as a result of a binary level multiplication, are

truncated both horizontally and vertically using HBL and VBL. Therefore, the approximation pa-

rameters are HBL and VBL, where the HBL configures the approximation in coarse grain, and VBL

is used for finer approximations. The dot diagrams in Figure 3.11 illustrate the concept of BAM

multiplier on the binary level. The input sizes of the multiplier determine the ranges of approxima-

tion parameters. The range of HBL depends on the number of PP arrays, which is determined by

the bitwidth of the smaller input. Similarly, the VBL range depends on the size of the product array,
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which is determined by the sum of input bitwidths. As an additional constraint, the VBL should be

greater than or equal to HBL to exclude irrelevant configurations. In our case study, we restrict the

ranges of HBL and VBL to half of the maximum possible value to avoid high errors and thereby

restrict the size of the design space meaningfully.

Approximate Adders

We use two approximate adders such as MA and LSA together with an accurate adder as multiple

adder choices in our case study. These approximate adders are multiple-bit approximate adder

type, where the approximation techniques consider a number of bits or a segment of adders

together (cp. Section 2.1.3.2). These are selected based on the characterization and comparison of

various approximate adders presented in [216]. Such a multiple-bit approximate adder exposes a

parameter Ap to split an addition into an approximate and an accurate part, as shown in Figure

3.12. In an MA, the output from the approximate part is replaced with a median value if the input

data distribution is known. Otherwise, all the output sum bits are directly set to binary 1. In

addition, the carry bit from the approximate part is set as zero. In an LSA adder, an additional LSB

input select parameter As directly assigns one of the inputs as the sum of the approximate part.

The MSB of the non-selected approximate part is picked as the carry-bit from the approximate

to the accurate part. The ranges of split points are determined by the pipeline bitwidth b and

intermediate fractional bitwidth Fi nt .

(a) Median adder (MA) (b) LSA adder

Figure 3.12: Approximate adders used in the RGB to Y C bCr color space conversion case study

3.7.1.3 Design Space complexity

Design space complexity λ of an approximate computing application can be defined as the total

number of feasible approximation parameter combinations in an application. Therefore, this

defines the possible number of candidate DFGs an annotated DFG produces. Considering the

approximation parameters and their ranges in Table 3.2, the design space complexity of a 12-bit

channel mixer is

λChannel Mixer ≈ (4.225×1012) or (4.808×1012). (3.26)
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These numbers vary slightly due to the difference in the signedness of matrix coefficients in

each mixer. Therefore, the overall design space complexity of a three-channel RGB to Y C bCr

conversion is

λRGB to Y C bCr ≈ 9.766×1037. (3.27)

3.7.1.4 Genetic Encoding

RGB to Y C bCr conversion is a single-stage application with three independent channel mixer

modules, as shown in Figure 3.10. Therefore, the genetic encoding initially groups these three

module instances at the stage level with real-value genetic encoding, i.e., the parameters from the

three channel mixers.

Individual I(RGB to YCbCr) = [P (RGB to YCbCr)] (3.28)

= [P 1
mi xer ,P 2

mi xer ,P 3
mi xer ] (3.29)

The second-level sub-list groups all the interdependent node types within each channel mixer

module by considering the priority order of parameter propagation. After that, a third-level

list combines the independent instance of similar nodes with a single module. Considering

approximation techniques specified in Table 3.2, the overall parameters of a channel mixer module

can be encoded as

Pmi xer = [[F 1
co,F 2

co,F 3
co], [M 1, M 2, M 3],Fin, [A1, A2]]. (3.30)

where an approximate multiplier M and approximate adder A exposes additional parameters and

can be encoded as

M = [Mt , [Mh , Mv ]], (3.31)

A = [At , [Ap , As]]. (3.32)

For an easier representation of these parameters in our AxCGA implementation, we encode

approximate multipliers Mt (i , j ) as Acc = 0 and BAM = 2. Similarly, we encode approximate adder

type At (i , j ) as Acc = 0, LSA = 2, and MA = 4. The remaining numbers from 0 to 6 are used to encode

other available multipliers and adders in the library, which are not used in this case study.

An example real-value encoded individual based on the approximation parameters and their

ranges listed in Table 3.2 can be represented as

I(RGB to YCbCr) = [[[5, 6, 5], [[2, 2, 7], [0], [2, 0, 5]], 5, [[0], [2, 16, 0]]], → P 1
mi xer

[[8, 6, 2], [[0], [0], [2, 2, 8]], 0, [[4, 6], [2, 9, 0]]], → P 2
mi xer

[[9, 2, 5], [[2, 1, 11], [2, 1, 8], [0]], 0, [[2, 11, 1], [4, 8]]]] → P 3
mi xer

3.7.1.5 Genetic Operations

Genetic operations such as mutation and crossover are performed on randomly selected individuals

to create offspring based on specific mutation probability pm and crossover probability pc .
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A mutation operation selects a random node from all the existing nodes in three mixer modules.

Then, the parameters of this node are replaced with different parameters randomly chosen from

their possible ranges. Finally, subsequent dependent nodes or parameters are also adjusted

accordingly. For example, if M 1
t is chosen for mutation operation, it is replaced by either Acc or a

B AM multiplier with new M 1
h , and M 1

v . Due to the priority order of parameter dependencies,

Priority F 1
co > Priority M 1 > Priority F 1

i n > Priority A1, (3.33)

the new M 1
h , and M 1

v are chosen depending on the F 1
co , and the following parameters F 1

i n and A1

within the first channel mixer are also adjusted accordingly.

A crossover operation combine two parent individuals, and we used a single-point crossover

operation to generate offspring. Since RGB to Y C bCr conversion is a single stage 3 channel image

processing application, it contains three similar modules corresponding to each channel mixer.

Therefore, we use a channel-based crossover operation, which applies a single-point crossover on

a modular basis that splits channels from parents and recombines different channels to generate

offspring.

For two individuals I1 and I2 with three channel mixers in Figure 3.13, an example channel-based

crossover produces two offspring O1 and O2, as shown in the figure.

Figure 3.13: Channel-based single-point crossover

3.7.1.6 DSE Objectives

The DSE on this case study aims to trade off the application quality for better system power

consumption. As described in Section 3.5.1.2, the total power consumption of an individual

corresponding to a typical parameter configuration is estimated from the total number of FPGA

resource units. Since the power consumption in this application indirectly reflects the area of the

design, we use power as an objective among these two values in optimization. However, AxCGA

keeps track of the area consumption from the models to ensure that the estimated area is always

within the available FPGA resources on a targeted device.

Y C bCr is a standard color space for digital videos and often used for MPEG compression in

DVDs, digital TVs, and Video CDs. With approximate computing, the quality degradation in Y C bCr

can be estimated based on the loss of information between images obtained with a reference and

approximate implementation. Therefore, we consider widely used PSNR, estimated based on the

ratio between reference and approximate images, for the quality estimation.

The DSE objectives in approximate computing are always maximizing the application quality

while minimizing the power consumption. Therefore, the objective function is defined as

fob j = minimize
(
power

) ∧ maximize (PSNR). (3.34)
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3.7.1.7 AxCGA Initialization and Setup

A DSE experiment starts with both the application-specific and GA-specific initialization in AxCGA.

In the application-specific initialization phase, we created an application DFG of RGB to Y C bCr

conversion and annotated it with the approximation techniques mentioned in the previous sec-

tion. We used a reference implementation of the system without any approximations to supply

parameters such as toggle rate and per-unit power consumption for the power model. Simulation

of the reference implementation using different images in the ARRI image set resulted in a toggle

rate ranging from 0.25 to 0.33. Therefore, we selected 0.3 as an average toggle rate for the power

model. In addition, we used average synthesis results from four random approximate system

configurations and the reference system for the per-unit power estimation. The quality metric

PSNR and relevant training dataset are initialized to estimate quality degradation during the DSE.

The selection of training data depends on the design objectives and characteristics of a specific

application. For a DSE performed for an average quality value from all the processed pixels, the

input training set should cover the images with specific pixel and noise distribution similar to

real-world images. This could embed the influence of these distributions into the decision-making

from the DSE results. In contrast, if the DSE is performed for the worst-case quality from a single

pixel, consideration of such distributions in the training data is not necessary, whereas the training

data should possibly cover the entire input space. Since the RGB to Y C bCr conversion uses PSNR,

which relates to an average quality from different pixels, we used real-world images for the quality

estimation during the DSE.

This dissertation uses the ARRI image set captured with an ARRI ALEXA camera, which includes

12 different high-quality real-world color image sequences [238]. For the quality estimation during

the DSE, we used Color Wheel image from the ARRI image set shown in Figure 3.14. Since these

images are available in a high resolution of 2880×1620, using such a high-resolution image for

multiple quality evaluations makes the DSE prohibitively long. Therefore, we randomly sampled

643 pixels from the Color Wheel image to generate training dataset for the DSE. However, all pixels

from the remaining images are used to validate selected configurations obtained from the DSE.

Figure 3.14: Color Wheel image from the ARRI image dataset [238]

For the GA-specific initialization, adaptive version of AxCGA is selected, and therefore, µ and λ

are chosen as 50 and 100 by default. The group size parameter σ is chosen as 5/8, which resulted
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in 11 metaparameter groups. The parameters are encoded by considering the design constraints

and node dependencies, and an initial population is formed with one individual equivalent to the

reference design and all other individuals with randomly chosen parameters. The total number of

individuals in the initial population also equalsµ. We terminate the DSE experiments at Ng en = 750,

and this value has been selected based on an empirical analysis of convergence from individual

experiments. Therefore, a DSE experiment resulted in a maximum of 75050 fitness evaluations,

including the initial population, and helps to analyze and compare the performance of multiple

experiments on the same scale.

3.7.1.8 DSE Results

This section explains the AxCGA results on the RGB to Y C bCr color space conversion applica-

tion. Initially, Pareto-optimal solutions obtained from the DSE are discussed. Thereafter, a set of

configurations is selected from a single DSE run and is validated for the loss of quality on a test

dataset. In addition, resource consumption such as area, power, and speed are estimated for each

configuration after synthesis and place & route for the targeted device.

Pareto-optimal Solutions

Figure 3.15 shows Pareto-optimal solutions obtained from 50 independent AxCGA experiments.

These solutions offer a wide range of choices to a designer for selecting the desired application

quality and power trade-off in the application. The number of solutions obtained from each

independent experiment varies between 205 and 291, with an average of 246.76 solutions per

experiment.

The maximum quality of a reference RGB to Y C bCr design without any error is ∞ in PSNR.

However, we approximated this maximum quality value to 137.23 dB PSNR with a theoretical pixel

difference of 0.5 in one channel. In all experiments, at least one configuration with maximum

PSNR is present due to a reference design added in the initial population. However, it is often

difficult to find many configurations in a region close to the quality of the reference design, as can

be seen in the figure, due to logarithmic computation in PSNR.

Since GA is a non-deterministic optimization approach, each experiment might produce slightly

different configurations. However, the overall trend of Pareto solutions is identical across each

experiment. A randomly chosen experimental result with 258 solutions is highlighted in the plot

to demonstrate the trend obtained with a single DSE run, and it can be seen that the obtained

solutions from a single experiment are also widely spread across the solution space. Therefore, a

designer is able to make a good design decision from a single DSE run. However, a few different

runs are recommended for practical implementation to increase the density of the design choices

all over the solution space.

DSE Results Validation

Since we use a subset image as training data for quality estimation and simple models for the

resource estimation in AxCGA, the solutions obtained from the DSE need to be validated to

demonstrate the suitability of our AxCGA methodology in a real-world application. A quality of 30

dB PSNR is considered as a lower acceptable quality level in many state-of-the-art approximate
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Figure 3.15: Pareto fronts obtained from the 50 independent DSE experiments on RGB to Y C bCr
conversion, and one randomly selected DSE front is highlighted. The inset shows the
region of interest, and the reference design without any approximation is indicated as
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image processing applications [14]. Therefore, to validate our AxCGA approach, we selected

10 representative solutions from a region above this quality-threshold, where a designer can

realistically select the configurations in the RGB to Y C bCr conversion, as shown in Figure 3.15.

The selected solutions are tested for quality using all the images in the ARRI dataset, excluding the

image used in training. Similarly, we synthesized these solutions and estimated resources such as

power, area, and speed after place & route for the target FPGA using Intel Quartus Prime Software

[236] which includes Power Analyzer [220] and Timing Analyzer [237]. These resources are further

denoted as post-synthesis resources in the following sections.

Table 3.3 list validated quality results and post-synthesis resources together with the model

estimated values during the DSE. From the power consumption results, even though the average

error is 16.18%, the DSE estimated results are comparable to the post-synthesis results with 100%

fidelity. With the selected solutions, the post-synthesis power saves between 24.15% to 59.30% in

comparison to the reference design with 25.80 mW power. We additionally list the FPGA resource

utilization from the synthesis results to show how many resources are saved compared to the

reference design. Even though the speed of the approximate design is not an objective in the DSE,

we evaluated the speed of the selected configurations also to check whether the corresponding

designs satisfy the target frequency of 266.66 MHz. The estimated speed in the table shows that all

the selected configurations can operate at a higher frequency than the desired target. Finally, to

implement reliable approximate designs, it is important to validate the loss of application quality

due to approximations on a test dataset. The quality validation results show that the PSNR values
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Table 3.3: Resource usage, power consumption and quality data of the selected points

Selected Power Quality FPGA Resources Speed

Points AxCGA Synth. Train Test DSP LUT Reg Synth.

[Index] [mW] [mW] [dB] [dB] [Units] [Units] [Units] [MHz]

S1 11.24 10.50 30.01 26.87 0 180 476 334.22

S2 12.68 10.79 37.61 38.57 0 196 530 400.32

S3 14.33 12.35 44.32 43.31 0 248 569 300.12

S4 16.07 15.06 50.44 46.75 1 217 594 291.46

S5 17.80 15.74 56.19 54.68 0 342 654 299.58

S6 19.61 16.62 61.70 58.53 3 232 636 294.81

S7 20.82 17.39 73.67 72.01 3 252 670 292.40

S8 22.27 18.57 85.34 84.93 4 229 725 270.71

S9 23.42 19.24 99.27 98.11 4 253 782 271.52

S10 23.89 19.57 107.82 106.05 4 259 807 271.96

Ref 26.21 25.80 – – 9 275 842 272.16

on the test data satisfy the acceptable quality-threshold from S2 to S10 configurations. From the

table, it can be seen that the percentage error in PSNR varies between 11.68% and 0.48% with an

average of 3.82%. In all the selected configurations except S2, the average test quality is slightly less

than the training quality. Therefore, selecting a configuration from the DSE results with slightly

higher quality than the desired quality level is recommended for practical implementations.

3.7.2 Case Study 2: Display Rendering Pipeline

We considered a display rendering pipeline as the second case study to demonstrate our AxCGA

approach. The display rendering pipeline adapts the image pixels encoded as close to the actual

scene while capturing to display on monitors suitably. This case study is a pixel streaming applica-

tion where individual pixels are processed independently without any spatial-temporal correlation

between the adjacent pixels or frames and often used in digital cameras to adjust the colors to

the specification of the target monitor in terms of dynamic range, color space, and electro-optical

transfer function (EOTF). The display rendering pipeline includes three different processing stages,

as shown in Figure 3.16.

The first tone mapping and third EOTF compensation stages are nonlinear transformations of

pixel values. Due to the higher computational complexity of nonlinear functions, these functions

are implemented using lookup tables on an FPGA and can be considered for algorithm-level

table-based approximations. The second color space conversion stage has a similar structure to

our previous case study. In fact, this stage converts the pixels into a different color space in the

display rendering application. Therefore, arithmetic components such as approximate adders

and multipliers and application-level precision scaling can be used for approximating this stage.
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Figure 3.16: Overview of display rendering pipeline

Overall, the application of AxCGA methodology in this case study demonstrates how to integrate

approximate computing techniques on multi-level abstractions and how to reuse an application

DFG and genetic operations in complex applications. The following sections describe each pipeline

stage in detail and different approximation techniques employed on multiple abstraction layers.

Tone Mapping

Tone mapping is the first stage in a display rendering pipeline, which transforms the input lumi-

nance of a scene-referred encoded image for a natural reproduction of scenes on higher dynamic

range displays. In this case study, we use a global sigmoidal operator as proposed by Reinhard and

Devlin [239], and the tone-mapped values can be computed as

Xout = enc−1(Xi n)

enc−1(Xi n)+ (hIa)k
u + v , (3.35)

where X ∈ {R,G ,B} represents the input or output luminance of a color channel, and h,k, and

Ia represent the model parameters to control the properties such as luminance and contrast.

Additionally, the constants u and v are used to scale and shift the values to a desired dynamic range.

Since incoming pixels are non-linearly encoded and the tone mapping function is defined for

linear intensities, this phase initially performs decoding of pixel values using an inverse encoding

operation enc−1(). We use logarithmically encoded scene-referred images as inputs to the display

rendering application. Therefore, an inverse logarithmic transformation enc−1() = 2Xlog is used

as decoding function. For other tone mapping function parameters, we chose h = 9,k = 0.6, Ia =
0.4,u = 4137 and v =−7.4797 in this case study. The corresponding nonlinear function can be seen

in Figure 3.18a.

Color Space Conversion

The second stage of the display rendering pipeline is a 3-by-3 matrix multiplication that converts

the image pixels from Alexa Wide Gamut (AWG) to sRGB color space [238]. The underlying FPGA

implementation of this stage is similar to RGB to Y C bCr conversion case study, and only the color

space constants are different. The AW G to sRGB conversion is represented as

81



Chapter 3 AxCGA: A DSE Framework for Approximate Computing Using Genetic Algorithm


.Ri n .
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=


Rout

Gout

Bout

 (3.36)

EOTF Compensation

The last stage of the pipeline is an EOTF compensation of the target display. The EOTF is a

nonlinear function that transforms digital luminance signals into desired optical signals to display

on specific monitors. However, incoming luminance signals are required to be equalized for

specific target display before the EOTF conversion. In the EOTF compensation phase, this can be

achieved by applying an inverse transformation of the EOTF. In this case study, we use the transfer

function defined for sRGB in IEC 61966-2-1 Amendment 1 [240]:

Xout =
12.92 Xi n , for Xi n < X th ,

1.055 X 1/2.4
i n −0.055 , for Xi n ≥ X th ,

(3.37)

where X ∈ {R,G ,B} denotes the luminance of each channel and X th = 0.0031308. Figure 3.18b

shows the consequent EOTF compensation function.

3.7.2.1 DFG Representation

Each stage in an application pipeline is independently treated in AxCGA to ensure the modularity

and reusability of a stage in other applications. Since the implementation of the AW G to sRGB

color space conversion is similar to the RGB to Y C bCr case study, the DFG of this stage is iden-

tical in Figure 3.10. Additionally, six independent look-up tables, each representing a nonlinear

transformation for a specific image channel, are used to implement tone mapping and EOTF

compensation. Therefore, each of these transfer functions serves an independent node in the DFG.

The application DFG of the display rendering pipeline can be seen in Figure 3.17.

3.7.2.2 Approximation Techniques and Parameters

In this application, each intermediate node n ∈ N is considered for suitable approximation tech-

niques. Since the underlying operations of AW G to sRGB conversion are similar to the RGB to

Y C bCr , we considered the same approximate arithmetic components and their parameter ranges

listed in Table 3.2. Therefore, the choices of adder components are MA or LSA and multipliers are

BAM in addition to the accurate adder and multiplier Acc. Additionally, precision scaling on an

application level is applied at different places, as shown in Figure 3.17. The tone mapping and

EOTF compensation are implemented with lookup tables in a reference FPGA implementation.

Therefore, each lookup table contains 212 table entries for all input values in a 12-bit pipeline,

demanding a higher number of BRAMs in the reference implementation. To reduce this BRAM

utilization, we considered a two-level hierarchical segmentation proposed by Lee et al. [67], which
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Figure 3.17: Overview of a display rendering application

stores only a few entries correlating to the slope of an underlying transfer function. The following

section describes this hierarchical segmentation in detail.

Hierarchical segmentation

Hierarchical segmentation is used to approximate nonlinear functions, which are implemented

using a lookup table. This approach saves memory usage by storing a reduced number of entries

and can be synonymously named as a sparse lookup table. The display rendering case study uses

a two-level hierarchical segmentation approach for implementing nonlinear functions. In the

two-level segmentation, initially, the input range is split into uniformly distributed sections Nsec .

Thereafter, each section i ∈ [1, Nsec ] is further divided into uniform sub-segments Nseg (i ) in the

second level segmentation. Therefore, the upper limit for each sub-segments is defined by the

Nsec . To limit the lookup table address mapping overhead in an FPGA implementation, both the

Nsec and Nseg values are constrained to a power of two. With the sparse lookup table, only the

values corresponding to each sub-segments are required to be stored, irrespective of values for all

the inputs. Therefore, the total number of values in a sparse lookup table can be estimated directly

from the approximation parameters as

Ntotal =
Nsec∑
i=1

Nseg(i ). (3.38)
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In the display rendering case study, we used sparse lookup table to approximate both tone

mapping and EOTF compensation functions, and Figure 3.18 shows an exemplary segmentation

of these transfer functions. In two-level segmentation, Nsec = 8, shown as thick lines, and each

section i ∈ [1,8] is further equally divided into Nseg = [1, 2, 4, 16, 4, 8, 4, 2].

(a) Transfer function used in tone mapping (b) Transfer function used in EOTF compensation

Figure 3.18: Exemplary hierarchical segmentation (Nsec = 8 and Nseg = [1, 2, 4, 16, 4, 8, 4, 2]) on the
nonlinear functions used in display rendering case study

In our AxCGA experiments, we limited the upper value of Nsec as 32 based on our preliminary

investigations to avoid non-useful parameter combinations. Additionally, we restrict the lower

bound of Ntot al to 16 to avoid any configurations with higher quality loss. Besides, a linear

interpolation technique is also optionally used to reconstruct the desired values more accurately.

Table 3.4 lists the approximation parameters and their ranges from a sparse lookup table.

Table 3.4: List of approximation parameters of a sparse lookup table

Parameters Symbols and Ranges

Instances

Modular Level (i )

Node Level ( j )

Interpolation types Ti nt (i ) ∈ {None,Li near } i = {1}

No. of sections Nsec(i ) = 2p ,where p ∈ [0,5] i = {1}

No. of sub-segments

Nseg(i , j ) = 2q j ,

where q j ∈ [0, log2(sizeof(Nsec ))],∑Nsec

j=1 Nseg( j ) ≥ 16

i = {1}

j = {1, . . . , Nsec (i )}

3.7.2.3 Design Space Complexity

Combing multiple pipeline stages in an application exponentially increases the number of feasible

parameter configurations. Therefore, the total design space complexity λ of a display rendering

application can be estimated as

λDisplay Rendering =λTone Mapping ×λColor Space Conversion ×λEOTF Compensation. (3.39)
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Since the tone mapping and EOTF compensation stages use similar segmentation schemes, the

design space complexity is identical in both cases. In addition, we use a single instance of a sparse

lookup table in three channels for each tone mapping and EOTF compensation in our AxCGA

experiments. For a pipeline bitwidth b = 12, the design space complexity of the sparse lookup table

from a tone mapping or EOTF compensation stage can be estimated as

λSparse Lookup Table ≈ 1.585×1029. (3.40)

Therefore, based on equation 3.40 and 3.26, the design space complexity of the display rendering

case study can be computed as

λDisplay Rendering ≈ (1.585×1029)× (1.111×1038)× (1.585×1029), (3.41)

≈ 2.791×1096. (3.42)

3.7.2.4 Genetic Encoding

The display rendering application has three stages in the processing pipeline, and a typical individ-

ual is encoded as

Individual I(Display Rendering) = [P (Tone Mapping),P (Color Space Conversion),P (EOTF Compensation)]. (3.43)

The genetic encoding of P (Color Space Conversion) is identical to the P (RGB to YCbCr) as in Equation 3.29.

Since both tone mapping and EOTF compensation stages use a unique instance of sparse lookup

tables for approximations, only two instances of the sparse lookup table occur at an application

level. However, these are distinct stages in the processing pipeline, and corresponding instances

are, therefore, independent of each other in the encoding. Based on Table 3.4, parameters of a

sparse lookup table can be encoded as

P(Sparse Lookup Table) = [Ti nt , Nsec , Nseg ] (3.44)

Therefore, a real value encoded individual of the display rendering application can be elaborated

as

Individual I(Display Rendering) = [P (Tone Mapping)
(Sparse Lookup Table),P (Color Space Conversion),P (EOTF Compensation)

(Sparse Lookup Table) ].

(3.45)

A typical example of a real-value encoded individual from the display rendering case study based

on Table 3.2 and Table 3.4 is given as

I(Display Rendering) = [[1, 2, [256, 512]], dummy text to fill the gap co→ Tone mapping

[[[3, 7, 2], [[2, 2, 6], [2, 4, 11], [0]], 1, [[2, 5, 1], [0]]], } Color

Space

Conversion

[[3, 8, 0], [[0], [2, 1, 5], [0]], 0, [[4, 3], [2, 9, 0]]],

[8, 2, 1], [[2, 5, 8], [0], [0]], 2, [[4, 5], [2, 1, 1]]]],

[ 0, 8, [2, 16, 16, 16, 16, 32, 2, 512]]] dummy tex→ EOTF compensation
For an easier real-value representation, we encode interpolation type Ti nt of the sparse tables as

None = 0 and Linear = 1.
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3.7.2.5 Genetic Operations

AxCGA performs genetic operations such as crossover and mutation independently on the sublist of

parameters corresponding to each processing stage. Similar to the RGB to Y C bCr conversion case

study, AxCGA selects random individuals from a parent population to perform these operations

based on specified mutation and crossover probabilities.

For a mutation operation, AxCGA initially select one of the processing pipeline stages randomly,

unlike in RGB to Y C bCr conversion which has a single processing stage. However, parameters of a

random node from the selected stage is replaced afterward with another random choice within its

parameter range. This parameter can be selected directly on stage level for the sparse lookup tables

since only one module exists. In the color space conversion, AxCGA has to select one among three

mixer modules within the stage to choose a random node. Following the parameter replacement

of the selected node, a forward dependency propagation of parameters within the modules has to

be taken care. Such a stage based mutation ensures modularity and generality of the operation.

Together with a mutation rate mechanism in the adaptive GA approach, this generic mutation

operation can be effectively adapted to multiple applications with different complexity.

The crossover operation is also performed stage basis to ensure modularity, and all the processing

stages in an application pipeline undergo the crossover operation independently at the same time.

A channel-based single-point crossover operation is performed for the color space conversion

stage, as shown in Figure 3.13. However, a classical crossover is directly infeasible for sparse lookup

tables in a tone mapping or EOTF compensation due to the differences in the length of individuals

in a population. Depending on the number of sections Nsec , the number of sub-segments Nseg

might differ for the selected parents for crossover operation. Therefore, we either upsample or

downsample the parents to a same number of sections Nsec in order to keep same length for a

classical crossover operation. These sampling operations are jointly developed with our post-

doctoral researcher Anh Vu Doan. Figure 3.19 shows an example of such upsample or downsample

operation in the sparse lookup table. An upsampling operation is straightforward, where a parent

individual with 2 sections of 256 and 512 sub-segments can be upsampled to 4 sections with

sub-segments 128, 128, 256, and 256. During the upsampling, it is essential to make sure that all

the sub-segments must be greater than 1 to meet the parameter constraints. The downsampling

operation needs to be performed carefully to create feasible design points. The same parent can be

downsampled into 1 section and 768 sub-segments. Additionally, the downsampled sub-segments

are required to round to a value of the next higher power of 2 to meet the parameter constraints,

which is 1024 in this example. Therefore, among the selected parents for crossover, one of the

individuals is either upsampled or downsampled to the same size as the second parent. Thereafter,

a classical-single point crossover operation can be performed on these parents.

Figure 3.19: Upsampling and downsampling operations for crossover
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3.7.2.6 DSE Objectives

The DSE objectives are defined for determining the trade-off between power consumption and

quality degradation. Similar to the RGB to Y C bCr case study, the power is estimated directly from

the area consumption. For quality models, we used CIELAB ∆E since the display rendering appli-

cation deals with color transformation, which is often evaluated with human visual perception. We

used both maximum ∆E and mean ∆E calculated across the training set for the quality estimation.

The maximum ∆E estimates the worst-case error introduced by the approximations, which is of

the highest interest to a designer to bind quality degradation reliably to the quality-threshold. The

mean ∆E reflects an overall error in the training set and is usually not a main target of a designer.

During the DSE, multiple configurations may have same worst-case maximum ∆E . In such cases,

mean ∆E aids the AxCGA to differentiate these solutions and help to select a better configuration.

Thereby, mean ∆E guides AxCGA to make finer improvements towards the optimum. Since ∆E is

an error metric, the quality objective has to be minimized during the DSE. Therefore, the objective

function in the display rendering application is defined as

fob j = mi ni mi ze
(
maximum(∆E), mean(∆E), power

)
. (3.46)

3.7.2.7 AxCGA Initialization and Setup

To start DSE experiments in AxCGA, both application-specific and GA-specific initialization have

to be performed. During the application-specific initialization, we first created an application

DFG of the display rendering pipeline. Thereafter, we estimated average toggle rate for the power

model by simulating the reference design using the ARRI image set, resulting between 0.22 to

0.33. Therefore, we selected 0.28 as an average toggle rate in our AxCGA experiments. Similarly,

per-unit power consumption is estimated as an average value for each FPGA resource from the

reference implementation and 3 configurations with different resource consumption selected from

10 random approximate configurations. Finally, ∆E is selected as quality metrics together with

relevant training data.

Since the display rendering pipeline is a color processing pipeline, a maximum worst-case error

can be guaranteed only when all the possible input colors are used in a training dataset. Such

a three-channel input color space for 12 bits per channel contains 236 = 6.872× 1010 possible

colors, which makes error estimation over the entire input space prohibitively long during the DSE.

Therefore, we use a representative subset of the entire color space by sampling the color space

in 128 steps in each direction. This reduces the training dataset to 1283 = 2.097×106 different

colors. The 128 step sampling uses the 7 bits in the MSB part of each pixel, and the remaining bits

are filled with uniformly distributed noise to minimize the potential effect of a uniform sampling

in the DSE. Figure 3.20 shows the resulting training image, and using such a reduced training

dataset significantly reduces the quality estimation time at the expense of the accuracy of quality

estimation. However, the training image still covers the entire color space.

The GA-specific initialization in the display rendering case study is similar to the initialization

in the RGB to Y C bCr case study. We selected an adaptive version of the AxCGA with µ = 50 and

λ = 100, and group size parameter σ is selected as 5/8. The initial population includes a single
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Figure 3.20: Training data with 128 steps used for quality estimation

configuration corresponding to the reference implementation, and the remaining individuals are

generated with a random selection of approximation parameters from its feasible ranges. Since the

complexity of the design space is larger than the previous case study, we chose a higher number of

generations Ng en as the termination condition. Based on our initial observations of the AxCGA

performance, we selected Ng en = 1000 in all of our DSE experiments on the display rendering case

study.

3.7.2.8 DSE Results

This section describes the DSE results obtained on the display rendering case study using AxCGA.

The Pareto-optimal points from multiple experiments are discussed initially, and validation of our

AxCGA approach using a set of selected configurations from one of the DSE results is performed

following.

Pareto-optimal Solutions

We performed DSE using AxCGA on the display rendering case study and repeated the experi-

ments 50 times independently to ensure the consistency of the results. The number of resulted

Pareto-optimal solutions from each experiment varied from 456 to 707, averaging 565.38 solu-

tions per experiment. Combined Pareto fronts from all these experiments are depicted as two-

dimensional projections in Figure 3.21, where Figure 3.21a shows the most relevant trade-off

between power consumption and the worst-case maximum ∆E , and Figure 3.21b shows the mean

∆E - power trade-off. Additionally, the points from a randomly selected experiment are highlighted

as a representative result to demonstrate the trend of a single run. In both plots, all the irrelevant

Pareto-optimal points that have higher power than the reference power due to approximation

overhead have been excluded. From the figures, it can be seen that the points with maximum ∆E

greater than 25 or mean∆E greater than 7 do not significantly improve the power savings. Similarly,

for configurations having more than 32 mW power, the mean or maximum error also does not

improve significantly.
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Figure 3.21: 2D projections of Pareto fronts obtained from the 50 independent DSE experiments on
display rendering application, and one randomly selected DSE front is highlighted. The
inset shows the region of interest, and the reference design without any approximation
is indicated as Ref.

DSE Results Validation

The perceiving color difference of humans lies at approximately 2.15 ∆E [241], and a useful

trade-off region in practical applications lies around this threshold value. Therefore, we picked

10 points around this threshold value from a randomly selected experimental result to analyze

the quality-resource trade-off further. We used maximum ∆E to select these points from a region

between 5 and 0 since it reflects the worst-case error, keeping the mean ∆E below the threshold.

Thereafter, we synthesized these configurations and estimated resources such as power, area, and

speed using Intel Quartus Prime software. Additionally, we tested these configurations on all 12

images in the ARRI image set for quality validation. Table 3.5 lists the validation results of the

selected configurations in terms of power, quality, utilization of each FPGA resource type, and

speed. Even though the average error between the post-synthesis and model estimated power is

12.33% for the selected configurations, 100% fidelity guides the optimization to reach better points

during the DSE. Overall, the post-synthesis power consumption of the selected configurations

shows that the approximations save the power between 14.42% and 51.17% compared to 55.01 mW

of the reference design power. The potential reduction in different FPGA resource types of each
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Table 3.5: Resource usage, power consumption and quality data of the selected points

Selected Power Quality FPGA Resources Speed

Points AxCGA Synth. Train Test Train Test DSP LUT Reg BRAM Synth.

[Index] [mW] [mW] [Max ∆E ] [Mean ∆E ] [Units] [Units] [Units] [Bits/Units] [MHz]

S1 31.33 26.86 4.75 4.66 0.65 1.17 2 317 816 73728/6 296.56

S2 31.56 27.73 3.90 3.72 0.58 1.04 2 329 827 73728/6 294.81

S3 31.92 27.94 3.10 2.50 0.57 0.96 2 338 837 73728/6 296.38

S4 32.82 29.31 2.18 2.32 0.32 0.47 2 344 862 73728/6 295.25

S5 35.78 31.19 1.72 1.44 0.23 0.31 2 387 998 92160/6 297.35

S6 38.01 33.15 1.24 1.30 0.14 0.20 4 369 1073 92160/6 273.97

S7 39.69 35.36 1.14 1.25 0.22 0.36 4 398 1162 104448/6 271.30

S8 46.56 41.45 0.85 0.84 0.16 0.21 3 384 1028 202752/12 275.18

S9 48.26 45.50 0.61 0.58 0.03 0.10 5 338 1072 202752/12 273.07

S10 50.18 47.08 0.07 0.07 0.02 0.02 5 368 1172 202752/12 271.15

Ref 57.82 55.01 – – – – 9 302 1068 294912/18 269.83

selected configuration can also be seen in the table. Similarly, the speed obtained with the timing

analyzer shows that all the configurations met the target frequency requirement of 266.66 MHz.

Finally, quality validation using the test dataset shows 7.60% average error in maximum ∆E and

34.97% in mean ∆E . Even though the average error in mean ∆E from the quality validation is high

compared to model estimation, the actual values from the quality validation are lower than the

perceivable threshold value for all the configurations, which is critical in practical applications.

Therefore, a designer can select configurations for the display rendering directly based on the

trade-off between maximum ∆E and power.

3.8 Comparison between Adaptive and Non-Adaptive AxCGA

Real-world approximate computing application often exposes high design space complexity, and

quality evaluation of each configuration using a training dataset usually consumes considerable

time. In RGB to Y C bCr case study, the evaluation of one solution on an average takes approxi-

mately 84.47 milliseconds, whereas a single configuration evaluation on average in the display

rendering application requires approximately 1.88 seconds on a workstation system (Intel Core

i7-10700, 8 Cores, 32 GB RAM). Therefore, an extensive hyperparameter optimization with multiple

parameter combinations in GA would be time-consuming and need to be repeated for every target

design space. Addressing these issues in many state-of-the-art optimization problems, standard

values are chosen for the GA parameters such as mutation probability pm , crossover probability

pc , parent population size µ, and offspring population size λ, further denoted as non-adaptive

approach. However, a better set of parameters often exists, even though the non-adaptive GA can

produce Pareto fronts with many useful solutions. Overcoming the limitations of the non-adaptive
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approach, AxCGA uses a novel adaptive GA approach to provide hyperparameters adaptively dur-

ing the DSE, as described in Section 3.6.4. The adaptive approach avoids the time-consuming

hyperparameter optimization for individual applications and additionally provides an adequate

set of hyperparameters for GA over generations.

To demonstrate the effectiveness of the adaptive approach, we compare the performance of the

AxCGA with our novel adaptive GA hyperparameters and standard hyperparameter values used in

the literature. We used the case studies introduced in previous sections for the experiments and

performance comparison. In the non-adaptive approach, we selected pc and pm as commonly-

used values such as 0.7 and 0.3, and µ and λ as 50 and 100, respectively [232]. The following

experimental results show that the GA is able to produce Pareto fronts with many useful solutions

in both scenarios.

In order to analyze the performance of these approaches, hypervolume indicator is estimated

from all solutions identified in each generation of DSE. The hypervolume is a hybrid indicator

measuring both convergence and diversity of a Pareto front [230]. Figure 3.22 illustrates the basic

principle of a hypervolume computation in a minimization problem. The hypervolume indicator

is estimated as the volume bounded by the solutions on a Pareto front and a reference point R.

When an optimization progresses, the Pareto points might attain lower values, increasing the

hypervolume values as well. Therefore, hypervolume values increase in general with a better

optimization process.

Figure 3.22: Example of the hypervolume indicator which is represented by the shaded area for
Pareto points P1 to P6 with respect to the reference point R

We repeated the DSE experiments using the non-adaptive hyperparameters 50 times indepen-

dently for both RGB to Y C bCr conversion and display rendering case study. For the adaptive

AxCGA results, we used previously described results in Section 3.7. The following sections show the

Pareto solutions obtained and the average hypervolume values over the generations using both the

adaptive and non-adaptive approaches from each case study.
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3.8.1 Case Study 1: RGB to YCbCr Color Space Conversion

Figure 3.23a shows Pareto fronts obtained from 50 experiments of adaptive and non-adaptive

AxCGA on the RGB to Y C bCr case study. Both approaches identified well-distributed Pareto

curves that trade-off the application quality PSNR with system power. Further evaluating the

performance of each approach quantitatively, we estimated the average hypervolume over the

GA generations. The hypervolume reference for this case study is set experimentally to 7.78 and

29.67 mW for PSNR and power, which are 20% higher than the maximum identified values for each

objective from multiple runs. The average hypervolume values over the GA generations are shown

in Figure 3.23b. Overall, the adaptive approach performs slightly better with a final hypervolume

of 1.4116 than the non-adaptive approach with 1.3986. Additionally, the standard deviation σ of

the final hypervolume from the adaptive and non-adaptive approaches are 0.5835 and 0.5932,

respectively. These values show comparable consistency of the results in both approaches, with a

slightly better standard deviation value in the adaptive approach.
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Figure 3.23: Adaptive and non-adaptive AxCGA results on RGB to Y C bCr conversion

3.8.2 Case Study 2: Display Rendering Pipeline

Pareto trade-off curves in Figure 3.24a show results from 50 experiments of both adaptive and

non-adaptive approaches on the display rendering pipeline. Since the maximum ∆E is of primary

interest to a designer, we plot only the trade-off between maximum ∆E and power. From the figure,

it is evident that both approaches are closely comparable and produce well-distributed solutions.

Similar to case study 1, we set hypervolume reference experimentally to 206.61, 69.41, and 81.98

mW for maximum ∆E , mean ∆E , and power, respectively, The average hypervolume in Figure

3.24b shows that the adaptive approach performs marginally better with a final hypervolume

of 859.32 than the non-adaptive approach with 857.95. Additionally, the standard deviations
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of the final hypervolume are 4.44 and 4.38, respectively, which indicates that the non-adaptive

approach has slightly better consistency in producing the results, even though these values are

closely comparable. Further analysis of the elite metaparameter group in each AxCGA generation

shows that the hyperparameter values taken from the literature for the non-adaptive AxCGA are

near-optimal, resulting in comparable performance in both versions of AxCGA.
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Figure 3.24: Adaptive and non-adaptive AxCGA results on display rendering application

3.9 AxCGA and autoAx DSE Comparison

The autoAx proposed for ASIC design [209] and ApproxFPGAs [211], an extension of autoAx ap-

proach to an FPGA platform, effectively combine multiple circuit level approximations from state-

of-the-art approximate computing libraries in an application. Due to architectural differences in

these target platforms, resource modeling approaches are distinct in both approaches to ensure

good fidelity. However, both approaches use a similar technique inspired from a hill climbing

algorithm to construct Pareto-optimal solutions. This DSE approach for Pareto construction was

originally proposed in autoAx and later used in ApproxFPGAs as AutoAx-FPGA. Therefore, we

denote the Pareto-optimal construction algorithm as autoAx DSE. We performed multiple DSE

experiments using autoAx DSE approach for RGB to Y C bCr conversion and display rendering ap-

plication and compared the performance with the AxCGA results. The following section describes

the principle of Pareto-optimal construction in autoAx, explains how the autoAx is employed to

approximate the case studies, and compares the autoAx DSE results with the AxCGA results.

3.9.1 autoAx DSE

The autoAx approach consists of three design phases: a preprocessing phase of approximate

arithmetic circuits, a quality and resource modeling phase, and an iterative DSE phase identifying
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Pareto-optimal solutions. In the preprocessing phase, characterization of multiple state-of-the-

art approximate arithmetic components using benchmark data is performed in autoAx. As a

result, a subset of the components which offers Pareto trade-off between characterization error and

hardware resources is stored in a library. Thereafter, a set of configurations for a target application is

generated by randomly replacing accurate components with their approximate counterparts from

the library. These random configurations are synthesized and simulated for hardware resources

and quality, and machine learning models are trained independently for hardware resources MHW

and quality of results MQoR .

The principle of autoAx DSE which iteratively forms Pareto-optimal solutions is explained in

Algorithm 15. The inputs to the autoAx DSE are a library of parametrizable approximate compo-

nents RL and models for hardware cost estimation MHW and quality of results MQoR . Initially, a

parent configuration is chosen by replacing accurate circuit components in a target application

with random approximate counterparts from the preprocessed library, and an empty Pareto front P

is initialized. Thereafter, a neighbor configuration C is derived from this parent by modifying some

components or parameters of the parent. Then, evaluate the fitness of the neighbor configuration

C using pre-trained models for the quality eQoR and hardware cost eHW . If the newly evaluated

neighbor can be a Pareto point in P , this point will be added to P . In addition, other existing

points in P that become non-Pareto points due to this new point will be removed from P . In this

case, the neighbor configuration acts as the new parent in the next autoAx iteration. However, if

the neighbor is not a Pareto point in the P , a new neighbor is formed from the same parent by

replacing different components or parameters. If a stagnation condition is detected such that the

neighbor configurations formed from a parent cannot be a Pareto point for a certain number of

DSE iterations, the parent is replaced with one of the random configurations already added to P .

This process will iterate until the termination condition occurs, and finally, the Pareto-optimal

configurations are returned.

3.9.2 Comparison between autoAx DSE and AxCGA

We used autoAx DSE approach to combine multiple approximations and find the Pareto-optimal

solutions in both the RGB to Y C bCr color space conversion and display rendering application

with the same experimental setup described in Section 3.7. The preprocessed approximate library

in the autoAx is replaced with the approximate computing library used in AxCGA, which includes

approximation methods in multi-level abstractions. Synthesizing multiple random configurations

of our case studies is very time-consuming, where a single configuration requires 2.38 minutes in

RGB to Y C bCr conversion and 2.48 minutes in display rendering application on a workstation

system (Intel Core i7-10700, 8 Cores, 32 GB RAM). Therefore, autoAx models which require multiple

synthesis results to train machine learning models are also replaced with the models proposed

in AxCGA. The representation of a typical parameter configuration in autoAx is similar to the

parameter configuration in AxCGA due to its real value genetic encoding. However, autoAx requires

an additional getNeighbor() function which modifies parameters of an autoAx parent to get a

suitable neighbor configuration. The below sections describe different neighbor functions used in

autoAx approach for each case study and compare the DSE results with our AxCGA approach. The
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Algorithm 2: Pareto set construction in autoAx [209]

Input :RL - set of libraries, RL = {RL1,RL2, . . . ,RLn},
MHW - HW costs model, MQoR - quality model

Output :Pareto set P ⊆ RL1 ×RL2 × . . .×RLn

1 function HeuristicParetoConstruction(RL, MQoR , MC):
/* initialization of autoAx */

2 Par ent ← PICKRANDOMLYFROM(RL1,RL2, . . . ,RLn) ;
3 P ←; ;

/* main loop represents iterations in autoAx */

4 while TerminationCondition do
5 C ← GETNEIGHBOR(Par ent ) ;
6 eQoR ← MQoR (C ) ;
7 eHW ← MHW (C ) ;
8 if PARETOINSERT(P , (eQoR ,eHW ),C ) then
9 Par ent ←C ;

/* parent is not changed in last k iterations */

10 else if StagnationDetected then
11 Par ent ← PICKRANDOMLYFROM(P ) ;
12 end
13 end
14 return P ;
15 end function ;

stagnation condition in autoAx experiments is chosen as 5 iterations without any improvement

from a parent based on a few preliminary trials.

3.9.2.1 Case Study 1: RGB to YCbCr Color Space Conversion

The possible approximation components and their parameter ranges in RGB to Y C bCr conversion

are the same as in Table 3.2. A typical parent in autoAx is similar to an individual in AxCGA and can

be represented as

Parent (RGB to YCbCr) = [P (RGB to YCbCr)] (3.47)

= [P 1
mi xer ,P 2

mi xer ,P 3
mi xer ], (3.48)

where Pmi xer = [[F 1
co,F 2

co,F 3
co], [M 1, M 2, M 3],Fin, [A1, A2]]. (3.49)

Similarly, the objective function is defined as

fob j = minimize
(
power

) ∧ maximize (PSNR). (3.50)

In the RGB to Y C bCr conversion, we introduced four different neighbor functions based on

possible parameter choices of a typical parent.

• Type 1: Single Sweep - choose one parameter from a parent and replace it with a random

choice from its possible parameter range. Additionally, if the new parameter influences
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any other parameters in the parent due to parameter dependencies within a module, these

parameters should also be adjusted accordingly, similar to AxCGA mutation operation.

• Type 2: Double Sweep - performs two Single Sweep operations successively by considering

design constraints and parameter dependencies within a module.

• Type 3: Mixed Mixer Sweep - either performs a Single Sweep operation on a parent or

randomly regenerates parameters of one of the three mixer channels in the parent with equal

probabilities.

• Type 4: Full Sweep - choose one parameter from each mixer module in a parent and replace

it with a random choice from its possible parameter range. Similar to a Single Sweep, all the

dependent parameters are also modified by maintaining the design constraints.

Using these neighbor functions, we performed autoAx DSE 10 times independently to identify

the best neighbor function that modifies the parent effectively. Similar to the AxCGA experiments,

the same 643 pixels training dataset is used in all experiments in RGB to Y C bCr conversion. A

single generation in AxCGA is equivalent to the 100 autoAx DSE iterations due to a similar number

of fitness evaluations. Therefore, a termination condition is chosen as 75050 fitness evaluation in

autoAx, which is equivalent to 750 generations in AxCGA. To compare the performance of Pareto

fronts evolved with each neighbor function, we use hypervolume values with the same reference

points estimated in Section 3.8.1. We computed average hypervolume at every 100 iterations in

autoAx to align with AxCGA results and make performance comparison easier.

Figure 3.25a shows combined Pareto-optimal solutions trading off PSNR and power from 10

independent experiments using four different neighbor functions. It can be seen that both Type

1 and Type 2 functions are stuck at local optima in different regions, resulting in points aligning

horizontally with the same PSNR values for different power consumption values. Among the four

types, only the Type 3 Mixed Mixer Sweep function finds points near the maximum PSNR quality

region. The average hypervolume values from the 10 runs are depicted in Figure 3.25b, and it can

be seen that Type 3 performs substantially better than all other neighbor functions. Therefore, we

selected autoAx with Type 3 Mixed Mixer Sweep neighbor function for a performance comparison

with AxCGA.

We additionally repeated autoAx DSE experiments with the Type 3 neighbor function 40 more

times and compared the overall results from 50 independent experiments with AxCGA. The com-

bined Pareto points from both approaches in Figure 3.26a demonstrate the PSNR-power trade-off.

Analyzing the trade-off further, it is evident that both approaches are performed competitively in

the middle region. However, due to the inherent diversity and convergence property of NSGA-II

selection, points on the extremes of the trade-off space are identified better in AxCGA. The average

hypervolume values for both approaches in Figure 3.26b show that the final hypervolume obtained

with autoAx experiments can be achieved in AxCGA within 50 generations of AxCGA.
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Figure 3.25: autoAx DSE results obtained for different neighbor functions from the 10 independent
experiments on RGB to Y C bCr conversion
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Figure 3.26: DSE results obtained from the 50 independent experiments on RGB to Y C bCr con-
version
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3.9.2.2 Case Study 2: Display Rendering Pipeline

We performed autoAx DSE on display rendering application with the same experimental setup

described in Section 3.7.2. A typical parent includes approximation parameters from a tone

mapping stage, a channel mixer stage, and an EOTF compensation stage. Therefore, a parent in

autoAx is represented as

Parent(Display Rendering) = [P (Tone Mapping)
(Sparse Lookup Table),P (Color Space Conversion),P (EOTF Compensation)

(Sparse Lookup Table) ], where

(3.51)

P(Sparse Lookup Table) = [Ti nt , Nsec , Nseg ] and P(Color Space Conversion) = [P 1
mi xer ,P 2

mi xer ,P 3
mi xer ].

(3.52)

Each of these parameters can vary according to ranges specified in Table 3.2 and Table 3.4.

The DSE objective function is defined as

fob j = mi ni mi ze
(
maximum(∆E), mean(∆E), power

)
. (3.53)

Due to an increased design space complexity compared to the RGB to Y C bCr conversion, we

considered seven different neighbor functions that randomly modify a parent in our preliminary

experiments.

• Type 1: Single Sweep - modify one parameter and its dependencies (cp. Section 3.9.2.1)

• Type 2: Double Sweep - modify two parameters and their dependencies successively (cp.

Section 3.9.2.1)

• Type 3: Single Sparse-Single Mixer Sweep - modifies one parameter and its dependencies

from two sparse lookup tables and one parameter and its dependencies from the color space

conversion stage.

• Type 4: Single Sparse-Double Mixer Sweep - modifies one parameter and its dependencies

from two sparse lookup tables and two parameters and their dependencies successively from

the color space conversion stage.

• Type 5: Independent Sweep - modifies one parameter each from tone mapping, color space

conversion, and EOTF compensation stages by maintaining the dependencies within each

module.

• Type 6: Single Sparse-Mixed Mixer Sweep - modifies one parameter and its dependencies

from two sparse lookup tables and performs a Mixed Mixer Sweep (cp. Section 3.9.2.1) in the

color space conversion stage.

• Type 7: Single Sparse-Full Sweep - modifies one parameter and its dependencies from two

sparse lookup tables and performs a Full Sweep (cp. Section 3.9.2.1) in the color space

conversion stage.

We independently ran autoAx DSE experiments 10 times using each neighbor function to identify

the best-performing function. The termination condition is chosen as 100050 iterations, which is
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equivalent to 1000 generations in AxCGA. Similar to the RGB to Y C bCr case study, we computed

hypervolume values every 100 iterations in autoAx DSE to reduce computational time and ease the

performance comparison with AxCGA. The time required to perform an autoAx DSE experiment

using the 128-step training image is measured in days due to sequential fitness evaluations in

autoAx DSE. Therefore, we used a reduced 16-steps image shown in Figure 3.27 in the neighbor

search experiments, which contains 163 pixels obtained by sampling color space in 16 steps in

each dimension.

Figure 3.27: Training data with 16 steps used in autoAx neighbor search

Figure 3.28a depicts the solutions that trade-off the worst case maximum ∆E and power from 10

independent experiments of autoAx, and it can be seen that all neighbor functions comparably

identified the trade-off. Further analyzing the quality of Pareto fronts obtained from each neighbor

function type, we plotted average hypervolume over generations in Figure 3.28b. From the figure, it

can be seen that the Type 1 Single Sweep neighbor function performed marginally better than the

other neighbor functions, whereas the Type 5 Independent Sweep performed significantly worse

compared to other neighbor functions. Therefore, we use the Single Sweep neighbor function for

the performance comparison of autoAx DSE with AxCGA.
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Figure 3.28: autoAx DSE results obtained for different neighbor functions from the 10 independent
experiments on display rendering application
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For performance comparison, we ran the autoAx DSE independently with the Single Sweep

neighbor function using 128-steps images 50 times. Figure 3.29a shows a two-dimensional pro-

jection of solutions that trades off maximum ∆E and power obtained from all 50 experiments

of autoAx DSE and AxCGA. Both approaches identified solutions comparably in the knee of the

curves. However, within a region above 50 maximum ∆E , the AxCGA performs significantly better

than the autoAx. In addition, it can be seen that one autoAx DSE is stuck in a local optimum

without improving the quality further, leading to many solutions aligned horizontally. The average

hypervolume over the DSE generations in Figure 3.29b shows that a final hypervolume achieved

using autoAx can be obtained within 240 generations of AxCGA approach.
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Figure 3.29: DSE results obtained from the 50 independent experiments on display rendering
application

3.9.2.3 Runtime Complexity Comparison

Similar to AxCGA, the autoAx DSE runtime can also break down into two components: the time

required for all the fitness evaluations and algorithmic executions.

tauto Ax ≈ time for fitness evaluations+ time for algorithmic execution (3.54)

The overall time for fitness evaluations in autoAx is a product of the number of fitness evaluations

and the average fitness evaluation time due to a sequential execution. Since we have the same

number of fitness evaluations in both autoAx DSE and AxCGA experiments, the number of autoAx

fitness evaluations can be derived as (µ+λ×Ng en) from Equation 3.22. The algorithmic execution

time ta of autoAx mainly includes the time required to generate neighbor functions and check the

neighbor point for the Pareto property in every iteration. Therefore, the total DSE time in autoAx
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can be estimated as

tauto Ax ≈ [(µ+λ×Ng en)× t f ]+ [(µ+λ×Ng en)× ta]. (3.55)

However, time for algorithmic execution is negligible due to the dominance of fitness evaluation

time in real-world image processing applications. Therefore, the overall time is approximated as

tauto Ax ≈ (µ+λ×Ng en)× t f . (3.56)

Upon comparing tauto Ax with tAxCG A in Equation 3.24, the AxCGA experiments can be sped up

approximately by a factor of mi n(Ncor es ,λ).

We avoid evaluating redundant configurations in a single DSE experiment in both approaches

by maintaining a history of fitness evaluations. This further speeds up the DSE depending on

the number of redundant configurations generated. Up on analyzing time from random DSE

experiments, we observed that a single AxCGA experiment required 27.22 minutes, whereas autoAx

took 1.49 hours in RGB to Y C bCr conversion on a workstation system (Intel Core i7-10700, 8

Cores, 32 GB RAM). Similarly, a single AxCGA required 6.96 hours and autoAx DSE needed 1.49

days in the display rendering case study.

3.10 Summary

This chapter addresses the problem of optimally configuring parameters for FPGA-based approx-

imate image processing systems. We proposed a methodology named AxCGA for determining

quality-resource trade-off using multi-objective optimization, which can explore complex design

spaces exposed from combined single-purpose approximations on multiple abstraction levels. We

employed fast, simple, yet accurate models to determine the fitness of each configuration probed

during the AxCGA experiments. For a multi-objective DSE, we used a GA-based metaheuristic,

together with NSGA-II selection which globally search a design space by maintaining both the

convergence and diversity in the identified solutions. This chapter also describes in detail how

DFGs are formed in an approximation application and how the genetic operations are performed

by considering parameter dependencies and design constraints. A novel adaptive GA approach

supplies hyperparameters during the DSE in AxCGA, avoids time-consuming hyperparameter opti-

mization, and overcomes potential limitations that can occur from the standard hyperparameters

from the literature. We demonstrate the generality and reusability of AxCGA in two real-world appli-

cations, such as RGB to Y C bCr color space conversion and display rendering application, where

the second application reuses the approximation stage from the first application. The experimental

results show that the AxCGA successfully determined the quality-resource trade-off offered by

these applications with different approximate computing techniques. Comparing the performance

of AxCGA with state-of-the-art autoAx approach, AxCGA determined the Pareto-optimal solutions

efficiently and effectively in both case studies.
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CHAPTER 4
Region of Interest Based NSGA-II (ROI-NSGA-II)

AxCGA

This chapter describes a novel ROI-NSGA-II selection algorithm which helps to concentrate the

GA search pressure into an ROI in a design space and how the new ROI-NSGA-II improves DSE

efficiency in AxCGA. The core methodology is initially presented in "Region of Interest-Based

Parameter Optimization for Approximate Image Processing on FPGAs" @IJNC 2021 [24] and later

extended in "Region of interest based non-dominated sorting genetic algorithm-II: an invite and

conquer approach" @ACM 2022 [25]. Therefore, figures and texts used in this chapter are adapted

and extended from these publications.

4.1 Introduction

Over the past decades, evolutionary computing has been gained broad research attention in solving

real-world MOO problems. The proposed AxCGA identifies a well-distributed and converged set of

Pareto solutions that trades in application quality for hardware resources using the inherent capa-

bilities of the NSGA-II in maintaining both the convergence and divergence simultaneously. The

AxCGA approach using NSGA-II selection is further denoted as NSGA-II AxCGA in the following sec-

tions. The experimental results on real-world applications shown in Chapter 3 demonstrate these

capabilities, and the Pareto fronts are identified efficiently and effectively in these applications (cp.

Figure 3.15 and Figure 3.21).

Upon further analyzing the Pareto fronts, the size of the useful trade-off region might vary

depending on the application properties and designer requirements. In RGB to Y C bCr conversion,

this region covers most of the design space, whereas, in display rendering application, this useful

region is only very small in size compared to the entire design space. However, the classical NSGA-

II-based DSE globally explores a solution space defined by the design constraints and spends equal

efforts to optimize the entire design space. Therefore, in applications where a designer is interested

in a subset of a design space, a global optimization wastes effort to find irrelevant solutions outside

the desired region.
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To concentrate DSE efforts into a certain region, multiple approaches have been proposed over

the years [243, 244, 245] which incorporate a preference information before (a priori), after (a

posteriori), and progressively (interactive) during the Non-dominated Sorting Genetic Algorithm

(NSGA)-based optimizations [246, 247]. An a priori method allows a designer to specify the prefer-

ence information before an optimization starts. After that, designer interaction is not permitted in

such methods. However, using this preference information, such methods often restrict the search

to a specific region, reducing computational effort and irrelevant fitness evaluations. The prefer-

ence information is usually given as reference points [242, 247, 248, 249, 250, 251, 252], direction

[253], weight vectors [254], or a combination of more than one of these types [255]. Providing such

information often requires a good knowledge about the final optimality and strongly influences

the explored region.

A promising NSGA-II variant Reference Point-Based Non-dominated Sorting Genetic Algorithm-

II (R-NSGA-II) proposed by Deb and Sundar [242] explores a preferred region by modifying a

crowding distance based selection to emphasize the optimization efforts into desired regions. A

designer has to provide preference information as reference points and a distance variable epsilon

ε, which controls the spread of solutions in a Pareto set during selection. The R-NSGA-II also

starts similar to the classical NSGA-II in which initial points or individuals are selected based on

their dominance, starting from the first non-domination level. However, from a final relevant non-

domination level that might contain more individuals than a selection requires, the individuals

are selected based on normalized Euclidean distance from the given reference points instead of

classical crowding distance based selection. In R-NSGA-II, both the reference point and the epsilon

value determine the optimization efforts within the desired region. Filatovas et al. extended the R-

NSGA-II approach and proposed Synchronous R-NSGA-II that employs three scalarizing functions

instead of the Euclidean distance [248]. By adjusting these scalarizing functions, the algorithm can

simultaneously concentrate its search on several regions, introducing more flexibility in preference

incorporation. To improve convergence and diversity of the selected solutions, Filatovas et al. later

introduced another variant of R-NSGA-II by incorporating a heuristic local search strategy named

multi-objective single-agent stochastic search [252]. Further extending the R-NSGA-II, Li et al.

replaced the normalized Euclidean distance in R-NSGA-II with a Chebyshev distance during the

selection of individuals from the final relevant non-domination level [256]. This approach can

identify solutions in an objective space that are hard to reach by R-NSGA-II. Deb et al. introduced

Reference Direction Based NSGA-II (RD-NSGA-II) that combines a reference direction approach

with the classical NSGA-II [253]. A designer has to provide a starting point and a reference vector

that defines the reference direction as preference information. Then, a non-dominated sorting is

performed based on a scalarizing function for a set of points in the reference directions, and this

approach also demonstrated its effectiveness on a set of benchmark problems. A hybrid approach

presented by Deb et al. employs the principles of the light beam search in NSGA-II to solve multi-

objective optimization problems with designer preference. A desirable point named aspiration

point and a reservation point beyond which the objective function values are not admissible can be

provided optionally. During the optimization, a reference direction or light beam is formed using

these points. Thereafter, a part of the Pareto-optimal region illuminated by the light beam with a

span controlled by a veto threshold is selected. This approach is also experimentally proven on
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different benchmark problems. Molina et al. introduced a new approach named g-dominance that

modifies traditional Pareto dominance relations [251]. During the selection, solutions satisfying

all or none of the aspiration levels are preferred over solutions satisfying some aspiration levels

in this approach. Similarly, Said et al. proposed the r-dominance approach, which creates a strict

partial order between non-dominated solutions considering their weighted Euclidean distances to

a reference point [247].

Many of the above approaches in literature have already demonstrated their usability and poten-

tial with different test problems. The selection of a typical method in an application predominantly

depends on the ease of providing preference information to explore a desired region and its effi-

ciency in guiding the search pressure into this region. In many real-world optimization problems,

such as approximate image processing, however, reference points, directions, or weights cannot be

efficiently provided due to the lack of knowledge about final optimality. These established methods

need additional effort or preliminary trials to provide this information accurately.

Overcoming the above limitations, we propose ROI-NSGA-II, a novel approach of incorporating

the preference information to the NSGA-II. In contrast to other types of preference information, a

designer can easily specify threshold values for each objective as preference information in many

real-world applications. These threshold values can, therefore, directly define an ROI as shown

in Figure 4.1. Our proposed ROI-NSGA-II incorporates the threshold values also into the search

and concentrates the optimization efforts into the corresponding ROI in a three-phase operation,

namely initialization, invitation and conquest. In approximate image processing applications, an

ROI can be defined as a subset of the entire design space using an additional quality-threshold

parameter (Qth) introduced by approximate computing. By integrating this quality-threshold also

into DSE with ROI-NSGA-II, the search pressure can be directly concentrated into the desired

region, and this makes the DSE in AxCGA more computationally efficient. The AxCGA approach

using our proposed ROI-NSGA-II selection is denoted as ROI-NSGA-II AxCGA in the following

sections.

Figure 4.1: An ROI defined using the threshold values in an exemplary two objective minimization
problem

The quality of an image processing application is often estimated as either the quality value Q

directly, such as PSN R, or as a quality error (QE), such as ∆E or absolute error. Therefore, the
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type of quality-resource optimization problem varies depending on the selected quality metric

in an application. The quality value Q leads to a maximization problem in which a designer is

typically interested in a region between the maximum quality (max(Q)) and the quality-threshold

value (Qth). Whereas, quality error (QE) leads to the minimization of error values in which a

region between minimum possible quality error (mi n(QE)) and quality-threshold value might

be interesting for a designer, as shown in example Figure 4.1. Therefore, an ROI can be defined

using the quality-threshold value (Qth) as one boundary and keeping the other boundary with

the minimum possible quality error (mi n(QE )) or maximum possible quality (max(Q)). Similarly,

hardware resources, such as area or power values of a reference implementation (R(r e f )), can

be the upper threshold value in the resource dimension R. All irrelevant configurations with

higher resource values than the reference implementation, due to the approximation overhead,

are thereby excluded from the ROI. The lower boundaries of the resources R are kept at minimum

possible resource utilization min(R). This directly defines an ROI with f U
1=R = R(r e f ), f L

1=R =min(R),

f U
2=Q/QE =max(Q)/Qth , and f L

2=Q/QE =Qth/min(QE).

The incoming sections in this chapter are organized as follows. Section 4.2 describes three phases

of our proposed ROI-NSGA-II methodology in detail. Thereafter, integration of the proposed ROI-

NSGA-II to AxCGA framework is briefly described in Section 4.3. In Section 4.4, the performance of

the ROI-NSGA-II AxCGA is demonstrated and compared with NSGA-II based approach and autoAx

DSE. To further demonstrate the potential of adaptive GA, an additional comparison between the

adaptive and non-adaptive version of AxCGA ROI-NSGA-II is included in Section 4.5. Finally, this

chapter summarizes in Section 4.6.

4.2 ROI-NSGA-II Methodology

The proposed ROI-NSGA-II integrates boundaries of an ROI defined by a designer to the classical

NSGA-II search. In contrast to many state-of-the-art approaches, the preference information can

be directly supplied as the acceptable lower and upper threshold values for each objective without

any preliminary trials. An overview of our ROI-NSGA-II methodology is shown in Figure 4.2. In

general, the ROI-NSGA-II operates in three distinct phases, namely initialization, invitation, and

conquest, and each phase is described in detail in the following sections.

4.2.1 Phase I: Initialization

The first initialization phase starts with classical NSGA-II and identifies points globally from

the entire design space (cp. Section 3.6.3.3). During this phase, the designer-given preference

information is not used for the search. The idea of the initialization phase is to use the inherent

capabilities of NSGA-II in maintaining diversity and convergence in a selection process and identify

the first set of points within the ROI. This initialization phase lasts until more than one point is

identified within the ROI to make a meaningful selection using these points in the following

invitation phase.

The duration of an initialization phase depends on the size and position of an ROI and the

number of objectives. If the size of the ROI is considerably large compared to the entire design

space, the probability of finding a solution early within the ROI increases using NSGA-II. In many
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Figure 4.2: Overview of the ROI-NSGA-II selection

cases, the NSGA-II identifies the first set of points within a few GA generations. However, suppose

an ROI is located in a region close to a local optimum that optimization algorithms cannot reach

easily. In that case, an initialization phase might require more generations to identify the first set of

points within the desired ROI. Similarly, once the number of optimization objectives increases, the

number of constraints increases due to additional threshold values in each objective. Therefore,

finding the first set of points that satisfies all of these constraints might also take some additional

generations.

Due to an initialization phase, the ROI-NSGA-II guarantees a minimum performance that an

NSGA-II can deliver, even if the threshold boundaries set by a designer are unrealistic to an

application. Since the primary purpose of the initialization phase is to identify the first set of points

within an ROI, the initialization phase is introduced optionally in ROI-NSGA-II. This phase can

be skipped if a designer has good knowledge in advance about identifying points within the ROI

in the early optimization phase. However, all the experiments performed in this thesis use all

three phases of ROI-NSGA-II to show the generality and scalability of our proposed ROI-NSGA-II

irrespective of the number of objectives, size, and position of the ROI.
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4.2.2 Phase II: Invitation

The invitation phase also starts with a non-dominated sorting of points using their fitness values

similar to NSGA-II. After the sorting, Pareto ranks are assigned, and individuals from initial non-

domination levels with higher Pareto ranks are selected directly as in NSGA-II (cp. Section 3.6.3.3).

However, to select points from final relevant non-domination level from which not all individuals

are allowed to survive, the crowding distance based selection is replaced with a modified Euclidean

distance from a dynamic reference point z∗. The dynamic reference point is determined as a mean

of maximum and minimum fitness values of the ROI points in the final relevant non-domination

level f ROI in each objective, as shown in Figure 4.3. Therefore, the dynamic reference point z∗ can

be formulated as

z∗
i = max( f ROI

i )+mi n( f ROI
i )

2
,∀i ∈ [1,m]. (4.1)

Figure 4.3: An example of dynamic reference point in ROI-NSGA-II invitation phase

Thereafter, a modified Euclidean distance between this dynamic reference point and each

point in final relevant non-domination level is computed after a normalization operation. The

normalization uses the difference between maximum and minimum fitness values of the ROI

points f ROI in each objective to weight them on a similar scale during the Euclidean distance

estimation, irrespective of their actual values. For an example final relevant non-domination level

P , the modified Euclidean distance di of an i -th point is calculated as

di ,ROI−N SG A−I I =

√√√√√ m∑
j=1

(
f i

j − z∗
j(

max( f ROI
i )−mi n( f ROI

i )
))2

. (4.2)

To select a desired number of points from the final relevant non-domination level, the points

are sorted based on the Euclidean distance from the dynamic reference point, and the desired
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number of points with minimum Euclidean distance is selected in the invitation phase. The genetic

operations on these selected points close to the dynamic reference point might produce many

offspring around the reference point within the ROI. Therefore, the invitation phase aggregates

many points into an ROI and thereby increases the search pressure within the ROI.

4.2.3 Phase III: Conquest

The invitation phase iteratively invites many points into an ROI until the required number of points

from the final relevant non-domination level can be selected entirely from the ROI. Thereafter,

ROI-NSGA-II switches to a third conquest phase. Similar to the other two phases, a non-dominated

sorting is performed, and points are selected directly from the initial fronts based on Pareto ranks.

Since a desired number of points from the final relevant non-domination level can be selected

directly from the ROI, the points outside of the ROI are discarded. Thereafter, a sorting operation is

performed based on fitness values, and a crowding distance is estimated only for the points within

the ROI. Finally, the required number of points is selected based on higher crowding distance

values.

A crowding distance based selection ensures diversity in selected points within an ROI. Therefore,

the search pressure is limited to the ROI but distributed simultaneously across the ROI. This

accelerates the convergence of points identified within the ROI and conquers optimal points

inside the ROI efficiently compared to a classical NSGA-II approach. During an optimization using

ROI-NSGA-II, these three phases may alternate depending on the number of points identified

within an ROI.

The three-phase approach in the ROI-NSGA-II inherits the properties of NSGA-II and guides the

optimization efforts into an ROI. However, irrespective of other methods which inherit NSGA-II

properties, our proposed ROI-NSGA-II requires only threshold values of each objective that define

an ROI as input from a decision-maker. In many real-world applications, this can be provided

efficiently to explore a desired ROI compared to other types of preference information. If the

threshold values are not provided for any of the upper or lower, or both of these bounds for an

optimization objective, the ROI-NSGA-II replaces these threshold values either with a maximum

or minimum fitness value identified in a final relevant non-domination level depending on the

type of threshold values. Therefore, if none of the threshold values are provided, the ROI-NSGA-II

directly moves into the conquest phase and works as classical NSGA-II. These properties make

our proposed ROI-NSGA-II approach scalable to different ROI sizes and adopt different types of

ROIs defined using threshold values. In general, ROI-NSGA-II approach is beneficial in real-world

applications such as approximate image processing where a decision-maker does not know a

Pareto-optimal front in advance, whereas acceptable threshold values are known for at least some

optimization objectives.

4.3 ROI-NSGA-II AxCGA

The ROI-NSGA-II AxCGA is similar to an NSGA-II AxCGA described in Chapter 3. The significant

difference is that the NSGA-II selection algorithm, which is the core part of the DSE in AxCGA, is
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replaced with the new ROI-NSGA-II selection algorithm. Since a designer has to specify the accept-

able threshold values for each objective in ROI-NSGA-II for a typical application, this information

has to be additionally provided during an application-specific initialization phase. Apart from that,

ROI-NSGA-II initializes and configures similar to the NSGA-II approach in the DSE experiments

and does not require any additional design changes.

In approximate image processing applications, a designer is often interested in analyzing the

quality-resource trade-off in a region between the quality of a reference implementation and

quality-threshold parameter Qth . The reference implementation quality is represented as either

minimum possible error or maximum possible quality in an application, depending on chosen

quality metric. For example, if quality is measured using PSNR, a reference quality value would

be ∞. In contrast, the quality of a reference implementation in ∆E is zero. An optimization

continuously improves towards this reference quality in approximate computing applications,

and the quality of evolved points cannot be better than this value. Therefore, a designer can

optionally skip specifying this second ROI bound corresponds to the minimum error or maximum

quality. In such case, the ROI-NSGA-II will replace this skipped value with the minimum error

or maximum quality identified in the final relevant non-domination level. This has the same

effect in the algorithm as specifying reference quality as one of the quality bounds in approximate

image processing applications. Therefore, the quality-threshold parameter Qth is more important

than the other ROI bound in the quality dimension. However, if a designer is not interested in

determining the quality-resource trade-off in a region close to the reference quality, both the

quality-threshold values must be specified in the ROI-NSGA-II AxCGA. Similarly, the minimum

possible resource utilization in the resource objective can also be optionally skipped since the

optimization can never reach a better point, and this value is also replaced with the minimum

resource consumption value identified in the final relevant non-domination level.

4.4 Case Studies

To demonstrate the effectiveness of the ROI-NSGA-II AxCGA, we considered both RGB to Y C bCr

conversion and display rendering application introduced in Chapter 3. The following sections

describe the ROI setup used in these applications and discuss the obtained results from ROI-NSGA-

II AxCGA. Additionally, the performance of the ROI-NSGA-II AxCGA is compared with the NSGA-II

based approach and the state-of-the-art autoAx approach.

4.4.1 Case Study 1: RGB to YCbCr Color Space Conversion

We initially performed ROI-NSGA-II AxCGA on RGB to Y C bCr case study described in Section

3.7.1. The DFG representation of the application, approximation techniques and parameters

used to generate candidate DFGs, DFG encoding, and employed genetic operations are the same

as described before. Similarly, our ROI-NSGA-II based DSE experiments also used the same

objective function as before, which minimizes power consumption of the design while maximizing

application quality as PSNR. In the initialization and setup phase, we employed the same per-

unit power consumption, toggle rate, and random samples of pixels extracted from the Color

Wheel image as the training dataset. We used the adaptive AxCGA version with all GA-specific
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initialization parameters same as before. Using a similar experimental setup allows comparison of

the results obtained from ROI-NSGA-II AxCGA with both the NSGA-II AxCGA and autoAx DSE.

4.4.1.1 ROI Setup

In ROI-NSGA-II AxCGA experiments, we additionally define an ROI, where a designer can select

useful design points in the RGB to Y C bCr application, during the application-specific initial-

ization phase. We chose the quality-threshold Qth as 30 dB since a PSNR of 30 dB and above is

considered acceptable in many image processing applications [14]. The points with PSNR values

below this threshold are irrelevant in this case study. Due to the maximization of the quality

objective in the DSE, this Qth = 30 defines the lower threshold f L
2=Q . We kept the upper threshold

f U
2=Q as None since we are interested in a region defined between this Qth and the maximum

quality. As described in the previous sections, the ROI-NSGA-II handles such cases by replacing

this value with the maximum quality value identified in the final relevant non-domination level

in each generation. In this case study, the maximum possible quality value is ∞ in PSNR, which

is approximated as 137.23 dB PSNR with a theoretical pixel difference of 0.5 in one channel for a

better numerical representation. In the resource objective, the upper threshold f U
1=R is defined

with the power consumption of the reference system R(r e f ), which is equal to 26.21 mW. Since

the resource objective is to minimize system power consumption, we selected f L
1=R as None in the

ROI-NSGA-II.

4.4.1.2 DSE Results

We repeated the ROI-NSGA-II AxCGA experiments 50 times independently to demonstrate the

consistency of results, and the obtained Pareto points from all these experiments are depicted in

Figure 4.5a. Since the ROI-NSGA-II AxCGA is only interested in points identified within an ROI, all

the points outside of this ROI are discarded from further analysis. The DSE experiments resulted

in 259.96 points on average within the ROI, spanning between 211 and 301 points in individual

experiments. We additionally replotted the points obtained from 50 independent experiments of

NSGA-II AxCGA and autoAx DSE described in Chapter 3 also in the same figure. However, all the

points outside the ROI are discarded from these results also since such points are not interesting

to the designer. On average, autoAx DSE identified 243.5 points per experiment within the ROI,

and NSGA-II AxCGA identified 246.78 points per experiment from 50 runs. From the figure, it can

be seen that the overall trend of points obtained from the ROI-NSGA-II experiments are visually

similar to the NSGA-II AxCGA experiments except in some regions. In contrast, the autoAx DSE

performs poorly in a region close to the maximum application quality.

4.4.1.3 Performance Comparison between ROI-NSGA-II, NSGA-II, and autoAx

To further compare the performance of each approach, we computed hypervolume values from

all independent experiments. However, we are interested only in the points evolved within the

relevant ROI. Therefore, we computed the hypervolume values of these ROI points using boundary

points as hypervolume reference. The hypervolume values estimated from the points within the

ROI are further referred as ROI-hypervolume and the reference point defined with the ROI bounds
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is further denoted as ROI-hypervolume reference in the following sections. An example of such

ROI-hypervolume computation is shown in Figure 4.4 in the case of a minimization problem.

In this study, we used a PSNR of 30 dB, representing the lower threshold in the maximization

Figure 4.4: Example of the ROI-hypervolume which is represented by the shaded area for Pareto
points P2 to P5 with respect to the ROI-hypervolume reference point

objective, and a power of 26.21 mW representing the upper threshold in the minimization objective

as the coordinates of ROI-hypervolume reference. In general, the ROI-NSGA-II based optimization

inherently tries to improve in the direction of counterpart thresholds of this reference point.

Figure 4.5b shows the average ROI-hypervolume values obtained from 50 independent experi-

ments of ROI-NSGA-II and NSGA-II AxCGA and autoAx DSE. Since the time required for a fitness

evaluation is multiple orders of magnitude higher than the execution time of the DSE algorithm,

100 iterations in autoAx DSE is considered approximately equivalent to a single AxCGA DSE gener-

ation which also includes 100 fitness evaluations. From the hypervolume plots, it can be seen that

the trend of both the ROI-NSGA-II and NSGA-II based AxCGA is considerably similar with final

ROI-hypervolume values 0.6004 and 0.5932. The reason for such a comparable ROI-hypervolume

is due to the fact that the ROI in the RGB to Y C bCr conversion includes most of the global de-

sign space identified in Figure 3.15. In contrast to the performance of both AxCGA versions, the

average ROI-hypervolume values obtained from autoAx DSE experiments are extremely poor, with

a final ROI-hypervolume value of 0.4774 since it failed to identify many of the points near the

maximum PSNR region. The average of maximum ROI-hypervolume obtained from autoAx DSE

can be obtained around 100 generations in both AxCGA versions. Overall, the ROI-NSGA-II AxCGA

outperforms NSGA-II based AxCGA consistently in a small margin from around 25 generations,

whereas both these approaches perform significantly better than the autoAx DSE.

4.4.2 Case Study 2: Display Rendering Pipeline

We ran the ROI-NSGA-II AxCGA on the display rendering case study described in Section 3.7.2.

The DSE objectives are selected as the same for ROI-NSGA-II AxCGA experiments to compare the

results obtained from these experiments with NSGA-II AxCGA and autoAx DSE results. In addition,

we used a similar experimental setup explained before, including approximation techniques and
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Figure 4.5: DSE results obtained within the ROI from 50 independent experiments on RGB to
Y C bCr conversion

parameters, genetic encoding and operations, GA-specific initialization, area and power model

parameters, and training images for the ROI-NSGA-II AxCGA experiments for a fair performance

comparison. The only difference is that the integration of the threshold values of ROI-NSGA-II is

required in the application-specific initialization of AxCGA, which will be described in the following

section.

4.4.2.1 ROI Setup

The perceivable color difference of human eyes defines the quality boundaries or the threshold

values in the display rendering application. The quality in display rendering application is mea-

sured as∆E , and the visual perception threshold of human eyes lies approximately at 2.15∆E [241].

Therefore, in ROI-NSGA-II AxCGA experiments, we chose ∆E of 5 as the quality-threshold in the

maximum(∆E) objective, which defines the worst case error from a single pixel and 2.15 ∆E as the

quality-threshold in the mean(∆E) objective. Since the optimization objectives are minimizing the

quality error and resource consumption, these quality-thresholds define the upper threshold of

the respective ROI. Any points having ∆E values above either of these quality-thresholds are not

interesting for a designer in this application. Therefore, the quality-thresholds are f U
2=maximum(∆E)

= 5 and f U
3=mean(∆E) = 2.15 for the ROI-NSGA-II. The ideal lower threshold of an ROI in case of

applications with error metrics as quality metrics is zero since the quality error from a reference

implementation is always zero. However, we kept the lower quality-thresholds f L
2=maximum(∆E) =

f L
3=mean(∆E) = None since this is equivalent to setting up to the zero error in ROI-NSGA-II. Similar to

the previous case study, the upper threshold in the power dimension is defined with the reference

power consumption, and the lower threshold is kept as None. Therefore, we chose f U
1=R = 57.82 and

f L
1=R = None in our experiments.
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4.4.2.2 DSE Results

To analyze the results consistently, we performed ROI-NSGA-II AxCGA independently 50 times

on the display rendering case study. The aggregated Pareto points from all these experiments

are shown in Figure 4.6a. The evolved points within the ROI from independent experiments

span between 483 and 894, with an average of 763.1 points per experiment. To further analyze

and compare the ROI-NSGA-II AxCGA results, we plotted the points identified within the ROI

from the 50 different experiments of NSGA-II AxCGA and autoAx DSE in the same figure. Based

on the evolved points from each approach, it can be seen that the points identified using ROI-

NSGA-II AxCGA are well converged and distributed throughout the ROI compared to the other

two approaches. Among the NSGA-II AxCGA and autoAx DSE, the points evolved from autoAx

experiments are better converged and densely populated compared to the NSGA-II AxCGA, except

the region close to the maximum quality where autoAx DSE failed to identify many points. Overall,

autoAx DSE identified 736.54 points per experiment within the ROI from 50 experiments, whereas

only 259.8 points were identified within the ROI on average in NSGA-II AxCGA.
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Figure 4.6: DSE results obtained within the ROI from 50 independent experiments on display
rendering application

4.4.2.3 Performance Comparison between ROI-NSGA-II, NSGA-II and autoAx

The average ROI-hypervolume estimated from 50 independent experiments of ROI-NSGA-II AxCGA,

NSGA-II AxCGA, and autoAx DSE are plotted in Figure 4.6b. From the figure, it can be seen that the

ROI-hypervolume values over the generations from ROI-NSGA-II AxCGA significantly dominate

both the NSGA-II AxCGA and autoAx DSE. The final ROI-hypervolume values are 0.2397, 0.2130,

and 0.2189, respectively, in each approach. While comparing the ROI-hypervolume values of NSGA-

II AxCGA and autoAx DSE, it is evident that the NSGA-II performs better than the autoAx DSE in
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initial generations. However, the autoAx DSE outperforms NSGA-II AxCGA from 346 generations.

In the display rendering application, the ROI size is very small compared to the overall design

space, and the ROI includes the knee of the quality-resource trade-off, where many possible points

can exist with slightly different parameter configurations. Therefore, autoAx DSE identified many

of such points and improved them using a neighborhood search method. In contrast, the search

pressure is equally distributed to the entire design space in NSGA-II AxCGA, which causes less

converged points and poor final ROI-hypervolume values within a small ROI. Overall, the final

average ROI-hypervolume obtained from NSGA-II AxCGA and autoAx DSE can be achieved with

64 and 104 generations, respectively, of the ROI-NSGA-II AxCGA. These performance values show

the scalability of ROI-NSGA-II approach to a desired ROI by maintaining both the diversity and

convergence within the ROI.

4.5 Comparison between Adaptive and Non-Adaptive ROI-NSGA-II

AxCGA

To demonstrate how well our adaptive GA hyperparameter approach performs on the ROI-NSGA-II

experiments, we further compare the experimental results of the ROI-NSGA-II AxCGA from both

the adaptive and non-adaptive versions. We use the experimental results shown in Figure 4.5

and Figure 4.6 for the adaptive ROI-NSGA-II AxCGA in RGB to Y C bCr conversion and display

rendering case study. Additionally, we ran experiments on these case studies with the non-adaptive

version of the ROI-NSGA-II AxCGA for performance comparison. The non-adaptive version uses

commonly-used GA hyperparameters such as pm = 0.3, pc = 0.7, µ = 50, and λ = 100 [232] in the

experiments. The following sections discuss the results obtained from these experiments.

4.5.1 Case Study 1: RGB to YCbCr Color Space Conversion

Pareto points obtained from 50 independent experiments of both adaptive and non-adaptive

ROI-NSGA-II AxCGA on the RGB to Y C bCr case study are shown in Figure 4.7a. Both approaches

identified a well-distributed set of Pareto points within the ROI, and the overall trends of these

points are closely comparable. However, in some regions, for example, the points identified

between 16 mW and 20 mW of power and in a region close to the lower quality bound of 30dB, the

adaptive approach identified better-converged points than the non-adaptive approach.

Comparing average ROI-hypervolume values between both approaches in Figure 4.7b, it can be

seen that the adaptive version outperforms the non-adaptive version with final ROI-hypervolume

values 0.6004 and 0.5908, respectively. However, overall trend of these curves is closely comparable

with average standard deviations(σ) 0.0132 and 0.0128 in adaptive and non-adaptive approaches.

4.5.2 Case Study 2: Display Rendering Pipeline

We ran non-adaptive version of ROI-NSGA-II AxCGA on the display rendering case study as well 50

times independently to compare the results with the adaptive version. The Pareto points evolved

from all experiments of both the adaptive and non-adaptive AxCGA are depicted in Figure 4.8a.

From the figure, it can be seen that the distribution of points obtained from both approaches is
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quite similar. A comparison of average ROI-hypervolume values over generations in Figure 4.8b

shows that the trend of optimization improvements in both approaches is also similar, with final

ROI-hypervolume values 0.2397 and 0.2385 and average standard deviations 0.0033 and 0.0038

in adaptive and non-adaptive AxCGA. Overall, comparing adaptive and non-adaptive AxCGA

results shows that the adaptive approach slightly outperforms non-adaptive AxCGA in terms of

final ROI-hypervolume values, even though the general performance can be considered quite

comparable.
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Figure 4.7: Adaptive and non-adaptive ROI-NSGA-II AxCGA results on RGB to Y C bCr conversion
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4.6 Summary

This chapter presents our three-phase ROI-NSGA-II selection method for concentrating the opti-

mization effort into an ROI defined by a designer. The first NSGA-II initialization phase identifies

initial points within the ROI and ensures a minimum guarantee of overall results that an NSGA-II

can deliver. Afterward, a second invitation phase with modified Euclidean distance selection

invites and aggregates many points into the ROI. Finally, a third conquest phase uses a crowd-

ing distance based selection within the ROI, which enhances the diversity and convergence of

identified points within the ROI. The novel ROI-NSGA-II is integrated into our AxCGA to avoid

spending DSE effort on finding irrelevant solutions in real-world approximate image processing ap-

plications. We demonstrated the usability of our ROI-NSGA-II AxCGA on both the RGB to Y C bCr

conversion and display rendering case studies. We compared the results of ROI-NSGA-II AxCGA

with NSGA-II AxCGA and state-of-the-art autoAx DSE in terms of average hypervolume values

computed from the evolved points within the ROI. The hypervolume values over generations show

that ROI-NSGA-II AxCGA achieved a higher final hypervolume within the ROI compared to both

the other approaches. Additionally, we identified that the performance gap between ROI-NSGA-II

and NSGA-II AxCGA narrows once the size of ROI increases, and this property demonstrates the

scalability of ROI-NSGA-II approach for various ROI sizes. Finally, we compared the average hy-

pervolumes obtained from both the adaptive and non-adaptive versions of ROI-NSGA-II AxCGA

to analyze the performance of each approach. Comparing the average hypervolume from both

approaches shows that the adaptive approach is marginally better than the non-adaptive version

in both case studies.
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CHAPTER 5
Verification and Validation of ROI-NSGA-II

This chapter demonstrates the functionality of novel ROI-NSGA-II approach on different opti-

mization benchmark problems and compares the performance with a relevant state-of-the-art

approach. Most of the experimental results are previously published in "Region of interest based

non-dominated sorting genetic algorithm-II: an invite and conquer approach" @ACM 2022 [25].

Therefore, figures and text used in this chapter are adapted and extended from this publication.

5.1 Introduction

Conventional optimization approaches such as NSGA-II explore an entire objective space, and

parameter constraints are often introduced to limit the search space and improve optimization

efficiency. However, such parameter constraints cannot be provided effortlessly and are usually tied

to the properties of an application. Therefore, a global optimization approach often wastes effort

to find irrelevant solutions outside of a preferred region in applications where a decision-maker is

interested in a region of interest. Addressing this issue, we proposed a novel ROI-NSGA-II, capable

of efficiently exploring a desired part of the design space, as described in Chapter 4. The ROI-NSGA-

II invites classical NSGA-II algorithm into a desired region using a modified dominance relation

and conquers solutions within this region using a modified crowding distance based selection. Its

potential in solving the problems is demonstrated in Chapter 4 using two approximate computing

case studies. However, the performance of ROI-NSGA-II on problems with various types of Pareto-

optimal fronts still needs to be investigated.

To verify and validate the performance of our ROI-NSGA-II on various problems, we consider a

set of MOO benchmark problems commonly used to examine new approaches. The Pareto-optimal

fronts of these problems are either continuous or disconnected, have different shapes, such as

convex or concave, and have different dimensions. Verification and validation of our proposed

approach in different types of problems help to demonstrate the effectiveness of our approach

beyond approximate computing applications. Additionally, the ROI-NSGA-II optimization results

on these problems are compared to one of the prominent state-of-the-art variants, namely R-

NSGA-II [242].
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The rest of this chapter is organized as follows. First, Section 5.2 gives formal definitions of

different benchmark problems and briefly describes the background of the state-of-the-art R-

NSGA-II approach. Thereafter, verification and validation results of ROI-NSGA-II on benchmark

problems are discussed, and the optimization results are compared with R-NSGA-II in Section

5.3. This section also includes performance comparisons of both approaches on the approximate

computing case studies. Finally, Section 5.4 concludes this chapter.

5.2 Background

This section formulates different MOO benchmark problems considered for performance analysis

and comparison in this thesis. Furthermore, the state-of-the-art R-NSGA-II approach is described

in short, and principle of Inverted Generational Distance (IGD), an additional performance indica-

tor used in this section, is also briefly described.

5.2.1 Multi-Objective Optimization (MOO) Benchmark Problems

For verification and validation of ROI-NSGA-II, we used three different two-objective Zitzler-Deb-

Thiele (ZDT) problems having distinct Pareto shapes [227], three Deb-Thiele-Laumanns-Zitzler

(DTLZ)2 problems with three-to-ten objectives, and a three-objective DTLZ7 problem with sparse

and disconnected Pareto front [261]. The following subsections explain each problem with its

specific parameters in detail.

5.2.1.1 ZDT Test Problems

Two objective optimization benchmark problems with different Pareto-shape are common in

evaluating the performance of various MOO algorithms. An ZDT test problem with two objectives

can be formulated in general as,

minimize: τ(x) = ( f1(x1), f2(x)), (5.1)

subject to f2(x) = g (x2, . . . , xn)h( f1(x1), g (x2, . . . , xn)),

x = {x1, . . . , xn}.

The function f1 depends only on the first variable x1 among n number of decision variables

in x, and the function g depends on the remaining n −1 decision variables from x2. Both the

function values f1 and g together define function value h. Therefore, different ZDT problems

exist depending on these functions, number of decision variables, and the range of values these

variables accept. This thesis considers three different ZDT test problems to evaluate and compare

the performance of our proposed ROI-NSGA-II.

ZDT1 Test Problem

The first ZDT1 test problem τ1(x) has a convex Pareto-optimal front and can be obtained from
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decision variables n = 30 using the following functions:

f1(x1) = (x1), (5.2)

g (x2, . . . , xn) = 1+9
n∑

i=2

xi

(n −1)
, (5.3)

h( f1, g ) = 1−
√

f1

g
, (5.4)

where xi spans between [0,1], and g (x) = 1 gives Pareto-optimal front for this test problem.

ZDT2 Test Problem

The ZDT2 test problem τ(x) is a non-convex version of the problem with n = 30 decision variables,

and the parameters and ranges are similar to the ZDT1 test problem, except the function h( f1, g ).

The h( f1, g ) of ZDT2 test problem is defined as

h( f1, g ) = 1−
(

f1

g

)2

. (5.5)

ZDT3 Test Problem

The ZDT3 test problem has a discrete Pareto front consisting of several non-contiguous convex

parts. Similar to other problems, the difference lies in the function h, where integration of a

sinusoidal function makes it disconnected.

h( f1, g ) = 1−
√

f1

g
− f1

g
sin(10π f1), (5.6)

5.2.1.2 DTLZ Test Problems

DTLZ is a benchmark problem suite with different types of MOO problems that are scalable to

a large number of objectives and decision variables. This thesis uses DTLZ2 test problems to

demonstrate the performance of ROI-NSGA-II on many objective problems and a DTLZ7 test

problem for demonstrating ROI-NSGA-II on a problem with three-dimensional disconnected and

sparse Pareto-optimal front. Each of these test problems is explained in detail below.

DTLZ2 Test Problem

DTLZ2 problems are often used to investigate the ability to scale up the performance of a MOO

algorithm with increasing number of objectives. An m objective DTLZ2 minimization problem can
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be formulated as

minimize: f1(x) = (1+ g (xM ))cos(x1
π

2
) . . .cos(xm−2

π

2
)cos(xm−1

π

2
),

minimize: f2(x) = (1+ g (xM ))cos(x1
π

2
) . . .cos(xm−2

π

2
)sin(xm−1

π

2
),

minimize: f3(x) = (1+ g (xM ))cos(x1
π

2
) . . .sin(xm−2

π

2
),

f3(x)
...

minimize: fm−1(x) = (1+ g (xM ))cos(x1
π

2
)sin(x2

π

2
),

minimize: fm(x) = (1+ g (xM ))sin(x1
π

2
),

where g (xM ) = ∑
xi∈xM

(xi −0.5)2, subject to 0 ≤ xi ≤ 1,∀∈ [1, . . . ,n]

(5.7)

The total number of variables is given as n = m +k −1, and the last k variables represent xM

in the above equation. The recommended value of k is k = |xM |= 10. Additionally, all individual

Pareto fronts in this many-objective front are required to satisfy
∑m

i=1 fi = 1, and the Pareto-optimal

solutions can be obtained using xi = 0.5,∀xi ∈ xM .

DTLZ7 Test Problem

DTLZ7 test problem has 2(m−1) disconnected Pareto fronts in an m-dimensional search space. This

is often used to test the capability of an algorithm to scale with complexity and maintain optimal

points in disconnected regions. A DTLZ7 minimization problem can be formulated as

minimize: f1(x1) = x1,

minimize: f2(x2) = x2,

f3(x)
...

minimize: fm−1(xm−1) = xm −1,

minimize: fm(x) = (1+ g (xM ))h( f1, f2, . . . , fM−1, g ),

where g (xM ) = 1+ 9

|xM |
∑

xi∈xM

xi ,

h( f1, f2, . . . , fM−1, g ), = m −
m−1∑
i=1

fi

1+ g
(1+ sin(3π fi )),

subject to 0 ≤ xi ≤ 1,∀∈ [1, . . . ,n]

(5.8)

In DTLZ7, a recommended value for k is k = |xM |= 20, and Pareto-optimal solutions can be

obtained with xM = 0.
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5.2.2 Reference Point Based NSGA-II (R-NSGA-II)

To compare our proposed ROI-NSGA-II with a prominent state-of-the-art approach, we select

R-NSGA-II, a variant of NSGA-II with modified survival selection instead of crowding distance

based selection [242]. In this approach, a decision-maker specifies one or more reference points

in the objective space as preference information. Initially, the R-NSGA-II also starts with a non-

dominated sorting selection similar to NSGA-II. However, from the final relevant non-domination

level where the NSGA-II selects individuals based on the crowding distance, the R-NSGA-II selects

based on a normalized Euclidean distance from the user given reference points.

For a given reference point z in an m-objective optimization problem, the Euclidean distance of

a point i is defined as

di ,R−N SG A−I I =

√√√√√ m∑
j=1

w j

(
f i

j − z j

f max
j − f mi n

j

)2

, (5.9)

where f is the fitness value of the point i with maximum fitness f max and minimum fitness f mi n

in the final relevant non-domination level, and w is a weight vector that can be used to bias some

objectives more than others. During the selection of points from the final relevant non-domination

level, first, points with the smallest Euclidean distance from each reference point are selected. With

an additional user-given parameter epsilon ε, the next set of points is selected, which are at least ε

distance apart from the initially selected points. This process continues until the required number

of points are selected.

Figure 5.1 illustrates an example Euclidean distance based modified survival selection in a two-

objective minimization problem. For the user-given reference points z1 and z2, two different

groups of points are identified.

Figure 5.1: Euclidean distance based modified survival selection in R-NSGA-II

The ε defines spread of the selected points and indirectly influences convergence as well. A high

value of ε leads to a broad set of points identified for each reference point, whereas a low value
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identifies points close to the Pareto-optimal with a lower spread. In the figure, Pareto front P2 with

a high ε2 leads to identifying more diverse and less converged points. In contrast, Pareto front P1

with a low ε1 contains more converged and less diverse points. A suitable set of reference points

with a careful selection of ε can, therefore, explore points within a specific ROI.

5.2.3 Inverted Generational Distance (IGD)

Since Pareto-optimal fronts are known in the benchmark problems, we used IGD [257] as an addi-

tional performance indicator together with hypervolume indicator to compute the performance

during the experiments. The IGD accounts for an average distance from all the points in the

Pareto-optimal front O = {o1, . . . ,o|O|} to the nearest identified Pareto point p ∈ P = {p1, . . . , p|P |}.
Therefore, the IGD computation can be formulated as

IGD(P ) = 1

|O|

√√√√ |O|∑
i=1

mi n(Oi −P )2 . (5.10)

Due to this average minimum distance computation, IGD values comprise both diversity and

convergence measures of evolved points. Figure 5.2 shows an example of Pareto-optimal front O

and nearby identified points P for each point in O.

Figure 5.2: A Pareto-optimal front O and nearby identified points P in an example IGD computation

5.3 Verification and Validation Results

This section presents verification and validation results of ROI-NSGA-II on different MOO bench-

mark problems. We additionally compare the performance of ROI-NSGA-II with the R-NSGA-II

on both the benchmark problems and approximate computing case studies. Since the principal

difference between these two approaches lies in the selection technique, we used a non-adaptive

version of GA with fixed hyperparameter values in all our experiments for comparison.

For benchmark problems, we employed standard genetic operations and parameter sets in our

experiments. A simulated binary crossover [259] with an index of 10 and a polynomial mutation
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[260] with an index of 20 are used as genetic operators. The population size µ is selected as 100, and

the crossover probability pc is set as 0.9. Due to fine-grain discrete fitness values in the benchmark

problems, we used a simple evolution strategy in which mutation occurs in every generation after

a crossover operation with a specified probability. However, other evolution strategies can also be

applied with a similar setup for the performance comparison. The number of generations Ng en is

selected as 500 to analyze the convergence process.

The proposed ROI-NSGA-II is compared to the R-NSGA-II based on average IGD and hypervol-

ume from 10 independent experiments. The higher hypervolume value is better, whereas the lower

IGD value is better in the performance comparison. For the ROI-NSGA-II, we initially selected an

ROI, and then the parameters for the R-NSGA-II are chosen from a few trials to target the same

ROI. However, more optimal choices might exist for these parameters, and determining these

values often needs extensive hyperparameter searches. In fact, with our proposed ROI-NSGA-II, we

overcome this hyperparameter search step by directly specifying objective thresholds to define the

desired ROI in the objective space. During the performance evaluation, we discarded the evolved

solutions outside of the ROI to compute both the IGD and hypervolume values. Therefore, we

considered only Pareto-optimal solutions within the ROI to compute the IGD values, and the upper

bound of the ROI is selected as the ROI-hypervolume reference point for the hypervolume calcula-

tions. All experiments are implemented in Python, and the benchmark problems are adopted from

the pymoo framework [258]. In addition, both the Pareto front and hypervolume computations are

implemented using the DEAP framework [223]. The following section describes the verification

and validation results of ROI-NSGA-II on each test problem.

5.3.1 Two-Objective ZDT Problems

This section shows the experimental results from three different two-objective 30 variables ZDT

test problems [227].

5.3.1.1 ZDT1 Test Problem

We consider ZDT1 test problem described in Section 5.2 in the first set of experiments. Since the

Pareto-optimum spans continuously between [0,1] in each objective, we chose an ROI with the

threshold values f L
1 = f L

2 = 0.2 and f U
1 = f U

2 = 0.5 in the experiments.

Figure 5.3a shows the points obtained from an ROI-NSGA-II experiment on the ZDT1 test

problem, and it can be seen that the Pareto solutions are accurately identified within the ROI.

Additionally, for the performance comparison, we used two R-NSGA-II test cases that target the

same ROI using different sets of reference points. Since the Pareto-optimal front is known for this

benchmark problem, we manually chose five equally spaced reference points from the Pareto-

optimal front. The experiments with manually chosen reference points are further denoted as

R-NSGA-II Test Case 1. Figure 5.3b depicts optimization results from an R-NSGA-II Test Case 1

experiment, and the chosen reference points are also highlighted. Similar to ROI-NSGA-II, the plot

shows that the R-NSGA-II Test Case 1 could also explore a set of points within the ROI.

In the first test case, the parameters, including the reference points, are carefully chosen in

a way that R-NSGA-II explores the same ROI defined for ROI-NSGA-II experiments. However,
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Figure 5.3: Experimental results on ZDT1 test problem with f L
1 = f L

2 = 0.2 and f U
1 = f U

2 = 0.5

a manual selection of these reference points is challenging in case of high dimensions or if a

decision-maker does not have any previous knowledge about the final Pareto-optimality. To handle

such a situation, we selected a strategy for an equal distribution of reference points within the

ROI. Initially, the center of ROI is estimated using boundary coordinates as f CROI = f L + f U− f L

2 .

Thereafter, two additional points for each objective i are computed within the ROI as f CROI ± f U
i − f L

i
3 .

The equally distributed points used for the R-NSGA-II experiments can be seen in Figure 5.3c. Such

experiments with equally distributed reference points are further denoted as R-NSGA-II Test Case

2. We ran the R-NSGA-II experiments with this setup, and the R-NSGA-II identified a similar set of

Pareto points within the ROI using the distributed reference points as well. The epsilon ε values

used for Test Case 1 and Test Case 2 are 0.007 and 0.02, respectively.

The performance comparison of each set of experiments over generations can be seen in Figure

5.3d in terms of average hypervolume values. In general, the ROI-NSGA-II shows a similar trend to

R-NSGA-II with both sets of reference points in ZDT1 problems. In addition, average IGD values

computed from final generation are reported in Table 5.1. From the table, it can be seen that

ROI-NSGA-II has 22.6% less IGD compared to the best performed R-NSGA-II Test Case 1. However,
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the order of magnitude of the IGD values obtained for all three approaches are small and in a

similar range. This indicates that both ROI-NSGA-II and R-NSGA-II perform well in ZDT1 problems

with a slight performance improvement on ROI-NSGA-II.

5.3.1.2 ZDT2 Test Problem

Similar to ZDT1, both objectives of ZDT2 spans between [0,1]. Therefore, we selected an ROI using

threshold values f L
1 = 0.3, f L

2 = 0.6 and f U
1 = 0.7, f U

2 = 0.85. For the performance analysis, we

manually selected five equally spaced reference points from the Pareto-optimal front for Test Case

1 and used equally distributed reference points in Test Case 2. The epsilon ε values are chosen as

0.0068 and 0.01, respectively, for R-NSGA-II Test Case 1 and 2.
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Figure 5.4: Experimental results on ZDT2 test problem with f L
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2 = 0.6 and f U
1 = 0.7 ,

f U
2 = 0.85

We ran the experiments 10 times for each approach, and the Pareto front obtained from a

randomly chosen ROI-NSGA-II optimization is depicted in Figure 5.4a. It can be seen that the ROI-

NSGA-II is capable of identifying the Pareto-optimal points within the specified ROI in non-convex

problem. We exclude the Pareto front plots from R-NSGA-II test cases since they are similar to

ROI-NSGA-II in ZDT test problems. In addition, Figure 5.4b shows the average hypervolume over

generation from each approach. Overall, all three approaches exhibit a similar trend with slight

variations in the initial generations based on the average hypervolume values, and convergence

is reached in all the approaches around 200 generations. Further analyzing average IGD values

in Table 5.1, we found that the IGD from the ROI-NSGA-II is 11.7% better compared to the best

performed R-NSGA-II Test Case 2.

5.3.1.3 ZDT3 Test Problem

ZDT3 test problem has a disconnected Pareto front, and one of the objectives spans between [-1,

1], whereas the second objective spans between [1, 0]. For the experiments with ROI-NSGA-II,

therefore, threshold values are chosen as f L
1 = f U

2 = 0.35, f L
2 = −0.7 and f U

1 = 0.7 to define a
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relevant ROI. Similar to previous experiments, reference points are picked manually from the

Pareto-optimal front as well as assigned with equal distribution within the ROI in each R-NSGA-

II test case. The epsilon ε values chosen for Test Case 1 and Test Case 2 are 0.0062 and 0.01,

respectively.
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Figure 5.5: Experimental results on ZDT3 test problem with f L
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1 = 0.7

Among 10 different ROI-NSGA-II experimental results, a randomly selected Pareto front is

depicted in Figure 5.5a. From the figure, it is evident that the ROI-NSGA-II is capable of extracting

the disconnected Pareto points within an ROI. Additionally, our proposed approach identified

points which are locally optimal within the ROI and not a part of the Pareto-optimal solutions

of the ZDT3 test problem. Therefore, ROI-NSGA-II can explore locally optimal points within the

regions where a designer is typically interested. We exclude Pareto front plots from R-NSGA-II

test cases here also due to their resemblance to the ROI-NSGA-II fronts. Similar to other ZDT

experiments, the performance of all three sets of experiments has a similar trend in terms of

average hypervolume values, as shown in Figure 5.5b. However, IGD from the ROI-NSGA-II is

10.4% less than the best performed R-NSGA-II Test Case 2.

5.3.2 Many-Objective DTLZ Test Problems

This section describes the experimental setup and results of ROI-NSGA-II on different DTLZ

test problems. We selected scalable DTLZ2 test problems with three, five, and ten objectives to

demonstrate the capabilities of our proposed ROI-NSGA-II on many-dimensional problems. In

addition, the DTLZ7 problem is also used to exemplify ROI-NSGA-II on a test problem with a

three-dimensional disconnected and sparse Pareto-optimal front [261].

In each test problem, we initially defined a feasible ROI for the ROI-NSGA-II experiment using

the upper and lower threshold values for each objective. Thereafter, we employed a set of equally

distributed reference points within the ROI to explore the desired region in R-NSGA-II experiments,

appending two additional reference points for each dimension. Hand-picking reference points

from the Pareto-optimal front in problems with high dimensions is often difficult. In addition,

the ZDT experimental results show that the average IGD values from both the R-NSGA-II test
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cases have a similar order of magnitude, and Test Case 2 with equally distributed reference points

outperforms Test case 1 in both ZDT2 and ZDT3 test problems. Therefore, we exclude the Test Case

1 of R-NSGA-II from the DTLZ experiments. Similar to ZDT experiments, the epsilon values are

also chosen to explore the whole desired region using a few preliminary trials.

5.3.2.1 Three-Objective DTLZ2 Test Problem

As a first three-objective test problem, we considered 11-variable DTLZ2 problem, which has a

three-dimensional non-convex Pareto-optimal front. The threshold values which defines an ROI

are selected as ( f L
1 , f L

2 , f L
3 ) = 0.4 and ( f U

1 , f U
2 , f U

3 ) = 0.7 in ROI-NSGA-II experiments. For R-NSGA-II,

we used equally distributed reference points and used epsilon ε as 0.1 from a few preliminary trials.
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Figure 5.6: Experimental results on three-objective DTLZ2 test problem with ( f L
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2 , f L
3 ) = 0.4 and

( f U
1 , f U

2 , f U
3 ) = 0.7

Figure 5.6a depicts a randomly selected Pareto front obtained using ROI-NSGA-II from different

experiments. From the figure, it can be seen that the ROI-NSGA-II is able to find Pareto-optimal

points within the ROI in the three-dimensional DTLZ2 test problem. Additionally, average hy-

pervolume from 10 independent experiments is plotted in Figure 5.6b, and it shows that the

ROI-NSGA-II has a slightly better final hypervolume than R-NSGA-II. Furthermore, Table 5.1 shows

that the ROI-NSGA-II has 23.1% better average IGD compared to R-NSGA-II results. Therefore, the

ROI-NSGA-II outperforms R-NSGA-II in the three-objective DTLZ2 test problem.

5.3.2.2 Three-Objective DTLZ7 Test Problem

To evaluate the performance of ROI-NSGA-II on a problem with a three-dimensional disconnected

Pareto-optimal front, we selected an 11-variable DTLZ7 test problem. The Pareto-optimal front

has four disconnected regions in the three-dimensional objective space. Therefore, we chose an

ROI, which includes at least some part of each of these regions to test the performance of our
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ROI-NSGA-II. The chosen threshold values for a feasible ROI are f L
1 = 0.1, f L

2 = 0.1, f L
3 = 4 and

f U
2 = 0.8, f U

2 = 0.8, f U
3 = 5.5. For R-NSGA-II experiments, the epsilon ε is selected as 0.1.
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The Pareto-optimal front from a randomly selected ROI-NSGA-II experiment is shown in Figure

5.7a. From the figure, it can be seen that the ROI-NSGA-II is capable of identifying points within

the ROI in the DTLZ7 problem with a disconnected three-dimensional Pareto-optimal front. In

addition, hypervolume comparison between ROI-NSGA-II and R-NSGA-II in Figure 5.7b shows that

the final average hypervolume in ROI-NSGA-II is higher than R-NSGA-II experiments. Similarly,

average IGD values of points obtained with ROI-NSGA-II is 37.00% better than the R-NSGA-II.

Once the optimization starts, ROI-NSGA-II takes a few generations to move from the initialization

phase and identify a first set of points within an ROI. As the number of objectives and problem

complexity increases, identifying this first set of points within the ROI requires more generations,

at least in some experimental runs. Since hypervolume values within the ROI in such runs are zero

until ROI-NSGA-II moves to the invitation phase, the average hypervolume from ROI-NSGA-II

experiments become lower in the initial generations. In contrast, reference points are supplied

in R-NSGA-II in a way that R-NSGA-II directly explores the desired ROI. Therefore, it finds points

within the ROI in the initial generations itself, which resulted in a higher average hypervolume in

the initial generations. However, at a later stage, the ROI-NSGA-II outperforms R-NSGA-II with a

higher average hypervolume and better final IGD values.

5.3.2.3 Five-Objective DTLZ2 Test Problems

We used 14 variables DTLZ2 test problem to demonstrate our ROI-NSGA-II on a five-objective test

problem. To define a feasible ROI, we selected lower threshold values ( f L
1 , . . . , f L

5 ) = 0.2 and upper

threshold values ( f U
1 , . . . , f U

5 ) = 0.7. The epsilon ε value for the R-NSGA-II is selected as 0.16. Figure
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5.8a shows optimization results from one of the ROI-NSGA-II experiments, and the ROI-NSGA-II

could extract diverse solutions across the ROI in DTLZ2 five-objective test problem.
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Figure 5.8: Experimental results on five-objective DTLZ2 test problem with ( f L
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1 , . . . , f U
5 ) = 0.7

Figure 5.8b shows average hypervolume values over generations from both the ROI-NSGA-II and

R-NSGA-II experiments, and it can be seen that the R-NSGA-II performs better than ROI-NSGA-II

until around 175 generations. As described in previous section, the ROI-NSGA-II requires more

generations in high dimensional problems to identify a first set of points within an ROI, which

lowers the average hypervolume in the initial generations. However, the ROI-NSGA-II hypervolume

increases significantly from around 175 generations and exceeds the final hypervolume by more

than 40.8% in comparison to the R-NSGA-II experiments. In addition, average IGD of ROI-NSGA-II

is 52.4% lower than the R-NSGA-II results. Overall, the ROI-NSGA-II performs better than R-NSGA-

II in the five-objective DTLZ2 test problem.

5.3.2.4 Ten-Objective DTLZ2 Test Problem

We analyzed the performance of our ROI-NSGA-II approach on a ten-objective DTLZ2 problem

with 19 variables. An ROI is defined with lower threshold values ( f L
1 , . . . , f L

10) = 0.2 and upper

threshold values ( f U
1 , . . . , f U

10) = 1.2. For R-NSGA-II experiments, we used an epsilon ε= 1.6 from

a few preliminary trials. Similar to other test problems, we repeated the experiments using both

approaches 10 times each on the ten-objective DTLZ2 problem. Figure 5.9 shows the Pareto front

obtained from a randomly selected ROI-NSGA-II experiment, and the ROI-NSGA-II is able to

extract well-distributed solutions within the ROI. As the number of objectives increases and the

number of solutions grows, the hypervolume computation becomes prohibitively long. Therefore,

we could not directly compare the hypervolume values of both approaches in this test problem.

However, we computed average IGD from both approaches, and the IGD of ROI-NSGA-II is 23.9%

better than the R-NSGA-II experiments.

Studies on the classical NSGA-II show that a non-dominated sorting and selection approach

struggles to maintain a well-distributed set of solutions in the final Pareto front in the ten-objective
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problems [262]. In contrast, our approach identifies diverse solutions by concentrating the ex-

ploration efforts into an ROI. However, we observed that the ROI-NSGA-II struggles to move into

the invitation phase if the selected ROI is too small. In such cases, ROI-NSGA-II requires more

generations until more than one point is found within the ROI. In the worst case, our ROI-NSGA-II

approach performs equivalent to the classical NSGA-II.

Table 5.1: Average IGD values from 10 independent experiments with ROI-NSGA-II and R-NSGA-II

Problem m ROI-NSGA-II R-NSGA-II

Test Case 1 Test Case 2

ZDT Test Problems

ZDT1 2 84.24×10−6 108.87×10−6 135.57×10−6

ZDT2 2 96.05×10−6 120.84×10−6 108.72×10−6

ZDT3 2 174.29×10−6 224.61×10−6 194.56×10−6

DTLZ Test Problems

DTLZ2 3 3.06×10−3 - 3.98×10−3

DTLZ7 3 30.22×10−3 - 47.96×10−3

DTLZ2 5 50.35×10−3 - 105.88×10−3

DTLZ2 10 538.96×10−3 - 708.25×10−3

5.3.3 Approximate Image Processing Case Studies

The performance of ROI-NSGA-II is already evaluated using approximate image processing case

studies such as RGB to Y C bCr color space conversion and display rendering application in
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Chapter 4. The proposed ROI-NSGA-II AxCGA could identify solutions within the desired ROIs

in both case studies more efficiently than both the autoAx DSE and NSGA-II AxCGA approaches.

We additionally use R-NSGA-II selection in this chapter, which incorporates designer preference

information into an optimization to compare the performance of ROI-NSGA-II on benchmark

problems. Therefore, this section briefly discuss the performance comparison between ROI-NSGA-

II and R-NSGA-II AxCGA on approximate image processing case studies.

We considered the same case studies and DSE setup as described in Section 3.7 for the perfor-

mance comparison. However, we selected non-adaptive AxCGA versions to compare ROI-NSGA-II

and R-NSGA-II approach with µ= 50 and λ= 100. The crossover and mutation probabilities are

set to commonly-used values of 0.7 and 0.3. Similar to previous AxCGA experiments, we chose to

terminate the DSE when at least 750 and 1000 generations have been performed in color space

conversion and display rendering case study. Since a designer does not know the Pareto-optimal

front in such real-world applications, suitable parameters for the R-NSGA-II to explore a specific

ROI cannot be supplied realistically. Hence, we used equally distributed reference points within

the ROI in the R-NSGA-II experiments. We selected epsilon ε= .0.05 and .0.01 for the color space

conversion and display rendering case study based on the preliminary results from a few trials

with different values. To ensure consistency of the results in these real-world case studies, we

repeated the experiments 50 times for both ROI-NSGA-II and R-NSGA-II AxCGA. To compare

the performance of both approaches, we computed average hypervolume over generations from

all the experiments using the evolved points within the ROI by keeping the upper bounds as

ROI-hypervolume reference. The IGD values cannot be computed in these problems due to the

unavailability of Pareto-optimal front.
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Figure 5.10: DSE results on RGB to Y C bCr conversion case study

Figure 5.10a shows the Pareto solutions obtained within the ROI using ROI-NSGA-II and R-NSGA-

II AxCGA from 50 independent experiments on color space conversion case study. From the plot, it

can be seen that both approaches are capable enough to identify the Pareto points within the ROI.
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Figure 5.11: DSE results on display rendering case study

However, average hypervolume values from 50 independent DSE runs in Figure 5.10b show that

the ROI-NSGA-II AxCGA clearly dominate R-NSGA-II AxCGA.

In the display rendering case study, we plotted the two-dimensional projection of solutions

obtained within the ROI from 50 independent DSE experiments in Figure 5.11a, which shows the

most relevant trade-off between power consumption and worst-case maximum ∆E . Even though

both approaches are capable of identifying solutions within the ROI, the average hypervolume

values of ROI-NSGA-II AxCGA in Figure 5.11b outperform R-NSGA-II AxCGA.

5.4 Summary

This chapter verifies and validates the performance of our proposed ROI-NSGA-II on various

test problems. We considered MOO benchmark problems with Pareto-optimal fronts that are

continuous or disconnected and have convex or concave shapes with different dimensions. We

compared the ROI-NSGA-II optimization results on these benchmark problems with a prominent

state-of-the-art R-NSGA-II approach. Since Pareto-optimal fronts are known in these problems,

we computed both IGD and hypervolume values for the performance analysis. Additionally, we

performed comparisons of both approaches on real-world approximate image processing case

studies. In contrast, only hypervolume values are used in real-world case studies due to the

unavailability of the Pareto-optimal fronts to compute IGD values. We additionally fine-tune the

parameters of R-NSGA-II with preliminary experiments to explore the same desired region for

a fair performance comparison. However, the experiment results show that the ROI-NSGA-II is

able to explore the desired region efficiently. The overall performance of the ROI-NSGA-II is better

than the fine-tuned R-NSGA-II approach in many objective benchmark problems and real-world

approximate computing problems, whereas the performance is closely comparable in two- and

three-objective benchmark problems.

134



CHAPTER 6
Conclusion & Future Work

Growing demands for hardware resources from modern-day applications inspire researchers to

reconsider traditional computing methods and open up the possibilities of approximate computing

that leverages application quality for resource benefits. Exploiting error resilience of applications,

this thesis proposes a framework called AxCGA that can combine multiple approximations on

FPGA-based image processing applications and efficiently performs DSE to determine the resource-

quality trade-off. This chapter briefly outlines the overall work performed in this thesis, including

the surveys presented on the state-of-the-art approximate computing methods and DSE flows, our

AxCGA framework, novel ROI-NSGA-II selection algorithm which improves the AxCGA exploration

efficiency, and the findings from our experiments and comparisons on two real-world applications.

Finally, the current limitations of our proposals are discussed, and future works to overcome these

limitations are also presented in the following sections.

6.1 Thesis Conclusion

Approximate computing is an efficient system design paradigm that overcomes the bottleneck

introduced by the increased resource demands of hardware systems in data-intensive applications.

Many approximate computing methods exist in the literature that address the resource demands

of such applications and can design systems with reduced area, lower power consumption, and

increased performance. The second chapter in this thesis includes a survey of different state-of-the-

art single-purpose approximate computing methods demonstrated well in isolation and classifies

distinct methods into four categories based on the targeted abstraction level, such as algorithm

or software level, memory level, circuit level, and device or transistor level. Such approximated

systems exploit the error resiliency of applications and trade-off the application quality for the

resource benefits. Therefore, these approximate computing methods are often parameterizable to

tune the strength of approximations and trade in application quality in a controllable manner.

Combining multiple approximations at different abstraction levels in an application can further

increase the overall design benefits. However, this stirs up two non-trivial problems, such as the

need for efficiently combining multiple parametrizable approximation methods in an application

and identifying the optimal parameter configuration that delivers the best resource efficiency
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compared to quality degradation in an application. Addressing these problems, many design

flows have been proposed in the literature that can combine multiple approximation methods and

optimize joint parameterization to determine the optimal parameter configuration. The second

chapter also outlines such general-purpose design flows and classifies them based on the employed

approximation strategies, targeted abstraction levels, used search heuristics and search types to

determine the optimal parameter configurations, and the target hardware platform. The relevance

of each of these approaches has already been demonstrated in different applications, and most of

these techniques can determine the quality-resource trade-off, allowing a designer to make suitable

design decisions. However, none of these methods simultaneously considers many significant

features such as approximations in multiple abstraction levels at the same time, efficiency and

effectiveness of the optimization approach that determines the quality-resource trade-off, and

architecture of FPGA. This often restricts the state-of-the-art design flows from maximizing the

exploitation of quality-resource trade-off in approximate image processing applications on FPGA.

In the third chapter, we introduce AxCGA framework that can efficiently combine multiple

approximations on different abstraction levels and optimally configure parameters for FPGA-

based approximate image processing systems. The proposed AxCGA uses a DFG-based approach

to combine multiple approximations methods in an application, where each node represents

a specific operation. In AxCGA, we replace such accurate nodes with relevant approximation

techniques from a pre-characterized library of approximate components and apply additional

methods such as precision scaling on an application level. However, this leads to the propagation

of approximation errors between the application nodes. We address this problem by globally

optimizing the joint parametrization from all the approximation nodes, which inherently consider

the propagation of error between the system components. This global approach indeed results in

an exponential increase of design space size with overall approximation parameters, and probing

all the parameter combinations to determine the resource-quality trade-off is prohibitively long.

To explore such complex design spaces efficiently with a fewer number of fitness evaluations and

determine the Pareto trade-off between the quality loss and resource benefits, we used a GA-based

metaheuristic and NSGA-II selection in AxCGA. The genetic encoding and operations proposed in

AxCGA consider the parameter interdependence to avoid the irrelevant fitness evaluations, and

the modular approach enhances the generality and reusability of our approach. Additionally, we

employ fast, simple, yet accurate models to accelerate the fitness evaluations during DSE. To avoid

time-consuming hyperparameter optimization in our GA-based approach, we introduced a novel

approach that adaptively supplies hyperparameters during the DSE.

This thesis considers a single-stage RGB to Y C bCr conversion and a three-stage display ren-

dering application, where the DFG nodes of the second stage are similar to the RGB to Y C bCr

conversion to demonstrate the applicability, modularity, and generality of our AxCGA. The first

RGB to Y C bCr conversion case study targets to maximize the application quality as PSNR while

minimizing the power consumption, whereas the second display rendering case study minimizes

the quality error as mean ∆E and maximum ∆E while minimizing the power consumption. For

both case studies, the execution of each AxCGA phase and the setup used in the DSE experiments

are described in detail. The experimental results show that the AxCGA determine a well-distributed

Pareto trade-off between the resource benefits and application quality in each experiment. A set
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of example solutions that satisfy an application-specific quality-threshold are synthesized for the

post-synthesis power estimation and tested for quality. It can be seen that the potential power

savings from these examples lie between 24.15% to 59.30% and 14.42% and 51.17%, respectively, in

the first and second case studies. Additional comparison between our novel adaptive GA approach

and non-adaptive approach shows a similar trend with slightly better average hypervolume values

in adaptive GA over the DSE generations. Finally, performance comparisons between AxCGA and

state-of-the-art autoAx based on an equivalent number of fitness evaluations show that our AxCGA

outperforms the autoAx DSE. The final average hypervolume values achieved by autoAx DSE in

750 and 1000 generations can be attained around 50 and 240 AxCGA generations, respectively, in

the first and second case studies.

Further analysis of the evolved Pareto points shows that the regions where a designer can select

the points for practical implementation vary in applications. For example, the useful region in an

RGB to Y C bCr conversion includes most of the design space, whereas, in the display rendering

application, it is small compared to the overall design space. Therefore, a global AxCGA approach

wastes the computational efforts to equally optimize the region outside of the useful region, espe-

cially in case of applications such as display rendering. To overcome this issue and concentrate the

optimization effort into an ROI defined by a designer, we propose a novel three-phase ROI-NSGA-II

selection method in the fourth chapter in which a designer has to specify ROI bounds additionally.

The first initialization phase of the ROI-NSGA-II starts with the classical NSGA-II selection and

identifies the first set of points. Thereafter, the ROI-NSGA-II moves to the invitation phase, which

aims to aggregate many points into the desired ROI without any diversity mechanism. In the final

conquest phase, the ROI-NSGA-II selection enhances the diversity and convergence of identified

points within the ROI. In approximate computing applications, bounds of ROI can be specified

directly from the quality-threshold and resource utilization of the reference implementation. The

other optional bounds of ROI are determined from maximum quality or minimum quality error

in the quality dimension and minimum possible resource utilization in the resource dimension.

We integrated the ROI-NSGA-II into the AxCGA, repeated the experiments on both case studies,

and evaluated the performance in terms of the average hypervolume of evolved points within

ROI. Overall, the hypervolume values show that the ROI-NSGA-II AxCGA outperforms both the

NSGA-II AxCGA and autoAx DSE in both case studies. However, the performance gap between the

NSGA-II and ROI-NSGA-II AxCGA narrows when the ROI size increases, which demonstrates the

scalability of our proposed ROI-NSGA-II approach. Using ROI-NSGA-II AxCGA, we also performed

a comparison of adaptive and non-adaptive approaches, and the results show that the adaptive

approach marginally outperforms the non-adaptive approach.

We finally tested ROI-NSGA-II on various optimization benchmark problems in Chapter 5 to

verify and validate our proposed approach. The benchmark set comprises two-objective ZDT test

problems with continuous or disconnected and concave- or convex-shaped Pareto-optimal fronts

and three- to ten-objective DTLZ problems. We compared the performance of the ROI-NSGA-II

with a relevant R-NSGA-II approach that can optimize an ROI after a time-consuming parameter

tuning. The experimental results show that the ROI-NSGA-II performs equally or marginally better

in two- and three-objective problems and significantly better in five- and ten-objective problems

137



Chapter 6 Conclusion & Future Work

and approximate image processing case studies compared to R-NSGA-II. Overall, the ROI-NSGA-II

improves AxCGA efficiency, and it can be applicable to generic optimization problems as well.

6.2 Future Works

The proposed AxCGA framework for approximate image processing on FPGA is demonstrated

well in real-world image processing case studies, and experimental results outline the potential

benefits of using our methodology. Integration of novel ROI-NSGA-II into the AxCGA makes our

DSE approach scalable to the desired regions, and the adaptive hyperparameter approach bypasses

time-consuming hyperparameter optimizations. However, many features can be appended to our

framework, further enhancing the applicability to different applications and supporting additional

approximation objectives. This section briefly describes the current limitations of our AxCGA and

the possibilities to overcome these in the future.

The current version of our AxCGA framework is restricted to pixel or data streaming applications

due to the simplicity of our resource models. We initially employed a divide and conquer approach

to estimate total FPGA resources and then computed the power consumption directly from these

resources. Therefore, our models cannot estimate power values accurately in an application

with feedback loops among system components. To overcome this restriction, a sophisticated

power model which could predict the power values from such applications can extend our AxCGA

to a wide range of image processing applications, including spatial image processing such as

filters or morphological operations. This extension could support many other signal-processing

applications also which often include feedback loops or retrospective communications.

Since the existing library of approximate components does not include system components

such as approximate dividers or comparators, the trade-off that AxCGA can exploit is limited in

applications with such components. Therefore, the component library can be expanded with

additional components from the literature to exploit the benefits of approximations on a diverse

set of applications. Similarly, with an extension of approximate components in the library and

resource models for other computing platforms, such as ASIC or GPU, the AxCGA can be easily

extended to these platforms also since the DSE part is independent of the target platform.

A further significant extension of AxCGA is the integration of the delay or latency as an approxi-

mate computing objective. The current version of AxCGA primarily aims to design energy-efficient

or area-efficient designs which satisfy the targeted timing constraints. However, many state-of-the-

art approximate computing DSE approaches support timing models to include the delay or latency

as a DSE objective. Therefore, integrating such models that can identify and estimate delay from

the critical path can further extend the suitability of our AxCGA to additional design requirements.

Many state-of-the-art approaches are integrated into the standard HLS workflows to generate

a DFG from a high-level description of an application. To further automate and reduce designer

interventions in the AxCGA framework, a similar approach can be adopted to extend automatic

DFG formation. Additionally, the component selection in AxCGA can also be automated with some

additional selection algorithm similar to the state-of-the-art approximate computing approaches

such as autoAx. Finally, the novel ROI-NSGA-II and adaptive GA approach need to be evaluated on

additional benchmark problems and compared with other promising approaches in the future.
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[252] E. Filatovas, A. Lančinskas, O. Kurasova and J. Žilinskas. A preference-based multi-objective

evolutionary algorithm R-NSGA-II with stochastic local search. Central European Journal

of Operations Research, 25(4):859–878, 2017. DOI: 10.1007/s10100-016-0443-x.

[253] K. Deb and A. Kumar. Interactive evolutionary multi-objective optimization and decision-

making using reference direction method. In Proceedings of the 9th annual conference on

Genetic and evolutionary computation, GECCO ’07, pages 781–788, New York, NY, USA.

Association for Computing Machinery, July 2007. ISBN: 978-1-59593-697-4. DOI: 10.1145/

1276958.1277116.

[254] K. Deb. Multi-objective Evolutionary Algorithms: Introducing Bias Among Pareto-optimal

Solutions. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary Computing: Theory

and Applications, Natural Computing Series, pages 263–292. Springer, Berlin, Heidelberg,

2003. ISBN: 978-3-642-18965-4. DOI: 10.1007/978-3-642-18965-4_10.

173

https://doi.org/10.1109/TEVC.2020.2987559
https://doi.org/10.1007/978-3-540-88908-3
https://doi.org/10.1007/978-3-540-88908-3
https://doi.org/10.1109/TEVC.2010.2041060
https://doi.org/10.1109/TEVC.2010.2041060
https://doi.org/10.15388/Informatica.2015.37
https://doi.org/10.1162/evco.2009.17.3.411
https://doi.org/10.1016/j.ejor.2008.07.015
https://doi.org/10.1007/s10100-016-0443-x
https://doi.org/10.1145/1276958.1277116
https://doi.org/10.1145/1276958.1277116
https://doi.org/10.1007/978-3-642-18965-4_10


Bibliography

[255] K. Deb and A. Kumar. Light beam search based multi-objective optimization using evolu-

tionary algorithms. In 2007 IEEE Congress on Evolutionary Computation, pages 2125–2132,

Singapore. IEEE, September 2007. DOI: 10.1109/CEC.2007.4424735. ISSN: 1941-0026.

[256] L. Li, F. Yao, N. Jing and M. Emmerich. Preference incorporation to solve multi-objective

mission planning of agile earth observation satellites. In 2017 IEEE Congress on Evolutionary

Computation (CEC), pages 1366–1373, San Sebastián, Spain. IEEE, June 2017. DOI: 10.1109/

CEC.2017.7969463.

[257] C. A. Coello Coello and M. Reyes Sierra. A Study of the Parallelization of a Coevolutionary

Multi-objective Evolutionary Algorithm. In R. Monroy, G. Arroyo-Figueroa, L. E. Sucar and

H. Sossa, editors, MICAI 2004: Advances in Artificial Intelligence, pages 688–697, Berlin,

Heidelberg. Springer, 2004. ISBN: 978-3-540-24694-7. DOI: 10.1007/978-3-540-24694-

7_71.

[258] J. Blank and K. Deb. Pymoo: multi-objective optimization in python. IEEE Access, 8:89497–

89509, 2020. DOI: 10.1109/ACCESS.2020.2990567.

[259] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex

Systems, 9(2):115–148, 1995.

[260] K. Deb and M. Goyal. A combined genetic adaptive search (geneas) for engineering design.

Computer Science and Informatics, 26(4):30–45, January 1996. ISSN: 0254-7813.

[261] K. Deb, L. Thiele, M. Laumanns and E. Zitzler. Scalable test problems for evolutionary multi-

objective optimization. In volume 112, pages 1–27. Eidgenössische Technische Hochschule

Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK), 2001.

DOI: 10.3929/ethz-a-004284199.

[262] K. Deb and D. Saxena. Searching for pareto-optimal solutions through dimensionality

reduction for certain large-dimensional multi-objective optimization problems. In Proceed-

ings of the World Congress on Computational Intelligence (WCCI-2006), pages 3352–3360,

Vancouver, Canada. IEEE, January 2006.

174

https://doi.org/10.1109/CEC.2007.4424735
https://doi.org/10.1109/CEC.2017.7969463
https://doi.org/10.1109/CEC.2017.7969463
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.3929/ethz-a-004284199

	Acknowledgment
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Scope of the Thesis
	Research Questions
	Contributions
	Publications
	Outline

	Related Work
	Single-Purpose Approximate Computing Methods
	Algorithm or Software Level Approximations
	Memory Level Approximations
	Circuit Level Approximations
	Device or Transistor Level Approximations

	General-Purpose Approximate Computing Methods
	SALSA: Systematic Logic Synthesis of Approximate Circuits
	SASIMI: A Unified Design Paradigm for Approximate Circuits
	ABACUS: Approximate HLS using Approximate Functional Units
	ASLAN: Synthesis of Approximate Sequential Circuits
	CGP: Approximate Computing using Cartesian Genetic Programming
	GRATER: An Approximation Workflow for FPGA Acceleration
	Approximate Computing Optimizations from Behavioral to Gate-Level
	SCALS: Statistically Certified Approximate Logic Synthesis
	Accelerator Synthesis Under Voltage Island Constraints
	autoAx: Automatic Design Space Exploration and Circuit Building
	CIRCA: Modular and Extensible Framework for Approximate Circuits
	ApproxFPGAs: ASIC-Based Approximate Arithmetic Components for FPGA
	AxHLS: DSE and HLS of Approximate Accelerators
	E-IDEA: Multi-Objective Application-Driven Approximate Design Method

	Summary and Discussion

	AxCGA: A DSE Framework for Approximate Computing Using Genetic Algorithm
	Introduction
	Problem Formulation
	Methodology Overview
	Approximate Component Library
	Application Models
	Resource Models
	Quality Model

	Design Space Exploration
	Approximate Computing as Multi-Objective Optimization (MOO)
	GA-based DSE Approach
	AxCGA DSE Overview
	Adaptive GA Hyperparameters
	AxCGA Runtime Complexity

	Case Studies
	Case Study 1: RGB to YCbCr Color Space Conversion
	Case Study 2: Display Rendering Pipeline

	Comparison between Adaptive and Non-Adaptive AxCGA
	Case Study 1: RGB to YCbCr Color Space Conversion
	Case Study 2: Display Rendering Pipeline

	AxCGA and autoAx DSE Comparison
	autoAx DSE
	Comparison between autoAx DSE and AxCGA

	Summary

	Region of Interest Based NSGA-II (ROI-NSGA-II) AxCGA
	Introduction
	ROI-NSGA-II Methodology
	Phase I: Initialization
	Phase II: Invitation
	Phase III: Conquest

	ROI-NSGA-II AxCGA
	Case Studies
	Case Study 1: RGB to YCbCr Color Space Conversion
	Case Study 2: Display Rendering Pipeline

	Comparison between Adaptive and Non-Adaptive ROI-NSGA-II AxCGA
	Case Study 1: RGB to YCbCr Color Space Conversion
	Case Study 2: Display Rendering Pipeline

	Summary

	Verification and Validation of ROI-NSGA-II
	Introduction
	Background
	Multi-Objective Optimization (MOO) Benchmark Problems
	Reference Point Based NSGA-II (R-NSGA-II)
	Inverted Generational Distance (IGD)

	Verification and Validation Results
	Two-Objective ZDT Problems
	Many-Objective DTLZ Test Problems
	Approximate Image Processing Case Studies

	Summary

	Conclusion & Future Work
	Thesis Conclusion
	Future Works

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

