®

Check for
updates

Efficient GPU Offloading with OpenMP
for a Hyperbolic Finite Volume Solver
on Dynamically Adaptive Meshes

Mario Wille! ® @, Tobias Weinzierl2®, Gonzalo Brito Gadeschi®*®,
and Michael Bader!(®)

1 TUM School of Computation, Information and Technology,
Technical University of Munich, Garching, Germany
{mario.wille,michael.bader}@tum.de
2 Department of Computer Science, Institute for Data Science—Large-scale
Computing, Durham University, Durham, UK
tobias.weinzierl@durham.ac.uk
3 NVIDIA, Munich, Germany
gonzalob@nvidia.com

Abstract. We identify and show how to overcome an OpenMP bottle-
neck in the administration of GPU memory. It arises for a wave equa-
tion solver on dynamically adaptive block-structured Cartesian meshes,
which keeps all CPU threads busy and allows all of them to offload sets of
patches to the GPU. Our studies show that multithreaded, concurrent,
non-deterministic access to the GPU leads to performance breakdowns,
since the GPU memory bookkeeping as offered through OpenMP’s map
clause, i.e., the allocation and freeing, becomes another runtime challenge
besides expensive data transfer and actual computation. We, therefore,
propose to retain the memory management responsibility on the host:
A caching mechanism acquires memory on the accelerator for all CPU
threads, keeps hold of this memory and hands it out to the offload-
ing threads upon demand. We show that this user-managed, CPU-based
memory administration helps us to overcome the GPU memory book-
keeping bottleneck and speeds up the time-to-solution of Finite Volume
kernels by more than an order of magnitude.

Keywords: GPU offloading - Multithreading - OpenMP -
Dynamically adaptive mesh refinement

This research has been supported by EPSRC’s ExCALIBUR, programme (projects
EX20-9, PAX-HPC and MGHyPE), by the German Ministry of Education and
Research (BMBF, project targetDART) and by Intel’s Academic Centre of Excellence
at Durham University. Supercomputing resources and support was provided by the
ARCHER2 UK National Supercomputing Service, the Erlangen National High Per-
formance Computing Center, Jiilich Supercomputing Center and CINECA. See the
Acknowledgements section for details.

© The Author(s) 2023

A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 65-85, 2023.
https://doi.org/10.1007/978-3-031-32041-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_4&domain=pdf
http://orcid.org/0000-0003-2567-643X
http://orcid.org/0000-0002-6208-1841
http://orcid.org/0000-0003-1138-3679
http://orcid.org/0009-0000-4334-1938
https://doi.org/10.1007/978-3-031-32041-5_4

66 M. Wille et al.

1 Introduction

GPUs are the workhorses of exascale: In exascale machines, the biggest per-
formance share is offered by multiple GPUs per node, being orchestrated by
modestly powerful CPUs. However, exascale simulation software also needs to
run efficiently on smaller machines, where more CPU-centric nodes are accom-
panied by few GPUs as accelerators for specific tasks. It is also not yet clear if
future top-end systems will continue to be GPU-centric.

Various orthogonal concepts to operate GPUs exist: (i) GPUs can be the
sole data owners [19], they can own parts of the data and be compute cores on
equal footing with the host cores [13,14], or they can be treated as offloading
devices providing services to the host for compute-heavy phases. (ii) GPUs can
be interpreted as a few devices with large internal concurrency, or they can be
read as compute units accepting many tasks concurrently. In this case, we either
split up the GPU internally or toggle between tasks. (iii) Finally, GPUs can
be associated statically to particular cores, or we can allow multiple cores to
share them. Simulation software is expected to navigate flexibly within these
dimensions, as it is not yet clear which paradigm will dominate the future. This
challenges the software’s design and parallelisation concept.

We study ExaHyPE [15], a wave equation solver that employs explicit time
stepping and dynamically adaptive mesh refinement (AMR) with Peano [20]. It
uses patches of cells constructed through octree-type AMR (cf. [6] and references
therein), and implements a Finite Volume scheme over these patches'.

ExaHyPE and Peano follow the MPI+X paradigm, i.e., we have many ranks,
each hosting several threads. Each thread can take Finite Volume patches and
offload them to the GPU. We work in a coupled multiscale and multiphysics
environment. As the physics, control, and algorithmic logic reside on the CPU
cores which in turn potentially needs access to all simulation data, the GPU is
used in offloading mode for the “number crunching”. This comes at the cost of
additional data movement between GPU and CPU [19].

To construct GPU compute kernels with a high computational load,
ExaHyPE provides the opportunity for the host to gather multiple of our patches
into a batch of patch update tasks which are handled in one rush on the acceler-
ator via one kernel call [22]. This way, one offload action potentially can occupy
the whole GPU. Yet, as we work with dynamically adaptive meshes, we do not
constrain at any point which core can access a GPU, and multiple cores poten-
tially may hit the accelerator simultaneously.

ExaHyPE’s reference implementation realises the offloading per thread via
OpenMP’s target constructs (cf. [10,18]). Our measurements suggest that the
major OpenMP implementations avoid race conditions on the GPU by locking
the GPU per data transfer: Whenever the runtime encounters a target map
clause or implicit data offloading, the target GPU is halted. This is a reasonable
design pattern to realise remote memory access in any system. Unfortunately, it

! Peano and ExaHyPE are available under a modified BSD license at https: //gitlab.
Irz.de/hpcsoftware /Peano.

https://gitlab.lrz.de/hpcsoftware/Peano
https://gitlab.lrz.de/hpcsoftware/Peano

Efficient GPU Offloading with OpenMP 67

introduces significant overhead and synchronisation. Developers face a triad of
challenges: To design compute kernels of sufficient load, to overlap computation
and data transfer, and to avoid that data is allocated or freed while computations
run. Our work presents data for the NVIDIA ecosystem, but we have observed
qualitatively the same challenging behaviour for core LLVM and AMD'’s offload-
ing. Similar results have been reported for pure CUDA [14].

We study two approaches tackling the latter two challenges: The first app-
roach reserves memory on the GPU upon demand, yet does not free it anymore.
Instead, it hands out pre-reserved memory to threads whenever they decide to
offload. As the memory ownership resides on the host, most synchronisation and
coordination can be handled there. The GPU is only interrupted whenever we
have to grow the pre-allocated memory. Approach number two relies on virtual
shared memory between the GPU and the host. Pre-allocated shared memory
regions are held on the host. Logical data transfers to the GPU become plain
memory copies on the CPU into the pre-allocated shared memory regions, while
the actual data transfer then is realised via the GPU’s page fault mechanisms.
The allocations on the host come along with overheads—offloading-ready data
for example, has to be aligned properly and requires the operating system to
physically allocate memory immediately—yet do not interrupt the accelerator.

Our studies suggest that it is reasonable to withdraw memory management
from the accelerator where possible and to assign it to the host [14]. Through
a host-centric realisation, we speed up some calculations by an order of mag-
nitude, without imposing a static offloading pattern of patches, huge patches,
fixed subtimestepping, or a distributed task/patch management [14,19]. Though
motivated by a real-world science case, we deliberately work with a worst-case
scenario—small kernels, a memory-bound numerical scheme, and an offloading-
only approach—to spotlight the challenges. Yet, we think that our techniques are
of relevance for a broad range of applications that require flexible GPU usage.

In Sects. 2, we sketch our software architecture and the science cases. Mea-
surements for a straightforward realisation with OpenMP’s map (Sect. 3) suggest
that we have to avoid the allocation and deallocation on the GPU. We introduce
a realisation of this approach in Sect. 4 before we provide experimental evidence
of the payoff (Sect. 5). A longer discussion of our approach in the light of exist-
ing implementations vs. fundamental challenges as well as some generic lessons
learned (Sect. 6) lead into an outlook closing the discussion (Sect. 7).

2 Science Case and Code Architecture

ExaHyPE’s [15] finite volume solver, which is now in its second generation,
accepts hyperbolic partial differential equations (PDEs) in first-order formula-
tion

aQ d

DoV P@Q+ Y Bi(Q)
i=1

9Q _

3 S(Q) with @ : R — RN, (1)

describing time-dependent wave equations. ExaHyPE offers a suite of explicit
time-stepping schemes for these equations: Finite Volumes (FVs), Runge-
Kutta Discontinuous Galerkin (DG) and Arbitrary high order using Derivatives

68 M. Wille et al.

(ADER)-DG (see [15,21]). Users are furthermore offered a set of solver ingredi-
ents from which they can pick to assemble their solver, while they can decide
which terms of Eq. (1) to employ within the numerical scheme of choice.

Science Case. Our ambition is to study gravity and non-standard gravity models
subject to strong solution gradients and solution localisation such as neutron
stars or black holes. Two particular flavours of Eq. (1) demand our attention:

The Euler equations yield a system of N = d + 2 non-linear PDEs which
describe the evolution of the scalar density, the scalar energy and the d-
dimensional velocity on a cosmological scale. We employ the textbook Euler
fluxes F in Eq. (1), while gravity enters the equations as source term S(Q)
with @ determined by the previous time step. B; = 0, i.e., there are no non-
conservative terms. Even though the governing PDE is non-linear, the arithmetic
intensity of the arising functions is low.

With Euler, small inhomogeneities in the initial mass density distribution
lead to a spherical accretion scenario: Gravity pulls more and more matter into
a few overdensity centres, such that the Hubble expansion is locally compen-
sated and we observe matter concentration instead of spreading out. Around
the accretion centre, the density eventually exceeds a critical threshold and we
obtain a shock which again pushes material outwards. It is an open question
to which degree the temporal and spatial shape of the arising expansion and
contraction horizons are preserved under non-standard gravity models [3,22].

Our second setup of interest results from a first-order formulation of the con-
formal and covariant Z4 (CCZ4) equations [1,8]. They are available for d = 3
only and model the evolution of the space-time curvature as a constrained wave
equation. Different to the Euler equations, gravity is not modelled via a (quasi-
)elliptic, Poisson-type term impacting some governing equations. Instead, we
evolve it explicitly. CCZ4 models gravitational waves as they arise from rotat-
ing binary neutron stars, but also describes the environment around static and
rotating black holes, i.e., singularities of the density concentration.

As we work with a first-order rewrite of CCZ4 to fit into the scheme of
Eq. (1), we have to evolve N = 59 equations. Common to all codes working
with variations of these equations (cf. [5,7,9,11], e.g.) is the observation that
the arithmetic intensity within the PDE evaluations is very high; leading even
to register spilling on GPUs [9]. In our first-order formulation (Eq. 1), this high
arithmetic intensity materialises in complex B; and S terms, while F'(Q) = 0.

Problem Statement 1. Both equations of interest require dynamic AMR as
they study strongly localised effects. Both have high computational demands, but
their compute characteristics are completely different.

Software Architecture. For the spatial discretisation of the computational
domain, ExaHyPE employs dynamically adaptive Cartesian meshes. It relies
on the PDE framework Peano [20] to realise them through a generalisation of
the popular octree approach: We embed the computational domain into a cube,
and then subdivide this cube recursively and locally. This yields, on the finest

Efficient GPU Offloading with OpenMP 69

subdivision level, an adaptive Cartesian mesh of cubes. The code thus falls into
the class of octree AMR, [6,14,19]. The grid structure can change at every time
step.

While the code base supports various numerical discretisations, we focus in
this paper on its straightforward Finite Volume solver with a generic Rusanov
Riemann solver: The code embeds p X p (2D) or p x p X p (3D) regular Cartesian
meshes which we call patches into each and every cube, i.e., we work with a block-
structured adaptive Cartesian mesh. This mixture of tree code and patches is
popular to obtain a reasonable arithmetic load relative to the mesh management
overhead (cf. [5,6,14,15,22], e.g.). The code base traverses through the mesh once
per time step and progresses each patch in time. For this compute kernel, the
actual update due to Eq. (1) is determined by the source term plus the flow
through the volume faces. These terms are injected by the user via a callback
mechanism. All other program logic including mesh traversal order, data storage
and parallelisation is hidden. Other codes have propagated such an “inject your
domain knowledge” before under the term Hollywood principle [20].

We employ three layers of parallelism: The domain spanned by the spacetree
is first decomposed into non-overlapping chunks with one chunk per MPI rank.
We cut the domain along a Peano space-filling curve (SFC) and hence end up
with connected subdomains with a good surface-to-volume ratio, i.e., limited
communication compared to compute load [2]. Next, we cut each MPI parti-
tion again into chunks along the SFC and deploy the resulting subdomains to
the CPU’s threads. We obtain hierarchical MPI+X parallelism where the threads
own subdomains. Bulk-synchronous processing (BSP) is the programming model
for the traversals, as the individual subdomain traversals are triggered at the
same time per time step. Realisation via MPI and OpenMP is straightforward.
In the context of quickly varying AMR, we however found this MPI+X paralleli-
sation algorithmically insufficient (similar to observations by Dubey et al. [6]),
as the domain decomposition on the threading side struggles to load balance.

Each thread, therefore, identifies within its subdomain patches to be deployed
as separate tasks: All the patches which do feed into MPI—these patches are
time-critical on supercomputers and they have to feed into MPI in-order—or
have to realise adaptive mesh refinement are directly executed throughout the
mesh traversals. The remaining patches are deployed as separate tasks. This
enclave tasking concept [4] allows us to balance out imbalances between threads,
i.e., within the BSP sections [16].

GPU Offloading. Furthermore, we can pool the tasks in a separate queue: We
wait until this queue contains ||Pgpy || enclave tasks (||Pgpu|| being a user-defined
threshold), and then deploy all patches within the queue in one rush to the GPU.
The arising compute kernels over batches or sets of patches make up our fourth
level of parallelism. Fifth, we note that our kernel implementations rely heavily
on data parallelism yielding vector concurrency.

We note that the pooling or batching of tasks allows us to write GPU compute
kernels that have very high concurrency [12]. The individual tasks within a
batch are, by definition, all ready tasks, i.e., can be processed concurrently,

70 M. Wille et al.

and all of them expose additional internal concurrency on top. Our concept
stands in the tradition of the enclave concept by Sundar et al. [17], who deployed
subdomains to Intel Xeon Phi coprocessors. However, we do not identify the
enclaves geometrically ahead of a mesh traversal—the “enclave” tasks enqueue
on the fly—but can fuse segments of enclaves on the fly whenever a task that
enqueues GPU tasks finds that the queue size exceeds the GPU threshold and
hence deploys a whole batch to the accelerator. This added flexibility allows
us to obtain large GPU offloading tasks even though the code might encounter
geometrically small enclaves scattered among the threads’ subregions.

Due to the processing in batches of size ||Pgpul|, a proper choice of ||Pgpyl||
should allow users to exploit all parallel potential of a GPU. Contrary to that, a
large |Pgpul| might imply that only a few batches become ready per time step
and can, potentially, overlap each other [14]. We thus aim for a small |Pgpul|
which is just about large enough to utilise the GPU efficiently. Let Nipreads
traverse their subdomain per node and produce tasks. Hence, up to Nihreads
might concurrently decide that they each would like to deploy a batch of ||Pgpul|
patches to the GPU. Many threads offload to the GPU simultaneously. A GPU
serves multiple cores.

Problem Statement 2. In EzaHyPFE, multiple threads offload to the GPU
simultaneously. Due to the dynamic AMR, the offloading pattern is not deter-
ministic or known beforehand.

3 A Realisation of GPU Offloads with target map

Let /CE”IC“QD, ICE‘JIC“?’D and ICSCZ4 describe the compute kernels of interest. Each
kernel takes the solution representation over a patch of p X p or p X p X p finite
volumes and returns the solution at the next timestep. When we benchmark
the whole patch update cycle of such an update, we actually measure the cost
including all data transfer, i.e., we measure

(RoFoKoAoP)Q(t)

where the operator P takes the solution Q(¢) and transports it to the GPU, while
R retrieves the solution and brings it back into the user memory. A allocates on
the device all temporary variables required by X, while F frees these memory
blocks. ExaHyPE works with sets of patches and therefore processes sets

{(Rofo/CvoP)Qc(t)} . (2)

c€[L,||Papull]

Realisation. Our plain realisation of the GPU offloading through OpenMP imple-
ments Eq. (2) as follows (also, cf. Algorithm 1):

1. The data per patch are stored en bloc in one large array of structures (AoS)
on the host, but the individual patches are scattered over the main memory
as we invoke the batched GPU kernel (cf. Eq. 2). We thus deep copy a list of

Efficient GPU Offloading with OpenMP 71

Algorithm 1: OffloadMap(||Pgpul|):

Offloads ||Pgpyl to the GPU using OpenMP’s map clause. First, patch and
temporary data are allocated on the host and the respective device pointers
are constructed. After offloading to the GPU, results are copied back to the
host and the data is freed.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Procedure offload map(||Pgpul|, host patch data):

mapped _pointers < allocate host(||Pcpul|)

for 1 — 0 to ||Pcpu|| do
patch data < host patch datal[i]
#pragma omp target enter data map(to:patch_data)
mapped _pointers|i| < omp_get_mapped_ptr(patch data)

end

temporary data < allocate host(||Pgpul|)

#pragma omp target teams distribute map(to:mapped_pointers)

map (alloc:temporary_data)
for i — 0 to ||Pgpul| do
‘ // Do computations on Finite Volumes
end
temporary data « free_host()
for 1 — 0 to ||]P)Gpu|| do
patch data < host patch datal[i]
#pragma omp target exit data map(from:patch_data)
end
mapped _pointers < free host()

{r

pointers to patch data to the device: A for loop maps each patch’s data onto
the device trough omp target enter data map(to:...). Due to the loop,
the kernel can handle arbitrary ||Pgpul|- The copying per se is trivial, as the
patch data is one large, continuous array of doubles. After that, we construct
the list of pointers on the GPU and befill it with the device pointers. For this,
OpenMP offers declare mapper constructs though we prefer to build up the
list of device pointers via omp_get_mapped_ptr.

For all temporary data that the kernel requires to handle the ||Pgpy|| patches,
we allocate one large block. There is only one Ajpg,, | allocation realised
through a map(alloc:...).

. The actual kernel invocation is an omp target block supplemented with a

distribute directive.

. We free all temporary data in one rush.
. With OpenMP’s map clauses, copying the GPU outcomes back into the host

memory is realised by a loop over the patches. We issue one omp target exit
data map(from:...) call per patch and time step.

We conceptually end up with the following realisation of Eq. (2):

map oF O{IC} oA O{Pmap .
}ceu,HPGPUm IPeroll cellPapul) IFerll }66[1"%"”01)
3

72 M. Wille et al.

Euler 2D (map): p = 172

H
2
L

H
Q
L
X

H
2
L
.

Time per FV update [s]

H

]
&
X

H

9
I3
X

2 4 8 16 32 64 128 256
Number of patches per kernel call ||Pgpyl|

BN 1 thread B 4 threads B 16 threads I 64 threads
B 2 threads EEE 3 threads BN 32 threads W 128 threads

Fig.1. Time per degree of freedom update for the 2D Euler equations with patch
size 17 x 17. We benchmark the throughput for different numbers of patches ||Pepul||
handled by each kernel invocation (x-axis). We also let different thread counts Ninreads
access the GPU at the same time (different bars).

The scheme mirrors batched linear algebra, where a matrix is applied to mul-
tiple right-hand sides in one sweep. Each kernel I has some internal concurrency
such as “loop over all faces” or “loop over all volumes”. The batching pays off, as
we obtain, on top of this, another outer loop over [1, |Pgpy/||] which we annotate
with OpenMP’s distribute. We leave it to OpenMP to distribute the patches
over the streaming multiprocessors (SMs) or to deploy multiple patches onto
one SM via multiple warps, while the SM threads are used to process all finite
volumes within a patch.

Ezxperimental Setup. To benchmark the offloading including all data transfers, we
disable all calculations on the host, we artificially ensure that all work between
the CPU threads is perfectly balanced, we make all cores use one GPU only, and
we disable MPI. Next, we vary the number of threads Nipreaqs Which offload to
the GPU simultaneously and let each thread deploy 100 patches, grouped into
sets of |Pgpul|- In the big picture, it translates to a setup where each GPU of
a compute node is governed by one MPI rank, in which multiple threads run in
parallel, flooding the GPU with offloaded tasks. However, real simulations barely
will encounter situations where all Nipreaqs threads offload exactly at the same
time. We focus on this worst-case constellation. It is a stress test.

Efficient GPU Offloading with OpenMP 73

All tests are run on the Alex cluster hosted by the Erlangen National High
Performance Computing Center (NHR). Each node of our testbed is equipped
with two AMD EPYC 7713 Milan processors (64 cores per chip) which accom-
modate eight NVIDIA A100 GPUs. Each GPU features 80 GB main memory.
Our experiments use the NVIDIA HPC Software Development Kit (SDK) in
the version 23.1 as well as the Compute Unified Device Architecture (CUDA) in
the version 12.0 as the underlying software stack. NVIDIA SDK’s collection of
compilers, libraries, and software tools supports OpenMP GPU target offloading
and OpenMP loop transformations as used by our compute kernels. However,

some features have to be used with care?.

Benchmark Results. For all different kernel variants as well as p choices, we get
qualitatively similar results (Fig. 1):

Observation 1. It is important to batch multiple patches into one GPU com-
pute kernel to exploit the hardware concurrency of the accelerator.

This is not a surprising observation once we take into account what hardware
concurrency current GPUs offer. Our data however showcase that we quickly run
into some saturation: Regardless of the number of threads used, the measured
time per finite volume update decreases until it starts to saturate from around
|IPapu|| = 16 patches. It barely pays off to merge more than |[Pgpyl|| = 16
patches for the two-dimensional Euler. With a patch size of 17 x 17 and 128
threads, the GPU becomes saturated by keeping around 5.24 - 10° finite volume
updates in flight at any point.

Observation 2. If we launch multiple kernels from multiple threads, the per-
formance of our straightforward implementation deteriorates.

In theory, spawning kernels in parallel from multiple threads should pay off
performance-wisely, as we can hide memory transfers of one kernel behind the
computations of another kernel that has already started to work. Tutorials
around the usage of streaming buffers or nowait (async) kernel launches exploit
this. Even as the threads start to offload at the same time in a stress test, we
should at least be able to scale up to the number of supported hardware streams.
Our data however show that simultaneously firing kernels to the GPU reduces
the throughput by at least two orders of magnitude. This is counterintuitive!

Observation 3. The cheaper a compute kernel, the more severe the impact of
concurrent data transfers.

For the three-dimensional Euler, |Pgpy|| = 8 is reasonable, while CCZ4 has
IPepu|| = 4 (not shown). As the saturation thresholds are lower, the penalties
for concurrent kernel launches kick in stronger for lower thread counts.

Rationale. While modern GPUs can manage several compute kernels in flight,
the maximum number of such kernels is relatively small, and each kernel launch

2 See https://doi.org/10.5281 /zenodo.7741217 for supplemental material.

https://doi.org/10.5281/zenodo.7741217

74 M. Wille et al.

introduces overhead. While this motivates why the code benefits from larger
IPcpul, it does not explain the penalties resulting from parallel kernel launches
from multiple threads. It does not explain the performance degradation once we
increase Ninhreads-

GPU offloading in OpenMP is realised through address mapping: The run-
time manages a table per accelerator which stores which addresses from the
CPU are mapped onto which GPU addresses including the corresponding mem-
ory sizes. From these data, the runtime can identify all reachable memory regions
on the accelerator. An allocation of a new memory region on the GPU inserts a
new entry into the device table. If an entry is removed, subsequent inserts will
be able to use the “freed” memory regions again.

If any thread accesses the memory table, the runtime first has to avoid races
with other threads. Secondly, the GPU itself might want to allocate GPU mem-
ory. Our kernels do not require dynamic memory, but it is not clear to what
degree the compiler synthesises this knowledge from the source code. Thirdly,
the GPU hardware can only read from page-locked host-pinned memory to copy
data from the host to the device. In general, memory passed to target map is
not page-locked. Therefore, additional staging is required. Our data suggest
that this triad of challenges makes the memory manager suspend all running
GPU kernels before it allocates or frees memory.

Observation 4. Memory allocations on the GPU are expensive and potentially
delay running kernels if multiple threads offload to the GPU concurrently.

We consider this final Observation 4 to be a flaw in GPU offloading runtimes.
To the best of our knowledge, it does not attract attention in current literature.

4 User-Managed Memory Management

To avoid memory allocations on the GPU, we propose to make the host the
owner of the memory blocks on the GPU which are used for host-GPU data
transfer. We propose to introduce a GPU memory manager [14], and we provide
two realisations of such a manager.

Algorithmic Framework. Let each rank hold one instance of a GPU memory
manager. Without loss of generality, we can assume that there is one manager
per host CPU, i.e., for all Nipreaqs threads sharing one GPU. If a code wants to
deploy a memory chunk to the accelerator, it allocates memory through the GPU
memory manager by passing the size of the memory chunk plus its address, as
well as a device number if multiple GPUs are hosted on one node. The allocation
routine returns a device pointer, i.e., an address that is valid on the respective
device. The GPU memory manager guarantees that the resulting device pointer
points to a valid device region that can be accessed consecutively from the call-
ing code. The counterpart of the allocation is a free which releases the device
memory. It is given another host address into which the GPU memory manager

Efficient GPU Offloading with OpenMP 75

dumps the kernel results. Access to the GPU memory manager is made thread-
safe through global semaphores—which is sufficient, as the map simply handles
out pointers.

Internally, the GPU memory manager hosts a hash map of tuples of integers
onto a sequence of tuples of device addresses plus a boolean marker:

M Nt x Nt (A x {T,1})7.

The key tuple represents the combination of the device number and memory
block size (to be allocated). When the code requests (allocates) memory on a
particular device of a particular size, we construct the key and study the image
in M which is a sequence of addresses on the device. Each address either holds
T which means that this address is currently in use. The manager may not hand
out this address again. If it is labelled with 1, then the address is not in use.

If the GPU memory manager can serve an allocation with an existing address
with the label L, it toggles the flag to T and returns the corresponding address.
If there is no address with L available—and notably if a key tuple points to an
empty list—it is the GPU memory manager’s responsibility to acquire new GPU
memory and then return the corresponding address. When memory is freed, the
manager retrieves the result from the GPU into the user address space that
is passed. After that, it sets the corresponding entry in M to L. As our com-
pute kernels rely on the managed memory, they can use the manager’s returned
pointers within target compute kernels by labelling them as is_device_ptr
and effectively avoiding the staging of host memory.

The algorithmic framework sketches a code utility that allocates memory
and hands it out upon demand. As it does not free memory but re-uses memory
blocks which are not in use anymore, we avoid repeated memory allocations.
Notably, we share pre-allocated data between different threads. The exact allo-
cation mechanism is subject to two different realisation flavours.

4.1 Data Pre-allocation on the GPU

A GPU-centric variant of the GPU memory manager acquires all memory
requested via omp_target_alloc directly on the GPU: If no free memory blocks
are held within M, we reserve GPU memory and store the GPU memory’s
address within the hash map. Whenever we identify a fitting pre-allocated mem-
ory region (or have literally just acquired memory), the manager transfers the
user data to the allocated memory via an omp_target_memcpy. Bringing data
back is another explicit omp_target_memcpy call (cf. Algorithm 2).

Employing the OpenMP API routines mirrors the behaviour behind the
map(alloc) and map(to) pragma clauses. Internally, the compiler breaks down
an omp target enter data map(to: ...) statement into (77 o .A)7 where
the A operator denotes the explicit memory allocation on the GPU via
omp_target_alloc which is followed by the actual data transfer.

76 M. Wille et al.

Algorithm 2: OffloadManaged(||Papul|):
Offloads ||Pgpy|| to the GPU using the managed memory approach. We
allocate patch and temporary data through the GPU memory manager.
After offloading to the GPU, results are copied back to the host and the
data handles are freed for re-use.
Procedure offload managed(||Pgpu||, host patch data):
patch data <« GPUMemoryManager—allocate device(||Pcpul|)
patch _data < omp_target memcpy(host patch data, |Papul|)
temporary data <« GPUMemoryManager—allocate device(||Papul|)
#pragma omp target teams distribute is_device_ptr(patch_data,
temporary_data)
for i — 0 to ||Pepul| do
‘ // Do computations on Finite Volumes
end
temporary data <« GPUMemoryManager—free()
10 host patch data < omp target memcpy(patch data, |Pcpul|)
11 patch data «— GPUMemoryManager—free()

U W

© N o

Compared to Eq. (3), the present GPU memory manager variant eliminates,
in most cases, the allocations, while we omit the frees. In all cases where our
pre-allocated memory regions can serve the user code requests, we reduce the
actual kernel invocation cost to

{RC"py}ce[o,\c\fu ° {K}ce[o,mﬂ] ° {Pcopy ° A}ce[o,lmfll’ W

where A is a no-operation. Only in the cases where we cannot serve a memory
request with pre-allocated memory blocks, A becomes an actual A. As the F
and A operations halt the GPU temporarily, we obtain a fast code stripped of
these stops. Solely the orchestration overhead to launch the batched compute

kernel for {K}ce[o C]-1] remains.

4.2 Pre-allocation on the CPU with Unified Memory

Our second approach works on GPUs which offer unified memory. In this case,
we exploit that the GPU has full access to the host address space and that the
hardware can migrate pages from the main memory via page faults to the CPU
upon demand. GPU and CPU form one NUMA domain.

On such systems, it is possible to replace all memory allocations with a
shared allocation, i.e., to enable the system to migrate any data automatically
between host and accelerator. However, such allocations differ from “normal”
allocations in that they induce particular memory layouts and arrangements.
Even though the NVIDIA software stack allows developers to enable this CUDA
Unified Memory globally at compile time through a flag, we refrain from using it
globally, as it is not compatible with static memory regions employed for global
constants, e.g. Instead, we distinguish the allocation on the GPUs A from an

Efficient GPU Offloading with OpenMP 77

allocation A%"**d on the CPU which allocates memory that can be transferred
to the GPU. For the latter, we introduce the memory copy operators Chost—shared
and Cshared—host \While P transfers data directly to the GPU, both C operators
copy data on the host from a “normal” memory region into a region that can
be migrated to the GPU upon demand. They are plain CPU memory copies
between two memory regions on the host.

Whenever the GPU kernel accesses a unified memory region that resides on
the host the access might page fault and trigger a page migration to the GPU
which we denote as PP! with pf for page fault. Moving data back would be RPf.
With this formalism, our kernel launch becomes

{CsharedHhost o Rpf} o {’C o pr} o {ChostHshared})
cel0,|C|-1] c€l0,|C|—1] c€l0,]C|—1]
()
Initially, we simply copy our data on the host. This is cheap compared to the
data transfer to the GPU. Notably, nothing stops multiple threads to copy their
data in parallel, once the GPU memory manager has identified or created well-
suited shared memory blocks. Immediately after that, we launch the kernel. In
RAM, the algorithmic latency caused by memory transfers is significantly lower
than in our previous managed approach, while the bandwidth is usually higher.
While the kernel launches immediately, it has to retrieve data from the host via
page fault PPf. The actual data transfer is prolonged yet has the potential to
delay the kernel execution. However, it is realised in hardware, and the GPU is
good at orchestrating such data transfer. Getting data back is again a relatively
cheap host-internal memory transfer which might however trigger data transfers
RPf back from the GPU. There might be additional latency here, though the
GPU hardware might also trigger the corresponding page faults ahead of time.
Technically, the second variant is close to trivial: We take the first managed
approach and replace the OpenMP memory allocations with NVIDIA’s CUDA
allocations. The OpenMP data copies become plain C+- memory copies.

5 Results

We first benchmark the three-dimensional Euler equations and the CCZ4 setup
where the offloading’s data transfer is organised via a plain map. A fixed total
number of patches is split into chunks (batches) of |[Pgpy| and offloaded con-
currently by the threads to the GPU. We vary the thread count Nipyeads- This
is a classic strong scaling setup that again simplifies real-world simulation runs
where the Nipreads: [|[Papu|| patches never become available in one rush. The total
number of patches used is empirically chosen such that the average runtime per
patch becomes invariant, i.e., the experimental setup avoids burn-in effects.
Our data (Fig.2) confirm that both bigger patch sizes p and higher number
of patches per batch ||Pgpyl|| pay off performance-wisely. However, the size of
the individual patches is the more decisive performance lever: We can distribute
a batch of patches over the GPU streaming multiprocessors but if the individual
patch is very small, the batching is not able to close the performance gap to

78 M. Wille et al.

. 3 . 3
Euler 3D (map): p=15 CCZ43D (map): p=5
107 107
Q Q
2 =
=]
= 107° = 107
5 55
£ £
o 1077 o 107
5% %
2 a,
[} [
g]
o107 = 10
—— |Pepull=1 —o— |Fopull=4 —*— |Papyl =16 —— |Pepul|=1 —e— |Fepull=4 —*— [Papyl =16
—— |Pepull=2 —@— |Popull=8 === |Papyl =32 —— |Pepul| =2 —@— |Popull=8 === [Papyl =32
1077 1077
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
N, threads N, threads
. 3 . 3
Euler 3D (map): p=9 CCZ4 3D (map): p=9
10 10°°
] Q
g g
= =
= 107" = 10
= =
> ’\\’Q’/\a&: =
= 10774 _ =] = 10”
o —= =
|5 |53
2, 2,
2 [
g g
&= 108 & 10-
—— |Pepull=1 —o— |Pgpul|=4 —— |[Pcpull =16 —— |Pepul|=1 —*— [Pepull=4 —— [Pgpyl =16
—— |Pepull=2 —=— |Fpul|=8 —*— |Ppyl =32 —— |Pepul|=2 —=— |Fepul|=8 —*— [Papyl =32
1077 107°
1 2 1 8 16 32 64 128 1 2 1 8 16 32 64 128
N, threads N, threads

Fig. 2. Time per FV degree of freedom (volume) update for three-dimensional Euler
(left) and CCZ4 (right). Lower is better. Each patch either hosts 5% (top) or 9* (bot-
tom) Finite Volumes along each Cartesian coordinate axis. All data transfer is realised
through OpenMP’s map clauses (cf. Sect. 3).

a run employing big expensive patches right from the start. In any setup, the
Ninreads hold Ninreads*||Papul|-p? finite volumes in flight on the GPU. While this
corresponds to a reasonable memory footprint for CCZ4 with its 59 unknowns
per volume—we also have to allocate temporary data for the non-conservative
fluxes in all three directions plus the source term—the saturation for ||Pgpull ~ 8
is reached early.

All measurements confirm that offloading to the GPU simultaneously from
many threads comes along with a significant performance penalty. If we split up
the total work equally among the threads and deploy the batches concurrently,
the throughput relative to the threads plateaus quickly and eventually rises
again. Indeed, we see a speedup if and only if the number of offloading threads
is small, and if we offload only a few patches per batch.

When we rerun the experiments with our GPU memory manager, we dra-
matically improve the robustness of the concurrent offloading (Fig. 3). Batching,
i.e., large |Pgpu||, and reasonably large individual patches aka p remain key
performance ingredients, but concurrent offloading can help robustly to improve

Efficient GPU Offloading with OpenMP 79

Euler 3D (user-managed): p = 5° CCZ43D (user-managed): p = 5°
1077 1077 4
= 10 \‘\‘\o-\,/“'/ R
107 \M/ 107
15 %
2 =
: \P/ S
g g
&= 108 =10
—— [Farl =t —— [Farull=t —— [Parul =16 —— [Farul =l —— [Fapull=t —— [[Parull =16
—— [Borul =2 —— [Bopull =8 —— [[Parul =32 —— [Parul =2 —— [Bopull =8 —— [[Parull =32
.
1 1 2 4 8 16 32 64 128 1 1 2 4 8 16 32 64 128
N threads N, threads
Euler 3D (user-managed): p = 9° CCZ4 3D (user-managed): p = 9°
1077 107" 4
o o
= =
= 107 =Z 10764
= =
£ £
L 107 \// g 1077y
|5 |5
o (=8
< o
g g
& 10- & 10-
—— [Barul =t —e— [Bapull=t —— [[Parul =16 —— [Parul =l —e— [Bopull=t —— [[Parull=16
—— Porul =2 —=— [Porull =8 —— [Porull =32 —— [Porul =2 —=— [Porull =8 —— [Porul =32
107 107
1 2 1 8 16 32 64 128 1 2 4 8 16 32 64 128
N threads N threads

Fig. 3. Experiments from Fig. 2 with our user-managed memory (cf. Sect. 4.1).

performance. Robust here means that the gain through multi-threaded offload-
ing might eventually plateau, yet, we do not pay a performance penalty. Given
enough threads that access the GPU at the same time, setups employing smaller
|IPepu|| match the throughput of setups with large |Pgpul|- We also see that
the best-case throughput becomes independent of the p-choice.

Once we replace our manual copies with pre-allocated GPU memory using
CUDA unified memory, concurrent offloading to the GPU yields no performance
improvement anymore and overall runtime suffers (Fig. 4). With CUDA unified
memory, we postpone the data movement penalty to the point when the data
is actually required. As the data access is spread out temporarily, bandwidth
demands are spread out, too. This however does not manifest in better perfor-
mance. Notably, it stops us from profiting from multiple threads which offload at
the same time—we assume that the interconnect is kept busy by a single kernel
already and multiple kernel launches interfere and compete with each other.

We provide full details on how to reproduce the results presented in this
paper on https://doi.org/10.5281 /zenodo.7741217.

https://doi.org/10.5281/zenodo.7741217

80 M. Wille et al.

Euler 3D (CUDA-unified): p = 5° CCZ4 3D (CUDA-unified): p = 5°
1073 107 ‘\\o—o——k——‘//"/‘
)) ‘\-/.—._.__/.___.—.
= =
=" %—K\/ z. \’\/_;*:/
g g
o 1077 o 107
5% %
& 2,
g g
g]
o107 = 10
—— [Porull =1 —e— [[Forul =4 —— [Paru] =16 —— [Porull =1 == [[Forul =1 —— [Paru] =16
—— [Porul =2 —=— |[Popyl =8 —*— [Poru| =32 —— [Parul =2 —=— |[Ppyl =8 —*— [Popu] =32
L -5
1 1 2 4 8 16 32 64 128 v 1 2 4 8 16 32 64 128
N threads N threads
Euler 3D (CUDA-unified): p = 9° CCZ4 3D (CUDA-unified): p = 9°
o 107" o 10°° pe— Ja—
2, 2, _—
© [
= =
= =
S
o 10774 107
o o
o (=9
o [
£ E
&= 108 & 10-
—— [Porul =1 —e— [[Bepull =t —— |Pcrul =16 —— [Porull =1 —e— |[Perul =1 —— [Pcpu] =16
—— [Pyl =2 —=— |[Popul =8 —*— [Popu| =32 —— IPorul =2 == |[Popull =8 —— [Parul =32
107 107
1 2 1 8 16 32 64 128 1 2 1 8 16 32 64 128
N threads N threads

Fig. 4. Experiments from Fig. 2, using CUDA-unified memory (cf. Sect. 4.2): The GPU
memory manager accepts data that has to be offloaded and packs it into unified memory
on the host. It is then the responsibility of the CUDA runtime to bring the data from
shared managed memory regions into the GPU.

6 Discussion and Conclusions

Our observations, proposed solutions, and runtime measurements allow us to
draw conclusions for our algorithms as well as the used runtime:

Tasks of high computational load are important to exploit the concurrency
on modern GPUs, and batching is one technique to construct such tasks while we
stick to small patches (cf. Observation 1). With the concurrent offloading onto
the GPU through multiple threads, we eventually manage to make the best-case
throughput of this combination independent of p, and we are able to reduce
the minimal batch size ||Pgpul|. Yet, a reasonable value continues to depend
on the algorithmic fingerprint of the underlying PDE. We assume that other
discretisations such as DG have a major impact here, too.

The insight contradicts the rule of thumb knowledge which suggests that an
efficient GPU utilisation becomes impossible in the presence of a totally adaptive
AMR with tiny patches. If we employ tiny patches where the meshing has to
track data flow and dependencies between small Cartesian meshes, the stream-

Efficient GPU Offloading with OpenMP 81

ing compute properties per patch are not sufficient to keep a GPU busy [14].
However, small patches, i.e., small p-values in our case, are key to efficient AMR
in an algorithmic sense: Large patches constrain the AMR, as we cannot rep-
resent rapid resolution changes accurately. They hence reduce the algorithmic
efficiency, i.e., invested cost per numerical accuracy.

Conclusion 1. The combination of parallel offloading, user-managed GPU
memory, and batching yields a fast GPU code that works with relatively small
patches.

Indeed, our approach abandons the concept of a geometric “streamability” and
instead translates this idea into the data space: Patches are batched into sets
that can be processed in a streaming fashion, even though there might be no
geometric correlation between those patches.

Our data suggest that OpenMP GPU offloading is vulnerable to concurrent
access by multiple threads. Our GPU memory manager mitigates this shortcom-
ing and renders Observations 2 and 3 invalid. It is not clear if the need for it
(cf. Observation 4) is a shortcoming of the employed GPU runtime or an intrinsic
property of any GPU runtime, as we obtained qualitatively comparable data for
LLVM and AMD’s runtime, too. We hypothesise that, as long as a GPU kernel is
allowed to make dynamic allocations, any GPU allocation has to be thread-safe
and hence introduces some synchronisation: To be thread-safe, any data transfer
to the GPU has to stop all running kernels to prevent them to make allocations;
unless the memory region for data exchange and the local heap is strictly sepa-
rated, or a compiler derives a priori if a kernel does not require dynamic memory
allocation and hence does not need to be stopped.

Conclusion 2. Multithreaded access to GPU offloading in combination with
dynamic memory allocation on the device requires special care on the program-
mer’s side and eventually benefits from a deployment of the GPU’s memory
management onto the CPU.

This argument gains importance for software which—in line with ExaHyPE—
deploys algorithmically irregular and unstructured operations such as AMR
administration to the CPU, yet keeps other data and work persistently on the
GPU [19]. It might notably gain weight in the context of local time stepping,
where patch interaction patterns quickly become challenging.

Conclusion 3. Our data do not support the idea that managed memory is a
competitive replacement for well-designed manual data migration of dynamically
allocated memory regions.

Our data yields “disappointing” results for managed memory, much in line with
disappointing data of cache architectures compared to algorithms which explic-
itly exploit write-through or streaming capabilities. However, we have exclusively
studied an offloading approach which requires dynamic allocations within the
managed memory, and we have used a code base which is likely PCle latency-
bound. In this context, we assume that managed memory in combination with
CUDA prefetching allows for significantly more elegant and faster code.

82 M. Wille et al.

7 Summary and Outlook

With the advent of more and more cores on the host and with more GPUs being
added to each node, in-depth analysis, and discussion around multi-threaded
accelerator usage is imminent. Our work orbits around flaws that we document
for the multithreaded usage of GPUs. Future versions of the employed OpenMP
runtimes might fix those flaws and supersede our user-defined memory man-
agement. Even so, any future runtime development has to be contextualised in
which way software operates GPUs:

Keeping data permanently on the accelerator [19] is beyond the scope of the
present studies, as we let our ExaHyPE solver construct worst-case stress tests
where each and every patch is offloaded to the GPU and eventually brought
back. In contrast, many simulation codes try to hold data on the GPU as long
as possible, i.e., let the GPU own the data, as the fastest data transfer is avoided
data transfer. Therefore, it remains relevant to assess to which degree data trans-
fer has to interrupt running GPU kernels. For our GPU memory manager, a fix
could imply that parts of the memory administration are deployed to the GPU,
i.e., that the GPU memory manager is distributed, too. We furthermore hypoth-
esise that kernels could continue to run despite threads offloading to the GPU
as long as the compiler is aware that no dynamic memory allocation is required
for these kernels, and as long as the compiler can derive the maximum call stack
size. No interaction with any dynamic memory management should be required.

Our work confirms that a GPU performs best if we deploy kernels with a
huge concurrency level. We achieve this through batching. As the strict rule of
lock-stepping comes to an end on the hardware side, we assume that smaller
and smaller batch sizes become feasible. In this context, it remains to be seen if
fewer restrictions on the lock-stepping side go hand in hand with the support of
more active kernels and how this affects the concurrent offloading to the GPU
from many threads.

Our GPU memory manager is basic and can be improved in many ways.
A canonical extension is garbage collection, e.g., [14]. Fundamentally new chal-
lenges arise from switching to a multi-process view: Once multiple ranks are
deployed per CPU—to accommodate multiple NUMA domains, e.g.,—our GPU
memory manager becomes a distributed memory allocator which requires cross-
process synchronisation and the coordination of multiple ranks requesting access
to the GPU’s pre-allocated memory at the same time. It remains open to which
degree future OpenMP runtimes can and will accommodate the requirement to
support multi-rank setups, and in which way they support a dynamic association
of GPU compute resources to these ranks.

Acknowledgements. This research has been supported by EPSRC’s ExCALIBUR
programme through its cross-cutting project EX20-9 Exposing Parallelism: Task Par-
allelism (Grant ESA 10 CDEL). It uses the code base Peano as supported through
ExCALIBUR’s project PAX-HPC—Particles At eXascale on High Performance Com-
puters (EP/W026775/1) and MGHyPE—An ExCALIBUR Multigrid Solver Toolbox
for ExaHyPE (EP/X019497/1). We appreciate the support by the German Ministry

Efficient GPU Offloading with OpenMP 83

of Education and Research (BMBF) via the project targetDART (16ME0634K), and
by Intel’s Academic Centre of Excellence at Durham University which allowed the
team to investigate into OpenMP GPU offloading as facilitated through OpenMP. We
also gratefully acknowledge support through the embedded CSE programme of the
ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk) under
grant no ARCHER2-eCSE04-2, and the scientific support and HPC resources pro-
vided by the Erlangen National High Performance Computing Center (NHRQFAU)
of the Friedrich-Alexander-Universitit Erlangen-Nurnberg (FAU) under the NHR
project PeanoMP. NHR funding is provided by federal and Bavarian state authori-
ties. NHRQFAU hardware is partially funded by the German Research Foundation
(DFG)—440719683. The authors acknowledge Jiilich Supercomputing Center for pro-
viding access to the JURECA DC Evaluation Platform. This work was completed in
part at the CINECA GPU Hackathon, part of the Open Hackathons program. Finally,
the authors would like to acknowledge OpenACC-Standard.org for their support.

References

1. Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and
covariant formulation of the Z4 system with constraint-violation damping. Phys.
Rev. D 85(6), 064040 (2012)

2. Bader, M.: Space-Filling Curves—An Introduction with Applications in Scientific
Computing. Texts in Computational Science and Engineering, vol. 9. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-31046-1

3. Bertschinger, E.: Self-similar secondary infall and accretion in an Einstein-de Sitter
universe. Astrophys. J. Suppl. Ser. 58, 39-65 (1985)

4. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for DG methods on
dynamically adaptive meshes. STAM J. Sci. Comput. 42(3), C69-C96 (2020)

5. Daszuta, B., Zappa, F., Cook, W., Radice, D., Bernuzzi, S., Morozova, V.: GR-
Athena+-+: puncture evolutions on vertex-centered oct-tree adaptive mesh refine-
ment. Astrophys. J. Suppl. Ser. 257(2), 25 (2021)

6. Dubey, A., Berzins, M., Burstedde, C., Norman, M.L., Unat, D., Wahib, M.: Struc-
tured adaptive mesh refinement adaptations to retain performance portability with
increasing heterogeneity. Comput. Sci. Eng. 23(05), 62-66 (2021)

7. Dumbser, M., Fambri, F., Tavelli, M., Bader, M., Weinzierl, T.: Efficient imple-
mentation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE
engine. Axioms 7(3), 63 (2018)

8. Dumbser, M., Guercilena, F., Képpel, S., Rezzolla, L., Zanotti, O.: Conformal and
covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order
reduction and solution with discontinuous Galerkin schemes. Phys. Rev. D 97,
084053 (2018)

9. Fernando, M., et al.: A GPU-accelerated AMR solver for gravitational wave propa-
gation. In: 2022 SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1078-1092. IEEE Computer Society (2022)

10. Huber, J., et al.: Efficient execution of OpenMP on GPUs. In: 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pp. 41-52
(2022)

11. Kidder, L., et al.: SpECTRE: a task-based discontinuous Galerkin code for rela-
tivistic astrophysics. J. Comput. Phys. 335, 84-114 (2017)

http://www.archer2.ac.uk
https://www.openacc.org/
https://doi.org/10.1007/978-3-642-31046-1

84

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Wille et al.

Li, B., Schulz, H., Weinzierl, T., Zhang, H.: Dynamic task fusion for a block-
structured finite volume solver over a dynamically adaptive mesh with local time
stepping. In: Varbanescu, A.L., Bhatele, A., Luszczek, P., Marc, B. (eds.) ISC
High Performance 2022. LNCS, vol. 13289, pp. 153-173. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07312-0 8

Peterson, B., et al.. Automatic halo management for the Uintah GPU-
heterogeneous asynchronous many-task runtime. Int. J. Parallel Programm. 47(5—
6), 1086-1116 (2018). https://doi.org/10.1007/s10766-018-0619-1

Qin, X., LeVeque, R., Motley, M.: Accelerating an adaptive mesh refinement code
for depth-averaged flows using GPUs. J. Adv. Model. Earth Syst. 11(8), 2606-2628
(2019)

Reinarz, A., et al.: ExaHyPE: an engine for parallel dynamically adaptive simula-
tions of wave problems. Comput. Phys. Commun. 254, 107251 (2020)

Schulz, H., Gadeschi, G.B., Rudyy, O., Weinzierl, T.: Task inefficiency patterns for
a wave equation solver. In: McIntosh-Smith, S., de Supinski, B.R., Klinkenberg,
J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 111-124. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85262-7 8

Sundar, H., Ghattas, O.: A nested partitioning algorithm for adaptive meshes on
heterogeneous clusters. In: Proceedings of the 29th ACM on International Confer-
ence on Supercomputing, ICS 2015, pp. 319-328 (2015)

Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.: Experience report: writing
a portable GPU runtime with OPENMP 5.1. In: McIntosh-Smith, S., de Supin-
ski, B.R., Klinkenberg, J. (eds.) IWOMP 2021. LNCS, vol. 12870, pp. 159-169.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85262-7 11

Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel and
efficient AMR on GPUs. In: SC 2016: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 621-632
(2016)

Weinzierl, T.: The Peano software—parallel, automaton-based, dynamically adap-
tive grid traversals. ACM Trans. Math. Softw. 45(2), 14 (2019)

Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER dis-
continuous Galerkin finite element schemes with a posteriori sub-cell finite volume
limiting. Comput. Fluids 118, 204-224 (2015)

Zhang, H., Weinzierl, T., Schulz, H., Li, B.: Spherical accretion of collisional gas in
modified gravity I: self-similar solutions and a new cosmological hydrodynamical
code. Mon. Not. Roy. Astron. Soc. 515(2), 2464-2482 (2022)

https://doi.org/10.1007/978-3-031-07312-0_8
https://doi.org/10.1007/s10766-018-0619-1
https://doi.org/10.1007/978-3-030-85262-7_8
https://doi.org/10.1007/978-3-030-85262-7_11

Efficient GPU Offloading with OpenMP 85

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Efficient GPU Offloading with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive Meshes
	1 Introduction
	2 Science Case and Code Architecture
	3 A Realisation of GPU Offloads with target map
	4 User-Managed Memory Management
	4.1 Data Pre-allocation on the GPU
	4.2 Pre-allocation on the CPU with Unified Memory

	5 Results
	6 Discussion and Conclusions
	7 Summary and Outlook
	References

