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Zusammenfassung 

Diese Dissertation untersucht die Verwundbarkeiten und Herausforderungen, mit denen der 

Weizen als entscheidende Kulturpflanze für die globale Ernährungssicherheit konfrontiert ist. 

Sie untersucht reale Fallstudien über extreme Missernten bei Weizen weltweit unter 

Verwendung von prozessbasierten Modellen zur Simulation des Pflanzenwachstums und 

statistischen Modellen zur Ertragsvorhersage. Die Forschung untersucht die Ursachen und 

Folgen dieser Missernten, wobei ein besonderer Schwerpunkt auf extremen 

Wetterereignissen und Konflikten liegt. 

Die Ergebnisse dieser Studie weisen auf mehrere wichtige Erkenntnisse hin. Erstens stellt der 

Krieg in der Ukraine eine erhebliche Bedrohung für den Weizenexport dar, was koordinierte 

Lagerfreigaben und eine erhöhte Produktion erfordert, um die Versorgung zu stabilisieren. 

Dabei treten jedoch Herausforderungen aufgrund steigender Düngerpreise und durch 

klimawandelbedingte Missernten auf, die die Ernährungssicherheit weiter beeinträchtigen. 

In Brasilien wird die unzureichende Weizenproduktion durch ungünstige Klimaereignisse 

verschärft, was zu einer zunehmenden Häufigkeit von extrem niedrigen Ernteerträgen führt. 

Dieser Trend stellt nicht nur eine ernsthafte Bedrohung für die Ernährungssicherheit in 

Brasilien dar, sondern auch für andere Länder, die auf Weizenimporte angewiesen sind. Die 

Prognosen zeigen, dass das Ausmaß dieser Erntemängel weiter zunehmen wird, wodurch die 

bestehenden Extremsituationen verstärkt und die Herausforderungen für die globale 

Ernährungssicherheit intensiviert werden. 

Der erhebliche Rückgang der Weizenerträge in Frankreich im Jahr 2016 dient als ein weiteres 

bedeutendes Fallbeispiel. Dieser Rückgang wurde auf eine Kombination von Faktoren 

zurückgeführt, darunter reduzierte Sonneneinstrahlung aufgrund von langanhaltendem 

Regen, Schädigung der Blüten durch starke Niederschläge, Bodenversauerung und 

Pilzkrankheiten. Der Klimawandel wird voraussichtlich solche extreme Ertragsrückgänge in der 

Zukunft weiter verschärfen und damit zusätzliche Risiken für die Weizenproduktion 

darstellen. Die Ergebnisse zeigen auch die zunehmende Variabilität der Weizenerträge 

aufgrund von kombinierten Wetterextremen und Krankheiten auf und unterstreichen die 

Notwendigkeit von Anpassungsstrategien zur Bewältigung zukünftiger klimatischer 

Bedingungen. 
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Um unser Verständnis für die komplexen Auswirkungen des Klimawandels auf die 

Weizenproduktion zu verbessern, wurde ein neues Modul zur Bodenvernässung in das DSSAT-

NWheat-Modell eingeführt. Dieses Modul simuliert die Auswirkungen von Bodenvernässung 

auf den Weizenertrag, die Anzahl der Körner und die Größe der Körner. Durch seine 

Integration werden Unsicherheiten in Klimawandelstudien reduziert, insbesondere in 

Regionen mit zunehmender Regenintensität. Die Forschung betont die Notwendigkeit 

weiterer Untersuchungen zu den Auswirkungen von Bodenvernässung auf das 

Pflanzenwachstum und fordert kontrollierte Feldexperimente, um diese Effekte zu 

quantifizieren und Bodenvernässungsalgorithmen für Kulturpflanzenmodelle zu entwickeln. 

Solche Fortschritte werden die Prognosen der Auswirkungen des Klimawandels auf die 

Ernährungssicherheit verbessern und die Entwicklung effektiver Anpassungsstrategien 

erleichtern. 

Zusätzlich schlägt die Dissertation eine einfache Methodik vor, die globale Klimadaten 

verwendet, um nationale Weizenerträge abzuschätzen. Dieser Ansatz wurde erfolgreich 

angewendet und in drei wichtigen Weizen produzierenden Ländern, nämlich Brasilien, 

Frankreich und Russland, evaluiert. Die Methodik basiert auf statistischen Modellen unter 

Verwendung repräsentativer Klimagitterzellen und ermöglicht Vorhersagen der 

Weizenerträge auf nationaler Ebene. Diese Echtzeit-Ertragsschätzungen sind entscheidend für 

fundierte Entscheidungsfindung und effektive Planung während einer Anbausaison. 

Zusammenfassend untersucht diese Dissertation umfassend wichtige Aspekte der 

Weizenproduktion, der Auswirkungen des Klimawandels und der Ertragsprognosestrategien. 

Sie schlägt Lösungen vor, um die Widerstandsfähigkeit der globalen Weizenproduktion zu 

stärken und die Ernährungssicherheit zu gewährleisten. Durch die Bewältigung dieser 

Herausforderungen kann sie zu sichereren und nachhaltigeren Weizenproduktionssystemen 

beitragen 

 

Schlüsselwörter: Weizenproduktion, Versorgungsengpässe, Klimawandel, extreme 

Wetterereignisse, globale Ernährungssicherheit, Anpassungsstrategien. 
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Summary 

This thesis explores the vulnerabilities and challenges faced by wheat, a crucial crop for global 

food security. It examines real-life case studies of extreme wheat production failures 

worldwide, utilizing process-based crop simulation models and statistical models for yield 

simulation. The research investigates the causes and consequences of these failures, with a 

specific emphasis on extreme weather events and conflicts.  

The results of this study indicate several critical findings. Firstly, the war in Ukraine poses a 

significant threat to wheat exports, necessitating coordinated stock releases and increased 

production to stabilize supplies. However, challenges arise due to rising fertilizer prices and 

climate change-induced failures, which further compromise food security. 

In Brazil, insufficient wheat production is exacerbated by adverse climate events, leading to 

an increasing frequency of extreme low crop production. This trend poses a severe threat to 

food security not only in Brazil but also in other countries reliant on wheat imports. The 

projections indicate that the magnitude of these shortfalls will continue to increase, 

amplifying the existing extremes and intensifying the challenges faced by global food security. 

The severe wheat yield decline observed in France in 2016 serves as another significant case 

study. This decline yield was attributed to a combination of factors, including reduced solar 

radiation from extended rainfall, floret damage from intense rainfall, soil anoxia, and fungal 

diseases. Climate change is anticipated to exacerbate such extreme yield declines in the 

future, posing additional risks to wheat production. The findings also highlight the increased 

variability in wheat yield caused by compound weather extremes and diseases, underscoring 

the need for adaptation strategies to address future climate change conditions. 

To enhance our understanding of the complex impacts of climate change on wheat 

production, a new waterlogging module was introduced in the DSSAT-NWheat model. This 

module simulates the effects of waterlogging on wheat yield, grain number, and grain size. Its 

inclusion reduces uncertainties in climate change studies, particularly in regions experiencing 

increased rainfall intensity. The research emphasizes the necessity of further investigation 

into the effects of waterlogging on plant growth, calling for controlled field experiments to 

quantify these effects and develop waterlogging algorithms for crop models. Such 

advancements will enhance projections of climate change impacts on food security and 

facilitate the development of effective adaptation strategies. 
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Additionally, the thesis proposes a simple methodology that uses global climate data to 

estimate national wheat yields. This approach has been successfully applied and evaluated in 

three major wheat-producing countries, namely Brazil, France, and Russia. The methodology, 

based on statistical models using representative climate grid cells, enables predictions of 

wheat yields at the national level. These real-time yield estimations are crucial for informed 

decision-making and effective planning during a crop season. 

In conclusion, this thesis comprehensively examines critical aspects of wheat production, 

climate change impacts, and yield forecasting strategies. It proposes solutions to enhance 

global wheat production resilience and ensure food security. By addressing these challenges, 

it may contribute to more secure and sustainable wheat production systems. 

 

Keywords: Wheat production, supply failures, climate change, extreme weather events, 

global food security, adaptation strategies. 
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1. General Introduction 

Wheat has been cultivated for thousands of years, with its origins traced back to the Fertile 

Crescent in the Middle East (de Sousa et al., 2021). Over time, it became a global crop, 

spreading across continents through trade and exploration, and adapting to various climates 

and growing conditions (Bonjean et al., 2011). 

China, India, Russia, the United States, Canada, and Australia are significant contributors to 

global wheat production (FAO, 2023). In 2021, Russia and India exceeded 25 million hectares 

(Mha) of wheat planted area (Figure 1). China and India, with a combined annual production 

of over 200 million tonnes (Mt), are major wheat producers. However, due to significant 

domestic demand fueled by their large populations, China and India are not major exporters 

of wheat (FAO, 2023). 

 

Figure 1. Global wheat planted area and production. Wheat (a) harvested area and (b) 

production in all wheat production countries in the world in 2021, according to FAO (2023).  

 

Wheat production in the European Union (EU) holds considerable significance both within the 

region and globally, with several member states contributing to its production. The EU is one 

of the world's largest wheat-producing regions, and its collective output plays a crucial role in 

meeting both domestic and international demand (FAO, 2023). Among the EU member states, 

France stands out as a key wheat producer. Renowned for its favorable growing conditions 

and stability in wheat production, France possesses vast agricultural lands and utilizes 

advanced farming techniques, resulting in high wheat yields. The country's expertise in wheat 

cultivation, positions it as a leading supplier in the EU and global wheat markets. France's 

expertise in wheat cultivation positions it as a leading supplier in the EU and global wheat 
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markets. With over 4 million hectares (Mha) of wheat cultivation, France produces more than 

40 million tonnes (Mt) of wheat annually (FAO, 2023). 

Countries such as Egypt, Indonesia, Algeria, Nigeria, and Brazil are prominent importers of 

wheat due to their large populations and growing economies, leading to increased 

consumption of wheat-based products (USDA, 2023). Importing wheat is crucial for these 

nations to ensure food security and meet the food demands of their populations. However, 

fluctuations in global wheat prices, supply disruptions, and climate-related challenges can 

greatly influence their import and food security strategies (Glauben et al., 2022). 

Wheat production is influenced by several factors, such as climate and weather conditions 

(Asseng et al., 2019, 2011), agricultural practices (Le Gouis et al., 2020), pest and disease 

management (te Beest et al., 2009), government policies and subsidies (Alston and Gray, 

2019), and market demand and trade dynamics (Bentley et al., 2022; Glauben et al., 2022). 

These factors can vary across regions and have a significant impact on production levels and 

global supply of wheat. Climate change, with its impact on weather patterns, has resulted in 

more frequent and extreme events like droughts and floods (IPCC, 2021), which can adversely 

affect crop growth and yield. Additionally, water scarcity, pests, diseases, and land 

degradation pose additional constraints on wheat production, necessitating the development 

and implementation of innovative and sustainable solutions to ensure the continued 

production of this essential crop (Carr et al., 2021; Trnka et al., 2019). 

The future of global wheat production is indeed influenced by various trends and challenges, 

including the growing population and changing dietary preferences (Erenstein et al., 2022). 

However, the impact of extreme weather events and conflicts, such as wars (Bentley et al., 

2022; Glauben et al., 2022), on wheat production and supply is a critical aspect that needs to 

be addressed. This thesis aims to explore real-life cases of failures in wheat production and 

supply, considering the causes of these events and suggesting alternative approaches to 

mitigate their impact. By understanding the underlying causes and identifying potential 

solutions, we can work towards ensuring a more secure and resilient global wheat production 

system for the future. 
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1.1. Vulnerabilities of global wheat production and supply 

Wheat is a crucial crop, providing essential nutrients and supporting global food security. With 

an annual production and consumption of over 700 million tons (FAO, 2023), wheat is a staple 

food for billions of people worldwide. However, only six countries dominate global wheat 

exports, accounting for almost 70% of the total exports. These countries are Russia, Australia, 

United States, Canada, Ukraine, and France (FAO, 2023). The concentration of exports exposes 

wheat prices to speculation and risks associated with production disruptions, conflict and war, 

and export blockages.  

Already in the past, wheat exports were highly concentrated among a few countries, with the 

six largest wheat exporters accounting for 97% of world exports in 1961 (FAO, 2023). The 

United States and Canada alone represented 70% of these exports at this time. Despite recent 

efforts to distribute production among countries, wheat prices have become more volatile in 

recent decades. From 1959 to mid-2007, the wheat price mainly fluctuated between $100 and 

$200 per ton, with only two instances of prices surpassing $200 per ton in 1974 and 1996 

(Figure 2). However, in 2008, the price of wheat surpassed $250 for the first time, reaching 

$466 in February of this year due to low wheat production caused by simultaneous 

unfavorable weather conditions in several of the world's largest wheat exporters. This 

highlighted how extreme weather events can destabilize food availability, leading to ongoing 

discussions about the need for climate-resilient agriculture.  

The possibility of multiple wheat-producing countries experiencing failures simultaneously 

underscores the need for more resilient agricultural practices. Studies on the likelihood of 

such failures have been carried out, indicating the potential for a more frequent occurrence 

in the future (Gaupp et al., 2020). The impacts of climate change have been shown to 

significantly affect wheat production (Asseng et al., 2015; Zhao et al., 2017), with the crop's 

yield and quality decreasing in regions where temperatures are rising, precipitation patterns 

are changing, and extreme weather events are becoming more frequent (Battisti and Naylor, 

2009). 

Since 2008, extreme events have been affecting world wheat production more frequently, 

leading to significant production losses and increased wheat prices. For example, prolonged 
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heatwaves in Russia in 2010 and 2012 caused up to 20 million tonnes of wheat production 

losses in each year, resulting in the wheat prices exceeding $300 per ton. The beginning of the 

COVID-19 pandemic in 2020 led to uncertainty about world wheat production, leading to 

increased speculation of possible low production due to limited human labor, causing prices 

to rise again to $300 per ton. In February 2022, when Russia invaded Ukraine, prices reached 

unprecedented heights, surpassing for the first time $470 per ton, due to the potential of low 

exports from Ukraine. These events highlight the vulnerability of global wheat supply chains 

to external shocks, including geopolitical events and extreme weather events. 

 

 

Figure 2. The wheat price. Historical world wheat commodities price from 1959 to 2023. 

(Macrotrends,  https://www.macrotrends.net/2534/wheat-prices-historical-chart-

data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%

20bushel.) 

Shortages in wheat production stem from various factors, including high costs, commodity 

prices fluctuations (Nóia Júnior et al., 2021), wars (Bentley et al., 2022; Glauben et al., 2022), 

and increasingly, extreme weather events (Iizumi and Ramankutty, 2016; Senapati et al., 2021; 

Webber et al., 2020). In particularly, recent extreme weather events leading to low wheat 

production stand out due to the combination of factors (Beillouin et al., 2020; Ben-Ari et al., 

https://www.macrotrends.net/2534/wheat-prices-historical-chart-data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushel
https://www.macrotrends.net/2534/wheat-prices-historical-chart-data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushel
https://www.macrotrends.net/2534/wheat-prices-historical-chart-data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushel
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2018; Zscheischler et al., 2018). In 2016, France experienced the most extreme wheat yield 

decline since 1960, with a 27% drop in national wheat yield, causing a trade balance shortfall 

of approximately 2.3 billion US$. The combination of a warm, wet winter and extended spring 

precipitation led to simultaneous or consecutive factors, including heavy rainfall, crop 

diseases, low solar radiation, and anoxia, affecting grain set and filling. The extreme 2016 

wheat yield failure resulted from a compound of temporally and multivariate events (Ben-Ari 

et al., 2018). Most crop modeling approaches neglect the compound nature of extreme 

climate and weather-related events, limiting the predictive ability of crop forecast systems, 

especially for extreme weather (van der Velde et al., 2020). The inability to predict the low 

2016 wheat yield suggests underestimation of climate change impacts on agriculture. This 

event demonstrates the damaging effects of climate change, including excesses of 

precipitation, on crop production and reveals vulnerabilities in stable cropping systems. It also 

highlights the failure of current crop forecasting methods to predict yield losses, even shortly 

before harvest. 

In 2006, Brazil experienced a compound of negative events, including low planting incentives, 

drought, frost damage, and additional drought during winter, resulting in a 46% drop in wheat 

production (CONAB, 2023). This was the lowest production recorded in the last 20 years, 

leading to a 60% increase in wheat price in Brazil and a significant increase in wheat imports 

the following year (FAO, 2023). Although such country-specific production failures may not 

affect global wheat prices, they can have significant domestic consequences. The local price 

increase in wheat negatively impacted investments, retail spending, and the overall economy 

of Brazil due to the inelastic demand for wheat as an essential food. In years with low wheat 

production, domestic wheat prices in Brazil can be up to 80% higher than the world market 

(CEPEA, 2023), leading to potential inflation and economic growth slowdown. 

These events highlight global wheat production systems' vulnerability and their consequences 

for global food security. The alarming rates of hunger affecting over 820 million people 

globally and the limited access to nutritious food by approximately 2 billion individuals are 

urgent challenges (REF). These issues will worsen due to population growth, increased 

affluence and associated demands for food. Furthermore, the impact of climate change and 
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extreme events on food production and agricultural productivity exacerbates the vulnerability 

of our food systems. 

1.2. Modeling extreme wheat production failures  

With the projected increase in extreme weather events and the recent record yield failures 

witnessed across various regions, there is a growing demand to assess the impacts of these 

events and the risks of yield failure. It is essential to understand the underlying factors that 

drive the risk of yield failure in order to develop effective adaptation strategies for risk 

management. These strategies may include insurance solutions to address specific weather 

risks, planning for investments in irrigation infrastructure, or tailored crop breeding. 

Consequently, modeling wheat production failures has become a critical aspect of agricultural 

research and planning to enhance resilience and ensure food security. 

To quantify the impact of climate change and weather extremes on agriculture, models are 

employed to translate climate changes into agricultural outcomes. This is necessary because 

direct observations of impacts are limited due to simultaneous changes in other agricultural 

factors, such as technology and government policy. As a result, two main approaches have 

emerged for developing such models, process-based crop simulation models and statistical 

models. The two approaches used for modeling wheat production failures are briefly 

described below. 

 

1.2.1. Process-based crop simulation models 

The first approach involves process-based crop simulation models, commonly known as crop 

models. These models aim to represent the key processes that govern crop growth and yield 

formation. They operate on a daily or hourly time step and dynamically simulate various crop 

and soil process. By simulating physiological processes leading to grain yield, crop models 

provide valuable insights. Although they have a long history and were initially developed for 

field-level cropping system decisions, they have been increasingly used to evaluate climate 

change scenarios. However, concerns have been raised regarding their ability to fully account 

for extreme climate conditions due to their original design. Crop models primarily focus on 
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individual impacts like drought and nitrogen deficiency and usually do not consider other 

factors such as pests, diseases, frost, hail, high windspeeds, and waterlogging. Consequently, 

simulating yield in complex environments influenced by multiple weather extremes becomes 

challenging with crop simulation models. 

Guarin et al. (2020) assessed the ability of the DSSAT-NWheat crop model to simulate extreme 

low-yielding years at global locations. The crop model reproduced some extreme low yields 

but not others due to factors not considered, such as frost, hail, pests, and diseases. 

Additionally, limitations in historical district yield records were identified. Therefore, it is not 

recommended to rely solely on such records for testing the ability of crop models to simulate 

extreme low yields. Instead, it is advisable to conduct carefully designed experiments with on-

site observations of crop yield components, soil, and weather, which are scarce and not readily 

available to the public. However, a study that had access to such data indicated that the 

DSSAT-NWheat model tended to underestimate yield losses caused by extremely wet 

conditions during heavy rainfall and waterlogging (Nóia Júnior et al., 2023). Additionally, 

Heinicke et al. (2022) showed that most global gridded crop models underestimate yield 

declines from extreme droughts and heatwaves, indicating potential underestimation of 

future wheat production failures. 

Through a comprehensive review of wheat response mechanisms across 31 crop models, this 

thesis has revealed a significant limitation in their representation of key factors (Figure 3). 

While some models consider heat impacts on wheat yield, frost, ozone, pests, and weeds are 

only accounted for in a fraction of them. When it comes to wet conditions, around one-third 

of the models address waterlogging and diseases, yet none effectively simulate the combined 

detrimental impacts of heavy rainfall, plant diseases, and waterlogging on wheat growth and 

development. This finding underscores the urgent need for refining our modeling approaches.  
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Figure 3. Plant stress mechanisms in wheat crop simulation models. Analysis based on the 
review of 34 wheat crop simulation models frameworks. Within each color, the bars represent 
the number of crop simulation models that consider the specified plant stress mechanism. 
Processes of 31 crop simulation models were reviewed, namely APSIM-Wheat (Zheng et al., 
2015), AQUACROP (Raes et al., 2018), CropSyst (Stockle et al., 1994), DAISY (Hansen, n.d.), 
DSSAT-CERES (Godwin et al., 1990), DSSAT-CropSim (Thorp et al., 2010), DSSAT-Nwheat 
(Kassie et al., 2016), EPIC (Sharpley and J.R. Villiams, 1990), EXPERT-N-CERES (Priesack, 2019), 
EXPERT-N-CropSim (Priesack, 2019), EXPERT-N-SPASS (Priesack, 2019), EXPERT-N-SUCROS 
(Priesack, 2019), FASSET (Mette Laegdsmand, 2011), GLAM (Challinor et al., 2004), HERMES 
(Kersebaum, 2011), InfroCrop (Krishnan et al., 2016), LINTUL (Wolf, 2011), LPJmL (Schaphoff 
et al., 2018), MCWLA-Wheat (Tao et al., 2009), MONICA (Nendel et al., 2022), SALUS (Dzotsi 
et al., 2013), SIMPLACE (Gaiser et al., 2013), Sirius (Jamieson et al., 1998),  Sirius-Quality 
(Martre et al., 2006), STICS (Brisson et al., 2003), WheatGrow (Guo et al., 2018), WOFOST (Wit, 
2022), SIMPLE (Zhao et al., 2019), JULES-Crop (Osborne et al., 2015), AFRCWHEAT2-O3 
(Porter, 1993) and BioMA (JRC, 2022). 
 

The crucial importance of accurately capturing the various factors is acknowledged and their 

compounded effects that profoundly influence wheat production. Enhancing crop models to 

better incorporate these adverse conditions allows for an improved understanding and 

prediction of wheat crop resilience and productivity. By continuously advancing modeling 

techniques, stakeholders in the agricultural sector can gain valuable insights to manage and 

mitigate risks associated with extreme weather events. The incorporation of new routines and 

approaches in crop models enables the development of more robust strategies for ensuring 
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food security and sustaining agricultural productivity in the face of evolving environmental 

challenges. 

 

1.2.2. Statistical models 

A second approach involves statistical models that establish functional relationships between 

weather observations and crop yields. These models rely on historical data obtained from field 

measurements, farmer surveys, government statistics, and other sources. The availability of 

comprehensive weather and crop databases has led to an increased use of statistical models. 

However, challenges arise in disentangling the effects of highly correlated weather variables, 

such as temperature and rainfall. It is important to note that while statistical models can 

provide valuable insights, they do not simulate the underlying physiological processes of crop 

yields unless specifically designed to do so. Understanding these physiological processes is 

crucial for comprehensively explaining simulation results and gaining insights into crop 

production dynamics. For this reason, some authors argue that while statistical models are a 

powerful tool, they should not be considered a surrogate for science (Lischeid et al., 2022).  

Lobell and Marshall (2010) revealed the capability of statistical models to replicate important 

aspects of process-based model responses to temperature and precipitation changes. 

Moreover, statistical models exhibited improved performance with broader spatial analyses 

using growing season average temperature and precipitation. Paudel et al. (2022) applied 

statistical models to forecast crop yields across various spatial levels, demonstrating lower 

errors and uncertainty in regional forecasts compared to trend forecasts. While statistical 

models effectively capture spatial patterns for average harvests, they encountered challenges 

in predicting extreme low yields (Paudel et al., 2022). The difficulty in simulating and 

forecasting extreme lows in crop production due to adverse weather is a well-known challenge 

(Ben-Ari et al., 2018; van der Velde et al., 2020; van der Velde and Nisini, 2019). In France, the 

2016 winter-wheat harvest experienced a significant decline, with yields in the breadbasket 

region dropping by 27% compared to trend expectations and 39% compared to the previous 

year. However, none of the public forecasting systems predicted the magnitude of this loss. 

Forecasts just before the harvest overestimated average yields by about 2 t ha−1, indicating a 
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lack of accuracy. However, Ben Ari et al. (2018) developed a binomial logistic regression 

technique that considers fall and spring conditions. This approach successfully captured key 

yield loss events, including extreme losses, in France since 1959 (Ben-Ari et al., 2018). For 

climate change scenarios, statistical models can predict more severe impacts of weather 

extremes compared to the crop models (Roberts et al., 2017). 

The use of statistical models for estimating national crop yield faces several challenges. One 

key obstacle is the requirement for a substantial amount of climate and crop data to develop 

and utilize these models. In contrast, crop simulation models, while able to predict growth 

and development, often face hindrances at the national level due to the need for detailed 

information on initial conditions, soils, cultivars, and crop management (Boote et al., 2013). 

The considerable variability in agricultural systems across a country further complicates 

capturing the full range of conditions through agricultural experiments. Consequently, 

statistical and crop models may encounter limitations in accurately incorporating the intricate 

interactions between climate factors and crop performance at a national scale. 

Despite their limitations, both statistical models and crop simulation models are essential 

tools for quantifying future risks of wheat production failures under climate change. By 

combining these modeling techniques with projected climate data, a more accurate 

understanding of future risks can be obtained. This knowledge is needed to assist the 

development of appropriate adaptation strategies to address the challenges posed by climate 

change on agricultural systems. 

In summary, modeling is indispensable in mitigating extreme wheat production failures and 

enhancing resilience. By utilizing crop simulation models and statistical models, along with 

historical data and climate projections, we will better understand the impact of climate 

change on agriculture. These models allow us to quantify future risks and develop effective 

adaptation strategies to safeguard wheat production and global food security. 

 

2. Aim and structure of this thesis 

This thesis aims to explore real-life cases of failures in wheat production and supply, focusing 

on the causes of these events and suggesting alternative approaches to mitigate their impact. 
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This thesis explores key threats to global food security, identifies factors contributing to wheat 

production failures, quantifies their future likelihood under climate change, proposes 

advanced forecasting methods, and suggests improvements for crop simulation models. This 

aligns with research priorities for global food security under extreme events (Mehrabi et al., 

2022), emphasizing the complexity and systemic impacts of wheat production failures.  

The topics addressed in this thesis include threats to global food security, factors contributing 

to wheat production failures, quantification of future risks under climate change, 

improvements for crop simulation models, and forecasting methods for better planning for 

wheat production variability and failures.  

The thesis comprises seven scientific studies, with four specifically focused on identifying the 

causes and proposing mitigation strategies for wheat production and supply failures in Brazil, 

Ukraine, and France. Excessive water, specifically waterlogging, was identified as a significant 

factor, prompting the need for further research on its impact. In response, we developed a 

new waterlogging module in the DSSAT-NWheat model to accurately simulate these effects, 

reducing uncertainties in climate change studies with intensified rainfall. Additionally, we 

called for global research to examine the implications of waterlogging on wheat growth and 

yield, emphasizing the importance of controlled field experiments and waterlogging 

algorithms for crop models. Lastly, we proposed a simple methodology that utilizes global 

climate data for national wheat yield forecasting. More detailed information can be found 

below. 

1. Needed global wheat stock and crop management in response to the war in Ukraine: 
The war in Ukraine threatened global wheat exports. Coordinated stock releases and 
increased production are needed to compensate, but rising fertilizer prices and climate 
change-induced failures pose challenges to stabilizing supplies and ensuring food 
security. 

2. Extreme lows of wheat production in Brazil: Insufficient wheat production in Brazil is 
exacerbated by adverse climate events. Regression models combined with climate 
projections indicate a drastic increase in extreme low crop production frequency, 
posing a threat to food security and hunger eradication in Brazil and other countries. 

3. The extreme 2016 wheat yield failure in France: In 2016, France experienced the most 
severe wheat yield decline in recent history, attributed to a combination of factors 
including reduced solar radiation, floret damage, soil anoxia, and fungal diseases. 
Future climate change may increase the frequency of such extreme yield declines. 

4. Past and future wheat yield losses in France: Compound weather extremes and 
diseases have led to increased wheat yield variability in France. Projections indicate 
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more frequent extreme low yields, with double losses from drought and heat waves, 
increased disease damage, and a need for adaptation to future conditions. 

5. Enabling modeling of waterlogging impact on wheat: Waterlogging significantly 
affects wheat yield, grain size, and grain number. A new waterlogging module in the 
DSSAT-NWheat model accurately simulates these impacts, reducing uncertainties in 
climate change studies with increased rainfall intensity. 

6. A call to action for global research on the implications of waterlogging for wheat 
growth and yield: Existing literature lacks research on the effects of waterlogging on 
plant growth. We emphasize the need for controlled field experiments to quantify 
these effects and develop waterlogging algorithms for crop models, enhancing 
projections of climate change impacts on food security. 

7. A simple procedure for a national wheat yield forecast: A simple methodology using 
global climate data was developed to estimate national crop yields. Statistical models 
based on the most representative climate grid cell showed accurate predictions for 
wheat yields in Brazil, France, and Russia, enabling real-time yield estimations during 
the crop season. 

 

3. Methods 

Following, an brief overview id provided on methodology, while detailed information can be 

found in the attached full articles. 

 

3.1. Needed global wheat stock and crop management in response to the war 

in Ukraine 

The methods utilized in this study involved analyzing the effects of the war in Ukraine on global 

wheat exports. Measures needed to compensate for the export shortage were estimated, 

including quantifying the required increase in wheat yields or expansion of cropping areas in 

other exporting countries. The study also considered the impacts of climate change-induced 

crop failures. The importance of managing stocks and improving yields to ensure food and 

national security on a global scale was emphasized. 

 

3.2. Extreme lows of wheat production in Brazil 

A multi-model regression analysis was conducted using 20 years of data from 776 

municipalities representing 90% of Brazilian wheat production. The study examined wheat 
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planted area, non-harvested area, trend-corrected yield, and production. Yield anomalies 

were calculated by comparing observed and average trend-corrected yields. These anomalies 

were used in a hierarchical clustering analysis to define four main wheat regions based on 

agroclimatic conditions. Monthly temperature and rainfall data from weather stations in each 

region were then used. Wheat prices, and for two regions, wheat and maize prices, were 

considered to estimate wheat planted area. Statistical models were developed separately for 

each region, taking into account climate records and commodity prices. Stepwise selection 

and LASSO methods were used to identify the best combination of input variables. Five global 

climate models were employed to estimate future wheat production under different 

scenarios. CO2 growth stimulus effects on yield were included. Wheat production was 

estimated by multiplying yield with harvested area. Extreme low national wheat production 

was defined as the 5th percentile during 1850-2020, using the low national wheat price. Three 

contrasting wheat price scenarios were applied, and the results were aggregated to estimate 

national wheat production. 

 

3.3. The extreme 2016 wheat yield failure in France 

The study utilized wheat field trial data from 3,512 experimental unit treatments of 221 

cultivars over a period of six cropping seasons (2014-2019 harvests) across eight locations in 

the breadbasket region of France. The objective was to quantify the individual contribution of 

various factors such as nitrogen leaching, plant diseases, low solar radiation, anoxia, and high 

rainfall to the variation in wheat yield in France in 2016. 

The study involved different types of experiments: 

• Growth performance experiments: These experiments compared the growth of 

different wheat cultivars. Measurements of various parameters such as wheat ear 

emergence date, grain number per unit area, average single grain size, grain nitrogen 

concentration, and grain yield were performed. 

• Nitrogen response experiments: These experiments tested the response of wheat 

cultivars to different nitrogen fertilizer rates. 
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• Plant disease experiments: These experiments recorded plant disease types and tested 

the efficiency of fungicides in controlling the diseases. Measurements of wheat yield 

were performed. 

All the experiments were rainfed and conducted from late September to November, with 

harvests taking place between the beginning of July and the end of August. The crop 

protection practices followed local farm practices, including the use of fungicides, herbicides, 

and insecticides. Nitrogen fertilizers were applied during specific periods, and phosphorous 

and potassium fertilizers were applied if needed. 

The study analyzed anomalies in wheat yield components based on the growth performance 

trials. It calculated the wheat yield component anomalies relative to a reference period (2014-

2019). The study also analyzed the climatic anomalies, such as excessive rainfall, low solar 

radiation, and anoxia, that occurred across the research stations during the critical periods of 

wheat growth. The incidence of plant diseases, including wheat Fusarium ear blight, Septoria 

leaf blotch, and leaf rust, was also analyzed. 

To determine the impact of nitrogen leaching, the study calculated the nitrogen nutrition 

index (NNI) and assessed crop nitrogen uptake and translocation. The study also developed 

weather-based indices for analyzing the effects of low solar radiation, heavy rainfall, anoxia, 

and plant diseases on grain number per unit area and average single grain size. 

Statistical models were built using the anomalies and weather-based indices as input variables 

to identify the factors influencing grain number and grain size anomalies. The models were 

trained using data from the experimental unit treatments and validated using out-of-sample 

analysis. 

Overall, the study aimed to understand the causes of the 2016 wheat yield failure in France 

by analyzing various factors, including climatic anomalies, nitrogen leaching, and plant 

diseases. 

 

 

3.4. Past and future wheat yield losses in France 
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In the breadbasket of France, which is responsible for a significant portion of the country's 

wheat production, we conducted a study to understand the factors influencing wheat yields. 

We selected eight representative locations based on the geographical distribution of research 

stations and collected long-term weather data from 1984 to 2020. To remove the effects of 

technological improvements, we removed the long-term yield trends for each department 

independently. We identified 11 climate and disease indices that affect wheat yield, including 

drought, heat, flooding, low solar radiation, ear blight, and foliar fungal diseases. Using a 

random forest machine learning approach, we developed a statistical model to predict wheat 

yield anomalies based on these indices. We validated the model through cross-validation and 

evaluated its performance using various statistical indices. Additionally, we quantified the 

impacts of individual yield-limiting factors by modifying the input variables. For future 

projections, we used climate data from the CMIP6 models and estimated the frequency of 

extreme weather events during wheat anthesis and grain filling. We also projected the 

occurrence of ear blight and foliar fungal diseases. Our findings provide insights into the 

potential causes of wheat yield losses and the future risks associated with climate change. 

 

3.5. Enabling modeling of waterlogging impact on wheat 

In this study, we analyzed 17 research articles published between 2008 and 2021 to 

understand how waterlogging affects wheat grain yield, grain number, and grain size. We 

collected data from various experiments conducted at different stages of wheat growth and 

with different durations of waterlogging. To improve the DSSAT-NWheat model, we 

developed a waterlogging module that considers the direct impact of waterlogged soil on 

carbohydrate accumulation and grain size. We also incorporated the effects of waterlogging 

on root growth and rooting depth. This updated module was integrated into the DSSAT-

NWheat software. We introduced the aeration deficit factor (AF) to quantify waterlogging 

conditions in the soil and its impact on root growth. We also developed the wheat roots 

aeration index (AFroot) to assess carbohydrate accumulation under waterlogged conditions. 

By establishing parameters like wheat cultivar sensitivity to AFroot (WLSI) and maximum 

reduction of carbohydrate accumulation under waterlogging (WLMI), we determined the 

wheat cultivar's tolerance or sensitivity to waterlogging. Additionally, we examined the 
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influence of waterlogging on grain size and grain number per unit area using data from 

experiments in France. We created four groups based on different grain yield and grain 

number characteristics. To validate our waterlogging module, we simulated an experiment 

conducted by Marti et al. (2015) using the DSSAT-NWheat model. The simulation involved 

varying durations of waterlogging before anthesis. Overall, our study gave insights into how 

waterlogging affects wheat grain yield, grain number, and grain size. With the updated 

waterlogging module in DSSAT-NWheat, we can now better simulate and understand the 

impact of waterlogging on wheat growth and development. 

 

3.6. A call to action for global research on the implications of waterlogging 

for wheat growth and yield 

This review article employed methods that involved assessing the existing literature and 

process-based frameworks pertaining to waterlogging simulation. Through this analysis, it was 

revealed that there is a scarcity of field experiments examining the effects of waterlogging on 

plant growth. 

 

3.7. A simple procedure for a national wheat yield forecast 

The estimation of national wheat yield for Brazil, France, and Russia was conducted using a 

four-step process. First, the trend in increased yield due to technology advancements was 

removed from historical data. Second, a representative grid cell was identified based on 

temperature and rainfall correlations. Third, a regression model was developed using climate 

variables and national wheat yield data. Fourth, the model was validated using independent 

data from France and Russia. Climate data were obtained from the CRU Time-Series database, 

and yield data were from the FAO Corporate Statistical Database. The performance of the 

model was evaluated using cross-validation and measures such as coefficient of determination 

and agreement index. A sensitivity analysis was performed, and in-season analysis was 

conducted to assess forecasting performance. Spring and winter wheat were not 

distinguished. 
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Part II: Empirical Studies 
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4. Summaries of the Empirical Studies 

4.1. Needed global wheat stock and crop management in response to the war 

in Ukraine 

The war in Ukraine has posed a significant threat to global wheat exports, resulting in 

unprecedented price hikes and potential food security risks. This paper emphasizes the need 

for short-term measures to compensate for the export shortage, such as coordinated release 

of wheat stocks, while also highlighting the long-term necessity of increasing wheat yields and 

expanding cropping areas. However, several challenges, including rising fertilizer prices, 

climate change-induced crop failures, and year-to-year variability, further strain global wheat 

markets. The repercussions extend beyond Ukraine, as many countries heavily rely on 

Ukrainian wheat for staple food supplies, making them vulnerable to the escalating wheat 

prices. To address this crisis, effective management of stocks and continual yield 

improvements are vital for both food and national security worldwide. 

The study underscores the significance of Ukrainian wheat exports, which accounted for 9% 

of global wheat exports in 2020. However, the war in Ukraine has severely disrupted wheat 

trade, with a significant portion of exports blocked. This disruption, coupled with lower wheat 

planting areas in Ukraine, has major implications for the Ukrainian economy and global food 

security. The export block has led to a surge in wheat prices, threatening food security in 

importing countries like Brazil, Algeria, and many sub-Saharan African nations. 

To mitigate the export shortage, compensatory measures are required. Coordinated release 

of wheat stocks is recommended in the short term, as the top 13 wheat-exporting countries 

possess significant reserves. However, in the medium and long term, increasing wheat 

production becomes imperative. The study suggests that an 8% increase in wheat grain yields, 

primarily through closing the yield gap, would be necessary to compensate for the missing 

Ukrainian exports. Achieving this yield increase would require additional nitrogen fertilizer of 

around half a million tons.  

Alternatively, expanding wheat cropping areas by 5.5 million hectares could be considered, 

but this would have environmental consequences and potentially reduce future crop 

productivity. Moreover, year-to-year variability and climate change-induced crop failures 
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could lead to additional export reductions of 5 to 7 million tons annually, exacerbating the 

strain on global markets. These challenges highlight the importance of proactive measures to 

stabilize wheat supplies, including prudent management of stocks and investments in yield 

improvements. 

While this study focuses on wheat, it is important to note that Ukraine and the Russian 

Federation are major exporters of other crops, such as sunflower, rapeseed, maize, and 

barley. Disruptions in the supply of these commodities further contribute to the global food 

market disruption. Actions must be taken to enhance the resilience and reduce the 

vulnerability of agricultural systems, reducing reliance on a limited number of countries for 

food exports. 

In conclusion, the war in Ukraine has caused a significant disruption to global wheat markets, 

necessitating immediate measures to compensate for the export shortage. Long-term 

strategies focused on improving wheat production and managing stocks are essential for 

stabilizing supplies and mitigating the risks associated with climate change-induced crop 

failures.  

Authors’ contributions: RSNJ and SA, FE and PM conceptualized the study, all co-authors 

contributed to the methodology, RSNJ developed the statistical models and analyzed data, 

ACR assisted with climate data, TBA assisted with statistical models and statistical analysis, RF 

assisted with economic analysis, all co-authors contributed to data evaluation and 

interpretation, RSNJ wrote initial draft, all co-authors assisted with writing and reviewed the 

manuscript. 

This article is published as: Nóia Júnior R. de S., Ewert, F., Webber, H., Martre, P., Hertel, T.W., 

van Ittersum, M.K., Asseng, S. (2022): Needed global wheat stock and crop management in 

response to the war in Ukraine in Global Food Security in 2022, following peer review. It is 

available at https://doi.org/10.1016/j.gfs.2022.100662 
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4.2. Extreme lows of wheat production in Brazil 

This study examines the impact of climate change on wheat production in Brazil and its 

implications for food security. The research combines multiple regression models to estimate 

national wheat production based on climate data, cropping area, yield trends, and commodity 

prices. Projections using climate change models suggest that extreme low wheat production 

events, which historically occurred once every 20 years, could become up to 90% more 

frequent by the end of the century. These projections, influenced by representative 

concentration pathway scenarios and price fluctuations, indicate a threat to Brazil's progress 

towards food security. 

The analysis focuses on four major wheat-growing regions in Brazil, developing regression 

impact models for planting area, non-harvested area, and grain yield. These models 

successfully reproduce historical data and capture the compound effects of adverse weather 

events on wheat production. The study highlights the vulnerability of wheat farms, primarily 

family-owned and of relatively small size, to market signals and weather conditions during the 

planting season. Climate change is expected to increase drought events during the crucial 

planting period, leading to a decline in wheat planting area. 

Furthermore, the study projects a decline in national mean wheat yield due to rising 

temperatures during flowering and grain filling stages. The absolute decline in yield is 

anticipated to be larger in warmer regions, such as Brazil, compared to other parts of the 

world. The combination of projected decreases in planted area, non-harvested area, and grain 

yield leads to a decline in national wheat production, regardless of commodity price signals. 

This decline is projected to continue until 2100 under different representative concentration 

pathways, with potential production losses reaching 60% compared to historical averages. 

The research also highlights the increasing frequency of extreme low wheat production years, 

which will become the norm in Brazil by 2100. The magnitude of these shortfalls is expected 

to intensify, with the extreme years becoming even lower in wheat production than in the 

past. Such extreme low production years pose a challenge to national food security and can 

have global implications, as demonstrated by previous food crises caused by wheat production 

failures in exporting countries. 
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The study emphasizes the need to understand the drivers of extreme production losses and 

their frequency to adapt agriculture to climate change and ensure future food availability. It 

suggests that alternative crops like sugarcane, maize, and pasture may be better suited to a 

warmer climate and highlights the importance of diversifying agricultural strategies to 

mitigate the impact of climate change on food security. 

Authors’ contributions: RSNJ and SA conceptualized the study, all co-authors contributed to 

the methodology, RSNJ developed the statistical models and analyzed data, ACR assisted with 

climate data, TBA assisted with statistical models and statistical analysis, RF assisted with 

economic analysis, all co-authors contributed to data evaluation and interpretation, RSNJ 

wrote initial draft, all co-authors assisted with writing and reviewed the manuscript. 

This article is published as: Nóia Júnior, R. de S., Martre, P., Finger, R., van der Velde, M., Ben-
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in Brazil in  Environmental Research Letters in 2023 following peer review. It is available at 
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4.3. The extreme 2016 wheat yield failure in France 

The production of wheat, which is crucial for global food security, is being threatened by 

climate change-induced climatic extremes. Europe, responsible for 35% of global wheat 

production, has experienced crop failures due to droughts and heatwaves, as seen in northern 

European countries in 2018. These adverse weather conditions are expected to worsen with 

climate change. To understand the impact of climate events on wheat yield, various modeling 

approaches have been developed, but they often overlook the compound nature of multiple 

factors affecting crop growth. 

In 2016, France, the fourth largest wheat-exporting country, faced a significant decline in 

wheat yield. The yield dropped by 27%, resulting in a substantial trade balance deficit. The 

failure to predict this yield loss highlighted the complexity of the events that caused it. 

Multiple factors such as heavy rainfall, crop diseases, low solar radiation, and anoxia (lack of 

oxygen) during grain development contributed to the decline. Existing crop forecast systems 

often neglect the interconnectedness of these factors, limiting their predictive ability, 

especially for extreme weather events. 

The inability to predict the 2016 wheat yield decline suggests that the projected impacts of 

climate change on agriculture might be underestimated. To improve seasonal forecasting, we 

used detailed datasets and modeling techniques to quantify the impacts of various climate 

factors on wheat yield components in 2016. We found that the decline in grain yield resulted 

from drops in both grain number and average grain size, influenced by adverse climate events. 

The study revealed that low solar radiation and heavy rainfall around anthesis (flowering) 

directly affected grain number and increased the likelihood of flower abortion and lodging. 

Waterlogging and fungal diseases further reduced average grain size. The projections for 

future climate change scenarios indicated that drought, heat stress, diseases, and heavy 

rainfall during anthesis and grain filling would become more frequent in Europe. This raises 

concerns about the occurrence of future episodes of extremely low wheat production, 

potentially leading to global breadbasket failures and threatening food security. 

The complex nature of multiple limiting impacts makes it challenging to forecast extremely 

low-yielding seasons. Existing models often fail to adequately represent waterlogging and 
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plant diseases. Therefore, the development and integration of new routines into crop 

simulation models are necessary to capture the extent of these compounding factors. 

The study's modeling approach had certain limitations, such as the simplified separation of 

factors affecting grain number and average grain size and assumptions about anthesis dates 

and grain filling duration. However, the framework provided insights into the physiological 

impacts of climate factors and can be extended to other European countries that faced similar 

weather anomalies in 2016. 

Improving the prediction capacity of crop simulation models and yield forecast systems, as 

well as developing wheat cultivars with enhanced resilience to complex environments, are 

crucial for mitigating future instability in grain production under more extreme climates. By 

forecasting and planning for compound yield-reducing events, it may be possible to alleviate 

the impacts of climate change on wheat production and ensure global food security. 

Authors’ contributions: All co-authors conceptualized the study. RSNJ performed the formal 

analysis. SA, TP and MTH supervised the study. RSNJ wrote initial draft, all co-authors assisted 

with writing and reviewed the manuscript. 

This article is published as: Nóia Júnior, R. de S., Deswarte, J.-C., Cohan, J.-P., Martre, P., van 

der Velde, M., Lecerf, R., Webber, H., Ewert, F., Ruane, A.C., Slafer, G.A., Asseng, S. (2023): The 
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4.4. Past and future wheat yield losses in France 

The study focuses on the impact of compounding weather extremes and plant diseases on 

wheat yield variability in France, the largest wheat producer in the European Union. We 

combined historical data on wheat yields, disease prevalence, and climate indices from 1984 

to 2020 with machine learning algorithms to estimate grain yields. We found that these factors 

explained approximately 60% of the historical yield variability. 

The findings suggest that extreme low wheat yields, defined as yields below the 10th 

percentile of the historical period, are expected to occur more frequently in the future. 

Projections using climate models indicate that such extreme lows will occur once every 10 

years. However, the study also reveals some variations in the frequency of extreme lows 

across different regions of France. 

The analysis highlights the importance of considering multiple interacting factors, such as 

climate extremes and crop diseases, in assessing agricultural risks. Previous crop failures in 

France have been attributed to compound events involving the simultaneous occurrence of 

climate extremes and plant diseases. For example, in 2016, a combination of a warm, wet 

winter and extended spring precipitation led to heavy rainfall, high incidence of crop diseases, 

low solar radiation, and anoxia, resulting in a 27% decline in national wheat yield compared 

to the previous five years' average. 

The study identifies excess water, reduced solar radiation, and plant diseases as the main 

factors affecting wheat production in France. While excessive precipitation historically had the 

most significant impact on wheat yields, the correlation between heavy rainfall and yield has 

decreased in recent decades due to increased heat and drought events. The analysis suggests 

that heat and drought, combined with the occurrence of ear blight disease, will become 

increasingly damaging to wheat yield in the future. Rising temperatures and reduced 

precipitation during wheat flowering and grain filling periods are projected to exacerbate heat 

and drought stress on crops. The study estimates that ear blight will cause twice as much yield 

loss in the future compared to current levels. 

Although the average amount of solar radiation reaching wheat canopies is expected to 

increase due to warmer and wetter summers, low solar radiation events are projected to 



37 
 
 

continue impacting wheat yield due to the continued frequency of heavy rainfall. The study 

also notes that the potential interaction between elevated carbon dioxide (CO2) levels and 

other factors, such as plant diseases and extreme weather conditions, requires further 

investigation. 

The results emphasize the need for adaptation strategies in French wheat production systems 

to address future challenges posed by droughts, heatwaves, and increased disease pressure. 

The discussion highlights the importance of wheat breeding programs in developing new 

cultivars that are more tolerant to drought, heat, and resistant to plant diseases. 

In conclusion, the study provides insights into the causes of historical wheat yield failures in 

France and projects how these drivers might affect future wheat production. It underscores 

the importance of considering compounding factors such as climate extremes and plant 

diseases in assessing agricultural risks and highlights the need for adaptive measures to ensure 

the resilience of wheat production systems in the face of changing climatic conditions. 

Authors’ contributions: All co-authors conceptualized the study. RSNJ performed the formal 

analysis. SA, TP and MTH supervised the study. RSNJ wrote initial draft, all co-authors assisted 

with writing and reviewed the manuscript. 
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4.5. Enabling modeling of waterlogging impact on wheat 

Most crop simulation models do not consider the effect of waterlogging despite its importance 

for crop performance. Waterlogging occurs when a soil is saturated with water for an 

extended period, depriving plant roots of oxygen. It is a major cause of crop yield losses 

globally, affecting an estimated 15-20% of the global wheat cropping area each year. Regions 

such as southern Asia, Europe, Russia, China, and southern Brazil are particularly vulnerable 

to waterlogging compared to drought. 

Excessive rainfall leading to waterlogging has resulted in significant damage to agricultural 

crops. For example, in India, 33.9 million hectares of arable land were affected by 

waterlogging between 2015 and 2022. In France, where only 9% of arable land has drainage 

systems, excessive precipitation and waterlogging have been the primary factors impacting 

wheat yields since the early 20th century. Similarly, southern Brazil experienced a 40% drop 

in wheat yield in 2017 due to waterlogging and increased plant diseases. The Pampas Region 

of Argentina has also faced extensive waterlogging over the past two decades. Despite the 

widespread damage caused by waterlogging, studies on its impact on grain production are 

limited. 

To address this gap, crop simulation models play a crucial role in understanding crop growth 

processes and predicting the impacts of abiotic stresses like waterlogging. However, most 

existing crop models do not consider waterlogging, leading to underestimation of climate 

change impacts on agriculture. Only a few crop models account for waterlogging effects on 

parameters such as carbohydrate accumulation, radiation use efficiency, transpiration, root 

activity, and leaf area index. However, these models have been tested in limited situations 

and lack comprehensive understanding of the impact of waterlogging on grain yield and its 

components. 

In this study, we aimed to improve the representation of waterlogging in the wheat crop 

simulation model DSSAT-NWheat. To achieve this, we reviewed published articles on the 

impact of waterlogging at different wheat phenological stages, including grain number per 

unit area, average grain size, and grain yield. Based on the findings, we developed a new 
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waterlogging module that considers its effects on wheat root growth, carbohydrate 

accumulation, and potential average grain size. 

The new waterlogging module was tested using data from controlled experiments, including 

an outdoor experiment in Lleida, Spain, and wheat field trials in France. The module 

demonstrated reasonable performance in simulating wheat yield in response to waterlogging, 

with good agreement between simulated and observed data. Sensitivity analysis revealed that 

the impact of waterlogging on above-ground biomass, roots, leaf area index, grain number, 

and grain yield varied with different phenological stages. Notably, the simulated crop was 

most sensitive to waterlogging shortly before anthesis, consistent with experimental studies. 

Moreover, the relationship between grain number per unit area and average grain size was 

studied, and an equation was implemented in the model to limit potential grain size when 

waterlogging occurs before anthesis. This improvement in simulating grain size accounted for 

observations of fewer but heavier grains under waterlogging conditions. The process of grain 

size determination around anthesis is critical, as it influences both grain number per unit area 

and average grain size. 

While the new waterlogging-enabled crop model shows promising results in simulating the 

impact of excess rainfall and waterlogging on crop growth and grain yield, further studies are 

needed to consider other factors such as air temperature, soil type, mineral nutrition, and 

genotype. Additionally, the combined effects of waterlogging with other abiotic stresses, 

including heat, drought, ozone, and nitrogen deficit, require investigation. Enhancements in 

crop models to accurately simulate extreme climate events and their impacts on crop growth 

will improve the robustness of future projections. 

In conclusion, the incorporation of a waterlogging module into the DSSAT-NWheat crop 

simulation model represents a significant advancement in understanding and predicting the 

impacts of waterlogging on wheat production. By accounting for the complex interactions 

between waterlogging and crop growth processes, these models can contribute to more 

accurate yield projections and assist in agricultural decision-making under changing climate 

conditions. Furthermore, this study emphasizes the need for considering waterlogging in crop 

simulation models, as neglecting its impact may lead to underestimating the potential 

negative effects of climate change on crop productivity. By improving our understanding of 
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how waterlogging and other extreme climate events will affect future crop production, we can 

better prepare and adapt to ensure global food security. 
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4.6. A call to action for global research on the implications of waterlogging 

for wheat growth and yield 

Waterlogging has a significant impact on agricultural land used for food production, affecting 

millions of hectares every year. However, there is a lack of research and frameworks for 

simulating waterlogging, limiting our understanding of its effects. Particularly, field 

experiments that quantify the impact of waterlogging on plant growth are sparse, highlighting 

the need for further investigation in this area. 

To address these knowledge gaps, it is essential to conduct more research on waterlogging, 

particularly in controlled field conditions with well-defined soil properties and continuous 

monitoring of soil moisture. By studying the effects of waterlogging on plant phenology, root 

development, and the uptake of water and nutrients, researchers can gain a better 

understanding of its impact on crop productivity. This research should also explore the 

interactions between waterlogging and other environmental factors such as atmospheric CO2 

concentration, temperature, and biotic/abiotic stresses. 

The data obtained from these experiments could be used to develop waterlogging algorithms 

for crop models, enabling more accurate predictions of how climate change will impact global 

food security. Wheat, for example, is a vital crop with a global annual consumption of over 

780 million tonnes. Waterlogging-induced wheat production failures can lead to increasing 

wheat commodity prices, affecting seed, food, and industry needs. Therefore, understanding 

the detrimental effects of waterlogging on wheat production is crucial for ensuring food 

availability and affordability. 

Waterlogging occurs due to intense or sustained rainfall, poor soil drainage, rising water 

tables, or lateral water flows. It creates anoxic soil conditions and negatively affects root 

growth, nutrient absorption, and transport to the shoot. In extreme cases, waterlogging can 

even lead to partial root death. The reduction of root front velocity and increased nutrient 

leaching further exacerbate the nutrient deficit stress caused by waterlogging. Moreover, 

waterlogging limits root water conductivity, resulting in stomatal closure, reduced CO2 

concentration within the leaves, and restricted photosynthesis and crop growth. It also 

promotes the occurrence of plant diseases and plant lodging. 
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The impact of waterlogging is not limited to specific regions; it has global implications. For 

instance, regions in southern Asia and western Europe are more prone to waterlogging than 

drought. Increased occurrences of extreme rainfall have intensified waterlogging in the Indus 

river basins, which are crucial for crop production in Pakistan and India. Central China has also 

experienced declining wheat yields due to frequent extreme weather events, including 

waterlogging. In countries like France, waterlogging caused by excessive spring precipitation 

has been a major factor affecting wheat yields. These examples illustrate the urgent need to 

study the effects of waterlogging in different regions and climatic conditions. 

To improve crop simulation models and effectively address the impacts of waterlogging, it is 

crucial to bridge the existing knowledge gaps. Future research should focus on understanding 

root morphology changes under waterlogging stress, the interaction between waterlogging 

and other stresses, the combined effects of waterlogging and atmospheric CO2 concentration, 

the impact of partial waterlogging, cultivar resilience, spatial implications of waterlogging, 

nutrient availability, and the effectiveness of engineering management practices. Conducting 

controlled experiments in the field and greenhouse, along with field validation experiments, 

will provide valuable insights and data to enhance crop simulation models. 

Overall, it is essential to prioritize and intensify research efforts on waterlogging to ensure the 

development of sustainable agricultural practices and mitigate the potential threats it poses 

to global food security. 
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4.7. A simple procedure for a national wheat yield forecast 

The study proposes a simple methodology to estimate national wheat yields that can be easily 

applied to any country and crop. The study correlated 20 years of global gridded monthly 

climate data with national wheat production-weighted mean climate indices to determine the 

most representative climate grid cell for the entire wheat region of a country. They then used 

the climate data from this representative grid cell to build statistical models for estimating 

trend-corrected national wheat yields. 

Three different models were tested: Stepwise Regression with the Bayesian information 

criterion (BIC), the least absolute shrinkage and selection operator algorithm (Lasso), and the 

Random Forest machine-learning algorithm. The Random Forest model performed the best, 

with a relative root mean square error (rRMSE) of 9.1% for estimating wheat yields in Brazil. 

The same approach was then applied to estimate wheat yields in France and Russia, resulting 

in rRMSE values of 6.7% and 6.4%, respectively. 

The methodology presented in the study offers a simpler and more accessible approach to 

estimate national crop yields, compared to traditional methods that rely on field surveys or 

remote sensing. By using a single representative grid cell within a nation-wide crop area and 

readily available monthly climate data, the proposed method provides accurate and replicable 

yield estimates. It allows for early yield forecasting during the cropping season, which can 

assist policymakers, agricultural commodity traders, and growers in planning and adjusting 

strategies to ensure food supply. 

However, it's important to note that the methodology has some limitations. It may miss 

extreme high and low yields, and its performance depends on the country and specific climatic 

conditions. The use of a single representative grid cell can lead to over or underestimation of 

yields in certain years, particularly in large countries with significant spatial variability. To 

address this, dividing the country into homogeneous crop production zones and selecting 

representative points within each zone could improve the accuracy of the method. 

Additionally, combining the approach with other estimation and forecasting techniques, such 

as remote sensing or crop simulation models, could enhance its predictability. 
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Overall, the study highlights the potential of a simple and accessible method for national crop 

yield estimation, which can be valuable for policymakers, traders, and growers in planning and 

managing agricultural production. 
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5. Discussion and Conclusions 

This thesis addresses several crucial aspects related to wheat production and supply failures, 

adaptation strategies, and global threats to food security. It begins by quantifying the risks 

posed by climate change, offering advanced forecasting methods, and suggesting 

improvements for crop simulation models. The research highlights extreme yield declines in 

France, waterlogging implications, challenges in Brazil, and the impact of the Ukraine war. 

These findings significantly contribute to our understanding of the causes behind production 

failures, potential mitigation approaches, and the need for improved models to ensure food 

security. 

The disruption of Ukraine's grain production and export capacities, combined with climate and 

environmental challenges, underscores the importance of coordinated efforts to stabilize 

wheat markets and enhance agricultural resilience. It is crucial to manage national stocks 

effectively and diversify food exports to mitigate global market disruptions. Previous calls for 

action have highlighted the necessity of implementing additional policies, such as preventing 

export bans and supporting emergency relief efforts by organizations like the World Food 

Programme, to address these challenges effectively (Ben Hassen and El Bilali, 2022; Bentley et 

al., 2022; Calder, 2022; Glauben et al., 2022).. 

Furthermore, Brazil is projected to experience more frequent extreme low production years 

for crops like wheat, beans, and maize (Antolin et al., 2021; Figueiredo Moura da Silva et al., 

2021; Nóia Júnior et al., 2021). These events, caused by a combination of extreme weather 

conditions, pose a significant threat to global food security. While previous climate impact 

studies have mainly focused on average effects (Antolin et al., 2021; Liu et al., 2016), our 

projections indicate that the magnitude of shortfalls will increase, exacerbating the already 

existing extremes. 

The 2016 wheat yield decline in France was the most extreme in recent history and resulted 

from adverse climate events (Ben-Ari et al., 2018). Prolonged cloud cover, heavy rainfall, soil 

anoxia, fungal foliar diseases, and ear blight collectively contributed to a reduction in grain 

number and lighter grain size (Nóia Júnior et al., 2023). It is anticipated that these compound 

effects will occur with greater frequency in the future, posing risks to wheat production. 
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Although losses related to flooding may decrease, losses resulting from combined drought 

and heat waves during critical growth stages are projected to double. Additionally, ear blight 

is estimated to cause 35% of the total expected average yield losses. European wheat-growing 

regions are expected to face increasing challenges, such as drought, heat stress, diseases, and 

heavy rainfall, potentially leading to episodes of severely low wheat production (Trnka et al., 

2014; Vogel et al., 2019). The occurrence of similar crop failures worldwide further emphasizes 

the potential dangers associated with simultaneous failures in major wheat-exporting 

countries and the implications for global food security (Gaupp et al., 2020). To address these 

concerns, enhancing crop simulation models to account for waterlogging and diseases, while 

concurrently developing resilient cultivars, is imperative for accurately predicting and 

mitigating the impacts of compound yield-reducing events under future extreme climates. 

In order to enhance wheat production forecasting and reduce uncertainties in future impact 

studies, we introduced a waterlogging module into the DSSAT-NWheat model. This addition 

addresses the previous limitations of crop models in accurately simulating decreased wheat 

yields caused by excessive rainfall (Nóia Júnior et al., 2023). By incorporating the waterlogging 

module, our model can provide a more precise representation of such events. Notably, in the 

case of the 2016 extreme event, waterlogging was responsible for 26% of France's significant 

yield decline, which existing seasonal forecasting systems and crop simulation models failed 

to anticipate. These extreme events, encompassing waterlogging, crop diseases, and heavy 

rainfall, are often overlooked by conventional crop simulation models (Rötter et al., 2018). 

Therefore, continuous improvements aimed at incorporating the impacts of extreme climate 

events in crop models are crucial for more reliable simulations in the future. These 

advancements will significantly contribute to our understanding of the complex effects of 

climate change on future crop production, ultimately facilitating the development of effective 

adaptation strategies. 

Additionally, the presented research endeavours have resulted in the development and 

testing of a method for estimating national yields using a single representative point within a 

country's crop area. This method has been applied and evaluated in three wheat-producing 

countries, with its primary objective being to provide valuable support to policymakers and 

agricultural commodity traders. By offering reliable estimates of national crop production, this 
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approach enables informed decision-making and effective planning. Despite the challenges 

associated with predicting extreme years, the method has demonstrated a relative error of up 

to 6%, indicating its potential as a robust tool for estimating national yields. 

 

5.1. Policy implications 

This thesis highlights the pressing need for immediate action to address climate change and 

its impact on wheat systems. It emphasizes the importance of national and international 

cooperation in developing resilient farming practices, enhancing crop diversity, and improving 

food storage and distribution networks. 

One key policy implication is the need for coordinated actions to stabilize wheat markets in 

the face of disruptions. The case study of Ukraine's grain production and export capacities 

demonstrates the importance of effectively managing national stocks and diversifying food 

exports to mitigate global market disruptions. Policymakers should consider implementing 

policies that prevent export bans and support emergency relief efforts, as advocated by 

previous research, to address these challenges effectively. 

Another critical policy implication is the need for climate change adaptation strategies. Brazil 

and France are projected to experience more frequent extreme low production years for 

wheat. Policymakers should prioritize investments in research and development of climate-

resilient crop varieties, improved irrigation systems, and sustainable agricultural practices to 

mitigate the threats posed by extreme weather conditions. Additionally, implementing 

policies that promote sustainable land management and conservation practices can enhance 

agricultural resilience and contribute to long-term sustainability. 

Furthermore, the integration of climate models, disease impact assessments, and advanced 

crop simulation techniques is vital for accurate predictions and informed decision-making. 

Policymakers should support research and development efforts aimed at incorporating the 

impacts of extreme climate events, such as waterlogging, diseases, and heavy rainfall, into 

crop and statistical models. This will enable more reliable simulations, enhance our 

understanding of climate change effects on crop production, and inform the development of 

effective adaptation strategies. 
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Moreover, the development and testing of a method for estimating national yields using a 

single representative point within a country's crop area have significant policy implications. 

Policymakers and agricultural commodity traders can leverage this approach to make 

informed decisions and effectively plan for national crop production. Despite the challenges 

associated with predicting extreme years, the method has shown promising results with a 

relative error of up to 6%. Policymakers should consider integrating this method into their 

decision-making processes to enhance agricultural planning and support strategies for 

addressing crop production impacts on a national scale. 

In summary, this research highlights the urgency of combating climate change and protecting 

global food systems. It underscores the significance of supporting farmers, fostering 

agricultural innovation, and advocating for policies that mitigate climate risks while ensuring 

access to nutritious food for all. Despite the challenges ahead, proactive global collaboration 

can help navigate the complexities of climate change and secure our food systems for future 

generations. Policymakers must prioritize these policy implications to address the risks and 

uncertainties associated with climate change and ensure sustainable food security. 

 

5.2. Research recommendations 

Based on the presented findings and contributions, several recommendations for future 

research can be made: 

• Further investigate and refine mitigation strategies: While the thesis addresses 

adaptation strategies for wheat production failures, there is room for additional 

research to explore and refine these strategies. This could involve assessing the 

effectiveness of specific interventions, such as adopting climate-resilient crop 

varieties, implementing sustainable agricultural practices, or improving irrigation 

systems. 

• Explore the impact of weather extremes on other crop types: Although the thesis 

focuses on wheat production, it would be valuable to extend the research to other 

major crops, such as maize, rice, or soybeans. Investigating the specific climate change 
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risks, potential mitigation strategies, and the need for improved models in these 

contexts could provide a comprehensive understanding of food security challenges. 

• Assess the effectiveness of policy interventions: The thesis emphasizes the 

importance of coordinated efforts and policy interventions to stabilize wheat markets 

and enhance agricultural resilience. Future research can delve deeper into evaluating 

the impact and effectiveness of specific policies, such as export bans prevention or 

emergency relief programs, in addressing food security threats. This could involve 

examining case studies from different regions and evaluating the outcomes of policy 

interventions. 

• Consider socio-economic factors in food security analysis: While the thesis mostly 

focuses on climate-related challenges, it is essential to recognize the influence of socio-

economic factors on food security. Future research can explore the interaction 

between climate change and socio-economic variables, such as poverty levels, market 

dynamics, and access to resources. Understanding these interconnections can provide 

a more comprehensive understanding of food security vulnerabilities and inform 

targeted interventions. 

• Improve models for extreme climate events: The thesis highlights the need to enhance 

crop simulation models to accurately simulate the impacts of extreme climate events, 

such as waterlogging, diseases, and heavy rainfall. Future research can focus on 

developing and refining these models, incorporating additional variables and refining 

the methodologies used. This could involve integrating more extensive datasets, 

improving model parameterization, and validating the models against observed data 

from extreme events. 

• Expand the application of yield estimation methods: The thesis introduces a method 

for estimating national yields using a single representative point within a country's 

crop area. Further research can explore the applicability of this method in other 

regions and for different crops. Evaluating its performance in diverse agro-climatic 

conditions and comparing it with existing yield estimation approaches would enhance 

its robustness and reliability. 
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By addressing these areas of research, the insights have further advanced our understanding 

of food security, develop more effective adaptation strategies, and improve our capacity to 

predict and manage the impacts of climate change on crop production.  
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A B S T R A C T   

The war in Ukraine threatened to block 9% of global wheat exports, driving wheat prices to unprecedented 
heights. We advocate, that in the short term, compensating for such an export shortage will require a coordinated 
release of wheat stocks, while if the export block persists, other export countries will need to fill the gap by 
increasing wheat yields or by expanding wheat cropping areas by 8% in aggregate. We estimate that a production 
increase would require an extra half a million tons of nitrogen fertilizer, yet fertilizer prices are at record levels, 
driven by rising energy prices. Year-to-year variability plus more frequent climate change-induced crop failures 
could additionally reduce exports by another 5 to 7 million tons in any given year, further stressing global 
markets. Without stabilizing wheat supplies through judicious management of stocks and continuing yield im
provements, food and national security are at risk across many nations in the world.   

1. Main 

Ukraine contributes to 9% of the world’s wheat exports (in 2020). In 
2020, the country produced 26 million tons (Mt) of which they exported 
72%, which was valued at more than 3.5 billion dollars (FAO stat, 2022). 
The war in Ukraine threatened to block most of Ukrainian wheat exports 
(FAO stat, 2022). Even if part of this wheat would be exported (FAO, 
2022), the areas in Ukraine sown with crops are estimated to be 
significantly lower than those in recent years (W et al., 2022). It is a 
crisis for the Ukrainian national economy and a threat to global food 
security. Several African and Asian countries depend on Ukrainian 
wheat to provide staple foodstuffs for their population. Indonesia and 
Egypt consume together more than 5 Mt of Ukrainian wheat per year, 
which corresponds to more than 20% of their annual imports. Ukraine 
supplies more than 40% of the wheat imported by Pakistan, and 51% by 
Lebanon (USDA PSD). Consequently, the risk of food insecurity and civil 
unrest may increase in these Ukrainian-wheat dependent countries, and 
potentially beyond. For example, other wheat importing countries like 

Brazil and Algeria, and particularly those in sub-Sahara Africa will also 
feel the impact from the wheat price hike caused by the export block. 
Wheat was priced at US$281 per ton in the beginning of February 2022 
and reached US$490 per ton early March 2022 (Supplementary Fig. S3), 
a week after the Russian Federation invaded the Ukraine. The wheat 
price has remained high for several weeks and recently decreased again, 
but it remains exceptionally high compared to the last five years (Sup
plementary Fig. S3), threatening food insecurity in many importing 
countries. 

Ninety percent of wheat exports in 2020 (the most recent year for 
which reliable data are available from FAO) are supplied by the world’s 
13 largest wheat exporting countries (Fig. 1). Across exporting coun
tries, wheat areas have remained steady over the last two decades at 
about 105 million ha (Mha), even as total arable area has grown in these 
countries (Fig. 1). Over the same period, wheat production of the top-13 
wheat exporters has increased to 325 Mt by producing more yield per 
unit area (mostly in the Russian Federation), with most of the additional 
wheat being exported (FAO stat, 2022). Global wheat exports have 
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increased from about 100 Mt in 2000 to 178 Mt in 2020 (Fig. 1). 
Sudden wheat price hikes have occurred in the past with devastating 

consequences across the world. For example, in 2007 (with less stocks 
available than in 2020, Supplementary Fig. S2a), late spring frosts 
occurred simultaneously with heat waves and droughts in central 
Europe causing a widespread decline in wheat yields (USDA, 2007). 
Combined with a prolonged drought in Australia, low yields in Ukraine 
and demand for biofuels (Headey, 2011), resulted in tripled wheat prices 
(FAO, 2008), contributing to food riots in at least 14 countries (Beraz
neva and Lee, 2013). Similarly, in 2010, a heatwave and fires destroyed 
one third of Russia’s national production, causing its government to ban 
wheat exports. This sudden wheat export shortage caused a 50% spike in 
wheat commodity prices, which, in turn, has contributed to the Arab 
Spring unrest (Perez, 2013), followed by a migration wave affecting 
many countries across the world (Van Mol et al., 2016). 

A short-term solution for such a food crisis would be to release wheat 
stocks, which in recent years have been between 50 and 80 MT and 
dropped in recent years to about 60 Mt (as of 2022 USDA report (USDA, 
2022): Supplementary Fig. S2a). The Russian Federation, the world’s 
largest wheat exporter has a large wheat stock but is not seen currently 
as a reliable supplier and may have an incentive to withhold stocks or to 
use them as a geo-political instrument. With no Ukrainian wheat being 
exported due to the current war, the other top-13 wheat exporters 
countries should increase exports. These countries have the necessary 
infrastructure for wheat exportation, with capacity to transport, sell and 
store grains, and additional efforts to export more wheat is most likely to 
come from these countries. However, in the short-term, this export boost 
will have to come mainly from available stocks in these countries. But in 
the mid- and long-term, these extra demands on wheat need to be met 
through higher wheat production. 

The top-13 wheat export countries (omitting the Russian Federation 
and Ukraine) produced 214 Mt of wheat on 67 Mha, with an average 
yield of 3.3 t ha− 1 in 2020 (FAO stat, 2022). To compensate for the 
missing Ukrainian wheat export, without contributions from the Russian 
Federation, will need to increase wheat grain yields by at least 8% 
(slightly less than the 9% export share of Ukraine as the mean yield level 
in the Ukraine is lower compared to the mean of the other countries) by 
closing the yield gap (difference between exploitable yield potential 

[80% of yield potential] (van Ittersum et al., 2013) and actual farmers’ 
yield) (Fig. 2b). As an annual yield increase of 8% is far beyond the 
average trend in wheat yields (Grassini et al., 2013; Fischer et al., 2014), 
such an abrupt change in wheat yield is not likely in the short and 
medium-term and will require long-term preparation through research 
and development in yield improvements. Also, increasing yields towards 
the exploitable yield potential would require about half a million tons of 
additional N fertilizer in these countries to offset the 18 Mt lost from the 
Ukrainian wheat export block (Fig. 2d; Supplementary Table S4). For 
example, USA and Canada together would need more than 0.2 Mt of N 
fertilizer to achieve this goal (Fig. 2d). However, considering fertilizer 
prices have increased dramatically during COVID19 and more since the 
Russian invasion of Ukraine (Supplementary Fig. S4), high fertilizer use 
is a significant contributor to nutrient pollution of the environment 
(Foley et al., 2011) and is extremely energy intensive, such an increase 
in fertilizer use might not be possible or desirable (Union, 2020). 
Although, the increase in N fertilizer price may result in a reduction in N 
fertilizer applications by farmers, which would further accelerate the 
wheat shortage. 

Alternatively, the additional wheat could come from expanding 
wheat production to another 5.5 Mha of cultivated area, displacing other 
crops or expanding into non-cultivated, less fertile areas. For example, 
The European Commission and several Member States are discussing a 
roll-back of The Green Deal – allowing farmers to sow wheat on 
ecologically protected areas established to meet the target of 10% 
ecologically protected areas by 2035 in response to the environmental 
crisis, in particularly the biodiversity crisis, to increase wheat produc
tion for export (Anghel, 2022). However, this would accelerate the 
environmental crisis and likely further reduce crop productivity in the 
future. And, the required area would be even larger due to low yield 
levels on these marginal lands (Beyer et al., 2022) (Fig. 2). 

Year-to-year variability and an increase in the frequency of climate 
change-induced production failures could reduce exports by up to 
another 5 to 7 Mt in any year, further stressing global markets. This 
stems from the fact that total average wheat export of the top-13 wheat 
exporting countries normally varies by up to 5 Mt (standard deviation of 
time series; Fig. 1a), which is largely caused by year-to-year-climate 
variability (Ray et al., 2015). In addition, we estimate that crop 

Fig. 1. Top-13 wheat exporters of the world. Re
ported cumulative wheat (a) exports, (b) harvested 
area, (c) production and (d) total arable area of the 
top-13 wheat export countries, accounting for 90% of 
recent global wheat exports. In (b) insets show ex
ports versus production (left) and exports versus 
wheat harvest area (right) in last 20 years (FAO stat, 
2022). α is the slope of a linear regression. Data were 
obtained from FAO Stats (FAO stat, 2022) and 
expanded with estimates from USDA (USDA, 2022) 
for 2021 and estimates for 2022 (black lines in (b) 
and (c)). All stacked lines are in order from largest to 
smallest top-13 wheat exporter, from dark blue to 
light green. Top-13 wheat exporters in 2020 (most 
recent FAO report) were (in order of exported tons 
per year) the Russian Federation, United States of 
America, Canada, France, Ukraine, Australia, 
Argentina, Germany, Kazakhstan, Poland, Romania, 
Lithuania, and Bulgaria. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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production failures due to extreme adverse weather events in these 
countries in the wake of climate change could further lower exports by 
another 2 Mt, resulting in potential export declines of up to 7 Mt 
compared to an average year. An export drop of more than 7 Mt 
occurred in 2003 during the widespread European drought and heat
wave (Battisti and Naylor, 2009), a climate pattern also observed in 
2018 and projected to become more frequent in the future with climate 
change (Trnka et al., 2014). Such shocks to crop production are possible 
in 2022 and with an increasing frequency of occurrence any year in the 
future with climate change (Nóia Júnior, 2021). Hence, to also account 
for additional wheat export losses due to year-to-year variability and 
possible climate extremes induced crop failures in wheat exports would 
require short, medium- and long-term preparations. In the short-term, 
this means being prepared for even more wheat stock releases. 

Recent national crop yield projections indicate that the loss of 
Ukrainian exports is unlikely to be compensated this year. A pronounced 
rainfall deficit has been reported for parts of France and Germany, and 
their national wheat productions are not expected to exceed that of 
previous years (Baruth et al., 2022). In addition, Kazakhstan has 
declared restrictions to wheat exports during the crisis (FAS- Nur -Sul
tan, 2022), further stressing the global wheat export market. The pro
jected wheat production of India and China, the two largest wheat 
producers and consumers, were also expected to decrease due to adverse 
weather conditions (Sowell and Swearingen, 2022). The consequences 
of such supply disruptions for the world market could be devastating as 
indicated in recent years. For example, the Ukrainian droughts of both 
2018 and 2019, which caused its national wheat exports to drop, by 10 
and 5% respectively (FAO stat, 2022), likely contributed to the decline 
of the per capita wheat consumption in Pakistan, a major wheat 
importer from Ukraine, and accelerated the number of undernourished 
people by 2.7 M during this period. Other wheat importing countries like 
Morocco, Egypt and Tunisia with limited fresh water resources to 

support their own crop production (Asseng et al., 2018) are also highly 
vulnerable to global wheat commodities prices (FAO stat, 2022). 

While in the medium to long-term, Ukraine exports, which have 
slowly started again and crop production may be compensated else
where through gradual yield increases and area expansion, short-term 
impacts are likely to be severe for many countries across the globe 
and will require a better management of national stocks. Controlling 
part of the stocks by coordinating existing national stockholdings, 
currently not available, would be a way forward. Even if the war ends in 
the next few months and/or exports from the Ukraine become normal 
again, the disruption of Ukraine’s grain storage and processing infra
structure, and maritime shipping capacity will have consequences on 
Ukraine’s wheat production and export capacities beyond the 2022/ 
2023 marketing season (FAO, 2022). Therefore, medium-to long-term 
wheat production improvement will be required, calling for a concerted 
global effort in conjunction with improved management of the climate 
and environmental crisis to stabilize future wheat markets (Koning, 
2017). Our analysis has focused on wheat, as the main staple food in 
many countries, but Ukraine and the Russian Federation are also top 
global exporters of sunflower, rapeseed, maize and barley. The reduced 
supply of these commodities is adding to the global food market 
disruption. Actions should be taken to make agriculture less vulnerable 
and more resilient to the concentration of food exports in a handful of 
countries. 
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Fig. 2. Required change in wheat yield or wheat area by top-13 wheat exporting countries (excluding Russia and Ukraine) to compensate export loss by 
Ukraine, plus additional possible wheat export losses from year-to-year variability or climate change induced extreme losses. (a) Average required increase 
in wheat grain yield and in wheat area expanded to cultivated and non-cultivated areas. Additional required wheat (b) grain yield, (c) cultivated area and (d) N 
fertilizer for each of the top-13 exporting countries (excluding Russia and Ukraine). Wheat yield in Germany is already close to the exploitable yield level (van 
Ittersum et al., 2013), therefore the increase in wheat production in Germany would need to come mostly from additional wheat area. Nitrogen requirements were 
calculated by using 30 kg of N fertilizer being required to produce one ton of wheat grain yield (Ladha et al., 2016). An additional export decline due to 
year-to-year-variability was calculated as the standard deviation of the linear regression line of top-13 country total exports during FAO reported years 2001–2020 
(Fig. 1). When expanding wheat to other cropped areas (i.e. replacing other crops) similar to current yield levels were assumed. When expanding wheat into currently 
not-cropped areas, a 20% lower yield was assumed due to less fertile land (Beyer et al., 2022). 
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Data availability 

Data will be made available on request. 
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Table S1: Top-13 wheat exporting countries (excluding Russia and Ukraine), ranked from top by 

export in 2020.  Current and additional yield and area required to compensate for Ukraine export 

stop, plus potential additional export losses due to year-to-year variability (standard deviation of time 

series from 2001 to 2020) and climate change induced extreme production failures (for instance the 

European drought and heat wave in 2003, combined with crop failures in Australia and Ukraine and 

increase biofuel demand REF).  Note: expansion to none-cultivated area is not shown here but would 

be 1.2 times larger due to less soil fertility of this land 1. Wheat yield, area and production are averages 

(avg) for five cropping-seasons from 2016 to 2020. 

Country 

Avg. 
Wheat 
yield 
(t/ha) 

Avg. 
Wheat 

area (M 
ha) 

Avg. Wheat 
production 

(M t) 

Additional 
yield to 

compensate 
Ukraine 
exports 
(t/ha) 

Yield plus 
compensating 
year-to-year-

variability 
(t/ha) 

 

Yield plus 
compensating 

climate 
extremes 

(t/ha) 
 

Additional 
Area to 

compensate 
Ukraine 
exports 
(t/ha) 

Additional 
Area plus 

compensating 
year-to-year-
variability (M 

ha) 

Area plus 
compensating 

climate 
extremes (M 

ha) 

USA 3.33 15.80 52.76 0.25 0.07 0.03 1.16 0.33 0.15 

Canada 3.43 9.50 32.54 0.35 0.10 0.05 0.98 0.29 0.13 

France 6.75 5.17 34.83 0.52 0.15 0.07 0.40 0.12 0.05 

Australia 1.93 10.93 21.42 0.22 0.06 0.03 1.25 0.32 0.15 

Argentina 3.10 5.62 17.49 0.31 0.09 0.04 0.56 0.16 0.07 

Germany 7.43 3.08 22.89 0.37 0.11 0.05 0.15 0.04 0.02 

Kazakhstan 1.18 11.80 13.89 0.07 0.02 0.01 0.66 0.19 0.09 

Poland 4.60 2.41 11.07 0.19 0.06 0.03 0.10 0.03 0.01 

Romania 4.27 2.15 9.13 0.38 0.12 0.05 0.19 0.06 0.03 

Lithuania 4.51 0.85 3.85 0.55 0.15 0.07 0.10 0.03 0.01 

Bulgaria 4.87 1.19 5.78 0.52 0.15 0.07 0.13 0.04 0.02 

Total for area 
and production 
and mean for 
yield 

3.30  67.60 214.60 0.26 0.08 0.04 5.48 1.59 0.73 
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Table S2: Top-13 wheat exporting countries (excluding Russia and Ukraine), ranked from top by 

export in 2020. Potential, exploitable, current yield and yield gap, and additional yield and area 

required to compensate for Ukraine export stop, plus year-to-year variability, plus climate change 

induced export loss. A positive yield gap indicates scope for yield increase, a close to zero or negative 

yield gap indicates no potential for further yield increase. The yield gap was calculated as the 

difference between exploitable yield potential, defined as 80% of the potential yield (as mean of ca. 

15 years, without a technology trend, established by the Global Yield Gap Atlas 2 and the country mean 

yield of 2016 to 2020. 

 A B C D E F G H  

Country 
Potential 

yield 
(t/ha) 

Exploitable 
yield 
(t/ha) 

Avg. 
Wheat 
yield 
(t/ha) 

Yield 
Gap 
B-C 

(t/ha) 

Additional 
yield to 

compensate 
Ukraine 
exports 
(t/ha) 

Yield plus 
compensating 
year-to-year-

variability 
(t/ha) 

 

Yield plus 
compensating 

climate 
extremes 

(t/ha)  

Total yield 
compensation 
E+F+G  (t/ha) 

Difference 
between total 
yield gap and 

total yield 
compensation 

(t/ha) 

USA 5.40 4.32 3.33 0.99 0.25 0.07 0.03 0.35 0.64 

Canada 5.00 4.00 3.43 0.57 0.35 0.10 0.05 0.51 0.07 

France 9.80 7.84 6.75 1.09 0.52 0.15 0.07 0.75 0.35 

Australia 3.60 2.88 1.93 0.95 0.22 0.06 0.03 0.30 0.65 

Argentina 5.20 4.16 3.10 1.06 0.31 0.09 0.04 0.43 0.63 

Germany 9.70 7.76 7.43 0.33 0.37 0.11 0.05 0.53 -0.20 

Kazakhstan 2.40 1.92 1.18 0.74 0.07 0.02 0.01 0.09 0.65 

Poland 9.40 7.52 4.60 2.92 0.19 0.06 0.03 0.27 2.65 

Romania 8.40 6.72 4.27 2.45 0.38 0.12 0.05 0.55 1.90 

Lithuania 9.00 7.20 4.51 2.69 0.55 0.15 0.07 0.77 1.92 

Bulgaria 8.10 6.48 4.87 1.61 0.52 0.15 0.07 0.74 0.87 
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Table S3: Top-13 wheat exporting countries (excluding Russia and Ukraine), ranked from top by 

export in 2020. Exploitable and current average wheat yield and required yield to compensate for 

Ukraine export stop, year-to-year variability and additional climate change induced extreme exports 

loss. Forecasted wheat yield for the 2022 wheat harvested. Yields in blue indicate that the forecasted 

wheat yield would be above the wheat yield required to compensate for Ukraine export stop. The 

yield gap was calculated as the difference between exploitable yield (as mean of ca. 15 climate 

seasons, without a technology trend, established by the Global Yield Gap Atlas 

(https://www.yieldgap.org/)) and the country mean yield of 2016 to 2020.   

Country 
Exploitable 

yield 
(t/ha) 

Avg. 
Wheat 
yield 
(t/ha) 

Wheat yield 
to 

compensate 
Ukraine 
exports 
(t/ha) 

Yield plus 
compensating year-to-
year-variability (t/ha) 

 

Yield plus 
compensating 

climate 
extremes 

(t/ha) 
 

Forecasted 
wheat yield 
for cropping 

season 
harvested in 

2022 

References 

USA 4.32 3.33 3.58 3.65 3.68 3.20 3 

Canada 4.00 3.43 3.78 3.88 3.93 3.50 3 

France 7.84 6.75 7.27 7.42 7.49 6.96 4 

Australia 2.88 1.93 2.15 2.21 2.23 2.52 3 

Argentina 4.16 3.10 3.41 3.49 3.53 3.11 3 

Germany 7.76 7.43 7.80 7.91 7.96 7.37 4 

Kazakhstan 1.92 1.18 1.24 1.26 1.27 1.02 3 

Poland 7.52 4.60 4.79 4.84 4.87 4.93 4 

Romania 6.72 4.27 4.65 4.77 4.82 4.27 4 

Lithuania 7.20 4.51 5.06 5.21 5.28 4.92 4 

Bulgaria 6.48 4.87 5.39 5.54 5.61 5.24 4 
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Table S4: Top-13 wheat exporting countries (excluding Russia and Ukraine), ranked from top by 

export in 2020. Additional nitrogen fertilizer required to compensate for Ukraine export stop, year-

to-year variability and climate change induced extreme export reductions. Nitrogen requirements 

were calculated using 30 kilogram of N fertilizer applied per ton of grain yield. This assumes a mean 

grain protein content of 12% (at 13% grain moisture), which is 2% of nitrogen in grains, with a fertilizer 

N use efficiency of about 67% 5. Note, as Germany is already close to the exploitable yield potential, 

additional yield compensations due to year-to-year variability and due to climate change induced 

extreme yield loss are not possible via yield increase and the additional N for Germany refers to the 

additional area needed to grow more wheat. Note, the additional required N is about 8% more than 

currently used in these countries.   

Country 

Additional N to 
compensate Ukraine 

export loss 
(1,000 t) 

Additional N to 
compensating for year-

to-year year-to-year-
variability 

(1,000 t) 
 

Additional N to  
compensate for  climate 

extremes 
(1,000 t)  

Total N to compensate 
all three losses combined 

(1,000 t) 

USA 111 31 15 157 

Canada 108 31 14 153 

France 71 21 10 102 

Australia 66 17 8 90 

Argentina 63 18 8 88 

Germany 32 9 4 45 

Kazakhstan 24 7 3 34 

Poland 14 4 2 20 

Romania 26 8 4 38 

Lithuania 15 4 2 21 

Bulgaria 19 6 3 27 

Total 548 156 72 776 
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Figure S2. Wheat stocks of the top-13 wheat exporters of the world. Reported wheat opening stocks 

at first of January 2001 to 2012 of the top wheat export countries and the European Union, accounting 

for 90% of global wheat exports in 2020. Black line is total, green line is Russia, red line is Ukraine, gray 

lines are all other countries. Data were obtained from USDA 3. Top wheat exporters in 2020 are (in 

order of exported tons per year) Russia, United States of America, Canada, European Union, Ukraine, 

Australia, Argentina, Kazakhstan. Opening stocks is the initial quantity of wheat held by a country at 

the start of any year. Data only available from 2001 to 2022, USDA 3. The USDA reports wheat opening 

stocks for the European Union and not for the individual member countries.   
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Figure S3. Wheat commodity price. Historical world wheat commodities price, from 2001 to 2022, 

(Macrotrends,  https://www.macrotrends.net/2534/wheat-prices-historical-chart-

data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushe

l.) 

 

https://www.macrotrends.net/2534/wheat-prices-historical-chart-data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushel
https://www.macrotrends.net/2534/wheat-prices-historical-chart-data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushel
https://www.macrotrends.net/2534/wheat-prices-historical-chart-data#:~:text=The%20current%20price%20of%20wheat,2022%20is%20%2410.7075%20per%20bushel
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Figure S4. World Bank Fertilizer Commodity Price Index. Historical World Bank Fertilizer Commodity 

Price Index, from 2001 to 2022, (The World Bank, 

https://www.worldbank.org/en/research/commodity-markets).  
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Figure S5. Wheat imports of major wheat importers from the Ukraine. Wheat (a) food supply per 

capita from 2010 to 2019 and (b) wheat imports of major importers from the Ukraine for the period 

2010 – 2020.  Black line is the average food supply per capita in (a) and total wheat imports of the top-

5 wheat importers from the Ukraine in (b). Data are from FAO Stats 6. Top-5 wheat exports in 2020 

from the Ukraine are (in order of imported tons per year) Indonesia, Egypt, Pakistan, Morocco, Tunisia 

and Lebanon.   
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Table S4. Top wheat importers in 2021. Data source: USDA PSD 7 

Importing 
Country 

Imports from 
world 
including 
Ukraine (Mt) 

Imports from 
Ukraine (Mt) 

Import 
share from 
Ukraine (%) 

Indonesia 10,450 2,700 26 
Egypt 12,149 2,405 20 
Pakistan 3,617 1,456 40 
Bangladesh 7,200 1,127 16 
Morocco 5,444 1,009 19 
Turkey 8,081 810 10 
Tunisia 1,771 653 37 
Lebanon 1,210 611 51 
Libya 1,455 565 39 
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Abstract
Wheat production in Brazil is insufficient to meet domestic demand and falls drastically in
response to adverse climate events. Multiple, agro-climate-specific regression models, quantifying
regional production variability, were combined to estimate national production based on past
climate, cropping area, trend-corrected yield, and national commodity prices. Projections with five
CMIP6 climate change models suggest extremes of low wheat production historically occurring
once every 20 years would become up to 90% frequent by the end of this century, depending on
representative concentration pathway, magnified by wheat and in some cases by maize price
fluctuations. Similar impacts can be expected for other crops and in other countries. This drastic
increase in frequency in extreme low crop production with climate change will threaten Brazil’s
and many other countries progress toward food security and abolishing hunger.

Brazil’s wheat production is insufficient to meet
domestic demand (Conab 2020). Despite being the
fourth largest producer of grains in the world, the
country imports up to 6 million tons of wheat annu-
ally, particularly after years when national wheat
production is extremely low (FAO 2021). Instabil-
ity in crop production can threaten regional and
global food security (Wheeler and von Braun 2013,
Raymond et al 2020).

Understanding what has driven extreme produc-
tion losses in the past and the frequency of those
losses is a critical step in finding ways to adapt agri-
culture to climate change with the aim of ensur-
ing future food availability in Brazil and elsewhere.
For four major agro-climatological zones of the
main wheat growing regions of Brazil (Groups I–IV,
(available online at stacks.iop.org/ERL/16/104025/
mmedia) supplementary figures S2 and S3), mul-
tiple regression impact models were developed to
estimate wheat planting area, non-harvested area

and grain yield, based on reported sub-regional
wheat cropping areas, non-harvested areas, trend-
corrected grain yields, monthly regional climate data,
and national commodity grain prices during the
period 2001–2019, as described in supplementary
figures S1, S8–S11 and supplementary tables S1–S3.
Wheat non-harvested area is defined as the wheat
planted area destroyed by adverse weather, i.e. crop
damaging weather (Trnka et al 2014), particularly
frost and drought, and consequently not harves-
ted. The regression results from each sub-component
model (i.e. separate impact models for sub-regional
wheat cropping areas, non-harvested areas and grain
yield) were combined within each sub-region and
then aggregated to national scale (figure 1(d)). The
regression impact models, shown in supplementary
table S3, reproduced regional and national plant-
ing area (r2 = 0.75), harvested area (r2 = 0.97),
and trend-corrected yield satisfactorily (r2 = 0.98),
in particular the extremely poor harvest of 2006
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Figure 1. Observed and estimated wheat production in Brazil. Interannual variability from 2001–2020 of observed (black solid
lines) and estimated (red dashed lines) (a) planted area, (b) non-harvested area, trend-corrected (c) national grain yield and
(d) national grain production. (e) Trend-corrected spatial variability of the observed 2006 wheat yield anomaly. Results for
individual regions are shown in supplementary figures S8–S11.

(figures 1(a)–(d), supplementary table S3). In 2006,
observed low planting incentives due to low wheat
prices before the cropping season and a drought dur-
ing April and May, the main wheat planting period,
reduced the wheat crop area by 15% (figure 1(a) and
supplementary figure S5). In addition, frost damage
and a drought in early spring destroyed wheat on
about 12% of the cropping area (figure 1(b)). An
additional drought during winter combined with low
temperatures in early spring (during grain filling)
reduced the remaining wheat grain yield in average
by 23% (figure 1(c)), with some regional yields drop-
ping by 50% (figure 1(e)). This compound of negative
events in 2006 caused wheat production in Brazil to
drop by 46%, the lowest production recorded in the
last 20 years (figure 1(d)), resulting in a 60% increase
of wheat price and one of the largest wheat imports in
the following year (CEPEA 2020, FAO 2021).

Wheat farms in Brazil are mostly family-owned
with an average size of 47 ha. The wheat planting area
in Brazil is pre-determined by farmers’ expectations
from market signals and weather conditions during
the planting period in April and May. Initially, plant-
ing decisions are driven by the wheat price before
the crop season (supplementary table S2, figures S8–
S11), and in the two regions, in Paraná state (Group
II and III, supplementary figure S3), also by maize
prices (supplementary figure S7). Subsequently, low
or excessive rainfall during the planting season can
further influence the decision to limit the wheat
planting area (supplementary table S2, supplement-
ary figure S20). As a result, the wheat planted area in
Brazil as a whole varied by up to 0.9 million ha each
year, 45% of the average 2 million ha planted yearly
since 2001 (figure 1(a)). The national non-harvested
area has been as large as 12% (figure 1(b)) and average

national trend-corrected yields have been ranging
from 3.2 t ha−1 down to 2.0 t ha−1 (figure 1(c)),
which contribute to variation in national wheat pro-
duction of between 3.0 and 7.5 million t year−1 from
2001 to 2019 (figures 1(d) and (e)). Given the abil-
ity of the multi-regression impact models in estimat-
ing planted area, non-harvested area, trend-corrected
grain yield, and national production in the last two
decades (figures 1(a)–(d)), we extended the analysis
with long-term climate change scenarios from the
recent CMIP6 ensemble for the period 1850–2100,
thus considering retrospective and prospective com-
ponents of climate trends. Results indicated that the
wheat planted area varies from year to year, with
notably more planted area when wheat prices are
above average (figure 2(a)). The wheat planted area
is projected to decline after 2020 because of a pro-
jected increase of up to 70% of drought events fre-
quency during April to May, affecting wheat planting
(supplementary tables S1–S2, and figures S20–S22).
The projected non-harvested area fluctuates widely
without a clear trend between 1% and 6% from
1850 to 2100 (figure 2(b)), with historical (1850–
2000) wheat planted area losses mostly caused by
frost, changing to future losses due to frequent heat,
drought and excess water from high rainfall events
(supplementary S21 and S22). The projected national
mean yield varies between 1 to 4 t ha−1 with a steep
declining trend after 2020 (figure 2(c)). This is mostly
due to the projected future increase of up to 3 ◦C of
maximum monthly mean temperature during wheat
flowering and grain filling in July and August, on top
of an already warm climate with relatively low yields,
leading to heat stress and drought, further redu-
cing grain yields (supplementary figures S20–S22)
and despite the projected increase in atmospheric
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Figure 2. Wheat production in Brazil was estimated with CMIP6 global climate projections.Multi-model ensemble projections
of interannual variability for (a) planted area, (b) non-harvested area, (c) grain yield (including a CO2 growth stimulus according
to Tebaldi and Lobell (2018), supplementary table S4 and figure S24) and (d) national wheat grain production, for RCP 7.0 and
three fixed wheat price scenarios. Projections are a mean of five CMIP6 GCMs (lines)± 1 s.e. (shaded areas) with regression
impact models for four sub-regional wheat cropping areas aggregated to national scale. Regression impact models are separate for
planting area, non-harvested areas and grain yields.

CO2 concentration stimulating crop growth and yield
(supplementary figure S24). Asseng et al (2017) have
suggested a linear decline in absolute wheat grain
yield with increasing seasonal temperatures above
20 ◦C, which means that the absolute yield decline
is larger in warm wheat cropping regions, such as
Brazil. The projected decline of wheat yields in Brazil
tend to be higher than wheat yield impacts reported
in other regions of the world with lower base tem-
peratures and higher yield levels (Rosenzweig et al
2014, Webber et al 2018, Liu et al 2019). Estimated
wheat grain yield decreases by 48 (1.5%), 75 (3.3%)
and 83 (3.5%) kg ha−1 decade−1 (supplementary
figure S18) for Representative Concentration Pathway
(RCP) 2.6, RCP 7.0, and RCP 8.5, respectively (sup-
plementary figure S16) which would result in 20%,
50%, and 60% lower grain yields by 2100 (compared
to the 1850–2020 period), assuming no adaptation is
undertaken. When the projected wheat planted areas
and non-harvested areas are combined in the model
with projected grain yield, the national wheat pro-
duction of Brazil is relatively stable under the past cli-
mate (1850–2000), but declines with climate change
from 2000 onwards, regardless of commodity price
signals (figure 2(d)), and again assuming there is no
adaptation.

National wheat production at an average
wheat price continues to decrease until 2100 by
110 000 t decade−1 (1.5%) under RCP 2.6 and by
about 180 000 t decade−1 (2.5%) under RCP 7.0 and
RCP 8.5 (figure 3). The effect of this would be an up
to 60% production loss by 2100 compared to mean
of the historical period 1850–2020 (supplementary
figure S16), in agreement with a recent study that
indicates a future decline of suitable areas for wheat
in south of Brazil by up to 59% (Santi et al 2018).
In addition, the interannual variability in national
wheat production is projected to increase toward 2100
under RCP 7.0 and 8.5 (supplementary figure S19).
In these scenarios, wheat production in Brazil would
become more unstable and more variable before the
end of the century.

Extreme low wheat production years are statistic-
ally defined as the 5th percentile of occurrence (Vogel
et al 2021) of simulated wheat production during
1850–2020, with a lowwheat price scenario, thus with
a probability which occurred once every 20 years in
the past. The frequency of extreme lowwheat produc-
tion years is projected to increase by the end of the
century, regardless of RCP or wheat price (figure 4).
However, extreme poor wheat harvests are projec-
ted to become even more frequent under high RCPs
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Figure 3. Projected national wheat production of Brazil. Projected wheat production for average price and for (a) RCP 2.6,
(b) RCP 7.0, and (c) RCP 8.5 and an average wheat price scenario. Extreme low wheat production years are statistically defined as
the 5th percentile of occurrence (Vogel et al 2021) of simulated wheat production during 1850–2020, with a low wheat price
scenario (supplementary figure S18 for 5% occurrence during 1850–2020 for this price scenario). Data are ensemble means based
on five CMIP6 GCMs. Alfa is the rate of wheat production change per decade for all wheat cropping seasons (black) and for
extreme low production (red).

Figure 4. Projected frequency of extreme low wheat production years for Brazil. Estimated 30 years running mean frequency of
extreme low wheat production for three fixed wheat prices under (a) RCP 2.6, (b) RCP 7.0 and (c) RCP 8.5 from 1850 to 2100.
Lines are ensemble means based on five CMIP6 GCMs (lines) and shading shows± 1 s.e.

and are magnified by low wheat price, and in north-
ern wheat producing regions, also by a high maize
price. For example, in the decades 2070–2100, the
projections show the yearly frequency of extreme low
wheat production at a national level reaches 70%
when wheat prices are high, but reaches 90%, an
increase of more than 15-fold, when wheat prices
are low under RCP 8.5 (figures 4 and supplementary
figure S17).

Extreme low production years are thus projected
to become the norm in Brazil by 2100. This has paral-
lels with future projections that extreme heatwaves in
Europe (Robine et al 2008), as experienced in 2003,
will become the norm for Europe by 2100 (Battisti
andNaylor 2009). Recently reported extreme lowpro-
duction of wheat in France and Europe, of beans in
Brazil and of maize at national to global scales (Trnka
et al 2014, Ben-Ari et al 2018, Zampieri et al 2019,
Antolin et al 2021) are likely to become also more fre-
quent in the future. Indeed, the unprecedented drop
in wheat production of over 30% in 2016 in France,
the fifth largest wheat producer in the world, came
as a total surprise to forecasters because of the unex-
pected impact of a combination of extreme weather

events, namelywarmer earlywinter temperatures that
enabled disease spread, followed by heavy spring rain-
fall, waterlogging, nutrient leaching and more dis-
eases (Ben-Ari et al 2018). A similar compound of
extreme events, with increased drought events during
the planting season, drought and heat during wheat
flowering and grain filling together with high rainfalls
during the wheat harvest period, causing production
wheat grain losses has been observed and predicted
here with the multiple regression models for Brazil,
which directly account for the impact of extreme high
and low temperature and variations in rainfall, while
indirectly considering effects of excess water, nutri-
ent leaching, and disease damage. The magnitude
of recently experienced extreme production losses in
2006 in Brazil and the projections of extreme low pro-
duction years are in stark contrast to previous climate
impact studies which have largely focused on average
climate change effects, essentially from increased heat
and drought, with smaller yield losses and occasion-
ally small increases computed, such as a global mean
change of +1.7% for wheat (−4.5% to +3%, lower
to upper quartile), of −5.8% for maize (−16%–0%,
lower to upper quartile) by 2070–2100 (Rosenzweig
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et al 2014), and for Brazil, a national wheat produc-
tion change of−5% (Liu et al 2019).

While the increased frequency of extreme lows in
crop production will be a challenge for food supply,
our projections further suggest that the magnitude
of the shortfalls will increase, that is, the extremes
will become more extreme. For example, the pro-
jections indicate that the volume of wheat harvested
in Brazil in extreme low production years, when the
wheat price is low, would decline from 2020 onwards
by 44 000 t decade−1 under RCP 2.6, and by 230 000
and 300 000 t decade−1 under RCP 7.0 and RCP 8.5,
respectively (supplementary figure S18). That means,
the extreme years will become even lower in wheat
production than the extreme low production years in
the past.

Extreme lows in a country’s wheat production,
as occurred in 2006 in Brazil, impact national food
security and can also have implications for global
food security. For example, simultaneous wheat pro-
duction failures in several exporting countries in
2008 contributed to food riots across the world (IMF
2008). And, the heatwave in Russia in 2010 destroyed
one third of its national wheat production, leading
to a ban on wheat export to other countries, con-
tributing to a 50% spike in the global wheat price
(FAO 2021) that is suggested to as a consequence
have sparked unrest in Northern Africa (Perez 2013).
A heatwave in Egypt, the largest wheat importer in
the world, in the same year experienced depressed
national wheat production by 13% (Asseng et al
2018) and this decline might also have added to the
unrest in Egypt in the following year. These recent
food crises demonstrate the sensitivity of global food
security to extreme low crop production wherever
it occurs. From 1964 to 2007, extreme drought and
heat waves reduced global cereal production by up to
10% in some years (Lesk et al 2016), mostly affecting
poor regions (FAO, IFAD, UNICEF, WFP and WHO
2018, Verschuur et al 2021). The per capita gross
domestic income of Brazil, as well as that of Central
Africa and India, has decreased by almost 20% due to
recent global warming, accentuating global economic
inequality (Diffenbaugh and Burke 2019). As extreme
events from climate change increase, whether single
events like heat and drought, or combinations of det-
rimental impacts from frost, excess water, and dis-
ease spread together with heat or drought occur, the
frequency of extreme low crop production years will
increase in the future. This will threaten Brazil’s and
many other countries progress toward food security
and abolishing hunger.

Our results highlight a steep decline in wheat pro-
duction in Brazil with a sharp increase with extreme
low wheat production years. Alternative crops like
sugar-cane, maize and pasture might be better suited
to a warmer climate and an increase in these crops
has been noted in recent years in south of Brazil
(Conab 2020, Zilli et al 2020). The introduction of

irrigation could be another adaptation to a changing
rainfall pattern and a warmer climate (for crop cool-
ing through increased transpiration), but would be
costly or might not be feasible due to lack of water
resources in some areas. However, in Central Brazil,
recent public and private investments have started to
expandwheat productionwith irrigation (Pereira et al
2019). To assist farmers to cope with an increase in
extreme low crop production seasons, crop insurance
could also become an option, but usually requires
government subsidies to be affordable (Mahul and
Stutley 2010).

1. Methods

Wheat planted area, non-harvested area, trend-
corrected yield and production from776municipalit-
ies (IBGE 2020) representing 90% of Brazilian wheat
production were used in a multi-model regression
analysis (supplementary figure S2). Yield anomalies
(Y anm, supplementary figure S4) were computed as
the percent difference between observed (Yobs) and
average (Y avg) trend-corrected yield divide by Y avg:

Yanm =
Yobs −Yavg

Yavg
× 100. (1)

Using yield anomalies, a hierarchical clustering ana-
lysis was performed across the municipalities and
the 19 years from 2001 to 2019. As a result, four
main wheat regions (Group I–IV) were defined based
on their agroclimatic conditions (Scheeren et al
2008) (supplementary figure S3).Monthlymaximum
and minimum temperatures and accumulated rain-
fall recorded by National Institute of Meteorology
(INMET 2021) from weather stations, from each
of the four regions (supplementary table S5), thus
assuming each group to represent similar climates
(Scheeren et al 2008). Wheat prices, and for two
regions wheat and maize prices, before the wheat
cropping season were used to estimate wheat planted
area. The commodity price data used were from 2005
to 2019 (CEPEA 2020). Wheat and maize prices for
2001–2004were reconstructedwith a regression relat-
ing international to domestic prices.

Statistical models were developed separately for
each of the four main wheat-producing regions
in Brazil. Statistical models for each region were
developed for wheat planted area, non-harvested
wheat area andwheat grain trend-corrected yieldwith
municipality-based observations from 2001 to 2019,
together with monthly seasonal climate records and
commodity prices (before planting) (supplementary
table S2). A recently suggested stepwise selection pro-
cedure for quantifying extreme crop yields (Ben-Ari
et al 2018) was applied to identify the best com-
bination of input variables using R (Version 4.0.3)
(supplementary figure S1, supplementary figures S8–
S11 and supplementary tables S2–S3). Similar res-
ults were obtained with the least absolute shrinkage
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and operator method suggested by Vogel et al (2021)
as an alternative statistical approach (supplementary
figure S23).

Monthly climate data from five CMIP6 global cli-
mate models (GCMs) for 1850–2100 were used to
estimate the wheat planted area, non-harvested wheat
area and wheat yield for each group, under RCP
2.6, RCP 4.5, and RCP 8.5 future scenarios (CMIP6
2020). A CO2 growth stimulus effect on yield was
included based on Tebaldi and Lobell (2018) (sup-
plementary table S4 and supplementary figure S24).
The wheat harvested area was calculated from the
difference between planted and non-harvested wheat
area.Wheat production was estimated bymultiplying
the estimated yield with harvested area. Three con-
trasting wheat price scenarios were applied. The high,
average and low wheat prices are from a combina-
tion of the highest, average and lowest recordedwheat
and wheat/maize ratio price during 2001–2019. All
estimated group results were aggregated to estimate
national production.

Extreme low national wheat production was
estimated for each GCM separately and defined as the
5th percentile (Vogel et al 2021) wheat production
during 1850–2020 (which as a 5% frequency is equi-
valent to once every 20 years), a period when all RCPs
were similar and using the low national wheat price
from the reference period 2001–2020.
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Brasil Agrometeoros 25 303–11

Scheeren P L et al 2008 Challenges to wheat production in Brazil
Challenges to International Wheat Breeding (Mexico:
CIMMYT) 167–70

Tebaldi C and Lobell D 2018 Estimated impacts of emission
reductions on wheat and maize crops Clim. Change
146 533–45

Trnka M, Rötter R P, Ruiz-Ramos M, Kersebaum K C, Olesen J E,
Žalud Z and Semenov M A 2014 Adverse weather conditions
for European wheat production will become more frequent
with climate change Nat. Clim. Chang. 4 637–43

Verschuur J, Li S, Wolski P and Otto F E L 2021 Climate change as
a driver of food insecurity in the 2007 Lesotho-South Africa
drought Sci. Rep. 11 3852

Vogel J, Rivoire P, Deidda C, Rahimi L, Sauter C A, Tschumi E,
van der Wiel K, Zhang T and Zscheischler J 2021
Identifying meteorological drivers of extreme impacts: an
application to simulated crop yields Earth Syst. Dyn.
12 151–72

Webber H et al 2018 Diverging importance of drought stress
for maize and winter wheat in Europe Nat. Commun.
9 4249

Wheeler T and von Braun J 2013 Climate change impacts on
global food security Science 341 508–13

Zampieri M, Ceglar A, Dentener F, Dosio A, Naumann G, Berg M
and Toreti A 2019 When will current climate extremes
affecting maize production become the norm? Earth’s Future
7 113–22

Zilli M, Scarabello M, Soterroni A C, Valin H, Mosnier A,
Leclère D, Havlík P, Kraxner F, Lopes M A and Ramos F M
2020 The impact of climate change on Brazil’s agriculture
Sci. Total Environ. 740 139384

7

https://doi.org/10.1016/j.crvi.2007.12.001
https://doi.org/10.1016/j.crvi.2007.12.001
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.31062/agrom.v25i2.26167
https://doi.org/10.31062/agrom.v25i2.26167
https://doi.org/10.1007/s10584-015-1537-5
https://doi.org/10.1007/s10584-015-1537-5
https://doi.org/10.1038/nclimate2242
https://doi.org/10.1038/nclimate2242
https://doi.org/10.1038/s41598-021-83375-x
https://doi.org/10.1038/s41598-021-83375-x
https://doi.org/10.5194/esd-12-151-2021
https://doi.org/10.5194/esd-12-151-2021
https://doi.org/10.1038/s41467-018-06525-2
https://doi.org/10.1038/s41467-018-06525-2
https://doi.org/10.1126/science.1239402
https://doi.org/10.1126/science.1239402
https://doi.org/10.1029/2018EF000995
https://doi.org/10.1029/2018EF000995
https://doi.org/10.1016/j.scitotenv.2020.139384
https://doi.org/10.1016/j.scitotenv.2020.139384


1 
 

14.09.2021 

Supplementary materials for 

 
 

Extreme lows of wheat production in Brazil 

Rogério de Souza Nóia Júnior, Pierre Martre, Robert Finger, Marijn van der Velde, Tamara Ben-

Ari, Frank Ewert, Heidi Webber, Alex C. Ruane, Senthold Asseng 

 

Table of Contents 
Extreme lows of wheat production in Brazil ........................................................................... 1 

Supplementary Methods ....................................................................................................... 3 

Supplementary Text .............................................................................................................. 4 

Wheat farming in Brazil .............................................................................................................. 4 

Wheat imports and wheat price fluctuation in Brazil ................................................................. 4 

2017 wheat growing season ....................................................................................................... 4 

Possible expansion of wheat production in Brazil ...................................................................... 5 

Supplementary Tables ........................................................................................................... 6 

Table S1. Variables used for modeling wheat planted area, non-harvested area and yield. .... 6 

Table S2. Description of cropping seasons diagnoses in Brazil. ................................................. 7 

Table S3. Multiple linear regression models for estimating planted area, area non-harvested 
and grain yield in Brazil. Variables are defined in Supplementary Table S1. ............................. 8 

Table S4. CO2 fertilization effects for C3 crops, according to experiments performed with the 
DSSAT4 model. ............................................................................................................................ 9 

Table S5. Geographical coordinates of the weather stations within each group .................... 10 

Supplementary Figures ........................................................................................................ 11 

Figure S1. Flowchart of the procedures for estimating national wheat production. ............... 11 

Figure S2. Observed spatio-temporal variations of wheat cropping area in Brazil. ................. 12 

Figure S3. Observed spatio-temporal contribution of wheat production regions in Brazil. .... 13 

Figure S4. Observed spatio-temporal pattern of wheat yield anomaly in Brazil. .................... 14 

Figure S5. The observed 2006 wheat grain yield anomaly in Brazil. ........................................ 15 

Figure S6. The observed 2017 wheat grain yield anomaly in Brazil. ........................................ 16 

Figure S7. Observed off-season maize and wheat in Brazil. ..................................................... 17 



2 
 

Figure S8. Multiple linear regression model performance for estimating wheat production in 
Group I. ..................................................................................................................................... 18 

Figure S9. Multiple linear regression model performance for estimating wheat production in 
Group II. .................................................................................................................................... 19 

Figure S10. Multiple linear regression model performance for estimating wheat production in 
Group III. ................................................................................................................................... 20 

Figure S11. Multiple linear regression model performance for estimating wheat production in 
Group IV. ................................................................................................................................... 21 

Figure S12. Estimated wheat production in Group I. ............................................................... 22 

Figure S13. Estimated wheat production in Group II. .............................................................. 23 

Figure S14. Estimated wheat production in Group III. ............................................................. 24 

Figure S15. Estimated wheat production in Group IV. ............................................................. 25 

Figure S16. Projected changes in wheat production over the 1850-2020 historical period in 
Brazil. ......................................................................................................................................... 26 

Figure S17. Projected change in frequency of extreme low wheat production over 1850-2020 
historical period in Brazil. ......................................................................................................... 27 

Figure S18. Projected wheat yield and production over time. ................................................. 28 

Figure S19. Projected variability of low wheat production in Brazil. ....................................... 29 

Figure S20. Pearson’s correlations for monthly climatic variables and wheat planted area, non-
harvested area, yield, production and extreme low production in the different groups. ....... 30 

Figure S21. Climate Characterization. ....................................................................................... 31 

Figure S22. Climatic events. ...................................................................................................... 32 

Figure S23. Projected frequency of extreme low national wheat production of Brazil using the 
Lasso method. ........................................................................................................................... 33 

Figure S24. Global atmospheric CO2 concentration projections for RCP 2.6, RCP 7.0 and RCP 
8.5. ............................................................................................................................................ 34 

Figure S25. Wheat expansion production towards Central Brazil. ........................................... 35 

References .......................................................................................................................... 36 

 

 

 

 

 



3 
 

Supplementary Methods 

Brazil’s wheat production was divided into three components: wheat planted area, non-

harvested area and yield.  

The planting area in Brazil is affected by the wheat price, and in two regions by the relation 

between wheat and maize price (Group II and III, Supplementary Fig S3 and Fig S7). The wheat 

planted area was estimated by combining two linear equations (Supplementary Table S2). The 

first one calculated the planted area determined by wheat or wheat/maize ratio price (AreaPrice) 

as a linear relation between planted area and commodity grain prices in October and November 

of the previous year. The second one calculates planting area as determined by weather 

conditions in the previous and during planting months (AreaClimate) as a multiple linear regression 

between the residuals of the Areaprice equation and the climatic variables of April, May and June 

(sowing period, Supplementary Table S2). The planted area was estimated by combining the 

result of both equations (i.e. sum of the results of AreaPrice and AreaClimate equations). 

The wheat non-harvested areas and yield, are affected by adverse weather condition during 

wheat flowering and grain filling (see more details in Supplementary, Table S2). We therefore 

selected the climatic variables that historically affect the wheat planted area, non-harvested area 

and yield in Brazil. We used stepwise method for an automatic selection of meteorological 

variables that are linked with inter-annual variability of wheat planted area, non-harvested area 

and grain yield in Brazil. 

 

 

 

 

 

 

 

 



4 
 

Supplementary Text 

Wheat farming in Brazil 

Brazil produces less than 1% of the wheat produced in the world, but is the seventh largest 

importer in the world (1). Wheat cultivation in southern Brazil is rainfed, and characterized by 

no-till farming. Wheat is preceded by a summer crop, mostly soybean. Wheat is usually sown 

between April and July. The wheat season from sowing to harvest is about 100 to 170 days, with 

harvesting usually occurring between August and November. The majority of farmers who 

cultivate wheat are technically advanced, acquire specific seeds for the region, use fertilizers, and 

try to control common pest and diseases (2). Average wheat farm size is 47 ha (3). Main 

challenges include adverse weather, incidence of diseases such as wheat blast and wheat 

powdery mildew and emerging new pest and diseases, and poor economic returns (2).   

 

Wheat imports and wheat price fluctuation in Brazil 

In Brazil, the prevalence of undernourished people has been increasing since 2013, reaching 10 

million (~5%) in 2018 (4). Wheat is an important component of the Brazilian diet, but the national 

wheat production covers <60% of domestic demand (5). The dependence on imported wheat 

makes the bread price dependent on international currency exchange rate variations. For 

example, the coronavirus pandemic caused the Brazilian Real to drop in relation to dollar, 

resulting in the price of bread to increase by 120% in some Brazilian regions exposing parts of the 

population to additional food insecurity (6). 

The increase in wheat price stimulates increasing wheat planted areas as farmers benefit from 

high wheat prices. However, consumers would experience a simultaneous decline in real wages 

in the short run, which can lead to food insecurity. 

On the other hand, a decline of wheat price before the wheat-cropping season discourages 

farmers to plant wheat, leading to a reduced wheat planted area. In these years, the wheat 

production declines, but can in two of the regions lead to an increase in maize production (2) 

(Supplementary Fig S7).  

 

2017 wheat growing season  



5 
 

Another low national wheat producing year during 2001 and 2020 occurred in Brazil in 2017, 

when unusually high temperatures combined with a prolonged drought during the grain filling 

period in spring, reduced the national wheat production by about 30% (Supplementary Fig. S6 

and Supplementary Table S2), followed by an increase in wheat imports in the following year (1). 

 

Possible expansion of wheat production in Brazil 

To become self-sufficient in wheat, Brazil has directed research and development to expand 

wheat production to Central Brazil, a region well known for the production of other important 

commodities such as cotton, soybean and maize. This area expansion could increase the national 

wheat production by several folds if successful (7). Currently, the largest expansion of wheat 

production occurs in the state of Minas Gerais, where production has increased by 250% in the 

last 10 years (Supplementary Fig S25). However, to unlock the wheat production in this area 

improved wheat cultivars with drought tolerance is needed (8). 
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Supplementary Tables 

 
Table S1. Variables used for modeling wheat planted area, non-harvested area and yield. 

Name Unit Description 

Rain mm Monthly accumulated rainfall 
Tmax °C Mean monthly maximum air temperature 

Tmin °C Mean monthly minimum air temperature 

Htemp days Number of days in a month with maximum air temperature above 32°C 

Ltemp days Number of days in a month with minimum air temperature below 2°C 

Drought 
  

counts 

Ten consecutive days with no rainfall; the periods are counted for 
multiples of 10, i.e. 20 consecutive days with no rainfall is equivalent to 
2 drought periods. 

HRain days Number of days with rainfall above 30 mm 

Rainy days days Number of days with rainfall above 0.1 mm 
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 1 
Table S2. Description of cropping seasons diagnoses in Brazil. The description is based on technical literature, extension 
service and expertise magazines. Variables are defined in Supplementary Table S1. 
Estimated 
variables 

Variables that are historically involved with wheat production variability in Brazil 
Variables selected for statistical 

models 

Planted 
Area 

The decision to sow wheat or not is usually based on wheat price before the soybean 
cropping season (i.e. September-November), when the farmers buy the inputs for the next 
cropping season. Also, during this period the farmers are selling part of the wheat harvest, 
thus low wheat selling price and poor returns can discourage the farmers for the next 
cropping season. 

In some locations of Paraná State (i.e. Northern Brazilian wheat producing regions, Groups II 
and III in this study; Supplementary Fig. S7), the wheat compete for area with the off-season 
maize. And, in these regions, the decision of which crop will be sown is based on the 
comparison of wheat and maize prices. 

The planted area can also be affected by weather conditions in the previous and during 
planting months: 

• 2006: The national wheat planted area decreased by 15% because of very poor returns 
of 2005 wheat growing season and low wheat price, and dry conditions at planting that 
forced many producers to opt for other crops or fallow (9, 10).  

• 2012: The wheat planted area reduced by 11% because of a drought in the State of Rio 
Grande do Sul in the South Region (Group I) (11). 

• 2017: The wheat planted area reduced by 12% because of excessive volume of rainfall in 
April and May and the low prices of wheat before sowing (12). 

Also, some farmers wait for the temperature to reach 15-20°C, to plant wheat, consequently 

temperature out of this range during the planting period can delay planting and make 

farmers opt other crops (13). 

First, the wheat planted area of each 
group was linearly correlated with 
wheat price or wheat/maize ratio 
price.  

• Group I and IV: Wheat price in 
October of the previous year (*). 

• Group II and III: Wheat/maize 
price ratio in November of the 
previous year (**). 

The residuals of the above-mentioned 
relation were correlated with 
seasonal monthly climate variables 
(Rain, Tmax, Tmin, Htemp, Ltemp, 
Hrain, Drought and Rainy days). 

• Group I and IV: The seasonal 
monthly variables were from 
May to June. 

• Group II and III: The seasonal 
monthly variables were from 
April to May. 

Non-
harvested 
area 

Extreme weather events, particularly frost and drought, can destroy the wheat planted area 
in Brazil. The crops areas are then not harvested and are named “non-harvested areas”. 

• 2006: The national non-harvested area was about 12% because of a combination of 
drought and hard frosts at the end of August and September in the major production 
area of Rio Grande do Sul and Paraná (9, 10) (Groups I, II and III). 

• 2013: The national non-harvested area was about 7% because of high relativity humidity 
in July favored the development of crop diseases and the crops were then more 
susceptible to the hard frosts in August. Due to these conditions, some farmers opted to 
not harvesting more than 90% area planted with wheat, leaving it as straw for the 
summer crop (14).  

The drought and frost effects are enhanced when they occur in combination with other 
events such as extremely heavy rainfall and high temperatures. 

Seasonal monthly variables used: 
Htemp, Ltemp, Drought and HRain. 

• Group I and IV: The seasonal 
monthly variables were from 
June to October. 

• Group II and III: The seasonal 
monthly variables were from 
May to September. 

Yield 

The occurrence of adverse climatic events between June and September are the main cause 
of wheat yield lost in Brazil.  

• 2006: The national yield dropped by 15% because of a combination of factors. The dry 
conditions during the planting period, caused the planting of wheat to occur late, which 
reduced the potential yield of the crop. The yield was also affected by a combination of 
drought and hard frosts at the end of August and September (9, 10). 

• 2015: Wheat yield drastically drop in Santa Catarina state and in some parts of Rio Grande 
do Sul and Paraná (Group IV). The yield drop in Santa Catarina was about 40%. The El 
Nino phenomenon caused excessive rainfall in the region, increasing the relative 
humidity. The high relative humidity greatly increased the incidence of foliar diseases, 
harming the yield. The high relative humidity also increased the production costs due to 
a 70% increase in fungicide applications (15). 

• 2017: The national yield dropped by 36% from the country’s 2016 wheat output because 
of drought and frost conditions during critical development stages of the crop. The 
drought occurred in June, July, September and October and its effects were magnified by 
extremely high temperatures (12, 16, 17).  

Seasonal monthly variables used: 
Rain, Tmax, Tmin, Tmean, Htemp, 
Ltemp, Hrain, Drought and Rainy days. 

• Group I and IV: The seasonal 
monthly variables were from 
June to October. 

• Group II and III: The seasonal 
monthly variables were from 
May to September. 

(*) and (**) - The month selection was based on the one with the highest correlation coefficient between wheat planted area and commodity price. The 2 
selected months were those when farmers are selling the wheat harvest and are preparing soybean plantings, buying the inputs for the entire cropping season.  3 
(**) In these regions, wheat competes by area with off-season maize (Supplementary Fig. S7). 4 
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Table S3. Multiple linear regression models for estimating planted area, area non-harvested and grain yield in Brazil. Variables are 

defined in Supplementary Table S1. 

Group Variable Equation P-value RMSE 

Group I 

AreaPrice 531033 + 997 WheatPrice 0.02 - 

AreaClimate 88359 + 151167 DroughtJun – 8902 Rainy DaysMay 0.03 
175684 
ha 
(23%) 

Areanon-harvested 
-0.01+ 0.16 DroughtOct - 0.08 HtempSep + 0.002 LtempJun + 0.01 DroughtSep + 0.003 DroughtAug + 0.002 
HrainJun + 0.001 HrainSep < 0.0005 5% 

Yield 

2.1 + 0.04 TmaxAug + 0.05 LtempJul – 0.4 LtempOct – 0.07 TmeanOct – 0.0009 RainSep + 0.03 HrainAug – 0.06 
HrainAug + 0.009 TminSep – 0.04 LtempMay – 0.06 TmeanJun + 0.03 HrainMay – 0.06 TminAug – 0.04 HtempOct – 
0.01 LtempJun – 0.004 Rainy DaysSep 

< 0.0005 
0.4 t ha-1 
(15%) 

Group II 

AreaPrice 251872 + 173992 WheatPrice/MaizePrice 0.03 - 

AreaClimate -142767 + 12279 RainyApril+May - 27781 HrainMay < 0.0005 
92051 ha 
(19%) 

Areanon-harvested 
-0.04 + 0.04 DroughtMay + 0.03 DroughtAug - 0.05 HrainJun - 0.04 HrainJul - 0.02 HrainAug + 0.02 DroughtJun + 
0.02 HrainSep - 0.01 HTempAug 0.005 12% 

Yield 

- 0.9 + 0.06 DroughtSep - 0.15 LtempJul + 0.01 * Rainy DaysJun - 0.002 RainOct -   0.06 DroughtMay - 0.25 
DroughtOct + 0.1 TmeanSep + 0.05 Rainy DaysAug - 0.06 TmaxAug - 0.07 LtempJun + 0.11 TminJun  - 0.06 
DroughtJul + 0.5 LtempAug -  0.05 TminOct 

< 0.0005 
0.3 t ha -1 
(13%) 

Group 
III 

AreaPrice 209901 + 203836 WheatPrice/MaizePrice 0.003 - 

AreaClimate 44311 - 30092 HrainApril - 59847 LtempMay 0.014 
58955 ha 
(12%) 

Areanon-harvested -0.021 + .021 HrainJune + 0.028 LtempSep + 0.011 LtempAug < 0.0005 6% 

Yield 

3.34 + 0.024 TminJun - 0.09 LtempAug - 0.028 TminAug - 0.13 TmaxMay - 0.014 Rainy DaysMay - 0.15 LtempSep - 
0.057 DroughtSep + 0.22 LtempMay + 0.02 Rainy DaysAug - 0.019 HrainSep + 0.018 DroughtMay + 0.006 Rainy 
DaysJuly - 0.008 HtempAug - 0.009 HrainJuly 

< 0.0005 
0.3 t ha-1 
16% 

Group 
IV 

AreaPrice 138608 + 916 WheatPrice < 0.0005 - 

AreaClimate - 93897 - 21433 TminMay – 235 RainJun + 418 RainMay + 18778 TmaxMay – 8292 TminJun 0.005 
80341 ha 
(23%) 

Areanon-harvested 0.0085 + 0.001 HtempSep - 0.005 LtempAug - 0.001 DroughtAug 0.05 2% 

Yield 
1.8 – 0.05 TMinOct + 0.08 LtempJun – 0.04 TminSep – 0.001 RainOct - 0.06 LtempAug + 0.02 TmaxJun – 0.04 
HrainMay – 0.07 LtempSep – 0.03 TmeanMay – 0.02 TmeanAug – 0.008 HrainSep < 0.0005 

0.4 t ha-1 
(15%) 

5 
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 6 
Table S4. CO2 fertilization effects for C3 crops, according to 
experiments performed with the DSSAT4 model. All values refer to 
productivity at 393 ppm of atmospheric CO2 concentration, which is the 
average CO2 concentration of the period (2001-2019) used to build the 
multiple linear regression models used in this study. Reprinted by 
permission from Springer Nature Customer Service Centre GmbH: 
Springer Nature, Climatic Change, adapted from Tebaldi and Lobell (18). 

CO2 concentration (ppm) C3 yield correcting factor 

220 0.88 

330 0.95 

393 1.00 

440 1.03 

550 1.11 

660 1.19 

770 1.26 

880 1.31 

990 1.36 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table S5. Geographical coordinates of 
the weather stations within each group 

Group Latitude Longitude 

Group I -28.66 -50.43 

Group II -23.31 -51.13 

Group III -24.05 -52.36 

Group IV -25.09 -50.16 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 
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Supplementary Figures 38 

 39 

Figure S1. Flowchart of the procedures for estimating national wheat production. A group 40 
consists of similar locations in terms of interannual variability in reported wheat yield 41 
(Supplementary, Figure S3). 42 
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 43 

Figure S2. Observed spatio-temporal variations of wheat cropping area in Brazil. (a) observed 44 
percentage of harvested wheat area in 2018 in Brazil. The percentage of harvested area 45 
corresponds to the ratio between wheat harvested area in a location and total area of a 46 
municipality. Main wheat region in Southern Brazil is delineated in bold red contours. (b) 47 
Observed wheat production variation in Brazil and in south Brazil. 48 
 49 
 50 
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 51 

Figure S3. Observed spatio-temporal contribution of wheat production regions in Brazil. (a) 52 
Groups of similar locations in terms of interannual variability in observed wheat yield in Southern 53 
Brazil, and (b-c) their area and production contribution. The four groups were obtained through 54 
hierarchical clustering analysis by the nearest neighbor method and by using wheat data from 55 
776 municipalities in Southern Brazil. 56 
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 57 

Figure S4. Observed spatio-temporal pattern of wheat yield anomaly in Brazil. Observed wheat 58 
yield anomalies relative to average values defined in each municipality (2001-2019). 59 
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 60 

Figure S5. The observed 2006 wheat grain yield anomaly in Brazil. (a) Spatial-temporal pattern 61 
of the 2006 extreme yield loss. Boxplots  for (a) maximum (Tmax), (c)  minimum (Tmin) air 62 
temperature, (d) monthly rainfall and (e) global solar radiation (SR) over the 2001–2019 wheat 63 
growing seasons for Group I. Whiskers extend to maximum and minimum values. Values in the 64 
2006 growing season are presented as red asterisk. The Group I is delineated in bold red contours 65 
in (a). 66 
 67 
 68 
 69 
 70 



16 
 

 71 

Figure S6. The observed 2017 wheat grain yield anomaly in Brazil. (a) Spatial-temporal pattern 72 
of the 2017 extreme yield loss. Boxplots  for (a) maximum (Tmax), (c)  minimum (Tmin) air 73 
temperature, (d) monthly rainfall and (e) global solar radiation (SR) over the 2001–2019 wheat 74 
growing seasons for Group I. Whiskers extend to maximum and minimum values. Values in the 75 
2017 growing season are presented as red asterisk. The Group I is delineated in bold red contours 76 
in (a). 77 
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 78 

Figure S7. Observed off-season maize and wheat in Brazil. Harvested area intensity in 2019 of 79 
(a) off-season maize and (b) wheat in Brazil(4). Harvested area intensity corresponds to the ratio 80 
between wheat-harvested area in the location and total area of the municipality. (c) Ratio 81 
between wheat and off-season maize in Brazil. (d) Wheat and (e) off-season price historical 82 
variation (2001-2019) in Brazil. Wheat and maize price data were used from 2005-2019 (19). 83 
Wheat and maize prices for 2001-2004 were reconstructed with a regression relating 84 
international to domestic prices (1). 85 
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 86 

Figure S8. Multiple linear regression model performance for estimating wheat production in 87 
Group I. (a) Spatial pattern of the harvest area intensity in Brazil (Group I delineated in bold red 88 
contours). (b) Relation between wheat price and observed wheat planted area. Estimated and 89 
observed wheat (c) planted area, (d) area non-harvested, (e) harvested area, (f) yield, and (g) 90 
production, from a multiple linear regression model based on wheat price and climate 91 
projections fitted to the full time series (2001-2019) in southern Brazil. 92 
 93 

 94 

 95 

 96 

 97 

 98 
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 99 

Figure S9. Multiple linear regression model performance for estimating wheat production in 100 
Group II. (a) Spatial pattern of the harvest area intensity in Brazil (Group II delineated in bold red 101 
contours). (b) Relation between wheat price and wheat planted area. Estimated and observed 102 
wheat (c) planted area, (d) area non-harvested, (e) harvested area, (f) yield, and (g) production, 103 
from a multiple linear regression model based on wheat/maize ratio price and climate projections 104 
fitted to the full time series (2001-2019) in southern Brazil. 105 
 106 
 107 

 108 

 109 

 110 

 111 

 112 



20 
 

 113 

Figure S10. Multiple linear regression model performance for estimating wheat production in 114 
Group III. (a) Spatial pattern of the harvest area intensity in Brazil (Group III delineated in bold 115 
red contours). (b) Relation between wheat price and wheat planted area. Estimated and 116 
observed wheat (c) planted area, (d) area non-harvested, (e) harvested area, (f) yield, and (g) 117 
production, from a multiple linear regression model based on wheat/maize ratio price and 118 
climate projections fitted to the full time series (2001-2019) in southern Brazil. 119 
 120 
 121 
 122 

 123 

 124 

 125 

 126 

 127 
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 128 

Figure S11. Multiple linear regression model performance for estimating wheat production in 129 
Group IV. (a) Spatial pattern of the harvest area intensity in Brazil (Group IV delineated in bold 130 
red contours). (b) Relation between wheat price and wheat planted area. Estimated and 131 
observed wheat (c) planted area, (d) area non-harvested, (e) harvested area, (f) yield, and (g) 132 
production, from a multiple linear regression model based on wheat price and climate 133 
projections fitted to the full time series (2001-2019) in southern Brazil. 134 
 135 
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 136 
Figure S12. Estimated wheat production in Group I. Projected area planted for three different 137 
wheat prices and for (a) RCP 2.6, (b) RCP 7.0, and (c) RCP 8.5. Projected area non-harvested for 138 
(d) RCP 2.6, (e) RCP 7.0, and (f) RCP 8.5. Projected area harvested (Area planted – Area non-139 
harvested) for three different wheat prices and for (g) RCP 2.6, (h) RCP 7.0, and (i) RCP 8.5. 140 
Projected wheat grain yield for (j) RCP 2.6, (k) RCP 7.0, and (l) RCP 8.5. Projected wheat grain 141 
yield corrected by CO2 fertilization effects for (m) RCP 2.6, (n) RCP 7.0, and (o) RCP 8.5. Projected 142 
wheat grain production (Area Harvested x YieldCO2) for three different wheat prices and for (p) 143 
RCP 2.6, (q) RCP 7.0, and (r) RCP 8.5. Projections are the ensemble of five CMIP6 global change 144 
models. CO2 fertilization effects correction is given in Supplementary Table S4 and Figure S24. 145 
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 146 
Figure S13. Estimated wheat production in Group II. Projected area planted for three different 147 
wheat prices and for (a) RCP 2.6, (b) RCP 7.0, and (c) RCP 8.5. Projected area non-harvested for 148 
(d) RCP 2.6, (e) RCP 7.0, and (f) RCP 8.5. Projected area harvested (Area planted – Area non-149 
harvested) for three different wheat prices and for (g) RCP 2.6, (h) RCP 7.0, and (i) RCP 8.5. 150 
Projected wheat grain yield for (j) RCP 2.6, (k) RCP 7.0, and (l) RCP 8.5. v wheat grain yield 151 
corrected by CO2 fertilization effects for (m) RCP 2.6, (n) RCP 7.0, and (o) RCP 8.5. Projected wheat 152 
grain production (Area Harvested x YieldCO2) for three different wheat prices and for (p) RCP 2.6, 153 
(q) RCP 7.0, and (r) RCP 8.5. Projections are the ensemble of five CMIP6 global change models. 154 
CO2 fertilization effects correction is given in Supplementary Table S4 and Figure S24. 155 
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 156 
Figure S14. Estimated wheat production in Group III. Projected area planted for three different 157 
wheat prices and for (a) RCP 2.6, (b) RCP 7.0, and (c) RCP 8.5. Estimated area non-harvested for 158 
(d) RCP 2.6, (e) RCP 7.0, and (f) RCP 8.5. Projected area harvested (Area planted – Area non-159 
harvested) for three different wheat prices and for (g) RCP 2.6, (h) RCP 7.0, and (i) RCP 8.5. 160 
Projected wheat grain yield for (j) RCP 2.6, (k) RCP 7.0, and (l) RCP 8.5. Projected wheat grain 161 
yield corrected by CO2 fertilization effects for (m) RCP 2.6, (n) RCP 7.0, and (o) RCP 8.5. Projected 162 
wheat grain production (Area Harvested x YieldCO2) for three different wheat prices, and for (p) 163 
RCP 2.6, (q) RCP 7.0 and (r) RCP 8.5. Projections are the ensemble of five CMIP6 global change 164 
models. CO2 fertilization effects correction is given in Supplementary Table S4 and Figure S24. 165 
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 166 
Figure S15. Estimated wheat production in Group IV. Projected area planted for three different 167 
wheat prices and for (a) RCP 2.6, (b) RCP 7.0, and (c) RCP 8.5. Projected area non-harvested for 168 
(d) RCP 2.6, (e) RCP 7.0, and (f) RCP 8.5. Projected area harvested (Area planted – Area non-169 
harvested) for three different wheat prices and for (g) RCP 2.6, (h) RCP 7.0, and (i) RCP 8.5. 170 
Projected wheat grain yield for (j) RCP 2.6, (k) RCP 7.0, and (l) RCP 8.5. Projected wheat grain 171 
yield corrected by CO2 fertilization effects for (m) RCP 2.6, (n) RCP 7.0, and (o) RCP 8.5. Projected 172 
wheat grain production (Area Harvested x YieldCO2) for three different wheat prices and for (p) 173 
RCP 2.6, (q) RCP 7.0, and (r) RCP 8.5. Projections are the ensemble of five CMIP6 global change 174 
models. CO2 fertilization effects correction is given in Supplementary Table S4 and Figure S24. 175 
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 176 
Figure S16. Projected changes in wheat production over the 1850-2020 historical period in 177 
Brazil. Wheat (a) planted area, (e) non-harvested area, (i) harvested area, (m) yield, and (q) 178 
production (30 years running mean) were calculated for three RCP scenarios and low wheat price 179 
for the period of 1850-2100. Percent change in planted area considering average wheat price for 180 
(b) RCP 2.6, (c) RCP 7.0, and (d) RCP 8.5. Percent change in non-harvested area for (f) RCP 2.6, (g) 181 
RCP 7.0, and (h) RCP 8.5. Percent change in harvested area considering average wheat price for 182 
(j) RCP 2.6, (k) RCP 7.0, and (l) RCP 8.5. Percent change in yield for (n) RCP 2.6, (o) RCP 7.0, and 183 
(p) RCP 8.5. Percent change in wheat production considering average wheat price for (r) RCP 2.6, 184 
(s) RCP 7.0, and (t) RCP 8.5. Percent change is calculated considering the 1850-2020 period as 185 
baseline. In (a), (e) and (i) lines are the ensemble mean based on five CMIP6 global climate models 186 
and shaded areas show ± 1 s.e. In (b-d), (f-h), and (j-i) bars are the ensemble mean based on five 187 
CMIP6 global climate models. 188 
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 189 
Figure S17. Projected change in frequency of extreme low wheat production over 1850-2020 190 
historical period in Brazil. Frequency of extreme low wheat production (30 years running mean) 191 
for three RCP scenarios and (a) low price, (e) average price and (i) high price, from the periods of 192 
1865 (1850-1880) to 2085 (2070-2100). Change in frequency for (b) for RCP 2.6 and low wheat 193 
price, (c) RCP 7.0 and low wheat price, (d) RCP 8.5 and low wheat price, (f) RCP 2.6 and average 194 
wheat price, (g) RCP 7.0 and average wheat price, (h) RCP 8.5 and average wheat price, (j) RCP 195 
2.6 and high wheat price, (k) RCP 7.0 and high wheat price, and (l) RCP 8.5 and high wheat price. 196 
Percent changes is calculated considering the 1850-2020 historical period as baseline. Extreme 197 
low national wheat productions were defined for each GCM separately as the projected 5th 198 
percentile lowest wheat production during 1850-2020 with the low national wheat price from 199 
the reference period 2001-2020. In (a), (e), and (i) lines are ensemble mean based of five CMIP6 200 
global climate models, shaded areas show ± 1 s.e. In (b-d), (f-h) and (j-i) bars are ensemble mean 201 
based of five CMIP6 global climate models. 202 
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 203 
Figure S18. Projected wheat yield and production over time. Projected wheat grain yield for (a) 204 
RCP 2.6, (c) RCP 7.0, and (c) RCP 8.5. Projected wheat grain production with low wheat price and 205 
for (d) RCP 2.6, (e) RCP 7.0, and (f) RCP 8.5. Projected wheat production for average price and for 206 
(g) RCP 2.6, (h) RCP 7.0, and (i) RCP 8.5. Data are ensemble mean based on five CMIP6 global 207 
climate models. α, rate of wheat yield and production change per decade for extreme low 208 
production and yield (red) and for all wheat cropping seasons (black). Rate of decline are 209 
represented by black solid lines for all wheat cropping seasons and red dashed line for extreme 210 
wheat cropping seasons only.   211 
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 212 
Figure S19. Projected variability of low wheat production in Brazil. Variability (30 years running 213 
mean) of estimated wheat production for three different wheat prices and (a) RCP 2.6, (b) RCP 214 
7.0, and (c) RCP 8.5 for the period of 1850-2100. Lines are ensemble mean based on five CMIP6 215 
global climate models and shaded areas show ± 1 s.e. 216 
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 217 

 218 
Figure S20. Pearson’s correlations for monthly climatic variables and wheat planted area, non-harvested area, yield, production 219 
and extreme low production in the different groups. Values overlapped with an “X” are not statistically significant at the 0.05 220 
significance level. For Group I and Group IV, the Pre-Sown period occurs in May, Sowing in June, Flowering to Grain filling phenological 221 
phases in July, August, September and October, and harvest in November. For Group II and Group III, the Pre-Sown period occurs in 222 
April, Sowing in May, Flowering to Grain filling phenological phases in June, July, August and September and harvest in October. 223 
Variables are defined in Supplementary Table S1.224 
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 225 

 226 
Figure S21. Climate Characterization. Average monthly minimum (TMin), maximum temperature 227 
(TMax), and accumulated rainfall (Rainfall) for the period 1850-2100, in the Groups I, II, III and IV, 228 
and for RCP 7.0. The values presented are the mean of five CMIP6 global change models. 229 



32 
 

 230 
Figure S22. Climatic events.  Average number heavy rainfall (>30mm) and Drought events 231 
(number of 10 consecutive days with no rainfall) for the period 1850-2100, in the Groups I, II, III 232 
and IV, and for RCP 7.0. The values presented are the mean of five CMIP6 global change models. 233 
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 234 
Figure S23. Projected frequency of extreme low national wheat production of Brazil using the 235 
Lasso method. Projected 30 year running mean frequency (ensemble mean based on five CMIP6 236 
global climate models (line) with +/- 1 s.e. of the mean (shaded area)) of extreme low wheat 237 
production for three different wheat prices for (a) RCP 2.6, (b) RCP 7.0 and (c) RCP 8.5 for 1850-238 
2100. An extreme low national wheat production is defined for each GCM separately as the 239 
projected 5th percentile lowest wheat production during 1850-2020, with the lowest national 240 
wheat price from the reference period 2001-2020. The high, average and low wheat prices are 241 
from a combination of the highest, average and lowest recorded wheat and wheat/maize ratio 242 
price during 2001-2019. The Lasson method was used to estimate wheat area planted, non-243 
harvested area, and yield in each of the groups presented in Fig S3 and results were aggregated 244 
to national level.  245 
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 246 
Figure S24. Global atmospheric CO2 concentration projections for RCP 2.6, RCP 7.0 and RCP 8.5. 247 
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 248 
Climatic Change, Adapted from van Vuuren et al. (20). 249 
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 250 

Figure S25. Wheat expansion production towards Central Brazil. Harvested area intensity in 251 

2019 of (a) wheat in central Brazil(4). Historical wheat production in (b) Goiás and (c) Minas 252 

Gerais states.  253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 
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1  |  INTRODUC TION

The production of wheat, the most important source of food for 
humans (Igrejas & Branlard,  2020), is increasingly variable due to 
climatic extremes, which threatens to disrupt global efforts toward 

abolishing poverty and ensuring food security and peace (Nóia 
Júnior et al.,  2021; Perez,  2013; Shew et al.,  2020). Europe is re-
sponsible for 35% of global wheat production (FAO stat, 2022). 
Drought and heatwaves are the main causes of the historical crop 
failures widespread across the breadbasket regions of the continent, 
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Abstract
France suffered, in 2016, the most extreme wheat yield decline in recent history, with 
some districts losing 55% yield. To attribute causes, we combined the largest coherent 
detailed wheat field experimental dataset with statistical and crop model techniques, 
climate information, and yield physiology. The 2016 yield was composed of up to 40% 
fewer grains that were up to 30% lighter than expected across eight research sta-
tions in France. The flowering stage was affected by prolonged cloud cover and heavy 
rainfall when 31% of the loss in grain yield was incurred from reduced solar radiation 
and 19% from floret damage. Grain filling was also affected as 26% of grain yield 
loss was caused by soil anoxia, 11% by fungal foliar diseases, and 10% by ear blight. 
Compounding climate effects caused the extreme yield decline. The likelihood of 
these compound factors recurring under future climate change is estimated to change 
with a higher frequency of extremely low wheat yields.

K E Y W O R D S
compounding factors, extreme weather, food security, grain number, grain size, temporally and 
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as experienced by northern European countries in 2018 (Beillouin 
et al., 2020; Webber et al., 2020). Such adverse weather conditions 
will become more pronounced and widespread with climate change 
(Battisti & Naylor, 2009; IPCC, 2021; Trnka et al., 2014). For exam-
ple, in 2010, Russia suffered from the worst heatwave on record 
according to the Warm Spell Duration Index (Hoag,  2014). Initial 
attempts have been made to identify the future risk posed by heat 
and drought to local agriculture (Bailey et al.,  2015; Rosenzweig 
et al., 2013). Several wheat crop modeling approaches have been de-
veloped and improved to estimate wheat yield responses to extreme 
weather conditions (Ceglar et al.,  2019; Jägermeyr et al.,  2021; 
Lischeid et al., 2022; Martre et al., 2015; Rötter et al., 2018; Wang 
et al., 2017; Webber et al., 2017). These studies have helped to iden-
tify future regional risks to national and global wheat production di-
rectly caused by extreme weather disasters (Asseng et al., 2011; Liu 
et al., 2019; Webber et al., 2018), and have been incorporated into 
wheat yield forecast systems to anticipate seasonal food shortages 
(Bussay et al., 2015; Lecerf et al., 2019; van der Velde & Nisini, 2019).

A major wheat production decline occurred in 2016 in Western 
Europe, centered around France, the fourth largest wheat-exporting 
country in the world (Ben-Ari et al., 2018). The national wheat yield 
of France dropped by 27% in 2016. This was the most extreme 
wheat yield decline in France since 1960 causing a shortfall of about 
2.3 billion $USD in the country's trade balance (Ben-Ari et al., 2018). 
The public European forecasting system failed to anticipate the 
magnitude of this wheat yield loss until shortly before harvest (van 
der Velde et al., 2020), which has been explained by the complex-
ity (sequence, timing, or connectedness) of likely yield-determining 
events in 2016. Indeed, the 2016 yield failure was not caused by a 
single event. Winter wheat usually remains dormant during the cold 
of winter, flowering in the drier, warmer spring weather. However, 
the combination of a warm, wet winter and an extended period of 
precipitation in the spring of 2016 led to a number of simultane-
ous or consecutive yield-reducing factors, including heavy rainfall, 
crop diseases, low solar radiation, and anoxia, affecting both grain 
set and grain filling (Ben-Ari et al., 2018). Temporal and multivariate 
compound events (Bevacqua et al., 2021; Zscheischler et al., 2020) 
caused the extreme 2016 wheat yield failure. Most crop model-
ing approaches only consider seasonal water shortage and heat 
stress, thus neglecting the connected or compound nature of many 
extreme climate- (Lischeid et al., 2022; Raymond et al., 2020) and 
weather-related events on crop growth and development. For exam-
ple, heavy rainfall may damage fragile flowers, immediately reducing 
the potential to set grain, while waterlogging the soil and depriv-
ing roots of oxygen, simultaneously creating humid conditions that 
encourage the spread of plant diseases with detrimental effects on 
grain yield and quality. By not accounting for the complex effects or 
concurrence of multiple factors, the predictive ability of crop fore-
cast systems for Europe is limited, especially for extreme weather 
(Ruane et al., 2021; van der Velde et al., 2020).

The inability of crop and statistical models to predict the ex-
tremely low 2016 wheat yield in France suggests that we are po-
tentially underestimating the projected impacts of climate change 

on agriculture (van der Velde et al., 2020; Webber et al., 2020). To 
improve seasonal forecasting systems, we aimed to quantify the im-
pact on yield formation of the possible causes of the poor 2016 yield 
in France proposed by Ben-Ari et al. (2018). We used a unique de-
tailed dataset from ARVALIS-Institut du vegetal, with observations 
from 3512 experimental unit treatments at eight locations across the 
French breadbasket region over 6 years spanning the 2016 extreme 
(2014–2019). Multi-model regressions, process-based crop growth 
simulation modeling, and observations of yield physiology were 
used to separate and quantify various climate impacts on the main 
wheat yield components in 2016, comparing locations and seasons. 
We then extended the analysis based on long-term climate change 
scenarios—from the recent Coupled Model Intercomparison Project 
phase 6 (CMIP6) climate model ensemble for 2020 to 2100—to an-
alyze the frequency of future concurrent or consecutive weather 
events potentially causing similar compound yield losses in France.

2  |  MATERIAL S AND METHODS

The breadbasket of France, accounting for around 70% of France's 
total wheat production, extends over 27 departments, all impacted 
by the extreme yield losses in 2016 (Figure 1). ARVALIS-Institut du 
Végétal wheat field trial data from 3512 experimental unit treat-
ments of 221 cultivars for six cropping seasons (2014–2019 har-
vests) at eight locations across the breadbasket region were used 
to quantify the individual contribution of nitrogen leaching, plant 
diseases, low solar radiation, anoxia, and high rainfall to variation in 
wheat yield in France in 2016.

2.1  |  ARVALIS-Institut du Végétal field 
trial management

The experimental unit treatments in the 2014–2019 field trials de-
signed and performed by ARVALIS-Institut du Végétal for different 
objectives were useful in analyzing the following specific aspects 
(Figure 2).

•	 Growth performance: 3188 experimental unit treatments tested 
the performance of a total of 221 winter wheat cultivars in eight 
research stations, here named 1 to 8 according to the magnitude 
of wheat yield loss (Figure 1). We used 738 of these experimental 
unit treatments (which included 172 in 2016) to compute yield 
component anomalies and develop grain number and grain size 
statistical models. Only cultivars that had experimental unit treat-
ments in 2016 and in at least one additional year were considered 
to ensure any yield anomaly was independent of the research 
station and department (Figure S27). The number of experimen-
tal unit treatments per research station is shown in Table S1. In 
addition, we tested the DSSAT-Nwheat (Kassie et al., 2016) crop 
simulation model with 42 wheat experimental unit treatments 
for simulating wheat yield of the winter wheat cultivar Rubisko 
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    |  3NÓIA JÚNIOR et al.

(Figures S30 and S31). Growth performance experiments had two 
types of experiments:
•	 Cultivar comparison: with around 92% of data, and in all re-

search stations. The objective of these experiments is to com-
pare the growth of several commonly used and developing 
wheat cultivars. Measurements of wheat ear emergence date, 
grain number per unit area, average single grain size, grain 
nitrogen concentration, and grain yield were performed. For 
these experiments, the flowering date was simulated consid-
ering a linear relationship with the ear emergence date, as pre-
sented in Figure S28.

•	 Observatory: with around 8% of data, and in all research 
stations. The objective of these experiments is to perform a 
detailed performance measurement of the most common cul-
tivars with greater prospects for use. Measurements of wheat 
ear emergence and flowering date, total aboveground biomass 
at anthesis and maturity, total aboveground nitrogen at anthe-
sis, ear density, grain number per unit area, grain number per 
ear, average single grain size, grain nitrogen concentration, 
and grain yield were performed.

•	 Nitrogen response: 124 experimental unit treatments testing 
the response of wheat cultivars to nitrogen fertilizer rates at re-
search stations 3, 5, and 8. Nitrogen fertilizer rates varied from 
0 to 350 kg ha−1 (Figure S12). Measurements of wheat ear emer-
gence and flowering date, total aboveground biomass at anthesis 
and maturity, total aboveground nitrogen at anthesis, ear density, 
grain number per unit area, grain number per ear, average sin-
gle grain size, grain nitrogen concentration, and grain yield were 
performed.

•	 Plant disease: 2650 experimental unit treatments had records 
of plant disease types and tests of fungicide efficiency. The ef-
ficiency of fungicides was obtained by comparing experimental 
unit treatments with and without a particular fungicide applica-
tion. Measurements of wheat yield were performed.

All experimental unit treatments were rainfed and sown from 
late September to November and harvested between the beginning 
of July and the end of August. For trials on growth performance and 
nitrogen response, the crop protection programs were similar to 
local farm practices which may have included fungicides, herbicides, 
and insecticides to prevent any damage to the crop. For growth per-
formance and plant disease, nitrogen fertilizer was usually applied 
in early February, mid-March, and late April, with the total amount 
applied varying from 175 to 225 kg N ha−1. Phosphorous and potas-
sium fertilizers were applied during autumn if needed to prevent 
late-season shortage of these nutrients affecting nitrogen uptake, 
yield, and grain quality.

A single experimental plot was typically 2 m wide and 10 m long, 
with 11 rows, and the 7 middle rows were harvested. For each ex-
perimental unit treatment, we used the average of three single ex-
perimental plots, as described by Cohan et al. (Cohan et al., 2019). 
These field trials sufficiently capture the broader regional impact 
that occurred in 2016 (Figure S27).

2.2  |  Anomalies in wheat yield components

Anomalies in the wheat yield components (WC anomaly) of total 
aboveground biomass at anthesis and maturity, total aboveground 
nitrogen at anthesis, ear density, grain number per unit area, average 
single grain size, grain nitrogen concentration, grain number per ear, 
and grain yield were calculated based on the 738 growth perfor-
mance trials. Observed data for grain number per unit area, average 
single grain size, grain nitrogen concentration, and grain yield were 
available for all these trials. However, only 40% of the trials had ob-
served data for grain number per ear, and only 10% had observed 
data for total aboveground biomass at anthesis and maturity, total 
aboveground nitrogen at anthesis, and ear density.

No WC anomaly was found for total aboveground biomass at an-
thesis at research stations 2 and 3, or for ear density and grains per 
ear at research station 2.

For each yield component, the 2016 WC anomaly relative to the 
2014–2019 (omitting 2016) reference period was calculated as:

where WC2014−2019 (ijk) and WC2016 (ijk)are the wheat yield components 
for the ith research station for the 2014–2019 reference period and 
the year 2016, respectively, jth represents the different wheat yield 
components, and C is the number of cultivars, each individually rep-
resented by kth.

2.3  |  Analysis of the causes of the 2016 
anomalies of grain number per unit area and average 
single grain size

To identify the causes of the 2016 wheat yield failure, we first ana-
lyzed the climatic anomalies that occurred across the research stations 
in France, and noticed that a remarkably wet and warm winter was 
followed by increased rainfall in late spring, around the time of wheat 
anthesis. We created indices to analyze the effect of excessive rainfall, 
low solar radiation, and anoxia, as shown in Tables S2 and S3. We also 
analyzed the possibility that nitrogen leaching may have affected crop 
nitrogen uptake, as shown in Section 2.3.1. According to the frequency 
of diseases observed in the plant disease trials, wheat fusarium ear 
blight (Microdochium nivale), septoria leaf blotch (Zymoseptoria tritici), 
and leaf rust (Puccinia striiformis f. sp. tritici) were the main diseases of 
the 2016 wheat-cropping season. Oidium (Blumeria graminis) was re-
ported in 0.2% of all the experimental unit treatments and considered 
not significant for the wheat yield losses of 2016.

The potential contribution of plant diseases, anoxia, heavy rain-
fall, and nitrogen leaching to the poor 2016 wheat yield was indi-
vidually analyzed, and separated into those that occurred around 
anthesis (thus affecting wheat grain number per unit area) and those 
that occurred during grain filling (thus affecting average single grain 
size).

(1)WC anomaly(ij) =
1

C(ij)

∑C(ij)

k=1

WC2014−2019 (ijk) −WC2016 (ijk)

WC2014−2019 (ijk)
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2.3.1  |  Effects of nitrogen leaching on wheat yield

To determine if nitrogen leaching caused nitrogen deficit stress on 
plants, we analyzed the results of the nitrogen response and growth 
performance trials. With these data, the nitrogen nutrition index 
(NNI), proposed by Justes et al. (1994), was calculated at anthesis for 
each research station and cropping season, as follows:

where %N (g N 100 g−1 DM) is the nitrogen concentration in the abo-
veground biomass at anthesis, and %Nc is the critical nitrogen concen-
tration, calculated as:

where Biomassant (t N ha−1) is the total aboveground biomass at anthe-
sis. The crop nitrogen status (Justes et al., 1994) is considered optimal 
when NNI equals 1, limiting when <1, and “luxury” when >1.

To assess whether crop nitrogen uptake was affected in 2016, 
the mass of nitrogen that had been taken up by the crops at anthe-
sis and the mass of nitrogen that was translocated from the abo-
veground vegetative tissues to grains during the grain-filling period 
were calculated for the years 2016 to 2019 (Figure S13), based on 
the nitrogen content in straw and grain measured in the experimen-
tal unit treatments during these years. Nitrogen leaching was also 
simulated with DSSAT-Nwheat (see Section 2.4.3) to verify whether 
the crop simulation model simulated impacts on yield even under 
nitrogen leaching conditions (Figure S11).

2.3.2  |  Effects of solar radiation, rainfall, plant 
diseases, and anoxia on grain number per unit area and 
average single grain size

Wheat grain number per unit area is closely related to growing condi-
tions before and shortly after anthesis (Fischer, 1985), when the num-
ber of fertile florets is determined and when fertile florets set grains 
(Slafer et al., 2015). Therefore, solar radiation, rainfall, and tempera-
ture conditions were analyzed together with the modeled impact of 
plant diseases on grain number per unit area for the period around 
anthesis for each wheat cultivar and each location. The impact of 
fungal foliar diseases on grain number was not considered because 
differences between resistant and non-resistant cultivars were not 
observed in the field experiments (Figure S15). Plant diseases and an-
oxia were considered as causes of the average single grain size anom-
aly, as they mostly occurred during the grain-filling period in June and 
July. Both, septoria leaf blotch and leaf rust are favored by warm, wet 
winters and wet springs (te Beest et al., 2009), and their impacts were 
calculated together here as “fungal foliar diseases.”

Weather-based indices for low solar radiation, heavy rainfall, and 
anoxia, as well as other indexes, such as a photo-thermal quotient, 

were built using daily records of accumulated rainfall (mm), maximum 
and minimum air temperature (°C), and solar radiation (MJ m−2 day−1) 
from weather stations located close to each research stations. These 
weather-based indices were created considering wheat phenology, 
and further details on how these indices were developed and their 
equations are presented in Tables S2 and S3. Relevant plant disease 
infection rate models were originally developed and tested by te Beest 
et al. (2009) for fungal foliar diseases, namely septoria leaf blotch and 
leaf rust, and for ear blight by Madgwick et al. (2011), we used these 
models to quantify the incidence of these wheat diseases in France 
between 2014 and 2019 (Figure S32). Equations and further details of 
the plant disease models are described in Table S3. These equations 
were fitted as explanatory variables to calculate grain number per unit 
area and average single grain size anomalies of 2016.

2.4  |  Modeling grain number per unit area and 
average single grain size anomalies of 2016

2.4.1  |  Statistical models

Statistical models were built considering the anomalies of grain 
number per unit area and average grain size (calculated as in 
Equation 1) as the objective variables. Weather-based indices for 
heavy rainfall, solar radiation, and air temperature were used as 
explanatory variables for grain number per unit area anomalies 
(Table  S2). And weather-based indices for fungal foliar diseases, 
ear blight, and anoxia, as well as solar radiation and temperature, 
were the explanatory variables for average grain size anoma-
lies (Table S3). With these weather-based indices, the Gini index 
(Menze et al.,  2009) from the random forest machine learning 
method was calculated to identify the most influential indices de-
termining grain number per unit area and average single grain size 
anomalies for 2016 and each of the years of the reference period 
2014–2019 (excluding 2016).

A stepwise procedure was then used to select the best combina-
tion of input variables for quantifying extreme crop yields (Ben-Ari 
et al.,  2018; Nóia Júnior et al.,  2021). These stepwise procedures 
were also performed in R with the command step. Based on the Gini 
index, an indicator of the relative importance of the weather-related 
factors in determining the 2016 anomalies, statistical models were 
built using the explanatory variables of ear blight, low solar radiation, 
and high rainfall indices for grain number anomaly of 2016, and fun-
gal foliar diseases, ear blight, low solar radiation, and anoxia during 
grain filling for grain size anomaly of 2016. The statistical models 
for grain number or grain size (ŷg) were built as shown in Equation 4:

where ŷg is the objective variable (or grain number per unit area anom-
aly or average grain size anomaly of 2016), �0 is the estimate of in-
tercept, and �1and �D are the estimates of coefficient for each of the 
explanatory variables from x1 and xD.

(2)NNI =
%N

%Nc

(3)%Nc = 5.35 × Biomassant
−0.442

(4)ŷg = �0 + �1x1 + … + �DxD
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    |  5NÓIA JÚNIOR et al.

The research stations had different numbers of experimental 
unit treatments (Table S1), and to capture the spatial distribution of 
grain number and average single grain size anomalies, the statisti-
cal models were built 1000 times with parameter values perturbed 
through random selections of the variables, keeping two experimen-
tal unit treatments per research station (the experimental unit treat-
ment values within the same research station usually correspond to 
different cultivars). Thus, the statistical models were always trained 
for two experimental units simultaneously in eight research stations, 
summing up to 16 values of grain number or grain size anomalies 
fitting their 16 corresponding values of each explanatory variable. 
The performance of the models (r2) was computed in a randomly se-
lected grain number or grain size anomaly of 2016 not included in 
the trained dataset (out-of-sample analysis). The influential weather-
based indices were selected using the Akaike information criterion 
(AIC) independently for each of the 1000 models for grain number 
per unit area and average grain size. Thus, the final contribution of 
each index considered in the grain number per unit area and average 
single grain size anomaly models was assessed with the mean of an 
ensemble of 1000 statistical models (quantification of the impacts of 
different indices is detailed and explained in Section 2.4.2).

Grain number and average single grain size were observed in 
field experiments from 738 (with 172 in 2016) performance trials. 
Anomalies were calculated from these observed grain numbers and 
grain sizes.

2.4.2  |  Quantifying the impacts of individual  
yield-limiting factors in 2016

The 1000 models of grain number and grain size anomalies in the 2016 
cropping season were executed by initially taking the 2016 values for 
each input variable (derived from weather-based indices and plant dis-
ease model outputs). The models were executed again, but this time, 
value of an explanatory variable for 2016 was replaced by that for 
each of the years in the reference period from 2014 to 2019 except 
2016 (Figure S29). This step was repeated, replacing the value of each 
input variable in turn. Thus, the contribution of each factor to the 2016 
wheat yield anomaly was calculated as the difference between the es-
timated grain number or average single grain size values from running 
the models with all variables for 2016, and the estimates from run-
ning the statistical models with all variables of 2016 except one from 
a reference year (Figure S29). For example, to calculate the contribu-
tion of low solar radiation to the grain number per unit area in 2016, 
all the 1000 models of grain number were executed with all variables 
(weather-based indices inputs) from the 2016 cropping season. At the 
same time, the same 1000 models were executed with all variables for 
2016 but low solar radiation index was from 2014 to 2019 (excluding 
2016 and individually executed for each year of the reference period). 
As a result, there were 6000 grain number anomaly estimates (1000 
for 2016 with all variables from 2016 and 5000 for 2016 with modified 
solar radiation from 2014 to 2019 reference period). The difference 
between the average of the 1000 estimates for 2016 with all variables 

from 2016 (“R1: in Figure S29) and the average of the 5000 estimates 
for 2016 with modified solar radiation from 2014 to 2019 reference pe-
riod (“R2”−“Rx” in Figure S29) was considered to be the size of the im-
pact of low solar radiation. This procedure was repeated for each input 
variable (weather-based indices and plant disease model outputs) for 
grain number per unit area and average grain size. The impacts on yield 
were computed considering that grain yield is the result of the product 
of grain number per unit area and average grain size. The calculated 
impact of each variable was summed up and proportionally divided 
according to the size of the anomaly of grain number per unit area, 
average grain size, and grain yield of each location. The residual is con-
sidered as the difference between the estimated and observed anoma-
lies (Figures 3h and 4j). Additional details are presented in Text S1.

This is similar to the method proposed by Asseng et al. (2011) for 
separating the impacts of temperature from other factors on wheat 
yield. The contribution of each factor calculated with the statistical 
models was compared with solar radiation impacts simulated by the 
DSSAT-Nwheat crop simulation model (described in Section 2.4.3, 
Figure  S17) and impact of plant diseases calculated with resistant 
and sensitive cultivars in the plant disease trials.

Weather-based indices highly correlated as heavy rainfall and 
anoxia were explanatory variables for different objective variables 
(heavy rainfall for grain number and anoxia for grain size, as de-
scribed in Section 2.3.2). The impacts of low solar radiation index 
(which is correlated with heavy rainfall, both explanatory variables 
of grain number per unit area) were also quantified with a crop sim-
ulation model as an independent analysis.

2.4.3  |  DSSAT-Nwheat crop simulation model

The DSSAT-Nwheat process-based crop simulation model used in this 
study is part of the DSSAT crop modeling framework (https://dssat.
net/). DSSAT-Nwheat has been widely tested in wheat modeling 
growth studies across the world (Kassie et al., 2016). The calibration 
of DSSAT-Nwheat to the breadbasket region of France was done for 
cultivar Rubisko grown in the 42 experimental unit treatments in 2014, 
2015, 2017, and 2019 (Text S1). Although data from 2016 and 2018 
were available, they were not used for calibration because of the 
high incidence of wheat diseases in these years, which is not simu-
lated by the Nwheat model. The root-mean-square error (RMSE) for 
total aboveground biomass and grain yield was 0.8 kg ha−1 (4%) and 
0.6 kg ha−1 (6%), respectively. The precision of Nwheat was satisfac-
tory for total aboveground biomass (r2 = .83) and grain yield (r2 = .70) 
(Figure S30). After calibrating, Nwheat was tested for 2016 and 2018 
with the result that total aboveground biomass and grain yield were 
both overestimated (Figure S31). This was expected because Nwheat 
does not account for how the stress factors of heavy rainfall around 
anthesis, anoxia, and diseases affect plant growth. However, Nwheat 
was still used to quantify the solar radiation (Figures  S16 and S17) 
and nitrogen leaching (Figure S11) impacts on wheat grain yield. The 
calibrated coefficients are shown in Table S4. The impact of low solar 
radiation with DSSAT-Nwheat was calculated by modifying the 2016 
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6  |    NÓIA JÚNIOR et al.

seasonal daily solar radiation inputs with the other years in the refer-
ence period 2014–2019, the same as the method applied to statistical 
models (described in Section 2.4.2).

2.5  |  Climate change scenarios

Daily climate data for the 1960–2100 period were drawn from the 
Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP) 
(Lange,  2019), which provides bias-adjusted and spatially disaggre-
gated climate model outputs from the Coupled Model Intercomparison 
Project phase 6 (CMIP6) (Eyring et al., 2016). Historical simulations be-
fore 2015 are from climate models forced by the historical trends in the 
main natural and anthropogenic factors. After 2015, simulations follow 
the Shared Socioeconomic Pathway and Representative Concentration 
Pathway SSP5-8.5 (O'Neill et al., 2020). The IPCC describes this as a 
“very high” emissions scenario (IPCC, 2021), and we use it here to il-
lustrate the upper tail of future risk (analysis was also performed for 
SSP5-2.6 and the results are shown in Figure  S21). We considered 
five CMIP6 models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, 
MRI-ESM2-0, and UKESM1-0-LL) that include high, medium, and 
low climate sensitivity models similar to the full CMIP6 distribution 
(Jägermeyr et al., 2021). We used daily weather data from the ISIMIP 
downscaled projections for the five selected models to quantify fu-
ture frequency of ear blight, foliar fungal diseases, heavy rainfall, low 
solar radiation around anthesis (with anthesis date fixed at 1 June), and 
anoxia during wheat grain filling (from 1 June to 31 July) using the indi-
ces previously described (Tables S2 and S3) for predicting wheat grain 
number per unit area and average single grain size anomalies of 2016. 
To minimize uncertainties related to fixed anthesis and grain-filling pe-
riods, we carried out an additional analysis considering different fixed 
dates of anthesis (with anthesis date fixed at 1 May), and anoxia during 
wheat grain filling (from 1 May to 15 June) (Figures S19–S34).

The extreme 2016 wheat yield failure occurred once in 62 years from 
1960 to 2021, with 1.6% frequency. Similarly, extreme low national wheat 
yield was here estimated for each GCM separately and defined as the 1st 
percentile of each wheat yield component during 1960–2020 (which as a 
1% frequency is equivalent to once every 100 years), with the grain num-
ber and grain size anomaly models used for quantifying the impacts of 
individual yield-limiting factors in 2016. We averaged the simulated grain 
number and grain size for the eight research stations to scale-up to the 
regional level, as suggested by Ben-Ari et al. (2018). Individual results for 
each research station are presented in Figure S19.

With weather-based index used for building the grain number per 
unit area and average grain size statistical models (Tables S2 and S3), 
we refitted a new statistical model to estimate grain yield from 1984 
to 2020 in the breadbasket of France (Figure S33). This new statistical 
model for wheat yield was built as described in Section 2.4.1. We ap-
plied the new wheat yield model used to project the future frequency 
of extremely low wheat yield years in the breadbasket of France and 
the results are shown in Figure S33b. This was performed to reduce 
uncertainties of projections for future frequency of the extreme 2016 
wheat yield failure in the breadbasket of France.

2.6  |  Statistical analysis

All data analyses and statistical analyses were carried out using the 
statistical program software R (R Core Team, 2017). To analyze the 
yield component anomalies across research stations, the data were 
submitted to an analysis of variance (ANOVA) and, when significant, 
the mean values were compared using the Tukey test. The random 
forest models were fitted to the data by using the function random-
Forest of the R package “randomForest.” ANOVA (mean of squares) 
were carried out to determine the degree to which the climatic vari-
ables selected by the statistical models could explain wheat grain 
number per unit area and average single grain size anomalies of 2016 
across all the studied research stations (i.e., ANOVA was only com-
puted for 2016 anomaly). Statistically significant differences were 
judged at alpha = .05. An ANOVA was performed with the function 
aov. As the statistical models, ANOVA was computed 1000 times. 
The importance of each variable to explain spatial variation of wheat 
grain number per unit area and average grain size anomalies in 2016 
was calculated as the average of 1000 ANOVA analyses.

3  |  RESULTS

3.1  |  Extreme yield loss and weather conditions in 
2016 in France

The 2015/2016 wheat-growing season in France started with unu-
sually high temperatures, with monthly averages of 3°C above 
November and December (autumn and early winter) averages for the 
2010–2020 period (Figure 1b). Late winter was particularly wet, with 
accumulated rainfall of 90 mm in March, twice the 2010–2020 average 
for this month (Figure 1c). After the warm and wet winter, spring 2016 
was on average 1.5°C cooler than the average spring temperature of 
the 2010–2020 period. There was high rainfall from late May to early 
June in 2016. The accumulated rainfall in this period was the high-
est recorded in 30 years (Figure S3). Cloud cover associated with the 
high rainfall led to a 30% decrease in monthly solar radiation in May 
and June compared to the 2010–2020 average. Low solar radiation 
and high rainfall continued until early July. The weather conditions 
in France and other parts of Western Europe in 2016 were similar 
(Figure 1a; Figures S1 and S2), but the accumulated rainfall in May and 
June was not uniformly high, as some northwestern areas of France 
received less rainfall including around research station 8 (Figure S1).

3.2  |  Yield components during the wheat-growing 
season for the 2016 harvest in France

For each of the eight research stations across France, the 2016, 
anomaly in various wheat growth and yield components was cal-
culated with respect to the 2014–2019 reference period (omitting 
2016; Figure 2) from field experiment data. Total aboveground bio-
mass at anthesis (Figure 2a) and ear density (Figure 2b) for 2016 was 
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    |  7NÓIA JÚNIOR et al.

similar to those of the reference period averages, with anomalies 
varying from −10% to 10% at the different research stations. DSSAT-
Nwheat crop growth model simulation results suggest that nitrogen 
leaching in 2016 occurred between the stem elongation and anthe-
sis (Figure S11). Despite this, total aboveground nitrogen at anthesis 
was up to 25% higher (Figure 2c), and the corresponding nitrogen 
nutrition index at anthesis was 5%–20% higher in 2016 than during 
the reference period (Figure 2f).

Observed total aboveground biomass at maturity dropped 
by as much as 40% (Figure 2d), while grain number per ear and 
per m2 fell by as much as 40% and 50%, respectively, in 2016 
(Figure 2e,g). A negative anomaly of about 40% in grain size (i.e., 
average single grain size) was also found for 2016 (Figure 2h) com-
pared with the reference period. As a result, the grain yield loss in 
2016 compared to 2014–2019 varied from 15% to 72% according 
to the research station (Figure 2i), and the greatest loss across a 
district was 55%.

Wheat yield is the result of wheat grain number and grain size, 
and their values are indicative of stresses that occur within a season 
and the timing of those stresses. For example, grain number per unit 
area is related to growing conditions before and shortly after anthesis 
(Fischer, 1985), when most fertile florets set grains (Slafer et al., 2015). 
Therefore, we first identified the growing conditions potentially caus-
ing the wheat yield anomaly in 2016, and placed these effects in the 
phenological context of when they would have occurred.

3.3  |  Grain number and extremes of high 
rainfall and low solar radiation around anthesis

In 2016, anthesis occurred a few days later than usual because the 
low temperatures of late winter and early spring delayed wheat phe-
nology (Figure 3a,c). The delayed anthesis coincided with abnormally 
heavy rainfalls (i.e., daily rainfall >20 mm) and low solar radiation in 
late May and early June (Figure 3b,d). In addition to numerous heavy 
rainfall events, the accumulated rainfall during the 15 days around 
anthesis, varying from 45 mm to 180 mm depending on the research 
station, was up to five times more than expected for the period. 
Indeed, records show that this was the longest period of rainfall in 
30 years. Anthesis occurred during 54  h of almost uninterrupted 
rainfall (Figure S8) in a week when hourly solar radiation mostly re-
mained below the wheat light compensation point of 50 W m−2 (Pang 
et al., 2018). The 2016 anomaly in grain number per unit area was the 
most drastic in the research stations receiving more rainfall and less 
solar radiation around anthesis, and was particularly low for specific 
cultivars which underwent anthesis just at the time of peak rainfall in 
this period of maximum daily accumulated rainfall (Figure 3e). For ex-
ample, the grain number anomaly was −13% for the cultivar Rubisko 
in research station 8, which is less extreme than the −45% anomaly 
for this cultivar in research station 1, but more extreme than the 
decline seen for cultivar Soissons grown in the same research station 
but which underwent anthesis earlier (Figure 3e).

F I G U R E  1  Extremely low wheat yields in Western Europe in 2016. (a) Spatial distribution of the observed 2016 trend-corrected wheat 
yield anomaly. The breadbasket region of France is outlined by bold black contours with locations and names of the research stations (yellow 
dots) shown also in the inset (upper right). Boxplot of monthly (b) mean temperature (T mean), (c) solar radiation, and (d) rainfall, over the 
wheat-growing season for 2013–2020 harvest years for the most severely affected region at Égreville, France (research station 1). Lower 
whiskers extend below the 25% quantile (Q1) and upper whiskers above the 75% quantile (Q3) by 1.5 times the interquartile range (interval 
between Q3 and Q1). Values for the 2015/2016 growing season are plotted as red asterisks. Weather data for the other field sites studied 
and across Europe are shown in Figures S1–S8. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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8  |    NÓIA JÚNIOR et al.

To assess the impacts of low solar radiation and high rainfall and 
other possible limiting factors on the 2016 grain number anomaly, we 
determined the Gini index to show the importance of the variables 
in a random forest and a multi-model regression model fitted using 
a stepwise selection procedure. Both the Gini index and the multi-
model regressions were calculated 1000 times through random selec-
tions of wheat grain number anomalies. Thus, the circular graphs in 
Figure 3f,g represent the frequency of selection of each limiting factor 
as the first, second, or third most important variable for explaining 
wheat grain number in 2016 (Figure 3f) and for the reference period 
of 2014–2019 (without 2016) (Figure 3g). The photo-thermal quotient 
(Fischer, 1985) (Table S2) was by far the most important factor for de-
fining wheat grain number per unit area in the 2014–2019 reference 
period, whereas the variation of grain number among the stations and 
cultivars in 2016 was explained mainly by the level of solar radiation 

and heavy rainfall events, both around anthesis. In the multi-model re-
gression models, these variables together explain most of the 2016 
anomaly of grain number per unit across the eight locations represen-
tative of the breadbasket region of France (Figure 3h).

3.4  |  Grain size and plant diseases and anoxia

The autumn and early winter of 2015 were unusually warm, including 
several days when the mean temperature was 10°C higher than the 
2010–2020 average (Figure 4a,c). This was followed by higher-than-
normal amounts of precipitation during late winter and early spring, 
with a total accumulated rainfall of up to 300 mm (Figure 4b,d). Such 
warm and moist conditions were propitious to foliar diseases and 
Septoria leaf blotch was observed in 91% and wheat leaf rust in 

F I G U R E  2  Components of 2016 wheat yield anomalies that occurred at eight sites in the main breadbasket of France. Observed 
positive (blue) and negative (red) anomalies in 2016 in relation to the average for 2014–2019 (omitting 2016) wheat harvests for the growth 
components, (a) total aboveground biomass at anthesis, (b) ear density (ear number per unit area), (c) total aboveground nitrogen at anthesis, 
(d) total aboveground biomass at maturity, (e) grain number per ear, (f) nitrogen nutrition index, (g) grain number per unit area, (h) average 
single grain size, and (i) final grain yield. Different letters within each panel represent statistically significant differences in the component 
anomaly between the research stations (p < .05). For each yield component, bar shading indicates the ranking in magnitude of anomalies (as 
in i) for each site from the largest (dark) to the smallest (pale). The research stations were numbered from 1 to 8 according to the magnitude 
of their wheat yield loss in 2016 (as in i, location 1 had the highest yield loss in 2016 and location 8 the lowest): 1, Égreville; 2, Chevry; 3, 
Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots.
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    |  9NÓIA JÚNIOR et al.

17% of all experimental unit treatments studied by ARVALIS across 
the breadbasket region of France (Figure 4g). High rainfall around 
anthesis led to widespread soil saturation and flooding during the 
wheat grain-filling period (Figure  4e) and a high incidence of ear 
blight. Usually marginal, ear blight was observed in 27% of all the 
experimental unit treatments in 2016 (Figure  4g). Water balance 
simulations, accounting for the difference between daily refer-
ence evapotranspiration and rainfall, indicated an excess of water 

of up to 120 mm from early June until late July, spanning most of 
the wheat grain-filling period (Figure 4e). Water was in excess at all 
the research stations except research station 8, which notably had 
the smallest yield loss (Figure 4f). The combination of these extreme 
conditions, plus the stress from disease and anoxia, and limited solar 
radiation during grain filling, may have affected grain size (Text S1 
and Figure  S23). The effect of these variables was confirmed by 
ranking their importance using the Gini index (Figure 4h,  i). Overall, 

F I G U R E  3  Wheat grain number as affected by adverse weather conditions around anthesis. (a–d) Comparison of wheat anthesis date 
and weather conditions during late winter and spring for 2016 and the mean of 2014–2019 (without 2016) harvests at (a, b) research 
station 1 and (c, d) research station 8. (a, c) Mean temperature traces with boxplots of anthesis dates of all cultivars grown at each site. 
(b, d) Daily solar radiation (trace) and accumulated rainfall (bars) with dotted lines indicating the anthesis dates of individual cultivars. 
(e) Relationship between observed anomaly in grain number of different winter wheat cultivars for the 2016 and 2014–2019 harvests 
and the time lapse between the date when 50% of individuals had flowered (50% anthesis date) and the day with highest rainfall (see 
Table S2). (f, g) The three most important variables selected according to the Gini index from 1000 different models estimated from 
random forest variable selector method for estimating wheat grain number anomalies in France considering (f) only the 2016 harvest, 
and (g) all harvests from 2014 to 2019 excluding 2016. (h) Comparison between the observed and simulated 2016 wheat grain number 
per unit area anomaly using a multiple regression linear model, from 1000 different models in an out-of-sample analysis – errors bars 
show the standard errors from the 1000 simulations (vertical errors bars) and the observed grain number anomaly (horizontal errors 
bars) in (h). The research stations (R) are as follows: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, 
Barbarey-Saint-Sulpice; and 8, Rots.
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10  |    NÓIA JÚNIOR et al.

in multi-model regressions, fungal foliar diseases, ear blight, anoxia, 
and low solar radiation could explain most of the 2016 anomaly in 
grain size (Figure 4j).

3.5  |  Causes of wheat yield decline in 2016

Based on the skill of the multi-regression models at estimating 
grain number and grain size anomalies, we extended the analysis 

to quantify the contribution of each of these factors to the 2016 
losses in grain number per unit area, grain size, and grain yield at 
each research stations (Figure 5). ANOVA results indicated that the 
2016 grain number per unit area anomaly was mainly caused by 
low solar radiation (56%) and heavy rainfall (41%) considering data 
from all research stations, with a 3% residual not explained by these 
variables. At individual research stations, the impacts of low solar 
radiation on grain number per unit area varied from 4% to 33%, im-
pacts of heavy rainfall varied from 1% to 15%, and the impact of ear 

F I G U R E  4  Wheat grain size affected by plant diseases and excess water. (a–d) Weather conditions during the 2016 winter at (a, b) 
research station 1 and (c, d) research station 8. (a, c) Mean temperature in 2016 (red trace) compared to the average (grey trace) for the 
reference period of 2014–2019 (omitting 2016) and (b, d) daily accumulated rainfall (red trace) compared to other individual years in the 
reference period of 2014–2019 (grey traces). (e, f) Accumulated daily difference between reference evapotranspiration (ETo) and rainfall 
(water balance) around anthesis in 2016 in (e) research station 1 and (d) research station 8. Red bars indicate a negative balance, and black 
bars indicate a positive balance. The flowering time of the Rubisko cultivar at each site is indicated. (f) Frequency of plant diseases reported 
in ARVALIS plant disease trials across the breadbasket region of France in 2016 compared to the average (Hist.) of 2014–2019 (omitting 
2016). (h, i) The three most important variables selected according to the Gini index from 1000 different models estimated from random 
forest variable selector for estimating average single grain size anomalies considering (h) only 2016, and (i) all the harvests from 2014 
to 2019, excluding 2016. (j) Comparison between the simulated and observed 2016 anomaly in average single grain size with a multiple 
regression linear model, from 1000 different models in an out-of-sample analysis – errors bars show the standard errors from the 1000 
simulations (vertical errors bars) and the observed grain size anomaly (horizontal errors bars) in (j). The research stations are as follows: 1, 
Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 5, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots.
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blight was less than 1%. For grain size, the main causes of decline 
were anoxia (51%), fungal foliar disease (21%), ear blight (19%), and 
low solar radiation during grain filling (6%), with 3% not explained 
by these variables. Apart from research station 8 where there was 
no waterlogging, the impact of anoxia on the decrease in grain size 
varied from 2% to 20%. Grain size was also affected by fungal foliar 
diseases, ear blight, and low solar radiation, which caused grain size 
decreases of up to 8% at individual research stations. The relatively 
low impact of low solar radiation on grain size (8% at most) compared 
to grain number (33% at most) was consistent with simulation results 
from the DSSAT-Nwheat model (Figures S16 and S17).

The contribution to grain yield of individual limiting factors in 
2016 was estimated by combining the contributions to grain num-
ber per unit area and grain size. Overall, when ranked by the size of 
impact, the 2016 yield drop can primarily be explained by reduced 
solar radiation around anthesis (31%), anoxia during grain filling 
(26%), heavy rainfall events at anthesis (19%), fungal foliar diseases 
(11%), and ear blight during grain filling (10%), with 3% of the loss not 
explained (Figure 5).

3.6  |  Increased frequency of adverse weather 
conditions for wheat yield under future climate

We used bias-adjusted climate projections from the CMIP6 sub-
set to anticipate risks similar to the 2016 impacts over the shared 
socioeconomic pathway SSP5-8.5 for the 2020–2100 period. We 
thus assessed whether future climate change trends might change 
the frequencies of heavy rainfall and solar radiation around wheat 
anthesis, ear blight, fungal foliar diseases, and anoxia during grain 
filling, as experienced in 2016 (Figure 6, which shows the average 
climate projections for eight research station across the breadbasket 
of France). Results indicate that under the SSP5-8.5 scenario, heavy 
rainfall around anthesis is projected to become up to 100% more 
frequent after 2040 (Figure 6a), while small changes are possible in 
average solar radiation around anthesis, increasing by 5% by 2100 
(Figure 6b). Similarly, under the SSP5-8.5 scenario, the frequency of 
ear blight would increase by 110% and fungal foliar diseases would 
increase by 50% by 2100 due to warmer winter and spring (Table S3). 
By contrast, anoxia during June to July, the grain-filling period, is 
projected to become up to 25% less frequent under the SSP5-8.5 
scenario. All factors which caused the large yield drop in 2016 would 
become more pronounced with future climate change, but low solar 
radiation and anoxia would be limiting less often. Similar projections 
are expected in other regions of Europe and for different wheat an-
thesis dates (Figures S19 and S20). High decadal variability is shown 
for all projected weather-based index (Figure 6a–e), but particularly 
for heavy rainfall at anthesis (Figure 6a) and ear blight (Figure 6b), 
which may be linked to the uncertainties of the ensemble means 
based on the CMIP6 global climate models.

Extreme low wheat yields are here statistically defined as the 
<2nd percentile of occurrence of simulated wheat yields during 
1960–2020, thus with a probability which occurred once in 60 years 

in the past (corresponding to the frequency of the 2016 wheat yield 
failure). With increasing solar radiation and heavy rainfall during an-
thesis, the frequency of extreme low wheat grain number due to cli-
matic factors that occurred in 2016 is projected to remain unchanged 
(Figure 6f). However, with increasing plant disease, extremely low 
wheat grain size and hence grain yields are projected to become five 
times more frequent by the end of the century under the SSP5-8.5 
scenario (Figure 6g,h). Similar results are expected under the SSP5-
2.6 scenario (Figure S21). Yet, these projections may vary according 
to the modeling approach used (Figure S33).

4  |  DISCUSSION

Grain yield in wheat is determined by grain number per unit area 
and average single grain size. There is a negative relationship be-
tween the two components, which suggests that wheat partially 
compensates during development for variation in grain number 
per unit area by modifying grain size once grain number is deter-
mined (Zhang et al.,  2010). However, we showed here that the 
large and sudden drop in wheat yield in 2016 in France occurred 
due to simultaneous drops in grain number per unit area and in 
average single grain size due to a combination of adverse climate 
events (Figure  S22). The low grain number was partly driven by 
low solar radiation around anthesis in France in spring of 2016. 
An 18% decrease in grain number due to 65% less solar radia-
tion centered around anthesis was reported by Fischer  (1985). A 
shading experiment by Yang et al.  (2020) showed a 58% drop in 
grain number when two wheat cultivars were 90% shaded dur-
ing the early microspore stage of flower development when grain 
number is determined. These reports are in accordance with the 
estimates from regression and crop simulation models presented 
here. Broadly compared to other years before and after, only one-
fifth of the solar radiation was received during the crucial flow-
ering period with one-third fewer grains formed in some of the 
experimental locations in 2016 (Figures S4 and S5). High rainfall 
is often linked to low grain numbers due to its indirect effect on 
plant disease spread and nitrogen leaching (Mäkinen et al., 2018). 
From the data presented here, it is more likely that the intense 
rainfall around anthesis in 2016 in France directly caused flower 
abortion (Lawson & Rands, 2019) or increased lodging during an-
thesis (Fischer & Stapper, 1987; Niu et al., 2016).

Waterlogging, simply indicated here by water balance, was a 
widespread phenomenon in 2016, leading to flooding in wheat 
fields across the Seine River basin (Ben-Ari et al.,  2018). Anoxia 
probably only occurred during the wheat grain-filling period. Marti 
et al. (2015) reported a grain yield decline of 20% due to 10–15 days 
of waterlogging with a high impact on grain number due to the ex-
cess of water just before anthesis. The timing of the impact on grain 
size is therefore different from that reported here. Fungal foliar dis-
eases also reduced average wheat grain size, with ear blight and low 
solar radiation exacerbating the decrease. Similar effects of low ra-
diation during different growth periods were observed by Shimoda 
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12  |    NÓIA JÚNIOR et al.

and Sugikawa (2020) and estimated by Asseng et al. (2017) using the 
same wheat crop model as in this study. In the model, the determi-
nation of grain number is source limited while grain growth beyond 
the onset of grain filling is often sink limited (Asseng et al., 2017). In 
the absence of any disease control, up to 30% decline in yield may 
be caused by ear blight (Shah et al., 2018) and up to 50% by septo-
ria blotch (Fones & Gurr, 2015). The impact of plant diseases esti-
mated here using regression models was smaller. However, resistant 
cultivars or fungicide applications during the growing season  

(Fones & Gurr, 2015; Shah et al., 2018) (up to three applications are 
common practice in Western Europe including the experimental unit 
treatments in France analyzed here) may have limited the wheat 
yield decline due to these diseases to between 5% and 10%.

European countries are global hotspots for climate change-driven 
compound events with the potential to cause severe impacts on ag-
riculture (Ranasinghe et al., 2021; Ridder et al., 2020). Recent studies 
showed that drought and heat stress during wheat anthesis and grain 
filling would become more frequent by 2100 with climate change, in 

F I G U R E  5  Causes of the extremely low wheat yield in France in 2016. Comparison of the observed (a) grain number per unit area, (b) 
average single grain size, and (c) grain yield reported in 2016 and the average of 2014, 2015, 2017, 2018, and 2019 harvests. The colored 
arrows represent the different causes of the 2016 decline in grain number, size, and yield, and the length represents the magnitude of each 
contribution. The donut charts in the right upper corner of each panel show ANOVA (mean of squares) results with the amount of variation in 
(a) grain number per unit area, (b) average single grain size, and (c) grain yield explained by different factors in 2016 across all research stations: 
SRad., solar radiation; Hrain, heavy rainfall; F. Dis., foliar diseases; Ear B., ear blight; Anox., anoxia; and Res., residual. The research stations are 
as follows: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots.

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16662 by T

u M
uenchen B

ibliothek, W
iley O

nline L
ibrary on [24/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  13NÓIA JÚNIOR et al.

many European wheat-growing countries (Trnka et al., 2014, 2019; 
Webber et al., 2018). This is consistent with our projections of less 
anoxia from rainfall during wheat grain filling by 2100. However, 
wheat diseases and heavy rainfall around anthesis, which together 
caused the majority of the wheat yield decline in 2016 in France, 
are both projected to become more frequent with climate change 

in the region (Figure 6). Heavy rainfall has already become more in-
tense in Central Europe (Zeder & Fischer,  2020). Therefore, if cli-
mate extremes of drought and heat stress during wheat anthesis and 
grain filling are compounded with elevated pressure from disease 
and more heavy early rainfall events, future episodes of extremely 
low wheat production in Western Europe are to be expected. This 

F I G U R E  6  Projected future frequency of the extreme weather on the 2016 wheat yield failure in France. Estimated running mean change 
for future 30 years of (a) heavy rainfall (daily rainfall >20 mm) at ±5 days around anthesis, (b) solar radiation at ±15 days around anthesis, 
(c) ear blight index, (d) fungal foliar disease index, and (e) anoxia index during grain filling in relation to the reference period 1960–2020. 
Estimated running mean change for future 30 years frequency of extremely low wheat (f) grain number per unit area, (g) average single 
grain size, and (c) grain yield from 1990 to 2085, with each year as the middle of a 30-year period. (a–e) Bars are ensemble means based on 
five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5. (f–h) Lines are ensemble means based on five bias-adjusted CMIP6 
GCMs for SSP5-8.5 (lines) and shading shows ±1 SE. In the simulations, anthesis was fixed as 1 June, and the anoxia index was calculated 
every year from 1 June to 31 July. CMIP6 GCMs for SSP5-8.5 data are an average of climate projections for the following eight research 
stations: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots. Individual 
results for these research stations and other locations in Europe, as well as with different anthesis dates, are shown in Figures S19 and S20, 
respectively. Climate projections for monthly maximum and minimum temperature, solar radiation, and rainfall, are shown in Figure S18. 
Projected future frequency of the extreme weather on the 2016 wheat yield failure in France for SSP5-2.6 is shown in Figure S21. 
Thresholds for heavy rainfall (daily rainfall >20 mm) are similar in both observed climate and climate models (Figure S9), and modeled 
weather-based indices have similar distribution in both observed climate and climate models (Figure S10).
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parallels recent widespread wheat crop failures in other countries 
of Europe and the world. For example, in 2018, a combination of 
a warm, wet winter, with increased wheat disease pressure, fol-
lowed by a severely hot and dry summer in central-northern Europe 
(Beillouin et al.,  2020; Moravec et al.,  2021; Webber et al.,  2020) 
caused the national wheat yield of France to drop by 10%. This was 
also the lowest wheat-yielding year in the recent history of Germany 
(after trend correction, Figure S25) and of many northern European 
countries (Beillouin et al., 2020; Webber et al., 2020), with a total 
wheat shortfall of 13 million tons in the European Union compared 
to 2017. These examples of climate change driving extremely low 
wheat production seasons in other parts of the world demon-
strate the risks of simultaneous global breadbasket failures (Gaupp 
et al., 2020), and have implications for global food security. For ex-
ample, the simultaneous wheat production failures in several wheat-
exporting countries in 2008 contributed to food riots across many 
countries in the world (IMF, 2008). And, the heatwave in Russia and 
Ukraine in 2010 decimates 24 million tons of wheat, contributing to 
a 50% spike in global wheat price this year (FAO stat, 2022).

The simultaneous occurrence of multiple limiting impacts 
often makes it difficult to forecast extremely low wheat-yielding 
seasons. Forecasting seasons like 2016 in France are often ham-
pered by the poor representation of waterlogging and plant 
disease in both crop simulation and statistical models (Ben-Ari 
et al., 2018). New routines accounting for plant diseases (Berton 
Ferreira et al., 2021; Bregaglio et al., 2021) and waterlogging im-
pact (Liu et al.,  2021) need to be developed and integrated into 
crop simulation models to capture the extent of such compound-
ing factors. In the meantime, the simple relationships developed 
here capture some of the physiological impacts of waterlogging 
and diseases, as first steps toward a more comprehensive cropping 
systems analysis.

Our modeling approach included some assumptions. Factors 
affecting grain number per unit area were rather simply separated 
from those affecting average single grain size, even though potential 
grain size is also determined during the period when grain number 
per unit area is set (Acreche & Slafer, 2006; Calderini et al., 2021). 
Even with the large and detailed dataset studied, the available mea-
surements did not allow us to quantify the impact of climate factors 
on the potential grain size during anthesis. Also, the anthesis dates 
and grain-filling duration for the future climate change impact analy-
sis were kept constant, but these timings might change with increas-
ing temperatures or future cultivars. Depending on the direction of 
the changes in anthesis date and grain-filling period (whether earlier 
anthesis and shorter grain filling with current cultivars or unaltered 
or later anthesis with possible future cultivars [Asseng et al., 2019]), 
the overall impact might vary.

While the data analysis focused on the breadbasket of France, 
the approach used here could be extended to other countries in 
Western Europe which suffered similar weather anomalies during the 
wheat cropping season of 2016 (Figure 1). Our framework provides 
a basis for future improvement of the prediction capacity of crop 
simulation models and yields forecast systems, and for developing 

wheat cultivars with an increased ecophysiological capacity to grow 
in complex environments, like those in 2016 in France. Forecasting 
and planning for such compound yield-reducing events may to some 
extent mitigate the instability of future grain production under more 
extreme climates.
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1 Supplementary Text 

1.1 Nwheat crop growth simulation 
This study simulated wheat yield by using the DSSAT-NWheat v. 4.7.5 model (Kassie et al., 2016) 
available in the Decision Support System for Agrotechnology Transfer – DSSAT platform (Hoogenboom 
et al., 2019). Calibration of the DSSAT-Nwheat model to simulate wheat yield and wheat total above 
ground biomass was performed, and the results are shown in Suplementary Fig S. The predominant 
soil types of each research station were collected by Arvalis-Institute-du-Végetal, and information 
about the sand, clay and silt contents, pH and organic carbon and nitrogen contents for each soil type 
is shown in Supplementary Table S5. 
 

1.2 Nitrogen leaching did not affect total above ground nitrogen in 2016 
Nitrogen leaching causing nitrogen stress to wheat was not considered a cause of this wheat yield 
decline in this study for three reasons: (i) grain yield did not increase with high nitrogen inputs in the 
field experiments testing nitrogen fertilizer application rates, and the total above ground biomass and 
grain nitrogen concentration was higher than for the other years (Supplementary Fig S12); (ii) Total 
above ground nitrogen at anthesis and NNI in 2016 was higher than in other years, but it was not 
remobilized from the shoot to the grain and, consequently reduced grain nitrogen mass 
(Supplementary Fig S13); (iii) Relatively high nitrogen leaching was simulated by the Nwheat crop 
simulation model in 2016 but showed no simulated impact on total above ground biomass and grain 
yield (Supplementary Fig S11). 

 

1.3 Causes of wheat grain size and grain number decline of 2016 
The wheat yield decline of 2016 was caused by an unlikely combination of wheat grain number and 
grain size decline. Wheat grain number is linearly and closely related to growing conditions ±15 days 
pre or post anthesis (Ralph A. Fischer, 2009), when most fertile florets set grains (Slafer et al., 2015). 
Therefore, low solar radiation and the heavy rainfall events occurred around wheat anthesis were 
considered as affecting wheat grain number. In addition, ear blight was included in the statistical 
models for grain number decline, because the optimal conditions for the disease’s development 
occurred before or during anthesis. The impact of fungal foliar diseases on grain number were not 
considered, because this was not observed in the field experiments comparing resistant and non-
resistant cultivars (Supplementary Fig S15). Plant diseases, as well as anoxia were considered as causes 
of the grain size decline, as these occurred mostly during the grain filling period.  
Recent studies indicated that several wheat cultivars defoliated after wheat anthesis presented a 
decrease of about 18% of wheat grain size, compared to the control plants (non-defoliated plants) 
(Rivera-Amado et al., 2020), indicating that a large amount of carbohydrates during wheat grain filling 
can come from remobilization from stems. This suggests that the extremely low wheat grain size 
measured in 2016, came from a combination of poor grain filling condition and low potential grain size 
set, which is also defined around anthesis simultaneously with setting grain numbers (Calderini et al., 
2021). However, the remobilization efficiency of 2016 was extremely low compared to other years 
(Supplementary Fig S13), which is usually linked to wheat plant diseases (Schierenbeck et al., 2019), 
and thus we analyzed grain number and grain size anomalies separately. 
For each of the yield components: grain number per unit area and average grain size, the impact of 
each weather based index (WI) was calculated as follows: 
 

𝑊𝐼𝑖𝑗𝑙 =  
1

1000
 ∑ [𝑊𝐶 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 2016𝑖𝑗𝑘 −

1

5
∑ 𝑊𝐶𝑎𝑛𝑜𝑚𝑎𝑙𝑦 2016_𝑚𝑖𝑗𝑘𝑙

2019 𝑏𝑢𝑡 2016
𝑚=2014 ]1000

𝑘=1  (1) 

 (1) 
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where WIijl is the contribution of lth explanatory variable (weather-based index or plant disease model 
output) in 2016 to the anomaly of jth yield component (grain number or grain size) at ith research 
station. WC anomaly 2016ijk is the simulated anomaly of jth yield component with all the explanatory 
variables for 2016 at the ith research station, whereas WC anomaly 2016_mijkl is the same as WC 
anomaly 2016ijk but calculated with lth explanatory variable in a year m between 2014 and 2019 except 
2016. The WC anomaly 2016 and WC anomaly 2016_m was calculated for 1000-times (section 2.5.1) 
as represented by the subscript k (equation 1). 
 
1.4 Heavy rainfall impacts 
Rainfall started in early May 2016, 30 days before wheat anthesis. At the beginning of May, with the 
episodes of rainfall, the daily solar radiation alternated from around 20 MJ m-2d-1 to 10 MJ m-2d-1 
(which is less than half of the expected value for this period). According to Fischer (1985), the number 
of grains can be affected by shadow periods from 60 days before anthesis until around 20 days after 
anthesis, being particularly sensitive 12 days before anthesis. In France, in 2016, the lowest number 
of grains were observed in experiments where wheat anthesis occurred just before the highest 
recorded rainfall over this period (Figure 3a), together with the lowest availability of solar radiation. 
Late cultivars had 50% anthesis occurring up to 10 days after the highest rainfall. The late cultivars 
received the lowest solar radiation before anthesis (starting 7 days before anthesis, which is a more 
sensitive period compared to starting at anthesis, according to Fischer (1985)), but still had more 
grains at harvest than cultivars with anthesis at the highest recorded rainfall (and lowest solar 
radiation). This, together with the period of almost 52 hours of continuous rain just before anthesis 
(for most of the cultivars), indicated that heavy rains had an additional physical impact on grain 
number set. The heavy rainfall index (daily rainfall > 20 mm) was also identified as one of the most 
important features for grain number by the statistical models 
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2 Supplementary Tables 

Table S1. Geographical coordinates and the number of experimental unit treatments (with cultivars 
and years) the research stations used in the study. The experimental unit treatments refer to the 
wheat growth performance experiments. 

Research 
Station 

Location Latitude Longitude 
Number of 

experimental 
unit treatments 

Number of 
cultivars 

Number of 
years 

1 Égreville 48.18 2.86 96 51 5 

2 Chevry 48.72 2.66 12 7 2 
3 Saint Quentin 49.87 3.20 5 3 2 
4 Saint Florent 47.03 2.33 185 61 5 
5 Fagnieres 48.95 4.41 58 28 6 
6 Issoudun 46.96 2.03 114 43 6 

7 
Troyes-Barberey St 
Suplice 

48.32 4.02 201 78 6 

8 Rots 49.20 0.47 97 53 5 
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Table S2. Description of the weather-based indices calculated to assess the potential impact of climatic factors on grain 
number. The correlation coefficient (r2) was calculated by regressing the anomaly of wheat grain number per unit area 
for each cultivar and research station with each of the weather-based indices.  

Climate factor Description in literature Equation r2 

Heavy rainfall Heavy rainfall events are well-known 
to cause wheat yield losses in Europe 
(Mäkinen et al., 2018). The impacts of 
heavy rainfall on wheat yield are 
usually linked to anoxia and soil 
nutrient losses (Beillouin et al., 2020; 
Ben-Ari et al., 2018). However, only 
few studies indicated possible 
physical damage due to high rainfall 
(Li et al., 2019). 
 
In 2016 in France, the various events 
of heavy rainfall around anthesis is 
one of the probable causes of the 
wheat grain number and yield 
decline. To test it, we have created 
three different indices and correlated 
each with grain number reduction of 
2016. 
 

Heavy rainfall (5danth) – number of days with accumulated rainfall >20 mm, during the 5 days period around 
anthesis (with 50% anthesis occurring on the 3rd day of the period) 
 

𝐇𝐞𝐚𝐯𝐲 𝐫𝐚𝐢𝐧𝐟𝐚𝐥𝐥 (𝟓𝐝𝐚𝐧𝐭𝐡) = ∑ 𝐻𝑒𝑎𝑣𝑦 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑒𝑣𝑒𝑛𝑡𝑠

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)+2

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)−2

  

 
Where: heavy rainfall events are days with rainfall > 20 mm. 
 
Several combinations of the duration of the period around anthesis (3, 5, 11, 15, and 21 days*) and threshold of 
daily accumulated rainfall (10, 15, 20, 25, 30, and 40 mm) were correlated with the grain number change in 2016, 
for each cultivar. The combination of 5 days around anthesis (5danth) and 20 mm of daily accumulated rainfall was 
the one with highest r2 value. 
 

0.11 

Accumulated rainfall (15 danth) – Accumulated rainfall during the 15 days around anthesis (with 50% anthesis 
occurring on the 8th day). 
 

𝐀𝐜𝐜𝐮𝐦𝐮𝐥𝐚𝐭𝐞𝐝 𝐫𝐚𝐢𝐧𝐟𝐚𝐥𝐥 (𝟏𝟓𝐝𝐚𝐧𝐭𝐡) =  ∑ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)+7

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)−7

  

 
Where: Rainfall is the daily rainfall in mm. 
 
Several combinations of the duration of the period around anthesis were tested (3, 5, 11, 15 and 21 days*). Fifteen 
days (15danth) gave the highest r2 value. 
 

0.15 

Time lapse between 50% anthesis date to highest rainfall –absolute days difference between the date of 50% 
anthesis and the peak of rainfall during the 21 days period around anthesis. 
 
Time lapse between 50% anthesis date to highest rainfall = |day of 50% Anthesis − Peak of rainfall21d| 
 
Where: Peak of rainfall21d is the day with the maximum daily rainfall recorded in the 21 days period around 
anthesis*. 
 

0.08 

Solar radiation and air 
temperature 

In well managed and watered wheat 
crops, wheat grain number is linearly 
and closely related to incident solar 
radiation and temperature in the 30 
days or so around anthesis (Ralph A. 
Fischer, 2009). 
 
With that, three different indices 
accounting for the effects of 
temperature and solar radiation were 
tested.  

Solar Radiation (15danth) – Mean incident solar radiation during the 15 days period around anthesis (with 50% 
anthesis occurring on the 8th day). 
 

𝐒𝐨𝐥𝐚𝐫 𝐑𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧 (𝟏𝟓𝐝𝐚𝐧𝐭𝐡) =  ∑
𝑆𝑅

15
 

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)+7

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)−7

 

 
Where: SR is the daily solar radiation in MJ m-2 d-1.  
 
Several combinations of the duration of the period around anthesis were tested (3, 5, 11, 15 and 21 days*). Fifteen 
days (15danth) gave the highest r2 value. 
 

0.48 

Mean Temperature 15danth – Mean air temperature during the 15 days around anthesis (with 50% anthesis 
occurring on the 8th day). 
 

𝐌𝐞𝐚𝐧 𝐓𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞 (𝟏𝟓𝐝𝐚𝐧𝐭𝐡) = ∑
𝑇𝑚𝑒𝑎𝑛

15
 

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)+7

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)−7

 

 
Where: Tmean is the daily mean air temperature in °C. 
 
Several combinations of the duration of the period around anthesis were tested (3, 5, 11, 15 and 21 days*). Fifteen 
days (15danth) gave the highest r2 value. 
 

0.01 

Photo-thermal quotient 15danth – average ratio of daily solar radiation to daily mean temperature for the 15 days 
period around anthesis (with 50% anthesis occurring on the 8th day). 
 

𝐏𝐡𝐨𝐭𝐡𝐞𝐫𝐦𝐚𝐥 (𝟏𝟓𝐝𝐚𝐧𝐭𝐡) =
∑  

(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)+7
(𝑑𝑎𝑦 𝑜𝑓 50% 𝐹𝑙𝑜𝑤𝑒𝑟𝑖𝑛𝑔)−7 (

𝑆𝑅
𝑇𝑚𝑒𝑎𝑛 − 4.5) 

15
 

 
Several combinations of the duration of the period around anthesis were tested (3, 5, 11, 15 and 21 days*). Fifteen 
days (15danth) gave the highest r2 value 
 

0.10 

*Anthesis date was always considered as the median values of the tested period, i.e. for the test with 15 days around anthesis, the 50% anthesis date was on 8th day. For 
calculating these indices, anthesis date was required, and for the experimental plots with no anthesis date observed, it was calculated based on ear emergence date 
(Supplementary Fig S28), which was recorded in all field trials. 
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Table S3. Description of the weather-based calculated to assess the potential impact of climate factor on average single grain 
size. The correlation coefficient (r2) was calculated by regressing the anomaly of average grain size for each cultivar and 
research station with each of the weather-based indices. 

Disease or climate 
factor 

Description Index r2 

Fungal foliar diseases: 
 
1. Septoria blotch 

(Zymoseptoria 
tritici) 
 

2. Leaf Yellow Rust 
(Puccinia 
striiformis) 

The survival of fall infection of winter wheat by Septoria blotch and leaf 
rust is favored by warm temperatures during the late autumn and winter 
(Chaloner et al., 2019; te Beest et al., 2009). After it, the development of 
these foliar fungal diseases depends on wet environments, especially on 
rain in March and April (El Jarroudi et al., 2016). 
Weather based model for predicting such diseases, usually have as input, 
leaf wetness duration. There are no data on relative humidity and/or leaf 
wetness duration in all the research stations here studied. Thus, in this 
study, we focus on models that only require precipitation and 
temperature as an input to be run. 
Foliar fungal diseases are well-managed by farms in France and are 
usually easily controlled by fungicides. However, weather conditions in 
2016 favored higher foliar disease pressure, causing yield losses.  
 
*Both foliar fungal disease indices were used for the model building to 
assess the potential impact of foliar fungal disease on average single grain 
size anomaly of 2016, and the impact of foliar fungal disease is considered 
to be the average of both. 
 

A predictive model for early-warning of Septoria leaf blotch on winter wheat 
To be expressed with mathematical formulae after te Beest et al. (2009): 
 

F𝐮𝐧𝐠𝐚𝐥 𝐟𝐨𝐥𝐢𝐚𝐫 𝐢𝐧𝐝𝐞𝐱 A =  ∑ M𝐚𝐱(𝟎. 𝟎𝟒𝟔 𝑹𝒂𝒊𝒏_3 + 0.042 𝑻𝒎𝒊𝒏 − 𝟔. 𝟔𝟗, 𝟎)

𝑮𝑺𝟑𝟏−𝟑𝟎 𝒅

𝑮𝑺𝟑𝟏−𝟏𝟒𝟎 𝒅

 

0.09 

 

F𝐮𝐧𝐠𝐚𝐥 𝐟𝐨𝐥𝐢𝐚𝐫 𝐢𝐧𝐝𝐞𝐱 B =  ∑ M𝐚𝐱(𝟎. 𝟎7 𝑹𝒂𝒊𝒏_6 − 2.94, 𝟎)

𝑮𝑺𝟑𝟏−𝟑𝟎 𝒅

𝑮𝑺𝟑𝟏−𝟏𝟏𝟎 𝒅

 

Where: Rain_x represents daily rainfall greater than x mm and Tmin 
represents daily minimum air temperature higher than 0 °C. Fungal foliar 
index A is for all cultivars, whereas Fungal foliar index B is for resistant 
cultivars after te Beest et al. (2009). Their averages are used in this study. 
 

0.05 

Ear blight or Fusarium 
ear blight 
(Microdochium nivale, 
Microdochium majus, 
Fusarium 
graminearum, 
Fusarium culmorum) 

The infection of ear blight usually occurs during anthesis, under warm and 
humid conditions, and high rainfall during summer allows infection to 
spread (Madgwick et al., 2011; West et al., 2012; Xu, 2003). 
Ear Blight infections are not common in France (Supplementary Fig S14), 
and its control is less efficient than foliar fungal diseases.  
 

 

𝐄𝐚𝐫 𝐛𝐥𝐢𝐠𝐡𝐭 𝐢𝐧𝐝𝐞𝐱 = 𝟏𝟎𝟎 
𝐞𝐱𝐩 (−𝟏𝟓. 𝟑 +  𝟎. 𝟗𝟒𝟏 𝑻𝒎𝒆𝒂𝒏𝑴𝒂𝒚 +  𝟎. 𝟎𝟔𝟗 𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍𝟏𝒘𝒆𝒆𝒌−𝑱𝒖𝒏𝒆)

𝟏 +  𝐞𝐱𝐩 (−𝟏𝟓. 𝟑 +  𝟎. 𝟗𝟒𝟏 𝑻𝒎𝒆𝒂𝒏𝑴𝒂𝒚 +  𝟎. 𝟎𝟔𝟗 𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍𝟏𝒘𝒆𝒆𝒌−𝑱𝒖𝒏𝒆)
 

 
Where: 𝑇𝑚𝑒𝑎𝑛𝑀𝑎𝑦 is the mean temperature in May and 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙1𝑤𝑒𝑒𝑘−𝐽𝑢𝑛𝑒 

is the accumulated rainfall in first week of June. Equation from Madgwick et 
al. (2011). 
Accumulated rainfall for different weeks of late May and June were tested, 
and the 1st week of June (which was the week when 50% anthesis occurred in 
2016) had the highest correlation with grain size anomaly in 2016 considering 
all sites. 
 

0.12 

Anoxia In waterlogged soils, roots are exposed to low oxygen concentrations, 
leading to anoxia. Anoxia reduces accumulation and remobilization of 
carbohydrates into grains, affecting grain size and grain yield (Hossain et 
al., 2011).  
Anoxia is frequently cited as a factor causing crop yield losses in France 
(van der Velde et al., 2012), especially in the 2016 cropping season (Ben-
Ari et al., 2018; van der Velde et al., 2020).  
In order to quantify anoxia, we have calculated a water balance based 
only on the accumulation of daily difference between reference 
evapotranspiration (ETo) and rainfall (Rain). Based on this water balance 
(Supplementary Fig S2-5), we have considered that anoxia would occur 
when daily accumulated Rain - ETo > 30 mm.  
 

 

𝐀𝐧𝐨𝐱𝐢𝐚 𝐢𝐧𝐝𝐞𝐱 =  ∑ 𝑀𝑎𝑥 (𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 −  𝐸𝑇𝑜, 30

(𝑑𝑎𝑦 𝑜𝑓 50% 𝑎𝑛𝑡ℎ𝑒𝑠𝑖𝑠) +50

(𝑑𝑎𝑦 𝑜𝑓 50% 𝑎𝑛𝑡ℎ𝑒𝑠𝑖𝑠)

𝑚𝑚) 

 
Where: 𝐸𝑇𝑜 is the daily reference evapotranspiration (mm) and 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 is 
the daily rainfall (mm). ETo was calculated following the Priestley-Taylor 
method. The first 50 days after 50% anthesis was considered for this index.  
Anoxia indices comprising different periods around anthesis and with 
different lengths were also tested, the 50 days after anthesis had the highest 
correlation with grain size anomaly in 2016.  
 

0.31 

Solar Radiation  Low solar radiation incidence during May and June of 2016, are pointed 
as one of the main causes of 2016 yield loss (Ben-Ari et al., 2018).  
To test the direct impact of solar radiation on wheat grain size in 2016, 
an index considering the mean solar radiation incidence during grain 
filling was built. 
To validate our results of solar radiation affecting wheat grain size, the 
crop growth model NWHEAT (Supplementary Fig S16-S17) was run 
considering all climatic variables of 2016 cropping season and considering 
all climatic variables of 2016 cropping season but average daily solar 
radiations from 2014-2019 period. 
 

 

𝐒𝐨𝐥𝐚𝐫 𝐑𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧𝒈𝒓𝒂𝒊𝒏 𝒇𝒊𝒍𝒍𝒊𝒏𝒈 = ∑
𝑆𝑅

𝑛

(𝑑𝑎𝑦 𝑜𝑓 ℎ𝑎𝑟𝑣𝑒𝑠𝑡)

(𝑑𝑎𝑦 𝑜𝑓 50% 𝑎𝑛𝑡ℎ𝑒𝑠𝑖𝑠)

  

 
Where: SR is the daily solar radiation in MJ m-2 d-1, and n is the number of 
days between anthesis and harvest. 

0.01 

Rainfall Droughts and extreme rainfall are major factors affecting wheat yield 
variability in Europe (Moravec et al., 2021).  
In 2016, the excessive rainfall in late May early June is appointed as one 
of the main factors causing the wheat yield loss (Ben-Ari et al., 2018).  
To test the direct impact of rainfall on wheat grain size in 2016, an index 
considering the accumulated rainfall during grain filling was built. 

 

𝐑𝐚𝐢𝐧𝐟𝐚𝐥𝐥𝒈𝒓𝒂𝒊𝒏 𝒇𝒊𝒍𝒍𝒊𝒏𝒈 = ∑
𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙

𝑛

(𝑑𝑎𝑦 𝑜𝑓 ℎ𝑎𝑟𝑣𝑒𝑠𝑡)

(𝑑𝑎𝑦 𝑜𝑓 50% 𝑎𝑛𝑡ℎ𝑒𝑠𝑖𝑠)

  

 
Where: Rainfall is the daily rainfall in mm, and n is the number of days 
between anthesis and harvest. 
 

0.11 

Temperature Temperature is reported to affect grain yield of wheat crops (Asseng et 
al., 2011), particularly due to change in cropping season length (Webber 
et al., 2020).  
In 2016 in France, high winter temperatures favored the survival and 
development of fungal foliar diseases. Besides that, the low temperature 
during the spring lead to delay in anthesis date, coinciding the period of 
anthesis with heavy rainfall events. However, to test the direct impact of 
temperature on wheat grain size in 2016, an index considering the mean 
temperature during grain filling was built. 

𝐓𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞𝒈𝒓𝒂𝒊𝒏 𝒇𝒊𝒍𝒍𝒊𝒏𝒈 = ∑
𝑇𝑚𝑒𝑎𝑛

𝑛

(𝑑𝑎𝑦 𝑜𝑓 ℎ𝑎𝑟𝑣𝑒𝑠𝑡)

(𝑑𝑎𝑦 𝑜𝑓 50% 𝑎𝑛𝑡ℎ𝑒𝑠𝑖𝑠)

  

 
Where: Tmean is the daily mean temperature in oC, and n is the number of 
days between anthesis and harvest. 

0.05 
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Table S4. Nwheat genetic coefficients of Rubisko wheat cultivar. 
Genetic Coefficient Definition Rubisko cv. 

VSE Sensitivity to vernalisation 3.7 
PPSEN Sensitivity to photoperiod 4.0 
P1 Thermal time from seedling emergence to the end of the juvenile phase 400 

P5 
Thermal time (base 0oC) from beginning of grain filling to maturity: 
range 500 to 700 

700.0 

PHINT Phyllochron interval 110.0 

GRNO 
Coefficient of kernel number per stem weight at the beginning of grain 
filling 

26.5 

MXFIL Potential kernel growth rate 1.9 
STMMX Potential final dry weight of a single tiller 3.0 
SLAP1 Ratio of leaf area to mass at emergence 280.0 
SLAP2 Ratio of leaf area to mass at end of leaf growth 270.0 
P5AF Power term at af1 3.0 
MAXNUP Max N uptake per day 2.0 
INGWT Initial grain weight  10.0 
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Table S5. Research stations soils characteristics. Silt (%), clay (%), bulk density (g/cm3), pH in Water, 

carbon (%), nitrogen contents (%), and simulated soil depth (m) of soils in the 8 research stations used in this 
study.  

Research Station Silt (%) Clay (%) 
Bulk 

density 
(g/cm3) 

pH in 
Water 

Carbon 
(%) 

Nitrogen 
(%) 

Soil Depth 
(m) 

1, Égreville 68 12 1.35 7.0 0.7 0.1 2.1 
2, Chevry 65 12 1.35 7.0 0.5 0.1 2.1 
3, Saint-Quentin 68 22 1.57 6.5 0.4 0.08 2.1 
4, Saint-Florent 60 30 1.37 7.0 0.2 0.03 2.3 
5, Fagnières 50 20 1.47 7.0 0.25 0.03 1.9 
6, Issodun 45 30 1.45 7.5 0.3 0.05 1.9 
7, Barbarey-Saint-Sulpice 49 29 1.50 7.8 0.25 0.03 2.3 
8, Rots 60 10 1.35 7 0.3 0.05 1.5 
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3 Supplementary Figures 

3.1 Supplementary results 
 
3.1.1 Climatic analysis 
 

 

Figure S1. Weather conditions during wheat cropping season in France. Boxplot of monthly (a, d, g 
and j) mean temperature (Mean Temp), (b, e, h and k) solar radiation and (c, f, I and l) rainfall, over 
the 2013–2020 wheat growing seasons in France (whisker plots). Weather data are shown for 
Research Stations 1, 4, 7 and 8. Whiskers extend to maximum and minimum values. Values for the 
2015-2016 growing season are presented as red asterisk. 
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Figure S2. Weather anomaly of 2016 wheat cropping season in Europe. Spatial distribution of the 

weather anomaly in 2016 of accumulated rainfall (a) in March, (b) May, (c) and in June, (d) monthly mean 
temperature (Tmean) during the autumn of 2015 (October to December), and solar radiation (S Rad) (e) in May 
and (f) in June, compared to the 30-years historical average for the 1990-2019 period. Climate variables data are 
from the NASAPower (Team, 2021), with a spatial resolution of 0.5 deg x 0.5 deg.(Team, 2021). Maps lines 
delineate study areas and do not necessarily depict accepted national boundaries. 
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Figure S3. Rainfall anomalies across western Europe in 2016. Red areas indicate the highest accumulated 

rainfall of the last 30 years, in (a) May and (b) June of 2016. Data are from the NASAPower (Team, 2021), with a 
spatial resolution of 0.5 deg x 0.5 deg. Maps lines delineate study areas and do not necessarily depict accepted 
national boundaries. 
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Figure S4. Weather around wheat anthesis in France 2016. (a, c, e and g) Daily rainfall and solar 
radiation, and (b, d, f and h) water balance based on the accumulation of daily difference between 
measured rainfall and calculated reference evapotranspiration (ETo) for the research stations 1, 2, 3 
and 4. The area in red demonstrates the period where wheat anthesis occurred for different cultivars. 
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Figure S5. Weather around wheat anthesis in France 2016. Daily rainfall (mm) and solar radiation, (b, 
d, f and h) and water balance based on the accumulation of daily difference between measured rainfall 
and calculated reference evapotranspiration (ETo). Shown for research stations 5, 6, 7 and 8. The area 
in red demonstrates the period where wheat anthesis occurred for different cultivars. 
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Figure S6. Weather around wheat anthesis in France 2015. (a, c, e and g) Daily rainfall (mm) and solar 
radiation, (b, d, f and h) and water balance based on the accumulation of daily difference between 
measured rainfall and calculated reference evapotranspiration (ETo) for the research stations 1, 2, 3 
and 4. 
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Figure S7. Weather around wheat anthesis in France 2015. (a, c, e and g) Daily rainfall (mm) and solar 
radiation, (b, d, f and h) and water balance based on the accumulation of daily difference between 
measured rainfall and calculated reference evapotranspiration (ETo) for the research stations 5, 6, 7 
and 8. 
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Figure S8. Hourly weather conditions around wheat anthesis. Hourly variation rainfall in (a) 2016 and 
(b) 2015, and solar radiation in (c) 2016 and (d) 2015. Weather data is shown for Boigneville, France, 
location near to Research station 1 (Égreville) of this study. Red dashed line is on 1st June, the average 
date of anthesis for Boigneville. 
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Figure S9. Daily rainfall data from 1981 to 2020 distribution. Distribution is shown for (a) observed 
and for five CMIP6 models (b) GFDL-ESM4, (c) IPSL-CM6A-LR, (d) MPI-ESM1-2-HR, (e) MRI-
ESM2-0 and (f) UKESM1-0-LL. Vertical dashed line shows the 0.995 quantile for observed ( 
rainfall equal 20mm) in (a) and for each of the five CMIP6 models in (b-f). 
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Figure S10. Ear blight, Foliar diseases and anoxic days from 1981 to 2020 distribution. Distribution 
is shown for (a) ear blight, (b) foliar fungal diseases and (c) number of anoxic days during grain 
filling for observed climate (gray) with for five CMIP6 models (tons of yellow) GFDL-ESM4, 
IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL from 1981 to 2020.  
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3.1.2 Nitrogen leaching and nitrogen wheat uptake 

 

 
Figure S11. Simulated nitrogen leaching, total above ground biomass and grain yield. (a) Nitrogen 
leaching, (b) total above ground biomass, and (c) grain yield for the winter wheat cultivar Rubisko 
grown in Égreville (Research Station 1), France were simulated with the Nwheat crop simulation 
model. (d) Nitrogen leaching anomaly of 2016 compared to 2017 for all eight research stations here 
studied. The nitrogen application rates were similar to those applied in the Arvalis field trials. In 2016, 
52 kg N ha-1 were applied on 18 Feb, 92 kg N ha-1 on 7 Mar, 41 kg N ha-1 on 20 Apr, and 32 kg N ha-1 
on 29 Apr. For the other years, nitrogen was applied in three splits with an average of 52 kg N ha-1 in 
early February, 85 kg N ha-1 in early March and 60 kg N ha-1 in late April. The soil characteristics are 
presented in Table S1. 
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Figure S12. Observed wheat responses to nitrogen fertilizer application rates. (a, g and m) Grain 
yield, (b, h and n) grain number, (c, i and o) grain size, (d, j and q) nitrogen grain concentration, (e, k 
and r) total above ground biomass at maturity and (f, l and s) nitrogen straw concentration responses 
curves to nitrogen fertilizer application rates for the wheat cultivars grown in the field at three 
research stations. Shades of gray colored lines refer to wheat responses to nitrogen fertilizer 
application rates in different years in the 2014 to 2019 growing seasons (excluding 2016). 
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Figure S13. Measured total above ground biomass and nitrogen at anthesis and maturity. Above 
ground biomass at anthesis and maturity in vegetative tissues and grains for the (a) 2016, (b) 2017, (c) 
2018, and (d) 2019 harvest. Above ground nitrogen at anthesis and maturity in vegetative tissues and 
grains in (e) 2016, (f) 2017, (g) 2018 and (h) 2019. Data for the Rubisko cultivar grown in the field at 
Égreville (Research Station 1), France. 
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3.1.3 Plant diseases analysis 

 

Figure S14. Wheat crop diseases across the breadbasket of France in 2016. Spatial distribution of (a) 
yield gain by fungicide protection, (b) dominant and (c) secondary wheat disease around the 
breadbasket of France in 2016. Wheat yield gain by fungicide protection, and the (d) dominant and (e) 
secondary wheat disease from 2010 to 2020. Maps lines delineate study areas and do not necessarily depict 

accepted national boundaries. 
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Figure S15. Wheat grain number, grain size and yield for resistant and non-resistant cultivars for 
plant diseases. Wheat (a-b) grain number, (c-d) grain size and (e-f) yield for the resistant wheat cv. Lg 
Absalon for fungal foliar diseases in (a, c and e), and for a susceptible wheat cv. Rubisko in (b, d and 
f). Wheat (g-h) grain number, (i-j) grain size and (k-l) yield for the resistant wheat cv. Apache for ear 
blight in (g, i and k), and for a susceptible wheat cv. Bermude in (h, j and l). Wheat cultivars were 
grown in Research station 1, and all wheat cultivars were sown in the same day in 2016 cropping 
season. For resistant and non-resistant wheat cultivars of foliar fungal diseases, anthesis was also 
observed in the same day. However, for ear blight Apache cv. Flowered one week after cv Bermude, 
with more pronounced effects of heavy rainfall and low solar radiation on grain numbers, as presented 
in Figure 4.  
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3.1.4 Solar radiation  

 

Figure S16. Effect of 2016 solar radiation on wheat grain yield and yield components in 2016. 
Comparison of (a) grain number, (b) grain size and (c) grain yield for 2016 simulated with using average 
solar radiation from 2014, 2015, 2017, 2018 and 2019 wheat cropping season (black), simulated with 
2016 solar radiation (blue) and observed with cultivar Rubisco in field trials in 2016 (green). The 
research stations were: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, 
Issodun; 7, Barbarey-Saint-Sulpice; and 8, Rots. The black bars (2016 with modified SR) refers to grain 
number, grain size and yield simulations considering rainfall, maximum and minimum temperature 
from 2016 but with solar radiation data (SR) from 2014, 2015, 2017, 2018 and 2019 wheat cropping 
seasons. Thus, wheat growth simulations of 2016 with modified solar radiation were carried out five 
times, one per each of the cropping seasons from 2014 to 2019, and the black bars represent the 
average of these simulations.  
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Figure S17. Contribution of solar radiation to total wheat (a) grain number and (b) grain yield decline 
at height research stations in the France breadbasket. Simulations were done with the NWheat crop 
simulation model (green bars) and with multiple regression statistical models (gray bars). Note, solar 
radiation had no impact on grain size as shown in Fig S11. The research stations were: 1, Égreville; 2, 
Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issodun; 7, Barbarey-Saint-Sulpice; and 8, 
Rots.  
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3.1.5 Climatic change 

 

 

Figure S18. Projected future climate in Égreville, France. Average monthly maximum (T Min), 
minimum temperature (T Max), solar radiation (S. Radiation), and accumulated rainfall (Rainfall) for 
the period 1850-2100, in Égreville, France, and for SSP5-8.5. The values presented are the mean of 
five CMIP6 global change models. 
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Figure S19. Projected future frequency of the extreme weather on the 2016 wheat yield failure in 
the breadbasket of France. Estimated indices of (a and f) heavy rainfall (daily rainfall > 20 mm) at ± 5 
days around anthesis, (b and g) solar radiation at ± 15 days around anthesis, (c and h) ear blight index, 
(d and i) fungal foliar disease index and (e and j) anoxia index during grain filling for the baseline (1960-
2020), 2050 (average between 2035 and 2065) and 2080 (average between 2070 and 2100) and for 
two anthesis date according in (a-e) 1 June  and (f-j) 1 May. Bars are ensemble means based on five 
bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5. In the simulations, anthesis was fixed 
as 1 June in (a-e) and 1 May in (f-g), and the anoxia index was calculated every year from (a-e) 1 June 
to 31 July and (f-g) 1 May to 15 June. The research stations were numbered from 1 to 8 according to 
the magnitude of their wheat yield loss in 2016 (as in i, location 1 had the highest yield loss in 2016 
and location 8 the lowest): 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, 
Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots. 
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Figure S20. Projected future frequency of the extreme weather on the 2016 wheat yield failure in 
Western Europe. (a) Spatial distribution of the locations in western Europe studied. Estimated indices of (b 

and g) heavy rainfall (daily rainfall > 20mm) at ± 5 days around anthesis, (c and h) solar radiation at ± 15 days 
around anthesis, (d and i) ear blight index, (e and j) fungal foliar disease index and (f and k) anoxia index during 
grain filling for the baseline (1960-2020), 2050 (average between 2035 and 2065) and 2080 (average between 
2070 and 2100) for two anthesis date according in (b-f) 1 June  and (g-k) 1 May. Bars are ensemble means based 
on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5. In the simulations, anthesis was fixed 
as 1 June in (b-f) and 1 May in (g-k), and the anoxia index was calculated every year from (b-f) 1 June to 31 July 
and (g-k) 1 May to 15 June. Map lines delineate study areas and do not necessarily depict accepted national 
boundaries. 
 

 
  



29 
 

 
 
Figure S21. Projected future frequency of the extreme weather on the 2016 wheat yield failure in 
France with SSP5-2.6. Estimated running mean change for future 30 years of (a) heavy rainfall (daily 
rainfall > 20 mm) at ± 5 days around anthesis, (b) solar radiation at ± 15 days around anthesis, (c) ear 
blight index, (d) fungal foliar disease index and (e) anoxia index during grain filling in relation to the 
reference period 1960-2020. Estimated running mean change for future 30 years frequency of 
extreme low wheat (f) grain number per unit area, (g) average single grain size and (c) grain yield from 
1990 to 2085, with each year as the middle of a 30-years period. (a-e) Bars are ensemble means based 
on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-2.6. (f-h) Lines are ensemble 
means based on five bias-adjusted CMIP6 GCMs for SSP5-2.6 (lines) and shading shows ± 1 s.e. In the 
simulations, anthesis was fixed as 1 June, and the anoxia index was calculated every year from 1 June 
to 31 July. CMIP6 GCMs for SSP5-2.6 data are an average of climate projections for the following eight 
research stations: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 
7, Barbarey-Saint-Sulpice; and 8, Rots.  
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3.1.6 Wheat growth  
 

 
Figure S22. Wheat grain number and grain size relations with grain yield. Relationship between 
observed wheat (a) grain number and grain size (b) grain size and grain yield (c) grain number and 
grain yield. Alfa is the rate of wheat grain size change per unit of grain number in (a), and the rate of 
wheat grain yield change per unit of grain size in (b), and per unit of grain number in (c). 
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Figure S23. Plant diseases and weather effects on observed wheat grain number and grain size. Bi-
plot of the loadings of the original variables in the first two canonical variables for weather and plant 
diseases effects on observed wheat for (a) grain number and (b) grain size in the breadbasket of 
France. The percentage of total variance explained by each canonical variable is indicated in 
parentheses. 
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3.1.7 National wheat yield anomaly  

 

 

Figure S24. Observed spatial-temporal pattern of trend-corrected wheat yield anomaly in France. 
Observed wheat yield anomalies relative to average values defined in each French department (2001-
2019). Observed winter wheat yield anomaly for the French departments (administrative units known 
in France as départements at NUTS1 spatial scale) were calculated from observed wheat yield 
collected from the French Ministry of Agriculture official survey data (Agreste, 2022). The French 
Ministry of Agriculture provides seasonal wheat yield data for all departments that cultivate wheat. 
Maps lines delineate study areas and do not necessarily depict accepted national boundaries. 
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Figure S25. Trend-corrected national wheat yield across Europe for the period 1960-2019. Values in 
the 2015/16 trend-corrected wheat yield are presented as red dots.  
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3.1 Supplementary methods 

 

Figure S26. Flowchart of the procedures for quantifying the extreme low wheat yield of 2016 in 
France. 
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Figure S27. Comparison between observed relative wheat yield anomalies of 2016 calculated based 
on the Arvalis’ field trials (red) and the yield anomalies observed in the French departments (gray). 
The reference period for both relative wheat yield decline calculation is 2014-2019. Observed winter 
wheat yield anomaly for the French departments (administrative units known in France as 
départements at NUTS1 spatial scale) were calculated from observed wheat yield collected from the 
French Ministry of Agriculture official survey data (Agreste, 2022). The French Ministry of Agriculture 
provides seasonal wheat yield data for all departments that cultivate wheat. 
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Figure S28. Estimating wheat anthesis day from wheat ear emergence day. The observed days are 
presented in day of the year (d), where January 1st is the day 1.  
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Figure S29. Schematic representation of the procedure to compute the impacts of individual yield 
limiting factors in 2016. The letter ‘V’ represents the explanatory variables selected by Step Variable 
selector method. In addition, the letter ‘R’ represents the estimated model output (result) from the 
statistical model. 
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Figure S30. Calibration of NWHEAT crop simulation model. Relationship between observed and 
simulated wheat (a) biomass at maturity and (b) grain yield in France. Calibration with data from 2014, 
2015, 2017 and 2019 years and cultivar Rubisko. In 2017 at Vraux the model simulated a reduction of 
grain yield due to water stress. 
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Figure S31. NWHEAT crop simulation for 2014-2019 years, including 2016 and 2016. Relationship 
between observed and simulated wheat for (a) biomass at maturity and (b) grain yield in France. 
Observed data are for cultivar Rubisko. 
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Figure S32. Average values of the weather based index for plant disease and weather from 2014 to 
2019 in the breadbasket of France. The average values are from the eight research station selected 
in the study. The indices definitions and calculations are presented in Supplementary Tables S2 and 
S3.  
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Figure S33. Projected frequency of extreme low wheat yield years in the breadbasket of France. (a) 
Inter-annual variability from 1984–2020 of observed (black lines) and estimated (yellow lines) wheat 
trend corrected yield of the breadbasket of France. Estimated results are from a LOOCV validation 
leaving all years from a location out of the training set. Insets in (a) shows the training set results. 
Statistical model for wheat yield was built with the same features used for simulate wheat grain 
number per unit area (features are shown in Supplementary Table S2) and for average grain size 
(Supplementary Table S3). For this analysis, there was no separation between grain number per unit 
area and average grain size (as in Fig 3 and 4) so all features were made available to the statistical 
model to directly simulate trend-corrected wheat yield. (b) Estimated 30 years running mean 
frequency of extreme low wheat yield under SSP5-2.6 (black trace) and SSP5-8.5 (red trace) from 1990 
to 2085 for the breadbasket of France. Lines are ensemble means based on five CMIP6 GCMs (lines) 
and shading shows ± 1 s.e. These projections consider a fixed wheat anthesis on 1st June. Statistical 
model in (a)  and CMIP6 GCMs for SSP5-2.6 and SSP5-8.5 in (b) data are an average of the following 
eight research stations: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, 
Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots. 
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Figure S34. Representative wheat ear from 2016 cropping season from Villier-le-Bâcle, France.  
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ABSTRACT 

In recent decades, compounding weather extremes and plant diseases have been influencing 
increased wheat yield variability in France, the largest wheat producer in the European Union. How 
these might affect future wheat production remains unclear. Based on department wheat yields from 
the French government, disease, and climate indices from 1984 to 2020 in France, we combined an 
existing disease model with machine learning algorithms to estimate grain yields. This approach was 
able to explain around 60% of historical yield variability. Extreme low wheat yields will continue to 
occur once every 10 years according to projections with five CMIP6 climate models. While flooding 
related losses are projected to be reduced by over 30%, losses associated with combined extreme 
drought and heat wave during anthesis, and grain filling will double. Disease damage from ear blight 
is projected to increase and cause 35% of the 700 kg ha-1 total expected average wheat yield losses. 
French wheat production systems need to adapt to future to droughts and heat waves while dealing 
with increased disease pressure. 
 
Keywords: Compounding factors; extreme weather; machine learning; plant diseases. 
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1. Introduction 

Climate change may cause increased year-to-year wheat yield variability in many regions around the 

world (Bezner Kerr et al., 2022; Gaupp et al., 2020; Liu et al., 2021; Schauberger et al., 2018). Extreme 

lows of wheat yield, which is usually defined as yields below the 10th percentile of historical period 

(with 20 years or more) (Guarin et al., 2020; Seneviratne et al., 2012), is also expected to occur more 

often (Nóia Júnior et al., 2021; Trnka et al., 2014). This could increase global food insecurity. 

 

France accounts for 10% of the world's wheat exports (FAO stat, 2022), and extreme lows of national 

wheat production have occurred in the past due to adverse climate events (Ben-Ari et al., 2018; van 

der Velde et al., 2012). In the summer of 2003, France was hit by an unprecedented and prolonged 

heatwave. This event caused wheat production losses of 17%, or 7 million metric tons (Mt), compared 

to the previous five year average and left France with its worst wheat harvest since 1960 at this time 

(Ciais et al., 2005; FAO stat, 2022). Drought and heatwaves were the main causes of other historical 

crop failures in France and Europe in 2007 and 2018 (Beillouin et al., 2020; Schauberger et al., 2021; 

Webber et al., 2020; Zhu et al., 2021), and most recently in 2022, lowering wheat yield by 5% 

compared to the previous five years average (Baruth et al., 2022). Many studies have quantified the 

past and potential future impacts of heatwaves and droughts on wheat production across the world 

(Asseng et al., 2011; Battisti and Naylor, 2009; Lobell et al., 2011; Webber et al., 2020, 2018). On 

average, regional heatwaves and droughts have reduced national wheat yield by 4% and 7% from 1964 

to 2007, respectively (Lesk et al., 2016). Global wheat production is expected to fall by 6% for each 

1°C of average temperature increase when CO2 fertilization effects are not accounted for (Asseng et 

al., 2015; Liu et al., 2016). 

 

Agricultural risk assessment studies typically only consider one climatic driver at a time and neglect 

the crop diseases, potentially leading to optimistic assessments as interacting climate and diseases 

risks are not taken into account (Raymond et al., 2020; Ruane et al., 2022; Zscheischler et al., 2018). 

Recent national wheat production failures are linked to compound events, involving the co-occurrence 

of multiple climate extremes and crop diseases, such as in Russia in 2010 (Zscheischler et al., 2018), in 

France in 2016 (Ben-Ari et al., 2018) and in Europe in 2018 (Beillouin et al., 2020). In 2016, France was 

struck by an unprecedented sequence of compounding climate extremes with a warm, wet winter and 

an extended period of precipitation in the spring, which together led to simultaneous yield-reducing 

factors, including heavy rainfall, high incidence of crop diseases, low solar radiation and anoxia, 

affecting both grain set and grain filling (Ben-Ari et al., 2018). This mix of interacting climate risks in 

2016 saw the national wheat yield of France drop by 25%, compared to the previous five years 
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average. This was the most extreme wheat yield decline in France since 1960, much more serious than 

2003 cropping season (Figure 1) and causing a shortfall of approximately 2.3 billion $USD in the 

country’s trade balance (Simoes, 2022).  

 

In France, year-to-year wheat yield variability has been driven by many different factors, such as 

droughts, heatwaves, heavy rainfall, flooding, low solar radiation, and plant diseases (van der Velde 

et al., 2020, 2012). These drivers affect wheat growth at different stages of development and through 

various mechanisms. Wheat grain yields are affected by both changes in grain number, which is 

determined from 30 days before to shortly after anthesis, and grain size which is mostly determined 

during grain filling. Most year-to-year wheat yield variability is determined in this period before wheat 

anthesis and until the end of grain filling (Mäkinen et al., 2018; Senapati et al., 2021).  

 

The objective is to quantify the causes of historical wheat yield failures and to analyze how these 

drivers might affect future wheat production in the breadbasket of France. We use a novel 

combination of indices accounting for wheat plant diseases, heat, drought, flooding and low solar 

radiation at both anthesis and during grain filling together with a data-driven machine learning 

approach to explore the causes of year-to-year variability of wheat yield at a department scale over 

the past 37 years (1984-2020) in the breadbasket of France.  

 

We extended the analysis based on long-term climate change scenarios for 2020-2100 to identify the 

main drivers of year-to-year wheat yield variability and project how often extreme lows of wheat yield 

will occur in the future under advancing climate change in France, provided wheat cropping area 

distribution production systems and sowing and harvesting dates remain unchanged.  

 

2. Material and Methods 

2.1.  Sites, weather and wheat yield data 

The breadbasket of France is a high wheat yielding region (average wheat yield of 7.4 t ha-1 from 2011 

to 2020), which extends over the north and accounts for around 70% of France’s total wheat 

production (Figure 1a) (Ben-Ari et al., 2018). This region is influenced by a temperate climate without 

particularly dry and warm summers, classified as marine west coast climate type Cfb, according to 

Köppen-Geiger climatic zone (Peel et al., 2007).  

Long term daily weather data (1984-2020) with maximum and minimum temperature, solar radiation 

and rainfall with a resolution of ½° x ⅝° global grid were used from the Prediction Of World-wide 

Energy Resources, NASA POWER (Team, 2021). Winter wheat yield data from 1984 to 2020 at 
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department (Nomenclature of Territorial Units for Statistics [NUTS]1) spatial scale  were collected 

from the French Ministry of Agriculture official survey data (Agreste, 2022). 

To represent the breadbasket of France, we selected eight locations representative of the variety of 

production conditions in the breadbasket of France. These locations were selected following the 

geographical distribution of research stations from the ARVALIS Institut du Végetal to represent the 

breadbasket of France, as also suggested by Nóia Júnior et al (2023). Thus, the statistical models 

(described in the subsection 2.4) were based in 8 French locations and 36 years (288 points). From 

these points, we build the statistical points, correlating their wheat yield anomalies (described in 

subsection 2.2) from 1984 to 2020 at department spatial scale with climatic indices. We also analyzed 

the weather conditions in representative locations for the three extreme low yielding wheat cropping 

seasons of 1987, 2003 and 2016 in the breadbasket of France (Figure 1b), shown in results subsection 

3.1.  

 

 

Figure 1. Spatio-temporal pattern of trend-corrected wheat yield in France. (a) Spatial distribution 
of the highest department level wheat yield observed from 2015 to 2020 (green background), and the 
studied locations ranked from 1 to 8 according to the magnitude of their wheat yield loss in 2016 
(location 1 had the highest yield loss in 2016), in the following order: Égreville (1), Chevry-Cossigny  
(2), Saint-Quentin (3), Saint-Florent-sur-Cher (4), Fagnières (5), Issodun (6), Barbarey-Saint-Sulpice (7) 
and Rots (8).  The breadbasket region of France is delineated with a bold black contour line. (b) Boxplot 
of the distribution of trend-corrected wheat yields in the breadbasket of France from 1984 to 2020. 
Low yielding anomalies in 1987, 2003, and 2016 are highlighted in dark red, which are in the 10th 
percentile of the historical observed wheat yield from 1984 to 2020. Geographical coordinates of the 
locations are shown in Supplementary Table S1. 
 
 

2.2. Wheat yields relative anomaly 

We removed wheat yield long-term trends in each department independently, to remove possible 

effects of technological improvements throughout the study period, as suggested by Guarin et al. 
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(2020). To remove the long-term trend, we estimated a linear slope through the historical wheat yield 

series from 1984 to 2000 to identify the average yield increase per year, as suggested by Ben-Ari et al. 

(2018). Wheat yield of each year from 1984 to 2000 is adjusted to 2000 yield levels by adding the slope 

for each year difference from 1984 until 2000. Wheat yield from 2001 to 2020 in France presented a 

plateau, with no positive or negative trend, with no trend correction needed. From the trend-

corrected yield (Figure 1b) Yield anomalies (Yanm) were then computed as the percent difference 

between observed yields (Yobs) and average yields (Yavg, average of the trend-corrected yields) divided 

by Yavg: 

 𝑌𝑎𝑛𝑚(𝑖, 𝑡) =  
𝑌𝑜𝑏𝑠(𝑖,𝑡)−𝑌𝑎𝑣𝑔(𝑡)

𝑌𝑎𝑣𝑔(𝑡)
 𝑥 100 (1) 

 

where i indicates the department and t, the harvest calendar year.  

 

2.3. Extreme climate and plant diseases indices 

Indices that drive wheat yield loss were identified from the literature (Ben-Ari et al., 2018; Nóia Júnior 

et al., 2021). We computed diseases indices for ear blight and foliar fungal and climate indices for 

heavy rainfall at anthesis and of extreme drought, heat, flooding, and low solar radiation for two key 

phenological stages: (i) wheat anthesis and (ii) grain filling. In total, we calculated 11 indices, being 9 

indices for climate and 2 for crop diseases, all used as predictors in the statistical models. We assumed 

that wheat phenological stages were constant throughout the studied period from 1984 to 2020, with 

anthesis occurred on 1 June ±15 days, and the grain filling period lasted from 1 June to 31 July. Current 

wheat cultivars are expected to have early anthesis and shorter grain filling period due to higher 

temperatures in future. Asseng et al. (2015) suggested a combination of delayed anthesis with 

increased grain filling rate as an adaptation for wheat to increased temperature. These traits could 

boost global wheat production by 7% (Asseng et al., 2019). Considering this, we kept the date of 

anthesis fixed, assuming that with increasing temperature cultivars with delayed anthesis with 

increased grain filling will be used in future as an adaption to increased temperature. However, to 

reduce uncertainties regarding the fixed anthesis date, additional projection with wheat anthesis fixed 

on 15th May ±15 days and grain filling from 15 May to 30 June was performed and results are presented 

in the Supplementary Fig S13-S21. 

To compute drought and flooding indices, we calculate a water balance as the sum of daily rainfall 

(Rain) minus reference evapotranspiration (ETo, from Hargreaves and Samani (1985)). Based on this 

water balance, we considered drought as the number of days during wheat anthesis and grain filling 

with daily accumulated (Rain – ETo) < -50 mm. And flooding, as the number of days during wheat 

anthesis and grain filling in which daily accumulated (ETo - Rain) > 90 mm. We also considered the 
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number of days with maximum temperature above 32 ºC (heat index) (Nuttall et al., 2018), the number 

of days with solar radiation below 9 MJ m-2 d-1 (low solar radiation index), and the number of days 

with rainfall above 25 mm (heavy rainfall index) (Seneviratne et al., 2021). Extreme thresholds for 

drought and low solar radiation were defined as the 10th percentile of each climate index probability 

distribution (for the time baseline period of 1984-2020), considering all locations within the 

breadbasket region. Similarly, thresholds for flooding, and heat extremes were defined based on the 

90th and 99th (for heavy rainfall and heat) percentile of the baseline period 1984-2020. For the 

thresholds of all indices, a sensitivity analysis was performed to ensure that these indices would cause 

wheat yield loss (as shown in Fig 4). 

 

Ear blight or fusarium ear blight (Fusarium graminearum, Fusarium culmorum), usually infects wheat 

plants during anthesis under warm and humid conditions, and high rainfalls during anthesis. We 

computed an ear blight index based on the empirical model of Madgwick et al. (2011), as follows: 

 

Ear blight index = 100 
exp (−15.3 +  0.941 𝑇𝑚𝑒𝑎𝑛𝑀𝑎𝑦 +  0.069 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙1𝑤𝑒𝑒𝑘−𝐽𝑢𝑛𝑒)

1 +  exp (−15.3 +  0.941 𝑇𝑚𝑒𝑎𝑛𝑀𝑎𝑦 +  0.069 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙1𝑤𝑒𝑒𝑘−𝐽𝑢𝑛𝑒)
 

Where: TmeanMay is the mean temperature in May and Rainfall1week-June is the cumulative rainfall in 

the first week of June, when wheat anthesis occurs. 

 

The survival of fall infection of winter wheat by fungal foliar diseases such as Septoria blotch 

(Zymoseptoria tritici) is favored by warm temperatures during the winter (Ben-Ari et al., 2018; 

Chaloner et al., 2019; te Beest et al., 2009). The development of these foliar fungal diseases then 

depends on wet environments, especially on rain in March and April (El Jarroudi et al., 2016). As such, 

we computed a fungal foliar diseases index based on a previously developed model by te Beest et al. 

(2009), as follow: 

 

Fungal foliar index =  0.046 𝑅𝑎𝑖𝑛(𝐺𝑆31− 140) → (𝐺𝑆31− 30) + 0.042 𝑇𝑚𝑖𝑛(𝐺𝑆31− 140) → (𝐺𝑆31− 30) − 6.69 > 0 

 

Where: 𝑅𝑎𝑖𝑛(𝐺𝑠31− 140) → (𝐺𝑠31− 30) is the accumulated rainfall (mm) and 𝑇𝑚𝑖𝑛(𝐺𝑠31− 140) → (𝐺𝑠31− 30) 

is the mean daily minimum temperature (oC) between 140 and 30 days before growth stage (GS) 31 

(ear at 1 cm), fixed as 1st April. 

 

2.4. Modeling wheat yield anomalies with random forest machine learning 

A statistical model was developed for wheat yield anomalies using departments observations from 

1984 to 2020, together with seasonal climate indices of drought, heat, flooding and low solar radiation 
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indices calculated around anthesis and during grain filling, as well as heavy rainfall around anthesis 

and ear blight and foliar fungal diseases indices. Simulated and observed wheat yield anomalies were 

multiplied by trend-corrected average wheat yield from 1984 to 2020 and converted to trend-

corrected wheat yield (used to build the figures). A random forest machine learning approach was 

applied to identify the best combination of explanatory variables using the function randomForest of 

the R package ‘randomForest’ (R Core Team, 2017). Random forest was set with 500 trees, with 3 

variables tried at each split. The set up of Random Forest followed sensitivity analyzes which indicated 

where the quality of the predictions plateaued (Supplementary Figure S2). To evaluate the predictive 

performance of the trend-corrected wheat yield model (or wheat yield model), a leave-one-out cross 

validation (LOOCV) was performed using the random forest with 7 of the 8 locations to select the best 

combination of inputs each year, and it was then tested on the excluded location. This process was 

repeated for each location for a total of 8 interactions. The relative root mean squared error of 

prediction (rRMSEp) (Wallach and Goffinet, 1987), the coefficient of determination (r2) and the Nash-

Sutcliffe model efficiency coefficient (NSE) (McCuen et al., 2006) were then calculated based on the 

estimated trend-corrected yield (henceforth called estimated wheat yield) at the tested location 

together with the corresponding observed yield. Statistical indices for model training, leaving one year 

out cross validation and leaving one location out cross validation are also shown in Supplementary 

Table S2. 

 

2.5. Quantifying the impacts of individual yield limiting factors 

 

To quantify the impacts of individual yield limiting factors, we used a random forest equation built for 

all locations during the training phases (Supplementary Table S2). The wheat yield model was 

executed by initially selecting the climate and plant diseases indices (derived from climate indices and 

plant disease model outputs) to simulate wheat yield in a target year (Supplementary Figure S1, target 

year is the cropping season in which losses caused by individual yield limiting factors were quantified, 

from 1984 to 2020). The models were executed again by modifying one explanatory variable value by 

replacing the target year value with the corresponding value for each of 1984-2020 (Supplementary 

Figure S1). This step was repeated, replacing the value of each input variable in turn. Thus, the 

contribution of each wheat yield limiting factor in each year of the period from 1984 to 2020 was 

calculated as the difference between the estimated trend-corrected yield from the models with all 

variables for a target year, and the estimates from the statistical models with all variables of the target 

year except one from the average of each year from 1984 to 2020 (excluding the target year), as 

schematically shown in the Supplementary Figure S1 (illustrating 2016 as the target year). This is 
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similar to the method proposed by Asseng et al. (2011) for separating the impacts of temperature 

from other factors on wheat yield. 

 

2.6. Climate change scenarios and extreme low wheat yield definition 

Daily climate data for the 1985-2100 period were drawn from the Inter-Sectoral Impacts Model 

Intercomparison Project (ISIMIP; (Lange, 2019)), which provides trend-preserving, bias-adjusted and 

spatially disaggregated climate model outputs from the Coupled Model Intercomparison Project 

phase 6 (CMIP6; (Eyring et al., 2016)). Before 2015, these are produced by climate models forced by 

historical trends of main natural and anthropogenic factors. After 2015, simulations follow the Shared 

Socioeconomic Pathway (SSP) and Representative Concentration Pathway (RCP) SSP1-2.6 and SSP5-

8.5 (O’Neill et al., 2016). The IPCC describe SSP1-2.6 as a “low” and SSP5-8.5 as a “very high” 

greenhouse gas emissions scenario (IPCC, 2021; O’Neill et al., 2020). We considered five CMIP6 models 

(GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL) that include high, 

medium and low climate sensitivity models similar to the full CMIP6 distribution (IPCC, 2021), and we 

use it here to illustrate the bottom and upper tail of future risks. We considered five CMIP6 models 

(GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL) that include high, 

medium and low climate sensitivity models similar to the full CMIP6 distribution (Jägermeyr et al., 

2021). We used daily weather data from the ISIMIP downscaled projections for the five selected 

models to quantify future frequency of drought, heat, flooding and low solar radiation occurrence 

both during wheat anthesis (with anthesis fixed on 1 June ±15 days) and grain filling (from 1 June to 

31 July), as well as heavy rainfall during anthesis.  These indices together with the indices for ear blight 

and foliar fungal diseases previously described in subsection 2.1, allow us to estimate wheat grain 

yield and its losses. To reduce uncertainties regarding the fixed anthesis date, additional projection 

with wheat anthesis fixed on 15th May ±15 days and grain filling from 15 May to 30 June was performed 

and results are presented in the Supplementary Fig S13-S21. Projections for extremely low wheat 

years frequency and future causes of wheat yield losses are shown as 30 years running mean (i.e. 

value shown for 2015 is the average from 1986 to 2015, and for 2016 the average from 1987 to 2016).  

We defined extreme low simulated yields as yields below the 10th percentile (Guarin et al., 2020; 

Seneviratne et al., 2012) of historical estimated wheat yield during 1984–2020, for each CMIP6 models 

separately. 

 

3. Results 

3.1. Extreme low wheat yield and weather conditions in the breadbasket of France 
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We analyzed the weather conditions in representative locations for the three extreme low yielding 

wheat cropping seasons of 1987, 2003 and 2016 in the breadbasket of France (Figure 2). Winter wheat 

in the breadbasket of France usually has a growing season of 10 months, sown in early October and 

harvested in late July.  

 

In 1987, the mean temperature from January to March was 3°C below the historical mean 

temperature for the same period (Figure 2a). After the cold winter and a normal spring, the 

precipitation of June and July 1987 were more than twice the normal for these months. The average 

monthly solar radiation from May to July was up to 5 MJ m-2 d-1 (or 25%) lower than the average (1984-

2020), when wheat grain filling occurs.  

 

 

Figure 2. Extreme low yielding wheat cropping seasons in the breadbasket of France. Boxplots for 
monthly (a, e and i) mean air temperature, (b ,f, and j) accumulated rainfall and (c ,g, and k) average 
solar radiation in (a-c) Saint Quentin, (e-g) Saint-Florent and (i-k) Égreville. The red asterisks represent 
the monthly climatic variables in (a-c) 1987 in Saint Quentin, (e-g) Saint-Florent in 2003 and (i-k) 
Égreville in 2016. Spatial pattern of the observed wheat yield loss in (d) 1987, (h) 2007 and (l) 2016. 
 

In 2003, the wheat cropping season started with a warm and wet winter, with rainfall in November 

about 50 mm above the historical average (1984-2020) to the month. Between February and March 

of 2003, rainfall was below the average, particularly in March with 10 mm of accumulated rainfall 

observed, or 20% of that expected. The accumulated rainfall was normal from April until July. The 
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mean temperature recorded in June was about 3°C higher than average, and the temperature 

remained high in July. 

 

The wheat cropping season of 2016 started with a prolonged warm and wet winter, with warm 

temperature from November to January and high precipitation from January to April. The 

accumulated rainfall in May was three times greater than the monthly historical average, and it 

continued high in June. With the high rainfalls, the solar radiation was about 3 MJ m-2 d-1 lower than 

the historical average in May and June, during anthesis and early grain filling.  

 

3.2. Modeling wheat yield in the breadbasket of France 

We used wheat plant diseases for ear blight and foliar fungal diseases indices together with climatic 

indices for heat, drought, flooding, and solar radiation at both anthesis and grain filling with a random-

forest machine learning approach to estimate historical wheat yield in eight locations across the 

breadbasket of France over 37 years, from 1984 to 2020. The rRMSEp between estimated and 

observed wheat yield, during the cross-validation analysis of the wheat yield model, varied from 5% 

to 8%. The r2 varied from 0.11 to 0.84. The NSE varied from -2.7 to 0.40. For most of the locations, the 

cross-validation indicated that the random-forest machine learning for wheat yield showed a 

satisfactory precision (r2 > 0.6), efficiency (NSE > 0) and small error (rRMSEp < 8%). However, in Rots 

in the northwestern France, the yield model performed poorly compared to the other locations, with 

rRMSEp of 8% and r2 of 11%. Notably, the extremely low yield of 2016 was well captured by the model 

in all other locations, but not in Rots. 
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Figure 3. Estimated and observed trend corrected wheat yields in the breadbasket of France. Year-
to-year variability from 1984 to 2020 of observed (black solid lines) and estimated (red dashed lines) 
wheat trend corrected yield at (a) Égreville, (b) Chevry-Cossigny, (c) Saint-Quentin, (d) Saint-Florent-
sur-Cher, (e) Fagnières, (f) Issodun, (g) Barbarey-Saint-Sulpice, and (h) Rots. Estimated results are from 
a LOOCV validation leaving all years from a location out of the training set with a random forest 
machine learning approach. Training model results are shown in Supplementary Figure S3. Statistical 
indices for model training, leaving one year out cross validation and leaving one location out cross 
validation are shown in Supplementary Table S2. The relative root mean squared error of prediction 
(rRMSEp), coefficient of determination (r2) and Nash-Sutcliffe model efficiency coefficient (NSE) are 
shown.  
 

3.3. Quantified causes of wheat yield losses 

Given the ability of the random-forest machine learning model to estimate wheat yield and wheat 

yields anomalies, we extended the analysis to quantify the contribution of a series of possible causes 

for wheat yield losses between 1984 and 2020 in the breadbasket region (Figure 4). The results 

indicate that the causes of the wheat yield decline of the 1987 and 2016 cropping season varied 

according to the location but were mainly caused by a combination of ear blight and fungal foliar 

diseases (causing seasonal wheat yield losses of up to 80%, Supplementary Fig S22), together with 

high rainfall around anthesis (up to 20%), low solar radiation (up to 75%) and flooding (up to 75%) 

during wheat grain filling. Heat and drought explained about a third of the wheat yield decline of 2003 

and 2011 in Saint-Florent and Issodun (Figures 4d and 4f), in the south of the breadbasket region. In 

2007 drought accounted for  about 50% of the wheat yield decline in Égreville, Chevry and Fagnières 

(Figures 4a, 4b and 4e), in the center-east, and flooding accounted for 50 and 30% of the low yields in 
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Saint-Florent and Rots (Figures 4d and 4h), in the south and west of the breadbasket region, 

respectively.  

 

 

Figure 4. Decomposed wheat yield losses causes in the breadbasket of France. The yield losses are 
relative to the average of estimated trend-corrected wheat for 37 cropping seasons from 1984 to 2020 
in each of the locations of (a) Égreville, (b) Chevry-Cossigny, (c) Saint-Quentin, (d) Saint-Florent-sur-
Cher, (e) Fagnières, (f) Issodun, (g) Barbarey-Saint-Sulpice, and (h) Rots 
 

3.4. Future frequency of extremely low wheat yield years 

The future frequency of extremely low wheat yield years (that is yields below the 10th percentile of 

historical estimated wheat yield during 1984–2020) varies according to the climatic scenario (SSP5 2.6 

or SSP5 8.5) and location in the breadbasket of France (Figure 5). For most of the locations, our results 

show no evidence for increased or decreased frequency of extreme low wheat yields by 2100. 

However, in Fagnières and in Rots the frequency of extreme low wheat yield years varies from the 

current 10% to more than 30% by the end of the century, with the SSP5-8.5. In Issodun, the frequency 

of extreme low wheat yield would drop from current 10% to 5% by 2100, in both SSP5 scenarios. These 

results are calculated considering a fixed wheat anthesis on 1st June, which is currently the case. 

However, more extreme low wheat yield years are expected to occur if the anthesis date is brought 

forward to May 15th (Supplementary Figure S13). 
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Figure 5. Projected frequency of extreme low wheat yield years in the breadbasket of France. 
Estimated 30 years running mean frequency of extreme low wheat production under SSP5-2.6 (black 
trace) and SSP5-8.5 (red trace) from 2015 to 2100, for (a) Égreville, (b) Chevry-Cossigny, (c) Saint-
Quentin, (d) Saint-Florent-sur-Cher, (e) Fagnières, (f) Issodun, (g) Barbarey-Saint-Sulpice, and (h) Rots. 
Lines are ensemble means based on five CMIP6 GCMs (lines) and shading shows ± 1 s.e. These 
projections consider a fixed wheat anthesis on 1st June. 
 
 

3.5. Future causes of wheat yield losses 

Wheat yield in France is expected to change slightly in future with climate change (Supplementary Fig 

S5) but the causes of wheat yield losses in France are expected to change in France by 2100 (Figure 

6). The wheat yield losses caused by flooding at both anthesis, and grain filling are expected to 

decrease by the end of the century. We estimate that flooding during grain filling currently causes an 

average loss of wheat yield of about 150 kg ha-1 per season), which may decrease to 100 kg ha-1 by the 

end of the century (Figure 6 and Supplementary Fig S9, each color in each bar in Figure 6 indicates an 

average 30 years running mean, with the year in each tick mark representing the average of the 

previous 30 years).  
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Figure 6. Future causes of wheat yield losses in the breadbasket of France. Projected 30 years running 
mean wheat yield losses causes from 2015 to 2100 for ((a) Égreville, (b) Chevry-Cossigny, (c) Saint-
Quentin, (d) Saint-Florent-sur-Cher, (e) Fagnières, (f) Issodun, (g) Barbarey-Saint-Sulpice, and (h) Rots. 
Bars are ensemble means based on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-
8.5, with a fixed wheat anthesis on 1st June and grain filling in June and July. Results for SSP5-2.6 are 
shown in Supplementary Figure S6, and for an early anthesis date (15th May) are shown in 
Supplementary Figure S14 and 15. Climate projections for monthly maximum and minimum 
temperature, solar radiation, and rainfall, are shown in Supplementary Figure S4. The projected wheat 
yield losses are relative to the average of estimated trend-corrected wheat from 2015 to 2100 in each 
of the locations. 
 

Wheat yield losses by heat and drought are expected to double by the end of the century (Figure 6 

and Supplementary Figures S7-S9). Wheat yield losses caused by heat during grain filling may increase 

from current average of 30 kg ha-1 to up to 60 kg ha-1 by 2100 (Figure 6 and Supplementary Figure S7). 

In addition to increased heat and drought, ear blight is projected to be the main cause of wheat yield 

losses in the future of French breadbasket, leading to an average of 35% of total wheat yield losses by 

2100 (Figure 6). The projected yield losses by heavy rainfall during anthesis, fungal foliar diseases and 

low solar radiation fluctuate widely without a clear trend from 2015 to 2100 (Figure 6 and 

Supplementary Figure S10-S12). The causes of yield losses vary slightly with wheat anthesis date fixed 

on 15 May (Supplementary Figure S14-S21). 

 

4. Discussion 
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To separate the historical and future impact of single climatic events on wheat in France, we combined 

department wheat yields, disease damage, climate indices, and existing disease models with machine 

learning algorithms for estimating grain yield changes. Our model presents similar performance 

(rRMSEp varying from 5% to 8% from LOOCV one location out or from 8 to 12% from LOOCV one year 

out in Supplementary Table S2) in estimating wheat yield in France to other recent studies (rRMSEp 

varying from 10% to 18% (Paudel et al., 2022)). 

 

Projections with five CMIP6 climate models under low and very high emissions scenarios suggest that 

current extreme low wheat yields historically occurring once every 10 years, will occur with a 

somewhat similar frequency in the future. Other studies have also indicated no historical or future 

evidence for increased volatility of wheat production in most of France (Liu et al., 2019; Schauberger 

et al., 2021), with the exception of a few regions such as the northwest, as indicated here and by 

Pequeno et al. (2021). Yet, in France climate extremes can induce national wheat yield losses of one 

third, with some departments losing more than half the expected grain yield in some years. These 

events have consequences for France and other main wheat importing countries. Algeria, the main 

importer of French wheat, has recently stepped-up wheat exports from Russia after excessive rainfall 

affecting the quality of wheat of France in 2021 (Muftuoglu, 2021). While similar future frequency is 

expected for extremely low wheat yield events, the causes of wheat yield losses in France are expected 

to change by 2100. 

 

Wheat production in France can be affected by excess water, causing flooding, reduced solar radiation 

and plant diseases. These factors historically caused more yield losses than droughts and high 

temperatures (Figure 6), as occurred in the 2016 cropping season (Ben-Ari et al., 2018; van der Velde 

et al., 2020). Excessive precipitation was found to be the main factor influencing wheat yields in France 

since the first half of the 20th Century (Ceglar et al., 2020), and drained areas account for 9% of all 

arable soils in France (Jeantet et al., 2021). However, due to the recent increased heat and drought 

events in spring and summer (as in 2003, 2007, 2011, 2020 and 2022), excess rainfall has already 

shown a lower correlation with wheat yield in the last two decades, compared to previous periods 

(Ceglar et al., 2020). Despite this, we indicated that heavy rainfall during anthesis fluctuate widely 

without a clear negative or positive trend from 2015 to 2100. And, extreme rainfall is projected to 

occur more frequently throughout the year at other wheat phenological stages (Fischer and Knutti, 

2015). We emphasize that the water balance used here does not consider possible accumulations of 

water on the soil surface after heavy rains (due to the speed of infiltration of water into the soil, 

sometimes being lower than the intensity of the rain). This adds uncertainties to our projections. 
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Heat and drought, as well as ear blight, may become increasingly damaging to wheat yield in France 

(Figure 6). This is mostly due to the projected future increase of up to 3°C of maximum monthly mean 

temperature combined with a decrease in monthly precipitation during wheat flowering and grain 

filling during May to July (Supplementary Figure S4), further increasing heat and drought stress. These 

results are in agreement with previous climate change impact studies, which have largely focused on 

heat, with national wheat yield losses of -4.6% (varying from -4.2% to 5.2%) in France (Liu et al., 2016; 

Zhao et al., 2017). Summer droughts are expected to become 11 to 28 times more frequent in Europe, 

compared to current levels (Grillakis, 2019). In addition, winter and spring are expected to become 

warmer and wetter by the end of the century in the breadbasket of France (Supplementary Figure S4) 

(Ben-Ari et al., 2018; Ranasinghe et al., 2021), which contributes to wheat ear blight infection spread 

(Madgwick et al., 2011; West et al., 2012; Xu, 2003). Ear blight is related to rainfall during anthesis and 

temperature during the preceding weeks (Madgwick et al., 2011). We project that ear blight will cause 

twice as much wheat yield losses than currently (Figure 6), even if the wheat anthesis date moves 

forward to mid-May (Supplementary Figure S13 and Figure S21). The incidence of ear blight in wheat 

is also projected to double by 2050 in southern England, a region with similar edaphoclimatic 

conditions to the breadbasket in France (Madgwick et al., 2011). Yet, the ear blight model here used 

does not consider the initial inoculum but correlates it to the high temperatures at spring as stimulants 

for its increased incidence. Although the initial inoculum benefits from high temperatures (Madgwick 

et al., 2011), factors such as the pre-crop in rotation with wheat (which also affects the initial 

inoculum) are neglected by the disease model, which adds uncertainty to the projections and could 

cause an overestimate of the disease’s impact in some years. Estimated ear blight impacts on wheat 

yield are probably higher than foliar fungal diseases because of its less efficient control (Zhang et al., 

2020). 

 

With warmer and wetter summers, the average amount of solar radiation reaching a wheat canopy in 

France will increase (Supplementary Figure S4). However, due to the continued frequency of heavy 

rainfall (daily rainfall > 25mm) impacting wheat yield in the future compared to current levels 

(Supplementary Figure S11), low solar radiation events are expected to continue to impact wheat yield 

in the future (Supplementary Figure S12). Here, we define a low solar radiation index as the number 

of days with solar radiation below 9 MJ m-2 d-1 during wheat anthesis and grain filling, which is a third 

of the radiation usually received from May to July. Chances of heavy rainfall occurrence in France will 

increase by 50% to 80% if global average temperatures reach 3°C above pre-industrial conditions 

(Fischer and Knutti, 2015). 



7/11/2023 
For Agricultural and Forest Meteorology 

17 
 

 

Climate change is driven by the increase in atmospheric concentration of CO2, increasing global 

average air temperature. With ample water and nutrient, it has been shown that wheat yields increase 

can reach about 19% with elevated CO2 in FACE experiments (from a CO2 mixing ratio of 353 ppm to 

550 ppm) (Kimball, 2016). The same experiments showed that due to low stomatal conductance, 

wheat transpiration decreases by 15% and canopy temperature increased by 0.6 °C (Kimball, 2016). 

Decreased transpiration conserves soil moisture, which may reduce the impacts of drought in wheat. 

However, increased canopy temperature may cause more damage from heat stress. Additionally, the 

interaction between elevated CO2 and other factors such as plant diseases, flooding, heavy rainfall 

and low solar radiation is still understudied (Toreti et al., 2020). A unique study in a controlled 

environment indicated that high CO2 may further increase the impacts of ear blight and Septoria 

blotch on wheat (Váry et al., 2015), but the implications of this study for wheat fields are still unclear. 

Although the average yield levels may increase with elevated CO2 provided adequate nitrogen and 

water (Webber et al., 2018), there are uncertainties about the interactions with yield reducing factors 

under extreme weather conditions. Due to these uncertainties, we did not consider the potential 

impacts of elevated CO2 in this study.  

 

Here, we isolated the effects of individual climate-based factors on wheat yield losses, as changes in 

different factors may require different adaptation strategies. Our results indicate that wheat yield in 

France is expected to slightly change in future with climate change in France, but it may face more 

frequent droughts and heat in the future, which were less common in the past. In addition, our results 

suggest more attention and study should be given to an understanding how ear blight disease pressure 

will increase. This calls for an increased need for wheat breeding programs for new cultivars more 

tolerant to drought, heat, and resistant to plant diseases.  
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1 Supplementary Methods 

 

 

Figure S1. Schematic representation of the procedure to compute the impacts of individual yield 
limiting factors in each year of the historical period used for creating the statistical model estimating 
wheat yield and under climate change scenarios. The letter ‘V’ represents the explanatory variables 
selected by random forest machine learning method. In addition, the letter ‘R’ represents the 
estimated model output (result) from the statistical model. ‘2016’ is representing the target year. 
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2 Supplementary Results 

 

Table S1. Geographical coordinates and the departments of locations used in the study.  

Location Departments Latitude Longitude 

Égreville Seine-et-Marne 48.18 2.86 

Chevry-Cossigny Seine-et-Marne 48.72 2.66 

Saint-Quentin Aisne 49.87 3.20 

Saint-Florent-sur-Cher Cher 47.03 2.33 

Fagnières Marne 48.95 4.41 

Issodun Indre 46.96 2.03 

Barbarey-Saint-Sulpice Aube 48.32 4.02 

Rots Calvados 49.20 0.47 

 

  



7/11/2023 
For European Journal of Agronomy 

5 
 

Table S2. Performance of the random forest machine approach to estimate year-to-year wheat yield 

variability. The performance was calculated during the model training and in two different methods 

of cross validation (lean one location out and leaving one year out). The relative root mean squared 

error of prediction (rRMSEp), coefficient of determination (r2) and Nash-Sutcliffe model efficiency 

coefficient (NSE) are shown. 

Locations r2 rRMSEp (%) Nash Sutcliffe 

Model training 

Égreville 0.93 3 0.85 

Chevry-Cossigny 0.95 3 0.86 

Saint-Quentin 0.90 3 0.85 

Saint-Florent-sur-Cher 0.90 4 0.81 

Fagnières 0.91 3 0.78 

Issodun 0.92 3 0.81 

Barbarey-Saint-Sulpice 0.91 4 0.75 

Rots 0.89 4 0.31 

Leaving one location out cross validation 

Égreville 0.84 6 0.40 

Chevry-Cossigny 0.81 6 0.29 

Saint-Quentin 0.64 5 0.39 

Saint-Florent-sur-Cher 0.57 7 0.13 

Fagnières 0.54 6 -0.76 

Issodun 0.63 6 0.02 

Barbarey-Saint-Sulpice 0.59 7 -0.14 

Rots 0.11 8 -2.70 

Leaving one year out cross validation 

Égreville 0.06 12 -4.6 

Chevry-Cossigny 0.02 11 -6.5 

Saint-Quentin 0.10 9 -2.7 

Saint-Florent-sur-Cher 0.01 12 -4.5 

Fagnières 0.01 10 -3.6 

Issodun 0.01 11 -8.4 

Barbarey-Saint-Sulpice 0.01 12 -3.5 

Rots 0.03 8 -3.4 
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Figure S2. Performance of random forest to estimate wheat yield in the breadbasket of 
Franceaccording to the number of trees used.  
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Figure S3. Estimated wheat yield in the breadbasket of France. Interannual variability from 1984–
2020 of observed (black solid lines) and estimated (red dashed lines) wheat trend corrected yield of 
(a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes 
Barbarey Saint Sulpice and (h) Rots. Estimated results are from a training set results. 
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Figure S4. Projected future climate in Égreville, France for SSP5-8.5. Average monthly maximum (T 
Min), minimum temperature (T Max), solar radiation (S. Radiation), and accumulated rainfall (Rainfall) 
for the period 1850-2100, in Égreville, France, and for SSP5-8.5. The values presented are the mean of 
five CMIP6 global change models. 
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2.1 Supplementary Results - Wheat anthesis date on 1st June 
 

 

Figure S5. Projected wheat yield in the breadbasket of France. Estimated 30 years running mean 
frequency of wheat yield  SSP5-2.6 (black trace) and SSP5-8.5 (red trace) from 2015 to 2100, for (a) 
Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey 
Saint Sulpice and (h) Rots. Lines are ensemble means based on five CMIP6 GCMs (lines) and shading 
shows ± 1 s.e. 
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Figure S6. Projected future causes of wheat yield losses in the breadbasket of France for SSP5-2.6, 
with fixed wheat anthesis on 1st June. Projected wheat yield losses causes from 2015 to 2100 for (a) 
Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey 
Saint Sulpice and (h) Rots. Bars are ensemble means based on five bias-adjusted CMIP6 global climate 
models (GCMs) for SSP5-2.6, with a fixed wheat anthesis on 1st June and grain filling in June and July. 
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Figure S7. Projected wheat yield losses due to heat at anthesis and grain filling. Projected wheat 

yield losses due to heat from 2015 to 2100 for (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint 

Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) Rots. Lines are ensemble 

means based on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5, with a fixed 

wheat anthesis in 1st June and grain filling in June and July. 
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Figure S8. Projected wheat yield losses due to drought at anthesis and grain filling. Projected wheat 

yield losses due to drough from 2015 to 2100 for (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint 

Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) Rots. Lines are ensemble 

means based on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5, with a fixed 

wheat anthesis in 1st June and grain filling in June and July. 
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Figure S9. Projected wheat yield losses due to flooding at anthesis and grain filling. Projected wheat 

yield losses due to flooding from 2015 to 2100 for (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint 

Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) Rots. Lines are ensemble 

means based on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5, with a fixed 

wheat anthesis in 1st June and grain filling in June and July. 
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Figure S10. Projected wheat yield losses due to heavy rainfall at anthesis. Projected wheat yield 

losses due to heavy rainfall from 2015 to 2100 for (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint 

Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) Rots. Lines are ensemble 

means based on five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5, with a fixed 

wheat anthesis in 1st June. 
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Figure S11. Projected wheat yield losses due to low solar radiation at anthesis and grain filling. 

Projected wheat yield losses due to low solar radiation from 2015 to 2100 for (a) Égreville, (b) Chevry, 

(c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) 

Rots. Lines are ensemble means based on five bias-adjusted CMIP6 global climate models (GCMs) for 

SSP5-8.5, with a fixed wheat anthesis in 1st June and grain filling in June and July. 
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Figure S12. Projected wheat yield losses due to ear blight and fungal foliar diseases. Projected wheat 

yield losses due to ear blight and fungal foliar diseases from 2015 to 2100 for (a) Égreville, (b) Chevry, 

(c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) 

Rots. Lines are ensemble means based on five bias-adjusted CMIP6 global climate models (GCMs) for 

SSP5-8.5, with a fixed wheat anthesis in 1st June and grain filling in June and July. 
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2.2 Supplementary Results - Wheat anthesis date on 15th May 
 

 
Figure S13. Projected frequency of extreme low wheat yield years in the breadbasket of France with 

fixed wheat anthesis on 15th May. Estimated 30 years running mean frequency of extreme low wheat 

production under SSP5-2.6 (black trace) and SSP5-8.5 (red trace) from 2015 to 2100, for (a) Égreville, 

(b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint 

Sulpice and (h) Rots. Lines are ensemble means based on five CMIP6 GCMs (lines) and shading shows 

± 1 s.e.  
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Figure S14. Projected future causes of wheat yield losses in the breadbasket of France for SSP5-2.6, 

with fixed wheat anthesis on 15th May. Projected wheat yield losses causes from 2015 to 2100 for (a) 

Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey 

Saint Sulpice and (h) Rots. Bars are ensemble means based on five bias-adjusted CMIP6 global climate 

models (GCMs) for SSP5-2.6, with a fixed wheat anthesis on 15th May and grain filling from 15th May 

to 31st June. 
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Figure S15. Projected future causes of wheat yield losses in the breadbasket of France for SSP5-8.5, 

with fixed wheat anthesis on 15th May. Projected wheat yield losses causes from 2015 to 2100 for (a) 

Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey 

Saint Sulpice and (h) Rots. Bars are ensemble means based on five bias-adjusted CMIP6 global climate 

models (GCMs) for SSP5-8.5, with a fixed wheat anthesis on 15th May and grain filling from 15th May 

to 31st June. 
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Figure S16. Projected wheat yield losses due to heat at anthesis and grain filling, with wheat anthesis 

on 15th May. Projected wheat yield losses due to heat from 2015 to 2100 for (a) Égreville, (b) Chevry, 

(c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) 

Rots. Lines are ensemble means based on five bias-adjusted CMIP6 global climate models (GCMs) for 

SSP5-8.5, with a fixed wheat anthesis on 15th May and grain filling from 15th May to 31st June. 
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Figure S17. Projected wheat yield losses due to drought at anthesis and grain filling, with wheat 

anthesis on 15th May. Projected wheat yield losses due to drought from 2015 to 2100 for (a) Égreville, 

(b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint 

Sulpice and (h) Rots. Lines are ensemble means based on five bias-adjusted CMIP6 global climate 

models (GCMs) for SSP5-8.5, with a fixed wheat anthesis on 15th May and grain filling from 15th May 

to 31st June. 
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Figure S18. Projected wheat yield losses due to flooding at anthesis and grain filling, with wheat 

anthesis on 15th May. Projected wheat yield losses due to flooding from 2015 to 2100 for (a) Égreville, 

(b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint 

Sulpice and (h) Rots. Lines are ensemble means based on five bias-adjusted CMIP6 global climate 

models (GCMs) for SSP5-8.5, with a fixed wheat anthesis on 15th May and grain filling from 15th May 

to 31st June. 
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Figure S19. Projected wheat yield losses due to heavy rainfall at anthesis, considering anthesis on 

15th May. Projected wheat yield losses due to heat from 2015 to 2100 for (a) Égreville, (b) Chevry, (c) 

Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) 

Rots. Lines are ensemble means based on five bias-adjusted CMIP6 global climate models (GCMs) for 

SSP5-8.5, with a fixed wheat anthesis on 15th May. 

 

 

 

 

 

 



7/11/2023 
For European Journal of Agronomy 

24 
 

 

Figure S20. Projected wheat yield losses due to low solar radiation at anthesis and grain filling, with 

wheat anthesis on 15th May. Projected wheat yield losses due to low solar radiation from 2015 to 

2100 for (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, (g) 

Troyes Barbarey Saint Sulpice and (h) Rots. Lines are ensemble means based on five bias-adjusted 

CMIP6 global climate models (GCMs) for SSP5-8.5, with a fixed wheat anthesis on 15th May and grain 

filling from 15th May to 31st June. 
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Figure S21. Projected wheat yield losses due to ear blight and fungal foliar diseases, with wheat 

anthesis on 15th May. Projected wheat yield losses due to ear blight and fungal foliar diseases from 

2015 to 2100 for (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint Florent, (e) Fagnieres, (f) Issodun, 

(g) Troyes Barbarey Saint Sulpice and (h) Rots. Lines are ensemble means based on five bias-adjusted 

CMIP6 global climate models (GCMs) for SSP5-8.5, with a fixed wheat anthesis on 15th May and grain 

filling from 15th May to 31st June. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7/11/2023 
For European Journal of Agronomy 

26 
 

 

Figure S22. Decomposed wheat yield losses cause in the breadbasket of France in percentage. The 

yield losses are relative to the average of estimated trend-corrected wheat for 37 cropping seasons 

from 1984 to 2020 in each of the locations of (a) Égreville, (b) Chevry, (c) Saint Quentin, (d) Saint 

Florent, (e) Fagnieres, (f) Issodun, (g) Troyes Barbarey Saint Sulpice and (h) Rots. The percentage is 

calculated by dividing the estimated yield losses by each of the factors by their sum. 
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A B S T R A C T   

Waterlogging affects millions of hectares traditionally used for food production every year. Despite this, existing 
literature and process-based frameworks enabling simulation of waterlogging are sparse. Here, we reveal a lack 
of field experiments that have enumerated effects of waterlogging on plant growth. We call for more research on 
waterlogging, particularly in controlled field conditions with quantified soil properties and continuous moni
toring of soil moisture. We opine that future experiments should explicitly focus on the impact of waterlogging 
on phenology, root development, and water and nutrient uptake, including interactions with atmospheric CO2 
concentration, temperature and other biotic/abiotic stresses. Such experimental data could then be used to 
develop waterlogging algorithms for crop models. Greater understanding of how waterlogging impacts on plant 
physiology will be conducive to more robust projections of how climate change will impact on global food 
security.   

1. Wheat and waterlogging 

Global annual consumption of wheat is over 780 million tonnes (Mt) 
of which 79% is used for seed, food and industry (human consumption) 
(USDA PSD, 2022). Wheat production failures (whether local or wide
spread) may provoke increasing wheat commodity prices. Shortages in 
wheat production have been caused by high costs or low commodity 
prices (Nóia Júnior et al., 2021; Snow et al., 2021), wars (Nóia Júnior 
et al., 2022), and increasingly by extreme weather events (Ben-Ari et al., 
2018; Nóia Júnior et al., 2023; Webber et al., 2020, 2018). Waterlogging 
due to heavy rainfall and flooding is one of the main causes of wheat 
production losses (Zampieri et al., 2017). 

Waterlogging is caused by intense or sustained rainfall or irrigation, 
poor soil hydraulic conductivity or drainage, lateral water flows or rising 

water tables, and may lead to direct and indirect negative impacts on 
crop productivity (Liu et al., 2020a). Waterlogging results in anoxic soil 
conditions, and anoxia or hypoxia in the plant roots (Colmer and 
Greenway, 2011; Kotula et al., 2015), inhibiting root growth and thus 
subsequent absorption and transport of nutrients to the shoot (Colmer 
and Voesenek, 2009). In extreme cases, anoxia may induce (partial) root 
death (Herzog et al., 2016). Reduction of root front velocity (Ebrahi
mi-Mollabashi et al., 2019) together with increased nutrient leaching 
(due to excessive soil water drainage) may cause nutrient deficit stress 
(Kaur et al., 2020; Salazar et al., 2014). Even under non-nutrient deficit 
conditions, waterlogging limits root water conductivity causing stoma
tal closure and reducing CO2 within the leaves, ultimately restricting 
photosynthesis and crop growth (Else et al., 2001; Jitsuyama, 2017). 
Waterlogging favors occurrence of plant diseases and plant lodging 
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(Hamada et al., 2011; Nguyen et al., 2016). Globally, the impacts from 
waterlogging are estimated to affect 15–20% of global wheat cropping 
regions each year (Kaur et al., 2020; Sayre et al., 1994). 

Recent studies have shown that waterlogging could be catastrophic 
with the changing climate in some regions (Liu et al., 2023). For 
example, many wheat cropping regions in southern Asia and western 
Europe are more prone to waterlogging than to drought (Zampieri et al., 
2017). High incidences of localized extreme rainfall increased water
logging intensity and occurrence in the Indus river basins, which ac
counts for 96% of crop production in Pakistan and 26% in India 
(Kulkarni et al., 2021). The yield of wheat crops grown in central China 
has been declining due to increased frequencies of extreme weather 
events driven by current climate change, including flash flooding and 
seasonal waterlogging stresses (Liu et al., 2022b; Yan et al., 2022). In 

fact, extreme events cause a 10% wheat yield loss every two years in 
central China (Yan et al., 2022). In France, the fourth largest 
wheat-exporting country in the world, waterlogging caused by excessive 
precipitation during spring has been identified as the main factor 
influencing wheat yields since the first half of the 20th Century (Ceglar 
et al., 2020). In 2016, France experienced the biggest wheat production 
failure since 1960. This was caused, in addition to other effects, by an 
extended period of precipitation during the winter and spring, leading to 
the simultaneous occurrence of yield-reducing factors (Ben-Ari et al., 
2018), including heavy rainfall, crop diseases, low solar radiation and 
waterlogging (Ben-Ari et al., 2018; Nóia Júnior et al., 2023). High 
winter and spring rainfalls leading to the increased duration and spatial 
coverage of waterlogging caused significant wheat production failures 
also in the Netherlands, Belgium, Switzerland and some parts of 

Fig. 1. Probability of excess water during 
spring in non-irrigated arable lands in Europe. 
The probability of excess water is the relation 
between the number of days from April to June 
(period of wheat anthesis and grain filling in 
central-southern Europe and wheat establish
ment in northern Europe) in which cumulative 
daily Rainfall - ETo is > 30 mm, with ETo being 
the reference evapotranspiration (Supplemen
tary Fig S1). The probability of excess water 
was calculated for daily time steps from April to 
June from 1984 to 2022, and the average of this 
period is shown. No excess water occurrence is 
considered for locations where sand content is 
≥ 70% in soils (Supplementary Fig S2 and Fig 
S3). Climate data are from the NASAPower 
(Team, 2021), with a spatial resolution of 
0.5 deg x 0.625 deg (Team, 2021). The arable 
land mask is based on CORINE Land Cover 
2020 (CLC, 2020) (Supplementary Fig S4).   
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Germany and England in 2016 (Nóia Júnior et al., 2023). In Europe, 
overall, central and northern regions have the highest chance of excess 
water occurrence in spring, during wheat anthesis and grain filling 
(Fig. 1). 

Effects of the climate change crisis on crop production have been 
documented increasingly (Battisti and Naylor, 2009; Liu et al., 2016; 
Lobell and Field, 2007; Zhao et al., 2017), particularly after the first 
IPCC Assessment Report in 1990 (IPCC, 1990). The evidence for changes 
in frequencies and intensities of extremes such as heatwaves, heavy 
precipitation, droughts and tropical cyclones has strengthened over the 
past decade. Over the past 15 years (2008–2023) more than 56000 
studies with the term “wheat” and “heat”, and over 26000 with “wheat 
and drought” have been published on ScienceDirect. In contrast, 2000 
studies have been reported on wheat and waterlogging (our search 
considered all articles that have these terms in the abstract, title, key
words, or the main text including experimental and modeling studies). 
Compared with drought and heat stress, the negative impacts of 
waterlogging on wheat growth have received less scientific attention, 
although it may lead to comparable yield losses (International Food 
Policy Research Institute, 2022; Liu et al., 2022a). In addition, the state 
of the art of modeling waterlogging in the soil-plant system is rudi
mentary and simplistic (Liu et al., 2020b). Here, using wheat crop 
models as an example, we present a brief overview of how different 
process-based wheat crop simulation models (CSM) simulate water
logging impacts on wheat growth and recent experimental studies for 
waterlogging on wheat growth. We outline the gaps associated with 
controlled experiments regarding the impact of waterlogging on wheat 
that may support crop model development and improvement for a more 
comprehensive assessment of waterlogging impacts on wheat under 
climate change. 

2. Wheat crop simulation models and waterlogging 

Some CSMs were built to first simulate the potential yield of crops (i. 
e. the yield of a crop when grown without water, nutrient and biotic 
stress (van Ittersum and Cassman, 2013)). Thus, yield potential is pri
marily driven by solar radiation, temperature and atmospheric CO2 
concentration (van Ittersum and Cassman, 2013). Simultaneously with 
the simulation of yield potential, CSMs compute stress factors (mainly 
non-optimal temperature, water and nitrogen deficit) based on the 
observed weather, soil data, crop management, and the current stage of 
crop development (Webber et al., 2022). These computed stress factors 

are used to reduce the potential rates of crop growth and development, 
leading to the simulation of crop yields limited by water and nutrient 
(van Ittersum and Cassman, 2013). Reducing factors such as biotic 
stresses due to pests and diseases, frost, hail, high windspeeds and 
waterlogging are generally not included in CSMs. 

We assessed 31 CSMs that have been extensively studied in the 
AgMIP (Agricultural Model Intercomparison and Improvement Project 
(Rosenzweig et al., 2013)) wheat projects (Asseng et al., 2013). Only 
one-third (29%, i.e. 9 out of 31) of the wheat CSMs consider the effects 
of waterlogging on simulated wheat growth (Fig. 2). Of the nine wheat 
crop models that consider waterlogging impacts on wheat, five have 
approaches to reduce wheat transpiration under waterlogged condi
tions, which indirectly limits root water conductivity and affects water 
supply to the canopy (Shaw et al., 2013). In addition, waterlogging is 
also considered to directly reduce photosynthesis (or dry biomass 
accumulation) in four CSMs, leaf area index (LAI) and root growth in 
three CSMs and dry biomass partitioning in two CSM (Fig. 2b). 

The APSIM-Wheat (Asseng et al., 1997) and the DSSAT-Nwheat 
(Kassie et al., 2016) crop models cover waterlogging impacts on the 
wheat LAI and root activity. Recently, a new mechanism that directly 
affects wheat photosynthesis in response to waterlogging was added to 
APSIM-Wheat (Liu et al., 2021b; Yan et al., 2022) (Table 1). The 
AQUACROP (Raes et al., 2018) model, as well as Infocrop (Aggarwal 
et al., 2006), GLAM (Li et al., 2016) and WOFOST (Githui et al., 2022; 
Liu et al., 2020b) crop models, represent yield impacts by waterlogging 
using an indirect effect of reduced transpiration. Similarly, the Hermes 
crop model (Kersebaum, 2007) considers a reduction of transpiration 
but together with a direct reduction of photosynthesis due to water
logging. The EPIC (Githui et al., 2022) model considers wheat growth 
being affected by waterlogging via reduced photosynthesis and LAI, 
whereas the WheatGrow model only considers waterlogging impacts on 
biomass partitioning (Lv et al., 2017). Wheat phenological stage directly 
determines the effect waterlogging has on wheat growth in four CSMs, 
APSIM-Wheat, DSSAT-NWheat, Infocrop, AQUACROP and WOFOST. 
Indirect impacts of waterlogging on crop growth due to nitrogen de
ficiencies caused by nitrogen leaching from water excess are captured in 
some (Nóia Júnior et al., 2023). 

We demonstrate that only one third of CSMs consider the impact of 
waterlogging on wheat, and while waterlogging impacts are simulated 
in different ways, there are few comparisons of which algorithms best 
reflect biophysical reality. Differences across CSMs in terms of processes 
that are modeled in waterlogged fields, indicate that observed 

Fig. 2. Capability of wheat crop simulation 
models in relation to ability to simulate water
logging. (a) Percentage of crop models with 
deliberate equations for accounting for the im
pacts of waterlogging in wheat. (b) Wheat 
growth processes are directly affected by 
waterlogging in crop simulation models. Pro
cesses of 31 crop simulation models were 
reviewed (from which 9 had direct routines for 
accounting for the impacts of waterlogging in 
wheat, shown in Table 1), namely APSIM- 
Wheat (Zheng et al., 2015), AQUACROP (Raes 
et al., 2018), CropSyst (Stockle et al., 1994), 
DAISY (Hansen, n.d.), DSSAT-CERES (Godwin 
et al., 1990), DSSAT-CropSim (Thorp et al., 
2010), DSSAT-Nwheat (Kassie et al., 2016), 
EPIC (Sharpley, Villiams, 1990), 
EXPERT-N-CERES (Priesack, 2019), 
EXPERT-N-CropSim (Priesack, 2019), 
EXPERT-N-SPASS (Priesack, 2019), 

EXPERT-N-SUCROS (Priesack, 2019), FASSET (Mette Laegdsmand, 2011), GLAM (Challinor et al., 2004), HERMES (Kersebaum, 2011), InfroCrop (Krishnan et al., 
2016), LINTUL (Wolf, 2011), LPJmL (Schaphoff et al., 2018), MCWLA-Wheat (Tao et al., 2009), MONICA (Nendel et al., 2022), SALUS (Dzotsi et al., 2013), 
SIMPLACE (Gaiser et al., 2013), Sirius (Jamieson et al., 1998), Sirius-Quality (Martre et al., 2006), STICS (Brisson et al., 2003), WheatGrow (Guo et al., 2018), 
WOFOST (Wit, 2022), SIMPLE (Zhao et al., 2019), JULES-Crop (Osborne et al., 2015), AFRCWHEAT2-O3 (Porter, 1993) and BioMA (JRC, 2022).   

R.S. Nóia Júnior et al.                                                                                                                                                                                                                         



Agricultural Water Management 284 (2023) 108334

4

phenomena in field experiments, so far, have yet to be adequately re
flected in CSMs. It is still unclear which physiological processes are most 
sensitive to waterlogging and impact growth. For example, controlled 
experiments have shown that elevated CO2 increases the rate of 
photosynthesis and reduces water loss through transpiration due to 
regulation of stomatal opening (Taub, 2010). From these experiments, 
CSMs were improved to simulate altered photosynthetic and transpira
tion rates due to CO2. This model-data learning cycle is yet to be 
adequately conducted for waterlogging, perhaps because waterlogging 
involves a range of connected yet complex processes, including impacts 
on soil oxygen and nutrients, plant responses and recovery. Water
logging as a phenomenon in the field is also difficult to measure and 
quantify and there is considerable spatial variation in its prevalence. To 
better understand such limitations and indicate how new experiments 
may be performed to guide CSMs improvements, we describe below the 
current status of wheat-waterlogging experiments. 

3. Controlled experiments of waterlogging impacts on wheat 

Controlled experiments are the most reliable method to understand 
the linkage between single environmental variables (e.g. waterlogging) 
and crop growth. Significant relationships between wheat growth and 
waterlogging have been reported in the literature (Dickin and Wright, 
2008; Marti et al., 2015; Olgun et al., 2008). We assessed 17 
peer-reviewed published articles from 2008 to 2021 which quantified 
the impacts of waterlogging on wheat grain yield, grain number or grain 

size in 21 controlled experiments (Supplementary Table S1). Relevant 
articles were found by using keywords ‘waterlogging’, ‘flooding’ or 
‘excess of water’ and ‘wheat’ in Google Scholar Database (searches 
occurred in November 2022). In the assessed articles, waterlogging was 
applied in different wheat phenological stages, from seedling to grain 
filling with duration varying from 2 to 58 days with fully waterlogged 
soil (i.e. soil filled with water, with water 2 cm above the soil surface). 
Half of these waterlogging experiments were carried out in plastic pots 
(Fig. 3c). About a quarter of the experiments were performed in PVC 
tubes and 9% (n = 2) in field plots. One experiment was conducted in 
lysimeters and rhizotrons. Of all those experiments, 56% were per
formed in open field conditions (with no control of temperature or 
rainfall), 26% in greenhouses (full control of temperature and rainfall) 
and 9% in semi-controlled environment (with controlled rainfall). Nine 
percent (n = 2) of the assessed articles did not report the environmental 
conditions. 

Wheat growth responses to waterlogging vary according to the 
phenological stage in which the waterlogging occurred (Liu et al., 
2021a). In the assessed articles, around 20% of the experiments tested 
waterlogging impact on wheat growth at the beginning of wheat stem 
elongation or anthesis (Fig. 3). These are phenological stages highly 
correlated with final wheat grain yield, particularly because of the 
importance of stem elongation stage in defining the number of fertile 
florets and grain number per unit area (Fischer, 1985; Marti et al., 2015; 
Miralles et al., 2000), and of the period after anthesis in defining wheat 
grain size (Hossain et al., 2011). However, losses of grain number per 

Table 1 
Wheat growth processes are directly affected by waterlogging in the eight crop simulation models that consider waterlogging effects on wheat. (-) indicates that the 
process is not affected by waterlogging in the crop simulation model.  

Crop simulation models Photosynthesis - Growth Transpiration Root activity LAI Biomass partitioning Phenology Reference 

APSIM-Wheat Yes - Yes Yes - Yes (Yan et al., 2022) 
AQUACROP - Yes Yes - Yes Yes (Raes et al., 2018) 
DSSAT-NWheat - - Yes Yes - - (Shelia et al., 2019) 
EPIC Yes - - Yes - - (Githui et al., 2022) 
GLAM - Yes - - - - (Li et al., 2016) 
HERMES Yes Yes - - - - (Kersebaum, 2007) 
INFOCROP - Yes - - - Yes (Aggarwal et al., 2006) 
WHEATGROW - - - - Yes - (Lv et al., 2017) 
WOFOST Yes Yes - - - Yes (Githui et al., 2022; Liu et al., 2020b)  

Fig. 3. Published peer-reviewed experiments on waterlogging with wheat. (a) Number of studies that reported the respectively measured wheat growth variable in 
waterlogging experiments (the number is shown in parentheses). (b) Percentage of experiments according to wheat phenological stages in which waterlogging 
treatments started. (c) Percentage of experiments with waterlogging treatments applied under different growing conditions. The data are from a total of 23 ex
periments reported in 17 peer-reviewed articles on the impacts of waterlogging on wheat growth, published from 2008 to 2021 (Supplementary Table S1 and 
Supplementary Fig S1). All experiments are in disturbed soil conditions, and with the soil completely waterlogged for a period of 4–58 days. 
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unit area due to waterlogging tends to be the highest before anthesis 
around heading (de San Celedonio et al., 2014), the phenological stage 
with less waterlogging experiments in the last 15 years (Fig. 3b). During 
emergence, tillering and maturity, wheat is less sensitive to the effects of 
waterlogging (de San Celedonio et al., 2014). San Celedonio et al. (2014) 
reported a 5% wheat yield loss due to waterlogging during seedling (due 
to formation of few grains) in contrast to up to 90% yield loss due to 
waterlogging starting at anthesis and continuing during grain filling 
(due to few and light grains). 

Grain yield in wheat is determined by grain number per unit area and 
average single grain size (average grain dry mass or grain weight). These 
are the most measured wheat growth variables among the assessed ex
periments (Fig. 3a). There are a small number of experiments with 
measurements of indicating crop growth processes, such as gas ex
change, chlorophyll content and enzyme activity. Due to the difficulty of 
measuring, root components are rarely measured. Above-ground 
biomass, which is an important indicator of wheat photosynthesis, was 
measured in one-third of the assessed experiments. All experiments 
tracked wheat phenology to start waterlogging treatments, but only one- 
fifth reported the impact of waterlogging on wheat phenology. 

Crop waterlogging experiments are few and their experimental 
setups and observed variables covered do not optimally support the 
development of waterlogging modules of CSMs. For example, experi
mental studies indicate that crop phenology is delayed by waterlogging. 
CSMs, for the most part, simulate wheat phenology considering photo- 
thermal or degree-days indices, assuming driving variables of temper
ature and photoperiod. Thus, modifications to CSMs to correctly simu
late crop delays in phenology associated with waterlogging require 
experiments that investigate how waterlogging interacts with phenology 
(particularly with the photo-thermal or degree-days indices). For this, it 
would be necessary to carry out experiments with waterlogging occur
ring at several phenological stages, with time series of the observed 
phenological stages, photothermal and degree-days indices. To our 
knowledge however, no controlled experiments have been conducted 
with such aims, delaying potential model-data learning cycles 
improving broader understanding of how plants respond to and recover 
from waterlogging. There thus an urgent need to describe the funda
mental mechanisms between waterlogging and plant growth, so that 
crop modelers have a clear understanding of which mechanisms need to 
be prioritized. We indicate that experiments used to guide the 
improvement of CSMs should first provide bases for the critical testing of 
existing model structures and contemporary processes embedded in 
CSMs. Thereafter, also the experimental setups and variables measured 
should be assessed and modified so that they best serve effective model 
improvements. Additional challenges and future research needs are 
described in the following subsection. 

4. Challenges and future research needs 

The implementation and improvement of waterlogging modules in 
CSMs are constrained by the availability of adequate and representative 
data in response to waterlogging, and lack of information on critical 
interactions of plant growth, waterlogging and weather variables such 
as temperature, solar radiation, atmospheric CO2, and others. On the 
other hand, controlled experiments are usually time consuming and 
expensive. For waterlogging experiments, more complex structures 
(with better soil water control) are required to keep the soil water
logged. To overcome this, it is needed to design specific greenhouse and 
field experiments to derive more comprehensive understanding on 
which simulated processes by CSM should be improved or included to 
properly simulate the detrimental impacts of waterlogging on crops. 

In the following, we list the identified knowledge gaps regarding the 
impact of waterlogging on wheat at the plant and field scales, which can 
be closed by dedicated controlled experiments: 

(1) How does the root morphology change under waterlogging 
stress? Although effects such as partial root death to waterlogging are 

demonstrated in the literature (Herzog et al., 2016), further research is 
essential to improve the representation of waterlogging impacts on roots 
in CSMs. For instance, the number of days under waterlogging after 
which root death occurs, or the maximum proportion of roots having 
died (with respect to the total amount of roots), or that become inactive 
due to different periods of exposure (in different phenological stages) to 
waterlogging need to be known. This is essential not only to simulate the 
direct effects of waterlogging more accurately but also its legacy effect of 
subsequent droughts whose effects may be more severe after a period of 
waterlogging having had an impact on the roots (e.g. root length den
sity, depth distribution and others). 

(2) How does waterlogging support the evolution of other biotic and 
abiotic stresses? It is unclear whether waterlogging combined with other 
stress factors [both occurring in sequence (one stress after other, e.g. 
waterlogging and drought) or simultaneously (e.g. waterlogging and 
frost or heavy rainfalls)] will have an additive, multiplicative or even 
compensatory impact on crop growth. 

(3) How does atmospheric CO2 and temperature interact with the 
effects of waterlogging? Increasing atmospheric CO2 concentration due 
to climate change favors growth of C3 plants, such as wheat and barley. 
Elevated CO2 increases the rate of photosynthetic carbon dioxide uptake 
by leaves and reduces water loss via transpiration due to the regulation 
of stomatal opening (Taub, 2010). However, waterlogging limits root 
water conductivity, causing stomatal closure and reducing CO2 con
centration within the leaves, antagonizing CO2 effects on crops (Else 
et al., 2001; Jitsuyama, 2017). Therefore, it is necessary to investigate 
the combined effect of CO2 and waterlogging on wheat growth, to un
derstand in what conditions the combination may have positive or 
negative impacts on crop growth, photosynthetic activity and stomatal 
opening. 

(4) What is the effect of partial waterlogging on crop growth? 
Waterlogging does not necessarily occur uniformly over the soil profile, 
but depending on soil hydraulic properties and groundwater levels and 
dynamics are expected to lead to different effects on the dynamic plant 
growth and require a strong focus on the correct representation of soil 
hydraulic properties. Examples are that the water table may only 
strongly affect the deepest soil layers or instantaneous heavy rainfalls 
affecting only the shallowest soil layers). Waterlogging is generally 
transient rather than chronic and enduring. To robustly capture such 
phenomena, field experiments must reflect reality, which could include 
partial wetting and drying in the season/s with which waterlogging 
occurs (typically winter and spring). This also emphasizes the impor
tance of continuous and spatially explicit measurement data from the 
experiments. Such experiments could be performed with sensors that 
measure soil moisture at different depths (covering the entire root 
depth) as well as visual crop responses (e.g. through spectroscopy). 
Continuous measurements of photosynthetic rate and stomatal 
conductance would also be helpful. Roots are the interface over which 
the crop perceives waterlogging, thus, root activity should also be 
measured when possible. 

(5) How resilient are different cultivars? A more systematic com
parison of waterlogging responses across cultivars is required to un
derstand the cultivars sensitivity to waterlogging and how different 
cultivar traits support the resilience of cultivars to waterlogging (Liu 
et al., 2020b). 

(6) What are the spatial implications of waterlogging? Severe 
waterlogging may have minor implications for field-scale production if 
the extent of waterlogging at the field scale is minor. Spatio-temporal 
quantification of waterlogging (similar to the study conducted by 
Chen et al., 2021 at the field scale for pastures) would be valuable as a 
research endeavor and in scaling the extent of waterlogging from the 
field to higher scales (Chen et al., 2021). 

(7) How does waterlogging affect the availability of plant nutrients? 
Waterlogging can lead to leaching of nutrients and altered biochemical 
processes reducing uptake (Rawnsley et al., 2019) and associated 
greenhouse gas emissions, such as nitrous oxide and methane. 
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(8) How soil waterlogging responses to engineering management 
practices across environments? 

Engineering practices such as drainage systems, raised beds, and 
controlled farming tillage are expected to alleviate the negative impacts 
of waterlogging on wheat plants (Manik et al., 2019). Conducting 
research to assess the efficacy of various management practices in 
diverse waterlogging environments can aid farmers and agronomists in 
making informed decisions about the most suitable engineering prac
tices to adopt for their wheat production systems, considering factors 
such as cost-effectiveness, feasibility, and local environmental 
conditions. 

Future research on waterlogging proposed here should be done 
under controlled conditions, such as a greenhouse and in the field, but to 
better guide agricultural production practices, field validation experi
ments are needed. These experiments should be performed in fields with 
well-described physical soil profiles, such as small areas and survey pits. 
Soil moisture measurements, in different soil depths, are particularly 
important to improve the computation of waterlogged soils by CSMs. We 
also encourage measurements of greenhouse gases from waterlogged 
soil, as soil net greenhouse gas emissions tend to increase under these 
conditions (Liu et al., 2011). The data resulted from these potential 
experiments should be strongly encouraged to be made available to the 
scientific community via cloud-based repositories or open data journals. 
Only with open access to this cropping, climate, soil and management 
(sowing date, planting density, fertilizer and irrigation amount and 
date) data can be tested and used to improve CSMs. 

We identified that about one third of the wheat CSMs consider the 
effects of waterlogging on simulated wheat growth (Fig. 3). Several 
multi-model ensemble and model comparison studies, such as those 
implemented under the AgMIP network (Rosenzweig et al., 2013), have 
evaluated models for a range of crops and regions by comparing outputs 
with observed growth and yield data, including responses to atmo
spheric CO2 concentration, temperature, water shortage and water 
excess. Models embed different processes and when a range of models 
are compared using the same initialization and calibration data, insights 
can be gained as to which models more closely reflect the observed data, 
and why such results occur. In this way, deeper insight can be gained 
into processes that are necessary in simulating impacts of waterlogging 
in crops, as well as those processes that are superfluous and could be 
simplified or removed completely. In addition, the uncertainty due to 
missing processes relevant for describing waterlogging and its impacts 
remains unclear. These are topics that should be emphasized in future 
research which addresses crop simulation model development for 
improved representation of waterlogging. Moreover, waterlogging 
should be included in crop simulation models, especially those to fore
cast in-season wheat yield in regions where waterlogging occurs, or 
when assessing the impacts of climate change. To reduce uncertainty in 
climate impact projections and their impact on future crop production, 
crop models need to include the simulation the waterlogging and its 
impact on crop growth and yield. With this, cropping models will be able 
to give better indications of how to adapt to a future with more extremes 
arising from climate change. Due to the relevance of waterlogging im
pacts and the deficiencies identified in state of the art in waterlogging 
research, this manuscript is a call for boosting wheat waterlogging 
research around the world. 
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Table S1. Published peer reviewed manuscripts on the effects of waterlogging on wheat. Growth 
stages from the Zadoks growth stages scale.  

ID Growth stage 
Duration of 

waterlogging (days) 
References 

Web-
link 

1 25 47, 58 [1] here 

2 71 30, 5 [2] here 

3 71, 20 4, 7 [3] here 

4 37 7 [4] here 

5 50, 68 14 [5] here 

6 71,39 7, 2 [6] here 

7 71 15 [7] here 

8 61 5, 10, 15, 20, 25, 50 [8] here 

9 31, 39, 45, 50, 58, 64 4, 8, 12, 16, 20, 24 [9] here 

10 10, 20, 30, 40 15, 20 [10] here 

11 32, 50 12 [11] here 

12 14 12 [12] here 

13 61 14 [13] here 

14 30, 50, 60 5, 10, 15 [14] here 

15 33, 45, 65 10 [15] here 

16 10, 20, 25, 40, 50, 60, 71 15, 20 [16] here 

17 20, 30, 40, 61 14, 28, 35 [17] here 

 

 
  
 
 
 
 
 
 

https://www.sciencedirect.com/science/article/pii/S1161030107000937?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0981942818303929
https://www.sciencedirect.com/science/article/abs/pii/S0098847216301903
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https://onlinelibrary.wiley.com/doi/full/10.1111/jac.12396
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Figure S1. Probability of excess of water during summer in Europe. The probability of excess of water 
is the relation between the number of days from April to June (wheat anthesis and grain filling) in 
which daily accumulated Rain - Eto > 30 mm and the total number of days in that same period, being 
reference evapotranspiration (ETo). 
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Figure S2. Soil sand content in Europe. Soil data from the European Soil Data Centre 2.0 [19,20].  
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Figure S3. locations with soil sand content above 70%. Calculated using the Soil data from the 
European Soil Data Centre 2.0 [19,20]. 
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Figure S4. Non-irrigated arable lands in Europe. The arable land mask is based on CORINE Land Cover 
2020 [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 
 

References 
 
1.  Dickin E, Wright D: The effects of winter waterlogging and summer drought on the growth 

and yield of winter wheat (Triticum aestivum L.). European Journal of Agronomy 2008, 
28:234–244. 

2.  Zhou Q, Huang M, Huang X, Liu J, Wang X, Cai J, Dai T, Cao W, Jiang D: Effect of post-anthesis 
waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant 
Physiology and Biochemistry 2018, 132:222–228. 

3.  Wang X, Huang M, Zhou Q, Cai J, Dai T, Cao W, Jiang D: Physiological and proteomic 
mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat 
(Triticum aestivum L.). Environmental and Experimental Botany 2016, 132:175–182. 

4.  Gao J, Su Y, Yu M, Huang Y, Wang F, Shen A: Potassium Alleviates Post-anthesis 
Photosynthetic Reductions in Winter Wheat Caused by Waterlogging at the Stem Elongation 
Stage   . Frontiers in Plant Science   2021, 11. 

5.  Ploschuk RA, Miralles DJ, Colmer TD, Striker GG: Waterlogging differentially affects yield and 
its components in wheat, barley, rapeseed and field pea depending on the timing of 
occurrence. Journal of Agronomy and Crop Science 2020, 206:363–375. 

6.  Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W: Waterlogging pretreatment during vegetative 
growth improves tolerance to waterlogging after anthesis in wheat. Plant Science 2011, 
180:672–678. 

7.  Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D: Alterations in photosynthesis and antioxidant 
enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica 
2008, 46:21–27. 

8.  Olgun M, Metin Kumlay A, Cemal Adiguzel M, Caglar A: The effect of waterlogging in wheat 
(T. aestivum L.). Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2008, 58:193–
198. 

9.  Marti J, Savin R, Slafer GA: Wheat Yield as Affected by Length of Exposure to Waterlogging 
During Stem Elongation. Journal of Agronomy and Crop Science 2015, 201:473–486. 

10.  de San Celedonio RP, Abeledo LG, Miralles DJ: Physiological traits associated with reductions 
in grain number in wheat and barley under waterlogging. Plant and Soil 2018, 429:469–481. 

11.  Ding J, Huang Z, Zhu M, Li C, Zhu X, Guo W: Does cyclic water stress damage wheat yield more 
than a single stress? PLOS ONE 2018, 13:e0195535. 

12.  Farkas Z, Varga-László E, Anda A, Veisz O, Varga B: Effects of Waterlogging, Drought and Their 
Combination on Yield and Water-Use Efficiency of Five Hungarian Winter Wheat Varieties. 
Water  2020, 12. 

13.  Zhou Q, Wu X, Xin L, Jiang H, Wang X, Cai J, Jiang D: Waterlogging and simulated acid rain after 
anthesis deteriorate starch quality in wheat grain. Plant Growth Regulation 2018, 85:257–
265. 

14.  Martínez M, Arata AF, Lázaro L, Stenglein SA, Dinolfo MI: Effects of waterlogging stress on 
plant-pathogen interaction between Fusarium poae and wheat/ barley. Acta Scientiarum - 
Agronomy 2019, 41:1–9. 

15.  Ding J, Liang P, Wu P, Zhu M, Li C, Zhu X, Guo W: Identifying the Critical Stage Near Anthesis 
for Waterlogging on Wheat Yield and Its Components in the Yangtze River Basin, China. 
Agronomy  2020, 10. 

16.  de San Celedonio RP, Abeledo LG, Miralles DJ: Identifying the critical period for waterlogging 
on yield and its components in wheat and barley. Plant and Soil 2014, 378:265–277. 

17.  Wu X, Tang Y, Li C, McHugh AD, Li Z, Wu C: Individual and combined effects of soil 
waterlogging and compaction on physiological characteristics of wheat in southwestern 
China. Field Crops Research 2018, 215:163–172. 

18.  CLC: Copernicus Land Monitoring Service. CORINE Land Cover 2020,  
19.  Panagos P, Van Liedekerke M, Borrelli P, Köninger J, Ballabio C, Orgiazzi A, Lugato E, Liakos L, 



7 
 

Hervas J, Jones A, et al.: European Soil Data Centre 2.0: Soil data and knowledge in support 
of the <scp>EU</scp> policies. European Journal of Soil Science 2022, 73. 

20.  Panagos P, Van Liedekerke M, Jones A, Montanarella L: European Soil Data Centre: Response 
to European policy support and public data requirements. Land Use Policy 2012, 29:329–338. 

 



11 July 2023 

 

 

1 
 
 

 

For Journal of Experimental Botany 
 

Enabling modeling of waterlogging impact on wheat  

Rogério de S. Nóia Júnior1, Valentina Stocca1, Vakhtang Shelia2, Pierre Martre3, Jean-Charles 
Deswarte4, Jean-Pierre Cohan5, Benoît Piquemal5, Alain Dutertre5, Gustavo A. Slafer6,7, 
Marijn Van der Velde8, Yean-Uk Kim9, Heidi Webber9,10, Frank Ewert9,11, Taru Palosuo12

, 

Matthew Tom Harrison13, Gerrit Hoogenboom2, Senthold Asseng1* 
 

1Technical University of Munich, Department of Life Science Engineering, Digital Agriculture, HEF World 
Agricultural Systems Center, Freising, Germany 
2Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA 
3LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France 
4ARVALIS - Institut du Végétal, Villiers-le-Bâcle, France 
5ARVALIS - Institut du Végétal, Loireauxence, France 
6Department of Agricultural and Forest Sciences and Engineering, University of Lleida – AGROTECNIO-CERCA 
Center, Lleida, Spain  
7ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain 
8European Commission, Joint Research Centre, Ispra, Italy 
9Leibniz-Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany 
10Brandenburg Technical University (BTU), Cottbus, Germany 
11Crop Science Group, INRES, University of Bonn, Bonn, Germany 
12Natural Resources Institute Finland (Luke), Helsinki, Finland 
13Tasmanian Institute of Agriculture, University of Tasmania, Newnham, Launceston, Tasmania, Australia 
 
*Corresponding author: senthold.asseng@tum.de 

 

Abstract (max 200 words) 

Most crop simulation models do not consider the effect of waterlogging despite being important for 
crop performance. Here, we reviewed the impact of waterlogging in different wheat phenological 
stages on grain number per unit area, average grain size, and grain yield. Episodes of waterlogging 
from the onset of tillering to anthesis result in fewer, and during grain filling in lighter grains. To 
simulate such impact, we implemented a new waterlogging module into the wheat crop simulation 
model DSSAT-NWheat, accounting for the effects of waterlogging on wheat root growth, carbohydrate 
accumulation and potential average grain size. The module was tested with data from a controlled 
experiment and showed reasonable wheat yield. A sensitivity analysis showed that the simulated 
impact of waterlogging on above ground biomass and roots, as well as leaf area index, grain number 
and grain yield varied with phenological stages. The simulated crop was most sensitive to waterlogging 
shortly before anthesis, as shown in experimental studies. In conclusion, the new waterlogging-
enabled crop model simulates reasonably well the impact of excess rainfall and waterlogging on crop 
growth and final grain yield and could reduce model uncertainties to project studies climate change 
impact with increasing rainfall intensity. 
Keywords: NWheat, DSSAT, excess of water, grain number, grain size.  
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1. Introduction 

Waterlogging could be defined as the phenomenon in which prolonged saturation of a soil with water 

inhibits or entirely negates oxygen availability to plant roots (Liu et al., 2021a). All direct and indirect 

impacts of waterlogging together are a major cause of crop yield losses across the world, estimated 

to affect 15-20% of the global wheat cropping area each year (Sayre et al., 1994; Kaur et al., 2020). 

Crop production in southern Asia, Europe, Russia, China and southern Brazil may be more sensitive to 

waterlogging than to drought (Zampieri et al., 2017; Liu et al., 2023). Waterlogging from high rainfall 

has damaged 33.9 million hectares (Mha) of India’s arable area between 2015 to 2022 (Kulkarni et al., 

2021). Excessive precipitation causing waterlogging was found to be the main factor influencing wheat 

yield since the first half of the 20th century in France (Ceglar et al., 2020), where only 9% of the arable 

has man-made drainage systems installed to reduce the impact of waterlogging (Jeantet et al., 2021). 

In southern Brazil, a 40% drop in wheat yield was reported in 2017 cropping season due to excessive 

rainfall causing waterlogging and increased plant diseases (Nóia Júnior et al., 2021). More than 30% 

of the Pampas Region of Argentina was waterlogged over the last two decades (Kuppel et al., 2015). 

Despite the large worldwide damage of waterlogging on crops, studies on waterlogging impact on 

grain production are scarce. 

The process of adapting agricultural crops to extreme weather events, such as waterlogging, demands 

sophisticated understanding of how crop genotypes respond to different weather conditions, at 

different phenological stages for different management options (Liu et al., 2020a; Githui et al., 2022). 

For this, it is necessary to have controlled experiments in greenhouse and field conditions, with 

physiological, morphological and growth measurements. These experiments may be repeated in 

different years and locations, making them costly and often unfeasible, particularly if a thorough 
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insight into the solution space is sought (Liu et al., 2020b, 2023; Githui et al., 2022). Such experiments 

are sparse for waterlogging, and the review of their results are shown here. 

Crop models synthesize the gathered knowledge and understanding on crop growth processes and 

contribute to the understanding of the physiological mechanisms of plant response to abiotic stresses. 

They are widely applied for simulating crop growth and physiology in different environments, 

locations and years including climate change scenarios, extreme weather impacts (Kassie et al., 2016; 

Yan et al., 2022). Indeed, many studies that project the impacts of climate change on agriculture used 

crop simulation models (Asseng et al., 2013, 2015, 2019; Liu et al., 2016, 2019; Zhao et al., 2017). 

However, the majority of crop models do not consider yet the impact of waterlogging on crop growth 

(Liu et al., 2020b; Githui et al., 2022). 

Only in few crop models waterlogging is considered and usually are covered only its effects on 

carbohydrate accumulation, radiation use efficiency, transpiration, root activity and leaf area index 

(LAI) (Liu et al., 2020c; Githui et al., 2022). In some crop models, the magnitude of simulated impact 

varies according to the phenological phase in which the waterlogging occurs (e.g., (de San Celedonio 

et al., 2014)). The wheat crop model in APSIM, for example, considers that the highest photosynthetic 

and roots activity reduction due to waterlogging occurs before wheat grain filling, with no impact 

during grain filling (Liu et al., 2021b). The EPIC model considers direct waterlogging effects only on 

photosynthesis and LAI (Githui et al., 2022), with indirect impacts on other growth mechanisms. In 

these crop models, wheat growth is penalized via lower photosynthesis due to its direct reduction or 

lower light capture from decreased leaf area with waterlogging. There could also be a simulated yield 

penalty via indirect reduced nitrogen uptake due to root reduction from waterlogging. However, these 

models have only been tested in a few situations with waterlogged wheat, and it is not clear how 

waterlogging affects yield and its components, and by extension, yield. Some wheat crop models do 
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not correctly simulate the relationship between number of grains per unit area and average grain size 

(or grain unit weight), resulting in overestimation of simulated yields, particularly in seasons with poor 

grain setting (causing low grain number per unit area) and grain filling (causing low average grain size) 

(Nóia Júnior et al., 2023). The relationship between number of grains per unit area and average grain 

size is usually studied in controlled environments with few measured data (Fischer, 1985; Calderini et 

al., 2001; Asseng et al., 2017), making it difficult to improve wheat crop models. 

The inability of most crop models to simulate waterlogged wheat growth potentially underestimates 

the projected impacts of climate change on agriculture (van der Velde et al., 2020; Webber et al., 

2020). To improve the representation of waterlogging in crop models, in this study we aimed to 

improve the waterlogging module in the wheat crop simulation model DSSAT-NWheat. For this, we 

reviewed published articles from 2008 to 2021 that studied the impacts of waterlogging during 

different wheat phenological stages on grain number per unit area, average grain size, and grain yield. 

Based on the general relationships of crop performance and waterlogging, a new waterlogging module 

was developed and tested in a controlled waterlogging experiment in Lleida, Spain. To better 

understand the relationship between wheat average grain size and grain number per unit area, we 

also used a detailed dataset from ARVALIS with observations from 3,512 experimental treatments 

across the French breadbasket region over six years from 2014 to 2019, as described by Nóia Júnior et 

al (2023). 

 

2. Material and Methods 

2.1. Review of waterlogging impacts on wheat grain number, average grain size and grain yield 

We assessed 17 peer-reviewed articles published between 2008 and 2021 which quantified the 

impacts of waterlogging on wheat grain yield, grain number or grain size in controlled waterlogging 
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treatments (SUPPLEMENTARY TABLE S1). Relevant articles were found by using keywords ‘waterlogging’, 

‘flooding’ or ‘excess of water’ and ‘wheat’ in Web of Science and Google Scholar Databases. In the 

assessed articles, waterlogging was happening in different wheat phenological stages, from seedling 

emergence to onset of grain filling and with waterlogging duration varying from 2 to 58 days (FIGURE 

3D) with fully waterlogged soil (i.e., no variations in soil moisture along the soil profile depth). From 

the assessed articles, we collected the average grain yield, average grain size (or grain unit dry mass 

or thousand grain dry mass) and grain number per unit area per each waterlogging treatments and 

their control. With these values, we calculated the relative change of each treatment in relation to the 

control and averaged according to the wheat phenological stage. Experiments with waterlogging 

starting at seven different wheat phenological stages were computed, namely at wheat seedling 

emergence, onset of tillering, jointing, booting, heading, anthesis and onset grain filling. The 

experiments were conducted in seven countries from three continents (FIGURE 1). 

 

Figure 1. Waterlogging experiments with wheat. Spatial distribution of reviewed experiments on 
waterlogging impact for wheat (green circles). A total of 17 published studies were used here to 
summarize how waterlogging affects wheat. A list of all studies is shown in SUPPLEMENTARY TABLE S1. 
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The black triangles represent experiments that were used to test the new waterlogging module for 
DSSAT-NWheat.  
 

2.2. Modeling waterlogging on wheat with DSSAT-NWheat 

The DSSAT-NWheat model has been evaluated and used to simulate wheat growth and development 

across many environments around the world, including different seasonal ranges of air temperatures, 

soil water, nitrogen and CO2 concentrations (Kassie et al., 2016). Here, we further-developed the 

waterlogging module of DSSAT-NWheat (Shelia et al., 2020) by adding the soil waterlogging direct 

impact on carbohydrate accumulation and potential grain size in addition to the already existing 

impact to root growth. The previously implemented module version was originally developed for 

APSIM Wheat (Asseng et al., 1997). The waterlogging module is now described. The waterlogging 

module was built in the DSSAT-Nwheat version 4.7. The waterlogging module of DSSAT-NWheat 

implemented by Shelia et al. (2019) is not available in the latest DSSAT versions (4.7 or 4.8), which are 

free for download. Thus, the default DSSAT-Nwheat available to the users has no module that 

accounts for the impacts of waterlogging on wheat growth.  

 

2.2.1. Modeling soil waterlogging  

The water flow module of DSSAT-NWheat was described in detail by Asseng et al. (1997) and was not 

further-modified in this study. The vertical water flow in a soil at or near to saturation (when soil water 

content is in between soil drained upper limit (or soil field capacity) and saturated soil water content) 

is controlled by soil saturated hydraulic conductivity (SSKS) and the soil saturated macro-flow water 

conductivity, which is defined as the saturated drainage rate (SLDR) in DSSAT-SBuild (SUPPLEMENTARY 

FIGURE S2, DSSAT-SBuild is the software to build soil profile in DSSAT). SSKS (with unit of cm h-1) is a 

quantitative measure of soil’s ability to transmit water between soil layers in a multi-layer cascading 
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approach, with a hydraulic gradient (in short, SSKS describes the speed of vertical water flow in a 

saturated soil). In DSSAT only a proportion of water can vertically move in a day from a soil layer to 

the next deeper one. This proportion of water is defined by SLDR. The SLDR varies from 0 to 1 

indicating the proportion of the water that flows to the next layer in one day. Thus, the SSKS index 

that defines the ability of the soil to transmit water is applied only to the proportion of water (defined 

by SLDR) that can move vertically in a day from one soil layer to the next deeper layer. The remaining 

water fills the current soil layer up to saturation (e.g. with SLDR = 0.95, only 5% of the water above 

soil drained upper limit in a day remains in the current soil layer). In DSSAT-SBuild the SLDR is defined 

based on soil drainage classes, varying from soils with very excessive drainage (soil drainage = 0.95) to 

very poor drainage (0.01). The drainage classes and their respective SLDR value are shown in 

SUPPLEMENTARY TABLE S2.  

Waterlogging is indicated with an aeration deficit factor (AF) which is calculated daily for each rooted 

soil layer. The aeration deficit factor is calculated based on assumptions of experiments and crop 

models simulating its impacts on root and crop growth (Lizaso, 1993; Asseng et al., 1997). The AF is 

calculated as follows: 

𝐴𝐹𝑖 =  
𝑆𝐴𝑇𝑖− 𝑆𝑊𝐶𝑖

𝑆𝐴𝑇𝑖 − 𝐷𝑈𝐿𝑖
                                   (1) 

Where, SATi is saturated soil water content, SWC is the soil water content and DUL is the soil drained 

upper limit (or soil field capacity), in a soil rooted layer i. AFi is only calculated when soil layer is at or 

near to saturation, i.e. SWC > DUL. 

 

2.2.2. Waterlogging impacts on roots 

Waterlogging inhibits root growth and functioning (Colmer and Voesenek, 2009), which may lead to 

root death (Herzog et al., 2016). The module that accounts for the waterlogging impacts on roots, was 
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previously implemented by Shelia et al. (2019). When AFi in a rooted layer is below to a default 

threshold of 0.6 for three consecutive days, the rooting depth is reduced to 5 cm below the deepest 

non-saturated layer (below the first waterlogged layer, all roots become ‘inactive’, remaining only 5 

cm of ‘active’ root - ‘active’ roots are those considered in the DSSAT-NWheat for water and nitrogen 

uptake), regardless of the soil layer depth. Therefore, it is recommended that the soil layers are set 

with a depth between 10 (more sensible to waterlogging) and 15 cm (less sensible to waterlogging) 

when creating soil profile in DSSAT-SBuild. The thresholds for impacting roots are default in the DSSAT-

NWheat, not cultivar specific parameters. Although in the module the waterlogging affects the ‘active’ 

root system, the root depth before waterlogging (maximum root depth) is still considered in the effect 

of waterlogging on carbohydrate accumulation, described in detail the next subsection. 

 

2.2.3. Waterlogging impact on carbohydrate accumulation 

The waterlogging effect on carbohydrate accumulation is based on a wheat roots aeration index 

(AFroot), calculated as follows: 

𝐴𝐹𝑟𝑜𝑜𝑡 = [
∑ (𝐴𝐹𝑖 𝑥 𝑅𝑜𝑜𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖)

𝑚
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑜𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦max 𝑑𝑒𝑝𝑡ℎ

]
𝑃𝐴𝐹

                                      (2) 

Where, PAF (Parameter of roots aeration index) is set to 3.0 (default), m is the deepest soil layer with 

roots (considering the maximum root depth before waterlogging), i is the rooted layer and Total root 

densitymax depth is the root density considering the maximum root depth before the root system was 

shortened by waterlogging (or total root density applying the maximum rooting depth achieved during 

the growing season). The AFroot is always computed considering the Total root densitymax depth to avoid 

an abrupt decline of the AFroot when the roots are reduced to 5 cm below the top of the shallower 

waterlogged soil layer after three days of waterlogging. For example, in a case that simulated wheat 

with roots in four soil layers with 10 cm each (summing 40 cm) and waterlogging occurred for four 
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days in the two deepest layers (with 20 cm). In the first three days, before the roots are shortened the 

AFroot was calculated considering root density in a 40 cm deep root system (20 cm not waterlogged 

and 20 cm waterlogged). However, without considering the Total root densitymax depth, in the fourth day 

(after the roots are shortened in the third day) the AFroot would be calculated considering a root depth 

of 25 cm (20 cm not waterlogged and 5 cm waterlogged). As on the fourth day, waterlogging would 

only continue in this last 5 cm layer, the new AFroot would drop abruptly. To avoid this, the AFroot 

continues to be calculated considering the maximum root depth before waterlogging. The Total root 

densitymax is considered until new roots grow and become deeper than the root depth before 

waterlogging. 

Waterlogging affects daily carbohydrate accumulation in DSSAT-NWheat according to two new wheat 

cultivar parameters. First, the cultivar sensitivity to 𝐴𝐹𝑟𝑜𝑜𝑡, considering the 𝐴𝐹𝑟𝑜𝑜𝑡 threshold value at 

which waterlogging impacts starts to affect carbohydrate accumulation (WLSI). Second, the maximum 

reduction of carbohydrate accumulation under waterlogging (WLMI). Both WLSI and WLMI vary from 

0 to 1. A wheat cultivar has maximum sensitivity to waterlogging when WLSI is 1 and WLMI is 0, and 

maximum tolerance when WLSI is 0 and WLMI is 1 (FIGURE 2). The default values of WLSI and WLMI in 

the DSSAT-NWheat ecotype parameters file are 0.2 and 0.1, respectively (FIGURE 2). 
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Figure 2. Reduction of carbohydrate accumulation as a function of root aeration factor (AFroot) in 
DSSAT-NWheat. WLSI and WLMI are two new wheat cultivar parameters in DSSAT-NWheat, 
representing when waterlogging impacts starts to affect wheat carbohydrate accumulation (WLSI – 
Water Logging Impact Start), and the maximum reduction of carbohydrate accumulation under 
waterlogging (WLMI – Water Logging Maximum Impact). The values shown are the default in the 
code, but they may be parameterized according to the wheat cultivar.  
 

2.2.4. Waterlogging impact on potential grain size 

Waterlogging before and during anthesis affects the potential grain size (Marti et al., 2015). In wheat, 

average grain size is most sensitive to biotic or abiotic stress between booting and the beginning of 

effective grain filling (Calderini et al., 2001, 2021) (SUPPLEMENTARY FIGURE S3). DSSAT-NWheat, 

computes daily a water deficit, nitrogen, heat and waterlogging stress factor, which impact potential 

growth, according to equations 3 and 4. 

 

𝑃𝑙𝑎𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑚𝑖𝑛 (𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑠𝑡𝑟𝑒𝑠𝑠 , 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛𝑠𝑡𝑟𝑒𝑠𝑠 , 𝑜𝑧𝑜𝑛𝑒𝑠𝑡𝑟𝑒𝑠𝑠 , 𝑤𝑎𝑡𝑒𝑟𝑙𝑜𝑔𝑔𝑖𝑛𝑔𝑠𝑡𝑟𝑒𝑠𝑠) 𝑥 ℎ𝑒𝑎𝑡𝑠𝑡𝑟𝑒𝑠𝑠    (3) 

𝐷𝑎𝑖𝑙𝑦 𝑤ℎ𝑒𝑎𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑥 𝑝𝑙𝑎𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠              

(4) 
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Wheat grain number per unit area is closely related to growing conditions before and shortly after 

anthesis (Fischer, 1985), when the number of fertile florets is determined and when fertile florets set 

grains (Slafer et al., 2015). This is also the period when potential grain size is set (Acreche and Slafer, 

2006; Calderini et al., 2021). DSSAT-NWheat estimates grain number in the first day of grain filling 

(phenological stage 5 in DSSAT-NWheat), based on the stem (above-ground biomass not considering 

leaves) growth from start-of-stem-growth (phenological stage 2) to anthesis (phenological stage 4). 

We added a waterlogging stress factor for potential grain size. In DSSAT-NWheat, the original potential 

average grain size is set to 55 mg of dry mass per grain (mg grain-1, this is a model parameter named 

MXGWT in the wheat ecotype file of DSSAT-NWheat). In our new approach, the potential wheat grain 

size is now based on a weighted crop stress factor between phenological stage 2 to 4, as defined in 

equations 5 and 6, after Calderini et al. (2001):  

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒𝑠𝑡𝑟𝑒𝑠𝑠 = 0.25 𝑥 𝑃𝑙𝑎𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑠𝑡𝑎𝑔𝑒 2 +  0.35 𝑥 𝑃𝑙𝑎𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑠𝑡𝑎𝑔𝑒 3 +  0.40 𝑥 𝑃𝑙𝑎𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑠𝑡𝑎𝑔𝑒 4 (5) 

 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 = 55 𝑥 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒𝑠𝑡𝑟𝑒𝑠𝑠                        (6) 

Minimum potential grain size is set to 20 mg grain-1, as shown in Figure 4. The weighting factors in 

equation 5, are defined according to the function proposed by Calderini et al. (2001).  

 

2.3. Relationship between wheat grain number per unit area and average grain size 

We analyzed the relationship between wheat grain number per unit area and wheat grain size with 

data from 3,188 experimental treatments with 221 winter wheat cultivars performed by ARVALIS from 

2014 to 2019 in different research stations in the breadbasket of France. Detailed  experimental setup 

of this data are described in Nóia Júnior et al (2023). The experiments were distributed across the 

breadbasket of France, which is a high wheat yielding region with average wheat yield of 7.4 t ha-1. 



11 July 2023 

 

 

12 
 
 

 

From the relationship between grain number per unit area and average grain size, 4 groups of the 

relationship between wheat grain number per unit area and average grain size were formed, as 

follows: 

• Potential grain yield: Group I with highest yields obtained by each cultivar across the 

breadbasket of France from 2014 to 2019. 

• Limited grain set: Group II with highest yields obtained by each cultivar, but with a grain 

number per unit area lower than 21,000 grains m-2. Ther threshold of 21,000 grains m-2 was 

selected because this was the lowest value of grain number per unit area in the potential grain 

yield Group I.  

• Limited grain filling: Group III with lowest yields obtained by each cultivar, but with a grain 

number per unit area higher than 21,000 grains m-2. 

• Limited grain set and grain filling: Group IV with lowest yields obtained by each cultivar, but 

with a grain number per unit area lower than 21,000 grains m-2. 

 

2.4. Evaluation of the adapted waterlogging module  

2.4.1. Outdoor controlled waterlogging experiment in Lleida, Spain 

To test the performance of the new waterlogging module we simulated with DSSAT-NWheat the 

waterlogging experimental setup of Marti et al. (2015). This experiment was conducted with wheat 

plants grown outdoors in the campus of University of Lleida, Spain (Latitude 41°37’47”, Longitude 

0°35’47”) in columns (84 mm of diameter and 1.25 m deep) filled with a loamy sand soil with 81% sand 

content. The soil was waterlogged through the blocking of the bottom of the columns, to prevent 

water drainage. Waterlogging condition was imposed by saturating the soil with water 1 cm above the 

soil surface. The waterlogging treatments were applied before anthesis, during 4 to 24 days 
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(SUPPLEMENTARY FIGURE S1). The experiments were free from nutritional and water deficit stress and 

pests and diseases.  

To simulate this experiment, we used the default soil parameter values for loamy sand soil in DSSAT 

version 4.8 (Hoogenboom et al., 2019), with 1.25 m depth divided in layers of 10 cm thickness. To 

create the waterlogging condition of the experiment, we set SSKS of the bottom layer at 1 cm h-1, 

which remains unchanged for the whole growing season. This resulted in undrained of excess water 

from the bottom of the soil and caused excess water to slowly return to top layers of soil surface. In 

the simulation setup, the water lost by evapotranspiration was added daily through irrigation, and in 

the phenological phase when waterlogging was applied (SUPPLEMENTARY FIGURE S1), excess irrigation 

was applied to saturate the entire soil profile. The cultivar parameters were calibrated for simulating 

the observed phenology and wheat yield in the control treatment without waterlogging (TABLE 1). 

 

2.4.2. Sensitivity analysis 

To determine the potential impact of waterlogging on simulated wheat growth with the waterlogging 

module in DSSAT-NWheat, we conducted a sensitivity analysis. The sensitivity analysis was carried out 

by simulating waterlogging starting in different phenological stages and with six different waterlogging 

durations, from 4 to 24 days. This analysis was carried out under the same soil and climate and 

management conditions as the outdoor controlled waterlogging experiment in Lleida, Spain described 

in the subsection 2.4.1. The waterlogging conditions were created by setting SSKS of the bottom soil 

layer at 1 cm h-1, which prevents water from draining from the soil and causes excess water to return 

to topsoil layers in the surface. In the simulation setup, the water lost by evapotranspiration was 

added daily through irrigation, and in the phenological phase when waterlogging was applied, excess 

irrigation was applied to saturate the entire soil profile. Simulated waterlogging was applied during 
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the following phenological stages: seedling emergence, 2-leaves, 3-leaves, onset of tillering, onset of 

stem elongation, anthesis, and onset of grain filling. 

 

2.5. Data analysis 

Data and statistical analyses were conducted using the statistical software program R (R Core Team, 

2017). To evaluate the predictive performance of the waterlogging module in DSSAT-NWheat we 

computed the relative root mean squared error (rRMSE), the coefficient of determination (r2) and the 

Willmott agreement index (d) (Willmott et al., 1985), based on the estimated wheat yield at the tested 

location together with the corresponding observed yield. The equations for the indices used to 

evaluate the model performance are presented in TABLE 2. 

Table 2. Statistical indexes and errors used for evaluating the DSSAT-NWheat performance. 

Statistical indexes and errors  Formula* 

Willmott agreement index (d) 𝑑 = 1 − 
∑ (𝑆𝑖𝑚𝑖−𝑂𝑏𝑠𝑖)𝑛

𝑖=1

∑ (|𝑆𝑖𝑚𝑖−𝑂𝑏𝑠|+ 𝑆𝑖𝑚𝑖−𝑂𝑏𝑠|)2𝑛
𝑖=1

  
 

Root mean squared error (rRMSE) 
𝑟𝑅𝑀𝑆𝐸 =  

√
1

𝑛
 𝑥 ∑ (𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)2𝑛

𝑖=1

𝑂𝑏𝑠  

⁄
 𝑥 100  

*  Simi and Obsi are the simulated and observed wheat yield; n is the number of observations; and  𝑂𝑏𝑠 

and 𝐸𝑠𝑡 are the average of Obsi and Esti, respectively.  

 

3. Results 

3.1. Review of waterlogging impacts on wheat yield components 

Waterlogging from the onset of tillering to anthesis results in a 25±10% decrease in grain number per 

unit area in the 17 reviewed articles reporting wheat waterlogging experiments (FIGURE 3). The highest 

variation in waterlogging impacts on wheat grain number per unit area (i.e., highest s.d.) are shown 

when waterlogging occurred at the onset of tillering and heading (FIGURE 3A). Grain number was less 

affected when waterlogging occurred at the onset of grain filling, with a 5±5% decrease. 



11 July 2023 

 

 

15 
 
 

 

 

Figure 3. Waterlogging impact on wheat grain number, average grain size, and grain yield. The 
impacts of waterlogging applied in different phenological stages on (a) grain number per unit area, (b) 
average grain size, and (c) grain yield. (d) Waterlogging average duration in each phenological phase. 
The 17 peer-reviewed articles are shown in SUPPLEMENTARY TABLE S1. The number of experiments (n) 
per for each phenological stage is shown in (a). Points are means ± 1 s.d. 
 

Episodes of waterlogging resulted in lower average grain size compared with the control treatments 

with no waterlogging (FIGURE 3B). Differently from the wheat grain number, the average grain size was 

more sensitive to waterlogging when it occurred during the onset of grain filling, with a 30±5% 
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decrease. Waterlogging during seedling emergence had almost no impact on average grain size. With 

the combined effect of waterlogging on average grain number and grain size per unit area, grain yield 

was more sensitive to waterlogging when it occurred during the onset of tillering, anthesis and the 

onset of grain filling, with on average 37±10%. Waterlogging impacts on grain yield were lower during 

seedling emergence. 

 

3.2. Relation between wheat grain number per unit area and average grain size 

The relation between wheat grain number per unit area and average grain size is shown here to 

demonstrate the limitations of wheat yield, either by a few grains per unit area or low grain size. In 

addition, this analysis is further evidence of the definition of the potential grain size in limited grain 

set conditions (Group II), which was used to improve the simulations of wheat growth in DSSAT-

NWheat.  

The potential wheat grain yield, with average yields above 10 t ha-1, presented an inverse linear 

relationship between grain number per unit area and average grain size in a wide experimental dataset 

from France with more than 200 winter wheat cultivars (FIGURE 4). In this case of potential yield, the 

average grain size varied from 33 mg grain-1 to 50 mg grain-1 and the grain number per unit area varied 

from 22,000 to 34,000 grains m-2. However, the highest values of grain number per unit area occurred 

simultaneously to the lowest values of grain size, as well as the highest values of average grain size 

occurred simultaneously to the lowest values of grain number per unit area.  
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Figure 4. Relationships between wheat grain number and average grain size. The potential grain yield 
(Group I) highlighted in green represents the highest recorded yields from 221 different cultivars for 
the period 2014 to 2019. Limited grain set (Group II) highlighted in black represents lowest recorded 
yields with highest grain size from 221 different cultivars for the period 2014 to 2019. Limited grain 
filling (Group III) highlighted in yellow represents lowest recorded yields with highest grain number 
from different cultivars for the period 2014 to 2019. Limited grain set and filling (Group IV) highlighted 
in red represents lowest recorded yields size from 221 different cultivars for the period 2014 to 2019. 
Data are from 3,188 experimental treatments with 221 winter wheat cultivars performed by ARVALIS 
from 2014 to 2019 in different research stations in the breadbasket of France. Circles refer to the 
observations and lines to linear regression for the data with the same color. 
 

Wheat yields between 3 and 10 t ha-1 occurred in two situations, with limited grain set or limited grain 

filling. With limited grain set, the grain number per unit area varied from 2,000 to 23,000 grains m-2, 

whereas the average grain size was 41 to 48 mg grain-1. With limited grain filling, the grain number 

per unit area varied from 24,000 to 34,000 grains m-2, whereas the average grain size was 25 to 37 md 

grain-1. In these cases, the linear relationship between grain number and grain size is not as strong as 

was for the potential grain yields. The lowest yields (< 4 t ha-1) occurred with both, limited grain 

number and grain filling (Group IV). This combination resulted in average grain size with 20 md grain-

1, and grain number per unit area as low as 2,000 grains m-2.  
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Average grain size showed an average value of 44 mg grain-1 for the limited grain set group. A limited 

grain set results in fewer grains per unit area, but the average grain size also becomes limited, not 

exceeding 48 mg grain-1, with an average of 44 mg grain-1. 

 

3.3. DSSAT-NWheat performance to simulate the impacts of waterlogging on wheat yield 

components. 

We tested the improved DSSAT-NWheat to simulate the impacts of waterlogging on yield and yield 

components, with an outdoor controlled waterlogging experiment. First, the simulations were done 

with the default DSSAT-NWheat without any improvements to simulate waterlogging impacts. As part 

of this, the simulated wheat yield was 9.3 t ha-1, regardless of the duration of pre-anthesis 

waterlogging (FIGURE 5). Second, the simulations were performed with DSSAT-NWheat with added 

modules for simulating the impacts of waterlogging on wheat roots (R) and carbohydrate 

accumulation (CA). In this case, the simulated wheat yield shows a decline due to pre-anthesis 

waterlogging, of almost 3 t ha-1 with 24 days long waterlogging period (FIGURE 5A). This yield decline 

is mainly due to the decreased simulated grain number (FIGURE 5B), with increased grain size 

compensating for it (FIGURE 5C). The simulated grain size increased up to 57% compared to the 

simulations with DSSAT-Wheat without any improvements to simulate waterlogging impacts. To 

better simulate the impacts of waterlogging on yield components, we added an impact of 

waterlogging on potential grain size (GS). Considering decreased rooting depth, carbohydrate 

accumulation and potential grain size under waterlogging conditions, the new improved DSSAT-

NWheat satisfactorily simulated wheat yield loss due to waterlogging, with lower grain number and 

grain size (FIGURE 5).  
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Figure 5. Performance of the improved DSSAT-NWheat in simulating pre-anthesis waterlogging 
impacts on wheat. Performance of DSSAT-NWheat in simulating pre-anthesis waterlogging impacts 
on wheat (a) grain yield (b) grain number and (c) grain size. Data (points) are from an outdoor 
controlled experiment where wheat plants where waterlogged for 0 to 24 days before anthesis (Marti 
et al., 2015). Simulations (lines) were done with DSSAT-NWheat with no waterlogging module (Sim. 
NWheat), with the waterlogging module accounting only for the impacts of waterlogging on wheat 
roots and carbohydrate accumulation (Sim. NWheat improved R + CA) and with the waterlogging 
module accounting for the impacts of waterlogging on wheat roots, carbohydrate accumulation and 
potential grain size (Sim. NWheat improved R + CA + GS). The acronyms R represents the waterlogging 
module with impacts on wheat roots, CA in carbohydrate accumulation and GS in potential grain size.  
 

With the new improved DSSAT-NWheat the rRMSE between simulated and observed waterlogged 

grain yield, grain number per unit area and grain size was 18% (TABLE 3). For grain yield and grain 

number r2 was 0.68, and for average grain size r2 was 0.30. The accuracy of the model, represented by 

the index d, was 0.86 for grain yield, 0.79 for grain number per unit area and 0.38 for average grain 

size. Even with the improvements, the DSSAT-NWheat tends to underestimate the average grain 

number and to overestimate the average grain size, particularly when waterlogging occurred from 4 

to 12 days (FIGURE 5C).  

 

Table 3 Performance of the improved DSSAT-NWheat in simulating pre-anthesis waterlogging 
impacts on wheat. Data are from an outdoor controlled experiment where wheat plants where 
waterlogged for 0 to 24 days before anthesis (Marti et al., 2015) with the DSSAT model with a 
waterlogging module affecting wheat roots, carbohydrate accumulation potential grain size. Statistical 
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indices are the relative root mean square error (rRMSE), the coefficient of determination (r2) and the 
Willmott agreement index (d) (Willmott et al., 1985).  
 

Wheat yield components rRMSE (%) r2 d 

Grain yield 18 0.69 0.86 
Grain number 18 0.68 0.79 
Grain size 18 0.30 0.38 

 

 

3.4. Sensitivity analyses  

The capacity of the model to simulate the impacts of waterlogging on wheat growth variables and 

yield components is shown through the sensitivity analysis, with waterlogging occurring at different 

phenological stages and with different durations (FIGURE 6). For winter wheat (cultivar Soisson), 

simulated waterlogging starts to impact yield components during the onset of tillering, except for root 

biomass. Simulated root biomass is less impacted by waterlogging when it occurred in the early 

phenological stages (FIGURE 6B). The highest impacts on root biomass occur during the onset of grain 

filling, with a reduction of up to 60% after 24 days of waterlogging compared to control treatment 

with no waterlogging. The biomass at maturity and the grain number per unit area are affected from 

the onset of tillering to the onset of grain filling, with the highest impact occurring at the onset of stem 

elongation (FIGURE 6A AND 6D). At this stage, both biomass at maturity and grain number per unit area 

decrease by 50% with 24 days of waterlogging.  
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Figure 6. Sensitivity analysis of the impacts of waterlogging on winter wheat growth simulated by 
DSSAT-NWheat. Impacts of simulated waterlogging on wheat (a) biomass at maturity, (b) root 
biomass, (c) leaf area index, (d) grain number per unit area, (e) average grain size and (f) grain yield. 
The sensitivity analysis was carried out by simulating waterlogging starting in different phenological 
stages, from wheat seedling emergence to the onset of grain filling, with six different durations varying 
from 4 to 24 days as schematically shown in SUPPLEMENTARY FIGURE S1.  Sensitivity analysis of the 
impacts of waterlogging on spring wheat are shown in SUPPLEMENTARY FIGURE S4. 
 

Leaf area index is impacted by waterlogging from 3-leave-stage to the onset of stem elongation, with 

the highest sensitivity at the onset of tillering. The average grain size decreased with waterlogging 

from the onset of stem elongation to the onset of grain filling, and it declines more than 50% with 24 

days of waterlogging in the onset of grain filling. As a result of the decline of all wheat yield 

components under waterlogging conditions, grain yield can decrease by up to 65% compared to the 
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control (with no waterlogging), with waterlogging occurring from the onset of stem elongation to the 

onset of grain filling.  

 

4. Discussion 

4.1. Modeling performance of the new waterlogging module in DSSAT-NWheat 

Oxygen availability is restricted in waterlogged soils, suppressing roots respiration and causing 

decreased root activity (van Veen et al., 2014). Plants can temporarily maintain energy production 

during waterlogging via glycolysis and ethanol fermentation, but prolonged waterlogging leads to 

accumulation of toxic metabolites and increased reactive oxygen species leading to cell death (Pan et 

al., 2021). This causes inhibition of root growth and misfunctioning in transport of nutrients and water 

to shoots, and death of roots (Herzog et al., 2016). Reduction of root functioning together with 

increased nutrient leaching (due to excessive soil water drainage) may cause nutrient deficit stress 

(Salazar et al., 2014; Kaur et al., 2020). Even under non-nutrient deficit conditions, waterlogging limits 

root water conductivity causing stomatal closure, reducing carbohydrate accumulation and crop 

growth (Else et al., 2001; Jitsuyama, 2017). We demonstrated the ability of a new waterlogging 

module in DSSAT-NWheat to simulate yield in response to waterlogging in an outdoor controlled 

waterlogging experiment. For an outdoor controlled experiment, the improved version of DSSAT-

NWheat presented similar performance with r2 of 0.69 and rRMSE 18%. For a different controlled 

experiment, the APSIM crop model improved for simulating the impacts of waterlogging on wheat 

carbohydrate accumulation, presented  r2 of 0.70 and rRMSE 11% to simulate wheat yield losses to 

waterlogging (Liu et al., 2023).  

 

4.2. Simulated impacts of waterlogging on wheat yield components 
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The DSSAT-NWheat model simulates grain number per unit area as a function of the stem weight in 

the first day of grain filling, considering a crop parameter, ADD parameter name/acronym, which 

varied from 20 to 32 grain per grams of stem dry mass. After the grain number per unit area 

simulation, the DSSAT-NWheat simulates the carbohydrate accumulation in grains. The maximum 

grain size is limited with the parameter name/acronym MXGWT. With few grains, all the carbohydrate 

assimilated during grain filling plus the carbohydrate remobilized from the shoot is distributed to the 

few grains, causing the simulation of heavy grains (i.e. high average grain size). High average grain size 

may also be caused due to the non-development and growth of potential grains close to the labile 

florets, positioned more distally and with constitutively low grain size, which usually occur during 

limited grain set situations. In this case, these potential grains with low grain size would not succeed 

(would not grow and become grains), resulting in an increase in the average grain size of harvested 

grains (because only the bigger grains would be harvested) (Beral et al., 2022). Waterlogging may also 

accelerate the flag leaf senescence (Li et al., 2012), which alters post-anthesis biomass production and 

translocation to grain, impairing the filling of small grains, that would not grow to the point of being 

harvested. 

This relation between grain number per unit area and grain size was here demonstrated for 

waterlogging simulations before wheat anthesis, which resulted in few but heavier grains on average. 

To minimize the overestimation of grain size, we implemented an equation to limit the potential grain 

size when abiotic stress occurs before anthesis similar to observations made experimentally (Liu et al., 

2020a). This also improved the simulation of waterlogging impact on grain size. Grain volume 

enlargement involves the coordinated expansion of the pericarp of maternal origin and the 

endosperm of the seed, and is almost complete when grain filling begins (Asseng et al., 2019; Calderini 

et al., 2021). The expansion of these tissues determines the grain carbohydrates and proteins storage 
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capacity and therefore the potential grain size (Herrera and Calderini, 2020). The growing conditions 

around anthesis are therefore critical for potential grain size determination, a time when 

simultaneously also grain number per unit area is set  (Acreche and Slafer, 2006; Calderini et al., 2021; 

Slafer et al., 2023). In addition to the impacts of waterlogging on the potential grain size, grain size 

may also be affected by any other abiotic constraints at this developmental stage, like heat, drought, 

ozone and nitrogen deficit, all factors considered in DSSAT-NWheat. The combined impact of these 

factors on grain size determination still needs to be tested with field data.  

 

4.3. Factors that affect the intensity of waterlogging impacts on wheat growth 

The impacts of waterlogging on wheat growth varies particularly according to its duration and crop 

phenological stage. We showed that wheat may be less affected by waterlogging during the seedling 

emergence stage, and can drop drastically during anthesis and grain filling, either due to lower grain 

numbers or grain size (FIGURE 3), which was also simulated with the DSSAT-NWheat (FIGURE 6). In 

addition, waterlogging impacts on wheat and on any crop also vary according to its depth, air 

temperature, soil type, mineral nutrition management and genotype, factors that were not 

considered in this study (Herzog et al., 2016). For example, lower air temperatures results in slower 

soil oxygen depletion making less severe the impacts of waterlogging on crop growth (Trought and 

Drew, 1982). These factors influencing the impact of waterlogging on wheat growth should be 

addressed in future studies. 

 

5. Conclusions  

The lack of waterlogging modules in crop simulation models causes concern about underestimation 

of projected negative impacts of climate change on crop productivity (van der Velde et al., 2020; 
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Webber et al., 2020). The new DSSAT-NWheat model with a coupled waterlogging module may reduce 

uncertainties in future impact studies. Reduced wheat yields due to excess of rainfall, which so far 

have not been simulated correctly on most crop models, can now be addressed with the model 

proposed in this study. For example, waterlogging in 2016 is estimated to have caused 26% of the 

France's biggest yield decline since 1960 (Nóia Júnior et al., 2023), an unforeseen event for seasonal 

forecasting systems including crop simulation models (Ben-Ari et al., 2018). This extreme event caused 

partly by excessive rainfall, may also involve yield loss from increased crop diseases and heavy rainfall 

which are also usually neglected by crop simulation models. Only with continuous improvements of 

crop models to simulate the impacts of extreme climate events on crop growth, more robust 

simulations will be possible in the future. With these improvements, crop models will become capable 

to assist in understanding how the complexity of climate change will impact future crop production as 

a prerequisite to develop adaptation strategies. 
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1. Supplementary Tables 

Table S1. Published peer-reviewed articles on the effects of waterlogging on wheat growth. Growth 
stages from the Zadoks growth stages scale (ZADOKS et al., 1974).  

ID Growth stage 
Duration of 

waterlogging (days) 
References 

Web-
link 

1 25 47, 58 (Dickin and Wright, 2008) here 

2 71 30, 5 (Zhou et al., 2018a) here 

3 71, 20 4, 7 (Wang et al., 2016) here 

4 37 7 (Gao et al., 2021) here 

5 50, 68 14 (Ploschuk et al., 2020) here 

6 71,39 7, 2 (Li et al., 2011) here 

7 71 15 (Tan et al., 2008) here 

8 61 5, 10, 15, 20, 25, 50 (Olgun et al., 2008) here 

9 31, 39, 45, 50, 58, 64 4, 8, 12, 16, 20, 24 (Marti et al., 2015) here 

10 10, 20, 30, 40 15, 20 
(de San Celedonio et al., 

2018) 
here 

11 32, 50 12 (Ding et al., 2018) here 

12 14 12 (Farkas et al., 2020) here 

13 61 14 (Zhou et al., 2018b) here 

14 30, 50, 60 5, 10, 15 (Martínez et al., 2019) here 

15 33, 45, 65 10 (Ding et al., 2020) here 

16 10, 20, 25, 40, 50, 60, 71 15, 20 
(de San Celedonio et al., 

2014) 
here 

17 20, 30, 40, 61 14, 28, 35 (Wu et al., 2018) here 
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Table S2. Soil drainage classes in DSSAT-SBuilt and their respective soil drainage rate (SLDR). 

Soil drainage classes in DSSAT SLDR 

Very Poorly 0.01 

Poorly 0.05 

Somewhat poorly 0.25 

Moderately well 0.4 

Well 0.6 

Somewhat excessive 0.75 

Excessive 0.85 

Very excessive 0.95 
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2. Experiments characterization  

2.1. Controlled experiment of waterlogging on wheat in Spain 

 

Figure S1. Schematic representation of the controlled experiment of waterlogging on wheat done 
by Marti et al. (2015). This experiment was performed in Lleida, Spain with the winter wheat cultivar 
Soissons.  
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3. DSSAT-Nwheat with waterlogging routine 

3.1. DSSAT-Sbuild 

 
Figure S3. Screenshot of the DSSAT-SBuilt graphical user interface. The user selection of the soil 
drainage rate (SLDR) is highlighted. The correspondent values for each of the drainage classes are 
shown in TABLE S2. 
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3.2. Wheat average potential grain size 

 

 
Figure S3. Schematic diagram of the sensitivity of average grain dry mass in wheat during the crop 
growth cycle. Adapted from Calderini et al. (2001).  
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Figure S4. Sensitivity analysis of the impacts of waterlogging on spring wheat growth simulated by 
CSM-NWheat. Impacts of simulated waterlogging on wheat (a) biomass at maturity, (b) root biomass, 
(c) leaf area index, (d) grain number per unit area, (e) average grain size and (f) grain yield. The 
sensitivity analysis was carried out by simulating waterlogging starting in different phenological 
stages, from wheat seedling emergence to the onset of grain filling, with six different durations varying 
from 4 to 24 days as schematically shown in SUPPLEMENTARY FIGURE S2.   
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3.3. Waterlogging module comparison 

 

Figure S5. Waterlogging impacts on wheat with different waterlogging modules approaches. 
Impacts of waterlogging applied during (a) booting (b) anthesis and (c) grain filling on grain yield 
simulated using a waterlogging module implemented by Shelia et al (2019) in DSSAT-Nwheat and the 
improved waterlogging module for DSSAT-Nwheat proposed in this study.  
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A B S T R A C T   

National crop yields are difficult to estimate during a crop season and are usually only known after crop harvest. 
The goal of this study was to develop a simple methodology to estimate national wheat yields that could be easily 
applied to any country and crop. Twenty years of readily available global gridded monthly climate data (0.5◦) 
across wheat cultivated areas of a country were correlated with national wheat production-weighted mean 
climate indices to determine the single most representative climate grid cell for the entire wheat region. The 
same 20 years of monthly climate data from this most representative grid cell were then used to build statistical 
models to estimate trend-corrected national wheat yields, including a Stepwise Regression function (Stepwise) 
set with the Bayesian information criterion (BIC), a least absolute shrinkage and selection operator algorithm 
(Lasso), and a Random Forest machine-learning algorithm (Random Forest). The best of the three models esti
mated trend-corrected national yield variability from 1998 to 2021 for Brazil with an rRMSE of 9.1%. In an 
additional validation, the same approach was then applied to national wheat yields in France and Russia 
resulting in an rRMSE from a Leave One Out Cross Validation (LOOCV) of 6.7% and 6.4%, respectively. As the 
statistical models employed monthly climate data from within a season, national yield predictions are possible 
during a cropping season before crop harvest by using the best performing model with the predictability of a 
national yield further improving towards harvest. This approach should be applicable to any crop and nation.   

1. Introduction 

National crop yield estimating approaches are vital for policy makers 
and agricultural commodity traders to plan ahead and adjust strategies 
to expected national crop production. In particularly low yielding sea
sons, an early national crop yield estimation before harvest can assist to 
minimize possible disruptions in food supply (Abel et al., 2019). How
ever, national crop yields are difficult to estimate during the crop season 
and are usually only known after crop harvest. In addition, an increased 
variability in weather patterns in recent years has made national crop 
yield forecasts even more difficult (van der Velde et al., 2020). 

There are several techniques for yield forecasting with the traditional 
methods based on field surveys with observations and measurements 
made by crop experts throughout the growing season (Basso and Liu, 
2019). This method is time consuming and subject to sample bias. Other 
methods include the use of remote sensing and crop simulation models 

(Jones et al., 2003; Keating et al., 2003) and statistical models (Lobell 
and Burke, 2010). Remoting sensing methods often rely on calibrated 
relationships between vegetation indices and yield, which are specific to 
a year and location, frequently requiring ground measurements (Lobell 
et al., 2015). Crop simulation models can predict growth and develop
ment for many crops, but require detailed information for initial con
ditions, soils, cultivars and crop management (Boote et al., 2013), often 
hindering their use at national level. In addition, some crop models do 
not consider pest, diseases, excess water and frost damage. Statistical 
models can be built by using historical yield and climatic variables and 
may include other important factors for crop yield, such as frost damage 
and climate-induced pest and disease damage (Lobell and Asseng, 
2017). The drawbacks of the statistical models for estimating national 
crop yield are related to the large amount of climate data required to 
build and run such a model, considering that agricultural systems are 
highly variable across a country. 
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While numerous sophisticated yield estimation methods exist, the 
complexity of their implementation can be an impediment to growers, 
traders and policy makers, particularly in less resourced countries. Thus, 
a simple national crop yield estimating system should be accurate, 
precise, and easily replicable for any country of the world. For this, the 
estimating system must be based on few and accessible inputs, such as 
few locations and monthly climatic variables. Some studies have 

suggested monitoring small representative agricultural regions within a 
country to estimate national crops yield by remoting sensing (Petersen, 
2018; Kastens et al., 2005), but the climatic representativeness of these 
regions to national climate has not been tested. The concept of collecting 
data of small samples representing a whole is widely applied for political 
and demographic census (Zahnd et al., 2019; Wardrop et al., 2018; 
Schug et al., 2021), but with few applications in agriculture. 

Fig. 1. Flowchart to derive statistical models based on monthly and seasonal climate data from a single grid cell of a cropping area to estimate a country wheat yield.  

Fig. 2. Wheat production areas of (a) the world (b) for Brazil, (c) for France, and (d) for Russia after Monfreda et al. (2008). Yellow circles in b-d indicate the center 
of the grid cell for the best correlation between seasonal mean temperature and rainfall of the national mean (based on all grid cells of the wheat area) and a single 
grid cell within the national wheat area. 
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Accordingly, the objective of this study was to develop a method for 
estimating national yields from a single representative point within a 
national crop area, developed and tested in three wheat-producing 
countries. 

Brazil’s wheat yield is about 2.6 t/ha and the crop in southern part of 
the country is planted in April/May, flowers in July/August and is 
harvested in September/October. It has a slightly shorter growing sea
son towards the warmer north (Paraná state) and a slightly longer 
growing season towards the cooler south of the Brazilian wheat growing 
region (highlands of Santa Catarina and Rio Grande do Sul states). 
France is a high-yielding country with yields of about 6.9 t/ha; planting 
occurs from September to November with winter dormancy in the main 
wheat area in the cooler north. There is less winter dormancy towards 
the warmer south, which has less wheat, and harvesting starts in June, 
whereas the northern regions delay harvesting until August. Wheat 
yields in Russia are about 2.7 t/ha; the crop is planted in October, fol
lowed by dormancy over winter, and regrow in March/April and harvest 
in July. Spring wheat is planted in the north of Russia in May, flowers in 
July and is harvested in August/September (USDA F A S, 2020). A 
simple method for national yield forecasting from a single representative 
point within the national cropping area was developed for wheat in 
Brazil and then evaluated for wheat in France and Russia, countries with 
contrasting wheat production systems and growing conditions. 

2. Materials and Methods 

2.1. Study steps 

The estimation of wheat yield at a national level was carried out for 
three countries, following several steps (Fig. 1). First, national country 
wheat yields for Brazil using 20 growing seasons (1998–2017) were 
detrended to remove the trend of increased yield due to the imple
mentation of new technologies, as suggested by Guarin et al. (2020). 
Second, the country wheat cultivated area for Brazil and its correspon
dent wheat growing season was obtained. Third, a single grid cell within 
the country’s wheat growing region which best correlates with the 
country seasonal mean temperature and rainfall across the wheat 
growing seasons for the same 20-year period was identified. Fourth, a 
statistical regression model for national wheat yields in Brazil was 

developed using national wheat yields and statistically significant 
monthly and seasonal climate variables for this one single grid cell with 
three Variables Selector Methods, including: Stepwise Regression, Lasso 

Fig. 3. Comparison between the historical seasonal (a, c, e and g) and monthly (b, d, f and h) mean, maximum and minimum temperature and rainfall (1998–2017) 
in average of the entire wheat area of Brazil and for the most representative location within this area. RMSE (Root mean squarer error), r2 (coefficient of deter
mination) and d (Willmott index of agreement). 

Table 1 
Historical monthly and seasonal average of mean, maximum and minimum 
temperature, and rainfall; and Pearson’s correlation coefficient for the monthly 
and seasonal climatic variables and national wheat yield of Brazil. The data were 
normalized by dividing the difference between each data point and the arith
metic mean of the variable of interest by the standard deviation of the variable.  

Climatic variables Historical average (1998 
– 2017) 

Pearson’s correlations with 
wheat yield 

Tmean-May (◦C) 17.0 -0.4 * 
Tmax-May (◦C) 22.2 -0.4 * 
Tmin-May (◦C) 11.8 -0.4 * 
RainfallMay (mm) 168.4 -0.2 * 
TRMay - -0.4 * 
Tmean-June (◦C) 15.9 -0.3 
Tmax-June (◦C) 21.1 -0.2 
Tmin-June (◦C) 10.7 -0.3 
RainfallJune (mm) 127.6 -0.2 * 
TRJune - -0.3 * 
Tmean-July (◦C) 15.8 0.0 
Tmax-July (◦C) 21.9 0.0 
Tmin-July (◦C) 9.8 0.0 
RainfallJuly (mm) 115.4 -0.2 
TRJuly - -0.2 
Tmean-August (◦C) 17.6 -0.5 * 
Tmax-August (◦C) 24.0 -0.4 * 
Tmin-August (◦C) 11.2 -0.5 * 
RainfallAugust (mm) 101.0 -0.3 
TRAugust - -0.5 * 
Tmean-September (◦C) 19.7 -0.1 
Tmax-September (◦C) 25.5 0.0 
Tmin-September (◦C) 13.9 -0.2 
RainfallSeptember 

(mm) 
136.4 -0.2 

TRSeptember - -0.3 
Tmean-Season (◦C) 17.2 -0.5 * 
Tmax-Season (◦C) 22.9 -0.4 * 
Tmin-Season (◦C) 11.5 -0.6 * 
RainfallSeason (mm) 648.9 -0.4 * 
TRSeason - -0.6 * 

An “* ” indicates statistically significant at the 0.05 significance level. 
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Regression, and Random Forest. After the models were developed and 
analyzed for Brazil, the procedure was evaluated by applying it to two 
independent additional national wheat crops in France and Russia. 

2.2. Climate and wheat yield data 

Historical climate data were taken from the Climate Research Unit 
(CRU) Time-Series (TS) version 4.02 database (Harris et al., 2020). The 
dataset was derived from statistically interpolating monthly observa
tions from weather stations across the globe and consisted of gridded 
(0.5◦x 0.5◦ resolution) monthly mean minimum, maximum, and mean 
temperature, and precipitation data were from 1998 to 2020. Since solar 
radiation is less variable among years and is correlated with rainfall, this 
variable was not considered. National historical observed wheat yield 
data were obtained from the Food and Agricultural Organization 
Corporate Statistical Database (FAO stat, 2022). Yield data from 1998 to 
2017 were trend-corrected by removing a linear technology trend. 
Although wheat yield data prior to 1998 are available, they were not 
used due to uncertainties when removing historical wheat yield tech
nology trend longer than 20 years (Guarin et al., 2020). The global 
geographic distribution of wheat was from a global gridded dataset with 
weighted cells, in m2, for the wheat growing regions within each country 
(Monfreda et al., 2008) as shown in Fig. 2. 

2.3. Aggregating climate national data during the wheat growing season 

A growing season is the time frame between average planting and 
harvesting dates for a location. It extended from the first day of the 
planting month to the last day of the harvesting month. Information 
about planting and harvest month were from United States Department 
of Agriculture Crop Calendars (USDA F A S, 2020). Planting and har
vesting months for Brazil are May and September, for Russia October 
and July for winter wheat and May and September for spring wheat, and 
for France October and July, respectively. Using the geographical dis
tribution of wheat within a country, the wheat area per grid cell and 
growing season period, national production-weighted average mini
mum, maximum, and mean temperatures, and average total precipita
tion were calculated. The grid cells within each country were weighted 
using the production of wheat per grid cell, and divided by the combined 
wheat production of the country. 

2.4. Finding the representative location and model building 

The seasonal climate data for each grid cell within Brazil were 
correlated with the country average seasonal mean temperature and 
accumulated seasonal rainfall climate data across the growing seasons 
(1998–2017), weighted by production. The country weighted seasonal 
climate data were calculated considering the contribution of each grid 

Fig. 4. Trend-corrected observed wheat yield (black line) (IBGE, 2022) and estimated from LOOCV (green line) and from unseen validation test (brown line) wheat 
yield from the regression model based on climate variables at one grid cell of the wheat growing region in Brazil (1998–2017), with (a) Stepwise, (b) Lasso and (c) 
Random Forest Variables Selector Methods. The RMSE (Root Mean Squared Error), rRMSE (relative Root Mean Squared Error) and the mean absolute percentage 
error (MAPE) are from LOOCV and unseen validation test. 

Fig. 5. Sensitivity analysis for monthly and 
seasonal climatic variables used to predict 
wheat yield in Brazil with Random Forest 
Method. A sensitivity analysis was performed 
by removing individually each of the (a) 
monthly and seasonal climatic variables avail
able for Random Forest selection, as well as, (b) 
all seasonal and monthly individual climatic 
variables. The red dashed line corresponds to 
the reference rRMSE, when all climatic and 
seasonal variables were used. To perform the 
sensitivity analysis, the variables were individ
ually removed from the set of variables avail
able for Random Forest selection, before model 
training.   
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cell to the national wheat production, i.e. seasonal climate of high wheat 
producing grid cells had the highest weight in the country seasonal 
climate. The root mean square error (RMSE) for temperature and pre
cipitation was calculated by comparing the seasonal single grid cell 
values with the country weighted seasonal climate. The obtained RMSE 
for temperature and precipitation was divided by the average country 
weighted seasonal temperature and precipitation, resulting in the rela
tive RMSE for each climate variable. The single grid cell with the lowest 
average relative root mean square error (rRMSE) in comparison to the 
country average seasonal temperature and precipitation was selected as 
the most representative grid cell. This grid cell for a country was then 
used to build a multiple regression model based on monthly and sea
sonal climate data to estimate trend-corrected national wheat yields. 
Two additional variables were added: TR and RainfallSeason, represent
ing the average of the standardized rainfall over the standardized Tmean 
and average seasonal rainfall, respectively. We first computed the 
Pearson’s correlation for each independently variable and selected a 
subset of the variables which were statistically significant at alpha 
= 0.05. A subset of monthly and seasonal climate variables was then 
selected using three methods: a Stepwise Regression (Stepwise) function 
step() set with the Bayesian information criterion (BIC), least absolute 
shrinkage and selection operator algorithm (Lasso), and a Random 
Forest machine-learning algorithm (Random Forest) being all performed 
in RStudio (R Core Team, 2017; Team Rs, 2020). The Stepwise Regres
sion with a forward regression allowed for automated variable selection 
by choosing the best subset of variables that minimizes the BIC when 
building the regression equation. It does so by building multiple models 
based on variations of the input variables, calculating the BIC for each 
model, and then selecting the model with the lowest BIC. This method 
was based on recent studies with the objective of estimating national 
wheat yield (Nóia Júnior et al., 2021; Ben-Ari et al., 2018). The Lasso 
Regression reduces estimated coefficients toward zero and so reduces 
likelihood of overfitting data, and the number of features. The Random 
Forest is an ensemble learner based on randomized decision trees and 

does not make underlying assumptions of data and so can deal with 
collinearity, being less influenced by outliers (Strobl et al., 2008; Svetnik 
et al., 2003). However, Random Forest does not have equations similar 
to other regression methods and the Gini index is a general indicator of 
feature relevance (Menze et al., 2009). The original model building 
approach, using each of the three methods was first performed with 
wheat data from Brazil. The same approach was then repeated as a 
validation for wheat and independent data from France and Russia. 

2.5. Statistical and sensitivity analysis and in-season forecasting 

The climatic representability of the single grid cell of Brazil, as well 
the ability of the simple country crop wheat yield model to estimate 
national yield for each country, were determined by the coefficient of 
determination (r2), as a measure of precision, and by the agreement 
index (d) (Willmott et al., 1985), as a measure of accuracy. The per
formance of the wheat yield forecasting models for each country was 
tested with a leave-one-out cross validation (LOOCV). First a model was 
built using each of the three Variables Selector Methods tested, with 19 
of the 20 years (from 1998 to 2017) to select the best subset of variables, 
and then it was tested on the excluded year (Cross-validation). This 
process was repeated for each year for a total of 20 interactions. In 
addition, the model was validated with four unseen years in Brazil (from 
2018 to 2021) and three unseen years in Russia and France (from 2018 
to 2020) (Wheat yield data for the 2021 cropping season was not 
available in FAOstat for Russia and France). The mean absolute per
centage error (MAPE) and RMSE were then calculated based on the 
predicted yield of the test year and the corresponding observed national 
wheat yield. The relative root mean square error (rRMSE) was also 
calculated, as the RMSE divided by the average observed trend correct 
yield in each country. 

A sensitivity analysis with the seasonal and monthly climatic vari
ables available for building the statistical wheat yield models for Brazil, 
was performed with Random Forest Variable Selector Method. To do so, 

Fig. 6. Trend-corrected observed national wheat yield (black line) (IBGE, 2022) and estimated national wheat yield from LOOCV (green line) and from unseen 
validation test (brown line) from three regression models based on climate variables at one grid cell of the wheat growing region in (a-c) Russia and (d-f) France, 
using (a and d) Stepwise, (b and e) Lasso and (c and f) Random Forest for 1998–2017. The RMSE (Root Mean Squared Error), rRMSE (relative Root Mean Squared 
Error) and the mean absolute percentage error (MAPE) are from LOOCV and unseen validation test. 
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the statistical model building process was computed several times, al
ways leaving one single climatic variable out, in two different ways: 
leaving out of the analysis (i) individual seasonal and monthly climatic 
variables, and (ii) a specific climatic variables in all months, i.e. leaving 
out rainfall (or minimum, or maximum, or mean temperature), of the 
season and all months. The relative root mean square error (rRMSE) 
from LOOCV was calculated each time the sensitivity analysis was car
ried out, to identify the importance of each climate variable for the 
statistical model built. 

An in-season analysis was performed to identify the wheat yield 
forecast performance of the statistical model during the wheat season in 
Brazil, France and Russia. This was carried out at the beginning of each 
month during the wheat cropping-season for each country, considering 
past observed monthly climatic data for the season, and the five-last year 
average of monthly climate data as expected climate until the end of the 
season. With the same approach, seasonal climatic variables were also 
updated during the season. Because the forecasts are made on the first 
day of each month during the wheat cropping-season, the estimate in the 
month of August (which is performed on the 1st August) for example, 
reflects what happened in all of July and not in August. The rRMSE from 
LOOCV was calculated during the season (i.e. the models were re-trained 
with 19 of the 20 years (from 1998 to 2017) and then it was tested with 
forecasting the excluded year. This process was repeated for each year 
for a total of 20 interactions, and the rRMSE was calculated considering 
the excluded year and averaged over the 20 tests and average over the 
20 tests) and compared to the rRMSE of the average wheat yield of the 
last five cropping-season as another simple benchmark for yield ex
pected for the next cropping season. And, spring and winter wheat were 
not considered separately for simplicity of the approach. 

3. Results 

3.1. Performance of a single location to represent the country climate 
inter-annual variability in Brazil 

In Brazil, the most representative climatic grid cell was in the central- 
western part of the wheat cropping area (Fig. 2b). We were able to 
determine the climatic grid cell performance by comparing it to the 
country-wide climatic averages. A single grid cell was able to capture the 
inter-annual monthly mean temperature (Fig. 3a), monthly mean 
maximum temperature (Fig. 3e) and monthly mean minimum temper
ature (Fig. 3g), and monthly accumulated rainfall (Fig. 2c). The RMSE 

was 0.38 ◦C, 0.54 ◦C and 0.49 ◦C for the mean (Fig. 3b), maximum 
(Fig. 3f) and minimum temperature (Fig. 3h), respectively. For monthly 
rainfall, the RMSE was 25.1 mm (Fig. 3d). The RMSE was 2% of the 
average monthly mean and maximum temperature, 4% of the average 
monthly minimum temperature and around 20% of the monthly accu
mulated rainfall. The precision (r2) and accuracy (d) of the single grid 
cell to represent the national inter-annual climate variability of monthly 
mean, maximum and minimum temperature was 0.97, for rainfall, r2 

was 0.84, and the d index was 0.94. 

3.2. A simple country wheat yield model and its performance for Brazil 

Using climate data from a representative single grid cell for the Brazil 
wheat cropping area, the historical series of monthly climatic variables 
were plotted against the historical national trend-corrected yields. 
Among the variables with a significant Pearson’s correlation with wheat 
yield, the Tmin-season and TRseason index presented values of − 0.6, being 
the ones with the highest Pearson’s correlation (Table 1). These signif
icant variables were used to build national wheat yield estimation 
models based on three different Variables Selector Methods, the Step
wise, Lasso and Random Forest Approaches, and their performance is 
presented in Fig. 4. 

The accuracy and precision of the wheat yield estimation approach 
varied with the Variables Selector Method. The Stepwise, Lasso, and 
Random Forest methods yielded a RMSE of 381, 386, 255 kg ha-1, and 
MAPE of 9.98%, 9.9%, 6.2%, respectively from the LOOCV. 

3.3. Sensitivity analysis of monthly and seasonal climatic variables with 
Random Forest Method 

A sensitivity analysis of monthly and seasonal climatic variables was 
carried out for the Random Forest Method, which presented the highest 
performance for estimating wheat yield in Brazil (Fig. 4). The rRMSE 
from LOOCV for the Random Forest model, using all the climatic and 
seasonal variables is 11% (red dashed line in Fig. 5), but it can drop to 
10.4% or increase to 12.2%, with the removal of monthly and seasonal 
climatic variables of the set of variables available for Random Forest 
selection (Fig. 5). The removal of the variable RainfallSeason increased 
rRMSE to 12.2%. The removal of the variable RanfallJune, decreased 
rRMSE to 10.4% (Fig. 5a). 

In addition, a sensitivity analysis for the climate variables was also 
performed. In this analysis, all monthly and seasonal climatic variables, 

Fig. 7. Relative Root Mean Squared Error (rRMSE) of an in-season wheat yield forecast (blue dashed line) (average of 20 years, 1998–2017) for (a) Brazil, (b) France 
and (c) Russia. The forecasts were made with a Random Forest model in the beginning of each month, considering past observed monthly and seasonal climate data. 
The red dashed line shows the rRMSE when using the last five years average yield as predicted yield for the following year. The wheat yield forecasts are made on the 
first day of each month presented on the x-axis. Thus, the forecast in the month of August (performed on the 1st August) reflects what happened in all of July and not 
in August. 
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e.g. Tmean, were removed from the set of variables available for Random 
Forest selection. The rRMSE increased to 13.1% when removing rainfall, 
and decreased to 10.7% when removing Tmean (Fig. 5b). 

3.4. Applying the method to France and Russia 

As an independent validation of the method developed for wheat 
forecasting in Brazil, the same approach was repeated for forecasting 
national wheat yield for France and Russia. The most representative 
single grid cell in France was located in the central part of the country 
(Fig. 1c), and for Russia in the Volga region (Fig. 1d). After finding the 
most representative grid cell, the Pearson’s correlation between climatic 
monthly variables and wheat yield in Russia and France was performed, 
selecting the ones with a significant correlation (Supplementary 
Table S1 and S2). These significant variables were then used to build a 
national wheat yield forecast with Stepwise, Lasso, and Random Forest 
methods.The statistical models were able to estimate some of the wheat 
yield inter-annual variability in France and Russia, but also missed some 
of the more extreme high and low yields (Fig. 6). In Russia, the Stepwise 
method resulted in a RMSE of 262 kg ha-1, with a rRMSE and MAPE of 
9.2% and 7.4%, respectively. When using the Lasso method, the RMSE 
was 198 kg ha-1, and rRMSE 7.1%. The best performance for estimating 
national yields of Russia was obtained with the Random Forest method, 
with a rRMSE of 6.4% and MAPE of 4.9%, and in for France with rRMSE 
of 8.8%and MAPE of 7.2%. For France the rRMSE from Stepwise, Lasso 
and Random Forest were 13.9%, 8.5% and 6.7% respectively. We also 
test the model ensemble of the three Variables Selector Methods, but 
individual models performed as well or slightly better than their mean 
ensemble (Supplementary Fig S2). 

3.5. In-season national wheat yield forecasting 

After creating a simple national wheat yield estimation model based 
on a single representative location within the wheat area for Brazil and 
repeating the approach for France and Russia as a validation, we per
formed an in-season forecasting analysis, using the LOOCV procedure of 
Random Forest, the method with the best performance (Figs. 4 and 6). 
The results of this analysis were compared with the average of the last 5 
years as the forecast for the next crop (used as the benchmark). In all 
three countries, the rRMSE of our forecast decreased (i.e. the yield 
forecast improved) as the wheat cropping-season progressed. In Brazil, 
as well as in Russia our simple national wheat yield estimation model 
performed better than using the average yield of the last five cropping- 
seasons as a forecast. In France, one month before harvesting, in early 
July, our simple model achieved a better prediction than a five-year 
yield average. In Russia, the rRMSE became smaller after November 
with Random Forest model, and rRMSE was 7.5% in February, seven 
months before harvesting in September. 

4. Discussion 

A simple country wheat yield estimation approach was developed 
based on monthly weather data from a single, representative grid cell 
within a nation-wide wheat cropping area for one country and then 
applied for another two contrasting countries. We demonstrated the 
ability of this new modeling approach to estimate some of the national 
wheat yield variability, although it misses some of the more extreme 
high and low yields. In contrast to other crop yield estimations, this 
simple method requires relatively few, publicly, readily available input 
information. 

In Brazil and in France, the rRMSE was lower than 10% (from LOOCV 
and unseen test), when using Random Forest Variables Selector Method. 
The Random Forest outperformed Lasso and Stepwise. For Brazil, Lasso 
and Stepwise presented a rRMSE of13%, but Random Forest presented 
an rRMSE of 9.1%. The performance of Random Forest in estimating 
crop yields has been extensively tested at regional, national and global 

levels (Prasad et al., 2021), and many of these studies have shown a 
better performance of Random Forest than other methods. However, in 
some studies Random Forest performed poorer than other methods in 
estimating yield (Jeong et al., 2016). 

Our modeling approach applies a well-known concept of small 
representative samples in political and demographic census (Zahnd 
et al., 2019; Wardrop et al., 2018; Schug et al., 2021) to yield fore
casting. This approach allows building simple forecast models based on 
a simple representative location, avoiding massive data collection across 
an entire country. Our proposed method presents similar results with 
others that estimate national wheat yield by an aggregation of estimated 
yield for each wheat-producing county. A recent method to estimate 
national wheat yield in Germany used an extensive weather, soil and 
crop phenology dataset at county level (Srivastava et al., 2021) and 
obtained a r2 of 0.9 and RMSE of 390 kg ha-1, corresponding to 6% of the 
country average yield. Another method using county wheat yield and 
vegetation indices for estimating national winter wheat yield in the U.S., 
obtained a RMSE of 700 kg ha-1 (Feng et al., 2021). Although our 
method presents results similar to other published models of wheat yield 
estimation, it still misses some extreme low wheat yields as e.g. in 2006 
in Brazil, in 2012 in Russia and in 2016 in France. The low frequency of 
occurrence of these extreme events makes it difficult for machine 
learning to recognize them. For example, the extreme low yield in 2016 
in France was caused by an unprecedented combination of excessive 
rainfall and plant diseases which our statistical models failed to forecast. 
Also the European forecasting system, using crop simulation modeling, 
failed to anticipate the magnitude of this wheat yield loss (van der Velde 
et al., 2020). 

The wheat yield estimation with the most representative national 
climate data cell presented similar results to estimates using the average 
climate data of the wheat growing area (Supplementary Fig S1). How
ever, the use of one grid cell is more advantageous because it avoids the 
annual calculation of the production-weighted mean climate for every 
cropping-season. This single point also has disadvantages and can 
generate erroneous estimates in some years, due to the spatial variability 
of extreme weather events, particularly due to the territorial extension 
of some countries such as Russia and Brazil (Fig. 4). Choosing a single 
representative point within these large countries might lead to over or 
underestimation of yield in some years. However, the single point 
selected in Brazil represented satisfactorily (r2 of 0.96 for seasonal 
temperature and 0.84 for rainfall) the positive and negative variations of 
seasonal temperature and rainfall of the entire wheat area of Brazil 
across the country from 1998 to 2017 (Fig. 3). To reduce the un
certainties of the proposed method with only a single representative 
point, homogeneous crop production zones within a country could be 
used to delimit the selection of additional representative points (one 
representative point per zone) within the country, such as the homo
geneous zones for wheat and soybean in Brazil (Nóia Júnior et al., 2021; 
Battisti and Sentelhas, 2019). A recent study has shown that dividing the 
country into homogeneous climatic zones and choosing one represen
tative location per zone (instead of one per country), may lead to better 
predictive models (Nóia Júnior et al., 2021). In Brazil, for example, 
statistical models reproduced trend-corrected national wheat yields 
satisfactorily from four locations of four homogeneous agro-climatic 
zones (Nóia Júnior et al., 2021). However, the statistical models pro
posed by Nóia Júnior et al. (2021) were built using wheat yield of > 700 
wheat producing municipalities combined with 4 meteorological sta
tions (one for each of the four homogeneous zone). 

The presented modeling approach could also be combined with other 
yield estimation and forecasting approaches, to improve predictability, 
similar to combining various temperature impact estimation methods 
(Zhao et al., 2017). Also, remote sensing data could be combined with 
the new approach using soil water and crop canopy status as additional 
inputs for the regression using any of the three methods applied here. 
Our method could be used to indicate which location or sub-regions 
should be monitored by remoting sensing, in an approach that works 
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with representative regions to monitor national crops yield (Kastens 
et al., 2005; Petersen, 2018). The representative grid cell could also be 
use with a crop simulation model to estimate wheat yields of a country. 
However, to apply a crop model like DSSAT (Jones et al., 2003), daily 
weather data will be required for this grid cell, plus information about a 
representative soils, initial soil conditions and crop management. 

An advantage of the presented simple approach is that if the statis
tically significant variables selected in the model occur before harvest, 
the model can therefore provide a yield forecast before harvest. For 
example, minimum temperature in August (Tmin-Aug) presented on of the 
highest Pearson’s correlation with yield (Table 1), which indicates that 
wheat yield could be forecasted two months prior the harvest in Brazil, 
using this variable. The uncertainty of this prediction can be quantified 
with the established error of the model. To demonstrate this, we have 
performed an in-season analysis and showed that the proposed approach 
could be used to estimate wheat yield before harvesting, but model 
performance over a season depends on the country. In Russia, the model 
had a rRMSE of about 7% in February, seven months before local wheat 
harvesting, while in France the rRMSE was close to 10% in July, which is 
just before harvesting in this region. The climatic variables used to build 
the models were chosen by a statistical Variables Selector Methods but 
also have physiological explanations. For example, for Brazil the vari
ables TRSeason and Tmean-August also presented a high Pearson’s correla
tion with wheat yield. Since Brazil’s wheat crops are primarily rainfed 
and grow in a relative warm environment, a higher temperature 
together with low rainfall during the growing season are indicated by a 
high TRSeason, usually resulting in low wheat grain yields. The mean and 
minimum temperature for August, Tmean-August and Tmin-August, occur 
during flowering and early grain filling, when heat or frost can severely 
damage flowers and hasten grain filling, both resulting in reduced grain 
yields (Farooq et al., 2011). Episodes of frost occurred in August of 2012 
destroyed 14% of Brazilian wheat yield (CONAB, 2022; Caierão, 2013) 
and required additional wheat imports into the country. Because of this 
extreme event, Brazil was the second largest importer of wheat in the 
world in 2012 and 2013 (FAO stat, 2022). In the same years, the wheat 
selling price in Brazil was 80% higher than the world average price 
(CEPEA, 2022; FAO stat, 2022). 

For France, temperature in December (Tmean-Dec, Tmax-Dec and Tmin- 

Dec), and rainfall in May may be relevant variables for the wheat yield 
estimating according to the Pearson’s correlation (Supplementary 
Table S1). High temperature during the late French autumn and winter 
stimulates early growth and crops are often prone to disease infections 
(Ben-Ari et al., 2018). Excessive rainfall in May during flowering, a 
period of high crop growth rates, can reduce crop growth and grain yield 
through water logging, disease spread, N leaching and low solar radia
tion. A combination of high temperatures in December and excessive 
rainfall in May are indicated as the main causes of the extreme low 
wheat yield of 2016 in France (Nóia Júnior et al., 2023; Ben-Ari et al., 
2018). Very high precipitation occurred in May leading to excessive soil 
moisture, local flooding, favoring plant diseases causing wheat yield 
drop of 2016 in France (van der Velde et al., 2012). 

For Russia, the TROctober was a variable correlated with wheat yield 
(Pearson’s correlation in Supplementary Table S2). In the southern part 
of Russia where winter wheat is grown, this is likely due to too much 
growth before dormancy, negatively affecting winter survival, impact
ing regrowth in spring and consequently grain yield (Nyachiro et al., 
2002). The statistical importance (high Pearson’s correlation value) of 
climatic indexes occurring early in the wheat season, such as TROctober, 
Tmean-February and Tmean-March explains the drop of rRMSE during the 
in-season wheat yield forecasting for Russia in February (Fig. 7). Several 
climate variables in May/June also presented a high correlation with 
wheat yield in Russia (Supplementary Table S2), as these are 
high-growth-rate months for spring and winter wheat in Russia. A high 
Tmean-June Tmean-May and high Tmax-May reduces final grain yield by 
shortening growth duration. For winter wheat, the crops are likely in the 
grain filling period in June, which is susceptible to heat stress and can 

reduce grain yields. Hence, while statistical models do not include many 
of the systems functionality of a dynamic crop simulation model, vari
ables chosen in a statistical model can also have biological meaning. 
Other factors important for crop yields particularly at national scale like 
pest and diseases, which are usually not considered in crop models, are 
indirectly considered in statistical models, if driven by climate vari
ability, and can make statistical models more suitable at such a scale 
(Lobell and Asseng, 2017). Although we discussed the physiological 
importance of each weather variable, other additional variables could be 
considered since these are not the only factors causing year-to-year 
variability in wheat yield. 

The Stepwise method set with the Bayesian information criterion 
(BIC) test a range of linear models (with different selected variables) and 
selects the one with the lowest BIC value. The BIC penalizes a model for 
its complexity, meaning that models with high numbers of variables 
selected will have a lower BIC. The Lasso method uses a shrinkage 
estimator technique, shrinking those variables with little or no predic
tive power to zero and using the remaining shrunken coefficients for 
prediction (Knaus et al., 2021). Stepwise and Lasso try to select fewer 
variables, and can generate null models (i.e. containing only the inter
cept value), as resulted in the Lasso Variable Selector Method for France 
(Fig. 6). A Random Forest method is a decision tree-based method based 
on the concept of building multiple trees combining effects to produces a 
single consensus (in the case of this study, wheat yield) and tends to 
creating models with all the variables available (Knaus et al., 2021). 
Thus, the input of features with less predictive power, such as Rain
fallJune for wheat in Brazil (Fig. 5), can make the Random Forest 
methods less accurate. This demonstrates the importance of performing 
a sensitivity analysis before creating a multi-regression model with the 
Random Forest methods. In addition, statistical models such as linear 
and decision trees models usually benefit from large datasets, and it is 
important that models are continually updated after each cropping 
season. Constant updating assist machine learning to be trained on how 
wheat yield interacts with climate variables, particularly in the case of 
new combinations of extreme weather events or adoption of new culti
vars and crop management techniques. 

5. Conclusion 

A simple national yield forecast model has been introduced using 
readily available climate data of a single representative climate grid cell 
per country. There is the potential to combine this method with other 
forecasting methods including crop models and remote sensing to 
improve predictability of national yields. The new approach could be 
applied to any national crop yield in any country in the world. 
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Table S1. Historical monthly and seasonal average of mean, maximum and minimum 
temperature, and rainfall; and Pearson’s correlation coefficient for the monthly and seasonal 
climatic variables and national wheat yield of France. An “*” indicates statistically significance 
at the 0.05 significance level. The data were normalized by dividing the difference between 
each data point and the arithmetic mean of the variable of interest by standard deviation of 
the variable.  

Climatic variables 
Historical average 

(1998 – 2017) 
Pearson’s correlations 

with wheat yield 

Tmean-October (°C) 13.3 0.1* 
Tmax-October (°C) 18.3 0.1 
Tmin-October (°C) 8.4 0.1 
RainfallOctober (mm) 49.9 0.2* 
TROctober - 0.2* 
Tmean-November (°C) 5.7 -0.2* 
Tmax-November (°C) 9.1 -0.3* 
Tmin-November (°C) 2.2 -0.2 
RainfallNovember (mm) 44.8 0.0 
TRNovember - -0.1 
Tmean-December (°C) -2.2 -0.3* 
Tmax-December (°C) 0.0 -0.3* 
Tmin-December (°C) -4.5 -0.3* 
RainfallDecember (mm) 41.7 0.2* 
TRDecember - -0.1 
Tmean-January (°C) -7.9 -0.1 
Tmax-January (°C) -5.4 -0.1 
Tmin-January (°C) -10.5 -0.1 
RainfallJanuary (mm) 41.1 -0.1 
TRJanuary - -0.1 
Tmean-February (°C) -10.4 -0.2* 
Tmax-February (°C) -7.5 -0.1* 
Tmin-February (°C) -13.3 -0.2* 
RainfallFebruary (mm) 38.8 -0.2* 
TRFebruary - -0.2* 
Tmean-March (°C) -9.6 0.0 
Tmax-March (°C) -6.3 0.0 
Tmin-March (°C) -12.9 -0.1 
RainfallMarch (mm) 30.6 -0.4* 
TRMarch - -0.3* 
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Tmean-April (°C) -3.0 -0.1 
Tmax-April (°C) 0.6 -0.2 
Tmin-April (°C) -6.6 0.1 
RainfallApril (mm) 33.4 0.3 
TRApril - 0.2 
Tmean-May (°C) 6.9 -0.1 
Tmax-May (°C) 11.7 -0.1 
Tmin-May (°C) 2.1 -0.1 
RainfallMay (mm) 34.2 -0.5* 
TRMay - -0.5* 
Tmean-June (°C) 15.1 0.1 
Tmax-June (°C) 20.6 0.1 
Tmin-June (°C) 9.6 -0.1 
RainfallJune (mm) 39.0 -0.4* 
TRJune - -0.3* 
Tmean-July (°C) 19.1 0.0 
Tmax-July (°C) 24.6 0.0 
Tmin-July (°C) 13.7 0.0 
RainfallJuly (mm) 58.4 0.0 
TRJuly - 0.0 
Tmean-Season (°C) 21.5 -0.3* 
Tmax-Season (°C) 27.0 -0.3* 
Tmin-Season (°C) 16.1 -0.3* 
RainfallSeason (mm) 52.3 -0.3 
TRSeason - 0.0 
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Table S2. Historical monthly and seasonal average of mean, maximum and minimum 
temperature, and rainfall; and Pearson’s correlation coefficient for the monthly and seasonal 
climatic variables and national wheat yield of Russia. An “*” indicates statistically significance 
at the 0.05 significance level. The data were normalized by dividing the difference between 
each data point and the arithmetic mean of the variable of interest by standard deviation of 
the variable.  

Climatic variables 
Historical average 

(1998 – 2017) 
Pearson’s correlations 

with wheat yield 

Tmean-September (°C) 13.1 -0.3* 
Tmax-September (°C) 17.6 -0.2* 
Tmin-September (°C) 8.7 -0.3* 
RainfallSeptember (mm) 70.7 0.1 
TRSeptember - -0.1* 
Tmean-October (°C) 13.1 -0.4* 
Tmax-October (°C) 17.6 -0.3* 
Tmin-October (°C) 8.7 -0.3* 
RainfallOctober (mm) 70.7 -0.3 
TROctober - -0.5* 
Tmean-November (°C) 8.0 0.1* 
Tmax-November (°C) 11.4 0.0* 
Tmin-November (°C) 4.6 0.0* 
RainfallNovember (mm) 69.4 0.1* 
TRNovember - 0.1 
Tmean-December (°C) 4.9 0.0 
Tmax-December (°C) 8.0 0.0 
Tmin-December (°C) 1.9 0.0 
RainfallDecember (mm) 68.3 -0.1 
TRDecember - -0.1 
Tmean-January (°C) 4.6 0.3* 
Tmax-January (°C) 7.6 0.3* 
Tmin-January (°C) 1.6 0.3* 
RainfallJanuary (mm) 59.5 0.2* 
TRJanuary - 0.3* 
Tmean-February (°C) 5.3 0.5* 
Tmax-February (°C) 9.1 0.5* 
Tmin-February (°C) 1.5 0.5* 
RainfallFebruary (mm) 49.6 0.4* 
TRFebruary - 0.5* 
Tmean-March (°C) 8.4 0.7* 
Tmax-March (°C) 13.2 0.7* 
Tmin-March (°C) 3.5 0.6* 
RainfallMarch (mm) 56.4 0.0* 
TRMarch - 0.5* 
Tmean-April (°C) 10.9 -0.1 
Tmax-April (°C) 16.3 -0.1 
Tmin-April (°C) 5.7 -0.2 
RainfallApril (mm) 67.5 -0.1 
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TRApril - -0.2 
Tmean-May (°C) 14.7 -0.5* 
Tmax-May (°C) 20.2 -0.5* 
Tmin-May (°C) 9.4 -0.5* 
RainfallMay (mm) 75.6 0.4* 
TRMay - -0.1* 
Tmean-June (°C) 18.3 -0.6* 
Tmax-June (°C) 24.2 -0.6* 
Tmin-June (°C) 12.5 -0.6* 
RainfallJune (mm) 58.7 0.4* 
TRJune - -0.3* 
Tmean-July (°C) 20.1 -0.2 
Tmax-July (°C) 26.2 -0.2 
Tmin-July (°C) 14.0 -0.1 
RainfallJuly (mm) 61.2 0.1 
TRJuly - -0.1 
Tmean-Season (°C) 10.8 0.1* 
Tmax-Season (°C) 15.4 0.1* 
Tmin-Season (°C) 6.3 0.2* 
RainfallSeason (mm) 70.7 0.4* 
TRSeason - -0.3* 
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Fig  S1. (a) Root mean square error (RMSE) and (b) mean absolute percentage error (MAPE) of national 

wheat yield of Brazil simulated with seasonal and monthly maximum, minimum and minimum 

temperature and rainfall in average of the entire wheat area of Brazil (grey) and for the most 

representative location within this area (green).  
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Fig S2. Trend-corrected observed wheat yield (black line) and estimated and estimated national wheat 
yield from LOOCV (green line) and from unseen validation test (brown line) based on climate variables 
at one grid cell of the wheat growing region in Brazil (1998-2017), with the ensembles of the three 
models (Stepwise, Lasso and Random Forest), for (a) Brazil, (b) France and (c) Russia. The RMSE (Root 
Mean Squared Error), rRMSE (relative Root Mean Squared Error) and the mean absolute percentage 
error (MAPE) are from LOOCV and unseen validation test. Ensembles are the mean of the tree models.  
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