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Abstract

This work presents solutions for coupled simulations (also referred to as Co-
Simulation) of large-scale engineering applications. The partitioned approach
is employed, which enables to use existing and mature solvers. A multiphysics
framework is chosen as the basis for the developments, differing in many ways
from CoSimulation via dedicated coupling tools. One advantage is the very
efficient usage of internal solvers. The details of the implementation and
integration are shown, including the requirements for distributed memory
environments.

External solvers can be used by a newly developed detached interface
technology, which allows for efficient and flexible integration. Additionally,
a remote-controlled approach for CoSimulation is presented, in which the
coupling is orchestrated centrally. This approach simplifies the setting up of
different coupling algorithms and is less prone to deadlocking compared to
existing solutions. A detailed study of methods for data exchange between
solvers/tools is conducted, resulting in TCP sockets as the best technique.

Mapping algorithms are studied, and solutions for large-scale applications
are proposed. The developments are successfully tested on a supercomputer
with over 10,000 cores and applied to the examples presented later.

Practical experiences are presented for approaching, setting up, and running
coupled simulations. They were gathered and systematically structured during
this work. A particular focus is set on using cluster systems for running large-
scale CoSimulation.

Numerous examples, ranging from academic benchmarks to large-scale
engineering applications, are used to highlight and showcase the capabilities
of the presented work. The culmination of this work is a Fluid-Structure
interaction simulation with the roof of the Olympic Stadium in Munich.

Finally, conclusions are provided, summarizing the highlights of this work.
An outlook with possible future work is shown.





Kurzfassung

Diese Arbeit beschäftigt sich mit Lösungen für gekoppelte Simulationen von
großen Ingenieuranwendungen. Der partitionierte Ansatz wird angewandt,
welcher die Nutzung von bestehenden und ausgereiften Lösern ermöglicht.
Ein Mehrfeldphysik-Framework bildet die Basis für die Entwicklungen, was
sich in vielerlei Hinsicht von gekoppelten Simulationen mittels spezialisierten
Kopplungstools unterscheidet. Ein Vorteil ist die sehr effiziente Nutzung
von internen Lösern. Details der Implementierung und Integration werden
vorgestellt, inklusive der Anforderungen für Rechensysteme mit verteiltem
Speicher.

Externe Löser können mithilfe einer neu entwickelten losgelösten Schnitt-
stelle genutzt werden, die eine sehr effiziente und flexible Integration ermöglicht.
Weiterhin wird ein ferngesteuerter Ansatz für gekoppelte Simulationen vorge-
stellt, bei dem die Kopplung zentral gesteuert wird. Dieser Ansatz vereinfacht
das Einrichten verschiedener Kopplungsalgorithmen und führt zu weniger
Deadlocks, verglichen mit existierenden Methoden. Umfangreiche Unter-
suchungen bezüglich des Datenaustauschs zwischen verschiedenen Lösern wird
durchgeführt, wobei sich TCP-Sockets als die beste Wahl erweisen.

Mapping-Algorithmen werden untersucht und Lösungsansätze für große
Probleme werden aufgezeigt. Die Entwicklungen sind auf einem Supercom-
puter mit über 10.000 Kernen erfolgreich getestet sowie bei den später folgen-
den Beispielen angewandt.

Praktische Erfahrungen in Bezug auf Herangehensweise, Aufsetzen und
Durchführung von gekoppelten Problemen sind dargestellt. Diese wurden
während der Durchführung dieser Arbeit gesammelt und systematisch aufbere-
itet. Ein Fokus liegt hierbei insbesondere auf der Durchführung von großen
gekoppelten Problemen auf Rechenclustern.

Die Fähigkeiten und Möglichkeiten der vorgestellten Methoden sind anhand
mehrerer Beispiele gezeigt, von wissenschaftlichen Benchmarks bis zu großen
Ingenieuranwendungen. Den Höhepunkt der Arbeit stellt eine gekoppelte
Fluid-Struktur-Interaktionssimulation mit dem Dach des Olympiastadions in
München dar.

Abschließend werden die wichtigsten Ergebnisse und Errungenschaften
dieser Arbeit zusammengefasst. Weiterhin ist ein Ausblick auf mögliche
weiterführende Arbeiten gegeben.
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Chapter 1

Introduction

Numerical simulations are a well-established tool in engineering practice nowa-
days. They help push the boundaries of technology, and some innovations
would be impossible without them. The development and usage of simulations
have been traditionally focused on standalone physical phenomena, such
as structural mechanics for civil engineers or fluid dynamics for aerospace
engineers. However, with more ambitious and advanced projects and appli-
cations, it is no longer sufficient to neglect the interaction of a component
with relevant effects of other physical disciplines. Prominent examples are
lightweight structures such as tents subjected to wind loading, where the
interaction must be considered for an efficient and safe design.

Simulations considering more than one physical domain are referred to as
multi-physics simulations. Many new challenges arise with these applications,
from the individual domains and the coupling between them. Furthermore,
the computational effort can be a multiple of the individual solution times,
depending on several factors such as coupling setup or degree of interaction
between the domains. The increased effort requires efficient methods to keep
the simulation times within acceptable and practical bounds.

Mainly two approaches exist for solving coupled problems: Monolithic and
partitioned. The first combines the individual disciplines within one solution
method, whereas the latter combines existing solvers via a dedicated coupling
tool. This work employs the latter, as it allows reusing existing solvers. Many
single-domain tools have been developed for decades, and their technology is
very mature. These consolidated solvers are essential to simulate and predict
the behavior of large-scale engineering applications, as is done in this work.
Furthermore, coupling various solvers from different physical disciplines offers
more flexibility.

Previous works that dealt with partitioned coupled simulations oftentimes
developed dedicated tools for bringing together existing solvers, such as [11],
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[46], [28] and [81]. While the execution and implementation differ, most share
this fundamental concept. In contrast, this work develops coupling features
and functionalities within a multiphysics framework, which also features sev-
eral solvers. This approach has several advantages: better computational
efficiency, easier usage because the user only needs one software, and more
efficient deployment on High Performance Computing (HPC) systems. Cou-
pling only internal solvers however would limit the applicability, and thus
coupling to external tools is also developed. Detailed and systematic compar-
isons between the approaches are performed, with a representative large-scale
engineering example.

The main motivation of this work is to develop methods that enable
engineers to conduct large-scale coupled simulations in a robust, stable,
efficient, and accurate way. For this, many developments are realized within
the scope of this work, enabling the coupling with internal and external solvers
of the multiphysics framework. One of the most important ones is integrating
the coupling features into the existing and established workflows. Additionally,
two new complementary techniques for coupling external solvers are developed.
First, a detached interface is proposed to simplify the general data exchange
and communication. Secondly, an approach is presented in which the coupling
orchestration is done centrally in one place. Finally, mapping algorithms are
revisited for large applications, including new developments for distributed
systems.

The examples presented in this work demonstrate the capabilities of the
developments. They are carefully selected, each highlighting at least one
aspect of CoSimulation. The largest examples are Fluid-Structure Interaction
(FSI) simulations of a full-scale wind turbine and the roof of the Olympic
Stadium in Munich.

One of the goals of this work is to make coupled simulations as accessible
as possible. Choosing a multiphysics framework over a dedicated coupling
tool has the inherent advantage that it has internal solvers. Those can be
used with little additional effort if the framework is already used. Of course,
the choice of solver is entirely up to the user, thus coupling to internal and
external tools is developed and made possible. Another important point
to consider for accessibility is the free choice of computational hardware to
conduct the simulations. It should be chosen based on the requirements of
the respective simulations and not limited by shortcomings of the employed
software. This is particularly important when it comes to parallelization and
cross-platform support. Lastly, also the means of distribution are important.
Straight-forward ways to obtain and run simulation software enables engineers
to integrate numerical analysis into their daily workflows.

The open-source framework Kratos Multiphysics [15] (available on GitHub1)
fulfills all the above requirements and is thus chosen as the basis for this work.
All presented developments are fully integrated and publicly available.

1 https://github.com/KratosMultiphysics

https://github.com/KratosMultiphysics
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1.1 Contributions of this work

This section highlights novelties, contributions, and advances made in this
work. The focus lies in particular on developing methods to enable the stable,
robust, accurate, and efficient simulation of large-scale coupled problems,
which are relevant in engineering practice.

• The developments of this work for simulating coupled problems are
applied to several large-scale engineering applications. These represent
real-world problems and are aimed to push the boundaries of modern
computational methods in engineering.

• The realization of the newly developed coupling is done within a multi-
physics framework. A modular approach makes it possible to exchange,
extend and customize the different building blocks of CoSimulation.
All developments consider large-scale problems and thus fully support
distributed memory architectures and HPC.

• Coupling of the solvers inside the multiphysics framework and coupling
to tools not part of this software is presented and compared in detail.

• A new way for CoSimulation with external tools is presented, in which
the orchestrator takes full control over the external tools. The external
tool provides a predefined set of functions to the coupling tool, allowing
it to execute different operations remotely. This approach is titled
remote-controlled CoSimulation.

• A detached interface is developed, which simplifies the integration of a
coupling interface into an external solver greatly. It works in shared and
distributed memory environments as well as with different Operating
Systems (OSs).

• A detailed study of methods for Interprocess Communication (IPC)
in CoSimulation is conducted, with focus on a large range of possible
scenarios for coupled simulations. Different OSs are considered, as well
as large-scale cases in distributed memory environments.

• Proposing a new generic interface for solvers, which aims to unify the
integration into CoSimulation.

• Mapping algorithms for surface-to-surface and volume-to-volume are
revisited for the simulation of large-scale coupled problems. In particular
efficient strategies for distributed memory environments are investigated,
and new concepts are proposed and realized. Their performance is tested
with over 10,000 cores on a supercomputer.

• Practical experiences and guidelines for setting up and running coupled
problems are presented. Furthermore, dealing with different methods
of parallelism of the tools involved in CoSimulation is considered, as
well as conducting large-scale coupled simulations on clusters and other
HPC systems.
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1.2 Outline

This work is subdivided into several chapters. Following is a short outline of
each chapter to give an overview and orientation.

Chapter 1 provides the introduction and motivation for this work. An
overview of the topic of coupled simulation is provided, as well as a list of
contributions and advances made in this work.

Chapter 2 introduces the relevant theoretical basics and background
information, which is used in the following chapters. This consists mainly of
the building blocks of CoSimulation, the governing equations of some solution
techniques, and a review of existing tools for coupled simulations.

Chapter 3 is the core of this work. The details of realizing CoSimulation
in and with a multiphysics framework are presented. A focus is set on
realizing large-scale coupled problems efficiently, including HPC systems. A
new approach for remote-controlled CoSimulation and its implementation is
shown.

Chapter 4 is about mapping for non-matching grids, particularly for large-
scale cases. The basics of mapping are revisited, and efficient methods for
mapping in distributed memory environments are proposed and systematically
assessed. Surface-to-surface and volume-to-volume mapping algorithms are
considered.

Chapter 5 consists of a collection of practical experiences for setting up
and running coupled simulations. It is the condensed knowledge obtained
and developed during this work. The peculiarities of CoSimulation on HPC
systems are addressed as well.

Chapter 6 presents a large range of examples from different applications.
Academic benchmarks are considered to validate the developments, as well as
large-scale engineering problems. They show the flexibility and efficiency of
the presented work in handling various real-world applications.

Chapter 7 concludes this work by summarizing the advances and de-
velopments, as well as providing an outlook for further work and potential
improvements.



Chapter 2

Components and fundamental
concepts of CoSimulation

The goal of simulations is to model and predict the behavior of real-world
systems. A large variety of tools and techniques exists for this purpose,
differing, among others, in accuracy, modeling/simulation and computational
effort. Usually, the desired accuracy of the results dictates which technique is
used. In the past many tools have been developed and specialized to solve
problems involving one physical phenomenon, in this work referred to as
single-physics. However, the real world is always an interaction between
different physical phenomena, and it is a modeling choice to neglect their
interaction. Therefore, depending on the desired accuracy of the simulation,
it might be required to consider this interaction through different coupling
techniques. Problems involving several physical phenomena will be referred
to as multi-physics in this work, see also [44].

Two fundamental approaches exist for modeling the interaction between
different physical phenomena, namely the monolithic and the partitioned
approach. In the monolithic approach, all phenomena are solved together
simultaneously. With the partitioned approach, the individual phenomena
are solved independently and in a specific sequence. Both approaches have
their distinct advantages and disadvantages, as has been thoroughly discussed
in the literature (see [36] or [19]). The main advantage of the monolithic
approach is the higher accuracy than the partitioned approach. Its main
disadvantage is that it is difficult or even impossible to reuse existing tools,
which makes it necessary to develop new tools for each new type of problem.
With the partitioned approach, existing tools are used and coupled together
through different methods and techniques, which makes it possible to reuse
tools that have been thoroughly developed over many years, and hence most
of the development time can be spent on the coupling. The disadvantage is
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the reduced accuracy, and it is more sensitive to coupling instabilities than the
monolithic approach. However, different techniques have been developed to
mitigate these inherent disadvantages. Another technical difficulty that prac-
tical applications need to consider is how well any coupling can be integrated
into a particular tool.

In order to use existing tools, much effort has been invested in the par-
titioned approach to find solutions to make it robust and accurate enough
for real-world applications. This work will focus purely on the partitioned
approach for solving multi-physics problems.

This chapter serves as an introduction to solving coupled problems and
paints the big picture motivating the further chapters of this work.

2.1 Spectra of CoSimulation

CoSimulation can be done in various ways. An overview of different scenarios
of CoSimulation can be found in [77, Chapter 1.2]. A small review alongside
an extension of this list is given in this section.

2.1.1 Monolithic - all in one

In the monolithic approach, all physical phenomena are solved together in
one large system of equations. This means that it is mostly impossible to
reuse existing tools which limits the applicability for practical problems. Still,
it is the most stable and accurate approach, which means that it can be a
viable option for some problems.

2.1.2 Partitioned solver coupling with dedicated coupling
tools

The partitioned approach couples existing tools in a black box way and is hence
the other end of the spectrum of CoSimulation. Dedicated coupling tools have
been developed for this purpose. The main advantage is that existing tools
can be reused, which reduces the development and verification/validation
time a lot. However, especially for problems with strong interaction between
the fields, special treatment is required in order to ensure stable solutions.

2.1.3 Multiphysics tools

While traditionally tools have been developed for solving single-physics prob-
lems, in recent years, also frameworks dedicated to solving multi-physics
problems such as [15], [35], [55] have been developed. These tools can combine
some advantages of both approaches while at the same time limiting the
number of disadvantages. This work focuses on CoSimulation in and with a
multi-physics framework.
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2.2 Building blocks of CoSimulation

CoSimulation using the partitioned approach consists of several basic building
blocks that will be introduced in this chapter and then explained from a
practical point of view in the later chapters of this work. Figure 2.1 shows
the three main building blocks: synchronization, data exchange, and data
transfer.
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Figure 2.1: The building blocks of partitioned CoSimulation.

2.2.1 Synchronization and solution techniques

The first building block of CoSimulation, as displayed in Figure 2.1, is the
synchronization, including the coupling algorithm and strategy. It defines the
order in which the participating tools are used, as well as which additional
components (such as relaxation techniques) are employed. Naturally, the
choice of these procedures has a significant influence on the robustness,
accuracy, performance, efficiency, and stability of the coupled simulation and
must therefore be chosen according to the problem to be solved.

It shall also be referred to the extensive existing literature on this topic:
[60], [49], [29], [81], [77], [46].

2.2.1.1 Question / Challenge

Coupled simulations where the solution of one solver affects the solution of
another, and vice versa can be sensitive to stability and convergence problems.
This becomes more severe the stronger the interaction becomes, i.e. the more
impact the solution of one solver has on the solution of another. The sequence
in which the tools are executed can also have an impact on the stability of the
coupled solution. Therefore, the coupling algorithm, which dictates this order,
should be chosen carefully. Different coupling algorithms with their distinct
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properties are known in the literature. The aspects that are important for
this work will be explained in the following.

2.2.1.2 Methodological Answer

The application and the type of interaction dictates which coupling algorithm
to be used. It becomes more complex and elaborate the stronger the interaction
becomes. This ranges from one-way coupling in case the influence is only from
one side to the other, to strongly two-way coupled with advanced methods to
assist in the convergence of the coupled solution, e.g. utilizing relaxation or
prediction techniques.

2.2.1.3 Technical Realization

The coupling tool/orchestrator dictates when and which tool executes which
part of the coupling. This can be tasks like solving a linear system of
equations or the import/export of data. A wide range of techniques to aid
in the successfully coupled simulation has been developed. An overview of
commonly used methods and techniques is given in the following.

Communication patterns
The communication pattern specifies the flow of information between the
coupling partners, in particular, which state of the data is used. The two
most used patterns are the Jacobi (see Figure 2.2a) and the Gauss-Seidel
pattern (see Figure 2.2b). The main difference is that with the Gauss-Seidel
pattern always the newest data is used, whereas, with the Jacobi pattern,
the data from the previous timestep or iteration is used. The flow of data is
visualized in Figure 2.2.

The Gauss-Seidel pattern converges faster than the Jacobi pattern, but the
coupling partners cannot be run at the same time due to the data dependencies.
Furthermore, a time lag between the coupling partners exists. On the other
hand, with the Jacobi pattern no data dependencies exist, hence the execution
can be done concurrently. This also means that the coupling partners have
to share the available computing resources. With the staggered execution of
the Gauss-Seidel pattern, the coupling partners are executed sequentially and
thus do not share the computing resources.

Coupling methods
For a two-way coupling, in which both partners influence each other, two
main methods are distinguished: Weak/explicit and strong/implicit coupling.
With strong coupling, the convergence of the coupled solution is checked at
the end of a timestep, and if it is not achieved, the timestep is repeated. No
convergence check is performed in the weak coupling the timestep is never
repeated. Figure 2.3 shows the basic schematics of weak and strong coupling.

Weak coupling is also known as explicit, staggered, or loose coupling. It is
a basic coupling method in which the interface quantities are exchanged once
per timestep. Since the timestep is never repeated, it is inherently cheaper
in terms of computational effort than the strong coupling, especially when
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A A A

B B B

tn tn+1 tn+2

(a) Jacobi pattern

A A A

B B B

tn tn+1 tn+2

(b) Gauss-Seidel pattern

Figure 2.2: Jacobi and Gauss-Seidel communication patterns. The Jacobi
pattern uses the data from the previous timestep, whereas the
Gauss-Seidel pattern uses the latest available data.

considering that the execution of a coupling partner is usually the most costly
part of a coupled simulation. On the downside, it suffers from accuracy
issues, especially when the interaction between the physical fields is strong.
Prediction techniques can mitigate these problems, but in some applications
with very strong interaction, it is not possible to achieve convergence with
weak coupling.

Strong coupling is also known as implicit or iterative coupling. It tries
to achieve convergence of the coupled solution by minimizing an interface
residual to fulfill the interface compatibility and equilibrium conditions. Thus,
it is more accurate and stable than the weak coupling at the cost of being
computationally more expensive. Relaxation techniques are used to support
and accelerate the convergence within a timestep to reduce the number of
coupling iterations.

A A A

B B B

tn tn+1 tn+2

(a) Weak/Explicit coupling

A A A

B B B

tn tn+1 tn+2

(b) Strong/Implicit coupling

Figure 2.3: Weak and strong coupling methods (using the Gauss-Seidel
pattern) for a two-way coupling. The strong coupling algorithm
checks for convergence of the coupled solution and might repeat
the current timestep if it is not achieved.



10
CHAPTER 2. COMPONENTS AND FUNDAMENTAL CONCEPTS OF

COSIMULATION

Prediction

Prediction or extrapolation techniques use the information from previous
Timesteps (TSs) to provide a better initial guess for the solution at the
beginning of a timestep. The goal is to improve and accelerate the convergence,
both of the coupled solution but also of the individual solvers. They can be
used both with weak and strong coupling methods.

Different methods are available, ranging from linear extrapolation to more
advanced methods such as presented by [21]. [46] provides an extensive
overview and comparison of prediction techniques.

Relaxation and convergence acceleration
Relaxation is often used to increase the stability of a strongly coupled simula-
tion. Instead of applying the full update of the solution, it is scaled with a
(relaxation) factor. Factors smaller than 1 give under-relaxation, larger than 1
is over-relaxation. Practical cases typically require under-relaxation to ensure
stability of the coupled solution, which leads to slower convergence and thus
higher computational cost. Therefore, the choice of the relaxation factor is
crucial for efficient simulations.

Converge acceleration techniques aim to optimize the computation of the
relaxation factor for a given problem. The goal is to reduce the number of
coupling iterations while maintaining stability. A large variety of methods
has been proposed in the literature, and it shall be referred to [46] and [77]
for an extensive overview of this matter.

Convergence criterion

The convergence in strongly coupled simulations is checked with a conver-
gence criterion. In many cases, this is realized by checking the difference of a
specific value or field between coupling iterations. Once this difference drops
below a predefined threshold, the TS is considered to be converged, and the
solution advances in time. The choice of threshold and criteria can have a
large impact on the performance and convergence behavior of the coupled
simulation and is therefore an important component. [49] and [29] provide an
overview over commonly used criteria.

2.2.2 Data exchange between tools

Column two in Figure 2.1 represents the data exchange between tools, which
is required as soon as more than one software is involved in the CoSimulation.
Typically, each tool runs in its own address/memory space, which makes it
not possible for the coupling tool to directly access the data. Therefore, data
has to be exchanged between them. In software terms, this is the exchange
of data between different processes, which is generally referred to as IPC in
computer science. This concept is shown in Figure 2.4a.

Multiphysics tools have the inherent advantage that the data of the solvers
is directly accessible by the coupling tool and hence no data exchange is
required. This concept is shown in Figure 2.4b.
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then it can directly access the relevant
data/memory without any IPC.

Figure 2.4: Different ways the coupling tool can access the data of the
solvers.

2.2.2.1 Question / Challenge

IPC in the context of CoSimulation needs to fulfill various requirements.
Typically, the exchange of data happens several times per TS and can involve
large amounts of data, depending on the type of coupling. This means that
the data exchange needs to be fast and efficient. It is also beneficial to
support many different systems, since nowadays, the tools can be deployed on
various hardware, ranging from small microcomputers such as the Raspberry
PI to large supercomputers using distributed memory environments. This
is especially important as IPC is usually implemented on a very low level
and oftentimes differs greatly between different OSs. Stability and reliability
are other selection criteria, in particular the initial handshake during the
connection phase. The exchanged data can range from scalar values to entire
meshes and geometries. Hence, it is required to support different types of
data, which again, depends strongly on the type of coupling.

From a developer’s perspective, more criteria are important. The imple-
mentational effort can be a deciding factor if the complexity of implementing
a method outweighs its benefits. Also, it is beneficial if the method is easy to
understand and debug, especially when it comes to the flow of information.
In many coupled simulations, the data exchange between tools is also used for
synchronization between them. Here being able to easily understand the data
exchange can greatly reduce the time that is required to achieve a successful
coupling.

The requirements for IPC in CoSimulation contexts can be compiled to
the following list:

• Performance
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• Robustness

• Portability

• Usability

• Implementation

• Dependencies

2.2.2.2 Methodological Answer

As IPC is a commonly required technology for many different applications in
computer science, it has been well studied, and many different methods have
been developed, see e.g. [73]. Based on the selection criteria introduced above,
different methods can be analyzed and evaluated regarding their suitability
for CoSimulation. See also [29].

2.2.2.3 Technical Realization

Many different methods of IPC exist, which are listed and briefly introduced
in the following. More information can be found in the documentation of the
respective OSs, e.g. for Linux1 and Windows2.

• Shared Memory: Data exchange through a (usually specially allocated)
part of the memory, which can be accessed by different processes.

• Files: Data exchange via files that are written to the filesystem.

• Anonymous pipes: Data exchange via a data channel between related
(parent/child) processes. The data that is sent first, is received first.

• Named pipes: Similar to anonymous pipes, but between unrelated
processes.

• Network socket: An endpoint to send and receive data through the
network. Therefore, it works across machines.

• Unix domain socket: Similar to the network socket, but uses the kernel
directly to communicate, within one machine.

• Message queues: Similar to pipes but the receiving order can deviate
from the sending order.

• Signals: a small message usually used to send a signal for control rather
than more complex data.

• Memory mapped file: A section of the RAM that acts like a file, but
can also be accessed by memory addresses.

1 https://linux.die.net/
2 https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications

https://linux.die.net/
https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
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Even though most OSs provide all or a subset of IPC methods listed above,
it is not guaranteed that they work in the same way or are compatible. Since
only a few methods are standardized, it is oftentimes required to use low-level,
OS specific Application Programming Interface (API) functions. Platform-
specific solutions and implementations (pipes for example work differently
on Windows and Unix and are thus incompatible) further complicate cross-
platform data exchange, only a subset of methods is suitable for this, such as
files. Some libraries like the ASIO library3 aim to hide this complexity by
providing high-level interfaces.

Furthermore, due to the large variety of data that might be exchanged,
it is profitable to find solutions that work for each of them, i.e. are agnostic
of what data is exchanged. One approach to unify the treatment of data is
serialization, which is explained in the next section.

2.2.2.4 Serialization

Sending an object of a complex type such as a mesh through a network to
another process requires it to be represented by a stream of bits. The same
holds when saving it into a file. The layout of the object in memory might not
allow this, in most cases only very basic data structures like arrays (which store
their data contiguously in memory) can be sent/saved directly. Therefore, it
is necessary to have a way of converting an object into a bitstream, as well
as the inverse operation, reconstructing the original object from a stream.
This is generally known as serialization and deserialization. The first takes an
object, and saves it to a stream or file, while the second one loads the object.
Many different techniques can be used, depending on the complexity of the
objects that are involved4.

Other common applications of serialization in numerical simulation are
restart/checkpoint files. The internal state of the solver is saved to a file
so that it can later be used to continue a simulation. This is particularly
helpful for conducting long simulations on HPC systems, where the runtime
is typically limited, and therefore the total simulation needs to be divided
into several parts.

2.2.3 Data transfer between solution techniques

Each coupling partner uses its own solution technique, depending on what
suits best for the respective application. This also means that each tool has its
own way of handling and storing data in a certain format. For CoSimulation, it
is necessary to get the data of one coupling partner to another. In many cases,
this requires the data exchange as explained in Section 2.2.2. Additionally,
the data has to be translated from one format to another, which is referred
to as data transfer in this work, see column three of Figure 2.1. The flow of
information is from the origin to the destination as visualized in Figure 2.5.

The quantities on both sides of the interface should be the same, as shown
in equation 2.1:

3 https://think-async.com/Asio/
4 https://isocpp.org/wiki/faq/serialization

https://think-async.com/Asio/
https://isocpp.org/wiki/faq/serialization
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Origin Destination

Figure 2.5: Flow of information during data transfer between solution tech-
niques, from the Origin to the Destination. Here displayed for
a Finite Element Method (FEM) mesh.

xd = xo (2.1)

Here the vector of quantities on the destination xd is the same as the
one on the origin xo. A conversion between the domains is required if the
discretizations are not matching, see equation 2.2:

xd = Hodxo (2.2)

The transfer matrix Hod is used to transform the quantities on the origin
into the ones on the destination.

Mapping is the most prominent example of data transfer techniques.
It is used when a tool stores its data in relation to a geometrical location.
Numerical tools that use the FEM or Finite Volume Method (FVM) subdivide
their solution domain into meshes consisting of small finite elements/volumes,
respectively, connected by nodes at their corners. They store the solution
data at the nodes and in the elements/volumes, hence it has geometrical
information attached to it. The discretizations of the coupling partners are
usually different on the coupling interfaces, which makes it necessary to map
the data with special mapping techniques.

On the other end of the spectrum of data transfer techniques is the exchange
of a single scalar value without any geometrical information. This can be
seen as the most basic form of data transfer, in which the value on the origin
is assigned to the value on the destination.

Other types of data transfer can be the direct copy of N-to-N values
without taking geometrical information into account. Furthermore, 1-to-N
and sum(N)-to-1 transfers can be done if the coupling partners require it. An
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example is the exchange of data between coupling partners that discretize
their solution domain and tools that only use single scalar values like Single
Degree of Freedom (SDOF) solvers.

2.2.3.1 Question / Challenge

The translation of data from one format to another is one of the fundamental
challenges of CoSimulation. The coupling partners use different formats
of data that, in most cases, are not directly compatible with each other.
Therefore, special techniques for transferring data from one format to another
are required.

The data transfer technique is specific to each pair of data formats which
requires the development of new techniques each time a coupling partner with
a new solution technique joins the CoSimulation.

Data transfer is usually conducted several times per TS (in particular
for a strong coupling) and can impact the overall solution time significantly.
Speed and efficiency are therefore one of the most crucial requirements. This
becomes particularly important when the coupling partners employ distributed
computing, meaning that also the data transfer needs to be able to handle
this efficiently, ideally without expensive gather-scatter operations of data.

Additional requirements can be the conservation of energy during the data
transfer.

2.2.3.2 Methodological Answer

The layout of the data involved in the coupling drives the selection or devel-
opment of which data transfer technique to be used. The specifics of each
coupling partner need to be taken into account, such as the solution techniques
it uses. Developing new techniques, therefore, requires detailed knowledge of
the internals of the coupling partner. Defining common/standard interfaces
and methods for similar tools can thus significantly reduce the time required
to establish a coupled solution.

Common traits and challenges can be identified, which leads to the specifi-
cation of a set of requirements for a data transfer technique.

2.2.3.3 Technical Realization

Defining the requirements is the first step toward realizing a data transfer
technique. Due to the different ranges of applications, from copying of
scalar values to mapping on non-matching meshes, the development, and
implementational effort varies greatly. More information can be found in
Chapter 4, which is exclusively dedicated to this complex topic.

2.3 Theoretical background of solution techniques

This section briefly introduces the relevant theory and notations for most of
the solution techniques and physical fields and phenomena considered in this
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work. These are Computational Structural Dynamics (CSD), Computational
Fluid Dynamics (CFD) and FSI. References for further reading are provided.

2.3.1 Computational Structural Dynamics (CSD)

CSD is the numerical simulation of structural problems. The strong form
of the governing equations based on the displacements u is formulated as
follows:

ρü−∇σ − ρb = 0 (2.3)

Herein ρ is the density, ü the acceleration, σ the stress tensor, and b the
body forces.

The principle of virtual work is used to fulfill the equilibrium of forces in a
weak sense. The general formulation is:

δW = δWkin + δWint + δWext = 0 (2.4)

Where δWkin is the kinetic/inertial/dynamic, δWint is the internal, and
δWext is the external virtual work.

After applying the boundary conditions and considering the constitutive
behavior of the structure, finally, the weak form of the governing equations
can be expressed as:

∫
Ω

ρü · δu dΩ︸ ︷︷ ︸
δWkin

+

∫
Ω

σ : δe dΩ︸ ︷︷ ︸
δWint

−
∫

Ω

ρb · δu dΩ−
∫

Γ

ρb · δt dΓ︸ ︷︷ ︸
δWext

= 0 (2.5)

The FEM is used to transform the continuous formulation of the weak
form from equation 2.5 into a discrete one. The displacements u are hereby
approximated by means of shape functions N and discrete values at the nodes
û:

u = Nû (2.6)

The discretization leads ultimately to the equation of motion in discrete
form:

Mˆ̈u + Dˆ̇u + Kû = Fext (2.7)

where the matrices M,D,K are the mass, damping, and stiffness of the
system, respectively. The derivation of mass M and stiffness K is based
on the governing equations as shown above. Velocity-proportional Rayleigh
damping [75] is used in this work to approximate the damping of the system.
Hereby the damping D is computed from mass and stiffness, see equation 2.8:

D = αM + βK (2.8)

The parameters α and β can be computed from the two most relevant
eigenfrequencies of the system, see [3] for more details.
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Most examples in this work involve large displacements and rotations.
Nonlinear kinematics are required to accurately model them, which leads to
a nonlinear stiffness of the system. It then depends on the displacements
u, resulting in K(u). A Newton-Raphson strategy (see [3]) is therefore
applied to solve equation 2.7. Implicit time integration is performed using the
BDF2 scheme [30]. An overview of time integration schemes for structural
simulations is presented in [48].

More information about FEM and its application to CSD can be found in
the standard textbooks [1], [39], [3] and [37].

2.3.2 Computational Fluid Dynamics (CFD)

The behavior of fluid flows can be simulated with CFD. Within this work,
the governing equations for these problems are the Navier-Stokes equations.
For most examples, an incompressible flow is considered, for which they are
formulated as follows:

ρv̇ + ρv · ∇v −∇ · σ = f

∇ · v = 0
(2.9)

where ρ is the density of the fluid, v the velocity, σ the stress tensor and
f the external forces.

A wide variety of solution methods is available for CFD, concerning the
treatment of turbulence and transient effects as well as discretization. Di-
rect Numerical Simulation (DNS) is used to fully resolve turbulence and
transient effects but is rarely applied for large problems due to its immense
computational cost. Time averaging together with a turbulence model with
Reynolds-Averaged Navier-Stokes (RANS) is on the other end of the spec-
trum regarding its computational requirements. The Large Eddy Simulation
(LES) approach models the small scales but resolves large vortices, position-
ing it in between the aforementioned approaches in terms of accuracy and
computational cost. More methods such as Unsteady Reynolds-Averaged
Navier-Stokes (URANS) and Detached Eddy Simulation (DES) also exist,
which are classified between RANS and LES.

Most examples in this work that involve CFD are using the LES approach
with FEM as discretization. More information about this can be found in
[79], [12], and [22].

2.3.3 Fluid-Structure Interaction

FSI is a coupled problem where the effects of a fluid flow on a structure and
vice versa are considered in a numerical simulation. The fluid F depends on
the structural displacements u, whereas the structure S depends on the fluid
forces f :

f = F(u)

u = S(f)
(2.10)
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The interface conditions for a FSI problem can be formulated as follows:

uΓ,S = uΓ,F∑
fΓ,S =

∑
fΓ,F

(2.11)

On the interface Γ, the displacements are equal, and the sum of forces of
both solvers needs to be in equilibrium.

The solutions introduced in Section 2.2.1 for solving coupled problems
can be used, including prediction or relaxation techniques to accelerate the
convergence of the coupling. In a standard Dirichlet-Neumann coupling, the
loads computed by the fluid solver are mapped to the structure, which uses
them to compute new displacements. These are then mapped back to the
fluid domain, where the mesh-solver moves the mesh to avoid a collapse of
elements near the boundary. The inner loop of a standard FSI problem is
shown in algorithm 1.

Algorithm 1: Inner coupling loop of an FSI problem, using Dirichlet-
Neumann coupling.
1 Solve Fluid
2 Map loads to Structure
3 Solve Structure
4 Map displacements to Fluid
5 Move Fluid Mesh

After the structural displacements are mapped to the fluid interface, a mesh
moving technique (see [74]) is used to propagate them from the interface into
the domain. This is required to maintain a good element quality, especially
near the interface. Those regions are typically meshed finely to resolve the
boundary layer accurately and thereby compute accurate loading on the
structure. Any distortion could lead to convergence problems. The Arbitrary
Lagrangian-Eulerian (ALE) approach is used to consider the mesh velocity
resulting from the motion of the mesh in the fluid solution.

Mapping is required in most practical cases due to non-matching discretiza-
tions on the coupling interface Γ.

2.4 Parallel Computing

Numerical simulations of large real-world applications oftentimes require a
very high computational effort. Even more so when several problems are solved
together in a coupled simulation. This can lead to very long simulation times
on regular computers, thus limiting the applicability of numerical simulations
for engineering applications and developments.

One way to reduce the solution time is by employing parallel computing.
Here the workload of the simulation is split between many compute resources
to reduce the solution time. The more resources are used, the smaller the
simulation time becomes, theoretically. The speedup S is defined in equation
2.12, it indicates how much faster the computing time becomes when more
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resources are used. t(1) refers to serial execution, t(N) to parallel execution
with N compute resources.

S =
t(1)

t(N)
(2.12)

Fundamentally two types of parallel computing are distinguished: Shared
and distributed memory. As the name suggests, with the first one, the Central
Processing Unit (CPU) has access to the entire memory of the machine. In
the context of numerical simulations, this means that the entire computational
model can be accessed. This type of parallelization is usually done using a
single CPU with many cores. Typically, up to 128 cores are used with this
type of parallelization.

Even more computing resources can be used with distributed computing.
Many CPUs are combined into one large system, which is then referred to as a
cluster (or even a supercomputer for very large systems). Every CPU (in this
context also called compute node) has access only to its local memory since
the memory is distributed. This requires splitting the model into subdomains
(using domain decomposition). For numerical simulations, this means that it
is no longer possible to access the entire model from each CPU.

The main differences between the two variants are the communication
that is required in distributed computing between the different CPUs, for
example during collective operations. Furthermore, the algorithms can be
vastly different, since in shared memory only part of the execution is done in
parallel, whereas with distributed memory, the entire execution happens in
parallel.

Shared and distributed memory parallelization can be combined in hy-
brid approaches, on large systems with many compute nodes. Within one
node/CPU, shared memory is used, whereas distributed parallelism is used
across nodes for the communication of data.

The performance of a parallel algorithm is typically assessed with scaling
studies. Execution times are measured with different numbers of compute
resources and problem sizes. Strong scaling studies vary the number of
threads/cores/processes/ranks while keeping the size of the problem constant.
Weak scaling studies do the same, but additionally, the size of the problem
increases, to keep the local size (per thread/core/process/rank) constant.

2.4.1 Shared Memory

Most modern CPUs have several cores, which can be used to process data
in parallel. Leveraging this computing power requires the usage of special
programming techniques. Independent of programming language, this is
typically achieved with a forking model, where at some point the execution is
split into several parts (usually threads, within the same process). These are
combined again after the parallel execution has been completed. Each part is
processed by a separate thread, which is why shared memory parallelization
is often referred to as threading.

One challenge with this type of parallelization is to develop thread-safe
code without race conditions. These occur when several threads compete



20
CHAPTER 2. COMPONENTS AND FUNDAMENTAL CONCEPTS OF

COSIMULATION

for the same data. It needs to be ensured that the threads performing the
computations access the data in a safe and regulated manner, otherwise, the
behavior of the program is undefined and will yield different results in every
execution.

The implementation of shared memory parallelization strongly depends on
the programming language and technology employed. Commonly used are
OpenMP5 and pthreads6 in C/C++, or multiprocessing7 in Python.

2.4.2 Distributed Memory

Using large computer systems such as clusters or even supercomputers is often
referred to as HPC. It is used for very large computational requirements,
for example, the coupled numerical simulation of real-world applications, as
presented in this work. These systems are typically built from many individual
processors that are connected by a high-speed network, hence a CPU/processor
can only access its local memory. If data from remote memory/other processors
is required, then it can only be accessed by communicating it through the
network. This distributed memory architecture requires the development of
specialized algorithms.

Communicating data between different processors is a crucial difference
to algorithms developed for conventional/shared memory architectures. The
time spent communicating does not contribute to the solution of the problem,
it is therefore considered overhead and should be avoided as much as possible.
The less time an algorithm spends on communication, the more efficient it is
in distributed computing.

The exchange of data among the processes is commonly done with the
Message Passing Interface (MPI), see [58]. MPI offers many functionalities
that facilitate the exchange of data with different methods. It is already
extensively used for many years in the development of algorithms in distributed
environments. Currently, it is the de facto standard for the development and
execution of distributed algorithms. The features and concepts which are
important in this work are briefly introduced in the following.

MPI also refers to processes as ranks. Several ranks are usually grouped
within an MPI-Communicator. The global communicator including all ranks
is MPI_COMM_WORLD. Communicators are used for function calls to
MPI, only the ranks where a certain communicator is defined participate in
the function calls. Each rank has a unique identifier within a communicator.

Commonly used functionalities are the communication between different
ranks, where one rank acts as the sender, and the other ranks act as receivers
of the data. Also, collective operations including several ranks such as gather,
scatter, or broadcast operations are available.

In the context of numerical simulations, using distributed computing usu-
ally implies that the computational domain is split/partitioned into several
subdomains, one for each processor/core/process. The communication hap-
pens mostly on the domain interfaces. METIS [43] and SCOTCH [62] are

5 https://www.openmp.org/
6 https://man7.org/linux/man-pages/man7/pthreads.7.html
7 https://docs.python.org/3/library/multiprocessing.html

https://www.openmp.org/
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://docs.python.org/3/library/multiprocessing.html
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commonly used libraries for this task. The main goal is to split the domain
into similar chunks, to distribute the computational load equally. Furthermore,
the interfaces between the subdomains are to be minimized, in order to reduce
the communication among them.

Even though HPC is not strictly necessary for CoSimulation, it is oftentimes
required due to the high computational effort of real-world applications. Hence,
neglecting it during the development of algorithms and tools for CoSimulation
can lead to a significant performance penalty. Without the support for
distributed environments, some computationally expensive simulations might
not be feasible. Alternatively, if no support for distributed environments
is available, the coupling can be performed on a single rank. This however
requires a lot of communication because of the gathering and scattering of
data to and from a single rank. This bottleneck becomes more severe with an
increasing number of processes.

Despite the clear advantages, distributed memory parallelization also has
many drawbacks and introduces challenges, both during development and
execution. A main obstacle is the development of special algorithms due
to the different underlying hardware layouts. Furthermore, fewer libraries
support it, for example, linear solvers. Some technologies such as pipes for
IPC only work in shared memory. Debugging large cases can present another
obstacle, especially since algorithms are mainly developed on local machines
which use shared memory.

Conducting computations on a cluster usually means that the jobs cannot
be started directly, they need to be submitted to a special queuing system
(e.g. SLURM [84]). This implies that one typically needs to wait for some
time until the job is run. Furthermore, in most cases the runtime is limited,
meaning that long simulations need to use restarts in order to complete. This
further increases the complexity and potential failures.

2.5 Existing Tools

Partitioned multi-physics simulations can be performed in different ways (see
Section 3.4). Many academic and commercial solutions have been developed
over the years, focussing on various applications. The existing tools can
roughly be divided into two categories: Dedicated coupling tools to connect
and couple solvers, and multiphysics tools with coupling functionalities for
their internal solvers.

The solutions developed in this work blur the lines between these two
categories. Coupling of internal solvers is possible, as well as external solvers,
with minimal changes in the workflow.

Dedicated Coupling Tools

These tools are characterized by focusing purely on the coupling of external
solvers. Enabling coupled simulations is usually done by integrating the API
of the coupling tool in the solver. This requires access to the source code
in most cases, which is typically not available for commercial solvers. Some
solvers provide API access, which can be used to integrate the coupling tool.
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Since they do not offer solution techniques themselves, the capabilities of
dedicated coupling tools for solving multi-physics problems depend strongly
on the external tools used. A selection of tools is listed in the following,
including a brief summary of their scope and functionalities. See [29] and [77]
for a broader overview.

• EMPIRE / CoMA: EMPIRE [80] and its predecessor CoMA [28] were
developed in-house and are part of the long history of research in coupled
simulations at the author’s institute. The experiences collected during
their development and usage were used as a basis and inspiration for
this work. Both tools employ the server-client library approach and use
MPI to exchange data. Additionally, advanced mapping methods are
available.

• precice: precice [11] is a library for partitioned black-box coupling,
open-source and licensed with LGPL. A special focus is set on HPC,
with tested scalability of over 10,000 cores. This is realized through a
peer-to-peer communication approach. It provides adapters to connect
various solvers, offers a wide range of coupling functionalities, and has
strong community support. More information can be found in [29] and
[77].

• MpCCI : MpCCI [42] is a commercial coupling tool. It offers application-
specific solutions such as for FSI as well as generalized coupling func-
tionalities. Furthermore, its interface is integrated by some commercial
solvers, which enables the realization of coupled simulations.

• comana: Comana [47] is a closed-source framework for the generic
solution of multi-physics problems. More information about this tool
can be found in [46]. Its focus is on the efficient integration of external
solvers and offers a wide range of coupling features to stabilize and
accelerate convergence. It has been tested with several large-scale
maritime applications.

Multiphysics Tools

The collection and unification of solution techniques for different physical
applications is the purpose of these tools. They oftentimes also provide
capabilities and processes to couple their internal solvers for performing
coupled multiphysics simulations. These however are usually limited to
internal solvers, and cannot be used for integrating external solvers into the
CoSimulation. If available, the API can in some cases be used to realize the
integration, but this generally comes at the price of additional development
effort and computational overhead.

Some multiphysics tools are introduced in the following:

• FreeFEM : FreeFEM [35] offers solution procedures for non-linear struc-
tural, fluid and FSI applications, in 1D, 2D and 3D. It is open-source,
and licensed with GPL. Capabilities for coupling external solvers are
not provided.
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• FEBio: The FEBio[55] software suite is a FEM tool with a special focus
on biomechanics and biophysics with large deformations. In addition to
structural problems, it also offers solutions for fluid dynamics and heat
transfer. Coupling features with the internal solvers are provided, e.g.
for FSI. It is open-source with an MIT license.

• Commercial solvers like Abaqus8, COMSOL9 and Ansys Workbench10

provide CoSimulation capabilities, which are primarily focussed on their
respective internal solvers. Coupling with external solvers is sometimes
possible by using their APIs, including the drawbacks listed above.

8 https://www.3ds.com/products-services/simulia/products/abaqus/
9 https://www.comsol.com/
10https://www.ansys.com/products/ansys-workbench

https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.comsol.com/
https://www.ansys.com/products/ansys-workbench




Chapter 3

CoSimulation in and with a
multiphysics framework

Chapter 2 presented the theoretical basics for partitioned coupled simulations.
This chapter continues on a more practical path by presenting the realiza-
tion of CoSimulation in and with a multiphysics framework. Performing
CoSimulation in the framework means that solvers of the framework are used.
CoSimulation with the framework means that it acts as a coupling tool for
coupling external tools/solvers.

The open-source code Kratos Multiphysics ([15], in the following referred to
as Kratos), is chosen as the framework to integrate and perform CoSimulation
with. The main reasons for using Kratos are the cross-platform support,
efficient parallelization and memory management, wide selection of internal
solution techniques, modern software architecture, and permissive license.
This combination makes it the ideal basis for this work.

After a brief introduction of Kratos, the different aspects of CoSimulation
are presented. Then the integration of CoSimulation in Kratos is explained,
including the treatment of distributed memory environments. An overview of
technical realizations is shown afterward, pointing out the differences between
coupled simulations with a dedicated coupling tool to a multiphysics tool. The
integration of internal solvers is outlined as well as the coupling to external
solvers. For the latter one, a new detached interface is presented, with detailed
studies of IPC for CoSimulation.

The work presented in this chapter was done in collaboration with Aditya
Ghantasala. The design and concepts were developed together and are pre-
sented in [31]. The contribution of this work is the implementation and
realization of CoSimulation, and in particular the developments for the cou-
pling to external solvers. Furthermore, [9] presents some intermediate findings
and developments.
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3.1 Overview of Kratos Multiphysics

Kratos serves as the basis for this work, therefore this section explains and
introduces its features that are important for this work. This is required to
motivate the decisions taken in the later parts of this chapter, especially when
it comes to implementational aspects.

Kratos is an open-source multiphysics framework using the FEM. The
source code is freely available on GitHub1. It contains solution techniques
for several physical phenomena such as fluid dynamics, (CFD) structural
mechanics (CSD) or particle methods (e.g. Discrete Element Method (DEM)).
Aside from the solution techniques that are strongly focused on the physics
of an application, other methods like shape optimization or the CoSimulation
presented in this work are available.

To avoid overhead and code duplication, Kratos employs a core/applications
approach. Common functionalities like data structures, in-/output, linear
solvers, FEM assembly or search structures are located in the core of Kratos.
The applications depend on the core, and in some cases also on each other.
The latter is especially important for CoSimulation, as it brings together
individual solvers to perform coupled simulations.

An overview of the applications used in this work is given in the following.

• FluidDynamicsApplication: This application contains most of the
CFD functionalities of Kratos and is used for FSI simulations. Unlike
many other CFD solvers, it uses the FEM in combination with the
Variational Multiscale (VMS) method. More details can be found in
[12]. Due to the typically large computational cost of CFD simulations,
support for distributed environments via MPI parallelization is provided.

• StructuralMechanicsApplication: Solid and structural simulations
(CSD) can be performed with this application. Among others, it features
solid, shell, membrane, beam and truss elements along with the corre-
sponding boundary and loading conditions. It also supports distributed
simulations.

• DEMApplication: Solution techniques based on the DEM method are
implemented in this application, for solving the motion and interaction
of discrete particles.

• MeshMovingApplication: In a two-way coupled FSI simulation, the
structural deformations are mapped to the fluid domain on the interface.
Typically, the vicinity of the structure is finely discretized to accurately
represent the surrounding flow. If the structural deformations are of
the same magnitude or larger as the fluid elements, they can distort
severely which oftentimes leads to a diverging simulation. To avoid this,
the deformations are smoothened and pushed out to the domain. This
is oftentimes referred to as mesh moving, for more details see [59].

1 https://github.com/KratosMultiphysics

https://github.com/KratosMultiphysics
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• MappingApplication: Different techniques for mapping between non-
matching meshes are implemented in this application. Chapter 4, is
entirely dedicated to this topic.

• CoSimulationApplication: A large part of this work was the imple-
mentation of coupling features, which is done within this application.
Coupling strategies, coupling to external codes and implementational
aspects are discussed in this chapter.

• LinearSolversApplication: Linear solvers are a key component for
many numerical simulations, as they can significantly influence solution
times and stability, as well as memory usage. This application provides
an interface for solvers from external libraries, most notably to Eigen
[32] and the Intel-MKL2.

• MetisApplication: Distributed simulations require partitioning the
simulation domain among the different computing cores. Domain de-
composition with the METIS library [43] is done with this application.

• TrilinosApplication: The trilinos library [76] is a collection of func-
tionalities including distributed linear algebra. Kratos uses it as the
backend for the distributed simulations and distributed FEM assembly
routines. All commonly used components using trilinos can be found in
this application.

Kratos uses mainly two programming languages: Python for high-level
scripting tasks, as well as controlling and steering the overall flow of execution
due to its simplicity and flexibility. On a low level, C++ is used for the main
data structures and computationally expensive tasks such as linear solutions
or the assembly of the system of equations.

This approach combines the advantages of both languages and mitigates
their disadvantages. Python provides users with easier accessibility to the
framework, as well as scripting options, whereas the performance of C++ can
be fully leveraged if necessary.

3.1.1 Data container for CoSimulation

Handling data is one of the main tasks in CoSimulation. This includes but
is not limited to, the synchronization of data among the coupling partners
and the mapping of data from one discretization to another. As those are
critical and often occurring tasks, the data access and storage need to be
done in a fast and efficient way. The ModelPart is the main data container
in Kratos and was designed based on these requirements. It is a generic
and flexible container for storing different types of data and entities that are
related to different numerical solution techniques. Storing plain data such
as scalar values is possible, as well as meshes with nodes and elements or
entire geometries such as NURBS patches which are used in Computer Aided
Design (CAD) models.

2 https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
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Details of the implementation can be found in [14]. It is used by the different
physical solvers of Kratos to store their solution data.

The existing usages, available features and flexibility make the Model-
Part the ideal data container for CoSimulation. This has several significant
advantages:

• The data of the Kratos solvers can be directly accessed, without any
overhead such as copying of memory. This is a crucial advantage of
performing CoSimulation within a multiphysics tool over using dedicated
coupling tools. Due to the direct access, it is also not necessary to
exchange the data with IPC.

• The ModelPart is a sophisticated and optimized data container that is
extensively used in the Kratos solvers.

• Many auxiliary functionalities like in-/output are available for the Model-
Part and can directly be used and integrated into CoSimulation.

• Different types of data and entities required in numerical solution tech-
niques can be stored: From plain data to meshes with nodes and elements
which contain geometrical information. The geometrical information is
required for establishing geometrical relations between coupling partners,
as is required for mapping.

3.1.2 Kratos in distributed environments

Many numerical solution techniques like CFD can have a high computational
cost, especially for the detailed simulation of real-world problems. The
consequence is long simulation times, which is not feasible for industrial
usage. As discussed in Section 2.4.2, a solution for this problem is to use
large computer systems such as clusters or supercomputers, or generally,
HPC systems. These systems usually employ distributed memory models,
which means that not all data/memory can be easily accessed anymore. Non-
local/remote data has to be requested and can be fetched by exchanging
messages among the processes. MPI is a standard for passing messages among
processes that has been adapted by most HPC systems. [13] shows how
support for distributed computing is implemented in Kratos.

Compared to traditional shared memory machines, distributed computing
brings many additional challenges on the algorithmic, soft- and hardware
side. This means that even though it is very powerful and heavily used for
some applications, it is not used for every numerical simulation. One of
the main features of Kratos is the support both for shared and distributed
memory systems to provide maximum flexibility for accommodating different
application cases and computer systems. Functionalities are provided that
allow the developer to write algorithms that are agnostic of the employed
memory model. Common requirements are the computation of reductions
such as minima or maxima or synchronization of data across ranks.

Mainly two objects are used for the agnostic implementation of handling the
memory model, the (MPI)Communicator and the (MPI)DataCommunicator.
Depending on whether Kratos is used in a shared or distributed memory
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environment, the corresponding object is used. In shared memory, no com-
munication is required since - as the name suggests - all the data is directly
accessible in the shared/common memory. Here the Communicator/DataCom-
municator is used. They serve as base classes for their MPI-variants and have
mostly trivial implementations since no communication is required. In dis-
tributed memory, the MPICommunicator/MPIDataCommunicator are used.
They perform the necessary computation if it is required. The functionalities
of each object are briefly listed in the following:

• (MPI)DataCommunicator: The MPI interface mostly uses C and
no modern C++, therefore the DataCommunicator serves as a small
wrapper for the most used MPI-functions. This is done so that it can be
directly used with the C++ data types such as std::vector. The interface
includes reductions as well as sending and receiving of data among
different ranks. Each MPIDataCommunicator has its own MPI_Comm
communicator such as MPI_COMM_WORLD for MPI function calls.
Depending on the setup it is also possible that the MPI_Comm is not
defined on a certain rank which means that it is not part of/used for
communication. This is particularly relevant for CoSimulation if a solver
does not use all MPI ranks.

• (MPI)Communicator: This object is owned by a ModelPart and
handles the communication and the synchronization of local and ghost
entities such as nodes when the ModelPart is partitioned across several
ranks. Furthermore, access to local, ghost and interface entities is pro-
vided. Internally it has a DataCommunicator for (MPI) communication.

3.1.3 Common solver interface

Despite using vastly different physical solution techniques, all Kratos solvers
follow the same top-level interface: the AnalysisStage. It is designed flexible
and generic to accommodate the requirements of different solution techniques,
both for Kratos internal and external solvers. Furthermore, it provides features
to adapt and customize the behavior if necessary. This unified interface
simplifies the integration of Kratos solvers into CoSimulation greatly since it
allows them to be treated as black-box. It can therefore be considered one
of the basics developed in this work. The main part of the interface that is
important for CoSimulation is explained in the following, and visualized in
3.1.

The three main functions are:

• Initialize: This function is executed once at the beginning of the
simulation. The solver is prepared for the solution procedure, which
usually starts with reading and validating input. Afterward, the internal
data structures are prepared, and the initial conditions are applied. Final
checks are done before the start of the solution loop.

• RunSolutionLoop: Main function of the solution, executes the TSs.
It can be customized to accommodate different solution algorithms like
iterative solution procedures.
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• Finalize: Cleanup and finalization after the simulation. Can be used
to close output files or perform statistical evaluation of the obtained
solution.

Additionally, the RunSolutionLoop method is split up into six more func-
tions for fine-grained control over the different parts of the solution.

• AdvanceInTime: Increment the time and perform time integration,
along with the preparation of the data structure for the following step.

• InitializeSolutionStep: Application of boundary conditions and other
custom conditions that can vary in space and time.

• Predict: Prediction techniques to improve and accelerate the solution
by providing an improved initial guess.

• SolveSolutionStep: Main function which is responsible for the solution
of the current step. It is the only function that can be executed multiple
times in an iterative solution procedure, usually until convergence is
achieved.
More abstractly, this function obtains a new solution, by different means.
These can be a numerical solution, communication with an external
tool to get new values, or predicting the new solution with a Neural
Network (NNet).

• FinalizeSolutionStep: After the solution is performed, the TS is
finalized by updating internal data structures.

• OutputSolutionStep: Used for writing output and other postprocess-
ing.

1 Initialize ()
2
3 # RunSolutionLoop
4 while time < end_time:
5 AdvanceInTime ()
6 InitializeSolutionStep ()
7 Predict ()
8 SolveSolutionStep ()
9 FinalizeSolutionStep ()

10 OutputSolutionStep ()
11
12 Finalize ()

Listing 3.1: Call sequence of simulation, including the main solution loop.

The developed common interface can be used by other applications besides
CoSimulation. A prominent use case is numerical optimization (such as shape
optimization), which also treats the solvers as black-box.
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3.2 Integration of CoSimulation into a multiphysics
framework

The implementation and realization of CoSimulation in Kratos is done inside
the CoSimulationApplication. This application contains the different solution
components and procedures for partitioned coupled simulations. The integra-
tion was realized by adhering to the workflows that are established in Kratos.
The solvers in Kratos can be used as well as the external coupling partners.

The building blocks for partitioned CoSimulation were introduced in Sec-
tion 2.2. The technical realization of these components is presented in the
following. Figure 3.1 gives an overview of the implementation of the CoSim-
ulationApplication, and how the individual components are connected and
related to each other.

A large part of the application is written in Python, to allow for a simple
extension and modification of the various components of CoSimulation. Each
of them can be changed, adapted and customized to suit the needs of the
corresponding use case. The high flexibility allows it to cover a wide range of
engineering problems and is extensible for future requirements.

3.2.1 CoSimulationAnalysis

The CoSimulationAnalysis derives from and implements the interface of the
AnalysisStage as was explained in Section 3.1.3. It is the top-level component
in the hierarchy and the first interface with the user.

3.2.2 SolverWrapper

This is the interface for solvers and other tools to be integrated as coupling
partners into CoSimulation. It implements the interface of the previously
introduced common solver interface (see Section 3.1.3), with extensions to
accommodate further functionalities related to CoSimulation.

The SolverWrapper is also the manager of the data used in CoSimulation.
It owns a Model, which in turn holds the ModelParts of the coupling partner.
Generic access to the data is provided utilizing the CouplingInterfaceData
(see Section 3.2.5).

Derived classes implement the specific requirements of a particular solver.
These can vary strongly between the tools. For Kratos internal solvers, the
calls are mostly forwarded to the corresponding AnalysisStages of the solvers.
External solvers on the other hand use their dedicated IO to communicate
with the running solver instance. Typically, the SolveSolutionStep method is
used to update the data structures in Kratos with the ones of the external
tools. This oftentimes also serves as synchronization between the tools.

Remark on Kratos terminology: The AnalysisStage is the top-level
interface to most solvers/applications in Kratos. It is thus the logical choice to
be used as black-box inside the SolverWrapper of the CoSimulationApplication.
However, it can lead to confusion with another important object in Kratos,
the PythonSolver. It is owned by the AnalysisStage, and is in charge of
solving the physical problem, for example, a dynamic or a static solver for a
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structural problem. Other important tasks of the simulation are handled by the
AnalysisStage, such as boundary conditions as well as input/output. Therefore,
the PythonSolver is not suitable to be used within the SolverWrapper.

3.2.3 IO

The communication with external coupling tools is implemented in the IO.
The main task is to synchronize the data of the tool with the data inside
Kratos so that it can be used in the coupling. Typically, this means that
different variants of IPC are implemented as presented in Section 2.2.2. As
for the SolverWrapper, the implementation is highly specific to the external
partner. Unified approaches like CoSimIO (see Section 3.7) can be used as
well as customized solutions.

3.2.4 CoupledSolver

Different coupling strategies and communication patterns as presented in
Section 2.2.1 are realized in this class. It is thus one of the most important
components of a coupled simulation.

It derives from the SolverWrapper, which means that each coupled simula-
tion can itself be used in another coupled simulation. This nesting leads to
multi-coupling scenarios, as presented in [31] and [83].

Examples of realizing weakly and strongly coupled solvers, using the Gauss-
Seidel communication-pattern, are shown in 3.2 and 3.3, respectively. 3.4
shows the details of the synchronization of data among the solvers.

1 def SolveSolutionStep ():
2 # initialize coupling iteration ...
3
4 for solver in solvers:
5 synchronize_input_data(solver)
6 solver.SolveSolutionStep ()
7 synchronize_output_data(solver)
8
9 # finalize coupling iteration ...

Listing 3.2: Overview of implementation for a weakly coupled Gauss-Seidel
coupled solver. The synchronization of data among the solvers
is shown in 3.4.

1 def SolveSolutionStep ():
2 for k in range(num_coupling_iterations):
3 # initialize coupling iteration ...
4
5 for solver in solvers:
6 synchronize_input_data(solver)
7 solver.SolveSolutionStep ()
8 synchronize_output_data(solver)
9

10 # finalize coupling iteration ...
11
12 if convergence_criteria.IsConverged ():
13 return True
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14
15 if k+1 >= num_coupling_iterations:
16 # convergence was not achieved in this time step
17 return False
18
19 convergence_accelerator.ComputeAndApplyUpdate ()

Listing 3.3: Overview of implementation for a strongly coupled Gauss-Seidel
coupled solver. The synchronization of data among the solvers
is shown in 3.4. The integration of ConvergenceAccelerator (see
Section 3.2.8) and ConvergenceCriteria (see Section 3.2.9) is
shown.

1 def synchronize_data ():
2 for data in data_list:
3 # from solver
4 from_solver_data = data (...)
5
6 # to solver
7 to_solver_data = data (...)
8
9 coupling_operations.Execute("before_data_transfer")

10
11 # conduct the transfer , e.g. with Mapping
12 data_transfer_operator.TransferData(from_solver_data ,

to_solver_data)
13
14 coupling_operations.Execute("after_data_transfer")

Listing 3.4: The synchronization of data among the solvers involves
a DataTransferOperator (see Section 3.2.6) and optionally
CouplingOperations (see Section 3.2.10).

Special coupling sequences can be realized by creating a dedicated version
of the CoupledSolver.

3.2.5 CouplingInterfaceData

Access to the ModelPart of the coupling partner, which is the main container
for data (see Section 3.1.1), is done through this component. Due to the large
amounts of data involved in CoSimulation, efficient access to data is crucial
which is ensured by avoiding copies of data if possible.

By using this intermediate object it is possible to decouple the storage of
the data (e.g. nodes or elements) from the usage in the coupling algorithms.
Hence, this class can be considered as an interface between the physical
data that is stored depending on the physics and the generic algorithms in
CoSimulation that work on data.

Support for distributed environments is implemented by using the Data-
Communicator that is owned by the ModelPart. It is in particular important
for determining whether a ModelPart exists on a certain rank or not, which is
used for many coupling algorithms. Furthermore, it can be used to implement
algorithms that rely on global information, agnostic of the underlying memory
model.
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3.2.6 DataTransferOperator

The concept of transferring data between different solution techniques was
introduced in Section 2.2.3. In the CoSimulationApplication this concept is
realized with the DataTransferOperator. It is used to implement different
methods, mapping between non-matching grids being one variant.

An important aspect of distributed simulations is to have a MPI_Comm
that contains all ranks of the interface on both sides.

3.2.7 Predictor

Prediction/extrapolation techniques as introduced in Section 2.2.1 are used to
improve the convergence of a (coupled) solution, by providing an initial guess
for the solution of the new TS. This is particularly important and useful for
weakly coupled simulations because no convergence check is performed like in
strongly coupled simulations. This component is realized within the Predictor
class, which can be used in different coupled solvers.

3.2.8 ConvergenceAccelerator

Strongly coupled simulations often require relaxation to achieve stable solu-
tions. The usage of convergence acceleration techniques (see Section 2.2.1)
can greatly speed up the convergence, which decreases the number of coupling
iterations. Therefore, the total simulation time gets reduced. Various methods
have been developed over the years, this work implements the fixed point
methods constant under-relaxation and Aitken [50] as well as the quasi-newton
methods IQN-ILS [20] and MVQN [7].

The implementation is realized with the ConvergenceAccelerator class.
It has access to the necessary data structures and has interfaces for the
integration of strongly coupled solving strategies.

3.2.9 ConvergenceCriteria

For a strongly coupled solution strategy, it is required to determine whether
convergence has been achieved for the current TS. This is implemented as
ConvergenceCriteria, where different ways of checking for convergence can be
selected and specified. The necessary interfaces to access the data structures
are available, as well as synchronization for distributed memory simulations.

3.2.10 CouplingOperation

Many coupled simulations require the same or a similar set of functionalities,
which can be composed of the components introduced before. However, for
some application cases, these functionalities might not be sufficient, and special
treatment is required. In order to provide the maximum possible flexibility to
accommodate as many coupled simulation scenarios, the CouplingOperation
provides a way to customize many aspects of the coupling. The use cases
range from input/output of values and fields, manipulation of data structures,
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and debugging output to introducing additional coupling components. Python
as a programming language helps to ease the integration of custom extensions
into CoSimulation.

3.3 CoSimulation in distributed environments

The support for distributed memory environments is one of the most important
features necessary for solving large-scale real-world problems. Naturally, this
means that also CoSimulation must be able to be usable in those cases. Special
methods are used and implemented to support these systems.

3.3.1 Bringing together different parallelization methods

Aside from solvers like CFD that rely largely on large computing systems,
there are many solvers and solution techniques that do not offer support for
distributed systems, or where is technically not feasible to implement them.
This also includes coupling partners that do not have a high computational
effort and would hence not benefit a lot from the available computing resources.
CoSimulation implements methods to integrate these partners such that it is
completely up to them how many of the available compute resources they use.

Figure 3.2 shows the possible scenarios of how different solvers can be
deployed in distributed environments in a CoSimulation context. Firstly it is
important to mention that CoSimulation uses all available ranks to achieve
maximum performance and simplify the integration of highly parallel solvers.

Scenario 1: CoSimulationApplication
and all solvers run in MPI
(and use all processors)

Scenario 2: CoSimulationApplication
and all solvers run in MPI, some solvers
use less processors

Scenario 3: CoSimulationApplication
and all solvers run in MPI, some solvers
run without MPI

MPI process/rank
CoSimulationApplication
Solver A
Solver B

Figure 3.2: Different scenarios for running CoSimulation in distributed en-
vironments (4 MPI-processes).



3.3. COSIMULATION IN DISTRIBUTED ENVIRONMENTS 37

In the first scenario, all coupling partners use all available MPI processes.
This is typically used when the different partners have similar computational
requirements. It is also the most efficient scenario, as none of the processes is
idle at any given time, since all partners and CoSimulation make use of all
available resources.

In the second scenario, one or more partners use fewer processors than are
available but still use MPI. This is oftentimes used when a solver performs
better with fewer processors due to the size of the problem. In those cases,
the problem is not large enough and the communication overhead outweighs
the computational effort. Thus, the solver uses fewer cores to run at optimal
performance.

This scenario is implemented in CoSimulation by assigning a dedicated
MPI_Comm MPI-Communicator to each solver. The parent coupled solver
includes all ranks that its solvers use. Using different ranks poses a challenge
mainly for data transfer, particularly mapping. The details of how this is
addressed are presented in Section 4.3.

The ranks that are idle during the computation of this solver might be used
by a different coupling partner depending on the employed coupling algorithm.
Here especially Jacobi-type communication patterns (see Figure 2.2a) could
be used which have no data dependencies among each other within one TS or
coupling iteration. In this case, it can also be important to check how the
jobs can be deployed on the cluster, to ensure that they can be executed at
the same time.

Scenario three is probably the most common one. Here, one or more of the
coupling partners do not make use of distributed computing, and run purely
serial or shared memory parallel. This can have several reasons which are
specific to the solver. Nevertheless, their integration into a coupled simulation
needs to be done in a way that they can still be combined with solvers that
employ distributed computing. This mainly affects the data transfer between
the solvers, e.g. the mapping between them. Also, same as in scenario two,
some ranks can be idle as no solver uses them at a time.

Example 6.5 compares different versions for parallelization, using large-
scale FSI simulations of the Olympic Tower in Munich. Finally, Section 5.2
illustrates how to submit jobs on a cluster with different means of paralleliza-
tion.

3.3.2 Algorithms for distributed environments

The requirements for algorithms that work in distributed environments are
different since only a part of the total memory can be accessed directly.
Remote memory can only be accessed by communicating the data, e.g. via
MPI. This communication is overhead that should be avoided as much
as possible. Conducting numerical simulations in distributed environments
typically involves partitioning/distributing the computational domain (see
Section 2.4.2), so that each rank can compute a part of it. This part of the
domain can be directly accessed, accessing other parts of the domain can only
be done via communication.
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Avoiding communication is a crucial task for developing algorithms that
work efficiently in distributed environments. This means that computations
should be executed locally as much as possible, and the exchange of data
among the ranks and synchronization should be reduced as much as possible.

One application of pure local computations is the predictors, which can
be implemented to work purely on their local part of the domain, without
the need for communicating or synchronizing with the other ranks. The same
holds for CouplingOperations such as the scaling of values, which also can
happen purely on local data.

On the other hand, some algorithms might require operations on the entire
interface, such as the computation of norms over the entire interface for
checking convergence. Here communication can in most cases not be avoided.
Even more so, for more advanced algorithms such as are used for convergence
accelerators, the algorithm might not be easy to implement in distributed
memory architectures. In such cases, a last resort method is to gather all the
data on one rank and treat it as if it were shared memory parallel. After the
computation, the new data is then scattered back to its original ranks. This
is slow as a lot of communication is required, and only one rank performs the
heavy computations. Additionally, depending on the setup of the coupling,
the memory consumption of the computing rank can increase significantly.

3.3.3 Practical considerations

When developing algorithms, it is usually beneficial to make use of estab-
lished solutions, especially for complex components like linear algebra or data
structures. Most programming languages provide a standard library that
offers commonly used functionalities. If something is not part of the standard
library, then external libraries can be used. This shortens and simplifies
the development process. However, relying on external libraries that are
not part of the standard library, complicates the setting up of the software.
With more and more dependencies, also the risk that something can not be
installed on the system that is to be used increases. This should especially
be taken into account on HPC infrastructure, where it might not be possible
to install some dependencies. Therefore, limiting dependencies can help to
achieve maximum portability and flexibility when it comes to using software
on different architectures.

From the point of view of developing algorithms for distributed architecture,
it might be better in some cases to use simpler techniques and methods to
limit the complexity and reduce less stable components. Furthermore, the
number of libraries that support distributed architectures is much smaller,
since the vast majority of computers use shared memory. This means, that
the choice of libraries to use is already limited, and introducing a dependency
should be carefully considered and evaluated.
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3.4 Spectrum of technical realizations for
CoSimulation

Partitioned CoSimulation can be done in various ways, differing in the way the
coupling partners are integrated. One end of the spectrum requires none or
only a small amount of modifications to the tool, but has significant overhead,
both in terms of computing time and memory usage. More efficient versions
of integration can be achieved, but these are typically more intrusive, and
might not be possible for some solvers. Figure 3.3 offers an overview of the
spectrum of integrations.

Intrusiveness / Execution Control / Access to Data

Overhead / Limitations

Spectrum of CoSimulation

Figure 3.3: Spectrum of technical realizations of partitioned CoSimulation.
The left end is characterized by large overhead and little flexi-
bility, while the other end of the spectrum is highly intrusive,
with low-level access to data structures and execution control.

This work proposes the separation of principles into four categories, which
will be introduced and explained in the following.

3.4.1 Integration without any modification

The most basic approach for using a solver in a coupled simulation is by
restarting it for every step of the solution. The communication happens
purely with files, i.e. the input is modified before each step, and the output
is read by the coupling tool, as illustrated in Figure 3.4.

This procedure is highly specific to each tool (in the way the input is
written, and the output is read), and requires special (solver-) wrappers.
Furthermore, it has a significant overhead, due to the continuous reading
and writing of files, as well as the starting of the entire solution procedure.
This approach can be used for commercial/proprietary solvers, where it is
not possible to access/modify the source code, and also does not provide any
CoSimulation-related functionalities like functions to modify the internal data
structures.

3.4.2 Integration via data exchange routines

Implementing a dedicated API for the data exchange between the coupling
partner and the coupling tool is a more elaborate way of enabling CoSimulation.
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Figure 3.4: Using a solver for a coupled simulation, without any modifica-
tions to it. The solver is restarted for each solution step, based
on modified input files. The output files are read by the coupling
tool.

The solver no longer needs to be restarted for each solution step, hence no
expensive re-initialization of data structures is necessary. The data exchange
(Input-Output) serves both as a way for communicating the coupling data
to the coupling tool, as well as for synchronization. In practical cases, this
means that after the data is communicated to the coupling tool, it waits
until an updated solution data is available. Figure 3.5 visualizes this way of
integration.

A significant limitation of this approach is the lack of flexibility for the
coupling algorithm. If the coupling algorithm is changed e.g. from a weak to
a strong coupling, then the integration of the API has to be changed, e.g. by
providing an additional check if the time step needs to be repeated in case no
convergence of the coupled solution is achieved.

This way of integration is usually done by dedicated coupling tools. The
coupling partners implement the interface of the respective tool to communi-
cate with it. Even though this is a largely improved approach compared to
the restarting approach, it still lacks flexibility. Furthermore, the duplication
of data between the coupling tool and the coupling partner can cause memory
problems for large problems.
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Figure 3.5: Integration via a dedicated API. The solvers implement the
coupling sequence and run in separate memory spaces. IO can
be done with different methods of IPC.

3.4.3 Integration by providing control for CoSimulation

This work proposes a new approach, in which the synchronization with the
coupling partner is no longer done via the data exchange. Instead, full
execution control is given to CoSimulation, by providing a set of functions
that can perform different tasks. This means, that the coupling algorithm is no
longer reflected in the source code of the coupling partner. The order in which
the individual parts of the solution procedure are executed is left completely
to CoSimulation, and thus any coupling algorithm/solution procedure can be
realized without any changes in the source code of the solver. Furthermore,
the possibility for deadlocking is greatly reduced, since the flow of execution
is controlled from one single component. This approach is titled remote-
controlled CoSimulation, as it has full execution control to orchestrate the
coupling. It requires a high flexibility of the coupling partner, which is a
disadvantage of this approach.

The different parts of the solution procedure are the functions offered by
the interface of the SolverWrapper, as well as procedures for the exchange of
data. Hence, this approach can be seen as an improvement and superset of
the integration via data exchange. Figure 3.6 shows this approach.

Some tools like MpCCI (see Section 2.5) also allow registering functions
for different tasks in the coupling tool. However, these are focussed on
the coupling functionalities like data exchange (and thus only a different
realization of the approach presented in Section 3.4.2), and not the top-level
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Figure 3.6: Remote controlled CoSimulation: Each partner provides a set
of functions to execute different parts of the solution procedure.
CoSimulation has full execution control and orchestrates the
coupling. The data exchange is not used for synchronization.

control of the entire solver, as is proposed here.

3.4.4 Integration within the same framework

This approach is the most flexible yet most intrusive. The coupling partner
and coupling tool are part of the same framework, which is the case for most
multiphysics tools. The data of the coupling partner can be directly accessed
by the coupling tool, without any communication via IPC. Due to the shared
memory space, it is also the most memory-efficient approach, which makes
a difference, especially for large coupled problems. Figure 3.7 presents this
approach. Same as in the previous approach, the solvers can be directly
controlled by the coupling tool if they share the same interface.

3.5 CoSimulation with Kratos internal solvers

Kratos offers numerical solution techniques for different types of physical
problems. Enabling multiphysics requires CoSimulation functionalities which
are developed and implemented within the scope of this work.

One of the main algorithmic developments is the unification of the solver
interfaces with the AnalysisStage, see Section 3.1.3. This is a first step
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Figure 3.7: The solvers and the coupling tool are part of the same framework.
They run in the same memory space, thus no data communi-
cation via IPC is necessary. Furthermore, data duplication is
avoided. Only possible with multiphysics tools.

towards the realization of CoSimulation within Kratos. The interface of
solvers to be integrated into CoSimulation is the SolverWrapper. Because the
interfaces of SolverWrapper and AnalysisStage are compatible, the integration
of Kratos solvers is achieved with minimal effort. The CoSimulation can
directly access the data structures of the solvers in the form of the ModelPart,
which completes the integration. This means that no data exchange between
different processes via IPC is required. Furthermore, no memory overhead
occurs as no duplication of data is necessary.

Accessing the ModelPart directly also has a disadvantage: Since the data
of the solvers is accessed directly it can also be dangerous if the wrong data
is modified at the wrong time. I.e. some data may be overwritten that is
not supposed to be changed. Even though the approach is black-box, still
the boundaries become blurry in the case of directly accessing the solvers’
database.

3.6 Coupling to external solvers/tools

Even though Kratos offers many solution techniques, providing CoSimulation
only for the solvers of Kratos would severely limit the applicability, as many
external tools exist which can be included to perform coupled simulations.
Hence, solutions are developed for the integration of Kratos-external coupling
partners into CoSimulation.

As for Kratos solvers, the interface for coupling partners is the Solver-
Wrapper. The provided interface can be used to perform solver-specific tasks,
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which depends highly on the tool to be integrated.
Unlike the Kratos internal solvers, the data structures of external coupling

partners can not be directly accessed. This means that the data involved
in the coupling needs to be communicated to Kratos via IPC. This is done
with the IO. Standard solutions are provided, but it is also possible to use
solutions custom for each solver.

The data of an external coupling partner is saved within a ModelPart,
which makes the uniform treatment of solvers internal or external to Kratos
possible. This means, that after the data is communicated to Kratos and
stored in a ModelPart, it no longer matters where the data originally came
from. This leads to a uniform treatment of internal and external solvers in
CoSimulation.

3.6.1 Detached Interface

Integrating an external library or framework and its interface/API is a chal-
lenging task. This applies generally and is not limited to CoSimulation. The
larger and more complicated the interface and the library are, the more effort
needs to be spent on the integration. Additionally, if the library has depen-
dencies itself, then those also need to be available. Large codes like Kratos
have many dependencies, which can be tough to install, especially on special
infrastructures like HPC systems. Also, different versions of dependencies
might not be compatible which needs to be taken into account. Therefore, it
is best to avoid dependencies as much as possible to reduce possible issues
with integrating and using an external library. Of course, this does not hold
for all cases, especially when avoiding a dependency would result in large
development efforts. Hence, adding a new dependency needs to be carefully
evaluated and assessed each time.

For the reasons mentioned above, a special interface is developed to simplify
the integration of CoSimulation capabilities. As explained in [31], the proposed
interface is independent of Kratos and thus fully detached from the coupling
framework. To keep it as small and lightweight as possible, it contains the
least amount of functionality required to enable CoSimulation: The API and
IPC. The connection and communication with the CoSimulationApplication
is done by using IPC. All the functionalities required for CoSimulation such
as mapping or coupled solvers are part of Kratos. Without the tight coupling
of the tools, it is furthermore possible to deploy them independently. The
connection is made only at runtime. Figure 3.8 visualizes the concept of the
detached interface.

3.7 Realization of detached interface: CoSimIO

CoSimIO is an implementation of the detached interface as presented in Section
3.6.1. It is a small tool that offers data exchange via IPC for CoSimulation
contexts. The goal was to create a tool that provides a very easy integration.
This way it becomes very simple to realize CoSimulation.
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Figure 3.8: Detached interface: A small interface which is implemented by
solvers/tools, without dependencies between each other. The
connection is made at runtime, the data can be exchanged with
different methods of IPC.

It follows the same open-source concept as Kratos, and is freely available3,
with a permissive BSD-3 license.

3.7.1 API of CoSimIO

Aside from the integration of CoSimIO from the software engineer’s point of
view, integrating the API is crucial for enabling CoSimulation. The right calls
have to be made at the correct places. The clear and crisp interface supports
this, hence the elaborate and well-thought-through design of the public API
of CoSimIO is presented and explained.

Independent of the type of information to be exchanged, the first step in
any coupled simulation is to establish a connection between the tools. At
the end of the simulation, this connection is closed by disconnecting. Once a
connection is established, then the exchange of information can occur. This is
realized through the Connect and Disconnect functions. Both partners need
to call both functions.

The exchange of data occurs once a connection is established. One partner
exports the information, while the other one imports it. This is equivalent to
a sender/receiver concept. It is important to decide on the data and its types.
CoSimIO supports three basic types of data: Data, Mesh and Info.

For remote-controlled CoSimulation as introduced in Section 3.4.3, two
additional functions are necessary. The Register function is used to register
the procedure calls supported by the external tool. These are then called
during the execution. After the necessary functions are registered, the Run
method executes the entire coupled simulation.

This set of functionalities leads to the following API of CoSimIO:

3 https://github.com/KratosMultiphysics/CoSimIO

https://github.com/KratosMultiphysics/CoSimIO
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• Connect: This method needs to be called first, it prepares CoSimIO for
communication. At first, it does some basic checks with the connection
partner to check for compatibility, for example, version and other options.
The second step is to initialize the selected method of IPC, for example
by opening network ports. The third and final step is to make the
connection with the partner, for example by connecting to the port
that was opened by the partner. Since this procedure requires both
partners to be ready for connection, the function only returns once the
connection is fully established. This way, any kind of race conditions
with the following functions that communicate data are avoided.

• Disconnect: At the end of the coupled simulation, after all the data
is exchanged and both partners are done, the last step is to end the
connection. The main part is to close the IPC, which entails for example
disconnecting and closing ports.

• Data exchange (ExportData and ImportData): An variable-sized array
of data represents the most basic form of information. Usually, the
data type is a floating point number such as double. This information
can be associated with a mesh and represent a field (e.g. Pressure or
Displacement). It can also be independent, and represent quantities
such as sensor input or other signals which are not associated with a
geometrical location.

• Mesh exchange (ExportMesh and ImportMesh): Numerical simula-
tions that deal with spatial discretization often use meshes for storing
geometrical information. The domain is discretized into small elements
or cells, which are connected by nodes at their corner points. This type
of information is required for the mapping of data between different
mesh sizes and is hence commonly exchanged in coupled simulations.

• Info exchange (ExportInfo and ImportInfo): Information other than
data or meshes can be collected with a special Info object. It uses a
key-value map to store different information associated with an identifier.
The key is a string, while the value can be of type integer, double, bool
or string. Nesting of Info objects is also possible. Typical examples are
settings, parameters and other meta-data that need to be exchanged.
This general mechanism for exchanging information means that no
special methods need to be created for every new kind of data that
needs to be exchanged. With the MPI_Info, the MPI standard defines
a very similar object4. The main difference is the type-safety and MPI
indepencence of the CoSimIO implementation, which simplifies the
usage significantly.

• Register: For remote-controlled CoSimulation it is required by the
external solver to register functions that can perform various steps in
the solution procedure. Examples are solving the time step, or the
import/export of data. These need to be registered such that they

4 https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report-bw/node194.htm

https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report-bw/node194.htm
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can be called by the controlling instance, depending on the solution
algorithm.

• Run: After all the functions required for the solution are registered,
the external tool calls this method to relinquish control to the remote
instance. Internally it continuously waits for a signal requesting the
execution of a specific, previously registered function. Which calls are
being made and in which order hereby depends on the chosen solution
algorithm. For the calling tool, this function only returns after the
entire CoSimulation has finished.

The last step towards integrating the API is to decide on the level of inte-
gration of the external tool. As explained in Section 3.3, different approaches
can be used. CoSimIO provides two options:

3.7.1.1 Classical CoSimulation

This approach implements what was introduced in Section 3.4.2. The synchro-
nization between the tools happens with the information exchange routines.
No additional API calls are therefore necessary. It is a basic approach that
lacks flexibility, as the coupling sequence is duplicated and needs to match
the one in the coupling tool. Hence, every change such as weak to strong
coupling requires changes in the source code.

3.5 illustrates how the integration of CoSimIO is done for weak coupling.
In contrast, 3.6 shows the same but for strong coupling. Their comparison
indicates that changing the coupling algorithm requires several changes in the
implementation, and thus is not flexible. It is of course possible to implement
several known algorithms, but exploring other ways of coupling is not possible
without source code modifications.

1 # solver initializes ...
2
3 CoSimIO :: Connect (...) # establish connection
4
5 CoSimIO :: ExportMesh (...) # send meshes to the

CoSimulationApplication
6
7 # start solution loop
8 while time < end_time:
9 CoSimIO :: ImportData (...) # get interface data

10
11 # solve the time step
12
13 CoSimIO :: ExportData (...) # send new data to the

CoSimulationApplication
14
15 CoSimIO :: Disconnect (...) # stop connection

Listing 3.5: Integration of CoSimIO using the classical approach (weak
coupling)
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1 # solver initializes ...
2
3 CoSimIO :: Connect (...) # establish connection
4
5 CoSimIO :: ExportMesh (...) # send meshes to the

CoSimulationApplication
6
7 # start solution loop
8 while time < end_time:
9 is_converged = false

10 while (! is_converged): # convergence iterations
11 CoSimIO :: ImportData (...) # get interface data
12
13 # solve the time step
14
15 CoSimIO :: ExportData (...) # send new data to the

CoSimulationApplication
16
17 # receive convergence signal
18 info = CoSimIO :: ImportInfo (...)
19 is_converged = info["is_converged"]
20
21 CoSimIO :: Disconnect (...) # stop connection

Listing 3.6: Integration of CoSimIO using the classical approach (strong
coupling)

3.7.1.2 Remote controlled CoSimulation

Providing full execution control to CoSimulation as explained in Section 3.4.3
has distinct advantages over the classical approach: The external tool does
no longer need to implement any coupling logic, as everything is controlled
by CoSimulation. This implies maximum flexibility in terms of the choice of
coupling algorithm. The solver provides procedures that perform different
parts in the coupling logic, for example, the solution of the TS, or the export
of data. After these are registered, the Run method is used to execute the
simulation. It receives a signal from CoSimulation which part of the coupling
needs to be executed, and then calls the provided routines. Thus, the order
of execution is left entirely to CoSimulation. Any coupling logic can be used
without having to change the implementation. 3.7 gives an example of this
approach. The implementation is valid both for weak and strong coupling and
does not require changes to the source code, unlike in the classical approach.
Due to the centrally managed flow of execution, the chance for deadlocks (e.g.
when two partners are waiting for data due to a wrongly configured coupling)
is greatly reduced. This helps the debugging and setting up of new cases
greatly.

The downside of this approach is that it not only offers a high flexibility
when it comes to the choice of coupling algorithm, but it requires also a high
level of flexibility by the solver. The implementation and software design
needs to be done in a way that allows the arbitrary execution of different
steps in the solution procedure. In particular, the memory allocation and
layout are affected, as in most simulation scenarios the order of execution is
the same.
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1 # solver initializes ...
2
3 CoSimIO :: Connect (...) # establish connection
4
5 # defining functions to be registered
6 def SolveSolution ():
7 # external solver solves timestep
8 solver.solve ()
9

10 def ExportData ():
11 # external solver exports data to the CoSimulationApplication
12 CoSimIO :: ExportData (...)
13
14 # after defining the functions they can be registered in CoSimIO:
15
16 CoSimIO :: Register(SolveSolution)
17 CoSimIO :: Register(ExportData)
18 # ...
19
20 # After all the functions are registered and the solver is fully
21 # initialized for CoSimulation , the Run method is called
22 CoSimIO ::Run() # this function runs the coupled simulation. It

returns only after finishing
23
24 CoSimIO :: Disconnect (...) # stop connection

Listing 3.7: integration of CoSimIO using the remote control approach

This new approach for conducting coupled simulations was successfully
applied by [54], where a FSI simulation of a flexible membrane blade is
performed. Kratos was used both for the structural solution and the coupling
with the CoSimulationApplication and CoSimIO. The CFD solver TAU [72]
was coupled by registering the functions required for the different solving
stages within CoSimIO. The contribution of the author to this work is
assisting in the development of the coupling between the solvers.

3.7.2 Programming language and software architecture

The programming language C++ is used for the implementation of CoSimIO
since it is a good combination of efficiency, support on modern systems,
the complexity of implementation, and availability of features required for
CoSimulation. Furthermore, it is also the language in which the core of
Kratos is written. Hence, no additional requirements are necessary for using
CoSimIO alongside Kratos.

To provide maximum portability, the C++11 standard (version 2011) is
used. It is already over 10 years old at the time of this writing, which means
that it is very stable and mature by now and available on most systems that
are relevant for conducting numerical simulations. Even though newer versions
of the language are available, they are deliberately not used. This is because
the benefits of the new features do not outweigh the added installation effort,
in particular on older systems. This aligns also with the requirements for
providing a simple integration into existing tools.

Despite the popularity of header-only libraries in C++, a classical library
approach is used: CoSimIO is compiled into a shared library with the head-



50
CHAPTER 3. COSIMULATION IN AND WITH A MULTIPHYSICS

FRAMEWORK

ers included by the external tool, and afterward linking against the library.
While this requires the additional linking step, it also has several important
advantages. The compilation times are smaller, but even more importantly
no large headers (like windows.h) are leaked into the integrating code which
could cause code bloat and other issues.

The implementation is based mostly on the standard library of C++. The
base version of CoSimIO only has two dependencies which are very carefully
chosen and checked for maximum portability:

• filesystem: Interacting with and handling files and directories is often
done in CoSimIO. The C++17 standard offers these capabilities within
std::filesystem5, but for earlier versions it is necessary to use OS specific
function calls for performing the same tasks. Therefore, the filesystem
library6 is used, which is a C++11 compatible implementation of C++17-
filesystem. This header-only library facilitates the interaction with files
and directories with the same API, meaning that it can be exchanged
for the integrated version of C++ once version 17 is used.

• ASIO : Networking is used in CoSimIO for IPC via sockets. Similar to
the interaction with files and directories, C++ does not offer a native
way to do networking. At the time of this writing, this applies also
to the latest version, which currently is C++20. Therefore, the ASIO
library7 is used for the communication of data via sockets. This header-
only library is being developed for almost 20 years and is the de facto
standard for networking in C++. It might be integrated into C++ in the
future as std::net8.

3.7.3 Implementation details

Section 3.7.2 contained a brief overview of the overall software architecture
and general design decisions. This section complements it by presenting and
explaining the crucial parts of the implementation in detail.

The main functionality of a detached interface is the data exchange via
IPC. Several methods are implemented, and they can be selected at runtime.
All of them share a common interface, which is implemented with the Commu-
nication class. Connecting and disconnecting are implemented in dedicated
functions. Furthermore, procedures for exchanging data, mesh and info are
provided. This follows the API as presented in Section 3.7.1. In principle,
any data structure that supports serialization (see Section 2.2.2.4) can be
exchanged.

The main outline of the implementation is shown in 3.8. The base class
implements two crucial tasks, namely the initial handshake and the serialized
data exchange: Before any connection is established, the two partners per-
form a handshake, which consists of synchronization among them as well as

5 https://en.cppreference.com/w/cpp/filesystem
6 https://github.com/gulrak/filesystem
7 https://think-async.com/Asio/
8 https://cplusplus.github.io/networking-ts/draft.pdf

https://en.cppreference.com/w/cpp/filesystem
https://github.com/gulrak/filesystem
https://think-async.com/Asio/
https://cplusplus.github.io/networking-ts/draft.pdf
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exchanging some basic information which is used for checking compatibility.
This is explained in more detail in Section 3.7.6.

IPC can only handle basic data types for the data exchanges, such as
arrays of doubles or characters. Complex data structures, however, such as
meshes or info, need to be serialized to a stream of bytes for the exchange.
Afterward, they need to be reconstructed by deserializing them back into
their original data structure. This is generally slower as it introduces the
additional serialization/deserialization step, but it is much more flexible in
the sense of the data to be exchanged. Any type of data structure can be
sent and received via a network in this way.

1 class Communication
2 {
3 public:
4 // Constructor
5 Communication (...);
6
7 Info Connect (...);
8 Info Disconnect (...);
9

10 Info ExportInfo (...);
11 Info ImportInfo (...);
12
13 Info ImportData (...);
14 Info ExportData (...);
15
16 Info ImportMesh (...);
17 Info ExportMesh (...);
18
19 private:
20 void HandShake (...);
21
22 // direct data exchange
23 void SendData (...);
24 void ReceiveData (...);
25
26 // serialized data exchange
27 void SendString (...);
28 void ReceiveString (...);
29 };

Listing 3.8: Base class of Communication class. Only the main functions
are shown

Serialization in CoSimIO
Serialization as presented in Section 2.2.2.4 is extensively used in CoSimIO
for communicating data between the two connection partners. Mesh and Info
have complex memory layouts, and thus cannot be directly exchanged via
IPC. A serializer similar to the one of Kratos is used, which can use ASCII
or binary format.

3.7.3.1 Container for Data

Arrays of data are among the most commonly exchanged formats of data in a
coupled simulation. Usually, field data such as forces and displacements in
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FSI fall in this category. Not only can they be exchanged multiple times per
TS, but also they can contain lots of data. The size of the data is equal to
the number of nodes on the interface times the dimensionality. Therefore,
handling this type of data efficiently is crucial for performing CoSimulation.

The solution developed in this work is a generic container that can not only
store different types of data but does not require any copying while in-
terfacing between different programming languages. The interface as
shown in 3.9 is inspired by the commonly used C++ data container std::vector9.
It is a variable-sized container storing its data contiguously in memory and
provides O(1) access to its data by index. This abstraction of access to the
data enables to use the container inside the other parts of CoSimIO agnostic
of the underlying data storage. The actual storage of data is implemented
by the derived classes. For C++ (and Python), std::vector is used, while for
C and Fortran raw arrays are used. Methods for serialization are provided,
even though the contiguously stored data can be directly exchanged by most
IPC methods.

1 template <typename TDataType >
2 class DataContainer
3 {
4 public:
5 // Constructor
6 DataContainer ();
7
8 virtual std:: size_t size();
9 virtual void resize (...); // potentially (re -) allocates memory

10
11 virtual TDataType* data(); // access to the underlying raw data
12
13 TDataType& operator [](...); // index based access
14
15 private:
16 // Serialization
17 virtual void save (...);
18 virtual void load (...);
19 };

Listing 3.9: DataContainer for storing raw data, inspired by std::vector.
Provides storage agnostic access to the underlying data for usage
in CoSimIO. Data is not copied while interfacing languages.

3.7.3.2 Container for Mesh

Meshes are used by most simulation tools since discretization techniques such
as FEM or FVM split the computational domain into many subdomains.
These are commonly referred to as elements or cells, which are connected
through nodes at their corners. Due to the crucial role that meshes play in
numerical simulation, a dedicated data structure was created. The Mesh
consists of Elements and Nodes, which in turn have their own data types.
Each of them is briefly described in the following. The composition of different
objects makes the Mesh a hierarchical data structure, which represents the

9 https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector
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geometry of the simulation model. Serialization is used when exchanging data
through IPC due to the complexity of the data structure.

The corresponding data structure of Kratos was used as a reference and
inspiration. Not only to ensure compatibility but also due to the established
and mature API. This object is called ModelPart and was introduced in
Section 3.1.1.

Meshes play an important role in CoSimulation when it comes to the data
transfer between them. Values need to be mapped from one mesh/solver to
another. Many different methods exist, see Chapter 4. In particular non-
matching mapping is important, since it enables the solvers to use different
discretizations. This means that they can use what is best suited for their
solution method, without being limited by CoSimulation. Even for matching
meshes the access to the discretization is usually required since the ordering
of the nodes and elements between solvers is different.

Nodes represent the corners of the elements. They are small objects that
store coordinates along with a unique identifier. Their basic implementation is
shown in 3.10. The basic access functions are complemented with serialization
methods.

1 class Node
2 {
3 public:
4 // Constructor
5 Node (...);
6
7 // Member access
8 IdType Id();
9 double X();

10 double Y();
11 double Z();
12 CoordinatesType Coordinates ();
13
14 private:
15 // Serialization
16 void save (...);
17 void load (...);
18 };

Listing 3.10: Node, representing the corner of elements.

Elements as (typically small) parts of the computational domain have a
geometrical shape associated. This depends strongly on the original model
and the meshing technique used for the discretization. Typical shapes include,
but are not limited to: lines (1D), triangles and quadrilaterals (2D) as well as
tetrahedrons and hexahedrons (3D). Their topology dictates the number of
nodes required. Hence, an element has an associated type/geometry/topology,
a list of nodes (which can be shared with other elements) and a unique
identifier. Serialization and element also involve the serialization of its nodes
and are therefore hierarchical. An outline of the implementation can be seen
in 3.11.

1 class Element
2 {
3 public:
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4 // Constructor
5 Element (...);
6
7 // Member access
8 IdType Id();
9 ElementType Type();

10 std:: size_t NumberOfNodes ();
11 NodesContainerType& Nodes ();
12
13 private:
14 // Serialization
15 void save (...);
16 void load (...);
17 };

Listing 3.11: Element, small part of the computational domain. Nodes for
the corners.

The ModelPart contains both nodes and elements and thus a part, or
the entire simulation model. It is used in the mesh exchange functions
ExportMesh and ImportMesh. Different ways of creating and accessing nodes
and elements are provided, depending on the needs of the integrating tool,
see 3.12. Same as for the elements, the serialization of the ModelPart invokes
the same methods hierarchically for its nodes and elements. The interface for
distributed simulations with local and ghost nodes is shown too. This will be
explained in more detail in Section 3.7.5.

1 class ModelPart
2 {
3 public:
4 // Constructor
5 ModelPart (...);
6
7 // Member access
8 std:: string& Name();
9

10 std:: size_t NumberOfNodes ();
11 std:: size_t NumberOfLocalNodes ();
12 std:: size_t NumberOfGhostNodes ();
13
14 std:: size_t NumberOfElements ();
15
16 Node& CreateNewNode (...);
17 Node& CreateNewGhostNode (...);
18
19 Element& CreateNewElement (...);
20
21 NodesContainerType& Nodes ();
22 NodesContainerType& LocalNodes ();
23 NodesContainerType& GhostNodes ();
24
25 ElementsContainerType& Elements ();
26
27 private:
28 // Serialization
29 void save (...);
30 void load (...);



3.7. REALIZATION OF DETACHED INTERFACE: COSIMIO 55

31 };

Listing 3.12: ModelPart, which contains part of the simulation model and
consists of many nodes and elements.

3.7.3.3 Container for MetaData: Info

Data exchange does not only involve arrays of floating-point numbers or
meshes. Metadata is an important type of data that is especially relevant for
tools other than numerical simulation software. These tools usually do not
work with meshes, hence their data might not be associated with a geometrical
location. A unique identifier helps to distinguish the values. Settings or other
configuration inputs are further examples that can be represented as metadata.
Metadata can therefore be classified as key-value pairs.

The proposed Info can be used to store metadata. It stores different types
of data as key-value pairs. The interface is inspired by the C++ std::map10

and the Python dict11 implementations. Another example of key-value pair
data is the json12 file format, which is often used for input files where many
different settings are specified. Kratos uses this format for all non-mesh input
files.

Getting and setting values by their key are the two main functionalities.
Basic data types such as int, bool and double are supported. Additionally, it
is possible to nest the objects, enabling to use complex hierarchical structures.
Serialization is provided, which uses the previously introduced mechanisms.

1 class Info
2 {
3 public:
4 // Constructor
5 Info();
6
7 // Access functions
8 template <typename TDataType >
9 TDataType& Get(Key);

10
11 // returns the provided default if the key does not exist
12 template <typename TDataType >
13 TDataType& Get(Key , Default);
14
15 template <typename TDataType >
16 void Set(Key , Value);
17
18 // Helper functions
19 bool Has(Key);
20 void Erase(Key);
21 void Clear();
22 std:: size_t Size();
23
24 private:
25 // Serialization

10https://en.cppreference.com/w/cpp/container/map
11https://docs.python.org/3/tutorial/datastructures.html#dictionaries
12https://www.json.org

https://en.cppreference.com/w/cpp/container/map
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://www.json.org
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26 void save (...);
27 void load (...);
28 };

Listing 3.13: Info, storing metadata in the form of key-value pairs

3.7.4 Exposing to other programming languages

Solvers and tools in general that are involved in CoSimulation are written in
various languages. Hence, enabling the usage of CoSimIO in programming
languages other than C++ greatly expands its usability. The goal hereby was
to not only make it available but to offer the functionalities of CoSimIO in
a way that is native and intuitively integrated with the respective language.
This entails for example no manual memory management when integrating
with Python or using native data types and structures. Furthermore, any
duplication of data or other overhead when interfacing between languages
shall be avoided to maximize performance and minimize memory footprint.

Some of the most commonly used languages for simulation tools are Python,
C and Fortran. The latter two are comparatively old low-level languages and
have been used extensively to write numerical software. Nowadays, Python is
very popular due to its simple syntax and a large ecosystem of libraries. It
is a very high-level language, which can be combined with other languages
to achieve high performance with easy usage. Kratos is one example, which
combines a user interface written in Python with a highly efficient and fast
core implemented in C++.

3.7.4.1 C

C is one of the oldest and commonly used low-level programming languages, it
is compiled and type-safe. It is heavily used for complex applications such as
the Linux kernel and other highly performant software. It is the predecessor
of C++ and was first standardized in 1989 (known as the C89 standard) for
the first time. Since then the language has had several revisions, however
nowadays, over 30 years later, using the first standard is not uncommon due to
its portability. C is considered a lingua franca (common/bridge language), it
offers interfaces to many other programming languages such as C++, Fortran,
Python, Rust and Java. This makes it an ideal choice as a basis for applications
or libraries that are then used in different languages. This makes C a perfect
choice for making it available through CoSimIO, as it can then be either
directly used by other languages, or in native C codes. The compatibility with
C++ is very good given it is based on C. Still, C programming is different
from C++, especially when it comes to memory management. Since this is
a crucial part of CoSimulation and can severely affect the performance of a
coupled simulation, this work presents solutions for memory management in
CoSimulation. Additionally, the interfaces of C++ CoSimIO are ported to a
native version for C, assisting a smooth integration.

Exchanging data to and from CoSimIO is realized without any copies
between data structures and hence without overhead. The DataContainer
introduced in Section 3.7.3.1 operates with the raw pointers from C internally
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by abstracting them to a high-level interface. This enables native usage in
C++ without compromising performance. For the export of data, the array
of data together with its size is passed to CoSimIO, which can directly use
it. For the import of data, however, it is not possible upfront to allocate
memory by the integrating solver, since the size of the incoming data is not
known. The DataContainer handles this situation by allocating the memory
internally before the data is received. This avoids any overhead and realizes
a consistent interface for importing and exporting data.

The data structures Mesh and Info have their C-versions, which underlying
use the C++ counterparts. Again this means that any expensive copying of
data is avoided while providing a language-native interface. Finally, also the
functions required for CoSimulation orchestrated simulations can be registered
in CoSimIO by passing raw function pointers.

3.7.4.2 Fortran

Similar to C, Fortran is an old and established language, compiled and type-
safe, and developed for over 50 years. It is used in particular for numerical
calculations in scientific and high-performance computing. Before the rise of
more modern languages such as C++ or Rust, many simulation codes were
written in Fortran. Even nowadays it is still heavily used, in particular in the
backends of solvers, which have matured over many decades. Providing inte-
gration with this language opens many usage opportunities for CoSimulation
via CoSimIO.

The Fortran interface is based on the C interface, which serves as a bridge
to C++. This realization was selected because Fortran offers interoperability
with C through the iso_c_binding module (since Fortran 2003). Therefore,
no additional implementation is required, and the routines developed for the
C interface can be directly reused and made available in Fortran.

Same as for the C interface, the memory management is again realized
without the overhead. Memory of raw data can be passed through pointers,
the objects Mesh and Info have their Fortran native versions, which under
the hood use the C++ counterparts. Pointers to functions for orchestrated
CoSimulation can be passed by using a dedicated data type offered by the
interoperability functionalities.

3.7.4.3 Python

Python has grown very popular in recent years and is heavily used by many
different applications. Unlike C and Fortran, it is a high-level and interpreted
language. Therefore, it does not offer the same level of performance, but
instead a simpler syntax and larger ecosystem of auxiliary libraries. Memory
management is done automatically, including garbage collection. The inferior
performance compared to many compiled languages is compensated to a
degree by using libraries such as numpy13. They implement computationally
expensive functionalities very efficiently in low-level languages and then expose

13https://numpy.org/

https://numpy.org/
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their interface to Python. This concept has been successfully applied by many
libraries, including Kratos.

Due to its popularity, it was used for many projects, among them are also
tools that can be used in CoSimulation. These are either simple numerical
solvers, NNet codes like TensorFlow14, or other codes. Furthermore, what
makes it especially useful for CoSimulation, is that more and more solvers
develop Python interfaces on top of their core functionality written in low-level
languages. A Python interface simplifies the integration for such solvers, as
it can be done by scripting and does not require access to the source code.
Commercial solvers without a dedicated API for their low-level functionality
can still be used in CoSimulation if they provide a Python interface.

Given the manifold of use cases, a Python interface was developed for
CoSimIO. It follows the same goals of the integration in the lower-level
languages, namely a native interface with high performance and no memory
overhead. The pybind library15 (which is also used by Kratos) was employed
for exposing the C++ core of CoSimIO to Python. This again required
some special solutions for managing the memory when interfacing with the
languages. Python holds a pointer to the C++ objects which is passed between
the languages and therefore involves no copies. The objects are complemented
with native interfaces.

3.7.5 Extension to distributed environments

Parallel computing via MPI as introduced in Section 2.4.2 is commonly used
in numerical analysis to reduce the simulation times. The natural choice
was therefore to provide support for distributed environments with CoSimIO.
The main differences to the serial version are the communication among the
computing ranks, the integration of the MPI-library without affecting the
serial version, the handling of distributed meshes, and most importantly the
IPC methods for distributed environments.

The communication and synchronization among the ranks of CoSimIO are
done with a similar concept to Kratos (see Section 3.1.2). The rawMPI_Comm
is wrapped in an auxiliary object, which in serial does nothing, but in MPI
acts as an abstract wrapper for MPI calls. This is the DataCommunicator, as
explained in Section 3.1.2.

The MPI extension is built on top of the serial version, with only one
directional dependency. It is implemented in a separate shared library, which
links against the serial version. This is crucial for deploying on systems
without the MPI libraries present. Even though CoSimIO was compiled with
MPI support, it will only use the serial part since the MPI part is separated.
It is important to mention that CoSimIO as a library does not interfere with
the initialization and finalization of MPI. This is left to the including code
to avoid runtime and memory problems. The MPI_Comm to be used by
CoSimIO is being passed from the application. It needs to contain at least
the ranks that have a part of the interface.

14https://www.tensorflow.org/
15https://github.com/pybind/pybind11

https://www.tensorflow.org/
https://github.com/pybind/pybind11
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MPI is by design used for exchanging messages among different ranks/pro-
cesses of the same program. It also provides functionalities to exchange
messages between different codes. This means it can be used as a means of
IPC for CoSimIO, for communicating between the coupled codes. A perfor-
mance evaluation, as well as implementational details, are provided in Section
3.8.

The communication is done 1:1, meaning that both programs are running
with the same number of processes. Each rank of a solver has a dedicated
partner rank of the coupling tool. This design choice reduces severely the com-
plexity of the implementation, as no means for gathering and distributing data
when different numbers of processes are used on both sides are involved. What
appears to be a limitation of the presented approach is its strength, namely
the distribution of responsibilities as introduced in Section 2.2. CoSimIO as
a detached interface is responsible only for the data exchange between the
tools, which keeps it small and lightweight compared to fully featured coupling
tools. Bringing together codes that run with different numbers of processes
is handled in the CoSimulationApplication. In particular, the mapping is
designed in a way that it can handle any number of processes on either side
of the interface. Each code can thus use the number of processes that it
works best with. Therefore, the proposed solution offers maximum flexibility
for choosing the best suitable amount of computational resources, while at
the same time limiting complexity and delegating responsibilities to separate
parts of CoSimulation.

Lastly, support for distributed interfaces (meshes) is provided. Nodes can
be present in multiple ranks, local in one and ghost in many. The interface
of the ModelPart is enhanced with an interface for constructing ghost nodes.
These are essential for ensuring correct communication among the ranks, see
[13].

3.7.6 Initial handshake

The initial connection between two programs needs to be made in order to
initialize IPC and to perform some compatibility checks e.g. for the versions
of CoSimIO used by the codes. This is called a handshake. Afterward, the
connection is fully initialized and can be used to exchange data.

The handshake is a crucial part of CoSimulation and follows an elaborate
algorithm to avoid deadlocking and other issues. First, a distinction is made
between the coupling partners, regarding which of them is the primary and
which is the secondary connection. This is required as some operations need
to be made by one side only. Examples are the removal of leftover files, or
establishing a connection for some IPC methods such as sockets, where one
side opens a port, and the other one connects to it.

Algorithm 2 shows the procedure of the handshake, the main steps are as
follows: Step one is the removal of any leftovers from previous runs such as
leftover communication files, which could be misinterpreted and lead to errors.
CoSimIO uses a dedicated folder inside the working directory for the file
exchange. This folder gets deleted only by the primary side to avoid blocking.
Step two is to synchronize the partners, which is done with algorithm 3.
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Afterward, both sides are ready to establish the connection. Step three is done
only on the primary side, the IPC connection is prepared (e.g. by opening
ports). In step four some configuration information is exchanged between
the partners to ensure compatibility. This includes version checks and other
settings. Additionally, IPC specific information such as port numbers are
exchanged, so that the secondary connection knows which port to connect
to. Files are used for this data exchange, as they are a simple and suitable
means that does not require any connection to be established upfront. This
communication happens only on one rank, to reduce the load on the filesystem.
In a distributed environment the information is broadcasted to the other
ranks, which happens in step five. Step six is the final step, it establishes the
IPC connection. Afterward, the initialization is completed and CoSimIO is
ready for the exchange of data.

Algorithm 2: handshake/initial connection
1 if rank == 0 and IsPrimary then
2 remove communication folder (if existing)
3 create communication folder
4 end
5 Synchronize partners (ensure both are ready, see algorithm 3)
6 if IsPrimary then
7 prepare connection (e.g. open ports)
8 end
9 if rank == 0 then

10 get my info
11 write my info to file
12 wait until file with info of partner becomes available
13 read info file of partner (also contains connection info such as port

numbers)
14 perform compatibility checks
15 end
16 Broadcast partner info to all ranks
17 Perform IPC connection (e.g. connect to ports)

In order to make sure that both partners are ready, they are synchronized
using algorithm 3 with files. First, each partner synchronizes its ranks if it
is running distributed in MPI. Afterward, each partner writes, reads and
deletes a sync file in an order that depends on whether it is the primary or
the secondary connection. It is crucial that the secondary only writes its
sync file after it read the sync file of the primary. This is to ensure that
the communication folder was created by the primary. Writing the sync files
happens only on one rank as writing many files in a distributed simulation can
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severely affect the performance. Finally, again all the ranks are synchronized.

Algorithm 3: synchronization of partners
1 partner-local Barrier (only in MPI)
2 if rank == 0 then
3 if IsPrimary then
4 create primary sync file
5 wait for secondary sync file
6 remove secondary sync file
7 wait until primary sync file was removed (by secondary)
8 else
9 wait for primary sync file

10 remove primary sync file
11 create secondary sync file
12 wait until secondary sync file was removed (by primary)
13 end
14 else
15 end
16 partner-local Barrier (only in MPI)

3.8 Interprocess communication for CoSimulation

The data exchange between tools in CoSimulation is realized with IPC. This
section complements the explanations of the concepts from Section 2.2.2.
The technical aspects and crucial details of the implementation in CoSimIO
are presented, with a particular focus on the differences between operating
systems. Performance tests are conducted to compare the methods.

CoSimIO implements various methods for data exchange. They are ab-
stracted with a common interface (see Section 3.7.3), which means they can
be selected at runtime. This concept consists of two main functionalities,
namely the exchange of floating point (double) values and strings (character
arrays). Technically everything can be represented by character arrays, the
distinction is made for performance reasons. In the case of complex objects
such as meshes, serialization as previously explained is used. The data ex-
change happens synchronously, since the dependencies are strong, meaning
that the data exchange usually happens multiple times per time step. Even
in a one-way coupling, the benefits of asynchronous communication are small,
as running solvers in parallel is also often restricted by the hardware that is
used. Thus, asynchronous communication is not considered, also due to the
increased complexity.

As presented in Section 3.7.5, in a distributed environment every rank has
one partner rank, and the communication happens 1:1. This simplifies the
organization of the data exchange.

Several methods for IPC are implemented and compared against each
other, using the criteria listed in Section 2.2.2. The focus is on CoSimulation,
therefore only a subset of methods was chosen. The main criteria for the
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selection were performance, robustness and usability. Also, the solutions
used by other coupling tools (see Section 2.5 were taken into account. The
implementation was done with as little dependencies as possible, to maximize
the portability. Libraries like boost interprocess16 provide high-level interfaces
for IPC, but can introduce critical dependencies, and were therefore avoided.

3.8.1 File

Using files for the data exchange is perhaps the most basic version of IPC.
One process writes data to a file, which is then read by another process. After
reading, the file gets deleted. This makes it very suitable for debugging and
initial developments, as the files (and thus the flow of data) can be observed
in the filesystem.

While the concept of this approach is straightforward, there are several
crucial details necessary for a successful transfer. In particular, the synchro-
nization of file accesses to avoid race conditions, where reading happens before
the writing is completed. Three different ways can be used to prevent this
situation:

• File renaming: The data is written to a file with a different name, and
renamed to its final name after the writing is completed. This way the file
will only become visible for the reading process once it is ready. No race
conditions can occur during writing. However, the critical operation is
now the renaming, which needs to happen atomically. The OS/filesystem
needs to ensure this. Linux ensures this (see documentation of rename17),
while Windows does not guarantee it. This way of synchronization is
used by [29], with the intention of being used on Linux-based HPC
infrastructure.

• Auxiliary file: Instead of renaming the file which contains the data,
an auxiliary file is used. Its existence signals that the file is ready to
be read. This avoids the requirements for the atomic rename, but it
requires creating an additional file. This can reduce the performance in
distributed environments, due to the creation of many files. [45] used
this technique for the communication between a solver running on a
local Windows machine and a solver running on a supercomputer.

• File locks: Most OSs provide ways to lock files (e.g. flock18 in Linux).
However, those are not portable and thus cannot be used when ex-
changing data among processes running in different OSs. This is not a
common use case for CoSimulation, but still can be a limiting factor
and was therefore not considered in CoSimIO.

Remark: A race-condition-free implementation of a file system in C++ is
proposed with the low-level file I/O library std::llfio19. This could potentially
be used as a better alternative solving the synchronization problems.
16https://www.boost.org/doc/libs/1_81_0/doc/html/interprocess.html
17https://man7.org/linux/man-pages/man2/rename.2.html
18https://linux.die.net/man/2/flock
19https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1031r2.pdf

https://www.boost.org/doc/libs/1_81_0/doc/html/interprocess.html
https://man7.org/linux/man-pages/man2/rename.2.html
https://linux.die.net/man/2/flock
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1031r2.pdf
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The process that is waiting for the file inquires repeatedly if the file has
become available. To avoid too many checks to the file system, a wait time of
0.05 s has proven to be a good compromise between speed and avoiding too
many calls, which can slow down the system.

Another important aspect that needs to be considered for file-based data
exchange is file permissions. They need to be set so that both sides can read
and write them. This is especially relevant when one process uses elevated
permissions (e.g. administrator mode). Furthermore, using a dedicated folder
in which the files are written helps to not only keep the working directory clean
but also simplifies the removal of leftover files from previous runs. In C++,
all the necessary functionalities for implementing a file-based data exchange
are part of the standard library (std::filesystem).

Following are the advantages and disadvantages of file-based data exchange,
compared to other IPC methods:

Advantages

• Little implementational effort, and very few requirements

• Fall-back solution, in case the other methods do not work

• Easy to understand and debug as the flow of execution can be observed
by how the files are written.

• Sufficiently fast and efficient for many use cases

• Transfer of data across computers and OSs. Requires that the same
filesystem is mounted in all systems. This can be crucial if the tools
that need to be coupled work in different systems, e.g. one in Windows
and one in Linux, or one on a local computer, and one on a cluster.
Another application is Windows Subsystem for Linux (WSL)20. One
solver is executed on the Windows host, and the other one runs on the
Linux guest system.

• Independent of what version and technology of tools are used (e.g.
compiler)

• The data transfer is natively buffered and asynchronous

• Files can be written in a format that can be easily debugged, e.g. the
VTK format (which can be read by Paraview21) for the mesh.

Disadvantages

• Slow for large amounts of data

• Filesystems have a limited number of writes, hence exchanging large
amounts of data can decrease the lifetime. See the following paragraph
for an evaluation of this statement.

20https://ubuntu.com/wsl
21https://www.paraview.org/

https://ubuntu.com/wsl
https://www.paraview.org/
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• Leftover files from previous executions can lead to problems if not
removed upfront.

• Special synchronization techniques need to be used to avoid race condi-
tions while reading and writing the files.

• Windows does not provide a way to perform file operations in an atomic
way. This means that if several programs are trying to operate on the
same file, race conditions are introduced that can cause problems.

Lifetime of hard disk
Frequent writing to a hard disk can decrease its lifetime. The following
example evaluates the relevance of this problem in the context of coupled
simulations. The FSI simulations with the Munich Olympic Tower are chosen
as they are a large real-world simulation. For details on this example, it is
referred to Section 6.5.

The memory consumption for the files per TS is computed based on the
number of nodes on the interface, multiplied by the number of Degrees of
Freedom (DOFs) per node (3, displacements or loads) and the memory required
per DOF (datatype double, 64 bit / 8 Byte):

memn = 3
dofs

n
∗ 8

B

dof
= 24

B

n

mems = 128, 817n ∗memn = 2.95MB

memf = 244, 163n ∗memn = 5.59MB

memts = mems +memf = 8.54MB

In the example, 30,000 TSs are computed (which in combination with
a time-step size ∆T of 0.02 s results in a simulation time of 600 s/10 min
real-time). The data exchange happens once per TS due to the explicit
coupling algorithm. Hence, the memory per simulation computes as:

memsim = memts ∗ 30, 000/sim = 250GB/sim

An average modern SSD hard disk has 500 TB of bytes that can be
written22. This means, that 2000 simulations can be run before the disk is
broken.

nsims = 500TB/memsim = 2000

Of course, this is only a rough estimate that highly depends on the size
of the model, the number of time steps, the amount of data exchanges per
time step (which can be larger than 1 when an implicit coupling is used), and
compression/file-representation on the drive. Furthermore, it depends on the
specification of the disk to how much data can be written to them.

These calculations show that many simulations can be run without risking
the failure of the hard disk. However, it is important to keep in mind that

22Example: Samsung 980 PRO or 870 EVO, see www.samsung.com

www.samsung.com
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also other data such as field data is usually written during a simulation, which
further decreases the lifetime. Therefore, it is recommended to limit the usage
of file-based data exchange to the development, debugging and initial setup
of coupling codes. Afterward, other methods should be used. In CoSimIO
this can be easily achieved thanks to the common interfaces of IPC methods.

3.8.2 Pipe

Pipes are low-level data channels for exchanging information. One side writes,
and the other side reads the data. In Linux, they are commonly used to
redirect (also called piping) the output of one command to another. One use
case is capturing the output of a command, and simultaneously writing it to a
file: ./some_command | tee command.log. The | character specifies the pipe.

Two types are distinguished, anonymous and named pipes. The first one is
used to communicate between parent and child processes, whereas the latter is
used to exchange data between unrelated processes. In CoSimulation usually
separate processes are used by the solvers, meaning that only named pipes
can be used. Pipes offer a high performance since the transfer is done on the
kernel level, with neither the filesystem nor the network involved. However,
they are very specific to the platform. The interface in Unix and Windows
is entirely different, as well as the underlying implementation, making them
incompatible with each other. Furthermore, they only work locally on one
machine. With some exceptions, pipes offer one-directional synchronous data
transfer. Thus, a two-way coupling requires two pipes to function. Each pipe
has a specific buffer size, which can be up to several MB in modern systems.
If more data is to be exchanged, then it needs to be split into chunks and
exchanged one after the other. The synchronous transfer means that the
exchange of data can only be done if both the reading and the writing side
are ready. Otherwise, the operation is blocked. This means the size of the
data must be known upfront, which is realized by exchanging the size of the
data upfront (with a known size to avoid blocking). With larger amounts of
data, some robustness issues could be observed. These were more pronounced
when the entire pipe buffer was used.

Following are the advantages and disadvantages of pipe-based data ex-
change, compared to other IPC methods:

Advantages

• Basic and mature method with high performance

• Little effort required for synchronization

• Fundamental part of the operating system, thus no external libraries
needed

Disadvantages

• Interface and underlying implementation/concept differ between Unix
and Windows
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• Unix and Windows are incompatible

• Does not work in distributed environments or across machines

• Not the most robust solution, in particular for large amounts of data,
prone to deadlocking

3.8.3 Socket (Network/TCP)

Programs can use the network to communicate with each other. They can
be located on the same machine, or on different machines, making them
suitable for distributed memory architectures. A peer-to-peer connection is
established for the data exchange. During the connection phase, one side
opens a port (on every rank in MPI), and then the other side connects to it,
again rank-by-rank. The Transmission Control Protocol (TCP) is used to
ensure that no data is lost during the transmission. Sockets are a commonly
used way to exchange data over the internet. The previously mentioned ASIO
library is used as a high-level interface, which unifies the implementation for
Linux and Windows.

The only input required by the user is the IP address or the name of the
network to be used. This is only required in distributed environments, where
the network that connects the different compute nodes (e.g. InfiniBand) needs
to be selected.

Following are the advantages and disadvantages of network-socket-based
data exchange, compared to other IPC methods:

Advantages

• Fast

• Robust & mature technology

• Works on small machines as well as clusters with distributed environ-
ments

Disadvantages

• External library (ASIO) is needed (until it is integrated into the C++

standard library)

3.8.4 Socket (Unix/local)

Unix domain/local sockets are similar to network sockets, but differ in the
following two aspects: a) they can only be used for communication on the
same machine, and b) they use the kernel memory for the communication
instead of the network, giving them a better performance. While they were
originally only available in Unix OSs, Windows added initial support for them
end of 201723. The ASIO library supports both types of sockets, although

23https://devblogs.microsoft.com/commandline/af_unix-comes-to-windows/

https://devblogs.microsoft.com/commandline/af_unix-comes-to-windows/
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Windows support for Unix domain sockets was added only recently and was
not yet robust to use at the time of the developments of this work.

Following are the advantages and disadvantages of Unix-socket-based data
exchange, compared to other IPC methods:

Advantages

• Fast

• Robust & mature technology (only on Unix)

Disadvantages

• Does not work in distributed environments or across machines.

• Does not yet work stably in Windows with ASIO (still under development
at the time of this writing).

3.8.5 MPI

As the name suggests, the Message Passing Interface sends messages between
different processes (typically of one program). It is extensively used in HPC
for communication in distributed algorithms, see also Section 2.4.2. The high
performance and availability of clusters make it a suitable candidate for IPC
in CoSimulation. It works similarly to socket-based communication, after a
connection is established, data can be exchanged between the codes.

This type of communication has several drawbacks, which limit its appli-
cability compared to socket and file-based data exchange. A main restriction
is a dependency on MPI, as the codes that use CoSimIO need to be compiled
and launched with it. This can be problematic, especially for applications
that are usually not deployed on HPC infrastructures. The same applies to
Windows, which technically provides an MPI implementation (MS-MPI 24),
but it is not often used in practice. Furthermore, some implementations
of MPI (OpenMPI 25 in particular) are known to have robustness issues, as
reported in [53].

Finally, also the way the execution is launched plays a role in how the
communication is established. If the two codes are launched independently
with mpiexec, which is usually the case, then they each have their own
global and application-specific communicator MPI_COMM_WORLD. The
communication between the codes can only be done after a connection via
MPI_Ports is performed. Same as for sockets, one side opens a port, and the
other side connects to it. This is referred to as intercommunication since it
connects to independent MPI communicators. The other alternative would be
intracommunication, which would require launching both codes together with
one mpiexec call. They would then share one MPI_COMM_WORLD. This
option is not considered, as it is intrusive and alters how the codes use MPI.

24https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi
25https://www.open-mpi.org/

https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://www.open-mpi.org/
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Following are the advantages and disadvantages of MPI-based data ex-
change, compared to other IPC methods:

Advantages

• Fast

• Already used by most HPC codes

Disadvantages

• Some implementations are not robust (in particular OpenMPI)

• Adds a layer of complexity for non-MPI codes & executions

• Windows support of MPI

• Features required for CoSimulation are not available in old standards

• Requires both programs to use the same MPI implementation

3.8.6 Performance evaluation

Numerical simulations are computationally expensive. Therefore, it is crucial
to assess and evaluate the performance of every component in the simulation
chain. This includes also the IPC methods, as they are heavily used for
communication among the tools in CoSimulation. For this purpose, a set
of relevant test scenarios is designed. They are conducted for the different
methods used in this work.

The first case represents the exchange of interface data, which happens
during each coupling iteration. The data is considered as a memory-contiguous
vector of 64-bit floating point numbers (double), which can be transferred
without additional treatment such as serialization. It is sent back and forth
multiple times between two processes in a ping-pong fashion. The size of this
vector varies and is inspired by the examples (see Chapter 6) used in this
work to provide realistic and practical values. The result of these tests is the
throughput in Gbit/s, indicating how much data can be exchanged in a given
time interval.

The second case is identical to the first one, except that the data is ex-
changed in its serialized form. This adds two additional steps, namely the
serialization before the transfer and the deserialization afterward. As previ-
ously explained, complex objects such as meshes require these additional steps
due to their layout in memory. In CoSimulation, this is typically used for com-
municating the meshes at the beginning of the coupling, e.g. for establishing
the mapping relations. Therefore, in many cases this happens much less than
the exchange of interface data. However, still it is a very relevant scenario,
e.g. more complex simulations that include adaptive/dynamic meshes might
require a continuous update of the meshes.

The two cases are tested on different soft- and hardware, which are com-
monly used to conduct numerical simulations. This includes the three main
operating systems Linux, Windows and macOS, as well as a regular personal
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Figure 3.9: [Linux] Data exchange (without serialization)

computer and a supercomputer. The specifications of the hard- and software
can be found in Appendix A.

Before going into detail for the individual cases, the following general
observations are made, independent of technology, soft- and hardware:

• The overhead for transferring small amounts of data is clearly visible.
A minimum size of data is required to achieve the highest throughput,
it is in the range of 1× 103 to 1× 105 values.

• Serialization reduces the performance, by one order of magnitude. This
holds for binary serialization. Using ASCII reduces it by another order.

• The speed of the underlying technology used is reflected in the through-
put in most cases. This is expected and indicates that the proposed
workflow enables the full capabilities of the hardware.

Figure 3.9 shows the throughput for different amounts of data, on a Linux
system. As per the general observation, a minimum required size of data
is necessary to reach the highest performance. The slower methods like the
file-based data transfer need more data to reach the maximum, compared
to the faster methods. The difference is roughly a factor of 100 (1× 103 to
1× 105). This can be explained by the overall larger overhead for the slow
methods.

Furthermore, the graph can be divided into two parts, depending on the
number of values to be exchanged. Below ∼1× 104 values, the technologies
that are closest to the kernel like pipes or local sockets are the fastest. It
can be clearly seen that they are optimized for the fast transfer of little to
intermediate-sized data. They do not involve additional hardware like the
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Figure 3.10: [Linux] Data exchange (with serialization). Solid lines represent
binary serialization, dashed lines represent ASCII serialization.
StrSer means first serialization to a stream and not directly to
the file.

network or even the filesystem, resulting in very low latencies. However,
due to their limited cache and buffer sizes, the situation changes above the
threshold of ∼1× 104 values. For large amounts of data, MPI yields the
highest throughput. This is consistent with the general recommendation for
distributed applications to communicate a few times with grouped data, as
opposed to communicating many times with little data. The local sockets
always outperform the TCP sockets, but only by a small margin. Lastly, it is
important to mention that file-based data transfer is only 5-15 times slower
than the fastest method. This can be largely attributed to the modern Solid
State Drive (SSD) hard disk, which is characterized by its high performance
due to the lack of mechanical moving parts. Furthermore, the filesystem acts
as a huge buffer, which is an advantage for the exchange of large amounts of
data. Only for small amounts of data, the large overhead is a drawback. A
comparison between the different methods for synchronization with file-based
data exchange (file renaming and auxiliary file) as explained in Section 3.8.1
did not yield relevant differences.

The performance results for serialized data exchange on a Linux system
(see Appendix A) are shown in Figure 3.10. The overall behavior of the
measured throughput is similar to the direct version. Smaller data sizes
that are exchanged yield a lower throughput due to overhead. However, the
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Figure 3.11: [Windows] Data exchange (without serialization)

maximum achieved performance is considerably lower. Around one order
of magnitude with binary serialization, and two orders with ASCII. This
shows that the serialization procedure is the bottleneck in this variant of the
data exchange. Therefore, also the differences between the IPC techniques
are smaller, in particular with the binary format. With ASCII, a notable
exception needs to be considered for file-based data exchange. Serializing the
data first to a stream and then writing it to a file is roughly one order of
magnitude faster than writing directly to the file. For binary data, there is
no notable difference. This is because of the representation of the data in
memory: Binary data is faster to write to a file as it only consists of ones
and zeros. ASCII data is stored as individual characters, which have to be
encoded before writing them. Doing this at once (when using a stream) is
faster than doing it one by one (when writing directly to the file).

The results for measuring the performance of file-and socket-based data
exchange on a Windows system (see Appendix A) are presented in Figure 3.11
and Figure 3.12. As before, direct and serialized data transfer is measured.
The results are similar to the Linux system, which used the same hardware.
Overall the performance is a bit lower, but the same general behavior can be
observed. The decreased performance can be attributed to the underlying
implementations of the Windows OS.

Conducting the performance tests on a macOS system (different hardware,
see Appendix A) yields again similar results, see Figure 3.13 and Figure 3.14.
Direct data transfer without serialization is consistently and considerably
faster than using serialization. With local sockets, the maximum performance
is reached with ∼1× 103 values, afterward the throughput is again lower.
This can on the one hand stem from the not mature implementation in ASIO,
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Figure 3.12: [Windows] Data exchange (with serialization). Solid lines rep-
resent binary serialization, dashed lines represent ASCII serial-
ization. StrSer means first serialization to a stream and not
directly to the file.

and on the other hand from limited buffer sizes.
Finally, the tests were also executed on a supercomputer (see Appendix A),

the results can be seen in Figure 3.15 and Figure 3.16, respectively for direct
and serialized transfer of data. 48 cores/MPI processes (1 compute node)
were used on each side, making communication across distributed memory.
Not all IPC technologies support this, among others files, TCP-sockets and
MPI. Pipes and local/Unix sockets only work in shared memory.

Even though some similarities with the results obtained on the other
systems can be observed, also some significant differences are present. Using
MPI is considerably faster than sockets and files, in particular for small
sizes of data. It is also notable that it performs very homogenous across all
sizes of data, the previously observed reduced performance with little data
can hardly be seen. These results are plausible since MPI was designed for
highly performant communication in distributed memory architectures. The
performance of sockets is higher than with files until a threshold of 1× 106

values, after which the file-based data exchange gives higher performance.
This can be related to overall network traffic on the system, and only holds
for data exchange on one compute node.

Large-scale simulations can easily exceed 48 cores/1 compute node, de-
pending on the size of the model and the numerical complexity. Therefore, the
tests were conducted with up to 960 cores/20 compute nodes on either side.
The performance with MPI and sockets hardly changes with a larger number
of cores. This is expected since the communication happens peer-to-peer.
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Figure 3.13: [macOS] Data exchange (without serialization)

100 101 102 103 104 105 106 107

10−4

10−3

10−2

10−1

100

Number double values

T
hr
ou

gh
pu

t
[G

bi
t/
s]

Socket
Local Socket

File
File (StrSer)

Figure 3.14: [macOS] Data exchange (with serialization). Solid lines repre-
sent binary serialization, dashed lines represent ASCII serial-
ization. StrSer means first serialization to a stream and not
directly to the file.
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Figure 3.15: [SuperMUC] Data exchange (without serialization)

Furthermore, at no point do any collective operations occur which could
potentially result in bottlenecks.

With files, however, the performance deteriorates drastically, already with
96 cores/ 2 compute nodes. The results obtained over several executions were
very inconsistent, therefore no meaningful plots could be generated. The
amount of files that are exchanged was too much for the filesystem to handle,
resulting in very or even extremely low throughput. This was also affected by
other simulations running on the same hardware. While this may appear as
a disadvantage for conducting benchmarks, it represents the real situation
on clusters and supercomputers. Due to their size, almost no single job can
make efficient use of the entire system. Usually, many jobs are running at the
same time, potentially using (different parts of) the same filesystem. Using
renaming of files for the synchronization is hereby still a bit better, since
using an auxiliary file doubles the amount of files, resulting in an even lower
performance.

These studies lead to the conclusion that file-based data exchange is
not suitable for HPC simulations. Especially when one considers that the
supercomputer used in this work is using state-of-the-art hardware, including
a highly performant file system. [53, chapter 5.3.2] proposes an algorithm, in
which the files are written in a special directory structure, to limit the number
of files in one directory. This could potentially improve the throughput.
Alternatively, a scratch directory for temporary files that is often available on
large computing systems could be used for writing the data exchange files.
However, with both alternatives, the number of files exchanged remains the
same and therefore still a lower performance compared to MPI or sockets is
expected.
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Figure 3.16: [SuperMUC] Data exchange (with serialization). Solid lines
represent binary serialization, dashed lines represent ASCII
serialization. StrSer means first serialization to a stream and
not directly to the file.

Independent of hard- and software it was found that the performance can
deteriorate significantly if the system comes under load. In particular, if
the components that are involved in the IPC are used by other tasks. For
example, accessing the filesystem with a different process while it is used for
the data exchange in CoSimulation affects the performance. This was seen
clearly for the supercomputer, thus the performance tests were conducted (as
much as possible) with an idle system.

Furthermore, the results showed the large influence that the serialization
technique has on the performance, it could be identified as the bottleneck.
Further reducing the size of the data to be exchanged by using compression
algorithms would most likely further decrease the performance. It is instead
recommended to optimize the serialization implementation as much as possi-
ble. Only when its performance reaches levels of direct data transfer, then
compressing the data could be advantageous. In general, binary serialization
performed significantly better than ASCII serialization and should therefore
be used.
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File Pipe S-TCP S-Unix MPI

Performance 0 + + + +

Robustness + - + 0 0

Portability + - + - -

Usability (local) 0 0 + + -

Usability (cluster) - x + x +

Implementation + - 0 0 0

Dependencies + + 0 0 -

Table 3.1: Summary of comparison of different methods for IPC in CoSim-
ulation. TCP-Sockets are the best compromise between
performance & robustness, usability & portability and implemen-
tation & development effort.
The symbols represent the following:
Good: +
Neutral: 0
Bad: -
Unavailable: x

3.8.7 Summary IPC for CoSimulation

The data exchange between processes is one of the most important components
required for CoSimulation with different tools. A large effort was therefore
spent in this work to compare different methods. The metrics relevant for
CoSimulation were used, namely performance & robustness, usability &
portability and implementation & development effort (see Section 2.2.2).
Table 3.1 summarizes the results. It was found that TCP-sockets are the best
method for IPC in CoSimulation, as they provide the best compromise of the
previously mentioned metrics.

An example of running large-scale FSI simulations with the Olympic Tower
in Munich is presented in Section 6.5. Some of the studies conducted with
this case compare and test the different IPC methods. The findings of the
previous sections are complemented and confirmed by the results obtained
with the Olympic Tower simulations.



Chapter 4

Mapping

Mapping is the process of transferring data from one mesh to another. The
discretizations of the meshes are not matching in many practical cases, there-
fore interpolation or other techniques are required. Practical applications
are coupled simulations, where the interface data of one solver needs to be
transferred to another solver, or remeshing, where the data on the old mesh
needs to be mapped onto the new mesh. Figure 4.1 visualizes the mapping
between non-matching meshes.

Mapping

Figure 4.1: Mapping between non-matching meshes.

As one of the main three building blocks (see Figure 2.1), mapping (as
a subset of data transfer methods) is a crucial component of CoSimulation.
Usually, numerical solvers use the discretization that suits them best for
solving a particular problem. It is therefore imperative not to impose any
restrictions in terms of discretization if they are used in a coupled simulation.
The mapping techniques need to adapt and handle the different mesh setups.
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This chapter revisits the most commonly used mapping techniques and
carefully evaluates their suitability for large-scale mapping in distributed
memory environments. Additionally, efficient strategies and solutions for
mapping in those situations are presented, and their performance is tested
with several configurations on a supercomputer. The implementations are
realized within the MappingApplication and the Core of Kratos and are an
integral part of the CoSimulation capabilities of Kratos.

The terminology used in this work was introduced in Section 2.2.3. Data
is mapped from the origin to the destination. Preliminary developments and
results were already presented in [8].

4.1 Mapping algorithms

A large variety of mapping methods have been developed, differing in many
aspects such as accuracy, speed and robustness. [18] gives an overview of the
state-of-the-art methods. In the following, the most commonly used techniques
are introduced, highlighting their strengths and weaknesses. Additionally,
their suitability for large distributed systems is evaluated, as this is the scope
of this work.

It is important to recall the equation for mapping from 2.2. The trans-
fer matrix H represents the relation between origin and destination. Its
construction (implicitly or explicitly) is the aim of each mapping method.

4.1.1 Nearest neighbor

This mapper is probably the simplest mapping technique: Each point in the
destination searches its geometrically closest point in the origin, and takes its
value. Due to these properties, it is also referred to as closest point in some
publications. The workflow is described in 4.

Algorithm 4: Workflow nearest neighbor mapper
1 foreach point in destination do
2 initialize dmin to large value
3 foreach point in origin do
4 compute distance d between points
5 if d < dmin then
6 dmin = d
7 end
8 end
9 closest point is the one associated with dmin

10 end

The advantages of this mapper are the simple implementation and the
robustness. It only requires point clouds as input and not full meshes. Fur-
thermore, the assembled transfer matrix H consists of only ones and zeros,
making it the mapper with the smallest memory footprint. This mapper is
very suitable for distributed environments since it requires only the searching
of neighbors in different partitions.
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The low accuracy, in particular for very heterogeneous meshes, is the main
disadvantage of this mapper. It can cause a step-like shape on the destination
when the fineness of the discretizations is too different.

Mapping on matching meshes can be considered a subcase of the nearest
neighbor mapper. This allows for several optimizations, such as specific search
settings.

4.1.2 Nearest element

This mapper makes use of the geometry of the origin interface, by interpolating
the values using its shape functions, see [81]. For this, each point in the
destination searches the geometrically closest elements in the origin, and
projects to them. It then takes the element with a valid projection that
has the smallest projected distance (it is therefore also referred to as closest
projection mapper). The value assigned to the destination is interpolated
using the shape functions of the element. Therefore, the transfer matrix H
contains the values of the shape functions evaluated at the projection. The
workflow is described in 5.
Algorithm 5: Workflow nearest element mapper
1 foreach point in destination do
2 initialize dproj_min to large value
3 foreach element in origin do
4 compute projection and projected distance dproj between point

and element
5 if projection is valid and dproj < dproj_min then
6 dproj_min = dproj
7 end
8 end
9 closest point is the one associated with dproj_min

10 evaluate shape functions at projection
11 end

The advantages of this mapper are the rather simple implementation and
interpolative properties. The disadvantage is that it requires elements and
their shape functions as input. It involves projections that can fail in practical
applications and hence require further treatment to increase the robustness.
For the usage in distributed systems, the projections need to happen across
partitions, similar to the nearest neighbor mapper. The memory footprint is
larger compared with the nearest neighbor mapper, due to more entries from
the shape function values used for the interpolation.

4.1.3 Barycentric

This mapper is similar to the nearest element mapper, but it does not require
elements/shape functions as input, see [46]. Instead, it reconstructs elements
from the closest points and projects to them. For 1D mapping it constructs
a line i.e. needs to find the two closest points, for 2D (surface) mapping
it needs the 3 closest points to construct a triangle and for 3D (volume)
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mapping it needs the 4 closest points to construct a tetrahedron. Note that it
is possible to reconstruct other topologies as well (e.g. quadrilaterals in 2D)
but this requires more computational effort and makes the projections more
complicated. Due to the used projections, the transfer matrix H contains the
values of the shape functions, evaluated at the projection, same as for the
nearest element mapper. The workflow is described in 6.

Algorithm 6: Workflow barycentric mapper
1 foreach point in destination do
2 find closest points (making sure they are not collinear)
3 foreach point in origin do
4 check if point is one of the closest
5 end
6 reconstruct geometry to project to
7 project on reconstructed geometry
8 evaluate shape functions at projection
9 end

This mapper has the same advantages/disadvantages as the nearest element
mapper, mainly its good interpolative properties and the projections that can
cause problems for practical applications. One advantage is that it works with
only point clouds, but is slightly more complicated to implement due to the
reconstruction of the geometry to project on. Furthermore, the reconstructed
elements require some attention to avoid distorted shapes. The points for
reconstructing the geometry need to be collected across partitions when this
mapper is used in distributed memory, the projection then happens locally.

4.1.4 Other mapping techniques

Until now, only a subset of commonly used mapping techniques was introduced.
Mapping based on Radial Basis Functions (RBFs) and mortar/weighted-
residuals method are also used, but their applicability for distributed systems
is limited, due to several complexities. Interpolation with RBFs as presented
in [2], leads to a rather densely populated transfer matrix, which can result in
memory issues, in particular for volumetric mapping. Additionally, a linear
system needs to be solved, which is challenging in distributed environments,
as shown in [53]. Mortar-type methods (see [25] and [24]) use an elaborate
projection and integration scheme, but they can suffer from robustness issues
in particular for complex geometries. Furthermore, the numerical integration
used to compute the transfer matrix requires a considerable amount of data
to be exchanged in distributed systems, and can also lead to more entries in
the transfer matrix. A linear system needs to be solved during each mapping
step, thus introducing further difficulties.

Given the limitations of these techniques, they will not be further considered
in this work.
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4.2 Conservative Mapping

Two different ways of mapping quantities exist, consistent/direct and conser-
vative mapping. Consistent mapping is used with distributed fields such as
displacements or tractions, and conservative mapping for concentrated/in-
tegrated quantities such as nodal loads. As the name implies, conservative
mapping preserves the force/energy on the interface. The nodal sum of quan-
tities on either side of the interface is the same. It is typically used to map
nodal loads in FSI simulations from the fluid to the structural domain, see
also equation 2.11.

The relation between consistent and conservative mapping is shown in
equation 4.1:

xo = HT
odxd (4.1)

Consistent mapping from origin to destination is done with Hod, conserva-
tive mapping in the other direction with HT

od. This relation has the significant
advantage, that only one mapping matrix needs to be computed, which can
be used for mapping in both directions.

Comparisons between consistent and conservative mapping were conducted
by [17] and [81]. In some setups, conservative mapping can lead to unphysical
oscillations, depending on mesh sizes on both sides of the interface, the
employed mapping technique and the distribution of the mapped quantities.
More studies regarding this can be found in [81].

4.3 Mapping in distributed environments

As explained in previous chapters, the support of distributed memory machines
such as clusters or supercomputers is crucial for CoSimulation, as it enables the
simulation of large-scale engineering problems. The same applies to mapping
since it is at the interface of the solvers. Without parallel algorithms, the
data to be mapped would need to be gathered on one rank before mapping,
and scattered back afterward. This introduces a significant bottleneck for
the performance, which becomes more severe with larger problems and more
cores used.

To avoid any bottlenecks, the algorithms developed in this work use a peer-
to-peer approach, in which the computing ranks can directly communicate
with each other if required. This avoids any gathering and scattering of data,
both during the initialization and mapping of quantities. Furthermore, the
presented algorithms work with any distribution and number of the computing
domains on either side of the interface, no restrictions are placed on the solvers.
All the scenarios of possible scenarios shown in Figure 3.2 are supported.
As explained in Section 3.3.1, each solver has its own MPI_Comm MPI-
Communicator. Mapping uses an MPI-Communicator, which includes the
ranks of both solvers and thereby enables peer-to-peer communication.
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4.4 Searching on interface

Mapping geometrically relates two interfaces to each other, which is expressed
by the transfer matrix H. To establish the relations, first, a geometrical
search on the interface is required. The results of this search are then used
by the mapping technique to construct H. An efficient and robust search, in
particular in a distributed domain, is crucial for stable and accurate mapping.

The information to be searched for depends on the mapping algorithm.
The nearest-neighbor technique requires the geometrically closest points, the
nearest element mapper the element with the smallest projection distance,
and the barycentric mapper multiple closest nodes for the reconstruction
of the element to be projected onto. RBF-based mapping methods need
several points in the vicinity, depending on the chosen support radius. Mortar
methods need the element information of each overlapping element, for the
numerical integration. Generally, the amount of required information increases
with the complexity of the method.

In distributed simulations, the searched data can be in different ranks,
which must be taken into account for partitioning-independent mapping. Here,
two-level search algorithms can be used, combining a global search across
the ranks with a partition-local search. Furthermore, the least amount of
search information should be exchanged, to avoid communication overhead.
Thus, a preselection of possible search results needs to happen before the
communication.

4.5 Implementational aspects

This section presents the implementation of the newly developed mapping
in Kratos. The nearest-neighbor, nearest-element and barycentric mapping
methods are realized since they cover a large range of applications, and have
a very good performance in large distributed simulations. Additionally, they
can be used for 1D (line-line), 2D (surface-surface) and 3D (volume-volume)
domains.

The highlights of the developments are the unified workflows for shared
and distributed memory architectures, and the efficient and robust mapping
strategies and procedures with minimal memory footprint and very good
scaling behavior. Furthermore, an intuitive and computationally efficient
interface is proposed for a mapper, consisting of three functions: Map is used
for mapping from origin to destination. In the other direction, InverseMap is
used. Combining the ability to map in both directions within one mapper
allows for several optimizations, such as the reuse of the transfer matrix.
UpdateInterface completes the functionalities, it is used to recompute the
transfer matrix after an update of the interfaces, e.g. after remeshing.

The workflow for constructing the (sparse) transfer matrix H is done in
two steps. First, the search on the interface is conducted, which involves
communication among the ranks in distributed simulations. Second, the
matrix is constructed, similarly to a FEM assembly. Mapping of quantities
can then be executed by a (sparse) matrix-vector multiplication (SpMV), see
also [38]. This method has the significant advantage, that the underlying
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linear algebra library can be employed for computationally expensive parts
to achieve maximum performance.

4.5.1 Searching on interface

The search is divided into two parts in distributed simulations, a global and
a local search. In serial, only the local search is required. This division allows
for a unified treatment of the local search.

The local search is performed with a bin search-structure (see [16]). After
the search, the best results are filtered, and assigned to their respective
partners. The workflow for the local search is shown in algorithm 7.

Algorithm 7: Local search for mapping
1 Create local search structure (bins)
2 Perform search
3 foreach search result do
4 Filter potential partners from search results
5 end
6 Assign filtered search results

The search in distributed environments is built on top of the local search.
First, a global search among the partitions is performed to determine where
possible partners exist. This is done with axis-aligned bounding boxes (see
[5]). The search-related information that is required for the local search is
then sent to the candidate partitions. Following is the local search, as shown
above. Afterward, the search results are sent back to their respective origin
partitions for constructing the transfer matrix.

An appropriate search radius is vital for a performant search, as it can
influence the number of search results to process significantly, leading to long
construction times for the mapper. Still, it is necessary to find all correct
pairings, therefore the radius needs to be chosen proportional to the mesh size.
This work proposes the following procedure to compute the search radius.
The idea is to start with a small search radius and increase it over several
iterations until all search results are found. This works particularly well for
heterogeneous meshes, which happen very often in practical cases. For this,
the following four parameters with suitable defaults are introduced:

• search radius r: The initial search radius. It is typically chosen to be
rather small, such that in highly refined areas of the mesh not too many
results are found. By default, it is chosen to be the largest dimension
of the local bins search-structure.

• maximum search radius rmax: The maximum search radius is by default
chosen as the largest edge length in the mesh.

• search radius increase factor rincr: The factor by which the search
radius increases in each search iteration. Smaller values lead to more
search iterations, but fewer search results in each iteration and thus
fewer search results to process. The default is 2.0, meaning that the
search radius is doubled in every search iteration.
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• maximum number of search iterations n: Computed based on the previ-
ous three settings according to equation 4.2.

n = d(lnrincr (rmax)− lnrincr (r))e (4.2)

4.5.2 Construction of transfer matrix

A new development of this work is to perform the construction of the transfer
matrix H in the same way as the assembly of the stiffness matrix in the FEM.
This way, many existing procedures and developments can be reused. The
equivalent to an element in the FEM is the local system, which provides the
local contribution for the transfer matrix. Table 4.1 compares regular FEM
with the approach proposed in this work.

FEM Mapping

Local element stiffness matrix Local system

Global stiffness matrix Transfer matrix

Table 4.1: Comparing FEM assembly and assembly of transfer matrix

In order to construct the local system, it needs the partner’s info, which
is why the search has to be executed beforehand. Its contribution is then
assembled into the transfer matrix. The assembly is done in a generic and
parallelism-agnostic way. This means, that the local system is unaware of
the employed method of parallelization, which simplifies the development
of new mapping techniques significantly. Assembly routines for shared and
distributed memory parallelization are developed, using the same underlying
linear algebra as for the Kratos solvers, namely ublas1 for shared memory
and trilinos [76] for distributed memory.

4.6 Performance tests

This section evaluates the performance of the developed algorithms and
procedures in distributed environments through strong scaling tests. Surface-
to-surface and volume-to-volume mapping are considered.

The Olympic Roof model (see Section 6.7) is used for the tests, as it
represents a large real-world application. The surface-to-surface mapping is
done between the FSI interfaces. For the volume-to-volume mapping, an even
finer mesh was created in addition to the one presented in Section 6.7. The
sizes of the meshes are listed in Table 4.2.

The results for the time required for mapper construction (figures 4.2 and
4.3) and mapping of vector quantities with 3 components (figures 4.4 and
4.5) are presented in the following. The solid lines represent the mapping

1 https://boostorg.github.io/ublas/

https://boostorg.github.io/ublas/
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Mesh
Surface Volume

Nodes Elements Nodes Elements

coarse 13,930 26,148 3,442,468 19,632,138

fine 259,541 519,110 7,433,611 46,265,844

Table 4.2: Mesh configurations for the strong scaling tests of the mapper
performance in distributed environments.

from coarse to fine mesh, and the dashed lines are in the other direction. The
number of MPI cores ranges from 48 to 3,072 for surface-to-surface and 48 to
12,288/24,576 for volume-to-volume mapping.

Common for both types of mapping it can be observed that the time
required for initialization of the mapper increases with more ranks. This is
attributed to the searching that is required on the interfaces. On one hand,
having more ranks makes the search on each core faster, as fewer entities per
core are participating in the search. On the other hand, more communication
is required between the ranks increases with a larger number of ranks. This
leads to the observed results. Communication taking precedence can be nicely
observed when the time used by the nearest neighbor mapper reaches almost
the time of the nearest element mapper, despite its less expensive algorithm.
Aside from the search, the second computationally expensive operation is
the assembly of the transfer matrix. It is almost negligible for large meshes
compared to the search. This can be attributed to the employed linear algebra
libraries, which have reached a very mature and optimized state. These
results demonstrate the importance of an efficient and performant search. The
absolute time for the initialization is still small, particularly when compared
to the solution times of the solvers. In most simulations, this step only needs
to be executed once.

Unlike the initialization, the mapping of quantities scales very well with an
increasing number of MPI ranks. Beyond a certain number of ranks, no further
speedup is achieved, which is because the problem size per rank becomes very
small. The absolute times are very small, in particular when compared to
typical solution times of solvers. The performance is mainly driven by the
matrix-vector multiplication, which is very efficiently realized by the trilinos
framework.

The presented tests clearly show the high performance of the developed
mapping framework in distributed environments, even with very large meshes
and a high number of MPI ranks. The proposed strategies and procedures
can thus be used even with very large coupled simulations.
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Figure 4.2: Mapper initialization times for different numbers of MPI ranks
in surface mapping. Solid lines represent mapping coarse → fine
mesh, dashed lines represent mapping fine → coarse mesh.
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Figure 4.3: Mapper initialization times for different numbers of MPI ranks
in volume mapping. Solid lines represent mapping coarse→ fine
mesh, dashed lines represent mapping fine → coarse mesh.
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Figure 4.4: Mapping times for different numbers of MPI ranks in surface
mapping. Solid lines represent mapping coarse → fine mesh,
dashed lines represent mapping fine → coarse mesh.

102 103 104

10−3

10−2

10−1

Number MPI ranks

T
im

e
[s
]

Nearest Neighbor
Nearest Element

Barycentric

Figure 4.5: Mapping times for different numbers of MPI ranks in volume
mapping. Solid lines represent mapping coarse → fine mesh,
dashed lines represent mapping fine → coarse mesh.





Chapter 5

Realizing coupled simulations

This chapter contains a collection of experiences and recommendations for
approaching, setting up and running coupled simulations. The first section
details the different aspects and components of coupled simulations and
their interaction and importance. The following sections provide information
on CoSimulation on HPC systems, which is helpful due to the often large
computational requirements of coupled simulations.

The findings presented in the following are gathered and developed while
conducting this work, and successfully applied to the examples presented in
Chapter 6.

5.1 Practical aspects and experiences

Coupled simulations are a challenging endeavor to embark on. Not only
do they contain and combine the difficulties of standalone simulations, but
furthermore add coupling-specific problems on top. Therefore, this section
lists and details important aspects and experiences that can be crucial for
successfully conducting coupled simulations. Additional information can be
found in [27], which provides a comprehensive overview of the partitioned
analysis of coupled mechanical systems.

A general recommendation in the context of FEM by [26, Chapter 7.2] is to
keep it simple. This is even more vital for coupled simulations, which contain
the complexity of the coupling in addition to the challenges of their models.
Therefore, this can be considered a principle for conducting CoSimulation.

See also Section 2.2 for the theory related to coupled simulations.
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5.1.1 Bottom up, from individual models

Before any coupled simulation is set up, each model should be thoroughly
tested standalone. Mistakes and other shortcomings would undoubtedly be
revealed during the coupling and complicate the simulation, particularly when
a strong interaction occurs.

Coupling relevant tests can be conducted in addition to the tests with which
a model is checked standalone. Representative scenarios which are expected to
occur during the coupling can be used to check the model and understand its
behavior. A way to obtain relevant data is to run the standalone simulations
and use their output as input or boundary conditions for the other model.
This one-way coupling might not contain and show all the phenomena that
can happen during a fully two-way coupled simulation, but it can certainly
assist in debugging a model. If applicable, this data can be modified, e.g. by
adding more fluctuations to represent a stronger interaction.

Such simplified couplings are particularly useful when simulations with
large computational requirements are involved. Then the coupling can be
prepared, thus potentially saving many resources.

A dedicated CouplingOperation (see Section 3.2.10) can be used to read
the information for the one-way coupling.

5.1.2 Choosing the coupling algorithm

An early choice to be made is the selection of the coupling algorithm. Due to
the computational cost, starting with a weak coupling (see Figure 2.3a) and a
Gauss-Seidel pattern (see Figure 2.2b) is recommended. If it is known upfront
that the interaction between the fields is strong, then a strong coupling is
suggested instead, again with a Gauss-Seidel pattern.

If the simulation diverges because the interaction is too strong for a weak
coupling, then a strong coupling (see Figure 2.3b) should be used instead.
Some boundary conditions setups might also require to use a Jacobi pattern
(see Figure 2.2a) instead.

5.1.3 Prediction techniques

It is recommended to use prediction techniques to improve the convergence
behavior of the coupled solution. In particular, for a weak coupling, using
prediction can make the difference to achieve a converged solution. For FSI
problems, the prediction technique presented by [21] has worked well for
practical problems. Note that some prediction techniques require a certain
coupling sequence.

5.1.4 Relaxation and convergence acceleration techniques

Strongly coupled simulations often require (under-)relaxation to achieve stable
solutions. Convergence acceleration techniques should then be used to speed
up the convergence of the coupled solution. This decreases the number of
coupling iterations and, therefore, results in a faster overall simulation time.
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As before, the stronger the interaction becomes, the more elaborate the
acceleration techniques should be. The Aitken acceleration [50] works well
until a certain degree, after which it is beneficial to use methods like MVQN
[7] or IQN-ILS [20]. [85] presents an advanced accelerator focusing on memory
efficiency.

5.1.5 Mapping

If mapping on meshes/geometries is required for the coupling, then it is
recommended to use matching meshes if possible for setting up the coupling.
This way, no mapping-related problems can occur, and the focus can be set to
the other components of the coupling. Once those are done, the mapping can
be set up using the actual meshes. As explained in Chapter 4, more complex
mapping techniques introduce more sources for errors. Hence, the usage of
the nearest neighbor mapper 4.1.1 can simplify the initial setting up of the
mapping. Once this is working, then more elaborate mappers can be used.
The nearest element mapper 4.1.2 is generally recommended since it provides
good results for low computational cost.

Mapping involves a geometrical search on the interfaces to determine the
partners among which the data is exchanged, see Section 4.4. Depending on
the mapping algorithm used, the searched entities vary, most commonly are
closest points (nearest neighbor/barycentric) or closest projections (nearest
element). Wrong search results can happen in practical examples for many
reasons, such as corner cases or very small entities. Many of these problems
can be avoided by splitting the geometry into appropriate inputs for the
mapper. Instead of passing the entire interface all at once, multiple mappers
can be created, each with a conforming part of the interface. This not only
makes the search more computationally efficient, but it also helps to avoid
wrong pairings.

Finally, the choice of mapping technique also affects the data that is
required by an (external) solver. If the mapper does not use the underlying
geometry or shape functions (such as nearest neighbor or barycentric mapper),
then it is sufficient to provide only the nodes with the data.

5.1.6 Restart in CoSimulation

Some solution techniques such as CFD require, depending on the problem
setup, some time until they reach a converged/steady-state behavior. Unsteady
effects during the initial phase can lead to numerical instabilities for the
coupling and should therefore be avoided. One way is to run the solvers
standalone before the coupling until a stable state is reached. A practical
realization is to save this state in a restart file and start the coupling from
there.

Note that the mapping might need some modifications if the current
configuration after the restart is different from the initial configuration, on
which the search for the coupling partners is usually conducted. This is used
in example 6.7.
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Restarts are also a commonly used technique on HPC systems, where the
runtime per simulation is typically limited. Then the total simulation time
needs to be split into several sub-intervals.

Lastly, they can be used for debugging. With restarts, it is possible to
start from a simulation step close to the problematic one, without having to
rerun a long simulation entirely.

5.1.7 Gradual start of coupling with ramping

Applying loads or other boundary conditions instantaneously on a model can
lead to numerical instabilities, in particular for complex real-world examples.
It is therefore advised to apply them gradually, over a short time. The more
sensitive the model is to a particular load, the longer the ramping time should
be. This has been shown to improve the convergence behavior significantly.

Different versions of ramping functions can be used, a linear one being the
most basic and straightforward to realize. However, it has two kinks, at the
beginning and the end. Those can introduce problems with sensitive models.
A better solution is to use a smooth ramping function as shown by [60] and
displayed in Figure 5.1. This function does not have any kinks and provides
a very smooth ramping.
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Figure 5.1: Smooth ramping up over 10 s.

The displayed function can be realized with cos or sin function (with 10 s
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This function has been applied successfully for different coupling quantities
and simulations, such as shown in Figure 6.41. The integration into the
CoSimulationApplication is done with a dedicated CouplingOperation, see
Section 3.2.10.

5.1.8 Coupling with external solvers/tools

Coupling with external tools increases the complexity of the coupling since
several programs need to be combined. Following are some pieces of advice
on setting up the coupling in smaller steps, which helps to isolate potential
problems.

Using remote-controlled CoSimulation

Problems with the coupling sequence are common issues faced during the
setting up. In particular, if the classical approach (see Section 3.4.2) for
CoSimulation is employed, because the orchestration is not handled centralized
but individually by each tool. One way of overcoming this is to use the remote-
controlled approach, as explained in Section 3.4.3. Here the orchestration is
handled by one component, thus avoiding deadlocking due to inconsistencies
in the coupling sequence among the tools.

Using internal solvers to set up a coupling

Using a multiphysics tool for the coupling has another inherent advantage
over traditional coupling tools: The coupling can be first developed with
internal solvers (given that the required solver is available), thus avoiding
problems with synchronization and data exchange between tools. This can be
done with simplified models if appropriate. Once the coupling is working, the
internal solvers can be replaced with the real (external) ones, which limits
the complexity and helps to narrow down potential problems.

Choice of IPC method for communication

In most cases, IPC is required for CoSimulation with an external solver.
The interface data needs to be exchanged, which can be done with different
methods. While TCP-sockets have been found to be the best solution for
running coupled simulations (see Section 3.8), file-based communication can
be a better choice for the development and initial setting up of a coupling.
The flow of information can be easily followed and observed, which helps to
understand the coupling sequence.

CoSimIO (see Section 3.7) unifies the interfaces of different IPC methods,
such that they can be changed at runtime with a configuration parameter.

5.1.9 Example setup of strongly coupled FSI

The example configuration in 5.1 shows some components of a strongly coupled
FSI simulation. It is crucial that the fields on which prediction or acceleration
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act (field disp of solver fluid in this example) are not overwritten by mapping!
The mapping of the displacements from the fluid solver to the structural
solver happens at the end of the coupling sequence because it is specified
in the output_data_list of the structural solver. The acceleration (in case
the solution did not converge in this timestep) happens at the end of the
coupling iteration after the mapping. Similar rules apply to the prediction it
happens at the beginning of the timestep, before the coupling sequence. This
means that the prediction or the relaxed solution would be overwritten if the
mapping of the displacements would happen in the input_data_list of the
fluid solver. The same rules applies also to a weak coupling when using a
predictor.

1 ...
2 "predictors" : [{
3 "type" : "linear",
4 "solver" : "fluid",
5 "data_name" : "disp"
6 }],
7 "convergence_accelerators" : [{
8 "type" : "aitken",
9 "solver" : "fluid",

10 "data_name" : "disp"
11 }],
12 "coupling_sequence": [{
13 "name": "fluid",
14 "input_data_list" : [],
15 "output_data_list" : []
16 },{
17 "name": "structure",
18 "input_data_list": [{
19 "data" : "load",
20 "from_solver" : "fluid",
21 "from_solver_data" : "load",
22 "data_transfer_operator" : "mapper"
23 }],
24 "output_data_list": [{
25 "data" : "disp",
26 "to_solver" : "fluid",
27 "to_solver_data" : "disp",
28 "data_transfer_operator" : "mapper"
29 }]
30 }]
31 ...

Listing 5.1: Snippet of configuration of strong coupling
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5.2 CoSimulation on HPC systems

Most HPC systems like SuperMUC-NG (see Appendix A) use batch systems
for the processing of jobs. This means that simulations cannot be executed
right after logging into the system, instead, they must be submitted to a job
scheduler. Depending on the resource requirements, runtime, and priority,
they are then executed. SuperMUC uses the workload manager SLURM [84].

The submission of jobs with those schedulers is different from the regu-
lar execution of programs. In particular for CoSimulation, where multiple
programs are involved. Launching the simulations with a different number
of tools and types of parallelizations is explained in the following. While
the descriptions are made for the SuperMUC-NG system with the SLURM
workload scheduler, the concepts can be transferred to other systems.

One software, with or without MPI
Running single-physics simulations with one solver or tool means that only
one executable is used. The same applies to conducting coupled simulations
with a multiphysics tool like Kratos. The executable can directly be executed
when MPI is not used. With MPI, mpiexec can be employed directly to launch
the execution, see 5.2.

1 # without MPI:
2 ./ executable > std.out 2> err.out
3
4 # with MPI (100 processes):
5 mpiexec -n 100 ./ executable > std.out 2> err.out

Listing 5.2: Running a single executable with or without MPI. Output and
errors are redirected to dedicated files.

Multiple software, without MPI
Conducting multiphysics simulations with more than one tool can be done
straightforwardly if MPI is not used. The executables can be launched one
after the other. The & at the end is required to return right away and not
wait until the command is finished, otherwise the simulation would hang. This
needs to be combined with a wait at the end to prevent premature termination
before all the programs have finished. A short wait between the launches of
the programs ensures stability by avoiding concurrent starts, which can be
problematic on some systems. An example with three programs can be seen
in 5.3.

1 ./ executable1 > std1.out 2> err1.out &
2
3 sleep 5s # helps to avoid problems when starting the job
4
5 ./ executable2 > std2.out 2> err2.out &
6
7 sleep 5s # helps to avoid problems when starting the job
8
9 ./ executable3 > std3.out 2> err3.out &

10
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11 wait # prevent premature termination before individual programs have
completed

Listing 5.3: Running three executables without MPI. Output and errors
are redirected to dedicated files.

Multiple software, one uses MPI
Multiphysics simulation with multiple tools can be done in a similar way as
before when only one of them uses MPI. mpiexec can still be used in this
case, an example can be seen in 5.4. Note that process-pinning as described
in Section 5.3 needs to be used when the other tools employ shared memory
parallelization.

1 ./ executable1 > std1.out 2> err1.out &
2
3 sleep 5s
4
5 ./ executable2 > std2.out 2> err2.out &
6
7 sleep 5s
8
9 mpiexec -n 100 ./ executable3 > std3.out 2> err3.out &

10
11 wait

Listing 5.4: Running three executables, one of them with MPI. The order
in which they are called does not matter. Output and errors
are redirected to dedicated files.

Multiple software, all use MPI
Using mpiexec is no longer possible when more than one tool uses MPI. The
low-level command srun1 (which is also called by mpiexec) provided by the
SLURM workload manager needs to be used then. This is because several
options such as the distribution of compute cores need to be specified, which
is not possible with mpiexec. 5.5 shows an example of running three programs
with 240 cores/ 5 compute nodes each. In total 720 cores/15 nodes need to be
allocated for this job. The distribution of cores for the programs is blocked,
and the type of MPI is specified as pmi2. Each program uses its resources
exclusively, without sharing them. Note that those settings might be different
on other systems with different schedulers.

1 # starting executable 1 on 5 compute nodes (240 compute cores)
2 srun -N 5 --ntasks -per -node =48 -m block:block --export=ALL --

exclusive --mpi=pmi2 ./ executable1 > std1.out 2> err1.out &
3
4 sleep 5s
5
6 # starting executable 2 on 5 compute nodes (240 compute cores)
7 srun -N 5 --ntasks -per -node =48 -m block:block --export=ALL --

exclusive --mpi=pmi2 ./ executable1 > std2.out 2> err2.out &
8

1 https://slurm.schedmd.com/srun.html

https://slurm.schedmd.com/srun.html
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9 sleep 5s
10
11 # starting executable 3 on 5 compute nodes (240 compute cores)
12 srun -N 5 --ntasks -per -node =48 -m block:block --export=ALL --

exclusive --mpi=pmi2 ./ executable1 > std3.out 2> err3.out &
13
14 wait

Listing 5.5: Running three executables, all of them with distributed memory.
The srun command together with other options is used as
mpiexec does not offer to specify these options. Output and
errors are redirected to dedicated files.

Finally, comparing the different ways of launching coupled simulations on
a HPC system highlights the advantage of a multiphysics framework. The
handling is significantly easier compared to using multiple tools, particularly
when using MPI.

5.3 Mixing MPI and OpenMP with process pinning

Mixing different methods of parallelism is often done with hybrid paralleliza-
tion. Shared and distributed memory parallelization (see Section 2.4) are
combined by employing shared within one computing node, and using dis-
tributed in-between the nodes. This type of parallelization requires the solver
to support it. Some solvers however implement only one of the technologies.
Combining solvers that support different means of parallelization for CoSim-
ulation might require special solutions to enable both solvers to employ their
preferred method of parallelization. This solution is hardware-dependent. A
solution on Intel systems to enable both MPI and OpenMP is to use process
pinning as presented in the following.

The system used in this work for the large simulations, SuperMUC, uses
Intel CPUs, see Appendix A. The Intel-MPI library provides a way to pin
processes to specific CPUs2. Various options are available for the pinning
which can be tested with a simulator3. The output is a pinning mask, which
is used together through the environment variable I_MPI_PIN_DOMAIN.

Mixing OpenMP and MPI parallelization can be achieved by a special
pinning setting. Then each tool can use its preferred mechanism. For the first
rank, thread one on the first core and the second thread of every other core
is chosen. For every other rank, the first thread of one core is chosen. The
shared memory parallel tool runs on rank zero, where it can use all threads
of one compute core, 48 in this case. This pinning is visualized in Figure 5.2.

It was observed that enforcing the pinning harms the performance of
the code that uses shared memory parallelization, compared to running it
standalone. 6.7.5.2 demonstrates this for the structural model of the Olympic

2 www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-
windows/top/environment-variable-reference/main-thread-pinning/interoperability-
with-openmp-api.html

3 www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-pinning-
simulator.html

www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/main-thread-pinning/interoperability-with-openmp-api.html
www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/main-thread-pinning/interoperability-with-openmp-api.html
www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/main-thread-pinning/interoperability-with-openmp-api.html
www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-pinning-simulator.html
www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-pinning-simulator.html


98 CHAPTER 5. REALIZING COUPLED SIMULATIONS

Figure 5.2: Screenshot from the Intel pinning simulator. It shows the pinning
used in this work. A computing node on SuperMUC has 48
physical cores and 96 threads (with Hyper-Threading enabled).
The first rank has the first thread of core one and thread two of
every other core. The other ranks have one thread each. The
OpenMP parallel code runs on rank zero, where it can use up
to 48 threads.

Roof. A slowdown of ∼50% occurred when using process pinning. Still, this
is much faster than not using parallelization.

Since the pinning is different for each CPU, the information about the
used hardware needs to be provided to the simulator. This information can
be obtained with the cpuinfo4 tool.

The full pinning mask can also be computed by using bitshift operations
as shown in 5.6. The input here is the pinning info for the first rank, the
others are computed.

1 # from the pinning simulator for rank 0
2 mask=ffffffffffff000000000001
3
4 for i in $(seq 1 47); do # one CPU has 48 physical cores
5 mask=$mask ,$(printf "%x\n" $((1<<$i)));
6 done
7
8 export I_MPI_PIN_DOMAIN =[ $mask]
9

10 # this results in:
11 # [ffffffffffff000000000001 , 2, 4, 8, 10, 20, 40, 80, 100, 200, 400,

800, 1000, 2000, 4000, 8000, 10000 , 20000 , 40000, 80000,
100000 , 200000 , 400000 , 800000 , 1000000 , 2000000 , 4000000 ,
8000000 , 10000000 , 20000000 , 40000000 , 80000000 , 100000000 ,
200000000 , 400000000 , 800000000 , 1000000000 , 2000000000 ,
4000000000 , 8000000000 , 10000000000 , 20000000000 , 40000000000 ,
80000000000 , 100000000000 , 200000000000 , 400000000000 ,
800000000000]

Listing 5.6: Compute the process pinning mask

A job with one executable can be launched as shown in 5.7. The important
part is to specify the pinning by using the I_MPI_PIN_DOMAIN environ-
ment variable. Here the code runs MPI-parallel but has part of it executed in
4 https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-
reference-linux/top/command-reference/cpuinfo.html

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/command-reference/cpuinfo.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/command-reference/cpuinfo.html
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shared memory parallel. An example of this case is shown in Section 6.5.3,
Olympic tower FSI. In setup 2, the solvers run in the same process, but use
different means of parallelization. The fluid solver runs in MPI, whereas the
structural solver uses OpenMP.

1 # set number of threads for shared memory parallelization
2 export OMP_NUM_THREADS =10
3
4 I_MPI_PIN_DOMAIN =[$mask] mpiexec -n 100 ./ executable

Listing 5.7: Using different means of parallelization within one executable.

Starting multiple executables with process pinning is done similarly, as can
be seen in 5.8. A use case for this scenario is setup 3-6 of the Olympic Tower
FSI. Unlike in setup 2, the structural solver runs in a separate process. This
is a very common FSI scenario, the fluid solver running in MPI due to the
typically higher computational cost, and the structural solver using OpenMP.

1 # set number of threads for shared memory parallelization
2 export OMP_NUM_THREADS =10
3
4 # starting code that uses MPI (100 processes)
5 I_MPI_PIN_DOMAIN =[$mask] mpiexec -n 100 ./ executable1 &
6
7 # starting code that uses OpenMP (10 threads)
8 ./ executable2 &
9

10 wait

Listing 5.8: Using different means of parallelization within two executables.





Chapter 6

Numerical Examples

This chapter contains examples that present and show the capabilities and
features explained in the previous chapters. Each example focuses on one or
more aspects of CoSimulation.

The first example (Section 6.1) presents the results of a widely used FSI
benchmark conducted with the presented work. Section 6.2 uses the same
benchmark but replaces the structural solver with a NNet. In Section 6.3,
FSI simulations of a bridge deck are conducted with a simplified structural
solver, which consists of only one DOF. The simulation of rock-fall protection
structures is shown in Section 6.4 by coupling a DEM and a FEM solver. A
comparison of different scenarios of CoSimulation is presented in Section 6.5,
where Wind-Structure Interaction (WSI) simulations of the Munich Olympic
Tower are used as the reference model. The coupling to external solvers is
presented in Section 6.6, where the FSI of an entire wind turbine is simulated.
Finally, the culmination of this work is presented in Section 6.7 by conducting
large-scale FSI simulations of the Olympic Stadium Roof in Munich.

6.1 Flexible flap in channel

This example consists of a 2D flow in a narrowing channel and a flexible flap
restricting the flow. The densities of the fluid and the structural domain are
of similar magnitudes. This leads to a strongly coupled problem, which is one
of the main challenges of this example.

It was initially proposed by [60] and has often been used as a benchmark
for FSI applications, e.g. by [78]. Therefore, it is also used to evaluate this
work’s capabilities for solving strongly coupled problems. The original setup
is recreated, with geometry and boundary conditions shown in Figure 6.1,
and material parameters listed in Table 6.1.
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Figure 6.1: Geometry, boundary conditions and setup for Mok benchmark.
Dimensions are in meters.

Structure Fluid

ρS 1500 Kg/m3 ρF 956 Kg/m3

ES 2.3e106N/m2 µF 0.145 Pa · s

νS 0.45

Table 6.1: Material parameters for Mok benchmark. The densities are of
similar magnitude.

v(y, t) = 4v̄y(1− y) (6.1)

Kratos was used both for the fluid and the structural solution, with the
FluidDynamicsApplication and the StructuralMechanicsApplication, respec-
tively. The fluid mesh consists of around 6000 triangular elements. The inflow
profile is parabolic (see equation 6.1), with v̄ = 0.06067. The velocity is
ramped up over the first 10 seconds, see Section 5.1.7. The mesh is moved
using a structural similarity technique.

The structural mesh is composed of 200 large displacement quadrilateral
elements. A plane stress material law with unit thickness is employed.

An iterative Gauss-Seidel solution technique (see Figure 2.2b) is used in
combination with the MVQN relaxation technique, see [7]. The meshes on
the interface are matching in order to eliminate mapping errors. The total
simulation time is 25 s, with a fixed time-step size ∆T of 0.1 s.

The results of the displacements at the reference points A and B are
shown in Figure 6.2. The results of this work are in very good agreement
with the reference solutions from [60] and [78]. This showcases the ability of
the presented implementation to handle strongly coupled problems.
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Figure 6.2: Results for displacement in X-direction at reference points A
and B

6.2 Flexible flap in channel; with neural network

Artificial Intelligence (AI) andMachine Learning (ML) have seen a phenomenal
rise in recent years, with their potential use cases seemingly endless. One of
them is the replacement of numerical solution techniques with a predicted
solution through a surrogate model. The main motivation for this is to obtain
solutions much faster and with little computational effort. The downside is
the accuracy, which highly depends on the data the model was trained with.
In the following, the integration of a NNet based tool into CoSimulation is
presented.

This example uses the same FSI benchmark as in Section 6.1, but the
structural solver is replaced with a NNet. These developments are initially
proposed by [23]. The NNet related functionalities are realized in Kratos
within the NeuralNetworkApplication. The contribution of this work is the
initial design for the integration into the CoSimulationApplication, as well as
assisting the implementation and realization in Kratos. In the following, only
the CoSimulation relevant aspects are presented. For more information, it is
referred to [23].

The NeuralNetworkApplication is implemented in Kratos, which simplifies
the integration into CoSimulation, since no communication with an external
tool via IPC is required. Same as for other solvers/tools, the integration into
CoSimulation was done based on the common solver interface AnalysisStage,
see Section 3.1.3. The ModelPart was employed as the container for the data
(see Section 3.1.1), consistent with the other Kratos internal solvers.
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Figure 6.3: Results for displacement in X-direction at reference point A
(top of the flap).

The coupling is set up in the same way as when using a conventional solver.
The fluid solver computes the loads, which are being mapped to the structural
domain. The loads are used as input to compute new displacements. Instead
of using a numerical solver, a NNet model takes the loads at the nodes as
input to predict the new displacements, which are then mapped back to the
fluid domain. This surrogate model needs to be trained with data for an
accurate prediction. The required data is generated from coupled simulation
runs with varying inputs. These data generation and training procedures
are part of the NeuralNetworkApplication. After training the model, it can
be employed in the coupled simulation. Figure 6.3 shows the results for the
displacements for different configurations. The solutions computed with the
NNet are in very good agreement with the reference solution. Note that the
strong FSI coupling results differ from the results shown in Figure 6.2 because
a much coarser fluid mesh was used.

6.3 FSI with a SDOF solver

CoSimulation is often understood as the coupling of solvers that use mesh-
based discretization methods. Mapping techniques as described in Chapter 4
are then employed for the data transfer between the interfaces. However, not
all solvers require an approach based on FEM or FVM (including discretization
and meshing). Typically, reduced physical phenomena can also be modeled
with more basic solvers.
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An example of such a solver is a concentrated spring-mass-damper system,
which only has one DOF (in the following referred to as SDOF solver),
representing either translation or rotation. It has no geometry associated and
thus no mesh. This means that the integration into CoSimulation requires
different procedures for the data transfer between interfaces. Regular mesh-
based mapping techniques cannot be used. Coupling two SDOF solvers can
be done by copying the value from one interface to the other.

Coupling solvers, where only one uses a geometry, require some treatment
similar to mapping. The transfer of data depends on the direction of the
exchange, as well as the physical quantities. To illustrate this, a FSI coupling
between a CFD solver and a structural solver with one DOF is considered.
The schematics of the setup for translational movement are shown in Figure
6.4. The displacements computed by the structural solver are communicated
to the fluid solver, where they are applied to all the nodes on the interface.
In the other direction, the nodal forces need to be summed up to apply them
to the structural solver. This is the equivalent of conservative mapping, see
Section 4.2. If the fluid solver is using distributed memory parallelization,
additionally gather and scatter operations are required on the interface, since
the structural solver only uses one rank (scenario 3 in Figure 3.2).

For a rotational movement, the data transfer needs to be treated differently.
A reference point is required, from which the displacements of the fluid
interface can be calculated based on the rotation. The same applies to the
transfer of loads, they are transformed into a moment utilizing the reference
point.

Figure 6.4: SDOF FSI setup, for translational movement. The mechanical
spring-mass-damper system is displayed. The vortices that de-
velop behind the obstacle are visualized by means of an isosurface
of the Q-criterion, with a Q-value of 0.025 s-2.

This type of data transfer is implemented with a dedicated DataTrans-
ferOperator, see Section 3.2.6. The flexible software architecture of the
CoSimulationApplication allows for the realization of different techniques of
data transfer, which are adapted to the physics of the problem to be solved.

One application of the described procedures is studies of the flow around
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bridge decks. Unsteady CFD simulations are used to enable the capturing of
transient effects such as flow-induced vibrations. The structural behavior is
modeled with one DOF, as shown in Figure 6.4.

[61] studies the vortex-induced vibrations over a 5:1 rectangle by means of
numerical simulations as well as wind-tunnel experiments. Their simulations
were recreated within a larger campaign on bridge simulations. These studies
were performed together with Máté Péntek and Guillermo Martínez-López,
as part of common developments of mapping and coupling methods for the
validation of bridge deck simulations. The results obtained for translational
movement (referred to as heaving mode given the movement of the bridge deck)
with this work are in good agreement. Figure 6.5 compares the amplitude,
and Figure 6.6 the frequency of the structural response.
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Figure 6.5: Amplitude of the structural response, for the heaving mode.
Experiment and URANS refer to [61], LES refers to this work.

6.4 Rock fall protection structures

Roads through mountainous regions, such as in the Alps, are in danger of rock
fall. Rocks falling onto the roads and hitting vehicles can have devastating
results. Therefore, protection structures such as cable nets are used to protect
the roads in such terrain.

As with other engineering disciplines, numerical simulations can assist
in the design of these structures. The interaction between the falling rocks
and the protection structures makes it a problem involving different physical
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Figure 6.6: Frequency of the structural response, for the heaving mode.
Experiment and URANS refer to [61], LES refers to this work.

phenomena. On the one hand, the behavior of the structure under the rock
impact needs to be simulated. On the other hand, the rock and its dynamic
behavior while falling down the mountain and then hitting the structure leads
to high dynamics. The large kinetic energy is dissipated through plasticity
and friction, while the large deformation capabilities of the cable net allow a
relatively slow energy transfer.

[67] investigates the numerical simulation for the behavior of different
structures under different conditions in detail, including validation against
experimental results. [69] presents initial findings of this work.

The presented application case is taken from [67] / [69] and was prepared
by Klaus Sautter. The contribution of this work is assisting in the develop-
ment of the coupling, as well as the integration into the coupling framework
CoSimulationApplication. These thoughts and considerations are presented in
the following.

The cable net is modeled using the FEM, the rock with the DEM. This
means that the application differs from the other cases in this work, which
focus on FSI.

The DEM models the particles as discrete elements, which interact with
each other and surrounding entities such as walls. Following [66], three basic
steps are part of the simulation. Firstly, the contact between the particles
and the surrounding entities is computed. This information is then used to
compute contact forces in a second step. The third step consists of updating
the positions of the particles by means of numerical integration. The contact
and inertial forces are taken into account for this step.
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6.4.1 Coupling DEM - FEM

The partitioned solution of a coupled problem requires establishing interface
conditions, which need to be fulfilled to achieve equilibrium between the
domains. For the DEM-FEM coupling, they can be formulated as the balance
of contact forces FC from the particles with the internal forces of the structure
Fint, see equation 6.2 (taken from [69]).

FC
(
uΩS,ΓC , u̇ΩS,ΓC ,uP , u̇P

)
−FΩS,ΓC

int

(
uΩS , u̇ΩS , üΩS

)
= 0

(6.2)

ΩS denotes the structural domain, ΩS,ΓC , the coupling interface. The
contact forces depend on position and velocity of the particles (uP , u̇P ) and
the wall (uΩS,ΓC , u̇ΩS,ΓC ).

The displacements and velocities of the cable net as computed by the struc-
tural solver are transferred to the wall, where they are imposed as boundary
conditions for the particles. The structure undergoes large deformations dur-
ing the impact of the rock, which in turn significantly changes the boundary
of the particle simulation. This strong interaction requires a two-way coupling
of the solvers to achieve stable and accurate numerical solutions. Weak and
strong coupling algorithms, as described in Section 2.2.1, can be employed.
Details regarding the selection of convergence criteria and relaxation tech-
niques for the strong coupling are described in detail in [69]. Explicit time
integration is used to resolve the highly dynamic impact process.

The mapping happens between the FEM structure (cable net) and the
DEM wall. The wall as the boundary condition for the particles models
the cable net exactly, using the same geometry and discretization as for the
structural domain. This leads to edge-to-edge mapping on matching meshes.
Figure 6.7 illustrates the exchange of data between the domains.

The solution procedures for the particle simulation are implemented in the
DEMApplication within Kratos. The StructuralMechanicsApplication was
used for the structural analysis. The coupling could therefore be conducted
entirely within Kratos, without the need for any explicit communication via
IPC between the solvers. Both solvers use the ModelPart as data structure,
see Section 3.1.1. Therefore, CoSimulation can directly access their data.
Additionally, the common solver interface as described in Section 3.1.3 is
implemented for both solvers, which enables CoSimulation to orchestrate their
execution and synchronization.

6.4.2 Angled protection net

This example was first presented in [69]. It simulates a protection net that
spans over a street, used to redirect falling rocks to avoid impact with vehicles.
Figure 6.8a shows the application of this kind of protection structure, whereas
the corresponding numerical model is displayed in Figure 6.8b.

The rocks are modeled as (spherical) particles for simplicity. More complex
shapes can be realized by combining many particles into clusters, as presented
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Figure 6.7: Concept of DEM-FEM coupling. The particles impact the
DEM wall, causing contact forces. Those are then mapped to
the structural domain, where they are taken into account as
boundary conditions. Based on the external loads from the DEM,
the structure computes a new solution. The newly computed
displacements and velocities are then mapped to the DEM wall,
where they are used to update the boundary.

(a) Angled rock fall protection structure,
spanning over a road (Route Chalais-
Vercorin, Valais). Source: Geobrugg
www.geobrugg.com

(b) Computational model for protection net.
The stones are modeled as individual
particles.

Figure 6.8: Rock fall protection net and computational model.

www.geobrugg.com
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in [68]. A large and a small particle are used to verify that small objects are
not caught by the net. To test the limits of the coupling, a challenging setup
is used. The cable net is not prestressed, and the rock has a high impact
velocity.

Figure 6.9 shows the results for weak and strong coupling for time-step
size ∆T of 2× 10−4 s. The weak coupling computes too large contact forces
and loses contact between the net and the rock. Strong coupling correctly
computes the contact, however, the number of coupling iterations is ∼10 on
average with a maximum of 25. This reflects the complexity of this case.

(a) Weak coupling (b) Strong coupling

Figure 6.9: Comparison of weak and strong coupling methods with ∆T of
2× 10−4 s. Strong coupling is required to correctly resolve the
contact between the rock and the cable net.

The displacements of the cable net are shown in Figure 6.10 for different
configurations.

6.5 Olympic Tower

The Olympic Tower is part of the Olympic Park in Munich, which was built for
the Olympic Summer Games in 1972, see Appendix B. It has a height of 291
m and is used as television tower, viewing platform and also accommodates a
rotating restaurant, see Figure 6.11a.

[83] and [82] performed elaborate WSI studies on this structure, for which
detailed CSD and CFD models were created using the FEM and Kratos as
solver. The models were also validated against real-world measurements.

One goal of numerical simulations in engineering is to model and simulate
real-world phenomena, to better understand the underlying problem. Hence,
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Figure 6.10: Deformation over time, for the center node of the cable net
for different coupling methods. The weak coupling exhibits an
oscillatory solution with a larger time step.

this work puts an emphasis on using real-world applications for investigations
and method development. To satisfy this ambition, the simulation model
and setup were taken from [83] to perform studies with different versions/re-
alizations of CoSimulation and compare them. The investigations focus on
performing CoSimulation inside a multiphysics framework versus performing
CoSimulation using the classical approach via a coupling tool. Various metrics,
such as computational requirements, memory consumption, and simulation
times, are considered. CoSimIO (see Section 3.7) is used for the data exchange
between the solvers.

6.5.1 Reference computational setup

The reference computational setup used by [83] is briefly summarized in the
following:

As for the rest of this work, Kratos is used as the solver, both for the CSD
and CFD models and the CoSimulation. The coupling is done in a two-way
fashion, where both solvers influence each other. An explicit coupling with the
Gauss-Seidel communication pattern (see Figure 2.2b) is used, combined with
the prediction technique presented by [21]. The displacements computed by
the CSD solver are mapped to the CFD solver using a nearest-element mapping
technique, see Section 4.1.2. In the other direction, the loads computed by
the CFD solver are mapped to the structural solver using the same mapper
in a conservative manner, see Section 4.2. The CFD solver considers the
structural deformations using an ALE approach, see [59]. Here a structural
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(a) Olympic tower (b) Structural FEM model

Figure 6.11: Olympic tower in Munich. Real structure and FEM model.

similarity approach is used for deforming the mesh in the domain and thus
preventing the collapse of small elements near the coupling interface.

The tower is built from concrete and steel and consists of inner and outer
load-carrying parts. A structural model was created with shell and beam
elements, to model the real-world behavior of the tower accurately. Various
validation studies were conducted by [83]. A special focus was set on the
dynamic behavior of the structure, which is crucial for accurate FSI simulations.
The model is meshed with 159,334 nodes and 322,995 elements (see Table
6.2), and is shown in Figure 6.11b. Geometrical nonlinearities are considered
by using corotational elements and a Newton-Raphson solution strategy. The
Bossak method was used for the time integration, and a time-step size ∆T of
0.02 s was employed. The materials are modeled as isotropic, linear-elastic.
Dirichlet boundary conditions are applied to the bottom of the model. This
represents the foundation of the real structure.

Entire model FSI-Interface

Nodes Elements DOFs Nodes Elements

159,334 322,995 956,004 128,817 257,220

Table 6.2: Mesh configuration for the structural model. Each node has 6
DOFs, one for each component of displacement and rotation.

The fluid model consists of a numerical wind tunnel with the tower inside,
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as depicted in Figure 6.12. The terrain surrounding the tower is not taken
into consideration. The mesh has 1,411,671 nodes and 7,900,429 tetrahedral
elements (see Table 6.3), with several refinement boxes towards the tower
to resolve the surrounding flow accurately. The numerical wind is generated
using the model from [57] and imposed on the inlet. The wind parameters are
determined based on the location of the tower, which is an urban/suburban
area. No-slip boundary conditions are applied on the structure and the bottom,
slip conditions on the sides and the top, and zero pressure on the outlet. The
fractional step solution technique is used, which solves the velocity and the
pressure separately, using the LES method, see [12]. The time-step size is
0.02 s, which matches the one used for the structural model. Mesh refinement
studies were conducted by [83].

Figure 6.12: Snapshot slice through CFD flow field, with outline of flow
domain. The magnitude of the velocity is displayed, which
illustrates the fluctuating wind.

Entire model FSI-Interface

Nodes Elements DOFs Nodes Elements

1,411,671 7,900,429 5,646,684 244,163 488,116

Table 6.3: Mesh configuration for the fluid model. Each node has 4 DOFs,
three for velocity, and one for pressure.

Numerical simulations involving wind need a long simulation time to satisfy
statistical requirements. A typical time is 600 s / 10 min of real-time. Together
with a ∆T of 0.02 s, this leads to 30,000 TSs. The large mesh required by
both solvers combined with the high number of TSs means that simulations
of this type have high computational requirements. Both [83] and the studies
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performed in this work used the supercomputer described in Appendix A to
conduct the simulations. 240 MPI ranks were used by each solver and the
CoSimulation. Every component ran in the same memory space within the
same Kratos process, thus the total number of ranks was still 240.

6.5.2 Comparing different versions of CoSimulation

One of the main contributions of this work is the comparison of different
versions and realizations of CoSimulation, see Section 3.4. The focus of this
example is on comparing CoSimulation with a coupling tool (see Section 3.4.2)
versus CoSimulation within one framework (see Section 3.4.4). Furthermore,
it is explored how different methods of IPC influence the simulation. Lastly,
also different methods of parallelization are considered, especially mixing
shared (using OpenMP) and distributed (MPI) memory parallelization.

Several simulations with different setups are created to compare the dif-
ferences. The considered setups are listed in the following, with deviations
from the original setup pointed out. They are each focussing on a particular
aspect of CoSimulation.

1. Original setup, as described in Section 6.5.1

2. The structural solver runs shared memory parallel (OpenMP, 20 threads)
instead of distributed (MPI, 240 ranks). Still, it runs in the same
process as the fluid solver and the CoSimulation, meaning that no IPC
is required.

3. The structural solver runs shared memory parallel (OpenMP, 20 threads).
It runs in a separate process and communicates via file with CoSim-
ulation.

4. The structural solver runs shared memory parallel (OpenMP, 20 threads).
It runs in a separate process and communicates via pipe with CoSim-
ulation.

5. The structural solver runs shared memory parallel (OpenMP, 20 threads).
It runs in a separate process and communicates via TCP socket with
CoSimulation.

6. The structural solver runs shared memory parallel (OpenMP, 20 threads).
It runs in a separate process and communicates via local socket with
CoSimulation.

7. The structural solver runs shared memory parallel (OpenMP, 20 threads).
It runs in a separate process and communicates via MPI with CoSim-
ulation. This requires the structural solver to be launched with MPI,
which implies that it runs on a separate compute node.

8. The structural solver runs shared memory parallel (OpenMP, 20 threads).
It runs in a separate process and communicates via TCP socket with
CoSimulation. Same as for communication via MPI, the structural
solver is launched with MPI and runs on a separate compute node.
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9. The structural solver runs shared memory parallel (OpenMP, 15 threads).
It runs in a separate process on a separate machine (see Appendix
A) and communicates via file with CoSimulation. This is possible by
mounting the filesystem of the cluster on the separate machine.

10. Both the structural and the fluid solver as well as CoSimulation run in
separate processes, each in MPI on 240 ranks. They communicate via
file with CoSimulation

11. Both the structural and the fluid solver as well as CoSimulation run in
separate processes, each in MPI on 240 ranks. They communicate via
TCP socket with CoSimulation

12. Both the structural and the fluid solver as well as CoSimulation run in
separate processes, each in MPI on 240 ranks. They communicate via
MPI with CoSimulation

Running the structural solver in shared memory is considered as this is
a commonly encountered scenario when coupling existing solvers. Here the
processes of the (compute) nodes are pinned so that the solver can use them
for shared memory parallelization. More details and explanations on mixing
shared and distributed memory parallelization and the pinning of processes
can be found in Section 5.3. Also, more methods for IPC are available in
shared memory.

Different metrics are used to assess and compare the different setups. Table
6.4 compares general performance metrics of the setups, including the time
required for computing one TS, the total memory consumption, and the
required compute resources. Mapping is the focus of Table 6.5, here the
initialization of the mapper and the timings for mapping between the different
computational domains are compared. Lastly, Table 6.6 compares different
methods for IPC, thereby extending and complementing the studies conducted
in Section 3.8.

Remarks
If the structure is running externally on one rank, then the connecting rank
on the CoSimulation side requires almost twice the memory because the
entire structural simulation runs on this rank. If the structure is also running
distributed, then the memory consumption is very well-balanced between the
ranks. This can largely be attributed to the METIS library [43], which is
used to partition the mesh among the computing ranks.

The number of threads the structural solver uses in shared memory was
determined with scaling studies. On the cluster, the fastest structural solution
was be achieved with 20 threads. When using an external machine for the
structural solver, only 15 threads were available due to the smaller size of the
machine.

The timing measurements are averaged over the ranks, as well over the
TSs.

An iterative linear solver is used for the structural solution when running
distributed. In shared memory parallel runs, a direct solver is used.
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6.5.3 Results interpretation

Several setups to investigate different versions of CoSimulation were introduced
in Section 6.5.2. This section provides an insight into the obtained results
and observations and puts them in perspective to the overall goal, which is to
perform coupled simulations of real-world engineering problems efficiently.

The most important metric for comparing the different setups is the time
required for computing one TS. This is important as it dictates the overall
simulation time. Simulations with transient effects such as FSI oftentimes
require many TSs to be computed, thus faster TSs can make a significant
difference.

Solvers running in the same process but employ different paral-
lelization
In the original setup, both solvers and the CoSimulation are using the same
compute resources and run in the same process/memory space. The com-
putation of one TS requires 20 s. Setup 2 has the structural solver using
shared instead of distributed parallelization, here it can only use 20 threads
(on one compute node) instead of 240 processes (on five compute nodes). A
significant runtime increase can be observed, the time per TS increases by
∼73%. Furthermore, memory consumption slightly increases, which can be
attributed to the linear solver used (iterative in distributed, direct in shared).
This gives a glimpse of how vital parallelization strategies are when solving
engineering problems. The mapping also becomes more expensive, as now
fewer compute resources are available on the structural side. Over 80% of
available compute resources are idle in this setup when the structural solver
is running and the fluid is waiting. Therefore, both the initialization and the
mapping itself get significantly slower. Since also in this setup, all components
run in the same memory space, there is no IPC needed.

Solvers running externally on same compute cores
In setups 3 to 6, the structural solver also uses shared memory parallelization
but now runs in a different process. The fluid solver and the CoSimulation
still run in the same process. This showcases how using a dedicated coupling
tool would handle the combination of solvers that employ different methods of
parallelization. Tools running in different memory spaces require the exchange
of data between them using IPC. Different methods as introduced in Section
2.2.2 and evaluated in Section 3.8 are assessed to compare their performance
and applicability in large-scale engineering applications. When using files,
pipes, TCP sockets, or local sockets for the data exchange, it is possible to
launch both codes on the same compute nodes, and no additional resources
compared to the original setup are required. The data exchange happens on
one rank as the structural solver is not running distributed. One downside
of such setups is the further increased computing time per TS, which stems
from the process pinning (see Section 5.3) that is required to make use of
shared memory parallelization for the structural solver. While the memory
consumption does not increase compared to setup 2, the solution becomes
slower. This is partly because of the data exchange but mainly because the
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mapper becomes less efficient due to the parallelization. The data exchange
via IPC for the presented problem is negligible since it is several orders of
magnitudes faster than the solution time of the solvers. It is particularly
interesting to compare the file-based data exchange to the network (TCP
socket) or kernel (pipe and local-socket) based methods. It is only marginally
slower, both for mesh and data exchange. Hence, it can be a reasonable choice
even for larger problems when running shared memory parallel and the data
exchange happens only on one core.

Solvers running externally on different compute cores
MPI is oftentimes regarded as one of the fastest ways to exchange data
between tools. Setup 7 therefore uses it as the method for the data exchange
between CoSimulation and structural solver. The rest of the setup is the
same as setups 3 to 6. A major difference is that instead of running on the
same compute node, the structural solver now runs on a different one but
again shared memory parallel. This is necessary due to how the job scheduler
of the cluster is working, namely that each MPI job must be running on its
distinct cores. Therefore, one additional compute node has to be allocated,
which increases the overall cost of the simulation. The advantage is that now
the pinning of processes can be removed and no longer interferes with the
performance, which leads to a significant increase in computational efficiency.
One TS is now ∼25% faster compared to setups 3-6, which is a significant
difference. Also, the memory consumption is slightly reduced. Mapping is
now comparable to setup 2 in terms of speed and even requires less memory.
Overall this setup is even faster than setup 2, where all components run in the
same memory space. This highlights that the data exchange via IPC is not
the most performance-critical component for (surface) coupled simulations,
given that the exchange of data happens on one rank.

Setup 8 is done in the same way as setup 7, in that the structural solver
runs shared memory parallel on a separate compute node. Instead of using
MPI it uses sockets for the data exchange. The purpose of this setup is to
investigate if using MPI performs better than other methods of IPC. It is
furthermore important to consider that in setups such as this, when the data
exchange happens not within one but between different compute nodes, only
a subset of methods can be used. The data can be exchanged either via
files on a shared filesystem or through the network (e.g. with TCP-sockets
or MPI). The results show that setups 7 and 8 behave very similarly and
have similar performance metrics aside from measuring fluctuations. This
means that the choice of IPC method is not very crucial, but using a separate
compute node for the solvers is. Regarding timing only the data exchange,
communication via MPI still outperforms the socket-based communication
by ∼one order of magnitude. It is not noticeable in the overall performance
of the coupled simulation as the solving time of the solvers is much more
prominent in comparison.

Solvers running on different hardware
In some cases, it is not possible to deploy all solvers involved in the CoSim-
ulation on the same hardware. Reasons can be that they do not support the
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same OS, or that a solver (e.g. CFD) needs to run on a HPC system due
to their computational requirements, while another one cannot be deployed
there for licensing reasons. To enable such cases, the data exchange needs to
happen not only between different processes/memory spaces but also different
hardware and OSs. Such scenarios can be considered as extensions to com-
municating between solvers that run on different compute nodes, as shown in
setups 7 and 8. Hence, only a subset of IPC methods can be used. File-based
communication requires a shared filesystem, which can be achieved by mount-
ing a remote drive locally. Another option is to communicate via the network,
which requires access to the local network or even the internet to be very
generic. For security reasons, network access might be disabled or restricted
on some HPC systems. Resorting to file-based data exchange could be the
only possibility to establish communication and enable CoSimulation. Setup
9 shows such a scenario. Same as in setups 3-8, the structural solver runs
separately and uses shared memory parallelization. The difference is now that
the structural solver additionally runs on a different machine, a workstation
with the remote (cluster) drive mounted locally. The data exchange happens
via files in this drive. The measurements show that CoSimulation can be
performed efficiently, even if the involved tools run on different hardware,
given a fast enough network speed to synchronize the remote drive. A direct
comparison with setup 3 shows even a reduction in time per timestep. This
can, as before, be attributed to the deployment on different hardware, which
lifts the process pinning restrictions. Notably, the data exchange is one order
of magnitude slower compared to setup 3, where both solvers run on the same
machine. This is expected since the remote drive introduces some latency
due to synchronization.

All tools run in MPI and on separate compute cores
Finally, setups 10-12 investigate the behavior of CoSimulation when both
solvers and the CoSimulation run distributed and do not share resources. This
is a modern coupling approach, which is only possible if all tools involved
support distributed parallelization. Significant differences are observable,
starting with the time per TS. Running on different compute cores outperforms
the original setup by a factor of 2.5 when using sockets or MPI for the data
exchange between the solvers. This is an enormous advantage over integrated
CoSimulation. Mainly two reasons are the cause, one being the context switch
between the different solvers and the coupling tool. Several times per TS,
different parts of memory (e.g. the system matrix from the solvers or the
mapping matrix from the coupling) must be loaded into cache. With modern
computers and HPC systems being rather limited by memory speed than CPU
speed, this can have a significant impact. If the tools run in their separate
compute cores and memory spaces, these context switches occur much less
often. Also, the solvers run sequential within one rank in the integrated
CoSimulation. In contrast, if they are running separately, they can perform
different tasks like writing output in parallel, which further decreases the time
per TS. Considering that a Gauss-Seidel communication pattern was used,
which has data dependencies, the difference is most probably even larger for
a Jacobi communication pattern (see Figure 2.2a) which does not have these
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dependencies and hence can make better use of the non-shared resources.
On the other hand, memory consumption increases by ∼75%, which is a

significant overhead. It results mainly from duplicating the data structures of
the solvers, particularly interface-mesh and -data in the coupling tool. The
coupling tool needs access to this data to perform coupling-related operations
such as mapping or relaxation. If the coupling tool is not running in the
same process as the solvers and hence does not have direct access to their
data structures, duplication is required. To put the impact of this increased
memory consumption into perspective, the available memory on the cluster
is considered: Each compute node has 96 GB of memory, of which 90 GB
are available. With integrated CoSimulation, five compute nodes are used,
which means that, in total, 450 GB of memory is available. In total, ∼24%
of the available memory is used. When the tools run on separate compute
nodes, then each of them uses five nodes, which increases the total available
memory to 1350 GB. Here then ∼14% of the available memory is used. At
first sight, this looks like an improvement, but one must keep in mind that
it is not always possible to use more compute nodes, e.g. if the available
HPC system is smaller than the one used in this work. Therefore, if the same
number of nodes as in the original setup would have to be used, then 42%
of the available memory would be used, which is considerably more. The
coupling for FSI happens from surface to surface in this example, which is
one dimension smaller than the domain used for the field solution. In other
applications (such as Conjugate Heat Transfer (CHT)) however, it might be
required to perform a volume-to-volume coupling. Here the interface is of
the same dimensionality as the solution domain, which can increase memory
consumption significantly. Lastly, it is important to note that Kratos has been
optimized toward a small memory footprint. This means that if other tools
are used in the CoSimulation which are not as optimized regarding memory
consumption, then the available memory might not be enough.

Duplicating the data structure also introduces the additional challenge
that the data in the coupling tool needs to be kept up to date through
synchronization via IPC. CoSimulation within the same tool neither needs
synchronization nor data exchange, as the coupling tool has direct access
to the data structures. Lastly, the computing resources required to run
the tools individually are exactly three times more compared to integrated
CoSimulation since the solvers do not share resources but still need the same
amount of cores.

Mapping shows only little differences, except for a longer initialization time
which is because the (duplicated) meshes in the coupling tool require some
initialization. This mesh initialization is done by the solvers in the integrated
CoSimulation. Since the exchange of meshes happens only once, this can be
considered negligible.

Lastly, comparing the different IPC methods yields interesting findings.
The network-based methods are several orders of magnitude faster than the
solvers and can hence be neglected time per TS. MPI outperforms sockets
by roughly one order of magnitude, which confirms the results obtained in
Section 3.8. File-based data exchange however has a significant impact on
the overall performance of the simulation. The time per TS is almost three
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times higher compared to using the network-based methods. This is also
consistent with the findings from Section 3.8. It confirms that using files for
the data exchange for distributed tools is not suitable and highly depends on
the current workload of the filesystem. Stressing the filesystem affects not
only the data exchange but also the writing of result files, which leads to
times per TS that are even more than the increase from the data exchange.
A final remark is made that pipes and local sockets cannot be used when
communication across compute nodes is required, as they can only be used
within one CPU.

6.5.4 Conclusions

The main conclusions and findings from the studies with the Olympic Tower
coupled WSI simulations are briefly summarized in the following.
A crucial practical observation is that mixing different methods of paralleliza-
tion leads to performance degradation of both methods but might still lead
to an overall faster solution.
Performing CoSimulation within one framework is a very efficient solution,
particularly regarding memory consumption and required compute resources.
No IPC is required, which increases the stability of the coupling. Additionally,
the deployment, handling, and debugging are considerably simpler when using
the framework since only one software is used, see Section 5.2. This can make
a large difference in successfully conducting coupled simulations, particularly
on HPC systems.
However, if the computing resources are available, having tools run on sepa-
rate compute cores can be faster at the cost of larger memory consumption
and compute resource requirements. Network-based data exchange needs to
be used, as file-based data exchange is not suitable for distributed coupling.
The methods and implementations for mapping as presented in Chapter 4
are highly efficient and are negligible in terms of required time and memory
consumption compared to the solvers.
Evaluating different methods for exchanging data between tools via IPC has
shown that network TCP socket-based communication is a very efficient and
versatile method. It combines high speed with robustness and applicability,
both for coupling on one rank and in distributed setups.
Pipes and local sockets can in theory be faster than network-based sockets,
as they directly use the kernel and do not use the network. However, these
studies have shown that the differences to network sockets are negligible for
coupled simulations.
Lastly, the file-based data exchange is only slightly less efficient compared
with sockets, but only when coupling on one rank. It can be especially useful
when communicating with tools that run on different hardware, as only a
shared filesystem is required to exchange data.
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6.6 Coupling to external codes - Full Wind Turbine

This example presents high-fidelity aeroelastic FSI simulations of a wind
turbine. They were conducted as part of the research project Wind Energy
Science and Engineering in Complex Terrain (WINSENT), in a collaboration
between the Chair of Structural Analysis at the Technical University of Munich
and the Institute of Aerodynamics and Gas Dynamics at the University of
Stuttgart.

The CFD model was prepared by Giorgia Guma, the CSD models by the
author of this work, and the coupling between the solvers was developed
together, based on the work of [70]. A summary of previous works, including
[33], [34] and [71] is presented. The focus is set to complement and highlight
the developments and findings of this work.

The WINSENT project investigates the operation of wind turbines in
complex terrain. Throughout the project, two turbines were built in the
Swabian Alps near Stuttgart in southern Germany, see Figures 6.13 and 6.14.
At the same time, a numerical toolchain was created to simulate the behavior
of the turbines. For this, low- and high-fidelity approaches are used. The
high-fidelity FSI simulations were conducted by coupling the CFD solver
FLOWer [64] to the CSD solver of Kratos (StructuralMechanicsApplication)
through the CoSimulationApplication.

Figure 6.13: Test site with the two turbines and four met masts. Source:
ZSW www.zsw-bw.de

The turbine has a rotor diameter of ∼50 m, a blade length of ∼25 m, a hub
height of ∼70 m hub height and a rated power of 750 KW. Two structural
models were created, one based on beam elements and one based on shell
elements, to investigate the differences between the two modeling approaches.
Furthermore, the differences between flat and complex terrain are assessed by
creating and comparing two fluid models.

www.zsw-bw.de
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Figure 6.14: Turbine in complex terrain, as represented in the CFD model.
It is located behind a slope edge, which affects the turbulence
of the wind. These conditions influence the power output as
well as the lifespan.

6.6.1 Structural Model

Two structural models were built, one with beam and one with shell elements.
The two models are shown in Figure 6.15. Models created with beam elements
are commonly used to simulate the turbines’ structural behavior in industrial
practice. While the beam theory is very applicable for the simulation of
slender structures such as wind turbine blades or towers, it does not account
for deformations of the cross-section. Modern wind turbines with blade
lengths of over 100 m are very flexible, therefore an accurate simulation of the
structural behavior should include those effects. Additionally, the deformations
of the cross-section alter the aerodynamic properties of the blade, leading
to a two-way coupled problem. In contrast, shell models directly model the
geometry and can represent the deformation of the cross-section. This comes
at the cost of higher computational requirements and more preprocessing
effort.

Both models consider shear deformations, the beam model by employing
the Timoshenko theory, and the shell model by means of the Reissner-Mindlin
theory. Rayleigh damping (see [3] and equation 2.8) is used with a damping
ratio of 0.03.

The main components of the turbine are modeled flexible, to achieve a
highly accurate structural response in the coupled simulations. This includes
the blades and tower for the beam model, and additionally the nacelle for the
shell model. The hub is modeled rigid due to its very high stiffness compared
to the other components. The connections between the component are also
considered rigid, and modeled with stiff beam elements. Figure 6.16 shows
the details of the connection between the components.

The rotation of the rotor is considered in both models, which is required to
correctly include gravitational and centrifugal effects. This rotation however
poses significant challenges for the solver. Adequate nonlinear elements and
solution techniques were employed to overcome these numerical instabilities.
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(a) Beam model (b) Shell model

Figure 6.15: Structural models of the turbine. The beam model represents
the geometry by lines, whereas the shell model accurately takes
all geometrical features into account.

Figure 6.16: Detail of how the components of the turbine are connected, here
shown for the connection between blades and hub. The rigid
connections (red) connect the endpoints of the components
(black). Additionally, for the shell model, a spiderweb-looking
support structure (green) was introduced to bridge the different
dimensionalities.
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Great effort was spent validating the models since errors in the individual
problems would propagate to the coupled simulation, as explained in Section
5.1.1. The manufacturer of the turbines provided the CAD files of the geometry
as well as the material specifications of the composite blades and further
information, which was used to create the models. Afterward, they were
compared against the reference by means of different metrics such as the
eigenfrequencies, see Table 6.7. A very good agreement could be achieved,
especially when considering the complexity of the models.

Eigenfrequency [Hz] Manufacturer Beam Shell

1st flap (blade) 1.3 1.34 1.38

1st edge (blade) 2.2 2.25 2.18

2nd flap (blade) 3.8 3.91 3.99

2nd edge (blade) 6.8 6.98 6.53

1st bending (tower) 0.5 0.52 0.55

2nd bending (tower) 3.4 3.63 3.64

Table 6.7: First eigenfrequencies of the blade and tower for both models,
compared to the reference values provided by the manufacturer.

The validation of the models also included extensive mesh studies to
eliminate any mesh-dependent behavior. The final meshes are listed in table
6.8. It is evident from the sizes of the meshes that the shell model has a much
larger computational effort than the beam model.

Component Beam Shell

Blade 139 N / 139 E | flexible 15913 N / 30892 E | flexible

Hub 5 N / 4 E | rigid 5 N / 4 E | rigid

Nacelle 3 N / 2 E | rigid 13524 N / 26888 E | flexible

Tower 37 N / 48 E | flexible 8906 N / 10141 E | flexible

Turbine 462 N / 478 E 70174 N / 129715 E

Table 6.8: Mesh configuration of individual components (N odes, E lements).
Furthermore, it is specified which components are deformable/flex-
ible.

Figure 6.17 provides insight into some details of the mesh of the shell
model. Because of the fine mesh and therefore large computing requirements,
different parallelization methods were used for the shell model, to reduce
the time to solution. Shared and distributed memory parallelization were
employed and compared.
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Figure 6.17: Detail of the mesh of the shell model. Each component is
meshed according to its accuracy requirements and geomet-
rical features. Stiff beam elements are used to connect the
components, see Figure 6.16.

6.6.2 Fluid Model

The fluid flow is simulated using the compressible CFD URANS/DES solver
FLOWer [64] to accurately resolve the highly turbulent flow conditions of the
test site. The details of the model can be found in [33] and [34]. The chimera
technique [4] is used to handle the rigid body motion of the rotor, as well as
embedding the model of the turbine in flat and complex terrain.

The wind conditions of the test site are applied as boundary conditions in
the numerical model to ensure consistency between the real world and the
simulation results. Their application is presented in [52].

The influence of the complex terrain was evaluated by creating and com-
paring two models. Figure 6.18 shows the flow field around the turbine in
flat terrain, Figure 6.19 shows the same, but in complex terrain. The slope
edge and its influence on the flow field are clearly visible.

FLOWer uses MPI parallelization with over 1,000 cores due to the very
high computational effort of full-scale wind turbine simulations.

6.6.3 Coupling

The coupling between FLOWer and Kratos was realized by using the de-
velopments presented in this work, see Chapter 3. Partitioned two-way
CoSimulation with explicit and implicit strategies and Dirichlet-Neumann
coupling was employed. FLOWer computes the wind loads on the structure
based on the displacements from Kratos. Kratos, on the other hand, uses
the loads from FLOWer as input to compute the structural response of the
turbine. [70] developed a coupling between FLOWer and Carat++ by using
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Figure 6.18: Vertical slice through the computed flow field in flat terrain.

the coupling tool EMPIRE [80], which served as the basis for the presented
coupling.

FLOWer is an external solver from the point of view of Kratos. It uses its
own address/memory space, therefore it is necessary to exchange the coupling
data via IPC. The detached interface technique (see Section 3.6.1) is used,
with files as means to communicate the data. The coupling between the
solvers happens on one rank and thus requires gathering and scattering of
data. Figure 6.20 shows the schematics of the coupling between the solver,
including the treatment of the distributed simulations.

The coupling sequence for such detailed and complex cases requires special
attention. Many of the best practices as presented in Chapter 5, were employed
to achieve stable, accurate, and robust coupled simulations. In particular, the
starting phase of the coupling is prone to numerical instabilities. Each solver
was first run for some time until they reached a stable solution. Afterward,
the coupling was gradually started. Figure 6.21 shows the procedure that was
used.

Due to the large computational effort, the simulations were conducted on
the supercomputer SuperMUC-NG (see Appendix A).

6.6.4 Results

The wind energy is converted into a rotating motion by the blades of the
turbine, making them the most crucial component of the turbine. This
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Figure 6.19: Vertical slice through the computed flow field in complex terrain.
The slope edge behind which the turbine is located can be seen.

makes them the main focus of comparing the beam and the shell model
in flat and complex terrain. The long and slender shape of the blade can
lead to considerable deformations under loading. This modified external
geometry alters the aerodynamic properties, and strong motions can reduce
the lifetime due to fatigue. Figure 6.22 shows the deformation of the turbine
in complex terrain during operation. The corresponding time history of the
tip deformations is presented in Figure 6.23, starting with the application of
the aerodynamic loads (after 3.14 revolutions, see Figure 6.21).

Considerable deformations can be observed for both models and in both
terrains. While the overall course of the deformations over several revolutions
is similar for the two structural models, the shell model exhibits higher peaks
in all but one configuration. Its higher fidelity allows it to capture more
physical effects, particularly in highly turbulent flow conditions in complex
terrain. This observation is also supported by the statistical analysis of the
deformations as shown in Table 6.9. Here, the shell model shows a higher
variance of the deformations.

Changes in the cross-section can only be represented with the shell model,
as the beam theory assumes it to be rigid. This type of deformation leads to
fatigue in the blades and changes their aerodynamic properties. Therefore,
they need to be considered for highly accurate simulations that predict their
operational behavior. Figure 6.24 shows the deformations of the cross-section,
obtained with the shell model. The maximum deformation was 3 mm, which
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Figure 6.20: Coupling schematics when using a distributed memory treat-
ment of the structural model. Each square refers to one MPI
rank. On the FLOWer side, the data is gathered on one rank
before sending it via files to Kratos. Kratos maps the data
then to the computing ranks. In the other direction, Kratos
first maps the data to the FLOWer interface (which exists on
one rank) before sending it to FLOWer. After receiving the
data, FLOWer scatters it to its computing ranks. The detached
interface technique (see Section 3.6.1) is used.

might seem small compared to the other dimensions of the blade. Nevertheless,
it is not negligible, even for this short and stiff blade. It is also important
to consider that modern wind turbines have much longer and more flexible
blades, where these deformations are expected to be much more significant.
Additionally, shell models are required for an accurate and efficient design of
the internal support structures such as webs and spar caps.

The differences between implicit and explicit coupling were found to be
negligible. This is expected given the relatively short and stiff blades. There-
fore, the same setup as shown in Section 6.5 was used, an explicit coupling
strategy combined the prediction technique from [21].

Finally, the computational effort is assessed and compared. One time
step of the CFD solver took ∼100 s to compute. It also used the most
computational resources, 4,224 cores for the simulations in flat and 7,460
in complex terrain. On the structural side, significant differences can be
observed, see Table 6.10. The time to compute one TS with the beam model
is 0.1 s, which is negligible compared to the fluid solver. For the shell model,
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Figure 6.21: Loads on the structural model and their gradual application
(see Section 5.1.7): First, the rotation is ramped up over three
revolutions, then the gravitational loads are applied over 50
TSs, equivalent to 0.14 revolutions. The coupling is started
after the structural loads (rotation and gravity) are applied,
i.e., after 3.14 revolutions. Then the aerodynamic wind loads
are applied over one revolution. Finally, after 4.14 revolutions,
all loads are fully active. This procedure is necessary to ensure
numerical stability in the coupled aeroelastic simulation.

flat complex

Beam Shell diff (%) Beam Shell diff (%)

mean (flap) 0.621 0.564 9.7 (b) 0.523 0.535 2.4 (s)

mean (edge) -0.023 -0.016 34.9 (b) -0.014 0.015 7.3 (s)

std-dev (flap) 0.132 0.137 4.1 (s) 0.149 0.151 1.5 (s)

std-dev (edge) 0.093 0.105 12.8 (s) 0.096 0.107 10.5 (s)

RMS (flap) 1.016 0.975 4.1 (b) 0.970 0.990 2.0 (s)

RMS (edge) 0.255 0.300 16.2 (s) 0.276 0.336 19.9 (s)

Table 6.9: Statistics of blade tip deformations (in meters), for beam and
shell model in flat and complex terrain, flapwise and edgewise
direction. Revolutions 3-9 are used to skip the ramp-up phase.
The identifiers behind the differences indicate which model has
the larger value, beam, or shell.
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(a) Beam model deformation. (b) Shell model deformation.

(c) Beam model deformation, compared to
undeformed configuration.

(d) Shell model deformation, compared to
undeformed configuration.

Figure 6.22: Deformations of the turbine in operation in complex terrain,
for beam and shell model. The corresponding time history of
the blade tip deformations is shown in Figure 6.23.
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Figure 6.23: Blade tip deformations for different models and terrains (rela-
tive to the hub), starting with the application of the aerody-
namic loads.
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Figure 6.24: Exemplary cross-section deformation of a blade (qualitative), 25
times magnified. The internal support structure (webs and spar
caps) is not shown. The dashed line represents the undeformed,
and the solid line the deformed blade. Considerable changes in
the profile shape due to deformations can be observed at the
leading edge as well as towards the trailing edge.

however, the parallelization has a major impact on the overall solution time.
Using shared memory parallelization with OpenMP and 20 threads takes
ten times longer compared to using distributed memory with MPI and 144
processes. This also has a large impact on the total solution time of the
coupling. Employing MPI for the structural model increases the total solution
time by only 10%, whereas when OpenMP is used, it is twice as high. The
time spent on coupling functionalities such as mapping and data exchange is
negligible compared to the solution times of the solver. Consistent with the
investigations presented in Section 3.8, these results show that using file-based
data exchange can be efficiently used also for large-scale applications, given
that the exchange happens only on one rank. Overall, these results are in
agreement with the findings presented in Section 6.5.3.

Setup Structure FSI

Beam model (serial) 0.1 100.1

Shell Model (OpenMP, 20 threads) 100 201

Shell Model (MPI, 144 processes) 10 111

Table 6.10: Solving times (in seconds) for one time step for different struc-
tural models. FSI includes the time for the fluid and the struc-
tural solver as well as the coupling.

Concluding, the benefits and necessity of distributed algorithms are clearly
shown with this example. It highlights once more, how real-world engineering
applications can benefit from modern computing capabilities.
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6.7 Olympic Stadium Roof

For my grandparents Rosemarie and Arnold Gillich, whose stories from the
Games in 1972 inspired this example. You are dearly missed.

The goal of this example is a detailed modeling and study of the structural
response of the Olympic Stadium roof in Munich (see Figures 6.25 and 6.26)
under wind loading. This structure was constructed for the 1972 Olympic
summer games, see Appendix B for more information. Detailed geometric
modeling of the roof is performed, including terrain and the stadium as
the analysis-relevant surroundings. Different sources such as the original
construction plans as well as on-site measurements are used to construct
suitable geometrical models.

Figure 6.25: Olympic Stadium during the Summer Olympic Games in 1972.
Source: A. Gillich

The roof is a lightweight structure built from cable nets, covered with
acrylic plates and metallic rubber connectors. It consists of nine large patches
and covers half of the spectator stands. The entire structure hangs from
large support pylons and is constrained by cables. Only the load-bearing
structure is considered, consisting mainly of cable-net, pylons and support
cables. The cable net structure is simplified with plates in membrane action
(later referred to as membrane elements) for the structural analysis, due to its
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Figure 6.26: Olympic Stadium, half a century after the Olympic Games of
1972. Source: P. Bucher

complexity. The prestresses in the cable net are converted for the membranes,
and improved by use of an optimization algorithm.

The wind loading analysis is conducted with the dominant wind direction.
A power-law inlet is used to model the wind speed varying over height. The
gust wind profile was used, without taking the natural turbulence into account.
The surroundings and topographic details that influence the flow behavior are
taken into account. Combined, they enable a realistic and complex load case.

The structural response under wind loading is simulated by combining
the structural model with the wind loading, in an FSI analysis. This loading
leads to considerable deformations on the lightweight roof structure. Strong
coupling in combination with convergence acceleration was employed. Due to
the high level of detail of the model, the mesh sizes and thus the computational
requirements are large. Therefore, the simulations were conducted on a
supercomputer, leveraging HPC to keep the solution times within practicable
bounds.

This case was prepared as a collaborative work by multiple people at
the institute. Previous works include [10] and [63]. The contributions of
the author are the setting up of coupling and mapping as preparation for
the FSI, testing the fluid solver, setting up the structural solver settings,
scaling studies, and conducting the simulations on the supercomputer. Máté
Péntek created the geometrical models and meshes for both the fluid and the
structural solver, as well as some initial setup of the structural properties and
the simplified wind setup. The optimization procedure for the prestresses as
well as on-site measurements were done together. Klaus Sautter worked on the
particularities of the FEM formulation related to the structural model, insights
on and decisions for the equivalent membrane and the prestresses, as well as
various tests of formfinding. Kai-Uwe Bletzinger is recognized as a consultant,
Roland Wüchner for preliminary discussions. Furthermore, the previous works
of colleagues Andreas Winterstein, Benedikt Philipp and Andreas Apostolatos,
including some advised student works, are acknowledged.
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6.7.1 Recreation of the geometry

The design and construction of the Olympic Park and its buildings were done
long before the emergence of CAD software. Therefore, no computational
geometry was available, it needed to be recreated from several sources, together
with the terrain of the stadium. These included the original construction
plans, on-site measurements, geodetic data, preliminary studies conducted at
the institute, and online available material from 3D Warehouse1 and Google
Maps2. The latter one was used within the workflow developed by [40] to
generate 3D models.

The basis for all efforts was the special research report [51] about the
construction of the roof. The architects and engineers went into great detail
to explain relevant information. They provide sketches and plans, dimensions,
and prestresses as well as corner and anchor points of the structure. However,
this information proved to be insufficient for modeling the structure in a CAD
environment, which is a requirement for creating analysis-suitable models.
Therefore, additional information was used from different sources. While the
main corner points of the structure could be confirmed and validated from
several sources, such as [41] and [56], modeling the curved shapes proved a
challenge. For this, 3D data was consulted such as from Google Maps and
3D Warehouse. The patches were modeled as continuous surfaces, without
the cable net details since no geometrical information for them was available.
The support pylons and cables of the structure were considered based on
the original construction plans as well as the corner points and edges of the
patches. Several iterations of improvement were necessary, always taking into
account and balancing all available information to achieve the most accurate
result.

The reconstruction of the geometry introduced an additional challenge for
the structural analysis. Whereas in the original design of the structure, the
prestresses were known, and the geometry was a result of them, in this case,
it was the other way round. The target (reconstructed) geometry was known,
and a suitable prestress state with which the structure is in equilibrium needed
to be determined. This procedure is explained in detail in Section 6.7.3. Due
to the strong interaction of form and force in such as lightweight structure,
also the prestresses and their state of equilibrium was taken into account for
the geometrical model.

The final results of these tasks were geometries for the computational
models, as shown in Figure 6.27. The small eye-shaped patches between the
large membrane patches are neglected for simplicity. Furthermore, only the
structural model considers the pylons and cables.

6.7.2 CAD-Geometry to structural FE-model

The reconstructed geometry was used as input for the structural model of
the roof. The goal was to model the main behavior under load with as
much detail as possible. This includes in particular the patches hanging

1 https://3dwarehouse.sketchup.com/
2 https://www.google.com/maps

https://3dwarehouse.sketchup.com/
https://www.google.com/maps
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Figure 6.27: Constructed computational models. Structural model on the
left side, the fluid model with terrain on the right side. The
small eye-shaped patches between the large membrane patches
are neglected. Dimensions are in meters.

free from the pylons, without any additional constraints. Only the load-
bearing structure was considered. As mentioned previously, no detailed
geometrical information was available for the cable net. It was thus modeled
with membrane elements, see Figure 6.28. While this introduces additional
challenges when it comes to the selection of suitable material properties, it
reduces the effort for the geometrical modeling significantly. The patches
could be modeled as continuous surfaces in CAD instead of the cable net.
Additionally, the membrane elements can directly be used in the coupled
simulation for mapping. Modeling the cable net would have required non-
load-bearing elements for the surface mapping with the fluid interface.

The patches were meshed with triangular surface elements, whereas the
cables and pylons are modeled with one-dimensional truss elements. The
created mesh can be seen in Figure 6.29, and details are shown in Figure 6.42.
The mesh configuration is listed in Table 6.11. The mesh sizes are a result of
experience, the objectives of this work, as well as mesh refinement studies.

The material properties are taken from [51]. For the cables and the pylons,
the report lists in detail all the necessary information. Since the cable net is
modeled with membrane elements, a suitable conversion of prestresses was
used. They were then refined with the help of an optimization procedure, as
presented in Section 6.7.3.
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Figure 6.28: Using an equivalent membrane for the actual roof. The original
cable net as well as the acrylic plates covering it can be seen.
The thick black lines are the rubber connectors between the
plates.

Figure 6.29: Structural mesh for the Olympic stadium roof.

Entire model FSI-Interface

Nodes Elements DOFs Nodes Elements

13,987 28,028 41,961 13,930 26,148

Table 6.11: Mesh configuration for the structural model. Each node has 3
DOFs, one for each component of displacement.



6.7. OLYMPIC STADIUM ROOF 141

Structural damping was considered in the form of Rayleigh damping [3].
3% damping (damping ratio of 0.03) was used, which was chosen because of
the rubber connectors and other connecting elements in the structure. The
Rayleigh damping coefficients α and β (see equation 2.8) are calculated from
the first two eigenfrequencies of the structure.

6.7.3 Prestress determination

The final geometry of the roof and its surroundings was presented in Section
6.7.1. Because of the substitute modeling of the cable net with membrane
elements, their prestress state to achieve the target geometry was unknown.
An estimation could be derived from the information available for the cable
net in [51]. The prestress field was assumed as isotropic and homogeneous
for each patch. In order to reduce the discrepancies between geometry and
prestresses stemming from modeling errors and approximations, an optimiza-
tion algorithm was used to improve the prestresses. The goal was to reach
an equilibrium of the target geometry, under prestress and self-weight. This
procedure can be seen as an inversion of the formfinding process (see [6]):
Instead of finding a geometry given a prestress state, the prestress state
leading to a given geometry needed to be found. This is expressed with
equation 6.3, where the displacements d are to be minimized, depending on
the prestresses σps.

mind(σps) (6.3)

Each optimization iteration starts with a static, nonlinear structural analy-
sis under self-weight and with prestress. The resulting deformations need
to be minimized since the given geometry represents the target one. The
L2 norm of the displacements is then passed to an optimization algorithm,
with which it updates the prestresses. These are then applied to the original
geometry, and another analysis is conducted. This iterative procedure leads
to an improved prestress state, which can then be used in further simulations.
Algorithm 8 shows the individual steps of the entire optimization. The work-
flow was implemented in Python. Kratos was used for the structural solution,
combined with the COBLYA algorithm3 for the optimization.

Due to the large number of design variables as well as their expected
changes, the optimization was conducted in two stages. In the first stage
only the prestresses in the nine patches were optimized, resulting in nine
design variables. No limits or bounds were applied, making this stage an
unconstrained optimization. Since only a rough estimate was available as the
initial guess for the prestresses in the patches, large changes were expected.
The results of this optimization stage are shown in Figure 6.30. Compared to
the initial value of 4.9× 108 N/m2, the prestresses in the individual patches
are reduced by up to 50%.

The improved prestresses for the nine membrane patches are used as input
for the second stage of the optimization. In addition to the patch prestresses,
the cable prestresses are now considered, yielding a total of 224 design variables.

3 https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
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Algorithm 8: Optimization procedure for determining the prestress
state, for a given geometry.
1 guess prestress
2 prepare/initialize solver
3 while optimization not converged do
4 reset solver (reinitialize if not possible)
5 update model with new prestresses
6 solve for displacements
7 compute L2 norm of displacements
8 optimizer computes new prestresses
9 end

2.6

2.8

3

3.2

3.4

3.6

Prestress [N/m2] ×108

Figure 6.30: Updated prestress in the membrane patches, after the first stage
of the optimization. The initial value was 4.9× 108 N/m2.
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This is done to account for tolerances and modeling inaccuracies. As the cable
prestresses are known from [51], only small deviations are expected to occur.
Therefore, bounds were used to limit the deviation from the given values to
a maximum of ±10%. Figure 6.31 shows how much the prestresses deviate
from the initial values. The membrane prestresses undergo almost no change
anymore, indicating an overall converged state.
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Figure 6.31: Deviations in the prestresses, from the initial values (after the
first optimization stage).

Finally, after both stages of optimizations, the resulting deformations
are shown in Figure 6.32. It can be seen that in most places only small
deformations occur, compared to the overall dimensions of the roof (which are
shown in Figure 6.27). One can derive from this, that the presented procedure
for determining suitable prestresses for the entire structure succeeded. The
largest deformations are in areas where the least input for the geometry was
known upfront, namely the two outermost patches.

6.7.4 Wind loading analysis

The Olympic Stadium roof is a wide-spanning, lightweight structure. Its large
characteristic patches make it susceptible to wind loading, therefore wind can
be considered a crucial load case. This loading is simulated by means of a
CFD analysis, using as input the same geometry as presented in Section 6.7.1.
The roof can undergo significant deformations, which means that these can
alter the fluid flow and hence need to be taken into consideration within a
two-way coupled FSI simulation.
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Figure 6.32: Resulting deformations due to prestresses. Shows the displace-
ments from original to final geometry.

The terrain surrounding the roof influences the flow and was therefore
considered. Only the membrane patches of the roof are modeled, as they
have by far the largest influence on the loading. The pylons and columns
were neglected due to their comparatively small dimensions. Furthermore,
their consideration would have required a much finer resolution of the mesh,
leading to increased computational effort. The full computational domain
together with roof and terrain is pictured in Figure 6.33.

The boundary conditions are set to best represent reality. A simplified
wind model is used for the inflow, and slip boundary conditions are applied
on the sides the top and the bottom of the domain. A fixed pressure is
considered at the outlet. The surface of the roof was modeled as no-slip. The
flow equations are solved with a monolithic approach, using the LES method,
see [12].

The computational mesh is visualized in Figure 6.34. A body-fitted mesh
is utilized. Three refinement boxes are used to improve the resolution closer to
the roof. The element sizes for different parts of the domain are listed in Table
6.12. They are chosen based on experience and mesh-refinement studies. The
complicated and detailed geometry and terrain pose a challenge for meshing.
The close proximity of the roof to the terrain below further dictated and
restricted the element sizes. In order to adequately resolve the flow, a rather
small element size is needed to be used. This was complemented by the
requirements of the mesh moving strategy employed for the FSI analysis, as it
also needs a fine mesh resolution for propagating the movement of the structure
to the fluid domain. A coarse mesh would restrict the structural movement
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Figure 6.33: Fluid domain considered for the wind loading analysis. The
roof as well as the surrounding terrain can be seen.

and could cause convergence problems during the coupled simulation. The
final mesh size is listed in Table 6.13.

Figure 6.34: Cut through the fluid mesh of the Olympic stadium roof. The
refinement boxes as well as the terrain can be seen.

As previously mentioned and shown in Figure 6.27, the eye-shaped con-
nection patches are not modeled. They might have a non-negligible influence
on the flow since they close the gaps between the large patches. Their consid-
eration would therefore further increase the accuracy of the model, due to
the improved representation of the real roof structure. This would however
also lead to a larger mesh size and thus more computational requirements.

It has to be noted, that the reconstructed geometry in CAD represents
the membrane patches as smooth surfaces. Once meshed numerically, these
surfaces are built up from triangular elements. This means that the surfaces
are no longer perfectly smooth, as due to their curvature each element has a
slightly different orientation. The edges between the elements are kinks on
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Mesh Element size [m]

Patches 0.5

Terrain 3

Inner Box 5

Middle Box 10

Outer Box 20

Table 6.12: Element sizes for fluid mesh. The refinement boxes can be seen
in Figure 6.34.

Entire model FSI-Interface

Nodes Elements DOFs Nodes Elements

3,442,468 19,632,138 13,769,872 259,541 519,110

Table 6.13: Mesh configuration for the fluid model. Each node has 4 DOFs,
three for velocity, and one for pressure.

the surface. While they are typically very small, they can still influence the
flow pattern and can thus be considered as surface roughness. On the other
hand, also the real structure has a certain degree of surface roughness, in
particular, because of the rubber connectors between the membrane patches
as shown in Figure 6.28. Therefore, the numerical approach should be able to
balance the different considerations when it comes to the roughness of the
surface.

Modeling wind
The inflow velocity was modeled by taking into account the wind conditions in
Munich. Typically, the dominant wind direction is in the 3rd quadrant. Data
from Meteoblue4 as well as previous works that focus on the wind conditions
around the Olympic Tower (see [83] and [82]) suggest West-Southwest as the
dominant wind direction. 250◦ was therefore used in the simulations, as is
illustrated in Figure 6.33.

A power law profile using the mean wind profile which varies over the
height was used, see equation 6.4. To limit the scope and complexity of the
following studies, no additional fluctuations in space or time are considered,
and the naturally occurring turbulence is not taken into account. The value
of 25 m/s represents the basic wind speed in Germany for wind zone II
and corresponds to a height of 10 m. It is a conservative assumption, as it
overestimates the magnitude of the wind speed. The assumed distribution
over height thus approximates an equivalent gust wind profile and is aligned

4 https://www.meteoblue.com

https://www.meteoblue.com
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with the conditions described in [51]. The power law exponent of 0.26 is
chosen according to DIN EN 1991-1-4. The value was interpolated because
the terrain category is in a transition zone between zones III and IV. At the
elevation of the patches (roughly 60 m, see Figure 6.27), the wind speed is
approximately 40 m/s.

v(z) = 25
m

s

( z

10m

)0.26

(6.4)

6.7.5 Scaling studies

Scaling studies were conducted for both models/solvers, in order to find the
optimal computational setup. The objective was the fastest solution time.

6.7.5.1 Fluid

The scaling behavior of the solution time with different numbers of MPI
ranks is shown in Figure 6.35. The strong scaling is presented in Figure 6.36,
computed with equation 2.12. Due to the size of the problem, the time for
computing a TS without parallelization is not available. Hence, the basis was
the solving time with 240 cores, making the speedup appear larger.

The size of this model requires distributed memory, shared memory paral-
lelization was not considered, which is confirmed by the choice of number of
cores. The numbers of ranks are multiples of 48, see Appendix A. It can be
seen that the smallest solving time per TS is reached with 2,160 cores. This
time is composed of the solving time and other times such as writing output.
As expected, the solving time takes the largest part of the time per TS. It
decreases with an increasing number of cores until no more speedup can be
observed with over 2,000 ranks. On the other hand, the other time increases
consistently with larger numbers of cores as for example the postprocessing is
done as one file per rank. This means, that more and more files need to be
written with an increasing number of ranks, which increases the total amount
of time spent on writing output. The filesystem of the cluster used is not
suitable for writing many small files, see Appendix A.

With 1,440 ranks, a sudden drop in solving times can be observed. This
can be related to superlinear speedup [65], where the model fits into the cache
due to the local size. Still, with 2,160 the solving times decrease further,
which is why this amount of cores is chosen. Note that the objective is to
achieve the fastest solution time. Otherwise also using 1,440 ranks would be
a good solution as it is only 20% slower in terms of solution time per TS, but
uses 2/3 of the ranks, which results in overall less allocation of ranks.

Given the total number of nodes (3,442,468) and elements (19,632,138),
this results in ∼1,600 nodes and ∼9,100 elements per rank.

6.7.5.2 Structure

The computational requirements of the structural model are lower than the
ones of the fluid. Hence, both shared memory parallelization (using OpenMP)
and distributed parallelization (using MPI) were tested and compared. For
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Figure 6.35: Scaling study for Olympic roof fluid model with different num-
ber of MPI ranks. The time per TS t is the sum of the solving
time ts and the time needed for other tasks to (such as writing
output).

240 480 720 960 1,200 1,440 1,680 1,920 2,160 2,400

2

4

6

8

10

Number MPI ranks

Sp
ee
du

p

Ideal
Speedup

Figure 6.36: Strong scaling study for Olympic roof fluid model with different
number of MPI ranks. Due to the size of the problem, the basis
for computing the speedup is 240 cores. Hence, the speedup
appears higher.
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shared memory parallelization, a maximum of 48 threads was chosen as one
compute node has 48 physical cores. A maximum of 336 cores was used in
the distributed case, which is much smaller than the number of cores used for
the fluid model (2,160).

As expected, and consistent with the fluid, the solving time is by far the
largest contributor to the total time required for the computation of one TS.
In both versions, the solving time was over 90% of the total time.

When comparing the results of shared (Figure 6.37) and distributed (Figure
6.38) memory parallelization, it can be seen that the latter outperforms the
first by an order of magnitude and was hence chosen for the structural model
too. The smallest time per TS was achieved with 288 cores.
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Figure 6.37: Scaling study for Olympic roof structural model with a different
number of OpenMP threads. The solid lines are when the model
is running standalone, the dashed lines are when the model is
part of a FSI simulation.

The comparison of the speedup with shared (Figure 6.39) and distributed
(Figure 6.40) memory parallelization reveals the maximum speedup to be ∼10
respectively ∼100.

Given the total number of nodes (13,987) and elements (28,028), this
results in ∼49 nodes and ∼97 elements per rank. This is significantly smaller
than for the fluid model, which is because of the higher computational effort
per element.

For the shared memory parallel computation, some interesting observations
can be made: A significant slowdown of ∼50% could be observed when running
the model as part of a FSI simulation (where the fluid was using distributed
memory parallelization) compared to running the model standalone. This is
attributed to the process pinning which is needed for mixing different methods
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Figure 6.38: Scaling study for Olympic roof structural model with a different
number of MPI ranks.
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Figure 6.39: Strong scaling study for Olympic roof structural model with a
different number of OpenMP threads. The solid lines are when
the model is running standalone, the dashed lines are when the
model is part of a FSI simulation.
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Figure 6.40: Strong scaling study for Olympic roof structural model with a
different number of MPI ranks.

of parallel computing, as explained in Section 5.3. The minimal time per TS
with the shared memory parallel version could be achieved with 40 threads.
Using distributed memory parallelization for the structural solver did not
yield a slowdown for the solvers. This is an advantage of consistently using
one method of parallelization for all solvers.

6.7.6 Computational setup

The coupled FSI simulations were conducted using the multiphysics framework
Kratos, see Section 3.1. Both solvers and the coupling components were part
of the same software, as presented in Section 3.5. Therefore, no data exchange
via IPC (with e.g. CoSimIO) was necessary. The fine resolution in particular
on the fluid side leads to a high computational effort. The supercomputer
SuperMUC-NG (see Appendix A) was used for running the simulations. Both
solvers employed distributed memory parallelization with MPI. In total,
2,160 computing cores/MPI processes (45 compute nodes with 48 cores each)
were used. CoSimulation and the fluid solver used all cores, within the
MPI_COMM_WORLD MPI-Communicator. The structural solver used a
subset of 288 (6 compute nodes) cores, within its own MPI-Communicator.
The details of handling a different number of processes for different solvers
are explained in Section 3.3. The optimal number of cores was determined
with scaling studies, as presented in Section 6.7.5. Both solvers used iterative
linear solvers, each with different and adapted input parameters due to the
characteristic properties of the system matrices.

The total simulation time was 220 s, out of which the first 100 s were
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without coupling, then 20 s of gradual startup of the coupling, and finally 100
s of full coupling. The time-step size ∆T of both solvers was 0.01 s, to achieve
a sufficient resolution of relevant physical phenomena and a stable coupling.
Output on the interface was written every 0.25 s (i.e. every 25 steps), in the
entire fluid domain every 0.5 s (i.e. every 50 steps).

The coupling was set up following the procedures and recommendations
described in Chapter 5. The startup phase is visualized in Figure 6.41. First,
both solvers ran for 100 s without coupling/interaction to reach a converged
solution, based on which the coupled simulation works more robustly and
stable. The coupling was then started by slowly ramping up the displacements
over 10 s, using a smooth ramping function as introduced in Section 5.1.7.
This allowed the mesh solver to gradually apply the motion, which avoids con-
vergence problems for the fluid solver. Following was the gradual application
of the loads on the structure, again over 10 s with the same ramping function.
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Figure 6.41: Procedure for establishing the coupling. First, the solvers are
run for 100 s without interaction in order to achieve a stable
solution of the individual fields. This helps to avoid coupling
instabilities. Then the structural displacements are gradually
applied to the fluid solution. Afterward, the loads are gradually
applied to the structure.

A strongly coupled Gauss-Seidel coupling strategy (see Figure 2.2b) was
used due to the strong interaction of the fields. The Aitken convergence
acceleration technique (see [50]) helped to reduce the number of coupling
iterations to only two per timestep, after the initial phase of the coupling
with up to ten coupling iterations. The displacements on the fluid side were
relaxed. The convergence check was done by comparing the difference of
the displacements in the structural solver between the coupling iterations.
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Convergence of the coupling was achieved as soon as the L2 norm of this
difference reached a certain threshold.

As seen in Figure 6.42, the meshes on the fluid-structure interface are not
matching, and therefore the quantities needed to be mapped. The loads and
displacements were mapped with a nearest-element mapper, see Section 4.1.2.
The displacements as a distributed field quantity were mapped consistently.
The loads however needed to be mapped conservatively as they are computed in
the form of point loads (concentrated nodal quantities, and not field quantities
such as the tractions in this case). The mapping was done with the initial
configuration, as the deformations during the individual startup of the solvers
could lead to a wrong mapper setup.

Figure 6.42: Meshes on the patches of the roof. The fluid mesh (right side)
is 5 times finer than the structural mesh (left side). Therefore,
mapping is required for transferring field quantities from one
mesh to the other.

6.7.7 Results

The coupled simulations were conducted successfully with the setup explained
in the previous sections. The results will be addressed in the following while
referring to the relevant parts of this work.
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Figure 6.43 gives an impression of the flow around and over the roof and
the surrounding terrain. The wind reaches over 50 m/s above the roof, causing
strong fluctuations.
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Figure 6.43: Streamlines depicting the flow over the roof. The velocity on
the patches is zero due to the no-slip boundary conditions, only
the streamlines are colored.

Figure 6.44 shows the maximum displacement that occurred during the
simulation. Both the structural model and the interface of the fluid model show
an equal distribution of the displacements, which is the expected mapping
behavior. The maximum value of ∼5 m is feasible, given the large dimensions
of the roof and the high wind speed. It occurs in the middle of one of the largest
patches, which also has the most exposure to wind because of its orientation.
Figure 6.45 shows a slice of the patch with the maximum deformation.

The loads on the roof resulting from the wind flow are shown in Figure
6.46 for the fluid model. They are computed from the pressure and friction on
the patches and are mesh-dependent because they are point loads. Therefore,
the mapping to the structural model must be done with conservative mapping
(see Section 4.2), to preserve the virtual work on the interface. The mesh
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Figure 6.44: Maximum displacements during the analysis. The structural
model is shown on top and the fluid interface on the bottom.
The equal distribution of the displacements shows that the
mapping works as expected.

dependency can be clearly observed by comparing the magnitudes of the
load on each interface. The fluid interface has a much finer mesh (see Figure
6.42), which means that the loads-per-node are smaller than on the structural
interface with much fewer nodes.

The mapped loads on the structure are shown in Figure 6.47. The distri-
bution and magnitude of the loads are entirely different from the ones on the
fluid interface. Once again, this is because of the mesh-dependent point loads.
Furthermore, the fluid loads are mapped from the top and the bottom of the
structure.

The evolution of the displacements (in the point with the highest displace-
ment), as well as the total loads on the structure, can be seen in Figure
6.48. Significant fluctuations can be observed, originating from the turbulence
caused by the roof and its surroundings.

The mapping of field quantities was done with the developments outlined
in Chapter 4. Displacements were mapped from the structural to the fluid
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Figure 6.45: Slice through the patch with the maximum deformation. The
undeformed shape is also shown.
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Figure 6.46: Point loads on the FSI interface of the fluid model. They are
computed from the pressure on the patches.
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Figure 6.47: Point loads on the structural model, as mapped from the fluid
model.

mesh, whereas point loads were mapped in the other direction. Table 6.14
shows the important metrics. It is evident, that the proposed algorithms and
implementation are very efficient, both in terms of memory consumption and
mapping time. Compared to the solving times of the solvers (see Table 6.15),
the time required for mapping is negligible. This can be attributed to the
fully parallel mapping procedures, which do not require any gathering of data,
and therefore scale very well even with the number of cores > 1,000 as in this
example.

Initialization 1.41 s

Memory usage 6.51 GB

Map Structure → Fluid 9.961× 10−2 s

Map Fluid → Structure 1.348× 10−3 s

Table 6.14: Mapping metrics for the mapping during the coupled FSI simu-
lation. The initialization is only conducted once, whereas the
mapping is done in every coupling iteration.

The times required by the different components are listed in Table 6.15.
As expected, the fluid solver takes the most time. It uses the majority for the
solution of the problem, but also a considerable amount of time is spent in
the output of the solution for postprocessing. The same can be observed for



158 CHAPTER 6. NUMERICAL EXAMPLES

170 175 180 185 190 195 200

2.5

3

3.5

4

4.5

5

Time [s]

D
is
pl
ac
em

en
t
[m

]

1.2

1.25

1.3

1.35

1.4

1.45

1.5

×107

L
oa
d
[N

]

Displacement
Load

Figure 6.48: Displacement magnitude at the location with the largest defor-
mation. Total loads, summation over all patches. Plotted over
30 s. The fluctuations originate in the wind loading.

the structural solver, even though the absolute time is less due to the smaller
domain/mesh size. The most interesting finding is that a significant time is
used by CoSimulation in the solution phase. The mapping is very efficient as
explained before, and no IPC is needed since all solvers are executed within
the same framework/memory space. The only remaining components involved
are the convergence check and the convergence acceleration. These two
components are not implemented for distributed parallelization. Gathering and
scattering of interface data is therefore required, which presents a bottleneck
when comparing it to the time used by the other components. Almost 20 % of
the total simulation time is spent in CoSimulation. This result demonstrates
the performance penalty arising from insufficient parallelization strategies.

The total available memory with the used computational setup was 4,320
GB, which is comprised of 96 GB of memory per compute node, for 45 compute
nodes. On average, this simulation consumed 772.8 GB of memory. This is
around 17.9 % of the available memory, and thus well within the limits of a
modern HPC system.
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Component Solution Other Total

Everything 11.01 1.91 12.92

CoSimulation 2.36 (21%) 0.06 (3%) 2.42 (19%)

Fluid 8.44 (77%) 1.7 (89%) 10.14 (78%)

Structure 0.21 (2%) 0.15 (8%) 0.36 (3%)

Table 6.15: Solution times (in seconds) for the fully coupled simulation.
Results are averaged over the ranks as well as the TSs, for a
time of 100 s. Each timestep required 2 coupling iterations.
Other is mostly output of data. The percentage refers to each
column.

6.7.8 Conclusion

The fully coupled FSI simulation with the Olympic Stadium roof in Munich is
the culmination of this work. The path to a successful numerical simulation
required to master various problems, from many different disciplines. The
challenges faced while creating computational models for the complex geome-
try, as well as the transition to a suitable FEM model, were presented. Many
modeling decisions for both the structural and the fluid simulation are out-
lined. The computational setup is explained, relying heavily on the outcome
of this work to achieve successful and stable simulations. The size and degree
of complexity resulted in a large computational effort, which required the
use of a supercomputer for conducting the simulations. The parallelization
strategies developed in this work for multiphysics problems worked very well.
Finally, the results are presented, highlighting both characteristics of the roof,
and the computational aspects.





Chapter 7

Conclusions and outlook

This work presented the developments and advances for realizing large-scale
coupled simulations for engineering applications. Several examples are used
to demonstrate the capabilities of the developments, ranging from academic
benchmarks to large engineering cases of real-world structures.

Firstly, the relevant theory and other fundamental information were re-
viewed and introduced in Chapter 2. Based on this, Chapter 3 presents
the methods and algorithmic developments to achieve efficient, robust, and
accurate coupled simulations. The partitioned approach was chosen such
that well-established solvers can be employed. In contrast to similar works, a
multiphysics framework is chosen as the basis. Conducting CoSimulation with
the framework rather than a dedicated coupling tool has several advantages,
as was investigated in detail. These studies were conducted with a large
representative example, namely WSI simulations with the Olympic Tower
in Munich. Using the multiphysics tool yielded a much better usage of the
available computing resources, particularly regarding memory consumption.
Employing only one software simplifies the deployment, handling, and debug-
ging, especially on HPC systems. Furthermore, no IPC is required, which
increases the stability of the coupling.

Many applications such as CFD require a considerable computational effort,
therefore HPC systems such as clusters or supercomputers are often employed
to keep the simulation time within practical bounds. The distributed memory
architecture of those machines requires special programming techniques and
algorithms, which introduce an additional layer of complexity on top of the
physical problems. To fully support these systems and thus enable large-scale
simulations, new procedures and methods are developed in this work. The
peculiarities and other requirements are investigated and highlighted.

The coupling to external tools is an essential feature of CoSimulation,
and great effort was put into realizing performant and practical methods. A
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newly developed detached interface was introduced, allowing for flexible and
efficient integration. A key difference to existing solutions is that the interface
has no dependencies on the coupling tool, meaning that the integration
and deployment can be done independently. This is a clear advantage, as
it simplifies the handling of the software significantly. Additionally, a new
approach was developed for the coupling with external tools, the remote-
controlled CoSimulation. Here the coupling sequence and execution control
are handled by one central instance, and thus it avoids many problems of
the existing solutions. Finally, detailed studies are conducted regarding the
data exchange between the tools via IPC. The considered methods were in
particular evaluated concerning their performance, robustness, and suitability
for different OSs and computing systems. TCP based sockets were found to
be the best compromise.

Chapter 4 revisited mapping algorithms for non-matching grids, with
focus on large-scale applications. Several techniques are reviewed and some
are chosen for further investigation. New ways of dealing with mapping
in distributed memory environments are developed, focussing on efficiency
and scalable solutions. The presented work was successfully tested on a
supercomputer with over 10,000 cores, and with the examples presented in
Chapter 6.

Practical experiences for setting up and running coupled simulations gath-
ered during this work are summarized and presented in Chapter 5. These
range from overall best practices on how to approach a coupled problem to
choosing the coupling sequence and methods to help with convergence, such
as prediction or relaxation. Furthermore, conducting CoSimulation on HPC
systems is explained, in particular how to deploy the tools. An important
aspect of using computing resources efficiently is to handle different methods
of parallelization. An approach for coupling solvers that employ OpenMP or
MPI is shown.

A wide range of examples is presented in Chapter 6. The Mok FSI bench-
mark was used to validate the presented work, especially for strongly coupled
problems. It was also used to integrate a NNet based tool into CoSimulation,
which replaced the structural solver. The results are promising, and this kind
of coupling is very well-suited for future investigations. The simulation of wind
flow over a bridge deck is presented, where the structural solver was realized
with a SDOF. The interfaces had non-matching dimensions, therefore con-
ventional mapping techniques could not be used, and special methods needed
to be developed for the data transfer between the computational domains.
The coupling of a DEM solver with a FEM solver was presented by means of
simulating rock-fall protection nets. CoSimulation with a traditional coupling
tool versus CoSimulation within a multiphysics framework was investigated
in detail with WSI simulations of the Olympic Tower in Munich. Coupling to
an external tool is shown with a FSI simulation of a full-scale wind turbine.
Here, an external CFD solver was integrated into CoSimulation. A focus was
also set on the structural modeling of the turbine. Finally, the culmination of
this work is the coupled FSI simulation of the roof of the Olympic Stadium in
Munich. The modeling of this iconic landmark is presented in detail for the
geometry, fluid, and structural model. A supercomputer was employed to con-
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duct the large simulations. This example served to evaluate the performance
of the presented developments in detail.

This work showed the capabilities of a multiphysics framework for the
simulation of large-scale coupled problems for engineering applications. How-
ever, still, the science is not concluded in this matter. Many promising and
interesting topics can be pursued and investigated in detail. The examples
and developments presented in this work employed the same time-step size for
each of the solvers. This can be inefficient if the requirements of the solvers
vary a lot. Using different sizes for the time-step requires interpolation in time
between the solvers. It can save significant computational resources, especially
if the solver with the larger time-step requirements is no longer forced to
employ the smaller time-step. A use case is the integration of controllers into
CoSimulation (as presented in [83]), which typically require much smaller
time-step sizes compared to numerical solution techniques such as FEM-based
methods.

Although mapping algorithms and coupling functionalities for volume-
coupled problems were developed in this work, they are not used to simulate
coupled problems. Applications such as CHT involve volume coupling and
could be simulated. The integration of NNet based tools (see also [23]) was
briefly introduced in this work. It has a high potential for saving computational
resources and offering faster simulation times and is therefore very suitable
for further investigation. The same applies to particle methods, for which
only a subset of available techniques was shown in this work (an overview
can be found in [67]). They are promising, particularly for the simulation of
natural hazards such as landslides or avalanches, which interact with protection
structures or building structures.

Finally, also the algorithmic developments for the coupling of external
solvers with the detached interface and remote-controlled orchestration can
be further explored and applied to more coupled problems and solvers.





Appendix A

Hardware overview

For some parts of this work, the hardware and software used are essential to
consider. Therefore, this section gives a brief overview of the systems and
their specifications.

SuperMUC-NG

SuperMUC-NG1 is the supercomputer of the Leibniz-Rechenzentrum (LRZ)2
in Garching near Munich. At the time this work was conducted, it was number
23 in the list of most powerful supercomputers worldwide3. It was built in
2018 and is primarily used for research applications.

SuperMUC features a total number of 311,040 compute cores, which are
distributed among 6,480 compute nodes. Each compute node (Intel Xeon
Platinum 8174) has 48 physical cores and 96 threads, a base frequency of 3.1
GHz, and a turbo boost frequency of 3.9 GHz. Each node has a total memory
of 96 GB, of which 90 are available. In addition to its computing resources, it
has a highly performant network (Intel Omni-Path) to communicate efficiently
between the computing nodes in distributed computing. A highly parallel
filesystem with transfer rates of up to 500 GB/s completes the system. The
filesystem is optimized for handling few large files, as opposed to many small
files. The OS is Suse Linux, SLURM [84] is used for the job scheduling.
The Intel compiler 2019 and Intel MPI 2019 were used to compile the software
used in this work.

1 https://doku.lrz.de/supermuc-ng-10745965.html
2 www.lrz.de
3 Top500 list November 2021: www.top500.org/lists/top500/list/2021/11/

https://doku.lrz.de/supermuc-ng-10745965.html
www.lrz.de
www.top500.org/lists/top500/list/2021/11/
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Workstation 1

Desktop PC with the following setup:

• OS: Linux, Ubuntu 20.04

• Processor: Intel Xeon CPU E5-2660 v3 (10 cores, base/turbo boost
frequency: 2.6/3.3GHz)

• RAM: 128 GB

• Hard drive: SSD 512 GB (SATA)

• Filesystem format: ext4

• C++ compiler: GNU G++ 9.4

Workstation 2

Desktop PC with the following setup:

• OS: Linux, Ubuntu 20.04 & Windows 10

• Processor: Intel Core i5-9400F (6 cores, base/turbo boost frequency:
2.9/4.1GHz)

• RAM: 16 GB

• Hard drive: SSD 1 TB (SATA)

• Filesystem format: ext4 (Linux) / NTFS (Windows)

• C++ compiler: GNU G++ 9.4 & OpenMPI 4.1.2 (Linux) / MSVC 2019
(Windows)

Virtual machine with macOS

Virtual machine for Apple-macOS with the following setup:

• OS: macOS 11.6 (Big Sur)

• Processor: virtual, (3 cores, frequency: 3.33GHz)

• RAM: 16 GB

• Hard drive: SSD 14 GB

• Filesystem format: APFS

• C++ compiler: AppleClang 13



Appendix B

Olympic Park Munich

Munich hosted the Olympic summer games in 1972 (see Figure B.1), roughly
50 years ago at the time of this writing. Many of the events were held in the
Olympic Park in the northwest of Munich. It is home to the main sporting
grounds, including the Olympic Stadium, Olympic Hall, Aquatic Center, and
the velodrome, as shown in Figure B.2. The Olympic Tower and Olympic
Mountain are also part of the park.

Figure B.1: Poster Olympic Games 1972 displaying the roof structures and
the tower. Source: www.olympiapark.de.

The stadium and its surrounding buildings and structures have become a
landmark and part of the city’s image due to their iconic shape and architecture.
The roofs of the stadium, aquatic center, hall, and some areas in between them

www.olympiapark.de
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Figure B.2: Overview Olympic Park Munich. The roof structures are high-
lighted for the stadium (red), hall (orange), aquatic center (blue),
and the areas in between the buildings (green). Additionally,
the tower and the Olympic mountain are shown. Source of the
base image: www.openstreetmap.org/export#map=16/48.1716/
11.5500.

Figure B.3: View over Olympic Park, perspective from Olympic Mountain.
The roof structures of the different buildings and the tower are
visible. Source: P. Bucher

www.openstreetmap.org/export#map=16/48.1716/11.5500
www.openstreetmap.org/export#map=16/48.1716/11.5500
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are covered with hanging structures made from cable nets covered with acrylic
plates. These nets are held up by poles and other supporting structures. The
structures were and are considered highlights of architecture and engineering
and were ahead of their time when first planned and constructed. Figure B.3
gives an impression of the structures and the tower in the park.

The iconic design was done by the offices of Behnisch & Partner and
Leonhardt & Andrä in collaboration with Frei Otto. It was the winner of the
design competition in 1967. The research report SFB 64 Long-Span Surface
Structures [51] describes the design and explains the thoughts of the architects
and engineers.
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