
Computational methods for
multi-parameter persistence

Fabian Lenzen

Technische Universität München
TUM School of Computation, Information and Technology

Computational methods for multi-parameter persistence

Fabian Lenzen

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Gregor Kemper

Prüfer*innen der Dissertation:

1. Prof. Dr. Ulrich Bauer

2. Prof. Dr. Michael Kerber (TU Graz)

3. Prof. Dr. Magnus Botnan (VU Amsterdam)

Die Dissertation wurde am 28.06.2023 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 23.11.2023

angenommen.

Computational methods for
multi-parameter persistence

PhD thesis

Fabian Lenzen

June 26, 2023

TU München

Supervisor: Prof. Dr. Ulrich Bauer

Contents
1 Introduction 1

2 Background 9
2.1 Persistence modules . 9
2.2 One-parameter persistence . 15
2.3 Multi-parameter persistence . 20
2.4 Computing two-parameter persistent homology 32

3 Persistent cohomology using the Calabi–Yau property 41
3.1 The free cochain complex N•(Kú) . 41
3.2 The Calabi-Yau-property of persistence modules 42
3.3 The Nakayama functor and matrices . 47
3.4 Pulling back modules from the colimit . 49
3.5 Computing a free resolution of H•(N•(Kú)) . 52
3.6 Eventual acyclicity of Kú is necessary . 55
3.7 Making Kú eventually acyclic . 57
3.8 Fringe presentations . 61

4 Persistent cohomology of freely resolved cochain complexes 67
4.1 Free resolutions of (co)kernels, images and subquotients 67
4.2 Simplicial cohomology . 74
4.3 Example . 80
4.4 Relative cohomology revisited . 90
4.5 Computational shortcomings . 97
4.6 Absolute and relative cohomology do not determine each other 98

5 Implementation and experiments 103
5.1 Implementation . 103
5.2 Experiments . 117
5.3 Results . 121

Summary and concluding remarks 125

Bibliography 127

Runtime data tables 135

List of Algorithms

1 Standard algorithm for one-parameter persistent homology. 17
2 Clearing algorithm for one-parameter persistence 18
3 Minimization of graded matrices . 30
4 Minimization of chain complexes. 32
5 Minimization of cochain complexes. 32
6 Lesnick–Wright-algorithm . 35
7 Factorization of matrices . 35
8 LW-algorithm for minimal generating systems . 36
9 Homology algorithm . 36

10 Bireduction . 52
11 Cohomology algorithm . 55

12 Bireduction with inverse reduction matrix . 92
13 Relative cohomology algorithm . 93
14 Bireduction with clearing . 94
15 Relative cohomology algorithm II . 96

16 Consolidation of binary heaps . 106
17 Pivot extraction from a binary heap . 106
18 Consolidation of the pivot of an indirect column 107
19 Converting an implicit matrix column to an explicit one 107
20 One parameter ersistence basis . 110
21 Elimination of dominated entries . 115
22 Possible implementation of Algorithm 21. 116

Chapter 1

Introduction
Topological data analysis [31, 66] is a mathematical field that seeks to apply methods from
topology to analyze shape and topological features of data sets. Persistent homology [58, 59, 61,
64, 107, 108], a central and arguably one of its most popular tools, is a multi-scale approach that
captures the changes of the homology of a filtered topological space along the filtration. This can
be interpreted as how clusters, holes and higher dimensional voids appear and vanish during
the filtration. The theory of persistent homology touches upon algebraic and computational
topology, discrete Morse theory [6, 69], representation theory [108] and others.
A common pipeline for the application of persistent homology is the following [76]:

1. Starting from a point cloud S ™ Y lying in a topological space Y , build a topological
subspace of Y filtered by a scale parameter. For example, if (Y, d) is a metric space,
the spaces S(r) :=

t
sœS

Br(s) for r œ R (where Br(s) = {y œ Y | d(s, y) Æ r}) satisfy
S(r)

™ S(rÕ) if r Æ rÕ, and thus assemble to an R-indexed filtration, called the o�set

filtration of S.
2. This filtered space is replaced by a finite filtered simplicial complex Kú, usually with the

same (or similar) homology as the filtered space. For example, let Y be a Euclidean space,
and define the Voronoi domain of s œ S as

Vor(s) = {y œ Y | d(y, s) Æ d(y, t) ’t œ S}.

Then {Br(s)flVor(s)|s œ S} is a cover of S(r), and its nerve is a simplicial complex filtered
by r, called the Delaunay or alpha filtration [60]; see Figure 1.1. By the (functorial) nerve
theorem [13], the Delaunay filtration and the o�set filtration are (functorially) homotopy
equivalent. Other common choices are the �ech-filtration and the the Vietoris–Rips

filtration with vertex set S; see Examples 2.1.7 and 2.1.8.
3. Computing the simplicial homology H•(Kr) (with coe�cients in a field k) for every r

yields a collection H•(Kú) of finite dimensional vector spaces H•(Kr) for every r, con-
nected by the morphisms H•(Kr) æ H•(KrÕ) induced by Kr Òæ KrÕ for all r Æ rÕ. This
collection is called the persistent homology of Kú.

(a) r = 0:0 (b) r = 0:3 (c) r = 0:8 (d) r = 1:2 (e) r = 1:3

Figure 1.1: O�set filtration (blue)
S

s2S
Br (s), of a point cloud S (black) at di�erent values of r , superim-

posed with the Delaunay filtration (black, light blue).

Chapter 1 Introduction

Figure 1.2: Persistence diagram of the Delaunay filtration K⇤
from Figure 1.1. Each point (x; y) in the diagram stands for a
homology class such that for each r , the classes with x r < y
form a basis of H•(Kr). There is a single point for H1(K⇤) that
is far from the diagonal. This corresponds to the homology of
the annulus the points are sampled from.

0 2
0

1

2

H0

H1

Figure 1.3: Point cloud obtained from adding three outliers to
Figure 1.1 (left) and persistence diagram of the resulting De-
launay filtration (right). The actual homology of the sampled
annulus cannot be seen from in the diagram anymore.

0 2
0

1

2

H0

H1

4. The persistent homology H•(Kú) can be compactly described by its barcode [76, 128], or
by its persistence diagram, see Figure 1.2. Each point (x, y) of the persistence diagram
represents a cycle in Kz for all z Ø x. It is homologous to older cycles if z Ø y. Thus,
for each z, the points (x, y) of the diagram with x Æ z < y represent a basis of Hz(Kú).
The barcode can be easily computed by a Gaussian column reduction scheme [128], and
e�cient implementations are widely available [1, 8, 81, 111, 122].
If S is sampled from a subspace X µ Y , then under certain conditions on S, one can
infer the homology of X from the persistent homology of S [43, 48, 106]. In our example,
we have Y = R2, X ∏ S is an annulus, and the long lived homology classes in Figure 1.2
correspond to the homology of X.

Particular strengths of this approach lie in the fact that it captures topological features of a
space at di�erent scales at the same time. If X is a submanifold of Rn, then representatives of
the homology classes can be used to reconstruct a triangulation of X [18, 49, 57]. A vectorized
version of persistence diagrams can be used as input for other (e.g., machine learning) data
analysis methods [92, 114, 115]. Furthermore, persistent homology is stable [16, 28, 40, 48], in
the sense that small perturbations to the input lead to only small perturbations of the output,
in a way that can be made precise.
Despite these stability results, however, traditional one-parameter persistent homology is

susceptible to outliers. To make this precise, assume that S µ Y is a sample of a subspace
X µ Y that also contains (few) outliers not in X. Already for relatively small values of
|S \ X|/|S|, the homology H•(X) may become unintelligible from H•(S(r)); see Figure 1.3.
Additionally, correctly capturing the topology of X from S is di�cult if X has topological
features of di�erent scales.
Multi-parameter persistent homology [34, 91] is seen as a possible remedy for the above short-

comings. It extends (one-parameter) persistent homology by introducing additional parameters
that control, for instance, the density of the sampled points. A common problem is to compute
a minimal free resolution of H•(Kú), which generalizes the construction of the barcode to more
than one parameter.
Although, contrary to the situation in one-parameter persistence, the indecomposable multi-

parameter persistence modules cannot be classified as easily as in the one-parameter case [34, 74]
and give no stable invariant [20], many other invariants, such as graded Betti numbers [90, 99],
the (generalized) rank invariant [56, 89], signed [27] and fibered barcodes [100], shift dimension
[37] and others, can be computed from a minimal free resolution, which motivates the interest
in computing these. An example for such a minimal free resolution is shown in Figure 1.4. The

2

�2 0 2

�2

0

2

0

20

40

60

de
ns

it
y

(a) density function

0 1 2 3

Rips

55

60

65

70

75

(b) H0

0 1 2 3

Rips

55

60

65

70

75

(c) H1

Figure 1.4: The point cloud from Figure 1.3, equipped with a density function. The right two plots show
the Hilbert function (blue) and the graded Betti numbers (teal: ˛0, red: ˛1, orange: ˛2) of the associated
function-Rips homology. See Figure 2.6a for details. A horizontal slice at density value ⇢ through the Betti
diagram corresponds to the one-parameter persistent homology of the subsample having only points with
density value at most ⇢. For example, a horizontal slice through the diagram for H1 at ⇢ ⇡ 70 would
produce one long bar in the barcode, corresponding to the region in the parameter space for which H1 is
one-dimensional. This is precisely the long bar in the barcode of H1 one would see if one removes the points
with density greater than 70 from the pointcloud (which comprises also the outliers inside the circle).

picture shows the Hilbert function and graded Betti numbers of the function-Rips persistent
homology of the same point cloud as above.
For one- and two-parameter persistence, the computational worst-case complexity for comput-

ing the persistent homology of a (one-critical) filtered simplicial complex is cubic in the number
of simplices. In practice, however, computing the minimal free resolution of two-parameter per-
sistent homology is much more di�cult than computing the barcode of a one-parameter filtered
complex [33, 73, 85, 86, 98]. For more than two parameters, no method with cubic complexity
is known.
Since the first algorithm for one-parameter persistent homology [128] has been described,

substantial performance improvements have been achieved, some of which rely on computing
(relative) persistent cohomology instead of (absolute) persistent homology. A duality principle
allows to relate barcodes of absolute and relative homology and cohomology [19, 55]. It has been
unclear so far, however, how this approach can be generalized beyond one-parameter persistent
homology.

Contribution
Summary In this thesis, we explore di�erent duality principles extending the known dualities in
one-parameter persistence [55] to two- and multi-parameter persistent (co)homology. We present
di�erent ways to compute a minimal free resolutions of the persistent cohomology of a finite,
one-critically two-parameter-filtered simplicial complex, and explain how this can be related to
minimal free resolutions of its persistent homology. We devise an algorithm that allows for an
optimization scheme similar to clearing in one-parameter persistence. A C++-implementation
of our algorithm is publicly available [94]. Experiments demonstrate the practicability of our
approach.

Cohomology computation Let Kú be a finite n-parameter filtered simplicial complex that
is one-critical; that is, every simplex enters the filtration at a unique minimal value. Let
K = colimzœZn Kz. In the following, when talking about (co)homology, we always mean reduced
(co)homology with coe�cients in a fixed field k.

3

Chapter 1 Introduction

C•(K⇤) =

M

�2K⇤

Z
g(�)

0
Z C•

(K⇤) =

M

�2K⇤

Z
�g(�)

0
Z

C•(K;K⇤) =

M

�2K⇤

Z
g(�) � 1
0

Z C•
(K;K⇤) =

M

�2K⇤

Z1 � g(�)
0

Z

Figure 1.5: Absolute and relative simplicial (co)chains of a Z-filtered simplicial complex K⇤. A persistence
module is free if it is a direct sum of interval modules supported on intervals of the form [b;1) for b in Z.
In particular, C•(K⇤) and C•

(K;K⇤) are (co)chain complexes of free modules, where the red line indicate
the support of a simplex � 2 K⇤ in the respective (co)chain complexes.

The main challenge in computing the absolute and relative cohomology of Kú lies in the
fact that in multi-parameter persistence, C•(Kú) and C•(K,Kú) are no cochain complexes of
free modules. This is di�erent from one-parameter persistence, where C•(K,Kú) is a cochain
complex of free modules; see Figures 1.5 and 1.6 for an illustration. Working with (co)chain
complexes of free modules is necessary to ensure applicability of the common column reduction
schemes to compute persistent (co)homology. In this thesis, we propose two di�erent ways to
remedy this, which we summarize in the following.

First approach As said above, in one-parameter persistence, C•(K,Kú) is a cochain complex
of free modules. The approach presented in Chapter 3 generalizes this to the multi-parameter
case in the following way. We define a certain cochain complex N•(Kú) := (‹C•(Kú))ú, where
(≠)ú denotes the pointwise dual persistence module and ‹ the Nakayama functor ; see Defini-
tions 2.1.10, 3.1.2 and 3.2.2. In the one-parameter case, we have C•(K,Kú) = (‹C•(Kú))ú. In
persistence over more than one parameter, C•(K,Kú) is not a cochain complex of free modules;
however, N•(Kú) is. In Chapter 3, we work with the latter complex and show:

Theorem A (page 42). Let Kú be a one-critically Zn
-filtered simplicial complex, such that

H•(Kú) is finitely supported. Then there is a natural isomorphism

Hd(Kú) ≥= Hd+n(N•(Kú))

for all d.

Here, we say that a persistence module M is finitely supported if its components Mz are zero
for all but finitely many z œ Zn. This theorem is a generalization of the fact that if K is acyclic,
then Hd(Kú) ≥= Hd+1(K,Kú)ú, which can be seen from the long exact sequence of the pair
(K,Kú). If Hú(Kú) is not finitely supported, one can replace C•(Kú) by a complex Ĉú finitely
supported homology, which can be used to compute Hd(Kú); see Section 3.7. Furthermore, for
any number of parameters, the cohomology of N•(Kú) can be related to H•(Kú) and H•(K,Kú)
(see Theorem A and Corollary 3.2.13).

Second approach The second approach, presented in Chapter 4, is to replace C•(Kú) and
C•(K,Kú) by quasi-isomorphic cochain complexes of free modules. We do this by choosing
free resolutions of Cd(Kú) (resp. Cd(K,Kú)) for each d and deriving an explicit formula for a
minimal free resolution of Hd(Kú) (resp. Hd(K,Kú)) using these resolutions.

Necessity of the finite-support condition In one-parameter persistence, it is known that
H•(Kú) and H•(K,Kú) uniquely determine each other up to isomorphism even if H•(K) ”= 0
(see Corollary 2.2.11). In Sections 3.6 and 4.6, we show by counterexamples that corresponding
statements do not hold in two-parameter persistence, namely:

Theorem B (pages 55 and 98). Let Kú be a one-critically 2-parameter filtered simplicial com-

plex.

(a) Unless H•(Kú) is finitely supported, H•(Kú) and H•(N•(Kú)) need not determine each

other up to isomorphism.

4

C•(K⇤) =

M

�2K⇤ g(�)
C•

(K⇤) =

M

�2K⇤

�g(�)

C•(K;K⇤) =

M

�2K⇤

g(�) � (1; 1) C•
(K;K⇤) =

M

�2K⇤

(1; 1) � g(�)

Figure 1.6: Absolute and relative simplicial (co)chains of a Z
2-filtered simplicial complex K⇤. A module

is free if it is a direct sum of modules F (z), each of which has components F (z)w = { k if w � z;

0 otherwise; i.e., the
module of the upper right quadrant with minimal element z . In particular, if K⇤ is one-critically Z

2-filtered,
then C•(K⇤) is a chain complex of free modules. None of C•(K;K⇤), C•

(K⇤), C•
(K;K⇤) is a (co)chain

complex of free modules. This is di�erent from 1-parameter persistence; see Figure 1.5.

(b) Unless H•(K) = 0, H•(Kú) and H•(K,Kú) need not determine each other up to isomor-

phism.

Higher coboundary morphisms In one-parameter persistent homology, one can show that if
H•(K) = 0, thenHd+1(K,Kú) can be computed from the (matrix representing the) coboundary
morphism

”d+1 : Cd(K,Kú) æ Cd+1(K,Kú)

alone. That is, it is not necessary to consider the coboundary morphism ”d+2, because the
assumption ensures that all relevant information is already contained in ”d+1; see Section 2.2.1.
This is of practical importance, because for Vietoris–Rips complexes, a matrix representing ”d+2

would be prohibitively large. By providing explicit algorithms, we show the following analogue
statements for two-parameter persistence:

Theorem C (page 54). If Kú is a finite two-parameter filtered complex such that H•(Kú) is

finitely supported, then a minimal free resolution of Hd+2(N•(Kú)) can be computed from the

coboundary morphism Nd(Kú) æ Nd+1(Kú) alone.

Theorem D (page 90). If Kú is a finite two-parameter filtered complex such that H•(K) = 0,
where K = colimz Kz, then a minimal free resolution Hd+1(K,Kú)• of Hd+1(K,Kú) can be

computed from the coboundary morphism Cd(K,Kú) æ Cd+1(K,Kú) alone.

Duality and free resolutions So far, we have concentrated on computing a minimal free
resolution of Hd(Kú), either directly, or by computing a minimal free resolution of Hd+1(Kú)
or Hd+n(N•(Kú)) and showing that these cohomology modules are isomorphic Hd(Kú) under
certain conditions. In applications, however, we might be interested in a free resolution of
persistent homology Hd(Kú). We show that if Hd(Kú) has finite total dimension, then there
is a simple correspondence between minimal free resolutions of Hd(Kú) and Hd(Kú). More
generally, we show:

Theorem E (page 48). Let M be a finitely generated n-parameter persistence module with

bounded support. For graded matrices U1, . . . , Un, the following are equivalent:

(i) U1, . . . , Un represent a free resolution of module M ,

(ii) U1, . . . , Un represent an injective resolution of the shifted module MÈ≠‘Í,

(iii) the graded transposes U€
1 , . . . , U€

n
represent a free resolution of the dual module MÈ≠‘Íú.

5

Chapter 1 Introduction

Computation Combining Theorems A and E allows us to obtain a minimal free resolution
of Hd(Kú) for a two-parameter filtered complex Kú in the following steps:

1. If using b) or c) in the following, ensure before that Kú has finitely supported homology,
e.g. by replacing Kú by a suitable complex with finitely supported homology as described
in Section 3.7.

2. Compute a free resolution of either

a) Hd(Kú) (see Section 4.2.1);
b) Hd+1(K,Kú) (see Section 4.2.2) and obtain a free resolution of Hd(Kú) by the long

exact sequence of cohomology; or
c) Hd+2(N•(Kú)) (see Chapter 3) and obtain a free resolution of Hd(Kú) by Theo-

rem A.

3. From that, obtain a free resolution of Hd(Kú), using Theorem E.

Only the second step is computationally involved. Without loss of generality, assume that
Kú has finitely supported homology. We propose strategies algorithms to compute minimal
free resolutions of Hd+2(N•(Kú)), Hd(Kú) and Hd+1(K,Kú) in the two-parameter case, see
Sections 3.5, 4.2 and 4.4.

Pulling back from the colimit For Hd+2(N•(Kú)), the core of the proposed algorithm (see
Algorithm 11) is the following insight, which also underlies the proofs of Theorems C and D.
For a persistence module M , we define the vector space colimM := colimzœZn Mz.

Theorem F (page 50). Let M , N be free persistence modules and f : M æ N be a morphism,

and let U be the unique maximal submodule of M with colimU = colim ker f . Then U = ker f .

For a general submodule V ™ M , it is not true that for the unique maximal submodule
U ™ M with colimU = colimV , the inclusion U ™ V is an equality, even if U and/or M are
free. The lemma shows that this is the case for kernels indeed.
If M and N are free two-parameter modules, then also ker f is free, which can be derived from

Hilbert’s syzygy theorem; see Corollary 2.3.20. We propose an algorithm (see Theorem 3.4.7)
that computes a basis of ker f , given basis of colim ker f . Using this, we show how to compute
Hd+1(K,Kú) and Hd+2(N•(Kú)); see Algorithms 11 and 13. Both algorithms allow for a
optimization that is analogous to the clearing scheme in one-parameter persistence [11, 46]; see
Remark 3.5.3.

Implementation and experiments Earlier experiments that we will not report here have shown
that that the approach using the complex N•(Kú) from Chapter 3 is much more e�cient than
working with free resolutions of C•(Kú) or C•(K,Kú) as described in Chapter 4; see also
Section 4.5. For this reason, for the implementation and runtime experiments that we describe
in Chapter 5, we concentrate on the former approach. The implementation is open source and
publicly available [94]. This implementation was also used to produce the diagram in Figure 1.4.
We use our implementation to compute minimal free resolutions of H•(Kú) for density-Rips

complexes and other two-parameter filtered complexes of di�erent sizes; see Section 5.2. We
compare our approach to the state-of-the-art algorithm from [73], both with respect to run time
and memory footprint. We analyze the e�ect of the well-known chunk preprocessing [72] and
implementation details (such as the sparse matrix representation employed) on the performance.
The experiments show that our approach is able to outperform the method from [73], both

with respect to run time and memory. This is true both for the heap and the vector format [12]
for sparse matrices. When computing Hd(Kú) for d Ø 2, our algorithm was faster on almost all
instances, by a factor of often up to 15. There were instances (for instances the cyclooctane data
set or points clouds samples orthogonal groups, see Section 5.2) that were tractable only with

6

the cohomology algorithm, while the homology algorithm did not terminate within acceptable
time. Our algorithm can be seen as an alternative to chunk preprocessing, since both serve to
e�ciently remove trivial summands from the input complex. Consequently, while the algorithm
from [73] is known to strongly benefit from chunk preprocessing, our algorithm does not require
chunk preprocessing to be e�cient. Independently of our cohomology algorithm, we propose
a cohomological version of chunk preprocessing for the homology algorithm [73] that we call
chunk* preprocessing.

7

Chapter 1 Introduction

Acknowledgements
I want to express my gratitude for my supervisor Ulrich Bauer for the opportunity to connect my
interest for representation theory and algebra to algebraic topology, computational geometry,
computer science, software development and data analysis. Working in computational topology
introduced me to many facets of mathematics that were concealed to me before. I also want to
thank him for the support and encouragement atmosphere I enjoyed in his group.
I want to thank Michael Lesnick, who o�ered me a big portion of his time to discuss our

research. I also want to thank him for the opportunity for a research visit to Albany, which,
apart from being a unique experience on its own, enabled me to substantially improve and
extend the contents of this thesis.
I want to thank my colleagues for the uncountable inspiring discussions we had, let apart the

stimulating atmosphere I enjoyed during the recent years. In particular, I want to thank Fabian
Roll for his thinking about my research problems and providing ideas and feedback for many
drafts of my writing. I want to thank him and my other proofreaders David Hien, Lukas Kühne
and Nico Stucki for their help with bringing this thesis into shape.

8

Chapter 2

Background
In this section, we give an overview of the relevant preliminaries of single and multi-parameter
persistent homology. We introduce persistence modules, both as functors over a poset and
as graded modules over an algebra, and explain how they arise from data. We explain the
algorithmic details of the computation of one-parameter persistent homology and cohomology,
and explain how minimal free resolutions of two-parameter persistent homology are computed.

2.1 Persistence modules
Let k be a field, and let Vec (respectively, vec) denote the category of k-vector spaces (resp.,
finite dimensional k-vector spaces). Let P be a poset, viewed as a category with one object p
for every p œ P and precisely one morphism from p to q for each p Æ q in P .

Definition 2.1.1. A P -persistence module is a functor M : P æ Vec that assigns to every
p œ P a k-vector space Mp, and to every pair p Æ q of comparable elements in P a morphism
Mqp : Mp æ Mq. The vector spaces Mp are called the components of M , and he maps Mqp are
called the structure maps of M . For m œ Mp, we denote by g(m) := p the grade of m. The
module M is called pointwise finite dimensional if Mp is finite dimensional for all p œ P . The
support of M is suppM := {p œ P |Mp ”= 0}. A morphism of persistence modules is a natural
transformation of functors. We write VecP (resp., vecP) for the category of P -persistence
modules (resp., pointwise finite dimensional modules).

If M and N are persistence modules, then MüN is the persistence module with (MüN)p =
Mp üNp. If f : M æ N is a morphism of persistence modules, then ker f and coker f are the
persistence modules with (ker f)p = ker fp and (coker f)p = coker fp. These render VecP and
vecP an abelian category. For example,

0 æ

Q

cccca

0 0 k

0 0 0

0 0 0

R

ddddb
æ

Q

ccccca

k k2 k3

0 k k2

0 0 k

(10) 1 1 0
0 1
0 0

2

(10)

(01)
1 0 0

1 0
0 1

2

(01)

R

dddddb
æ

Q

ccccca

k k2 k2

0 k k2

0 0 k

(10)

(11)

(11)

(01)

R

dddddb
æ 0

1 1
≠1
1

2
(1 1 0
0 1 1)

is a short exact sequence of modules over the poset {0, 1, 2}2.

2.1.1 Filtered spaces and complexes
Typically, persistence modules arise as the homology of filtered topological spaces or filtered
simplicial complexes. We write Top for the category of topological spaces.

Chapter 2 Background

Definition 2.1.2. A P -filtered space is a functor Xú : P æ Top, p ‘æ Xp, such that Xqp : Xp æ

Xq is an inclusion for all p Æ q in P . We write Top™P for the category of P -filtered topological
spaces.

Example 2.1.3 (Sublevel sets). Let X be a topological space, equipped with a function f : X æ

P . The sublevel set filtration XfÆú is the P -filtered topological subspace of X with XfÆp =
f≠1({q œ P | q Æ p}).
Example 2.1.4 (O�set filtration [79]). The o�set filtration S(ú) of a subset S of a metric space
X is the R-filtered subspace of X with S(r) :=

t
sœS

Br(x). Here Br(s) denotes the open ball
of radius r centered at s. If M ™ Rn is a submanifold and S µ M a finite sample, then under
certain conditions, the homology of M can be obtained from M (r) and S(r) [61, p. 12]. See also
[48].
For computational aspects, it is more convenient to work with a discrete model of topological

spaces, namely, filtered simplicial complexes.

Definition 2.1.5. An (abstract) simplicial complex K is a set of nonempty finite sets such that
if ‡ œ K and fl ™ ‡ is non-empty, then fl œ K. For any d Ø 0, the elements of Kd = {‡ œ K |

|‡| = d + 1} are called the d-simplices of K. The 0-simplices are called the vertices of K.
A morphism f : K æ L of simplicial complexes is a morphism K æ L of sets such that
f(K0) ™ L0, and f(‡) =

t
vœ‡

f({v}). We denote by Simp the category of simplicial complexes.
A P -filtered simplicial complex is a functor Kú : P æ Simp, p ‘æ Kp such that Kqp : Kp æ Kq

is injective for all p Æ q. If Kú is a filtered simplicial complex, we write K := colimpœP Kp. We
call Kú finite if K is finite. We write Simp™P for the category of P -filtered simplicial complexes.

Example 2.1.6 (Delaunay complex [60]). Let S be a finite subset of a metric space X. For s œ S,
let Vor(s) = {x œ X | ’t œ S : d(x, t) Ø d(x, s)} be the Voronoi domain of s with respect to S,
and let Vorr(s) = Vor(s) fl Br(s). Then the Delaunay filtration or –-filtration Delú(S) is the
R-filtered simplicial complex with Delr(S) = {‡ ™ S | 0 < |‡| < Œ and

u
sœ‡

Vorr(s) ”= ÿ}; see
Figure 1.1.
Example 2.1.7 (�ech complex). Let S be a subset of a metric space X. The �ech complex

Čú(S) is the R-filtered abstract simplicial complex given by Čr(S) = {‡ ™ S | 0 < |‡| < Œ andu
sœ‡

Br(s) ”= ÿ}.
See Figures 1.1 and 2.1 for examples. The Delaunay complex Delr(S) is the nerve of the closed

cover {Vorr(s) | s œ S} of the o�set space S(r). The �ech complex Čr(S) is the nerve of the
closed cover {Br(s) | s œ S} of S(r). Under suitable conditions (for example, if X is Euclidean),
the functorial nerve theorem [13] guarantees that S(r) and the geometric realizations |Delr(S)|
and |Čr(S)| are homotopy equivalent to S(r) in an R-filtered way; see also [10]. Therefore, both
can be seen as a combinatorial model of the filtered space r ‘æ S(r). However, both complex are
computationally involved in high dimensions or in non-Eucidean spaces. A common alternative
is the following:
Example 2.1.8 (Vietoris–Rips complex [125]). Let S be a metric space. For ‡ ™ S, let diam ‡ =
maxs,tœ‡ d(s, t). The Vietoris–Rips complex VRú(S) associated to S is the R-filtered abstract
simplicial complex given by VRr(S) = {‡ ™ S | 0 < |‡| < Œ and diam ‡ Æ r}.
The Vietoris–Rips complex is a clique complex ; meaning that for d > 2, a d-simplex ‡ œ

VRr(S) if fl œ VRr(S) for all its 2-faces fl œ
!
‡

2
"
. See Figure 2.2 for an example. For S ™ Rn, the

Vietoris–Rips complex relates to the �ech complex via mutual inclusions VRr(S) ™ ČrÕ/2(S) ™
VRrÕ(S) whenever r

Õ

r
Ø

2n/(n+ 1) [54, Theorem 2.5, 4, 41]. If n is large, it is considerably

easier to decide if a set ‡ µ S lies in VRr(S) than to decide of ‡ lies in Delr(S) or Čr(S), which
motivates the interest in VR(S).

10

2.1 Persistence modules

(a) r = 0:0 (b) r = 0:3 (c) r = 0:8 (d) r = 1:2 (e) r = 1:3

Figure 2.1: O�set filtration (blue)
S

s2S
Br (s), of the point cloud from Figure 1.1a, superimposed with a

projection of the 2-skeleton of the �ech filtration (black, light blue).

(a) r = 0:0 (b) r = 0:3 (c) r = 0:8 (d) r = 1:2 (e) r = 1:3

Figure 2.2: Like Figure 2.1, but with the Vietoris–Rips filtration VR2r .

If S is finite, let r1 < r2 < · · · < rn be the distinct values in {diam ‡ | ‡ ™ S,‡ ”= ÿ}. By
setting

Ki(S) =
;VR(S)r1 if i Æ 1,

VR(S)ri if 1 Æ i Æ n,
VR(S)rn if n Æ i,

(2.1)

we obtain a Z-filtered simplicial complex Kú that we also call the Vietoris–Rips complex of S
and also denote by VRú(S).

2.1.2 Persistent homology
Since VecP is an abelian category, it makes sense to consider chain complexes of persistence
modules. A chain complex C• is a sequence

· · · æ Cd+1
ˆd+1
≠≠≠æ Cd

ˆd
≠æ Cd≠1 æ · · ·

of modules and morphisms, such that ˆdˆd+1 = 0 for all d. Its d-cycles Zd(C•) := ker ˆd,
d-boundaries Bd(C•) := im ˆd+1 and d-homology Hd(C•) := Zd(C•)/Bd(C•) are persistence
modules. Dually, a cochain complex C• is a sequence

· · · æ Cd≠1 ”
d

≠æ Cd ”
d+1

≠≠≠æ Cd+1
æ · · ·

of modules and morphisms, such that ”d+1”d = 0 for all d. Its d-cocycles Zd(C•) := ker ”d+1,
d-boundaries Bd(C•) := im ”d and d-cohomology Hd(C•) := Zd(C•)/Bd(C•) are persistence
modules. We say that a (co)chain complex C• (resp., C•) has finite (total) dimension if

m
d
Cd

(resp.
m

d
Cd) is finite dimensional. A (co)chain complex is acyclic if its (co)homology is zero

in all dimensions. (Co)chain complexes of persistence modules form an abelian category.
Remark. We silently require that all (co)chain complexes we work with are bounded below.
We assume that P has an involution P æ P, p ‘æ ≠p that identifies P with its opposite poset

P op; that is, p Æ q if and only if ≠q Æ ≠p. We also assume that P is a lattice; that is, each
p, pÕ œ P have a unique least upper bound or join, denoted by p‚pÕ, and a unique greatest lower
bound or meet, denoted by p · pÕ.

11

Chapter 2 Background

Example 2.1.9. The sets Zn or Rn are posets with the ordering (z1, . . . , zn) Æ (zÕ1, . . . , zÕn) if
zi Æ zÕ

i
for all i. Negation identifies both with their opposite poset. Both are lattices, where

(z1, . . . , zn) ‚ (zÕ1, . . . , zÕn) = (max{z1, zÕ1}, . . . ,max{zn, zÕn}),
(z1, . . . , zn) · (zÕ1, . . . , zÕn) = (min{z1, zÕ1}, . . . ,min{zn, zÕn}).

Let the k-dual vector space of a k-vector space V be denoted by V ú.

Definition 2.1.10. The dual module Mú of a persistence moduleM œ VecP is the P -persistence
module with (Mú)p = (M≠p)ú and (Mú)qp = (M≠p,≠q)ú.

Let C• be a chain complex, then its dual complex C• := (C•)ú is the cochain complex with
Cd = (Cd)ú and ”d = (ˆd)ú. The functor (≠)ú : VecP æ VecP is exact contravariant. Therefore,
there is a natural isomorphism

H•((C•)ú) ≥= H•(C•)ú.

Definition 2.1.11. Let Kú œ Simp™P . The (absolute) persistent chain complex of Kú is the
chain complex C•(Kú) of P -persistence modules, with components

Cd(Kú) : P æ Vec, p ‘æ Cd(Kp),

where C•(Kp) denotes the simplicial chain complex of the simplicial complex Kp. We denote its
d-cycles, d-boundaries and dth homology by Zd(Kú), Bd(Kú) and Hd(Kú) The module Hd(Kú)
is called the dth (absolute) persistent homology of Kú.

We can see a persistence module M œ VecP as a P -indexed diagram of vector spaces. In that
sense, we define the functors

colim: VecP æ Vec, � : Vec æ VecP , lim: VecP æ Vec,
M ‘æ colimP M, V ‘æ

)
p ‘æV,

(pÆq) ‘æidV
, M ‘æ limP M.

The functor �, called the diagonal, is right adjoint to colim and left adjoint to lim. For a vector
space V , �V is the module that is constantly V .

Definition 2.1.12. Let Kú œ Simp™P and K :=
t

Kú. The relative persistent chain complex

of Kú is the chain complex
C•(K,Kú) :=

�C•(K)
C•(Kú)

of persistence modules. We denote the relative d-cycles, d-boundaries and dth homology by
Zd(K,Kú), Bd(K,Kú) and Hd(K,Kú), respectively.

Remark. For every p œ P , the absolute chain complex C•(Kp) is spanned by the simplices
‡ œ Kp, while the relative chain complex C•(K,Kp) is spanned by the simplices ‡ œ K \Kp.

Definition 2.1.13. For Kú œ Simp™P and K :=
t
Kú, we define the absolute persistent

cochain complex C•(Kú) := C•(Kú)ú and the relative persistent cochain complex C•(K,Kú) :=
C•(K,Kú)ú of Kú. We denote the respective cocycles, coboundaries and cohomology by Z(≠),
B•(≠) and H•(≠). The modules Hd(Kú) and Hd(K,Kú) are called the dth absolute (resp.,
relative) persistent cohomology of Kú.

The inclusion i : Kú Òæ K induces an inclusion i• : C•(Kú) æ C•(K) whose cokernel is
C•(K,Kú), and a restriction morphism i• : C•(K) æ C•(Kú), “ ‘æ “|Kú whose kernel equals
C•(K,Kú). There is a short exact sequence

0 æ C•(Kú)
i•
≠æ �C•(K) p•

≠æ C•(K,Kú) æ 0

12

2.1 Persistence modules

that gives rise to a long exact sequence of P -persistence modules

· · · æ Hd+1(K,Kú)
”
≠æ Hd(Kú)

id
≠æ �Hd(K) pd

≠æ Hd(K,Kú)
”d
≠æ Hd≠1(Kú) æ · · · . (2.2)

Dually, the short exact sequence

0 æ C•(K,Kú)
p
•

≠æ �C•(K) i
•

≠æ C•(Kú) æ 0

gives rise to a long exact sequence

· · · æ Hd≠1(Kú)
”
d

≠æ Hd(K,Kú)
p
d

≠æ �Hd(K) i
d

≠æ Hd(Kú)
”
d+1

≠≠≠æ Hd+1(K,Kú) æ · · · . (2.3)

Remark 2.1.14. As mentioned above, we work with reduced (co)homology where not stated
otherwise. In particular, if Hd(K) = 0 for all d, then the above exact sequences show that for
all d, we have

Hd(Kú) ≥= Hd+1(K,Kú), Hd(Kú) ≥= Hd+1(K,Kú).

2.1.3 Free modules
Let M be a P -persistence module.

Definition 2.1.15. A (homogeneous) generating set of M is a collection {mi œ M ; i œ I Õ}
of elements of M , indexed by some indexing set I, such that for every m œ M , there exist
coe�cients ⁄i œ k for i œ I, such that only finitely many are non-zero and

m =
ÿ

iœI

⁄iMg(m),g(mi)(mi).

The generating system is minimal if no proper subset of it is a generating system. It is called
a basis of M if for all p œ P , ÿ

iœI

⁄iMp,g(mi)(mi) = 0

implies that ⁄i = 0 for all i œ I. A module is finitely generated if it has a finite generating
system, and free if it has a basis.

A finitely generated module has a minimal generating system. IfM is finitely generated (resp.,
free), then the multiset {g(mi)|i œ I} does not depend on the chosen minimal generating system
(resp., basis) {mi | i œ I} of M . If M is free, we call the multiset {g(mi) | i œ I} the graded rank

of M , denoted by rkM .
For every p œ P , the persistence module F (p) with

F (p)q =
)

k if p Æ q,
0 otherwise, F (p)rq = {

id if p Æ q Æ r,
0 otherwise.

is free of rank rkF (p) = {p}. If pi œ P for all i œ I for some indexing set i, then F :=
m

iœI
F (pi)

is free of rank {pi | i œ I}. The standard basis of F is the basis {ei | i œ I}, where the ith
standard basis vector ei is the element ei = 1 œ F (pi)pi of the ith summand. There is a one-to-
one correspondence between generating systems (resp., bases) {mi | i œ I} of a module M and
surjections (resp., isomorphisms)

n

iœI

F (g(mi)) æ M, ei ‘æ mi.

13

Chapter 2 Background

Example 2.1.16. The Z2-persistence module on the left of
S

WWWWWWWU

...
...

...

k k
2

k
3 · · ·

0 k k
2 · · ·

0 0 k · · ·

(1
0)

! 1 0
0 1
0 0

"

(1
0)

(0
1)

! 0 0
1 0
0 1

"

(0
1)

T

XXXXXXXV

≥=

S

WWWWWWU

...
...

...

k k k · · ·

0 0 0 · · ·

0 0 0 · · ·

T

XXXXXXV
ü

S

WWWWWWU

...
...

...

0 k k · · ·

0 k k · · ·

0 0 0 · · ·

T

XXXXXXV
ü

S

WWWWWWU

...
...

...

0 0 k · · ·

0 0 k · · ·

0 0 k · · ·

T

XXXXXXV

is a direct sum of the three free modules on the right. Because this is tedious to write and read,
we usually draw two-parameter modules with diagrams such as

≥= ü ü .

Thus, a module is free if it is a direct sum of modules whose support is an upper right quadrant.

Definition 2.1.17 (One-critical filtered complexes). We call a P -filtered complex Kú one-

critical if {p œ P | ‡ œ Kp} has a single minimal element for every ‡ œ K, denoted by g(‡) and
called the grade of ‡.

If P is totally ordered, then all every P -filtered simplicial complexes Kú with
u
Kú = ÿ is

one-critical. If Kú is one-critical, then Cd(Kú) is free. The standard basis of Cd(Kú) is the basis
{‡ | ‡ œ Kd

ú}.

Definition 2.1.18 (P -graded matrix). Let P be a poset. A P -graded m◊n-matrix consists of
an ordinary m◊ n-matrix u(M) with entries in k, called its underlying matrix, and two tuples
rgM œ Pm and cgM œ Pn, called the row and column grades of M . In this case, we also say
that M is a graded rgM ◊ cgM -matrix. It is called valid if Mij ”= 0 only if rgM

i
Æ cgM

j
. The

sum M +M Õ of two graded matrices is defined if rgM = rgM Õ and cgM = cgM Õ . In this case,
it has rgM+M

Õ = rgM = rgM Õ and cgM+M
Õ = cgM = cgM Õ . The product MM Õ of two graded

matrices is defined if cgM = rgM Õ . In this case, rgMM
Õ = rgM and cgMM

Õ = cgM Õ . The graded

transpose of M is the graded n◊m-matrix M€ with row grades rgM€

i
= ≠cgM

i
, column grades

cgM€

j
= ≠rgM

j
and entries [M€]ij = [M]ji.

Remark 2.1.19. A graded matrix is valid if and only if its transpose is valid.
Remark 2.1.20. For algorithmic purposes, e.g., when maintaining a certain order (such as
lexicographic or colexicographic order) on the row and column grades, it may be convenient
to use the graded anti-transpose M€ with row grades rgM‹

i
= ≠cgM

n+1≠i
, column grades

cgM‹

j
= ≠rgM

m+1≠j
and entries [M‹]ij = [M]m+1≠j,n+1≠i instead of the graded transpose.

The following follows from the fact that Hom(F (q), F (p)) ≥= {
k if p Æ q,
0 otherwise :

Lemma 2.1.21. Let F and F Õ
be free persistence modules with bases (bj)nj=1 and (bÕ

i
)m
i=1,

respectively. Then there is a one-to-one correspondence between morphisms f : F æ F Õ
and

valid graded (g(bÕ
i
))i ◊ (g(bj))j-matrix. The morphism f corresponds to the matrix M with

entries

f(bj) =
ÿ

g(bÕ
i
)Æg(bj)

MijF
Õ
g(bj),g(bÕi)

(bÕ
i
)

for all j Æ n.

14

2.2 One-parameter persistence

In this case, we identify valid graded (g(bÕ
i
))i ◊ (g(bj))j-matrices and morphisms from F to

F Õ without making the distinction explicit.

Definition 2.1.22. A module M œ VecP is projective (resp., injective) if the contravariant
functor HomVecP (≠,M) : VecP æ Vec (resp., the covariant functor HomVecP (M,≠) : VecP æ

Vec) is exact.

Equivalently, a module M is projective (resp., injective) if and only if every short exact
sequence of modules of the form 0 æ A æ B æ M æ 0 (resp., 0 æ M æ A æ B æ 0) splits.

Proposition 2.1.23 ([82, Proposition 5]). Every projective module M œ VecP is free.

This is a generalization of Kaplansky’s theorem [7, 83] and the Quillen–Suslin-theorem [113,
120].

2.2 One-parameter persistence
Let P = Z or P = R. For ≠Œ Æ b < d Æ Œ, we let I(b, d) œ VecP be the interval module with

I(b, d)p =
)

k if b Æ p < d,
0 otherwise, I(b, d)qp = {

id if b Æ p Æ q < d,
0 otherwise.

In particular, I(b,Œ) = F (b) for b > ≠Œ.

Theorem 2.2.1 (Structure Theorem [26, 52, 126], see also [70]). If M œ vecP for P = Z or

P = R, then

M ≥=
n

iœI

I(bi, di)

for a uniquely determined finite indexing set I and ≠Œ Æ bi < di Æ Œ for all i œ I.

The multiset barcM = {(bi, di) | i œ I} is called the barcode of M . A barcode is commonly
depicted by a persistence diagram plotting the pairs (bi, di) as points; see Figure 2.3b. Pairs
(bi, di) œ barcM are called essential if di = Œ and finite or non-essential otherwise. Thus, the
essential pairs of barcM correspond to a basis of the vector space colimM .
From now on, let P = Z. Persistence modules over Z are equivalent to graded modules

over the principal ideal domain (pid) k[x] (see Proposition 2.3.10). Therefore, if M is finitely
generated, then Theorem 2.2.1 is a graded version of the invariant factor decomposition of
finitely generated modules over pids [128, Theorem 2.1], which is essentially a manifestation of
Gabriel’s theorem [74].
Let C• be a chain complex of finite rank free persistence modules. Then Hd(C•) œ vecZ

for each d, and we consider barcHd(C•). Choose bases of Cd for each d, and let Dd be the
graded matrix representing the boundary morphism ˆd of C• with respect to the standard
basis. Since k[x] is a pid, every Z-graded matrix has a Smith normal form, and barcHd(C•)
can be determined from the graded Smith normal forms of Dd and Dd≠1 [128]. In practical
computations, it is more convenient to work with the Standard Algorithm instead, which we
recall now.

Definition 2.2.2. The pivot of a column Mj of a matrix M is pivMj := max{i |Mij ”= 0}. A
matrix M is reduced if all its non-zero columns have distinct pivots.

Let C• =
m

N

i=1 F (zi) be a chain complex of free Z-persistence modules of finite rank, with
zi Æ zj if i Æ j, and Dd be the matrix representing ˆd with respect to the standard basis.

Proposition 2.2.3 (Persistence Pairing [64, 128]). If Vd be an invertible valid graded matrix

such that Rd := DdVd is reduced for all d, then

barcHd(C•) = {(zi, zj) | [Rd]i = 0 and i = piv[Rd+1]j}
fi {(zi,Œ) | [Rd]i = 0 and @j : i = piv[Rd+1]j}. (2.4)

15

Chapter 2 Background

Figure 2.3: Left: simplex-wise Z-filtration of a simplicial
complex K⇤ The numbers indicate the value in Z at which
a simplex enters the filtration. Right: Persistence diagram
showing the barcode of the reduced persistent homology
of K⇤. Each point (x; y) in the diagram denotes a pair
(x; y) 2 barcH•(K⇤).

1 2

3 7

10

5

4 6
9

8

(a) K⇤

0 5 10
0

5

10
�

H0

H1

(b) barcH•(K⇤)

The matrices R• and V• can be computed from D• using the Standard Algorithm; see Al-
gorithm 1. If [Rd]i = 0, then i is called a birth index of Rd; otherwise, i is called a death

index. Every column index i of Rd is either birth or death. To see this, note that every
submodule of a free one-parameter persistence module of finite rank is free. In particular,
0 æ Z•(C•) æ C• æ B•(C•) æ 0 is an exact sequence of free modules and thus splits. Assum-
ing that all columns of Rd have distinct grade, this splitting is uniquely determined and fixes a
partition of the basis of C• into birth and death indices.

Lemma 2.2.4. If Rd, Rd+1 are as in Proposition 2.2.3, then [Rd]i = 0 whenever i = piv[Rd+1]j.
In particular, we can simplify (2.4) to

barcHd(C•) = {(zi, zj) | i = piv[Rd+1]j}
fi {(zi,Œ) | [Rd]i = 0 and @j : i = piv[Rd+1]j}.

Example 2.2.5. Consider the filtered complex Kú in Figure 2.3. We compute a barcode for its
reduced homology. Its augmented chain complex has the graded boundary matrices

D0 = [
1 2 3 7

1 1 1 1 1], D1 =
54 5 6 8 9

1 1̄ 1̄ 0 0 0
2 0 1 1̄ 0 1̄
3 1 0 1 1̄ 0
7 0 0 0 1 1

6
, D2 =

C10
4 1̄
5 1
6 1
8 0
9 0

D
,

where we write 1̄ for ≠1. The Standard Algorithm computes the matrices

V0 =
51 2 3 7

1 1 1̄ 0 0
2 1 1̄ 0
3 1 1̄
7 1

6
, V1 =

C4 5 6 8 9
4 1 0 1̄ 0 1̄
5 1 1 0 1
6 1 0 0
8 1 1̄
9 1

D
, V2 = [

10
10 1],

R0 = [
1 2 3 7

1 1 0 0 0], R1 =
34 5 6 8 9

1 1̄ 1̄ 0 0 0
2 0 1 0 0 0
3 1 0 0 1̄ 0
7 0 0 0 1 0

4
, R2 =

C10
4 1̄
5 1
6 1
8 0
9 0

D
.

According to (2.4), we obtain

barcH0(Kú) = {(2, 5), (3, 4), (7, 8)}, barcH1(Kú) = {(6, 10), (9,Œ)},

and no non-zero higher dimensional persistent homology modules; see Figure 2.3.

Definition 2.2.6 (Persistence basis). Let C• be a chain complex of finite rank free modules, and
assume for a d that barcHd(C•) = {(bi, di) | i œ I} for some indexing set I. We let If = {i œ I |
di < Œ} and Ie = I \ If . A persistence basis of Hd(C•) is a system

{(zi, ci) | i œ If} fi {zi | i œ Ie}, (2.5)

where zi œ Zd(C•) and ci œ Cd+1, such that for i œ If , we have I(bi, di)di,bi(zi) = ˆci, and such
that the assignment

n

iœI

I(bi, di) ≠æ Hd(C•),
ei ‘≠æ [zi]

16

2.2 One-parameter persistence

is an isomorphism, where ei denotes the generator of the interval module indexed by i. The
pairs in the left set in (2.5) are called persistence pairs, the cycles in the second pairs are
representatives of the essential homology classes.

Example 2.2.7. If R• and V• are as in Proposition 2.2.3, then

{([Rd+1]j , [Vd+1]j) | [Rd+1]j ”= 0} fi {[Vd]i | [Rd]i = 0 and @j : i = piv[Rd+1]j}

represent a persistence basis of Hd(C•).

Algorithm 1 has complexity O(N3) [128], which can be attained even if C• = C•(Kú) for
a filtered simplicial complex Kú [105], although worst-case complexity is rarely observed in
practice; see also [78]. IfK = VR(S) is the Vietoris–Rips complex of a finite metric space S, then
|Kd

| =
! |S|
d+1

"
. Therefore, computing the barcode of Hd(VRú(S)) becomes impractical already

for relatively small values of |S|. The following standard approach remedies this shortcoming.

Algorithm 1: Standard algorithm for one-parameter persistent homology.
Input: A graded m ⇥ n-matrix D, rows and columns sorted by grade.
Output: A Z-graded invertible n ⇥ n-matrix V such that DV is reduced.
function Reduce(D):

p (0; : : : ; 0) 2 N
n

V 1 2 kn⇥n with rg
V

= cg
V

= cg
D . graded unit matrix

foreach j = 1; : : : ; n do
while piv[D]j 6= 0 do

i piv[D]j

k pi
if k 6= 0 then

[D]j [D]j � [D]i j=[D]ik [D]k

[V]j [V]j � [D]i j=[D]ik [V]k

else pi j ; break

return V

2.2.1 Relative cohomology and clearing
As before, let Kú be a finite one-critical Z-filtered simplicial complex. Consider the relative
cochain complex C•(K,Kú). Because C•(K,Kú) is the kernel of the restriction �C•(K) æ

C•(Kú), each vector space C•(K,Kz) is spanned by the dual simplices ‡ú with ‡ /œ Kz. There-
fore,

C•(K,Kú) ≥=
n

‡œK

F (≠g(‡) + 1)

is a cochain complex of free Z-persistence modules; see Figure 1.5. With respect to the standard
basis of C•(K,Kú), the coboundary operator ”d : Cd≠1(K,Kú) æ Cd(K,Kú) is represented by
the graded matrix Dd := D€

d
.

Remark. We assumed that the rows and columns of Dd are ordered such that their grades are
monotonically increasing. The reversal of the row and column order in Definition 2.1.18 ensures
that Dd has the same property.
One can compute the reduced form Rd = DdV d from Dd using Algorithm 1, and, one obtains

the barcode of Hd+1(K,Kú) from Rd and Rd+1 analogously to Proposition 2.2.3. The following
is dual to Lemma 2.2.4

17

Chapter 2 Background

Algorithm 2: A variant of Algorithm 1 that incorporates clearing.
Input: A valid graded l ⇥m-matrix D and a reduced valid graded m ⇥ l-matrix R such that DR = 0;

both with rows and columns sorted by grade.
Output: A Z-graded invertible n ⇥ n-matrix V such that DV is reduced.
function ReduceC(D;R0

):
p (0; : : : ; 0) 2 N

m

V 1 2 kn⇥n with rg
V

= cg
V

= cg
D

for j = 1; : : : ; n do . clearing

if [R0
d] 6= 0 then

[D]piv[Rd] 0

[V]piv[Rd] [Rd]

for j = 1; : : : ; m do
while piv[D]j 6= 0 do

i piv[D]j

k pi
if k 6= 0 then

[D]j [D]j � [D]i j=[D]ik [D]k

[V]j [V]j � [D]i j=[D]ik [V]k

else pi j ; break
return V

Lemma 2.2.8. Let Rd = DdV d
and Rd≠1 = Dd≠1V d≠1

be reduced, where V d
and V d≠1

are

invertible upper triangular matrices. Then [Rd]i = 0 whenever i = piv[Rd≠1]j. In particular,

barcHd+1(K,Kú) = {(zi, zj) | i = piv[Rd]j}
fi {(zi,Œ) | [Rd+1]i = 0 and @j : i = piv[Rd]j}.

If Algorithm 1 is applied to Rd or Rd, it will spend most of its run time on those columns
of Rd (resp., Rd) that are reduced to zero. Experience shows that if a column of Rd (resp.,
Rd) is not reduced to zero, it will typically reach its final state already after relatively few
additions. If computing the (co)homology of Vietoris–Rips complexes, this is true in particular
for cohomology, because in this case, Rd has few columns and many rows, so chances are low
that two columns have the same pivot.
Looking again at Lemmas 2.2.4 and 2.2.8, we see that it is not necessary in all cases to reduce

all columns of Rd (resp., Rd). Namely, if i = piv[Rd+1]j (resp. i = piv[Rd≠1]j) for some j,
then we know that Algorithm 1 will result in [Rd]i = 0 (resp. [Rd]i = 0). We can therefore skip
reducing these columns and set [Rd]i := 0, [Vd]i := [Rd+1]j (resp. [Rd]i := 0, [V d]i := [Rd≠1]j)
immediately. This optimization scheme is called clearing or the twist algorithm [11, 46]; see
Algorithm 2. It has a great share in the e�ciency of implementations such as [1, 9, 111].
We note that for Vietoris–Rips complexes, clearing is e�ective only when computing the

barcode of C•(K,Kú), rather than the barcode of C•(Kú) [12, 9, p. 403]. Namely, when re-
ducing D1, . . . , Ddmax , we have to compute Rdmax using Algorithm 1, before we can compute
Rdmax≠1, . . . , R1 using Algorithm 2. For Vietoris–Rips complexes, applying Algorithm 1 to
Ddmax will dominate the run time. For cohomology, however, we may compute R1 using Algo-
rithm 1, and then use Algorithm 2 to compute R2, . . . , Rdmax . As D1 is very small compared
to the higher dimensional coboundary matrices, this is much more e�cient. Furthermore, there
are specialized algorithms to compute the barcode of H0(K,Kú) more e�ciently [9].
It remains to relate the barcodes of H•(K,Kú) and H•(Kú). The first step follows from

H•((C•)ú) ≥= H•(C•)ú:

Lemma 2.2.9. If M œ vecZ, then barcMú = {(≠d,≠b) | (b, d) œ barcM}.

18

2.2 One-parameter persistence

Next, we relate relative and absolute homology. Recall the long exact homology sequence

· · · æ Hd+1(K,Kú)
ˆd+1
≠≠≠æ Hd(Kú)

id
≠æ �Hd(K) pd

≠æ Hd(K,Kú)
ˆd
≠æ Hd≠1(Kú) æ · · · .

Proposition 2.2.10 ([19]). For every d, the induced short exact sequences

0 æ coker pd+1 æ Hd(Kú) æ ker pd æ 0 (2.6)
0 æ coker id+1 æ Hd+1(K,Kú) æ ker id æ 0 (2.7)

split.

Proof (sketch). For any module M , let

barc≠Œ M := {(b, d) œ barcM | b = ≠Œ}, barcŒ M := {(b, d) œ barcM | d = Œ}.

The barcode barc�Hd(K) consists exclusively of bars (≠Œ,Œ). Therefore, the barcode of any
submodule of �Hd(K) contains only bars of the form (b,Œ) for some b. This implies that

barc ker pd ™ barcŒ Hd(Kú), (2.8)

so ker pd is free; hence (2.6) splits. Likewise, the barcode of any quotient of �Hd+1(K) contains
only bars of the form (≠Œ, d) for some d. This implies that

barc coker id+1 ™ barc≠Œ Hd+1(K,Kú), (2.9)

so coker id+1 is injective; hence (2.7) splits. See [19] for details.

One may also check that barcHd+1(K,Kú) and thus also barc coker pn+1 contains no bars
of the form (b,Œ) for any b. Similarly, barcHd(Kú) and thus also barc ker id contains no bars
of the form (≠Œ, d) for any d. Exactness of (2.6) and (2.7) implies that (2.8) and (2.9) are
equalities.

Corollary 2.2.11 ([55, §2.4]). Let Kú be a finite one-critical Z-filtered simplicial complex. For

all d,

barcHd(Kú) = {(b, d) œ barcHd+1(K,Kú) |≠Œ < b}

fi {(d+ 1,Œ) | (≠Œ, d) œ Hd(K,Kú)}, (2.10)
barcHd+1(K,Kú) = {(b, d) œ barcHd(Kú) | d < Œ}

fi {(≠Œ, b≠ 1) | (b, d) œ Hd+1(Kú)}. (2.11)

Therefore, the Z-persistence modules
m

d
Hd(Kú) and

m
d
Hd(K,Kú) determine each other

uniquely even if K is not acyclic. We can convert a barcode of H•(K,Kú) (which is e�ciently
computable using Algorithm 2) to a barcode of H•(Kú) using (2.10). This is also the approach
followed in [9].

Remark. When looking at (2.10), it might seem surprising that H•(Kú) can be determined
more e�ciently by computing H•(K,Kú), given that one needs a barcode of Hd+1(K,Kú) to
determine the barcode of Hd(Kú). It seems that one needs to compute the reduced matrix Rd+1

to obtain barcHd+1(K,Kú), which would be unfeasible for Vietoris–Rips complexes. A closer
look at (2.10) reveals that only the finite bars of barcHd+1(K,Kú) are needed to determine
barcHd(Kú). According to Lemma 2.2.8, these can be determined from Rd.

19

Chapter 2 Background

0 2
0

1

2

H0

H1

(a) without outliers

0 2
0

1

2

H0

H1

(b) with outliers

Figure 2.4: Persistence diagram of the Vietoris–Rips complex of a point cloud sampled from an annulus (a)
without and (b) with three outliers outliers. The two point clouds are the same as in Figures 1.2 and 1.3.

2.3 Multi-parameter persistence
Multi-parameter persistence is the theory of Zn- or Rn-persistence modules for n > 1. To
motivate multi-parameter persistence, recall the stability results of one-parameter persistence.
These assert that: a) for modules, the assignment M ‘æ barcM is an isometry [15, 28, 40, 96];
b) for a triangulable space X, the assignment {R-valued continuous functions on X} æ VecR,
f ‘æ Hd(XfÆú) is Lipschitz with respect to the supremum norm and the interleaving distance
on persistence modules [48]; and c) for metric spaces X, the assignments X ‘æ Hd(VRú(X))
and X ‘æ Hd(Čú(X)) are Lipschitz with respect to the Gromov–Hausdor� distance and the
interleaving distance [38, 41, §5.2].
Despite these stability results, however, one-parameter persistent homology is known to be

susceptible to outliers [23]. For example, Figure 2.4 shows that already adding very few outliers
inside the annulus drastically changes the persistence diagram. In particular, while the the
persistence diagram in (b) exhibits the actual homology of the annulus, this is not the case
for the persistence diagram in (a), Figure 1.2 shows the persistence diagrams of the Delaunay-
filtration for the same point cloud.
According to [24, §1.7], common approaches to address this in the framework of one-parameter

persistence are removing points that have density below a fixed threshold [32], considering the
filtration by density for a fixed scale parameter [44, 45], or the development of new filtrations
robust to outliers [25, 29, 39, 42, 112], most of which rely on fixing a density, scale or bandwidth
parameter, which arguably contradicts the explorative approach of persistent homology. A
natural remedy for this is to introduce one or more additional parameters to control for these
properties, which leads to the notion of multi-parameter persistent homology. A common choice
is to extend constructions such as the –-complex, the �ech complex and the Vietoris–Rips
complex by a second parameter that controls for the local density of the point cloud.
Example 2.3.1 (Function-Rips bifiltration). Let X be a metric space and f : X æ R be a con-
tinuous function. The function-Rips bifiltration VRú(X, f) is the R2-filtered simplicial complex
with VRr,s(X, f) := VRr(XfÆs). It is a one-critical bifiltration. If f(v) measures the density
of S around v, we call VRú(X, f) also the density-Rips bifiltration.
Example 2.3.2 (Degree-bifiltrations [24, §2.3]). The degree of a vertex v in a simplicial complex
K is the number of edges incident to v. For a P -filtered simplicial complex Kú, let Dú(Kú)
be the Z ◊ P -filtered simplicial complex such that Dk(Kp) is the maximal subcomplex of Kp

on the vertices of degree at least ≠k ≠ 1. In particular, we define the degree–Rips bifiltration

Dú(VRú(S)) and degree-�ech bifiltration Dú(Čú(S)), which are bifiltrations over R◊Z. These
need not be one-critical in general. For example, Figure 2.5a contains N = 51 points sampled
from a unit circle, with a single outlier in the origin. Every simplex has a curve describing the
pairs (–degree, diameter) at which the simplex enters the filtration; see Figure 2.5. For the
vertices, each of these curves has N steps; one for each edge connecting the vertex to one other
simplex.

20

2.3 Multi-parameter persistence

�2 0 2
�2

0

2

(a) Point cloud

0.0 2.5
diameter

�40

�20

0

�
de

gr
ee

(b) 0-simplices

0.0 2.5
diameter

40

20

0

(c) 1-simplices

0.0 2.5
diameter

40

20

0

(d) 2-simplices

Figure 2.5: Generator curves of a degree-Rips bifiltration. (a) The underlying point cloud consists of 50
points sampled from a perturbed unit circle (blue), plus 25 additional points sampled uniformly from the
square (red). (b)–(d) Generator curves for the 0-, 1- and 2-simplices of the associated degree-Rips complex.
The generator curve for simplices spanned by “red” vertices are red, curves for simplices involving “blue”
and “red” samples are drawn magenta.

Another common bifiltrations of spaces is the multi-cover bifiltration [118]. Other common
bifiltered simplicial complexes are the subdivision–Rips and subdivision-�ech bifiltration and the
the rhomboid tilings [51, 62, 63]. Multi-parameter persistence modules can be equipped with
an interleaving metric [96], and under suitable conditions, assigning to a finite metric space
its multi-cover bifiltration, subdivision- or degree-Rips or -�ech bifiltration is Lipschitz with
respect to the (Gromov–)Prokhorov and the (generalized, homotopy-)interleaving distance [24,
theorem 1.6, 1.7, 116].
Besides remedying the impact of outliers, multi-parameter persistent homology has been used

in image classification [35], analysis of time-dependent spaces [88], time series [87] and clustering
[116].

2.3.1 Invariants of multi-parameter persistence modules
In general, multi-parameter persistence modules do not admit a classification as simple as the
barcode in one-parameter persistence. To explain this, we note that by virtue of Theorem 2.2.1,
the barcode of a one-parameter persistence module is a way to describe its decomposition into
indecomposable direct summands. For any P , a module in M œ vecP is indecomposable if M =
M Õ

üM ÕÕ implies that one of M Õ,M ÕÕ is zero. Every module M œ vecP is isomorphic to a direct
sum of indecomposable modules that have local endomorphism rings [26]. The Krull–Remak–
Schmidt–Azumaya Theorem [5, thm. 1.(ii), 68, thm. 2.12] implies that the decomposition of M
is essentially unique. For P = Z, the indecomposable modules in vecZ are precisely the interval
modules I(b, d) for ≠Œ Æ b < d Æ Œ. For n > 1, the indecomposable Zn-persistence modules
cannot be classified by such a simple structure. In particular, an indecomposable Zn-persistence
modules need not be determined by its support.
Example 2.3.3. The Z2-persistence module

...
...

...

k k2 k2 · · ·

0 k k2 · · ·

0 0 k · · ·

(10)

(–—) (ab)

(01)

21

Chapter 2 Background

is indecomposable for every a, b ”= 0, because it contains the indecomposable representation

M =
A k k2

k

k

(10)

(ab) (01)
B

of the quiver Q =
A u x

v
w

B

One way to see thatM is indecomposable is by listing all isomorphism classes of submodules and
quotients of M and observing that no non-trivial submodule of M is isomorphic to a quotient of
M . Another way to see this is by considering the endomorphism ring of M . Explicitly, EndM
can be seen as the set of those matrices

AMu Mv Mw Mx
Mu ú
Mv ú
Mw ú
Mx [ú ú

ú ú]

B
œ k5◊5

that commute with the matrices
3 0

0
0

1 0 0
0 0 0

4
,

3 0
0
0

a 0 0
b 0 0

4
,

3 0
0
0
0 0 0
1 0 0

4

corresponding to the structure maps of M . This defines a linear system. Solving this shows
that EndM ≥= k unless a = 0 or b = 0. In particular, EndM is a local ring unless a = 0 or
b = 0, hence M is indecomposable by the Azumaya–Krull–Remak–Schmidt theorem [5, 26, §2,
68]. In particular, this gives a family of indecomposable Z2-persistence modules parametrized
by kP1

\ {[0 : 1], [1 : 0]}. This implies that there is no discrete invariant (in the sense of [34])
classifying all indecomposable persistence modules.
Gabriel’s theorem [74] implies that there exist infinitely many indecomposable {1, . . . , k}n-

persistence modules for any k Ø 1 and n > 1. In fact, for any n > 1, there are indecomposable
Zn-persistence modules of arbitrarily large dimension [30]. For multi-parameter persistence
modules, instead of a barcode, one seeks to define and compute other meaningful invariants
from a module M œ vecRn or vecZn , such as the graded Betti diagrams —i(M) (see Defini-
tion 2.3.6), the Hilbert function Zn

æ N, p ‘æ dimMp, Hilbert series, associated primes and
local cohomology [80], the rank invariant {(p, q) œ (Zn)2 | p Æ q} æ N, (p, q) ‘æ rkMqp for
p Æ q [34], the generalized rank invariant [56, 88, 90, 109], the signed barcode [27], the fibered
barcode [22, 100, 123], the shift dimension [37, 75], or various others.
Of particular interest is computing a minimal free resolution or a minimal free presentation

of a given finitely generated persistence module M œ vecZn , because finitely generated modules
are in bijection with isomorphism classes of minimal free resolution. Additionally, several of the
above invariants can computed from a minimal free resolution of M . Therefore, it is a natural
question how to compute a minimal free resolution of H•(Kú) for a finite Zn-filtered simplicial
complex Kú.
Definition 2.3.4. A free presentation of a persistence module M is a morphism ˆ : F1 æ F0
of free modules such that M ≥= coker ˆ. It is called finite if F1, F0 have finite rank. A free

resolution of a persistence module M is a chain complex F• of free modules concentrated in
non-negative degrees such that there is an exact sequence

· · · æ F1 æ F0
f0
≠æ M æ 0 (2.12)

It is called finite if all Fi have finite rank, and only finitely many Fi are non-zero. The length of
a finite free resolution F• is the smallest integer ¸ such that Fi = 0 for all i > ¸. A morphism of

free resolutions is a morphism of chain complexes. This renders Ch(VecP) an abelian category.
The morphism f0 is called the augmentation map of the resolution, and the sequence in (2.12)
is sometimes called the augmented resolution; usually, however, by a slight abuse of language
that should not confuse the reader, the sequence (2.12) is also called a free resolution of M .

22

2.3 Multi-parameter persistence

Example 2.3.5. If M œ vecZ is finitely generated and barcM = {(bi, di); i œ I} for some index
set I, then 0 æ

m
iœI,di ”=Œ F (di) æ

m
iœI

F (bi) is a free resolution of M .
Every persistence module has a (not necessarily finite) free resolution. Finite free resolutions

(resp., free presentations) are a convenient way to describe a module. Namely, after having
chosen bases for the modules in the resolution (presentation), the morphisms in the resolution
(presentation) can be represented by graded matrices, which can be stored and processed by a
computer program.
Remark (Lifts of morphisms). If F• æ M and G• æ N are free resolutions of two modules M
and N , and „ : M æ N is a morphism, then there exists a (not necessarily unique) morphism
„• : F• æ G• such that the diagram

F• M

G• N
„• „

commutes. This follows from exactness of the rows, and from the universal property of the free
(or, more generally, projective) modules involved. The morphism f• is called a lift of f .
Finite resolutions need not be unique. However, any two free resolutions of the same module

are chain homotopy equivalent. Finitely generated Zn-persistence modules have an essentially
unique smallest free resolution, called their minimal free resolution; see Theorem 2.3.18. The
minimal free resolution of a module M is minimal in the sense that it is a direct summand of
any other free resolution of M . We explain this in detail in Section 2.3.3.
Definition 2.3.6. The ith graded Betti number —i(M) of a finitely generated moduleM œ vecZn

is the graded rank —i(M) = rkFi for any minimal free resolution F• of M .
Theorem 2.3.18 below shows that a finitely generated module has an essentially unique free

resolution, which implies that its graded Betti numbers are independent of the chosen minimal
free resolution and hence well-defined.
Example 2.3.7. The barcode of a one-parameter persistence module M œ vecZ represents a
minimal free resolution. If M œ vecZ is finitely generated and barcM = {(bi, di) | i œ I} for
some finite indexing set I, then —0 = {bi | i œ I} and —1(M) = {di | i œ I, di < Œ}.

2.3.2 Examples
Density-Rips filtrations We equip the point cloud S from Figure 2.4b with the density func-

tion
fl : S æ RØ0, p ‘æ

ÿ

p ”=qœS

exp(≠Îp≠qÎ2

2‡2) (2.13)

for a manually chosen bandwidth parameter ‡, see Figure 2.6a for an example. We have
computed a minimal free resolution of H•(VRú(S, fl)), using our implementation [94]. The
corresponding Betti diagrams and Hilbert functions are shown in Figure 2.6. Note that the
diagrams show reduced homology.
For a second example, let S be the point cloud shown Figure 2.7a. Despite the fact that

the circle is clearly visible in the picture, the homology type of S1 would be invisible in the
corresponding Vietoris–Rips persistence diagram. We equip the point cloud with a density
function fl as in (2.13). Since fl takes lower values on the supposed outliers, we filter the point
cloud by ≠fl. The graded Betti diagrams and Hilbert function of H•(VRú(S,≠fl)) are shown in
Figure 2.7.
From this diagram, one can obtain an estimate for a value of fl that discerns the outliers.

Each horizontal slice through the resolution at a value ≠fl0 corresponds to a resolution of the
one-parameter persistent homology of {p œ S | fl(p) Ø fl0}; that is, a barcode. One sees that
for fl0 ¥ 14, the corresponding horizontal slice contains a large region where H1(≠) is one-
dimensional. The corresponding barcode is shown in Figure 2.8.

23

Chapter 2 Background

�2 0 2

�2

0

2

0

20

40

60

de
ns

it
y

(a) filtered point cloud

0 1 2 3

Rips

55

60

65

70

75

(b) H0

0 1 2 3

Rips

55

60

65

70

75

(c) H1

Figure 2.6: (a) The point cloud S from Figure 2.4b, equipped with the Gaussian density function ⇢ : p 7!
P

p 6=q2S
exp(� kp�qk2

2�2) with � = 2:5. The function ⇢ that takes larger values on the outliers, and lower values
on the desired points. (b), (c) Graded Betti numbers (teal: ˛0, red: ˛1, orange: ˛2) and Hilbert function
(shades of blue increasing from dimension = 0 to dimension � 10) of the reduced homology H•(VR⇤(X; ⇢))

of the density-Rips complex of the point cloud from (a).

0

10

20

30

de
ns

it
y

(a) filtered point cloud

0 1

Rips

�30

�20

�10

(b) H0

0 1

Rips

30

20

10

(c) H1

Figure 2.7: (a) Uniform sample (250 points) from a unit 1-sphere, superimposed with uniform sample (150
points) of the rectangle [�1:5; 1:5]

2. Each point is assigned the density from (2.13) with � = 0:2. The
right picture shows the (non-reduced) persistent homology of the associated one-parameter Vietoris–Rips
complex. (b), (c) Associated graded Betti numbers.

Figure 2.8: Barcode representing the horizontal slice through the diagrams in Figure 2.7
at density ⇢ = 14. This corresponds to taking the barcode of H•(VR⇤(S0

)), where S0

consists of the points from Figure 2.7a that satisfy ⇢(�) � 14.
0 2

0

1

2

H0

H1

24

2.3 Multi-parameter persistence

�2 0 2
�2

0

2

(a) point cloud

0 1 2

diameter

�50

�40

�30

�20

�10

0

–d
eg

re
e

(b) H0

0 1 2

diameter

50

40

30

20

10

0

(c) H1

Figure 2.9: Graded Betti numbers and Hilbert function of (non-reduced) persistent homology of the degree-
Rips filtration on the points from Figure 2.5a.

Degree-Rips filtrations Recall the point-cloud S from Figure 2.5a. Figure 2.9 shows the
Hilbert function and graded Betti numbers of H•(Kú) of the corresponding degree-Rips filtra-
tion.

2.3.3 Persistence modules as modules over a graded algebra
For explaining the theory of minimal free resolutions, it is convenient to talk about persistence
modules using the language of graded algebras.

Definition 2.3.8. A Zn
-graded k-algebra is a k-algebra A, such that the underlying k-vector

space of A is a direct sum A =
m

zœZn Az of vector spaces, and multiplication satisfies AzAzÕ ™

Az+zÕ for all z, zÕ œ Zn. In particular, 1 œ A0.
A Zn

-graded A-module is an A-module M , such that the underlying k-vector space of M is
a direct sum M =

m
zœZn Mj of vector spaces, and multiplication satisfies AzMzÕ ™ Mz+zÕ

for all z, zÕ œ Zn. A morphism of graded A-modules M and N is a morphism f : M æ N of
ordinary A-modules, with the additional property that f(Mz) ™ Nz for all z œ Zn. We write A-
gModZn for the category of Zn-graded A-modules. The components Az and Mz are called the
graded or homogeneous components of A and M , respectively. An element of A or M is called
homogeneous if it lies in a homogeneous component.

We require all graded algebras A we work with to be non-negatively graded, that is, Az = 0
unless z Ø 0.
Example 2.3.9. The polynomial algebra k[x1, . . . , xn] is a (non-negatively) Zn-graded k-algebra,
where for z œ Zn, the z-graded component is the one-dimensional vector space spanned by the
monomial xz1

1 · · ·xzn
n
. It is also Z-graded, where for m œ Z, the vector space Am is spanned

by all monomials of total degree n. For convenience, we use the notation xz := xz1
1 · · ·xzn

n
for

z = (z1, . . . , zn) œ Zn.

Proposition 2.3.10 ([34, Theorem 1]). The functor

F : VecZ
n

æ k[x1, . . . , xn]-gModZn , F (M) =
m

zœZn Mz, (2.14)

is an equivalence of categories, where for z, zÕ œ Zn
, the element xz

acts on m œ F (M)zÕ by

xzm := Mz+zÕ,zÕ(m). Its quasi-inverse is the functor

G : k[x1, . . . , xn]-gModZn æ VecZ
n

, G(M)z = Mz,

G(M)z,zÕ = xz≠z
Õ
|MzÕ .

(2.15)

25

Chapter 2 Background

Every equivalence of abelian categories is exact. In particular, limits and colimits in VecZ
n

correspond to limits and colimits in k[x1, . . . , xn]-gModZn , and free (projective, injective) mod-
ules in VecZ

n

correspond to free (projective, injective) modules in k[x1, . . . , xn]-gModZn .
Remark. One can define the functors F and G from Proposition 2.3.10 in greater generality.
Namely, if S is a commutative partially ordered monoid and P a partially ordered set with a
monotonic action S ◊ P æ P , then there is a fully faithful functor F : VecP æ k[S]-gMod

P

defined analogously to (2.14), where k[S] denotes the monoid algebra of S. See [50] for details.

Minimal free resolutions

Definition 2.3.11. A (homological) d-ball is a chain complex of the form

· · · æ 0 æ F (z) id
≠æ F (z) æ 0 æ · · ·

for some z, concentrated in degrees d, d≠ 1. A chain complex of free modules is trivial if it is
isomorphic to a direct sum of homological balls. It is minimal if it contains no homological ball
as a direct summand.
Before we explore di�erent equivalent ways of characterizing minimality of chain complexes,

we establish the following lemma.
Lemma 2.3.12 (Eliminating balls). Consider a chain complex

C• : · · · K LüM N üO P · · · .
(ab) (c d

e f
) (g h)

If c is invertible, then C• ≥= C Õ
• üB•, where

C Õ
• : · · · K M O P · · ·

B• : · · · 0 L N 0 · · · ,

b f≠ec
≠1

d h

c

and the projection C• æ C Õ
• is a quasi-isomorphism.

Remark 2.3.13. Every quasi-isomorphism of bounded below complexes of free modules is a
chain homotopy equivalence. The same is true for bounded below complexes of projective or
injective modules. This follows from [127, Corollary 1.5.4] and the lifting property of free (resp.
projective, injective) modules.

Proof. Consider the automorphisms

÷ = (1 c
≠1

d
0 1) œ Aut(LüM), ÷≠1 = (1 ≠c

≠1
d

0 1) œ Aut(LüM),
◊ = (1 0

≠ec
≠1 1) œ Aut(N üO), ◊≠1 = (1 0

ec
≠1 1) œ Aut(N üO).

Then ◊(c d

e f
)÷≠1 = (c 0

0 f≠ec
≠1

d
). Since C• is a chain complex, ca+ db = 0 and gc+ he = 0. This

implies that

÷(ab) = (a+c
≠1

db

b
) = (0

b
) (g, h)◊≠1 = (g + hec≠1, h) = (0, h).

This shows that the diagram

C• : · · · K LüM N üO P · · ·

B• ü C Õ
• : · · · K LüM N üO P · · · .

(ab) (c d

e f
)

÷

(g h)

◊

(0
b
)

!
c 0
0 f≠ec

≠1
d

"÷
≠1

(0,h)
◊
≠1

commutes and is a pair of mutually inverse isomorphisms of chain complexes. Since B• =
(· · · 0 æ L

c
≠æ N æ 0 æ · · ·) is trivial, the projection C• æ C Õ

• is a quasi-isomorphism.

26

2.3 Multi-parameter persistence

A graded k-algebra A is called graded local if it has a unique maximal homogeneous ideal m,
and connected if A0 = k. Every connected k-algebra A is graded local with m =

m
i>0 Ai. As

a Z- or Zn-graded algebra, the polynomial algebra k[x1, . . . , xn] is connected and thus graded
local, with the unique maximal homogeneous ideal m = (x1, . . . , xn).
We are now ready to collect some equivalent ways to characterize minimal chain complexes

and minimal free resolutions. The idea behind these is that complex of free modules is non-
minimal if and only if its boundary morphisms contain an invertible component. Since boundary
morphisms are homogeneous and m is the ideal of all homogeneous non-invertible elements
k[x1, . . . , xn], we get that a complex is minimal if and only if all components of its boundary
morphisms lie in m. The following makes this precise.

Lemma 2.3.14 (Characterizations of minimality). Let A be a connected graded algebra and

(F•, ˆ•) be chain complex of graded free A-modules of finite rank. Then the following are equiv-

alent:

(i) F• is minimal.

(ii) For every d, we have im ˆd+1 ™ mFd.

(iii) All boundary operators of the complex F•/mF• are zero.

(iv) All boundary operators of the complex F• ¢k[x1,...,xn] k are zero.

In (iv), we regard k as an k[x1, . . . , xn]-module with the only non-zero component k in grade
0, on which all indeterminates act by zero. The tensor product is the usual tensor product of
graded modules.

Proof. Choose homogeneous bases (ej)jœJ and (eÕ
i
)iœI of the free modules Fd+1 and Fd, respec-

tively, for indexing sets J and I. For every i œ I and j œ J , let fij œ k[x1, . . . , xn] be such that
ˆd+1(ej) =

q
iœI

fijeÕj

(i) ∆ (ii) Assume that ˆd+1(a) /œ mFd for some a œ Fd+1. Then there exist also i0 œ I and
j0 œ J such that fi0,j0 œ A \ m = kú. In particular, ei0 and eÕ

i0
are homogeneous of the

same degree p, and fi0,j0 : F (p) æ F (q) is an isomorphism. Then Lemma 2.3.12 shows
that the d+ 1-ball

· · · æ 0 æ F (p)
fi0,j0
≠≠≠æ F (p) æ 0 æ · · ·

is a direct summand of F•, so F• is not minimal.
(ii) ∆ (i) Assume that there are complexes (B•, ˆB

•) and (F Õ
•, ˆ

F
Õ

•) such that F• ≥= B• ü F Õ
•,

where B• is a homological d + 1-ball. This means that im ˆB

d+1 = Bd. Because Bd is
finitely generated, suppBd contains at least one minimal element g. Because all elements
of m have strictly positive grade, (mBd)g = 0. Therefore, im ˆB

d
* mBd≠1.

(ii) … (iv) If B• = (· · · æ 0 æ F (z) =
≠æ F (z) æ 0 æ · · ·) is a homological ball, then

B• ¢ k = (· · · æ 0 æ kÈ≠zÍ
=
≠æ kÈ≠zÍ æ 0 æ · · ·), where kÈ≠zÍ is the persistence

module with (kÈ≠zÍ)w = k if w = z, and zero otherwise. In particular, the boundary
operator of B•¢k is not zero. Thus, F• contains no homological ball as a direct summand
if and only if F• ¢ k has no non-zero boundary operator.

(iv) … (iii) This follows by recalling that m is the ideal such that k = k[x1, . . . , xn]/m.

Definition 2.3.15. A free resolution is minimal if it is minimal as a chain complex. A free
presentation of M is minimal if it extends to a minimal free resolution.

27

Chapter 2 Background

Example 2.3.16 (Barcodes). Let M œ vecZ2 be finitely generated with generating set {mi |i œ I}
for some finite indexing set I, and let barcM = {(bi, di) | i œ I}. Then

0 æ

n

iœI,di<Œ
F (di) ≠æ

n

iœI

F (bi)
Á

≠æ M,

ei ‘≠æ F (bi)di,bi(eÕi)
eÕ
j
‘≠æ gj

is a minimal free resolution of M , where ei and eÕ
i
denote the ith standard basis vector of the

respective free module. See also Definition 2.2.6. A non-minimal free resolution of M would
correspond to a barcode with bi = di for some i œ I. In this case, the corresponding generator
mi is not necessary.

Lemma 2.3.17. Let A be connected and (F•, ˆ•) be a free resolution of an A-module M . Then

F• is minimal if and only if the augmented resolution F•
ˆ0
≠æ M æ 0 (see Definition 2.3.4) has

the property that for every d Ø 0, a basis of Fd is mapped to a minimal generating system of

im ˆd.

Proof. According to Lemma 2.3.14(ii), F• is minimal if and only if im ˆd+1 ™ mFd for all d Ø 0.
Fix a d Ø 0, and let (ei)iœI be a homogeneous basis of Fd for some indexing set I.
Assume that (ˆd(ei))iœI is a non-minimal generating set of im ˆd. Then there exists an i0 œ I

and homogeneous polynomials fi œ k[x1, . . . , xn] for all i ”= i0 such that ˆd(ei0) =
q

i ”=i0
fiˆ(ei).

Then g := ei0 ≠
q

i ”=i0
fiei satisfies ˆd(g) = 0. By exactness, we get g œ im ˆd+1, but g /œ mFd

because ei0 œ Fd \mFd.
Conversely, assume im ˆd+1 * mFd. Then there exists a non-zero homogeneous element

g œ im ˆd+1 \mFd. For i œ I, let fi œ k[x1, . . . , xn] be the homogeneous polynomials such that
g =

q
iœI

fiei. Since g œ Fd \ mFd, there exists an i0 œ I such that fi0 œ A \ m = kú. Since
ˆg(g) = 0, we get ˆd(ei0) = ≠f≠1

i0

q
i ”=i0

fiˆd(ei), so the generating system (ˆd(ei))iœI of im ˆd
is not minimal.

The algebra k[x1, . . . , xn] is Noetherian, which implies that every submodule of a finitely
generated module is finitely generated again. Therefore, every finitely generated module has
a minimal free resolution, obtained by choosing a minimal generating system ˆ0 : F0 æ M of
M and a minimal generating system ˆd+1 : Fd+1 æ ker ˆd of ker ˆd for every d Ø 0. The thus
obtained resolution is essentially unique:

Theorem 2.3.18 (Uniqueness of minimal free resolutions [65, p. 491]). Let M œ k[x1, . . . , xn]-
gModZn be finitely generated and F• be a minimal free resolution of M . For every other free

resolution F Õ
• of M , there exists a trivial chain complex F ÕÕ

• such that F Õ
•
≥= F•üF ÕÕ

• . In particular,

all minimal free resolutions of M are isomorphic.

Theorem 2.3.19 (Hilbert’s syzygy theorem [110, p. 56, 65, p. 474]). Every minimal free

resolution of a finitely generated module M œ k[x1, . . . , xn]-gModZn has length at most n.

Proof (sketch). Let R = k[x1, . . . , xn]. For i = 1, . . . , n, consider the chain complexes �i : 0 æ

F (ei)
xi
≠æ F (0) æ 0 of Zn-graded free R-modules concentrated in degrees 1 and 0, where ei œ Zn

is the ith unit vector. The Koszul complex �• :=
o

n

i=1 �i is a Zn-graded minimal free resolution
of length n of the graded R-module k ≥= F (0)/mF (0); here, ¢ denotes the usual tensor product
of chain complexes of modules. For a finitely generated module M œ k[x1, . . . , xn]-gModZn and
a Zn-graded minimal free resolution F• of M , we obtain that

Fi ¢R k
2.3.14(iv)

≥= Hi(F• ¢R k) (ú)= TorR
i
(M,k) (ú)= Hi(M ¢R �•) = 0

28

2.3 Multi-parameter persistence

if i > n because �• has length n and M (as a chain complex) has length 0, using the definition
of Tor in (ú). Now each Fi is finitely generated, and Fi ¢R k = 0 for all i > n. This implies
that Fi = 0 for all i > n, so F• has length n.

Corollary 2.3.20. If F• = (Fn≠1
ˆn≠1
≠≠≠æ Fn≠2 æ · · ·

ˆ1
≠æ F0) is an exact sequence of graded free

k[x1, . . . , xn]-modules, then ker ˆn≠1 is free.

Proof. The sequence 0 æ ker ˆn≠1 æ Fn≠1 æ Fn≠2 æ · · · æ F0 æ coker ˆ1 æ 0 is exact.
We show that it is a free resolution of M := coker ˆ1. We extend F• to a free resolution
F• : · · · æ Fn æ Fn≠1 æ · · · æ F0 of M . According to Theorem 2.3.18, F• is isomorphic to a
direct sum of a minimal free resolution F Õ

• of M and a trivial complex, so

F• ≥= (. . . æ B3 ü F Õ
2 üB2¸ ˚˙ ˝

F2

æ B2 ü F Õ
1 üB1¸ ˚˙ ˝

F1

æ B1 ü F Õ
0¸ ˚˙ ˝

F0

æ 0)

for free modules B1, B2, Then

0 æ F Õ
n
üBn æ F Õ

n≠1 üBn üBn≠1¸ ˚˙ ˝
Fn≠1

æ Fn≠2 æ · · · æ F0 æ M æ 0

is a free resolution of M . By the five lemma, ker ˆn≠1 ≥= F Õ
n
üBn, which is free.

2.3.4 Computing minimal free resolutions
Let C• be a chain complex of finite rank free Zn-persistence modules. We describe an algorithm
that computes a minimal complex quasi-isomorphic to C•. Let Cd =

m
nd

k=1 F (zdk) for every d,
and let Dd be the graded matrix representing ˆd.

Definition 2.3.21. Let D be a valid graded m◊n-matrix and i Æ m, and j Æ n. We call (i, j)
a local pair of D if [D]ij ”= 0 and rgD

i
= cgD

j
. In this case, we call i a local row index and j a

local column index of D. We call a row or column local if it is part of a local pair. We call D
minimal if it has no local pairs.

This definition is motivated by the following lemma:

Lemma 2.3.22. The complex C• is minimal if and only if Dd is minimal for every d.

Proof. Let D : F æ F Õ be a valid graded matrix representing a morphism of free modules F
and F Õ with bases (ej)jœJ and (eÕ

i
)iœI for index sets I and J , respectively. Then D ™ mF Õ if and

only if D has no local pairs. To see this, note that Dej =
q

i
fijeÕi for all i, j, for polynomials

fij = xcgD
j ≠rgD

i Dij œ k[x1, . . . , xn]. If D has a local pair (i0, j0), then fij is invertible, so
imD * mF Õ. The converse is similar. The statement then follows from Lemma 2.3.14(ii).

If Dd has a local pair (i0, j0), then we apply Lemma 2.3.12 with c = [Dd]i0,j0 . Define the
graded matrices

DÕ
d+1 := ([Dd+1]ij)i ”=i0 ,

DÕ
d
:= ([Dd]ij ≠

[Dd]i0j [Dd]ij0
[Dd]i0j0

)i ”=i0,j ”=j0 ,

DÕ
d≠1 := ([Dd≠1]ij)j ”=j0 ,

and DÕ
d
:= Dd in all other cases. Lemma 2.3.12 shows that these represent a chain complex

· · · æ Cd+1
D

Õ
d+1

≠≠≠æ

n

k ”=j0

F (zdk)
D

Õ
d

≠≠æ

n

k ”=i0

F (zd≠1,k)
D

Õ
d≠1

≠≠≠æ Cd≠2 æ · · · (2.16)

29

Chapter 2 Background

Algorithm 3: Minimization: removes all local pairs from a valid graded matrix M. [71, 86, 99].
Input: A valid graded m ⇥ n-matrix M such that rg

M

i
˜ rg

M

i 0 and cg
M

j
˜ cg

M

j 0 for all i < i 0 and j < j 0.
Output: A graded matrix M 0, non-local row and column indices r; c of M.
function Minimize(M):

p 0 2 N
m

c ;
for j = 1; : : : ; n do . identify local pairs

forever do
i piv(Mj)

if rg
M

i
6= cg

M

j
then c c [{j}; break . column j non-local

else if pi = 0 then pi j ; break . column j local with pivot i

else [M]j [M]j � [M]i j
[M]ipj

[M]pi

for j 2 c do . embarrassingly parallel

while {i |Di j and pi 6= 0} 6= ; do . remove entries in local rows

i max{i |Di j 6= 0 and pi 6= 0}
[M]j [M]j � [M]i j

[M]ipj
[M]pi

r {i | pi = 0}
return (Mi j)i2r;j2c ; r; c

quasi-isomorphic to C•. Repeating this procedure for every matrix Dd until there are no more
local pairs in the chain complex yields a minimal complex C Õ

• quasi-isomorphic to C•.
For the following, assume that the columns of Dd are ordered non-decreasingly by grade; that

is, Dd satisfies rgDd
i

< rgDd
iÕ implies i < iÕ and cgDd

j
< cgDd

jÕ for all j < jÕ.

Proposition 2.3.23 (Elimination of homological d-balls [71, 86, 99]). Let C• be a chain complex

of finite rank free modules, represented by graded matrices D• that have the row and column

grades in non-decreasing order. Then Algorithm 3 computes (DÕ
d
, r, c) := Minimize(Dd), where

DÕ
d
is a minimal graded matrix and r and c are subsets of N, such that the graded matrices

. . . , Dd+2, Dd+3, ([Dd+1]ij)iœc, DÕ
d
, ([Dd≠1]ij)jœr, Dd≠2, Dd+3, . . . (2.17)

represent a chain complex C Õ
• quasi-isomorphic to C•.

Remark. Besides the minimal matrix DÕ, the algorithm returns the set r of all row indices i and
the set c of all column indices j that do not belong to a local pair (i,≠) or (≠, j). These sets
are necessary to truncate the matrices adjacent to D in a chain complex as in (2.17).

Proof of Proposition 2.3.23 (idea). Since the algorithm only acts on Dd, we only write D for
Dd as in the algorithm. That the rows columns of D are non-decreasingly ordered by grade
ensures that a column [D]j is local if and only if (piv[D]j , j) is a local pair. Namely, by validity,
no non-zero entry in [D]j can have a row grade not smaller or equal than cgD

j
, and by the

assumption, no non-zero entry in [D]j can have a row grade larger than the pivot grade.
The algorithm proceeds in two phases. In the first phase, the algorithm identifies a maximal

set of pairwise disjoint local pairs, which corresponds to a maximal trivial direct summand of
D. To do so, it reduces each column [D]j using column additions from columns [D]j0 that are
already identified as local. Let i = piv[D]j . The reduction of [D]j stops either if rgD

i
”= cgD

j

(in this case, [D]j is non-local), or rgD
i

= cgD
j

but no other local column has the same pivot
(in this case, (i, j) is identified as a local pair). In the second phase, the algorithm performs
column additions from the local to the non-local columns in order to remove all entries in the
local rows.

30

2.3 Multi-parameter persistence

To verify correctness, we note that the algorithm repeatedly performs the construction from
(2.16). Lemma 2.3.12 implies that the computed chain complex C Õ

• is quasi-isomorphic and
hence (by Remark 2.3.13) homotopy equivalent to C•. One verifies that DÕ = Minimize(D) has
no local pairs and thus is minimal.

Corollary 2.3.24. (i) Let D1, D2, . . . , Dn be graded matrices that represent a chain complex

C• of free n-parameter persistence modules. Then Algorithm 4 computes graded matrices

DÕ
1, D

Õ
2, . . . that represent a minimal chain complex homotopy equivalent to C•.

(ii) Let D1, D2, . . . , Dn
be graded matrices that represent a cochain complex C•

of free n-
parameter persistence modules. Then Algorithm 5 computes graded matrices DÕ1, DÕ2, . . .
that represent a minimal cochain complex homotopy equivalent to C•

.

Proof. Algorithm 4 applies Algorithm 3 to repeatedly. According to Proposition 2.3.23, this
produces a sequence of homotopy equivalent chain complexes

· · · C3 C2 C1 C0

· · · C3 C2 C Õ
1 C̃0

· · · C3 C Õ
2 C̃1 C̃0

· · · C3 C̃2 C̃1 C̃0

· · · C̃ C̃2 C̃1 C̃0

D3 D2 D1

D3 D
Õ
2 D

ÕÕ
1

Minimize()

D
Õ
3 D

ÕÕ
2

Minimize()

D̃1

D
ÕÕ
3

Minimize()
···

D̃2

···

D̃1

··· ···

D̃3 D̃2 D̃1

for free modules C Õ
d
= F (cgDÕÕ

d) and C̃d = F (cgD̃d), where

DÕ
d
:=

;
Dd if d = 1,
([Dd]ij)dœrd≠1 if d > 1

,

(DÕÕ
d
, rd, cd) := Minimize(DÕ

d
),

D̃d := ([DÕ
d
]ij)jœrd+1

It follows from Proposition 2.3.23 that each of the vertical maps of chain complexes is a ho-
motopy equivalence indeed, and that each computed matrix DÕÕ

d
is minimal, in the sense of

Definition 2.3.21. The matrices D̃d are obtained from DÕÕ
d
by deleting certain columns. This

cannot introduce new local pairs, so also all of the matrices D̃d are minimal. By Lemma 2.3.22,
the matrices D̃d represent a minimal chain complex C̃•. For cochain complexes, the proof is
analogous.

Remark. A chain complex C• of free modules is minimal if and only if its dual cochain complex
C• is. If C• is a cochain complex, we two have two alternatives to produce a minimal chain
complex homotopy equivalent to C•; namely, by applying Algorithm 4 to the boundary matrices
Dd of C• (which performs column operations on the matrices Dd), or by applying Algorithm 5
to the coboundary matrices (Dd)€ of C• (which can be seen as performing row operations on
the matrices Dd).

31

Chapter 2 Background

Algorithm 4: Minimization of chain complexes.
Input: Graded matrices D1; D2; : : : forming a chain complex C•.
Output: Graded matrices D0

1; D
0
2; : : : forming a minimal chain complex C0

• quasi-isomorphic to C•.
D0

1; r; c Minimize(D1)

for d = 2; : : : do
D0

d ([Dd]i j)i2r

D0
d ; r; c Minimize(D0

d)

D0
d�1 ([Dd�1]i j)j2r

yield D0
d�1

Algorithm 5: Minimization of cochain complexes.
Input: Graded matrices D1; D2; : : : forming a cochain complex C•

Output: Graded matrices D01; D02; : : : forming a minimal cochain complex C0• quasi-isomorphic to C•.
D01; r; c Minimize(D1

)

for d = 2; : : : do
D0d ([Dd

]i j)j2c

D0d ; r; c Minimize(D0d
)

D0d�1 ([Dd�1]i j)i2c

yield D0d�1

2.4 Computing two-parameter persistent homology
In this section, we explain how to compute graded matrices representing a minimal free reso-
lution of Hd(Kú) for each d, where Kú œ Simp™Zn

is a finite two-parameter filtered simplicial
complex. If Kú is one-critically filtered, C•(Kú) is a chain complex of free modules in vecZn .
Now, the task is to compute a minimal free resolution of Hd(C•) for each d, where C• is a chain
complex of free Zn-persistence modules.
This is commonly solved by Gröbner basis methods; for example, the algorithms [21, 67, 93]

can be used for this task. Gröbner base methods have been previously studied in the context of
persistent homology [33, 119]. A specific algorithm to compute a minimal free presentation or
resolution of Hd(C•) for the case n = 2 has been proposed in [99]. It relies on the fact that in
this case, according to Corollary 2.3.20, Zd(C•) is free for every d. The algorithm [99], which is
part of the software package Rivet [123], has been reported to outperform the implementation
of the Gröbner base algorithm [67, 93] in Singular, Macaulay 2 and CoCoA [99]. The
algorithm has been further improved in [73, 86] and implemented in the software mpfree [85].
We refer to this algorithm as the Lesnick–Wright- or LW-algorithm.
In the rest of this chapter, we explain how to compute a minimal free resolution of Hd(C•),

following [73, 86, 99].
Remark 2.4.1 (Multi-critical filtrations). IfKú ism-critically Z2-filtered form > 1, then C•(Kú)
need not be a chain complex of free modules. However, one can define a chain complex C Õ

• of
free modules that is quasi-isomorphic to C•(Kú) [36], where each d-simplex of Kú contributes
m generators of C Õ

d
and m≠ 1 generators of C Õ

d+1.
An analogous complex can be constructed if Kú is m-critically Zn-filtered. Namely, assume

the d-simplex ‡ enters the filtration at g‡,1, . . . , g‡,m œ Zn. Define the Koszul complex

�•(‡) :=
mp

i=1
(0 æ F (g‡,i) æ F (0) æ 0),

of ‡, where the two free modules inside the parentheses are placed in degrees zero and one. Here,
the tensor product denotes the usual tensor product of chain complexes of graded modules.

32

2.4 Computing two-parameter persistent homology

For a chain complex C•, let trØi C• be the truncated chain complex with (trØi C•)d := Cd if
d Ø i, zero otherwise, and the boundary morphisms from C•. Then

trØ1(�•(‡))

is a chain complex of free modules quasi-isomorphic to the submodule of Cd(Kú) generated by
‡. Then one may define a double complex C̃ of persistence modules, whose rows are

C̃p

n

‡œK
p
ú

trØ1(�•(‡))

and whose vertical boundary maps come from the ones of C•(Kú). Taking its total complex
yields a free chain complex quasi-isomorphic to C•(Kú).

2.4.1 The Lesnick–Wright algorithm
Let C• be a chain complex of finite rank free Z2-persistence modules with boundary morphisms
ˆd : Cd æ Cd≠1 represented by valid graded matrices Dd. For every d, let id : Zd(C•) Òæ Cd

be the canonical inclusion. Because C• is a chain complex, there exists a unique morphism
pd : Cd æ Zd≠1(C•) such that ˆd = id≠1pd. Corollary 2.3.20 implies that the kernel of a
morphism of free modules of finite rank is free. In particular, the module Zd(C•) = ker ˆd is
free for every d, so

0 æ Zd+1(C•)
id+1
≠≠≠æ Cd+1

pd+1
≠≠≠æ Zd(C•) (2.18)

is a free resolution ofHd(C•). We compute matrices Id+1 and Pd+1 that represent the morphisms
id+1 and pd+1.
Definition 2.4.2. The lexicographic order ∞lex and the colexicographic order ∞colex on Z2 are
the total orders given by

z ∞lex zÕ :… x Æ xÕ or (x = xÕ and y Æ yÕ),
z ∞colex zÕ :… y Æ yÕ or (y = yÕ and x Æ xÕ).

for z = (x, y) and zÕ = (xÕ, yÕ).
We have z Æ zÕ if and only if z ∞lex zÕ and z ∞colex zÕ.

Theorem 2.4.3 ([86, 99]). Let M : F æ G be a valid Z2
graded matrix, such that the column

grades of M are colexicographically ordered. Then Algorithm 6 computes a graded matrix K
that represents a basis of the free submodule kerM of F .

Algorithm 6 computes the columns of K ordered lexicographically by grade. The role of the
lexicographic and the colexicographic ordering in the algorithm can be exchanged.
Remark. Algorithm 6 does not consider the basis grades of G. This makes sense, because
kerM = ker JM for any free module H and every valid injective graded matrix J : G æ H.
We may compute the matrices Id+1 and Pd+1 as follows. Consider the commutative diagram

0 Zd+1(C•) Cd+1 Zd(C•) Hd(C•) 0

Cd.

id+1

1

pd+1

2

ˆd+1

id 1 (2.19)

Applying Algorithm 6 to Dd and Dd+1 yields graded matrices Id = Ker(Dd) and Id+1 =
Ker(Dd+1) representing id and id+1, respectively; see 1 . We have DdDd+1 = 0. Because Id+1
represents the inclusion kerDd æ Cd, there is a unique valid graded matrix Pd+1 : Cd+1 æ Cd

such that Dd+1 = IdPd+1. This linear system can be solved for Pd+1, for example, using
Algorithm 7; see 2 . Then the matrices Pd+1 and Id+1 represent the free resolution (2.18).
Applying Algorithm 4 gives a minimal free resolution of Hd(C•).

33

Chapter 2 Background

Remark. Although Algorithm 7 does not take the grading into account, it follows from existence
and uniqueness of Pd+1 that the result is a valid graded matrix.

Computing a minimal generating system of im @d+1 first It turns out that solving the linear
system Dd+1 = IdPd+1 for Pd+1 does some unnecessary computation, as we will now see.
Namely, if Dd+1 is non-minimal (in the sense of Definition 2.3.21), then local pairs of Dd+1 will
give local pairs of Pd+1. Therefore, in this case, solving Dd+1 = IdPd+1 computes columns of
Pd+1 that are discarded again when minimizing the resolution (Algorithm 4). [99] mentions the
following construction that avoids this.
Consider again the commutative diagram in (2.19). We observe that 0 æ Zd+1(C•) æ Cd+1

is a free resolution of im ˆd+1. Using Algorithm 3, one may compute a minimal free resolution

0 æ Z Õ
d+1

i
Õ
d1

≠≠æ C Õ
d+1 æ im ˆd+1 (2.20)

of im ˆd+1 and let ˆÕ
d+1 : C Õ

d+1 æ Cd such that im ˆÕ
d+1 = im ˆd+1; see 2Õ in (2.21) below.

Actually, computing id+1 and passing to the minimal free resolution (2.20) of im ˆd+1 can be
done in one step by a variant of Algorithm 6:

Proposition 2.4.4 ([86, 99]). Let M : F æ G be a valid graded matrix representing a morphism

of free Z2
-persistence modules. Then Algorithm 8 computes graded matrices M Õ,K Õ

such that

M Õ
represents a minimal generating system M Õ : F Õ

æ G of imM , and K Õ
represents a basis of

kerM Õ
.

Because im ˆÕ
d+1 = im ˆd+1, we have ˆdˆÕ

d+1 = 0, so there exists a unique morphism pÕ
d+1

such that ˆÕ
d+1 = idpÕd+1; see 3Õ in the following commutative diagram:

0 Zd+1(C•) Cd+1 Zd(C•) Hd(C•) 0

0 Z Õ
d+1 C Õ

d+1 Zd(C•) Hd(C•) 0

Cd

Cd.

id+1 pd+1

ˆd+1
id 1

2Õ i
Õ
d+1 3Õ p

Õ
d+1

2Õ ˆ
Õ
d+1

1 id

(2.21)

Now, the sequence

0 æ Z Õ
d+1

i
Õ
d+1

≠≠≠æ C Õ
d+1

p
Õ
d+1

≠≠≠æ Zd(C•) (2.22)

is a free resolution of Hd(C•).
Because (2.20) is a minimal resolution, (2.22) contains no homological 2-balls. Analogously

to [98], we call such a resolution a semi-minimal free resolution of Hd(C•). To obtain a minimal
free resolution ofHd(C•), it remains to eliminate all homological 1-balls by applying Algorithm 3
to P Õ

d+1. Together, we obtain the following strategy:
The following steps compute a free resolution of Hd(C•):

1. Compute a graded matrix Id := Ker(Dd) (Algorithm 6) representing the kernel inclusion

id : Zd(C•) Òæ Cd(C•); see 1 .

2. Compute graded matrices (DÕ
d+1, I

Õ
d+1) := MGSWithKer(Dd+1) (Algorithm 8) such that

DÕ
d+1 represents a minimal generating system of Bd(C•), and I Õ

d+1 represents kerDÕ
d+1;

see 2Õ .
3. Compute the unique graded matrix P Õ

d+1 := Factorize(DÕ
d+1, Id) (Algorithm 7) such that

IdP Õ
d+1 = DÕ

d+1 that represents pÕ
d+1; see 3Õ .

34

2.4 Computing two-parameter persistent homology

Algorithm 6: LW-algorithm. For a valid matrix M : F ! G representing a morphism of free Z
2-persistence

modules, the algorithm computes a basis K of kerM ✓ F [86, 99].
Input: A valid graded m ⇥ n-matrix M with cg

M ordered colexicographically.
Output: A reduced graded matrix K representing a basis of kerM with cg

K ordered lexicographically.
function Ker(M):

Q {(cg
M

j
; j)} as priority queue with (z; j) (z 0; j 0) :, z �lex z 0 _ (z = z 0 ^ j j 0)

V E 2 kn⇥n . reduction matrix

K 0 2 kn⇥0 with rg
K

= cg
M

p 0 2 N
m . if pi 6= 0, then i = pivMpi

while Q 6= ; do
(z; j) PopMin(Q)

forever do
i pivMj

if i = 0 then append Vj to K and append z to cg
K ; break

else if pi = 0 then pi j ; break
else if cg

M

pi
6 z then append (cg

M

pi
_ z; j) to Q and pi j ; break

else
Vj Vj �Mi j=Mipi Vpi
Mj Mj �Mi j=MipiMpi

return K

Algorithm 7: Factorization of matrices
Input: A matrix L 2 k‘⇥n, and a reduced matrix M 2 k‘⇥m

Output: The matrix N 2 km⇥n such that M = LN, if it exists.
function Factorize(L;M):

p 0 2 N
‘

N 0 2 km⇥n

for j = 1; : : : ; m do ppiv Mj j

for j = 1; : : : ; n do . embarrassingly parallel

while Lj 6= 0 do
i pivLj . if pi = 0, then @N : L = MN

Nj Nj � Li j=Mipi epi
Lj Lj � Li j=MipiMpi

return N

Then I Õ
d+1, P

Õ
d+1 represent the free resolution of Hd+1(C•) from (2.22). It contains no homo-

logical 2-balls as direct summands.

4. To obtain a minimal free resolution, split o� all homological 1-balls using Minimize()
(Algorithm 3).

The procedures Ker() and MGSWithKer() (Algorithms 6 and 8) can be combined into a
single algorithm KerAndMgsWithKer(). Given a valid graded matrix M , it computes a matrix
K representing kerM , a matrix M Õ representing a minimal generating system of imM , and
a matrix K Õ representing kerM Õ. This can be used to compute minimal free resolutions for
H0(C•), H1(C•), . . . ; see Algorithm 9.

35

Chapter 2 Background

Algorithm 8: A variant of Algorithm 6. For a morphism f : F ! G of free modules, computes minimal
generating system f 0 : F 0 ! G of im f , together with ker f 0.
Input: A graded m ⇥ n-matrix M representing f .
Output: Graded matrices M 0 representing f 0 and K0 representing a basis of ker f 0.
function MGSWithKer(M):

Q {(cg
M

j
; j)} as priority queue with (z; j) (z 0; j 0) if z �lex z 0 or z = z 0 and j j 0

M 0 graded m ⇥ 0-matrix with rg
M

0
= rg

M

V 0 empty matrix
K0 graded 0⇥ 0-matrix with rg

K
0

= cg
M

0

m 0 2 N
n . index of Mj in M 0

p 0 2 N
m . pivot row to column

assignmentwhile Q 6= ; do
(z; j) PopMin(Q)

forever do
i pivMj

if i = 0 then
if mj 6= 0 then append V 0

mj
to K0 and z to cg

K
0

. Kmj represents a basis

element of kerM 0break
else if pi = 0 then pi j ; break
else if cg

M

pi
6 z then

add (cg
M

pi
_ z; j) to Q

pi j
break

else
if z 6= cg

M

j
then V 0

mj
 V 0

mj
�Mi j=Mipi V

0
mpi

Mj Mj �Mi j=MipiMpi

if Mj 6= 0 and z = cg
M

j
then . Mj cannot be reduced to

zero at cg
M

j
and therefore is

an element of the min. gen.

system.

mj # columns in M 0
+ 1

append Mj to M 0
mj

V 0 (V
0 0

0 1)

K0 (K
0

0)

append z to cg
M

0 and rg
K

0
mj

return M 0; K0

Algorithm 9: Homology algorithm. Given valid graded matrices D1; : : : ; D‘+1 representing a chain complex
C• of free Z

2-modules, computes matrices Fd;1; Fd;0 representing a minimal free resolution of Hd(C•) for
each d = 0; : : : ; ‘.
I1; D

0
1; I

0
1 KerAndMgsWithKer(D1)

F0;1; F0;0 MinimizeCpx(I 01; D
0
1) . see Algorithm 4

for d = 1; : : : ; ‘ do
Id+1; D

0
d+1; I

0
d+1 KerAndMgsWithKer(Dd+1)

Pd+1 Factorize(D0
d+1; Id)

Fd;1; Fd;0 MinimizeCpx(I 0d+1; Pd+1)

36

2.4 Computing two-parameter persistent homology

2.4.2 Notes on implementations
Currently, the fastest implementation of the computation of minimal free presentations or res-
olutions of two-parameter persistent homology is mpfree [85]. This software applies chunk
preprocessing (see below) to its input, before computing a minimal free presentation or resolu-
tion using the above approach [73, 86].

Chunk preprocessing The procedure MinimizeCpx() (Algorithm 4) can be used as an e�cient
preprocessing step to the actual computation of a resolution of persistent homology. This
preprocessing is called chunk preprocessing. Its benefit lies in the fact that many complexes,
such as Vietoris–Rips complexes or function-Rips complexes, contain many local pairs. The
procedure Minimize() (Algorithm 3), which does the heavy lifting inside MinimizeCpx(),
can be e�ciently parallelized (see below), which is not the case for the LW-algorithm. In
two parameter persistence, this preprocessing considerably increases the e�ciency of the entire
computation [72, 73]. In [72, Table 1], chunk preprocessing has been observed to outperform
an older approach (see [117]) to decreasing the input size based on discrete Morse theory.
We propose and evaluate an analogous preprocessing scheme based on Algorithm 5; see the

procedure MinimizeCpx*() in Section 5.1.6. Recently, other preprocessing steps that simplify
the input simplicial complex have been proposed [2].

Parallelization The second phase in Minimize() (Algorithm 3) can be implemented in an
embarrassingly parallel way since no two non-local columns a�ect each other. The first phase
only performs column operations [D]j Ω [Dj] + [Dpi] if cgDj = cgD

pi
. This implies that if the

column indices of D are partitioned into chunks of common column grade, the chunks can be
processed in parallel in the first phase, hence the name chunk preprocessing [11]. In practice,
however, the first phase of Minimize() has been observed to account for only a small fraction
of the total run time of Minimize(), and the benefit from parallelizing it has been observed
to be relatively limited. The procedure Factorize() (Algorithm 7) can be implemented in an
embarrassingly parallel way, too, although it only accounts for a small fraction of the total run
time of the entire homology resolution computation (Algorithm 9). There is no known way to
parallelize Ker() or KerAndMgsWithKer() (Algorithms 6 and 8), which dominate the rumtime
of Algorithm 9.

Minimal free resolutions vs. presentations Often (e.g., in [73, 86, 98]), one is interested in
computing a minimal free presentation of persistent homology instead of a minimal free reso-
lution. However, for Z2-persistence modules, it is not less work to compute the latter than to
compute the former. To see this, consider the free resolution (2.18) of Hd(C•). A free presenta-
tion of Hd(C•) is given by the morphism pd+1 : Cd+1 æ Zd(C•). To remove all direct summands
of pd+1 of the form G æ 0, it is necessary to compute ker pd+1 = Zd+1(C•) and use this to
remove certain columns of the matrix representing pd+1 (which is what KerAndMgsWithKer()
(Algorithm 8) does). Therefore, to compute a minimal free presentation of a the persistent
homology of Z2-filtered complex one has to carry out the same computations as for computing
a minimal free resolution.

Row and column orders As mentioned above (see Proposition 2.3.23), Minimize() (Algo-
rithm 3) requires the input graded matrix M to have row and column grades in non-descending
order. This requirement is satisfied if rgM and cgM are ordered in a total order refining the
partial order Æ on Z2. In the homology resolution computation (Algorithm 9), Minimize() is
applied to the matrix P Õ

d
. which in turn is computed from Id and DÕ

d+1 using Factorize()
(Algorithm 7). The matrices Id and DÕ

d+1 are computed using Ker() and KerAndMgsWithKer()
(Algorithms 6 and 8). Ker() ensures that Id has columns in lexicographic order by grade. Ker()
and KerAndMgsWithKer() do not require any specific order on the row and column grades of
its input Dd and Dd+1. We may thus assume that all boundary matrices have their rows and
and columns ordered colexicographically by grade. Then KerAndMgsWithKer() computes DÕ

d+1
with columns in colexicographic order, too, which together implies that Factorize() computes

37

Chapter 2 Background

P Õ
d
with columns in colexicographic order (from DÕ

d+1) and rows in lexicographic order (from
Id). Thus, Minimize() can be applied directly to P Õ

d
; i.e., there is no re-ordering needed in

Algorithm 9.

38

Two-parameter persistent cohomology
In the following two chapters, we introduce di�erent approaches to computing the persistent
cohomology of a finite one-critical two-parameter filtered simplicial complex Kú. Specifically,
we explore di�erent ways to compute a minimal free resolution of H•(Kú), using cohomology
as an intermediate step. Our goal is to apply this to two-parameter clique filtrations such as
function-Rips complexes. Using cohomology is motivated by the e�ectiveness of clearing in the
computation of one-parameter persistent cohomology of Vietoris–Rips complexes.
Chapter 3 presents an approach that computes two-parameter persistent (co)homology by

computing the cohomology of a certain cochain complex N•(Kú) of free modules. In general,
N•(Kú) is di�erent from C•(Kú) and C•(K,Kú), but relates to these by a certain property
of vecZn called the Calabi–Yau property, see Section 3.2. This property is crucial both for an
e�cient computation of a minimal free resolution of H•(N•(Kú)), and for obtaining a minimal
free resolution of H•(Kú) from it. Parts of this approach can be generalized to an arbitrary
number of parameters. In particular, for one parameter, this approach gives back the usual
computation of relative persistent cohomology. The approach can be implemented e�ciently;
see Section 5.1.
In Chapter 4, we explain how minimal free resolutions of H•(Kú) and H•(K,Kú) can be

computed directly from the cochain complexes C•(Kú) and C•(K,Kú). For two and more
parameters, these are no complexes of free modules, and the main part of Chapter 4 lies in
remedying this. While this approach arguably is conceptually simpler than the aforementioned
one, when it comes to implementing it, it comes with certain drawbacks that we explain in
Section 4.5.

Chapter 3

Persistent cohomology using the
Calabi–Yau property
Let Kú be a finite one-critical Zn-filtered simplicial complex, for any n Ø 1. Recall from
Section 2.2.1 that in one-parameter persistence, the relative cochain complex C•(K,Kú) is a
cochain complex of free modules. In this section, we construct a cochain complex N•(Kú) of
free persistence modules such that n = 1 yields N•(Kú) = C•(K,Kú). The construction of
N•(Kú) can thus be seen as a way to generalize the definition of C•(K,Kú) to more than one
parameter.
We prove that if Hd(Kú) is finitely supported for all d, then Hd(Kú) ≥= Hd+n(N•(Kú))ú;

see Theorem A. This implies that duality gives a correspondence between injective resolutions
of Hd+n(N•(Kú)) and free resolutions of Hd(Kú). We show that under the same conditions,
there is a direct correspondence between injective and free resolutions of Hd+n(N•(Kú)) (or any
other finite dimensional module); see Corollary 3.2.11 and Theorem E. For n = 2, we devise an
e�cient method to compute a minimal free resolution of Hd+2(N•) that involves a scheme akin
to clearing, see Section 3.5. This method underlies the implementation presented in Section 5.1.
Parts of the results presented in this chapter are joint work with Ulrich Bauer and Michael

Lesnick, and have appeared in [14].

3.1 The free cochain complex N
•
(K⇤)

Definition 3.1.1. For a module M and z œ Zn, let MÈzÍ be the module with graded com-
ponents MÈzÍw = Mz+w. For z Ø 0, the structure maps of M give a morphism M æ MÈzÍ.
Note that MÈzÍú = Mú

È≠zÍ. For a graded matrix A, let AÈzÍ be the graded matrix with
AÈzÍij = Aij , rgAÈzÍ

i
= rgA

i
≠ z and cgAÈzÍ

j
= rgA

j
≠ z for all i, j.

This ensures that if A : F æ F Õ is a valid graded matrix representing a morphism of free
modules, then AÈzÍ : F ÈzÍ æ F Õ

ÈzÕÍ. Let Kú be a one-critical Zn-filtered simplicial complex. We
fix an ordering on the simplices of Kú and endow C•(Kú) =

m
‡œKú

F (g(‡)) with the standard
basis. Let the graded matrix D• represent the boundary operator ˆ•. Let ‘ = (1, . . . , 1) œ Zn.

Definition 3.1.2. Let N•(Kú) be the cochain complex of free modules

Nd(Kú) =
n

‡œKd
ú

F (‘≠ g(‡)),

such that the coboundary operator ”d : Nd≠1(Kú) æ Nd(Kú) is represented by the graded
matrix Dd := D€

d
for every d.

Example 3.1.3. If n = 1, then N•(Kú) = C•(K,Kú).
According to Remark 2.1.19, Dd is valid, so ”d is a well-defined morphism for every d. Our

first goal is to prove the following statement:

Chapter 3 Persistent cohomology using the Calabi–Yau property

Figure 3.1: A free module F = F (z1) � F (z2) � F (z3) (left) and
its image ⌫F = I(z1)� I(z2)� I(z3) under the Nakayama functor
(right)

z1

z2

z3

F

z1

z2

z3

⌫F

Theorem A. A If H•(Kú) has finite support, then there is a natural isomorphism Hd(Kú) ≥=
Hd+n(N•(Kú))ú for all d.

We defer the proof of Theorem A to the next subsection; see page 45. The condition that
H•(Kú) has finite total dimension equivalently means that Hd(Kú) is pointwise finite dimen-
sional for all d and has finite support in Zn. Once we have proven Theorem A, we obtain:

Corollary 3.1.4. If H•(Kú) has finite support and F• is a free resolution of Hd+n(N•(Kú)),
then (F•)ú is an injective resolution of Hd(Kú).

Proof. Since the duality (≠)ú : VecZ
n

æ VecZ
n

is contravariant exact, it maps free resolutions
to injective resolutions and vice versa.

3.2 The Calabi-Yau-property of persistence modules
Assuming for now that Theorem A has been established, Corollary 3.1.4 gives us an injective
resolution of Hd(Kú). It remains to compute from this the free resolution of Hd(Kú) we are
interested in. Both Theorem A and a simple correspondence between free and injective resolu-
tions of the same module will follow from Theorem 3.2.8, which is closely related to a property
known in some areas of algebra as the Calabi–Yau property of a triangulated category [77].

Definition 3.2.1. For persistence modules M,N , let Hom(M,N) be the persistence module
with components Hom(M,N)z = Hom(M,NÈzÍ). The structure maps of Hom(M,N) are in-
duced by N æ NÈzÍ.

For z œ Zn, we define the injective module I(z) = F (≠z)ú; that is,

I(z)w =
)

k if w Æ z,
0 otherwise, I(z)wÆwÕ =

) id if wÕ Æ z,
0 otherwise.

Let PVecZn and IVecZn be the full subcategories of VecZ
n

consisting of finite rank free modules
and their dual modules, respectively. Note that PVecZn contains all point-wise finite dimensional
projective modules modules. Note also that all modules in IVecZn are injective, but IVecZn

does not comprise all injective modules, not even all point-wise finite dimensional ones. Both
categories are closed under finite direct sums.

Definition 3.2.2. The functors

‹ = Hom(≠, F (0))ú : PVecZn ≠æ IVecZn ,

‹Õ = Hom(I(0)ú,≠) : IVecZn ≠æ PVecZn

are called the Nakayama and the inverse Nakayama functor.

Lemma 3.2.3 ([3, p. 84]). The functors ‹ and ‹Õ are mutually quasi-inverse equivalences of

categories.

This follows from the following:

42

3.2 The Calabi-Yau-property of persistence modules

Lemma 3.2.4. We have ‹F (z) ≥= I(z) and ‹≠1I(z) ≥= F (z), cf. Figure 3.1.

Proof. We note

(Hom(F (z), F (0))ú)
w
= (Hom(F (z), F (0))≠w)

ú = Hom(F (z), F (w))ú ≥= {
k if z Ø w,

0 otherwise.

For z Ø w, let ÿwz : F (z) Òæ F (w) be the morphism with (ÿwz)v = idk for all v Ø z. Then the
isomorphism ‹F (z) ≥= I(z) is given in graded components by

„ : Hom(F (z), F (w))ú ≠æ I(z)w = k,

Â ‘≠æ Â(ÿwz).

The statement ‹≠1I(z) ≥= F (z) follows analogously.

In particular, we obtain
N•(Kú) = (‹C•(Kú)È‘Í)ú.

Remark. If n = 1 and Kú œ Simp™Z is a finite filtered complex, then C•(Kú,K) = ‹C•(Kú).

Definition 3.2.5. For a chain complex C• and i œ Z, let C•[i] be the chain complex with
d-dimensional component (C•[i])d = Ci+d. Analogously, for a cochain complex C•, let C•[i] be
the cochain complex with (C•[i])d = Ci+d. We have C•[i]ú = (C•)ú[i].

For z œ Zn, we write z = (z1, . . . , zn). For n œ N, let [n] := {1, . . . , n} and let
![n]

k

"
:= {S ™

[n] | |S| = k}.

Definition 3.2.6. For S = {s1 < . . . < sk} œ
![n]

k

"
, we define the functors

colimS : VecZ
n

æ VecZ
n≠k

, (colimS M)(z1,...,ẑs1 ,...,ẑsk ,...,zk) = colim(zs1 ,...,zsk)œZk Mz,

�S : VecZ
n≠k

æ VecZ
n

, (�SM)(z1,...,zn) = M(z1,...,ẑs1 ,...,ẑsn≠k
,...,zn),

limS : VecZ
n

æ VecZ
n≠k

, (limS M)(z1,...,ẑs1 ,...,ẑsk ,...,zk) = lim(zs1 ,...,zsk)œZk Mz,

where ẑs1 , . . . , ẑsk are omitted. We also define ColimS := �S colimS and LimS := �S LimS .

That is, colimS M is the (n≠ |S|)-parameter module obtained by taking the colimit of M with
respect to the axes indexed by S. For example, if n = 3 and S = {1, 3}, then (colim{1,3} M)z =
colim(z1,z3)œZ2 M(z1,z,z3). The module �SM (and thus also ColimS M and LimS M) is constant
along the coordinate axes specified by S. The functor �S , called the S-diagonal, is exact, right
adjoint to colimS and left adjoint to limS .

Definition 3.2.7. A chain complex F• in VecZ
n

is called eventually acyclic if colimS F• is
acyclic for all non-empty S ™ [n]. A Zn-filtered simplicial simplicial complex Kú is eventually

acyclic if colimS Kú is acyclic for all non-empty S ™ [n].

A chain complex of free persistence modules is eventually acyclic if and only if suppHd(F•)
is bounded for all d.

Theorem 3.2.8 (Calabi–Yau property of persistence modules). If F• is an eventually acyclic

complex of free Zn
-persistence modules, then F• and ‹F•[n]È‘Í are naturally quasi-isomorphic.

Before proving Theorem 3.2.8, we introduce some additional terminology that we will also
use later.
For a module M , we define the modules

�kM =
n

Sœ([n]
n≠k)

ColimS M

43

Chapter 3 Persistent cohomology using the Calabi–Yau property

0!

�2F (z)

,!

�1F (z)

������!

�0F (z)

“

I(z)h›i

! 0

Figure 3.2: The Koszul complex from (3.2) for n = 2. The sequences are exact, and the module above the
arrow denotes the image of that morphism.

for each 0 Æ k Æ n. If SÕ
™ S, then there is a canonical morphism cS,SÕ ColimSÕ M æ ColimS M .

These give rise to morphisms

�kM =
n

SÕœ([n]
n≠k)
ColimSÕ M

Ÿk
≠æ

n

Sœ([n]
n≠k+1)

ColimS M = �k≠1M

that are defined by their non-zero components

(≠1)jcS,S\{sj} : ColimS\{sj} M æ ColimS M

for S = (s1 < · · · < sj < · · · < sn≠k). The sign rule ensures that (�•M,Ÿ•) is a chain complex.
Lemma 3.2.9. The assignment M ‘æ �•M is a functor.

Definition 3.2.10. We call the functor �• the Koszul complex functor.
Remark. The complex from Remark 2.4.1 is not an instance of this functor, but follows the
same combinatorics. There exist several di�erent but closely related notions of “the” Koszul
complex.

Proof of Theorem 3.2.8. For a free module F (z), the sequence

0 æ �nF (z) æ �n≠1F (z) æ · · · æ �0F (z) æ ‹F (z)È‘Í. (3.1)

is exact. The last morphism is the canonical morphism

�0F (z) = ColimF (z) = Lim I(z)È‘Í æ I(z)È‘Í = ‹F (z)È‘Í.

One may check (e.g., using [65, Corollary 6.6 or Theorem A6.6]) that all modules �kF (z) are
flat1, so (3.1) sequence is a flat resolution of ‹F (z)È‘Í. see Figure 3.2. Let F• be a bounded
complex of free modules. Using functoriality of �• and ‹, we get an exact sequence

�•F• : 0 æ �nF•¸ ˚˙ ˝
F•

æ �n≠1F• æ · · · æ �0F• æ ‹F•È‘Í æ 0 (3.2)

of chain complexes, given by taking a shifted copy of (3.1) for every summand F (z) in a direct
sum decomposition of F•. We unsplice (3.2) into short exact sequences

0 0 0

U (n≠1)
• U (1)

•

0 F• �n≠1F• �n≠2F• �0F• ‹F•È‘Í 0

F• U (n≠2)
• ‹F•È‘Í

0 0 0

· · · (3.3)

1A graded module F is flat if the graded module tensor product functor ≠¢ F is exact.

44

3.2 The Calabi-Yau-property of persistence modules

with chain complexes U (k)
• for each k. In the derived category D

b(VecZ
n

) (see Section 3.2.1
below for the notion of the derived category), each of these short exact sequences gives a triangle
[127, §10.4.9]. We obtain connecting homomorphisms

ˆ(n≠1) : U (n≠1)
• [1] æ F•, ˆ(n≠2) : U (n≠2)

• [1] æ U (n≠1)
• , . . . ˆ(0) : ‹F•È‘Í[1] æ U (1)

•

in D
b(VecZ

n

). These descend to maps fitting into the long exact sequences

· · · Hd+1(�n≠1F•) Hd+1(U (n≠1)
•) Hd(F•) Hd(�n≠1F•) · · · ,

· · · Hd+2(�n≠2F•) Hd+2(U (n≠2)
•) Hd+1(U (n≠1)

•) Hd+1(�n≠2F•) · · · ,

· · · Hd+n(�0F•) Hd+n(‹F•È‘Í) Hd+n≠1(U (1)
•) Hd+n≠1(�0F•) · · · ,

ˆ
(n≠1)

ˆ
(n≠2)

ˆ
(0)

·
·
·

(3.4)
induced by the short exact sequences (3.3). By assumption, ColimS Hd(F•) = 0 for all d and
for all S with |S| > 0. The functor ColimS is exact for all S because it is a directed colimit. In
particular,

Hd(�kF•) =
m

|S|=k
Hd(ColimS F•) = 0

for all k < n. Therefore, the long exact sequences (3.4) show that all connecting homomor-
phisms ˆ(k) are quasi-isomorphisms. Thus,

ˆ(n≠1)
¶ · · · ¶ ˆ(0) : ‹F•[n]È‘Í ≠æ F•

is a quasi-isomorphism.

A proof in a more general context can be found in [84, Lemma 4.1].

Proof of Theorem A. With N•(Kú) = (‹C•(Kú)È‘Í)ú, Theorem 3.2.8 gives

Hd+n(N•(Kú))ú ≥= Hd(N•(Kú)ú[n]) ≥= Hd(‹C•(Kú)È‘Í[n]) ≥= Hd(C•(Kú)) = Hd(Kú).

Corollary 3.2.11. Let M œ VecZ
n

be finitely supported.

(i) If F• is a free resolution of M , then ‹F•[n]È‘Í is an injective resolution of M .

(ii) If I• is an injective resolution of M , then ‹≠1I•[≠n]È≠‘Í is a free resolution of M .

(iii) If F• is a free resolution of M , then (‹F•[n]È‘Í)ú is a free resolution of Mú
.

3.2.1 Remarks on Theorem 3.2.8
One-parameter persistence For n = 1, we have C•(K,Kú) ≥= ‹C•(Kú)È1Í. If K is acyclic,
then Theorem 3.2.8 gives back the isomorphism Hd(Kú) ≥= Hd+1(K,Kú) we already obtained
from (2.2).

Relation to derived categories Recall that the derived category D(C) of an abelian category
C is the triangulated category whose objects are chain complexes of persistence modules, and
whose morphisms are HomD(C)(X,Z) = {X•

ƒ
Ω≠ Y• æ Z•}/≥, where X•

ƒ
Ω≠ Y• is a quasi-

isomorphism and ≥ is a certain equivalence relation. That is, the derived category is obtained
via formally inverting quasi-isomorphisms by imposing a calculus of fractions [124], analogous
to the construction of localization of rings; see [127, §10] for details.
The bounded derived category D

b(VecZ
n

) is the full subcategory of D(VecZ
n

) of chain com-
plexes C• whose homology has finite total dimension [84, §4.1]; that is, Hd(C•)z = 0 for all but
finitely many d and z. Let Kb(PVecC) and K

b(IVecC) denote the respective bounded homotopy

45

Chapter 3 Persistent cohomology using the Calabi–Yau property

0!

F (�z+›)

,!

�1F (�z+›)

������!

�0F (�z+›)

“

I(�z)

! 0

(a) Same as Figure 3.2, but shifted by 2z � ›. The coordinates drawn in opposite direction. If C•
(K⇤) =L

i
I(�zi), then C•

(K;K⇤) is a direct sum of shifted copies of the module drawn over the middle arrow.

0

I(z�›)

”

�1I(z�›)

 ������

�0I(z�›)

 -

F (z)

 0

(b) The Koszul complex from (3.6). Dual of (a). If C•(K⇤) =
L

i
F (zi), then C•(K;K⇤) is a direct sum of

shifted copies of the module drawn over the middle arrow.

Figure 3.3: Illustration of the variations of the Koszul complex for n = 2. The sequences are exact, and the
module above the arrow denotes the image of that morphism.

categories; that is, Kb(PVecC) (and analogously, Kb(IVecC)) is the triangulated category whose
objects are chain complexes of projective (resp., injective) persistence modules with homology
of finite total dimension, and whose morphisms are chain homotopy classes of morphisms of
chain complexes. Recall that D

b(C), Kb(PVecC) and K
b(IVecC) are equivalent as triangulated

categories. We note:

1. Theorem 3.2.8 states that ‹ ≥= [≠n]È≠‘Í as endo-functors of Db(VecZ
n

).

2. The Koszul complex �•F (0) concentrated in degrees n, . . . , 0 satisfies ≠¢�•F (0) ≥= ‹È‘Í
as endo-functors of Db(VecZ

n

). Note that there exist di�erent but similar definitions of
“the” Koszul complex, which all follow the same combinatorics, e.g., the complex defined
in Remark 2.4.1 or the one from [84, §4.2].

3. A triangulated category T is n-Calabi–Yau if [n] is a Serre functor [47, §2, 77]; that is,
if HomT (A•, B•)ú ≥= HomT (B•, A•[n]) for all A•, B•. One can show that [n] is a Serre
functor if ‹ ≥= [≠n]; see [84, Lemma 4.1]. In [84, §4.2], it is shown that Db(k[x1, . . . , xn])
is n-Calabi–Yau, using a slightly di�erent Koszul complex than we do. Theorem 3.2.8
can be viewed as a Zn-graded version of this.

Relation to relative cochains We can also state a dual version of Theorem 3.2.8:

Theorem 3.2.12. If F •
is a cochain complex of free modules such that H•(F •) is finitely

supported, then F •
ƒ ‹F •

È‘Í[≠n].

46

3.3 The Nakayama functor and matrices

Proof. The proof is analogous to the proof of Theorem 3.2.8, with the commutative diagram

0 0 0

U•
(n≠1) U•

(1)

0 F • �n≠1F • �n≠2F • �0F • ‹F •
È‘Í 0

F • U•
(n≠2) ‹F •

È‘Í

0 0 0

· · · (3.5)

of cochain complexes.

Corollary 3.2.13. If ColimS Kú is acyclic for all S œ
![n]

k

"
for 0 < k < n, then

Hd+n(N•(Kú)) ≥= Hd+1(K,Kú).

Proof. With F • = N•(Kú) and ‹N•
È‘Í = C•(Kú), we obtain U•

(1) = C•(K,Kú); see Figure 3.3a.
From (3.5), we obtain the sequence

Hd+n(N•(Kú)) ≠æ Hd+n≠1(U•
(n≠1)) ≠æ · · · ≠æ Hd+1(K,Kú) ≠æ Hd(Kú)

of connecting homomorphisms. If ColimS Kú is acyclic for all S œ
![n]

k

"
for 0 < k < n, then

�kF • is acyclic for all 0 < k < n, so this is a sequence of isomorphisms.

Proof using limits Alternatively, Theorem 3.2.8 can be proven using limits instead of colimits.
For 1 Æ k Æ n, let �kM :

m
Sœ([n]

n≠k) LimS M . Then there is an exact sequence

0 æ ‹≠1I(z)È‘Í æ �0I(z)È‘Í æ · · · æ �n≠1I(z)È‘Í æ �nI(z)È‘Í¸ ˚˙ ˝
I(z)È‘Í

æ 0; (3.6)

see Figure 3.3b. Let F• be a chain complex of free modules, and let I• = ‹F•[n]È‘Í such that
I• ƒ F•. Taking shifted copies of (3.6) and unsplicing the sequence into short exact sequence
analogously to (3.4) yields a commutative diagram

0 0 0

U Õ(1)
• U Õ(n≠1)

•

0 F• �0I• �1I• �n≠1I• I• 0

I• U Õ(2)
• I•

0 0 0

· · · (3.7)

for suitable chain complexes U Õ(k)
• . Note that (3.7) is the dual of (3.5).

3.3 The Nakayama functor and matrices
It remains to describe the injective resolution ‹F•[n]È‘Í of M in terms of matrices representing
F•. To that end, we use matrices also to describe morphisms of injective modules. We say an
injective module I is of finite type if I œ IVecVecZn . Note that such a module is of the form
I ≥=

m
iœI

I(zi) for some finite indexing set I.

47

Chapter 3 Persistent cohomology using the Calabi–Yau property

Recall that a basis of a free module F can be identified with the choice of an isomorphismm
zœrkF

F (z) æ F .

Definition 3.3.1. An injective basis of an injective module I of finite type is an isomorphism
I ≥=

m
iœI

I(zi).

Lemma 3.3.2. A graded matrix M represents a morphism
m

j
I(cgM

j
) æ

m
i
I(rgM

i
) if and

only if M is valid.

Proof. This follows from Hom(I(z), I(zÕ)) =
)

k if zÕ Æ z

0 otherwise, .

In particular, a graded matrix represents a morphism of free modules if and only if it represents
a morphism of injective modules.

Lemma 3.3.3. A graded matrix represents a morphism f :
m

n

j=1 F (zj) æ
m

m

i=1 F (zÕ
i
) if and

only if it represents the morphism ‹f :
m

n

j=1 I(zj) æ
m

m

i=1 I(zÕi).

Proof. The functor ‹ is additive. Therefore, it su�ces to check the statements for morphisms
f : F (z) æ F (zÕ). If zÕ ⇥ z, then Hom(F (z), F (zÕ) = Hom(I(z), I(zÕ)) = 0, so let zÕ Æ z. Any
morphism f : F (z) æ F (zÕ) is of the form f = ⁄ÿzÕz for some ⁄ œ k, where ÿzÕz ÿzÕz : F (z) Òæ
F (zÕ) is the injective morphism with (ÿzÕz)v = idk for all v Ø z, and zero otherwise. Note that
ÿzÕÕzÕÿzÕz = ÿzÕÕz for zÕÕ Æ zÕ Æ z. Analogously, any morphism g : I(z) æ I(zÕ) is of the form
g = “fizÕz for some “ œ k, where fizÕz : I(z) æ I(zÕ) is the injective morphism with (fizÕz)v = idk
for all v Æ zÕ, and zero otherwise. Given a morphism f = ⁄ÿzÕ,z for some ⁄ œ k, we calculate

I(z)w
„

≠æ‹F (z)w = Hom(F (z), F (w))ú ‹f

≠æ Hom(F (zÕ), F (w))ú = ‹F (zÕ) „
≠1

≠æ I(zÕ),
µ ‘≠æ [„(µ) : ÿwz ‘æ µ] ‘≠æ [ÿwzÕ ‘æ „(µ)(ÿwzÕf) = ⁄µ] ‘≠æ ⁄µ,

where we use the isomorphism „ : I(z) æ ‹F (z) from Lemma 3.2.4. Hence, ‹f = ⁄fizÕ,z.

Theorem E. Let M be a finitely generated n-parameter persistence module with bounded sup-

port. For graded matrices U1, . . . , Un, the following are equivalent:

(i) U1, . . . , Un represent a free resolution 0 æ Fn

Un
≠≠æ · · ·

U1
≠≠æ F0 of M ,

(ii) U1, . . . , Un represent an injective resolution of I0
Un
≠≠æ · · ·

U1
≠≠æ In æ 0 of MÈ≠‘Í,

(iii) the graded transposes U€
1 , . . . , U€

n
represent a free resolution 0 æ G0

U
€
n

≠≠æ · · ·
U

€
1

≠≠æ G0 of

Mú
È‘Í.

In this case Iq = ‹Fn≠q = Gú
q
.

Proof. With Lemma 3.3.3, this follows from Theorem 3.2.8.

Example 3.3.4. Let M œ VecZ
2
be the module

M =

with components Mz = k if z lies in the shaded region in the following picture, and Mz = 0
otherwise. All structure morphisms between non-zero components of M are identities. Here,
the symbols , and denote the grades of the 0-, 1- and 2-syzygies of M , respectively. The
sequence

48

3.4 Pulling back modules from the colimit

0 æ

G2

1 1
≠1
1

2

≠≠≠≠æ

G2

(1 1
≠1 1)

≠≠≠≠≠≠æ

G0

æ

M

æ 0

is exact, so G• is a free resolution of M . With the same matrices, the sequence

0 æ

M

æ

‹G2È‘Í

1 1
≠1
1

2

≠≠≠≠æ

‹G1È‘Í

(1 1
≠1 1)

≠≠≠≠≠≠æ

‹G0È‘Í

æ 0

is exact, so ‹G•[2]È‘Í is an injective resolution of M .

Lemma 3.3.5. A chain complex C• of free modules is minimal if and only if (‹C•)ú is.

Proof. This follows from the additivity of ‹ and (≠)ú. Namely, if C• ≥= C Õ
•üB• for a homological

d-ball B = (· · · æ 0 æ F (z)
≥=
æ F (z) æ 0 æ · · ·), then we obtain the cochain complex

(‹C•)ú ≥= (‹C Õ
•)ú ü (‹B•)ú with the cohomological d ≠ 1-ball (‹B•)ú = (· · · æ 0 æ F (≠z)

≥=
æ

F (≠z) æ 0 æ · · ·).

3.4 Pulling back modules from the colimit
From now on, we consider Z2-persistence modules only. In this and the following section,
we explain how we actually compute Hd+2(N•(Kú)). In principle, this could be done by a
procedure analogous to the one described in Section 2.4. Namely, the dashed sequence in the
commutative diagram

Nd(Kú)

Zd+1(N•(Kú)) Nd+1(Kú) Zd+2(N•(Kú)) Hd+2(N•(Kú))

Nd+2(Kú)

Nd+3(Kú)

”
d+1

p
d

i
d+1

p
d+1

i
d+2

”
d+3

”
d+2

(3.8)

is a free resolution of Hd+2(N•(Kú)). We can obtain matrices Id+1, P d+1 representing the
morphisms id+1, pd+1 of this resolution with the method described in Section 2.4. However, this
would involve the coboundary maps ”d+2 and ”d+3, which is not feasible for clique complexes.
Instead, we propose a method that computes a free resolution of Hd+2(N•(Kú)) from ”d+1 only.
At the core of this approach lies the observation that the kernel of a map f : M æ N of free

persistence modules is determined by the kernel of the morphism colim f of vector spaces, such
that ker f can be reconstructed by “pulling back” colim f along the canonical morphism to the
colimit. The following makes this precise.
Recall the Functors Colim = � colim and Lim = � lim: VecZ

n

æ VecZ
n

. For a persistence
module M , let ColimM = � colimM , and let ÷M : M æ ColimM be the canonical morphism.
Note that ÷M is induced by the unit of the adjunction colim ‰ �.

Definition 3.4.1. For a module M œ VecZ
2
and a vector space V ™ colimM , let [V]M :=

÷≠1
M

(�V) ™ M .

49

Chapter 3 Persistent cohomology using the Calabi–Yau property

The submodule [V]M is the unique largest submodule of M whose colimit is V :

Lemma 3.4.2. For M œ VecZ
2
and V ™ colimM , we have

[V]M =
ÿ

{N ™ M | colimN ™ V }.

Proof. Let U := {N ™ M | colimN ™ V } If x œ [V]M , then ÷M (x) œ V . Therefore, the
submodule ÈxÍM of M spanned by x satisfies colimÈxÍM = È÷M (x)ÍV ™ V , so ÈxÍM œ U and
thus x œ

q
U . This shows [V]M ™

q
U . Conversely, let x œ N ™ M such that colimN =

÷M (N) ™ V . Then ÷M (x) œ V , so x œ ÷≠1
M

(V). Because V is closed under addition, this showsq
U ™ [V]M .

A persistence module is called torsion free if all its structure maps are injective. A free module
is torsion free.

Theorem F. If f : M æ N is a morphism and N is torsion free, then ker f = [colim ker f]M .

Proof. If N is torsion free, then ÷N : N æ ColimN is injective. Every submodule L ™ M
satisfies L ™ [colimL]M , so in particular ker f ™ [colim ker f]M . It remains to show the other
inclusion [colim ker f]M ™ ker f . Consider the commutative diagram

[colim ker f]M

ker f M N

Colim ker f ColimM ColimN.

j

÷[colim ker f]M
i

÷ker f

f

÷M ÷N

Colim i Colim f

The functor Colim is a directed colimit and thus exact. Therefore, Colim ker f = kerColim f .
This implies

÷Nfj = (Colim f)(Colim i)÷[colim ker f]M = 0.

Since ÷N is injective, we obtain fj = 0, so the injective morphism j factors uniquely through
ker f . This proves the claim.

The lemma shows that ker f is the largest submodule of M whose colimit is colim ker f . In
particular, one can reconstruct ker f from colim ker f .

Corollary 3.4.3. If M is free of finite rank and V ™ colimM , then [V]M is free.

Proof. Consider the canonical projection p̃ : colimM æ colimM/V . Let z0 Æ z for all z œ rkM ,
and let N be the persistence module with Nz = {

colimM/V if z0 Æ z,
0 otherwise and NzÕ,z = id for all

z0 Æ z Æ zÕ. Then N is free of graded rank {z0 | z œ rkM} and satisfies colimN = colimM/V .
The morphism p := (�p̃)÷M : M æ N satisfies colim p = p̃. From Theorem F, we get that
[V]M = [ker p̃]M = ker p, which is free because it is a kernel of free modules in VecZ

2
; see

Corollary 2.3.20.

In more than two parameters, Corollary 3.4.3 may fail; that is, the pullback [V]M of V ™

colimF may not be free even if M is. If [V]M is not free, it has a minimal generating system
of larger cardinality than dimV .
Recall the lexicographic and colexicographic ordering ∞lex and ∞colex on Z2 from Defini-

tion 2.4.2. Fix a tuple z̨ œ (Z2)m and let zi = (xi, yi) for all i.

50

3.4 Pulling back modules from the colimit

Definition 3.4.4. With respect to z̨, the lex pivot of a non-zero vector b œ km, denoted by
l-piv

z̨
(b), is the largest index in {i|bi ”= 0} for which zi attains its ∞lex-maximal value. The colex

pivot, denoted by c-piv
z̨
(b), is defined analogously. For 0 œ km, we let l-piv

z̨
(0) = c-piv

z̨
(0) = 0.

A m◊n-matrix is bireduced with respect to z̨ if all its non-zero columns have distinct lex pivots
and distinct colex pivots with respect to z̨.

Notation 3.4.5. For a m◊ n-matrix B such that Bj ”= 0 for all j, let [B]z̨ denote the graded
matrix with entries u([B]z̨) = B, row grades rg[B]z̨ = z̨ and column grades cg[B]z̨

j
=

x
Bij ”=0 zi.

The graded matrix [B]z̨ is valid, and any valid graded matrix B̃ with u(B̃) = B and rgB̃ = z̨

satisfies cgB̃
j

Ø cg[B]z̨
j

for all j. Recall that for any z, zÕ œ Z2, we have z Æ zÕ if and only if
z ∞lex zÕ and z ∞colex zÕ. This implies that cg[B]z̨

j
is determined only by the lex and colex pivot

of Bj :
cg[B]z̨

j
=

fl

Bij ”=0
zi = (xl-pivBj , yc-pivBj). (3.9)

Let z̨ = (zi)i œ (Z2)n be a tuple of grades, let M =
m

m

i=1 F (zi) be a free module, let
(ei)i denote the standard basis of M , let V ™ colimM be a vector subspace, and let B be a
m◊ n-matrix that represents a basis of V with respect to the basis (÷M (ei))i of colimM .

Lemma 3.4.6. If B is bireduced, then [B]z̨ represents a basis of [V]M .

Proof. The graded matrix [B]z̨ represents a basis of a free submodule N ™ M with ÷M (N) = V .
We have to show that N = [V]M . Since B is a basis of V , we have N ™ [V]M .
For the converse inclusion, let v œ [V]M . We identify v with the unique valid graded column

vector that represents v with respect to the basis (ei)i of M and v̄ := ÷M (v) œ V with the un-
graded column vector that represents v̄ with respect to the basis (÷M (ei))i of colimM . Because
B is a basis of V , there exists a unique column vector w̄ such that v̄ = Bw̄. Let w be the graded
column vector with u(w) = w̄, row grades rgw = cg[B]z̨ and column grade cgw = g(v). Then
v = [B]z̨w. To show that v œ N , we have to show that w is valid. Because all columns B have
pairwise distinct lex and colex pivots, we have

l-piv
z̨
v = l-piv

z̨
Bw̄ = max{l-piv

z̨
Bj | wj ”= 0},

c-piv
z̨
v = c-piv

z̨
Bw̄ = max{c-piv

z̨
Bj | wj ”= 0}.

Therefore, if j is an index such that wj ”= 0, then l-piv
z̨
v̄ Ø l-piv

z̨
Bj and c-piv

z̨
v̄ Ø c-piv

z̨
Bj .

Because v is a valid graded column vector, we have

cgw = cgv Ø

fl

vi ”=0
zi

(3.9)= (xl-piv v, yc-piv v) Ø (xl-pivBj , yc-pivBj)
(3.9)= cg[B]z̨

j
= rgw

j

for every j with wj ”= 0, so w is valid.

Theorem 3.4.7. Let M be a free Z2
-persistence module of finite rank with a fixed basis, let

V ™ colimM be a subspace, and let B be a matrix representing a generating set of V . Then

Algorithm 10 calculates a graded matrix representing a basis of [V]M .

Proof. In each iteration of the first for-loop, the colex-pivot index of one column decreases, so
the loop terminates. When it does, all columns have distinct colex-pivots. Line (a) ensures
that no column with a larger lex-pivot is added to a column with a smaller one. Therefore, the
lex-pivots of the nonzero columns of B do not increase during the first for-loop. Analogously,
during each iteration of the second for-loop, the lex-pivot of a column decreases. When the
loop terminates, all nonzero columns have distinct lex-pivots. Line (c) ensures that no column

51

Chapter 3 Persistent cohomology using the Calabi–Yau property

Algorithm 10: Computes a basis of [V]M , where M is free of rank ~z , and V ✓ colimM.
Input: An m ⇥ n-matrix B representing a generating set of V , ~z = (zi)i 2 (Z

2
)
m.

Output: A graded m ⇥ n-matrix whose nonzero columns represent a basis of [V]M .
function Bireduce(B):

p 0 2 N
n

for j 0 = 1; : : : ; n do
j j 0

while i c-piv
~z
(Bj) 6= 0 do

if pi = 0 then pi = j ; break
(a) if l-piv

~z
(Bj) < l-piv

~z
(Bpi) then swap pi and j

Bj Bj � Bi j=BipiBpi

(b) p 0 2 N
n

for j 0 = 1; : : : ; n do
j j 0

while i l-piv
~z
(Bj) 6= 0 do

if pi = 0 then pi = j ; break
(c) if c-piv

~z
(Bj) < c-piv

~z
(Bpi) then swap pi and j

Bj Bj � Bi j=BipiBpi

return [B]~z

with a larger colex-pivot is added to a column with a smaller one. Since all nonzero columns
have distinct colex-pivots after the first for-loop, the colex-pivots of the columns do not change
during the second for-loop. Therefore, when the algorithm terminates, all nonzero columns of
B have pairwise distinct lex- and colex-pivots, so B is bireduced. The statement then follows
from Lemma 3.4.6.

Remark. Let B œ kl◊m and z̨ œ (Z2)l as in Notation 3.4.5. The procedure Bireduce()
(Algorithm 10) uses the following particularity of Z2: if two columns Bj and Bk have the same
lex- or colex-pivot w.r.t. z̨, then the respective columns of [B]z̨ have comparable grades. This
need not be true for z̨ œ (Zn)l for n > 2.

3.5 Computing a free resolution of H•
(N

•
(K⇤))

In this section, we explain how to use Bireduce() (Algorithm 10) to compute a minimal
free resolution of Hd+2(N•), where N• is an eventually acyclic cochain complex of free two-
parameter persistence modules. For example, N• = N•(Kú) if Kú is eventually acyclic. The
dashed sequence in the commutative diagram

Nd

0 Zd+1(N•) Nd+1 Zd+2(N•) Hd+2(N•)

Nd+2

”
d+1

p
d

i
d+1

p
d+1

”
d+2 i

d+2

(3.10)

is a free resolution ofHd+2(N•). Chose a basis ofN•, and letD• be the graded matrix represent-
ing ”•. Because N• is eventually acyclic, the morphism colim pd : colimNd

æ colimZd+1(N•)
is surjective. In other words, the ungraded matrix underlying Dd+1 represents a generating sys-
tem of colimZd+1(N•). When applied to Dd+1, Algorithm 10 thus computes a graded matrix

52

3.5 Computing a free resolution of H•(N•(Kú))

Id+1 that represents a basis of the free submodule

[colimZd+1(N•)]Nd+1 ™ Nd+1.

According to Theorem F, we have

[colimZd+1(N•)]Nd+1 = Zd+1(N•).

Therefore, Bireduce() (Algorithm 10) allows us to compute a basis

Id+1 := Bireduce(Dd+1)

of Zd+1(N•) from Dd+1; i.e., a matrix representing the morphism id+1. It remains to compute
a graded matrix P d+1 representing the morphism pd+1. This can be done using the following
consequence of Corollary 3.2.11:

Corollary 3.5.1. If 0 æ Fn

fn
≠æ · · ·

f1
≠æ F0 æ M is a free resolution of a finitely supported

Zn
-persistence module M , then (‹F0)ú = ker(‹f2)ú.

Proof. Theorem 3.2.8 If

0 Fn · · · F1 F0 M
fn f2 f1

is a free resolution of M , then by Corollary 3.2.11,

M ‹Fn · · · ‹F1 ‹F0 0‹fn ‹f2 ‹f1

is an injective resolution of M and the dual sequence

0 (‹F0)ú (‹F1)ú · · · (‹Fn)ú Mú(‹f1)ú (‹f2)ú (‹fn)ú

is a free resolution of Mú. In particular, (‹F0)ú = ker((‹f2)ú).

This shows that in the situation of (3.10), we have

(‹Zd+2(N•))ú = ker(‹id+1)ú,

where (‹id+1)ú is a morphism of free modules. The morphism (‹pd+1)ú is the inclusion

(‹pd+1)ú : ker(‹id+1)ú Òæ (‹Nd+1)ú.

If id+1 is represented by the graded matrix Id+1, then according to Lemma 3.3.3, the morphism
(‹id+1)ú is represented by the graded matrix (Id+1)€, and (‹pd+1)ú is represented by some
matrix (P d+1)€, such that P d+1 represents pd+1. Because (‹pd+1)ú is the kernel inclusion of a
morphism of free modules, the matrix (P d+1)€ can be computed by using Ker() (Algorithm 6).

Theorem 3.5.2. Let N•
be an eventually acyclic cochain complex of free modules. Then

Algorithm 11 computes free resolutions of Hd(N•).

Remark 3.5.3 (Clearing). In general, Dd+1 is not injective. As in one-parameter persistent
cohomology, the first loop in Algorithm 10 would spend some time on reducing the columns of
Dd+1 that are eventually reduced to zero if Algorithm 10 was applied to Dd+1. The clearing
scheme in Algorithm 11, line (a) avoids this.

53

Chapter 3 Persistent cohomology using the Calabi–Yau property

Proof of Theorem 3.5.2. For legibility, we omit the dimension superscripts in the following;
every matrix I and P and every morphism i and p has a superscript d+ 1.
Because N• is eventually acyclic, we have that

colimBd(N•) = Bd(colimN•) = Zd(colimN•) = colimZd(N•)

for all d. The underlying matrix u(Dd+1) of Dd+1 thus represents a generating system of
colimZd(C•).
Claim. After the clearing step in line (a), we still have that u(Dd+1) represents a generating
system of colimZd(C•).
Proof of claim. Let Î denote the matrix Î := Bireduce(Dd) obtained as I in the previous
iteration. Because Dd+1Dd = 0 and Bireduce(Dd) performs only column operations, we
have Dd+1Î = 0. Then every column Îj with pivot i represents a linear relation [Dd+1]i =q

iÕ<i
ÎiÕj [Dd+1]iÕ of the columns of Dd+1. Setting the columns [Dd+1]i to zero for every pivot

i œ q of Îj thus does not change the image of u(Dd+1).
It follows from Theorem 3.4.7 and Corollary 3.5.1 that the matrices

I := Bireduce(Dd+1)
P := (Ker(I€))€

represent the free resolution

0 æ Zd+1(N•) i
≠æ Nd+1 p

≠æ Zd+2(N•) æ Hd+2(N•)

of Hd+2(N•). By Proposition 2.3.23, replacing I by the minimal (in the sense of Defini-
tion 2.3.21) graded matrix I Õ := Minimize(I) fits into a free resolution

0 æ Z Õd+1(N•) I
Õ

≠æ C Õd+1 P
Õ

≠æ Zd+2(N•) æ Hd+2(N•)

of Hd+2(N•) for some matrix P Õ. We could compute P Õ by

P Õ := (Ker((I Õ)€))€

However, the thus computed matrix P Õ need not be minimal. To address this, recall that
MGSWithKer() (Algorithm 8) can be used to compute matrices

((Ĩ)€, (P̃)€) := MGSWithKer((I Õ)€),

where im Ĩ€ = im(I)€, and P̃€ is a minimal matrix (in the sense of Definition 2.3.21) represents
a basis of ker Ĩ€. These fit into a free resolution

0 æ Z̃d+1 Ĩ
≠æ C̃d+1 P̃

≠æ Z̃d+2
æ Hd+1(N•)ú

of Hd+1(N•)ú for some free modules Z̃d+1, C̃d+1 and Z̃d+2. The matrix P̃ is minimal because
P̃€ is, and Ĩ is minimal because already I Õ was minimal. Hence, this is a minimal free resolution
of Hd+1(N•)ú.

Theorem 3.5.2 also shows:

Theorem C. Let Kú be an eventually acyclic one-critically filtered simplicial complex. Then

Hd+2(N•(Kú)) can be computed from the coboundary map ”d+1 : Nd(Kú) æ Nd+1(Kú).

54

3.6 Eventual acyclicity of Kú is necessary

Algorithm 11: Cohomology algorithm. Computes a minimal free resolution of H•
(N•

) for a cochain complex
N• of free Z

2-modules, using clearing.
Input: Graded matrices D• representing N•.
Output: Pairs of graded matrices representing a free resolution of Hd

(N•
) for d = 0; 1; : : : .

q ; . pivots for clearing

for d = 0; 1; : : : do
(a) for j 2 q do [Dd+1

]j 0 . clearing

(b) I Bireduce(Dd+1
) . see Algorithm 10

q {piv Ij | Ij 6= 0} . pivots for next iteration

(c) I 0; r; c Minimize(I) . see Algorithm 3

Ĩ>; P̃> MGSWithKer((I 0)>) . see Algorithm 8

yield Ĩ; P̃ . min. free res. of Hd+2
(N•

)

Remark. Recall that a matrix is minimal if and only if its graded transpose is. Since we need
(I Õ)€ anyway, it makes sense to replace line (c) by

((I Õ)€, r, c) Ω Minimize(I€).

In other words, we can either first minimize I and then take the graded transpose, or first take
the transpose and then minimize. Experiments have shown that the version in line (c) is slightly
faster.
Remark (Base change). It is possible to change the basis of Nd before or after line (b). In this
case, the algorithm computes a di�erent but equivalent free resolution. In particular, one may
choose a basis of Nd that makes later computations less expensive. We will elaborate on this
idea in Section 5.1.5.

3.6 Eventual acyclicity of K⇤ is necessary
Recall that in one-parameter persistence (where N•(Kú) = C•(K,Kú)), the absolute and rel-
ative cohomology H•(Kú) and H•(K,Kú) determine each other uniquely even if Kú is not
eventually acyclic, see Proposition 2.2.10 and Corollary 2.2.11. In two and more parameters,
this is not true anymore, as we will see in this section. Specifically, we show:
Theorem B(a). There exist one-critically two-parameter filtered simplicial complexes Kú, Lú
and Mú that are not eventually acyclic, such that

(i) H•(Kú) ”≥= H•(Lú), but H•(N•(Kú)) ≥= H•(N•(Lú)), and
(ii) H•(Kú) ≥= H•(Mú), but H•(N•(Kú)) ”≥= H•(N•(Mú)).

Proof. LetKú, Lú andMú be the one-critically filtered simplicial complexes in Figure 3.4. These
are not eventually acyclic. We compute H•(≠) and H•(N•(≠)) for each of these complexes.
For simplicity, we compute non-reduced (co)homology; an example using reduced homology can
be obtained by adding one additional vertex.
The homology and cohomology modules are shown in Figures 3.5 to 3.10. One sees that

Hd(Kú) ≥= Hd(Mú) (and thus also Hd(Kú) ≥= Hd(Mú)) and Hd(N•(Kú)) ≥= Hd(N•(Lú)) for
all d. The module H0(Kú) is indecomposable because it contains an indecomposable quiver
representation, while H0(Lú) is a direct sum of nonzero submodules, so H0(Kú) ”≥= H0(Lú) (and
thus also H0(Kú) ”≥= H0(Lú)). Similarly, H2(N•(Kú)) is indecomposable, while H2(N•(Mú))
is a direct sum of nonzero submodules, so H2(N•(Kú)) ”≥= H2(N•(Mú)). This establishes the
desired example.

This example also shows that H•(Kú) and H•(N•(Kú)) need not determine each other
uniquely even if colimKú is acyclic (but colim{1} Kú or colim{2} Kú is not).

55

Chapter 3 Persistent cohomology using the Calabi–Yau property

i

e

x

f

;
y

(a) K⇤

j

g

x

z

e

f

i

h

;
y

(b) L⇤

j

e

z

g h

i

x

f

;
y

(c) M⇤

Figure 3.4: The filtered simplicial complexes used in Theorem B(a). The filtration goes left to right and
bottom to top.

Figure 3.5: Homology of the complex K⇤ from Figure 3.4a. The
module H0(K⇤) is generated by x; y . These are subject to the
relations @e = @f = x + y . Hence, the generators x and y are
identified when e or y are present in the filtration. Analogously
for H1(K⇤). The module H0(K⇤) is indecomposable, because it
contains an indecomposable quiver representation.

x

y

@f

@e
(1

0)

(0
1)

(1; 1)

(a) H0(K⇤)

e + f

@i

(b) H1(K⇤)

Figure 3.6: Cohomology of N•
(K⇤) for

the complex K⇤ from Figure 3.4a. The
coordinate axes are drawn pointing down-
ward. Therefore, the generator labeled,
e.g., “i” really means the basis element
of N•

(K⇤) of grade �g(i) corresponding
to the cell i . The symbols � denote the
negated grades of the respective cells of
K⇤. That is, the label “x + y” is placed
at �g(x + y) = �g(x) _ �g(y).

x + y

x

y

(a) H0
(N•

(K⇤))

e + f
‹x

‹y

e

f

(b) H1
(N•

(K⇤))

i

‹f

‹e

(c) H2
(N•

(K⇤))

Figure 3.7: Homology of the complex L⇤
from Figure 3.4b. The generators x; y of
H0(K⇤) are identified by @e = @f = x+ f
at g(x) _ g(y), and z + x generates a
direct summand “killed” by @g and @h.

x
@e; f

y

�
@h

@g

z + x

(a) H0(L⇤)

g + h

j

(b) H1(L⇤)

Figure 3.8: Cohomology of N•
(L⇤) for

the complex L⇤ from Figure 3.4b. Note
that e + f + g ⌘ e + h + f (mod ‹z).

x + y + z

x

y

z

(a) H0
(N•

(L⇤))

e + f + g

‹x

‹y

g

h

(b) H1
(N•

(L⇤))

j

‹h

‹g

(c) H2
(N•

(L⇤))

56

3.7 Making Kú eventually acyclic

x

y

@f

@e
(1

0)

(0
1)

(1; 1)

(a) H0(M⇤)

g + h + f

@j

e

f

(b) H1(M⇤)

Figure 3.9: Homology of the complex M⇤ from Figure 3.4c.
The generator g + h + f of H1(M⇤) is equivalent (mod @i) to
g + h + e. The module H0(M⇤) is indecomposable.

x + y + z

x

y

z

(a) H0
(N•

(M⇤))

e + f + g

‹x

‹y

(b) H1
(N•

(M⇤))

j

‹g �
i‹e

‹f

(c) H2
(N•

(M⇤))

Figure 3.10: Coho-
mology of N•

(M⇤)

for the complex M⇤
from Figure 3.4c.

3.7 Making K⇤ eventually acyclic
For a given filtered complex Kú and z œ Zn, we consider two ways to construct an eventually
acyclic chain complex C̃• such that (C̃•)w = C•(Kw) for all w Æ z. Inspired by the first way
presented in Section 3.7.1, we refer to this as coning o� Kú, although we do not build an actual
cone in all cases. The motivating situation for this is that we choose z > g(‡) for all ‡ œ Kú,
so that everying “interesting” in Kú happens below z.

3.7.1 Simplicially coning o� K⇤

Assume that z = (z1, . . . , zn) > g(‡) for all ‡ œ Kú, and let 1 Æ k Æ n. For w = (w1, . . . , wn) œ
Zn let w|k

z
œ Zn be obtained by replacing the kth coordinate of w by zk. We define the

one-critically filtered simplicial complex K̃ú with

K(d)
ú = K(0)

ú fi

I
{a} if d = 0,
{‡̃ | ‡ œ K(d≠1)

ú } if d > 0,

for ‡̃ := ‡fi{a}, equipped with the grading g(a) :=
w

‡œKú
g(‡)|k

z
and g(‡̃) := g(‡)|k

z
. If wk Ø zk,

then K̃w is a cone with apex a and thus contractible. If wk < zk, then K̃w = Kw. The same
construction can be applied on the level of chains. For w œ Zn let F (z)|k

z
:= F (w|k

z
). Then

C̃• := C•(K̃ú) is the chain complex with

C̃d := Cd(Kú)ü Cd≠1(Kú)|kz , ˆd :=
1

ˆd (≠1)d
ˆd≠1

2
.

Repeatedly applying this construction to C̃• for all 1 Æ k Æ n gives an eventually acyclic
chain complex C̃• such that (C̃•)w = (C•)w if w < z.

3.7.2 Coning o� K⇤ using homology resolutions
Alternatively, if C• is a chain complex of free modules, one can obtain a new complex Ĉ• by
adjoining only as many new basis elements to C• as necessary to turn Ĉ• eventually acyclic.
Let z œ Zn with z > w for all w œ rkCd for all d. For k Æ n, recall the exact functors

57

Chapter 3 Persistent cohomology using the Calabi–Yau property

colim{k} : VecZ
n

æ VecZ
n≠1

from Definition 3.2.6. We also define the exact functor

Ek : VecZ
n≠1

≠æ VecZ
n

,

M ‘≠æ (w1, . . . , wn) ‘æ
)

M(w1,...,wk≠1,wk+1,...,wn) if wk Ø zk,
0 otherwise.

A module F œ VecZ
n≠1

is free if and only if EkF is. In this case,

EkF ((w1, . . . , wk≠1, wk+1, . . . , wn)) = F ((w1, . . . , wk≠1, zk, wk+1, . . . , wn)).

Two parameters We first describe the construction for the case n = 2. Let z œ Z2 such
that z > w for all z œ rkCd for all d as above, and choose k œ {1, 2}. W.l.o.g., we assume
that k = 1. Consider the chain complex C Õ

• := colim{k} C• of free one-parameter persistence
modules. For each d, choose a free resolution Fd,• of Hd(C Õ

•) ≥= colim{k} Hd(C•) of length 1,
and let fd,0 : Fd,0 æ Hd(C Õ

•) be the augmentation morphism. Consider the diagram

0 Fd,1 Fd,0 Hd(C Õ
•) 0

C Õ
d+1 Zd(C Õ

•) Hd(C Õ
•) 0

„d,1

fd,1

„d,0

fd,0

ˆd+1 qd

(3.11)

of one-parameter persistence modules. Each of the two rows is exact and thus forms (in the case
of the lower row, the beginning of a) free resolution of Hd(C•). We construct the morphisms
„d,0 and „d,1 that make the diagram commute. We will use these to construct a chain complex
C̃• with (C̃•)w = (C•)w if wk < zk and (C̃•)w = (C̃ Õ

•)w otherwise.
Since qd is surjective and Fd,0 free, there exists a morphism „d,0 such that qd„d,0 = fd,0. This

implies qd„d,0fd,1 = 0. Because the lower row is exact, ˆd+1 surjects onto Bd(C Õ
•) = ker qd.

Since Fd,1 is free, there exists a morphism „d,1 such that ˆd+1„d,1 = „d,0fd,1. It follows from
commutativity of (3.11) than

C̃ Õ
d
:= C Õ

d
ü Fd≠1,0 ü Fd≠2,1, ˜̂

d :=
1

ˆd „d≠1,0 ≠„d≠2,1
0 0 fd≠2,1
0 0 0

2
: C̃ Õ

d
≠æ C̃ Õ

d≠1. (3.12)

defines a chain complex.

Lemma 3.7.1. For any number n of parameters, the morphism

–d,2 := (ˆd+1,„d,0) : C Õ
d+1 ü Fd,0 æ Zd(C Õ

•). (3.13)

is surjective.

Proof. To see this, note that for c œ Zd(C•), surjectivity of fd,0 allows us to choose a b œ Fd,0
such that fd,0(b) = qd(c). Then qd(c≠ „d,0(b)) = 0, so by exactness of the lower row, we obtain
that c = ˆd+1(a) + „d,0(b) = –d,2(ab) for some a œ C Õ

d+1.

Lemma 3.7.2. The complex C̃ Õ
• from (3.12) is acyclic.

Proof. Let (a, b, c) œ ker ˜̂d. Then c = 0, because fd≠2,1 is injective. Then ˆd(a)+„d≠1,0(b) = 0,
which gives

fd≠1,0(b) = qd≠1ˆd(a) = 0.
By exactness of the upper row, we may choose bÕ œ Fd≠1,1 such that b = fd≠1,1(bÕ). This implies
ˆd(a+ „d≠1,1(bÕ)) = 0. By surjectivity of –d,2, we may choose (aÕ, bÕÕ) œ Cd+1 ü Fd,0 such that

a+ „d≠1,1(bÕ) = ˆd+1(aÕ) + „d,0(bÕÕ).

This shows that (a, b, c) = ˜̂
d+1(aÕ, bÕÕ, bÕ), so C̃ Õ

• is acyclic.

58

3.7 Making Kú eventually acyclic

Let C̃• be the chain complex of free modules with

C̃d := Cd ü EkFd≠1,0 ü EkFd≠2,1,

˜̂
d :=

Q

a
ˆd Ek„d≠1,0 ≠Ek„d≠2,1
0 0 Ekfd≠2,1
0 0 0

R

b : C̃d ≠æ C̃d≠1.

Then (C̃•)w = (C•)w if wk < zk and (C̃•)w = (C̃ Õ
•)w otherwise. In particular, colimk C̃• = C Õ

•
is acyclic. If Fd,• is a minimal free resolution for each d, then C̃• is the smallest chain complex
with these properties.
Recall that C Õ

• is a chain complex of finite rank free one-parameter persistence modules, so
Bd(C Õ

•) and Zd(C Õ
•) are free and Fd,• = (0 æ Bd(C Õ

•) æ Zd(C Õ
•)) is a free resolution of Hd(C Õ

•).
In this case, C̃• is isomorphic to the cone construction described in Section 3.7.1. Note that
since Hd(C Õ

•) is a one-parameter persistence module, one can choose a basis of F Õ
• that exhibits

the barcode of Hd(C Õ
•) as described in Section 2.2, which can be computed e�ciently. We give

an algorithmic treatment of this approach in Section 5.1.4.
Applying the above construction to C̃• again, now for k = 2, gives an eventually acyclic

complex C̃• (C̃•)w = C•(Kw) for all w Æ z.

More than two parameters The above construction can be generalized inductively to more
than two parameters. Let C• be a chain complex of free n-parameter persistence modules. As
before, let C Õ

• := colim{k} C
Õ
•

0 æ Fd,n≠1
fd,n≠1
≠≠≠≠æ Fd,n≠2 æ · · · æ Fd,0

fd,0
≠≠æ Hd(C•) æ 0.

be a free resolution of H•(C Õ
•) of length n ≠ 1. For each d, we construct two sequences of

morphisms „d,0,„d,1, . . . ,„d,n≠1 and –d+2,2, . . . ,–d+n≠1,n≠1 that make the diagram

· · · Fd,3 Fd,2 Fd,1 Fd,0 Hd(C Õ
•) 0

· · · Ad,3 Ad,2 Ad,1 Ad,0 Hd(C Õ
•) 0.

„d,3

fd,3

„d,2

fd,2

2 „d,1

fd,0

1 „d,0

fd,0

0

–d,3 –d,2 –d,1 qd

(3.14)

commute and render the lower row exact, where

Ad,0 = Zd(C Õ
•)

Ad,1 = C Õ
d+1 –d,1 = ˆd+1,

Ad,2 = C Õ
d+2 ü Fd+1,0 –d,2 = (ˆd+2,„d+1,0),

Ad,i = Ad+1,i≠1 ü Fd+1,i≠2 –d,i =
3
–d+1,i≠1 (≠1)i„d+1,i≠2

0 fd+1,i≠2

4
(3.15)

for i > 1. We will then construct a chain complex C̃• such that (C̃•)w = (C•)w if wk < zk and
(C̃•)w is acyclic otherwise.

Lemma 3.7.3. There exists morphisms „d,i, such that the diagram (3.14) commutes, and such

that the morphisms –d,i make Ad,• a free resolution of Hd(C Õ
•). that is exact at Ad,i for all

i > 0.

Proof. We construct the morphisms „d,i inductively. As induction base, we note that qd surjects
onto Hd(C Õ) and Fd,0 is free, so there exists a morphism „d,0 such that the square 0 commutes.
This establishes the construction of „d,0. We next construct the morphism „d,1. Commutativity

59

Chapter 3 Persistent cohomology using the Calabi–Yau property

of 0 gives qd„d,0fd,1 = 0, so „d,0fd,1 factors through a unique morphism Fd,1 æ ker qd. The
lower row is exact at Ad,0 = Zd(C Õ

•). Therefore, the morphism –d,1 surjects onto im–d,1 =
ker qd. The universal property of the free (and thus projective) module Fd,1 gives a morphism
„d,1 such that 1 commutes. We next show that the Ad,• form an exact chain complex at Ad,1.
We have

–d,1–d,2 = ˆd+1(ˆd+2,„d+1,0) = (0, ˆd+1„d+1,0) = 0,
because im„d+1,0 ™ Ad+1,0 = Zd+1(C Õ

•). This shows that Ad,• forms a chain complex at Ad,1.
Exactness at Ad,1 was already shown in Lemma 3.7.1. With the same argument as for „d,1, we
get the morphism „d,2 that makes the square 2 commute.
As induction hypothesis, we assume for i Ø 2 that

–d+1,i≠1„d+1,i≠1 = „d+1,i≠2fd+1,i≠1 (3.16)
–d,i„d,i = „d,i≠1fd,i (3.17)

and that the chain complex (Ad+1,•,–d+1,•) is exact at Ad+1,i≠1. For the induction step, we
first show that Ad,• forms an exact complex at Ad,i. We have

–d,i–d,i+1 =
3
–d+1,i≠1 (≠1)i„d+1,i≠1

0 fd+1,i≠1

43
–d+1,i (≠1)i+1„d+1,i

0 fd+1,i

4

=
3
–d+1,i≠1–d+1,i ±–d+1,i≠1„d+1,i û „d+1,i≠1fd+1,i

fd+1,i≠1fd+1,i

4
(3.16)= 0.

To show acyclicity, let
3
a
b

4
œ ker–d,i = ker

3
–d+1,i≠1 (≠1)i„d+1,i≠2

fd+1,i≠2

4
™ Ad+1,i≠1 ü Fd+1,i≠2 = Ad,i. (3.18)

Then fd+1,i≠2(b) = 0. By exactness of Fd+1,•, there exists a c œ Fd+1,i≠1 such that b =
fd+1,i≠1(c). Then

–d+1,i≠1(a+ (≠1)i„d+1,i≠1(c))
(3.16)= –d+1,i≠1(a) + (≠1)i„d+1,i≠2fd+1,i≠1(c)

(3.18)= –d+1,i≠1(a) + (≠1)i„d+1,i≠2(b) = 0.

Because Ad+1,• is exact at Ad+1,i≠1 by the induction hypothesis, we get an m œ Ad+1,i such
that –d+1,i(m) = a+ (≠1)i„d+1,i≠1(c). Now one verifies that

–d,i+1

3
m
c

4
(3.15)=

3
–d+1,i (≠1)i+1„d+1,i≠1

fd+1,i≠1

43
m
c

4
=

3
–d+1,i(m) + (≠1)i+1„d+1,i≠1(c)

fd+1,i≠1(c)

4

=
3
a+ (≠1)i„d+1,i≠1(c) + (≠1)i+1„d+1,i≠1(c)

fd+1,i≠1(c)

4
=

3
a
b

4
,

using the definition of m and c in the last two steps. This shows exactness at Ad,i.
To construct „d,i+1, we note that

–d,i„d,ifd,i+1
(3.17)= „d,i≠1fd,ifd,i+1 = 0,

because Fd,• is a chain complex. By the universal property of ker–d,i, the morphism „d,ifd,i+1
factors through a morphism Fd,i+1 æ ker–d,i. By exactness at Ad,i+1, the morphism –d,i+1
surjects onto this kernel. The universal property of the free (and, in particular, projective)
module Fd,i+1 gives a morphism „d,i+1 such that

–d,i+1„d,i+1 = „d,ifd,i+1.

60

3.8 Fringe presentations

Recall that n is the number of parameters, so C Õ
• is a chain complex of n ≠ 1-parameter

modules, and Fd,• has length n≠ 1. Let C̃ Õ
• be the chain complex defined by

C̃ Õ
d
= Ad≠n≠1,n+1 = C Õ

d
ü Fd≠1,0 ü · · ·ü Fd≠n,n≠1

with the boundary morphism

˜̂Õ
d+n+1 : C̃ Õ

d+n+1 = Ad,n+1
–d,n+1
≠≠≠≠æ Ad,n

(10)
≠≠æ Ad,n ü Fd,n≠1 = Ad≠1,n+1 = C̃ Õ

d+n
.

Lemma 3.7.4. The objects C̃ Õ
• and morphisms ˜̂Õ

• define an acyclic chain complex.

Proof. This is a chain complex indeed, because

˜̂Õ
d+n+1

˜̂Õ
d+n+2 =

3
–d,n+1

0

43
–d+1,n+1

0

4
(3.15)=

3
–d+1,n ±„d+1,n≠1

fd+1,n≠1

43
–d+1,n+1

0

4
= 0

because Ad+1,• is a chain complex. To show that it is acyclic, let

a œ ker ˜̂Õ
d+n+1 = ker

3
–d,n+1

0

4
™ Ad,n+1 = C̃ Õ

d+n+1.

Because Ad,• is acyclic, we get a b œ Ad,n+2 such that a = –d,n+2(b). There is a commutative
diagram

Ad,i+1 Ad+1,i ü Fd+1,i≠1 Ad+1,i

Ad,i Ad+1,i≠1 ü Fd+1,i≠2,

–d,i+1

!
–d+1,i ±„d+1,i≠1

fd+1,i≠1

"

(id,0)

(–d+1,n+1
0)

for all i Ø 2. For i = n + 1, we have Fd+1,n = 0 because Fd+1,• has length n ≠ 1. Therefore,
we get Ad,n+2 = Ad+1,n+1 and –d,n+2 = (–d+1,n+1

0) = ˜̂Õ
d+n+2. In particular, a = –d,n+2(b) =

˜̂Õ
d+n+2(b). This shows acyclicity.

Now,

C̃d = Cd ü EkFd≠1,0 ü · · ·ü EkFd≠n,n≠1,

˜̂
d =

Q

ccccccccca

ˆd Ek„d≠1,0
0 Ekfd≠1,0

Ekfd≠1,1

Ekfd≠n,n≠1

0 0

≠Ek„d≠2,1

±Ek„d≠n,n≠1

R

dddddddddb

defines a chain complex, where we use that EkC Õ
• ™ C•. The chain complex C̃• is a complex

of free modules such that (C̃•)w = (C•)w if wk < zk and such that (C̃•)w is acyclic if wk Ø zk.
Repeating this for all 1 Æ k Æ n gives an eventually acyclic chain complex Ĉ• such that
(Ĉ•)w = (C•)w if w < z. This completes the construction.

3.8 Fringe presentations
Let M be a finitely supported persistence module. The close connection between free and
injective resolutions of M from Theorem 3.2.8 can be used to compute a fringe presentation of
M , in the sense of [104].

61

Chapter 3 Persistent cohomology using the Calabi–Yau property

Definition 3.8.1. A fringe presentation of a persistence module M is a morphism f : F æ I
such that F is free, I is injective, and M ≥= im f .

Recall the Koszul complex functor

�• : 0 æ

�n˙˝¸˚
id Ÿn

≠≠æ

�n≠1˙ ˝¸ ˚m
Sœ([n]

1) ColimS æ · · ·

· · · æ
m

Sœ([n]
n≠1) ColimS

¸ ˚˙ ˝
�1

Ÿ1
≠æ Colim¸ ˚˙ ˝

�0

æ 0

from Definition 3.2.10. Recall that �•F (z) is a flat resolution of the injective module I(z)È‘Í ≥=
‹F (z)È‘Í; that is, there is a quasi-isomorphism �•F (z) æ I(z)È‘Í. Since �nF (z) = F (z), there
is also a morphism �•F (z)[n] æ F (z) of chain complexes. Let (F•, ˆF

•) be a chain complex
of free modules, and let I• := ‹F•È‘Í. Then �•F• is a double complex, whose di�erentials we
denote by

Ÿij := ŸiFj : �iFj æ �i≠1Fj , ˆij := �iˆ
F

j
: �iFj æ �iFj≠1.

Let �̃• be the total complex of �•F•. Explicitly, �̃• is the chain complex with components and
boundary morphisms

�̃q =
n

i+j=q

�iFj , ˆ�̃
q
=

ÿ

i+j=q

((≠1)qŸij + ˆij).

Seeing F (z) and I(z)È‘Í as chain complexes concentrated in degree zero, we obtain morphisms

F (z) : F (z)

�•F (z)[n] : �nF (z) �n≠1F (z) · · · �0F (z)

I(z)È‘Í[n] : I(z)È‘Í

(3.19)

that give rise to the morphisms
I•[n]

f [n]
Ω≠ �̃ g

≠æ F•

of chain complexes, where f is a chain homotopy equivalence. If F• is eventually acyclic, then
according to Theorem 3.2.8, the morphism g is a quasi-isomorphism. We show that g is a chain
homotopy equivalence by constructing a homotopy inverse h of g, so that f [n]h will be the
desired fringe presentation.
The idea behind the following construction is to use the fact that by the assumption that

F• is eventually acyclic, the chain complexes colimS F• of free (n≠ |S|)-parameter modules are
acyclic and hence contractible for every S with |S| > 0. We may choose chain contractions of
colimS F• for every S, which give rise to chain contractions of �iF• for every 0 Æ i < n, and
use these to construct the desired homotopy inverse h of g.
Let 0 Æ i < n and S œ

! [n]
i≠k

"
. Because F• is eventually acyclic, colimS F• is an acyclic and

hence contractible chain complex. Let (sS
j
)jœZ be a chain contraction of colimS F•. Then the

maps sij :=
m

Sœ([n]
n≠i)�SsSj form a chain contraction (sij)jœZ of �iF•, where sij : �iFj æ

�iFj+1. Explicitly, this means that

ˆi,j+1sij + si,j≠1ˆij = id�iFj (3.20)

62

3.8 Fringe presentations

for all j œ Z and 0 Æ i < n. For k Ø 0, define the morphism

tijk =
;
id�iFj if k = 0,
si≠k,j+k≠1 Ÿi≠k+1,j+k≠1 ti,j,k≠1 if k > 0

<
: �iFj ≠æ �i≠kFj+k. (3.21)

Proposition 3.8.2. Let F• be an eventually acyclic chain complex of free modules, and let �̃•
be as above.

(i) There is a morphism h : F• æ �̃•[n] of chain complexes. Its component

hq : Fq ≠æ �nFq ü · · ·ü �0Fq+n¸ ˚˙ ˝
�̃q+n

is induced by the morphisms (≠1)j(q+1)tnqj : Fq æ �n≠jFqj for j = 0, . . . , n.
(ii) The morphism h is a chain homotopy inverse of the morphism g : �̃•[n] æ F•.

Proof. We first show two statements about the morphisms tijk. For simplicity of notation, we
only write the indices i and j for the rightmost morphism; for the others, these indices then are
determined.
Claim. For all i < n, j and k, we have

Ÿˆtijk = (≠1)kŸtkˆij . (3.22)

Proof of claim. By induction over k (with the induction step at (ú)), we get

Ÿˆtijk
(3.21)= ŸˆsŸti,j,k≠1

(3.20)= Ÿ(1≠ sˆ)Ÿti,j,k≠1
(†)= ≠ŸsˆŸti,j,k≠1

(†)= ≠ŸsŸˆti,j,k≠1
(ú)= (≠1)kŸsŸtk≠1ˆij

(3.21)= (≠1)kŸtkˆij ,

using that ˆ•• and Ÿ•• form a double complex in (†).
The claim implies that

ˆtijk ≠ Ÿti,j,k≠1
(3.21)= (ˆs≠ 1)Ÿti,j,k≠1
(3.20)= ≠sˆŸti,j,k≠1
(3.22)= ≠(≠1)k≠1sŸtk≠1ˆij
(3.21)= (≠1)ktkˆij . (3.23)

for all i < n, j and k. This allows us to drag symbols ˆ past the symbols tijk. Let ± stand for
(≠1)q and û for (≠1)q+1. We obtain that

ˆ�̃
q
hq =

Q

ccccca

ˆnq
±Ÿnq ˆn≠1,q+1

±Ÿn≠1,q+1 ˆn≠2,q+2

±Ÿ1,q+n≠1 ˆ0,q+n

R

dddddb

Q

ccccccca

id�nFq

ûtnq1
tnq2
...

(û)n≠1tn,q,n≠1
(û)ntnqn

R

dddddddb

=

Q

ccccca

ˆnq
û(ˆtnq1 ≠ Ÿnq)
≠(ˆtnq2 ≠ Ÿtnq1)

...
(û)n(ˆtnqn ≠ Ÿtn,q,n≠1)

R

dddddb

(3.23)=

Q

ccccca

ˆnq
±t1ˆnq
t2ˆnq
...

(±)ntnˆnq

R

dddddb
= hq≠1ˆ

F

q
.

63

Chapter 3 Persistent cohomology using the Calabi–Yau property

Therefore, h is a chain map. It remains to show that h is a homotopy inverse of g. We clearly
have gh = idF• . It remains to show that id�̃•

and hg are chain homotopic. For every j, let

‡j :=

Q

ccccccca

0
0 sn≠1,q+1
0 ût1sn≠1,q+1 sn≠2,q+2
0 t2sn≠1,q+1 ût1sn≠2,q+2 sn≠3,q+3
0 ût3sn≠1,q+1 t2sn≠2,q+2 ût1sn≠3,q+3 sn≠4,q+4
... . . .

R

dddddddb

: �̃q+n æ �̃q+n+1.

We remark that we have the following two recursive relationship of the symbols tijk, which both
follow directly from the definition:

ti,j,k+1
(3.21)= si≠k≠1,j+kŸi≠k,j+ktijk = ti≠1,j+1,ksi≠1,jŸi,j . (3.24)

From this, it follows that for all k Ø 0, we have

(Ÿtksij ≠ ˆtksij) + (≠1)k+1(tk+1sˆij ≠ tksŸij)
(3.24)= (1≠ ˆs)Ÿtksij + (≠1)ktksŸ(sˆij ≠ 1)
(3.20)= sˆŸtksij ≠ (≠1)ktksŸˆsij
(3.24)= sˆŸtksij ≠ (≠1)ksŸtkˆsij
(3.22)= sˆŸtksij ≠ sˆŸtksij
= 0. (3.25)

We will use this to show that the ‡j form a chain homotopy between id �̄• and hg. In favor of
legibility, we leave out the indices i and j of all morphisms sij , Ÿij , ˆij and tijk in the following.
We obtain

ˆ�̃
j+1‡j + ‡j≠1ˆ

�̃
j

=

Q

ca

ˆ

ûŸ ˆ

ûŸ ˆ

ûŸ ˆ

. . .

R

db

Q

ca

0
0 s
0 ±t1s s

0 t2s ±t1s s

... . . .

R

db+

Q

ca

0
0 s
0 ût1s s

0 t2s ût1s s

... . . .

R

db

Q

ca

ˆ

±Ÿ ˆ

±Ÿ ˆ

±Ÿ ˆ

. . .

R

db

=

Q

ccccca

0
±sŸ sˆ + ˆs

≠t1sŸ ûŸs± ˆt1sû t1sˆ ± sŸ sˆ + ˆs
±t2sŸ ≠Ÿt1s+ ˆt2s≠ t1sŸ ûŸs± ˆt1sû t1sˆ ± sŸ sˆ + ˆs

... . . .

R

dddddb

(3.25)=

Q

ccccca

0
±t1 id�n≠1Fq+1

≠t2 0 id�n≠2Fq+2

±t3 0 0 id�n≠3Fq+3
... . . .

R

dddddb

= id�̃n+q
≠hjgj .

This shows that hg and id�̃•
are chain homotopic.

64

3.8 Fringe presentations

Corollary 3.8.3. Let M œ VecZ
n

be finitely supported, F• be a free resolution of M of length

n, let tijk be as above, and let a : �0Fn æ ‹FnÈ‘Í be the augmentation map of the free resolution

�•Fn of ‹FnÈ‘Í. Then the composite morphism

F0 = �nF0
tn,0,n
≠≠≠≠æ �0Fn

a
≠æ ‹FnÈ‘Í

is a fringe presentation of M .

Proof. Because F• is a free resolution of M , there is a quasi-isomorphism F• æ M . According
to Proposition 3.8.2, we obtain the two homotopy equivalences

F• : · · · F1 F0 0 · · ·

�̃•[n] : · · · �̃n+1 �̃n �̃n≠1 · · ·

I•[n] : · · · 0 In In≠1 · · · ,

ƒ h h0

ƒ f [n] fn

of chain complexes, where f and h are as above, In = ‹FnÈ‘Í, and �̃n = �nF0 ü · · · ü �0Fn.
The image of the homotopy equivalence f [n]h is quasi-isomorphic to M . The only non-zero
component of f [n]h is

fnh0 = (0, . . . , 0, a)

Q

a
id�nF0
≠tn01
...

(≠1)ntn0n

R

b = (≠1)natn0n : F0 æ �0Fn æ In.

This shows that im atn0n = im fnh0 = M .

Two-parameter modules Recall that �iF• =
m

Sœ([n]
n≠k)�S colimS F•, where colimS F• is a

chain complex of (n≠ |S|)-parameter modules. If n = 2 and F• is a free resolution of a finitely
supported module M , then

�1F• = �{1} colim{1} F• ü�{2} colim{2} F•,

where colim{l} F• is a contractible chain complex of free one-parameter modules for l œ {1, 2}.
In this case, choosing a chain contraction of �1F• can be done as follows.
Let C• be a chain complex of free one-parameter persistence modules, and fix a basis of

C•. Applying the Standard Algorithm (Algorithm 1) to the boundary matrices of C• gives a
persistence basis of C•; cf. Example 2.2.7. If colimC• is acyclic, then a persistence basis of C•
is a collection (ci)iœJ ™ C• for some index set J such that (ˆci)iœJ fi (ci)iœJ is a basis of C•.
In this case, each pair (ˆci, ci) represents a bar (g(ˆci), g(ci)) œ barcH•(C•). If C• is acyclic,
then barcH•(C•) contains no bars of non-zero length; which means that g(ˆci) = g(ci) for all
i œ J . In particular, the assignment

C• æ C•+1, ˆci ‘æ ci, ci ‘æ 0

is a well-defined chain contraction of C•. Applying this to the contractible colim{l} F• complexes
of one-parameter modules for l œ {1, 2} and (by an analogous construction) to the contractible
complex �0F• of vector spaces gives the desired contractions s1 of �1F• and s0 of �0F•. In the
light of Corollary 3.8.3, these can be used to construct a fringe presentation of M .

65

Chapter 4

Persistent cohomology of freely resolved
cochain complexes
In this section, we introduce a di�erent approach to computing a minimal free resolution of
the two-parameter persistent cohomology of a one-critically Z2-filtered simplicial complex Kú.
Namely, we compute minimal free resolutions of H•(Kú) and H•(K,Kú) directly from the
cochain complexes C•(Kú) and C•(K,Kú), respectively. Using Corollary 3.2.11, these can be
used to obtain minimal free resolutions of H•(Kú) and H•(K,Kú). If K = colimZ2 Kú is acyclic,
then the long exact sequence (2.3) shows that Hd(Kú) ≥= Hd+1(K,Kú), which is why we study
both absolute and relative cohomology here.
Arguably, computing Hd(Kú) or Hd+1(K,Kú) suggests itself more easily than computing

Hd+2(N•(Kú)), given that one is ultimately interested in computing Hd(Kú). The computa-
tional challenge lies in the fact that as mentioned earlier, for two and more parameters, C•(Kú)
and C•(K,Kú) are no cochain complexes of free modules. Actually, these are not even complexes
of finitely generated modules.
To address this, we choose a z > g(‡) for all ‡ œ Kú, and replace C•(Kú) and C•(K,Kú)

by complexes RzC•(Kú) and RzC•(K,Kú) of finitely generated modules. We choose a free
resolution Cd

• of RzCd(Kú) for each d, and use these to compute minimal free resolutions of
Hd(RzC•(Kú)) and Hd+1(RzC•(K,Kú)).
We start in Section 4.1 by deriving explicit formulas for free resolutions of the cocycles,

coboundaries and cohomology of an arbitrary cochain complex C• of modules Cd, for which a
free resolution F d

• æ Cd are known for each d; see Theorem 4.1.7. In Section 4.2, we apply this to
the finitely generated modules RzC•(Kú) and RzC•(K,Kú). This gives minimal free resolutions
of H•(Kú) and H•(K,Kú), see Propositions 4.2.5 and 4.2.7. In Section 4.4, we devise further
algorithms to e�ciently compute a minimal free resolution of Hd+1(K,Kú). In particular, we
develop an optimization scheme analogous to clearing; see Proposition 4.4.6. We also show in
Theorem D (page 90) that if K is acyclic, then a minimal free resolution of Hd+1(K,Kú) can
be computed from the coboundary morphism ”d+1 : Cd(K,Kú) æ Cd+1(K,Kú); that is, it is
not necessary to know the coboundary morphism ”d+2 explicitly.
Recall from Corollary 2.2.11 that in one-parameter persistence, H•(Kú) andH•(K,Kú) deter-

mine each other uniquely up to isomorphism even if K is not acyclic. We show in Theorem B(b)
(page 98) that this is not the case for two or more parameters. This is analogous to the example
presented in Section 3.6.
Parts of the results presented in this chapter are joint work with Ulrich Bauer and Michael

Lesnick.

4.1 Free resolutions of (co)kernels, images and subquotients

Let A = k[x1, x2], Let L, M and N be finitely generated A-modules, let L
f

≠æ M
g

≠æ N be
morphisms such that gf = 0. let L•,M• and N• be free resolutions of L, M and N , and
let f• : L• æ M• and g• : M• æ N• be lifts of f and g. In this section, we derive closed

Chapter 4 Persistent cohomology of freely resolved cochain complexes

expressions for free resolutions of ker g, im f , coker f and ker g/ im f . Recall that according to
Corollary 2.3.20, kernels of morphisms of free modules are free. In particular, all pullbacks in
the following lemmas are free, because they are di�erence kernels of morphism of free modules.

Lemma 4.1.1 (Kernel resolution). Let g : M æ N be a morphism of finitely generated modules,

let M• and N• be free resolutions of M and N of length 2, and let g• : M• æ N• be a lift of g.
Then the sequence

K• : 0 æ M2
k2:=(m2

≠g2)
≠≠≠≠≠≠≠æ M1 üN2

k1:=(m1 0
g1 m2)

≠≠≠≠≠≠≠≠≠æ M0 ◊N0 N1 æ ker g (4.1)

is a free resolution of ker g, and

K• : 0 M2 M1 üN2 M0 ◊N0
N1 ker g

M• : 0 M2 M1 M0 M

Ÿ•

k2

Ÿ2 idM2

k1

Ÿ1=(idM1 ,0) Ÿ0 (idM0 ,0)

k0

Ÿ

m2 m1

(4.2)

is a lift of the canonical inclusion Ÿ : ker g Òæ M .

Remark 4.1.2. The matrices in (4.1) have morphisms as entries. This is a convenient way to
write down morphisms from and to direct sums of modules. Note that a priori, the matrix
k1 = (m1 0

g1 m2) from the statement of the lemma only defines a morphism M1 üN2 æ M0 üN1.
It is part of the lemma that this morphism factors through the submoduleM0◊N0N1 ofM0üN1.

Proof of Lemma 4.1.1. During the proof, we will explain the construction of the first row of the
following (supposedly commutative) diagram:

K• : 0 M2 M1 üN2 M0 ◊N0
N1 ker g 0

M• : 0 M2 M1 M0 M 0

N• : 0 N2 N1 N0 N 0.

k2

Ÿ2

k1

Ÿ1

k0

Ÿ0 Ÿ

m2
g2

m1
g1

m0
g0 g

n2 n1 n0

(4.3)

Its middle and lower row are exact, and the squares between them commute. We construct
maps k• and Ÿ• that render the first row exact and the diagram commutative.

Claim. There exists a surjective morphism M0 ◊N0
N1 æ ker g.

Proof of claim. Let K0 := M0◊N0
N1 = ker(g0,≠n1). The morphism Ÿ0 := (idM1 , 0) : K0 æ M

satisfies
gm0Ÿ0 = (gm0, 0)|K0

(†)= n0(0, n1)|K0 = 0,

using the definition of K0 in (†). By the universal property of ker g, there exists a unique
morphism k0 : K0 æ ker g such that m0Ÿ0 = Ÿk0. To show that k0 is surjective, let x œ ker g.
Since m0 is surjective, there exists an xÕ

œ M0 such that m0(xÕ) = Ÿ(x). We obtain

n0g0(xÕ) = gm0(xÕ) = g(x) = 0.

Exactness of the lower row implies that there exists a y œ N1 such that n1(y) = g0(xÕ). By
definition of K0, this means that (xÕ, y) œ K0. We obtain Ÿk0(xÕ, y) = m0(xÕ) = Ÿ(x). Since Ÿ
is injective, this implies that k0(xÕ, y) = x, hence k0 is surjective. This proves the claim.

68

4.1 Free resolutions of (co)kernels, images and subquotients

Now, consider ker k0 and the pullback

K0 ◊M0 M1 = ker(g0 ≠n1 0
idM0 0 ≠m1

) ™ M0 üN1 üM1. (4.4)

By injectivity of Ÿ, we have ker k0 = kerŸk0 = kerm0Ÿ0. Applying the claim to the morphism
m0Ÿ0 : K0 æ M (instead of g) shows that the morphism (idK0 , 0) : K0 ◊M0

M1 æ K0 surjects
onto ker k0. For K1 := M1 üN2, consider the morphism

– :=
1

m1 0
g1 ≠n2

idM1 0

2
: K1 ≠æ K0 üM1. (4.5)

Because n2 is injective, so is –. We show that im– = K0 ◊M0
M1. Since

(g0 ≠n1 0
idM0 0 ≠m1

)
1

m1 0
g1 ≠n2

idM1 0

2
= 0. (4.6)

we have im– ™ K0 ◊
M0

M1. To show that im– = K0 ◊
M0

M1, let (x, y, xÕ) œ K0 ◊
M0

M1.
According to (4.4), we get that x = m1(xÕ) and

n1(g1(xÕ)≠ y) = g0(m1(xÕ))≠ n1(y) = g0(x)≠ n1(y) = 0. (4.7)

Exactness of the lower row implies that g1(xÕ)≠ y = n2(yÕ) for some yÕ œ N2. Therefore,

–(xÕ

y
Õ) =

1
m1 0
g1 ≠n2

idM1 0

2
(xÕ

y
Õ) =

3
m(xÕ)

g1(xÕ)≠n2(yÕ)
x
Õ

4
=

1
x
y

x
Õ

2
. (4.8)

This shows that – maps K1 isomorphically to K0 ◊M0
M1. We obtain that

k1 = (m1 0
g1 ≠n2) : K1

–

Ò≠≠æ K0 ◊M0 M1
(idK0 ,0)
≠≠≠≠≠æ K0 (4.9)

surjects onto ker k0. To obtain K2, we calculate

ker k1 = ker(m1 0
g1 ≠n2) = ker(m1, 0) fl ker(g1,≠n2)

(i)
≥= (M2 üN2) fl ker(g1,≠n2)

(ii)
≥= (M2 üN2) fl ker(g1m2,≠n2) = ker(n2g2,≠n2)

(iii)
≥= ker(g2,≠idN2)

≥= {(m, g2(m)) |m œ M2} ≥= M2, (4.10)

where we use exactness of M• in (i), injectivity of m2 in (ii), and injectivity of n2 in (iii). With
K2 := M2, we obtain that the morphism

k2 := (m2
≠g2) : K2

(idM2≠g2)
≠≠≠≠≠æ≥=

ker(g2, idN2) = ker(g1m2, n2)
(m2 0

0 idN2
)

≠≠≠≠≠≠≠æ K1 (4.11)

is injective and surjects onto ker k1. This completes the resolution K• of ker g. One sees easily
that Ÿ1 = (idM1 , 0) and Ÿ2 = idM2 make the diagram (4.3) commute.

Lemma 4.1.3 (Image resolution). Let f : L æ M be a morphism of finitely generated modules,

let L• and M• be free resolutions of length 2 of L and M , and let f• : L• æ M• be a lift of f .
Then

J• : 0 æ M2
j2:=(0

m2
)

≠≠≠≠≠≠æ L0 ◊M0 M1
j1:=(idL0 ,0)
≠≠≠≠≠≠≠≠æ L0

j0
≠æ im f (4.12)

is a free resolution of im f , and

L• : 0 L2 L1 L0 L

J• : 0 M2 L0 ◊M0 M1 L0 im f.

fi•

l2

f2fi2

l1

!
l1
f1

"
fi1 fi0

l0

fi

j2 j1 j0

(4.13)

is a lift of the canonical map fi : L æ im f .

69

Chapter 4 Persistent cohomology of freely resolved cochain complexes

Proof. The morphism j0 := fil0 : L0 æ im f is surjective because it is a composition of two
surjective morphisms. Applying Lemma 4.1.1 to j0, we get that j1 := (idL0 , 0) : L0 ◊M0

M1 æ

L0 surjects onto ker j0. Lastly, ker j1 = 0 ◊M0 M1 ≥= kerm1 ≥= M2; hence the map j2 :=
(0
m2) : M2 æ L0◊M0

M1 maps M2 isomorphically to ker j1, so (4.12) is a free resolution of im f .
Commutativity of (4.13) can be seen immediately.

Lemma 4.1.4 (Image inclusion). Let L
f

≠æ M
g

≠æ N be morphisms of finitely generated modules

with gf = 0, let L•,M• and N• be free resolutions of length 2, and let f• : L• æ M• and

g• : M• æ N• be lifts of f and g. Then there are maps ’ : L0 æ N1 and ÷ : L◊M0M1 æ N2 such

that the inclusion map i : im f Òæ ker g is lifted by the following morphism of free resolutions:

J• : 0 M2 L0 ◊M0 M1 L0 im f

K• : 0 M2 M1 üN2 M0 ◊N0 N1 ker g.
i•

j2

i2

j1

i1=(0 id
÷) i0=

!
f0
’

"
j0

i

k2 k1 k0

(4.14)

Proof. Consider the diagram

f0f1f2

L• : 0 L2 L1 L0 L 0

J• : 0 M2

J1˙ ˝¸ ˚
L0 ◊M0 M1

J1˙ ˝¸ ˚
L0 ◊M0 M1 L0 im f 0

K• : 0 M2 M1 üN2¸ ˚˙ ˝
K1

M1 üN2¸ ˚˙ ˝
K1

M0 ◊N0 N1¸ ˚˙ ˝
K0

M0 ◊N0 N1¸ ˚˙ ˝
K0

ker g 0

M• : 0 M2 M1 M0 M 0

N• : 0 N2 N1 N0 N 0.

fi•

f•

f2

l2
!
l1
f1

"
l1 l0

fi

f

i• i2

(0
m2)

(úúú)
i1

j1

(id,0)

i0

j0

(úú)
i(ú)

Ÿ•

(m2
≠g2)

(id,0)

(m1 0
g2 n2)

(id,0)

k0

Ÿ

g•

m2
g2

m1
g1

m0
g0 g

n2 n1 n0

(4.15)

According to Lemmas 4.1.1 and 4.1.3, all rows are exact, and all squares except between rows
J• and K• commute. We construct the dashed maps i• that make the diagram commute.
By commutativity, n0g0f0 = gfl0 = 0. Therefore, the morphism g0f0 : L0 æ N0 factors

uniquely through kern0. By the universal property of the free (and in particular projective)
module N1, there is a morphism ’ : L0 æ N1 such that g0f0 = n1’. Then (g0,≠n1)(f0’) = 0,
so the morphism i0 := (f0

’
) : L0 æ M0 ü N1 factors through K0 = ker(g0,≠n1). This shows

commutativity of (ú).
For the construction of i1, consider the map (’,≠g1) : L0 ü M1 æ N1. Its restriction to

J1 = ker(f0,≠m1) satisfies

n1(’,≠g1)|J1
a)= (g0f0,≠n1g1)|J1

b)= g0(f0,≠m1)|J1
c)= 0, (4.16)

using the definition of ’ in a), the commutativity of the lower row in b) and the definition of
J1 in c). Bt the universal property of kern1, there is a unique morphism ÷ : J1 æ kern1 = N2
such that n2÷ = (’,≠g1)|J1 . We check that the map i1 := (0 idM1

÷) : J1 æ K1 makes the square
(úú) commute. We calculate

k1i1 = (m1 0
g1 n2)(0 id

÷)|
J1

= (0 m1
’ 0)|

J1

(†)= (f0 0
’ 0)|J1

= (f0
’
)(idK0 , 0)|J1 = i0j1,

using the definition of J1 in (†). Therefore, (úú) commutes.

70

4.1 Free resolutions of (co)kernels, images and subquotients

Lastly, we check that i2 = idM2 makes the square (ú ú ú) in commute. By the definition of ÷,
we get

n2÷j2 = (’,≠g1)(0
m2) = ≠n2g2.

As n2 is injective, this implies ÷j2 = ≠g2. Therefore,

k2i2 = (m2
≠g2) = (0 idM1

÷)(0
m2) = i1j2,

so (ú ú ú) commutes.

Lemma 4.1.5 (Cokernel resolution). Let f : L æ M be a morphism of finitely generated mod-

ules, let L• and M• be free resolutions of length 2 of L and M , and let f• : L• æ M• be a lift

of f . Then

K Õ
• : 0 ≠æ L0 ◊M0 M1 ≠æ

kÕ
2

L0 üM1
(≠f0,m1)
≠≠≠≠≠≠æ

kÕ
1

M0
k
Õ
0

≠æ coker f (4.17)

is a free resolution of coker f , and

M• : 0 M2 M1 M0 M

K Õ
• : 0 L0 ◊M0

M1 L0 üM1 M0 coker f
Ÿ
Õ
•

m2

Ÿ
Õ
2 (0

m2)

m1

Ÿ
Õ
1 (0

idM1
) Ÿ

Õ
0 idM0

m0

Ÿ
Õ

k
Õ
2 k

Õ
1 k

Õ
0

(4.18)

is a lift of the canonical morphism ŸÕ : M æ coker f .

Proof. The morphism kÕ0 := ŸÕm0 : M0 æ coker f is surjective because it is a composition of
surjective morphisms. Consider the morphism kÕ1 := (≠f0,m1) : L0 üM1 æ M0. Because

kÕ0k
Õ
1 = kÕm0(≠f0,m1) = (≠kÕfl0,m0m1) = 0,

the morphism kÕ1 factors through ker kÕ0. To show that kÕ1 surjects onto ker kÕ0, let x œ ker kÕ0.
Then m0(x) œ kerŸÕ = im f , so there exists a y œ L0 such that fl0(y) = m0(x). Then
m0(x≠ f0(y)) = 0, so there exist xÕ

œ M1 such that x = ≠f0(y) +m1(xÕ). This shows that kÕ1
surjects onto ker kÕm0. Then L0 ◊M0

M1 = ker(≠f0,m1) = ker kÕ1 is a free module, so (4.17) is
a free resolution of coker f . The diagram (4.18) clearly commutes.

Combining the above statements, we obtain the following expression for a free resolution of
the subquotient ker g/ im f :

Theorem 4.1.6 (Homology resolution). Let L f

≠æ M
g

≠æ N be maps of finitely generated modules

with gf = 0, let L•,M• and N• be free resolutions of L,M and N of length 2, let f• : L• æ M•
and g• : M• æ N• be lifts of f and g, and let ’ and ÷ be as in Lemma 4.1.4. Then the sequence

H• : L0◊M0 M1

h2:=
1 idL0 0

0 id
÷

2

≠≠≠≠≠≠≠≠≠≠æ L0üM1üN2
h1:=

!≠f0 m1 0
≠’ g1 n2

"
≠≠≠≠≠≠≠≠≠≠≠≠æ M0◊N0 N1 æ

ker g
im f

(4.19)

is a free resolution of ker g/ im f , and

K• : 0 M2 M1 üN2 M0 ◊N0 N1 ker g

H• : 0 L0 ◊M0 M1 L0 üM1 üN2 M0 ◊N0 N1
ker g
im f

q•

k2

q2 (0
m2)

k1

q1

1 0 0
id 0
0 id

2
q0

k0

q

h2 h1 h0

(4.20)

is a lift of the canonical map q : ker g æ ker g/ im f .

71

Chapter 4 Persistent cohomology of freely resolved cochain complexes

Proof. Applying Lemma 4.1.5 to the morphism i• : J• æ K• from Lemma 4.1.4 gives that

0 æ L0 ◊K0 K1 æ L0 üM1 üN2¸ ˚˙ ˝
K1

h1
≠æ M0 ◊N0 N1¸ ˚˙ ˝

K0

æ ker g/ im f (4.21)

is a free resolution of ker g/ im f , and that

K2 K1 K0 ker g

L0 ◊K0
K1 L0 üK1 M0 ◊N0

N1
ker g
im f

k2

q2=(0
k2)

k1

q1=(0
id) q0

k0

q

h1 h0

(4.22)

is a lift of q. It remains to show that L0 ◊K0
K1 ≥= L0 ◊M0

M1. Because K0 ™ M0 üN1, we get
that

L0 ◊K0 K1 = L0 ◊M0üN1 K1 = ker
!
f0 ≠m1 0
÷ ≠g1 ≠n2

"
™ L0 üM1 üN2.

The morphism
h2 :=

1 id 0
0 id
÷

2
: L0 ◊M0 M1 ≠æ L0 üM1 üN2. (4.23)

is obviously injective. We show that im h2 = L0 ◊K0
K1. Since

(f0 ≠m1 0
’ ≠g1 ≠n1

)(idL0 0
0 idM1

)|
H2

= (f0 ≠m1 0
0 0 0)|H2

= 0, (4.24)

the morphism h2 factors through L0 ◊
K0

K1, so im h2 ™ L0 ◊
K0

K1. To show equality, let
(x, y, z) œ kerh1. In particular, (x, y) œ L0 ◊M0

M1 = ker(f0,≠m1). By definition of ÷, we get
n2÷(xy) = ’(x)≠g1(y) = n2(z). By injectivity of n2, we get z = ÷(xy). This shows that h2 maps
L0 ◊M0

M1 isomorphically to L0 ◊K0
K1.

Remark (Homology as a kernel). Let L•,M•, N•, f• and g• be as in Theorem 4.1.6. From
Lemmas 4.1.3 and 4.1.5 we get free resolutions K Õ

• and J Õ
• of coker f and im g, respectively.

Analogously to Lemma 4.1.4, the morphisms ŸÕ
• and iÕ• in the commutative diagram

M• : 0 M2 M1 M0 M

K Õ
• : 0 L0 ◊M0

M1 L0 üM1 M0 coker f

J Õ
• : 0 N2 M0 ◊N0

N1 M0 im g

Ÿ• (0
m2)

m2

(0
idM1

)

m1
m0

Ÿ
Õ

i
Õ
• ÷

(≠f0,m1)

!≠f0 m1
≠’ g1

"
k
Õ
0

i
Õ

(0
n2) (idM0 ,0)

(4.25)

are lifts of the canonical morphisms ŸÕ : M æ coker f and iÕ : coker f æ im g, respectively.
Applying Lemma 4.1.1 to iÕ• gives the same free resolution of ker g/ im f = coker i ≥= ker iÕ as in
(4.19).

Recall from Remark 4.1.2 that the matrix used to define, for example, h1, a priory defines a
morphism L0 ü M1 ü N2 æ M0 ü N1, and we mean by the notation that it factors uniquely
through M0 ◊N0

N1. When it comes to actually computing graded matrices representing the
morphisms h2, h1, we have to be a bit more precise. In particular, we have to distinguish a
modules and their submodules more strictly, such as M0 üN1 and its submodule M0 ◊N0 N1.
Therefore, we formulate the following “pedantic” version of Theorem 4.1.6:

72

4.1 Free resolutions of (co)kernels, images and subquotients

Theorem 4.1.7. Let L
f

≠æ M
g

≠æ N be maps of finitely generated modules with gf = 0, let

L•,M• and N• be free resolutions of L,M and N of length 2, let f• : L• æ M• and g• : M• æ N•
be lifts of f and g, and let ’ and ÷ be as in Lemma 4.1.4. Then there exist morphisms h0 and

h1 = (Â÷) that make the diagram

0 L0 ◊M0
M1 L0 üM1 üN2 M0 ◊N0

N1

L0 üM1 L0 üM1 üN1 M0 üN1

M0 N0

Ÿ
Õ

h2 h1

1 id
id

n2

2
Ÿ

(f0,≠m1)
1 id

id
’ ≠g1

2 !≠f0 m1 0
≠’ g1 id

"
(g0,≠n1)

of free modules commute, where „ and Â are the canonical morphisms. Moreover, h1 and h2
form a free resolution of ker g/ im f .

Let C• be a cochain complex of not necessarily free A-modules. Assume we have fixed a free
resolution

0 æ Cd

2
c
d
2

≠æ Cd

1
c
d
1

≠æ Cd

0

of Cd for each q, and a lift ”d• : Cd≠1
• æ Cd

• of the coboundary morphism ”d. Then Theorem 4.1.7
states that there is a commutative diagram

0 ker(”d0 ,≠cd1)¸ ˚˙ ˝
=:Hd(C•)2

Cd≠1
0 ü Cd

1 ü Cd+1
2¸ ˚˙ ˝

=:Hd(C•)1

ker(”d+1
0 ,≠cd+1

1)
¸ ˚˙ ˝

=:Hd(C•)0

Cd≠1
0 ü Cd

1 Cd≠1
0 ü Cd

1 ü Cd+1
2 Cd

0 ü Cd

1

Cd

0 Cd+1
0

Ÿ
d≠1

h
d
2

1 id
id

c
d+1
2

2

h
d
1

Ÿ
d

(”d0 ,≠c
d
1)

1 id
id

’ ≠”
d+2
1

2 1
≠”

d
0 c

d
1 0

≠’ ”
d+1
1 id

2
(”d+1

0 ,≠c
d+1
1)

(4.26)

whose first line is a free resolution Hd(C•)• of Hd(C•). Note that Hd(C•)2 = Hd≠1(C•)0.
Remark (Theorem 4.1.7 as a mapping cone). If the coboundary morphisms ”d• : Cd

• æ Cd+1
•

satisfy ”d+1
i

”d
i
= 0 for all i and q, then then is an easier way to prove that (4.26) is a free

resolution of Hd(C•). Namely, in this case, 0 æ C•
2 æ C•

1 æ C•
0 is an exact sequence of

cochain complexes. Recall that for any morphism f of cochain complexes, coker f is quasi-
isomorphic to the mapping cone of f , which we denote by cone f [127, §1.5.8]. In particular,
the iterated mapping cone

Ĉ• := cone(cone(C•
2 æ C•

1) æ C•
0))

is a cochain complex of free modules that satisfies Hd(Ĉ•) ≥= Hd(C•) for all q, and

0 æ Zd≠1(Ĉ•) æ Ĉd
æ Zd(Ĉ•) (4.27)

is a free resolution of Hd(Ĉ•) ≥= Hd(C•). Unravelling the definition shows that Ĉ• is the cochain
complex of free modules Ĉd = Cd

0 ü Cd+1
1 ü Cd+2

2 with coboundary morphism

”̂d+1 :=
A

≠”
d+1
0 c

d+1
1 0

0 ”
d+2
1 ≠c

d+2
2

0 0 ≠”
d+3
2

B
: Ĉd

æ C Õd+1.

73

Chapter 4 Persistent cohomology of freely resolved cochain complexes

One may verify that the morphism

Zd(Ĉ•) = ker d̂d+1 (id 0 0
0 id 0)

≠≠≠≠≠≠æ ker(”d+1,≠cd+1
1) = Cd

0 ◊
C

d+1
0

Cd+1
1

is an isomorphism. Therefore, the free resolution (4.27) coincides with the one from Theo-
rem 4.1.6.

4.2 Simplicial cohomology
In the following, we apply the above construction to the simplicial cochain complex of a finite,
one-critically Z2-filtered simplicial complex Kú œ Simp™Z2

. As before, let K = colimKú. Note
that Theorem 4.1.6 does not directly apply to the chain complexes C•(Kú) and C•(Kú,K),
because the modules Cd(Kú) and Cd(Kú,K) are not finitely generated. Instead, we replace
C•(Kú) by an appropriate chain complex of finitely generated modules RzC•(Kú). Its homology
then allows us to obtain H•(Kú); see below.

Definition 4.2.1. For z œ Z2, let Rz, Ez : VecZ
2
æ VecZ

2
be the exact functors with

(RzM)w = {
Mw if ≠z Æ w,
0 otherwise (RzM)wwÕ =

)
MwwÕ if ≠z Æ w Æ w

Õ,
0 otherwise

(EzM)w = M≠z‚w (EzM)wwÕ = M≠z‚w,z‚wÕ ,

called restriction and extension of M with respect to z.

As it will turn out later, using ≠z rather than z in the definition is for convenience.
Example 4.2.2. For z = 0, the functor Rz and Ez maps M to

RzM =

S

WWWWWWWWWWWWWU

...
...

...
...

· · · 0 M0,2 M1,2 M2,2 · · ·

· · · 0 M0,1 M1,1 M2,1 · · ·

· · · 0 M0,0 M1,0 M2,0 · · ·

· · · 0 0 0 0 · · ·

...
...

...
...

T

XXXXXXXXXXXXXV

, EzM =

S

WWWWWWWWWWWWWU

...
...

...
...

· · · M0,2 M0,2 M1,2 M2,2 · · ·

· · · M0,1 M0,1 M1,1 M2,1 · · ·

· · · M0,0 M0,0 M1,0 M2,0 · · ·

· · · M0,0 M0,0 M1,0 M2,0 · · ·

...
...

...
...

T

XXXXXXXXXXXXXV

.

The idea behind these and the following definition is that we use Rz to “cut o�” a non-finitely
generated module and replace it by a finitely generated one. Namely if M œ vecZ2 is a point-
wise finite dimensional module, then RzM is finitely generated. In particular, if F is a free
module of finite rank, then RzF ú is finitely generated. Furthermore, if Mw

≥= M≠z‚w whenever
≠z ”Æ w, then M ≥= EzRzM .
The idea behind this is that if M is non-finitely generated, but there is a z œ Z2 such that

everything “interesting” in M happens below z, we may replace M by the finitely generated
module RzM , do our calculations, and extend the result to Z2 using Ez.
For example, recall that the dual F (w)ú of a free module F (w) for some w œ Z2 has the

components (F (w)ú)u =
)

k if u Æ ≠w

0 otherwise, . Therefore, it satisfies (F (v)ú)w ≥= (F (v)ú)≠z‚w whenever
w ⇤ ≠z. We obtain:

Lemma 4.2.3. If F is a free module such that z > w for all w œ rkF , then F ú ≥= EzRzF ú
.

Fix a z = (z1, z2) œ Z2 as in the lemma. We use the following notation to write down a free
resolution of RzF ú.

74

4.2 Simplicial cohomology

0! xw

F2

!

pw

wy

F1

!

wq

F0

!
xw wy

pw wq

RzF (w)⇤

! 0

Figure 4.1: The free resolution (4.28) of the restricted module RwF (w)
⇤, where w < z . Note that the

diagrams are drawn with the structure morphisms pointing downward. The symbols , and indicate the
grades of the generators, relations and 2-syzygies of this free resolution.

Definition 4.2.4. For w = (w1, w2) œ Z2 with w < z, define

pw := (≠w1 + 1,≠z2), wq := (≠z1,≠z2),
xw := (≠w1 + 1,≠w2 + 1), wy := (≠z1,≠w2 + 1).

We call coordinates of the form pw, wy or wq infinite coordinates and coordinates of the form
xw finite coordinates. The infinite coordinates are the ones that contain at least one component
from z. The definition is chosen such that the sequence

0 æ F (xw)
(1
≠1)

≠≠≠≠æ F (wy)ü F (pw) (1,1)
≠≠≠æ F (wq) æ RzF (w)ú (4.28)

is a minimal free resolution of RzF (w)ú; see Figure 4.1. If F is a finite rank free module, then
taking a direct sum of (4.28) gives a minimal free resolution of RzF ú. Let C• be a chain complex
of finite rank free modules, and let C• := (C•)ú be its dual cochain complex. If z > w for all
w œ rkC•, then it follows from exactness of the functors Rz and Ez that

EzH
d(RzC

•(Kú)) ≥= EzRzH
d(C•(Kú)) ≥= Hd(C•(Kú)).

Now, RzC•(Kú) is a cochain complex of finitely generated modules. Therefore, we can compute
a minimal free resolution of Hd(C•(Kú)) by taking the cochain complex RzC•(Kú) of finitely
generated modules, compute a minimal free resolution of its cohomology, and extend this to a
free resolution of Hd(C•(Kú)), using the functor Ez.
Remark. The last step deserves a more detailed comment. On the level of resolutions, obtain-
ing a minimal free resolution of EzHd(RzC•(Kú)) from one of Hd(RzC•(Kú)) involves some
calculation. However, no calculation is needed if the ultimate goal is to obtain a minimal free
resolution of Hd(C•(Kú)). We will explain this now. We assume that H•(Kú) has bounded
support. Let F• æ Hd(RzC•(Kú)) be a minimal free resolution. Then, according to Corol-
lary 3.2.11, F Õ

• := (‹F•[2]È‘Í)ú is a minimal free resolution of Hd(RzC•(Kú))ú. It will contain
some relations and 2-syzygies of infinite grades. For v = (v1, v2) and w = (w1, w2) œ Z2, we say
v π w if v1 < w1 and v2 < w2. Let G• and GÕ

• be the chain complex with

Gi :=
n

wœrkF
Õ
i ,

wπz

F (w), GÕ
i
:=

n

wœrkF
Õ
i ,

w ”πz

F (w),

for i = 0, 1, 2, such that F Õ
i
= GiüGÕ

i
for all i. One may check that ˆF

• (G•) ™ G•, which follows
because Hom(F (v), (w)) = 0 unless v Ø w. Therefore, (G•, ˆF

• |G•) defines a chain complex.
One may check that G• is a minimal free resolution of H•(Kú). Informally, G• is obtained from
F Õ
• by dropping all basis elements of infinite grade.
To compute a minimal free resolution of Hd(RzC•(Kú)), we choose a free resolution Cd

• of
each module RzC•(Kú). Then a free resolution of RzH•(C•) ≥= H•(RzC•) is given by (4.26),
and (if z > w for all w œ rkC•) a free resolution of H•(C•) is obtained by applying Ez to this.
One can compute matrices representing this free resolution using Algorithms 6 and 7. In the
following, we make this explicit.

75

Chapter 4 Persistent cohomology of freely resolved cochain complexes

4.2.1 Absolute cohomology

Let Kú œ Simp™Z2
be one-critical and z > g(‡) for all ‡ œ Kú. We construct graded matrices

that represent the free resolutions Cd

• of each module Cd(Kú) and the lifts ”d• of the coboundary
morphisms ”d.
For algorithmic reasons, we enumerate the d-simplices of Kú reverse colexicographically by

grade; that is, for each d, we assume that Kd

ú = {‡d,1, . . . ,‡d,nd} with

g(‡d,1) ≤colex · · · ≤colex g(‡d,nd);

see Definition 2.4.2. Then the standard basis of Cd(Kú) =
m

nd

i=1 F (g(‡di)) is colexicographically
ordered. We do so because the procedure Ker() (Algorithm 6) requires its input matrix to have
its columns colexicographically ordered. For each d, let fid be the permutation of {1, . . . , nd}

such that
g(‡d,fid(1)) ≤lex · · · ≤lex g(‡d,fi(nd)).

It is convenient to assume that the reordering fid is stable; that is, fid(i) < fid(j) for all i < j
with g(‡i) = g(‡j).
We define the free modules

Cd

0 :=
ndn

i=1
F (gq(‡d,i)), Cd

1 := Cd

p1 ü Cd

1y, Cd

2 :=
ndn

i=1
Fxg(‡d,i)), (4.29)

where Cd

1y :=
m

nd

i=1 F (gy(‡d,i)) and Cd

p1 :=
m

nd

i=1 F (pg(‡d,fid(i))). Note that Cd(Kú)2, Cd(Kú)1
and Cd(Kú)0 have colexicographically ordered bases. Analogously to (4.28), these modules fit
into a free resolution

0 æ Cd

2
c
d
2

≠æ Cd

1
c
d
1

≠æ Cd

0 æ RzC
d(Kú) (4.30)

of RzCd(Kú). For each d, let Ed be the (ungraded) nd ◊ nd-unit matrix, and �d be the
permutation matrix with entries [�d]ij = { 1 if i = fi

d(j)
0 otherwise . With respect to the bases (4.29), the

resolution (4.30) is represented by the graded matrices cd2 and cd1 with u(cd2) =
1

�≠1
d

≠Ed

2
and

u(cd1) = (�d, Ed) and the appropriate row grades.
To obtain a graded matrix representing ”d, let Dd be the (ungraded) matrix representing

the coboundary morphism of C•(K) with respect to the standard basis. Then ”d lifts to the
morphism

Cd

• : 0 Cd

2 Cd

p1 ü Cd

1y Cd

0 RzCd(Kú)

Cd+1
• : 0 Cd+1

2 Cd+1
p1 ü Cd+1

1y Cd+1
0 RzCd+1(Kú)

”
d+1
•

c
d
2

”
d+1
2

c
d
1

”
d+1
1 ”

d+1
0 ”

d+1

c
d+1
2 c

d+1
1

of free resolutions that is represented (with respect to the standard bases (4.29)) by the graded
matrices with

u(”d+1
0) = Dd, u(”d+1

1) =
1

�≠1
d+1D

d+1�d 0
0 D

d+1

2
, u(”d+1

2) = Dd, (4.31)

and the appropriate row and column grades.

76

4.2 Simplicial cohomology

Proposition 4.2.5 (Absolute cohomology resolution). For each d, there exists the dashed mor-

phisms that make the diagram

0 0

0 Hd(Kú)2¸ ˚˙ ˝
ker(”d0 ,≠cd1)

Hd(Kú)1¸ ˚˙ ˝
C

d≠1
0 üC

d
1üC

d+1
2

Hd(Kú)0¸ ˚˙ ˝
ker(”d+1

0 ,≠c
d+1
1)

Cd≠1
0 ü Cd

1 Cd≠1
0 ü Cd

1 ü Cd+1
1 Cd

0 ü Cd+1
1

Cd

0 Cd+1
0

h
d
2

Ÿ
d≠1

h
d
1

1 id 0 0
0 id 0
0 0 c

d+1
2

2
Ÿ
d

(”d0 ,≠c
d
1)

1 id 0
0 id
0 ”

d+1
1

2 1
≠”

d
0 c

d
1 0

0 ”
d+1
1 id

2
(”d+1

0 ,≠c
d+1
1)

commute, such that the first row of the diagram then is a free resolution of Hd(Kú).
Proof. This follows from Theorem 4.1.7. Since ”d+1

i
”d
i
= 0 for all d, we may choose ’d = 0.

Actually, Hom(Cd≠1
0 , Cd+1

1) = 0 because all basis elements of Cd≠1(Kú)0 are of grade z, while
all basis elements of Cd+1(Kú)1 are of grades strictly greater than z. Therefore, ’d = 0 is the
only possible choice for ’d. We obtain that hd

2 = (Ÿd≠1
÷
d), where ÷ : Hd(Kú)2 æ Cd+1

2 satisfies
cd+1
2 ÷d = (0,≠”d+1

1)Ÿd≠1.

Using the above steps, we obtain the following strategy to compute a minimal free resolution
of absolute cohomology:
4.2.6. A pair of graded matrices hd

2 and hd

1 representing a minimal free resolution of RzHd(Kú)
can be computed in the following steps:

(i) Compute a graded matrix representing the kernel inclusion Ÿd
by applying Algorithm 6 to

the graded matrix (”d+1
0 ,≠cd+1

1). Analogously, compute the kernel inclusion Ÿd≠1
.

(ii) Compute hd

1 by solving the linear system Ÿdhd

1 =
1

≠”
d
0 c

d
1 0

0 ”
d+1
1 c

d+1
2

2
, using Algorithm 7.

Proposition 4.2.5 ensures that a solution exists.

(iii) Compute a graded matrix representing hd

2. Commutativity of the above diagram implies

that hd

2 has to be of the form hd

2 =
!
Ÿ
d≠1

÷
d+1

"
, where ÷d satisfies cd2÷

d = (0, ”d+1
1)Ÿd≠1

.

Because

cd+1
2 ÷d =

1
�≠1

d+1
≠Ed+1

2
÷d and (0, ”d+1

1)Ÿd≠1 =
1

0 �≠1
d+1D

d+1�d 0
0 0 D

d+1

2
Ÿd≠1,

the graded matrix ÷d must have the underlying matrix

u(÷d) = ≠(0, 0, Dd+1) u(Ÿd≠1) = (0, Dd+1�d, 0) u(Ÿd≠1),

and the appropriate row and column grades to fit into the diagram. It follows from The-

orem 4.1.7 that the thus defined graded matrix is valid.

(iv) To obtain a minimal free resolution of RzHd(Kú), apply Algorithm 4.

4.2.2 Relative cohomology
Analogously, we construct a free resolution of RzHd+1(K,Kú). If H•(K) = 0, then we obtain
that Hd(Kú) ≥= Hd+1(K,Kú) for all d, which motivates the study of RzHd+1(K,Kú), rather
than RzHd(K,Kú). We have

RzC
d(K,Kú) =

3
Rz�Cd(K)
RzCd(Kú)

4ú
= ker(fl : Rz�Cd(K) æ RzC

d(Kú)),

77

Chapter 4 Persistent cohomology of freely resolved cochain complexes

Figure 4.2: The relative cochain complex C•
(K;K⇤) is direct sum of the

modules (�k=F (w))
⇤, where �k is the constant module with (�k)w = k

for all w . As before, it is convenient to draw modules with downward
pointing coordinate axes.

w

= �w

Figure 4.3: Free resolution of the mod-
ule Rz(�k=F (w))

⇤. The symbols and
indicate the grades of the generators

and relations.

0!
xw

F2

!

pw

wy

F1

!
xw

wy

pw

Rz (�k=F (w))⇤

! 0

where fl is induced by the restriction map fl : “ ‘æ “|Kú . The module

Rz�Cd(K) =
n

‡œK

F (gq(‡)) = Cd

0

is free, so the restriction fl lifts to a morphism

�Cd(K) : 0 0 0 Rz�Cd(K)

Cd

• : 0 Cd

2 Cd

1 Cd

0

fl•

c
d
2 c

d
1

of free resolutions, where Cd

• is the free resolution from (4.30). Lemma 4.1.1 shows that

0 æ Cd

2
c
d
2

≠æ Cd

1 æ RzC
d(K,Kú) (4.32)

is a free resolution of RzC•(K,Kú), and

0 Cd

p1 ü Cd

1q Cd

0 RzCd(K,Kú)

0 Cd+1
p1 ü Cd+1

1q Cd+1
0 RzCd+1(K,Kú)

c
d
1

”
d+1
1 ”

d+1
0

c
d+1
1

(4.33)

is a lift of the coboundary morphism ”d+1 : RzCd(K,Kú) æ RzCd+1(K,Kú). The morphisms
”d+1
1 and ”d+1

2 are the same as in as in (4.31).

Proposition 4.2.7 (Relative cohomology resolution). For each d, there exists morphisms hd+1
1

and hd+1
2 that make the diagram

Hd+1(K,Kú)2¸ ˚˙ ˝
ker cd+1

1 ”
d+1
1

Hd+1(K,Kú)1¸ ˚˙ ˝
Cd

1üC
d+1
2

Hd+1(K,Kú)0¸ ˚˙ ˝
ker cd+2

1 ”
d+2
1

Cd

1 Cd

1 ü Cd+1
1 Cd+1

1

Cd+1
0 Cd+2

0

h
d+1
2

Ÿ
d

h
d+1
1

! id 0
0 c

d+2
2

"
Ÿ
d+1

c
d+1
1 ”

d+1
1

! id
”
d+1
1

" (”d+1
1 ,≠ id)

c
d+2
1 ”

d+2
1

(4.34)

commute and form a free resolution of the module RzHd+1(K,Kú).

78

4.2 Simplicial cohomology

Remark. We point to the fact that the morphisms cd
i
and ”d

i
are the same as in the previous

section, while the other functions hd

i
and Ÿd are not the same as in the previous section.

Proof of Proposition 4.2.7. Applying Theorem 4.1.7 to (4.33) shows that there exist morphisms
h̃2, h̃1 that make the diagram

ker(”d+1
1 , cd+1

2) Cd

1 ü Cd+1
2 ker(”d+2

1 , cd+2
2)

Cd

1 ü Cd+1
2 Cd+1

1 ü Cd+2
2

Cd+1
1 Cd+2

1 ,

h̃
d+1
2

Ÿ̃
d

h̃
d+1
1

1
≠”

d+1
1 c

d+1
2

0 ”
d+2
2

2 Ÿ̃
d+1

(”d+1
1 ,c

d+1
2) (”d+2

1 ,c
d+2
2)

(4.35)

commute and form a free resolution of RzHd+1(K,Kú). To show the statement of the proposi-
tion, consider the commutative diagram

ker(”d+2
1 ,≠cd+2

2) ker cd+2
1 dd+2

1

Cd+1
1 ü Cd+2

2 Cd+1
1

Cd+2
1 Cd+2

0 ,

„̃
d+1

Â
Õ

„
d+1

(”d+2
1 ,≠c

d+2
2)

Â=(id,0)

c
d+2
1 ”

d+2
1

c
d+2
1 d

d+2
1

One checks that the lower square commutes, so Â induces the indicated morphism ÂÕ. Then ÂÕ

is an isomorphism. To see this, we notice that ÂÕ is the morphism

ker(”d+2
1 , cd+2

2)

= ker
1�≠1

d+2D
d+2�d+1 0 ≠�≠1

d+2
0 D

d+2
Ed+2

2

= {(–,—, “) œ Cd+1
p1 ü Cd+1

1y ü Cd+2
2 |≠“ = Dd+2�d+1– = Dd+2—}

Â
Õ

æ {(a, b) œ Cd+1
p1 ü Cd+1

1y |Dd+2�d+1– = Dd+2—}

= ker(Dd+2�d+1, D
d+2)

= ker cd+2
1 dd+2

1 .

An inverse to ÂÕ is given by ÂÕ : (–—) ‘æ
1 –

—

D
d+2�d+1–

2
=

1 –

—

D
d+2

—

2
. The statement follows from

applying this to (4.35).

Using the above steps, we obtain the following strategy to compute a minimal free resolution
of relative cohomology:

79

Chapter 4 Persistent cohomology of freely resolved cochain complexes

Figure 4.4: One-critical filtration K⇤ of a 2-sphere by
two 0-cells x; y , three 1-cells a; b; c with @a = @b =

@c = x + y and three 2-cells f ; g ; h with @f = b + c,
@g = a + c and @h = a + b.

h

a g

b

f

x

y
c

4.2.8. A pair of graded matrices hd+1
2 , hd+1

1 representing the free resolution (4.34) of RzHd+1(K,Kú)
can be computed in the following steps:

(i) Compute a graded matrix Ÿd+1
representing a basis of ker(cd+2

1 ”d+2
1) and a graded matrix

Ÿd
representing a basis of ker cd+1

1 ”d+1
1 , using Algorithm 6.

(ii) Compute hd+1
1 by solving the linear system Ÿd+1hd

1 = (dd+1
1 ,≠cd+1

2), using Algorithm 7.

(iii) Compute hd+1
2 =

!
Ÿ
d

÷
d+1

"
, where cd+1

2 ÷d+1 = ”d+1
1 „d+1

. Because

cd+1
2 ÷d+1 =

1
�≠1

d+1
≠Ed+1

2
÷d+1

and ”d+1
1 „d =

1
�≠1

d+1D
d+1�d 0
0 D

d+1

2
„d,

the entries of ÷d+1
satisfy

u(÷d+1) = ≠(0, Dd+1) u(Ÿd) = (Dd+1�d, 0) u(Ÿd).

(iv) The obtained resolution can be converted to a minimal free resolution of RzHd+1(K,Kú)
using Algorithm 3.

4.3 Example
In this section, we compute the relative and absolute two-parameter persistent (non-reduced)
cohomology of the one-critically Z2-filtered cell complex Kú shown in Figure 4.4. We compute
(co)homology with coe�cients in F2. The complex Kú has the (absolute) simplicial chain
complex

C•(Kú) : 0 ≠æ

g(f)
g(g)

g(h)

C2(Kú)

≠æ
g(a)

g(b)
g(c)
C1(Kú)

≠æ

g(x); g(y)

C0(Kú)

,

which is a chain complex of free modules. A homogeneous basis is given by the simplices ‡ œ Kú.
We use the symbol to denote the grades of the basis elements of C•, which are precisely the
grades of the simplices. Analogously, the relative chain complex C•(K,Kú) = �C•(K)/C(Kú)

80

4.3 Example

is the chain complex

C•(K,Kú) : 0 ≠æ

g(f)
g(g)

g(h)

C2(Kú)

≠æg(a)
g(b)

g(c)
C1(Kú)

≠æ

g(x); g(y)
C0(Kú)

.

It is a chain complex of non-finitely generated modules.

4.3.1 Relative cohomology
We start with the easier case of computing a free resolution of C•(K,Kú). The relative cochain
complex C•(K,Kú) has the graded components C•(K,Kú)z = (C•(K,Kú)≠z)ú. Drawing the
coordinate axes pointing downwards, we get

C•(K,Kú) : 0 ≠æ

�g(x);�g(y)

C0(Kú)

≠æ �g(a)
�g(b)

�g(c)

C1(Kú)

≠æ

�g(f)
�g(g)

�g(h)
.

C2(Kú)

,

We choose a fixed z œ Z2 with z Ø g(‡) for all ‡ œ Kú, and compute the persistence module
RzH•(K,Kú). This yields the cochain complex

RzC
•(K,Kú) : 0 ≠æ

px; py

xy; yy
xx; xy

RzC
0(K,Kú)

≠æ

pa

ayxa

pb

byxb

pc

cyxc
RzC

1(K,Kú)

≠æ

pf

fy
xf

pg

gy
xg

ph

hy
xh

RzC
2(K,Kú)

of finitely generated modules. Each simplex ‡ œ Kú corresponds to two generators p‡ and ‡y of
RzC•(K,Kú) of the grades pg(‡) and gy(‡), indicated by the symbol , and a relation x‡ : p‡ © ‡y
of grade xg(‡), indicated by the symbol . We decorate matrix row and columns by the basis
elements of the codomain and domain they correspond to. The matrices

D1 =
1x y

c 1 1
b 1 1
a 1 1

2
, D2 =

1c b a

f 1 1
g 1 1
h 1 1

2

represent the coboundary morphisms of the cochain complex C•(K). Let

�0 = (
x y

x 1
y 1), �1 =

1c b a

a 1
b 1
c 1

2
, �2 =

1f g h

h 1
g 1
f 1

2
,

be the permutation matrices that represent the re-ordering of the simplices from reverse lexico-
graphic ordering (columns) to reverse colexicographic ordering (rows).

0-Cohomology The module RzH0(K,Kú) is generated by the kernel of the map

cd+2
1 ”d+2

1 = (
C0

p1 C0
1y

C1
2 �≠1

1 D1 D1) =
1px py xy yy

aq 1 1 1 1
bq 1 1 1 1
cq 1 1 1 1

2
: C0

1 æ C1
0 .

81

Chapter 4 Persistent cohomology of freely resolved cochain complexes

The columns of this matrix are in colexicographic order. Applying Algorithm 6 to this matrix,
we obtain a homogeneous basis

Ÿ0 =
A“1 “2 “3

px 1 1
py 1
xy 1 1
yy 1

B
(4.36)

of ker cd+2
1 ”d+2

1 . The grade of each column is the join of the row grades of the non-zero entries
in that column; that is

g(“1) = g(xy) ‚ g(yy) = g(xy) = g(yy),
g(“2) = g(px) ‚ g(py) = g(px) = g(py),
g(“3) = g(px) ‚ g(xy) = g(xx) = g(xy).

(4.37)

To get the relations of RzH0(K,Kú), we have to compute a matrix representing the morphism
h0
1 in (4.34). The matrix (which we also denote by h0

1) is the unique (because Ÿ0 is injective)
solution

h0
1 =

1xx xy
“1 1
“2 1
“3 1 1

2
of the linear system Ÿ0h0

1
!=

Axx xy
px 1
py 1
xy 1
yy 1

B
= c02.

Then h0
1 is a free presentation of RzH0(K,Kú). Since it is it injective, it also represents a free

resolution (of length one) of RzH0(K,Kú). To obtain a minimal free resolution, one has to
eliminate all homological 1-balls from h0

1. Recall that Algorithm 3 achieves this by identifying a
maximal pairwise disjoint set of local pairs of the matrix h0

1, and eliminates all non-zero entries
in the local rows via left-to-right column additions, and deletes the local rows and columns.
Applying Algorithm 3 to h0

1 identifies the local pair corresponding to the circled entry, eliminates
all non-zero entries in the same row by column additions, and deletes the corresponding row
and column. We obtain the minimal (in the sense of Definition 2.3.21) graded matrix

h̃0
1 =

!

r1˙˝¸˚
xx+xy

“1=xy+yy 1
“2=px+py 1

"
,

which represents a minimal free presentation (and resolution)

0 æ Èr1Í
h̃
0
1

≠æ È“1, “2Í æ RzH
0(K,Kú) (4.38)

of RzH0(K,Kú); see Figure 4.5a.

1-Cohomology Analogously, the module RzH1(K,Kú) is generated by the basis

Ÿ1 :=

Q

a

“1 “2 “3 “4pc 1 1 1
pb 1 1
pa 1
ay 1 1 1
by 1 1
cy 1

R

b of ker
1pc pb pa ay by cypf 1 1 1 1

pg 1 1 1 1
ph 1 1 1 1

2

¸ ˚˙ ˝
(D1�≠1

2 ,

¸ ˚˙ ˝
D

1)

. (4.39)

The matrix h1
1 that represents the relations of RzH1(K,Kú) is the unique solution

h1
1 =

Apx py xy yy xa xb xc
“1 1 1 1
“2 1 1
“3 1 1
“4 1 1 1

B
of Ÿ1h1

1
!=

Q

ca

px py xy yy xa xb xc
pc 1 1 1
pb 1 1 1
pa 1 1 1
ay 1 1 1
by 1 1 1
cy 1 1 1

R

db. (4.40)

82

4.3 Example

px + py

xy + yyxx + xy

(a) RzH
0
(K;K⇤)

r2
‚2

r3

‚3

r4s3

pa

ay

pb

by

pc

cy

(b) RzH
1
(K;K⇤)

pf

hy

r3
s2

r2s3

r1

(1;1)

(1
0)

(1;1) (0
1)

pa

ay

pb

by

pc

cy

(c) RzH
2
(K;K⇤)

Figure 4.5: The free resolutions (4.38), (4.42) and (4.43) of RzH
•
(K;K⇤) for the filtered simplicial complex

K⇤ from Figure 4.4. The symbols , and denote the grades of the 0-, 1- and 2-syzygies of the modules; the
symbols indicate the grades of the relevant generators p� and �y of C•

(K;K⇤). The module RzH
2
(K;K⇤)

is indecomposable, because it contains a indecomposable quiver representation.

A matrix h1
2 that represents a basis of H1(K,Kú)2 can be obtained by forming the matrix

product

h1
2 :=

AC
0
p1 C

0
1y

C
0
p1 1

C
0
1y 1

C
1
2 D

1

B
· Ÿ0 =

Q

ccca

s1˙˝¸˚
xy+yy

s2˙˝¸˚
px+py

s3˙˝¸˚
px+xy

px 1 1
py 1
xy 1 1
yy 1
xa 1
xb 1
xc 1

R

dddb
(4.41)

where Ÿ0 is the matrix representing the basis of RzH1(K,Kú)2 ≥= RzH0(K,Kú)0 from (4.36).
Here, we use the symbols si to distinguish the columns of Ÿ0 from those of Ÿ1. Note that the
left matrix in (4.41) (specifically, its bottom right block) is not valid in general. Nevertheless,
it follows from Theorem 4.1.6 that the resulting matrix h1

2 is valid. Then h1
1 and h1

2 represent
a free resolution of RzH1(K,Kú).
To obtain a minimal free resolution, we apply Algorithm 3 first to h1

2. Note that the rows
of h1

2 (that is, the columns of h1
1) are not lexicographically or colexicographically ordered.

Nevertheless, the block shape of the right side in (4.40) ensures that the rows of h1
1 are in

non-descending order, as required by Algorithm 3. Therefore, reordering the rows of h1
1 and

the columns of h1
2 is not necessary. Algorithm 3 identifies local pairs of h1

2 corresponding to the
circled entries in (4.41). We get triple (h̃1

2, r, c) = Minimize(h1
2), where h̃1

2 is a minimal graded
matrix, and r and c contain the non-local row and column indices of h1

2; that is, the indices
that do not belong to a local pair of h1

2. We obtain the matrices

h̃1
2 =

Q

a

s3
px 1
xy 1
xa 1
xb 1
xc 1

R

b, h̃1
1 := ([h1

1]ij)jœr =
Apx xy xa xb xc

“1 1 1
“2 1 1
“3 1 1
“4 1 1

B
.

We apply Algorithm 3 to h̃1
1, which identifies the circled local entries. With (h̃Õ1

1 , r
Õ, cÕ) =

Minimize(h̃1
1), we get that the matrices

h̃Õ1
2 := ([h̃1

2]ij)iœcÕ =
1

s3˙˝¸˚
px+xy

xa 1
xb 1
xc 1

2
, and h̃Õ1

1 =
!

r2˙˝¸˚
xa+px

r3˙˝¸˚
xb

r4˙˝¸˚
xc+xy

“2=ay+by+pc 1 1
“3=ay+pb+pc 1 1

"

represent the minimal free resolution

0 æ Ès3Í
h̃
Õ1
2

≠≠æ Èr2, r3, r4Í
h̃
Õ1
1

≠≠æ È“2, “3Í æ RzH
1(K,Kú) (4.42)

83

Chapter 4 Persistent cohomology of freely resolved cochain complexes

of RzH1(K,Kú), see Figure 4.5b.

2-Cohomology Because Kú has no 3-simplicies, RzH2(K,Kú) is generated by the generators
pf , pg, ph, fy, gy and hy of C2

1 . The relations of RzH2(K,Kú) are represented by the matrix

h2
1 =

1
C

1
p1 C

1
1y C

2
2

C
2
p1 �≠1

2 D
2�1 �≠1

2
C

2
1y D

2
E2

2
=

Q

cca

pc pb pa ay by cy xh xg xfpf 1 1 1
pg 1 1 1
ph 1 1 1
hy 1 1 1
gy 1 1 1
fy 1 1 1

R

ddb.

Analogously to (4.41), we obtain the 2-syzygies (viz. the kernel of h2
1) by forming the product

h2
2 :=

AC
1
p1 C

1
1y

C
1
p1 E1

C
1
1y E2

C
2
2 D

2

B
· Ÿ1 =

Q

cccccca

s1˙ ˝¸ ˚
ay+by+cy

s2˙ ˝¸ ˚
ay+by+pc

s3˙ ˝¸ ˚
ay+pb+pc

s4˙ ˝¸ ˚
pa+pb+pc

pc 1 1 1
pb 1 1
pa 1
ay 1
by 1 1
cy 1 1 1
xh 1
xg 1 1
xf 1

R

ddddddb

with the matrix Ÿ1
0 from (4.39). Applying Algorithm 3 to h2

2 identifies the circled local entries.
Analogously to the above, we obtain

h̃2
2 =

Q

ccca

s2 s3
pc 1 1
pb 1
ay 1 1
by 1
xf 1
xg 1 1
xh 1

R

dddb
, h̃2

1 =

Q

ccca

pc pb ay by xh xg xfpf 1 1 1
pg 1 1
ph 1 1
hy 1 1 1
gy 1 1
fy 1 1

R

dddb
.

Applying Algorithm 3 to h̃2
1 identifies the circled local entries. We get that the matrices

h̃Õ2
2 =

1

s2˙ ˝¸ ˚
ay+by+pc

s3˙ ˝¸ ˚
ay+pb+pc

xh 1
xg 1 1
xf 1

2
, h̃Õ2

1 =
!

r1˙˝¸˚
xf+by

r2˙ ˝¸ ˚
xg+pa+cy

r3˙˝¸˚
xh+pb

pf 1 1 1
hy 1 1 1

"

represent the minimal free resolution

0 æ Ès2, s3Í
h̃
Õ2
2

≠≠æ Èr1, r2, r3Í
h̃
Õ2
1

≠≠æ Èpf, hyÍ æ RzH
2(K,Kú) (4.43)

of RzH2(K,Kú), see Figure 4.5c.

4.3.2 Absolute cohomology
Analogously, we compute a minimal free resolutions of RzH•(Kú), using the restricted absolute
cochain complex

C•(Kú) :

xq; yqpx; py

xy; yy
xx; xy

RzC
0(Kú)

≠æ

aq; bq; cqpa

ayxa

pb

byxb

pc

cyxc
RzC

1(Kú)

≠æ

fq; gq; hqpf

fy
xf

pg

gy
xg

ph

hy
xh

RzC
2(Kú)

≠æ 0.

84

4.3 Example

Each d-simplex ‡ œ Kú constributes one generator ‡q marked by , two relations p‡,‡y : ‡q © 0
marked by , and the 2-syzygy x‡ : p‡ © ‡y marked by .

0-Homology From Proposition 4.2.5, we obtain that a generating system of RzH0(Kú) is
represented by the basis

Ÿ0 =

Q

ccca

“1 “2 “3 “4 “5
xq 1 1 1 1 1
yq 1
pc 1 1 1
pb 1 1
pa 1
ay 1 1 1
by 1 1
cy 1

R

dddb
of ker(”10 , c11) = ker

1xq yq pc pb pa ay by cy
aq 1 1 1 1
bq 1 1 1 1
cq 1 1 1 1

2
. (4.44)

The relations of RzH0(Kú) are represented by the unique solution

h0
1 =

Q

a

px py xy yy xa xb xc
“1 1 1
“2 1 1 1
“3 1 1
“4 1 1
“5 1 1 1

R

b of Ÿ0h0
1

!=

Q

ccca

px py xy yy xa xb xc
xq 1 1
yq 1 1
pc 1 1 1
pb 1 1 1
pa 1 1 1
ay 1 1 1
by 1 1 1
cy 1 1 1

R

dddb
. (4.45)

The relations of RzH0(Kú) (viz. the kernel of h1
1) are represented by the matrix product

h0
1 =

3C
0
p1 C

1
1y

C
0
p1 E0

C
0
1y E0

C
1
2 0 D

1

4
·

3xx xypx 1
py 1
xy 1
yy 1

4

¸ ˚˙ ˝
c02

=

Q

cca

xx xypx 1
py 1
xy 1
yy 1
xa 1 1
xb 1 1
xc 1 1

R

ddb.

The matrix c02 has no local entries. Applying Algorithm 3 identifies the local pairs corresponding
to the circled entries in (4.45) We obtain that the matrices

h̃0
2 =

Axx xy
r1 1
r2 1
xa 1 1
xb 1 1
xc 1 1

B
, h̃0

1 =
1

r1˙˝¸˚
px+py

r2˙˝¸˚
xy+yy xa xb xc

“1=xq+yq 1 1
“3=xq+ay+by+pc 1 1
“4=xq+ay+pb+pc 1 1

2

represent the minimal free resolution

0 æ Èxx, xyÍ
h̃
0
2

≠æ Èpy, yy, xa, xb, xcÍ
h̃
0
1

≠æ È“1, “3, “4Í æ RzH
0(Kú)

of RzH0(Kú). We may perform invertible column operations on h̃0
2 without changing the result.

Thus, replacing h̃0
2 by

h̃Õ0
2 :=

Axx xx+xy
r1 1
r2 1
xa 1
xb 1
xc 1

B
,

we see that

aRzH
0(Kú) ≥=

È“1Í

Èr1, r2Í
ü

È“3, “4Í

Èxa, xb, xcÍ
. (4.46)

see Figure 4.6a.

85

Chapter 4 Persistent cohomology of freely resolved cochain complexes

1-Cohomology Analogously, we obtain the generators or RzH1(Kú) by computing the basis

Ÿ1 =

Q

ccccca

“1 “2 “3 “4 “5 “6
aq 1 1 1
bq 1 1 1 1 1
cq 1
pf 1 1 1
pg 1
ph 1
hy 1 1 1
gy 1
fy 1

R

dddddb
of ker

1aq bq cq pf pg ph hy gy fy
hq 1 1 1 1
gq 1 1 1 1
fq 1 1 1 1

2
.

The relations of RzH1(Kú) are represented by the unique solution

h1
1 =

Q

a

xq yq pc pb pa ay by cy xh xg xf
“1 1 1 1
“2 1 1 1
“3 1 1 1
“4 1 1 1
“5 1 1 1
“6 1 1 1

R

b of Ÿ1h1
1

!=

Q

ccccca

xq yq pc pb pa ay by cy xh xg xf
aq 1 1 1 1
bq 1 1 1 1
cq 1 1 1 1
pf 1 1 1
pg 1 1 1
ph 1 1 1
hy 1 1 1
gy 1 1 1
fy 1 1 1

R

dddddb
,

and the 2-syzygies of RzH1(Kú) are represented by the matrix product

h1
2 :=

Q

a

C
0
0 C

1
p1 C

1
1y

C
0
0 E0

C
1
p1 E1

C
1
1y E1

C
2
2 D

2

R

bŸ1 =

Q

ccccccca

s1 s2 s3 s4 s5
xq 1 1 1 1 1
yq 1
pc 1 1 1
pb 1 1
pa 1
ay 1 1 1
by 1 1
cy 1
xh 1
xg 1 1
xf 1

R

dddddddb

,

where Ÿ0 is the kernel basis from (4.45). Applying Algorithm 3 yields

h̃1
2 =

Q

ccca

s3 s4
xq 1 1
pc 1 1
pb 1
ay 1 1
by 1
xh 1
xg 1 1
xf 1

R

dddb
, h̃1

1 =

Q

cca

xq pc pb ay by xh xg xf
“1 1 1
“2 1 1
“3 1 1
“4 1 1 1
“5 1 1
“6 1 1

R

ddb

and finally

h̃Õ1
2

1 s3 s4
r1 1
r2 1 1
r3 1

2
, h̃Õ1

1 = (

r1˙˝¸˚
xh+pb

r2˙ ˝¸ ˚
xg+ay+pc

r3˙˝¸˚
xf+by

“4=bq+pf+hy 1 1 1),

which represent the minimal free resolution

0 æ Ès3, s4Í
h̃
Õ1
2

≠≠æ Èr1, r2, r3Í
h̃
Õ1
1

≠≠æ È“4Í æ RzH
1(Kú) (4.47)

of RzH1(Kú); see Figure 4.6b.

2-Cohomology Lastly, there are no 3-simplices, which implies C3
• = 0. According to Proposi-

tion 4.2.5, RzH2(Kú) is generated by C2
0 = Èfq, gq, hqÍ. Without calculation, we obtain that

h2
2 = Ÿ1 =

Q

cccccca

s1 s2 s3 s4 s5 s6
aq 1 1 1
bq 1 1 1 1
cq 1
pf 1 1 1
pg 1
ph 1
hy 1 1 1
gy 1
fy 1

R

ddddddb
, h2

1 =
1aq bq cq pf pg ph hy gy fy

fq 1 1 1 1
gq 1 1 1 1
hq 1 1 1 1

2
.

86

4.3 Example

‚1r1

r2
xx; xy

xa
‚3

xb
‚4

xc

pa

ay

pb

by

pc

cy

(a) RzH
0
(K⇤)

pf

fy

pg

gy

ph

hy

pa

ay

pb

by

pc

cy

‚4

r3s3

r2s4

r1

(b) RzH
1
(K⇤)

ph pg

gy
fy

fq

r2
s4

r1

(c) RzH
2
(K⇤)

Figure 4.6: Truncated absolute cohomology RzH
•
(K⇤) of the filtered simplicial complex K⇤ from Figure 4.4.

The module RzH
0
(K⇤) is decomposable into a direct sum of its red and its blue submodule.

Applying Algorithm 3 to h2
2 yields

h̃2
2 =

A s4
aq 0
bq 1
pf 1
hy 1

B
, h̃2

1 =
1aq bq pf hy

fq 1 1
gq 1
hq 1 1 1

2
.

When we apply Algorithm 3 to h̃2
1, we are in a situation that we have not met before: namely,

one of the local pairs of h̃2
1 can only be identified after a column addition caused by the removal

of the non-zero entries in the local rows. Specifically, Algorithm 3 transforms h̃2
1 as follows:

h̃2
1 =

1aq bq pf hy
fq 1 1
gq 1
hq 1 1 1

2

3aq aq+bq pf hy
fq 1 1
gq 1 1
hq 1 1

4

3aq aq+bq pf hy+bq
fq 1 1 1
gq 1 1
hq 1

4
,

where the first arrow happens during the first phase and the second arrow during the second
phase of Algorithm 3, with the circled local pairs. Removal of the rows and columns with local
pairs gives

h̃Õ2
2 = (

s4
r1 1
r2 1), h̃Õ2

1 = (

r1˙˝¸˚
fq

r2˙˝¸˚
hy+bq

fq 1 1).

Then h̃Õ2
2 and h̃Õ2

1 represent the minimal free resolution

0 æ Ès4Í
h̃
Õ2
2

≠≠æ Èr1, r2Í
h̃
Õ2
1

≠≠æ ÈfqÍ æ RzH
2(Kú) (4.48)

of RzH2(Kú); see Figure 4.6c.

4.3.2.1 The long exact sequence

Lastly, we give an explicit description of the the long exact sequence

0 ≠æRzH
0(K,Kú)

p
0

≠æ Rz�H0(K) i
0

≠æ RzH
0(Kú)

”

RzH
1(K,Kú)

p
0

≠æ Rz�H1(K) i
1

≠æ RzH
1(Kú)

”

RzH
2(K,Kú)

p
1

≠æ Rz�H2(K) i
2

≠æ RzH
2(Kú) ≠æ 0,

(4.49)

87

Chapter 4 Persistent cohomology of freely resolved cochain complexes

for the above filtration Kú. Here, pú and iú are the morphisms induced by the morphisms
i : Kú Òæ K and p : K æ K/Kú. Recall from Propositions 4.2.5 and 4.2.7 that in the free
resolutions RzHd(K,Kú)• and RzHd(Kú)•, we had

RzH
d(K,Kú)0 = ker(Cd(Kú)1 ≠æ Cd+1(Kú)0),

RzH
d(Kú)0 = ker(Cd(Kú)0 ü Cd+1(Kú)1 ≠æ Cd+1(Kú)0).

Consider the module Rz�Hd(K), which has the components (Rz�Hd(K))w = Hd(K) if w Ø

≠z, and (Rz�Hd(K))w = 0 otherwise. This has a free resolution

0 æ ker(Cd≠1
0 æ Cd

0) æ Cd≠1
0 æ ker(Cd

0 æ Cd+1
0) æ Rz�Hd(K). (4.50)

Note that Rz�Hd(K) = Hd(C•
0). The long exact sequence (4.49) is induced by the commutative

diagram

· · · RzH
d(K,Kú) Rz�H

d(K) RzH
d(Kú) RzH

d+1(K,Kú) · · ·

· · · ker ”d0cd1 ker ”d0 ker(”d0 ,≠c
d+1
1) ker ”d+1

0 · · ·

· · · C
d≠1
1 ü C

d
2 C

d≠1
0 C

d≠1
0 ü C

d
1 ü C

d+1
2 C

d
1 ü C

d+1
2 · · ·

· · · C
d
1 C

d
0 C

d
0 ü C

d+1
1 C

d+1
1 · · ·

· · · C
d+1
0 C

d+1
0 C

d+1
0 C

d+2
0 · · · .

id pd ”

(cd≠1
1 ,0)

(”d≠1
1 ,≠cd2)

! 1
0
0

"

”d≠1
0

(0 1 0
0 0 1)

1
”d≠1
0 cd1 0
0 ”d1 cd+1

2

2
(”d1 ,≠cd+1

2)

cd1
”d0 cd1

(10)
”d0

(0,≠1)

(”d0 ,≠cd+1
1) ”d+1

0 cd+1
1

”d0

In the diagram, the dashed arrows are the free presentations of RzH•(K,Kú), RzH•(Kú) and
Rz�H•(Kú) from Propositions 4.2.5 and 4.2.7 and (4.50). The connecting homomorphism
” : Hd(Kú) æ Hd+1(K,Kú) is given by projecting a generator (a, b) œ Hd(Kú)0 ™ Cd

0 üCd+1
1 of

Hd(Kú) to its component b œ Cd+1
1 . In practice, this amounts to dropping all summands of the

form ‡q. Recall the generators of H•(Kú) from (4.46) and (4.47) and H•(K,Kú) from (4.42)
and (4.43). We obtain that

” : H0(Kú) ≠æ H1(K,Kú),
“1 = xq+ yq ‘≠æ 0,
“3 = xq+ ay+ by+ pb ‘≠æ ay+ by+ pb = “2,

“4 = xq+ ay+ pb+ pb ‘≠æ ay+ pb+ pb = “3,

” : H1(Kú) ≠æ H2(K,Kú),
“4 = bq+ pf + hy ‘≠æ pf + hy.

Therefore, the long exact sequence (4.49) is the one shown in Figure 4.7.
Remark. This example also exhibits a particularity that cannot happen in one-parameter persis-
tence. Namely, recall that unsplicing the long exact sequence (4.49) gives short exact sequences

0 æ coker pd æ Hd(Kú) æ ker pd+1
æ 0,

0 æ coker id æ Hd+1(K,Kú) æ ker id+1
æ 0

for all d. In one-parameter persistence, both short exact sequences split for all d (see Proposi-
tion 2.2.10). For the above example, Figure 4.7 shows that the short exact sequence

0 æ coker i1 æ H2(K,Kú) æ ker i2 æ 0 (4.51)

need not split for d = 2; see Figure 4.8. This implies thatH•(Kú) does not determineH•(K,Kú)
uniquely. An explicit example for this is given in Section 4.6.

88

4.3 Example

0

px + py

xy + yyxx + xy

xq + yq ‚1 = xq + yqr1

r2

xa
‚3

xb
‚4

xc

r2
‚2

r3
‚3

r4

0

‚4

r1

r2

r3

pf

hy

r3

r2

r1

fq ⌘ gq ⌘ h ‚1

r2

r1

0

‚1 7!0
‚2 7!‚2
‚3 7!‚3

‚2 7!pf +hy

Figure 4.7: Long exact sequence (4.49) in (truncated) cohomology of the pair (K;K⇤) for the complex K⇤
from Figure 4.4. See Figures 4.5 and 4.6 for details on the modules. Note that the module at the bottom
left is indecomposable. This gives rise to the non-split short exact sequence in Figure 4.8.

0 �!

‚4

r3

r2

r1

coker i1=RzH
1(K⇤)

‚4 7!pf +hy�����!

pf

hy

r3

r2

r1

(1;1)

(1
0)

(1;1) (0
1)

RzH
2(K;K⇤)

�! pf + hy

pf

hy

ker i2

�! 0

Figure 4.8: The non-split short exact sequence (4.51) obtained from Figure 4.7. The relations of the middle
module RzH

2
(K;K⇤) are r1, r2, r3 : pf + fy ⌘ 0.

89

Chapter 4 Persistent cohomology of freely resolved cochain complexes

4.4 Relative cohomology revisited
In this section, we will have a closer look at the strategy from Section 4.2.2 to compute a
minimal free resolution of Hd+1(K,Kú). As before, Kú is a two-parameter filtered complex for
which K = colimZ2 Kú is acyclic. Let Dd+1 denote the (ungraded) coboundary matrix of Kú
throughout this section. In principle, the free resolution of Hd+1(K,Kú) from Proposition 4.2.7
can be computed using the procedures Ker() and Factorize() (Algorithms 6 and 7). This has
the following shortcoming:
Recall that our goal is to compute a minimal free resolution of Hd(Kú). As K is acyclic,

we have Hd+1(K,Kú) ≥= Hd(Kú) for all d, so we may compute a minimal free resolution of
Hd+1(K,Kú), get a minimal free resolution ofHd(Kú) at the same time, and use Corollary 3.2.11
to obtain a minimal free resolution of Hd(Kú). However, computing Hd+1(K,Kú) as described
in 4.2.8 requires computing ker cd+2

1 ”d+2
1 . Given that we are mainly interested in Vietoris–Rips

complexes, considering the coboundary matrix ”d+2 is not feasible because of the sheer size of
a matrix representing this morphism.
In one parameter persistence, this problem is solved by observing that it is not necessary in this

case to compute Zd+1(K,Kú) from Dd+2 because Zd+1(K,Kú) can already be computed from
Dd+1, which may be much smaller for Vietoris–Rips complexes. In two parameter persistence,
we already encountered a similar situation in Theorem C: there, we showed that under suitable
conditions on Kú, the free resolution

0 æ Zd+1(N•(Kú)) ≠æ Nd+1(Kú) ≠æ Zd+2(N•(Kú)) ≠æ Hd+2(N•(Kú))

of Hd+2(N•(Kú)) can be computed from the coboundary matrix Dd+1 alone, and not, as one
may assume, by reducing the coboundary matrix Dd+3 of N•.
We present a similar result for Hd+1(K,Kú). Recall the functors colim, lim: VecZ

2
æ Vec

from Section 2.1.2.

Lemma 4.4.1. If H•(K) = 0, then colim im(dd+1
1 , cd+1

2) = colim ker(cd+2
1 ”d+2

1) for all d.

Proof. Consider the morphisms hd+1
2 and hd+1

1 that represent the free resolution Hd+1(K,Kú)•
of Hd+1(K,Kú) from (4.34). Because Z2 is a direct system, colim is exact. Therefore, the mor-
phisms colim hd+1

2 and colim hd+1
1 form a free resolution of the vector space colimHd+1(K,Kú).

By assumption, colimHd+1(K,Kú) = limHd+1(Kú) = Hd+1(K) = 0. According to Theo-
rem 2.3.18, the free resolution colimHd+1(K,Kú)• is trivial; in particular, it is exact. Therefore,
colim hd+1

1 is surjective. From Proposition 4.2.7, we obtain a commutative diagram

colimHd+1(K,Kú)1 colimHd+1(K,Kú)0

colimCd+1
1 .

colimh
d+1
1

colim(dd+1
1 ,c

d+1
2)

colim k
d+1

Recall that (in any abelian category) a morphism f is surjective if and only if im gf = im f for
every morphism g that can be composed with f . Since

colim(dd+1
1 , cd+1

2) = (colim kd+1)(colim hd+1
1),

the claim follows.

Theorem D. If H•(K) = 0, then the free resolution (4.34) of Hd+1(K,Kú) can be computed

solely from the coboundary matrix Dd+1
of Kú.

90

4.4 Relative cohomology revisited

Proof. According to Proposition 4.2.7, the matrix Dd+1 is not needed to compute hd+1
2 . It

remains to show the same for hd+1
1 . Consider the submodules

Hd+1(K,Kú)0 := ker(cd+2
1 ”d+2

1)

™

N := im(dd+1
1 , cd+1

2)

of Cd+1
1 . According to Lemma 4.4.1, we have colimN = colimHd+1(K,Kú)0. Theorem F states

that [colimN]
C

d+1
1

= Hd+1(K,Kú)0. A generating system of the vector subspace colimN of
colimCd+1

1 is given by the underlying matrix u(D̃d+1) of D̃d+1 := cd+1
1 ”d+1. Theorem 3.4.7

states that the matrix kd+1 := Bireduce(D̃d+1) represents a basis of Hd+1(K,Kú)0. Recall
that by Proposition 4.2.7, it remains to compute the solution hd+1

1 of the linear system D̃d+1 =
kd+1hd+1

1 , which now does not involve the matrix Dd+2 anymore. Thus, hd+1
1 can be computed

without considering Dd+2.

Almost clearing An immediate optimization step that we have not mentioned so far is analo-
gous to what we explained in Section 2.4.1. Namely, calling Bireduce(D̃d+1) will reduce some
columns of D̃d+1 to zero that could have been predicted. Since D̃d+1hd+1

2 = kd+1hd+1
1 hd+1

2 = 0,
the sequence

0 æ Hd+1(K,Kú)2
h
d+1
2Ò≠≠≠æ Hd+1(K,Kú)1

D̃
d+1

≠≠≠æ Cd+1
1

is a chain complex; namely a free resolution of coker D̃d+1. Since kd+1 is injective and since
Hd+1(K,Kú)• is exact, this complex can be seen as a free resolution of some quotient module
M of Cd+1

1 . Using KerAndMgsWithKer() (Algorithm 8), we compute a free resolution F• of
coker D̃d+1 with F0 = Cd+1

1 , such that F• does not contain any homological 2-balls. This
resolution F• fits into the commutative diagram

0 Hd+1(K,Kú)2 Hd+1(K,Kú)1 Hd+1(K,Kú)0 Hd+1(K,Kú) 0

0 F2 F1 Hd+1(K,Kú)0 Hd+1(K,Kú) 0,

Cd+1
1

Cd+1
1

h
d+1
2 h

d+1
1

D̃
d+1

k
d+1

f2 f̃1

f1

k
d+1

(4.52)

where coker f1 ≥= coker D̃d+1. Note that f1 is a semi-minimal presentation of coker D̃d+1, in the
sense of [99]. Thus, we can obtain a matrix representing kd+1 by calling Bireduce(f1) instead
of Bireduce(D̃d+1). This may yield a di�erent basis of Hd+1(K,Kú)0 and thus a di�erent
matrix kd+1, which nevertheless represents the same morphism kd+1. The morphism f̃1 then is
the unique solution of the linear system kd+1f̃1 = f1. Now f2 and f̃1 form a free resolution of
Hd+1(K,Kú) not containing any 2-balls.

Avoiding the factorization of f1 It seems unnecessary that we first compute kd+1 by applying
the column reduction algorithm Algorithm 10 to f1, and in the second step compute the matrix
f̃1 by applying Algorithm 7 to f1, which is again a column reduction scheme. This can be
addressed by keeping track of the column operations during Algorithm 10. Let F and G be free
modules, B : F æ G be a valid graded matrix, and consider the free submodule [colim imB]G
of G.

91

Chapter 4 Persistent cohomology of freely resolved cochain complexes

Algorithm 12: A variant of Algorithm 10 that keeps track of the column operations.
Input: A valid graded m ⇥ n-matrix B : F ! G0

Output: An injective valid graded m ⇥ n0-matrix B0
: F : ! F representing a basis of F 0

= [colim imB]G ,
and a valid graded matrix W : F ! F 0 such that B = B0W

function BireduceF(B):
W E 2 kn⇥n

p 0 2 N
n

for j = 1; : : : ; n do
while i c-piv

~z
(Bj) 6= 0 do

if pi = 0 then pi = j ; break
(a) if l-piv

~z
(Bj) < l-piv

~z
(Bpi) then swap pi and j

(b) Bj Bj � Bi j=BipiBpi

Wpi ;⇤ Wpi ;⇤ + Bi j=BipiWj⇤

(c) B (Bj)Bj 6=0
W (Wj⇤)Bj 6=0
p 0 2 N

n

for j 0 = 1; : : : ; n do
j j 0

while i l-piv
~z
(Bj) 6= 0 do

if pi = 0 then pi = j ; break
(d) if c-piv

~z
(Bj) < c-piv

~z
(Bpi) then swap pi and j

(e) Bj Bj � Bi j=BipiBpi

Wpi ;⇤ Wpi ;⇤ + Bi j=BipiWj⇤

B0 [B]rgB

rg
W cg

B
0

cg
W cg

B

return B0;W

Proposition 4.4.2. Algorithm 12 computes two valid graded matrix BÕ
and W , such that BÕ

represents a basis of [colim imB]G and the following diagram commutes:

F

[colim imB]G
G

colimF

colim imB

colimG.

B

W B
Õ

Proof. Let F Õ = [colim imB]G. Algorithm 12 di�ers from Algorithm 10 only in maintaining the
additional matrix W . Since operations on W do not a�ect the reduction of B, Theorem 3.4.7
gives that BÕ is a basis of [colim imB]G. It follows from elementary linear algebra that B = BÕW
as ungraded matrices, and it remains to prove that W is valid. We show this inductively.
Let B(0) = B, . . . , B(t) = BÕ and W (0) = En◊n, . . . ,W (t) = W be the intermediate steps of

the matrices B and W during the algorithm. We regard all matrices B(s) and W (s) as graded
matrices with

rgB
(s) := rgB , rgW

(s)

j
:= cgB

(s)

j
:=

x
B

(s)
ij

”=0 rg
B

i
, cgW

(s) := cgB .

This renders all matrices B(s) valid and matches the definition of the row and column grades
of BÕ and W at the end of the algorithm. The graded matrix B(0) = W is valid by assumption.
The unit matrix W (0) is valid because cgW (0) = rgW (0) = cgB . By induction, we assume that
B(s≠1) and W (s≠1) are valid for some s. Consider a pair of corresponding row and column

92

4.4 Relative cohomology revisited

Algorithm 13: Relative cohomology algorithm
Input: Coboundary matrices D1; D2; : : : representing C•

(K;K⇤) with H•
(K) = 0

Output: Matrices representing a minimal free resolution of Hd+1
(K;K⇤) for d > 0.

k Ker((D1
�0; D

1
) : C0

1 ! C1
0)

for d = 0; 1; : : : ; dmax do
h2

`
E

(0;Dd+1)
´
K : Hd+1

(K;K⇤)1 ! Cd

1 � Cd+1
2

D̃
“

��1
d+1D

d+1�d 0 ��1
d+1

0 D
d+1

Ed+1

”
: Cd

1 � Cd+1
2 ! Cd+1

1

f2; r; c Minimize(h2)

(a) q Reduce(h2) . optional

(b) r (rj)j =2{piv qk}

f1 (D̃j)j2r . colim im f1 = colim D̃r

if d < dmax then k; f̃1 BireduceF(f1) . f1 = kf̃1
else f̃1 Bireduce(f1)

f̃1; r; c Minimize(f̃1)

f̃2 ([f2]i⇤)i2c

yield (f̃2; f̃1) . resolution of Hd+1
(K;K⇤)

operations

B(s)
j

Ω B(s≠1)
j

≠ ⁄B(s≠1)
pi , W (s)

pi,ú Ω W (s≠1)
pi,ú + ⁄W (s≠1)

j,ú (4.53)

for some ⁄ œ k, either in line (b) or line (e). Because B(s≠1) is a Z2-graded matrix, two column
grades cgB(s)

j
and cgB(s)

pi
are comparable whenever two columns B(s≠1)

pi and B(s)
j

have the same
lex or colex pivot. By swapping pi and j if necessary, lines (a) and (d) ensure that whenever the
algorithm performs an operation as in (4.53), then cgB(s≠1)

pi
Æ cgBs≠1

j
and thus cgB(s)

j
Æ cgB(s≠1)

j
.

Using the induction hypothesis that W (s≠1) is valid in (ú), we obtain

rgW
(s)

j

def= cgB
(s)

j
Æ cgB

(s≠1)

j

def= rgW
(s≠1)

j

(ú)
Æ cgW

(s≠1)

k
= cgW

(s)

k

for all k, so W (s) is valid. By induction, W is valid.

We use Algorithm 12 to compute a free resolution of H•(K,Kú):

Proposition 4.4.3. Algorithm 13 computes graded matrices representing a minimal free reso-

lution of Hd+1(K,Kú) for each 0 Æ d Æ dmax.

Proof. The two gray lines are optional, and we claim that they do not a�ect the correctness. We
first prove correctness without these lines. The algorithm first computes matrices representing
the free resolution F• of coker D̃d+1 from (4.52). Recall that F• contains no homological 2-balls.
The algorithm computes k and f̃1 such that f1 = kf̃1 using BireduceF(). Correctness of this
step is given by Proposition 4.4.2. Then f2 and f̃1 represent a free resolution of Hd+1(K,Kú)
that does not contain any homological 2-balls. To obtain a minimal free resolution, it remains
to split o� all homological 1-balls, which is done by Minimize(). Note that the matrix k is only
needed in the next iteration of the main for-loop. Thus, if d = dmax, it su�ces to compute f̃1
but not k, using Bireduce().
Now, consider the algorithm with the two gray lines. Line (a) computes an ungraded, reduced

matrix q with im q = im colim f1. This implies that u(()f1)q = 0. Consider the submatrix f Õ
1 :=

([f1]rj)j of f1, where j ranges over the indices j Ø 1 that do not occur as the pivot of a column of
q. Although im f Õ

1 ™ im f1 may be a proper inclusion, f Õ
1 still satisfies colim im f Õ

1 = colim im f1
and rgf Õ

1 = rgf1 . This is enough to ensure that BireduceF(f1) and Bireduce(f Õ
2) correctly

compute matrices k and f̃1 that fit into (4.52).

93

Chapter 4 Persistent cohomology of freely resolved cochain complexes

Algorithm 14: A variant of Algorithm 12 with clearing.
Input: A valid graded l ⇥m-matrix B : F ! G0, a reduced valid graded m ⇥ n-matrix A such that

BA = 0

Output: An injective valid graded m ⇥ n0-matrix B0
: F : ! F representing a basis of F 0

= [colim imB]G ,
and a valid graded matrix W : F ! F 0 such that B = B0W

function BireduceFC(B;A):
V W 1 2 kn⇥n . (inverse) reduction matrix

r 0 2 N
n . assignment pivot row 7!

column for Aforeach k = 1; : : : ; n do
if Ak 6= 0 then

j pivAk

rj k
(a) Bj 0

B0;W BireduceF(B)

(b) foreach nonzero j 2 {pivAk} in ascending order do . reconstruct W for cleared

columns of B(c) Wj 0

Wj � 1
Arj rj

WArj

rg
W cg

B
0

cg
W cg

B

return B0;W

Clearing Algorithm 13 still has the shortcoming that when calling BireduceF(D̃), it spends
some time on reducing columns of D̃ to zero that can be predicted. In a last step, we show an
algorithm that avoids this. As before, let B : F æ G be a valid graded matrix. Our goal is to
compute a basis BÕ : F Õ

æ G of F Õ := [colim imB]G, and a valid graded matrix W : F æ F Õ

such that B = BÕW .
Assume that we know BA = 0 for some reduced matrix A. Let j1 < · · · < jt be the pivot

indices of the non-zero columns of A, and let BÕÕ be the matrix obtained from B by setting
Bj1 , . . . , Bjt to zero. Then B and BÕÕ generate two submodules imBÕÕ

™ imB ™ G, such that
colim imBÕÕ = colim imB ™ colimG. Let BÕ, U = BireduceF(BÕÕ). Then BÕ represents a basis
of [colim imB]G, and U satisfies BÕÕ = BÕU . We obtain the commutative diagram

F Õ

F G,

F ÕÕ

W B
Õ

B

J

U

B
ÕÕ

where Jj =
) 0 if j = js for some s,

ej otherwise . We extend Algorithm 12 such that it computes the matrix
W from U and A.

Proposition 4.4.4. Let F , G be free modules, B : F æ G be a valid graded matrix and A be a

matrix such that u(B)A = 0. Then Algorithm 14 computes a valid graded matrix BÕ : F Õ
æ G

representing a basis of F Õ := [colim imB]G, and a valid graded matrix W : F æ F Õ
such that

B = BÕW .

The following will be proven after the proposition:

Lemma 4.4.5. Let B, BÕ
be valid graded matrices such that cgBÕ

j
=

x
BÕ

ij
”=0 rgB

Õ

j
for all j.

If W is a graded matrix with row and column grades cgW = cgB and cgW = rgBÕ
such that

u(B) = u(BÕ)u(W), then W is valid.

94

4.4 Relative cohomology revisited

Proof of Proposition 4.4.4. Since BA = 0, setting Bj Ω 0 in line (a) if j occurs as the pivot
index of some column of A does not change the image of B; so imBÕÕ = imB. It follows from
Proposition 4.4.2 that BÕ represents a basis of [colim imB]G.
Let W denote the state of W after line (a), and W Õ be the state of W when the algorithm

terminates. It remains to show that W Õ is valid and satisfies B = BÕW Õ. Let q = {j1 < · · · <
jt} := {pivAk | Ak ”= 0}. If j œ q, then BireduceF(B) never performs a column addition from
Bj to another column, and thus also no row addition from Wjú to any other row of W . This
implies that Bj = BÕ

j
W Õ

j
for all j /œ q, and that W Õ

j
is valid in this case.

It remains to show the same for j œ q. Let W (0) = W, . . . ,W (t) = W Õ be the intermediate
values the matrix W takes during the loop in line (b). Note that W (0)

j
= 0 for all j œ q

because of line (c). We show by induction on s = 1, . . . , t that for all j /œ {js,jt}, we have
Bj = BÕ

j
W (s)

j
. For s = 1, there is no j < j1 in q, some the statement holds in this case.

Assume by induction that for some s Ø 1, we have Bj = BW (s≠1)
j

if j /œ {js, . . . , jt}. Note that
W (s≠1)

j
= 0 for all j œ {js, . . . , jt}. Let k = rjs be the column index of A with js = pivAk. We

obtain that

0 = BAk = BjsAjsk +
ÿ

j<js

BjAjk

(i)= BjsAjsk +
ÿ

j<js

BÕW (s≠1)
j

Ajk

(ii)= BjsAjsk +
ÿ

jÆjs

BÕW (s≠1)
j

Ajk

(iii)= BjsAjsk +BÕW (s≠1)Ak,

where (i) holds by the induction hypothesis, (ii) holds because W (s≠1)
js

= 0, and (iii) holds
because js is the pivot of Ak. Therefore, we get that

Bjs = ≠
1

Ajsk

BÕW (s≠1)Ak,

so setting

W (s)
j

=
I
W (s≠1)

j
if j ”= js,

≠
1

Ajs,k
W (s≠1)Ak otherwise

satisfies Bj = BÕW (s)
j

for all j /œ {js+1, . . . , jt}. Inductively, we obtain that B = BÕW Õ. It
follows from Lemma 4.4.5 that W Õ is valid.

Proof of Lemma 4.4.5. We have

cgW
j

= cgB
j

(ú)
Ø

fl

Bij ”=0
rgB

i

(†)
Æ

fl

Wlj ”=0

fl

BÕ
il
”=0

rgB
i

(‡)
Æ

fl

Wlj ”=0
cgB

Õ

l
=

fl

Wlj ”=0
rgW

l
,

where (ú) holds because B is valid, (†) holds because u(B) = u(BÕ)u(W) and (‡) holds because
BÕ is valid. Now, (‡) is an equality by assumption, (†) is an equality because BÕ is bireduced.
Then we obtain that cgW

j
Ø

x
Wlj ”=0 rgW

Õ

l
, so W is valid.

Remark. We provide another, more conceptual proof of Lemma 4.4.5. Let F , F Õ and M be
free modules such that B : F Õ

æ M and BÕ : F Õ
æ M , and let z̨ = rgB = rgBÕ , N := imB

and N Õ := imBÕ. For any module L and any morphism f of modules, let L̄ := colimF and
f̄ := colim f . From u(B) = u(BÕ)u(W), it follows that N̄ ™ N̄ Õ. From the definition of [≠]M , it
follows that there is an injective map n : N = [N̄]M ™ [N̄ Õ]M = N Õ. By Lemma 3.4.6, the matrix

95

Chapter 4 Persistent cohomology of freely resolved cochain complexes

BÕ represents a basis of [V Õ]M , so imB ™ [V]M ™ [V Õ]M = imBÕ. We obtain a commutative
diagram

F N

F̄ N̄
M

M̄.
F Õ N Õ

F̄ Õ N̄ Õ

p

f

B

B
Õ

i
np̄

u(W) f̄

÷M

≥=
p
Õ

i
Õ

≥=
p̄
Õ

u(B)

ı̄
Õ

n̄

ı̄

u(B)

Because there is an isomorphism pÕ : F Õ
æ N Õ, there exists a unique morphism f : F æ F Õ such

that np = pÕf . Because p̄Õ is an isomorphism, the colimit f̄ is the unique morphism such that
n̄p̄ = p̄Õf̄ . From the assumption, we obtain that

ı̄Õn̄p̄ = ı̄p̄ = u(B) = u(BÕ)u(W) = ı̄Õp̄Õu(W).

Injectivity of ı̄Õ implies that n̄p̄ = p̄Õu(W). Uniqueness of f̄ implies that u(W) = f̄ and thus
W = f . In particular, W is the representative matrix of a morphism of free modules and thus
valid.
We can use Algorithm 14 to establish another algorithm that computes a minimal free reso-

lution of Hd+1(K,Kú):

Proposition 4.4.6. Let Kú and D•
be as above, and let nd := |Kd

|. Then for each d Ø 0,
Algorithm 15 computes a minimal free resolution of Hd+1(K,Kú).

Algorithm 15: Relative cohomology algorithm II
Input: Coboundary matrices D1; D2; : : : representing C•

(K;K⇤) with H•
(K) = 0

Output: Matrices representing a minimal free resolution of Hd+1
(K;K⇤) for d > 0.

k Ker((D1
�0; D

1
) : C0

1 ! C1
0)

for d = 0; 1; : : : do

h2
„

k
(0; Dd+1

)k

«
: Hd+1

(K;K⇤)1 ! Cd

1 � Cd+1
2

D̃
„

�
�1
d+1D

d+1
�d 0 �

�1
d+1

0 Dd+1 Ed+1

«
: Cd

1 � Cd+1
2 ! Cd+1

1

Let R = V u(h2) be reduced . standard reduction

(Algorithm 1) of ungraded

matrices

(a) if d = 0 then (k; h1) BireduceF(D̃)

(b) else if d < dmax then (k; h1) BireduceFC(D̃; R)

else
(c) for j 2 {pivAk | Ak 6= 0} do D̃j 0

h1 Bireduce(D̃)

yield MinimizeCpx(h1; h2) . resolution of Hd+1
(K;K⇤)

96

4.5 Computational shortcomings

Proof. We have to show that the matrices h2, h1 computed in the dth iteration of the main
for-loop in Algorithm 15 represent the morphisms hd+1

2 , hd+1
1 from the free resolution (4.52) of

Hd+1(K,Kú). For d = 0, this follows directly from Proposition 4.4.2. Because D̃h2 is a free
resolution of coker D̃, we have D̃h2 = 0. Then also u(D̃)R = 0 as ungraded matrices, because R
is obtained from h2 by (ungraded) standard matrix reduction. Setting the columns D̃j to zero
for j = pivRk thus does not change the image of D̃. Then Lemma 4.4.5 and Proposition 4.4.4
imply that h1 and h2 form a minimal free resolution of Hd+1(K,Kú).

4.5 Computational shortcomings
Recall that, to compute a free resolution of Hd(Kú) as described in 4.2.6, we have to com-
pute, i.a., a matrix Ÿd representing the inclusion of ker(”d+1

0 ,≠cd+1
1) and solve the factorization

problem
Ÿdhd

1 =
1

≠”
d
0 c

d
1 0

0 ”
d+1
1 c

d+1
2

2
(4.54)

for hd

1. Let nd := |Kd

ú |, and let Dd represent the coboundary morphism ”d of the cochain
complex Cd(K) of vector spaces. By definition, (”d+1

0 ,≠cd+1
1) is represented by a graded matrix

with the underlying block matrix

(Dd+1 Ed+1 �d+1) : Cd

0 ü Cd+1
1 æ Cd+1

0 (4.55)

of size nd+1 ◊ (nd + 2nd+1), and its kernel has rank nd + nd+1. Similarly, the right hand side
of (4.54) is represented by the block matrix

3≠D
d

Ed �d 0
0 �≠1

d+1D
d+1�d 0 �≠1

d+1
0 0 D

d+1 ≠Ed+1

4
: Cd≠1

0 ü Cd

1 ü Cd+1
2 æ Cd

0 ü Cd+1
1

of shape (nd +2nd+1)◊ (nd≠1 +2nd + nd+1). In experiments with a prototype implementation
not reported here, it has been observed that the mere size of these two matrices causes high
running times. Also, it has been observed that computing the kernel of (4.55) using Ker() causes
considerable fill-up of matrix columns (see also [17]), which further increases the runtime.
When working with relative cohomology, the situation is slightly better. Namely, as described

in 4.2.8, to compute Hd+1(K,Kú), one has to compute the kernel of the morphism (cd+2
1 ”d+2

1),
which is represented by the matrix

(Dd+2, Dd+2�d+1) : Cd+1
2 æ Cd+2

0

of size nd+2◊2nd+1. As described above, this can be avoided using one of Algorithms 13 and 15.
When using Algorithm 13, the expensive step is to run BireduceF() (Algorithm 12) on the
block matrix 1

�≠1
d+1D

d+1�d 0 �≠1
d+1

0 D
d+1

Ed+1

2
: Cd

1 ü Cd+1
2 æ Cd+1

1 (4.56)

of size 2nd+1 ◊ (2nd + nd+1). Applying BireduceF() on this matrix has the downside that it
needs to reduce many columns to zero, which is why we introduced Algorithm 15 that builds
upon BireduceFC() (Algorithm 14). The problem with this approach is the following. Let D̃
denote the matrix from (4.56) as in Algorithm 15. Then by the design of Algorithm 15, it is
necessary that BireduceFC(D̃) outputs both the bireduced reduced matrix R = D̃V and the
reduction matrix V . However, as a clearing strategy, BireduceFC(D̃) set certain columns of R
to zero directly. As described above, if a column Rj has been set to zero by clearing, one has to
do some computations to obtain the corresponding column Vj , which is done in Algorithm 14,
line (b). This process cannot be parallelized in a simple way. Experiments have shown that the
loop in Algorithm 14, line (b) consumes all runtime benefit arising from clearing.

97

Chapter 4 Persistent cohomology of freely resolved cochain complexes

For a comparison with Chapter 3, we note that the situation is di�erent in Algorithm 11. Here,
the situation is that when Bireduce(Dd+1) is used to compute a bireduced matrix R = Dd+1V
for some V , then Algorithm 11 only needs the matrix R for further computations, but not the
reduction matrix V . Consequently, it is not necessary to compute the column Vj of V if Rj = 0
has been obtained through clearing in this case.

4.6 Absolute and relative cohomology do not determine each
other

To finish this section, we present an example that shows that in two-parameter persistence,
H•(Kú) and H•(K,Kú) need not determine each other, unless K is acyclic. This is analogous
to Section 3.6, where we provided an example that shows the analogous statement for H•(Kú)
and H•(N•(Kú)). This is di�erent from one-parameter persistence: recall that in this case,
H•(Kú) and H•(K,Kú) determine each other uniquely up to isomorphism even if K is not
acyclic; see Corollary 2.2.11. Specifically, we show:

Theorem B(b). There exist one-critically two-parameter filtered simplicial complexes Kú, Lú
and Mú, such that

(i) H•(K,Kú) ≥= H•(L,Lú), but H•(Kú) ”≥= H•(Lú), and
(ii) H•(Kú) ≥= H•(Mú), but H•(K,Kú) ”≥= H•(M,Mú).

The colimits K, L and M are not acyclic.

Proof. We use the same complexes as in Section 3.6, but leave out the last 2-cell; see Figure 4.9.
Again, we compute non-reduced cohomology with coe�cients in F2. An example for reduced
cohomology can be constructed analogously.
Let z > g(‡) for all ‡ œ Kú, Lú and Mú. For Kú, we get

RzC
•(Kú) : 0 ≠æ

xx

px

xy
xy

py

yy

xq; yq

RzC
0(K⇤)

≠æ xe

pe

ey
xf

pf

fy

eq; fq

RzC
1(K⇤)

≠æ 0,

C•(K,Kú) : 0 ≠æ
xx

px

xy
xy

py

yy
RzC

0(K;K⇤)

≠æ xe

pe

ey
xf

pf

fy

RzC
1(K;K⇤)

≠æ 0.

We compute generators and relations of H•(Kú) and H•(K,Kú) as in Section 4.3 and obtain
the minimal free presentations

RzH
0(K,Kú) =

Èpx+ py, xy+ py, xy+ yyÍ

Èpx+ py xx
© xy+ py

xy
© xy+ yyÍ

, RzH
1(K,Kú) =

Èey, pfÍ
Èey

xy
© pf, ey

py
© pfÍ

,

RzH
0(Kú) =

Èxq+ yq, xq+ ey+ pfÍ
Èpx+ py, xy+ yyÍ

, RzH
1(Kú) =

Èeq © fqÍ
Èfy, fyÍ

,

(4.57)

98

4.6 Absolute and relative cohomology do not determine each other

e

x

f

;
y

(a) K⇤

g

x

z

e

f

i

h

;
y

(b) L⇤

e

z

g h

i

x

f

;
y

(c) M⇤

Figure 4.9: The filtered simplicial complexes from the proof of Theorem B(b).

px + py

xx xy + py

xy
xy + yy

(a) H0
(K;K⇤)

ey

pf

xf

xe

(1;1)

(1;1) (1
0)

(0
1)

(b) H1
(K;K⇤)

px

xx

xy
yy

xq + yq

xe

xf

xq + ey + pf

(1;0)

(1;1) (1
0)

(1
0)

(c) H0
(K⇤)

ey

pf eq ⌘ fq

(d) H1
(K⇤)

Figure 4.10: The relative and absolute cohomology modules (4.57) of K⇤ from Figure 4.9a.

px + py + pz

xx xy + py + pz
xz

xy
xy + yy + zy

(a) H0
(L; L⇤)

gy

ph

xh

xg

(1;1)

(1;1) (1
0)

(0
1)

(b) H1
(L; L⇤)

px

xx xz

xy
yy

xq + yq + zq

xg

xh

zq + gy + ph

(1;0)

(1;0) (1
0)

(1
0)

(c) H0
(L⇤)

gy

ph gq ⌘ hq

(d) H1
(L⇤)

Figure 4.11: The relative and absolute cohomology modules (4.58) of the filtered complex L⇤ from Fig-
ure 4.9b.

px + py + pz

xx xy + py + pz

xy
xy + yy + zy

(a) H0
(M;M⇤)

gy

pg

ey + pf

xf

xe

(1;0)

(1;0) (1
0)

(1
0)

(b) H1
(M;M⇤)

r1

xx r3

xy
r5

‚1

r2

r4

‚2

(1;0)

(1;1) (1
0)

(1
0)

(c) H0
(M⇤)

xg
gy

pg gq

(d) H1
(M⇤)

Figure 4.12: The relative and absolute cohomology modules (4.59) of the filtered complex M⇤ from Fig-
ure 4.9c.

99

Chapter 4 Persistent cohomology of freely resolved cochain complexes

see Figure 4.10. All four modules are indecomposable, and all higher homology modules are
zero. Similarly, we obtain the minimal presentations

H0(L,Lú) =
Èpx+ py + pz, xy+ py + pz, xy+ yy+ zyÍ

Èpx+ py + pz xx
© xy+ py + pz

xy,xz
© xy+ yy+ zyÍ

, H1(L,Lú) =
Èey, pfÍ

Èey
”zy
© pf, ey

”pz
© pfÍ

,

H0(Lú) =
Èxq+ yq+ zqÍ

Èpx+ py + pz, xy+ yy+ zyÍ
ü

Èzq+ ey+ pfÍ
Èpz + pe, zy+ fyÍ

, H1(Lú) =
Èeq © fqÍ
Èey, pfÍ

,

(4.58)
and

H0(M,Mú) = H0(L,Lú), H1(M,Mú) =
Èey+ pfÍ

Èpy + xe, xy+ pfÍ
ü

Èpg, gyÍ
ÈxgÍ

,

H0(Mú) =
È“1, “2Í

È“1
r1,r3,r5
© 0, “1

r2
© “2, “2

r2
© 0Í

, H1(Mú) =
ÈgqÍ

Èpg, gyÍ
,

(4.59)

with

“1 = xq+ yq+ zq, “2 = xq+ ey+ pf + pg,
r1 = px+ py + pz : g1 © 0, r2 = py + pz + xe : g1 © g2,

r3 = xy+ py + pz : g1 © 0, r4 = xy+ xf + xg : g2 © 0,
r5 = xy+ yy+ zy : g1 © 0;

see Figures 4.11 and 4.12.
These are minimal presentations. All other cohomology modules are zero. Comparing Fig-

ures 4.10 to 4.12 shows that Hd(K,Kú) ≥= Hd(L,Lú) and Hd(Lú) ≥= Hd(Mú) for all d. Never-
theless, H0(Kú) ”≥= H0(Lú) and H1(K,Kú) ”≥= H1(M,Mú), because one is indecomposable while
the other is not. This finishes the construction.

To finish this section, we show a two-parameter filtered cell complex Qú such that the short
exact sequences

0 æ coker pd æ RzH
d(Qú) æ ker pd+1

æ 0,
0 æ coker id æ RzH

d+1(Q,Qú) æ ker id+1
æ 0

(4.60)

induced by the long exact sequence

0 ≠æRzH
0(Q,Qú)

p
0

≠æ RzH
0(Q) i

0
≠æ RzH

0(Qú)
”

RzH
1(Q,Qú)

p
0

≠æ RzH
1(Q) i

1
≠æ RzH

1(Qú)
”

RzH
2(Q,Qú)

p
1

≠æ RzH
2(Q) i

2
≠æ RzH

2(Qú) ≠æ · · ·

(4.61)

never split for any d. Namely, let Qú be the cell complex with cellular chain complex

C•(Qú) : · · · æ Èfl3,‡3, ·3Í

1 1 1 1
0 0 0
1 1 1

2

≠≠≠≠≠≠æ Èfl2,‡2, ·2Í

1 1 1 1
0 0 0
1 1 1

2

≠≠≠≠≠≠æ Èfl1,‡1, ·1Í
(1 1 1
1 1 1)

≠≠≠≠≠æ Èfl0, ·0Í æ 0,

one-critically Z2-filtered with

g(fld) = (2d, 2d+ 2), g(‡d) = (2d+ 1, 2d+ 1), g(·d) = (2d+ 2, 2d)

100

4.6 Absolute and relative cohomology do not determine each other

for all d. We obtain the minimal free presentation matrices

RzH
0(Q,Qú) = coker

S

U
1xfl0 x·0pfl0+p·0 1

fl0y+p·0 1 1
fl0y+·0y 1

2
T

V, (4.62)

RzH
d(Q,Qú) = coker

S

U
1xfld+p·d≠1 x‡d fld≠1y+x·dp‡d 1 1

fldy+p·d 1 1
‡dy 1 1

2
T

V, (4.63)

RzH
d(Qú) = coker

S

U
1pfld+p·d xfld+1+p·d x‡d+1 x·d+1+fldy fldy+·dy

fldq+fld+1y+p‡d+1+p·d+1 1 1
fldq+·dq 1 1 1 1

fldq+fld+1y+‡d+1y+p·d+1 1 1

2
T

V (4.64)

for all d > 0 and d Ø 0, respectively. The rows and columns of these matrices are decorated
by the representatives in C•

•. These are graded matrices, where each row and column has as
grade the join of the grades of the summands in the representative attached to it. The long
exact sequence (4.61) is illustrated in Figure 4.13. Each of the modules Hd(Q,Qú), Hd(Q) and
Hd(Qú) is indecomposable. In particular, the short exact sequences (4.60) cannot split for any
d.

101

Chapter 4 Persistent cohomology of freely resolved cochain complexes

0

p⇢0 + pfi0

x⇢0
⇢0y + pfi0

xfi0

⇢0y + fi0y

H
0(Q;Q⇤)

⇢0q + fi0q

H
0(Q)

⇢0q + fi0q

x⇢0

xfi0

x⇢1

x�1

xfi1
(1

0)

(1
0)

(1;0)

(1;1)

H
0(Q⇤)

x�1

p⇢1 + pfi1

⇢1y + fi1y
x⇢1 ⇢1y + pfi1

xfi1
(1

0)

(1
0)

(1;1)
(0

1)

H
1(Q;Q⇤)

⇢1q + fi1q

H
1(Q)

⇢1q + fi1q

x⇢1

xfi1

x⇢2

x�2

xfi2
(1

0)

(1
0)

(1;0)

(1;1)

H
1(Q⇤)

x�2

x⇢2

xfi2
(1

0)

(1
0)

(1;1)
(0

1)

H
2(Q;Q⇤)

· · ·

Figure 4.13: The long exact cohomology sequence (4.61) of the complex Q⇤. The diagrams depict the
minimal free presentations (4.62) to (4.64) of the respective cohomology modules. The symbols , and
denote the grades of the generators, relations and 2-syzygies of the module. The labels stand for the simplex
that determines the grade of the generator, relation or syzygy. Where two colors overlap, the components
of the respective module are two-dimensional. The small matrices indicate structure maps into and out
of these regions. Each of the modules is indecomposable because it contains an indecomposable quiver
representation.

102

Chapter 5

Implementation and experiments

To show that computing two-parameter persistent cohomology is feasible, we provide a C++
implementation of our approach for the computation of two-parameter persistent homology and
cohomology from Chapter 3. In this section, we provide some details about and experimental
results obtained with this implementation.

5.1 Implementation

Our software 2pac (2-parameter cohomology), which is publicly available at [94], implements
the two-parameter cohomology algorithm (Algorithm 11) from Chapter 3 and the homology
algorithm (Algorithm 9) from Section 2.4.
We do not include the absolute and relative cohomology algorithms from Chapter 4, because

earlier experiments with a prototype implementation did not show any performance benefits
over the cohomology algorithm.
The code computes all resolutions with coe�cients in F2. The software accepts as input

either a sequence of matrices, or a file containing a filtration and a distance matrix of a point
cloud. Both kinds of input are read as a binary format described in the file README.md. For
the interested reader, we provide an overview over the relevant files and classes and explain
technical details in the implementation of algorithms presented in this thesis.

5.1.1 Retrieval, building, using

The software can be retrieved from the git repository at [94]. Building the software requires a
reasonably recent version of Boost (including Boost::program_options) and OpenMP to be
installed. To build the software, follow the instructions in README.md in the repository. The
software has been successfully built on Mac OS using clang++ 15.0.7, and on Ubuntu Linux
using g++ 11.2.0.
To run the software on one of the samples, run the command ./2pac -f samples/[fileΩÚ

name]. This computes minimal free resolutions of Hd+2(N•(Kú)) and Hd(Kú), where Kú is
the density-Rips complex on the filtered point cloud in [filename]. Run ./2pac –help for an
overview of the command line arguments. See README.md for a description of the binary file
format.
Jupyter notebook EXAMPLE.ipynb may be convenient to produce the input data, call 2pac,

and visualize the output. This notebook can be used to generate point clouds sampled from
di�erent spaces, choose a density function and bandwidth parameter interactively, write the
filtered point cloud to disk in the required binary format, invoke 2pac and read its output, and
visualize the computed minimal free resolutions. The notebook can also be used to read a file
in scc2020 format [97] and convert it to the binary format.

Chapter 5 Implementation and experiments

5.1.2 Organization of the source code
For the reader who is interested in implementation details, we provide an overview of the
source code. The code is grouped in several pairs of corresponding source and header files. A
documentation of the classes, functions and files can be generated by running doxygen in the
folder. The documentation can then be found in the sub-folder documentation/index.html.
We give a short overview of the files and classes of our code. See the documentation in the
header files for details.x

2pac.cpp Entry point. The function main reads an input file (which describes a filtered point
cloud), sets up its function-Rips complex Kú, applies preprocessing filters (such as chunk
preprocessing) according to command line arguments, and computes minimal free reso-
lutions of Hd+2(N•(Kú)) or Hd(Kú). For each dimension, the computation finishes by
printing the Betti numbers. During the computation, the program prints the runtimes
for each of the steps of the algorithm.

computation.hpp Contains classes Cohomology, Homology and RelativeCohomology that im-
plement the computation of minimal free resolutions of (co)homology as described in
Algorithms 9, 11 and 13, respectively. To use these, construct an object of the respective
type, and call its operator() on the (co)boundary matrices D1, D2, . . . consecutively,
which happens in 2pac.cpp.

matrices.hpp Implements a class GradedMatrix, which represents a Z2-graded matrix. The
underlying ungraded matrix is implemented by the class SparseMatrix, which repre-
sents a matrix as a list of columns. Each column is implemented as an object of type
ColumnType, which can be one of HeapColumn and ArrayColumn. See Section 5.1.3 for
details. The column type to be used is specified at compile time. The default is heaps;
to use vectors, compile with -DARRAY_MATRICES.

bireduce.hpp implements Algorithm 10 in the function extend_from_colimit. The file de-
fines a struct Params, which can be passed to extend_from_colimit to set some details
of the algorithm. This is intended for testing; the defaults should be fine. The func-
tion sparsify implements Algorithm 22, which is used to reduce the density the matrix
computed by Algorithm 10; see Section 5.1.5.

complexes.hpp provides the abstract class Complex, which represents either a chain or a
cochain complex. A (co)chain complex has a method to yield the next (co)boundary
matrix. The file provides the following classes deriving from Complex:

Pointcloud reads a filtered point cloud from a binary file from disk, and assembles the
coboundary matrices of the associated function-Rips complex; for generating the
matrices, the class uses the combinatorial number system;

MatricesFromFile reads a sequence of Z2-graded matrices from disk, and checks that
they represent a cochain complex indeed.

We also provide filters, which take as input a std::unique_ptr to a Complex and repre-
sent a new complex, obtained by applying some operation to the original one. For that
reason, instances of Complex should always be created through std::make_unique. For
example, complexes.hpp provides

TransposeComplex converts a cochain complex to a chain complex and vice versa by
taking the graded transpose of all its (co)boundary matrices.

FlipGrades exchanges the first and second coordinate of all Z2-grades of the rows and
columns of the (co)boundary matrices.

AugmentComplex takes the augmented complex of a given (co)chain complex, used to
compute reduced (co)homology.

104

5.1 Implementation

Other filters, provided in separate files are the following:
Cone.hpp defines the classes Cone and HBasisCone deriving from Complex. The former makes

the complex a cone for large filtration values by forming the simplicial cone as described
in Section 3.7.1. The latter implements the strategy from Section 3.7.2; see Section 5.1.4
for implementation details.

chunk.hpp implements a class Chunk deriving from Complex, which implements the chunk pre-
processing Algorithm 4 or Algorithm 5, depending on whether it is applied to a chain
or cochain complex. Both variants call minimize on the (co)boundary matrices subse-
quently. It is possible to specify a largest dimension to which Algorithm 3 is supposed to
be applied.

factor.hpp, minimize.hpp and lw.hpp implements Algorithms 3, 7 and 8, respectively.
indirect.hpp contains classes IndirectColumn and IndirectMatrix, which implement a ma-

trix representation through maintaining a heap of pointers to another, underlying matrix.
See Section 5.1.3.3 for details.

The other files contain utilities, helper and wrapper functions and classes, which should be
self-explanatory.

5.1.3 Sparse matrices
Most algorithms presented in this thesis are matrix column reduction schemes. It is common
in implementations of persistent homology to store matrices in a column sparse way; that is, a
matrix is represented by a contiguous list (called a vector) of its columns in a way that allows
accessing the nth column in constant time. In our implementation, we use a std::vector<T>
of the C++ standard library, where the type T implements a matrix column. It has to provide
e�cient access to the pivot of a column, and an e�cient implementation of the addition of
two columns. Some operations, such as minimization (Algorithm 3), also require the e�cient
deletion of the pivot of a column and retrieval of the new pivot. In the context of one parameter
persistent homology, various matrix formats have been tried in [12]. In our implementation, we
provide support for the vector and the heap format, which we explain now in detail.

5.1.3.1 Matrix columns as vectors

In the vector format, a matrix column Mj is represented by a vector v of pairs (i,Mij), one
for each Mij of Mj . The entries are ordered descendingly by the row index i. Each row index
occurs at most once in v. The pivot of Mj is the first element in v. As implementation for v,
we define the class SkipVector, which is a wrapper around std::vector that allows for the
e�cient removal of the pivot.
For coe�cients in F2, it su�ces to store the indices i of the non-zero entries. In this case,

the addition of two columns v and vÕ is the symmetric di�erence of two ordered lists and can
be performed in time O(|v| + |vÕ|). We use the STL-implementation std::set_symmetric_ΩÚ
difference for this. For other coe�cient fields, addition of two columns can be performed by
an analogous algorithm.

5.1.3.2 Matrix columns as binary heaps

Let T be a set equipped with a total order. A priority queue Q of objects in T is a data structure
containing elements of T that allows to e�ciently retrieve the maximal element of Q (Top(Q)),
remove it (PopMax(Q)), and insert a new element t into Q (Push(Q, t)). We use the STL class
std::priority_queue. This class implements a priority queue as a binary heap, which stores its
elements in a contiguous vector on which it maintains a specific indexing scheme. In particular,
a descendingly ordered vector is also a binary heap.

105

Chapter 5 Implementation and experiments

Algorithm 16: Consolidation of binary heaps
Input: A binary heap Q.
Output: A consolidated, totally ordered binary heap Q0

if Q = ; then return Q
Q0 ;
(i ; –) PopMax(Q)

while Q 6= ; do
(i 0; –0

) PopMax(Q)

if i = i 0 then – – + –0

else
if – 6= 0 then Push(Q0; (i ; –))

(i ; –) (i 0; –0
)

if – 6= 0 then Push(Q0; (i ; –))

return Q0

Algorithm 17: Pivot extraction from a binary heap
Input: A binary heap Q of pairs (i ; –) 2 N⇥ k.
Output: The pivot of the matrix column represented by Q.
if Q = ; then return 0

(i ; –) PopMax(Q)

while Q 6= ; do
(i 0; –0

) PopMin(Q)

if i = i 0 then – – + –0

else if – = 0 then (i ; –) (i 0; –0
)

else
Push(Q; (i 0; –0

))

Push(Q; (i ; –))

return i
if – 6= 0 then return i else return 0

In heap format, a matrix column Mj is represented by a binary heap Q, whose entries are
pairs (i,⁄) for i œ N and ⁄ œ k. The elements are ordered by i. The heap Q may contain
multiple entries (i,⁄) for the same row index i. The heap Q represents the matrix column Mj

with entries Mij =
q

(i,⁄)œQ
⁄ for all i.

To retrieve the pivot index of Mj , one has to extract all entries from Q that have the same
maximal value of i using PopMax(Q), and sum up their values ⁄. If they add up to a non-zero
value Mij , then this is the pivot entry of M ; see Algorithm 17. To add to columns, one merges
the representing heaps and reestablishes the heap condition.
We call the heap Q consolidated if it contains at most one entry (i,⁄) for each i. A binary

heap can be consolidated using Algorithm 16. Algorithm 16 produces the output QÕ with entries
in total order. In particular, this routine converts the heap representation of a matrix column
into the vector representation.

5.1.3.3 Indirect representations

We explain another way to represent matrices, built around the vector representation. Let M
be an m◊ n-matrix with entries in F2 in vector format, where each column Mj is represented
by the vector vj . To e�ciently implement column operations on the matrix M , we propose the
following way to represent the intermediate steps of a column reduction algorithm.

106

5.1 Implementation

Algorithm 18: Consolidation of the pivot of an indirect column
Input: A binary heap Q of entries (vki ; i ; k))
Output: A binary heap Q with a unique entry for which vki is maximal.
while |Q| � 2 do

(vki ; i ; k) PopMax(Q)

(vk0i 0 ; i
0; k 0

) PopMax(Q)

if vki = vk0i 0 then . entries cancel

if i < |vk | then Push(Q; (vk;i+1; i + 1; k)) . vk still has entries

if i 0 < |vk0 | then Push(Q; (vk0;i 0+1; i
0
+ 1; k 0

)) . v 0
k0 still has entries

else . pivot established

Push(Q; (vk0i 0 ; i
0; k 0

)) . push back the last elements

Push(Q; (vki ; i ; k))

break
return Q

Algorithm 19: Converting an implicit matrix column to an explicit one
Input: A binary heap Q of entries (vki ; i ; k).
Output: A descendingly ordered vector v 0.
v 0 ;
while Q 6= ; do

(vki ; i ; k) PopMax(Q)

append vki to v 0.

An indirect matrix I with underlying matrix M consists of a binary heap Qj for each j Æ n.
Each Qj consists of entries (vki, i, k) with k Æ n and i Æ |vk|. In Qj , the entries are ordered
lexicographically.
Then I represents a matrix product MV for some square matrix V , where the information

about a column Vj is contained in the heap Qj . Specifically, the heap Qj represents the linear
combination

Ij = MVj =
ÿ

(vki,i,k)œQj

Mk (5.1)

of columns of M . Since we consider coe�cients in F2, the linear combination (5.1) corresponds
to the symmetric di�erence of the vectors vk for (vki, i, k) œ Qj .
At any time, component i of an entry of Q is chosen such that

Ij =
ÿ

(vki,i,k)œQj

lØi

evkl .

To explain this, assume that Qj contains two entries (vki, i, k) and (vkÕiÕ , iÕ, kÕ), such that vki =
vkÕiÕ . Then these two entries represent two entries Mvkik and MvkÕiÕk

Õ of M that lie in the
same row vki = vkÕiÕ . When forming forming the symmetric di�erence (5.1), they add up to
zero. Thus, we may remove these entries from Qj and replace them by (vki+1, i + 1, k) and
(vkÕiÕ+1, iÕ + 1, kÕ), given that vk and vkÕ have further entries.
We maintain the property that if (vki, i, k) œ Qj , then all entries vkiÕ of vk with iÕ < i have

been canceled with entries of other vectors vkÕ occurring in Qj . We also maintain the property
that if Qj ”= ÿ, then there is a unique entry (vki, i, k) for which vki becomes maximal. Then this
entry represents the pivot of (5.1). We implement the following operations on the columns Ij :

Initialization We initialize I such that Ij represents the column Mj . To do so, we let Qj =
{(vj1, 1, j)} for each j; that is, the unique entry in Qj points to the entry vj1 that
represents the pivot of Mj .

107

Chapter 5 Implementation and experiments

Pivot retrieval The pivot index piv Ij of a non-zero column Ij is the unique element (vji, i, j) œ
Qj for which vji is maximal.

Pivot consolidation When Qj has been manipulated, Algorithm 18 reestablishes the property
that Qj has a unique entry (vki, i, k) for which vki becomes maximal. The algorithm keeps
taking elements (vki, i, k) from Qj (in descending order of the row indices vki) as long as
there are two entries with the same row index vki. If entries (vki, i, k) and (vkÕiÕ , iÕ, kÕ)
satisfy vki = vkÕiÕ , they correspond to two entries Mvki,k and MvkÕiÕ ,k

Õ that add to zero
in (5.1). If i < |vk|, then the vector vk representing Mk has further entries vkiÕ < vki
for iÕ > i that have not been processed yet. Therefore, we add an entry (vk,i+1, i+ 1, k)
pointing to the next entry of vk back to Qj . Analogously for iÕ.

Pivot deletion To set the pivot entry of Ij to zero, we delete the maximal entry of Qj and
consolidate the pivot (Algorithm 18).

Column addition A column operation Ij Ω Ij +MjÕ is implemented by adding (vjÕ1, 1, jÕ) to
Qj . A column operation Ij Ω Ij+IjÕ is implemented by setting Qj Ω Qj fiQjÕ . In either
case, it is necessary to call Algorithm 18 afterwards to consolidate the pivot.

If there are many column operations of the form Ij Ω Ij + IjÕ , setting Qj Ω Qj fi QjÕ may
cause Qj to grow prohibitively large. As a remedy, we propose the following approach inspired
by the accelerated matrix representations proposed in [12]. During a column reduction scheme,
as long as we perform column operations Mj Ω Mj+Mk to the same column Mj , we implement
these operations by working on Ij instead. After the last column operation onMj has happened,
we convert the manipulated matrix column Ij to an explicit vector vÕ

j
of the non-zero entries in

Ij using Algorithm 19, and set vj Ω vÕ
j
. In other words, only the currently manipulated column

of M is represented indirectly, while all others are stored explicitly.

5.1.4 Coning o� K⇤

Recall that Algorithm 11 requires that the input chain complex C• is eventually acyclic. If Kú
does not have this property, we replace C•(Kú) by a suitable filtered complex C• as described
in Section 3.7. Implementing the simplicial cone construction from Section 3.7.1 is straight
forward, see the class Cone in file Cone.hpp. In the following, we describe the implementation
of the strategy from Section 3.7.2 that can be found in the class HBasisCone in the same file.
This strategy first computes a persistence bases of the one-parameter persistent homologies
H•(

t
yœZ K(ú,y)) and H•(

t
xœZ K(x,ú)), and then uses these persistence bases to construct the

desired chain eventually acyclic chain complex Ĉ•.

Computing a persistence basis Before we explain how we build K̂ú, we describe an e�cient
algorithm to compute persistence basis [8, 53].
Let Kú œ Simp™Z. For each d, let Dd represent ˆd with respect to the standard basis. Let

Vd be upper triangular such that Rd = DdVd is reduced. Assume that barcHd(C•) = {(bi, di) |
i œ I} for some index set I. Recall from Example 2.2.7 that

{[Rd+1]j ”= 0} fi {[Vd]i | [Rd]i = 0 and @j : i = piv[Rd+1]j}

is a persistence basis of Hd(Kú). Recall from Section 2.2.1 that for Vietoris–Rips complexes,
computing the matrices Rd and Vd cannot be e�ciently combined with clearing, because clearing
cannot be applied to the first (viz. highest dimensional) boundary matrix Ddmax . If the barcode
was known, however, clearing can be realized e�ciently also with boundary matrices.
The barcode, in turn, can be e�ciently computed using cohomology. The computation of a

persistence basis of Hd(Kú) thus proceeds in two steps: first, one applies the clearing algorithm
(Algorithm 2) to the coboundary matrices Dd := (Dd)‹. From the resulting matrices Rd and
V d one obtains barcHd(K,Kú) and thus barcHd(Kú). Second, one uses this barcode to apply

108

5.1 Implementation

the clearing algorithm to the boundary matrices Dd. This results in the matrices Rd and Vd,
from which one obtains the desired persistence basis of the homology modules Hd(Kú). In the
following, we explain this algorithm in detail.
Recall the following terminology. If [Rd]i = 0, we call i a birth index of Hd(Kú). We call i

a non-essential birth index if i = piv[Rd+1]j for some j. In this case, we call j a death index

of Hd(Kú) and (i, j) a persistence pair of Hd(Kú). If there is no such j, we call i an essential

birth index of Hd(Kú). Analogously, if j = piv[Rd+1]i, then (i, j) is called a persistence pair,
j a non-essential birth index and i a death index Hd+1(K,Kú). If [Rd+1]i = 0 and i is not a
non-essential birth index, then i is an essential birth index of Hd(K,Kú) (sic).
There is a correspondence

Ó persistence pairs (j, i) of
Hd+1(K,Kú)

Ô 1:1
≠≠æΩ≠≠

Ó persistence pairs (iÕ, jÕ) of
Hd(Kú)

Ô

Ó essential birth indices i of
Hd(K,Kú)

Ô 1:1
≠≠æΩ≠≠

Ó essential birth indices iÕ of
Hd(Kú)

Ô (5.2)

where iÕ = nd + 1 ≠ i and jÕ = nd+1 + 1 ≠ j. This follows from Corollary 2.2.11. However,
this is only a correspondence of matrix row and column indices and thus of the intervals in the
respective barcodes. There is no correspondence of representative (co)chains.
Example 5.1.1. Let Kú be the simplicial complex that has the (reduced) (co)boundary matrices

D0 = (), D1 =
1 1 1 0 0 0

1 0 1 0 1
0 0 0 1 1
0 1 1 1 0

2
, D2 =

3 1
1
0
1
1

4
, D0 = (), D1 =

3 0 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1

4
, D2 = (1 1 0 1 1)

with coe�cients in F2 and n0 = 1, n1 = 5 and n2 = 1. Left-to-right reduction yields

R0 = (), R1 =
1 1 1 0 1 0

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

2
, R2 =

3 1
1
0
1
1

4
, R0 = (), R1 =

3 0 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0
0 0 1 0

4
, R2 = (1 0 0 0 0).

We obtain the persistence pairs that we list in the following schematic:

H•(Kú) H•(K,Kú)
(1,Œ)

(2, 1)
(3, 4)
(4, 2)

(3,Œ)
(5, 1)

(4,Œ)

(5, 3)
(2, 2)
(4, 1)

(3,Œ)
(1, 1)

R0

R1

R2

H0(Kú)

H1(Kú)

R0

R1

R2

H0(K,Kú)

H1(K,Kú)

H1(K,Kú)

1 : 1

1 : 1

Here, the essential birth indices i are written as pairs (i,Œ). The indices of H•(Kú) on the
left can be obtained from the reduced matrices R0, R1 on R2. Persistence pairs of Hd(Kú) are
obtained from Rd+1. For the essential birth indices of Hd(Kú), one needs both Rd and Rd+1.
Red, green and blue numbers are column indices of R0, R1 and R2 on the left and correspond
to the respective row indices of R0, R1 and R2 on the right.
To compute a persistence basis of Hd(C•), we need to compute the reduced columns [Rd+1]j ,

where j ranges over all death indices of Hd(C•), and the reduction matrix columns [Vd]i with
[Rd]i = 0, where i ranges over the essential birth indices of Hd(C•). This is the essential idea
of the following algorithm.

Proposition 5.1.2 (E�cient persistent homology computation). Let the Z-graded matrices

D1, D2, . . . represent a chain complex C(Kú) of free modules for some Kú œ Simp™Z
. Then

Algorithm 20 computes a persistence basis of the reduced homology Hd(Kú) for each d.

109

Chapter 5 Implementation and experiments

Algorithm 20: One-parameter persistence basis algorithm. E�cient computation of a persistence basis of
H•(K⇤)

Input: Z-graded matrices (Dd 2 knd�1⇥nd)d�0 with row and column grades in ascending order that
represent a chain complex C• of free modules.

Output: Persistence bases for each Hd(C•).
R0 () 2 k0⇥n0 ; V0 E 2 kn0⇥n0

b {1; : : : ; n0} . birth indices of Hd+1(K⇤)

p () 2 N
0 . pivot row to column

assignment of R0(a) for d = 0; 1 : : : do
let Rd+1

= D?
d+1V

d+1 be reduced for V d+1 invertible upper triangular . use Algorithm 2

t {nd+1 + 1� piv[Rd+1
]i | [Rd+1

]i 6= 0} . death indices of Hd(K⇤)

be {i 2 b | [Rd+1
]nd+1�i = 0} . ess. birth indices of Hd(K⇤)

b {j nd+1 | j =2 t} . birth indices of Hd+1(K⇤)

(b) for i 2 be with do . compute representatives [Vd]i

of essential classes in Hd(K⇤)while [Rd]i 6= 0 do
h piv[Rd]i

[Rd]i [Rd]i � [Rd]hi=[Rd]hph [Rd]ph . i is a birth index, so ph 6= 0

[Vd]i [Vd]i � [Rd]hi=[Rd]hph [Vd]ph

Rd+1 Dd+1
Vd+1 E 2 knd+1⇥nd+1

p 0 2 N
nd

(c) for j 2 t in asc. order do . compute representatives

[Rd+1]j = D[Vd+1]j of

persistence pairs of Hd(K⇤)

while pi 6= 0 for j = pivLk do
[Rd+1]j [Rd+1]j � [Rd+1]i j=[Rd+1]ipi [Rd+1]pi

[Vd+1]j [Vd+1]j � [Rd+1]i j=[Rd+1]ipi [Vd+1]pi

pi j

(d) yield {([Rd+1]j ; [Vd+1]j) | j 2 t} [{[Vd]i | i 2 be} . persistence basis of Hd

Proof. Assume inductively that at the beginning of the loop in line (a), the set b contains the
birth indices of Hd(Kú). Assume further that Rd = DdVd such that the submatrix ([Rd]j)j /œb

is reduced, and assume that pi = j for all non-zero columns [Rd]j with i = piv[Rd]j . We show
that the algorithm correctly computes a persistence basis of Hd(Kú), and establishes the above
conditions for the next iteration.
Let Rd+1 = D‹

d+1V
d+1 be reduced for V d+1 invertible upper triangular. If [Rd+1]i ”= 0

with j = piv[Rd+1]i then (j, i) is a persistence pair of Hd+1(C•), so (nd +1≠ i, nd+1 +1≠ j) is
persistence pair of Hd(Kú). In particular, nd+1≠i is a non-essential birth index and nd+1+1≠j
is a death index of Hd(Kú). Therefore,

t = {nd+1 + 1≠ piv[Rd+1]i | [Rd+1]i ”= 0}

is the set of death indices of Hd(Kú). On the other hand, if [Rd+1]i = 0, then i is a birth index
of Hd(C•). Then i is either an essential birth index of Hd(C•) (equivalently, nd+1≠ i is a birth
index of Hd(Kú)), or a non-essential birth index of Hd(C•) (equivalently, nd + 1≠ i is a death
index of Hd≠1(Kú)). Since by assumption, b contains precisely the birth indices of Hd(Kú), the
set

be = {nd + 1≠ i œ b | [Rd+1]i = 0}

contains precisely the essential birth indices of Hd(Kú). Because an index j Æ nd+1 is either a
death index of Hd(Kú) or a birth index of Hd+1(Kú), setting

b = {j Æ nd+1 | j /œ t}

110

5.1 Implementation

establishes that b contains precisely the birth indices of Hd+1(Kú). To compute a persistence
basis of Hd(Kú), we need to compute the reduced matrix column [Rd+1]j if j œ t and the
reduction matrix columns [Vd]i if i œ be.
The latter happens in line (b), which is the usual reduction scheme. In order to compute the

columns [Rd]i and [Vd]i, it su�ces to know the columns [Rd]k and [Vd]k, where k ranges over
the death indices of Hd≠1(Kú), simply because a reduced matrix Rd would satisfy [Rd]k = 0
if k not a death index. A column index k of Rd is either a death index of Hd≠1(Kú) or a
birth index of Hd(Kú). By assumption, ([Rd]j)j /œb is reduced, and p contains the corresponding
row-to-pivot assignment. Therefore, the loop in line (b) correctly computes [Vd]i for all i œ be.
Note that for each i œ be, the while loop inside line (b) terminates with [Rd]i = 0. Analogously,
line (c) computes the reduced matrix columns [Rd+1]j and [Vd+1] where j œ t ranges over the
death indices of Hd(Kú), and thus establishes the induction hypothesis that ([Rd+1]j)j /œb =
Dd+1([Vd+1]j)j /œb be reduced and p contains the corresponding pivot assignment.
Thus, when the main loop reaches line (d), the hypotheses for the next iteration are satisfied,

{[Rd+1]j , [Vd+1]j | j œ t} is a system of representatives of the finite bars in barcHd(Kú), and
{[Vd]i | i œ be} is a system of representatives of the infinite bars in barcHd(Kú).

To obtain matrices Rd+1 and V d+1 such that Rd+1 = Dd+1V d+1 is reduced, one may use the
Standard Algorithm with clearing (Algorithm 2). As remarked earlier, most birth columns of
the boundary matrices of a Vietoris–Rips complex are non-essential and account for the largest
fraction of the runtime of Algorithm 1. Because Algorithm 20 skips reduction of these columns,
it computes a persistence basis much faster than Algorithm 1 in practice.
Remark. The construction generalizes immediately to the situation of computing a persistence
basis of H•(C•), where C• is a chain complex of finite rank free Z-persistence modules. In
this case, one replaces H•(K,Kú) by H•(‹C•), where ‹ is the Nakayama functor from Defini-
tion 3.2.2. This makes sense, because if Kú œ Simp™Z, then C•(K,Kú) = ‹C•(Kú).

Constructing the eventually acyclic complex Ĉ• Let C• =
m

N

l=1 F (zl) be a chain complex of
finite rank free Z2-modules as above, and let z0 > zl for all l. We use Algorithm 20 to build a
chain complex Ĉ• with (Ĉ•)z = Cz if z < z and H•(Ĉ•)z = 0 otherwise.
Let zl = (xl, yl) for all l and z0 = (x0, y0), and consider the chain complex C Õ

• = colimy C• =m
N

i=1 F (xi) of free one-parameter persistence modules. For each d Ø 0, let barcHd(C•) =
{(bd,i, dqi) | i œ Id} for some indexing set Id. Let I f

d
:= {i œ I | dd,i < Œ} and Ie

d
= Id \ I fd. We

use Algorithm 20 to compute a persistence basis

{(zd,i = ˆcd,i, cd,i) | i œ I f
d
} fi {zd,i | i œ Ie

d
}

of Hd(C•) as in Definition 2.2.6. For each i œ I f
d
, define the chain complex

�d,i : · · · ≠æ 0 ≠æ F (dd,i, y0)
1

≠æ (bd,i, y0) ≠æ 0 ≠æ · · ·

concentrated in degrees d, d+ 1. There is morphism of complexes

�d,i : · · · 0 F (dd,i, y0) F (bd,i, y0) 0 · · ·

C• : · · · Cd+2 Cd+1 Cd Cd≠1 · · · .

1

cd,i zd,i

Analogously, if i œ Ie
d
, define the chain complex

�d,i : · · · ≠æ 0 ≠æ 0 ≠æ (bd,i, y0) ≠æ 0 ≠æ · · ·

111

Chapter 5 Implementation and experiments

and the morphism

�d,i : · · · 0 0 F (bd,i, y0) 0 · · ·

C• : · · · Cd+2 Cd+1 Cd Cd≠1 · · · .

zd,i

Then we get a morphism
e :

n

dØ0,iœId

�d,i æ C•.

and we let Ĉx

• := cone e. To make this explicit, define for each d Ø 0 the free module

Gd := Èẑd≠1,i | i œ Id≠1Í ü Èĉd≠2,i | i œ I f
d≠2Í

spanned by symbols ẑd,i and ĉd≠1,i of grades g(ẑd,i) = (bd,i, y0) and g(ĉd≠1,i) = (dd≠1,i, y0).
Then

Ĉ• =

Q

ca
· · · æ Cd+2 üGd+2 ≠æ Cd+1 üGd+1 ≠æ Cd üGd æ · · ·

ĉd≠2,i ‘≠æ cd≠2,i ≠ ẑd≠2,

ẑd≠2,i ‘≠æ zd≠2,i,

R

db.

Repeating this process with the roles of x and y exchanged yields a chain complex Ĉ• with
Ĉz = Cz if z < z0 and H•(Ĉ•)z = 0 otherwise.

5.1.5 Sparsification
We observe that in Algorithm 10, the second for-loop takes orders of magnitude longer than the
first loop. Furthermore, it has the tendency to increase the sparsity of the matrix considerably,
which may incur high costs on all further operations on these matrices. In this section, we give
a heuristic explanation, and devise a partial remedy.

Explanation Let Kú be a Z2-filtered simplicial complex and Dd+1 represent its coboundary
matrices with respect to the standard basis. We let the simplices of Kú be enumerated colexi-
cographically, such that

Kú = {‡1, . . . ,‡n} with g(‡1) ∞colex · · · ∞colex g(‡n).

We obtain a Z-filtered complex K Õ
ú with K Õ

z
= {‡i œ K | i Æ z}. It has the same coboundary

matrices as Kú, including row and column order. The first for-loop in Algorithm 10 can be seen
as a usual one-parameter persistence left-to-right reduction scheme, preceded by re-ordering the
columns of Dd+1 by their colex grades. Recall that Algorithm 10 is invoked after performing a
clearing step; see Algorithm 11.
Recall that in one-parameter persistence, if applied to a coboundary matrix D, the standard

algorithm spends most of its runtime on the columns it reduces to zero (i.e., birth columns).
Consequently, clearing remedies this by skipping the reduction of most of the birth columns.
However, this is only true if the matrix being reduced comes from a filtration, as this imposes a
certain block upper triangular shape on the matrix. Therefore, apart from the birth columns,
the matrix is “almost” reduced already at the beginning.
This also holds for coboundary matrices arising from two-parameter filtrations. To illustrate

this, consider the following example. Let the di�erent grades g1 ∞colex · · · ∞colex g9 that occur as
row or column grades of a valid Z2-graded matrix D be arranged as in the following schematic.

112

5.1 Implementation

Then validity of D imposes the following block structure on D, where empty blocks are zero:

g1 g2 g3

g4 g5 g6

g7 g8 g9

D =

Q

ca

g1 g2 g3 g4 g5 ···
g1 ú ú ú ú ú
g2 ú ú ú
g3 ú
g4 ú ú
g5 ú
... . . .

R

db

Of course, block rows or columns may be empty, in case D has no rows or columns of that
grade. Nevertheless, validity of D imposes that D has the above block upper triangle shape.
Ordering the rows of D by their lex-pivots does not change this. To see this, note that in the
above example, we obtain

Q

cca

g1 g4 g7 g2 g5 g8 g3 g6 g9
g1 ú ú ú ú ú ú ú ú ú
g2 ú ú ú ú ú ú
g3 ú ú
g4 ú ú ú ú ú ú
g5 ú ú ú ú
g6 ú ú
g7 ú ú ú
g8 ú ú
g9 ú

R

ddb,

where all empty entries are zero. Although the matrix is not in block upper triangular shape
anymore, we see that to the left of the column column gj , which has block pivot gj , no other
column has an entry in that block row. This ensures that despite the re-ordering, reduction is
fast.
For the second for-loop, which can be seen as a left-to-right reduction scheme, preceded by

reordering the rows lexicographically by grade and the columns by colex-pivot, the performance
drastically changes. We assume that this reordering renders D the coboundary matrix of a
randomly ordered simplicial complex. It is known reducing the (co)boundary matrix of a sim-
plicial complex with simplices in random order takes much longer in practice than reducing the
(co)boundary matrix of a Z-filtered complex [17, 78].
To make a concrete example, consider the following numbers. We have run our algorithm

on the coboundary matrices of the full density-Rips complex of 150 points sampled from the
orthogonal group O(5), embedded in R25. To compute H3(N•(Kú)), we have to apply Algo-
rithm 10 to the coboundary matrix Dd+2 of N•, which is a graded 551, 300◊ 11, 175. After the
first for loop of Algorithm 10, which takes 5ms, the densest columns have up to 1,456 entries
in the heaps representing the columns. After the second, which takes 10,350ms, the densest
columns have up to 78,875,970 entries in the heaps.1 This is a somewhat extreme example,
but illustrates the problem. This implies that all further matrix computations with this matrix
(namely, minimization and cokernel computation) will be expensive.

Sparsification We provide a partial remedy for this. Recall that our goal is to compute the
submodule [V]F of a free module F =

m
n

i=1 F (zi), where V is a subspace of colimF . The
space V is given by a matrix B representing a generating system of V with respect to the
standard basis of colimF . Then Algorithm 10 computes a graded matrix BÕ = Bireduce(B)
that represents a basis of the free module [V]F with respect to the standard basis of F .
However, in Algorithm 11, which is where Algorithm 10 is invoked, we do not require that

BÕ represents a basis of [V]M with respect to the standard basis of F . Instead, it su�ces if BÕ

represents a basis of [V]F with respect to any basis of F ; see also Corollary 3.5.1. We may,
therefore, choose the basis of F that suits our task best; i.e., for which BÕ is particularly sparse.
Definition 5.1.3. A non-zero entry of a graded matrix M is dominant if it is the only non-zero
entry in its row that is not dominated. A non-zero entry Mij is dominated if there is a dominant
entry Mkj in the same column, such that rgM

i
Æ rgM

k
.

1Note that this shows a particular shortcoming of the heap representation: namely, using 78,875,970 to represent
a matrix column with 551, 300 entries is certainly not sparse. With the vector representation, we obtain up
to 1,644 non-zero entries in one column after the first for-loop (3ms) and up to 141,026 non-zero entries after
the second (971ms). Compare also the results from [17].

113

Chapter 5 Implementation and experiments

Remark (Base changes of Zn-graded modules). Let M : F æ E be morphism of finite rank free
modules. Let M be the valid graded matrix representing M with respect to the homogeneous
basis f1, . . . , fm of F and e1, . . . , en of E.

• If g(fi) Æ g(fj), then replacing fj by f Õ
j
= fj + ⁄Fg(fj),g(fi)(fi) defines another basis of

F . The matrix M Õ representing M with respect to this basis is obtained by replacing the
column Mj by M Õ

j
:= Mj + ⁄Múi.

• If g(ei) Æ g(ej), then replacing ej by eÕ
j
= ej + ⁄Fg(ej),g(ei)(ei) defines another basis of

E. The matrix M Õ representing M with respect to this basis is obtained by replacing the
row Miú by M Õ

iú = Miú ≠ ⁄Mjú.

If Mij is dominated by Mkj , then Mij can be erased by the row operation Miú Ω Miú ≠
Mij

Mkj
Mkú, and this row operation only changes the entry Mij . Such eliminations of dominated

entries using dominating ones are therefore compatible with column sparse matrix formats.
Example. Consider the graded matrix

M =
A 0 1

1 1
1 1
0 1
1 1
1 0

B
with row grades

rgM
6rgM

5rgM
4

rgM
3rgM

2rgM
1

The entry M6,1 is dominant. The row operation M5ú Ω M5,ú≠M6,ú is valid because b Æ a, and
results in setting the entry M5,1 to zero. After the operation, also M5,2 becomes dominant, and
we perform row operation M4,ú Ω M4,ú ≠M5,ú, which sets the entry M4,2 to zero. No entry of
M3,ú can be removed, so the two non-zero entries in that row are not dominant. In particular,
they cannot be used to set the row M2,ú to zero without a proper row operation. Instead, the
row operation M2,ú Ω M2,ú ≠M5,ú sets M2,5 to zero and leaves the dominant entry M2,1. This
can be used for the last operation M1,ú Ω M1,ú ≠ M2,ú. We obtain the following sequence of
row operations from bottom to top:

0 ⇤1
⇤1 1
1 1
0 ⇤1
⇤1 1
1 0

Q

ca

R

db

The struck through entries are set to zero in the course of the operation. Of the remaining
entries, the ones printed in boldface are dominant.
We obtain the following algorithm to eliminate dominated matrix entries. We first describe

the algorithm on a high level (Algorithm 21) before we describe a more implementation-oriented
formulation (Algorithm 22).

Proposition 5.1.4. Let M be a valid graded matrix such that rgM
i

”Ø rgM
j

if i Æ j. Then

Algorithm 21 computes a graded matrix M Õ
with the same row and column grades as M , such

that there is an invertible valid graded matrix V with M Õ = MV by eliminating all possible

dominated entries of M .

Proof. During the main for-loop, the algorithm maintains the property that dj contains the
indices i such that Mij ”= 0 is dominant. During each iteration, it maintains the property that
u contains the column indices j of the entries in row Miú that are not dominated. Assume
that Mij ”= 0 and that there exists a h œ dj such that rgM

i
Æ rgM

h
. Then the row operation

Miú Ω Miú ≠
Mij

Mhj
Mhú is a valid base change and sets the entry Mij to zero. Since Mhj is a

114

5.1 Implementation

Algorithm 21: Elimination of dominated entries
Input: A graded m ⇥ n-matrix M such that rg

M

i
6� rg

M

j
if i j .

Output: A graded matrix M 0
= V M for some valid invertible upper triangular matrix V , such that M 0

contains not more non-zero entries than M

dj ; for all j . row indices of dominant

entries in column jfor i = m; : : : ; 1 do
u ;
for j = 1; : : : ; n with Mi j 6= 0 do

if 9h 2 dj : rg
M

i
 rg

M

h
then . 9 a dominant entry Mhj

Mi j 0

else
M 0

i j Mi j

u u [{j}
if u = {j} for some j then . Mi j is dominant

dj dj [{i}

dominant entry, no other row entry of Miú is a�ected by this row operation. Therefore, the
row operation can be realized by just setting Mij Ω 0. If there is no such h, then Mij is not
dominated. If u = {j} and the end of the ith iteration, then Mij is the only non-zero entry in
Miú that is not dominated, it is dominant by definition.

To describe a possible implementation of this algorithm, we assume that we are using the vec-
tor representation of matrices; see Section 5.1.3.1. In case we are using heap representations, one
can use consolidation (Algorithm 16) to convert a heap-representation to a vector-representation
of the same matrix. For simplicity, we describe the following refinement of Algorithm 21 only
for matrices with coe�cients in F2; the approach generalizes to arbitrary coe�cient fields. Let
the rows of M be in colexicographic2 order with respect to their grades, and let (v1, . . . , vn) be
the vectors representing M , where each vj contains the row indices of the non-zero entries in
Mj in descending order.

Proposition 5.1.5. In the above situation, Algorithm 22 computes the same valid graded matrix

M Õ
as Algorithm 21.

Proof. We show that Algorithm 22 performs the same row operations as Algorithm 21. The
central data structure is the priority queue Q. Its entries are triples (⁄, k, j) with j Æ n and
k Æ |vj | and ⁄ = vj,k is the row grade of the last but kth non-zero entry in Mj . Thus, an entry
in Q represents the non-zero entry Mvkjj . The priority queue Q is ordered lexicographically.
Claim 2. Repeatedly calling PopPush(Q) retrieves all indices (i, j) of non-zero entries of M , in
order of descending row indices i.
Proof of claim. The function PopPush(Q) retrieves the maximal (i, k, j) from Q. Because Q is
ordered by the row indices i = vjk first, popping the maximal elements from Q thus retrieves
the elements in reverse order of the row grades. To see that the function retrieves all indices
of non-zero entries of M , we argue as follows. Recall that vj is descendingly sorted. Thus, if
k = |vj |, then i is the smallest row index of a non-zero entry in Mj . Therefore, it is not necessary
to process any further entries of vk. Otherwise, vj contains more entries iÕ corresponding non-
zero entries MiÕj with iÕ < i. Pushing ((vj)k+1, k + 1, j) to Q ensures that the non-zero entry
MiÕ,j with the largest row index iÕ = (vj)k+1 less than i is processed as the next entry from Mj .
Therefore, PopPush(Q) eventually yields all non-zero entries of M .
Claim 3. If an entry Mij is dominated, then it is dominated by the dominant entry Mlj with
the least row index l > i.
2or lexicographic; adapt algorithm and proof accordingly.

115

Chapter 5 Implementation and experiments

Algorithm 22: Possible implementation of Algorithm 21.
Input: Descendingly ordered vectors v1; : : : ; vn representing a reduced valid graded m ⇥ n-matrix M

with entries in F2, with rg
M ordered colexicographically.

Output: Descendingly ordered vectors v 0
1; : : : ; v

0
n representing M 0

= V M as in Algorithm 21.
for j = 1; : : : ; n do vj ; . vectors representing M 0

j

for j = 1; : : : ; n do dj �1 . row index of last dominating

entry in MjQ {((vj)0; 0; j) |Mi j 6= 0} as lex. ordered priority queue
(a) function PopPush(): . retrieves next entry from Q

i; k; j PopMax(Q)

if k < |vj | then Push(Q; ((vj)k+1; k + 1; j))
return i ; j

i ; k; j PopPush(Q) . largest pivot of M
append i to v 0

j

r 1 . number of entries not

dominated in ith row.while Q 6= do
(b) i 0; j 0 PopPush(Q)

if i 6= i 0 then
if r = 1 then dj i . Mi j is dominating

i i 0

j j 0

r 0

(c) if dj = �1 or rg
M

i 0 ˆ rg
M

dj0
then . Mi 0j 0 is not dominated

append i 0 to vj 0
i i 0

j j 0

r r + 1

Proof of claim. Assume that Mij is dominated by some non-zero entry Mkj . This implies that
i < k and rgM

i
Æ rgM

k
. Recall that z Æ zÕ in Z2 if and only if z ∞lex zÕ and z ∞colex zÕ.

In particular, rgM
i

∞colex rgM
k

and rgM
i

∞lex rgM
k
. Let l be the least row index l > i of a

dominant entry in column Mj . Then rgM
i

∞colex rgM
l

∞colex rgM
k

since by assumption, the rows
of M are ordered colexicographically by grade. Two distinct dominant entries necessarily have
incomparable row grades, we get rgM

i
∞lex rgM

k
∞lex rgM

l
. Together, this shows that rgM

i
Æ rgM

l
.

The variables i and j are initialized such that Mij is the pivot of M with the largest row
index. Assume by induction that at the beginning of an iteration of the main while-loop, i and
j are the row and column indices of the last processed non-zero entry Mij , that r is the number
of non-zero entries in row Miú not eliminated, and that dj contains the row index of the last
processed dominating entry in column Mj (or ≠1, if there is none). Let iÕ and jÕ be the next
entry from Q as in line (b).
If i ”= iÕ, then all entries in row Miú have been processed. If r = 1, there has been a single

non-zero entry Mij in row i. It is therefore dominant, which justifies setting dj Ω i. Since
there have not been any previously processed entries in row iÕ, the algorithm sets r Ω 0, which
reestablishes the induction hypothesis.
We have to check if the new entry MiÕjÕ is dominated. By Claim 3, this is the case if and

only if it is dominated by the last dominating entry Mdjj
Õ ; i.e., if rgM

i
Æ rgM

dj
, given that there

exists any previous dominating entry in MjÕ . In this case, the algorithm simply discards the
entry, which corresponds to setting ot to zero. Otherwise (line (c)), the entry is kept unchanged,
which corresponds to appending its row index to vÕ

jÕ . Setting i Ω iÕ, j Ω jÕ and r Ω r + 1
reestablishes the induction hypothesis. Note that the entries of vÕ

j
are constructed in descending

order, as required by the vector representation.

116

5.2 Experiments

5.1.6 Chunk(*) preprocessing
As mentioned before, chunk preprocessing is an e�cient preprocessing scheme that reduces
the size of the input chain complex without changing its homology isomorphism type. More
concretely, given chain complex C• of finite rank free two-parameter persistence modules con-
centrated in degrees Ø 0, chunk preprocessing computes a minimal chain complex C Õ

• homotopy
equivalent to C•. Assuming that C• is given as a sequence D• of boundary matrices, chunk
preprocessing applies minimization (Algorithm 3) to all matrices D•; see Algorithm 4.
For chain complexes C• arising from filtered simplicial complexes in practice, C Õ

• typically
has much smaller rank than C•. It has been observed that when computing a minimal free
resolution ofHd(C•) using the LW-algorithm, applying chunk preprocessing drastically improves
the e�ciency of the entire pipeline [73, table 3]. A particular reason for this is that, while there
is no e�cient way known to parallelize the LW-algorithm (Algorithm 6), Algorithm 3 can be
implemented in an embarrassingly parallel way; see Section 2.4.2.
For full function Rips-complexes (such as density-Rips), it has been observed that the bound-

ary matrices DÕ
• of the the chain complex C Õ

• computed by chunk preprocessing computes,
although having fewer rows and columns than D•, have more non-zero entries; see [73, ta-
ble 2] Nevertheless, applying chunk preprocessing before running the LW-algorithm reduces the
runtime.

Chunk* preprocessing Algorithm 3, which underlies chunk preprocessing, minimizes each
boundary matrix Dd through left-to-right column additions. Alternatively, we propose to mini-
mize Dd through row operations. Equivalently, this corresponds to applying Algorithm 3 to the
transpose Dd of Dd. We thus propose the following preprocessing scheme, which we refer to as
chunk* preprocessing: we apply Algorithm 3 to all coboundary matrices Dd, starting with D1.
To compute a minimal free resolution of homology, we transpose the result; see Algorithm 5. We
expect that for boundary matrices with much more rows than columns, such as the boundary
matrices of Vietoris–Rips complexes, the performance may di�er.

5.2 Experiments
In this section, we evaluate the performance of the cohomology algorithm Algorithm 11 using
our implementation 2pac [94]. To do so, we compare the performance of our implementation
of the cohomology algorithm (Algorithm 11) and the homology algorithm (Algorithm 9). Al-
though the latter is implemented in the state-of-the-art software mpfree [85], we use our own
implementation of it. We do this in order to be able to explore the influence of implementation
details, such as the matrix representation or the specific preprocessing. This is justified by
Table 1, which shows that mpfree and the version of 2pac that uses the vector representation
have similar runtimes.

5.2.1 Samples
Although our software can be used to compute minimal free resolutions of the (co)homology
of any chain complex of finite rank free two-parameter persistence modules, our main moti-
vation for computing cohomology are two-parameter Rips complexes. This is because in one-
parameter persistence, cohomology (with clearing) has increased the practically tractable size of
Vietoris–Rips complexes drastically. Therefore, we focus on function-Rips complexes in the ex-
perimental evaluation. We have run our experiments on (subsamples of) the following datasets,
which have been generated using the Jupyter notebook EXAMPLE.ipynb in the repository. The
data sets, which consists of the filtration values for the vertices and the distance matrix, are

117

Chapter 5 Implementation and experiments

Table 5.1: Data sets used in the experiments. The first four samples (spheres) consist of 200 points
sampled from the actual space, and 100 points sampled from the space described in column “outliers”. For
the orthogonal groups and tori, we sampled 400 points from the space and 200 outliers. For details about
the last one, see the text.

space outliers density function bandwidth

S1 ✓ R
2

[�2; 2]
⇥2 Gaussian 0.25

S2 ✓ R
3

[�1:5; 1:5]
⇥3 Gaussian 0.30

S3 ✓ R
4

[�1:25; 1:25]
⇥4 Gaussian 0.35

S4 ✓ R
5

[�1; 1]
⇥5 Gaussian 0.40

O(3) ✓ R
9

[�1:25; 1:25]
⇥9 Gaussian 0.60

O(4) ✓ R
16

[�1:25; 1:25]
⇥16 Gaussian 0.85

O(5) ✓ R
25

[�1:25; 1:25]
⇥25 Gaussian 0.85

T 2
= (S1

)
⇥2 ✓ R

4
[�1:5; 1:5]

⇥4 Gaussian 0.35
T 3

= (S1
)
⇥3 ✓ R

6
[�1:5; 1:5]

⇥6 Gaussian 0.50
T 4

= (S1
)
⇥4 ✓ R

8
[�1:25; 1:25]

⇥8 Gaussian 0.70
C8H16 ✓ R

8 – –

generated prior to to the experiments, written to disk, and then read by 2pac during the exper-
iments to generate the function-Rips complexes. The precise code to reproduce the data files
can be found in Generate Samples.ipynb.

Density-Rips complexes We have sampled points from spheres Sn
™ Rn+1, tori Tn := (S1)n ™

R2n and orthogonal groups; see Table 5.1. Arguably, the most common density functions
fl : S æ R used in persistent homology are

• the Gaussian density function

p ‘æ

ÿ

qœS\{p}

exp(≠d(p, q)2
2‡2),

• the ball density function

p ‘æ |{q œ S \ p | d(p, q) Æ ‡}|,

• and the kth nearest neighbor density function p ‘æ d(p, q), where q œ S satisfies

|{r œ S \ {p} | d(p, r) < d(p, q)}| < k.

Each of these relies on the choice of a bandwidth parameter ‡ œ R or k œ N. We observed
that usually, the Gaussian density function achieves the best distinction between sample and
outliers. Using the notebook EXAMPLE.ipynb, we manually chose the bandwidth parameter ‡
for each of the data sets in Table 5.1. A projection onto the first two coordinates of Rn of each
of the function-Rips data sets is shown in Figure 5.1.

Cyclooctane (C8H16) The cyclooctane data set, which can be obtained from [101], is sampled
from the configuration space of the cyclooctane molecule. More accurately, the sample is taken
from the configuration space of a linkage of eight rigid rods of equal length, with fixed equal
angles of approximately 118° at the eight joints. Because of this angle, the linkage forms no
planar octagon but has to “pucker” in space. In particular, three consecutive edges need not lie
in the same plane.
Each of the approx. 6000 entries in the data set consists of the 24 coordinates of the eight

vertices in R3. The data set has previously been studied in persistence [101, 102, 103]. It has
been suggested that the described configuration space forms a two-dimensional subspace of R24;

118

5.2 Experiments

15

20

25

(a) S1

10

15

(b) S2

6

8

10

(c) S3

6

8

10

12

(d) S4

4

6

(e) O(3)

4

5

6

(f) O(4)

0.8

1.0

1.2

1.4

(g) O(5)

5

10

(h) T 2

4

6

8

(i) T 3

4

6

8

(j) T 4

Figure 5.1: The plots show projections of the datasets on the the first two coordinates of the ambient
Euclidean space. The colors encode the values of the density function. All datasets use a Gaussian density
function, with the bandwidth parameters from Table 5.1.

Figure 5.2: Isomap projection [121] of the cyclooctane data set from R
2
4

to R
3 with respect to the Euclidean distance. The color encodes the metric

distortion of the projection (red=high distortion). The component appearing
as an hourglass is a projection of the Klein Bottle.

�4

�2

0

Figure 5.3: Cyclooctane data set. The plot shows the first two torsion angles
of the data points. Points in the diagonal of the plot correspond to points from
the spherical component of the configuration space. Points from the actual
space are printed with circles, outliers with diamonds.

119

Chapter 5 Implementation and experiments

namely, a union of a 2-sphere and a Klein bottle that intersect in two disjoint 1-spheres. For an
illustration, see the projection to R3 in Figure 5.2, which has been obtained with the Isomap
algorithm [121].
We equip the sample with the following distance. To each consecutive four vertices v1, v2, v3

and v4, we assign the signed angle enclosed by the a�ne plane spanned by v1, v2 and v3 and
the a�ne plane spanned by v2, v3 and v4. This angle is also called the torsion angle of the edge
v2v3. This gives a vector of eight oriented angles. As the distance between two configurations,
we use the Euclidean distance between their torsion angle vectors.
We equip the vertices with the function (–1, . . . ,–8) ‘æ |(–1 ≠ –5, . . . ,–4 ≠ –8)|. The reason

for this choice is that as mentioned above, the configuration space of C8H16 has been described
as the union of a sphere and a Klein Bottle, intersecting in two circles [102]. We have observed
[95] that configurations from the spherical component have the property –i = –i+4 for all i Æ 4.
This is not the case in general for configurations from the Klein bottle component. Therefore,
the above function measures the deviation from this symmetry.

5.2.2 Parameters
Our main interest lies in comparing the following three approaches:

• the cohomology algorithm (Algorithm 11) called by

./2pac -c –cone=2 -f[dataset],

• the homology algorithm with chunk preprocessing (Algorithms 4 and 9), called by

./2pac -nn -hDC(n+ 1) -f[dataset]),

• the homology algorithm with chunk* preprocessing (Algorithms 5 and 9), called

./2pac -hC(n+ 1) -f[dataset].

Here n denotes the dimension up to which one wishes to compute a free resolution of Hn.
These program calls generate the (co)boundary matrices of the full function-Rips complex Kú of
the respective data set, and compute a minimal free resolution ofHd(Kú) (resp., Hd+2(N•(Kú)))
for d = 0, . . . , n. In the case of homology, passing -DC(n + 1) (resp. -C(n + 1)) applies chunk
(resp. chunk*) preprocessing to all boundary matrices D1, . . . , Dn+1.
Remark (mpfree). The second approach listed above is the same that is implemented in mpfree.
As mentioned at the beginning of this section, use our own implementation to be able to vary
implementation details such as the underlying matrix type; see Table 1 for a runtime comparison.
A conceptual di�erence is that mpfree is designed for computing a minimal free resolution of
homology for a single degree, while 2pac is designed to produce a sequence of of resolutions of
homology in ascending dimensions. This has the e�ect that 2pac reuses some data used in the
resolution computation in lower homology dimensions (e.g., chunk preprocessing).
We found that this is the best choice for chunk preprocessing: applying minimization only

to the first n or less boundary matrices (-Cn) does not reduce the runtime of the following
homology computation considerably, while minimizing the (n+ 2)nd boundary matrix, despite
reducing the runtime of the homology algorithm drastically, is too expensive.
For the cohomology algorithm, one has to replace the input complex by an eventually acyclic

one, because the function-Rips filtration is not eventually acyclic with regard to the function-
parameter. To do this, we pass –cone=2 when computing cohomology. This builds the eventually
acyclic chain complex Ĉ• as described in Section 5.1.4. Alternatively, one can pass –cone=1 to
construct Ĉ• as the cone of C•(Kú); see Section 3.7.1. If not stated otherwise, we use –cone=2,
as we have observed this usually yields better results than –cone=1; see Section 5.3.2 below.

120

5.3 Results

Remark. If the input complex is not eventually acyclic also for the second filtration parameter,
one has to also pass –Cone=1 or –Cone=2. This is the case, for example, for truncated function-
Rips complexes.
In our experiments, we investigate the e�ect of

• the size of a random subsample taken from the input. The subsample size to take can
be specified by passing -s; this chooses a random subsample with a fixed seed to ensure
reproducibility;

• varying the dimension up to which we compute (co)homology (using -n);
• the matrix representation (matrix or heap representation; see Section 5.1.3); to change

this, run either ./2pac (for heaps) or ./2pac.vectors;
• the strategy to cone o�Kú, either using the simplicial cone (–cone=1), or using a homology

basis (–cone=2); and
• combining the cohomology algorithm with chunk(*) preprocessing (using -C for chunk*

and -DC for chunk).

Machine and setup The code version used for the experiments is revision 1853b6f in the
git repository [94]. The repository also contains the shell script (run-experiments.sh) to run
the experiments, together with the Jupyter notebooks Generate Samples.ipynb to generate
the samples used in these experiments (see above) and the notebook Plots and tables.ipynb
used to evaluate these.
The experiments were run on a Ubuntu 22.04.2 LTS machine with 48 3.0GHz Intel(R)

Xeon(R) CPU E5-2687W v4 CPUs and 504 GiB RAM, with the software compiled using
g++ 11.3.0. Some experiments are also run on a MacBook Pro 2017 with a 2.3GHz Dual-
Core Intel Core i5 CPU and 16GiB RAM, with the software compiled using clang++ 15.0.7.
We refer to this as machine “M” in the captions.
Each instance was killed when exceeding five minutes runtime. If not stated otherwise, the

software uses the heap representation of matrices (see Section 5.1.3.2). Algorithms 3 and 7
can be implemented in an embarrassingly parallel way, which is done in our implementation.
Algorithms 6 and 10 The software was run with a thread limit OMP_THREAD_LIMIT=2.

5.3 Results
An overview of the runtime of the cohomology and the homology algorithm for di�erent data
sets, subsample sizes and homology dimensions is given in Figures 1 to 3. These figures show
the runtime necessary to compute H1, H2 and H3 (resp. H3(N•), H4(N•) and H5(N•) for
the cohomology algorithm). In the case of the homology algorithm, when computing Hd, the
numbers also include the time necessary for running Minimize(Dd+1) (for the chunk algorithm)
or Minimize(Dd+1) (for the chunk* algorithm). The runtime does not include time for I/O,
time for generating the (co)boundary matrices of the function-Rips complexes, and, in the case
of the cohomology algorithm, time for coning o� the input complex. We observed that in
general, coning o� the input complex is a rather cheap preprocessing step, compared to the
total runtime.
Note that the plots use logarithmic scale both for the runtime and the number of n + 1-

simplices. Missing points in the data series occur if program has terminated within five minutes.
We see that in most instances, the cohomology algorithm is the fastest method for computing
H2. For H3, both the homology with chunk* preprocessing and the cohomology algorithm are
faster than the homology algorithm with chunk preprocessing. Which one is fastest depends on
the instances.

121

Chapter 5 Implementation and experiments

In Tables 2 to 6, we have listed the runtimes for the three algorithms for a fixed size of
the subsample for two di�erent computers. Missing entries indicate that the experiment did
not terminate within five minutes. The table also includes the the quotient of the runtime
of the homology algorithm by the two compared methods (homology algorithm with chunk*
preprocessing, and the cohomology algorithm). We see that for H2, we consistently get the
best speedup with the cohomology algorithm. While for H3, the cohomology algorithm is
still consistently faster than the homology algorithm, it is outperformed in some cases by the
homology algorithm with chunk* preprocessing.

5.3.1 Matrix representations
The performance of the algorithms depends on the chosen sparse matrix representation. This
was already known from one-parameter persistence [12]. It is also known that the impact of the
choice of the matrix representation is stronger for cohomological algorithms than for homological
ones [12, Table 1, 17, Table 3].
In Tables 7 to 11, we collected runtime data for both versions of the homology algorithm

(with chunk(*) preprocessing) and the cohomology algorithm, taken from an implementation
with the matrix representation and from an implementation with the vector representation.
The columns “speedup” show by which factor the former is faster.
We see that the homology algorithm with chunk preprocessing generally runs slightly slower

when using heap matrices. In contrast, chunk* preprocessing can benefit from the heap repre-
sentation considerably in higher homology dimensions. The cohomology algorithm apparently
does not benefit from using heap matrices to the same extend. Comparing Table 8 with 9
and Table 10 with 11 suggests that the impact of the choice of the matrix representation also
depends on the machine.
A possible explanation for faster runtimes of the chunk* preprocessing and the cohomology

algorithm is the following. The heap representation is better for tall and narrow matrices, which
is typically the shape of the coboundary matrices of a Vietoris–Rips complex. Namely, to add
two columns in vector representation, one has to iterate over all entries of both summands,
and write the symmetric di�erence of the two vectors to another vector. In contrast, the heap
representation allows an e�cient in-place addition by copying the entries of one column into the
heap representing the other. Typically, most of the runtime goes into reducing a few columns
that end up with a high number of non-zero entries. In this case, the heap representation avoids
iterating over these entries for every addition to such a column.
Our software also contains code for the implicit matrix representation described in Sec-

tion 5.1.3.3. However, experiments carried out at an earlier step showed no performance benefit
from this matrix representation. Therefore, we did not include this approach in the experiments
in this section.

5.3.2 Variants of the cohomology algorithm
We have claimed above that the cohomology algorithm works best without chunk(*) prepro-
cessing, and with a sparsification step (Algorithm 22) added between the two for-loops of Algo-
rithm 10. To justify this, we have run the cohomology algorithm on the same datasets. Apart
from the “normal” variant, which includes these steps and which is also used for the other
experiments, we

• leave out sparsification,
• leave out clearing,
• use the simplicial cone to make the complex eventually acyclic, instead of Section 5.1.4,

122

5.3 Results

• do not make the input eventually acyclic at all,3

• apply chunk or chunk* preprocessing before we run the cohomology algorithm.

The results are listed in Tables 16 to 19. We see that sparsification may introduce an additional
cost; however, it can also reduce the total runtime considerably. The last is particularly true
for the vector representation; see Table 18 In general (for both matrix representations), the
potential runtime savings are much higher than the additional runtime, which is why we enable
sparsification as the default option. We see, however, that the benefit from sparsification is
considerably smaller for H5(N•) than for H4(N•)
Clearing, on the other hand, has no significant impact at all. This is because the runtime

for the first for-loop in Algorithm 10, which is the step where, without clearing, reduction of
columns to zero would happen, is negligible in comparison with all other steps of the cohomology
algorithm; see Section 5.3.4 below.
With regard to coning o� the input complex, we see that the homology-basis-based approach

is typically more e�cient than taking the simplicial cone. Possibly, this is because the former
method constructs the smallest possible chain complex with the desired properties, while the
latter method may construct an unnecessarily large complex. This is particularly true for clique
complexes. Comparing these numbers to the column “no cone“, which contains runtimes of the
algorithm without coning o� the input complex at all, we see that this step does not introduce
a significant overhead.
Lastly, we see that the algorithm does not profit from chunk(*) preprocessing. Indeed, the

total runtimes of chunk(*) preprocessing and a following run of the cohomology algorithm maybe
much longer than just running the cohomology algorithm. This is particularly true in higher
homology dimensions. See Section 5.3.3 for details

5.3.3 Chunk preprocessing
In Tables 12 to 15, we have listed the runtimes for the chunk and the chunk* preprocessing alone,
together with the runtimes of running the homology and the cohomology algorithm without this
preprocessing, and in combination with the chunk(*) preprocessing; both for the heap and the
vector representation. The tables confirm that the homology algorithm profits from chunk and
even more from chunk* preprocessing, and that the cohomology algorithm does not run faster
in combination with the chunk(*) preprocessing. In fact, we see that chunk(*) preprocessing
already takes longer than the cohomology algorithm would take without any preprocessing.
A possible explanation for this is that the chunk algorithm is known, despite decreasing the

number of rows and columns of the input boundary matrices, to potentially increase the total
number of non-zero entries. In other words, the chunk preprocessing may increase the density of
the matrix considerably. This is particularly true for full function–Rips complexes [73, Table 3].
We hypothesize the same is true for chunk* preprocessing.

5.3.4 Steps of the cohomology algorithm
In Tables 20 to 27, we have listed the runtimes for the steps in the cohomology algorithm
Algorithm 11. The runtime for the call to Bireduce() is spread among the first three columns,
listing the runtime of the first and second reduction loop of Algorithm 10, and the cost of
sparsifying the matrix between the two loops (Algorithm 22). The last column lists the total
runtime for computing the minimal free resolution, which may comprise smaller values not part
of the preceding steps.
3In this case, the computed resolution of H

•(N•(Kú)) may not be correct, and H
•(N•(Kú)) may not be

isomorphic to H
•≠2(Kú). We included this case nevertheless in order to demonstrate that making the input

eventually acyclic does not increase runtime too much.

123

Chapter 5 Implementation and experiments

From these tables, we see that the runtime is dominated by the calls to Minimize() and
to KerAndMgsWithKer(). Although sparsification is called before the second reduction loop, it
does not improve the performance of this step in most cases (except for O(3)) when using heap
matrices, but only the runtime of the following calls to Minimize() and KerAndMgsWithKer().
Interestingly, the benefit arising from sparsification seems to be much bigger for H4(N•) than
for H5(N•).

124

Summary and concluding remarks
In this thesis, we have shown that it is possible to extend several aspects of the duality between
persistent homology and cohomology from the context of one-parameter persistence to two-
and in parts also to multi-parameter persistence. Specifically, for any n Ø and for a one-
critically n-parameter filtered simplicial complex Kú we defined a chain complex N•(Kú) of free
modules functorial in Kú (Definition 3.1.2 and Lemma 3.2.4). In the special case n = 1, we
have that N•(Kú) = K•(K,Kú). The well-known correspondence between absolute and relative
one-parameter persistent cohomology, which is induced by the long exact sequence of relative
cohomology, can be generalized for any number n of parameters to a natural isomorphism

Hd(Kú) ≥= Hd+n(N•(Kú)),

assuming that Kú is eventually acyclic, i.e., H•(Kz) ”= 0 for only finitely many z. This follows
from the Calabi–Yau property of persistence modules (Theorem 3.2.8). The same property also
allowed us to find a correspondence between minimal free resolutions of Hd(Kú) and Hd(Kú)
(Theorem E). This is a generalization of the correspondence of barcodes of Hd(Kú) and Hd(Kú)
in one-parameter persistence. Lastly, we used the Calabi–Yau property to devise an algorithm
that e�ciently computes Hd+n(N•(Kú)) for n = 2 (Algorithm 11).
This algorithm computes a minimal free resolution of Hd+2(N•(Kú)) from the (d + 1)st

coboundary matrix ”d+1 : Nd(Kú) æ Nd+1(Kú) and not, as a naive algorithm would do, from
”d+2 and ”d+3. This generalizes a corresponding statement in one-parameter persistence, which
states that if K := colimKú is acyclic, then a barcode of Hd+1(K,Kú) can be computed just
from ”d+1 : Cd(K,Kú) æ Cd+1(K,Kú), i.e., without considering ”d+2.
Our motivation for this was to compute the persistent homology of two-parameter filtrations

of Vietoris–Rips complexes. In one-parameter persistence, Vietoris–Rips complexes have be-
come feasible in practice only through optimization strategies such as clearing, which rely on
computing persistent cohomology. The fact that Hd+2(N•(Kú)) can be computed from the
(d+1)st coboundary matrix of N•(Kú) is vital for the practicality of our algorithm, because for
Vietoris–Rips complexes and other clique complexes, the higher dimensional coboundary ma-
trices would be prohibitively large. Furthermore, our algorithm o�ers the possibility to certain
optimizations similar to clearing.
We evaluated the practicality of our algorithm in experiments, using a software implementa-

tion that we made publicly available [94]. In these experiments, we compared the runtime of
our algorithm with the runtime of the state of the art algorithm for minimal free resolutions of
two-parameter persistent homology, which is the Lesnick–Wright (LW) algorithm in conjunction
with chunk preprocessing. These experiments show that our algorithm is practical and e�cient
indeed, and, when computing Hd(Kú) for d > 1, outperforms the LW-algorithm by a factor of
often more than 10. In these experiments, we also evaluated the impact of di�erent technical
details of the implementation, such as sparse matrix representations and others.

Nevertheless, the margin by which our algorithm outperforms the LW algorithm is much
smaller than the di�erence between the Standard Algorithm and the Clearing Algorithm in
one-parameter persistent cohomology. We observe that in many cases, the performance of our
algorithm su�ers from matrix fill-up. This is not a particularity of our algorithm, but also
a�ects the LW algorithm. In fact, it comes from Z2 not being totally ordered that in practice,
a (co)boundary matrix that is compatible with a Z2-indexed filtration may be much harder to

Summary and concluding remarks

reduce than a (co)boundary matrix coming from a Z-indexed filtration. We assume it is vital for
future improvements in multi-parameter persistent (co)homology to overcome the performance
bounds posed by matrix fill-up.
Memory-e�cient strategies, such as not storing the matrix being reduced in memory, or

exploiting frequent special cases that can be handled e�ciently (such as apparent pairs) may
come in handy. Because our software was mainly designed as a versatile framework for two-
parameter persistent cohomology, and in order to investigate the practicality of the algorithms
presented in this thesis, these ideas are not implemented in our software, notwithstanding their
conceptual simplicity.
We also remark that there is no known algorithm that computes minimal free resolutions

of n-parameter persistent homology or cohomology in polynomial time for n > 2. In par-
ticular, the LW algorithm does not generalize to more than two parameters. The same is
true for our algorithm, although most of the underlying algebraic properties (such as the n-
Calabi–Yau property of n-parameter persistence modules, which underlies the isomorphism
Hd(Kú) ≥= Hd+n(N•(Kú)), and the correspondence between minimal free resolutions of Hd(Kú)
and Hd(Kú)) hold for any number of parameters. We thus assume that closing this gap may
increase the feasibility of multi-parameter persistence significantly.

126

Bibliography
[1] Manu Aggarwal and Vipul Periwal. Dory: Overcoming Barriers to Computing Persistent Ho-

mology. 2021. arXiv: 2103.05608.
[2] Ángel Javier Alonso, Michael Kerber, and Siddharth Pritam. “Filtration-Domination in Bi-

filtered Graphs.” In: 2023 Proceedings of the Symposium on Algorithm Engineering and Ex-
periments (ALENEX). Society for Industrial and Applied Mathematics, 2023, pp. 27–38. doi:
10.1137/1.9781611977561.ch3.

[3] Ibrahim Assem, Daniel Simson, and Andrzej Skowronski. Elements of the Representation Theory
of Associative Algebras. Vol. 1. London Mathematical Society Student Texts 65. Cambridge:
Cambridge University Press, 2006. isbn: 978-0-511-34545-6.

[4] Dominique Attali, André Lieutier, and David Salinas. “Vietoris–Rips Complexes Also Provide
Topologically Correct Reconstructions of Sampled Shapes.” In: Computational Geometry 46.4
(2013), pp. 448–465. doi: 10.1016/j.comgeo.2012.02.009.

[5] Gorô Azumaya. “Corrections and Supplementaries to My Paper Concerning Krull-Remak-
Schmidt’s Theorem.” In: Nagoya Mathematical Journal 1 (1950), pp. 117–124. doi: 10.1017/
S002776300002290X.

[6] Sergey Alexandrovich Barannikov. “The Framed Morse Complex and Its Invariants.” In: Singu-
larities and Bifurcations. Vol. 21. Adv. Soviet Math. Providence, RI: American Mathematical
Society, 1994, pp. 93–115. doi: 10.1090/advsov/021.

[7] Hyman Bass. “Big Projective Modules Are Free.” In: Illinois Journal of Mathematics 7.1 (1963),
pp. 24–31. doi: 10.1215/ijm/1255637479.

[8] Ulrich Bauer. Ripser. Version 1.1. 2019. url: https://github.com/Ripser/ripser.
[9] Ulrich Bauer. “Ripser: E�cient Computation of Vietoris–Rips Persistence Barcodes.” In: Journal

of Applied and Computational Topology 5.3 (2021), pp. 391–423. doi: 10.1007/s41468-021-
00071-5.

[10] Ulrich Bauer and Herbert Edelsbrunner. “The Morse Theory of �ech and Delaunay Complexes.”
In: Transactions of the American Mathematical Society 369.5 (2017), pp. 3741–3762. doi: 10.
1090/tran/6991.

[11] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Per-
sistent Homology in Chunks.” In: Topological Methods in Data Analysis and Visualization III.
Ed. by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert. Cham: Springer
International Publishing, 2014, pp. 103–117. doi: 10.1007/978-3-319-04099-8_7.

[12] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. “PHAT – Persistent
Homology Algorithms Toolbox.” In: Mathematical Software – ICMS 2014. Ed. by Hoon Hong
and Chee Yap. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 137–143. isbn: 978-3-
662-44199-2.

[13] Ulrich Bauer, Michael Kerber, Fabian Roll, and Alexander Rolle. “A Unified View on the
Functorial Nerve Theorem and Its Variations.” In: Expositiones Mathematicae (2023). doi: 10.
1016/j.exmath.2023.04.005.

[14] Ulrich Bauer, Fabian Lenzen, and Michael Lesnick. “E�cient Two-Parameter Persistence Com-
putation via Cohomology.” In: 39th International Symposium on Computational Geometry
(SoCG 2023) (Dallas). Ed. by Erin W. Chambers and Joachim Gudmundsson. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs) 258. Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023, 15:1–15:17. doi: 10.4230/LIPIcs.SoCG.2023.15. arXiv: 2303.11193.

http://arxiv.org/abs/2103.05608
https://doi.org/10.1137/1.9781611977561.ch3
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1017/S002776300002290X
https://doi.org/10.1017/S002776300002290X
https://doi.org/10.1090/advsov/021
https://doi.org/10.1215/ijm/1255637479
https://github.com/Ripser/ripser
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1090/tran/6991
https://doi.org/10.1090/tran/6991
https://doi.org/10.1007/978-3-319-04099-8_7
https://doi.org/10.1016/j.exmath.2023.04.005
https://doi.org/10.1016/j.exmath.2023.04.005
https://doi.org/10.4230/LIPIcs.SoCG.2023.15
http://arxiv.org/abs/2303.11193

Bibliography

[15] Ulrich Bauer and Michael Lesnick. “Induced Matchings and the Algebraic Stability of Persis-
tence Barcodes.” In: Journal of Computational Geometry 6.2 (2015), pp. 162–191. doi: 10.
20382/jocg.v6i2a9.

[16] Ulrich Bauer and Michael Lesnick. “Persistence Diagrams as Diagrams: A Categorification of
the Stability Theorem.” In: Topological Data Analysis. Ed. by Nils A. Baas, Gunnar E. Carlsson,
Gereon Quick, Markus Szymik, and Marius Thaule. Abel Symposia. Cham: Springer Interna-
tional Publishing, 2020, pp. 67–96. doi: 10.1007/978-3-030-43408-3_3.

[17] Ulrich Bauer, Talha Bin Masood, Barbara Giunti, Guillaume Houry, Michael Kerber, and
Abhishek Rathod. Keeping It Sparse: Computing Persistent Homology Revised. 2022. arXiv:
2211.09075.

[18] Ulrich Bauer and Fabian Roll. Connecting Discrete Morse Theory and Persistence: Wrap Com-
plexes and Lexicographic Optimal Cycles. 2022. arXiv: 2212.02345.

[19] Ulrich Bauer and Maximilian Schmahl. Lifespan Functors and Natural Dualities in Persistent
Homology. 2021. arXiv: 2012.12881.

[20] Ulrich Bauer and Luis Scoccola. Generic Two-Parameter Persistence Modules Are Nearly In-
decomposable. 2022. arXiv: 2211.15306.

[21] Christine Berkesch and Frank-Olaf Schreyer. “Syzygies, Finite Length Modules,and Random
Curves.” In: Commutative Algebra and Noncommutative Algebraic Geometry. Ed. by David
Eisenbud, Srikanth B. Iyengar, Anurag K. Singh, J. Joby Sta�ord, and Michel Van de Bergh.
Vol. 1. MSRI Publications 67. Cambridge University Press, 2015, pp. 25–52. isbn: 978-1-107-
06562-8.

[22] Silvia Biasotti, Andrea Cerri, Patrizio Frosini, Daniela Giorgi, and Claudia Landi. “Multidimen-
sional Size Functions for Shape Comparison.” In: Journal of Mathematical Imaging and Vision
32.2 (2008), pp. 161–179. doi: 10.1007/s10851-008-0096-z.

[23] Andrew J. Blumberg, Itamar Gal, Michael A. Mandell, and Matthew Pancia. “Robust Statis-
tics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Mea-
sure Spaces.” In: Foundations of Computational Mathematics 14.4 (2014), pp. 745–789. doi:
10.1007/s10208-014-9201-4.

[24] Andrew J. Blumberg and Michael Lesnick. “Stability of 2-Parameter Persistent Homology.” In:
Foundations of Computational Mathematics (2022). doi: 10.1007/s10208-022-09576-6.

[25] Omer Bobrowski, Sayan Mukherjee, and Jonathan E. Taylor. “Topological Consistency via
Kernel Estimation.” In: Bernoulli 23.1 (2017), pp. 288–328. doi: 10.3150/15-BEJ744.

[26] Magnus Bakke Botnan and William Crawley-Boevey. “Decomposition of Persistence Modules.”
In: Proceedings of the American Mathematical Society 148.11 (2020), pp. 4581–4596. doi: 10.
1090/proc/14790.

[27] Magnus Bakke Botnan, Ste�en Oppermann, and Steve Oudot. “Signed Barcodes for Multi-
Parameter Persistence via Rank Decompositions.” In: 38th International Symposium on Com-
putational Geometry (SoCG 2022). Ed. by Xavier Goaoc and Michael Kerber. Vol. 224. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, 19:1–19:18. doi: 10.4230/LIPIcs.SoCG.2022.19.

[28] Peter Bubenik and Jonathan A. Scott. “Categorification of Persistent Homology.” In: Discrete
& Computational Geometry 51.3 (2014), pp. 600–627. doi: 10.1007/s00454-014-9573-x.

[29] Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald R. Sheehy. “E�cient and Robust
Persistent Homology for Measures.” In: Computational Geometry 58 (2016), pp. 70–96. doi:
10.1016/j.comgeo.2016.07.001.

[30] Mickaël Buchet and Emerson G. Escolar. “Realizations of Indecomposable Persistence Mod-
ules of Arbitrarily Large Dimension.” In: ed. by Bettina Speckmann and Csaba D. Tóth.
Vol. 99. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 15:1–15:13. doi: 10.4230/LIPIcs.SoCG.
2018.15.

128

https://doi.org/10.20382/jocg.v6i2a9
https://doi.org/10.20382/jocg.v6i2a9
https://doi.org/10.1007/978-3-030-43408-3_3
http://arxiv.org/abs/2211.09075
http://arxiv.org/abs/2212.02345
http://arxiv.org/abs/2012.12881
http://arxiv.org/abs/2211.15306
https://doi.org/10.1007/s10851-008-0096-z
https://doi.org/10.1007/s10208-014-9201-4
https://doi.org/10.1007/s10208-022-09576-6
https://doi.org/10.3150/15-BEJ744
https://doi.org/10.1090/proc/14790
https://doi.org/10.1090/proc/14790
https://doi.org/10.4230/LIPIcs.SoCG.2022.19
https://doi.org/10.1007/s00454-014-9573-x
https://doi.org/10.1016/j.comgeo.2016.07.001
https://doi.org/10.4230/LIPIcs.SoCG.2018.15
https://doi.org/10.4230/LIPIcs.SoCG.2018.15

[31] Gunnar Carlsson. “Topology and Data.” In: Bulletin of the American Mathematical Society 46.2
(2009), pp. 255–308. doi: 10.1090/S0273-0979-09-01249-X.

[32] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. “On the Local Be-
havior of Spaces of Natural Images.” In: International Journal of Computer Vision 76.1 (2008),
pp. 1–12. doi: 10.1007/s11263-007-0056-x.

[33] Gunnar Carlsson, Gurjeet Singh, and Afra Zomorodian. “Computing Multidimensional Per-
sistence.” In: Algorithms and Computation. Ed. by Yingfei Dong, Ding-Zhu Du, and Oscar
Ibarra. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 730–739.
doi: 10.1007/978-3-642-10631-6_74.

[34] Gunnar Carlsson and Afra Zomorodian. “The Theory of Multidimensional Persistence.” In:
Discrete & Computational Geometry 42.1 (2009), pp. 71–93. doi: 10.1007/s00454-009-9176-
0.

[35] Mathieu Carrière and Andrew J. Blumberg. “Multiparameter Persistence Images for Topological
Machine Learning.” In: Proceedings of the 34th International Conference on Neural Information
Processing Systems. NIPS’20. Red Hook, NY, USA: Curran Associates Inc., 2020, pp. 22432–
22444. isbn: 978-1-71382-954-6.

[36] Wojciech Chacholski, Martina Scolamiero, and Francesco Vaccarino. Combinatorial Presenta-
tion of Multidimensional Persistent Homology. 2014. arXiv: 1409.7936.

[37] Wojciech Chachólski, René Corbet, and Anna-Laura Sattelberger. The Shift-Dimension of Mul-
tipersistence Modules. 2021. arXiv: 2112.06509.

[38] Frédéric Chazal, David Cohen-Steiner, Leonidas J. Guibas, Facundo Mémoli, and Steve Y.
Oudot. “Gromov-Hausdor� Stable Signatures for Shapes Using Persistence.” In: Computer
Graphics Forum 28.5 (2009), pp. 1393–1403. doi: 10.1111/j.1467-8659.2009.01516.x.

[39] Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. “Geometric Inference for Proba-
bility Measures.” In: Foundations of Computational Mathematics 11.6 (2011), pp. 733–751. doi:
10.1007/s10208-011-9098-0.

[40] Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The Structure and Stability of
Persistence Modules. SpringerBriefs in Mathematics. Cham: Springer International Publishing,
2016. doi: 10.1007/978-3-319-42545-0.

[41] Frédéric Chazal, Vin de Silva, and Steve Oudot. “Persistence Stability for Geometric Com-
plexes.” In: Geometriae Dedicata 173.1 (2014), pp. 193–214. doi: 10.1007/s10711-013-9937-z.

[42] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Alessan-
dro Rinaldo, and Larry Wasserman. “Robust Topological Inference: Distance to a Measure and
Kernel Distance.” In: The Journal of Machine Learning Research 18.1 (2017), pp. 5845–5884.

[43] Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. “Convergence Rates for
Persistence Diagram Estimation in Topological Data Analysis.” In: Journal of Machine Learning
Research 16.110 (2015), pp. 3603–3635. url: http://jmlr.org/papers/v16/chazal15a.html.

[44] Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. “Persistence-Based
Clustering in Riemannian Manifolds.” In: Journal of the ACM 60.6 (2013), 41:1–41:38. doi:
10.1145/2535927.

[45] Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. “Scalar Field Analysis
over Point Cloud Data.” In: Discrete & Computational Geometry 46.4 (2011), pp. 743–775. doi:
10.1007/s00454-011-9360-x.

[46] Chao Chen and Michael Kerber. “Persistent Homology Computation with a Twist.” In: 2011.
url: https://eurocg11.inf.ethz.ch/abstracts/22.pdf.

[47] Claude Cibils and Pu Zhang. “Calabi–Yau Objects in Triangulated Categories.” In: Transactions
of the American Mathematical Society 361.12 (2009), pp. 6501–6519. doi: 10.1090/S0002-9947-
09-04682-0.

[48] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. “Stability of Persistence Dia-
grams.” In: Discrete & Computational Geometry 37 (2007), pp. 103–120. doi: 10.1007/s00454-
006-1276-5.

129

https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1007/978-3-642-10631-6_74
https://doi.org/10.1007/s00454-009-9176-0
https://doi.org/10.1007/s00454-009-9176-0
http://arxiv.org/abs/1409.7936
http://arxiv.org/abs/2112.06509
https://doi.org/10.1111/j.1467-8659.2009.01516.x
https://doi.org/10.1007/s10208-011-9098-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/s10711-013-9937-z
http://jmlr.org/papers/v16/chazal15a.html
https://doi.org/10.1145/2535927
https://doi.org/10.1007/s00454-011-9360-x
https://eurocg11.inf.ethz.ch/abstracts/22.pdf
https://doi.org/10.1090/S0002-9947-09-04682-0
https://doi.org/10.1090/S0002-9947-09-04682-0
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/s00454-006-1276-5

Bibliography

[49] David Cohen-Steiner, André Lieutier, and Julien Vuillamy. “Lexicographic Optimal Homolo-
gous Chains and Applications to Point Cloud Triangulations.” In: Discrete & Computational
Geometry 68.4 (2022), pp. 1155–1174. doi: 10.1007/s00454-022-00432-6.

[50] René Corbet and Michael Kerber. “The Representation Theorem of Persistence Revisited and
Generalized.” In: Journal of Applied and Computational Topology 2.1 (2018), pp. 1–31. doi:
10.1007/s41468-018-0015-3.

[51] René Corbet, Michael Kerber, Michael Lesnick, and Georg Osang. “Computing the Multicover
Bifiltration.” In: 37th International Symposium on Computational Geometry (SoCG 2021). Ed.
by Kevin Buchin and Éric Colin de Verdière. Vol. 189. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021, 27:1–27:17. doi: 10.4230/LIPIcs.SoCG.2021.27.

[52] William Crawley-Boevey. “Decomposition of Pointwise Finite-Dimensional Persistence Mod-
ules.” In: Journal of Algebra and Its Applications 14.05 (2015), p. 1550066. doi: 10.1142/
S0219498815500668.

[53] Matija �ufar, éiga Virk, NZ Institute for Advanced Study, Massey University, Auckland, New
Zealand, and University of Ljubljana and Institute IMFM, Ljubljana, Slovenia. “Fast Compu-
tation of Persistent Homology Representatives with Involuted Persistent Homology.” In: Foun-
dations of Data Science 5.4 (2023), pp. 466–479. doi: 10.3934/fods.2023006.

[54] Vin de Silva and Robert Ghrist. “Coverage in Sensor Networks via Persistent Homology.” In:
Algebraic & Geometric Topology 7.1 (2007), pp. 339–358. doi: 10.2140/agt.2007.7.339.

[55] Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. “Dualities in Persistent
(Co)Homology.” In: Inverse Problems 27.12 (2011), p. 124003. doi: 10 . 1088 / 0266 - 5611 /
27/12/124003.

[56] Tamal K. Dey, Woojin Kim, and Facundo Mémoli. “Computing Generalized Rank Invariant
for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications.” In: 38th
International Symposium on Computational Geometry (SoCG 2022). Ed. by Xavier Goaoc and
Michael Kerber. Vol. 224. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 34:1–34:17. doi: 10.4230/
LIPIcs.SoCG.2022.34.

[57] Herbert Edelsbrunner. “Surface Reconstruction by Wrapping Finite Sets in Space.” In: Discrete
and Computational Geometry. Ed. by Boris Aronov, Saugata Basu, János Pach, and Micha
Sharir. Vol. 25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 379–404. doi: 10.
1007/978-3-642-55566-4_17.

[58] Herbert Edelsbrunner and J. Harer. Computational Topology: An Introduction. Providence, R.I:
American Mathematical Society, 2010. 241 pp. isbn: 978-0-8218-4925-5.

[59] Herbert Edelsbrunner and John Harer. “Persistent Homology—a Survey.” In: Contemporary
Mathematics. Ed. by Jacob E. Goodman, János Pach, and Richard Pollack. Vol. 453. Providence,
Rhode Island: American Mathematical Society, 2008, pp. 257–282. doi: 10.1090/conm/453/
08802.

[60] Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. “On the Shape of a Set of
Points in the Plane.” In: IEEE Transactions on Information Theory 29.4 (1983), pp. 551–559.
doi: 10.1109/TIT.1983.1056714.

[61] Herbert Edelsbrunner and Dmitriy Morozov. “Persistent Homology.” In: Handbook of Discrete
and Computational Geometry. 3rd ed. Chapman and Hall/CRC, 2017.

[62] Herbert Edelsbrunner and Georg Osang. “A Simple Algorithm for Higher-Order Delaunay Mo-
saics and Alpha Shapes.” In: Algorithmica 85.1 (2023), pp. 277–295. doi: 10.1007/s00453-022-
01027-6.

[63] Herbert Edelsbrunner and Georg Osang. “The Multi-cover Persistence of Euclidean Balls.”
In: 34th International Symposium on Computational Geometry (SoCG 2018). Ed. by Bettina
Speckmann and Csaba D. T{\’o}th. Vol. 99. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 1–
14. doi: 10.4230/LIPICS.SOCG.2018.34.

130

https://doi.org/10.1007/s00454-022-00432-6
https://doi.org/10.1007/s41468-018-0015-3
https://doi.org/10.4230/LIPIcs.SoCG.2021.27
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.3934/fods.2023006
https://doi.org/10.2140/agt.2007.7.339
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.4230/LIPIcs.SoCG.2022.34
https://doi.org/10.4230/LIPIcs.SoCG.2022.34
https://doi.org/10.1007/978-3-642-55566-4_17
https://doi.org/10.1007/978-3-642-55566-4_17
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1007/s00453-022-01027-6
https://doi.org/10.1007/s00453-022-01027-6
https://doi.org/10.4230/LIPICS.SOCG.2018.34

[64] Edelsbrunner, Letscher, and Zomorodian. “Topological Persistence and Simplification.” In: Dis-
crete & Computational Geometry 28.4 (2002), pp. 511–533. doi: 10.1007/s00454-002-2885-2.

[65] David Eisenbud. Commutative Algebra. Vol. 150. Graduate Texts in Mathematics. New York,
NY: Springer New York, 1995. doi: 10.1007/978-1-4612-5350-1.

[66] Charles Epstein, Gunnar Carlsson, and Herbert Edelsbrunner. “Topological Data Analysis.” In:
Inverse Problems 27.12 (2011), p. 120201. doi: 10.1088/0266-5611/27/12/120201.

[67] Burcin Eröcal, Oleksandr Motsak, Frank-Olaf Schreyer, and Andreas Steenpass. “Refined Al-
gorithms to Compute Syzygies.” In: Journal of Symbolic Computation 74 (2016), pp. 308–327.
doi: 10.1016/j.jsc.2015.07.004.

[68] Alberto Facchini. “The Krull-Schmidt Theorem.” In: Handbook of Algebra. Ed. by Michiel
Hazewinkel. Vol. 3. North-Holland, 2003, pp. 357–397. doi: 10.1016/S1570-7954(03)80066-9.

[69] Robin Forman. “A User’s Guide to Discrete Morse Theory.” In: Séminaire Lotharingien de
Combinatoire 48 (2008). url: https://www.emis.de/journals/SLC/wpapers/s48forman.pdf.

[70] G. Frobenius and L. Stickelberger. “Ueber Gruppen von vertauschbaren Elementen.” In: Journal
für die reine und angewandte Mathematik 86 (1879), pp. 217–262. url: https://eudml.org/
doc/148395.

[71] Ulderico Fugacci and Michael Kerber. Chunk Reduction for Multi-Parameter Persistent Homol-
ogy. 2019. arXiv: 1812.08580.

[72] Ulderico Fugacci and Michael Kerber. “Chunk Reduction for Multi-Parameter Persistent Homol-
ogy.” In: 35th International Symposium on Computational Geometry (SoCG 2019). Ed. by Gill
Barequet and Yusu Wang. Vol. 129. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 37:1–37:14. doi:
10.4230/LIPIcs.SoCG.2019.37.

[73] Ulderico Fugacci, Michael Kerber, and Alexander Rolle. “Compression for 2-Parameter Persis-
tent Homology.” In: Computational Geometry 109 (2023), p. 101940. doi: 10.1016/j.comgeo.
2022.101940.

[74] Peter Gabriel. “Unzerlegbare Darstellungen I.” In: manuscripta mathematica 6.1 (1972), pp. 71–
103. doi: 10.1007/BF01298413.

[75] Oliver Gäfvert andWojciech Chachólski. Stable Invariants for Multiparameter Persistence. 2021.
arXiv: 1703.03632.

[76] Robert Ghrist. “Barcodes: The Persistent Topology of Data.” In: Bulletin of the american math-
ematical society 45 (2007), pp. 61–76. doi: 10.1090/S0273-0979-07-01191-3.

[77] Victor Ginzburg. Calabi-Yau Algebras. 2007. arXiv: math/0612139.
[78] Barbara Giunti, Guillaume Houry, and Michael Kerber. “Average Complexity of Matrix Re-

duction for Clique Filtrations.” In: Proceedings of the 2022 International Symposium on Sym-
bolic and Algebraic Computation. Villeneuve-d’Ascq France: ACM, 2022, pp. 187–196. doi:
10.1145/3476446.3535474.

[79] Dan Halperin, Michael Kerber, and Doron Shaharabani. “The O�set Filtration of Convex Ob-
jects.” In: Algorithms - ESA 2015. Ed. by Nikhil Bansal and Irene Finocchi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 705–716. isbn: 978-3-662-48350-3.

[80] Heather A. Harrington, Nina Otter, Hal Schenck, and Ulrike Tillmann. “Stratifying Multipa-
rameter Persistent Homology.” In: SIAM Journal on Applied Algebra and Geometry 3.3 (2019),
pp. 439–471. doi: 10.1137/18M1224350.

[81] Gregory Henselman-Petrusek. Eirene. 2021. url: https://github.com/Eetion/Eirene.jl.
[82] Michael Höppner and Helmut Lenzing. “Projective Diagrams over Partially Ordered Sets Are

Free.” In: Journal of Pure and Applied Algebra 20.1 (1981), pp. 7–12. doi: 10.1016/0022-
4049(81)90045-1.

[83] Irving Kaplansky. “Projective Modules.” In: Annals of Mathematics 68.2 (1958), pp. 372–377.
doi: 10.2307/1970252. JSTOR: 1970252.

131

https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1088/0266-5611/27/12/120201
https://doi.org/10.1016/j.jsc.2015.07.004
https://doi.org/10.1016/S1570-7954(03)80066-9
https://www.emis.de/journals/SLC/wpapers/s48forman.pdf
https://eudml.org/doc/148395
https://eudml.org/doc/148395
http://arxiv.org/abs/1812.08580
https://doi.org/10.4230/LIPIcs.SoCG.2019.37
https://doi.org/10.1016/j.comgeo.2022.101940
https://doi.org/10.1016/j.comgeo.2022.101940
https://doi.org/10.1007/BF01298413
http://arxiv.org/abs/1703.03632
https://doi.org/10.1090/S0273-0979-07-01191-3
http://arxiv.org/abs/math/0612139
https://doi.org/10.1145/3476446.3535474
https://doi.org/10.1137/18M1224350
https://github.com/Eetion/Eirene.jl
https://doi.org/10.1016/0022-4049(81)90045-1
https://doi.org/10.1016/0022-4049(81)90045-1
https://doi.org/10.2307/1970252
http://www.jstor.org/stable/1970252

Bibliography

[84] Bernhard Keller. “Calabi–Yau Triangulated Categories.” In: Trends in Representation Theory
of Algebras and Related Topics. Ed. by Andrzej SkowroÒski. 1st ed. EMS Series of Congress
Reports. EMS Press, 2008, pp. 467–489. doi: 10.4171/062-1/11.

[85] Michael Kerber. Mpfree. 2021. url: https://bitbucket.org/mkerber/mpfree.
[86] Michael Kerber and Alexander Rolle. “Fast Minimal Presentations of Bi-graded Persistence

Modules.” In: 2021 Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX). Ed. by Martin Farach-Colton and Sabine Storandt. Proceedings. Society for In-
dustrial and Applied Mathematics, 2021, pp. 207–220. doi: 10.1137/1.9781611976472.16.

[87] Keunsu Kim and Jae-Hun Jung. Exact Multi-Parameter Persistent Homology of Time-Series
Data: Fast and Variable One-Dimensional Reduction of Multi-Parameter Persistence Theory.
2022. arXiv: 2211.03337.

[88] Woojin Kim and Facundo Memoli. “Spatio-Temporal Persistent Homology for Dynamic Metric
Spaces.” In: Discrete & Computational Geometry 66.3 (2021), pp. 831–875. doi: 10.1007/
s00454-019-00168-w.

[89] Woojin Kim and Facundo Mémoli. “Generalized Persistence Diagrams for Persistence Modules
over Posets.” In: Journal of Applied and Computational Topology 5.4 (2021), pp. 533–581. doi:
10.1007/s41468-021-00075-1.

[90] Woojin Kim and Samantha Moore. Bigraded Betti Numbers and Generalized Persistence Dia-
grams. 2022. arXiv: 2111.02551.

[91] Kevin P. Knudson. “A Refinement of Multi-Dimensional Persistence.” In: Homology, Homotopy
and Applications 10.1 (2008), pp. 259–281. doi: 10.4310/HHA.2008.v10.n1.a11.

[92] Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. “Statistical Topo-
logical Data Analysis - a Kernel Perspective.” In: Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 2. NIPS’15. Cambridge, MA, USA:
MIT Press, 2015, pp. 3070–3078.

[93] Roberto La Scala and Mike E. Stillman. “Strategies for Computing Minimal Free Resolutions.”
In: Journal of Symbolic Computation 26.4 (1998), pp. 409–431. doi: 10.1006/jsco.1998.0221.

[94] Fabian Lenzen. 2pac. (2-Parameter Persistent Cohomology). A C++ software package for two-
parameter persistent cohomology. 2023. url: https://gitlab.com/flenzen/2-parameter-
persistent-cohomology.

[95] Fabian Lenzen. Cell Structure for the Cyclooctane Conformation Space. inpreparation. 2023.
[96] Michael Lesnick. “The Theory of the Interleaving Distance on Multidimensional Persistence

Modules.” In: Foundations of Computational Mathematics 15.3 (2015), pp. 613–650. doi: 10.
1007/s10208-015-9255-y.

[97] Michael Lesnick and Michael Kerber. Scc2020: A File Format for Sparse Chain Complexes in
TDA. 2021. url: https://bitbucket.org/mkerber/chain_complex_format.

[98] Michael Lesnick and Matthew Wright. Computing Minimal Presentations and Bigraded Betti
Numbers of 2-Parameter Persistent Homology. 2019. arXiv: 1902.05708.

[99] Michael Lesnick and Matthew Wright. “Computing Minimal Presentations and Bigraded Betti
Numbers of 2-Parameter Persistent Homology.” In: SIAM Journal on Applied Algebra and Ge-
ometry 6.2 (2022), pp. 267–298. doi: 10.1137/20M1388425.

[100] Michael Lesnick and Matthew Wright. Interactive Visualization of 2-D Persistence Modules.
2015. arXiv: 1512.00180. Implemented in RIVET. Version 1.1.0. 2020. url: https://rivet.
readthedocs.io/en/latest/about.html.

[101] Shawn Martin. NMTRI: Non-Manifold Surface Reconstruction. Software by Shawn Martin.
2012. url: http://www.cs.otago.ac.nz/homepages/smartin/software.php.

[102] Shawn Martin, Aidan Thompson, Evangelos A. Coutsias, and Jean-Paul Watson. “Topology of
Cyclo-Octane Energy Landscape.” In: The Journal of Chemical Physics 132 (2010), p. 234115.
doi: 10.1063/1.3445267.

132

https://doi.org/10.4171/062-1/11
https://bitbucket.org/mkerber/mpfree
https://doi.org/10.1137/1.9781611976472.16
http://arxiv.org/abs/2211.03337
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s41468-021-00075-1
http://arxiv.org/abs/2111.02551
https://doi.org/10.4310/HHA.2008.v10.n1.a11
https://doi.org/10.1006/jsco.1998.0221
https://gitlab.com/flenzen/2-parameter-persistent-cohomology
https://gitlab.com/flenzen/2-parameter-persistent-cohomology
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1007/s10208-015-9255-y
https://bitbucket.org/mkerber/chain_complex_format
http://arxiv.org/abs/1902.05708
https://doi.org/10.1137/20M1388425
http://arxiv.org/abs/1512.00180
https://rivet.readthedocs.io/en/latest/about.html
https://rivet.readthedocs.io/en/latest/about.html
http://www.cs.otago.ac.nz/homepages/smartin/software.php
https://doi.org/10.1063/1.3445267

[103] Shawn Martin and Jean-Paul Watson. “Non-Manifold Surface Reconstruction from High Di-
mensional Point Cloud Data.” In: Computational Geometry 44.8 (2011), pp. 427–441. doi:
10.1016/j.comgeo.2011.05.002.

[104] Ezra Miller. Data Structures for Real Multiparameter Persistence Modules. 2020. arXiv: 1709.
08155.

[105] Dmitriy Morozov. Persistence Algorithm Takes Cubic Time in the Worst Case. 2005. url:
https://www.mrzv.org/publications/worst-case/biogeometry.

[106] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. “Finding the Homology of Submanifolds
with High Confidence from Random Samples.” In: Discrete & Computational Geometry 39.1-3
(2008), pp. 419–441. doi: 10.1007/s00454-008-9053-2.

[107] Nina Otter, Mason A. Porter, Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington.
“A Roadmap for the Computation of Persistent Homology.” In: EPJ Data Science 6.1 (2017),
p. 17. doi: 10.1140/epjds/s13688-017-0109-5.

[108] Steve Oudot. Persistence Theory: From Quiver Representations to Data Analysis. Vol. 209.
Mathematical Surveys and Monographs. Providence, Rhode Island: American Mathematical
Society, 2015. doi: 10.1090/surv/209.

[109] Amit Patel. “Generalized Persistence Diagrams.” In: Journal of Applied and Computational
Topology 1.3-4 (2018), pp. 397–419. doi: 10.1007/s41468-018-0012-6.

[110] Irena Peeva. Graded Syzygies. London: Springer London, 2011. doi: 10.1007/978-0-85729-
177-6.

[111] Julián Burella Pérez, Sydney Hauke, Umberto Lupo, Matteo Caorsi, and Alberto Dassatti.
Giotto-Ph: A Python Library for High-Performance Computation of Persistent Homology of
Vietoris–Rips Filtrations. 2021. arXiv: 2107.05412.

[112] Je� M. Phillips, Bei Wang, and Yan Zheng. “Geometric Inference on Kernel Density Estimates.”
In: 31st International Symposium on Computational Geometry (SoCG 2015). Ed. by Lars Arge
and János Pach. Vol. 34. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 857–871. doi: 10.4230/
LIPIcs.SOCG.2015.857.

[113] Daniel Quillen. “Projective Modules over Polynomial Rings.” In: Inventiones Mathematicae 36.1
(1976), pp. 167–171. doi: 10.1007/BF01390008.

[114] Raphael Reinauer, Matteo Caorsi, and Nicolas Berkouk. Persformer: A Transformer Architec-
ture for Topological Machine Learning. 2022. arXiv: 2112.15210.

[115] Bastian Rieck, Filip Sadlo, and Heike Leitte. “Topological Machine Learning with Persistence
Indicator Functions.” In: Topological Methods in Data Analysis and Visualization V. Ed. by
Hamish Carr, Issei Fujishiro, Filip Sadlo, and Shigeo Takahashi. Mathematics and Visualization.
Cham: Springer International Publishing, 2020, pp. 87–101. doi: 10.1007/978-3-030-43036-
8_6.

[116] Alexander Rolle and Luis Scoccola. Stable and Consistent Density-Based Clustering. 2021.
arXiv: 2005.09048.

[117] Sara Scaramuccia, Federico Iuricich, Leila De Floriani, and Claudia Landi. “Computing Multi-
parameter Persistent Homology through a Discrete Morse-based Approach.” In: Computational
Geometry 89 (2020), p. 101623. doi: 10.1016/j.comgeo.2020.101623.

[118] Donald R. Sheehy. “A Multicover Nerve for Geometric Inference.” In: Proceedings of the 24th
Canadian Conference on Computational Geometry, CCCG 2012, Charlottetown, Prince Edward
Island, Canada, August 8-10, 2012. 2012, pp. 309–314. url: http://2012.cccg.ca/papers/
paper52.pdf.

[119] Jacek Skryzalin. “Numeric Invariants from Multidimensional Persistence.” Stanford University,
2016. url: https://purl.stanford.edu/gv738xh9880.

[120] Andrei Suslin. “Projective Modules over Polynomial Rings Are Free.” In: Soviet Mathematics
17.4 (1976), pp. 1160–1164.

133

https://doi.org/10.1016/j.comgeo.2011.05.002
http://arxiv.org/abs/1709.08155
http://arxiv.org/abs/1709.08155
https://www.mrzv.org/publications/worst-case/biogeometry
https://doi.org/10.1007/s00454-008-9053-2
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1090/surv/209
https://doi.org/10.1007/s41468-018-0012-6
https://doi.org/10.1007/978-0-85729-177-6
https://doi.org/10.1007/978-0-85729-177-6
http://arxiv.org/abs/2107.05412
https://doi.org/10.4230/LIPIcs.SOCG.2015.857
https://doi.org/10.4230/LIPIcs.SOCG.2015.857
https://doi.org/10.1007/BF01390008
http://arxiv.org/abs/2112.15210
https://doi.org/10.1007/978-3-030-43036-8_6
https://doi.org/10.1007/978-3-030-43036-8_6
http://arxiv.org/abs/2005.09048
https://doi.org/10.1016/j.comgeo.2020.101623
http://2012.cccg.ca/papers/paper52.pdf
http://2012.cccg.ca/papers/paper52.pdf
https://purl.stanford.edu/gv738xh9880

Bibliography

[121] J. B. Tenenbaum. “A Global Geometric Framework for Nonlinear Dimensionality Reduction.”
In: Science 290.5500 (2000), pp. 2319–2323. doi: 10.1126/science.290.5500.2319.

[122] The GUDHI Project. GUDHI. 2021. url: https://gudhi.inria.fr.
[123] The RIVET Developers. RIVET. Version 1.1.0. 2020. url: https://github.com/rivetTDA/

rivet/.
[124] Jean-Louis Verdier. “Des Catégories Triangulées et Des Categories Derivées.” PhD thesis. Société

Mathématique de France, 1996. url: http://webusers.imj-prg.fr/~georges.maltsiniotis/
jlv.html.

[125] Leopold Vietoris. “Über den höheren Zusammenhang kompakter Räume und eine Klasse von
zusammenhangstreuen Abbildungen.” In:Mathematische Annalen 97.1 (1927), pp. 454–472. doi:
10.1007/BF01447877.

[126] Cary Webb. “Decomposition of Graded Modules.” In: Proceedings of the American Mathematical
Society 94.4 (1985), pp. 565–571. doi: 10.2307/2044864. JSTOR: 2044864.

[127] Charles A. Weibel. An Introduction to Homological Algebra. Reprint. 1997, transf. to digital
print. Cambridge Studies in Advanced Mathematics 38. Cambridge: Cambridge Univ. Press,
2003. 450 pp. isbn: 978-0-521-55987-4.

[128] Afra Zomorodian and Gunnar Carlsson. “Computing Persistent Homology.” In: Discrete &
Computational Geometry 33 (2005), pp. 249–274. doi: 10.1007/s00454-004-1146-y.

134

https://doi.org/10.1126/science.290.5500.2319
https://gudhi.inria.fr
https://github.com/rivetTDA/rivet/
https://github.com/rivetTDA/rivet/
http://webusers.imj-prg.fr/~georges.maltsiniotis/jlv.html
http://webusers.imj-prg.fr/~georges.maltsiniotis/jlv.html
https://doi.org/10.1007/BF01447877
https://doi.org/10.2307/2044864
http://www.jstor.org/stable/2044864
https://doi.org/10.1007/s00454-004-1146-y

Runtime data tables

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(a) S1

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(b) S2

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(c) S3

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(d) S4

50 100 175

105 106

103

105

H3

H1/chunk

H1/chunk*

(e) O(3)

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(f) O(4)

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(g) O(5)

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(h) T 2

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(i) T 3

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(j) T 4

50 100 175

105 106

102

103

104

H3

H1/chunk

H1/chunk*

(k) C8H16

Figure 1: Runtimes (ms) of the homology and cohomology algorithm for H1, plottet over the number of
2-simplices (bottom) and vertices (top) of the subsample. Command line parameters were -hn1 –cone=2 for
the cohomology algorithm, -cn1 -DC2 for the homology algorithm with chunk and -cn1 -C2 with chunk*
preprocessing.

Runtime data tables

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(a) S1

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(b) S2

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(c) S3

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(d) S4

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(e) O(3)

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(f) O(4)

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(g) O(5)

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(h) T 2

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(i) T 3

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(j) T 4

50 70 90 110

106

103

104

105

H4

H2/chunk

H2/chunk*

(k) C8H16

Figure 2: Runtimes (ms) of the homology and cohomology algorithm for H2, plottet over the number of
3-simplices (bottom) and vertices (top) of the subsample. Command line parameters were -hn2 –cone=2
for the cohomology algorithm -cn2 -DC3 for the homology algorithm with chunk and -cn2 -C3 with chunk*
preprocessing.

136

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(a) S1

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(b) S2

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(c) S3

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(d) S4

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(e) O(3)

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(f) O(4)

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(g) O(5)

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(h) T 2

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(i) T 3

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(j) T 4

20 30 40 50 6070

105 106 107

102

104

H5

H3/chunk

H3/chunk*

(k) C8H16

Figure 3: Runtimes (ms) of the homology and cohomology algorithm for H3, plottet over the number of
4-simplices (bottom) and vertices (top) of the subsample. Command line parameters were -hn3 –cone=2
for the cohomology algorithm -cn3 -DC4 for the homology algorithm with chunk and -cn3 -C4 with chunk*
preprocessing.

137

Runtime data tables

Table 1: Runtime comparison between mpfree and our reimplementation of the homology algorithm Al-
gorithm 9 in 2pac. The table shows the run time to compute a minimal free resolution of H2 of the
function-Rips complex of a subsample of size 80 of the datasets from Table 5.1. Here, we compare mpfree
with the version of 2pac that uses the vector representation. Although mpfree often is slightly faster, the
runtimes do not di�er much. In contrast to the other experiments, these were run on a MacBook Pro 2017
with a 2.3 GHz Dual-Core Intel Core i5 CPU and 16GiB RAM.Runtime comparison between mpfree and
2pac.

mpfree 2pac
chunk H2 chunk H2

sample
1-sphere 7 348 471 9 038 1 067
2-sphere 11 095 1 870 11 978 2 564
3-sphere 10 861 3 114 11 333 3 817
4-sphere 13 016 5 884 15 843 7 672
O3 12 740 8 692 12 529 9 633
O4 11 561 6 923 11 187 8 359
O5 13 195 7 351 13 466 11 287
2-torus 12 085 2 137 12 470 2 567
3-torus 14 437 6 707 14 080 8 111
4-torus 16 675 8 575 18 060 9 699
cyclooctane 78 816 11 533 58 328 7 183

Table 2: Comparison of the runtimes of the homology algorithm (with chunk and chunk* preprocessing) and
the cohomology algorithm. Each row contains the runtime (ms) for computing a minimal free resolution of
H1(�) of the density-Rips complex of subsamples of size 200. The 6th and 8th column contain the ratio of
the respective runtimes.

chunk H1 chunk* H1
chunk + H1
chunk* + H1

H3 chunk + H1
H3

S1 4 804 7 580 5 042 8 035 0.95 3 017 4.10
S2 3 155 10 526 3 283 10 048 1.03 7 230 1.89
S3 2 796 11 750 2 840 11 269 1.03 14 463 1.01
S4 3 138 14 872 2 926 13 474 1.10 26 061 0.69
O(3) 2 316 21 932 1 804 22 100 1.01 90 836 0.27
O(4) 1 828 25 762 1 543 27 091 0.96 – –
O(5) 2 170 15 398 1 815 14 541 1.07 15 355 1.14
T 2 3 344 11 028 2 638 10 172 1.12 15 672 0.92
T 3 2 930 18 197 2 343 17 074 1.09 23 625 0.89
T 4 2 932 17 193 2 137 16 017 1.11 15 711 1.28
C8H16 5 456 19 263 4 009 19 910 1.03 12 459 1.98

138

Table 3: Same as Table 2, but for H2, and with subsamples of size 100.

chunk H2 chunk* H2
chunk + H2
chunk* + H2

H4 chunk + H2
H4

S1 27 414 2 578 10 034 2 422 2.41 7 569 3.96
S2 42 190 9 524 15 576 8 983 2.11 9 733 5.31
S3 47 248 19 103 21 650 18 087 1.67 13 564 4.89
S4 45 497 19 590 19 696 – – 8 206 7.93
O(3) 45 057 61 030 31 625 58 126 1.18 86 347 1.23
O(4) 39 831 66 573 31 397 62 109 1.14 17 077 6.23
O(5) 45 235 55 750 28 783 53 817 1.22 10 183 9.92
T 2 44 220 15 815 18 794 14 733 1.79 9 304 6.45
T 3 43 711 25 648 21 984 25 279 1.47 9 615 7.21
T 4 53 143 51 937 28 762 49 007 1.35 14 444 7.27
C8H16 – – 28 193 37 339 – 21 910 –

Table 4: Same as Table 3, but run on the machine M.

chunk H2 chunk* H2
chunk + H2
chunk* + H2

H4 chunk + H2
H4

S1 37 289 5 200 12 155 4 638 2.53 8 744 4.86
S2 52 294 14 242 18 764 13 568 2.06 7 982 8.34
S3 50 261 23 272 19 211 25 089 1.66 15 998 4.60
S4 50 206 25 615 21 198 29 454 1.50 8 964 8.46
O(3) 55 566 67 668 24 786 66 158 1.36 21 742 5.67
O(4) 49 257 50 104 22 577 52 270 1.33 8 980 11.06
O(5) 49 861 59 751 25 093 55 153 1.37 11 150 9.83
T 2 44 758 13 240 16 377 13 137 1.97 7 921 7.32
T 3 51 814 44 898 22 597 39 410 1.56 17 216 5.62
T 4 54 126 60 019 25 565 54 947 1.42 16 546 6.90
C8H16 209 094 47 583 29 800 47 482 3.32 32 365 7.93

Table 5: Same as Table 2, but for H3, and with subsamples of size 60.

chunk H3 chunk* H3
chunk + H3
chunk* + H3

H5 chunk + H3
H5

S1 42 826 1 993 1 401 2 169 12.55 13 759 3.26
S2 86 650 2 771 6 365 2 846 9.71 13 373 6.69
S3 128 907 5 184 9 707 4 272 9.59 12 753 10.51
S4 123 745 5 981 10 916 5 815 7.75 14 015 9.26
O(3) 164 526 20 048 28 119 17 735 4.03 14 266 12.94
O(4) 143 490 19 329 28 167 18 563 3.48 13 632 11.94
O(5) 106 272 20 293 24 470 19 070 2.91 13 895 9.11
T 2 124 135 4 578 9 806 4 005 9.32 13 209 9.74
T 3 123 169 5 940 11 526 4 886 7.87 13 301 9.71
T 4 171 873 16 470 21 924 15 203 5.07 13 154 14.32
C8H16 – – 71 454 11 535 – 14 958 –

139

Runtime data tables

Table 6: Same as Table 5, but run on the machine M.

chunk H3 chunk* H3
chunk + H3
chunk* + H3

H5 chunk + H3
H5

S1 52 476 2 731 2 989 2 702 9.70 14 428 3.83
S2 98 841 3 188 7 815 3 121 9.33 14 703 6.94
S3 112 448 6 480 9 329 6 241 7.64 11 943 9.96
S4 121 720 9 062 14 025 9 456 5.57 14 838 8.81
O(3) 116 542 13 710 24 206 14 847 3.34 14 621 8.91
O(4) 130 011 14 386 26 825 13 728 3.56 14 843 9.73
O(5) 118 761 24 942 25 274 21 144 3.10 14 736 9.75
T 2 108 809 5 216 9 573 5 188 7.72 13 102 8.70
T 3 139 316 14 464 22 173 12 603 4.42 13 040 11.79
T 4 166 287 13 722 20 985 14 603 5.06 12 897 13.96
C8H16 – – 116 980 30 016 – 15 421 –

Table 7: Runtime comparison of heap and vector representation. The table lists runtimes of the homology
algorithm with chunk, chunk*, and the cohomology algorithm, each with the heap and the vector represen-
tation, The column “speedup” lists the runtime with the vector representation, divided by the runtime of the
heap representation. The runtimes are taken for computing H1 for subsamples of size 200 of the respective
samples.

chunk+H1 chunk*+H1 H3

heaps vectors speedup heaps vectors speedup heaps vectors speedup

S1 12 384 10 912 0.88 13 077 12 551 0.96 3 017 3 746 1.24
S2 13 681 12 029 0.88 13 331 11 124 0.83 7 230 13 028 1.80
S3 14 546 11 784 0.81 14 109 11 711 0.83 14 463 30 507 2.11
S4 18 010 13 720 0.76 16 400 12 636 0.77 26 061 22 234 0.85
O(3) 24 248 18 193 0.75 23 904 17 924 0.75 90 836 39 414 0.43
O(4) 27 590 24 795 0.90 28 634 22 854 0.80 – 53 629 –
O(5) 17 568 14 153 0.81 16 356 12 843 0.79 15 355 14 342 0.93
T 2 14 372 11 298 0.79 12 810 10 001 0.78 15 672 9 839 0.63
T 3 21 127 15 751 0.75 19 417 15 442 0.80 23 625 31 116 1.32
T 4 20 125 15 790 0.78 18 154 15 081 0.83 15 711 13 794 0.88
C8H16 24 719 14 119 0.57 23 919 15 194 0.64 12 459 16 058 1.29

Table 8: Same as Table 7, but for computing H2, and with subsamples of size 100.
chunk+H2 chunk*+H2 H4

heaps vectors speedup heaps vectors speedup heaps vectors speedup

S1 29 992 30 115 1.00 12 456 132 855 10.67 7 569 7 566 1.00
S2 51 714 42 938 0.83 24 559 118 823 4.84 9 733 20 546 2.11
S3 66 351 46 422 0.70 39 737 115 088 2.90 13 564 53 948 3.98
S4 65 087 51 741 0.79 – 114 482 – 8 206 7 274 0.89
O(3) 106 087 76 740 0.72 89 751 148 436 1.65 86 347 185 573 2.15
O(4) 106 404 64 582 0.61 93 506 156 135 1.67 17 077 28 919 1.69
O(5) 100 985 58 988 0.58 82 600 161 102 1.95 10 183 13 966 1.37
T 2 60 035 51 770 0.86 33 527 104 008 3.10 9 304 17 221 1.85
T 3 69 359 50 702 0.73 47 263 135 179 2.86 9 615 11 014 1.15
T 4 105 080 65 117 0.62 77 769 161 908 2.08 14 444 30 770 2.13
C8H16 – 171 381 – 65 532 – – 21 910 170 360 7.78

140

Table 9: Same as Table 8, but run on machine M.
chunk+H2 chunk*+H2 H4

heaps vectors speedup heaps vectors speedup heaps vectors speedup

S1 42 489 51 606 1.21 16 793 183 232 10.91 8 744 26 296 3.01
S2 66 536 80 296 1.21 32 332 205 232 6.35 7 982 8 232 1.03
S3 73 533 78 732 1.07 44 300 173 794 3.92 15 998 105 595 6.60
S4 75 821 81 801 1.08 50 652 193 228 3.81 8 964 12 446 1.39
O(3) 123 234 121 360 0.98 90 944 257 593 2.83 21 742 80 548 3.70
O(4) 99 361 93 838 0.94 74 847 217 728 2.91 8 980 10 427 1.16
O(5) 109 612 107 905 0.98 80 246 248 209 3.09 11 150 12 253 1.10
T 2 57 998 72 185 1.24 29 514 192 961 6.54 7 921 7 036 0.89
T 3 96 712 99 274 1.03 62 007 196 956 3.18 17 216 91 363 5.31
T 4 114 145 121 173 1.06 80 512 240 337 2.99 16 546 37 658 2.28
C8H16 256 677 – – 77 282 – – 32 365 – –

Table 10: Same as Table 7, but for computing H3, and with subsamples of size 50.
chunk+H3 chunk*+H3 H5

heaps vectors speedup heaps vectors speedup heaps vectors speedup

S1 18 728 12 189 0.65 1 476 5 223 3.54 4 821 4 346 0.90
S2 48 394 42 502 0.88 2 896 20 528 7.09 4 769 4 273 0.90
S3 45 226 35 858 0.79 3 765 18 240 4.84 4 643 4 277 0.92
S4 44 188 41 964 0.95 4 940 21 607 4.37 5 062 3 924 0.78
O(3) 91 427 82 780 0.91 12 176 58 628 4.82 4 708 4 079 0.87
O(4) 58 547 53 700 0.92 10 541 54 100 5.13 4 691 4 150 0.88
O(5) 32 781 28 006 0.85 8 644 32 805 3.80 5 208 4 662 0.90
T 2 36 027 29 737 0.83 4 000 16 295 4.07 4 655 4 353 0.94
T 3 37 427 33 144 0.89 6 347 34 430 5.42 5 063 3 932 0.78
T 4 54 739 50 096 0.92 11 006 44 921 4.08 4 946 4 289 0.87
C8H16 281 220 – – 24 105 164 893 6.84 6 626 4 560 0.69

Table 11: Same as Table 10, but run on machine M.
chunk+H3 chunk*+H3 H5

heaps vectors speedup heaps vectors speedup heaps vectors speedup

S1 23 202 29 425 1.27 1 955 10 586 5.41 4 920 3 798 0.77
S2 29 830 45 988 1.54 3 003 24 803 8.26 4 998 4 268 0.85
S3 64 478 97 334 1.51 5 726 39 121 6.83 5 066 4 447 0.88
S4 58 205 78 114 1.34 7 152 39 748 5.56 5 147 3 762 0.73
O(3) 60 287 110 063 1.83 12 881 104 865 8.14 5 142 4 064 0.79
O(4) 44 307 63 782 1.44 11 668 94 886 8.13 5 072 3 814 0.75
O(5) 43 197 65 849 1.52 8 908 81 485 9.15 4 967 3 923 0.79
T 2 44 114 70 518 1.60 3 331 23 829 7.15 4 137 3 796 0.92
T 3 37 744 61 395 1.63 9 031 66 894 7.41 4 449 3 955 0.89
T 4 62 315 101 003 1.62 12 963 68 146 5.26 4 133 3 971 0.96
C8H16 – – – 32 654 166 399 5.10 5 223 4 572 0.88

141

Runtime data tables

Table 12: Runtime and e�ect of chunk and chunk* preprocessing. The reported runtime of chunk (resp.
chunk*) preprocessing is the time needed to minimize (Algorithm 3) the 3th boundary (resp. coboundary)
matrix. The two other groups show the runtime of the homology and the cohomology algorithm, each without
preprocessing, after chunk and after chunk* preprocessing. The run times were measured for subsamples of
size 100.

H2 H4

chunk chunk* w/o w. chunk w. chunk* w/o w. chunk w. chunk*

S1 27 414 10 034 118 209 2 578 2 422 7 569 3 636 3 371
S2 42 190 15 576 178 587 9 524 8 983 9 733 8 419 7 306
S3 47 248 21 650 – 19 103 18 087 13 564 28 563 –
S4 45 497 19 696 – 19 590 – 8 206 7 781 7 534
O(3) 45 057 31 625 – 61 030 58 126 86 347 – –
O(4) 39 831 31 397 – 66 573 62 109 17 077 127 683 126 768
O(5) 45 235 28 783 – 55 750 53 817 10 183 13 905 12 904
T 2 44 220 18 794 262 684 15 815 14 733 9 304 10 394 9 965
T 3 43 711 21 984 – 25 648 25 279 9 615 12 625 –
T 4 53 143 28 762 – 51 937 49 007 14 444 25 265 –
C8H16 – 28 193 – – 37 339 21 910 44 551 42 301

Table 13: Same as Table 12, but for the vector representation.
H2 H4

chunk chunk* w/o w. chunk w. chunk* w/o w. chunk w. chunk*

S1 27 779 130 466 209 212 2 336 2 389 7 566 3 231 3 247
S2 36 583 112 898 – 6 355 5 925 20 546 4 944 4 433
S3 35 817 104 276 – 10 605 10 812 53 948 8 433 7 668
S4 40 265 102 946 – 11 476 11 536 7 274 4 418 4 423
O(3) 38 574 116 482 – 38 166 31 954 185 573 26 989 26 027
O(4) 31 466 121 588 – 33 116 34 547 28 919 10 519 10 123
O(5) 31 092 132 402 – 27 896 28 700 13 966 6 836 7 533
T 2 42 311 95 259 – 9 459 8 749 17 221 5 341 4 727
T 3 35 576 117 914 – 15 126 17 265 11 014 5 866 6 087
T 4 38 868 137 073 – 26 249 24 835 30 770 10 828 10 055
C8H16 155 365 – – 16 016 – 170 360 13 254 –

Table 14: Same as Table 12, but for H3, and with a subsample size of 60.
H3 H5

chunk chunk* w/o w. chunk w. chunk* w/o w. chunk w. chunk*

S1 42 826 1 401 – 1 993 2 169 13 759 4 485 4 359
S2 86 650 6 365 – 2 771 2 846 13 373 4 418 5 026
S3 128 907 9 707 – 5 184 4 272 12 753 5 170 5 446
S4 123 745 10 916 – 5 981 5 815 14 015 5 645 5 417
O(3) 164 526 28 119 – 20 048 17 735 14 266 8 918 8 308
O(4) 143 490 28 167 – 19 329 18 563 13 632 8 778 7 747
O(5) 106 272 24 470 – 20 293 19 070 13 895 8 862 7 602
T 2 124 135 9 806 – 4 578 4 005 13 209 5 978 5 265
T 3 123 169 11 526 – 5 940 4 886 13 301 6 045 6 007
T 4 171 873 21 924 – 16 470 15 203 13 154 7 692 7 053
C8H16 – 71 454 – – 11 535 14 958 – 6 564

142

Table 15: Same as Table 14, but for the vector representation.
H3 H5

chunk chunk* w/o w. chunk w. chunk* w/o w. chunk w. chunk*

S1 41 923 4 406 – 2 067 2 389 13 672 4 462 4 743
S2 78 721 108 905 – 2 573 2 401 11 646 4 614 4 548
S3 104 420 98 118 – 3 635 3 727 11 515 4 363 4 405
S4 125 403 147 877 – 4 471 4 218 12 496 4 472 4 930
O(3) 150 888 – – 10 088 – 13 287 5 429 –
O(4) 130 892 – – 9 847 – 13 169 4 988 –
O(5) 97 518 – – 11 479 – 13 625 5 656 –
T 2 120 352 130 758 – 3 361 3 371 12 234 4 751 4 822
T 3 112 293 170 990 – 3 990 4 229 12 795 5 023 4 595
T 4 161 083 261 555 – 9 196 – 11 792 5 249 4 890
C8H16 – – – – – 14 347 – –

Table 16: Run times of di�erent variants of the cohomology algorithm. Each row contains the runtime
for computing H4

(N•
(�)) (=̂ H2(K⇤)) of the density-Rips complex of a subsample of size 100. The first

column contains the runtime of the cohomology algorithm as used in all other tables, including sparsification
(Algorithm 22) between the two loops of Algorithm 10, and coning o� the input complex (Section 5.1.4
with respect to the density parameter of the input. The column “no sparsification” contains runtimes
without this sparsification step. The column “no clearing” contains runtimes without the clearing step in
line (a) of Algorithm 11. The columns “simplicial cone” contain runtimes when using the simplicial cone
to make the input eventually acyclic (Section 3.7.1). The column “no cone” contains run times without
any preprocessing that makes the input eventually acyclic. Note that in this case, one cannot infer H2 from
H4

(N•. The last two columns show the runtime of the cohomology algorithm when combined with chunk
and chunk* preprocessing.

normal no sparsification no clearing simp cone no cone chunk chunk*

S1 7 569 5 461 7 548 8 162 8 174 33 870 13 521
S2 9 733 6 909 8 104 10 290 8 058 49 117 22 266
S3 13 564 17 332 12 212 14 630 12 173 73 401 –
S4 8 206 14 786 6 845 8 358 7 732 55 021 27 297
O(3) 86 347 137 011 79 025 59 528 39 186 – –
O(4) 17 077 69 926 16 916 24 738 17 097 169 454 155 382
O(5) 10 183 60 882 9 080 11 394 12 076 56 908 38 418
T 2 9 304 10 797 8 891 9 807 9 275 59 798 31 761
T 3 9 615 22 271 9 148 9 789 9 730 54 777 –
T 4 14 444 37 775 15 921 15 041 12 647 80 866 –
C8H16 21 910 28 445 24 618 23 587 18 000 237 735 73 353

143

Runtime data tables

Table 17: Same as Table 16, but for H5
(N•

) (=̂ H3(K⇤)), and with a subsample size of 60.
normal no sparsification no clearing simp cone no cone chunk chunk*

S1 13 759 7 043 6 432 14 885 12 717 47 747 5 704
S2 13 373 7 897 6 697 14 597 13 219 92 410 10 999
S3 12 753 8 067 8 443 15 179 12 529 135 566 13 571
S4 14 015 8 744 8 492 14 440 14 263 135 491 16 280
O(3) 14 266 20 644 21 233 15 004 14 865 166 358 37 476
O(4) 13 632 15 970 18 958 14 940 13 220 146 703 34 616
O(5) 13 895 22 545 24 174 15 365 13 725 113 428 31 973
T 2 13 209 8 757 8 524 13 754 13 531 136 668 15 008
T 3 13 301 9 081 8 790 14 310 13 357 122 560 17 718
T 4 13 154 14 965 15 977 16 297 13 212 182 112 27 347
C8H16 14 958 13 784 13 958 17 776 15 317 – 81 506

Table 18: Same as Table 16, but with the vector representation.
normal no sparsification no clearing simp cone no cone chunk chunk*

S1 7 566 5 538 7 286 8 897 11 102 32 189 139 049
S2 20 546 34 070 19 168 23 135 18 363 41 672 109 123
S3 53 948 136 226 52 552 57 022 56 479 47 938 110 360
S4 7 274 89 539 7 462 8 776 7 981 43 085 108 275
O(3) 185 573 – 181 390 242 204 203 544 61 565 135 672
O(4) 28 919 – 28 862 36 612 29 574 44 218 128 983
O(5) 13 966 – 13 988 15 431 15 614 43 037 147 286
T 2 17 221 52 698 16 407 18 989 16 095 45 278 93 917
T 3 11 014 140 227 11 185 11 984 11 950 40 512 123 177
T 4 30 770 191 980 27 653 27 534 25 933 55 042 138 676
C8H16 170 360 262 912 156 842 194 073 133 231 185 177 –

Table 19: Same as Table 17, but with the vector representation.
normal no sparsification no clearing simp cone no cone chunk chunk*

S1 4 346 2 193 2 038 5 054 3 599 12 840 5 694
S2 4 273 3 133 2 973 5 655 3 968 42 198 19 179
S3 4 277 2 534 2 490 5 380 4 864 37 125 17 032
S4 3 924 4 225 3 381 5 732 4 194 37 132 20 253
O(3) 4 079 12 985 12 336 5 013 4 508 76 542 52 926
O(4) 4 150 9 209 9 164 5 312 3 942 46 173 56 870
O(5) 4 662 9 261 9 214 5 267 4 830 25 404 32 764
T 2 4 353 6 916 7 221 4 850 4 307 28 604 16 321
T 3 3 932 6 196 5 534 4 972 4 554 30 047 35 352
T 4 4 289 8 042 7 636 5 262 4 362 45 320 39 200
C8H16 4 560 20 191 19 873 5 517 4 985 – 169 944

144

Table 20: Run times for the steps of the cohomology algorithm (Algorithm 11). The columns mean, from
left to right, the first and second reduction for-loop in Algorithm 10, the sparsification step (Algorithm 22)
between the two loops, and the call to Minimize() and and KerAndMgsWithKer() in Algorithm 11. The
numbers are from computing H4 with a subsample size of 100.

first second sparsify minimize kernel res

S1 45 122 3 071 724 1 716 7 569
S2 62 424 3 710 1 155 2 189 9 733
S3 73 503 3 431 2 991 3 230 13 564
S4 64 92 3 513 786 1 793 8 206
O(3) 48 17 971 3 661 41 758 14 611 86 347
O(4) 79 1 374 3 162 3 800 5 207 17 077
O(5) 45 404 3 265 1 779 2 514 10 183
T 2 63 271 3 624 1 149 2 032 9 304
T 3 63 209 3 679 1 298 2 083 9 615
T 4 67 370 3 968 2 767 4 048 14 444
C8H16 99 1 227 4 694 6 233 5 319 21 910

Table 21: Same as Table 20, but for the vector representation.
first second sparsify minimize kernel res

S1 54 489 3 020 668 1 564 7 566
S2 53 8 351 3 131 4 784 2 097 20 546
S3 53 16 069 3 153 28 474 2 986 53 948
S4 51 173 2 801 853 1 597 7 274
O(3) 73 34 128 3 552 129 835 10 389 185 573
O(4) 61 4 745 3 424 12 840 4 445 28 919
O(5) 60 1 896 3 265 4 374 2 163 13 966
T 2 54 5 282 3 229 4 360 2 049 17 221
T 3 56 1 195 3 076 2 612 1 954 11 014
T 4 57 4 535 3 301 15 659 3 989 30 770
C8H16 130 36 454 4 069 120 199 5 142 170 360

Table 22: Same as Table 20, but without the sparsification step.
first second sparsify minimize kernel res

S1 103 156 – 595 2 294 5 461
S2 60 471 – 1 547 2 396 6 909
S3 60 689 – 6 895 4 626 17 332
S4 57 161 – 4 954 4 966 14 786
O(3) 62 27 688 – 72 867 23 456 137 011
O(4) 51 4 533 – 27 675 25 453 69 926
O(5) 61 763 – 18 851 29 556 60 882
T 2 54 297 – 3 297 3 543 10 797
T 3 61 252 – 7 984 7 408 22 271
T 4 73 581 – 12 601 15 574 37 775
C8H16 90 1 554 – 12 229 8 231 28 445

145

Runtime data tables

Table 23: Same as Table 22, but without the sparsification step.
first second sparsify minimize kernel res

S1 64 1 400 – 571 1 623 5 538
S2 52 17 181 – 12 120 2 273 34 070
S3 62 19 626 – 106 965 4 686 136 226
S4 61 1 212 – 77 378 5 616 89 539
O(3) 70 46 602 – – – –
O(4) 69 11 093 – – – –
O(5) 72 3 848 – 255 013 – –
T 2 54 10 602 – 34 891 3 404 52 698
T 3 72 2 321 – 124 181 6 764 140 227
T 4 73 11 325 – 158 941 12 718 191 980
C8H16 138 47 227 – 202 075 7 261 262 912

Table 24: Same as Table 20, but for H5 and a subsample size of 60.
first second sparsify minimize kernel res

S1 362 254 6 669 1 154 2 295 13 759
S2 345 209 7 011 1 018 2 095 13 373
S3 326 203 6 582 1 019 2 088 12 753
S4 342 228 6 855 1 183 2 319 14 015
O(3) 425 300 6 992 1 354 2 206 14 266
O(4) 382 292 6 859 1 214 2 106 13 632
O(5) 387 247 6 867 1 231 2 359 13 895
T 2 334 240 6 599 1 101 2 213 13 209
T 3 372 248 6 669 1 223 2 018 13 301
T 4 348 211 6 496 1 040 2 235 13 154
C8H16 678 232 8 400 1 004 1 936 14 958

Table 25: Same as Table 24, but for the vector representation.
first second sparsify minimize kernel res

S1 217 155 6 810 914 2 363 13 672
S2 179 132 5 748 846 2 101 11 646
S3 186 156 5 811 878 1 961 11 515
S4 314 144 5 939 929 2 227 12 496
O(3) 197 233 6 305 1 249 2 271 13 287
O(4) 221 173 6 632 1 055 2 279 13 169
O(5) 218 181 6 888 1 073 2 441 13 625
T 2 191 160 6 116 885 2 139 12 234
T 3 194 144 6 410 1 062 2 211 12 795
T 4 192 152 5 842 874 2 078 11 792
C8H16 509 160 7 744 794 2 135 14 347

146

Table 26: Same as Table 24, but without the sparsification step.
first second sparsify minimize kernel res

S1 312 192 – 1 129 2 495 7 043
S2 325 218 – 1 275 2 716 7 897
S3 314 200 – 1 837 2 405 8 067
S4 326 254 – 1 818 2 802 8 744
O(3) 375 335 – 8 036 5 387 20 644
O(4) 329 326 – 4 975 4 789 15 970
O(5) 353 383 – 8 071 6 535 22 545
T 2 317 229 – 2 098 2 569 8 757
T 3 430 293 – 1 937 2 694 9 081
T 4 325 261 – 4 603 4 471 14 965
C8H16 688 275 – 5 995 2 725 13 784

Table 27: Same as Table 26, but for the vector representation.
first second sparsify minimize kernel res

S1 177 149 – 882 2 113 6 154
S2 161 163 – 766 2 138 5 986
S3 202 203 – 8 376 2 414 14 307
S4 221 231 – 8 982 2 508 15 218
O(3) 205 667 – 203 171 4 549 214 265
O(4) 206 251 – 54 535 3 989 63 785
O(5) 232 320 – 193 038 5 554 205 314
T 2 254 371 – 31 209 2 839 38 330
T 3 194 212 – 13 717 2 440 19 907
T 4 204 272 – 47 274 3 940 56 157
C8H16 525 151 – 102 046 2 768 109 022

147

	Introduction
	Background
	Persistence modules
	One-parameter persistence
	Multi-parameter persistence
	Computing two-parameter persistent homology

	Persistent cohomology using the Calabi–Yau property
	The free cochain complex N*(K⁎)
	The Calabi-Yau-property of persistence modules
	The Nakayama functor and matrices
	Pulling back modules from the colimit
	Computing a free resolution of H*(N*(K⁎)))
	Eventual acyclicity of K⁎ is necessary
	Making K⁎ eventually acyclic
	Fringe presentations

	Persistent cohomology of freely resolved cochain complexes
	Free resolutions of (co)kernels, images and subquotients
	Simplicial cohomology
	Example
	Relative cohomology revisited
	Computational shortcomings
	Absolute and relative cohomology do not determine each other

	Implementation and experiments
	Implementation
	Experiments
	Results

	Summary and concluding remarks
	Bibliography
	Runtime data tables

