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Abstract: In this paper, we study the bounded consensus control problem of linear multi-agent systems with external distur-
bances. Provided that the external disturbances are bounded, bounded consensus means the consensus errors and other system
parameters are also guaranteed to be bounded. A novel reduced-order adaptive output-feedback protocol is proposed for ensuring
bounded consensus of the closed-loop system. Then a sufficient condition is established for the existence of the proposed proto-
col and an estimation of the domain to which the consensus errors and the adaptive gains finally converge is presented. Compared
with the existing results, the proposed protocol provides a tractable characterization for both full- and reduced-order adaptive
dynamic output-feedback protocols. Moreover, since designing the protocol gains does not require to know the communication
graph, the proposed protocol can be designed and implemented in a fully distributed way. Finally, a numerical example clearly
illustrates the effectiveness of the proposed protocol.
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1 Introduction

The past decade has witnessed the fast development of
control theory of multi-agent systems (MASs) and its ap-
plication to various areas such as distributed optimization,
unmanned vehicles, smart grids and sensor networks [1–8].
The idea of consensus control about MASs is to force the
states of all agents to track a common dynamic trajectory,
which is one of the basic and widely investigated control
problems about MASs (see the aforementioned literature as
well as [9–13]). At a relative early stage, much attention
was paid to special linear MASs of first- and second-order
integrators [14], from which it has been well understood
that the existence of a spanning tree of the underlying com-
munication graph is necessary to reach consensus. In the
past ten years, many efforts have been made to explore ef-
fective methods for designing distributed protocols of gen-
eral linear MASs, especially those results about observer-
type output-feedback protocols [1, 10–13, 15, 16]. In tradi-
tional linear control theory, the beauty of an observer-type
output-feedback controller lies in the satisfaction of Sep-
aration Principle such that an observer gain and a state-
feedback gain can be separately effectively designed. How-
ever, for consensus of MASs, the way to assign the commu-
nication topology between controllers is very crucial to keep
the tractability of designing distributed protocols, which is
a non-trivial step from the linear traditional control theory.
Please refer to [10, 11, 15, 16] about the design of various
dynamic output-feedback protocols with/without controller
interaction for general linear MASs.

For output-feedback protocols, except for the challenges
resulting from the availability of output information only,
another important issue is how to design the protocol gains
without knowing the communication graph. When the net-
work size is large, it is usually difficult to exactly obtain
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the eigenvalues of the Laplacian matrix of the communica-
tion graph, which, however, are necessary for determining
the graph-related gains in most of the aforementioned re-
sults. To cope with this issue, a popular idea is to explore
an adaptive mechanism that makes use of relative informa-
tion between agents to adjust the graph-related gains. Early
results about adaptive strategies for complex networks syn-
chronization can be found in [17] and the references therein.
In [18–20], adaptive state-feedback protocols are developed
for general linear MASs and second-order MASs, while in
[21, 22], various adaptive dynamic output-feedback proto-
cols are proposed for general linear systems with or with-
out external disturbances. Since designing the protocol gains
is independent of determining the graph-related gains, these
protocols can be designed and implemented in a fully dis-
tributed manner. Note, however, that each controller of the
protocols in [21, 22] has the same order as that of agents,
while it is known that lower-order controller laws are less
complex than full-order ones and thus are more attractive in
practice. To the best of our knowledge, no reduced-order
adaptive output-feedback protocol that is tractable to design
as the full-order results, has been reported.

In this paper, we are interesting in the bounded con-
sensus problem of linear MASs with external disturbances.
Bounded consensus means that the consensus error is kept
to be bounded, provided that external disturbances are
bounded. Due to the existence of external disturbances, it is
in general impossible for an MAS to reach exact consensus.
In view of this fact, bounded consensus is the more practi-
cal notion. In this paper, we will propose a novel reduced-
order adaptive output-feedback protocol for general linear
MASs over undirected graphs. It will be shown that bounded
consensus can be reached by the proposed protocol if the
protocol gains are properly parameterized. Particularly, in
virtue of the results in [16], we can show that there exist
some reduced-order or full-order output-feedback protocols
that satisfy our requirements and can be easily designed.
Compared with the existing results about output-feedback



consensus control with external disturbances, the proposed
adaptive protocol has the following novelties:

1) The proposed protocol also characterizes a kind of
reduced-order dynamic output-feedback protocols that are
computationally less demanding than the full-order ones in
[21, 22]. Actually, the problem in [22] is about leader-
follower bounded consensus and the related one in [21] is
about state-feedback protocols, which are different from the
leaderless bounded consensus problem through an adaptive
output-feedback protocol in this paper.

2) The proposed protocol makes use of relative output in-
formation between agents for bounded consensus. Although
some results about reduced-order consensus protocols have
been reported [23, 24], they either require absolute output
information or relative input information about neighbour-
ing agents. On the contrary, our protocol fuses the obtained
relative output information in a more straightforward way.
What’s more, the proposed reduced-order adaptive protocol
can be designed and implemented in a fully distributed way.

Notation: Let the set of all m × n real matrices de-
noted by Rm×n and an n × n identity matrix by In. Rep-
resent a square, positive definite (semi-definite) matrix by
P > 0 (≥ 0). A ⊗ B and A ◦ B stand for Kronecker
product and Hadamard product, respectively. Let || · ||2 de-
note the Euclidean norm of a vector, and let λmax(·) denote
the maximum eigenvalue of a symmetric matrix. Denote
V = {1, . . . , N} as the set of N nodes and E ⊆ V × V
as the edge set, then an undirected graph is represented by
G(V, E). Define the adjacency matrix associated with G as
A = [aij ]N×N , where aij > 0 if (j, i) ∈ E and aij = 0
otherwise. In this paper, if a graph is undirected, we assume
aij = aji for i, j = 1, . . . , N . We say node j is a neigh-
bouring node of node i if (j, i) ∈ E or aij > 0. Denote the
set of all the neighbouring node of node i by Ni. Accord-
ingly, the Laplacian matrix associated with G is defined as
L = [lij ]N×N with lii =

P
k∈Ni

aik and lij = −aij for
i, j = 1, 2, . . . , N and i 6= j. A path of the graph is a se-
quence of edges connecting two nodes. An undirected graph
is said to be connected if every node can be reached from
every other node over any path.

2 Main Results

2.1 Problem Statement
Consider a group of N (N ≥ 2) homogeneous linear

agents that are represented by

ẋi(t) = Axi(t) +Buui(t) + wi(t),

yi(t) = Cyxi(t), i = 1, . . . , N, (1)

where xi ∈ Rnx is the state of agent i, and ui ∈ Rnu ,
yi ∈ Rny and wi ∈ Rnx are the corresponding control
input, local output and external disturbance, respectively.
System matrices A, Bu and Cy are real and appropriately-
dimensioned. For each agent, the matrix triple (A,Bu, Cy)
is assumed to be stabilizable and detectable. The external
disturbances wi(t) are assumed to be bounded in a way as
‖wi(t)‖2 < w̄i, i = 1, . . . , N , for all t ≥ 0, where w̄i is a
known positive constant.

Consensus of MASs means that the states of all the agents
are synchronized to some common trajectories. Since we
consider a linear MAS with external disturbances, it is in

general impossible to reach exact consensus. In this paper,
we consider the bounded consensus problem where the ob-
jective is to design a distributed protocol such that the con-
sensus state errors of all the agents are bounded. To this end,
suppose that the communication graph denoted by G(V, E)
is undirected, where A = [aij ]N×N and L = [lij ]N×N are
the adjacency matrix and Laplacian matrix. We propose the
following distributed adaptive output-feedback protocol,

ṙi = Hri + Fr
X
j∈Ni

cijaij (ỹij + CyBr r̃ij) ,

ui = Gri + Fu
X
j∈Ni

cijaij (ỹij + CyBr r̃ij) , (2)

where the adaption law is given by

ċij = αij
�
(ỹij + CyBr r̃ij)

T
(ỹij + CyBr r̃ij)− φijcij

�
,

cij(0) = cji(0), αij = αji > 0, φij > 0,

i = 1, . . . , N ; j ∈ Ni. (3)

with ỹij , yi − yj and r̃ij = ri − rj , and H , G, Br, Fr and
Fu are properly-dimensioned real matrices to be designed.

In the above equation, the feedback signals ỹij and r̃ij
are some relative information between agents i and j. Es-
pecially, note that ỹij is the relative output between agents i
and j. Thus, rather than using the relative state, the proposed
protocol is of the output-feedback kind, which is more prac-
tical than the state-feedback protocols in [18, 21]. What’s
more, the order of each controller in (2) (that is, the dimen-
sion of ri ), denoted by nr, is allowed to be smaller than that
of every agent, nx. Thus, as a reduced-order counterpart
of the full-order dynamic output-feedback protocols in [22],
the above protocol can also characterize a kind of reduced-
order dynamic output-feedback protocols, which are com-
putationally less demanding than full-order ones. It will be
seen that the above protocol actually covers both full-order
and reduced-order ones as special cases.

2.2 Consensus Analysis

Let cii =

P
j∈Ni

cijaij

lii
for i = 1, . . . , N and cij = 0 for

i = 1, . . . , N and j /∈ Ni. Then the protocol (2) can be
re-written as

ṙi = Hri + Fr

NX
j=1

cij lij (yj + CyBrrj) ,

ui = Gri + Fu

NX
j=1

cij lij (yj + CyBrrj) . (4)

Let si , col{xi, ri} and s , col{s1, . . . , sN}. From (1) and
(4), we can obtain the closed-loop system that is given by

ṡ =
�
I⊗ Ã+ (C ◦ L)⊗ B̃

�
s(t) +

�
I⊗ B̃w

�
w, (5)

where w = col{w1, . . . , wN}, C , [cij ]N×N , B̃w , [I; 0]
and

Ã ,
�
A BuG
0 H

�
, B̃ ,

�
BuFuCy BuFuCyBr
FrCy FrCyBr

�
.



To analyze the consensus error, let sei , si − 1
N

PN
j=1 sj ,

i = 1, . . . , N , and se , col{se1, . . . , seN}. Then se can be
expressed as se = (Le ⊗ I) s, where Le , I− 1

N 11T. Since
the graph is undirected, that is, aij = aji, and moreover it
follows from cij(0) = cji(0) and αij = αji that cij(t) =
cji(t) for all t ≥ 0, we have Le (C(t) ◦ L) = C(t) ◦ L =
(C(t) ◦ L)Le. Consequently, we have the following system:

ṡe = (Le ⊗ I)
¦�

I⊗ Ã+ (C ◦ L)⊗ B̃
�
s+

�
I⊗ B̄w

�
w
©

=
�
I⊗ Ã+ (C ◦ L)⊗ B̃

�
se +

�
Le ⊗ B̄w

�
w. (6)

Note that si = sj for i, j = 1, . . . , N if and only if se = 0.
Thus, se can be defined as the consensus error indicating
whether consensus is reached or not. The following theorem
is the main result of this paper, which provides a sufficient
condition under which the consensus error in terms of se as
well as the adaptive gains cij are guaranteed to be bounded.

Theorem 1 Consider the MAS (1) and the protocol (2), and
suppose that the communication graph G is undirected and
connected. Then the consensus error se(t) and the adap-
tive gains cij(t), i, j = 1, . . . , N , are uniformly ultimately
bounded, if the following statements hold:

1) Matrices H , G and Br are such that

H is Hurwitz, ABr −BrH = BuG,

rank(Br) = nr and rank([Bu, Br]) = nx. (7)

2) Matrices Fu and Fr are given by�
Fu
Fr

�
= −

�
Ru
Rr

�
PCT

y , (8)

where Ru and Rr are general real matrices such
that RrBr = Inr

and BuRu + BrRr = Inx
, and P

is a positive definite matrix solving the following Ric-
cati equation for any positive definite matrix Q:

PAT +AP − PCT
y CyP +Q = 0. (9)

Proof. Since BuRu + BrRr = Inx
and RrBr = Inr

,
we have Rr = Rr (BuRu +BrRr) = RrBuRu + Rr,
which implies RrBuRu = 0. Since Br is of full col-
umn rank and RrBr = Inr

, Rr has full row rank and
rank(Rr) = rank(Br) = nr. Thus, the following matrix
T and its inverse T−1 are well-defined:

T =

�
Inx Br
−Rr 0nr×nr

�
, T−1 =

�
BuRu −Br
Rr Inr

�
.

Using the above relations, ABr − BrH = BuG, BuRu +
BrRr = I and RrBr = I, we have

ABuRu +BuGRr +BrHRr = ABuRu +ABrRr = A,

RrABuRu +RrBuGRr

= RrABuRu +Rr (ABr −BrH)Rr

= RrA (BuRu +BrRr)−RrBrHRr = RrA−HRr,
RrABr −RrBuG

= RrABr −Rr (ABr −BrH) = RrBrH = H.

Consequently, by substituting the above equations and the
expression of Fu and Fr in (8), we obtain

Ā , TÃT−1

=

�
I Br
−Rr 0

� �
A BuG
0 H

� �
BuRu −Br
Rr I

�

=

�
A 0

HRr −RrA H

�
,

B̄ , TB̃T−1

=

�
I Br
−Rr 0

� �
BuFuCy BuFuCyBr
FrCy FrCyBr

�

×
�
BuRu −Br
Rr I

�

= −
�

Bu Br
−RrBu 0

� �
Ru
Rr

�
PCT

y Cy
�
I 0

�

= −
�

I
0

�
PCT

y Cy
�
I 0

�
.

Let s̄ , (I⊗ T ) se, which, combined with (6), satisfies

˙̄s = (I⊗ T )
¦�

I⊗ Ã+ (C ◦ L)⊗ B̃
�
se + (Le ⊗Bw)w

©
=
�
I⊗ Ā+ (C ◦ L)⊗ B̄

�
s̄+ (Le ⊗Bw)w.

Obviously, the boundedness of se(t) is equivalent to that of
s̄(t). For convenience, we can further write the state equa-
tion of s̄(t) as

˙̄x =
�
I⊗A− (C ◦ L)⊗ PCT

y Cy
�
x̄+ (Le ⊗ I)w, (10)

˙̄r = (I⊗H) r̄ + [I⊗ (HRr −RrA)] x̄,

where �
x̄
r̄

�
=

�
I⊗ [Inx

, 0nx×nr
]

I⊗ [0nr×nx
, Inr

]

�
s̄.

Thus, the boundedness of se(t) is equivalent to that of x̄(t)
and r̄(t), which will be proved next.

Construct a candidate Lyapunov function as

V (t) = x̄T(t)
�
I⊗ P−1

�
x̄(t) + r̄T(t) (I⊗ εM) r̄(t)

+
NX
i=1

NX
j=1,j 6=i

aij
2αij

(cij(t)− c̄)2
,

where c̄ and ε are positive constants to be determined, P is
the symmetric, positive definite matrix satisfying (9) and M
is any symmetric, positive definite matrix satisfying MH +
HTM < 0 (since H is Hurwitz, this is possible). Taking
the derivative of V (t) along the solution of x̄(t) in (10) and
cij(t) in (3) gives rise to

V̇ = 2x̄T
�
I⊗ P−1

�
˙̄x+ 2r̄T(t) (I⊗ εM) ˙̄r(t)

+
NX
i=1

NX
j=1,j 6=i

aij
αij

(cij − c̄) ċij

= 2x̄T
�
I⊗ P−1

�
×
¦�

I⊗A− (C ◦ L)⊗ PCT
y Cy

�
x̄+ (Le ⊗ I)w

©
+ 2r̄T (I⊗ εM) {(I⊗H) r̄ + [I⊗ (HRr −RrA)] x̄}

+
NX
i=1

NX
j=1,j 6=i

aij (cij − c̄) (ỹij + CyBr r̃ij)
T

× (ỹij + CyBr r̃ij)−
NX
i=1

NX
j=1,j 6=i

aij (cij − c̄)φijcij .



One can verify

ỹij + CyBr r̃ij

= Cy
�
I Br

�
(si − sj)

= Cy
�
I Br

�
(sei − sej)

= Cy
�
I Br

�
T−1 (s̄i − s̄j)

= Cy
�
I 0

�
(s̄i − s̄j) = Cy (x̄i − x̄j) .

Moreover, it is easy to see that cij(t) = cji(t) for all t ≥ 0.
Thus, it follows that

NX
i=1

NX
j=1,j 6=i

aij (cij − c̄) (ỹij + CyBr r̃ij)
T

(ỹij + CyBr r̃ij)

=
NX
i=1

NX
j=1,j 6=i

aij (cij − c̄) (x̄i − x̄j)T
CT
y Cy (x̄i − x̄j)

= 2
NX
i=1

NX
j=1,j 6=i

aij (cij − c̄) x̄T
i C

T
y Cy (x̄i − x̄j)

= 2x̄T
�
(C ◦ L − c̄L)⊗ CT

y Cy
�
x̄. (11)

Since λmax (Le) = 1 can be directly obtained from the defi-
nition of Le, for any positive scalar θ, we have

2x̄T
�
I⊗ P−1

�
(Le ⊗ I)w

≤ θx̄T
�
Le ⊗ P−1

�
x̄+ θ−1wT

�
Le ⊗ P−1

�
w

≤ θx̄T
�
I⊗ P−1

�
x̄+ θ−1λmax

�
P−1

�
wTw

= θx̄T
�
I⊗ P−1

�
x̄+ θ−1λ−1

min (P )
NX
i=1

w̄2
i . (12)

Since
�
1T ⊗ I

�
(I⊗ Cy) x̄ =

�
1TLe ⊗ Cy[I, 0]T

�
s = 0,

by using [25, Lemma 1], it follows that

x̄T
�
L ⊗ CT

y Cy
�
x̄ ≥ λ2(L)x̄T

�
I⊗ CT

y Cy
�
x̄. (13)

In addition, one can also verify

− (cij − c̄) cij = − (cij − c̄)2 − (cij − c̄) c̄

≤ − (cij − c̄)2
+

1

2
(cij − c̄)2

+
1

2
c̄2

= −1

2
(cij − c̄)2

+
1

2
c̄2. (14)

By using the equations (11)–(14) and introducing a positive
scalar δ, V̇ can be computed as

V̇ = −δV + δV + 2x̄T
�
I⊗ P−1A− (C ◦ L)⊗ CT

y Cy
�
x̄

+ θx̄T
�
I⊗ P−1

�
x̄+ θ−1λ−1

min (P )
NX
i=1

w̄2
i

+ 2r̄T (I⊗ εMH) r̄ + 2r̄T [I⊗ ε (MHRr −MRrA)] x̄

+ 2x̄T
�
(C ◦ L − c̄L)⊗ CT

y Cy
�
x̄

− 1

2

NX
i=1

NX
j=1,j 6=i

aijφij (cij − c̄)2
+

1

2

NX
i=1

NX
j=1,j 6=i

aijφij c̄
2

≤ −δV +

�
x̄
r̄

�T �
I⊗ Φ11 I⊗ εΦT

21

I⊗ εΦ21 I⊗ εΦ22

� �
x̄
r̄

�

− 1

2

NX
i=1

NX
j=1,j 6=i

aij

�
φij −

δ

αij

�
(cij − c̄)2

+ θ−1λ−1
min (P )

NX
i=1

w̄2
i +

1

2

NX
i=1

NX
j=1,j 6=i

aijφij c̄
2.

where

Φ11 , P−1A+ATP−1 + (θ + δ)P−1 − 2c̄λ2(L)CT
y Cy,

Φ21 ,MHRr −MRrA,

Φ22 ,MH +HTM + δM. (15)

For the above inequality about V̇ , firstly δ can be chosen
such that 0 < δ ≤ αijφij for i, j = 1, . . . , N , which implies
φij − δ

αij
≥ 0. Secondly, the Riccati equation (9) implies

P−1A + ATP−1 − CT
y Cy = −P−1QP−1 < 0. Thus, for

any c̄ ≥ 1
2λ2(L) , one can take sufficiently small θ > 0 and

δ > 0 such that Φ11 ≤ P−1A + ATP−1 + (θ + δ)P−1 −
CT
y Cy < 0. Thirdly, it follows from MH + HTM < 0

that Φ22 < 0 for some sufficiently small δ. Consequently,
there always exist positive, sufficiently small scalars θ and δ
and scalar c̄ ≥ λ2(L)

2 such that φij − δ
αij
≥ 0, Φ11 < 0 and

Φ22 < 0. Moreover, with ε taken sufficiently small, it is easy

to see that
�

I⊗ Φ11 I⊗ εΦT
21

I⊗ εΦ21 I⊗ εΦ22

�
< 0 still holds. With

these facts in mind, we conclude that it is always possible to
find some proper scalars θ, δ, c̄ and ε such that V̇ ≤ −δV +
V̄ , where V̄ is a positive constant defined as

V̄ , θ−1λ−1
min (P )

NX
i=1

w̄2
i +

1

2

NX
i=1

NX
j=1,j 6=i

aijφij c̄
2 (16)

By the Comparison Lemma ([26, Lemma 3.4]), we obtain

V (t) ≤ e−δtV (0)+V̄
1

δ

�
1− e−δt

�
= e−δt

�
V (0)− V̄

δ

�
+
V̄

δ
,

which implies that x̄, r̄ and cij will exponentially converge
to the domain D̄ = {x̄, r̄, cij |0 < V ≤ V̄

δ }. Consequently,
x̄, r̄ and cij are uniformly ultimately bounded and so is the
consensus error se. The proof is completed.

Theorem 1 reveals that the proposed distributed adaptive
output-feedback protocol (2) always solves the bounded con-
sensus problem, provided that the protocol gains are properly
designed. The following corollary is a straightforward result
that can be obtained from the proof of Theorem 1.

Corollary 1 Consider the MAS (1) and the protocol (2), and
suppose that bounded consensus is affirmed by Theorem 1.
Then the consensus error se(t) and the adaptive gains cij(t),
i, j = 1, . . . , N , exponentially converge to the domain

De ,
�
se, cij |0 < Ve ≤

V̄

δ

�
,

where V̄ is defined in (16),

Ve , sT
e

�
I⊗

�
P−1 + εRT

rMRr P−1Br
BT
r P
−1 BT

r P
−1Br

��
se



+
NX
i=1

NX
j=1,j 6=i

aij
2αij

(cij − c̄)2
,

and positive scalars δ, ε, θ and c̄ are such that
8><
>:

0 < δ ≤ αijφij ,
c̄ ≥ 1

2λ2(L) ,�
Φ11 εΦT

21

εΦ21 εΦ22

�
< 0,

with matrices Φ11, Φ21 and Φ22 defined in (15).

Proof. The proof is straightforward by following that of
Theorem 1. Note that Ve(t) = V (t) is implied by x̄ =
(I⊗ [I, 0]) s̄, r̄ = (I⊗ [0, I]) s̄ and s̄ = (I⊗ T ) se.

Remark 1 According to Theorem 7, the proposed adaptive
output-feedback protocol (2) solves the bounded consensus
problem if the protocol gains satisfy (7)–(9). It is well-
known that the Riccati equation (9) is feasible if the ma-
trix pair (A,Cy) is detectable as assumed here. The only
question regarding the existence of desired protocol gains
is the feasibility of the conditions in (7), RrBr = I and
BuRu + BrRr = I. It is in general challenging to answer,
because the protocol (2) is a kind of fixed-order controllers
which are known to be inherently difficult to design. For-
tunately, with the proposed characterization as in (2), this
question can be answered at least for two special, but gen-
eral enough cases. First, if the controller order is identical
to that of agents, that is, nr = nx, it is easy to see that
Br = −I, Rr = −I and Ru = 0 satisfy these specifica-
tions. As such, we have H = A + BuG, and since the pair
(A,Bu) is stabilizable, finding a matrix G such that H is
Hurwitz is feasible and tractable. Second, by following the
results in [16], it is also tractable to find protocol gains with
nr = nx − nu that satisfy the specifications, only requiring
the pair (A,Bu) is stabilizable. In view of the well-known
results in [10, 11, 15], the protocol (2) is of the full-order
kind for the first case and of the reduced-order kind for the
second case, respectively.

Remark 2 When no disturbance is considered, one can set
φij = 0. Then the protocol (2) of the full-order kind (see Re-
mark 1) reduces to the one in [22]. Thus, for this case, exact
consensus can be reached. Bounded leader-follower consen-
sus with the leader of possibly nonzero input is also studied
in [22], while we investigate bounded leaderless consensus
with external disturbances. Thus, the results in [22] cannot
be directly applied to the problem in this paper.

Remark 3 Bounded consensus of linear MASs is also ad-
dressed in [21], but the corresponding protocol is of the
state-feedback class. In this paper, we consider the design
of output-feedback protocols, which are more practical than
state-feedback ones. Especially, as aforementioned, our re-
sults can deal with both full- and reduced-order protocols.
Moreover, note that the existence condition, [21, Theorem
12], requires to solve AQ + QAT + εQ − 2BuB

T
u < 0

with ε > 1 for some Q > 0. Since this inequality is not al-
ways feasible, even when (A,Bu) is stabilizable, the design
method therein cannot always solve the bounded consensus
problem. On the contrary, as pointed out previously, Theo-
rem 1 in this paper always admits some feasible solution for
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  1 

  5 

  4   6 

  7 

  8 

Fig. 1: The undirected communication graph used in the ex-
ample

nr = nx − nu or nr = nx. Thus, the proposed method is
advantageous over the one in [21, Theorem 12].

Next, a numerical example is presented to demonstrate the
effectiveness of the proposed design method.

Example 1 The considered MAS consists of 8 agents which
are connected according to the undirected graph shown in
Fig. 1 and satisfy the system description in (1) with

A =

�
0 0.2
−0.2 0

�
, Bu =

�
1
0

�
, Cy =

�
1 0

�
.

The edge weights of the graph are all 1. By the design
method in [16], we can obtain the following protocol gains
that satisfy the specifications in Theorem 1:

H = −0.6325, Br =

�
3.1623

1

�
, G = 2.2,

Fu = 6.0428, Fr = −2.9686.

Fig. 2 displays the simulation results of the example with
the designed reduced-order adaptive output-feedback proto-
col, where the disturbances wi are some sine or cosine sig-
nals (which are not presented for saving space). It is easy
to found that the consensus state errors of the agents and
the adaptive gains cij are bounded. Note that the protocol
states (and thus the corresponding errors) are also bounded.
Thus, the effectiveness of the proposed method is obvious.
Moreover, the Lyapunov function Ve(t) clearly converges to
a range with upper bound determined by V̄ /δ = 12.3839.

3 Conclusion

In this paper, we have investigated the bounded consen-
sus problem of linear MASs with external bounded distur-
bances. A novel reduced-order adaptive output-feedback
protocol has been proposed to ensure that the consensus er-
rors and the graph-related gains are bounded. A sufficient
condition has been derived for the existence of desired pro-
tocol gains, which needs to solve some matrices equations.
Compared with the existing adaptive output-feedback pro-
tocols, the proposed method can characterize both reduced-
and full-order adaptive dynamic output-feedback protocols.
Compared with the existing reduced-order protocols, the
proposed protocol makes use of relative output information
between agents in a more straightforward way. Moreover,
the proposed protocol can be designed and implemented in a
fully distributed way. An estimation of the attractive domain
of the consensus errors and the graph-related gains has also
been obtained. The effectiveness of the proposed protocol
has been clearly demonstrated by a numerical example.
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