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Abstract

This thesis studies the dynamic portfolio optimization problem of an investor who seeks to
maximize his expected utility from terminal wealth, trades continuously in time, and whose
portfolio allocation is restricted by constraints. This thesis aims to provide new solution methods
that lead to closed-form characterizations for the optimal terminal wealth and optimal portfolio
process for realistic settings with sophisticated financial market models and constraints that have
previously not been discussed extensively in the existing academic literature. In this spirit, we
developed a dual methodology that provides several equivalent dual optimality conditions which
can be used to solve the portfolio optimization problem under simultaneous constraints on the
investor’s relative portfolio allocation and terminal wealth for general financial market models.
We illustrate the usefulness of this methodology in a Black-Scholes model with convex cone
allocation constraints, pointwise bounds on terminal wealth, and simultaneous Value-at-Risk or
expected shortfall constraints by characterizing the investor’s optimal terminal wealth up to two
deterministic constants. Furthermore, by viewing one of the dual optimality conditions from
a stochastic control perspective, we provide a condition under which the exponentially affine
separability structure of the investor’s value function in stochastic factor models is retained when
allocation constraints are introduced. By verifying this condition in financial market models
with stochastic short rate or stochastic volatility, we can ensure that the optimal constrained
portfolio process remains deterministic and can be determined by solving an associated Riccati
differential equation. We verify this condition and derive a closed-form solution for the optimal
allocation-constrained portfolio in Heston’s stochastic volatility model and make a surprising
observation: The optimal constrained portfolio in a Heston market is not always equal to the
‘näıve’ capped portfolio, which caps off the optimal unconstrained portfolio at the boundaries
of the constraints. Thus, our results suggest that allocation constraints have a fundamentally
different impact on the optimal portfolio in financial markets with stochastic volatility compared
to markets with constant volatility. In extensive numerical experiments, we demonstrate that
following the näıve capped portfolio causes high annual wealth-equivalent losses for risk-averse
investors in volatile markets, which can be experienced during a financial crisis.
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1 Introduction

1.1 Motivation & Objective

Expected utility theory has been widely used within the realm of decision theory to determine
and discuss how people should behave in uncertain environments. As such, it has been widely
applied in mathematical finance and in particular in the context of dynamic portfolio optim-
ization. Such applications can be roughly divided by their underlying model for the financial
market into discrete time (see e.g. [68] and [79]) and continuous time (see e.g. [64], [65]).
While discrete time models can in principle perfectly reflect how prices of exchange-traded as-
sets change (after all, physical limitations ensure that order routing and processing at exchanges
occur in discrete time), they lack analytical tractability and closed-form solutions for all but
the most simple return distributions. For this reason, the analysis of sophisticated and realistic
discrete time models may require complex or computation heavy numerical schemes. In con-
trast, applications of continuous time models yield tractable closed-form solutions in a variety
of contexts and are widely employed in the mathematical finance literature and in the financial
industry, despite the fact that they require the heuristic assumption of continuous trading.
In this spirit, this thesis considers several variations of a dynamic portfolio optimization prob-
lem for an investor who aims to maximize his expected utility and trades continuously in time.
As suggested by the thesis title, we additionally consider an aspect which extremely relevant
for investors trading in the financial markets: constraints, especially allocation constraints.
In most practical applications investors need to abide by allocation constraints either due to
regulatory requirements or due to client preferences. [85] and [49] first presented a duality
approach for portfolio optimization problems with constraints on short-selling and trading of
individual assets. Their duality approach was later generalized for general convex allocation
constraints in [17], who derived a dual optimal control problem which seeks the least favor-
able market coefficients among a suitable set of ‘dual’ stochastic processes. For CRRA-utility
functions, [17] determined the optimal constrained portfolio process in closed-form up to a de-
terministic minimizer of a real convex optimization problem. [89] considered a similar setting
in a one-dimensional Black Scholes market, but did not employ any duality techniques. Rather,
the author characterized the value function as the unique viscosity solution of the associated
HJB PDE and gave a semi-explicit expression of the optimal portfolio allocation in terms of the
value function. From both [17] and [89], one can easily see that the optimal constrained portfo-
lio allocation for an investor with a CRRA utility function in the Black-Scholes model is equal
to the unconstrained optimal solution if the constraints are satisfied, and is otherwise capped
at the boundary of the constraint. Ever since, allocation constraints have been integrated into
portfolio optimization problems in a myriad of ways (see e.g. [16], [71], [60], [66], [6], [70], [23]
and [24]). However, only in rare cases were closed-form formulae or solution methods presented
which do not require extensive Monte-Carlo simulation. The most notable exceptions to this
observation are financial market models and utility functions which result in a myopic optimal
portfolio process. This includes the logarithmic utility function for general diffusion models as
well as the power utility function for stochastic factor models where the stochastic factor only
describes systematic risk (of which the Black-Scholes model is a special case), see [17] and [71].
In other cases, solution to the allocation constrained portfolio optimization problem need to be
estimated by sophisticated numerical schemes (e.g. [19], [92]).
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1 Introduction

Even though the continuous time dynamic portfolio optimization problem under allocation
constraints has been extensively studied in the existing literature, we make the argument that
there is a lack of tractable closed-form solutions for many realistic settings and therefore, the
main upside of continuous time over discrete time financial market models is hardly utilized in
the existing literature. Hence, the objective of this thesis is to extend the existing literature on
constrained portfolio optimization and provide new methodologies which yield new closed-form
solutions to existing problems or provide otherwise new insights about them. Specifically, we

• extend the auxiliary framework of [17] to include simultaneous constraints on relative
portfolio allocation and terminal wealth (Chapter 3),

• develop a novel solution approach for allocation constrained portfolio optimization prob-
lems in incomplete financial markets with market dynamics influenced by an external
stochastic factor (Chapter 4),

• and apply the aforementioned approach to derive closed form solution formulae for the
optimal portfolio in Heston’s stochastic volatility model (Chapter 5).

1.2 Structure of the Thesis

The structure of this thesis is as follows: In Chapter 2 we begin by collecting a selection of
useful results from different fields. As this thesis focusses on portfolio optimization problems
with (allocation) constraints, we pay special attention to convex duality theory and some of its
applications to constrained optimization in Section 2.1. Moreover, we formally define the over-
arching setting of this thesis and give an overview of two classic methods for (unconstrained)
portfolio optimization in continuous time: The martingale method and the stochastic control
approach.
In Chapter 3, we consider a portfolio optimization problem with simultaneous constraints on
portfolio allocation and terminal wealth. We propose a generalized martingale method which is
applicable under the presence of constraints on terminal wealth in complete financial markets.
Afterwards, we proceed to integrate this methodology into the auxiliary market framework of
[17] and derive a set of equivalent dual optimality conditions for portfolio optimization prob-
lems with simultaneous constraints on portfolio allocation and terminal wealth. The optimality
conditions correspond to different duality approaches generated by the allocation constraints
or the wealth constraints. If the allocation constraints are a convex cone and risky asset prices
follow a geometric Brownian motion, then we can derive closed-form expressions for the optimal
terminal wealth as a function of an adjusted pricing kernel and a deterministic Lagrange mul-
tiplier. This is demonstrated for constraints on Value-at-Risk and expected shortfall.
In Chapter 4, we study a portfolio optimization problem in an incomplete financial market
where the risky asset dynamics depend on stochastic factors and the relative portfolio alloc-
ation is constrained to lie within a given convex set. We employ fundamental duality results
from real constrained optimization to formally derive a dual representation of the associated
HJB PDE. Using this representation, we provide a condition on the market dynamics and the
allocation constraints, which ensures that the solution to the HJB PDE is exponentially affine
and separable. This condition is used to derive an explicit expression for the optimal allocation-
constrained portfolio up to a deterministic minimizer and the solution to a system of Riccati
ODEs in a market with CIR volatility and in a market with multi-factor OU short rate.
In Chapter 5, we specifically consider a portfolio optimization problem with convex constraints
in Heston’s stochastic volatility model. Naturally, this setting is a special case of Chapter 5 and
we may thus apply the previously developed duality methods developed to obtain a closed-form
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1 Introduction

expression for the optimal portfolio allocation. In doing so, we observe that allocation con-
straints impact the optimal constrained portfolio allocation in a fundamentally different way in
Heston’s stochastic volatility model than in the Black Scholes model. In particular, the optimal
constrained portfolio may be different from the naive ‘capped’ portfolio, which caps off the
optimal unconstrained portfolio at the boundaries of the constraints. Despite this difference,
we illustrate by way of a numerical analysis that in most realistic scenarios the capped portfolio
leads to slim annual wealth equivalent losses compared to the optimal constrained portfolio.
During a financial crisis, however, a capped solution might lead to compelling annual wealth
equivalent losses.
Chapter 6 summarizes the main findings of this thesis and gives an outlook on potential future
research.
All detailed mathematical derivations and proofs have been moved to Appendix A to improve
readability.

1.3 Contributions

This thesis is based on and parts of it have been quoted verbatim from the following research
articles:

Chapter 3:

[34] Marcos Escobar-Anel, Michel Kschonnek and Rudi Zagst. ‘Portfolio Optimization: Not
Necessarily Concave Utility and Constraints on Wealth and Allocation’. In: Mathematical
Methods of Operations Research 95 (2022), pp. 101–140.

Chapter 4:

[33] Marcos Escobar-Anel, Michel Kschonnek and Rudi Zagst. ‘Portfolio Optimization with Al-
location Constraints and Stochastic Factor Market Dynamics’. 2023. arXiv: 2303.09835
[q.fin.PM]

Chapter 5:

[32] Marcos Escobar-Anel, Michel Kschonnek and Rudi Zagst. ‘Mind the Cap! – Constrained
Portfolio Optimisation in Heston’s Stochastic Volatility Model’. 2023. arXiv: 2306.11158
[q.fin.PM]

As part of the elite doctoral program ‘TopMath’, an earlier version of [34] has been accredited
as M.Sc. thesis of the author of this thesis. However, the inclusion of expected value constraints
and the discussion of the associated dual optimization problems in Chapter 3 constitute an
innovation which has not been published as part of [34].
Further, the author of this thesis has co-authored the following publications, which are not part
of this thesis:

[35] Marcos Escobar-Anel, Yevhen Havrylenko, Michel Kschonnek and Rudi Zagst. ‘Decrease
of capital guarantees in life insurance products: Can reinsurance stop it?’. In: Insurance:
Mathematics and Economics 105 (2022), pp. 14–40.

[58] Michel Kschonnek, Iryna Dobrovolska, Ulrike Protzer and Rudi Zagst. ‘COVIX–An Index
Allowing for the Assessment of the Pandemic Situation Based on Infections and Hospit-
alisation Data’. In: Applied Sciences 13.7 (2023).
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2 Mathematical Preliminaries

2.1 Convex Analysis

2.1.1 Basic Notions from Convex Analysis

The majority of concepts and results presented in this section can be found in [76] and [29].
Throughout this section we consider a general vector space V over R with a scalar product
⟨·, ·⟩ : V × V → R and induced norm ∥ · ∥ : V → R. Note that all results that hold for
V also hold for its natural extension with the real line VR := V × R and the scalar product
⟨·, ·⟩R : V 2

R
→ R, ⟨(x, α), (y, β)⟩R = ⟨x, y⟩ + αβ. An easy illustrating example would be Rd

for some d ∈ N with the standard scalar product ⟨x, y⟩ = x′y and the Euclidean distance
∥x∥ =

√
x′x as norm. Further, we define the extended real numbers as R̄ := R ∪ {∞,−∞}.

Definition 2.1.1 (Convex Sets). A set K ⊂ V is called convex if for all x, y ∈ K every point
on the line segment connecting x and y is again in K, i.e., ∀λ ∈ (0, 1) we have

λx+ (1 − λ)y ∈ K.

The convex hull co K of a set K ⊂ V is the smallest convex set containing K, i.e.,

co K =
⋂

M convex
K⊂M

M.

Definition 2.1.2 (Open and Closed Sets). A set K ⊂ V is open, if for all x ∈ K, there exists
ϵ > 0 such that

∥x− y∥ ≤ ϵ ⇒ y ∈ K, ∀y ∈ V.

A set K ⊂ V is closed, if its complement V \K is open.

The closure cl K of a set K ⊂ V is the smallest closed set containing K, i.e.,

cl K =
⋂

M closed
K⊂M

M.

Clearly, any K ⊂ V is closed if and only if cl K = K. Similarly, K is convex if and only
if co K = K. Moreover, if K is indeed closed and convex, then there exists a more concise
characterization of K in terms of closed half spaces.

Definition 2.1.3 (Closed Half Space). For given (y, β) ∈ VR, the set

H(y, β) =
{
x ∈ V

∣∣ ⟨x, y⟩ ≤ β
}

is called a closed half space.

13



2 Mathematical Preliminaries

Lemma 2.1.4 (Closed Convex Hull as Intersection of Half Spaces). Let K ⊂ V be arbitrary.
Then,

cl co K =
⋂

K⊂H(y,β)
(y,β)∈VR

H(y, β).

In particular, K is closed and convex (closed convex) if and only if

K =
⋂

K⊂H(y,β)
(y,β)∈VR

H(y, β).

Since we will at a later point almost exclusively be considering concave optimization problems
(maximization) instead of convex optimization problems (minimization) we introduce the fol-
lowing classic tools for the analysis of concave and convex functions (epigraphs, hypographs,
conjugates, etc.) for concave functions only.

Definition 2.1.5 (Domain in Concave Sense and Hypograph). For a function f : V → R̄, we
define its effective domain domf ⊂ V and its hypograph Hf ⊂ VR as

domf =
{
x ∈ V

∣∣ f(x) > −∞
}

Hf =
{

(x, α) ∈ VR
∣∣ f(x) ≥ α

}
.

Geometrically, one may think of the hypograph of a function f as the closure of the area below
the graph of a function f . It is easy to see that the hypograph of an affine function h : V → R

defines a half space in VR. Note that the hypograph characterizes a function uniquely and every
function f : V → R̄ can be reconstructed from its hypograph. We frequently switch between
the classic representation of a function f and the representation of a function f through its
hypograph. More precisely, given a hypograph Hf ⊂ VR, we can recover f by setting

f(x) := sup
{
α
∣∣ (x, α) ∈ Hf

}
,

where we make use of the convention sup ∅ = −∞ and supR = ∞.

Definition 2.1.6 (Convex & Concave Functions). A function f : V → R̄ is concave if its
hypograph Hf is convex. If additionally there exists an x̂ ∈ V such that f(x̂) > −∞ and
f(x) <∞ ∀x ∈ V , then f is called a proper concave function.
If −f is concave, then f is called a convex function.

Remark 2.1.7. Analogously to Definition 2.1.6, we also refer to non-concave functions f :
V → R̄ as proper if f(x) <∞ for all x ∈ V and f(x̂) > −∞ for some x̂ ∈ V .

14
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x∈ V

f(
x
)
∈ℝ̄

Hf

(a)

x∈ V

f(
x
)
∈ℝ̄

Hf

(b)

Figure 2.1: Illustration of the hypograph Hf for a function f which is concave (Figure 2.1(a))
and non-concave (Figure 2.1(b)).

Definition 2.1.6 is slightly more abstract than usual, but has the advantage that we can classify
functions taking values only in {−∞,∞} as concave (or non-concave) without encountering the
undefined operations −∞ + ∞ or ∞−∞. If we restrict ourselves to functions f : V → R̄ with
f(x) <∞ ∀x ∈ V , then we recover the usual definition of concavity.

Lemma 2.1.8. Consider a proper function f : V → R̄. Then, f is concave if and only if it
satisfies

f(λx+ (1 − λ)y) ≥ λf(x) + (1 − λ)f(y) ∀x, y ∈ V, λ ∈ (0, 1). (2.1)

Definition 2.1.9 (Usc Functions). A function f : V → R̄ is upper semi-continuous (‘usc’) if

for any α ∈ R, Mf (α) =
{
x ∈ V | f(x) ≥ α

}
is closed in V . (2.2)

An equivalent characterization is

lim sup
x′→x

f(x′) ≤ f(x) ∀x ∈ V. (2.3)

Analogous to the convex hull co K and closure cl K of a set K ⊂ V , we may define similar
notions for functions f : V → R̄.

Definition 2.1.10 (Concave Hull, Usc Hull and Closure). Consider a function f : V → R̄.

(i) The concave hull co f : V → R̄ is the smallest concave function greater or equal than f .

(ii) The usc hull usc f : V → R̄ is the smallest usc function greater or equal than f .

(iii) The closure cl f : V → R̄ is defined as

cl f(x) =

{
usc f(x), ∀x ∈ V, if usc f(x) <∞ ∀x ∈ V

∞, ∀x ∈ V, if usc f(x) = ∞ for some x ∈ V

If usc f (resp. usc co f) is proper, then cl f ≡ usc f (resp. cl co f ≡ usc co f). This technical
construction allows us to characterize usc co f by the closed convex hull of its hypograph and
cl co f as the minimum of affine functions h larger or equal than f. This illustrates the strong
link between the concave hull, usc hull and closure of a function f and the convex hull and
closure of its hypograph Hf .
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2 Mathematical Preliminaries

Lemma 2.1.11. Consider a proper function f : V → R̄. Then the following holds:

(i) f is usc if and only if Hf is closed in VR

(ii) cl Hf = Husc f

(iii) co Hf = Hco f

(iv) Husc co f = cl co Hf =
(
cl co domf ×R

)
∩
( ⋂

h:V→R affine
f≤h

Hh

)

(v) cl co f(x) = inf
z∈V

(
sup
x̂∈V

(
f(x̂) − ⟨z, x̂⟩

)
+ ⟨z, x⟩

)
Especially statement (iv) and (v) of Lemma 2.1.11 and their proof are quite remarkable. Not
only is illustrated that it is equivalent to compute the usc hull and concave hull usc co f of
a function f directly or computing the closure of the concave hull cl co Hf of Hf and deriv-
ing usc co f from it, but it connects these two equivalent operations to a min-max-problem for f .

The final statements of Lemma 2.1.11 motivate the definition of the (concave) conjugate and
bi-conjugate of a given function f : V → R̄:

Definition 2.1.12 (Concave Conjugate). Consider a function f : V → R̄. We define the
conjugate f∗ : V → R̄ and the bi-conjugate f∗∗ : V → R̄ as

• f∗(y) = sup
x∈V

(
f(x) − ⟨y, x⟩

)
for y ∈ V

• f∗∗(x) = inf
y∈V

(
⟨y, x⟩ + f∗(y)

)
for x ∈ V .

Going back to the proof of Lemma 2.1.11 (iv), for a given slope z ∈ V , the conjugate f∗(z) can
be identified as the minimal intercept βz such that the affine function hz : V → R, hz(x) =
βz + ⟨x, z⟩ is larger or equal than f , i.e., such that the hypograph Hh is contained in the half
space Hhz . Finding zx such that hzx(x) ≥ f(x) is minimized, we take the bi-conjugate f∗∗(x)
of f . This is in turn equivalent to taking the intersection of all half spaces Hhz , which contain
Hf .

Remark 2.1.13. Let x ∈ V be arbitrary but fixed. Then, so-called ”weak duality” holds, i.e.,

f∗∗(x) = inf
y∈V

(
⟨y, x⟩ + f∗(y)︸ ︷︷ ︸

≥f(x)−⟨y,x⟩

)
≥ inf

y∈V

(
⟨y, x⟩ + f(x) − ⟨y, x⟩

)
= inf

y∈V

(
f(x)

)
= f(x)

Remark 2.1.14. In the convex analysis literature (see e.g. equation (3.25) in [76]) it is cus-
tomary to define the conjugate of a function f : V → R̄ in the concave sense as

f∗(y) = − sup
x∈V

(
f(x) − ⟨y, x⟩

)
) = inf

x∈V

(
⟨y, x⟩ − f(x)

)
.

In contrast to our Definition 2.1.12, this has the satisfying consequence that the bi-conjugate of
f is obtained from taking the conjugate of f∗, i.e., f∗∗ = (f∗)∗.

According to our definition we have the (slightly) less elegant version f∗∗ = −(−f∗)∗. How-
ever, in the mathematical finance literature, in particular in a portfolio optimization context,
Definition 2.1.12 is more prevalent. Since, we are going to apply the above theory in a portfolio
optimization context, we decided to stick to the corresponding convention.
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We summarize some useful properties of the conjugate and bi-conjugate in Lemma 2.1.15:

Lemma 2.1.15. Consider a proper function f : V → R̄. The following holds:

(i) -f∗ and f∗∗ are usc and concave

(ii) f is usc and concave if and only if

f(x) = f∗∗(x) = cl co f(x) ∀x ∈ V.

Example 2.1.16 (Indicator Functions of Convex Sets). Consider a non-empty closed convex
set K ⊂ V and define its indicator function XK : V → R̄ as

XK(x) =

{
0, if x ∈ K

−∞, if x /∈ K.

This indicator function is intentionally chosen differently from the standard indicator function
1K(x), which takes values in {0, 1}, depending on whether x ∈ K or not. Regardless, the above
concept comes in handy, when considering concave optimization problems that are constrained
over convex sets K. The concave conjugate of XK is given as

X ∗
K(y) = sup

x∈V

(
XK(x) − ⟨y, x⟩

)
= sup

x∈K

(
− ⟨y, x⟩

)
= − inf

x∈K

(
⟨y, x⟩

)
=: δK(y).

The function δK is called the support function of K and plays an important role in constrained
concave optimization problems. The domain of δK is the barrier cone

XK = domδK =
{
y ∈ V

∣∣ δK(y) <∞
}
.

The support function δK offers a natural characterization of closed convex sets in a dual sense.
As K is a closed convex set, the indicator function XK is usc and concave. Thus, by Lemma
2.1.15, we have XK = X ∗∗

K . This yields

x ∈ K ⇔ XK(x) ≥ 0

⇔ X ∗∗
K (x) ≥ 0

⇔ inf
y∈V

(
δK(y) + ⟨x, y⟩

)
≥ 0

⇔ δK(y) + ⟨x, y⟩ ≥ 0 ∀y ∈ V

⇔ δK(y) + ⟨x, y⟩ ≥ 0 ∀y ∈ XK (2.4)

Due to its significance for the remainder of the thesis, we summarize the key properties of the
support function δK below.

Lemma 2.1.17. Let K ⊂ V be a non-empty closed, convex set. Then,

(i) δK is positive homogeneous of order 1:

δK(αy) = αδK(y) ∀α ≥ 0, ∀y ∈ V.

(ii) δK is sub-additive:

δK(y1 + y2) ≤ δK(y1) + δK(y2) ∀y1, y2 ∈ V.

(iii)

x ∈ K ⇔ 0 ≤ δK(y) + ⟨x, y⟩ ∀y ∈ XK

⇔ 0 ≤ δK(y) + ⟨x, y⟩ ∀y ∈ XK with ⟨y, y⟩ ≤ 1.

(iv) δK(y) = 0 ∀y ∈ XK ⇔ K is a convex cone.
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2.1.2 Concave Optimization

In the following, we consider a proper function f : V → R̄ and the primal optimization problem
(P) of the form

(P)

{
ΦP = sup

x∈V
f(x). (2.5)

The representation (2.5) is sufficiently general so that classic examples of constraints can be
incorporated into this formulation. Similar to a portfolio optimization context, we consider two
different types of constraints:

(i) Constraints explicitly defined on x ∈ V, i.e., we require that x ∈ K for a subset K ⊂ V.

(ii) Constraints implicitly defined through a function g : V → H, i.e., we require that g(x) ∈ K
for a subset K ⊂ H of another vector space H over R.

Assuming we aim to maximize a proper function f : V → R̄ subject to the constraint (i). Then,
we can rewrite this constrained maximization over f as an unconstrained maximization problem
over a suitable function f̃ by considering XK : V → {−∞, 0} as defined in Example 2.1.16 and
defining

sup
x∈K

f(x) = sup
x∈V

(
f(x) + XK(x)︸ ︷︷ ︸

=:f̃(x)

)
= sup

x∈V
f̃(x). (2.6)

Note that XK is usc and concave if and only if K is closed convex. Hence, if f is usc and concave,
f̃ remains usc and concave if K is closed convex. Similarly, if we aim to maximize f subject to
constraint (ii), then we may use the same notation as above, where XK : H → {−∞, 0} now
takes arguments u ∈ H, and write

sup
x∈V, g(x)∈K

f(x) = sup
x∈V

(
f(x) + XK(g(x))︸ ︷︷ ︸

=:f̃(x)

)
= sup

x∈V
f̃(x). (2.7)

Clearly, we could have done the same transformation as in (2.6) by defining the set

K̃ := {x ∈ V | g(x) ∈ K}

and maximizing over x ∈ K̃. However, we will later see that the distinction between (2.6) and
(2.7) can still be useful. Again, f̃ is usc concave if f is usc concave and K̃ is closed convex.

We now follow the framework presented in [76] to define a dual optimization problem (D)
corresponding to the primal optimization problem (P). For this purpose consider another vector
space H over R with scalar product ⟨·, ·⟩ and assume that there exists a function

F : V ×H → R̄, with F (x, ū) = f(x) for some ū ∈ H.

One may think of F as a perturbation of f or as a function, which expresses the dependence
of F on the parameter choice ū ∈ H. Clearly, the choice of F for a given f is not unique, but
can be chosen freely, although there may exist a natural choice for F . Regardless, the following
results hold for any choice of F , but their usefulness is heavily dependent on the specific choice
of F .

Definition 2.1.18. For any u ∈ H, we define the perturbed problem (Pu) as

(Pu)

{
Φ(u) = sup

x∈V
F (x, u). (2.8)
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In particular, we clearly have Φ(ū) = ΦP .

Definition 2.1.19. We define the Lagrangian of F as L : V ×H → R̄ as

L(x, λ) := sup
u∈H

(
F (x, u) − ⟨u, λ⟩

)
+ ⟨ū, λ⟩.

Moreover, we define the dual problem (D) as

(D)

ΨD = inf
λ∈H

G(λ)

G(λ) = sup
x∈V

L(x, λ).
(2.9)

Example 2.1.20. Consider a proper function f : V → R, which we would like to optimize
over the closed convex set K ⊂ V . We may equivalently optimize over the function f̃(x) :=
f(x)+XK(x) instead (as seen in (2.6)). We assume that there exists at least one feasible x ∈ V
with f̃(x) > −∞, i.e., f̃ is proper, too.
Choosing H = V , we define a perturbation function F : V × V → R by setting

F (x, u) = f(x) + XK(x+ u) = f(x) + XK−u(x).

As hinted by the last equality, this can be regarded as a perturbation to the constraint set K
through an affine shift K − u. In particular for ū := 0, we clearly have F (x, ū) = f(x) for
x ∈ K. For fixed (x, λ) ∈ V 2, the Lagrangian L can be calculated as

L(x, λ) = sup
u∈H

(
F (x, u) − ⟨u, λ⟩

)
+ ⟨ū, λ⟩

= sup
u∈V

(
f(x) + XK(x+ u) − ⟨u, λ⟩

)
+ ⟨0, λ⟩︸ ︷︷ ︸

=0

= f(x) + sup
u∈V

(
XK(x+ u) − ⟨u, λ⟩

)
= f(x) + sup

u∈V

(
XK(x+ u︸ ︷︷ ︸

=v∈V

) − ⟨x+ u︸ ︷︷ ︸
=v∈V

, λ⟩ + ⟨x, λ⟩
)

= f(x) + ⟨x, λ⟩ + sup
v∈V

(
XK(v) − ⟨v, λ⟩

)
︸ ︷︷ ︸

X ∗
K(λ)=δK(λ)

= f(x) + ⟨x, λ⟩ + δK(λ).

The objective function G of the dual problem (D) is thus given by

G(λ) = sup
x∈V

f(x) + ⟨x, λ⟩ + δK(λ),

which is the value function of an unconstrained optimization over the objective function f(x) +
⟨x, λ⟩ + δK(λ), where the additional term ⟨x, λ⟩ + δK(λ) is non-negative whenever x ∈ K (see
Lemma 2.1.17). In this sense, this adjusted objective function implicitly rewards x ∈ V which
abide by the constraint x ∈ K. In particular, we have G(λ) ≥ ΦP for all λ ∈ H = V . Corres-
pondingly, the dual problem (D) in this context reads as

(D)

ΨD = inf
λ∈V

G(λ)

G(λ) = sup
x∈V

(
f(x) + ⟨x, λ⟩

)
+ δK(λ),

(2.10)

i.e., the additional reward gained by the removal of the constraint K and the additional term
⟨x, λ⟩ + δK(λ) is minimized.

19



2 Mathematical Preliminaries

Example 2.1.21. Consider functions f : V → R, g : V → H. We would like to maximize f
over all x ∈ V such that g(x) ∈ K, for a closed convex set K ⊂ H. By setting

f̃(x) = f(x) + XK(g(x))

we obtain our usual representation of (P). By defining the perturbed objective function F :
V ×H → R as

F (x, u) = f(x) + XK(g(x) + u),

we obtain the corresponding Lagrangian L (using the same calculations as in Example 2.1.20)
as

L(x, λ) = f(x) + ⟨g(x), λ⟩ + δK(λ).

It is important to note that in this particular example it is possible that H ̸= V and hence λ ∈ H
may be of an entirely different form than x ∈ V . The dual optimization problem (D) is thus
defined as

(D)

ΨD = inf
λ∈H

G(λ)

G(λ) = sup
x∈V

(
f(x) + ⟨g(x), λ⟩

)
+ δK(λ).

(2.11)

Lemma 2.1.22. The Lagrangian L : V ×H → R̄ has the following properties:

(i) If F (x, ·) : H → R̄ is proper for a given x ∈ V , then −L(x, ·) : H → R̄ is usc and concave

(ii) If F (x, ·) : H → R̄ is proper, usc and concave for a given x ∈ V , then

inf
λ∈H

L(x, λ) = F (x, ū) = f(x)

(iii) If F (x, ·) : H → R̄ is proper, usc and concave ∀x ∈ V , then the primal problem (P) can
equivalently be written as

(P)

{
ΦP = sup

x∈V
inf
λ∈H

L(x, λ) (2.12)

Theorem 2.1.23. The following duality relation holds between the optimization problems (P)
and (D):

Φ(ū) = sup
x∈V

f(x) = ΦP ≤ ΨD = inf
λ∈H

sup
x∈V

L(x, λ) = cl co Φ(ū).

By virtue of Theorem 2.1.23, we have successfully derived a duality representation between (P)
and (D). The optimal value of both optimization problems coincides if and only if the concave
closure of Φ coincides with Φ at the parameter choice u = ū, i.e.,

ΦP = ΨD ⇔ Φ(ū) = cl co Φ(ū).

The difference ΨD − ΦP is also referred to as duality gap. If ΦP = ΨD, we say the duality gap
is zero. If the dependence of F on the perturbation (or parameter) u is u.s.c and concave, then
according to (iii) in Lemma 2.1.22, we view (P) as a max-min problem and (D) as a min-max
problem over the same Lagrangian L. When both (P) and (D) obtain the optimal value at an
(x∗, λ∗) ∈ V ×H, we call (x∗, λ∗) a saddle-point.
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Definition 2.1.24. (x∗, λ∗) ∈ V ×H is called a saddle-point of L, if

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) ∀(x, λ) ∈ V ×H.

Remark 2.1.25. In the current abstract context, when (x∗, λ∗) ∈ V ×H is a saddle-point we
also say that (x∗, λ∗) satisfies the so-called Karush-Kuhn-Tucker condition (‘KKT condition’).

Corollary 2.1.26. If (x∗, λ∗) ∈ V ×H is a saddle-point of L, then λ∗ is optimal for the dual
optimization problem (D).
If additionally F (x∗, ·) is proper, usc and concave in u, then x∗ is optimal for the primal
optimization problem (P).

In summary, we obtain the following equivalent statements:

Theorem 2.1.27. Let F (x∗, ·) be proper, usc and concave in u for a specific x∗ ∈ V . Consider
the following statements:

(i) ΦP = ΨD

(ii) Φ(ū) = cl co Φ(ū)

(iii) x∗ is optimal for (P), λ∗ is optimal for (D) and ΦP = ΨD

(iv) (x∗, λ∗) is a saddle-point of the Lagrangian L.

Then, (i) ⇔ (ii) and (iii)⇔ (iv).

Theorem 2.1.27 does not provide direct properties of F , which ensure that either of the state-
ments (i) − (iv) are satisfied. However, it is possible to derive several properties for F , which
guarantee that statement (ii) in Theorem 2.1.27 is satisfied and therefore the duality gap must
be zero. The so-called Slater’s condition is one prominent example.

Theorem 2.1.28 (Slater’s condition). Assume F is concave jointly in (x, u) and there exists
an x̂ ∈ V such that F (x̂, ·) is bounded below on a neighbourhood of ū. Then, Φ is concave and
continuous (hence usc) at ū. In particular, we then have

Φ(ū) = cl co Φ(ū).

Throughout this thesis, we apply the duality theory developed in this section for two different
applications: constrained optimization over V = H = Rd and constrained optimization over
V = H = L2

Q on some complete probability space (Ω,F , Q). We continue by developing useful
duality results for these applications below.
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Constrained Optimization over Rd: Consider a real-valued usc function f : Rd → R and a
non-empty closed convex set K ⊂ Rd. Then, V = H = Rd and the standard scalar product
⟨x, y⟩ = x′y for x, y ∈ Rd form a Hilbert space on which we can apply the previously developed
duality techniques. Consider the primal optimization problem

(P)

ΦP = sup
x∈Rd

f(x)

s.t. x ∈ K.
(2.13)

This setting is a special case of Example 2.1.20 throughout this Section. In particular, we can
obtain the Lagrangian of (P) directly from Example 2.1.20.

Lemma 2.1.29. Consider (P) as defined in (2.13) and define the associated Lagrangian as
L : Rd ×Rd → R̄ with

L(x, λ) = f(x) + x′λ+ δK(λ).

If (x∗, λ∗) is a saddle point of L, then x∗ is optimal for (P).

Lemma 2.1.29 leads to the following dual optimization problem (D) corresponding to (P) from
(2.13).

(D)

{
ΨD = inf

λ∈Rd

(
sup
x∈Rd

(f(x) + x′λ) + δK(λ)

)
.

Similarly, we can derive the KKT conditions for (P) and (D).

Corollary 2.1.30 (KKT Conditions). Consider (P) as defined in (2.13). (x∗, λ∗) ∈ Rd ×Rd

is a saddle point of L if and only if

(i) x∗ maximizes f(x) + ⟨x, λ∗⟩ + δK(λ∗) over x ∈ Rd,

(ii) (x∗)′λ∗ + δK(λ∗) = 0,

(iii) x∗ ∈ K.

(2.14)

Theorem 2.1.31. Consider (P) as defined in (2.13) and let λ∗ ∈ Rd be optimal for (D). If
there exists a function x∗ : Rd → Rd such that

sup
x∈Rd

L(x, λ) = L(x∗(λ), λ) ∀λ ∈ XK

and x∗(λ)′∆λ is usc at λ = λ∗ for all ∆λ ∈ XK , then (x∗(λ∗), λ∗) satisfies (2.14). In particular,
x∗(λ∗) is optimal for (P) and ΦP = ΨD.

Corollary 2.1.32. Consider (P) as defined in (2.13) and let

f(x) = −x′Ax+ b′x+ c,

for a symmetric positive definite matrix A ∈ Rd×d, b ∈ Rd and c ∈ R. Then, there exists a
unique optimal λ∗ for (D), the requirements of Theorem 2.1.31 are satisfied and in particular

sup
x∈K

f(x) = inf
λ∈Rd

sup
x∈Rd

L(x, λ) = inf
λ∈Rd

(
sup
x∈Rd

(
f(x) + x′λ

)
+ δK(λ)

)
.

22



2 Mathematical Preliminaries

Constrained Optimization over L2
Q: Consider a complete probability space (Ω,F , Q) and let

L2
Q be the space of F-measurable random variables X with E[X2] < ∞. Then, V = L2

Q with
⟨X,Y ⟩ = E[X · Y ] is a Hilbert space on which we can employ the previously developed duality
theory. Further, consider a proper usc function U : R→ R̄, a function g = (g1, ..., gn) : Rn → R̄

such that each gi is usc and proper, and a non-empty closed convex set K ⊂ Rn. Note that
g is allowed to be random, as long as its values are FT -measurable. Then, we define the fully
constrained optimization problem over L2

Q as

(P)

ΦP = sup
D∈L2

Q

E [U(D)]

s.t. E [g(D)] ∈ K.

(2.15)

Lemma 2.1.33. Consider (P) as defined in (2.15). Define the associated Lagrangian L :
L2
Q ×Rn → R̄ as

L(D, y) = E [U(D)] + y′E [g(D)] + δK(y). (2.16)

If (D∗, y∗) is a saddle point of L, then D∗ is optimal for (P).

Lemma 2.1.33 leads to the following dual optimization problem (D) corresponding to (P) from
(2.15).

(D)

ΨD = inf
y∈Rn

 sup
D∈L2

Q

(E [U(D)] + y′E [g(D)]) + δK(y)

 . (2.17)

Definition 2.1.34. In the setting of (P) as defined in (2.15), we define the generalized conjugate
U∗
g and its maximizing argument Ig as

U∗
g : Rn → R̄, U∗

g (y) = sup
x∈R

(
U(x) + y′g(x)

)
(2.18)

Ig : Rn → R̄, Ig(y) = inf
{
x ∈ R

∣∣ U∗
g (y) ≤ U(x) + y′g(x)

}
Lemma 2.1.35. Consider (P) as defined in (2.15) and (D) as in (2.17). Then,

ΨD ≤ inf
y∈Rn

(
E
[
U∗
g (y)

]
+ δK(y)

)
, (2.19)

with equality if the infimum is attained at y∗ ∈ Rn such that Ig(y∗) ∈ L2
Q.

Note that it is not totally unreasonable that the infimum in 2.19 is attained, as U∗
g (y) + δK(y)

is convex in y (see Lemmas 2.1.17 and Lemma 2.1.38). We may use the expression from Lemma
2.1.35 to again derive the KKT conditions for (P), respectively (D).

Corollary 2.1.36 (KKT Conditions). Consider (P) as in (2.15). Let y∗ ∈ Rn be determined
such that Ig(y∗) ∈ L2

Q,

(y∗)′E [g(Ig(y∗))] + δK (y∗) = 0 and E [g(Ig(y∗))] ∈ K. (2.20)

Then, (Ig(y∗), y∗) is a saddle-point of the Lagrangian L. In particular, Ig(y∗) is optimal for
(P), y∗ is optimal for (D) and ΦP = ΨD.
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Moreover, if the maximizing argument Ig satisfies an upper semi-continuity assumption, we can
show that any optimal solution y∗ ∈ Rn to (D) satisfies (2.20). Under this assumption, any
y∗ ∈ Rn which is optimal for (D) directly defines a saddle-point of L and an optimal solution
to (P) as shown in Corollary 2.1.36. Here, the maximizing argument Ig takes the same role as
x∗ in Theorem 2.1.31.

Theorem 2.1.37. Consider (P) as in (2.15) and let y∗ ∈ Rn attain the infimum in (2.19). If
Ig(y∗) ∈ L2

Q and

y → E [g(Ig(y))]′ ∆y

is usc at y = y∗ for all ∆y ∈ XK , then y
∗ satisfies (2.20). In particular, Ig(y∗) is optimal for

(P) and ΦP = ΨD.

We summarize a number of useful properties of the generalized conjugate and its maximizing
argument for use in later chapters.

Lemma 2.1.38. 1

(i) If gi is non-increasing and gi(x) ≤ 0 for all x ∈ domU , then U∗
g (y) and Ig(y) are non-

increasing in yi.

(ii) Define ĝ = (g1, ...., gi−1, ĝi, gi+1, ..., gn)′ for a given function ĝi : R → R̄. If gi, ĝi are
non-increasing, gi(x) ≤ ĝi(x) for all x ∈ domU and yi ≥ 0, then

U∗
g (y) ≤ U∗

ĝ (y) and Ig(y) ≤ Iĝ(y).

(iii) U∗
g is a convex function.

2.2 Ordinary Differential Equations

In this section, selected results from the theory of ordinary differential equations are summar-
ized.

Lemma 2.2.1.

(i) Let f : R→ R be a convex function. Then, for every x0 ∈ R, ϵ > 0, there exists an L > 0
such that if |x− x0| < ϵ, |y − x0| < ϵ, then

|f(x) − f(y)| < L|x− y|.

In particular, f is locally Lipschitz continuous.

(ii) Consider an interval I ⊂ R and let f1, f2 : I → R be Lipschitz continuous on I. Then,
f := min(f1, f2) is Lipschitz continuous on I.

Theorem 2.2.2. Let f : R → R be locally Lipschitz continuous on R and τ0, B0 ∈ R be
constants. Consider the ordinary differential equation

B′(τ) = f(B(τ)), B(τ0) = B0. (2.21)

Then there exists an ϵ > 0 such that the ODE (2.21) has a unique solution B(τ) for τ ∈
(τ0 − ϵ, τ0 + ϵ).
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Lemma 2.2.3. Consider the setting of Theorem 2.2.2 and an open interval I ⊂ R with τ0 ∈ I,
and let B : I → R satisfy ODE (2.21). Then, B is a monotone function in τ. If f(B0) ̸= 0,
then B is strictly monotone in τ. Moreover, if f(B0) = 0, then B is constant in τ.

Lemma 2.2.4. Consider a terminal time point T > 0, real coefficients B0, r0, r1, r2 and the
following Riccati-ODE

B′(τ) = −r0 + r1B(τ) +
1

2
r2B(τ)2, B(0) = B0, (2.22)

where r2 ̸= 0, r21 + 2r0r2 > 0 and define r3 =
√
r21 + 2r0r2.

(i) The function

B(τ) =
2r2r3B0 + (er3τ − 1) (r1 + r3) (r1 + r2B0 − r3)

2r2r3 − r2 (er3τ − 1) (r1 + r2B0 − r3)
(2.23)

is the unique solution of equation (2.22) on its maximal interval [0, t+(B0)) with life-time
t+(B0) > 0. Moreover, for any T ∈ [0, t+(B0)) we have∫ T

0
B(τ)dτ =

2

r2
ln

(
2r3e

r3−B0
2

T

r3 (er3T + 1) − r1 (er3T − 1) − r2 (er3T − 1)B0

)
. (2.24)

(ii) The life time t+(B0) of B (in the sense of Lemma 10.1 in [38]) is given as

t+(B0) =

{
1
r3

ln
(
r1+r2B0+r3
r1+r2B0−r3

)
, if r1 + r2B0 − r3 > 0

∞, if r1 + r2B0 − r3 ≤ 0.

Corollary 2.2.5. Consider the setting of Lemma 2.2.4, let B be as in (2.23) and let B̂ ∈ R be
given.
If

τB̂ :=
1

r3
ln

2r2r3

(
B̂ −B0

)
+ (r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

)
(r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

)
 ≤ t+(B0)

then B(τB̂) = B̂.

2.3 The Continuous-Time Portfolio Optimization Problem

2.3.1 Problem Formulation

Throughout this thesis we consider different variations of a continuous-time portfolio optimiza-
tion problem with finite investment horizon T > 0. The underlying setting assumes a complete,
filtered probability space (Ω,FT ,F = (Ft)t∈[0,T ], Q), where the filtration F is generated by
the independent m-dimensional Wiener process W z = (W z(t))t∈[0,T ] and d-dimensional Wiener

process Ŵ =
(
Ŵ (t)

)
t∈[0,T ]

. The set of all FT -measurable random variables will be denoted by

X and X+ denotes the restriction of X to Q-a.s. non-negative random variables. Moreover, we
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consider an Rm×d-valued stochastic process ρ, which is assumed to be progressively measurable
with respect to the natural filtration of W z and whose columns ρi, i = 1, ..., d satisfy

∥ρi(t, ω)∥ ≤ 1 L[0, T ] ⊗Q− a.e..1

This construction allows us to define another d-dimensional F-Wiener processW = (W1, ...,Wd)′

through the equations

Wi(t) = ρi(t)
′W z(t) +

√
1 − ∥ρi(t)∥2Ŵi(t), i = 1, ..., d.

The Wiener process W is defined in such way that it correlates with W z, since its covariation
with W z satisfies

d⟨W z
i ,Wj⟩t = ρij(t)dt L[0, T ] ⊗Q− a.e..

We employ this setting to define a market model M with d risky assets (e.g. stocks) P =
(P1, ..., Pd)′ and a risk-free asset (e.g. a bank account) P0, which satisfy P0(0) = P1(0) = ... =
Pd(0) = 1 and evolve according to the dynamics

dP (t) = diag (P (t))
(
µ(t)dt+ Σ(t)dW (t)

)
dP0(t) = P0(t)r(t)dt, (2.25)

where we used diag(P (t)) ∈ Rd×d to denote the diagonal matrix with diagonal entries P (t) ∈ Rd.
The volatility matrix is assumed to be L[0, T ] ⊗ Q-a.e. non-singular and thereby has a well-
defined inverse.2 Moreover, the market coefficients, i.e., the risk-free interest rate r, the mean
rate of return µ as well as the volatility matrix Σ and its inverse Σ−1 with columns Σ−1

1 , ...,Σ−1
d ,

are assumed to be progressively measurable processes w.r.t. F such that

sup
t∈[0,T ]

{
max

(
|r(t)|, ∥µ(t)∥2, ∥Σ(t)∥2, ∥Σ(t)−1∥2

)}
<∞ Q-a.s., (2.26)

where ∥ · ∥ denotes the standard Euclidean norm on Rd and its induced matrix norm on Rd×d.
This ensures that the SDEs in (2.25) have well-defined solutions. While the Wiener process W
is the diffusion of the risky asset prices, the market coefficients may depend also on the Wiener
process W z. Unless W and W z are perfectly correlated, this implies that not all randomness in
the financial market M can be hedged by trading in the risk-free and risky assets.

Within the financial market M, we consider a single investor with initial wealth v0 > 0 at time
t = 0, who trades continuously in time. The investor’s wealth process is assumed to satisfy
V v0,π(0) = v0 and the SDE

dV v0,π(t) = V v0,π(t)
(

[r(t) + (µ(t) − r(t)1)′π(t)]dt+ π(t)′Σ(t)dW (t)
)
. (2.27)

The d-dimensional portfolio process π is chosen by the investor and determines the fraction
of wealth πi(t) that is allocated to the risky asset Pi at time t, while the remaining fraction
1 −

∑d
i=1 πi(t) is allocated to the risk-free asset. Note that 1 −

∑d
i=1 πi(t) may be negative, in

which case the investor goes short the risk-free asset, or more intuitively, borrows from the bank
account. To ensure that the investor allocates his wealth solely based on past price developments
and to ensure that (2.27) is well-defined, we restrict the admissible portfolio processes π to

1L[0, T ] denotes the Lebesgue-measure on [0, T ], ω ∈ Ω is used to denote the elements of the sample space Ω
and ∥ · ∥ denotes the standard Euclidean norm.

2For this assumption it is for example sufficient if Σ(t)Σ(t)′ is strongly positive definite L[0, T ]⊗Q−a.e., i.e., if

∥Σ(t)′x∥2 ≥ ξ∥x∥2, ∀x ∈ Rd, L[0, T ]⊗Q− a.e.,

for some constant ξ > 0.
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Λ =

{
π =

(
(π1(t), ..., πd(t))′

)
t∈[0,T ]

progr. measurable
∣∣∣ E [(V v0,π(T ))2

]
<∞,

∫ T

0
∥π(t)∥2 dt <∞ Q− a.s.

} (2.28)

In particular, if π ∈ Λ, then the investor’s terminal wealth has finite variance and it is straight-
forward to show that the unique solution to (2.27) is given by

V v0,π(t) = v0 exp

(∫ t

0
r(s) + (µ(s) − r(s)1)′ π(s) − 1

2

∥∥Σ(s)′π(s)
∥∥2 ds+

∫ t

0
π(s)′Σ(s)dW (s)

)
.

We assume that the investor aims to choose his portfolio process π ∈ Λ to maximise his utility
derived from terminal wealth V v0,π(T ) at time T. Thus, we choose an appropriate class of utility
functions which can capture the investor’s risk preferences in a flexible way. For this purpose we
define the class of utility functions U , which contains all functions U : R→ R∪{∞,−∞} =: R̄
such that

(i) U is proper and usc and domU = [c,∞) for some c ≥ 0

(ii) U is strictly increasing on domU

(iii) U(x) = −∞ ∀x < 0 (2.29)

(iv) lim
x→∞

U(x)

x
= 0.

If U is finite on [0,∞), differentiable and strictly increasing (as in [17]), then (iv) is equivalent to
the condition limx→∞ U ′(x) = 0. We set U(∞) = limx→∞ U(x). It is fairly common to restrict
this analysis to concave utility functions only (‘less risk is preferred to more’), and we will do
so throughout the ensuing chapters when appropriate. However, for a general formulation in
the context of constraints on allocation and terminal wealth, such restrictions may hinder the
exposition. We define the unconstrained portfolio optimization problem for our investor as

(Punc)

{
Φunc(v0) = sup

π∈Λ
E [U (V v0,π(T ))] .

The unconstrained portfolio optimization problem (Punc) plays an important role in this thesis,
as the addition of constraints on portfolio allocation or terminal wealth are a natural general-
ization of (Punc). In particular, any method used to solve a constrained portfolio optimization
problem is to some extent a generalization of a method for solving (Punc). In this thesis we
consider two different definitions of constraints:

(i) Constraints on the portfolio allocation π.

(ii) Constraints on the terminal wealth V v0,π(T ).

Naturally, any constraint on the portfolio allocation automatically induces a constraint on the
terminal wealth and vice versa. However, during this thesis we aim to treat these constraints
as separate, since they are defined in completely different ways. The allocation constraints
considered in this thesis are defined by considering a convex set K ⊂ Rd and requiring that the
investor’s portfolio process π takes values only in K, i.e.,

π(t) ∈ K L[0, T ] ⊗Q-a.e..

Classic examples for such constraints would be K = [0,∞)d (no-shortselling), K = 0d1 ×Rd−d1

for a 1 ≤ d1 ≤ d (non-traded assets) or K =×d
i=1[αi, βi] for some constants αi < βi, i = 1, ..., d
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(interval constraints).
In contrast, terminal wealth constraints are formulated directly as restrictions on the admissible
terminal wealths V v0,π(T ). A specific example would be pointwise bounds B1, B2 ∈ R with the
requirement that

B1 ≤ V v0,π(T ) ≤ B2 Q− a.s.. (2.30)

Such bounds could correspond to a minimum performance guarantee that the investor needs
to fulfil or a maximal performance limit which is supposed to discourage excessive risk-taking.
Alternatively, we consider expected-value constraints for a non-increasing real function g :
(0,∞) → R such that

E [g (V v0,π(T ))] ≤ 0. (2.31)

Letting g(x) = 1[0,BV aR](x) − ϵ we obtain a Value-at-Risk (‘VaR’) constraint with lower bound
BV aR and tolerance level ϵ ≥ 0. Similarly, g(x) = (BES − x)1[0,BES ](x) − ϵ yields an expected
shortfall (‘ES’) constraint with lower bound BES and tolerance level ϵ ≥ 0.
Both types of constraints lead to a restriction Λ′ ⊂ Λ of the set of admissible portfolio processes.
For such a general constraint set Λ′ ⊂ Λ, we define the general constrained portfolio optimization
problem (P) as

(P)

{
Φ(v0) = sup

π∈Λ′
E [U (V v0,π(T ))]

We impose the standing assumption throughout this thesis that both, the constrained portfolio
optimization problem (P) and the unconstrained portfolio optimization problem (Punc) are
feasible and yield finite, well-defined expected utility:

Assumption 2.3.1 (Standing Assumption).

−∞ < Φ(v0) ≤ Φunc(v0) <∞ ∀v0 > 0.

(P) is the most general portfolio optimization problem considered in this thesis. Unsurprisingly,
we are unable to find explicit solutions or useful characterizations of solutions for (P) in this
general form. However, if we impose more specific assumptions on the market parameters, the
utility function and the constraints, then we can be more successful. In this sense, each of
the following chapters works with specific assumptions which constitute a special case of (P) as
defined in this section. Each of the following chapters, aims to utilize different duality techniques
from convex analysis, which we developed in Section 2.1 to obtain solutions to (P).

2.3.2 Classic Methods for Unconstrained Portfolio Optimization

In this section we provide a short review of the two most common approaches which are used to
solve the unconstrained portfolio optimization problem (Punc) for selected models and utility
functions: The stochastic control approach and the martingale method. This review will help
us to understand the limitation and challenges of each approach. Moreover, this review will
allow us to highlight the extensions that are required in later Chapters, when we are facing
constraints on the portfolio allocation and terminal wealth.
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Stochastic Control Approach: The unconstrained portfolio optimization problem (Punc) can
be regarded as a stochastic control problem, with control process π, controlled process V v0,π, and
maximization objective E[U(V v0,π(T ))]. This is the approach followed in the seminal works [64]
and [65], where the continuous time portfolio optimization problem was originally introduced.

If the wealth process (i.e., the ‘state of the investor’) and the market coefficients (i.e., the
‘state of the market M’ can be jointly represented as Markov process X = (X(t))t∈[0,T ] , then
principles from dynamic programming are applicable. This can be assured by restricting the
analysis to stochastic factor models, i.e., assuming that

• there exists a stochastic factor z = (z(t))t∈[0,T ] , which takes values in Rm and satisfies
the SDE

dz(t) = µz(t, z(t))dt+ Σz(t, z(t))dW z(t), z(0) = z0 ∈ Rm,

for some constant z0 ∈ Rm and deterministic functions µz : [0, T ] × Rm → Rm and
Σz : [0, T ] ×Rm → Rm×m.

• the market coefficients r(t), µ(t), Σ(t), and ρ(t) are deterministic function of the current
time and value of the stochastic factor (t, z(t)).

• the current portfolio allocation is given as a deterministic function of time, current wealth
and value of the stochastic factor (t, V v0,π(t), z(t)), i.e., there exists a deterministic func-
tion

¯
π : [0, T ] × (0,∞) ×Rm → Rd such that

π(t) =
¯
π(t, V v0,π(t), z(t)).

In such cases, we say that the portfolio process π is defined in ‘feedback-form’ and
¯
π is the

corresponding feedback control. In particular, we may define a wealth process directly through
a feedback control. For a given feedback control

¯
π, we may then define the state process

Xπ = (V v0,π, z)′ and one can show that Xπ satisfies an SDE of the form

dXπ(t) = µX
π
(t,Xπ(t))dt+ ΣXπ

(t,Xπ(t))dW (t) + ΣXπ ,z(t,Xπ(t))dW z(t),

and deterministic functions µX
π
,ΣXπ

,ΣXπ ,z. Then, we can define the dynamic version of the
unconstrained portfolio optimization problem (Punc) as

(Punc
t,x )


Φunc(t, x) = sup

π∈Λf

E
[
U (V v0,π(T ))

∣∣Xπ(t) = x
]

Λf =
{
π ∈ Λ

∣∣ π(s) =
¯
π(s, V v0,π(s), z(s)) =

¯
π(s,Xπ(s)) ∀s ∈ [t, T ]

and a feedback control
¯
π
}
.

If the feedback control
¯
π∗ defines an optimal portfolio process π∗ for (Punc

t,x ) and each (t, x) ∈
[0, T ] × (0,∞) ×Rm, then the optimality of π∗ and Markovity of Xπ∗

ensure that

Φunc(t,Xπ∗
(t)) = sup

π∈Λf

E
[
U(V v0,π(T ))

∣∣∣Xπ(t) = Xπ∗
(t)
]

π∗ optimal
= E

[
U(V v0,π∗

(T ))
∣∣∣Xπ∗

(t)
]

Markovity Xπ∗

= E
[
U(V v0,π∗

(T ))
∣∣∣Ft

]
.

Hence, it is straightforward to see that Φunc(t,Xπ∗
(t)) is a martingale. Similarly, we have for

any suboptimal portfolio process π̂ ∈ Λ3 and s ≤ t ≤ T :

E
[
Φunc(t,X π̂(t))

∣∣∣Fs

]
= E

[
E
[
U(V v0,π∗

(T ))
∣∣∣Xπ∗

(t) = X π̂(t)
]∣∣∣Fs

]
3Note that the subsequent argument does not even require that the suboptimal portfolio process π̂ is defined in
feedback-form.
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Markovity Xπ∗

= E
[
E
[
U(V v0,π∗

(T ))
∣∣∣Xπ∗

(t) = X π̂(t), Xπ∗
(s) = X π̂(s)

]∣∣∣Fs

]
π̂ suboptimal

≤ E
[
E
[
U(V v0,π∗

(T ))
∣∣∣Xπ∗

(s) = X π̂(s)
]∣∣∣Fs

]
= E

[
Φ(s,X π̂(s))

∣∣∣Fs

]
= Φunc(s,X π̂(s)),

i.e., Φunc(t,X π̂(t)) is a supermartingale. Therefore, under some regularity conditions (see
Chapter III, Theorem 16 in [74]), the Doob-Meyer decomposition suggests that Φunc(t,X π̂(t))
can be uniquely decomposed into the sum of a non-increasing, non-positive process A(t) and a
local martingale M(t). If we additionally assume that Φunc is once continuously differentiable
in t ∈ [0, T ] and twice continuously differentiable in x ∈ (0,∞) ×Rm, then we can define the
operator Hπ[Φunc]4 as (omitting the arguments (t, x) for readability)

Hπ[Φunc] = Φunc
t +

(
µX

π)′∇xΦunc +
1

2
Trace

[(
ΣXπ

ρ′

ρ ΣXπ ,z

)(
ΣXπ

ρ′

ρ ΣXπ ,z

)′
∇2

xΦunc

]
.

Then, an application of Itô’s Lemma yields

dΦunc(t,X π̂(t)) = Hπ[Φunc](t,X π̂(t))dt︸ ︷︷ ︸
=dA(t)

+ (...)dW (t) + (...)dW z(t)︸ ︷︷ ︸
=dM(t)

.

As A(t) is non-positive and non-increasing for any π ∈ Λ, the Doob-Meyer decomposition
implies that Hπ[Φunc](t,X π̂(t)) ≤ 0 Q×L[0, T ]-a.e., with equality for the optimal π = π∗ ∈ Λf .
Thus, we obtain a characterization of Φunc(t, x) and the optimal feedback control

¯
π∗(t, x) for

all (t, x) ∈ [0, T ) × (0,∞) ×Rm through a PDE, the so-called Hamilton-Jacobi-Bellman PDE
(‘HJB PDE’):

Hπ[Φunc](t, x) = 0 and
¯
π∗(t, x) ∈ argmax

π∈Rd

Hπ[Φunc](t, x), (2.32)

with terminal condition Φunc(T, x) = Φ(t, v, z) = U(v) for all x ∈ (0,∞)×Rm. We have arrived
at the HJB PDE (2.32) under the assumption that an optimal feedback control exists and the
corresponding value function Φunc is smooth. In contrast, the stochastic control approach begins
by determining a solution to the HJB PDE (2.32) and then proves a ‘verification theorem’ which
ensures that the obtained PDE-solution is indeed the value function Φunc. While this approach
is valid for general (Markovian) market models M (i.e., m > 0 and deterministic functions
µz,Σz, ρ, r, µ, and Σ), actually obtaining an explicit solution to the HJB PDE as well as proving
a verification theorem is extremely challenging for complex models. In practice, this limits the
usefulness of the stochastic control approach to models and utility functions where additional
information about the functional form Φunc is known or can be guessed, such as CRRA utility
functions or exponentially affine models.

Martingale Method: The martingale method goes back to [73], [47] and [15] and is closely
linked to risk-neutral pricing in continuous time. The central idea underlying the martingale
method is to split the portfolio optimization problem (Punc) from an optimization over all
admissible portfolio processes into a ‘static’ optimization problem over all attainable terminal
wealths and a subsequent ‘hedging’ problem, which seeks to determine the portfolio process
that replicates the optimal terminal wealth for the static optimization problem.

4Throughout this thesis, this differential operator is mainly used within the context of H amilton-Jacobi-Bellman
PDEs and is therefore denoted as ‘H’.
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If the underlying financial market M is complete (i.e., all reasonable FT -measurable payoffs
can be represented as a terminal wealth V v0,π(T ) for some v0 > 0 and π ∈ Λ), then the static
optimization problem will simplify considerably and allow a convenient characterization of the
optimal terminal wealth for (Punc). To make the notion of market completeness more precise,
we define the market price of risk γ and pricing kernel Z̃ as

γ(t) := Σ(t)−1
(
µ(t) − r(t)1

)
,

Z̃(t) := exp

(
−
∫ t

0
r(s) +

1

2
∥γ(s)∥2ds−

∫ t

0
γ(s)′dW (s)

)
and consider a Lemma which we will revisit in Chapter 3:

Lemma (Market Completeness, cf. Lemma 3.3.1). 1
Let m = 0 and consider D ∈ X+ with E[D2] < ∞ and 0 < E[Z̃(T )D] =: v0 <∞. Then, there
exists a π ∈ Λ so that V v0,π(T ) = D Q-a.s. and

V v0,π(t) = E

[
D
Z̃(T )

Z̃(t)

∣∣∣∣∣ Ft

]
. (2.33)

Therefore, if m = 0, i.e., all uncertainty in M is generated by the diffusion of the risky asset’s
log returns (dW (t)), then we can consider the following equivalent static representation of
(Punc) :

(Punc)


Φunc(v0) = sup

D∈C(v0)
E
[
U(D)

]
C(v0) =

{
V v0,π(T )

∣∣ π ∈ Λ
}

(∗)
=
{
D ∈ L2

Q

∣∣ E[Z̃(T )D] = v0
}
,

where we used the market completeness and the fact that U(x) = −∞ for all x < 0 in (∗).
This is a constrained optimization problem over L2

Q, as considered in Section 2.1.2 and it can

be treated with the same duality techniques. In particular, if we set g(x) = −Z̃(T )x and
K = {−v0}, then δK(y0) = y0v0 and the associated dual optimization problem is

(Dunc)
{

ΨDunc = inf
y0∈R

E[U∗
g (y)] + y0v0.

Hence, if there exists a y∗0 ∈ R such that the KKT conditions of Corollary 2.1.36 are satisfied,
i.e., Ig(y∗0) ∈ L2

Q and

0 = y∗0E
[
g
(
Ig(y∗0)

)]
+ δK(y∗0)︸ ︷︷ ︸

=y∗0v0

= y∗0

(
E[−Ig(y∗0)Z̃(T )] + v0

)
& E

[
g
(
Ig(y∗0)

)]
∈ K

⇔ E[Ig(y∗0)Z̃(T )] = v0, (2.34)

then D∗ = Ig(y∗0) is the optimal terminal wealth for (Punc) and thus a solution to the static
optimization problem. Under mild regularity conditions on the utility function and the market
coefficients, the existence of a y∗0 satisfying (2.34) can be guaranteed (see e.g. Theorem 7.4 in
[17] or Lemma 3.1 in [34]) and can be determined numerically (as Ig is non-increasing in y0 by
Lemma 2.1.38, such numerical procedures are even reasonably reliable). Note that we arrived
at this characterization of the optimal terminal wealth for (Punc) without any major structural
assumptions on the utility function U, the market coefficients or the optimal portfolio process
π∗.
In contrast, solving the hedging problem, i.e., determining an explicit representation for the
optimal portfolio π∗ such that V v0,π∗

(T ) = Ig(y∗0), is no longer feasible in this general setting.
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While the market completeness ensures the existence of a replicating portfolio for Ig(y∗0), it does
not offer a direct way of constructing this portfolio. However, we do obtain a characterization
of the optimal wealth process through a conditional expectation by virtue of (2.33):

Z̃(t)V v0,π∗
(t) = E

[
Ig(y∗0)Z̃(T )

∣∣∣Ft

]
. (2.35)

The right side of (2.35) is trivially a martingale and thus the left side is also a martingale.
Hence, the left side is an Itô process with zero drift and SDE

d
(
Z̃(t)V v0,π∗

(t)
)

Itô’s product rule
= Z̃(t)V v0,π∗

(t)
(
π∗(t)′Σ(t) − γ(t)′

)
dW (t).

Thus, if we can obtain an SDE for the right side of (2.35), then we can determine π∗ by matching
the diffusions on the left and right. For example, this can be achieved by using the Feynman-Kac
representation, which establishes another link to partial differential equations:

Theorem 2.3.2. Let n ∈ N, W̄ be an n-dimensional Wiener process and X be the unique
solution to the stochastic differential equation X(0) = x ∈ Rn,

dX(t) = µX(t,X(s))dt+ ΣX(t,X(t))dW̄ (t),

for deterministic functions µX : [0, T ] ×Rn → Rn, ΣX : [0, T ] ×Rn → Rn×n. For a function
u : [0, T ]×Rn → R, which is continuously differentiable in [0, T ] and twice continuously differ-
entiable in x, we define the operator HX applied to u as (again omitting arguments (t, x) for
readability)

HX [u] = ut + (µX)′∇xu+ Trace

(
ΣX
(

ΣX
)′
∇2

xu

)
.

If u : [0, T ] ×Rn → R is a continuous solution to the PDE

HX [u](t, x) = 0, u(T, x) = f(x) ∀t ∈ [0, T )∀x ∈ Rn, (2.36)

for a continuous terminal condition f : Rm → [0,∞) and

• there exists a constant K > 0 such that for all x, y ∈ Rn∥∥µX(t, x) − µX(t, y)
∥∥+

∥∥ΣX(t, x) − ΣX(t, y)
∥∥ ≤ K ∥x− y∥ ,∥∥µX(t, x)

∥∥2 +
∥∥ΣX(t, x)

∥∥2 ≤ K2
(
1 + ∥x∥2

)
.

• there exist constants M > 0, ϵ > 1 such that for all x ∈ Rn

max
0≤t≤T

|u(t, x)| ≤M
(
1 + ∥x∥2ϵ

)
,

then u satisfies the Feynman-Kac representation

u(t, x) = E
[
f(X(T ))

∣∣∣ X(t) = x
]
.

The PDE (2.36) is also referred to as ‘Cauchy problem’ or ‘Feynman-Kac PDE’. If now Z̃ is a
Markov process5, then we can aim to apply Theorem 2.3.2 with X = Z̃ and terminal condition

f(z) =
(
Ig(y∗0)Z̃(T )

)∣∣∣
Z̃(T )=z

5The ensuing arguments can easily be generalized if Z̃ is a component of a multi-dimensional Markov process
X (similar to the relation between V v0,π and Xπ in the stochastic control approach).
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=

(
inf

{
x ∈ R

∣∣∣ sup
x̂∈R

(
U(x̂) − y∗0zx̂

)
≤ U(x) − y∗0zx

})
z.

As the stochasticity of g (and U∗
g , Ig) only depends on the value of Z̃(t), the terminal condition

f above is a deterministic function in z. If u is a solution to the Feynman-Kac PDE (2.36)
with terminal condition f such that the requirements of Theorem 2.3.2 are satisfied, then (2.35)
yields for any t ∈ [0, T ] :

v0 +

∫ t

0
Z̃(s)V v0,π∗

(s)
(
π∗(s)′Σ(s) − γ(s)′

)
dW (s) = Z̃(t)V v0,π∗

(t)

(2.35)
= E

[
Ig(y∗0)Z̃(T )

∣∣∣Ft

]
Markovity of Z̃

= E
[
f(Z̃(T ))

∣∣∣Z̃(t)
]

T. 2.3.2
= u(t, Z̃(t))

Itô
= u(0, Z̃(0))︸ ︷︷ ︸

v0

+

∫ t

0
(...)dt︸ ︷︷ ︸
=0

−
∫ t

0
Z̃(s)uz(s, Z̃(s))γ(s)′dW (s)

= v0 −
∫ t

0
Z̃(s)uz(s, Z̃(s))γ(s)′dW (s).

As this equation holds for all t ∈ [0, T ], we conclude that

π∗(t) =
1

V v0,π∗(t)

(
V v0,π∗

(t) − uz(t, Z̃(t))
)

︸ ︷︷ ︸
=:α∗(t,V v0,π

∗
(t),Z̃(t))

(
Σ(t)Σ(t)′

)−1
(µ(t) − r(t)1)︸ ︷︷ ︸

=:πM (t)

= α∗(t, V v0,π∗
(t), Z̃(t))πM (t)

Note that this expression for π∗ demonstrates that the optimal portfolio process satisfies a
version of a two fund theorem: For any utility function U ∈ U , such that the optimal π∗

can be determined using the Feynman-Kac-representation, we can decompose π∗ as a linear
combination of the risk-free portfolio π0 ≡ 0 and the Merton portfolio πM (for risk aversion
1) with stochastic weighting factor α∗. In particular, the optimal portfolio for all such utility
functions have the same relative allocation between risky assets in M and only their exposure
to the risky assets is influenced by the utility function.6

Discussion: The stochastic control approach is applicable for general Markovian market mod-
els, without requiring the completeness of the financial market. In particular, the stochastic
control approach can be applied in incomplete markets, such as Heston’s stochastic volatility
model ([56]), whereas the martingale method cannot be applied directly. However, actually
obtaining a closed-form expression for the optimal portfolio process requires the solution to the
associated HJB PDE, for which explicit solutions are only known for selected combinations of
market models and utility functions (e.g. for exponentially affine models and CRRA utility
functions as considered in [61]).
The martingale method is only directly applicable in complete financial markets, i.e. when all
uncertainty in M is generated by the Wiener process W , which is the diffusion of the risky
asset’s log returns. Therefore, it is not directly applicable to most stochastic volatility models

6A similar statement can be derived via the stochastic control approach if we explicitly write out µXπ

, ΣXπ

,
ΣXπ,z and determine an explicit expression for the (optimal) portfolio which maximizes the characteristic
operator Hπ[Φunc].
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unless the market is completed through the addition of (fictitious) volatility-dependent assets
(as in [78]). However, unlike the stochastic control approach, the martingale method yields a
characterization of the optimal terminal wealth V v0,π∗

(t) = Ig(y∗0) for (Punc), which is explicit
up to y∗0 ∈ R – the solution to the budget equation (2.34). An explicit expression for the cor-
responding optimal portfolio π∗ is more challenging to obtain and requires either the Markovity
of the pricing kernel and a solution to the associated Feynman-Kac PDE or an explicit repres-
entation of the expectation in (2.35) as a stochastic integral. Therefore, explicit expressions for
π∗ have again only been derived for selected utility functions and market models.
Hence, the martingale method is ideally suited for characterizing the portfolio optimization
problem and its associated optimal terminal wealth for a large, general class of utility functions
and models - as long as the financial market is complete. Determining an explicit expression for
the optimal portfolio process requires the solution to an associated partial differential equation
in both the stochastic control approach and the martingale method. However, as the stochastic
control approach can be directly applied to incomplete markets, it is the natural choice for this
objective.
Following this logic, we extend the classic martingale method in Chapter 3, where we char-
acterize the optimal terminal wealth of portfolio optimization problem (P) with simultaneous
constraints on terminal wealth and allocation for general utility functions and complete fin-
ancial markets. In contrast, we extend the classic stochastic control approach in Chapter 4,
where we determine (semi-)explicit expressions for the optimal portfolio process to a portfolio
optimization problem (P) with constraints on the portfolio allocation in (incomplete) stochastic
factor models. A special case of these models, Heston’s stochastic volatility model, is discussed
in great detail in Chapter 5.

34







3 Constraints on Allocation and Wealth in
Complete Financial Market Models

3.1 Introduction

In this chapter, we consider a finite-horizon portfolio optimization problem for an expected
utility maximizing investor who trades in continuous time. The investor’s portfolio choice is
restricted by convex allocation constraints as well as pointwise bounds and expected value
constraints on terminal wealth. These constraints are the main difference of our setting in
comparison to the classic problem originally introduced by [64]. We give a short overview of
the related literature on wealth-constrained portfolio optimization:

In a portfolio optimization context, the two most commonly considered constraints on terminal
wealth are either pointwise bounds on terminal wealth or expected value constraints. As sug-
gested by their name, pointwise bounds require that the terminal wealth at the end of the
investment horizon lies within a (possibly random) real interval [B1, B2] ⊂ R. The natural
choice of a lower bound (0 ≤ B1 < ∞, B2 = ∞), or ‘minimum performance constraint’, was
first considered and analyzed by [82], who assumed classic Black-Scholes market dynamics and
derived closed-form expressions for the optimal portfolio under the condition that the investor
derives utility from a power utility function and the lower bound B1 is deterministic. Later,
[52] considered a similar problem and presented a two-step approach for portfolio optimization
problems with lower bound on terminal wealth in complete financial market models. The ap-
proach is based on using a share of the investor’s initial wealth to replicate the lower bound and
then use the remaining share of the initial wealth to maximize the expected utility surplus over
the lower bound. Despite being unconventional, [25] considered a pointwise upper bound on
terminal wealth (B2 <∞) and illustrated that such upper bounds on terminal wealth increase
the quantiles of the terminal wealth distribution, i.e., decrease the likelihood of poor perform-
ance of the portfolio. This is especially relevant for investments in a retirement plan.
On the other hand, expected value constraints impose a restriction on the expected value of a
function g(V v0,π(T )) of the investors terminal wealth. As such, these type of constraints allow
for ‘softer’ restrictions than strict pointwise bounds on terminal wealth. In [55], the authors
propose a dual approach for general convex expected value constraints and showcase the de-
veloped approach on a mean-variance optimization problem. [4] uses a similar duality approach
to solve portfolio optimization problems with Value-at-Risk (‘VaR’) or expected shortfall (‘ES’)
constraints. The authors of [57] effectively consider the same problem setting as [4] with VaR
and ES constraints, but use a novel methodology based on dynamic programming to solve these
optimization problems. Expected value constraints based on more general risk measures were
considered in [72], [67], [11] and [12].

Up until this point only few papers considered simultaneous constraints on portfolio allocation
and terminal wealth. [3] extends the auxiliary market framework of [17] to include random
lower bounds on terminal wealth and proves a set of analogue equivalent optimality conditions.
However, the author failed to explicitly determine neither the optimal relative portfolio process
nor the optimal terminal wealth for any example within his setting. [24] and [35] consider
simultaneous VaR constraints and convex cone constraints in a Black-Scholes financial market,
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but their approaches do not directly extend to general constraints and models. A different
type of simultaneous constraints was considered by [36]. The authors describe the Solvency II
capital requirements as a wealth-dependent allocation constraint and transform the associated
portfolio optimization problem into an equivalent problem with constant allocation constraints,
which falls within the scope of [17]. None of the aforementioned papers, aside from [3], aimed
to provide a general solution framework for wealth and allocation constrained portfolio optim-
ization problems. However, [3] did not provide extensions going beyond strict lower bounds on
terminal wealth, which is only one possible type of wealth constraints.

The contribution of this chapter to the existing literature is threefold:

• We present a generalized version of the martingale approach which is applicable for general
expected value constraints and pointwise bounds on terminal wealth. The approach is
based on a duality ansatz that can be applied in general complete financial markets.

• We integrate the generalized martingale approach into the auxiliary market framework of
[17] to derive a set of equivalent optimality conditions, which can be used to solve portfolio
optimization problems with simultaneous constraints on allocation and wealth. This is a
generalization of the framework based on the ‘capped Legendre-Fenchel transform’, which
was presented in [34].

• We illustrate the utility of our methodology in a Black-Scholes market by explicitly char-
acterizing the optimal terminal wealth if the allocation constraints are a convex cone,
the pointwise bounds are deterministic and the expected value constraint is either a VaR
constraint or an ES constraint.

The remainder of this chapter is structured as follows: The financial market model, the portfolio
optimization problem and the standing assumptions are introduced in Section 3.2. Afterwards,
in Section 3.3, we generalize the well-known martingale approach to financial markets with
constraints on terminal wealth. In a similar way, we generalize the auxiliary market framework of
[17] by including constraints on terminal wealth in Section 3.4. Lastly, we propose a methodology
for determining the optimal auxiliary market in a Black-Scholes setting in Section 3.5 and
Section 3.6 concludes this chapter.

3.2 Setting

In this chapter we consider an investor who simultaneously faces constraints on his allocation
and his terminal wealth. The constraints on terminal wealth can be either pointwise bounds (as
considered in [34]), expected value constraints or both. In this regard, this chapter extends the
work of [34]. To simplify the presentation we restrict the market setting defined in Section 2.3
by assuming that all randomness in M is generated by W, i.e., m = 0. This has the advantage
that the considered financial market M is complete and we can derive a useful, equivalent
characterization of (P) as an optimization over random variables D ∈ L2

Q. Market completeness
is a key ingredient which will be frequently used in the duality arguments in the subsequent
sections. In this regard, the restriction to m = 0 in this chapter, can also be seen as a restriction
to complete financial markets M. Note however, completeness of M is not a strict prerequisite
for this chapter, but rather another instrument to facilitate the exposition. Just as in [49], in the
case of an incomplete financial market M, one can add additional fictitious assets to complete
the market and use the theory developed in Section 3.4 to rule out investments into these assets
through an allocation constraint.
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For a non-empty closed convex set K ⊂ Rd, FT -measurable random variables 0 ≤ B1 < B2,
and a non-increasing real function g : (0,∞) → R, we define the set of admissible constrained
portfolio processes as

Λ′ := Λ(v0,K,B1, B2, g)

:=
{
π ∈ Λ

∣∣ π(t) ∈ K, B1 ≤ V v0,π(T ) ≤ B2, E [g(V v0,π(T ))] ≤ 0
}
, (3.1)

where the requirement ‘π ∈ K’ is meant to hold L[0, T ] ⊗ Q-a.e. and ‘B1 ≤ V v0,π(T ) ≤ B2’
is meant to hold Q-a.s.. To ensure that the constraints are well-posed, i.e., Λ′ ̸= ∅, we need
to make some additional technical assumptions which amount to requiring that the risk-free
portfolio process π ≡ 0 is admissible for (P), but not trivially optimal for (P). Specifically, we
assume that

0 ∈ K, (3.2)

B1 < v0P0(T ) < B2, (3.3)

and E [g(v0P0(T ))] ≤ 0. (3.4)

Finally, this ensures that we can reasonably consider the following, fully constrained portfolio
optimization problem

(P)

{
Φ(v0) = sup

π∈Λ(v0,K,B1,B2,g)
E [U (V v0,π(T ))] .

Clearly, we can rewrite (P) directly as a maximization over all attainable terminal wealths:

(P)

Φ(v0) = sup
D∈C(v0,K,B1,B2,g)

E
[
U(D)

]
C(v0,K,B1, B2, g) =

{
V v0,π(T )

∣∣ π ∈ Λ(v0,K,B1, B2, g)
}
.

This may seem trivial at first, but since C(v0,K,B1, B2, g) can later be simplified substantially
(depending on the choice of K, B1, B2 and g), it is more convenient to write (P) this way.

We attempt to solve (P) by following a similar approach as the authors of [34]: First, we
introduce a suitable class of dual processes λ which parametrize the ‘auxiliary’ financial markets
Mλ. The wealth process of an investor trading continuously in Mλ is adapted in such a way
that it is advantageous to only choose portfolio processes which take values in K. In Mλ, we
consider a portfolio optimization problem (Pλ), without allocation constraint but with the same
wealth constraints as in M. Using a generalized martingale approach, which is based on the
duality techniques introduced in Section 2.1.1, we can characterize the optimal terminal wealth
for (Pλ) in Mλ and establish a duality relation between the optimal portfolio process π∗ for
the original portfolio optimization problem (P) and a certain minimizing λ∗ ∈ D. A schematic
overview of this approach is illustrated in Figure 3.1.
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Figure 3.1: Schematic illustration of the solution approach employed throughout Chapter 3.
V v0,πλ denotes the wealth process of an investor trading in the auxiliary market Mλ and will
be formally defined in Section 3.4.

The standing assumptions for this chapter are summarized below:

Assumption 3.2.1 (Standing Assumptions Chapter 3:). m = 0, (3.1), (3.2), (3.3), and
(3.4).

3.3 Generalized Martingale Approach

In this section we present a generalized martingale approach, which can be applied in complete
financial markets. This approach can be used to characterize the optimal terminal wealth for
portfolio optimization problems with simultaneous pointwise and expected value constraints
on terminal wealth. To this end, we consider the portfolio optimization problem (P) under
the assumption that no allocation constraints are present (denoted as ‘(P0)’). Under this
assumption, we can prove that the financial market M satisfies a notion of market completeness,
which can be used to derive an equivalent representation of (P0) as a constrained optimization
problem over L2

Q. This representation falls within the setting of Section 2.1.2 and can be treated

with the associated dual optimization problem (DV
0 ).

Let us for now consider the allocation-unconstrained analogue (P0) of the portfolio optimization
problem (P), i.e., we set Λ(v0, B1, B2, g) := Λ(v0,R

d, B1, B2, g) and define

(P0)

{
Φ0(v0) = sup

π∈Λ(v0,Rd,B1,B2,g)

E [U (V v0,π(T ))] .

As suggested earlier, we can equivalently write (P0) as an optimization of E[U(D)] over all
D ∈ L2

Q such that there exists a π ∈ Λ(v0, B1, B2, g) with D = V v0,π(T ). Although this may
seem trivial at first glance, we can use the notion of market completeness to develop a useful
equivalent representation of (P0). To make this notion more precise, recall the definition of the
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market price of risk γ, the corresponding exponential local martingale Z and the pricing Kernel
Z̃ from Section 2.3.2:

γ(t) := Σ(t)−1
(
µ(t) − r(t)1

)
,

Z(t) := exp

(
−1

2

∫ t

0
∥γ(s)∥2ds−

∫ t

0
γ(s)′dW (s)

)
,

Z̃(t) :=
Z(t)

P0(t)
= exp

(
−
∫ t

0
r(s) +

1

2
∥γ(s)∥2ds−

∫ t

0
γ(s)′dW (s)

)
,

for t ∈ [0, T ]. Note that Z and Z̃ satisfy the SDEs

dZ(t) = −Z(t)γ(t)′dW (t)

dZ̃(t) = −Z̃(t)
(
r(t)dt+ γ(t)′dW (t)

)
.

In particular, Z is a positive local martingale and thus a supermartingale. If Z satisfies Novikov’s
condition, then it is indeed a martingale. In our setting, M satisfies the following notion of
market completeness.

Lemma 3.3.1 (Market Completeness). Consider D ∈ X+ with E[D2] <∞ and 0 < E[Z̃(T )D] =: v0 <∞.
Then, there exists a π ∈ Λ so that V v0,π(T ) = D Q-a.s. and

V v0,π(t) = E

[
D
Z̃(T )

Z̃(t)

∣∣∣∣∣ Ft

]
.

Lemma 3.3.1 implies that any non-negative payoff D ∈ L2
Q can be written as a payoff V v0,π(T )

for a π ∈ Λ′ if and only if D satisfies the so-called ‘budget equation’ E[Z̃(T )D] = v0. Noting
that U(x) = −∞ for all x < 0, this allows us to rewrite (P0) as an equivalent constrained
optimization problem over D ∈ L2

Q :

(P0)

Φ(v0) = sup
D∈C(v0,B1,B2,g)

E
[
U(D)

]
C(v0, B1, B2, g) =

{
D ∈ L2

Q

∣∣ E[Z̃(T )D] = v0, B1 ≤ D ≤ B2, E[g(D)] ≤ 0
}
.

Changing the optimization variable from admissible portfolio processes π to admissible terminal
wealths D = V v0,π(T ) is a common technique in dynamic portfolio optimization (see e.g. [73],
[47] and [17]) and is usually referred to as ‘martingale approach’. If an optimal terminal payoff
D∗ for (P0) has been determined, then the completeness of M ensures that there exists an
optimal portfolio process π∗ such that V v0,π∗

(T ) = D∗ holds Q-a.s.. Despite this theoretical
guarantee, as explained in Section 2.3.2, it is challenging to determine explicit expressions for
π∗. For this reason, we exclusively focus on characterizing the optimal terminal wealth for (P0)
and do not explicitly determine the corresponding optimal portfolio process π∗.

We proceed in a similar way as [34] and incorporate the pointwise constraint into an adjusted
utility function and adjusted expected value constraint

U(x;B1, B2) :=


−∞, x < B1

U(x), B1 ≤ x ≤ B2

U(B2), B2 < x

, and g(x;B2) =

{
g(x), x ≤ B2

g(B2), B2 < x
.
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Lemma 3.3.2. Consider the optimization problem

(P̃0)


Φ̃0(v0) = sup

D∈C(v0,g(·;B2))
E
[
U(D;B1, B2)

]
C(v0, g) = C(v0, 0,∞, g(·;B2))

=
{
D ∈ L2

Q

∣∣ E[Z̃(T )D] = v0, E[g(D;B2)] ≤ 0
}
.

Then, Φ̃0(v0) = Φ0(v0). In particular, D∗ is optimal for (P̃0) if and only if D∗ is optimal for
(P0).

The optimization problem (P̃0) is a constrained optimization problem over L2
Q, as considered

in Section 2.1.2, with objective function U(·;B1, B2) and 2-dimensional expected value con-
straints(
E[Z̃(T )D],E[g(D;B2)]

)′
∈ {v0} × (−∞, 0] ⇔

(
E[−Z̃(T )D],E[−g(D;B2)]

)′
∈ {−v0} × [0,∞).

Hence, we may define

g0 : R2 → R, g0(x) =

(
−Z̃(T )x
−g(x;B2)

)
and KV := {−v0} × [0,∞)

and use the associated dual optimization problem and generalized conjugate

U∗
g0(y;B1, B2)

y=(y0,y1)′
= sup

x∈R

(
U(x;B1, B2) − y0Z̃(T )x− y1g(x;B2)

)
if y∈[0,∞)2

= sup
B1≤x≤B2

(
U(x) − y0Z̃(T )x− y1g(x)

)
of U(·;B1, B2) to characterize the optimal terminal payoff D∗

0 for (P̃0) (and (P0)). We denote
the maximizing argument corresponding to U∗

g0(y;B1, B2) as Ig0(y;B1, B2). Note that we spe-

cifically used the ‘negated’ version of the constraints in (P̃0) (i.e., we consider g0 instead of
−g0), as we would otherwise obtain a definition of the generalized conjugate and its associated
dual optimization problem, which is uncommon for our portfolio optimization context (despite
being perfectly equivalent).

Theorem 3.3.3. Let y∗ = (y∗0, y
∗
1)′ ∈ [0,∞)2 be optimal for the dual minimization problem

(DV
0 )

{
ΨDV

0
= inf

y=(y0,y1)′∈[0,∞)2

(
E
[
U∗
g0(y;B1, B2)

]
+ y0v0

)
.

If Ig0(y∗;B1, B2) ∈ L2
Q and

y → E [g0(Ig0(y;B1, B2))]
′ ∆y

is usc at y = y∗ for all ∆y ∈ R × [0,∞), then Ig0(y∗;B1, B2) is optimal for (P0) and
y∗1E [g (Ig0(y∗;B1, B2))] = 0.

The minimization problem (DV
0 ) can be regarded as the dual optimization problem of (P0) in

M, where the duality is induced by the remaining wealth constraints (i.e., the budget equation
and the expected-value constraints g.) This is reflected in the proof of Theorem 3.3.3, which
heavily relies on the duality results from Section 2.1.2. A common way of proving the existence
of an optimal y∗ = (y∗0, y

∗
1)′ for (DV

0 ) is to show that there exists a y∗ which satisfies the
associated KKT-conditions, i.e., satisfies

E[Ig0(y∗;B1, B2)Z̃(T )] = v0 and y∗1E [g (Ig0(y∗;B1, B2))] = 0.
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One could easily generalize the present setting to consider n-dimensional expected-value con-
straints gi : R → R with E[gi(x)] ≤ 0 for all i = 1, .., n. This would in turn yield an n + 1
dimensional function g0(x) = (Z̃(T )x, g1(x;B2), . . . , gn(x;B2))

′ and is not investigated through-
out this chapter to improve the presentation.

Remark 3.3.4. The upper-semi continuity assumption on E [g0(Ig0(y;B1, B2))]
′ ∆y in 3.3.3

may seem quite abstract, but we refrain from providing general conditions under which it is
satisfied. If there is no additional restriction on the admissible terminal payoffs due to g, e.g.,
if g ≡ 0, then we can disregard the argument y1 and this assumption reduces to a continuity
assumption on

y0 → E
[
Ig0(y0;B1, B2)Z̃(T )

]
.

As Ig0 is non-increasing in y0 (Lemma 2.1.38), the above function mapping can only be con-
tinuous at y0 = y∗0 > 0, if there exists a 0 < ŷ0 < y∗0 such that

E
[
Ig0(ŷ0;B1, B2)Z̃(T )

]
<∞,

as otherwise

∞ = lim sup
y0↑y∗0

E
[
Ig0(y0;B1, B2)Z̃(T )

]
> v0 = E

[
Ig0(y∗0;B1, B2)Z̃(T )

]
.

3.4 Auxiliary Markets with Bounds on Terminal Wealth

The generalized martingale approach from Section 3.3 is a dual optimization approach which
can be used to solve wealth constrained portfolio optimization problems. In this section we
develop a duality approach which can be used to solve portfolio optimization problems with
simultaneous constraints on terminal wealth and portfolio allocation, and is thus applicable
to (P). We proceed by first introducing the concept of auxiliary markets (see [17]) and then
ensure the feasibility of the wealth constrained portfolio optimization problem by integrating
the pointwise bounds on terminal wealth into the utility function (as in [34]). Further, we prove
a set of equivalent optimality conditions, which yield two different dual optimization problems,
(DK) and (DK,V), associated with (P).

Consider the following set of Rd-valued dual processes D:

D :=
{
λ =

(
(λ1(t), ..., λd(t))′

)
t∈[0,T ]

prog. measurable
∣∣∣∫ T

0
∥λ(t)∥2dt <∞ Q-a.s.,

∫ T

0
δK(λ(t))dt <∞ Q-a.s.

}
.

For any λ ∈ D, the boundedness conditions guarantee that λ(t) takes finite values L[0, T ] ⊗Q-
a.e. and Q-a.s. only takes values in XK . For a given λ ∈ D, we define the auxiliary market Mλ

as the asset universe with d risky assets P λ = (P λ
1 , ..., P

λ
d ) and one risk-free asset P λ

0 , which
satisfy P λ

0 (0) = P λ
1 (0) = ... = P λ

d (0) = 1 and evolve according to the dynamics

dP λ(t) = diag
(
P λ(t)

) (
µ(t) + λ(t) + δK(λ(t))1dt+ Σ(t)dW (t)

)
dP λ

0 (t) = P λ
0 (t)

(
r(t) + δK(λ(t))

)
dt.

The risk-free asset P λ
0 still represents the same risk-free asset and the assets P λ

i represent
the same risky assets from the original market M, but with changed drift coefficients. As a
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consequence, the wealth process of an investor trading according to the relative portfolio process
π in the market Mλ satisfies an SDE with adjusted drift coefficients:

dV v0,π
λ (t) = V v0,π

λ (t)
(
[r(t) + δK(λ(t)) + (µ(t) + λ(t) − r(t)1)′π(t)]dt+ π(t)′Σ(t)dW (t)

)
= V v0,π

λ (t)
(
[r(t) + (µ(t) − r(t)1)′π(t)] + π(t)′Σ(t)dW (t)

)
(3.5)

+ V v0,π
λ (t)[δK(λ(t)) + λ(t)′π(t)]︸ ︷︷ ︸

(∗)

dt.

The wealth process V v0,π
λ∗ satisfies the same SDE as in the original market M apart from

the additional drift term (∗). Moreover, we recover M = M0 for λ ≡ 0. Due to Lemma
2.1.17, the additional drift (∗) is non-negative as long π(t) ∈ K. Hence, any portfolio process
π ∈ Λ(v0,K,B1, B2, g), which is admissible for (P), yields a wealth process V v0,π

λ in Mλ which
is larger or equal than the corresponding wealth process V v0,π in M. This can be regarded as
the central motivation behind the construction of Mλ and naturally leads to an optimization
problem which is dual to (P) with respect to the allocation constraints K. For this purpose,
analogous to Section 3.3, we consider the allocation unconstrained, wealth-constrained portfolio
optimization problem

(Pλ)

Φλ(v0) = sup
π∈Λλ(v0,B1,B2,g)

E
[
U
(
V v0,π
λ (T )

)]
Λλ(v0, B1, B2, g) =

{
π ∈ Λ

∣∣ B1 ≤ V v0,π
λ (T ) ≤ B2, E

[
g(V v0,π

λ (T ))
]
≤ 0
}
.

(Pλ) is the same optimization problem as (P0), but formulated in the financial market Mλ,
rather than M. In Mλ, the market price of risk γλ, the corresponding exponential local mar-
tingale Zλ and pricing kernel Z̃λ are given as

γλ(t) = Σ(t)−1(µ(t) − r(t)1 + λ(t)) = γ(t) + Σ(t)−1λ(t),

Zλ(t) := exp

(
−1

2

∫ t

0
∥γλ(s)∥2ds−

∫ t

0
γλ(s)′dW (s)

)
,

Z̃λ(t) :=
Zλ(t)

P λ
0 (t)

= exp

(
−
∫ t

0
rλ(s) +

1

2
∥γλ(s)∥2ds−

∫ t

0
γλ(s)′dW (s)

)
,

for t ∈ [0, T ]. Again, Zλ and Z̃λ satisfy the SDEs

dZλ(t) = −Zλ(t)γλ(t)′dW (t)

dZ̃λ(t) = −Z̃λ(t)
(
rλ(t)dt+ γλ(t)′dW (t)

)
.

As before, the market coefficients in Mλ need not be uniformly bounded and thus it is not clear
if the local martingale Zλ is indeed a true martingale. However, since Zλ is non-negative, it is
a supermartingale. The adjusted drift coefficients and the remaining market coefficients in any
auxiliary Mλ satisfy the same boundedness assumption (2.26) as in the original market M.
Thus, we can use the same notion of market completeness to rewrite (Pλ) as an optimization
over terminal payoffs.

Lemma 3.4.1 (Market Completeness Mλ). Consider λ ∈ D, D ∈ X+ with E[D2] < ∞ and
0 < E[Z̃λ(T )D] =: v0 <∞. Then, there exists a π ∈ Λ so that V v0,π

λ (T ) = D Q-a.s. and

V v0,π
λ (t) = E

[
D
Z̃λ(T )

Z̃λ(t)

∣∣∣∣∣ Ft

]
.
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Lemma 3.4.1 directly leads to the equivalent formulation of (Pλ) as

(Pλ)

Φλ(v0) = sup
D∈Cλ(v0,B1,B2,g)

E
[
U(D)

]
C(v0, B1, B2, g) =

{
D ∈ L2

Q

∣∣ E[Z̃λ(T )D] = v0, B1 ≤ D ≤ B2, E[g(D)] ≤ 0
}
.

As the bounds B1 and B2 not only constrain the downside of the portfolio value, but also its
upside, an increase of the terminal wealth in an auxiliary market Mλ (due to the added positive
drift in (3.5)) may lead to a violation of the terminal wealth constraints and may even lead to
(Pλ) being infeasible. We circumvent this issue by incorporating the pointwise bounds on D
into the utility function U(·;B1, B2), analogously to 3.3.

Lemma 3.4.2. Let λ ∈ D, consider the optimization problem

(P̃λ)


Φ̃λ(v0) = sup

D∈Cλ(v0,g(·;B2))
E
[
U(D;B1, B2)

]
Cλ(v0, g(·;B2)) = Cλ(v0, 0,∞, g(·;B2))

=
{
D ∈ L2

Q

∣∣ E[Z̃λ(T )D] = v0, E[g(D;B2)] ≤ 0
}

and define vλ(B2) := E[B2Z̃λ(T )].

(i) If v0 ≤ vλ(B2), then Φ̃λ(v0) = Φλ(v0) and D∗
λ is optimal for (P̃λ) if and only if D∗

λ is
optimal for (Pλ).

(ii) If v0 > vλ(B2), then D
∗
λ = v0

vλ(B2)
B2 is optimal for Φ̃λ(v0) and Φ̃λ(v0) = E[U(B2)].

In contrast to (P0) and (P̃0) from Section 3.3, the changed market coefficients in Mλ imply
that (Pλ) and (P̃λ) are only equivalent if v0 ≤ vλ(B2). It is easy to see that (Pλ) is even
infeasible if v0 > vλ(B2) and thus we use (P̃λ) to develop the duality relation with respect to
the allocation constraints K. Due to the non-negativity of the drift (∗) in (3.5), we know that
for any λ ∈ D and π ∈ Λ(v0,K,B1, B2, g), V v0,π(T ) ≤ V v0,π

λ (T ) and D = V v0,π
λ (T ) ∈ Cλ(v0, g).

Hence, Lemma 3.4.2 yields the weak duality relation

Φ(v0) = sup
π∈Λ(v0,K,B1,B2,g)

E[U(V v0,π(T ))]

≤ sup
π∈Λ(v0,K,B1,B2,g)

E[U(V v0,π
λ (T ))]

≤ sup
D∈Cλ(v0,g)

E[U(D;B1, B2)] = Φ̃λ(v0) ∀λ ∈ D. (3.6)

To further develop this notion of duality, we aim to find a λ∗ ∈ D which achieves equality in
the above relation, i.e Φ(v0) = Φ̃λ∗(v0), and the optimal portfolio processes for (P) and (P̃λ∗)
coincide. This is the case if λ∗ satisfies a similar slackness condition as Condition (B) from [17]
(resp. (B̃) from [34]).

Lemma 3.4.3. Let λ∗ ∈ D, πλ∗ ∈ Λλ∗ such that D∗
λ = V

v0,πλ∗
λ∗ is optimal for (P̃λ∗). If further

v0 ≤ vλ∗(B2), πλ∗ ∈ K and δK(λ∗(t)) + πλ∗(t)′λ∗(t) = 0 L[0, T ] ⊗Q− a.e., (3.7)

then πλ∗ is admissible and optimal for the primal problem (P) and Φ(v0) = Φ̃λ∗(v0).
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Equation (3.7) can be seen as an analogue of the KKT condition (Corollary 2.1.30) for allocation
constrained portfolio optimization problems. In the same way, Lemma 3.4.3 only provides a
sufficient condition under which the optimal portfolio for (P) in M and (Pλ∗) in Mλ∗ coincide,
but does not provide a constructive way of finding the ‘correct’ λ∗ ∈ D. However, we realize
if λ∗ ∈ D satisfies the requirements of Lemma 3.4.3, then it minimizes Φ̃λ(v0) over λ ∈ D and
therefore can be regarded as the solution to a dual minimization problem

(DK)
{

ΨDK = inf
λ∈D

Φ̃λ(v0), (3.8)

where the duality is now induced by the allocation constraints K. As a matter of fact, under
some regularity conditions, the converse statement is also true and (3.7) is satisfied if λ = λ∗

is optimal for (DK). To prove this statement formally, we start by characterizing the optimal
terminal wealth for (P̃λ) by following the same methodology as in Section 3.3. For a given
λ ∈ D, we define

gλ : R2 → R, gλ(x) =

(
−Z̃λ(T )x
−g(x;B2)

)
and again make use of the dual optimization problem associated with (P̃λ) and its expected
value constraints.

Theorem 3.4.4. Let λ ∈ D, v0 ≤ vλ(B2), y
∗ = (y∗0, y

∗
1)′ ∈ [0,∞)2 be optimal for the dual

minimization problem

(DV
λ )

{
ΨDV

λ
= inf

y=(y0,y1)′∈[0,∞)2

(
E
[
U∗
gλ

(y;B1, B2)
]

+ y0v0

)
.

If Igλ(y∗;B1, B2) ∈ L2
Q and

y → E [gλ(Igλ(y;B1, B2))]
′ ∆y

is usc at y = y∗ for all ∆y ∈ R × [0,∞), then Igλ(y∗;B1, B2) is optimal for (Pλ) and
y∗1E [Igλ(y∗;B1, B2)] = 0.

Combining the dual optimization problems (DK) and (DV
λ ) yields a joint duality relation

between the allocation constraints and wealth constraints

Φ(v0)
(DK)

≤ inf
λ∈D

Φ̃λ(v0)
(DV

λ )

≤ inf
λ∈D

(
inf

y=(y0,y1)′∈[0,∞)2

(
E
[
U∗
gλ

(y;B1, B2)
]

+ y0v0

))
(3.9)

and naturally leads to the joint dual optimization problem

(DK,V)


ΨK,V

D = inf
λ∈D

(
inf

y=(y0,y1)′∈[0,∞)2

(
E
[
U∗
gλ

(y;B1, B2)
]

+ y0v0

))
= inf

y=(y0,y1)′∈[0,∞)2

(
inf
λ∈D

(
E
[
U∗
gλ

(y;B1, B2)
] )

+ y0v0

) .

(DK,V) is a dual with respect to (P), where the duality is induced jointly by the allocation
constraints (K) and the wealth constraints (budget equation, B1, B2 and g). Moreover, as
we can change the order of minimization in (DK,V), we know that if (λ∗, y∗) ∈ D × [0,∞)2 is
optimal for (DK,V), then y∗ is optimal for (DV

λ∗) and λ∗ minimizes E
[
U∗
gλ

(y∗;B1, B2)
]
. The

latter minimization plays an important role in Section 3.5.

To ensure that the optimal values (λ∗, y∗) for the joint dual (DK,V) actually yield an optimal
solution to the primal jointly constrained portfolio optimization problem (P) (i.e., Φ(v0) =
ΨDK,V ), it is necessary that the allocation unconstrained optimization problem (P̃λ∗) in Mλ∗

is solvable by the dual (DV
λ∗) (i.e., (λ∗, y∗) satisfies the requirements of Theorem 3.4.4). To this

end, we define the subset of dual processes D′ ⊂ D such that every λ ∈ D′ satisfies
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• v0 ≤ vλ(B2),

• there exist (y∗0, y
∗
1)′ ∈ [0,∞)2 which is optimal for (DV

λ ),

• Igλ(y∗;B1, B2) ∈ L2
Q

• y → E [gλ(Igλ(y;B1, B2))]
′ ∆y is usc at y = y∗ for all ∆y ∈ R× [0,∞).

For λ∗ ∈ D′, we can now define a set of equivalent conditions which ensure that the optimal
portfolios for (Pλ∗) and (P) coincide.

Optimality Conditions for (P): For π∗ ∈ Λ(v0,K,B1, B2, g), λ∗ ∈ D′ with optimal y∗ ∈ [0,∞)2

for (DV
λ∗), we define the following conditions:

(Ã) ∀π ∈ Λ(v0,K,B1, B2, g) we have

E[U(V v0,π(T ))] ≤ E[U(V v0,π∗
(T ))].

(B̃) The optimal portfolio process πλ∗ for (Pλ∗) satisfies:

πλ∗ ∈ K and [δK(λ∗(t)) + πλ∗(t)′λ∗(t)] = 0 L[0, T ] ⊗Q− a.e..

(C̃) ∀λ ∈ D we have
Φ̃λ∗(v0) ≤ Φ̃λ(v0).

(D̃) ∀λ ∈ D we have
E
[
U∗
gλ∗

(y∗;B1, B2)
]
≤ E

[
U∗
gλ

(y∗;B1, B2)
]
.

(Ẽ) ∀λ ∈ D we have
E
[
Igλ∗ (y∗;B1, B2)Z̃λ(T )

]
≤ v0.

Theorem 3.4.5. Let λ∗ ∈ D′. Then, Conditions (B̃), (C̃), (D̃) and (Ẽ) are equivalent and
imply (Ã) with π∗ := πλ∗.

Due to Lemma 2.1.17, (iii), it is sufficient in the proof of (D̃) ⇒ (B̃) to consider only ν ∈ D with
∥ν(t)∥ ≤ 1 L[0, T ] ⊗ Q − a.e. and ν(t) = −λ∗(t)/max(1, ∥λ∗(t)∥). Even though this does not
affect the proof of Theorem 3.4.5 in any meaningful way, it has the satisfying consequence that
any local minimizer λ∗ of Conditions (C̃) or (D̃) is indeed a global minimizer over the whole
space D and satisfies Condition (B̃). This will be useful in a verification theorem in Section
3.5.

Corollary 3.4.6. Let λ∗ ∈ D′. If Condition (B̃), (C̃), (D̃) or (Ẽ) is satisfied for all λ ∈ D with
∥λ∗(t)− λ(t)∥ ≤ 1 L[0, T ]⊗Q− a.e., then (B̃), (C̃), (D̃) and (Ẽ) are satisfied for all λ ∈ D. In
particular, π∗ := πλ∗ is optimal for (P).

The optimality conditions (B̃) − (Ẽ) offer alternative ways to find and verify the optimality of
a portfolio process π∗ for the fully constrained portfolio optimization problem (P) in M. The
central underlying assumption is that we can find a different market with adjusted market coef-
ficients Mλ∗ , where the optimal portfolio πλ∗ for the allocation unconstrained problem (P̃λ∗)
coincides with π∗. According to Condition (B̃), π∗ and πλ∗ coincide if the wealth processes
V v0,πλ∗ in M and V

v0,πλ∗
λ∗ in Mλ∗ are equal. Hence, the change in market coefficients from the

original M to Mλ∗ must not have any impact on the portfolio performance of π∗. Following
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Condition (C̃), we additionally know that Mλ∗ yields the least expected utility under all Mλ,
λ ∈ D, if the investor follows an optimal strategy. In this sense, Mλ∗ has the least favourable
market coefficients from the investor’s perspective. Condition (D̃) is in fact just a dual refor-
mulation of Condition (C̃), where the duality is now induced not by the allocation constraints
K, but by the expectation constraint g on terminal wealth and the budget equation. As we
will see in Section 3.5, Condition (D̃) proves to be particularly useful in explicitly determining
λ∗ and π∗. Lastly, Condition (Ẽ) states that there exists no market Mλ, where hedging the
optimal terminal wealth D∗

λ∗ := V
v0,πλ∗
λ∗ (T ) = Igλ∗ (y∗;B1, B2) for (P̃λ∗) is more expensive than

in Mλ∗ . Again, the market coefficients of Mλ∗ can be regarded as least favourable for the
investor. This is a special case of more general results about hedging contingent claims under
allocation constraints, which is discussed in great detail in [18].

3.5 The Optimal Auxiliary Market

In this section we illustrate how one can make use of the equivalent optimality conditions
derived in the previous section to solve the fully constrained portfolio optimization problem (P)
in a Black-Scholes market. We first aim to identify the minimizing λ∗ for every y∗ ∈ [0,∞)2

in Condition (D̃) in Section 3.4, by considering an associated HJB PDE. If U∗
gλ

satisfies a
polynomial growth condition for deterministic λ ∈ D and the allocation constraint K is a convex
cone, then the minimizing λ∗ ∈ D is deterministic, independent of y∗ and can be determined as
the optimizer of a deterministic convex optimization problem. This is shown in Section 3.5.2.

Throughout the whole of Section 3.5 we make the following additional assumptions about the
market coefficients and bounds on terminal wealth:

Assumption 3.5.1 (Standing Assumption Section 3.5). The market coefficients r, µ and Σ
as well as the bounds on terminal wealth 0 ≤ B1 < v0e

rT < B2 ≤ ∞ are constants and δK is
continuous on XK .

Note however that a generalization to deterministic and continuous r(t), µ(t) and Σ(t) is
straightforward. To include the case B1 = 0 or B2 = ∞ one has to impose additional growth
assumptions on Igλ∗ for the (unknown!) λ∗ ∈ D which satisfies condition (D̃). Assumption
3.5.1 allows the use of the ensuing dynamic programming techniques, which lead to closed-form
solutions to the primal, fully constrained portfolio optimization problem (P) for convex cone
allocation constraints K.

3.5.1 Optimization Problem Associated with Condition D

By interchanging the order of minimization in (DK,V) or by considering Condition (D̃), we
have seen that the ‘optimal’ λ∗, for which the optimal portfolios for (P) and (P̃λ∗) coincide, is
the solution to the ‘inner’ optimization problem

(Dy)
{

ΨDy = inf
λ∈D

E
[
U∗
gλ

(y;B1, B2)
]
,

for the specific choice y = y∗, where y∗ is optimal for (DV
λ∗). In particular, y∗ already depends

on λ∗. Hence, while the optimizer λ∗(y∗) for (Dy∗) is optimal in the sense of Condition (D̃),
this may not be the case for general λ∗(y) and y ∈ [0,∞)2. Irrespectively, a characterization of
the minimizer λ∗(y) for (Dy) for arbitrary y ∈ [0,∞)2 may still yield valuable insights for the
solution of the primal portfolio optimization problem (P). Recall that the generalized conjugate
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U∗
gλ

(y;B1, B2) only depends on λ ∈ D through the terminal value Z̃λ(T ) ∈ (0,∞). Hence, by
conditioning on this value, we obtain a deterministic function

U∗
gλ

(y;B1, B2)
∣∣∣
Z̃λ(T )=z

= sup
B1≤x≤B2

(
U(x) − y′

(
xz
g(x)

))
=: U∗

ĝ (y;B1, B2, z),

with ĝ(x) = ĝ(x; z) := (−xz; g(x;B2))
′. Therefore, we can view (Dy) as a stochastic control

problem with state process Z̃λ, control process λ ∈ D and minimization objective U∗
ĝ (y;B1, B2, Z̃λ(T )).

The HJB equation associated with (Dy) is then

0 = Gt(t, z; y) − rzGz(t, z; y)

+ inf
x∈XK

(
− δK(x)zGz(t, z; y) +

1

2
∥γ + Σ−1x∥2z2Gzz(t, z; y)

)
(3.10)

G(T, z; y) = U∗
ĝ (y;B1, B2, z).

For the remainder of this section, we focus on the HJB equation (3.10) and show that its
solution, provided it satisfies some regularity conditions, induces a solution to the (inner) dual
optimization problem (Dy). Assuming that G solves (3.10) and is strictly decreasing and convex
in z, there exists a minimizer λ∗(t, z; y), which attains the infimum in (3.10). By slightly
rewriting the PDE, one can see that λ∗(t, z; y) actually minimizes

λ∗(t, z; y) = argmin
x∈XK

(
z2

2
∥γ + Σ−1x∥2Gzz(t, z; y) − δK(x)zGz(t, z; y)

)
Gz<0

= argmin
x∈XK

(
−1

2

zGzz(t, z; y)

Gz(t, z; y)︸ ︷︷ ︸
=:RRA(t,z;y)≥0

∥γ + Σ−1x∥2 + δK(x)
)

(3.11)

= argmin
x∈XK

(
RRA(t, z; y)∥γ + Σ−1x∥2 + δK(x)

)
. (3.12)

This means that the (non-negative) relative risk aversion RRA(t, z; y) of G with respect to z
serves as a weighting factor in the minimization between the non-negative components ∥γ +
Σ−1x∥2 and δK(x).

Lemma 3.5.2. Let G = G(t, z; y) be continuously differentiable in t ∈ [0, T ), twice continu-
ously differentiable in z ∈ (0,∞), be convex and strictly decreasing in z and a solution to the
HJB equation (3.10). Then there exists a corresponding minimizing argument λ∗(t, z; y) (as in
(3.11)), which is uniformly bounded in (t, z; y).

Using this observation and assuming polynomial growth, convexity and monotonicity conditions
in z, we are able to locally prove a verification theorem for the HJB equation (3.10). Having
the minimization property locally is sufficient for our purposes as noted in Corollary 3.4.6.

Theorem 3.5.3 (Verification Theorem). 123
Let Assumption 3.5.1 hold, let y ∈ [0,∞)2 be fixed. Further, let G = G(t, z; y) be continuously
differentiable in t ∈ [0, T ), twice continuously differentiable in z ∈ (0,∞), be a solution to the
HJB equation (3.10), be convex, strictly decreasing and satisfy the polynomial growth condition

G(t, z; y) ≤ C
(
z−α + zα), for some α > 0, C > 0.
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Further, let

λ∗(t, z; y) := argmin
x∈XK

(
z2

2
∥γ + Σ−1x∥2Gzz(t, z; y) − δK(x)zGz(t, z; y)

)
, (3.13)

be uniformly bounded in (t, z; y). Define the stochastic process λ∗ =
(
λ∗(t)

)
t∈[0,T ]

in feedback-

form as
λ∗(t) = λ∗(t, Z̃λ∗(t); y).

Then, ∀λ ∈ D with ∥λ(s) − λ∗(s)∥ ≤ 1 and (t, z) ∈ [0, T ] × (0,∞):

G(t, z; y) ≤ E[U∗
gλ

(y;B1, B2)|Z̃λ(t) = z]

and
G(t, z; y) = E[U∗

gλ∗
(y;B1, B2)|Z̃λ∗(t) = z].

Note that Theorem 3.5.3 does not provide verification for the fully constrained portfolio optim-
ization problem (P), but only for the inner dual optimization problem (Dy). We still need to
determine the corresponding ‘outer’ minimizer y∗ and show that the process λ∗ is indeed an
element of D′.

3.5.2 Convex Cone Constraints

In this section we solve the HJB equation (3.10) and determine the pointwise minimizer λ∗(t, z; y)
(3.13) under the assumption that K is a convex cone and the generalized conjugate satisfies a
polynomial growth condition in z. If |U(B1)| and |U(B2)| are finite, then this growth condition
is always satisfied. We then use the verification theorem from Section 3.5.1 to link the pointwise
minimizer λ∗(t, z; y) to optimality Condition (D̃) and finally characterize the optimal terminal
wealth for (P) in the original market M as the optimal terminal wealth for P̃λ∗ in the auxiliary
market Mλ∗ .

As per Lemma 2.1.17, (iv), the allocation constraints K form a convex cone if and only if
δK(x) = 0 for all x ∈ XK . In this special case the HJB equation (3.10) simplifies to

0 = Gt(t, z; y) − rzGz(t, z; y) +
z2

2
inf

x∈XK

(
∥γ + Σ−1x∥2Gzz(t, z; y)

)
(3.14)

G(T, z; y) = U∗
ĝ (y;B1, B2, z).

If G is convex, the infimum is attained by the pointwise minimizer

λ∗(t, z; y) := λ∗ := argmin
x∈XK

∥γ + Σ−1x∥2,

which is independent of (t, z; y). Further, the HJB PDE reduces to a linear PDE, which can
be solved through a transformation to the well-studied heat equation (see e.g. [6]). For this
purpose, recall the following result about the heat equation:

Lemma 3.5.4. Consider a real function f : R→ R for which exist constants C0, α0 such that

|f(u)| ≤ C0e
α0u2 ∀u ∈ R. (3.15)

Then, for all 0 < T < 1
4α0

the function F : (0, T ] ×R→ R defined by

F (τ, u) =
1√
4πτ

∫
R

e−
(u−x)2

4τ f(x)dx =
1√
4πτ

∫
R

e−
x2

4τ f(u− x)dx,
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is in C(1,2)((0, T ] ×R) and is a solution to the heat equation

Fτ (τ, u) = Fuu(τ, u) ∀(τ, u) ∈ (0, T ] ×R (3.16)

F (0, u) := lim
τ↓0

F (τ, u) = f(u) for almost all u ∈ R.

Lemma 3.5.5. Let y ∈ [0,∞)2 and let U∗
ĝ (y; , B1, B2, z) satisfy a polynomial growth condition

in z:

|U∗
ĝ (y;B1, B2, z)| ≤ C

(
z−α + zα

)
, ∀z ∈ (0,∞) (3.17)

and some constants C, α > 0. If K is a convex cone, then

G(t, z; y) :=
1√

4π(T − t)

∫
R

e
− x2

4(T−t)U∗
ĝ

(
y;B1, B2, zye

−(r+ 1
2
∥γλ∗∥2)(T−t)− ∥γλ∗∥

√
2

x
)
dx

is continuously differentiable in t, twice continuously differentiable in z, convex in z, strictly
decreasing in z and satisfies the HJB equation (3.10) with

λ∗(t, z; y) := λ∗ := argmin
x∈XK

∥γ + Σ−1x∥2 and γλ∗ := γ + Σ−1λ∗.

Further, there exists a constant C̃ such that G satisfies the polynomial growth condition1

|G(t, z; y)| ≤ C̃
(
z−α + zα

)
∀z ∈ (0,∞). (3.18)

It is important to emphasize that the previous techniques heavily relied on K being a convex
cone (hence δK(λ∗) = 0) as this simplifies the HJB equation (3.10) to a linear PDE. For more
general allocation constraints with δK(λ∗) ̸= 0, the PDE may become non-linear and extremely
difficult to solve.

The polynomial growth condition (3.17) is designed in such a way that it is satisfied if U(x) −
y1g(x) is a power utility function. In particular, if U and −g are bounded from above and below
by a power utility function, then we can show that (3.17) is satisfied. Further, if B2, U(B2) and
g(B2) are finite, then the growth condition is satisfied trivially.

Lemma 3.5.6. Consider U ∈ U , (y0, y1)
′ ∈ [0,∞)2 and let Assumption 3.5.1 be satisfied. If

one of the conditions

(i) There exist constants C− > 0, C+ > 0 and b− < 0, b+ > 0 such that

C−

(
1

b−
xb− − 1

)
≤ min (U(x),−g(x)) and max (U(x),−g(x)) ≤ C+

(
1

b+
xb+ + 1

)
.

(ii) C = |U(B2)| + y0(B1 +B2) + y1|g(B2)| <∞

is satisfied, then U∗
ĝ satisfies the growth condition (3.17).

Corollary 3.5.7. Let K be a convex cone, let Assumption 3.5.1 hold and either (i) or (ii) from
Lemma 3.5.6 be satisfied. If

λ∗ := argmin
x∈XK

∥γ + Σ−1x∥2 (3.19)

is an element of D′, then λ∗ satisfies condition (D̃) and the optimal portfolio for the wealth-
constrained portfolio optimization problem (P̃λ∗) is optimal for the fully constrained portfolio
optimization problem (P). In particular, if y∗ is optimal for (DV

λ∗), then the optimal terminal
wealth for (P) is D∗ = Igλ∗ (y∗;B1, B2).
1Note that the constants C, C̃ and α are allowed to depend on y, B1 and B2.
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Remark 3.5.8. If K is a convex cone, we have δK(x) = 0 for all x ∈ XK and thus

V v0,0(T ) = v0P0(T ) = v0P
λ
0 (T ) = V v0,0

λ (T ) ∀λ ∈ D.

According to Assumption 3.2.1, this implies

vλ(B2) = E[B2Z̃λ(T )] > E[V v0,0(T )Z̃λ(T )] = E[V v0,0
λ (T )Z̃λ(T )] = v0.

Moreover, if B2 < ∞ under Assumption 3.5.1, the maximizing arguments Igλ(y;B1, B2) is
bounded from above (by B2 <∞) Q-a.s. for all λ ∈ D. Thus,

E
[
Igλ(y;B1, B2)

2
]
<∞, and E

[
Igλ(y;B1, B2)Z̃λ(T )

]
<∞ ∀λ ∈ D.

Therefore, λ∗ (as in Corollary 3.5.7) is in D′ if there exists a minimizer y∗ for (DV
λ∗) and

E[gλ∗(Igλ∗ (y;B1, B2))]
′∆y is usc at y = y∗ for all ∆y ∈ R× [0,∞).

3.5.3 Examples

In this section we consider examples where we can characterize the optimal terminal wealth for
(P) explicitly, i.e. up to the deterministic minimizers (y∗0, y

∗
1) ∈ [0,∞)2 and λ∗ ∈ XK . For this

purpose we restrict our analysis to power utility functions of the form

U(x) =


1
bx

b, x > 0

lim inf
x↓0

1
bx

b, x = 0

−∞, x < 0

with b ∈ (−∞, 1)\{0}. (3.20)

This decision is motivated partially by (i) in Lemma 3.5.6, but it is also necessary to ensure the
analytical tractability of the maximizing argument Igλ∗ . We begin by disregarding the expected
value constraints, i.e., setting g ≡ 0, which leaves us in the setting of [34]. We then increase the
complexity by additionally considering Value-at-Risk (‘VaR’) constraints and expected shortfall
(‘ES’) constraints as natural and relevant practical examples. Further, for λ∗ as in (3.19) and
y0 > 0, we define the expression

I(y0) =
(
y0Z̃λ∗(T )

) 1
b−1

= argmax
x≥0

(
1

b
xb − y0Z̃λ∗(T )x

)
.

If y0 is chosen such that E[I(y0)Z̃λ∗(T )] = v0, then I(y0) is the optimal terminal wealth for
(P) if there are no wealth constraints (i.e., B1 = 0, B2 = ∞ and g ≡ 0). It will be useful to
express Igλ∗ in terms of I, when we add wealth constraints in the subsequent analysis.

We summarize the additional technical requirements for this Section in Assumption 3.5.9.

Assumption 3.5.9. K ⊂ Rd is a convex cone, U is a power utility function as in (3.20) and
λ∗ is defined as in (3.19).

No Expected Value Constraints: We begin by assuming that there are no expected value
constraints, i.e., that g ≡ 0. In this simple context, U(x)−y0Z̃λ∗(T )x−y1g(x) is a strictly concave
function in x for all (y0, y1)

′ ∈ [0,∞)2 and therefore the maximizing argument Igλ∗ (y;B1, B2)
can be obtained by capping the global maximizing argument I(y0) at the boundaries B1 and
B2.
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Example 3.5.10. 1
Let Assumptions 3.5.1 and 3.5.9 hold. If g ≡ 0 and y∗ = (y∗0, 0)′ ∈ (0,∞) × [0,∞) is optimal
for (DV

λ∗), then the optimal terminal wealth for (P) is

D∗ = Igλ∗ (y∗;B1, B2) = B1 +
(
I(y∗0) −B1

)+
−
(
I(y∗0) −B2

)+
=: Cap

(
I(y∗0), B1, B2

)
.

Z̃λ ∗(T)

I g
λ
∗
(y

)
Igλ ∗ (y)

Igλ ∗ (y;B1, B2)

B1, B2

Figure 3.2: Illustration of the dependence of the optimal terminal wealth D∗ on Z̃λ∗(T ) without
expected value constraints and for a given constant value of y∗0 (cf. Example 3.5.10).

Value-at-Risk Constraints: For constants B1 < BV aR < B2 and ϵ > 0 we define the VaR
constraint as

g(x) = 1{x<BV aR} − ϵ. (3.21)

The VaR is a risk measure which is frequently used by practitioners in risk management and
is deeply integrated into financial regulations (e.g. in Solvency II and Basel III). The VaR
constraint restricts the probability that the investor’s terminal wealth falls below BV aR to a
value of at most ϵ. Hence, the VaR constraint restricts the portfolio loss L = −(V v0,π(T )−B) in
comparison to a benchmark B ∈ R to at most B −BV aR in (1− ϵ)% of all scenarios. However,
conditioned on a loss of more than B −BV aR occurring, the VaR constraint does not impose a
restriction on the magnitude of this loss. Further, the VaR is not a convex risk measure (i.e. g is
not convex) and thus it is possible that the convex combination of two terminal payoffs violates
the VaR constraint, even though the individual payoffs satisfy the VaR constraint. This can be
regarded as a punishment for diversification and thus poses another weakness of VaR.

Example 3.5.11. 1
Let Assumptions 3.5.1 and 3.5.9 hold. If g is a VaR constraint (as in (3.21)), B1 = 0, B2 = ∞,
and y∗ = (y∗0, y

∗
1)′ ∈ (0,∞) × [0,∞) is optimal for (DV

λ∗), then the optimal terminal wealth for
(P) is

D∗ = Igλ∗ (y∗) =


I(y∗0), BV aR < I(y∗0)

BV aR, I(y∗0) ≤ BV aR & 1−b
b I(y∗0)b + y∗0Z̃λ∗(T )BV aR < 1

bB
b
V aR + y∗1

I(y∗0), I(y∗0) ≤ BV aR & 1−b
b I(y∗0)b + y∗0Z̃λ∗(T )BV aR ≥ 1

bB
b
V aR + y∗1

As U(x) − y0Z̃λ∗(T )x − y1g(x) is no longer concave in x (note the discontinuity of g(x) at
x = BV aR), the maximizing argument Igλ∗ (y;B1, B2) can no longer be obtained by capping
Igλ∗ (y) at the boundaries B1 and B2.
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Example 3.5.12. 1
Let Assumptions 3.5.1 and 3.5.9 hold. If g is a VaR constraint (as in (3.21)) and y∗ = (y∗0, y

∗
1)′ ∈

(0,∞) × [0,∞) is optimal for (DV
λ∗), then the optimal terminal wealth for (P) is

D∗ = Igλ∗ (y∗;B1, B2) =


B1, Igλ∗ (y∗) < B1 & Z̃λ∗(T ) ≥

1
b
(Bb

V aR−Bb
1)+y∗1

y∗0(BV aR−B1)

BV aR, Igλ∗ (y∗) < B1 & Z̃λ∗(T ) <
1
b
(Bb

V aR−Bb
1)+y∗1

y∗0(BV aR−B1)

Igλ∗ (y∗), B1 ≤ Igλ∗ (y∗) ≤ B2

B2, B2 < Igλ∗ (y∗).

Z̃λ ∗(T)

I g
λ
∗
(y

)

I(y0)
Igλ ∗ (y)

Igλ ∗ (y;B1, B2)

BVaR

B1, B2

(a)

Z̃λ ∗(T)

I g
λ
∗
(y

)

I(y0)
Igλ ∗ (y)

Igλ ∗ (y;B1, B2)

BVaR

B1, B2

(b)

Figure 3.3: Illustration of the dependence of the optimal terminal wealth D∗ on Z̃λ∗(T ) with
VaR constraints and a given constant value of y∗ (cf. Example 3.5.12). In Figure 3.3(a), BV aR

is large enough so that Igλ∗ (y∗) < B1 already implies Z̃λ∗(T ) ≥
1
b
(Bb

V aR−Bb
1)+y∗1

y∗0(BV aR−B1)
and thus the

pointwise constraints B1, B2 just cap off Igλ∗ (y∗). This is is no longer the case in Figure 3.3(b),
as BV aR is substantially smaller.

Expected Shortfall Constraints: For constants B1 < BES < B2 and ϵ > 0 we define the ES
constraint as

g(x) = (BES − x)1{x<BES} − ϵ. (3.22)

The ES is an alternative risk measure which mitigates some of the main weaknesses of VaR.
The ES constraint restricts the average portfolio loss in comparison to a benchmark BES > 0, if
the loss is positive, to at most ϵ. Therefore, in contrast to the VaR constraint, the ES constraint
also takes the magnitude of the loss into account, if it occurs. Further, the ES is a convex risk
measure and thus always encourages diversification of payoffs. For these reasons, ES has been
proposed as an alternative tool for financial risk management and its advantages as well as some
of its drawbacks have been discussed by e.g. [2] [44] and [86].

Example 3.5.13. 1
Let Assumptions 3.5.1 and 3.5.9 hold. If g is an ES constraint (as in (3.22)), B1 = 0, B2 = ∞,
and y∗ = (y∗0, y

∗
1)′ ∈ (0,∞) × [0,∞) is optimal for (DV

λ∗), then the optimal terminal wealth for
(P) is

D∗ = Igλ∗ (y∗) =


I(y∗0), BES < I(y∗0),

BES , I(y∗0) ≤ BES ≤ I
(
y∗0 −

y∗1
Z̃λ∗ (T )

)
,

I
(
y∗0 −

y∗1
Z̃λ∗ (T )

)
, I

(
y∗0 −

y∗1
Z̃λ∗ (T )

)
< BES .
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In contrast to the VaR constraint, U(x)− y0Z̃λ∗(T )x− y1g(x) remains strictly concave in x > 0
for all y = (y0, y1)

′ ∈ [0,∞)2 and thus Igλ∗ (y;B1, B2) can again be obtained by capping Igλ∗ (y)
at the boundaries B1 and B2.

Example 3.5.14. 1
Let Assumptions 3.5.1 and 3.5.9 hold. If g is an ES constraint (as in (3.22)) and y∗ = (y∗0, y

∗
1)′ ∈

(0,∞) × [0,∞) is optimal for (DV
λ∗), then the optimal terminal wealth for (P) is

D∗ = Igλ∗ (y∗;B1, B2) = Cap(Igλ∗ (y∗), B1, B2).

Z̃λ ∗(T)

I g
λ
∗
(y

)

I(y0)
Igλ ∗ (y)

Igλ ∗ (y;B1, B2)

BES

B1, B2

Figure 3.4: Illustration of the dependence of the optimal terminal wealth D∗ on Z̃λ∗(T ) with
ES constraints and a given constant value of y∗ (cf. Example 3.5.14).

3.6 Conclusion

In this chapter, we extended the duality framework of [17] and [34] to include simultaneous
constraints on relative portfolio allocation and terminal wealth, where the constraints on wealth
may be defined pointwise, in expected value or both. Similar to the previous work in [34], we
were able to integrate the wealth constraints into the framework of [17] by defining a generalized
concave conjugate of the utility function and using it to generalize the well-known martingale
method for portfolio optimization in complete financial markets. Just as in [17], the developed
framework allows us to disregard the allocation constraints if the drift coefficients in the financial
market are adjusted suitably, i.e., if the ‘optimal’ auxiliary market Mλ∗ is considered. The
optimal auxiliary market can be determined by a set of equivalent optimality conditions, which
are induced by two distinct dual optimization problems which correspond to the allocation
constraints and the terminal wealth constraints. The optimal terminal wealth for this fully
constrained portfolio optimization problem can then be expressed as a deterministic function of
the pointwise bounds B1, B2 and the pricing kernel Z̃λ∗(T ) in the optimal auxiliary market Mλ∗ .
When assuming the dynamics of a Black-Scholes market, assuming that K is a convex cone and
assuming some additional regularity conditions, then the adjustments to the market coefficients
λ∗ can be determined as the minimizer of a deterministic convex optimization problem. We
illustrate our methodology for investors who face pointwise bounds on terminal wealth, Value-
at-Risk constraints and expected shortfall constraints.
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4 Constraints on Allocation in Stochastic
Factor Models

4.1 Introduction

In this chapter, we consider a portfolio optimization problem of an investor who trades in
continuous time and seeks to maximize his utility from terminal wealth at the end of a fi-
nite investment horizon. The investor is assumed to be risk-averse and his risk-preferences are
modelled by a power utility function. Our problem setting differs from the classic problem for-
mulated in [64] with respect to two main aspects: allocation constraints and market coefficients
dependent on a stochastic factor. Since Section 1.1, already provided an overview over the
relevant literature on allocation constraints, the following paragraph presents a brief overview
of the relevant literature with respect to stochastic factor market dynamics:

Modelling stochastic market coefficients as a function of an additional stochastic factor is a
natural extension to the classic Black-Scholes model which can capture some of the stylized facts
observed in the financial market. One of the earliest discussions of such models in a portfolio
optimization context was in [88], where the author was able to characterize the solution to the
associated HJB equation for a power-utility function in terms of a linear parabolic PDE. Further,
under the assumption of a global Lipschitz-condition on the market coefficients, a verification
result was proven. However, explicit closed-form expressions for the optimal allocation were only
given when the stochastic factor is completely uncorrelated with the financial market, i.e., when
the optimal allocation is myopic. If the stochastic factor correlates with the financial market,
closed-form expressions for the optimal allocation were recovered on individual occasions, e.g.,
in [20] and [53] for financial markets with stochastic short rate and in [56] for financial markets
with stochastic volatility. These advances required the solvability of certain underlying Riccati
ODEs. The seminal work of [61] unified these approaches by introducing a class of models where
the asset returns have a quadratic dependence on the stochastic factor. Within such quadratic
models, the author directly characterizes the HJB PDE as an exponentially quadratic function
of the stochastic factor with coefficients determined by the solution to a system of Riccati
ODEs. When reducing the framework of [61] to an affine dependence on the stochastic factor,
the results are closely related to affine term structure models of [26]. This affine reduction
proved to be particularly fruitful for portfolio optimization applications, see e.g. [46], [5] and
[30]. In addition, an extensive overview of related literature is given in [90].

Both allocation constraints and stochastic factor market dynamics result in the investor not
being able to replicate all measurable payoffs at the end of the investment horizon and therefore
standard martingale techniques cannot be employed to characterize the value function of the
optimization problem. Further, it is unclear if the Hamilton-Jacobi-Bellman PDE (‘HJB’ PDE)
of the optimization problem admits a smooth solution due to pointwise constraints on the
optimal relative portfolio allocation. Both aspects have only been studied simultaneously on rare
occasions. [71] used a logarithmic transformation to characterize the solution to the constrained
HJB PDE through the solution to a semi linear PDE. Assuming Lipschitz- and non-degeneracy
conditions on the stochastic factor, the existence of a smooth solution to the transformed PDE
can be guaranteed and closed-form expressions for the optimal portfolio can be given if the
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stochastic factor is uncorrelated with the financial market. In [21], semi-closed-form expressions
are provided for the optimal allocation for a market with generalized Vasicek short rate and
bounds on the portfolio allocation to a hedging instrument for interest-rate risk. [66] and
[91] develop numerical schemes for allocation constrained portfolio optimization problems in
jump-diffusion models, where the asset volatilities and jumps depend on an external stochastic
factor.

Our contribution to this literature is threefold. First, we present an approach to constrained
portfolio optimization that transforms the HJB PDE associated with the constrained portfolio
optimization problem into an equivalent dual PDE, which is the HJBI PDE associated with
a dual minimization problem akin to Condition (C) in [17] or Condition (C̃) from Chapter
3. However, unlike in [17], the validity of this method is not tied to the completeness of the
underlying financial market and can thus be applied in a broader context. Secondly, in the
spirit of [61], we derive a condition on the dynamics of the financial market and the allocation
constraints, which ensures that the value function of the optimal investment problem is expo-
nentially affine. Lastly, we provide expressions for the allocation constrained optimal allocation
in a market with multi-factor stochastic volatility of CIR-Type and multi-factor short rate of
OU-type. These expressions are explicit up to a deterministic minimizer and the solution of
a system of Riccati ODEs, which leads to a non-myopic optimal allocation if the stochastic
factor correlates with the financial market. In particular, the optimal allocation is generally
non-myopic.

The remainder of this chapter is structured as follows: The financial market model, the portfolio
optimization problem and the standing assumptions are introduced in Section 4.2. Afterwards,
in Section 4.3, we use a result from real constrained optimization to show that the constrained
HJB PDE associated with (P) is equivalent to the Hamilton-Jacobi-Bellman-Isaacs PDE (‘HJBI
PDE’) associated with a dual min-max problem and derive a condition under which the solution
to both PDEs is exponentially affine. The versatility and use of the derived condition is illus-
trated in examples with deterministic market coefficients, stochastic volatility and stochastic
short rate in Section 4.4. Finally, Section 4.5 concludes the chapter.

4.2 Setting

In this chapter, we consider a Markovian stochastic factor model, which is a similar setting as
in the introduction to the stochastic control approach in Section 2.3.2. Specifically, we assume
that there exist deterministic functions

µz : [0, T ] ×Rm → Rm, Σz : [0, T ] ×Rm → Rm×m, ρ : [0, T ] ×Rm → Rm×d (4.1)

r : [0, T ] ×R→ R, µ : [0, T ] ×Rm → Rd and Σ : [0, T ] ×Rm → Rd×d,

and an m-dimensional stochastic factor z which satisfies the SDE

dz(t) = µz(t, z(t))dt+ Σz(t, z(t))′dW z(t), z(0) = z0 ∈ R. (4.2)

such that the market coefficients in M are given as deterministic functions of (t, z(t)), i.e., we
have L[0, T ] ×Q-a.e.

ρ(t) = ρ(t, z(t)), r(t) = r(t, z(t)), µ(t) = µ(t, z(t)), and Σ(t) = Σ(t, z(t)). (4.3)

In particular, the risk-free asset P0, the risky assets P and the Brownian motions W, W z then
satisfy

dP0(t) = P0(t) · r(t, z(t))dt, P0(0) = 1,
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dP (t) = diag(P (t)) · [µ(t, z(t))dt+ Σ(t, z(t))dW (t)] , P (0) = 1 ∈ Rd,

d⟨W z
i ,Wj⟩t = ρij(t, z(t))dt, ∀1 ≤ i ≤ m, 1 ≤ j ≤ d.

We assume that the deterministic functions (4.3) are sufficiently regular such that the SDEs for
z, P0 and P admit a unique strong solution and fall within the market model of M defined in
Section 2.3. In particular, we require that Σ and the columns ρ1, ..., ρd of ρ satisfy

det (Σ(t, z(t))) ̸= 0 and ∥ρi(t, z(t))∥ ≤ 1 ∀i = 1, .., d hold L[0, T ] ⊗Q− a.e..

As working within this setting becomes very notation-heavy, we only write µz, Σz, ρ, r, µ,
Σ instead of µz(t, z(t)), Σz(t, z(t)), ρ(t, z(t)), r(t, z(t)), µ(t, z(t)), Σ(t, z(t)) if the context is
unambiguous to improve the clarity of presentation. In this sense, the wealth process V v0,π of
an investor with initial wealth v0 > 0 and trading in M according to a d-dimensional relative
portfolio process π ∈ Λ satisfies the usual SDE

V v0,π(0) = v0

dV v0,π(t) = V v0,π(t)
([
r + (µ− r1)′π(t)

]
dt+ π(t)′ΣdW (t)

)
and can be expressed in closed form as

V v0,π(t) = v0 exp
(∫ t

0
r + (µ− r1)′π(s) − 1

2
∥Σ′π(s)∥2ds+

∫ t

0
π(s)′ΣdW (s)

)
.

In this chapter we only consider allocation constraints , i.e., for a non-empty closed convex set
K ⊂ Rd, we define the set of admissible constrained portfolio processes as

Λ′ := Λ(K) :=
{
π ∈ Λ

∣∣ π(t) ∈ K L[0, T ] ⊗Q− a.e.
}
. (4.4)

For a power utility function U(v) = 1
bv

b with b < 1 and b ̸= 0 we then define the allocation
constrained primal portfolio optimization problem as

(P)

Φ(v0) = sup
π∈Λ
E
[
U(V v0,π(T ))

]
,

Λ′ =
{
π(t) ∈ K L[0, T ] ⊗Q− a.e.

∣∣ π ∈ Λ
}
.

Since we consider a Markovian setting and did not assume that m ̸= 0, we aim to solve (P) using
classic methods from stochastic optimal control and thus need to determine a solution to the
HJB PDE associated with (P). Even without the additional presence of allocation constraints,
this is notoriously difficult in the general setting described above. For this reason, we devote
the upcoming Section 4.3 to deriving an equivalent dual representation of the associated HJB
PDE, which leads to a dual approach to solving the allocation constrained portfolio optimization
problem (P). The dual representation is closely related to Condition (C̃) from Section 3.4.

The standing assumptions for this chapter are summarized below:

Assumption 4.2.1 (Standing Assumptions Chapter 4:). M is a stochastic factor model(
(4.2) and (4.3)

)
, (4.4) and U is a power utility function.

4.3 The Dual HJBI PDE

We approach (P) using classic methods from stochastic optimal control and frequently work
with so-called feedback controls π ∈ Λ, which are defined in feedback-form

π(t) =
¯
π(t, V v0,π(t), z(t)),
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for a deterministic measurable function
¯
π : [0, T ] × (0,∞) × Rm → Rd of the current state

(t, V v0,π(t), z(t)) of the financial market M. As these processes are uniquely defined through
the function

¯
π, we use the process π and the function

¯
π interchangeably. When a process is

specifically defined in feedback-form, we follow the notation in [39] and denote this fact by a
‘lower bar’, i.e.,

¯
π. The set of admissible unconstrained Markovian controls is thus denoted by

¯
Λ and the wealth-process corresponding to a Markovian control

¯
π is denoted by V v0,

¯
π. The

remaining notation will carry over analogously. Further, we also introduce the generalized
primal portfolio optimization problem (P(t,v,z)) as

(P(t,v,z))

Φ(t, v, z) = sup
π∈Λ′(t)

E
[
U(V v0,π(T ))

∣∣ V v0,π(t) = v, z(t) = z
]

Λ′(t) =
{(
π(s)

)
s∈[t,T ]

∣∣ π ∈ ΛK

}
.

Then, the Hamilton-Jacobi-Bellman equation (‘HJB equation’) associated with (P(t,v,z)) is given
by

0 = sup
π∈K

{
Gt + v

[
r + (µ− r1)′π

]
Gv +

1

2
v2∥Σ′π∥2Gvv + (µz)′ (∇zG)

+ v
(
ΣzρΣ′π

)′∇z (Gv) +
1

2
Trace

[
Σz (Σz)′∇2

zG
] }

= Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v sup
π∈K

{
(µ− r1)′πGv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
(4.5)

G(T, v, z) = U(v),

Any (sufficiently regular) solution G to (4.5) yields a candidate optimal Markovian control
through the maximizing argument

¯
π∗(t, v, z) = argmax

π∈K

{
(µ− r1)′πGv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
. (4.6)

4.3.1 Dual Approach to Allocation Constrained Portfolio Optimization

In this subsection, we use Corollary 2.1.32 to derive an equivalent dual representation of the
HJB equation (4.5), which can be regarded as the Hamilton-Jacobi-Bellman-Isaacs equation
(‘HJBI equation’) associated with a dual optimization problem over a certain class of stochastic
processes. This dual optimization problem as well as our solution approach to constrained
portfolio optimization will closely resemble optimality Condition (C̃) from Section 3.4 (resp.
Condition (C) from [17]). However, unlike in Chapter 3, we arrive at this approach applying
duality arguments directly to the pointwise optimization on the level of the HJB PDE (4.5)
rather than on the level of stochastic processes. This reduces the level of technicality involved
and removes the necessity for market completeness and the solvability of the wealth-constrained
dual problem (DV

λ∗) as central underlying assumptions.

Lemma 4.3.1. (Dual HJBI PDE) 1
Let G ∈ C(1,2,2)([0, T ] × (0,∞) ×Rm) be strictly concave and strictly increasing in the second
component v. Then, G is a solution to (4.5) if and only if G(T, v, z) = U(v) and

0 = Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]
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+ v inf
λ∈Rd

sup
π∈Rd

{ [
δK(λ) + (µ+ λ− r1)′π

]
Gv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
(4.7)

= Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

{
δK(λ)Gv −

1

2

1

vGvv
∥Σ−1 [µ+ λ− r1]Gv + (Σzρ)′∇z (Gv) ∥2

}
.

The dual PDE (4.7) is the HJBI PDE (see e.g. Section 4.2 in [45]) associated with the min-max
stochastic control problem

inf
λ∈D

sup
π∈Λ

E
[
U
(
V v0,π(T ) · exp

(∫ T

0
λ(t)′π(t) + δK(λ(t))dt

)
︸ ︷︷ ︸

=:V
v0,π
λ (T )

)]
, (4.8)

where the dual process λ = (λ(t))0≤t≤T is taken from the set of progressively measurable
processes (cf. Section 3.4)

D =
{
λ =

(
(λ1(t), ..., λd(t))′

)
t∈[0,T ]

prog. measurable
∣∣∣

sup
0≤t≤T

∥λ(t)∥2 <∞ Q-a.s., sup
0≤t≤T

δK(λ(t)) <∞ Q-a.s.
}
.

Just as with portfolio processes, we refer to dual processes defined in feedback form λ(t) =

¯
λ(t, V v0,π

λ (t), z(t)), for a deterministic measurable function
¯
λ, as Markovian dual controls. Ana-

logously, when specifically referring to Markovian dual controls, we write ‘
¯
λ’ and collect all

admissible Markovian controls in D̄.

Although intuitively appealing, the relationship between HJB(I) PDEs and the associated op-
timization problems still requires formal mathematical justification via verification theorems.
Due to the generality of the setting considered in this chapter, we can only provide general
verification theorems under additional assumptions on the candidate optimal controls

¯
π∗ (and

¯
λ∗), the solution G to the HJB(I) PDE and the financial market M. Verifying such conditions
is typically only feasible in more narrowly focussed settings (see e.g. Corollary 4.4.3 and 4.4.10
in Section 4.4).
Here, we make the relation between the PDE (4.7) and the dual control problem (4.8) more
precise, by proving a verification theorem, which relies on an additional uniform integrability
condition (UIλ) (compare to e.g. Definition 4.2 in [56]).

Condition (UIλ). For given n ∈ N, t ∈ [0, T ], G ∈ C(1,2,2)([0, T ] × (0,∞) × Rm), λ ∈ D,
π ∈ Λ we define the stopping time τλn,t = min(T, τ̂λn,t), with

τ̂λn,t = inf
{
t ≤ u ≤ T

∣∣∣ ∫ u

t

(
V v0,π
λ (s) · ∥Σ(s, z(s))′π(s)∥ ·Gv(s, V v0,π

λ (s), z(s))
)2
ds ≥ n,∫ u

t
∥ (Σz(s, z(s))′∇z (G) (s, V v0,π

λ (s), z(s))∥2ds ≥ n
}
.

We say that G, π, and λ satisfy condition (UIλ) if for every t ∈ [0, T ], the sequence(
G(τλn,t, V

v0,π
λ (τλn,t), z(τ

λ
n,t))

)
n∈N

is uniformly integrable.
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Remark 4.3.2. According to Theorem 4.5.4 in [8], if G, π, and λ satisfy Condition (UIλ), then
we have for every t ∈ [0, T ] that τn,t → T Q-a.s., as n→ ∞ and

E
[
G(T, V v0,π

λ (T ), z(T ))
∣∣∣Ft

]
= E

[
lim
n→∞

G(τn,t, V
v0,π
λ (τn,t), z(τn,t))

∣∣∣Ft

]
= lim

n→∞
E
[
G(τn,t, V

v0,π
λ (τn,t), z(τn,t))

∣∣∣Ft

]
. (4.9)

Lemma 4.3.3 (Verification Theorem Dual Control Problem). 1
Let G ∈ C(1,2,2)([0, T ] × (0,∞) × Rm) be a solution to the dual HJB equation (4.7), be non-
negative, strictly concave and increasing in v. Let the feedback controls

¯
λ∗(t, v, z),

¯
π∗(t, v, z) be

such that for all (t, v, z) ∈ [0, T ] × (0,∞) ×Rm

inf
λ∈Rd

sup
π∈Rd

{ [
δK(λ) + (µ+ λ− r1)′π

]
Gv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
=
[
δK(

¯
λ∗(t, v, z)) + (µ+

¯
λ∗(t, v, z) − r1)′

¯
π∗(t, v, z)

]
Gv

+
(
ΣzρΣ′

¯
π∗(t, v, z)

)′∇z (Gv) +
1

2
v∥Σ′

¯
π∗(t, v, z)∥2Gvv.

Then the following holds ∀(t, v, z) ∈ [0, T ] × (0,∞) ×Rm:

(i) If (
¯
λ∗, π) ∈ D̄ × Λ satisfy condition (UIλ), then

G(t, v, z) ≥ E
[
U(V v0,π

¯
λ∗ (T ))

∣∣ V v0,π

¯
λ∗ (t) = v, z(t) = z

]
. (4.10)

(ii) If (λ,
¯
π∗) ∈ D ×

¯
Λ satisfy condition (UIλ), then

G(t, v, z) ≤ E
[
U(V

v0,
¯
π∗

λ (T ))
∣∣ V v0,

¯
π∗

λ (t) = v, z(t) = z
]
. (4.11)

(iii) If (
¯
λ∗,

¯
π∗) ∈ D̄ ×

¯
Λ satisfy condition (UIλ), then

G(t, v, z) = E
[
U(V

v0,
¯
π∗

¯
λ∗ (T ))

∣∣ V v0,
¯
π∗

¯
λ∗ (t) = v, z(t) = z

]
. (4.12)

Remark 4.3.4. If we restrict the minimization and maximization in the min-max optimization
only to such λ ∈ DUI ⊂ D, π ∈ ΛUI ⊂ Λ so that every pair (λ, π), (

¯
λ∗, π), (λ∗,

¯
π∗) and (

¯
λ∗,

¯
π∗)

and the solution G to the dual HJB PDE (4.7) satisfy Condition (UIλ), then we directly obtain
from Lemma 4.3.3

G(t, v, z) = E
[
U(V

v0,
¯
π∗

¯
λ∗ (T ))

∣∣ V v0,
¯
π∗

¯
λ∗ (t) = v, z(t) = z

]
= inf

λ∈DUI

sup
π∈ΛUI

E
[
U(V v0,π

λ (T ))
∣∣ V v0,π

λ (t) = v, z(t) = z
]
.

(4.8) is the min-max control problem associated with Condition (C̃) from Section 3.4 in the
absence of wealth constraints (resp. Condition (C) from [17]). However, we arrived at the same
optimization problems by applying convex duality results from real constraints directly to the
pointwise optimization at the level of the HJB PDE, whereas we applied martingale methods
to the underlying stochastic processes in Chapter 3. For the setting of Chapter 3, were able
to to prove that the optimal controls for the dual control problem (4.8) lead to an optimal
portfolio process for the allocation constrained portfolio optimization problem (P). In doing
so, we used the so-called (generalized) concave conjugate of U to transform the dual control
problem (4.8) to ‘another’ dual representation of (P). These arguments heavily relied on the
completeness of the underlying financial market (Assumption 3.2.1) as well as the solvability of
the dual optimization problem (DV

λ∗) associated with the wealth constraints and are thus not
directly available to us in this chapter.
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4.3.2 Exponential Affine Separability

In this section, we derive a condition under which the solution G to the dual HJB PDE (4.7) is
of an exponentially affine and separable form, i.e.,

G(t, v, z) =
1

b
vb exp

(
A(T − t) +B(T − t)′z

)
, (4.13)

for some functions A : [0, T ] → R, and B : [0, T ] → Rm with A(0) = 0 and B(0) = 0. In a
setting without the presence of allocation constraints and time-independent market coefficients,
[61] provides such a condition which can be directly verified for any given market coefficients
(see equations (9)-(11) and (13)-(17) in [61]).1 Under the presence of additional constraints on
allocation, we need to adapt this condition suitably.
To this end, for any (t, z, B) ∈ [0, T ] × Rm × Rm, we define λ̂∗(t, z, B) as the minimizing
argument

λ̂∗(t, z, B) = argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ−1 (µ− r1 + λ) + (Σzρ)′B
∥∥2} (4.14)

= argmin
λ∈Rd

{
2(1 − b)δK(λ) + 2λ′

(
Σ · Σ′)−1 [

µ− r1 + (ΣzρΣ′)′B
]

+
∥∥Σ−1λ

∥∥2} .
Given λ̂∗, we provide a condition which ensures that (4.13) holds. This can be achieved by
considering the corresponding condition from [61] and augmenting the market coefficients by
λ̂∗.

Condition (EAS). 1
We say that Condition (EAS) is satisfied if for any (t, z, B) ∈ [0, T ] × Rm × Rm the market
coefficients and the minimizer λ̂∗ satisfy

µz(t, z) = k0(t) + k1(t)z

Σz(t, z)Σz(t, z)′ = h0(t) + h1(t)[z]

Σz(t, z)ρ(t, z) (Σz(t, z)ρ(t, z))′ − Σz(t, z)Σz(t, z)′ = l0(t) + l1(t)[z]

r(t, z) + δK(λ̂∗(t, z, B)) = p0(t, B) + p1(t, B)′z∥∥∥Σ−1(t, z)
(
µ(t, z) + λ̂∗(t, z, B) − r(t, z)1

)∥∥∥2 = q0(t, B) + q1(t, B)′z

Σz(t, z)ρ(t, z)Σ−1(t, z)
(
µ(t, z) + λ̂∗(t, z, B) − r(t, z)1

)
= g0(t, B) + g1(t, B)z,

for some functions such that p0(t, B), q0(t, B) ∈ R, k0(t), p1(t, B), q1(t, B), g0(t, B) ∈ Rm as
well as k1(t), h0(t), l0(t), g1(t, B) ∈ Rm×m and the functions h1(t)[·], l1(t)[·] : Rm → Rm×m

are linear2 for every fixed (t, B) ∈ [0, T ] ×Rm.

1In fact, the result of [61] even includes the more general case of an exponentially quadratic separation. The
approach we present below can be extended to include quadratic separation in a natural manner. However,
such an extension would complicate the involved notation and thus diminish the presentation of the core
concepts involved. Moreover, we were not able to construct realistic working examples that require quadratic
separation in an allocation constrained setting. Hence, we restrict our analysis in this chapter to exponentially
affine separation.

2The functions h1[·] and l1[·] are three-dimensional tensors, which are a generalization of vectors and matrices
to higher dimensions. In our context, we may think of h1 and l1 as being represented by matrices, whose
entries (h1)ij and (l1)ij are Rm-valued. Upon being evaluated at a z ∈ Rm, each entry of h1[z] and l1[z]
is obtained by computing the scalar product z′(h1)ij and z′(l1)ij . Hence, for any x, y ∈ Rm and applying
the rules of ordinary vector-matrix multiplication, the products x′h1[·]y and x′l1[·]y are vectors in Rm. In
particular, x′h1[z]y = z′ (x′h1[·]y) and x′l1[z]y = z′ (x′l1[·]y) for any x, y, z ∈ Rm.
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Provided that Condition (EAS) is satisfied, we can characterize the exponents A and B in (4.13)
through the system of ODEs3

Aτ (τ) = bp0 (T − τ,B(τ)) + k0(T − τ)′B(τ) +
1

2
B(τ)h0(T − τ)B(τ)

+
1

2

b

1 − b

[
q0 (T − τ,B(τ)) + 2g0 (T − τ,B(τ))′B(τ) (4.15)

+B(τ) (l0(T − τ) + h0(T − τ))B(τ)
]

Bτ (τ) = bp1 (T − τ,B(τ)) + k′1(T − τ)B(τ) +
1

2
B(τ)′h1(T − τ)[·]B(τ)

+
1

2

b

1 − b

[
q1 (T − τ,B(τ)) + 2g1 (T − τ,B(τ))B(τ) (4.16)

+B(τ)′ (l1(T − τ)[·] + h1(T − τ)[·])B(τ)
]
.

Transferred to the context of Chapter 3, while disregarding the wealth constraints, Condition
(EAS) effectively ensures that the allocation unconstrained optimization problem (Pλ∗) in Mλ∗

for the optimal dual process λ∗ = λ̂∗(t, z(t), B(T − t)) can be solved via the methodology
presented in [61]. This idea is depicted in Table 4.1. From this perspective, it is not surprising
that we can obtain a solution to the primal HJB PDE (4.5) under Condition (EAS).

Theorem 4.3.5. Let Condition (EAS) be satisfied and let A, B be solutions to the ODEs (4.15)
and (4.16) with initial condition A(0) = 0, B(0) = 0. Then,

G(t, v, z) =
1

b
vb exp

(
A(T − t) +B(T − t)′z

)
is a solution to the primal HJB PDE (4.5) and the dual HJBI PDE (4.7).

Remark 4.3.6. Although we can by no means provide explicit solutions to the ODEs (4.15) and
(4.16) in general, at least the local existence of a solution is guaranteed by the existence theorems
of Peano (and Picard-Lindelöf) if their respective right-hand sides are continuous (Lipschitz-
continuous). In particular, we can then obtain an approximate solution to the dual HJBI PDE
(4.7) for small τ = T − t by approximating A and B, by e.g. the Euler method.

No Allocation Constraints
(K = Rd)

Allocation Constraints
(K ⊂ Rd)

Black-Scholes
Model

Merton, 1971 ([65]):

¯
π∗ = 1

1−b (ΣΣ′)−1 (µ− r1)

Cvitanic & Karatzas, 1992 ([17])

¯
π∗ = 1

1−b (ΣΣ′)−1 (µ− r1 + λ∗) ,

where λ∗ is obtained from dual problem
⇒

¯
π∗ optimal for K = Rd in Mλ∗

Stochastic Factor
Model

Liu, 2006 ([61]):

¯
π∗ = 1

1−b (ΣΣ′)−1 (µ− r1 + (ΣzρΣ′)′B(T − t)
)
,

if Condition (EAS) is satisfied with λ∗ = 0
& B solves associated ODE (4.16)

Theorem 4.3.5:

¯
π∗ = 1

1−b (ΣΣ′)−1 (µ− r1 + λ∗ + (ΣzρΣ′)′B(T − t)
)
,

where λ∗ is obtained from dual problem,
market coefficients in Mλ∗ satisfy Condition (EAS)

& B solves associated ODE (4.16)

Table 4.1: A schematic illustration of how Theorem 4.3.5 relates the existing results of [65], [61]
and [17].

3Here, Aτ and Bτ denote the derivatives of A and B with respect to τ ∈ [0, T ].
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If Condition (EAS) is satisfied, then we can extend the verification approach used in [13] to
formally verify the optimality of the obtained candidate optimal portfolio

¯
π∗. Unlike in Lemma

4.3.3, we only need to assume that
¯
π∗ satisfies a uniform integrability condition and not make

any assumption about other portfolios π ∈ ΛK . This is possible because we can exploit the
additional knowledge that G is exponentially affine due to Condition (EAS).

Theorem 4.3.7 (Verification Theorem Primal Problem). 1
Let Condition (EAS) be satisfied, let A and B be solutions to the ODEs (4.15) and (4.16) with
initial condition A(0) = 0 and B(0) = 0 and let G be defined as in (4.13). Define

¯
λ∗(t, v, z) :=

λ̂∗(t, z, B(T − t)) and

¯
π∗(t, v, z) :=

1

1 − b

(
ΣΣ′)−1

[
µ+

¯
λ∗(t, v, z) − r1 +

(
ΣzρΣ′)′B(T − t)

]
. (4.17)

If G,
¯
π∗, λ ≡ 0 satisfy Condition (UIλ), then

G(t, v, z) = E
[
U(V v0,

¯
π∗

(T ))
∣∣ V v0,

¯
π∗

(t) = v, z(t) = z
]

(4.18)

≥ E
[
U(V v0,π(T ))

∣∣ V v0,π(t) = v, z(t) = z
]

∀π ∈ ΛK(t). (4.19)

In particular, G(t, v, z) = Φ(t, v, z), for all (t, v, z) = [0, T ]× (0,∞)×Rm and
¯
π∗ is optimal for

(P).

Remark 4.3.8. If Condition (EAS) is satisfied, then we can alternatively use Theorem 4.3.5,
compute the derivative of G and insert them into equation (4.6) to rewrite

¯
π∗ as

¯
π∗(t, v, z) = argmax

π∈K

(
[µ− r1]′π + (1 − b)

1

2
π′ΣΣ′π +B(T − t)′ΣzρΣ′π

)
.

In other words, we may equivalently write the optimal constrained feedback control
¯
π∗ from

(4.17) as the solution to a constrained pointwise optimization problem.

4.4 Examples

We consider three different choices of models for which Condition (EAS) can be verified and an
explicit expression for the ODEs (4.15) and (4.16) can be derived. Throughout the examples,
we always follow the same steps in chronological order:

(i) Define the underlying financial market model, by choosing the market coefficients µz, Σz,
ρ, r, µ and Σ.

(ii) Derive an explicit representation of the minimizer λ̂∗ of (4.14) in the given market.

(iii) Verify that Condition (EAS) is satisfied for the given market.

(iv) Derive an explicit representation for the ODEs (4.15), (4.16) and the candidate optimal
portfolio

¯
π∗ in terms of the market coefficients and λ̂∗.

(v) If possible:
Formally verify the optimality of

¯
π∗ for (P) by proving that

¯
π∗, G (as in (4.13)) and λ ≡ 0

satisfy Condition (UIλ).
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4.4.1 Black-Scholes Model

First, we consider a d-dimensional Black-Scholes model MBS with time-dependent coefficients,
which is exactly the setting of Section 15 in [17] (and a canonical generalization of Section 3.5.3
with g ≡ 0, B1 = 0 and B2 = ∞).

Definition 4.4.1 (MBS). 1
Let m = 1 and d ∈ N.4 Consider continuous functions r : [0, T ] → R, µ : [0, T ] → Rd, and
Σ : [0, T ] → Rd×d such that the inverse Σ(t)−1 exists for all t ∈ [0, T ]. Then, the d-dimensional
Black-Scholes market MBS is defined by the market coefficients

z0 = µz(t, z) = Σz(t, z) = ρ(t, z) = 0,

and r(t, z) = r(t), µ(t, z) = µ(t), Σ(t, z) = Σ(t).

We can directly apply the duality theory developed in Section 4.3 to verify Condition (EAS)
and obtain a solution to the HJBI PDE (4.7) in MBS .

Lemma 4.4.2 (Dual ODEs in MBS). 1
Consider the financial market MBS . Then Condition (EAS) is satisfied.
Let

λ∗(t) = argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ(t)−1(µ(t) − r(t)1 + λ)
∥∥2} (4.20)

and A : [0, T ] → R satisfy A(0) = 0 and

Aτ (τ) = br(T − τ) +
1

2

b

1 − b
inf

λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ(T − τ)−1(µ(T − τ) − r(T − τ)1 + λ)
∥∥2} .

Then,

G(t, v, z) =
1

b
vb exp(A(T − t))

is a solution to the dual HJBI PDE (4.7) and the corresponding candidate optimal portfolio is

¯
π∗(t, v, z) =

1

1 − b

(
Σ(t)Σ(t)′

)−1
(µ(t) − r(t)1 + λ∗(t)) .

Unsurprisingly, the candidate optimal portfolio process
¯
π∗ proposed by Lemma 4.4.2 is the same

as that obtained in Example 15.2 by [17] via the auxiliary markets methodology. Moreover,
due to the simplicity of this set-up, we can even formally verify the optimality of

¯
π∗ by showing

that Condition (UIλ) is satisfied.

Corollary 4.4.3. Consider the financial market MBS . Then, G,
¯
π∗ as in Lemma 4.4.2 and

λ ≡ 0 satisfy Condition (UIλ). In particular,
¯
π∗ is optimal for (P).

Remark 4.4.4. The optimal unconstrained portfolio in MBS is given by the Merton portfolio

πM (t) =
1

1 − b

(
Σ(t)Σ(t)′

)−1
(µ(t) − r(t)1) .

4We could equivalently consider m = 0 and completely disregard the stochastic factor z and its drift, diffusion
and correlation coefficients in the definition of the Black-Scholes model MBS .
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Following the argument in Remark 4.3.8, we realize that the candidate optimal constrained
portfolio

¯
π∗ in MBS can be obtained for arbitrary constraints K ⊂ Rd through the application

of the (pointwise) projection PBS
K : Λ → Λ′ defined through

¯
π∗(t, v, z) =

¯
π∗ = argmax

π∈K

(
[µ− r1]′︸ ︷︷ ︸

=(1−b)π′
MΣΣ′

π + (1 − b)
1

2
π′ΣΣ′π +B(T − t)′︸ ︷︷ ︸

=0

ΣzρΣ′π
)

= argmax
π∈K

(
(1 − b)π′MΣΣ′π − (1 − b)

1

2
π′ΣΣ′π

)
= argmin

π∈K

∥∥∥Σ′(π − πM )
∥∥∥2

= argmin
π∈K

∥∥∥Σ(t)′(π(t) − πM (t))
∥∥∥2 =: PBS

K [πM ](t).

4.4.2 Multi-Factor Stochastic Covariance of CIR-Type

Next, we consider a financial market model with a stochastic covariance matrix, which depends
on m independent CIR processes. More specifically, we assume that the covariance matrix
Σ(t, z) is a block-diagonal matrix, whose diagonal blocks Σi are scaled proportionally to the
i-th CIR process zi. One may think of the underlying financial market MCIR as consisting of
risky assets from m unrelated asset classes, where the covariances within each asset class are
driven by one of m independent stochastic (CIR) risk factors. Special cases of this model are
the Heston model ([42]) for m = d = 1 and the PCSV model with independent assets ([30]) for
m = d ∈ N and di = 1 for all i = 1, ...,m.5

For notational convenience in the following discussion, we introduce the element-wise product
between any two real vectors x, y of identical dimension as x⊙ y.

Definition 4.4.5 (MCIR). 1
Let m, d, d1, ..., dm ∈ N such that m ≤ d and

∑m
i=1 di = d. Consider constants κ, θ, σ ∈ (0,∞)d

such that

2κiθi > σ2i ∀i = 1, ...,m. (4.21)

Moreover, let r ∈ R and ρi ∈ (−1, 1)di , ηi ∈ Rdi , and non-singular Σi ∈ Rdi×di be given for
i = 1, ...,m. Then, the d-dimensional market MCIR with m-factor volatility of CIR-type is
defined by the market coefficients

µz(t, z) = κ⊙ (θ − z) , Σz(t, z) =

σ1
√
z1 0

. . .

0 σm
√
zm

 , ρ(t, z) =

ρ
′
1 0

. . .

0 ρ′m

 ∈ Rm×d,

r(t, z) = r, µ(t, z) = r(t, z)1 +

 η1z1
...

ηmzm

 , Σ(t, z) =

Σ1
√
z1 0

. . .

0 Σm
√
zm

 .

5We will later see in Lemma 4.4.6 that Condition (EAS) is only satisfied inMCIR if the structure of the allocation
constraints allows for a convenient separability in (4.14). In the definition of MCIR, we have intentionally
limited the covariance Σ of risky assets to be of block-diagonal structure to facilitate the presentation of this
fact. However, we can in principle also choose more complex models for Σ, such as the general PCSV model,
and adjust the allocation constraints accordingly without changing the underlying theory in a significant way.
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In MCIR, the minimization (4.14) can be equivalently rewritten as6

argmin
λ=(λ1,...,λm)′

λi∈Rdi

{
2(1 − b)δK (λ) +

m∑
i=1

(
2
(
Σ−1
i λi

)′ (
Σ−1
i ηi + σiBiρi

)
+
∥∥Σ−1

i λi
∥∥2 zi)} .

However, as the underlying financial market model MCIR consists of m independent asset
classes, it is natural to assume a certain independence with respect to the allocation constraints,
too. This independence can be expressed in mathematical terms by assuming that K can be
written as the Cartesian product of m constraints K1, ...,Km on the individual asset classes.

Lemma 4.4.6 (Dual ODEs in MCIR). 1
Consider the financial market MCIR. If K =×m

i=1Ki with Ki ⊂ Rdi closed convex and non-
empty interior for every i = 1, ..,m, then Condition (EAS) is satisfied.
Let

λ∗(t, z, B) :=

 λ∗1(B1)z1
...

λ∗m(Bm)zm

 ,

where

λ∗i (Bi) = argmin
λi∈Rdi

{
2(1 − b)δKi (λi) +

∥∥Σ−1
i (ηi + λi) + σiBiρi

∥∥2}
and A : [0, T ] → R, B : [0, T ] → Rm satisfy A(0) = 0, B(0) = 0 and

Aτ (τ) = br + (κ⊙ θ)′B(τ)

(Bτ )i (τ) = −κiBi(τ) +
1

2
σ2i (Bi(τ))2

+
1

2

b

1 − b
inf

λi∈Rdi

{
2(1 − b)δKi (λi) +

∥∥Σ−1
i (ηi + λi) + σiBiρi

∥∥2} .
Then,

G(t, v, z) =
1

b
vb exp(A(T − t) +B(T − t)′z)

is a solution to the dual HJBI PDE (4.7) and the corresponding candidate optimal portfolio is

¯
π∗(t, v, z) =

 π∗1(B1(T − t))
...

π∗m(Bm(T − t))

 ,

with

π∗i (Bi(T − t)) =
1

1 − b

(
ΣiΣ

′
i

)−1
(
ηi + λ∗i (Bi(T − t)) + σiBi(T − t)Σiρi

)
.

The ODEs for Bi in Lemma 4.4.6 do not admit a general closed-form solution, as the right-hand
side of the ODE still depends on a convex minimization problem. Note however, as long as all
minimizer λ∗i (Bi) are continuous in Bi (e.g. if each Ki are compact sets), then the right-hand
side of each ODE for Bi is continuous in Bi and therefore admits at least a local solution.
Due to this lack of an explicit representation for B, we also lack an explicit representation for

¯
π∗. In addition, the quadratic variations of ln

(
V v0,

¯
π∗)

and z are stochastic and we can thus no
longer follow the approach from Corollary 4.4.3 to formally verify the optimality of

¯
π∗. This

topic will be investigated thoroughly in Chapter 5.

6Compare to the derivation of (A.53) in the proof of the subsequent Lemma 4.4.6 for details.
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4.4.3 Multi-Factor Short Rate of OU-Type

Lastly, we consider a financial market MOU with a stochastic short rate r, which is driven by
an m-dimensional Ornstein-Uhlenbeck process and d = m zero-coupon bonds with maturities
T1, ..., Tm > T as primary traded assets (similar models were discussed e.g. in Section 7.3 in
[59] for derivatives pricing, in [87] for economic scenario generation as well as in [61] and [80]
in a portfolio optimization context). For this purpose, we define µz and Σz as

µz(t, z) = κ⊙ [θ − z] , Σz(t, z) = σ, (4.22)

for arbitrary constants κ ∈ (0,∞)m, θ ∈ Rm, and a non-singular matrix σ ∈ Rm×m. For two
weights w0 ∈ R, w1 ∈ Rm we then define the short rate r through

r(t, z) = w0 + w′
1z.

In particular, the Q-dynamics of the short rate are given as

dr(t, z(t)) = d(w0 + w′
1z(t)) = w′

1dz(t) = w′
1 (κ⊙ [θ − z(t)]) dt+ w′

1σdW
z(t)

To formally define MOU , we still need to explicitly determine the dynamics of the traded zero-
coupon bonds. We determine these dynamics via risk-neutral pricing. Assuming a constant
market price of risk η ∈ Rm, we can define the equivalent martingale measure Q̃ through its
Radon-Nikodym derivative

dQ̃

dQ
= exp

(
−1

2
∥η∥2T −

∫ T

0
η′dW z(t)

)
.

Then, according to Girsanov’s theorem, there exists a Q̃-Wiener process W̃ z such that the
Q̃-dynamics of the short rate are given as

dr(t, z(t)) =
(
κ⊙ [θ − z(t)] − w′

1ση
)
dt+ w′

1σdW̃
z(t).

Moreover, we can now make use of risk-neutral pricing to determine the arbitrage-free prices of
zero-coupon bonds with different maturities. The financial market MOU belongs to the group
of affine factor models (without stochastic volatility) studied in [26]. Hence, there exist suitable
deterministic continuously differentiable functions a : (0,∞) → R, b : (0,∞) → Rm such that
the price of a zero-coupon bond with maturity Ti at time t ∈ [0, T ] is given by

P (t, Ti) = EQ̃

[
exp

(
−
∫ Ti

t
r(s, z(s))ds

) ∣∣∣Ft

]
= exp

(
a(Ti − t) + b(Ti − t)′z(t)

)
. (4.23)

By applying Itô’s formula and noting that the discounted price processes
(P (t,Ti)/P0(t))t∈[0,T ] are martingales with respect to Q̃, we see that theQ-dynamics of (P (t, Ti))t∈[0,T ]

are

dP (t, Ti) = P (t, Ti)
([
r(t, z(t)) + b(Ti − t)′ση

]
dt+ b(Ti − t)′σdW z(t)

)
.

These zero-coupon bonds P (t, T1), ..., P (t, Tm) constitute the primary traded assets of the fin-
ancial market MOU which is formally defined below.

Definition 4.4.7 (MOU ). 1
Let m = d ∈ N. Consider constants w0 ∈ R, κ ∈ (0,∞)m, w1, θ, η ∈ Rm, a non-singular matrix
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σ ∈ Rm×m, maturities T̂ = (T1, ..., Tm)′ ∈ (T,∞)m and a continuously differentiable function
b : (0,∞) → Rm such that the matrix

b(t; T̂ ) = (b(T1 − t), ..., b(Tm − t)) ∈ Rm×m

has an inverse b(t; T̂ )−1 for all t ∈ [0, T ]. Then, the m-dimensional Bond market MOU with
OU short rate is defined by the market coefficients

µz(t, z) = κ⊙ (θ − z) , Σz(t, z) = σ, ρ(t, z) = Im

r(t, z) = w0 + w′
1z, µ(t, z) = r(t, z)1 + b(t; T̂ )′ση, Σ(t, z) = b(t; T̂ )′σ.

Despite the stochastic short rate, the market MOU is surprisingly tractable. Specifically, none
of the terms involved in the minimization (4.14) are dependent on the stochastic factor z, which
results in a time-dependent but deterministic candidate optimal portfolio

¯
π∗.

Lemma 4.4.8 (Dual ODEs in MOU ). 1
Consider the financial market MOU . Then Condition (EAS) is satisfied.
Let

λ∗(t, B) = argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥∥∥η +
(
b(t; T̂ )′σ

)−1
λ+ σ′B

∥∥∥∥2
}

and A : [0, T ] → R, B : [0, T ] → Rm satisfy A(0) = 0, B(0) = 0 and

Aτ (τ) = bw0 + (κ⊙ θ)′B(τ) +
1

2
∥σ′B(τ)∥2

+
1

2

b

1 − b
inf

λ∈Rd

{
2(1 − b)δK(λ) +

∥∥∥∥η +
(
b(T − τ ; T̂ )′σ

)−1
λ+ σ′B

∥∥∥∥2
}

Bτ (τ) = bw1 − κ⊙B(τ). (4.24)

Then,

G(t, v, z) =
1

b
vb exp(A(T − t) +B(T − t)′z)

is a solution to the dual HJBI PDE (4.7) and the corresponding candidate optimal portfolio
¯
π∗

(as in (4.17)) is given as

¯
π∗(t, v, z) =

1

1 − b

(
σ′b(t; T̂ )

)−1 (
η +

(
b(t; T̂ )′σ

)−1
λ∗(t, B(T − t)) + σ′B(T − t)

)
.

Remark 4.4.9. The solution to the ODE (4.24) is known in closed-form (see e.g. equations
(6) and (7) in Chapter 1, Section §2 of [83]) and is given by B(τ) = (B1(τ), ..., Bm(τ))′ with

Bi(τ) = (w1)i be
−κiτ

∫ τ

0
eκisds =

(w1)i b

κi

(
1 − e−κiτ

)
.

Unlike in MCIR, the quadratic variations of ln
(
V v0,

¯
π∗)

and z are deterministic and bounded in
MOU . Therefore, it is straightforward to adapt the proof of Corollary 4.4.3 to formally verify
the optimality of

¯
π∗ for (P).

Corollary 4.4.10. Consider the financial market MOU . Then, G,
¯
π∗ as in Lemma 4.4.8 and

λ ≡ 0 satisfy Condition (UIλ). In particular,
¯
π∗ is optimal for (P).
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Remark 4.4.11. Other than in MCIR, the ODE for B in MOU does not depend on the
constraint K (cf. Lemma 4.4.6 and Lemma 4.4.8). Therefore, setting K = Rd and λ∗ ≡ 0
yields the optimal unconstrained portfolio in MOU as

πOU (t) =
1

1 − b

(
σ′b(t; T̂ )

)−1 (
η + σ′B(T − t)

)
.

Similarly, we can replicate the arguments in Remarks 4.3.8 and 4.4.4 to see that the optimal
constrained portfolio in MOU can be written as

¯
π∗(t, v, z) = argmin

π∈K

∥∥∥σ′b(t; T̂ )︸ ︷︷ ︸
=:Σ(t)′

(π(t)−πOU (t))
∥∥∥2 = argmin

π∈K

∥∥∥Σ(t)′(π(t)−πOU (t))
∥∥∥2 = PBS

K [πOU ](t).

In other words, allocation constraints have exactly the same impact on the optimal allocation in
MOU as in MBS .

4.5 Conclusion

In this chapter, we examined a portfolio optimization problem in a financial market where asset
dynamics depend on a stochastic factor. In the spirit of [61], we were able to derive Condition
(EAS) which guarantees that the solution to the HJB PDE for an allocation constrained portfolio
optimization problem is exponentially affine and separable in wealth and the stochastic factor.
We were able to use Condition (EAS) to characterize the optimal allocation constrained portfolio
up to the solution of a deterministic optimization problem and the solution of Riccati ODEs
in a market with stochastic volatility of CIR-type and in a market with stochastic short rate
of OU-type. Special examples of these models include the Heston model, the PCSV model
and the Vasicek model. We derived a formal verification result for the market with stochastic
short rate and a general verification result up to a uniform integrability condition for arbitrary
markets satisfying Condition (EAS). The proposed methodology is general enough to derive and
study the optimal allocation constrained portfolios for several financial markets with dynamics
depending on a stochastic factor.
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5 Constraints on Allocation in Heston’s
Stochastic Volatility Model

5.1 Introduction

Despite its widespread use in both academia and the financial industry, it has been well-
documented in the mathematical finance literature that a variety of properties of financial
time series, so-called stylized facts, are not captured by the Black-Scholes model (see e.g. [14],
[63], [84]). A major point of criticism is the constant volatility of modelled log returns, whereas
empirical returns appear to be time-dependent and random ([81]). The stochastic volatility
model proposed by [42] aims to avoid this gap by modelling the volatility of log returns as
a Cox-Ingersoll-Ross process (CIR process). While the Heston model was originally proposed
in the context of option pricing, its analytical tractability has led to insightful applications in
continuous-time portfolio optimization (see e.g. [56]), which is the subject of this chapter.
Specifically, we consider the portfolio optimization problem of an investor trading continuously
in a financial market consisting of one risk-free asset and one risky asset with stochastic Heston
volatility. The investor seeks to maximise his expected utility derived from terminal wealth at
a finite time point T > 0 under the condition that his portfolio allocation π abides by given
convex allocation constraints K. The considered optimization problem involves two major fa-
cets, which differ from the original portfolio optimization setting of [65]: stochasticity of the
volatility of risky asset log returns (‘stochastic volatility’) and the presence of convex allocation
constraints. Since Section 1.1, already provided an overview over the relevant literature on al-
location constraints, the following paragraph presents a brief overview of the relevant literature
with respect to stochastic volatility:

Our continuous time set-up can be traced back to the seminal work of [65], who used dynamic
programming methods to derive explicit solutions to the unconstrained dynamic portfolio op-
timization problem for an investor with HARA utility function in a Black-Scholes model with
constant volatility. Generalizations for different utility functions and more complex financial
markets were achieved by employing martingale methods ([73] and [47]), which rely heavily
on the assumption that all contingent claims in the financial market are replicable. However,
this assumption is not generally satisfied for financial markets with stochastic volatility, which
means that martingale methods are not directly applicable, unless the financial market is artifi-
cially completed by the addition of fictitious, volatility-dependent assets (see e.g. [62], [9], [28],
[30], and [10]). Without such completion, the solvability of the portfolio optimization problem
in financial markets with stochastic volatility is often directly linked to the solvability of the
associated HJB PDE.1 Solutions to such portfolio optimization problems were first character-
ized in terms of viscosity solutions to the associated HJB PDE for multi-factor models in [88],
and explicit closed-form solutions for Heston’s stochastic volatility model were first derived and
formally verified in [56]. Subsequently, [61] derived explicit solution formulae for an optimal
consumption and portfolio allocation problem in a general multi-factor model, where the factor
is a quadratic diffusion. [46] used the notion of an opportunity process and semi-martingale

1Note that obtaining and formally verifying the optimality of a candidate portfolio process requires more than
just a solution to the associated HJB PDE, as pointed out by [54].
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characteristics to develop an approach which leads to closed-form solutions for the optimal port-
folio process in a range of exponentially affine stochastic volatility models, including the Heston
model and the jump model of [40]. The PCSV model and the Wishart process were considered
as multi-dimensional extensions of the Heston model for multidimensional asset universes with
stochastic correlation in [30] and [5]. An extensive overview of related papers in the field of
dynamic portfolio optimization in stochastic factor models can be found in [90].

In this chapter, we make a threefold contribution to this literature:

• We complete a gap in Chapter 4 (resp. [33]) by deriving the first explicit, closed-form
expression for the optimal portfolio allocation π∗ in Heston’s stochastic volatility model
under the presence of convex allocation constraints. This optimality is verified formally
in a verification theorem.

• We show that the optimal portfolio allocation π∗ may be different from the capped op-
timal unconstrained portfolio allocation πu for Heston’s stochastic volatility model. In
particular, we prove an equivalent characterization which describes when these two port-
folios are different. We conduct a numerical study to show that this difference is slim for
calm market scenarios, but can lead to significant annual wealth equivalent losses during
turbulent market scenarios.

• We extend these results from the one-dimensional Heston’s stochastic volatility model to a
multi-dimensional PCSV model with constraints on the exposures to individual stochastic
market factors and to generalized financial markets with inverse volatility constraints.

The remainder of this chapter is structured as follows: In Section 5.2, we introduce and solve
the constrained portfolio optimization problem (P) in Heston’s stochastic volatility model.
Specifically, we derive a solution to the HJB PDE associated with (P) and the candidate
optimal portfolio π∗ in Section 5.2.1, verify its optimality formally by proving a verification
theorem in Section 5.2.2 and discuss its relation to the optimal unconstrained portfolio πu in
Section 5.2.3. In Section 5.3, we consider a generalized financial market model which depends
on a multi-dimensional CIR process and derive the optimal portfolio in the PCSV model under
exposure constraints (Section 5.3.1) and in general financial markets with inverse volatility
constraints (Section 5.3.2). In Section 5.4, we illustrate our theoretical results for Heston’s
stochastic volatility model in a numerical analysis, where we analyze the wealth equivalent loss
of the optimal constrained portfolio for a Black Scholes model (Section 5.4.1) and the capped
optimal unconstrained portfolio for Heston’s stochastic volatility model (Section 5.4.2). Section
5.5 concludes this chapter.

5.2 Heston’s Stochastic Volatility Model

In this chapter, we consider several special cases of the stochastic factor model from Chapter 5.
In particular, the standing assumptions for this chapter are the same as for Chapter 5:

Assumption 5.2.1 (Standing Assumptions Chapter 5:). M is a stochastic factor model(
(4.2) and (4.3)

)
, (4.4) and U is a power utility function.

The first such special case is Heston stochastic volatility model MH , which is defined by con-
sidering the stochastic factor model (4.3) and choosing m = d = 1 as well as the deterministic
functions

µz(t, z) = κ(θ − z), Σz(t, z) = σ
√
z, ρ(t, z) = ρ,

74



5 Constraints on Allocation in Heston’s Stochastic Volatility Model

r(t, z) = r, µ(t, z) = r(t, z) + ηz, Σ(t, z) =
√
z,

where the coefficients r, η, κ, θ, σ, z0 are assumed to be positive constants, and ρ ∈ (−1, 1).
Further, it is assumed that Feller’s condition holds for the parameters of z, i.e., 2κθ > σ2, and,
therefore, z(t) is guaranteed to take only positive values with probability 1 (see [41]). Clearly,
the financial market MH is a special, one-dimensional case of MCIR from Definition 4.4.5.

The resulting financial market MH consists of one risk-free asset P0 and one risky asset P1,
which satisfy P0(0) = P1(0) = 1 and follow the dynamics

dP0(t) = P0(t)rdt,

dP1(t) = P1(t)
(
r + η · z(t)

)
dt+

√
z(t)dW (t),

where z(0) = z0 > 0 and

dz(t) = κ(θ − z(t))dt+ σ
√
z(t)dW z(t).

As a consequence, the wealth process V v0,π of an investor trading in MH according to a relative
portfolio process π ∈ Λ and initial wealth v0 > 0 satisfies the SDE

dV v0,π(t) = V v0,π(t)
(

[r + ηz(t)π(t)]dt+ π(t)
√
z(t)dW (t)

)
and it is straightforward to show that V v0,π(t) can be expressed in closed-form as

V v0,π(t) = v0 exp
(∫ t

0
r + ηz(s)π(s) − 1

2
z(s)π(s)2ds+

∫ t

0
π(s)

√
z(s)dW (s)

)
. (5.1)

For a non-empty closed convex set K ⊂ R and power utility function U(v) = 1
bv

b with b < 1
and b ̸= 0, we consider the portfolio optimization problem

(P)

Φ(v0) = sup
π∈Λ′

E
[
U(V v0,π(T ))

]
Λ′ =

{
π ∈ Λ

∣∣ π(t) ∈ K L[0, T ] ⊗Q− a.e.
}
.

As the considered financial market contains only one risky asset, the set of allocation constraints
K is a subset of the real numbers R. However, in this one-dimensional setting, any such closed
convex set K ⊂ R̄ with non-empty interior can be expressed as an interval of the form2

K = [α, β], with −∞ ≤ α < β ≤ ∞. (5.2)

We make substantial use of this fact in the subsequent analysis.

5.2.1 Solution to HJB PDE

Following the arguments from Section 4.3, the HJB equation associated with (P(t,v,z)) is given
by

0 = sup
π∈K

(
Gt + v(r + ηzπ)Gv + κ(θ − z)Gz +

1

2
v2zπ2Gvv + ρvzπσGvz +

1

2
σ2zGzz

)
(5.3)

G(T, v, z) = U(v),

2As any π ∈ Λ can only take finite values L[0, T ]⊗Q-a.e., we do not need to distinguish between (−∞, β] and
[−∞, β] or [α,∞) and [α,∞] for any −∞ ≤ α, β ≤ ∞.
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Any (sufficiently regular) solution G to (5.3) naturally yields a candidate optimal portfolio
π∗ to (P(t,v,z)) (and therefore (P)) as the maximizing argument of (5.3). In Chapter 4 we
characterized G as an exponentially affine function, whose exponents satisfy certain Riccati
ODEs.

Lemma 5.2.2. Let A and B be solutions to the system of ODEs

A′(τ) = br + κθB(τ), (5.4)

B′(τ) = −κB(τ) +
1

2
σ2 (B(τ))2 +

1

2

b

1 − b
inf
λ∈R

(
2(1 − b)δK(λ) + (η + λ+ σρB(τ))2

)
, (5.5)

with initial condition A(0) = B(0) = 0. Then, G(t, v, z) = 1
bv

b exp (A(T − t) +B(T − t)z) is a
solution to (5.3).

Given the minimizing argument and the solution B from (5.5), a candidate optimal portfolio π∗

for (P) is known. If we define the sequence of stopping times τn,t as τn,t = min(T, τ̂n,t), with

τ̂n,t = inf
{
t ≤ u ≤ T

∣∣∣ ∫ u

t

(
b ·
√
z(s) · π(s) ·G(s, V v0,π∗

(s), z(s))
)2
ds ≥ n,∫ u

t

(
σ
√
z(s) ·B(T − s) ·G(s, V v0,π∗

(s), z(s))
)2
ds ≥ n

}
,

then we can give a uniform integrability condition which guarantees that the candidate optimal
portfolio π∗ is indeed optimal for (P).

Lemma 5.2.3. Consider A,B and G from Lemma 5.2.2. Moreover, define

λ∗(B) = argmin
λ∈R

{
2(1 − b)δK(λ) + (η + λ+ σρB)2

}
(5.6)

π∗(t) =
1

1 − b

(
η + λ∗(B(T − t)) + σρB(T − t)

)
. (5.7)

If
(
G
(
τn,t, V

v0,π∗
(τn,t), z(τn,t)

))
n∈N is uniformly integrable for every t ∈ [0, T ], then π∗ is op-

timal for (P) and Φ(t, z, v) = G(t, v, z) for all (t, v, z) ∈ [0, T ] × (0,∞) × (0,∞).

Lemma 5.2.2 and Lemma 5.2.3 naturally lead to a three-step procedure for finding the optimal
portfolio π∗ for (P):

(i) Determine the minimizing argument λ∗ in (5.6).

(ii) Determine the solution B to ODE (5.5) and thereby the candidate optimal portfolio π∗

from (5.7).

(iii) Verify that π∗ satisfies the uniform integrability condition from Lemma 5.2.3.

In the following, we complete these steps consecutively and complete the results from Section
4.4 by providing a fully closed-form solution for the optimal allocation-constrained portfolio in
Heston’s stochastic volatility model via steps (i) and (ii) and formally verifying its optimality
in step (iii).

Since K is an interval, as specified in (5.2), the ODE (5.5) can be written as a composition of
three Riccati ODEs - each with constant coefficients.
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Lemma 5.2.4. Define B− = (1−b)α−η
σ and B+ = (1−b)β−η

σ . Then, the minimizing argument λ∗,
as in (5.6), is given as

λ∗(B) =
[
(1 − b)α− (η + σρB)

]
1{ρB<B−} +

[
(1 − b)β − (η + σρB)

]
1{ρB>B+}. (5.8)

Moreover, B(τ) is a solution to (5.5) if and only if B(0) = 0 and

B′(τ) =
(
− 1

2
bα
(
(1 − b)α− 2η

)
︸ ︷︷ ︸

=:r−0

+
(
bσρα− κ

)︸ ︷︷ ︸
=:r−1

B(τ) +
1

2
σ2︸︷︷︸
=:r−2

(
B(τ)

)2)
1{ρB(τ)<B−}

+
(
− −b

2(1 − b)
η2︸ ︷︷ ︸

=:r0

+
( b

1 − b
ησρ− κ

)
︸ ︷︷ ︸

=:r1

B(τ) +
1

2
σ2
(
1 +

b

1 − b
ρ2
)

︸ ︷︷ ︸
=:r2

(
B(τ)

)2)
1{B−≤ρB(τ)≤B+}

+
(
− 1

2
bβ
(
(1 − b)β − 2η

)
︸ ︷︷ ︸

=:r+0

+
(
bσρβ − κ

)︸ ︷︷ ︸
=:r+1

B(τ) +
1

2
σ2︸︷︷︸
=:r+2

(
B(τ)

)2)
1{B+<ρB(τ)} (5.9)

=
(
− r−0 + r−1 B(τ) +

1

2
r−2 +

(
B(τ)

)2)
1{ρB(τ)<B−}

+
(
− r0 + r1B(τ) +

1

2
r2
(
B(τ)

)2)
1{B−≤ρB(τ)≤B+}

+
(
− r+0 + r+1 B(τ) +

1

2
r+2
(
B(τ)

)2)
1{B+<ρB(τ)}.

Remark 5.2.5. By restricting the minimization in ODE (5.5) from λ ∈ R to one of the three
optimal values λ ∈ {(1−b)α−(η + σρB) , (1−b)β−(η + σρB) , 0} (cf. (5.8)), we may use (5.9)
to write

B′(τ) = −κB(τ) +
1

2
σ2 (B(τ))2 +

1

2

b

1 − b
inf
λ∈R

(
2(1 − b)δK(λ) + (η + λ+ σρB(τ))2

)
= min

(
−r−0 + r−1 B(τ) +

1

2
r−2
(
B(τ)

)2
,−r0 + r1B(τ) +

1

2
r2
(
B(τ)

)2
,−r+0 + r+1 B(τ) +

1

2
r+2
(
B(τ)

)2)
=: f(B(τ)).

The coefficients r−2 , r2 and r+2 are non-negative, and therefore f is the minimum of three convex
functions. As real convex functions are locally Lipschitz continuous and Lipschitz continuity is
preserved when taking the minimum over a finite number of functions, f is locally Lipschitz
continuous too. Hence, by the existence and uniqueness theorem of Picard-Lindelöf, there exists
a unique solution B to (5.5) for small τ > 0. Moreover, as f does not depend on τ, the ODE
for B is autonomous and its solution B is either constant (if f(0) = 0) or strictly monotone
in τ (if f(0) ̸= 0). Analogous arguments can be used to conclude the (strict) monotonicity of
Bu(τ) from Corollary 5.2.13 in Section 5.2.3.

Remark 5.2.6. Note that if B is a solution to (5.5), then Lemma 5.2.3 and Lemma 5.2.4 imply

π∗(t) =
η + λ∗(B(T − t)) + σρB(T − t)

1 − b
=


α, ρB(T − t) < B−
η+σρB(T−t)

1−b , B− ≤ ρB(T − t) ≤ B+

β, B+ < ρB(T − t).

Therefore, the zones Z− = (−∞, B−), Z0 = [B−, B+] and Z+ = (B+,∞) determine whether
the allocation constraint K = [α, β] is enforced for the candidate optimal portfolio process π∗
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from Lemma 5.2.3. Moreover, we may define π̂∗(t) := 1
1−b (η + σρB(T − t)) and express π∗ as

a capped version of π̂∗, i.e.,

π∗(t) = Cap(π̂∗(t), α, β) :=


α, π̂∗(t) < α

π̂∗(t), α ≤ π̂∗(t) ≤ β

β, β < π̂∗(t).

In a true constrained context, i.e., K ̸= R, we may either determine an approximation of B
by using a suitable numerical ODE solver (such as an Euler method) to solve the ODE (5.9)
or directly derive an explicit expression for B by individually solving each of the three Riccati
ODEs in (5.9) and merging the solutions at the transition points between the zones Z−, Z0 and
Z+. To ensure that such solutions exist and do not explode before time T , we need to make
the following assumption on MH and the constraints K = [α, β].

Assumption 5.2.7. 1

(i) Existence of Solution:

max


b

1−bη
(
κρ
σ + η

2

)
,

bα
(
η − 1

2α+ κρ
σ + 1

2αb(1 − ρ2)
)
,

bβ
(
η − 1

2β + κρ
σ + 1

2βb(1 − ρ2)
)
 <

κ2

2σ2

(ii) No Blow-Up:

The coefficients of each of the three Riccati ODEs satisfy t+(B0) > T (cf. Lemma 2.2.4,
(ii)) for each initial value

B0 ∈
{(

B−
ρ

)
1{ρ̸=0},

(
B+

ρ

)
1{ρ̸=0}, 0

}
.

Provided that Assumption 5.2.7 holds, the coefficients

r−3 =
√

(r−1 )2 + 2r−0 r
−
2 , r3 =

√
(r1)2 + 2r0r2, r+3 =

√
(r+1 )2 + 2r+0 r

+
2 (5.10)

are well-defined and the solutions to each of the Riccati ODEs (5.9) do not blow up before time
T when started at any of the transition points between the zones Z−, Z0 and Z+.3 For this
reason, we define the following auxiliary functions:

• Let B̂+, B̂, and B̂− be the solution to Riccati ODE (2.22) with initial value 0 as well as
coefficients r+0 , r

+
1 , r

+
2 , r0, r1, r2 and r−0 , r

−
1 , r

−
2 , respectively.

• If ρ ̸= 0, let B̂+
+ , B̂

−
− be the solution to Riccati ODE (2.22) with initial value B+

ρ , B−
ρ and

coefficients r+0 , r
+
1 , r

+
2 , r−0 , r

−
1 , r

−
2 , respectively.

• If ρ ̸= 0, let B̂+, B̂− be the solution to Riccati ODE (2.22) with initial value B+

ρ , B−
ρ ,

respectively, and coefficients r0, r1, r2.

3Technically, one can formulate this assumption less restrictively by expressing ‘No Blow-Up’ in terms of the time
spent in each of the zones Z−, Z0 and Z+. However, as this would significantly complicate the presentation
without adding major additional insights, it is omitted here.
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Moreover, if ρ ̸= 0, we define the transition times4

τ+1 = inf

{
τ | B̂+(τ) =

B+

ρ

}
, τ+2 = inf

{
τ | B̂+(τ) =

B−

ρ

}
, τ1 = inf

{
τ | B̂(τ) ∈

{
B−

ρ
,
B+

ρ

}}
τ−1 = inf

{
τ | B̂−(τ) =

B−

ρ

}
and τ−2 = inf

{
τ | B̂−(τ) =

B+

ρ

}
.

Note that each of the above functions and transition times, if finite, admit a closed-form ex-
pression, which can be obtained via Lemma 2.2.4 and Corollary 2.2.5. Having introduced these
auxiliary functions and transition times, we can finally express a closed-form solution for B in
terms of these processes via a piecewise construction. Possible trajectories of B are displayed
in Figures 5.2.1, 5.2.1 and 5.2.1, depending on whether 0 ∈ Z−, 0 ∈ Z0 or 0 ∈ Z+. The mono-
tonicity of B (cf. Remark 5.2.5) ensures that ρB(τ) can only pass through each zone at most
once.

Theorem 5.2.8. Let Assumption 5.2.7 hold. Then,

B(τ) =


B̂−(τ)1{τ≤τ−1 } + B̂−(τ − τ−1 )1{τ−1 <τ≤τ−1 +τ−2 } + B̂+

+(τ − (τ−1 + τ−2 ))1{τ−1 +τ−2 <τ}, if 0 ∈ Z−

B̂(τ)1{τ≤τ1} + B̂−
−(τ − τ1)1{τ>τ1,ρB̂(τ1)=B−} + B̂+

+(τ − τ1)1{τ>τ1,ρB̂(τ1)=B+}, if 0 ∈ Z0

B̂+(τ)1{τ≤τ+1 } + B̂+(τ − τ+1 )1{τ+1 <τ≤τ+1 +τ+2 } + B̂−
−(τ − (τ+1 + τ+2 ))1{τ+1 +τ+2 <τ}, if 0 ∈ Z+

satisfies ODE (5.5) for 0 ≤ τ ≤ T.5

Figure 5.1: Illustration of possible trajectories of ρB(τ), if B is a solution to ODE (5.5) and
0 ∈ Z−. The solid line represents an increasing trajectory that leaves Z−, whereas the dashed
line represents a decreasing trajectory that stays in Z−.

4If ρ = 0 all of these transition times will be infinite.
5Using a similar separation with respect to the zones Z−, Z0, and Z+ and equation (2.24), it is also possible to
determine a closed-form expression for A from Lemma 5.2.2.
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Figure 5.2: Illustration of possible trajectories of ρB(τ), if B is a solution to ODE (5.5) and
0 ∈ Z0.Depending on the sign of ρB′(0) = −ρr0, ρB(τ) is increasing or decreasing. In particular,
ρB(τ) can only transition to Z+ or Z−, but not both.

Figure 5.3: Illustration of possible trajectories of ρB(τ), if B is a solution to ODE (5.5) and
0 ∈ Z+. The solid line represents a decreasing trajectory that leaves Z+, whereas the dashed
line represents an increasing trajectory that stays in Z+.

5.2.2 Verification Theorem

Combining Remark 5.2.6 with Theorem 5.2.8 immediately yields a closed-form expression for
the candidate optimal portfolio process π∗. It now just remains to prove a verification theorem
which verifies that this candidate is indeed the optimal portfolio process corresponding to (P).
This proof requires an additional assumption on the constraints K = [α, β], which ensures a
certain boundedness of π∗(t) for t close to maturity T as well as two auxiliary lemmas.

Assumption 5.2.9.

max

{
bρ

κ
α,

bρ

κ
β

}
≤ κ

σ2
, (5.11)

Lemma 5.2.10. Let Assumptions 5.2.7 and 5.2.9 hold and let B be given as in Theorem 5.2.8.
Then, the following inequality holds for all t ∈ [0, T ]

bρ

σ
π∗(t) +B(T − t) ≤ κ

σ2
.
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Lemma 5.2.11. Let Assumptions 5.2.7 and 5.2.9 hold and let B be given as in Theorem 5.2.8.
Then the following inequality holds for all t ∈ [0, T ]

1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − t)) + σρB(T − t))2 − 1

2
b2ρ2 (π∗(s))2

+b
ρκ

σ
π∗(t) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − t)) + σρ

]
B′(T − t) <

1

2

κ2

σ2
.

Theorem 5.2.12 (Verification Theorem in MH). 1
Consider the financial market MH , let Assumptions 5.2.7 and 5.2.9 hold and let B be given as
in Theorem 5.2.8. Then,

π∗(t) =


α, ρB(T − t) < B−
η+σρB(T−t)

1−b , B− ≤ ρB(T − t) ≤ B+

β, B+ < ρB(T − t).

(5.12)

is optimal for (P).

5.2.3 Comparison to Unconstrained Portfolio

Unsurprisingly, we can immediately recover the solution to the unconstrained optimization
problem, as discussed in [56], from Lemma 5.2.3 and Lemma 5.2.4.

Corollary 5.2.13. [Closed-form Unconstrained Optimal Portfolio as in [56]] 1
Let K = R (i.e., α = −∞, β = ∞) and Bu : [0, T ] → R with Bu(0) = 0 satisfy

B′
u(τ) = −r0 + r1Bu(τ) +

1

2
r2Bu(τ)2 ∀τ ∈ [0, T ]. (5.13)

Then, λ∗(B) = 0 ∀B ∈ R and the candidate optimal portfolio π∗ is given by

πu(t) := π∗(t) =
1

1 − b
(η + σρBu(T − t)) .

Remark 5.2.14. If the market parameters satisfy (cf. Assumption 5.2.7)

b

1 − b
η
(κρ
σ

+
η

2

)
<

κ2

2σ2
, (5.14)

then

Bu(τ) =
2r0(e

r3τ − 1)

(r1 − r3)(er3τ − 1) − 2r3
(5.15)

and the optimality of πu for the unconstrained portfolio optimization problem can be verified
formally (see e.g. Theorem 5.3 in [56]).6

On an abstract level, when adding (allocation) constraints K = [α, β] to a portfolio optimization
problem, the optimal constrained portfolio π∗ for (P) will be given by a projection PK : Λ → ΛK

which maps the optimal unconstrained portfolio πu onto ΛK , i.e.,

π∗ = πu + (π∗ − πu) =: PK (πu) .

6Equation (5.14) corresponds to part (i) of Assumption 5.2.7. In the setting of [56], part (ii) of Assumption
5.2.7 is also implied by (5.14) and so does not have to be mentioned explicitly.
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In a Black-Scholes financial market MBS with constant market coefficients (i.e., MH with
σ = κ = ρ = 0.), the optimal unconstrained portfolio is a constant-mix strategy πu(t) = πM :=
1

1−bη, the so-called ‘Merton portfolio’. Setting σ = ρ = 0 and B ≡ 0 in Remark 5.2.6, one can

easily see that the projection PK = PBS
K in the Black-Scholes market simply caps off πM at the

boundaries if πM /∈ K = [α, β], i.e.,

PBS
K (πM ) = Cap (πM , α, β) =


α, πM < α

πM , α ≤ πM ≤ β

β, β < πM .

Given a solution B to (5.5) and considering Remark 5.2.6, it initially appears that the optimal
constrained portfolio π∗ in MH can be obtained from the same projection. However, if K ̸= R,
then Bu as in Corollary 5.2.13 and B as in Theorem 5.2.8 are solutions to possibly different
ODEs. In particular, this implies that the portfolios πu and π̂∗ may not be identical, in which
case the projection PH

K for the Heston market does not necessarily coincide with the projection
PBS
K for the Black-Scholes market either. In other words, in a financial market with Heston

stochastic volatility we in general have

π∗ = PH
K (πu) = Cap

(
πu + (π̂∗ − πu)︸ ︷︷ ︸

̸=0

, α, β
)
̸= Cap

(
πu, α, β

)
= PBS

K (πu).

In the following, we render this observation more precise by providing both conditions under
which PH

K = PBS
K and conditions under which PH

K ̸= PBS
K . The former case is true, whenever

either ρ = 0 or πM ∈ K.

Lemma 5.2.15. Let π∗ be as in Lemma 5.2.3, π̂∗ be as in Remark 5.2.6 and πu as in Corollary
5.2.13. If either

ρ = 0 or πM ∈ K,

then
π∗ = PH

K (πu) = Cap (πu, α, β) = PBS
K (πu) .

If ρ = 0, the stochasticity of the volatility is completely unhedgeable in MH . As a consequence,
the optimal unconstrained portfolio processes coincide in MBS and in MH . Thus, the projec-
tions PBS

K and PH
K are identical if ρ = 0 too. In contrast, if ρ ̸= 0, then the projections can only

be different if the underlying ODE solutions Bu and B are different, specifically when πu and
π̂∗ begin taking values inside K. This is the case if and only if πu and π̂∗ begin taking values
inside K at different time points. This observation leads to an equivalent characterization of
when the projections PBS

K and PH
K are different.

Lemma 5.2.16. Let π∗ be as in Lemma 5.2.3, π̂∗ be as in Remark 5.2.6 and πu as in Corollary
5.2.13. The following statements are equivalent:

(i)
π∗ = PH

K (πu, α, β) ̸= PBS
K (πu, α, β) = Cap(πu, α, β)

(ii)

πM /∈ [α, β] and ∃t ∈ (0, T ) :
∣∣∣{π̂∗(t), πu(t)

}
∩ (α, β)

∣∣∣ = 1

We can construct an extreme case which satisfies the requirements of Lemma 5.2.16 by choos-
ing α such that B(τ) is constant and choosing the market parameters such that πu changes
sufficiently during the investment horizon to ensure that πu(t∗) ∈ (α, β) for some t∗ ∈ [0, T ].
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Corollary 5.2.17. Let π∗ be as in Lemma 5.2.3, π̂∗ be as in Remark 5.2.6 and πu as in
Corollary 5.2.13. Let sign(x) ∈ {−1, 0, 1} denote the sign of x ∈ R.

(i) If

0 < πM =
α

2
< α and α < πu(t∗) < β for some t∗ ∈ [0, T ],

then B(τ) = 0 for all τ ∈ [0, T ], π∗(t) = α for all t ∈ [0, T ] and π∗ = PH
K (πu, α, β) ̸=

PBS
K (πu, α, β) = Cap (πu, α, β) .

(ii) If πM > β > 0, then

sign

(
∂

∂t
π̂∗(t)

)
= sign

(
∂

∂t
πu(t)

)
= −sign(ρb) ∀t ∈ [0, T ].

Hence, if in addition b < 0 and ρ < 0, then PH
K = PBS

K .

Clearly, the requirements on α in Corollary 5.2.17, (i) are quite restrictive, but they still provide
a valuable insight into when we can expect to see a large difference between the projections PBS

K

and PH
K . Namely, if

• the optimal unconstrained portfolio πu violates the constraint at maturity (i.e., πu(T ) =
πM /∈ K) and there is sufficient change in πu(t) during the investment period such that
πu(t∗) ∈ K for some t∗ ∈ K.

• the derivatives of B(τ) and Bu(τ) are considerably different while πu /∈ K (constant B
being the extreme case).

As a matter of fact, we will later see in the numerical experiments in Section 5.4 that it is
sufficient if α ≈ 2πM (i.e., B(τ) is nearly constant) to cause a considerable difference between
the two projections.

As evidenced by the majority of empirical calibrations of Heston’s stochastic volatility model to
financial time series (see e.g. [31] for an overview), the parameter ρ is negative for most realistic
applications. In the empirical study on risk preferences of mutual fund managers by [50], it is
reported that the risk aversion parameter b has a median of b = −1.43 and a mean of b = −4.8.
For more risk averse investors, such as insurance companies, reinsurance companies or pension
funds, one can thus realistically assume negative values for b. Thus, for most realistic parameter
configurations of MH with πM > β, the projections PH

K and PBS
K coincide for investors with a

high degree of risk aversion (i.e., for a low value of b).

5.3 Implications for Related Models

In this section, we consider a generalized version of the financial market MH with d ∈ N risky
assets, m = d independent CIR processes as risk drivers and a generalized dependence of market
price of risk and risky asset volatility on these risk drivers. Assume that we are given functions
γ : (0,∞)d → Rd, Σ : (0,∞)d → Rd×d, and parameters κ, θ, σ, z0 ∈ (0,∞)d such that their
components satisfy 2κiθi > σ2i for i = 1, ..., d. Then, we define the financial market Mγ,Σ

H , as
the stochastic factor model (4.3) with functions

µz(t, z) = κ⊙ (θ − z), Σz(t, z) =


√
z1 0

. . .

0
√
zm

 , ρ(t, z) = ρ,

r(t, z) = r, µ(t, z) = r(t, z)1 + Σ(z)γ(z), Σ(t, z) = Σ(z).
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Under these assumptions, the components of the stochastic factor z = (z1, ..., zd)′ are independ-
ent and satisfy the SDE

dzi(t) = κi (θi − zi(t)) dt+ σi
√
zi(t)dW

z
i (t), for i = 1, ..., d.

Further, Mγ,Σ
H consists of one risk-free asset P0 and d risky assets P = (P1, . . . , Pd)′ with

dynamics

dP0(t) = P0(t)rdt

dP (t) = P (t) ⊙ [(r1 + Σ(z(t))γ(z(t))) dt+ Σ(z(t))dW (t)] .

Clearly, we can recover the financial market MH , as considered in Section 5.2, by assuming
d = 1 and choosing γ(z) = η

√
z and Σ(z) =

√
z and the Black Scholes model MBS if both γ

and Σ are constants. Similar, but slightly more general financial market models than Mγ,Σ
H have

been considered in [33] or [61], for example. In Mγ,Σ
H , the wealth process V v0,π of an investor

with initial wealth v0 who trades continuously in time with Rd-valued relative portfolio process
π ∈ Λ, satisfies the SDE

dV v0,π(t) = V v0,π(t)
[(
r + γ(z(t))′Σ(z(t))′π(t)

)
dt+ π(t)′Σ(z(t))dW (t)

]
and the allocation constrained portfolio optimization problem (P) in Mγ,Σ

H is then defined as

(P)

Φ(v0) = sup
π∈Λ′

E
[
U(V v0,π(T ))

]
Λ′ =

{
π ∈ Λ

∣∣ π(t) ∈ K L[0, T ] ⊗Q− a.e.
}
.

In the following two sections, we investigate the solvability of (P) for given choices of γ, Σ, and
K. In Section 5.3.1, we consider the PCSV Model, as discussed in [30], and in Section 5.3.2,
we consider inverse volatility constraints K, which impose stronger restrictions on an investor’s
portfolio during periods of high volatility.

5.3.1 PCSV Model

We recover the Principal Component Stochastic Volatility model (‘PCSV model’) MPCSV , as
proposed in [37], from Mγ,Σ

H by considering an orthogonal matrix A =
(
a1, ..., ad

)
∈ Rd×d, with

columns a1, ..., ad, and defining market price of risk and volatility as

γ(z) = diag(
√
z)A′η = Σ(z)′η, Σ(z) = Adiag(

√
z) ∀z ∈ (0,∞)d, (5.16)

where diag(x) ∈ Rd×d denotes the diagonal matrix with entries x ∈ Rd, and η ∈ Rd is a
constant.
If A = Id, then MPCSV can be regarded as a canonical generalization of Heston’s stochastic
volatility model MH for a d-dimensional asset universe, where each risky asset’s volatility is
determined as the square root of one of the d independent CIR processes zi. However, in its
general form, the independent components of the d-dimensional CIR process z are not directly
regarded as volatilities. Instead, the instantaneous covariance matrix of risky asset returns

Σ(z(t))Σ(z(t))′ = Adiag(z(t))A′

is decomposed into its principal components, i.e., the columns ai of the matrix A represent
its eigenvectors, and the independent CIR processes zi represent their (stochastic) eigenvalues.
This approach not only enables the modelling of stochastic covariances of asset returns because
of additional degrees of freedom in A, but also allows for an interpretation of z as hidden risk
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factors determining the volatility level in the financial market. Moreover, [30] demonstrated that
several stylized facts are captured by the PCSV model, such as stochasticity of volatilities and
correlation of risky asset returns, volatility and correlation leverage effect, volatility spillovers,
and increasing correlation in periods of high market volatility.
Let ΛPCSV be the set of admissible portfolios in MPCSV . Then, for any π ∈ ΛPCSV , the wealth
process V v0,π satisfies the SDE

dV v0,π(t) = V v0,π(t)
[(
r + η′Adiag(z(t))A′π(t)

)
dt+ π(t)′Adiag

(√
z(t)

)
dW (t)

]
,

for t ∈ [0, T ]. The instantaneous variance of V v0,π(t) can therefore be decomposed into a
weighted sum of the risk factors z, since

∥∥∥diag(
√
z(t))A′π(t)

∥∥∥ =

∥∥∥∥∥∥∥
a

′
1π(t)

√
z1(t)

...

a′dπ(t)
√
zd(t)


∥∥∥∥∥∥∥
2

=
d∑

i=1

(
a′iπ(t)

)2
zi(t).

In this sense, the portfolio weights determine a risk exposure (a′iπ(t))2 to the risk factor zi.
Hence, it is very natural to impose risk limits on these exposures, i.e., for given upper bounds
β1, ..., βd > 0 we require that

(
a′iπ(t)

)2 ≤ βi ∀i = 1, ..., d ⇔ A′π(t) ∈
d

×
i=1

[0,
√
βi] ⇔ π(t) ∈ A ·

(
d

×
i=1

[0,
√
βi]

)
︸ ︷︷ ︸

=:KPCSV

.

We can reuse the ideas and results from Section 5.2 to obtain the optimal portfolio to the
portfolio optimization problem (P) in Mγ,Σ

H = MPCSV with constraints K = KPCSV .

Theorem 5.3.1. Consider the portfolio optimization problem (P) in MPCSV with constraints
K = KPCSV , let the parameters b, (ηA)i := (A′η)i, κi, θi, σi, αi = 0,

√
βi satisfy Assumptions

5.2.7 and 5.2.9 and Bi be defined as in Theorem 5.2.8. Define the portfolio π∗A(t) via

(π∗A(t))i = Cap

(
1

1 − b
(ηi + σρBi(T − t)) , 0,

√
βi

)
.

Then the portfolio π∗(t) = A · π∗A(t) is optimal for (P).

The key argument in the proof of Theorem 5.3.1 lies in a change of control, which transforms
the portfolio optimization problem (P) into an equivalent portfolio optimization problem (PA)
in a financial market, which consists of d risky assets with independent Heston volatilities and
interval constraints. Thanks to this familiar structure and the independence of the risky asset
volatilities, we can extend the ideas from Section 5.2 to solve (PA) and invert the change of
control to obtain a solution to (P).

5.3.2 Inverse Volatility Constraints

We now discuss a related problem, which we approach with a similar methodology to the one
in Section 5.3.1. Consider again the one-dimensional setting with one risky asset, i.e., d = 1.
In this section, we no longer assume that the convex constraints K ⊂ R̄ are static, but allow
them to depend on the stochastic factor z. More specifically, we consider volatility-dependent
constraints of the form

π(t) ∈ K(z(t)) L[0, T ] ⊗Q− a.e.,
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where K : (0,∞) → B(R) is a set-valued function, taking only closed-convex values in the Borel
set B(R). The motivation for such constraints is quite clear: Depending on the current state
of the financial market Mγ,Σ

H , in particular the level of risky asset volatility Σ(z(t)) and the
market price of risk γ(z(t)), investors may face different constraints on their portfolio, such as
more relaxed bounds in periods of low volatility or stricter bounds in periods of high volatility.
Further, in the spirit of mean-variance optimization, we can think of an investor seeking an
optimal portfolio allocation subject to constraints on his instantaneous portfolio volatility

0 ≤ π(t)Σ(z(t)) ≤ βz L[0, T ] ⊗Q− a.e. ⇔ 0 ≤ π(t) ≤ βz
Σ(z(t))

L[0, T ] ⊗Q− a.e.,

for a given volatility level βz > 0.7 Keeping this motivation in mind, we thus define the portfolio
optimization problem with volatility-dependent constraints (Pz) as

(Pz) =

Φz(v0) = sup
π∈ΛK(·)

E
[
U(V v0,π(T ))

]
Λ′ =

{
π ∈ Λ

∣∣ π(t) ∈ K(z(t)) L[0, T ] ⊗Q− a.e.
}
.

In its most general form, the portfolio optimization (Pz) is highly non-trivial, since closed-form
solutions for its optimal portfolio process π∗z can rarely be determined for general γ and Σ, even
in the absence of (stochastic) allocation constraints. In particular, the portfolio optimization
(P) is included as a special case in the definition of (Pz). However, due to the results of [17] for
the Black-Scholes model MBS with constant volatility, as well as the results from Section 5.2
for Heston’s stochastic volatility model MH , we know of at least two different models in which
solutions to (P) (respectively (Pz)) with static constraints can be obtained in closed form.
Using another change of control argument, we can therefore derive conditions on the market
parameters γ, Σ and the constraints K, under which we can transform (Pz) into an equivalent,
solvable portfolio optimization problem (P) in either MBS or MH .

Theorem 5.3.2. Consider the financial market Mγ,Σ
H and the portfolio optimization problem

(Pz) and constants −∞ ≤ α < β ≤ ∞.

(i) If γ(z) = η for some η > 0 and K(z) = 1
Σ(z) [αz, βz], then the portfolio process

π∗z(t) =
1

Σ (z(t))
Cap(πM , α, β)

is optimal for (Pz).

(ii) If γ(z) = η
√
z(t) for some constant η > 0, K(z) =

√
z

Σ(z) [α, β], and Assumptions 5.2.7 and

5.2.9 are satisfied, then for π∗ defined as in Theorem 5.2.12, the portfolio process

π∗z(t) =

√
z(t)

Σ (z(t))
π∗(t)

is optimal for (Pz).

The statements of Theorem 5.3.2 can be easily generalized to financial markets with d > 1 risky
assets by an analogous change of control argument. Using the results for constant volatility
markets from Example 15.2 in [17], one can prove a multi-dimensional analogue to statement (i)
and using the results for the PCSV model from Section 5.3.1, one can prove a multi-dimensional
analogue to statement (ii). For ease of presentation, we refrain from a detailed discussion of
this generalization.

7Note that this is different from classic mean-variance optimization, where the variance of the terminal portfolio
wealth V v0,π(T ) is constrained.
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5.4 Numerical Studies

In this section, we illustrate the properties of the optimal portfolio π∗ for (P) in Heston’s
stochastic volatility model MH , using a numerical example. In particular, we analyze the
difference between π∗ and two suboptimal ‘naive’ portfolio processes π, which either directly
follow the optimal portfolio process in MBS (i.e., π = Cap(πM , α, β)) or apply the projection
PBS
K from MBS to the optimal unconstrained portfolio πu in MH (i.e., π = Cap(πu, α, β)). The

suboptimality of these portfolios is quantified using the concept of wealth-equivalent loss.

Such an analysis is only meaningful if the differences between a financial market with stochastic
(Heston) volatility MH and a financial market with constant volatility MBS are already re-
flected in the optimal unconstrained portfolios πu for MH and πM for MBS . Since allocation
constraints further restrict the set of admissible portfolio allocations, any existing differences
between πu and πM tend to be diminished further when adding allocation constraints. From an
investor’s perspective, the distinction between MBS and MH is only relevant if the volatility
of risky asset log returns

√
z(t) changes significantly and these changes are partially hedgeable

through trading in the risky asset. This is the case if the volatility of the volatility (σ) is large,
the mean reversion speed (κ) is small, and the correlation between risky asset and volatility
diffusion (ρ) is close to either 1 or −1 (i.e., |ρ| is large).
Based on these requirements, we choose the market parameters (see Table 5.1) for our numerical
example such that the resulting market dynamics resemble a financial crisis. The only volatility

Parameter Value Explanation

End of Investment-Horizon T 1 Limited duration of financial crises
Risk Aversion Parameter b −2.5 Within ranges estimated in Table 1, [50]
Initial Wealth v0 1 For convenience
Risk-Free Interest Rate r 0 For convenience
Market Price of Risk Driver η 3.0071 Table 2, [13]
Mean Reversion Speed κ 3.15 Table 3 ‘%MSE’, [69]
Volatility of Volatility σ 0.76 Table 3 ‘%MSE’, [69]
Correlation ρ −0.81 Table 3 ‘%MSE’, [69]
Long-Term Mean θ 0.35 Feller’s Condition
Initial Variance z0 0.35 Chosen equal to θ

Table 5.1: Base parameters for the financial market MH .

parameters which influence the optimal portfolio allocation are σ, κ, and ρ. Our choices for
these parameters in Table 5.1, follow the calibration results of [69], who calibrated Heston’s
stochastic volatility model using option prices on the Eurostoxx 50 during the 2008 financial
crisis. The relatively short investment horizon of T = 1 year is chosen to reflect the limited
duration of most financial crises.8

We quantify the sub-optimality of both naive portfolio processes in comparison to the optimal
constrained portfolio process using the concept of wealth-equivalent loss (‘WEL’). For an arbit-
rary portfolio process π ∈ ΛK , we define the expected utility functional Jπ : [0, T ] × (0,∞) ×
(0,∞) → R as

Jπ(t, v, z) = E [U (V v0,π(T )) | V v0,π(t) = v, z(t) = z] . (5.17)

When considering the optimal portfolio process π∗, the expected utility functional coincides with
the value function of (P), i.e., Jπ∗

(t, v, z) = Φ(t, v, z) for all (t, v, z) ∈ [0, T ] × (0,∞) × (0,∞).

8[75] reported that the average length of an S&P500 bear market (defined as a period with drawdown in excess
of 20%) was 289 days.
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The WEL Lπ = Lπ(t, z) of π is then defined as the solution to the equation9

Φ(t, v(1 − Lπ(t, z)), z) = Jπ(t, v, z).

An investor following the optimal portfolio allocation π∗ only needs (1 − Lπ(t, z)) as much
capital to achieve the same average utility as an investor following the sub-optimal strategy π.
In this sense, Lπ(t, z) can be interpreted as a relative loss incurred for investing sub-optimally.
If π is deterministic and Jπ is the unique solution to the associated Feynman-Kac PDE, one
can use an exponentially affine ansatz to characterise Jπ in terms of the solutions to a system
of ODEs. If the ODE solutions are given, then the WEL Lπ(0, z0) is known in closed form.
We provide a description of this approach in Lemma 5.4.1 and Corollary 5.4.2 below. In our
studies, we approximated the corresponding ODE solutions by an Euler method.

Lemma 5.4.1. Consider a bounded deterministic relative portfolio process π ∈ ΛK . Let Aπ, Bπ :
[0, T ] → R with Aπ(0) = Bπ(0) = 0 be solutions to the system of ODEs

A′
π(T − t) = rb+ κθBπ(T − t) (5.18)

B′
π(T − t) = −

[
1

2
π(t)2b(1 − b) − bηπ(t)

]
+ [σρbπ(t) − κ]Bπ(T − t) +

1

2
σ2Bπ(T − t)2. (5.19)

If Jπ (as defined in (5.17)) is the unique solution to the Feynman-Kac-PDE (omitting the
argument (t, v, z) for readability)

0 = Jπ
t + (r + ηπ(t)z) vJπ

v + κ (θ − z) Jπ
z + σρπ(t)zvJπ

zv +
1

2
v2π(t)2zJπ

vv +
1

2
σ2zJπ

zz, (5.20)

with boundary condition Jπ(T, v, z) = U(v) = 1
bv

b, then

Jπ(t, v, z) =
1

b
vb exp (Aπ(T − t) +Bπ(T − t)z) .

Corollary 5.4.2. Let π ∈ ΛK be a deterministic portfolio process. Let Aπ, Bπ be as in Lemma
5.4.1 and A, B as in Lemma 5.2.2. Then, the wealth-equivalent loss Lπ is given as

Lπ(t, z) = 1 − exp

(
1

b
(Aπ(T − t) −A(T − t) + [Bπ(T − t) −B(T − t)] z)

)
∀(t, z) ∈ [0, T ] × (0,∞).

5.4.1 Optimal Constrained Merton Portfolio π = Cap (πM , α, β)

In this subsection, we compare π∗ with the first naive portfolio process π = Cap(πM , α, β).
Although π is static, it is at least known that π is optimal for an allocation constrained portfolio
optimization problem in the Black-Scholes market MBS , whereas no theoretical guarantees were
available for the corresponding optimization problem in MH prior to this thesis. During this
analysis, we consider the allocation constraint K = [α, β] = [0, 1], which corresponds to a
no-borrowing constraint that prevents short-selling in the risk-free and risky asset.

9Since we exclusively work with power utility functions in this chapter, we may without loss of generality assume
that the WEL is independent of wealth.
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Figure 5.4: Portfolio weights π(t) for t ∈ [0, T ], lower bound α = 0, upper bound β = 1, and
parameters as in Table 5.1.

Assuming the parameters in Table 5.1, the Merton portfolio satisfies the constraints, i.e., πM ∈
[α, β] and thus Cap(πM , α, β) = πM . In contrast to this constant allocation in the interior of
[α, β], π∗ initially takes a constant value at the upper bound β and later decreases towards
πM at the end of the investment horizon. Therefore, other than Cap(πM , α, β), π∗ is able to
realise and benefit from a higher allocation to the risky asset. Note that πM ∈ [α, β] implies
π∗ = Cap(πu, α, β), as shown in Lemma 5.2.15.

In the following, we quantify the impact of the suboptimal allocations π = Cap(πM , α, β) by
computing the annual WEL Lπ(0, z) at the beginning of the investment horizon and analyze
its sensitivity with respect to the risk-aversion parameter b and the volatility drivers σ, κ and
ρ. The ranges of the volatility parameter are chosen to be within the minimum and maximum
parameter values obtained in individual calibrations in Table 5 of [69].
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Figure 5.5: Dependence of the annual wealth-equivalent loss Lπ(0, z0) on individual parameters
for π = Cap(πM , α, β) = πM , lower bound α = 0, upper bound β = 1, and parameters as in
Table 5.1. Figure 5.5(a) illustrates the dependence on b ∈ [−10, 0.7]\{0}, whereas Figures 5.5(b),
5.5(c) and 5.5(d) display the dependence on σ ∈ [0.2, 1.0], κ ∈ [1.5, 5.0] and ρ ∈ [−0.9,−0.4].

For small values of b, where the allocation constraint K = [0, 1] is largely satisfied by the
unconstrained portfolios πM and πu, the WELs displayed in Figure 5.5(a) are increasing in
b. However, as b increases past an inflection point of approximately b = −3, the allocation
constraint K becomes active. From this point onwards, K forces π∗ and Cap(πM , α, β) closer
towards each other for increasing b and therefore leads to decreasing WELs. Ultimately, for
b ≥ −2, we have π∗(t) = Cap(πM , α, β) = β = 1 for all t ∈ [0, T ] and thus the WEL is zero.
Figures 5.5(b), 5.5(c) and 5.5(d) display WELs which are increasing in σ as well as decreasing
in κ and ρ. This confirms the intuition voiced at the beginning of Section 5.4, in which we
argued that MH is ‘more different’ to MBS under these circumstances. Within the chosen
parameter ranges, we observe the largest annual WEL of 3.2% for small κ, whereas increasing
σ and decreasing ρ leads to WELs of 3.0% and 2.5%, respectively. Changing any one of the
volatility parameters σ, κ or ρ to less extreme levels, which are obtained during calibrations on
long-term data sets10 leads to significant decreases in annual WELs. Even if only σ < 0.5, while
κ and ρ remain at crisis level, the annual WEL still drops to values of 0.75% or lower. Note that
Feller’s condition is satisfied for all parameter values that were considered in our analysis.

5.4.2 Capped Optimal Unconstrained Heston Portfolio π = Cap (πu, α, β)

In this subsection, we compare π∗ to the second naive portfolio process, the capped optimal un-
constrained Heston portfolio Cap (πu, α, β) . In particular, we aim to illustrate the phenomenon
described in Section 5.2.3. Despite a theoretical guarantee that Cap (πu, α, β) is indeed differ-
ent from π∗ for certain parameter settings, these differences appear to be mostly meaningful in
terms of WEL for extreme market scenarios in combination with specific, large lower bounds
α. According to Lemma 5.2.16 and Corollary 5.2.17, we know that Cap (πu, α, β) and π∗ are
identical in the parameter setting of Table 5.1, unless πM < α. Further, Corollary 5.2.17 sug-
gests that we should consider market parameters which ensure πu(t) > 2πM for some t ∈ [0, T ].
For these reasons, we adjust the previously considered parameter setting. In the following, we
choose the most extreme volatility parameters from the sensitivity analysis in Figure 5.5, i.e.,
we set σ = 1.0, κ = 1.5 and ρ = −0.9, and increase the risk aversion coefficient to b = −15 to
obtain realistic portfolio allocations.
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10For an overview, consider e.g. Table 4 in [31]. Here, the authors consider values of κ = 3.5, σ = 0.3, ρ = −0.4
as an ‘Average Case’ for their reviewed literature.
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Figure 5.6: Portfolio weights π(t) for t ∈ [0, T ], upper bound β = 1, and parameters as in Table
5.1, except for b = 15, σ = 1.0, κ = 1.5 and ρ = −0.9. Figure 5.6(a) considers a lower bound
α = 1.75πM , and Figure 5.6(b) considers a lower bound α = 2πM .

In Figure 5.6, we compare the portfolio weights of π∗(t) and Cap(πu(t), α, β) for lower bounds
α ∈ {1.75πM , 2πM} such that the corresponding ODE solution B is (nearly) constant, as de-
scribed in Corollary 5.2.17. If α = 1.75πM then π∗ is initially larger than the lower bound α,
then decreases until α is reached, while π∗ is constant for α = 2πM . Additionally, we observe
that

π∗(t) ≤ Cap(πu(t), α, β) ∀t ∈ [0, T ],

with equality only if πu(t) ≤ α. In both cases illustrated in Figure 5.6, π∗ lowers the portfolio
allocation early throughout the investment horizon, thus accounting for the fact that the lower
bound forces the portfolio allocation to be larger than the optimal unconstrained allocation
later during the investment horizon.
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Figure 5.7: Lower bounds α ∈ {1.5πM , 1.75πM , 1.9πM , 1.95πM , 2πM}, upper bound β = 1, t ∈
[0, T ], and parameters as in Table 5.1, except for b = 15, σ = 1.0, κ = 1.5 and ρ = −0.9. Figure
5.7(a) displays the portfolio weights π∗(t), and Figure 5.7(b) displays the WEL  Lπ(t, z0) for
π = Cap (πu, α, β) .

Figure 5.7(a) illustrates the behaviour of π∗ for varying α. When increasing α, we observe
that π∗ decreases to the lower bound at earlier time points t. Despite π∗ being constant for
α = 1.95πM , the solution B to the ODE (5.9) for B is not stationary, but ρB(τ) does not leave
zone Z− for τ ≤ T. Thus, we expect π∗ to be constant for all α ∈ [1.95πM , 2πM ] in our parameter
setting. Figure 5.7(a) displays WELs Lπ(t, z0) of π = Cap(πu, α, β), which are increasing in α
at t = 0. However, this monotonicity does not hold throughout the entire investment horizon,
as increasing the lower bound α implies that π∗ and Cap(πu, α, β) coincide for longer parts of
the investment horizon.
Clearly, Figures 5.6 and 5.7 suggest a strong link between the value of α and the difference
between π∗ and Cap(πu, α, β). Therefore, we quantify this difference not only using WELs, but
additionally define the maximum absolute weight difference between π∗ and a portfolio π as

∆π
max := max

t∈[0,T ]

∣∣∣π(t) − π∗(t)
∣∣∣. (5.21)

The relationship between the lower bound α and the maximum absolute difference ∆π
max and

the annual WEL Lπ(0, z0) are analyzed in Figure 5.8.
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Figure 5.8: Lower bounds α ∈ [πM , 2πM ], upper bound β = 1, π = Cap (πu, α, β) , and paramet-
ers as in Table 5.1, except for b = 15, σ = 1.0, κ = 1.5 and ρ = −0.9. For π = Cap (πu, α, β) ,
Figure 5.8(a) displays the maximum absolute difference ∆π to the portfolio weights π∗(t), and
Figure 5.8(b) displays the WEL  Lπ(0, z0) to π∗.

For π = Cap(πu, α, β), the maximum absolute difference ∆π
max is generally increasing with α

except for larger lower bounds α. For large α, the optimal constrained portfolio π∗ is constant
throughout the investment horizon, as illustrated in Figure 5.7(a). Then, the monotonicity of
πu (see Remark 5.2.5) and π∗(T ) = α = Cap(πu(T ), α, β) ensure that the maximum in (5.21)
is attained at t = 0. Further, πu(0) > 2πM ≥ α does not depend on α. Therefore, if π∗(t) = α
for all t ∈ [0, T ], then the difference

∆Cap(πu,α,β)
max = max

t∈[0,T ]

∣∣∣Cap(πu(t), α, β) − π∗(t)
∣∣∣ =

∣∣∣πu(0) − α
∣∣∣ = πu(0) − α

decreases linearly in α, which causes a slight kink in Figure 5.8(a) for large lower bounds α.
Irrespectively, the annual WEL for π = Cap(πu, α, β) is increasing with α. However, note that
for all but very large lower bounds (e.g. α ≥ 1.75πM ), the annual WEL is still negligible.

5.5 Conclusion

In this chapter, we considered a portfolio optimization problem with allocation constraints in
Heston’s stochastic volatility model. We derived an explicit expression for the optimal port-
folio and analyzed its properties. Surprisingly, this portfolio can be different from the naive
constrained portfolio which caps off the optimal unconstrained portfolio at the boundaries of
the constraint. In light of this fact, we have shown that the addition of allocation constraints
can have a fundamentally different impact on the optimal portfolio in markets with stochastic
volatility as compared to a Black-Scholes market with constant volatility - even in financial
markets with only one risky asset. Irrespective of these theoretical certainties, we observed in a
numerical study that the annual wealth equivalent loss incurred due to trading according to this
naive portfolio is relatively small for the majority of realistic scenarios. In this sense, the naive
‘capped’ portfolio is nearly optimal for most applications. However, in turbulent financial mar-
kets, such as the financial crisis of 2008, investors with a high degree of risk aversion and lower
bound on their portfolio allocation can suffer high wealth equivalent losses. For such scenarios,
investors should be mindful of the difference between the optimal constrained portfolio and the
naive capped portfolio.
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6 Conclusion

To conclude this thesis, we briefly recall for the main Chapters 3, 4, and 5 what we have done,
what we have learned and what could be investigated in future research.

What we have done: In Chapter 3, we began by generalizing the classic martingale approach
in such a way that we can characterize the optimal terminal wealth to a portfolio optimization
problem with constraints on terminal wealth in complete financial markets. The generalization
is applicable for (simultaneous) pointwise constraints on terminal wealth and expected value
constraints. Afterwards, we integrated this generalized martingale approach into the auxiliary
market framework of [17] to derive equivalent dual optimality conditions which can be used
to characterize the optimal terminal wealth and optimal portfolio process of an investor who
faces simultaneous constraints on his relative portfolio allocation and his terminal wealth. If
the allocation constraint K ⊂ Rd is a convex cone and the financial market is a Black-Scholes
market, then we were able to show that the ‘optimal’ auxiliary market can be determined
as the solution λ∗ to a deterministic, convex optimization problem and does not depend on
the employed utility function or the wealth constraint. For additional deterministic pointwise
bounds on terminal wealth and VaR- or ES-constraints, this allowed us to derive a representation
for the investor’s optimal terminal wealth which is explicit up to a constant (y∗, λ∗) ∈ [0,∞)2×
Rd.
In the subsequent Chapter 4, we restricted our analysis to (incomplete) stochastic factor models,
allocation constraints and power utility functions. As a consequence, the standard martingale
approach is no longer applicable and we had to develop a different duality approach. Using a
duality result from constrained real optimization, we were able to rewrite the associated HJB
PDE as a dual HJBI PDE. The min-max problem associated with the dual HJBI PDE is the
dual minimization problem in Condition (C̃) from Section 3.4, which establishes a connection
to the classic auxiliary market framework. By exploiting this connection, we were able to derive
Condition (EAS), which under some additional regularity conditions guarantees that the value
function is of exponentially affine form and yields a closed-form expression for the optimal
portfolio allocation. We verified Condition (EAS) for several examples of financial markets and
constraints.
Lastly, in Chapter 5, we specifically focussed on allocation constrained portfolio optimization
in a Heston market with one risky asset. We verified Condition (EAS), solved the associated
HJB(I) PDE and thereby derived a closed-form expression for the optimal constrained portfolio
process for the Heston market. We concluded the chapter by analyzing the sub-optimality of
two ‘naive’ portfolio processes in comparison to the optimal constrained portfolio process in the
Heston market in a numerical study.

What we have learned: In a complete financial market, the addition of pointwise constraints
(B1 ≤ V v0,π(T ) ≤ B2) and expected value constraints (E [g(V v0,π(T ))] ≤ 0) on terminal wealth
is, under some conditions, equivalent to adjusting the investor’s utility function from U ∈ U
to U(·;B1, B2) − y∗1g(·), where the adjustment y∗1 can be determined via the dual optimiza-
tion problem (DV

0 ). In particular, we can obtain a closed-form characterization for the optimal
terminal wealth (resp. portfolio process) under terminal wealth constraints, if the closed-form
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characterization is known for the adjusted utility function. Similarly, [17] argued that, under
some conditions, the introduction of convex allocation constraints is equivalent to adjusting
the original financial market M to Mλ∗ , where the adjustment λ∗ can be determined via the
dual minimization problem (DK). What we have shown in Section 3.4 is that simultaneous
constraints on terminal wealth and portfolio allocation can be regarded as a simultaneous ad-
justment to both utility function and financial market (y∗, λ∗), which can be computed via the
joint dual minimization problem (DK,V).
Even without constraints, closed-form solutions for the optimal portfolio process in stochastic
factor models are mainly available for the class of exponentially affine (respectively exponen-
tially quadratic) models and power utility functions. Due to the lack of flexibility in the choice
of utility function, we thus had to neglect wealth constraints in the ensuing analysis and only
focussed on allocation constraints. Within this context, Condition (EAS) allows us to char-
acterize the optimal constrained portfolio process in a stochastic factor model if the market
parameters adjusted by a dual optimizer (i.e. in the auxiliary market Mλ∗) leave the model
exponentially affine. Surprisingly, even if the original model is exponentially affine, the adjusted
model may no longer be exponentially affine, as illustrated in Section 4.4.2.
Since Condition (EAS) is satisfied in a one-dimensional Heston market, we were able to make
another surprising observation: while interval constraints K = [α, β] in a one-dimensional Black-
Scholes market lead to an optimal portfolio process which ‘caps’ the optimal unconstrained
portfolio process, this is no longer the case in a Heston market. This suggests that allocation
constraints have a different impact on the investor’s portfolio process in financial markets with
stochastic volatility. During numerical experiments we observed that this difference is particu-
larly relevant for investors who trade during turbulent financial markets, exhibit a high degree of
risk aversion and are constrained by a high lower bound on their relative portfolio allocation.

What could be investigated in future research: Naturally, one could extend Chapter 3 to
incomplete financial markets (m > 0), which can be completed through the addition of fictitious
assets, such as Heston’s stochastic volatility model (see e.g., [62], [9] and [30]). If a trading
restriction on these fictitious assets is imposed, then the framework of Chapter 3 can in principle
be applied. It then remains to see for which financial market models, utility functions, allocation
constraints and wealth constraints we can still derive useful characterizations of the optimal
terminal wealth akin to the results in Section 3.5.3. A convenient choice for the fictitious assets
will likely be crucial in this aspect.
The pointwise duality approach presented in Chapter 4 on the level of the HJB PDE is in
principle also applicable for portfolio optimization problems with simultaneous constraints on
allocation and wealth, as long as these constraints are time-consistent (i.e., we need to be able
to formulate an HJB PDE). Similarly, our approach may also lead to new insights for portfolio
optimization problems with time-inconsistent allocation and wealth constraints when following
the equilibrium approach of [7]. Whether or not such an application can lead to new closed-
form solutions for optimal portfolio processes will depend crucially on the right combination of
market model, utility function and constraints. This is required to ensure that one can derive
a semi-closed-form solution to the associated HJB(I) PDEs, which is possible only in rare cases
– even without the presence of allocation constraints.
Lastly, it would be interesting to analyze the impact of allocation constraints on the optimal
allocation via a similar projection argument as in Section 5.2.3 for multi-dimensional market
models. The form of the projection PBS

K in the Black-Scholes market MBS is already suggested
by Remark 4.4.11. It would be compelling to see if one can derive similar conditions as in
Lemma 5.2.16, under which the projection in MCIR and even more general markets coincide
with PBS

K .
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A.1 Proofs Chapter 2

Proof of Lemma 2.1.4. Noting that any vector space V with scalar product is a locally convex
space, this statement is a special case of Chapter 1, Corollary 1.4 in [29].

Proof of Lemma 2.1.8. Let f satisfy (2.1). Further, let (x, α), (y, β) ∈ Hf and λ ∈ (0, 1). Then,
by the definition of Hf , we have f(x) ≥ α, f(y) ≥ β. Moreover, we have

f(λx+ (1 − λ)y)
(2.1)

≥ λf(x) + (1 − λ)f(y)
Def. Hf

≥ λα+ (1 − λ)β.

Thus,
λ(x, α) + (1 − λ)(y, β) = (λx+ (1 − λ)y, λα+ (1 − λ)β) ∈ Hf .

Therefore, Hf is convex.

Let Hf be convex, x, y ∈ V and λ ∈ (0, 1). We have to differentiate between two cases:

1. f(x) > −∞, f(y) > −∞: Then, f(x), f(y) are finite and (x, f(x)), (y, f(y)) ∈ Hf . Since
Hf is convex, we have

(λx+ (1 − λ)y, λf(x) + (1 − λ)f(y)) = λ(x, f(x)) + (1 − λ)(y, f(y)) ∈ Hf .

However, this implies (2.1) by the definition of Hf .

2. f(x) = −∞ or f(y) = −∞: Then we immediately have

f(λx+ (1 − λ)y) ≥ −∞ = λf(x) + (1 − λ)f(y).

Equivalence of (2.2) and (2.3). 1
(2.2) ‘⇒’ (2.3): Let x̂ ∈ V . If f(x̂) = ∞, then (2.3) holds trivially. If f(x̂) < ∞, assume
that lim supx→x̂ f(x) > f(x̂). Then there exists a sequence (xn)n∈N taking values in V with
limn→∞ xn = x̂ and lim supn→∞ f(xn) = f̂ > f(x̂). As Mf (α) is closed for arbitrary α, we know
that for any ϵ > 0 the complement

Mf (f(x̂) + ϵ)c =
{
x ∈ V

∣∣ f(x) < f(x̂) + ϵ
}

is open. In particular, x̂ ∈ Mf (f(x̂) + ϵ)c and thus there exists N ∈ N such that xn ∈
Mf (f(x̂) + ϵ)c for all n > N . Setting ϵ = 1

2

(
f̂ − f(x̂)

)
leads to a contradiction. Hence,
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lim supx→x̂ f(x) ≤ f(x̂).

(2.3) ⇒ (2.2): Let α ∈ R be arbitrary. If Mf (α) = ∅, then Mf (α) is closed. Otherwise, let
(xn)n∈N be a convergent sequence taking values in Mf (α) with limit x̂ ∈ V . We need to show
that x̂ ∈Mf (α).
As xn ∈Mf (α) ∀n ∈ N, we have f(xn) ≥ α ∀n ∈ N. In combination with (2.3) we obtain

f(x̂) ≥ lim sup
x→x̂

f(x) ≥ lim sup
n→∞

f(xn) ≥ α

and therefore x̂ ∈Mf (α) and Mf (α) is closed.

Proof of Lemma 2.1.11. 1

(i) ‘⇒’: Let f be usc and Mf (α) as in Definition 2.1.9. Then,

Mf (α)c × (α,∞) =
{
x
∣∣f(x) < α

}
× (α,∞)

is open in VR for all α ∈ R. Hence,

Hc
f =

{
(x, α)

∣∣ f(x) < α
}

=
⋃
α∈R

{
x
∣∣ f(x) < α

}
× (α,∞)

is open in VR, i.e., Hf is closed in VR.
‘⇐’: Let Hf be closed in VR = V ×R. For any α ∈ R the set V × {α} is closed in VR.
Hence, Hf ∩ (V ×{α}) = Mf (α)×{α} is closed in VR. This implies that Mf (α) is closed
in V . Hence, f is usc.

(ii) As usc f ≥ f is closed, we know by (i) that Husc f is closed and therefore,

Hf ⊂ Husc f ⇒ cl Hf ⊂ cl Husc f

(i)
⊂ Husc f .

Further, cl Hf is the hypograph Hg of a function g : V → R̄

g(x) := sup
{
α
∣∣ (x, α) ∈ cl Hf

}
.

Since Hf ⊂ cl Hf = Hg, we have f ≤ g and g is usc. In particular, this implies usc f ≤ g
and therefore

Husc f ⊂ Hg = cl Hf .

(iii) As f ≤ co f and Hco f is convex, we must have co Hf ⊂ Hco f . Analogously to the proof
of (ii), co Hf defines the hypograph Hg of a concave function

g(x) := sup
{
α
∣∣ (x, α) ∈ co Hf

}
.

As g is concave and Hf ⊂ co Hf = Hg, we have f ≤ co f ≤ g and thus Hco f ⊂ Hg =
co Hf .
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(iv) For y = (z, γ) ∈ VR, β ∈ R, let H(y, β) denote a closed half space in VR. Then, we may
use Lemma 2.1.4 and the previous derivations to realize⋂

Hf⊂H(y,β)
(y,β)∈VR×R

H(y, β)
L.2.1.4

= cl co Hf
(iv)
= cl Hco f

(ii)
= Husc cl f .

In particular, we have

usc cl f(x) = sup
{
α
∣∣∣ (x, α) ∈

⋂
Hf⊂H(y,β)
(y,β)∈VR×R

H(y, β)
}

Our aim is to now characterize H(y, β) and Husc cl f in such a way that (iv) follows
immediately. We make a distinction between the three cases γ < 0, γ = 0 and γ > 0, for
y = (z, γ).
For γ < 0, we have (x, α) ∈ H(y, β) if and only if

⟨x, z⟩ + αγ ≤ β
γ<0⇔ α ≥ 1

γ
(β − ⟨x, z⟩)

The function f is proper and therefore there exists x̂ ∈ V such that −∞ < f(x̂). Hence,
(x̂, α) ∈ Hf for all α ≤ f(x̂). However, when choosing

α̂ := min

(
f(x̂),

1

γ
(β − ⟨x̂, z⟩)

)
− 1,

we then have (x̂, α̂) /∈ H(y, β) and (x̂, α̂) ∈ Hf . Hence, Hf ̸⊂ H(y, β) and⋂
Hf⊂H((z,γ),β)

(z,γ,β)∈V×(−∞,0)×R

H(y, β) = VR. (A.1)

For γ = 0, we have (x, α) ∈ H(y, β) if and only if

⟨x, z⟩ ≤ β.

Therefore,

Hf ⊂ H(y, β) ⇔ ∀(x, α) ∈ Hf : (f(x) ≥ α⇒ ⟨x, z⟩ ≤ β)

⇔ ∀(x, α) ∈ Hf : (f(x) > −∞ ⇒ ⟨x, z⟩ ≤ β)

⇔ domf ⊂ H(z, β).

As (x, α) ∈ H((z, 0), β) is true or false irrespective of the value of α, we thus obtain⋂
Hf⊂H((z,0),β)
(z,β)∈V×R

H(y, β) =
( ⋂

domf⊂H(z,β)
(z,β)∈V×R

H(z, β)
)
×R L.2.1.4

= (cl co domf ) ×R. (A.2)

For γ > 0, we have (x, α) ∈ H(y, β) if and only if

⟨x, z⟩ + αγ ≤ β ⇔ 1

γ

(
β − ⟨x, z⟩︸ ︷︷ ︸

=:h(x):=h(x,z,γ,β)

)
≥ α.

⇒ H(y, β) =
{

(x, α)
∣∣ h(x; z, γ, β) ≥ α

}
= Hh.
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If we consider h as a function of x for fixed z, γ, β, then h is affine in x. Moreover, for
an appropriate choice of parameters z, γ, β, we can obtain an arbitrary affine function
h : V → R. Note that we do not need the degree of freedom in γ, as we can still obtain
any affine function by setting γ = 1, changing the sign of ⟨z, x⟩ and varying z, β freely.
Thus, we obtain ⋂

Hf⊂H((z,γ),β)
(z,γ,β)∈V×(0,∞)×R

H(y, β) =
⋂

h:V→R affine
Hf⊂Hh

Hh =
⋂

h:V→R affine
f≤h

Hh (A.3)

In total, (A.1), (A.2) and (A.3) yield⋂
Hf⊂H(y,β)
(y,β)∈VR×R

H(y, β) =
(
VR

)
∩
(

(cl co domf ) ×R
)
∩
( ⋂

h:V→R affine
f≤h

Hh

)

=
(

(cl co domf ) ×R
)
∩
( ⋂

h:V→R affine
f≤h

Hh

)

(v) We make a distinction between cl co f ≡ ∞ and cl co f = usc co f.
If cl co f ≡ ∞, then usc co f is not proper and there does not exist an affine function
h : V → R such that f ≤ h. This implies that for any (z, β) ∈ VR, there exists an
x̄ = x̄(z, β) such that

β + ⟨x̄, z⟩ < f(x̄) ⇒ β < f(x̄) − ⟨x̄, z⟩ ≤ sup
x̂∈V

(f(x̂) − ⟨x̂, z⟩)

⇒ ∞ = sup
β∈R

β ≤ sup
x̂∈V

(f(x̂) − ⟨x̂, z⟩) .

In particular, taking the infimum over z ∈ V yields for any x ∈ V

inf
z∈V

(
sup
x̂∈V

(
f(x̂) − ⟨z, x̂⟩

)
︸ ︷︷ ︸

=∞

+⟨z, x⟩
)

= ∞ = cl co f(x).

If cl co f = usc co f, then usc co f is proper and there exists an affine function h : V → R

such that f ≤ h. In particular, we have⋂
Hf⊂H(y,β)
(y,β)∈VR×R

H(y, β) =
(

(cl co domf ) ×R
)
∩
( ⋂

h:V→R affine
f≤h

Hh

)

=
⋂

h:V→R affine
f≤h

Hh

=
⋂

(z,β)∈VR
f(x)≤β+⟨z,x⟩ ∀x∈V

{
(x, α)

∣∣ β + ⟨z, x⟩ ≥ α
}
. (A.4)

For any z ∈ V we have,

f(x̂) ≤ β + ⟨z, x̂⟩ ∀x̂ ∈ V ⇔ sup
x̂∈V

(
f(x̂) − ⟨z, x̂⟩

)
≤ β

and therefore, by (A.4),

Husc co f =
⋂

Hf⊂H(y,β)
(y,β)∈VR×R

H(y, β) =
⋂
z∈V

{
(x, α)

∣∣ sup
x∈V

(
f(x̂) − ⟨z, x̂⟩

)
+ ⟨z, x⟩ ≥ α

}
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=

{
(x, α)

∣∣ inf
z∈V

(
sup
x∈V

(f(x̂) − ⟨z, x̂⟩) + ⟨z, x⟩
)

≥ α

}
⇒ cl co f(x) = usc co f(x) = inf

z∈V

(
sup
x∈V

(f(x̂) − ⟨z, x̂⟩) + ⟨z, x⟩
)
.

Proof of Lemma 2.1.15. 1

(i) For any y ∈ V, we have

−f∗(y) = − sup
x∈V

(f(x) − ⟨y, x⟩) = inf
x∈V

(−f(x) + ⟨y, v⟩) .

Thus,

H−f∗ =

{
(y, α)

∣∣ inf
x∈V

(−f(x) + ⟨y, x⟩) ≥ α

}
=
{

(y, α)
∣∣ −f(x) + ⟨y, x⟩︸ ︷︷ ︸

=:h(y;x)

≥ α ∀x ∈ V
}

=
{

(y, α)
∣∣ h(y;x) ≥ α ∀x ∈ V

}
=
⋃
x∈V

Hh(·;x).

For fixed x, the function h(y;x) is affine in y and thus usc concave in y. Hence, each
hypograph Hh(·;x) is closed convex. Therefore, H−f∗ is closed convex, which is equivalent
to −f∗(y) being usc concave by Definition 2.1.6 and Lemma 2.1.11, (i). The statements
about f∗∗ = cl co f follow directly from Lemma 2.1.11 (iv).

(ii) Let f = f∗∗. By Lemma 2.1.11, we have f∗∗ = cl co f , which is usc and concave by
construction. Hence, f = f∗∗ = cl co f is usc and concave, too.
Let f be usc and concave. Then,

f
D. 2.1.10

= co f and f
D. 2.1.10

= usc f
f proper

= cl co f
L. 2.1.11 (iv)

= f∗∗.

Proof of Lemma 2.1.17. 1

(i) Let y ∈ V, α ≥ 0. Then,

δK(αy) = − inf
x∈K

(
⟨x, αy⟩

) α≥0
= −α inf

x∈K

(
⟨x, y⟩

)
= αδK(y).

(ii) Let y1, y2 ∈ V . Then,

δK(y1 + y2) = − inf
x∈K

(
⟨y1 + y2, x⟩

)
= − inf

x∈K

(
⟨y1, x⟩ + ⟨y2, x⟩

)
≤ − inf

x∈K

(
⟨y1, x⟩

)
− inf

x∈K

(
⟨y2, x⟩

)
= δK(y1) + δK(y2).
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(iii) The first equivalence follows directly from (2.4). By scaling any non-zero y ∈ XK to

ŷ =
1√
⟨y, y⟩

y

such that ⟨ŷ, ŷ⟩ ≤ 1, we can use the positive homogeneity of δK to see that

0 ≤ δK(y) + ⟨x, y⟩ ∀y ∈ XK ⇔ 0 ≤ δK(ŷ) + ⟨x, ŷ⟩ ∀ŷ ∈ XK with ⟨ŷ, ŷ⟩ ≤ 1,

i.e., the second equivalence holds.

(iv) ‘⇒’: Let δK(y) = 0 ∀y ∈ XK . Let x ∈ K, α ≥ 0. Since x ∈ K, we obtain from (iii):

0 ≤ δK(y)︸ ︷︷ ︸
=0

+⟨y, x⟩ = ⟨y, x⟩ ∀y ∈ XK

⇒ 0 ≤ ⟨y, αx⟩ = δK(y) + ⟨y, αx⟩ ∀y ∈ XK ⇒ αx ∈ K by (iii).

Hence, K is a convex cone.
‘⇐’: Let K be a convex cone. Then, 0 ∈ K and thus

δK(y) = − inf
x∈K

(⟨x, y⟩) ≥ ⟨0, y⟩ = 0 ∀y ∈ V.

Further, if δK(y) > 0, then there exists x∗ ∈ K such that ⟨x∗, y⟩ < 0. Since K is a convex
cone, αx∗ ∈ K for all α ≥ 0. Hence,

δK(y) = − inf
x∈K

(
⟨x, y⟩

)
≥ − inf

α≥0

(
⟨αx∗, y⟩

)
= sup

α≥0

(
−α︸︷︷︸
≤0

⟨x∗, y⟩︸ ︷︷ ︸
<0

)
= ∞.

Thus, δK(y) > 0 ⇒ y /∈ XK
δ≥0⇒ δK(y) = 0 ∀y ∈ XK .

Proof of Lemma 2.1.22. 1

(i): For every fixed x ∈ V , L(x, λ) − ⟨ū, λ⟩ is the concave conjugate of F (x, u) w.r.t. u. If
F (x, ·) is proper, then by Lemma 2.1.15, (i) this implies −L(x, ·)+⟨ū, λ⟩ is usc and concave
in u and therefore −L(x, ·) is usc and concave in u, too.

(ii): infλ∈H L(x, λ) is the bi-conjugate of F (x, ·) evaluated at ū. Hence, we have by Lemma
2.1.11 (iv)

inf
λ∈H

L(x, λ) = inf
λ∈H

(
sup
u∈H

(
F (x, u) − ⟨u, λ⟩

)
+ ⟨ū, λ⟩

)
= cl co F (x, ū)

= f(x).

(iii) By (ii), we now have

f(x) = inf
λ∈H

L(x, λ) ∀x ∈ V

⇒ ΦP = sup
x∈V

f(x) = sup
x∈V

inf
λ∈H

L(x, λ).
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Proof of Theorem 2.1.23. We have Φ(ū) = supx∈V f(x) = ΦP by definition of Φ and ΦP .
Moreover, from Lemma 2.1.15 we obtain

ΨD = inf
λ∈H

sup
x∈V

L(x, λ)

= inf
λ∈H

sup
x∈V

sup
u∈H

((
F (x, u) − ⟨u, λ⟩

)
+ ⟨ū, λ⟩

)
= inf

λ∈H
sup
u∈H

((
sup
x∈V

F (x, u)︸ ︷︷ ︸
= Φ(u)

−⟨u, λ⟩
)

+ ⟨ū, λ⟩
)

= inf
λ∈H

sup
u∈H

((
Φ(u) − ⟨u, λ⟩

)
+ ⟨ū, λ⟩

)
= inf

λ∈H

(
Φ∗(λ) + ⟨ū, λ⟩

)
= Φ∗∗(ū)

= cl co Φ(ū).

Finally, as noted in Remark 2.1.13, weak duality of the concave conjugate yields

ΦP = Φ(ū) ≤ Φ∗∗(ū) = cl co Φ(ū) = ΨD.

Proof of Corollary 2.1.26. As (x∗, λ∗) is a saddle-point of L, we have

sup
x∈V

L(x, λ∗) = L(x∗, λ∗) and inf
λ∈H

L(x∗, λ) = L(x∗, λ∗).

However, as we additionally have

L(x∗, λ∗) = sup
x∈V

L(x, λ∗) ≥ sup
x∈V

inf
λ∈H

L(x, λ) ≥ inf
λ∈H

L(x∗, λ) = L(x∗, λ∗)

and

L(x∗, λ∗) = inf
λ∈H

L(x∗, λ) ≤ inf
λ∈H

sup
x∈V

L(x, λ) ≤ sup
x∈V

L(x, λ∗) = L(x∗, λ∗),

we obtain

ΨD = inf
λ∈H

sup
x∈V

L(x, λ) = sup
x∈V

L(x, λ∗),

i.e., λ∗ is optimal for (D). Moreover, if F (x∗, ·) is usc and concave in u, then we get

sup
x∈V

f(x) = sup
x∈V

inf
λ∈H

L(x, λ) = inf
λ∈H

L(x∗, λ) = f(x∗),

i.e., x∗ is optimal for (P).

Proof of Theorem 2.1.27. The equivalence of (i) and (ii) is immediate from Theorem 2.1.23 and
the implication (iv) ⇒ (iii) holds true according to Corollary 2.1.26. It remains to show that
(iii)⇒ (iv). Assume that (iii) holds. Then,

ΦP = sup
x∈V

f(x)
x∗ optimal for (P)

= f(x∗) = F (x∗, ū)
L. 2.1.22

= inf
λ∈H

L(x∗, λ)
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≤ L(x∗, λ∗) ≤ sup
x∈V

L(x, λ∗)
λ∗ optimal for (D)

= inf
λ∈H

sup
x∈V

L(x, λ) = ΨD

= ΦP

This yields
sup
x∈V

L(x, λ∗) = L(x∗, λ∗) = inf
λ∈H

L(x∗, λ)

and therefore (x∗, λ∗) is a saddle-point.

Proof of Theorem 2.1.28. Follows immediately by considering −F in Theorem 18a) in [76].

Proof of Lemma 2.1.29. Recalling Example 2.1.20, we realize that L is the Lagrangian corres-
ponding to the perturbed objective function

F (x, u) = f(x) + XK(x+ u) = f(x) + XK−u(x).

We aim to apply Corollary 2.1.26 and thus need to verify that F (x∗, ·) is proper, usc and concave
in u. However, as f(x∗) ∈ R, it is sufficient to show that the mapping

u→ XK(x∗ + u)

proper, usc and concave in u. However, this is trivial because K is non-empty and closed convex
and u→ x∗ + u is affine in u. Hence, by virtue of Corollary 2.1.26, x∗ is optimal for (P).

Proof of Corollary 2.1.30. 1
‘⇒’: Assume that (x∗, λ∗) is a saddle-point of L. Then, we have

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) ∀(x, λ) ∈ Rd ×Rd. (A.5)

In particular, this implies for all x ∈ Rd:

f(x) + ⟨x, λ∗⟩ + δK(λ∗) = L(x, λ∗) ≤ L(x∗, λ∗) = f(x∗) + ⟨x∗, λ∗⟩ + δK(λ∗),

i.e., (i) is satisfied. Assume now that ⟨x∗, λ∗⟩ + δK(λ∗) > 0. But then we have

L(x∗, 0) = f(x∗) + ⟨x∗, 0⟩ + δK(0) = f(x∗)

< f(x∗) + ⟨x∗, λ∗⟩ + δK(λ∗) = L(x∗, λ∗),

which is a contradiction to (A.5). Hence, we must have ⟨x∗, λ∗⟩ + δK(λ∗) ≤ 0. Similarly,
assuming ⟨x∗, λ∗⟩ + δK(λ∗) < 0 yields

L(x∗, 2λ∗) = f(x∗) + ⟨x∗, 2λ∗⟩ + δK(2λ∗)

= f(x∗) + 2
(
⟨x∗, λ∗⟩ + δK(λ∗)

)
< f(x∗) + ⟨x∗, λ∗⟩ + δK(λ∗) = L(x∗, λ∗),

which is again a contradiction to (A.5). Hence, we must have ⟨x∗, λ∗⟩ + δK(λ∗) ≥ 0. In total,
this yields ⟨x∗, λ∗⟩+δK(λ∗) = 0, i.e., (ii) is satisfied. This allows us to show that for any λ ∈ Rd

⟨x∗, λ⟩ + δK(λ) = −f(x∗) + f(x∗) + ⟨x∗, λ⟩ + δK(λ)

105



A Proofs

= −f(x∗) + L(x∗, λ)

(A.5)

≥ −f(x∗) + L(x∗, λ∗)

= −f(x∗) + f(x∗)︸ ︷︷ ︸
= 0

+ ⟨x∗, λ∗⟩ + δK(λ∗)︸ ︷︷ ︸
= 0

(ii)
= 0.

According to (2.4), this implies x∗ ∈ K and thus (iii) is satisfied.
‘⇐’: Let (i), (ii), (iii) be satisfied for (x∗, λ∗) ∈ V ×H. From (i) we know that

L(x, λ∗) = f(x) + ⟨x, λ∗⟩ + δK(λ∗) ≤ f(x∗) + ⟨x∗, λ∗⟩ + δK(λ∗) ≤ L(x∗, λ∗) ∀x ∈ V.

Moreover, using (ii) and (iii), we obtain

L(x∗, λ∗) = f(x∗) + ⟨x∗, λ∗⟩ + δK(λ∗)

(ii)
= f(x∗)

(iii)

≤ f(x∗) +

≥0︷ ︸︸ ︷
⟨x∗, λ⟩ + δK(λ)

= L(x∗, λ) ∀λ ∈ H.

Thus, (x∗, λ∗) is a saddle-point of L.

Proof of Theorem 2.1.31. Consider 0 < ϵ < 1, ∆λ ∈ XK with ∥∆λ∥ ≤ 1 and define λϵ =
λ∗ + ϵ∆λ. Since λ∗ is optimal for (D), we know that

0 ≤ 1

ϵ

(
L(x∗(λϵ), λϵ) − L(x∗(λ∗), λ∗)︸ ︷︷ ︸

≥L(x∗(λϵ),λ∗)

)
≤ 1

ϵ

(
L(x∗(λϵ), λϵ) − L(x∗(λϵ), λ

∗)
)

=
1

ϵ

(
f(x∗(λϵ)) + (x∗(λϵ))

′λϵ + δK(λϵ) − f(x∗(λϵ)) − (x∗(λϵ))
′λ∗ − δK(λ∗)

)
=

1

ϵ

(
(x∗(λϵ))

′ (λϵ − λ∗)︸ ︷︷ ︸
=ϵ∆λ

+δK(λϵ) − δK(λ∗)
)

= (x∗(λϵ))
′∆λ+

1

ϵ
(δK(λϵ) − δK(λ∗)) .

Taking the upper limit ϵ ↓ 0 and using the fact that x∗(λ)′∆λ is usc at λ = λ∗, yields

0 ≤ lim sup
ϵ↓0

1

ϵ

(
L(x∗(λϵ), λϵ) − L(x∗(λ∗), λ∗)

)
≤ lim sup

ϵ↓0

(
(x∗(λϵ))

′∆λ+
1

ϵ
(δK(λϵ) − δK(λ∗))

)
≤ x∗(λ∗)′∆λ+ lim sup

ϵ↓0

1

ϵ
(δK(λϵ) − δK(λ∗)) . (A.6)

106



A Proofs

Using the sub-additivity and positive homogeneity of δK (cf. Lemma 2.1.17), finally gives

0 ≤ x∗(λ∗)′∆λ+ lim sup
ϵ↓0

1

ϵ

(
δK(λ∗) + ϵδK(∆λ) − δK(λ∗)

)
= x∗(λ∗)′∆λ+ δK(∆λ).

Since ∆λ ∈ XK was chosen arbitrarily, Lemma 2.1.17 implies that x∗(λ∗) ∈ K. On the other
hand, repeating the same arguments with ∆λ = −λ∗ up to (A.6) yields

0 ≤ −x∗(λ∗)′λ∗ + lim sup
ϵ↓0

1

ϵ
(δK((1 − ϵ)λ∗) − δK(λ∗))

= −x∗(λ∗)′λ∗ + lim sup
ϵ↓0

1

ϵ
((1 − ϵ)δK(λ∗) − δK(λ∗))

= −x∗(λ∗)′λ∗ − δK(λ∗)

⇔ 0 ≥ x∗(λ∗)′λ∗ + δK(λ∗)

λ∗∈XK⇒ 0 = x∗(λ∗)′λ∗ + δK(λ∗).

Hence, (x∗(λ∗), λ∗) satisfies all three KKT conditions from Corollary 2.1.30. Therefore, (x∗(λ∗), λ∗)
is a saddle point of L, x∗(λ∗) is optimal for (P) and ΦP = ΨD.

Proof of Corollary 2.1.32. For given λ ∈ Rd, the Lagrangian L is continuously differentiable
and concave in x. Hence, by the first order optimality condition and A′ = A, the maximizer of
the Lagrangian L(·, λ) is given as

x∗(λ) =
1

2
A−1(b+ λ).

Further,

L(x∗(λ), λ) = −1

4
(b+ λ)′ (A−1)′︸ ︷︷ ︸

=A′

AA−1(b+ λ) +
1

2
(b+ λ)′ (A−1)′︸ ︷︷ ︸

=A−1

(b+ λ) + c+ δK(λ)

=
1

4
(b+ λ)′A−1(b+ λ) + c+ δK(λ)

A−1 is positive definite, since A is positive definite and δK is convex and positive homogeneous
of order 1, by Lemma 2.1.17. Hence, L(x∗(λ), λ) is strictly convex in λ. Moreover, δK(λ) grows
at most linearly in ∥λ∥ and thus L(x∗(λ), λ) → ∞ as ∥λ∥ → ∞. Therefore, there exists a
unique minimizer λ = λ∗ of L(x∗(λ), λ), i.e., a unique λ∗ which is optimal for (D). As x∗(λ)
is continuous in λ ∈ Rd, the requirements of Theorem 2.1.31 are satisfied. In particular,
(x∗(λ∗), λ∗) is a saddle-point of L and satisfies (2.14).

Proof of Lemma 2.1.33. Following the line of argument in Example 2.1.21, L as in (2.16) defines
the Lagrangian corresponding to the perturbation function F : L2

Q ×Rn → R̄ defined by

F (D,u) = E [U(D)] + XK (E [g(D)] + u) .

We aim to apply Corollary 2.1.26 and thus need to verify that F (D∗, ·) is proper, usc and
concave in u. It is sufficient to show that the mapping

u→ XK (E [g(D∗)] + u) . (A.7)
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is usc and concave in u. However, as K is non-empty and closed convex, XK is usc concave.
Moreover, for every D ∈ L2

Q the real function u → E [g(D)] + u is affine and thus continuous.
Hence, (A.7) is usc and concave in u and so F is usc and concave in u, too. Thus, by virtue of
Corollary 2.1.26, D∗ is optimal for (P).

Proof of Lemma 2.1.35. We obtain

ΨD = inf
y∈Rn

sup
D∈L2

Q

L(D, y)

= inf
y∈Rn

 sup
D∈L2

Q

(
E [U(D)] + y′E [g(D)]

)
+ δK(y)


= inf

y∈Rn

 sup
D∈L2

Q

E[ U(D) + y′g(D)︸ ︷︷ ︸
≤supx∈R U(x)+y′g(x)

]+ δK(y)


(∗)
≤ inf

y∈Rn

(
E

[
sup
x∈R

(
U(x) + y′g(x)

)]
+ δK(y)

)
= inf

y∈Rn

(
E
[
U∗
g (y)

]
+ δK(y)

)
.

If y∗ attains the infimum over y ∈ Rn and Ig(y∗) ∈ L2
Q, then we have equality in (∗).

Proof of Corollary 2.1.36. For any D ∈ L2
Q we have

L(D, y∗) = E [U(D)] + (y∗)′E [g(D)] + δK(y∗)

≤ sup
D∈L2

Q

E
[
U(D) + (y∗)′g(D)

]
+ δK(y∗)

≤ E
[

sup
x∈R

(
U(x) + (y∗)′g(x)

)]
+ δK(y∗)

= E
[
U(Ig(y∗)) + (y∗)′g(Ig(y∗))

]
+ δK(y∗)

= L(Ig(y∗), y∗).

On the other hand, as (2.20) holds, we can apply Lemma 2.1.17 to obtain for any y ∈ Rn

L(Ig(y∗), y) = E [U(Ig(y∗))] + y′E [g(Ig(y∗))] + δK(y)︸ ︷︷ ︸
≥0

≥ E [U(Ig(y∗))]

= E [U(Ig(y∗))] + (y∗)′E [g(Ig(y∗))] + δK(y∗)︸ ︷︷ ︸
=0

= L(Ig(y∗), y∗).

Therefore, (Ig(y∗), y∗) is a saddle-point of L.
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Proof of Theorem 2.1.37. Consider 0 < ϵ < 1, ∆y ∈ XK with ∥∆y∥ ≤ 1 and define yϵ =
y∗ + ϵ∆y. Since y∗ attains the infimum in (2.19), we know that

E
[
U∗
g (y∗)

]
+ δK (y∗) ≤ E

[
U∗
g (yϵ)

]
+ δK (yϵ) . (A.8)

Moreover, we also have the Q-a.s. inequality

1

ϵ

(
U∗ (yϵ) + δK (yϵ) − U∗ (y∗) − δK (y∗)

)
≤ 1

ϵ

(
U (Ig(yϵ)) + (yϵ)

′g(Ig(yϵ)) − sup
x∈R

(
U(x) − (y∗)′g(x)

)
︸ ︷︷ ︸
≥U(Ig(yϵ))+(y∗)′g(Ig(yϵ))

+δK (yϵ) − δK (y∗)
)

≤ 1

ϵ

(
(yϵ − y∗)′g (Ig(yϵ)) + δK (yϵ) − δK (y∗)

)
= (∆y)′g (Ig(yϵ)) +

1

ϵ
(δK (yϵ) − δK (y∗)) . (A.9)

Thus, due to the usc assumption on E [g(Ig(y))]′ ∆y, we can combine equations (A.8), (A.9)
and take the upper limit ϵ ↓ 0 to obtain

0 ≤ lim sup
ϵ↓0

1

ϵ
(E [U∗ (yϵ)] + δK (yϵ) − [U∗ (y∗)] − δK (y∗))

≤ lim sup
ϵ↓0

(
(∆y)′E [g (Ig(yϵ))]

)
+ lim sup

ϵ↓0

1

ϵ
(δK (yϵ) − δK (y∗))

≤ (∆y)′E [g (Ig(y∗))] + lim sup
ϵ↓0

(
1

ϵ
(δK (yϵ) − δK (y∗))

)
As δK is sub-additive and positive-homogenous of order 1 (cf. Lemma 2.1.17), this implies

0 ≤ (∆y)′E [g (Ig(y∗))] + lim sup
ϵ↓0

1

ϵ
(δK (y∗) + ϵδK (∆y) − δK (y∗))

= (∆y)′E [g (Ig(y∗))] + δK (∆y) .

This inequality holds for all ∆y ∈ XK with ∆y ≤ 1 and therefore Lemma 2.1.17, (iii) implies
that E [g (Ig(y∗))] ∈ K. Following the same steps with ∆y = −y∗ yields δK(yϵ) = (1− ϵ)δK(y∗)
and thus

0 ≤ −(y∗)′E [g (Ig(y∗))] + lim sup
ϵ↓0

1

ϵ

(
(1 − ϵ)δK (y∗) − δK (y∗)

)
= −(y∗)′E [g (Ig(y∗))] − δK (y∗)

⇔ 0 ≥ (y∗)′E [g (Ig(y∗))] + δK (y∗) ,

which implies 0 = (y∗)′E [g (Ig(y∗))] + δK (y∗) . According to Corollary 2.1.36, (Ig(y∗), y∗) is a
saddle-point of L and Ig(y∗) is optimal for (P).

Proof of Lemma 2.1.38. We begin by proving statements (i), (ii) and (iii) for the generalized
conjugate U∗

g :

(i) By the definition of U∗
g , we have

U∗
g (y) = sup

x∈R

(
U(x) + y′g(x)

)
= sup

x∈R

(
U(x) +

n∑
i=1

yigi(x)

)
.

Hence, if gi(x) ≤ 0, then U∗
g is non-increasing in yi.
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(ii) Similarly, we have yi ≥ 0 and gi(x) ≤ ĝi(x) for all x ∈ domU . Hence,

U∗
g (y) = sup

x∈R

(
U(x) + y′g(x)︸ ︷︷ ︸

≤y′ĝ(x)

)
≤ sup

x∈R

(
U(x) + y′ĝ(x)

)
= U∗

ĝ (y).

(iii) Let α ∈ (0, 1), y1, y2 ∈ Rn. Then,

U∗
g (αy1 + (1 − α)y2) = sup

x∈R

(
U(x) + (αy1 + (1 − α)y2)

′g(x)
)

= sup
x∈R

(
α
[
U(x) + y′1g(x)

]
+ (1 − α)

[
U(x) + y′2g(x)

])
≤ α sup

x∈R

(
U(x) + y′1g(x)

)
+ (1 − α) sup

x∈R

(
U(x) + y′2g(x)

)
= αU∗

g (y1) + (1 − α)U∗
g (y1),

i.e., U∗
g is convex.

We continue by proving statements (i) and (ii) for the maximizing argument Ig. For this purpose,
consider an arbitrary x̂ ≥ 0 such that Ig(y) ≤ x̂. Then:

U∗
g (y) = U(Ig(y)) + y′g(Ig(y)) = U(Ig(y)) +

n∑
j=1

yjgj(Ig(y))

≥ U(x̂) +
n∑

j=1

yjgj(x̂) = U(x̂) + y′g(x̂). (A.10)

(i) If now ŷ = (y1, ...., yi−1, ŷi, yi+1, ..., yn)′ and ŷi ≥ yi, then we can use the fact that Ig(y) ≤ x̂
and gi is non-increasing to see that

U∗
g (ŷ) ≥ U(Ig(y)) + ŷ′g(Ig(y)) = U(Ig(y)) + y′g(Ig(y))︸ ︷︷ ︸

(A.10)

≥ U(x̂)+y′g(x̂)

+ (ŷi − yi)︸ ︷︷ ︸
≥0

gi(Ig(y))︸ ︷︷ ︸
≥gi(x̂)

≥ U(x̂) + y′g(x̂) + (ŷi − yi)gi(x̂)

= U(x̂) + ŷ′g(x̂). (A.11)

Thus, by the definition of the maximizing argument Ig as an infimum, we obtain

Ig(ŷ) = inf
{
x ∈ R

∣∣ U∗
g (ŷ) ≤ U(x) + ŷ′g(x)

}
(A.11)

= inf
{
x ≤ Ig(y)

∣∣ U∗
g (ŷ) ≤ U(x) + ŷ′g(x)

}
≤ Ig(y),

i.e., Ig is non-increasing in yi.

(ii) If ĝi(x) ≥ gi(x) for all x ∈ domU , if both functions are non-increasing and if yi ≥ 0, then

U∗
ĝ (y) ≥ U(Ig(y)) + y′ĝ(Ig(y)) = U(Ig(y)) + y′g(Ig(y))︸ ︷︷ ︸

(A.10)

≥ U(x̂)+y′g(x̂)

+yi
(
ĝi(x)︸ ︷︷ ︸
≥ĝi(x̂)

−gi(Ig(y))
)

≥ U(x̂) + y′g(x̂) + yi
(
ĝi(x̂) − gi(Ig(y))

)
= U(x̂) + y′ĝ(x̂) + yi

(
gi(x̂) − gi(Ig(y))

)︸ ︷︷ ︸
≥0

≥ U(x̂) + y′ĝ(x̂). (A.12)

Again, by the definition of the maximizing argument Iĝ as an infimum, we obtain

Iĝ(y) = inf
{
x ∈ R

∣∣ U∗
ĝ (y) ≤ U(x) + y′ĝ(x)

}
(A.12)

= inf
{
x ≤ Ig(y)

∣∣ U∗
ĝ (y) ≤ U(x) + y′ĝ(x)

}
≤ Ig(y).
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Proof of Lemma 2.2.1. 1
Proof of (i): Since f is convex on R, f is continuous and thereby bounded on any compact subset
of R. In particular, there exists m,M ∈ R such that

m ≤ f(x) ≤M for all x with |x− x0| ≤ ϵ.

Hence, the statement follows from Section A, Lemma 3.1.1 in [43].
Proof of (ii): Let L1, L2 denote the Lipschitz constant of f1, f2 respectively. For any real num-
bers x, y ∈ R recall the identity

min(x, y) =
1

2
(x+ y − |x− y|) . (A.13)

Therefore, for any x, y ∈ I we have

|f(x) − f(y)| =
∣∣∣min (f1(x), f2(x)) − min (f1(y), f2(y))

∣∣∣
(A.13)

=
1

2

∣∣∣f1(x) + f2(x) − |f1(x) − f2(x)| − f1(y) − f2(y) + |f1(y) − f2(y)|
∣∣∣

≤ 1

2

(
|f1(x) − f1(y)| + |f2(x) − f2(y)| +

∣∣∣|f1(x) − f2(x)| − |f1(y) − f2(y)|
∣∣∣)

≤ 1

2

(
|f1(x) − f1(y)| + |f2(x) − f2(y)| + |f1(x) − f2(x) − (f1(y) − f2(y)) |

)
=

1

2

(
|f1(x) − f1(y)| + |f2(x) − f2(y)| + |f1(x) − f2(x) − f1(y) + f2(y)|︸ ︷︷ ︸

≤|f1(x)−f1(y)|+|f2(x)−f2(y)|

)
≤ |f1(x) − f1(y)|︸ ︷︷ ︸

≤L1|x−y|

+ |f2(x) − f2(y)|︸ ︷︷ ︸
≤L2|x−y|

≤ (L1 + L2)|x− y|.

Hence, f is Lipschitz continuous on I with Lipschitz constant L = L1 + L2.

Proof of 2.2.2. This statement follows directly from Chapter §6, ‘VII. Existence and Uniqueness
Theorem’ in [83].

Proof of Lemma 2.2.3. We first consider the case f(B0) ̸= 0. The following argument proceeds
by contradiction. Assume that B is not a strictly monotone function of τ. Since f is locally
Lipschitz continuous and therefore continuous, B is continuously differentiable and there must
exist τ̄ ∈ I with B(τ̄) = B̄ such that

B′(τ̄) = f(B̄) = 0 and B′(τ) ̸= 0 for all τ with |τ − τ0| < |τ̄ − τ0|.

In particular, B is also a solution to the ODE

B′(τ) = f(B(τ)), B(τ̄) = B̄. (A.14)
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On the other hand, as f(B̄) = f(B(τ̄)) = B′(τ̄) = 0, the function B̂(τ) := B̄ is also a solution to
the ODE (A.14). However, for all τ with |τ − τ0| < |τ̄ − τ0| we know that f(B(τ)) = B′(τ) ̸= 0
and thus B(τ) ̸= B̂(τ). This is a contradiction to Theorem 2.2.2. Therefore, B must be strictly
monotone in τ.
If f(B0) = 0, by an analogous argument, B(τ) = B0 is the unique solution to ODE (2.21) and
therefore B is constant in τ.

Proof of Lemma 2.2.4. Statement (i) follows directly from Lemma 10.12 in [38] with A = 1
2r2,

B = r1, C = r0, u = B0 and

− 2r0 (er3τ − 1) − (r3 (er3τ + 1) + r1 (er3τ − 1))B0

r3 (er3τ + 1) − r1 (er3τ − 1) − r2 (er3τ − 1)B0

= −−2r3B0 + (er3τ − 1) (2r0 − (r1 + r3)B0)

2r3 − (er3τ − 1) (r1 + r2B0 − r3)

=
2r2r3B0 − (er3τ − 1)

(=r23−r21︷ ︸︸ ︷
2r0r2 − (r1 + r3) r2B0

)
2r2r3 − r2 (er3τ − 1) (r1 + r2B0 − r3)

=
2r2r3B0 − (er3τ − 1) ((r3 − r1) (r3 + r1) − (r1 + r3) r2B0)

2r2r3 − r2 (er3τ − 1) (r1 + r2B0 − r3)

=
2r2r3B0 + (er3τ − 1) (r1 + r3) (r1 + r2B0 − r3)

2r2r3 − r2 (er3τ − 1) (r1 + r2B0 − r3)
.

The function B as in (2.23) is well-defined and continuously differentiable as long as the de-
nominator in (2.23) is non-zero. In particular, taking derivatives verifies that B satisfies (2.22)
as long as its denominator is non-zero. This is true for τ = 0, when the denominator is equal to
r2r3 > 0, and the denominator stays positive if r1 + r2B0 − r3 ≤ 0, i.e., t+(B0) = ∞. However,
if r1 + r2B0 − r3 > 0, then

0
!

= 2r2r3 − r2

(
er3t+(B0) − 1

)
(r1 + r2B0 − r3)

⇔ 2r3 =
(
er3t+(B0) − 1

)
(r1 + r2B0 − r3)

⇔ t+(B0) =
1

r3
ln

(
r1 + r2B0 + r3
r1 + r2B0 − r3

)
.

Proof of Corollary 2.2.5. If τB̂ < t+(B0), then

B(τB̂) =
2r2r3B0 + (er3τB̂ − 1) (r1 + r3) (r1 + r2B0 − r3)

2r2r3 − r2 (er3τB̂ − 1) (r1 + r2B0 − r3)
.

This in turn implies

B̂
!

= B(τB̂) =
2r2r3B0 + (er3τB̂ − 1) (r1 + r3) (r1 + r2B0 − r3)

2r2r3 − r2 (er3τB̂ − 1) (r1 + r2B0 − r3)

⇔ B̂ (2r2r3 − r2 (er3τB̂ − 1) (r1 + r2B0 − r3))

= 2r2r3B0 + r2 (er3τB̂ − 1) (r1 + r3) (r1 + r2B0 − r3)

⇔ 2r2r3

(
B̂ −B0

)
= (er3τB̂ − 1) (r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

)
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⇔ (er3τB̂ − 1) =
2r2r3

(
B̂ −B0

)
(r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

)
⇔ τB̂ =

1

r3
ln

 2r2r3

(
B̂ −B0

)
(r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

) + 1


=

1

r3
ln

2r2r3

(
B̂ −B0

)
+ (r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

)
(r1 + r2B0 − r3)

(
r1 + B̂r2 + r3

)


Proof of Theorem 2.3.2. This is a special case of Theorem 3.41 in [51].

A.2 Proofs Chapter 3

Proof of Lemma 3.3.1. The proof follows along the lines of Proposition 7.3 in [17]. Consider
the non-negative Q-martingale M defined as

M(t) = E
[
DZ̃(T )

∣∣ Ft

]
.

By a variation of the martingale representation theorem (see Theorem 4.15 in [48]), there exists

an Rd-valued process ψ with
∫ T
0 ∥ψ(s)∥2ds < ∞ Q-a.s, such that M can be expressed as a

stochastic integral

M(t) = v0 +

∫ t

0
ψ(t)′dW (t).

Due to the non-negativity and martingale property of M, M(t) = 0 for one t ∈ (0, T ) implies
M(s) = 0 ∀s ∈ [t, T ]. We define the processes

X(t) =
M(t)

Z̃(t)

and π(t) :=
(
Σ(t)′

)−1
[
ψ(t)

M(t)
+ γ(t)

]
1{M(t)>0}.

Applications of Itô’s lemma and Itô’s product rule yield

d

(
1

Z̃(t)

)
= − 1

(Z̃(t))2
dZ̃(t) +

1

(Z̃(t))3
d⟨Z̃⟩t =

1

Z̃(t)

( [
r(t) + ∥γ(t)∥2dt

]
+ γ(t)′dW (t)

)
and

dX(t) =
1

Z̃(t)
dM(t) +M(t)d

(
1

Z̃(t)

)
dt+

〈
M,

1

Z̃

〉
t

=
1

Z̃(t)

(
ψ(t)′dW (t) +M(t)

[
r(t) + ∥γ(t)∥2

]
dt+M(t)γ(t)′dW (t) + γ(t)′ψ(t)dt

)
=

1

Z̃(t)

([
M(t)r(t) + γ(t)′ (M(t)γ(t) + ψ(t))︸ ︷︷ ︸

=M(t)Σ(t)′π(t)

]
dt+ (M(t)γ(t) + ψ(t)︸ ︷︷ ︸

=M(t)Σ(t)′π(t)

)′dW (t)
)

= X(t)
([
r(t) + (µ(t) − r(t)1)′π(t)

]
dt+ π(t)′Σ(t)dW (t)

)
.

Hence, V v0,π and X satisfy the same SDE. Further, as X(0) = M(0) = v0, the wealth process
V v0,π and X coincide.
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Proof of Lemma 3.3.2. 123
As C(v0, B1, B2, g) ⊂ C(v0, g) and U(D) = U(D;B1, B2) for all D ∈ C(v0, B1, B2, g), we clearly
have Φ0(v0) ≤ Φ̃0(v0).
To show the opposite inequality, we take any D ∈ C(v0, g) with Q(D > B2) > 0, and show that
there exists a D′ ∈ C(v0, B1, B2, g) with E[U(D′)] = E[U(D′;B1, B2)] > E[U(D;B1, B2)]. For
this purpose, let D ∈ C(v0, g) with Q(D > B2) > 0.

• If Q(D < B1) > 0, then E[U(D;B1, B2)] = −∞ and by Assumption 3.2.1, we can choose
D′ = v0P0(T ) ∈ C(v0, B1, B2, g) to obtain

E[U(D;B1, B2)] = −∞ < E[U(v0P0(T ))] = E[U(D′)] = E[U(D′;B1, B2)].

• If Q(D < B1) = 0, then we define for α ∈ [0, 1] :

Dα = B21{D>B2} +D1{D≤B2} + α (B2 −D)1{D≤B2}.

By construction, we have B1 ≤ D < Dα ≤ B2 for all α ∈ (0, 1]. In particular, as U is
strictly increasing on its domain and g is non-increasing, this implies for any α ∈ (0, 1] :

E [U(D)] < E [U(Dα)]

and

E [g(Dα)] ≤ E [g(D)]
D∈C(v0,g)

≤ 0.

Hence, we only need to find a specific α̂ ∈ (0, 1] such that v0 = E[Z̃(T )Dα̂] and choose
D′ = Dα̂. Following Lemma 3.3.1 and standing assumption (3.3), the risk-free portfolio
π ≡ 0 satisfies

E
[
Z̃(T )B1

]
< E

[
Z̃(T )V v0,0(T )

]
︸ ︷︷ ︸

=v0

< E
[
Z̃(T )B2

]
. (A.15)

We define the quantities

v̄ = E
[
Z̃(T )D0

]
< v0

v̂ = E
[
Z̃(T ) (D −B2)1{D>B2}

]
= v0 − v̄ > 0,

ṽ = E
[
Z̃(T ) (B2 −D)1{D≤B2}

]
> 0.

Due to D ∈ C(v0, g) and (A.15), we obtain

v̂ − ṽ = E
[
Z̃(T ) (D −B2)

]
= v0 −E

[
Z̃(T )B2

]
< 0.

Hence, choosing 0 < α̂ = v̂
ṽ < 1 yields

E[Z̃(T )Dα̂] = E
[
Z̃(T )

(
B21{D>B2} +D1{D≤B2} + α̂ (B2 −D)1{D≤B2}

)]
= E

[
Z̃(T )D0

]
+ α̂E

[
Z̃(T ) (B2 −D)1{D≤B2}

]
= v̄ +

v̂

ṽ
ṽ = v0.

In particular, Dα̂ ∈ C(v0, B1, B2, g) and E [U(D)] < E [U(Dα̂)] .
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In total, this implies

Φ̃0(v0) = sup
D∈C(v0,g)

E[U(D;B1, B2)]

= sup
D∈C(v0,B1,B2,g)

E[U(D;B1, B2)]

= sup
D∈C(v0,B1,B2,g)

E[U(D)]

= Φ0(v0).

Proof of Theorem 3.3.3. Following Lemma 2.1.35, we may write the dual optimization problem
associated with (P̃0) as

(D0)
{

ΨD0 = infy∈R2

(
E
[
U∗
g0(y;B1, B2)

]
+ δKV

(y)
)
.

According to Theorem 2.1.37, if y∗ = (y∗0, y
∗
1) ∈ R2 is optimal for (D0), Ig0(y∗;B1, B2) ∈ L2

Q

and

y → E
[
g0
(
Ig0(y;B1, B2)

)]′
∆y (A.16)

is usc at y = y∗ for all ∆y ∈ XKV
, then Ig0(y∗;B1, B2) is (admissible and) optimal for (P̃0) and

(y∗)′E [g0(Ig0(y∗;B1, B2))] + δKV
(y∗) = 0.

Thus, it remains to show that δKV
(y) = y0v0 for all y = (y0, y1) ∈ [0,∞)2 and that the

minimization in (D0) can be restricted to [0,∞)2.

For y = (y0, y1)
′ ∈ R2 the support function δKV

can be computed explicitly as

δKV
(y) = − inf

x∈{−v0}×[0,∞)

(
y′x
)

= y0v0 − inf
x1∈[0,∞)

(y1x1) =

{
y0v0 y1 ≥ 0

∞ y1 < 0.
(A.17)

In particular, XK = R × [0,∞) and δK(y) = y0v0 for all y ∈ XK . Moreover, U is strictly
increasing on its domain, Q(Z̃(T ) > 0) = 1, g is non-increasing and V v0,0(T ) < B2 (Assumption
3.2.1). Thus, we have for any y = (y0, y1)

′ ∈ (−∞, 0) × [0,∞)

U∗
g0(y;B1, B2) + y0v0 = sup

B1≤x≤B2

(
U(x) − y0Z̃(T )x− y1g(x)︸ ︷︷ ︸

strictly increasing in x

)
− y0v0

= U(B2) − y0

(
Z̃(T )B2 − v0

)
− y1g(B2)

> U(B2) − y0

(
Z̃(T )V v0,0(T ) − v0

)
− y1g(V v0,0(T )).

Further, by Assumption, E[g(B2)] ≤ E[g(V v0,0(T ))] ≤ 0. Hence,

E[U∗
g0(y;B1, B2)] − y0v0 > E [U(B2)] − y0

(
E
[
Z̃(T )V v0,0(T )

]
− v0

)
− y1E[g(V v0,0(T ))]

A.3.2.1
≥ E[U(B2)] − y0

(
E[Z̃(T )V v0,0(T )] − v0

)
L.3.3.1

= E[U(B2)]

= E[U∗
g0(0;B1, B2)] + 0 · v0. (A.18)
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Thus, we may restrict the minimization in (D0) to

ΨD̂0
= inf

y∈R2

(
E
[
U∗
g0(y;B1, B2)

]
+ δKV

(y)
)

(A.17)
= inf

y=(y0,y1)′∈R×[0,∞)

(
E
[
U∗
g0(y;B1, B2)

]
+ y0v0

)
(A.18)

= inf
y=(y0,y1)′∈[0,∞)2

(
E
[
U∗
g0(y;B1, B2)

]
+ y0v0

)
.

Proof of Lemma 3.4.1. The poof is completely analogous to the proof of Lemma 3.3.1.

Proof of Lemma 3.4.2. 123

(i) This statement follows from the analogous steps as in the proof of Lemma 3.3.2.

(ii) By assumption, we know that v0
vλ(B2)

> 1, D∗ = v0
vλ(B2)

B2 > B2,

E[D∗Z̃λ(T )] =
v0

vλ(B2)
E[B2Z̃λ(T )] = v0.

and due to the monotonicity of g, (3.3) and (3.4)

E[g(D∗)] ≤ E[g(B2)] ≤ E[g(v0P0)] ≤ 0.

Hence, D∗ ∈ Cλ(v0, g) and

Φ̃λ(v0) = sup
D∈Cλ(v0,g)

E
[
U(D;B1, B2)︸ ︷︷ ︸

≤U(B2)

]
≤ E[U(B2)] ≤ E[U(D∗)] ≤ Φ̃λ(v0),

i.e., D∗ is optimal for (P̃λ).

Proof of Lemma 3.4.3. The argument goes along the lines of [17], Proposition 8.3. As πλ∗

satisfies the slackness condition

δK(λ∗(t)) + πλ∗(t)′λ∗(t) = 0 L[0, T ) ⊗Q− a.e.,

we have V
v0,πλ∗
λ∗ (0) = V v0,πλ∗ (0) = v0 and

dV
v0,πλ∗
λ∗ (t) = V

v0,πλ∗
λ∗ (t)

(
[r(t) + (µ(t) − r(t)1)′πλ∗(t)] + πλ∗(t)′Σ(t)dW (t)

)
+ V

v0,πλ∗
λ∗ (t)[δK(λ∗(t)) + πλ∗(t)′λ∗(t)]︸ ︷︷ ︸

=0

dt

= V
v0,πλ∗
λ∗ (t)

(
[r(t) + (µ(t) − r(t)1)′πλ∗(t)] + πλ∗(t)′Σ(t)dW (t)

)
.

Therefore, V
v0,πλ∗
λ∗ and V v0,πλ∗ are solutions to the same SDE and V

v0,πλ∗
λ∗ (T ) = V v0,πλ∗ (T )

holds Q-a.s.. Further,
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• πλ∗ ∈ K L[0, T ] ⊗Q− a.e..

• V v0,πλ∗ (T ) = V
v0,πλ∗
λ∗ (T ) ≥ B1 Q-a.s., as V

v0,πλ∗
λ∗ (T ) is optimal for (P̃λ∗).

• V v0,πλ∗ (T ) = V
v0,πλ∗
λ∗ (T ) ≤ B2 Q-a.s., as V

v0,πλ∗
λ∗ (T ) is optimal for (P̃λ∗) and v0 ≤ vλ∗(B2)

(Lemma 3.4.2).

• E [g(V v0,πλ∗ (T ))] = E
[
g(V

v0,πλ∗
λ∗ (T ))

]
≤ 0, as V

v0,πλ∗
λ∗ (T ) is admissible for (P̃λ∗).

• E [U(V v0,πλ∗ (T ))] = E [U(V v0,πλ∗ (T );B1, B2)] = E
[
U(V

v0,πλ∗
λ∗ (T );B1, B2)

]
= Φ̃λ∗(v0).

Thus, πλ∗ ∈ Λ(v0,K,B1, B2, g) and

E [U(V v0,πλ∗ (T ))] ≤ Φ(v0) ≤ Φ̃λ∗(v0) = E [U(V v0,πλ∗ (T ))] ,

i.e., πλ∗ is optimal for (P).

Proof of Theorem 3.4.4. The poof is completely analogous to the proof of Lemma 3.4.4.

Lemma A.2.1. Let λ ∈ D′, y∗ = (y∗0, y
∗
1)′ ∈ (0,∞) × [0,∞). Then,

(i)

Q
(
y0 → Igλ(y0, y

∗
1;B1, B2) is continuous at y0 = y∗0

)
= 1.

(ii) There exists y+0 < y∗0 such that

Igλ(y∗0, y
∗
1;B1, B2) ≤ Igλ(y+0 , y

∗
1;B1, B2) and E

[
Igλ(y+0 , y

∗
1;B1, B2)Z̃λ(T )

]
<∞.

Proof of Lemma A.2.1.

(i) Consider the function

ĝ(x) :=

(
−x

−g(x)

)
.

Then, Iĝ(y0, y
∗;B1, B2) is non-increasing in y0 by Lemma 2.1.38, (i). Hence, according to

the Darboux-Froda Theorem (cf. Theorem 8-2 in [1]), the function

y0 → Iĝ(y0, y
∗
1;B1, B2) (A.19)

has at most countably infinite points of discontinuity on (0,∞). Further,

Igλ(y0, y
∗
1;B1, B2) = Iĝ(y0Z̃λ(T ), y∗1;B1, B2) Q-a.s.

and the random variable Z̃λ(T ) has a continuous distribution on (0,∞). As the points of
discontinuity of (A.19) are a null set with respect to the Lebesgue measure L(0,∞), this
implies

Q
(
y0 → Igλ(y0, y

∗
1;B1, B2) is continuous at y0 = y∗0

)
= 1.
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(ii) Since λ ∈ D′, we know that

y → E
[
gλ
(
Igλ(y;B1, B2)

)]′
∆y

is usc at y = y∗ = (y∗0, y
∗
1)′ for all ∆y ∈ R× [0,∞). Choosing ∆y = (−1, 0)′ implies

lim sup
y→y∗

E
[
Igλ(y;B1, B2)Z̃λ(T )

]
= lim sup

y→y∗
E
[
gλ
(
Igλ(y;B1, B2)

)]′
∆y

usc
≤ E

[
gλ
(
Igλ(y∗;B1, B2)

)]′
∆y = E

[
Igλ(y∗;B1, B2)Z̃λ(T )

]
λ∈D′
= v0 (A.20)

Hence, there must exist a y+0 < y∗0, as described in the statement of this lemma, since
otherwise

lim sup
y→y∗

E
[
Igλ(y;B1, B2)Z̃λ(T )

]
≥ lim sup

y0↑y∗0
E
[
Igλ(y0, y

∗
1;B1, B2)Z̃λ(T )

]
= ∞,

which contradicts (A.20).

Proof of Theorem 3.4.5. 123

(B̃) ⇒ (Ã):
This is the statement of Lemma 3.4.3.

(B̃) ⇒ (C̃):
By Lemma 3.4.3 and (3.6), we have for any λ ∈ D:

Φ̃λ∗(v0)
L.3.4.3

= Φ(v0)
(3.6)

≤ Φ̃λ(v0).

(B̃) ⇒ (Ẽ):
Due to condition (B̃), the additional drift from the portfolio πλ∗ ∈ Λ(v0,K,B1, B2, g) in Mλ∗

is zero L[0, T ] ⊗Q-a.e. and therefore, V
v0,πλ∗
λ∗ (t) = V v0,πλ∗ (t) L[0, T ] ⊗Q-a.s. However, for any

λ ∈ D, we can use Itô’s product rule to see

d(Z̃λ(t)V v0,πλ∗ (t)) = Z̃λ(t)dV v0,πλ∗ (t) + V v0,πλ∗ (t)dZ̃λ(t) + d⟨Z̃λ, V
v0,πλ∗ ⟩t

= −Z̃λ(t)V v0,πλ∗ (t) ·
((
r(t) + δK(λ(t))

)
dt+ γλ(t)dW (t)

)
+ Z̃λ(t)V v0,πλ∗ (t) ·

(
r(t) + [µ(t) − r(t)1]′πλ∗(t)

)
dt

+ Z̃λ(t)V v0,πλ∗ (t)πλ∗(t)′Σ(t)dW (t)

− Z̃λ(t)V v0,πλ∗ (t) γλ(t)′Σ(t)′πλ∗(t)︸ ︷︷ ︸
= [µ(t)−r(t)1+λ(t)]′πλ∗ (t)

dt

= −Z̃λ(t)V v0,πλ∗ (t)
(
δK(λ(t)) + λ(t)′πλ∗(t)

)
dt

+ Z̃λ(t)V v0,πλ∗ (t)
(
πλ∗(t)′Σ(t) − γλ(t)′

)
dW (t)

Integrating this SDE then shows that

Z̃λ(t)V v0,πλ∗ (t) +

∫ t

0
Z̃λ(s)V v0,πλ∗ (s)

(
δK(λ(s)) + λ(s)′πλ∗(s)

)︸ ︷︷ ︸
≥0 by L. 2.1.17, (iii)

ds (A.21)
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= v0 +

∫ t

0
Z̃λ(s)V v0,πλ∗ (s)

(
πλ∗(s)′Σ(s) − γλ(s)

)′
dW (s). (A.22)

As (A.21) is non-negative, so is (A.22). Thus, both (A.21) and (A.22) are non-negative local
martingales and therefore supermartingales. Hence, we obtain from the supermartingale prop-
erty

E[Igλ∗ (y∗;B1, B2)Z̃λ(T )] = E[V
v0,πλ∗
λ∗ (T )Z̃λ(T )] = E[V v0,πλ∗ (T )Z̃λ(T )]

≤ E[V v0,πλ∗ (T )Z̃λ(T ) +

∫ T

0
Z̃λ(t)V v0,πλ∗ (t)︸ ︷︷ ︸

≥0

δK(λ(t)) + λ(t)′π(t)︸ ︷︷ ︸
≥0 by L. 2.1.17, (iii)

dt] ≤ v0.

(Ẽ) ⇒ (B̃):
Follows from exactly the same arguments as Theorem 9.1 in [17] with the choice

B = V
v0,πλ∗
λ∗ (T ) = Igλ∗ (y∗;B1, B2).

(C̃) ⇒ (D̃):
Let λ∗ satisfy Condition (C̃), let λ ∈ D and D ∈ Cλ(v0, g) be an admissible terminal wealth for
(P̃λ). Then,

E
[
DZ̃λ(T )

]
= v0 and E[g(D;B2)] ≤ 0.

Thus, we obtain for any y = (y0, y1)
′ ∈ [0,∞)

E[U(D;B1, B2)]

= E
[
U(D;B1, B2) − y0Z̃λ(T )D − y1g(D;B2)︸ ︷︷ ︸

≤U∗
gλ

(y;B1,B2)

]
+ y0v0 + y0

(
E
[
Z̃λ(T )D

]
− v0

)
︸ ︷︷ ︸

=0

+E [y1g(D;B2)]︸ ︷︷ ︸
≤0

≤ E[U∗
gλ

(y;B1, B2)] + y0v0.
(A.23)

Noting that the right-hand side is independent of D, we can take the supremum over all terminal
wealths D ∈ Cλ(v0, g(·, B2)) admissible for (P̃λ) and receive

Φ̃λ(v0) ≤ E[U∗
gλ

(y;B1, B2)] + y0v0.

Due to Theorem 3.4.4, the choice of λ = λ∗, y = y∗ and D = Igλ∗ (y∗;B1, B2) achieves equality
in (A.23). Combining this fact with Condition (C̃) finally gives

E[U∗
gλ

(y∗;B1, B2)] + y∗0v0 ≥ Φ̃λ(v0) ≥ Φ̃λ∗(v0) = E[U∗
gλ∗

(y∗;B1, B2)] + y∗0v0

⇒ E[U∗
gλ

(y∗;B1, B2)] ≥ E[U∗
gλ∗

(y∗;B1, B2)].

(D̃) ⇒ (B̃):
Let λ∗ ∈ D′ satisfy Condition (D̃). Let π := πλ∗ be the portfolio process that attains
Igλ∗ (y∗;B1, B2) in Mλ∗ . We now need to show two things:

π(t) ∈ K L[0, T ] ⊗Q− a.e., (A.24)

[π(t)′λ∗(t) + δK(λ∗(t))] = 0 L[0, T ] ⊗Q− a.e.. (A.25)

Before doing this, we need to introduce a variety of different notations. Let ν ∈ D ∪ {−λ∗} be
arbitrary but fixed. Let ϵ ∈ (0, 1), t ∈ [0, T ] and n ∈ N. We define:
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•

δ̂(ν)(λ∗(t)) :=

{
−δK(λ∗(t)), ν = −λ∗

δK(ν(t)), else

• Lt := L
(ν)
t :=

∫ t
0 δ̂

(ν)(λ∗(s))ds

• Wλ∗(t) := W (t) +
∫ t
0 γλ∗(s)ds

• Nt := N
(ν)
t :=

∫ t
0

(
Σ(s)−1ν(s)

)′
dWλ∗(s)

•
τn := T∧ inf

{
t ∈ [0, T ]

∣∣∣ |Lt| ≥ n, or |Nt| ≥ n, or

or

∫ t

0
∥Σ(s)−1ν(s)∥2ds ≥ n,

or

∫ t

0
∥γ(t) + Σ(t)−1λ∗(s)∥2ds ≥ n,

or

∫ t

0

(
V v0,π
λ∗ (s)

P λ∗
0 (s)

)2

∥Σ(s)−1ν(s) + (Ls +Ns)Σ(s)′π(s)∥2ds ≥ n
}

• λϵ,n(t) := λ∗(t) + ϵν(t)1{t≤τn} ⇒ λϵ,n ∈ D

The ensuing proof is split into three parts and is structured as follows. In Part 1 and Part 2 we
prove (A.24) and (A.25) by showing the analogue of (9.14) and (9.15) from [17]:

0
(D̃)

≤ lim sup
ϵ↓0

1

ϵ

(
E
[
U∗
gλϵ,n

(y∗;B1, B2) − U∗
gλ∗

(y∗;B1, B2)
])

Part 1
≤ y∗0E

[
Igλ∗ (y∗;B1, B2)Z̃λ∗(T )(Lτn +Nτn)

]
= y∗0E

[
V v0,π
λ∗ (T )Z̃λ∗(T )(Lτn +Nτn)

]
Part 2
≤ y∗0E

[
Zλ∗(τn)

∫ τn

0

V v0,π
λ∗ (t)

P λ∗
0 (t)︸ ︷︷ ︸

=:Ṽ
v0,π

λ∗ (t)

[π(t)′ν(t) + δ̂(ν)(λ∗(t))]dt
] (A.26)

Part 1 closely follows the argument of the proof of Theorem 10.1 in [17]. In the end, the main
objective of Part 1 is showing that we can apply Fatou’s Lemma to interchange limsup and
expectation by using properties of the conveniently stopped processes. Part 2 closely follows
the argument in Step 5 of the proof of Theorem 9.1 in [17]. In Part 3, we choose arbitrary
ν ∈ D to show (A.24) and ν := −λ∗ to show (A.25). This corresponds to Step 3 of the proof of
Theorem 9.1 in [17].

We will elaborate further on the third inequality in (A.26), the last equality in (A.26) and the
concluding argument mentioned previously in chronological order. This splits the proof into
three parts.
Part 1: We start off by proving a useful set of inequalities that will form an integral part of
this proof. First of all, in either case ν ∈ D and ν = −λ∗ we have for every t ∈ [0, τn]:

δK(λϵ,n(t)) − δK(λ∗(t)) = δK(λ∗(t) + ϵν(t)) − δK(λ∗(t)) ≤ ϵδ̂(ν)(λ∗(t)) (A.27)

Case ν ∈ D:

δK(λ∗(t) + ϵν(t)) − δK(λ∗(t)) ≤ δK(λ∗(t)) + ϵδK(ν(t)) − δK(λ∗(t)) = ϵδ̂(ν)(λ∗(t)),
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by the positive homogeneity and subadditivity of δK .

Case ν = −λ∗:

δK(λ∗(t) + ϵν(t)) − δK(λ∗(t)) = (1 − ϵ)δK(λ∗(t)) − δK(λ∗(t)) = −ϵδK(λ∗(t)) = ϵδ̂(ν)(λ∗(t))

Furthermore, note that on {t ≤ τn}

γλϵ,n(t) − γλ∗(t) = ϵΣ(t)−1ν(t)

⇒ ∥γλϵ,n(t)∥2 − ∥γλ∗(t)∥2 = 2ϵ
(
Σ(t)−1ν(t)

)′
γλ∗(t) + ϵ2∥Σ(t)−1ν(t)∥2

(A.28)

and γλϵ,n(t) = γλ∗(t) on {t > τn}.
From these findings we can derive the following inequalities:

Z̃λϵ,n(T )

Z̃λ∗(T )
≥ exp

(
−ϵ(Lτn +Nτn) − ϵ2

2

∫ τn

0
∥Σ(t)−1ν(t)∥2dt

)
︸ ︷︷ ︸

=:α
(ν)
n (ϵ)

≥ e−3ϵn ≥ e−3n (A.29)

and indeed, upon more detailed inspection of (A.29) we find that

Z̃λϵ,n(T )

Z̃λ∗(T )
= exp

(
−
∫ τn

0
δK(λ∗(t) + ϵν(t)) − δK(λ∗(t))︸ ︷︷ ︸

≤ ϵδ̂(ν)(λ∗(t)) by (A.27)

dt

− 1

2

∫ τn

0
∥γλϵ,n(t)∥2 − ∥γλ∗(t)∥2dt−

∫ τn

0
(γλϵ,n(t) − γλ∗(t))′dW (t)

)
(A.28)

≥ exp

(
− ϵ

∫ τn

0
δ̂(ν)(λ∗(t))dt− ϵ2

2

∫ τn

0
∥Σ(t)−1ν(t)∥2dt

− ϵ

∫ τn

0

(
Σ(t)−1ν(t)

)′
γλ∗(t)dt− ϵ

∫ τn

0

(
Σ(t)−1ν(t)

)′
dW (t)

)

= exp

(
− ϵ

∫ τn

0
δ̂(ν)(λ∗(t))dt︸ ︷︷ ︸

=Lτn

−ϵ
2

2

∫ τn

0
∥Σ(t)−1ν(t)∥2dt

− ϵ

∫ τn

0

(
Σ(t)−1ν(t)

)′
dWλ∗(t)︸ ︷︷ ︸

= Nτn

)

= exp

(
−ϵ(Lτn +Nτn) − ϵ2

2

∫ τn

0
∥Σ(t)−1ν(t)∥2dt

)
≥ exp

(
− 3ϵn

)
≥ exp

(
− 3n

)
,

where the second-to-last inequality follows from the choice of the stopping time τn. Note that

the expression α
(ν)
n (·) is differentiable in ϵ with

∂

∂ϵ
α(ν)
n (ϵ)

∣∣∣
ϵ=0

=
(
α(ν)
n

)′
(0) = lim

ϵ→0

α
(ν)
n (ϵ) − 1

ϵ
= −(Lτn +Nτn). (A.30)

We go on to prove the second inequality in (A.26) by validating the following inequality:

lim sup
ϵ↓0

1

ϵ

(
E
[
U∗
gλϵ,n

(y∗;B1, B2) − U∗
gλ∗

(y∗;B1, B2)]
)

≤ y∗0E
[
Igλ∗ (y∗;B1, B2)Z̃λ∗(T )(Lτn +Nτn)

] (A.31)
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We first derive a pointwise majorant with finite expectation to justify the application of Fatou’s
lemma:

1

ϵ

(
U∗
gλϵ,n

(y∗;B1, B2) − U∗
gλ∗

(y∗;B1, B2)
)

=
1

ϵ

(
U(Igλϵ,n (y∗;B1, B2)) − y∗0Z̃λϵ,n(T )Igλϵ,n (y∗;B1, B2) − y∗1g

(
Igλϵ,n (y∗;B1, B2)

))
− 1

ϵ
sup

B1≤x≤B2

(
U(x) − y∗0Z̃λ∗(T )x− y∗1g(x)

)
︸ ︷︷ ︸

≥U(x)−y∗0 Z̃λ∗ (T )x−y∗1g(x) for x=Igλϵ,n (y∗;B1,B2)

≤ 1

ϵ
y∗0Igλϵ,n (y∗;B1, B2)︸ ︷︷ ︸

≥0

(
Z̃λ∗(T ) − Z̃λϵ,n(T )︸ ︷︷ ︸

≥Z̃λ∗ (T )α
(ν)
n (ϵ)

)
(A.29)

≤ y∗0Igλϵ,n (y∗;B1, B2)Z̃λ∗(T )
1

ϵ

(
1 − α(ν)

n (ϵ)
)
.

(A.32)
Again, recalling (A.29) yields for any 0 ≤ B1 ≤ x ≤ B2

gλϵ,n(x) =

(
−Z̃λϵ,n(T )x

−g(x)

)
≤
(
−e−3ϵnZ̃λ∗(T )x

−g(x)

)
:= ĝ(x) (A.33)

and thus by Lemma 2.1.38, (ii), Igλϵ,n (y∗;B1, B2) ≤ Iĝ(y∗;B1, B2). However, we also have

U∗
ĝ (y∗;B1, B2) = sup

B1≤x≤B2

(
U(x) − y∗0e

−3ϵnZ̃λ∗(T )x− y∗1g(x)
)

= U∗
gλ∗

(
y∗0e

−3ϵn, y∗1;B1, B2

)
and in particular Iĝ(y∗;B1, B2) = Igλ∗

(
y∗0e

−3ϵn, y∗1;B1, B2

)
. Combining these observations with

(A.32), we have for any fixed 0 < ϵ+ and for all 0 < ϵ ≤ ϵ+

1

ϵ

(
U∗
gλϵ,n

(y∗;B1, B2) − U∗
gλ∗

(y∗;B1, B2)
)

(A.33)

≤ y∗0Iĝ(y∗;B1, B2)Z̃λ∗(T )
1

ϵ

(
1 − α(ν)

n (ϵ)
)

= y∗0Igλ∗
(
y∗0e

−3ϵn, y∗1;B1, B2

)
Z̃λ∗(T )

1

ϵ

(
1 − α(ν)

n (ϵ)
)

(A.34)

L. 2.1.38, (i)

≤ y∗0Igλ∗
(
y∗0e

−3ϵ+n, y∗1;B1, B2

)
Z̃λ∗(T )

1

ϵ

(
1 − α(ν)

n (ϵ)︸ ︷︷ ︸
≥e−3ϵn

)

≤ y∗0Igλ∗
(
y∗0e

−3ϵ+n, y∗1;B1, B2

)
Z̃λ∗(T ) sup

0<ϵ<1

(
1

ϵ

(
1 − e−3ϵn

))
︸ ︷︷ ︸

<∞

(A.35)

Since λ∗ ∈ D′, the auxiliary Lemma A.2.1, (ii) implies that we can choose ϵ+ small enough such
that

E
[
y∗0Igλ∗

(
y∗0e

−3ϵ+n, y∗1;B1, B2

)
Z̃λ∗(T )

]
<∞

Then (A.35) yields an integrable majorant for all 0 < ϵ ≤ ϵ+ and we take expectations and
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apply Fatou’s lemma to obtain

lim sup
ϵ↓0

1

ϵ

(
E
[
U∗
gλϵ,n

(y∗;B1, B2) − U∗
gλ∗

(y∗;B1, B2)]
)

(A.34)

≤ lim sup
ϵ↓0

E
[
y∗0Igλ∗

(
y∗0e

−3ϵn, y∗1;B1, B2

)
Z̃λ∗(T )

1

ϵ

(
1 − α(ν)

n (ϵ)
)]

Fatou
≤ y∗0E

[
Z̃λ∗(T ) lim sup

ϵ↓0

(
Igλ∗

(
y∗0e

−3ϵn, y∗1;B1, B2

)︸ ︷︷ ︸
ϵ→0−→Igλ∗ (y

∗;B1,B2) by L.A.2.1,(i)

· 1

ϵ

(
1 − α(ν)

n (ϵ)
)

︸ ︷︷ ︸
ϵ→0−→Lτn+Nτnby (A.30)

)]

(A.30)
= y∗0E

[
Z̃λ∗(T )Igλ∗ (y∗;B1, B2)

(
Lτn +Nτn

)]
,

This proves (A.31) and hence, the second inequality in (A.26).

Part 2: We continue by proving the last inequality in (A.26). Let V v0,π
λ∗ be the wealth process

of π in Mλ∗ and set Ṽ v0,π
λ∗ (t) := P λ∗

0 (t)−1 · V v0,π
λ∗ (t). Then, through an application of Itô’s

product rule and a change of the diffusion from dW (t) to dWλ∗(t) = dW (t) + γλ∗(t)dt we see:

d(Ṽ v0,π
λ∗ (t)) = d(P λ∗

0 (t)−1 · V v0,π
λ∗ (t)) = P λ∗

0 (t)−1dV v0,π
λ∗ (t) + V v0,π

λ∗ (t)d(P λ∗
0 (t)−1)

(3.5)
= Ṽ v0,π

λ∗ (t)
( [
r(t) + (µ(t) − r(t)1)′π(t)

]
dt+ π(t)′Σ(t)dW (t)

)
+ Ṽ v0,π

λ∗ (t)
[
δK(λ∗(t)) + π(t)′λ∗(t)

]
dt− Ṽ v0,π

λ∗ (t) [r(t) + δK(λ∗(t))] dt

= Ṽ v0,π
λ∗ (t)π(t)′Σ(t)dWλ∗(t)

Furthermore,

d
(
Ṽ v0,π
λ∗ (t) · (Lt +Nt)

)
= Ṽ v0,π

λ∗ (t)
(
dLt + dNt

)
+ (Lt +Nt)dṼ

v0,π
λ∗ (t) + d⟨Ṽ v0,π

λ∗ , N⟩t
= Ṽ v0,π

λ∗ (t)(dLt + (Σ(t)−1ν(t))′dWλ∗(t))

+ Ṽ v0,π
λ∗ (t)(Lt +Nt)π(t)′Σ(t)dWλ∗(t) + Ṽ v0,π

λ∗ (t)π(t)′ν(t)dt

= Ṽ v0,π
λ∗ (t)

([
(Σ(t)−1ν(t))′ + (Lt +Nt)π(t)′Σ(t)

]
dWλ∗(t) + π(t)′ν(t)dt+ dLt

)
(A.36)

Define the probability measure Q̃
(n)
λ∗ via its Radon-Nikoydm derivative:

dQ̃
(n)
λ∗

dQ

∣∣∣∣∣
FT

:= Zλ∗(τn)

Then, according to Girsanov’s theorem, the process

W
(n)
λ∗ (t) := W (t) +

∫ t

0
γλ∗(s)1{s≤τn}ds

is a Wiener process with respect to Q̃
(n)
λ∗ . From now on, let E

Q̃
(n)
λ∗

[X] denote the expectation of

a random variable X w.r.t Q̃
(n)
λ∗ . Then, by the choice of τn,

E
Q̃

(n)
λ∗

[∫ τn

0
Ṽ v0,π
λ∗ (t)

[
(Σ(t)−1ν(t))′ + (Lt +Nt)π(t)′Σ(t)

]
dWλ∗(t)

]
= E

Q̃
(n)
λ∗

[∫ T

0
Ṽ v0,π
λ∗ (t)

[
(Σ(t)−1ν(t))′ + (Lt +Nt)π(t)′Σ(t)

]
1{t≤τn}dWλ∗(t)

]
= E

Q̃
(n)
λ∗

[∫ T

0
Ṽ v0,π
λ∗ (t)

[
(Σ(t)−1ν(t))′ + (Lt +Nt)π(t)′Σ(t)

]
1{t≤τn}dW

(n)
λ∗ (t)

]
= 0.

(A.37)
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Furthermore, integrating over (A.36) and taking expectations with respect to Q̃
(n)
λ∗ results in

E[Z̃λ∗(τn)V v0,π
λ∗ (τn)

(
Lτn +Nτn

)
] = E[Zλ∗(τn)Ṽ v0,π

λ∗ (τn)
(
Lτn +Nτn

)
]

= E
Q̃

(n)
λ∗

[Ṽ v0,π
λ∗ (τn)

(
Lτn +Nτn

)
]

(A.36)
= E

Q̃
(n)
λ∗

[ ∫ τn

0
Ṽ v0,π
λ∗ (t)[π(t)′ν(t)dt+ dLt]

]
+E

Q̃
(n)
λ∗

[ ∫ τn

0
Ṽ v0,π
λ∗ (t)[(Σ(t)−1ν(t))′ + (Lt +Nt)π(t)′Σ(t)]dWλ∗(t)

]
(A.37)

= E
Q̃

(n)
λ∗

[ ∫ τn

0
Ṽ v0,π
λ∗ (t)[π(t)′ν(t)dt+ dLt]

]
= E

[
Zλ∗(τn)

∫ τn

0
Ṽ v0,π
λ∗ (t)[π(t)′ν(t)dt+ dLt]

]
.

(A.38)

Furthermore, since
(
Z̃λ∗(t) · V v0,π

λ∗ (t)
)
0≤t≤T

is a Q-supermartingale, the tower property of con-
ditional expectations ensures

E
[
V v0,π
λ∗ (T )Z̃λ∗(T )(Lτn +Nτn)

]
= E

[
E[V v0,π

λ∗ (T )Z̃λ∗(T )(Lτn +Nτn)|Fτn ]
]

= E
[
(Lτn +Nτn)E[V v0,π

λ∗ (T )Z̃λ∗(T )|Fτn ]
]

≤ E
[
V v0,π
λ∗ (τn)Z̃λ∗(τn)(Lτn +Nτn)

]
.

This, in combination with (A.38), proves the last inequality in (A.26).

Part 3: We can finally wrap up this proof. First, let ν ∈ D. Then, by the inequalities in
(A.26)

0 ≤ E
[
Zλ∗(τn)

∫ τn

0
Ṽ v0,π
λ∗ (t)[π(t)′ν(t) + δK(ν(t))]dt

]
= E

[
Zλ∗(τn)

∫ T

0
Ṽ v0,π
λ∗ (t)[π(t)′ν(t) + δK(ν(t))]1{t≤τn}dt

]
∀n ∈ N.

Assume now that the set

A :=
{

[π(t)′ν(t) + δK(ν(t))]1{t≤τn} < 0
}
⊂ Ω × [0, T ]

has positive product measure. Setting ν̃ := ν1A ∈ D, we see that

E
[
Zλ∗(τn)

∫ τn

0
Ṽ v0,π
λ∗ (t)[π(t)′ν̃(t) + δK(ν̃(t))]dt

]
= E

[
Zλ∗(τn)︸ ︷︷ ︸

>0

∫ τn

0
Ṽ v0,π
λ∗ (t)︸ ︷︷ ︸
>0

[π(t)′ν(t) + δK(ν(t))]1A︸ ︷︷ ︸
< 0

dt
]
< 0.

But as ν̃ ∈ D, this contradicts (A.26). Hence,

1[π(t)′ν(t) + δK(ν(t))]1{t≤τn} ≥ 0 L[0, T ] ⊗Q− a.e.yn→ ∞
π(t)′ν(t) + δK(ν(t)) ≥ 0 L[0, T ] ⊗Q− a.e.

as τn → T Q − a.s. for n → ∞. Since the choice of ν ∈ D was arbitrary, this allows us to
conclude (A.24) by virtue of Lemma 2.1.17, (iii). In particular, the choice of ν = λ∗ yields

π(t)′λ∗(t) + δK(λ∗(t)) ≥ 0 L[0, T ] ⊗Q− a.e.. (A.39)
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On the other hand, by setting ν := −λ∗, we obtain from (A.26)

0 ≤ −E
[
Zλ∗(τn)

∫ τn

0
Ṽ v0,π
λ∗ (t) [π(t)′λ∗(t) + δK(λ∗(t))]︸ ︷︷ ︸

≥ 0 by (A.39)

dt
]

and this implies (A.25).

Proof of Theorem 3.4.6. This is a direct consequence of the remarks above the statement of the
corollary.

Proof of Lemma 3.5.2. Due to G being convex and strictly decreasing, RRA(t, z; y) ≥ 0. As

0 ∈ K, we have δK(x) = − infv∈K(v′x)
v=0
≥ 0 . For given (t, z; y), we aim to find a minimizer

x = λ∗(t, z; y) ∈ Rd of the function

f(x) := RRA(t, z; y)∥γ + Σ−1x∥2 + δK(x).

If RRA(t, z; y) = 0, then x = λ∗(t, z; y) = 0 ∈ XK minimizes f globally. Otherwise, f is strictly
convex in x and f(x) → ∞ as ∥x∥ → ∞. Hence, f has bounded level sets and is continuous
on XK (cf. Assumption 3.5.1). Thus, f attains its global minimum at some x = λ∗(t, z; y) ∈
XK . Hence, there exists a global minimizer λ∗(t, z; y) ∈ XK and it remains to show that this
minimizer is uniformly bounded in (t, z; y).
Since Σ−1 is non-singular, the matrix C =

(
Σ−1

)′
Σ−1 is symmetric and positive definite. By

the symmetry of C, the spectral theorem implies that C has d orthonormal eigenvectors and d
real eigenvalues. Furthermore, as C is strictly positive definite, all of its eigenvalues are strictly
positive. Thus, if c− > 0 is the square root of the smallest eigenvalue of C, we obtain

∥Σ−1x∥2 = x′Cx ≥ (c−)2∥x∥2 for all x ∈ Rd.

Further, for a given minimizer λ∗(t, z; y) ∈ XK , define

ν(t, z; y) := λ∗(t, z; y) · 1{∥λ∗(t,z;y)∥≤ 2
c−

∥γ∥}

Then, ν ∈ XK and ν coincides with λ∗ whenever ∥λ∗(t, z; y)∥ ≤ 2
c−

∥γ∥. Otherwise let ∥λ∗(t, z; y)∥ >
2
c−

∥γ∥. Then, ν(t, z; y) = 0 and an application of the reverse Cauchy-Schwarz inequality

∥x1 + x2∥2 = ∥x1∥2 + 2x′1x2 + ∥x2∥2 ≥ ∥x1∥2 − 2∥x1∥∥x2∥ + ∥x2∥2 ∀x1, x2 ∈ Rd, (A.40)

yield

1

2
RRA(t, z; y)∥γ + Σ−1λ∗(t, z; y)∥2 + δK(λ∗(t, z; y))

(A.40)

≥ 1

2
RRA(t, z; y)

(
∥γ∥2 − 2∥γ∥∥Σ−1λ∗(t, z; y)∥ + ∥Σ−1λ∗(t, z; y)∥2

)
+ δK(λ∗(t, z; y))

=
1

2
RRA(t, z; y)

(
∥γ∥2 + ∥Σ−1λ∗(t, z; y)∥(−2∥γ∥ + ∥Σ−1λ∗(t, z; y)∥)︸ ︷︷ ︸

≥c−∥λ∗(t,z;y)∥≥2∥γ∥

)
+ δK(λ∗(t, z; y))︸ ︷︷ ︸

≥0

≥ 1

2
RRA(t, z; y)∥γ∥2

ν(t,z;y)=0
=

1

2
RRA(t, z; y)∥γ + Σ−1ν(t, z; y)∥2 + δK(ν(t, z; y)).

Hence, ν(t, z; y) is also a minimizer of (3.11) and ∥ν(t, z; y)∥ ≤ 2
c−

∥γ∥, for all (t, z; y), which
concludes the proof.
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Proof of Theorem 3.5.3. The uniform boundedness of λ∗(t, z; y) ∈ XK and the continuity of δK
on XK guarantee that ∥λ∗(t)∥ and |δK(λ∗(t))| are Q−a.s. bounded on [0, T ]. Due to measurable
selection theorems (for example Corollary 3.48 in [77]) we may w.l.o.g. assume the mapping
(t, z) → λ∗(t, z; y) to be Borel-measurable. Hence, the corresponding stochastic process λ∗ is
progressively measurable and thus an element of D.
For convenience, we define the characteristic operator HλG of G with respect to λ ∈ D as

HλG(t, z; y) = Gt(t, z; y) −
(
r + δK(λ(t))

)
zGz(t, z; y) +

1

2
∥γ + Σ−1λ(t)∥2z2Gzz(t, z; y).

Note HλG(t, z; y) ≥ 0 for any λ ∈ D and HλG(t, z; y) = 0 if λ = λ∗.

Let now λ ∈ D with ∥λ(t) − λ∗(t)∥ ≤ 1 L[0, T ] ⊗Q-a.s., be arbitrary but fixed. Due to Lemma
3.5.2, we can assume that C > 0 from the polynomial growth condition was chosen large enough
such that

max
(
∥γλ(t)∥2, δK(λ∗(t)), δK(λ(t))

)
≤ C L[0, T ] ⊗Q-a.s..

Finally, for any p > 0, we define the stopping times

τ̄p = inf

{
S ∈ [t, T ]

∣∣∣ ∫ S

t

(
Gz(s, Z̃λ(s); y)Z̃λ(s)∥γλ(s)∥

)2
ds ≥ p

}
τp = min

(
τ̄p, T

)
This choice of τp ensures that

E

[∫ τp

t

(
Gz(s, Z̃λ(s); y)Z̃λ(s)∥γλ(s)∥

)2
ds︸ ︷︷ ︸

≤p

∣∣∣Ft

]
≤ p

⇒ E

[∫ τp

t
Gz(s, Z̃λ(s); y)Z̃λ(s)γλ(s)′dW (s)

∣∣∣Ft

]
= 0.

Therefore,

E[G(τp, Z̃λ(τp); y)|Ft]

Itô
= G(t, Z̃λ(t); y) +E

[∫ τp

t
HλG(s, Z̃λ(s); y)︸ ︷︷ ︸

≥0

ds

∣∣∣∣∣Ft

]

+E

[∫ τp

t
Gz(s, Z̃λ(s); y)Z̃λ(s)γλ(s)′dW (s)

∣∣∣Ft

]
︸ ︷︷ ︸

=0

≥ G(t, Z̃λ(t); y) (A.41)

Clearly, τp → T , for p → ∞ and hence G(τp, Z̃λ(τp); y) → G(T, Z̃λ(T ); y) = U∗
gλ

(y;B1, B2) for
p→ ∞.

Inequality (A.41) holds with equality for λ = λ∗. Next, we show that we can interchange limit
and expectation. This will be achieved using Doob’s martingale inequality and the dominated
convergence theorem. The polynomial growth condition gives us a dominating random variable
for G(τp, Z̃λ(τp); y):

|G(τp, Z̃λ(τp); y)| ≤ C
∣∣∣(Z̃λ(τp))

−α + (Z̃λ(τp))
α
∣∣∣
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≤ C

(
sup

t≤s≤T
(Z̃λ(s))−α + sup

t≤s≤T
(Z̃λ(s))α

)
.

We now show that the right-hand side has finite expectation, due to the uniform boundedness
of λ, γλ and δK(λ):

Z̃λ(s)−α = Z̃λ(t)−α exp

(
α

∫ s

t
r + δK(λ(u)) +

1

2
∥γλ(u)∥2du+ α

∫ s

t
γλ(u)′dW (u)

)

= Z̃λ(t)−α exp

α ∫ s

t
r + δK(λ(u))︸ ︷︷ ︸

≤ C

+
1

2
(1 + α) ∥γλ(u)∥2︸ ︷︷ ︸

≤C

du


· exp

(
−α

2

2

∫ s

t
∥γλ(u)∥2du+ α

∫ s

t
γλ(u)′dW (u)

)
︸ ︷︷ ︸

=: M−(s)

≤ Z̃λ(t)−α exp

([
α(r + C) +

1

2
(α+ α2)C

]
(s− t)

)
M−(s)

and M− is a martingale by Novikov’s condition (again due to the uniform boundedness of λ).
Therefore, through an application of the general inequality x ≤ 1 + x2 for all x ∈ R in (i) and
an application of Doob’s martingale inequality in (ii) we obtain

E

[
sup

t≤s≤T
(Z̃λ(s))−α

∣∣∣Ft

]

≤ Z̃λ(t)−α exp

([
α|r + C| +

1

2
(α+ α2)C

]
(T − t)

)
E

[
sup

t≤s≤T
M−(s)

∣∣∣Ft

]
(i)

≤ Z̃λ(t)−α exp

([
α|r + C| +

1

2
(α+ α2)C

]
(T − t)

)
E

[
1 + sup

t≤s≤T

(
M−(s)

)2∣∣∣Ft

]
(ii)

≤ Z̃λ(t)−α exp

([
α|r + C| +

1

2
(α+ α2)C

]
(T − t)

)(
1 + 4E

[
M−(T )2

∣∣Ft

]︸ ︷︷ ︸
<∞

)
<∞,

where the finiteness of the last expectation follows again using Novikov’s condition and the
uniform boundedness of λ. Similarly,

Z̃λ(t, s)α = Z̃λ(t)α exp

−α
∫ s

t
r + δK(λ(u))︸ ︷︷ ︸

≥0

+
1

2
∥γλ(u)∥2︸ ︷︷ ︸

≥0

du− α

∫ s

t
γλ(u)′dW (u)


≤ Z̃λ(t)α exp

−α
∫ s

t
r − 1

2
α ∥γλ(u)∥2︸ ︷︷ ︸

≤C

du


· exp

(
−α

2

2

∫ s

t
∥γλ(u)∥2du− α

∫ s

t
γλ(u)′dW (u)

)
︸ ︷︷ ︸

=: M+(s)

≤ Z̃λ(t)α exp

([
− αr +

1

2
α2C

]
(s− t)

)
M+(s)

and M+ is a martingale by Novikov’s condition (again due to the uniform boundedness of λ).
Therefore, through another application of the inequality x ≤ 1 + x2 for all x ∈ R in (iii) and
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an application of Doob’s martingale inequality in (iv) we obtain

E

[
sup

t≤s≤T
(Z̃λ(s))α

∣∣∣Ft

]

≤ Z̃λ(t)α exp

([
α|r| +

1

2
α2C

]
(T − t)

)
E

[
sup

t≤s≤T
M+(s)

∣∣∣Ft

]
(iii)

≤ Z̃λ(t)α exp

([
α|r| +

1

2
α2C

]
(T − t)

)
E

[
1 + sup

t≤s≤T
(M+(s))2

∣∣∣Ft

]
(iv)

≤ Z̃λ(t)α exp

([
α|r| +

1

2
α2C

]
(T − t)

)(
1 + 4E

[
M+(T )2

∣∣Ft

]︸ ︷︷ ︸
<∞

)
<∞.

The finiteness of the last expectation can again easily be verified using Novikov’s condition and
the uniform boundedness of λ. This allows us to apply the dominated convergence theorem

G(t, Z̃λ(t); y) = E
[
G(t, Z̃λ(t); y)

∣∣Ft

]
(A.41)

≤ lim
p→∞

E
[
G(τp, Z̃λ(τp); y)

∣∣Ft

]
dominated

=
convergence

E

[
lim
p→∞

G(τp, Z̃λ(τp); y)
∣∣Ft

]
= E

[
G(T, Z̃λ(T ); y)

∣∣Ft

]
= E

[
U∗
gλ

(y;B1, B2)
∣∣Ft

]
,

with equality if λ = λ∗. Conditioning on Z̃λ(t) = z concludes the proof.

Proof of Lemma 3.5.4. Follows immediately from Chapter 5, Theorem 6.1 in [22].

Proof of Lemma 3.5.5. Note that for any given constant β > 0, we have

βu2 ≥ |u| ∀u ∈ R with |u| ≥ 1

β

In particular, we then have

βu2 +
1

β
≥ |u| ∀u ∈ R. (A.42)

Furthermore, for u ∈ R, define f(u) := U∗
ĝ

(
y;B1, B2, exp

(
∥γλ∗∥√

2
u
))

. Then f satisfies the

prerequisites of Lemma 3.5.4, since for any u ∈ R and any β > 0

|f(u)| =

∣∣∣∣U∗
ĝ

(
y;B1, B2, exp

(
∥γλ∗∥√

2
u

))∣∣∣∣
(3.17)

≤ C

(
e
−α

∥γλ∗∥
√
2

u
+ e

α
∥γλ∗∥
√
2

u
)
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≤ 2Ce
α

∥γλ∗∥
√
2

|u|

(A.42)

≤ 2Ce
α

∥γλ∗∥
√
2

(βu2+ 1
β
)
.

Choosing β small enough such that α∥γλ∗∥√
2
β < 1

4T guarantees that F , as in (3.16), defines a

continuously differentiable function in τ ∈ (0, T ] and twice continuously differentiable function
in u ∈ R, which satisfies the heat equation Fτ (τ, u) = Fuu(τ, u) for all (τ, u) ∈ (0,∞) ×R with
initial condition F (0, u) = f(u). We substitute

t := T − τ and u :=

√
2

∥γλ∗∥

(
log(z) −

(
r +

1

2
∥γλ∗∥2

)
(T − t)

)
and define a function G : [0, T ] × (0,∞) → R as

G(t, z; y) :=F (τ, u) = F

(
T − t,

√
2

∥γλ∗∥

(
log(z) − (r +

1

2
∥γλ∗∥2)(T − t)

))

=
1√

4π(T − t)

∫
R

e
− x2

4(T−t) f

( √
2

∥γλ∗∥

(
log(z) − (r +

1

2
∥γλ∗∥2)(T − t)

)
− x

)
dx

=
1√

4π(T − t)

∫
R

e
− x2

4(T−t)U∗
ĝ

(
y;B1, B2, ze

−(r+ 1
2
∥γλ∗∥2)(T−t)− ∥γλ∗∥

√
2

x
)
dx.

The function
z → U∗

ĝ (y;B1, B2, z) = sup
B1≤x≤B2

(
U(x) − y0zx− y1g(x)

)
is convex and strictly decreasing in z for any y = (y0, y1) ∈ [0,∞)2. Therefore, by the linearity
of the integral, G is convex and strictly decreasing in z. Furthermore, using

∂τ

∂t
= −1,

∂u

∂t
=

√
2

∥γλ∗∥
r +

∥γλ∗∥√
2
,

∂u

∂z
=

√
2

∥γλ∗∥
1

z
and

∂2u

∂2z
= −

√
2

∥γλ∗∥
1

z2
.

we have

Gt(t, z; y) =
∂

∂t
G(t, z; y) =

∂τ

∂t
Fτ (τ, u) +

∂u

∂t
Fu(τ, u)

= −Fτ (τ, u) +

( √
2

∥γλ∗∥
r +

∥γλ∗∥√
2

)
Fu(τ, u),

−rzGz(t, z; y) = −rz ∂
∂z
G(t, z; y) = −rz ∂u

∂z
Fu(τ, u) = −r

√
2

∥γλ∗∥
Fu(τ, u)

z2

2
∥γλ∗∥2Gzz(t, z; y) =

z2

2
∥γλ∗∥2 ∂

∂z
Gz(t, z; y) =

z2√
2
∥γλ∗∥ ∂

∂z

(
1

z
Fu(τ, u)

)
= −∥γλ∗∥√

2
Fu(τ, u) + z

∥γλ∗∥√
2

∂u

∂z
Fuu(τ, u)

= −∥γλ∗∥√
2
Fu(τ, u) + Fuu(τ, u)

and therefore

Gt(t, z; y) − rzGz(t, z; y) +
z2

2
∥γλ∗∥2Gzz(t, z; y) = −Fτ (τ, u) + Fuu(τ, u) = 0,
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for all (t, z) ∈ [0, T ) × (0,∞). The substitution of τ = 0 ⇔ t = T and the initial condition for
F gives the terminal condition for G:

G(T, z; y)
t=T⇔τ=0

= F

(
0,

√
2

∥γλ∗∥
log(z)

)

= U∗
ĝ

(
y;B1, B2, exp

(
∥γλ∗∥√

2

√
2

∥γλ∗∥
log(z)

))
= U∗

ĝ (y;B1, B2, z).

In total, G satisfies the PDE

0 = Gt(t, z; y) − rzGz(t, z; y) +
z2

2
∥γλ∗∥2Gzz(t, z; y)

Def.λ∗
= Gt(t, z; y) − rzGz(t, z; y) +

z2

2
inf

x∈XK

(
∥γ + Σ−1x∥2

)
Gzz(t, z; y)

Gzz≥0
= Gt(t, z; y) − rzGz(t, z; y) +

z2

2
inf

x∈XK

(
∥γ + Σ−1x∥2Gzz(t, z; y)

)
with terminal condition G(T, z; y) = U∗

ĝ (y;B1, B2). Furthermore, we can bound the absolute
value of G, since for t = T the polynomial growth condition on U∗

ĝ (y;B1, B2, z) holds and for
t < T

|G(t, z; y)| ≤ 1√
4π(T − t)

∫
R

e
− x2

4(T−t)

∣∣∣∣U∗
ĝ

(
y;B1, B2, ze

−(r+ 1
2
∥γλ∗∥2)(T−t)− ∥γλ∗∥

√
2

x
)∣∣∣∣ dx

(3.17)

≤ C√
4π(T − t)

∫
R

e
− x2

4(T−t)

(
ze

−(r+ 1
2
∥γλ∗∥2)(T−t)− ∥γλ∗∥

√
2

x
)−α

dx

+
C√

4π(T − t)

∫
R

e
− x2

4(T−t)

(
ze

−(r+ 1
2
∥γλ∗∥2)(T−t)− ∥γλ∗∥

√
2

x
)α

dx

=
C√

4π(T − t)
eα(r+

1
2
∥γλ∗∥2)(T−t)

(∫
R

e
− x2

4(T−t)
+

α∥γλ∗∥
√
2

x
dx

)
z−α

+
C√

4π(T − t)
e−α(r+ 1

2
∥γλ∗∥2)(T−t)

(∫
R

e
− x2

4(T−t)
−α∥γλ∗∥

√
2

x
dx

)
zα

(i)
= Ceα(r+

1
2
∥γλ∗∥2)(T−t)

(
1√
2π

∫
R

e−
u2

2
+α∥γλ∗∥

√
T−tudu

)
︸ ︷︷ ︸

I1

z−α

+ Ce−α(r+ 1
2
∥γλ∗∥2)(T−t)

(
1√
2π

∫
R

e−
u2

2
−α∥γλ∗∥

√
T−tudu

)
︸ ︷︷ ︸

I2

zα

(ii)

≤ Ceα|r+
1
2
∥γλ∗∥2|T+ 1

2
α2∥γλ∗∥2T︸ ︷︷ ︸

=: C̃

(
z−α + zα

)
where we substituted u = x√

2(T−t)
in (i) and used that I1 = I2 = exp(12α

2∥γλ∗∥2(T − t)) in (ii),

since the integrals I1 and I2 are the moment generating function of a standard normal random
variable evaluated at ±α∥γλ∗∥

√
T − t.
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Proof of Lemma 3.5.6. We begin by deriving the concave conjugate of a power utility function
on (0,∞). Thus, for b < 1, b ̸= 0 and y > 0, we aim to compute

sup
x≥0

(1

b
xb − yx

)
.

The corresponding first order optimality condition for the optimizer x∗ yields

0
!

=
(
x∗
)b−1 − y ⇔ x∗ = y

1
b−1 .

As 1
bx

b−yx is strictly concave in b, the first order optimality condition is necessary and sufficient.
Hence,

sup
x≥0

(1

b
xb − yx

)
=

1

b
y

b
b−1 − yy

1
b−1 =

1 − b

b
y

b
b−1 . (A.43)

We continue by showing that (i) and (ii) imply that the growth condition (3.17) is satisfied.

(i) If max (U(x),−g(x)) ≤ C+

(
1
b+
xb+ + 1

)
, then we have for any (y0, y1)

′ ∈ [0,∞)2

U∗
ĝ (y;B1, B2, z) = sup

B1≤x≤B2

(
U(x) − y0xz − y1g(x)

)
≤ sup

B1≤x≤B2

(
C+(1 + y1)

(
1

b+
xb+ + 1

)
− y0xz

)
≤ sup

x≥0

(
C+(1 + y1)

(
1

b+
xb+ + 1

)
− y0xz

)
= C+(1 + y1)

(
1 + sup

x≥0

(
1

b+
xb+ − y0z

(1 + y1)C+
x

))
(A.43)

= C+(1 + y1)

1 +
1 − b+
b+

(
y0z

(1 + y1)C+

) b+
b+−1


= C+(1 + y1)

1 +
1 − b+
b+

(
y0

(1 + y1)C+

) b+
b+−1

z
b+

b+−1

 .

Using analogous arguments, we can show that C−

(
1
b−
xb− − 1

)
≤ min (U(x),−g(x)) im-

plies

C−(1 + y1)

−1 +
1 − b−
b−

(
y0

(1 + y1)C−

) b−
b−−1

z
b−

b−−1

 ≤ U∗
ĝ (y;B1, B2, z).

Thus, the growth condition (3.17) is satisfied with α = max
(∣∣∣ b−

b−−1

∣∣∣ , ∣∣∣ b+
b+−1

∣∣∣) and a suit-

ably large constant C > 0.

(ii) If C = |U(B2)| + y0(B1 + B2) + y1|g(B2)| < ∞, then condition (3.17) is satisfied with
α = 1 because for all z > 0

U∗
ĝ (y;B1, B2, z) = sup

B1≤x≤B2

(
U(x) − y0zx− y1g(x)

) x=B2

≥ U(B2) − y0zB2 − y1g(B2)

and U∗
ĝ (y;B1, B2, z) = sup

B1≤x≤B2

(
U(x)︸ ︷︷ ︸
≤U(B2)

−y0zx−y1g(x)︸ ︷︷ ︸
≤y1g(B2)

)
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≤ U(B2) − y1g(B2) + sup
B1≤x≤B2

(
− y0zx

)
= U(B2) − y0zB1 − y1g(B2)

⇒ |U∗
ĝ (y;B1, B2, z)| ≤ |U(B2)| + y0(B1 +B2)z + y1|g(B2)|

≤ (|U(B2)| + y1|g(B2)|)
1

z
+ (|U(B2)| + y0(B1 +B2) + y1|g(B2)|) z

≤ C(z−α + zα).

Proof of Corollary 3.5.7. All prerequisites of Lemma 3.5.5 are satisfied and thus G (as defined
in Lemma 3.5.5) satisfies the HJB equation (3.10), is convex, strictly decreasing in z and satisfies
a polynomial growth condition. According to Theorem 3.5.3, as the minimizing λ∗(t, z; y) = λ∗

is independent of y ∈ [0,∞)2, this implies for all y ∈ [0,∞)2:

G(0, z; y) = E[U∗
gλ∗

(y;B1, B2)]

≤ E[U∗
gλ

(y;B1, B2)], ∀λ ∈ D with ∥λ∗ − λ(t)∥2 ≤ 1 L[0, T ] ⊗Q-a.s..

In particular, this holds for the choice of y = y∗, where y∗ is optimal for (DV
λ∗). Finally, as

λ∗ ∈ D′, Condition (D̃) is satisfied locally and the statement of this Corollary now follows
due to the equivalence of Condition (B̃) and Condition (D̃) by virtue of Corollary 3.4.6 and
Theorem 3.4.5.

Proof of Example 3.5.10. Following Corollary 3.5.7 and Remark 3.5.8, we still need to

• verify that U∗
ĝ satisfies a growth condition (3.17) in z,

• show that Igλ∗ (y∗;B1, B2) = Cap
(
I(y∗0), B1, B2

)
,

• verify that Igλ∗ (y∗;B1, B2) ∈ L2
Q,

• verify that E
[
gλ∗(Igλ∗ (y;B1, B2))

]′
∆y is usc at y = y∗ for all ∆ ∈ R× [0,∞).

As U is a power utility function and g ≡ 0, condition (i) of Lemma 3.5.6 is satisfied. Furthermore,
U(x) − y0Z̃λ∗(T ) is strictly concave in x ≥ 0 and is maximized by I(y0) over x ∈ R. Hence, its
maximum over x ∈ [B1, B2] is attained by

Igλ∗ (y;B1, B2) = B1 + (I(y0) −B1)
+ − (I(y0) −B2)

+ = Cap(I(y0), B1, B2).

By Assumption 3.5.1, the market coefficients are deterministic and so is λ∗. Hence, Z̃λ∗(T )
is log-normally distributed and all of its moments are finite. In particular, we have for all
y0 ∈ (0,∞)

E
[
Igλ∗ (y;B1, B2)

2
]
≤ 2B2

1 + 2E [I(y0)] = 2B2
1 + 2E

[(
y0Z̃λ∗(T )

) 2
b−1

]
<∞.

Similarly,

E
[
Igλ∗ (y;B1, B2)Z̃λ∗(T )

]
≤ B1E

[
Z̃λ∗(T )

]
+E

[
I(y0)Z̃λ∗(T )

]
≤ B1E

[
Z̃λ∗(T )

]
+ y

1
b−1

0 E
[
Z̃λ∗(T )

b
b−1

]
<∞. (A.44)
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Lastly, Igλ∗ (y;B1, B2) is a concatenation of continuous functions and thereby continuous in
y0 ∈ (0,∞). Therefore, the monotonicity of Igλ∗ (y;B1, B2) in y0, equation (A.44) and the
dominated convergence theorem imply the continuity of

y → E
[
gλ∗

(
Igλ∗ (y;B1, B2)Z̃λ∗(T )

)]
=

(
E
[
Igλ∗ (y;B1, B2)Z̃λ∗(T )

]
0

)
.

in y ∈ [0,∞)2. This is also true for y = (y∗0, 0)′ and thus λ∗ ∈ D′. The optimality of Igλ∗ (y∗;B1, B2)
for (P) follows from Corollary 3.5.7.

Proof of Example 3.5.11. Following Corollary 3.5.7 and Remark 3.5.8, we still need to

• verify that U∗
ĝ satisfies growth condition (3.17) in z,

• show that Igλ∗ (y∗) is given as in the statement of the example,

• verify that Igλ∗ (y∗) ∈ L2
Q,

• verify that E
[
gλ∗(Igλ∗ (y))

]′
∆y is usc at y = y∗ for all ∆ ∈ R× [0,∞).

As U is a power utility function and −ϵ ≤ g(x) ≤ 1 − ϵ for all x ≥ 0, Uĝ satisfies the growth
condition (3.17) by Lemma 3.5.6, (i). Further, we have for any y = (y0, y1)

′ ∈ [0,∞)2:

U∗
gλ∗

(y) = sup
x≥0

(
U(x) − y0Z̃λ∗(T )x− y1g(x)

)
= sup

x≥0

(
U(x) − y0Z̃λ∗(T )x− y11{x<BV aR}

)
+ y1ϵ

= max

(
sup

BV aR≤x

(
U(x) − y0Z̃λ∗(T )x

)
︸ ︷︷ ︸

=:f1(x)

, sup
0≤x≤BV aR

(
U(x) − y0Z̃λ∗(T )x− y1

)
︸ ︷︷ ︸

=:f2(x)

)
+ y1ϵ

= max

(
sup

BV aR≤x
f1(x), sup

0≤x≤BV aR

f2(x)

)
+ y1ϵ

Since f1(BV aR) ≥ f2(B2), the last inequality holds despite the discontinuity of U(x)−y0Z̃λ∗(T )x−
y11{x<BV aR} at x = BV aR. The functions f1 and f2 are both strictly concave in x and thus
their maximizer over bounded intervals is obtained by capping their global maximizer at the
boundaries. Hence, x = max(I(y0), BV aR) maximizes f1(x) over x ∈ [BV aR,∞) and x =
min (I (y0) , BV aR) maximizes f2 over x ∈ [0, BV aR]. It remains to determine which of these two
local maximizers yields the global maximizer Igλ∗ (y). We make a distinction between two cases:

• BV aR < I(y0) : This implies

max(I(y0), BV aR) = I(y0), min (I (y0) , BV aR) = BV aR.

Hence,

sup
0≤x≤BV aR

f2(x) = f2(BV aR) ≤ f1(BV aR) ≤ sup
BV aR≤x

f1(x) = f1(I(y0))

and therefore Igλ∗ (y) = I(y0).
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• I(y0) ≤ BV aR : This implies

max(I(y0), BV aR) = BV aR, min (I (y0) , BV aR) = I(y0).

We then have

sup
0≤x≤BV aR

f2(x) ≥ sup
BV aR≤x

f1(x) ⇔ f2(I(y0)) ≥ f1(BV aR)

⇔ U(I(y0)) − y0Z̃λ∗(T )︸ ︷︷ ︸
=I(y0)b−1

I(y0) − y1 ≥ U(BV aR) − y0Z̃λ∗(T )BV aR

⇔ 1 − b

b
I(y0)

b − y1 ≥
1

b
Bb

V aR − y0Z̃λ∗(T )BV aR

⇔ 1 − b

b
I(y0)

b + y0Z̃λ∗(T )BV aR ≥ 1

b
Bb

V aR + y1.

Thus, if additionally

◦ 1−b
b I(y0)

b + y0Z̃λ∗(T )BV aR ≥ 1
bB

b
V aR + y1, then Igλ∗ (y) = I(y0).

◦ 1−b
b I(y0)

b + y0Z̃λ∗(T )BV aR < 1
bB

b
V aR + y1, then Igλ∗ (y) = BV aR.

In total, the maximizing argument Igλ∗ (y∗), where y∗ is optimal for (DV
λ∗), is as specified in

the statement of this Example. By Assumption 3.5.1, the market coefficients are deterministic
and so is λ∗. Hence, Z̃λ∗(T ) is log-normally distributed and all of its moments are finite. In
particular, we have for arbitrary y = (y0, y1)

′ ∈ (0,∞) × [0,∞)

E
[
Igλ∗ (y)2

]
≤ E

[
(BV aR + I(y0))

2
]

≤ 2B2
V aR + 2E

[
(I(y0))

2
]

= 2B2
V aR + 2y

2
b−1

0 E
[
Z̃λ∗(T )

2
b−1

]
<∞,

i.e., Igλ∗ (y) ∈ L2
Q. Similarly, we have for arbitrary y = (y0, y1)

′ ∈ (0,∞) × [0,∞)

E
[
Igλ∗ (y)Z̃λ∗(T )

]
≤ BV aRE[Z̃λ∗(T )] + y

1
b−1

0 E
[
Z̃λ∗(T )

b
b−1

]
<∞.

For a fixed value of Z̃λ∗(T ), the functions y → Igλ∗ (y)Z̃λ∗(T ) and y → g(Igλ∗ (y)) are continuous
at y = y∗ if

1 − b

b

(
y∗0Z̃λ∗(T )

) b
b−1

+ y∗0Z̃λ∗(T )BV aR ̸= 1

b
Bb

V aR + y∗1. (A.45)

The left side of (A.45) is strictly convex in Z̃λ∗(T ), while the right side is a deterministic
constant. Thus, there are at most 2 values of Z̃λ∗(T ) ∈ (0,∞) such that we have equality in
(A.45). However, Z̃λ∗(T ) has a continuous distribution on (0,∞) and thus

Q
(
gλ∗
(
Igλ∗ (y)

)
is continuous at y = y∗

)
≥ Q

(
1 − b

b

(
y∗0Z̃λ∗(T )

) b
b−1

+ y∗0Z̃λ∗(T )BV aR ̸= 1

b
Bb

V aR + y∗1

)
= 1,

i.e., y → gλ∗
(
Igλ∗ (y)

)
is continuous at y = y∗ with probability 1. Further, for any sequence of

(yn)n∈N taking values in (0,∞) × [0,∞) and converging to y∗ ∈ (0,∞) × [0,∞), we know that

ŷ0 := inf
n∈N

(
(yn)0

)
> 0
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∣∣Igλ∗ (yn)Z̃λ∗(T )
∣∣ ≤ (BV aR + I ((yn)0)) Z̃λ∗(T ) ≤ (BV aR + I (ŷ0)) Z̃λ∗(T )∣∣g (Igλ∗ (yn)

) ∣∣ ≤ 1.

Thus, the dominated convergence theorem implies

lim
n→∞

E
[
gλ∗(Igλ∗ (yn))

]
= lim

n→∞

(
E
[
−Igλ∗ (yn)Z̃λ∗(T )

]
E
[
−g
(
Igλ∗ (yn)

)] )

=

(
E
[
−Igλ∗ (y)Z̃λ∗(T )

]
E
[
−g
(
Igλ∗ (y)

)] )
= E

[
gλ∗(Igλ∗ (y))

]
.

Hence, y → E
[
gλ∗(Igλ∗ (y))

]
is continuous at y = y∗ and therefore E

[
gλ∗(Igλ∗ (y))

]′
∆y is usc

at y = y∗ for all ∆ ∈ R× [0,∞) and thus λ∗ ∈ D′. In total, the optimality of Igλ∗ (y∗) for (P)
now follows from Corollary 3.5.7.

Proof of Example 3.5.12. Following the same arguments as in the proof of Example 3.5.12, we
have for any y = (y0, y1) ∈ [0,∞)2

U∗
gλ∗

(y;B1, B2) = sup
B1≤x≤B2

(
U(x) − y0Z̃λ∗(T )x− y1g(x)

)
= sup

B1≤x≤B2

(
U(x) − y0Z̃λ∗(T )x− y11{x<BV aR}

)
+ y1ϵ

= max

(
sup

BV aR≤x≤B2

(
U(x) − y0Z̃λ∗(T )x

)
︸ ︷︷ ︸

=f1(x)

, sup
B1≤x≤BV aR

(
U(x) − y0Z̃λ∗(T )x− y1

)
︸ ︷︷ ︸

=f2(x)

)
+ y1ϵ

= max

(
sup

BV aR≤x≤B2

f1(x), sup
B1≤x≤BV aR

f2(x)

)
+ y1ϵ.

Since f1 and f2 are strictly concave in x ∈ (0,∞), their constrained maximizers over intervals
can be obtained by capping their global maximizers at the boundaries of the interval, i.e.,

sup
BV aR≤x≤B2

f1(x) = f1 (Cap(I(y0), BV aR, B2))

sup
B1≤x≤BV aR

f2(x) = f2 (Cap(I(y0), B1, BV aR)) .

We make a distinction between three cases:

• B2 < Igλ∗ (y) : As BV aR < B2, this implies Igλ∗ (y) = I(y0) and

Cap(I(y0), BV aR, B2) = B2, Cap(I(y0), B1, BV aR) = BV aR.

Hence,

sup
B1≤x≤BV aR

f2(x) = f2(BV aR) ≤ f1(BV aR) ≤ sup
BV aR≤x≤B2

f1(x) = f1(B2)

and therefore Igλ∗ (y;B1, B2) = B2.

• B1 ≤ Igλ∗ (y) ≤ B2 : This implies that

U(Igλ∗ (y)) − y0Z̃λ∗(T )Igλ∗ (y) − y1g(Igλ∗ (y)) = U∗
gλ∗

(y)
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= sup
0≤x

(
U(x) − y0Z̃λ∗(T )x− y1g(x)

)
≥ sup

B1≤x≤B2

(
U(x) − y0Z̃λ∗(T )x− y1g(x)

)
≥ U(Igλ∗ (y)) − y0Z̃λ∗(T )Igλ∗ (y) − y1g(Igλ∗ (y))

and therefore Igλ∗ (y;B1, B2) = Igλ∗ (y).

• Igλ∗ (y) < B1 : As B1 < BV aR, this implies Igλ∗ (y) = I(y0) and

Cap(I(y0), BV aR, B2) = BV aR, Cap(I(y0), B1, BV aR) = B1.

We then have

sup
B1≤x≤BV aR

f2(x) ≥ sup
BV aR≤x≤B2

f1(x) ⇔ f2(B1) ≥ f1(BV aR)

⇔ U(B1) − y0Z̃λ∗(T )B1 − y1 ≥ U(BV aR) − y0Z̃λ∗(T )BV aR

⇔ Z̃λ∗(T ) ≥
1
b (Bb

V aR −Bb
1) + y1

y0(BV aR −B1)
.

Thus, if additionally

◦ Z̃λ∗(T ) <
1
b
(Bb

V aR−Bb
1)+y1

y0(BV aR−B1)
, then Igλ∗ (y;B1, B2) = BV aR.

◦ Z̃λ∗(T ) ≥
1
b
(Bb

V aR−Bb
1)+y1

y0(BV aR−B1)
, then Igλ∗ (y;B1, B2) = B1.

In total, the maximizing argument Igλ∗ (y∗) for the optimal y∗ is as specified in the state-
ment of this Example. All integrability conditions for Igλ∗ (y∗;B1, B2) are satisfied by ana-
logous arguments as in Example 3.5.11. For a fixed value of Z̃λ∗(T ), the functions y →
Igλ∗ (y;B1, B2)Z̃λ∗(T ) and y → g(Igλ∗ (y;B1, B2)) are continuous at y = y∗ if

1 − b

b

(
y∗0Z̃λ∗(T )

) b
b−1

+ y∗0Z̃λ∗(T )BV aR ̸= 1

b
Bb

V aR + y∗1. (A.46)

and

Z̃λ∗(T ) ̸=
1
b (Bb

V aR −Bb
1) + y∗1

y∗0(BV aR −B1)
. (A.47)

However, as argued in the proof of Example 3.5.11, there are at most 2 values of Z̃λ∗(T ) such
that equality holds in (A.46) and there is at most one value of Z̃λ∗(T ) such that equality holds
in (A.47). Since Z̃λ∗(T ) has a continuous distribution on (0,∞) this again implies

Q
(
gλ∗
(
Igλ∗ (y)

)
is continuous at y = y∗

)
≥ Q ((A.46) and (A.47 hold.) = 1.

The rest of this example can be proved using analogous steps as in the proof of Example
3.5.13.

Proof of Example 3.5.13. Following Corollary 3.5.7 and Remark 3.5.8, we still need to

• verify that U∗
ĝ satisfies growth condition (3.17) in z,

• show that Igλ∗ (y∗) is given as in the statement of the example,

• verify that Igλ∗ (y∗) ∈ L2
Q,
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• verify that E
[
gλ∗(Igλ∗ (y))

]′
∆y is usc at y = y∗ for all ∆ ∈ R× [0,∞).

As U is a power utility and −ϵ ≤ g(x) ≤ BES − ϵ for all x ≥ 0, U ĝ satisfies the growth condition
(3.17) by Lemma 3.5.6, (i). Further, we have for any (y0, y1)

′ ∈ [0,∞)2:

U∗
gλ∗

(y0, y1) = sup
x≥0

(
U(x) − y0Z̃λ∗(T )x− y1g(x)

)
= sup

x≥0

(
U(x) − y0Z̃λ∗(T )x− y1 (BES − x)1{x<BES}

)
+ y1ϵ

= max

(
sup

BES≤x

(
U(x) − y0Z̃λ∗(T )x

)
︸ ︷︷ ︸

=:f1(x)

, sup
0≤x≤BES

(
U(x) − (y0z − y1)x− y1BES

)
︸ ︷︷ ︸

=:f2(x)

)
+ y1ϵ

= max

(
sup

BES≤x
f1(x), sup

0≤x≤BES

f2(x)

)
+ y1ϵ

f1 and f2 are both strictly concave in x and thus their maximizer over bounded intervals is
obtained by capping their global maximizer at the boundaries. Hence, x = max(I(y0), BES)

maximizes f1(x) over x ∈ [BES ,∞) and x = min
(
I
(
y0 − y1

Z̃λ∗ (T )

)
, BES

)
maximizes f2 over

x ∈ [0, BES ]. It remains to determine which of these two local maximizers yields the global
maximizer Igλ∗ (y). We make a distinction between three cases

• BES < I(y0) : As I(y0) is non-increasing in y0, this implies I
(
y0 − y1

Z̃λ∗ (T )

)
≥ I(y0) >

BES and thus

max(I(y0), BES) = I(y0), min

(
I
(
y0 −

y1

Z̃λ∗(T )

)
, BES

)
= BES .

Hence,

sup
0≤x≤B2

f2(x) = f2(BES)

= U(BES) −
(
y0Z̃λ∗(T ) − y1

)
BES − y1BES

= U(BES) − y0Z̃λ∗(T )BES︸ ︷︷ ︸
=f1(BES)

< sup
BES≤x

f1(x)

= f1(I(y0))

and therefore Igλ∗ (y) = I(y0).

• I(y0) ≤ BES ≤ I
(
y0 − y1

Z̃λ∗ (T )

)
: This implies

max(I(y0), BES) = BES , min

(
I
(
y0 −

y1

Z̃λ∗(T )

)
, BES

)
= BES

and therefore Igλ∗ = BES .

• I
(
y0 − y1

Z̃λ∗ (T )

)
< BES : As I(y0) is non-increasing in y0, this implies I(y0) < I

(
y0 − y1

Z̃λ∗ (T )

)
<

BES and thus and thus

max(I(y0), BES) = BES , min

(
I
(
y0 −

y1

Z̃λ∗(T )

)
, BES

)
= I

(
y0 −

y1

Z̃λ∗(T )

)
.
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Hence,

sup
BES≤x

f1(x) = f1(BES)

= U(B2) − y0Z̃λ∗(T )BES

= U(B2) −
(
y0Z̃λ∗(T ) − y1

)
BES − y1BES︸ ︷︷ ︸

=f2(BES)

≤ sup
0≤x≤BES

f2(x)

= f2

(
I
(
y0 −

y1

Z̃λ∗(T )

))

and therefore Igλ∗ = I
(
y0 − y1

Z̃λ∗ (T )

)
.

In total, the maximizing argument Igλ∗ (y∗), where y∗ is optimal for (DV
λ∗), is as specified in

the statement of this Example. By Assumption 3.5.1, the market coefficients are deterministic
and so is λ∗. Hence, Z̃λ∗(T ) is log-normally distributed and all of its moments are finite. In
particular, we have for arbitrary y = (y0, y1)

′ ∈ (0,∞) × [0,∞)

E
[
Igλ∗ (y)2

]
≤ E

[
(BES + I(y0))

2
]

≤ 2B2
ES + 2E

[
(I(y0))

2
]

= 2B2
ES + 2y

2
b−1

0 E
[
Z̃λ∗(T )

2
b−1

]
<∞,

i.e., Igλ∗ (y) ∈ L2
Q. Similarly, we have for arbitrary y = (y0, y1)

′ ∈ (0,∞) × [0,∞)

E
[
Igλ∗ (y)Z̃λ∗(T )

]
≤ BESE[Z̃λ∗(T )] + y

1
b−1

0 E
[
Z̃λ∗(T )

b
b−1

]
<∞.

For a fixed value of Z̃λ∗(T ), the functions y → Igλ∗ (y)Z̃λ∗(T ) and y → g(Igλ∗ (y)) are continuous
in y ∈ (0,∞) × [0,∞). Further, for any sequence of (yn)n∈N taking values in (0,∞) × [0,∞)
and converging to the optimal y∗ ∈ (0,∞) × [0,∞), we know that

ŷ0 := inf
n∈N

(
(yn)0

)
> 0∣∣Igλ∗ (yn)Z̃λ∗(T )

∣∣ ≤ (BES + I ((yn)0)) Z̃λ∗(T ) ≤ (BES + I (ŷ0)) Z̃λ∗(T )∣∣g (Igλ∗ (yn)
) ∣∣ ≤ BES .

Thus, the dominated convergence theorem implies

lim
n→∞

E
[
gλ∗(Igλ∗ (yn))

]
= lim

n→∞

(
E
[
−Igλ∗ (yn)Z̃λ∗(T )

]
E
[
−g
(
Igλ∗ (yn)

)] )

=

(
E
[
−Igλ∗ (y)Z̃λ∗(T )

]
E
[
−g
(
Igλ∗ (y)

)] )
= E

[
gλ∗(Igλ∗ (y))

]
.

Hence, E
[
gλ∗(Igλ∗ (y))

]
is continuous in y = y∗ and therefore E

[
gλ∗(Igλ∗ (y)

]′
∆y is usc in y for

all ∆ ∈ R× [0,∞) and thus, λ∗ ∈ D′. In total, the optimality of Igλ∗ (y∗) for (P) follows from
Corollary 3.5.7.
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Proof of Example 3.5.14. We may proceed analogously to Example 3.5.14. Let y ∈ [0,∞)2. As
g is convex, the maximization objective

U(x) − y0Z̃λ∗(T )x− y1g(x)

remains strictly concave in x ≥ 0 and is maximized globally by x = Igλ∗ (y) over x ∈ R. Hence,
its maximum over [B1, B2] is attained by

Igλ∗ (y;B1, B2) = Cap(I(y), B1, B2).

Since ‘capping’ is a continuous operation which only further bounds its argument, the rest of
this example can be proved using analogous steps as in the proof of Example 3.5.13.

A.3 Proofs Chapter 4

Proof of Lemma 4.3.1. From Corollary 2.1.32 it is known that

0 = Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v sup
π∈K

{
(µ− r1)′πGv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
= Gt + vrGv + (µz)′ (∇zG) +

1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

sup
π∈Rd

{
δK(λ) + λ′π + (µ− r1)′πGv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
= Gt + vrGv + (µz)′ (∇zG) +

1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

sup
π∈Rd

{
δK( Gv︸︷︷︸

>0

·λ) + Gv︸︷︷︸
>0

·λ′π + (µ− r1)′πGv +
(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
By assumption, v and Gv(t, v, z) are positive1. Using that δK is a support function and thus
positive homogenous of order 1, yields

0 = Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

sup
π∈Rd

{ [
δK(λ) + (µ+ λ− r1)′π

]
Gv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
.

(A.48)

Further, for every fixed λ ∈ Rd, the first-order optimality condition for the maximization over
π ∈ Rd yields the candidate optimizer πλ through

0
!

= [µ+ λ− r1]Gv +
(
ΣzρΣ′)′∇z (Gv) + vΣΣ′πλGvv

⇔ πλ = − 1

vGvv

(
ΣΣ′)−1

(
[µ+ λ− r1]Gv +

(
ΣzρΣ′)′∇z (Gv)

)
.

Note that

[µ+ λ− r1]′ πλGv +
(
ΣzρΣ′πλ

)′∇z (Gv) = π′λ

[
(µ+ λ− r1)Gv +

(
ΣzρΣ′)′∇z (Gv)

]
1Note that this assumption is valid due to the exponential structure of the wealth process V v0,π and the strict
monotonicity of the utility function U .
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= π′λ
[
−vGvvΣΣ′πλ

]
= −v∥Σ′πλ∥2Gvv.

Since we are maximizing a quadratic function with respect to π, the first-order optimality
condition is both necessary and sufficient. Hence, plugging πλ into (A.48) finally yields

0 = Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

{
δK(λ) − 1

2
v∥Σ′πλ∥2Gvv

}
= Gt + vrGv + (µz)′ (∇zG) +

1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

{
δK(λ)Gv −

1

2

1

vGvv
∥Σ−1 [µ+ λ− r1]Gv + (Σzρ)′∇z (Gv) ∥2

}
.

Proof of Lemma 4.3.3. For any π ∈ Λ (
¯
π ∈

¯
Λ) and λ ∈ D (

¯
λ ∈ D̄) define the operator

Hπ
λ[G](t, v, z) = Gt + vrGv + (µz)′ (∇zG) +

1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v
{ [
δK(λ) + (µ+ λ− r1)′π

]
Gv +

(
ΣzρΣ′π

)′∇z (Gv) +
1

2
v∥Σ′π∥2Gvv

}
,

Let (
¯
λ∗, π) ∈ D̄ ×Λ satisfy Condition (UIλ). Then, by Itô’s lemma and the boundedness of the

integrands, due to the definition of τ¯
λ∗

n,t, we have

E
[
G
(
τ¯
λ∗

n,t, V
v0,π

¯
λ∗ (τ¯

λ∗

n,t), z(τ¯
λ∗

n,t)
) ∣∣∣ Ft

]
= G

(
t, V v0,π

¯
λ∗ (t), z(t)

)
+E

[ ∫ τ¯
λ∗
n,t

t
Hπ

¯
λ∗ [G]

(
s, V v0,π

¯
λ∗ (s), z(s)

)
︸ ︷︷ ︸
≤H¯

π∗

¯
λ∗ [G]

(
s,V

v0,¯
π∗

¯
λ∗ (s),z(s)

)
=0

ds
∣∣∣ Ft

]

+E
[ ∫ τ¯

λ∗
n,t

t
V v0,π

¯
λ∗ (s)Gv

(
s, V v0,π

¯
λ∗ (s), z(s)

)
· π(s)′Σ(s, z(s))dW (s)

∣∣∣ Ft

]
︸ ︷︷ ︸

=0

+E
[ ∫ τ¯

λ∗
n,t

t
∇z (G)

(
s, V v0,π

¯
λ∗ (s), z(s)

)′
Σz(s, z(s))dW z(s)

∣∣∣ Ft

]
︸ ︷︷ ︸

=0

≤ G(t, V v0,π

¯
λ∗ (t), z(t))

Taking conditional expectations and the limit n→ ∞ on both sides as well as recalling Remark
4.3.2 yields

E
[
U(V v0,π

¯
λ∗ (T ))

∣∣∣ Ft

]
= E

[
G(T, V v0,π

¯
λ∗ (T ), z(T ))

∣∣∣ Ft

]
= E

[
lim
n→∞

G(τ¯
λ∗

n,t, V
v0,π

¯
λ∗ (τ¯

λ∗

n,t), z(τ¯
λ∗

n,t))
∣∣∣ Ft

]
(UIλ)

= lim
n→∞

E
[
G(τ¯

λ∗

n,t, V
v0,π

¯
λ∗ (τ¯

λ∗

n,t), z(τ¯
λ∗

n,t))
∣∣∣ Ft

]
≤ lim

n→∞
G
(
t, V v0,π

¯
λ∗ (t), z(t)

)
= G

(
t, V v0,π

¯
λ∗ (t), z(t)

)
.
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Conditioning on V v0,π

¯
λ∗ (t) = v, z(t) = z leads to (4.10).

Letting (λ,
¯
π∗) ∈ D×

¯
Λ satisfy Condition (UIλ) and following the analogous steps as before, we

can prove equation (4.11).
As all previous inequalities become equalities if we instead consider (

¯
λ∗,

¯
π∗) ∈ D̄ ×

¯
Λ satisfying

Condition (UIλ), equation (4.12) follows immediately.

Proof of Theorem 4.3.5. We first determine the derivatives of G = G(t, v, z) in terms of A =
A(T − t) and B = B(T − t) as

Gt = −
(
Aτ +B′

τz
)
G, Gv =

b

v
G, Gvv =

b(b− 1)

v2
G

∇zG = GB, ∇2
zG = GBB′, ∇z (Gv) =

b

v
GB.

(A.49)

Plugging the derivatives into the dual HJBI PDE (4.7), factoring bG
2v(1−b) > 0 out of the minim-

ization, dividing by G ̸= 0 and plugging in the optimizer λ̂∗ = λ̂∗(t, z, B) yields

(∗) : = Gt + vrGv + (µz)′ (∇zG) +
1

2
Trace

[
Σz (Σz)′∇2

zG
]

+ v inf
λ∈Rd

{
δK(λ)Gv −

1

2

1

vGvv
∥Σ−1 [µ+ λ− r1]Gv + (Σzρ)′∇z (Gv) ∥2

}
= −

(
Aτ −B′

τz
)
G+ brG+ (µz)′BG+

1

2
Trace

[
Σz (Σz)′BB′]G

+ v inf
λ∈Rd

{
δK(λ)

b

v
G− 1

2

v

b(b− 1)G

∥∥∥∥Σ−1 [µ+ λ− r1]
b

v
G+ (Σzρ)′

b

v
BG

∥∥∥∥2 }
= −

(
Aτ −B′

τz
)
G+ brG+ (µz)′BG+

1

2
Trace

[
Σz (Σz)′BB′]G

+
1

2

bG

1 − b
inf

λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ−1 [µ+ λ− r1] + (Σzρ)′B
∥∥2 }

= −Aτ −B′
τz + br + (µz)′B +

1

2
Trace

[
Σz (Σz)′BB′]

+
1

2

b

1 − b
inf

λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ−1 [µ+ λ− r1] + (Σzρ)′B
∥∥2 }

= −Aτ −B′
τz + br + (µz)′B +

1

2
Trace

[
Σz (Σz)′BB′]

+
1

2

b

1 − b
inf

λ∈Rd

{
2(1 − b)δK(λ) + 2λ′

(
ΣΣ′)−1

(
µ− r1 +

(
ΣzρΣ′)′B)+

∥∥Σ−1λ
∥∥2 }

+
1

2

b

1 − b

∥∥Σ−1 [µ− r1] + (Σzρ)′B
∥∥2

= −Aτ −B′
τz + br + (µz)′B +

1

2
Trace

[
Σz (Σz)′BB′]

+
1

2

b

1 − b

(
2(1 − b)δK

(
λ̂∗
)

+ 2
(
λ̂∗
)′ (

ΣΣ′)−1
(
µ− r1 +

(
ΣzρΣ′)′B)+

∥∥∥Σ−1λ̂∗
∥∥∥2)

+
1

2

b

1 − b

∥∥Σ−1 [µ− r1] + (Σzρ)′B
∥∥2

= −Aτ −B′
τz + b

(
r + δK

(
λ̂∗
))

+ (µz)′B +
1

2
Trace

[
Σz (Σz)′BB′]

+
1

2

b

1 − b

(∥∥∥Σ−1
(
µ+ λ̂∗ − r1

)∥∥∥2 + 2B′ΣzρΣ−1
(
µ+ λ̂∗ − r1

)
+B′Σzρ (Σzρ)′B

)
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Condition (EAS) allows us to replace the market coefficients by affine functions in z. Thus, we
obtain

(∗) = −Aτ −B′
τz + b

(
p0 + p′1z

)
+ (k0 + k1z)′B +

1

2
Trace

[
(h0 + h1[z])BB′]

+
1

2

b

1 − b

(
q0 + q′1z + 2B′ (g0 + g1z) +B′ (l0 + h0 + l1[z] + h1[z])B

)
= −Aτ + bp0 + k′0B +

1

2
Trace

[
h0BB

′]+
1

2

b

1 − b

(
q0 + 2g′0B +B′ (l0 + h0)B

)
−B′

τz + bp′1z +B′k1z +
1

2
Trace

[
h1[z]BB′]+

1

2

b

1 − b

(
q′1z + 2B′g1z +B′ (l1[z] + h1[z])B

)
Making use of the commutative property of the trace of a matrix as well as the matrix repres-
entation of h1[·] and l1[·], we have

Trace
[
h0BB

′] = Trace
[
B′h0B︸ ︷︷ ︸

∈R

]
= B′h0B

Trace
[
h1[z]BB′] = Trace

[
B′h1[z]B︸ ︷︷ ︸

∈R

]
= B′h1[z]B =

(
B′h1[·]B

)′
z

B′ (l1[z] + h1[z])B =
(
B′ (l1[·] + h1[·])B

)′
z.

Thus, as A and B are solutions to the ODEs (4.15) and (4.16)

(∗) = −Aτ + bp0 + k′0B +
1

2
B′h0B +

1

2

b

1 − b

(
q0 + 2g′0B +B′ (l0 + h0)B

)
+

(
−Bτ + bp1 + k′1B +

1

2
B′h1[·]B +

1

2

b

1 − b

(
q1 + 2g′1B +B′ (l1[·] + h1[·])B

))′
z

= 0.

Hence, G is a solution to the dual HJBI PDE (4.7) and thereby, according to Lemma 4.3.1, also
a solution to the primal HJB PDE (4.5).

Proof of Theorem 4.3.7. We first derive the explicit expression (4.17) for
¯
π∗ in terms of

¯
λ∗ and

B. Following the arguments in the proof of Lemma 4.3.1, we realize that the candidate optimal
portfolio

¯
π∗ is given as the maximizing argument πλ∗ , i.e.,

¯
π∗ = πλ∗ = − 1

vGvv

(
ΣΣ′)−1 [

Gv(µ+
¯
λ∗ − r1) + Σρ′ (Σz)′∇z (Gv)

]
. (A.50)

On the other hand, since Condition (EAS) is satisfied, the exponentially affine structure of G
from (4.13) implies that the derivatives of G are given by (A.49). Plugging these derivatives
into (A.50) yields the candidate optimal portfolio

¯
π∗ = −

(
b(b− 1)

v
G

)−1 (
ΣΣ′)−1

[
b

v
G(µ+

¯
λ∗ − r1) + Σρ′ (Σz)′

b

v
GB

]
=

1

1 − b

(
ΣΣ′)−1

[
µ+

¯
λ∗ − r1 +

(
ΣzρΣ′)′B] .

We continue by proving (4.18). As G is a solution to the (dual) HJB PDE (4.7) and
¯
π∗,

¯
λ∗

attain the optimum in (4.7), we know for every t ∈ [0, T ]

dG(t, V v0,
¯
π∗

(t), z(t)) = V v0,
¯
π∗

(t)Gv

(
t, V v0,

¯
π∗

(t), z(t)
)(

¯
π∗(t, V v0,

¯
π∗

(t), z(t))
)′

ΣdW (t)
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+
(
∇z (G) (t, V v0,

¯
π∗

(t), z(t))
)′

ΣzdW z(t). (A.51)

In particular, noting that V v0,
¯
π∗

= V
v0,

¯
π∗

0 and considering the stopping times τ0n,t for n ∈ N
from Condition (UI0) yields

E
[
U(V v0,

¯
π∗

(T ))
∣∣∣ Ft

]
= E

[
G
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¯
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(T ), z(T )
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]
= E

[
lim
n→∞

G
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¯
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0
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]
(UI0)
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n→∞
E
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G
(
τ0n,t, V

v0,
¯
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(τ0n,t), z(τ
0
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)
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[ ∫ τ0n,t
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(u)Gv
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)(

¯
π∗(u, V v0,

¯
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Σ(u, z(u))dW (u)
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]
︸ ︷︷ ︸

=0, by choice of τ0n,t
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¯
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︸ ︷︷ ︸
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)

= G
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t, V v0,

¯
π∗

(t), z(t)
)
.

Conditioning on V v0,
¯
π∗

(t) = v, z(t) = z leads to equation (4.18).

It remains to show that
¯
π∗ dominates all other π ∈ ΛK , i.e., we need to verify inequality (4.19).

The proof idea is similar to that of Theorem 4.3 in [13], but adapted for our constrained setting.
Let t ∈ [0, T ] and π ∈ ΛK(t) be arbitrary but fixed. Define the process L = (L(u))u∈[t,T ] as

L(u) = b
V v0,π(u)

V v0,
¯
π∗

(u)
G(u, V v0,

¯
π∗

(u), z(u)).

We proceed by first deriving the SDE of L and then showing that L is a supermartingale. By
Itô’s product rule we have with π∗(u) =

¯
π∗(u, V v0,

¯
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(u), z(u))

d
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1
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1
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¯
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)
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1
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⟩u

=
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¯
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]
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−
[
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]
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)

=
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¯
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(u)
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]
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)

=
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V v0,π(u)

V v0,
¯
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)
(π(u) − π∗(u))′
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µ− r1− ΣΣ′π∗(u)

]
du+ ΣdW (u)

)
.
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Moreover, due to (A.49) and (A.51),

dG(u, V v0,
¯
π∗

(u), z(u))
(A.51)

= G(u, V v0,
¯
π∗

(u), z(u))
(
bπ∗(u)′ΣdW (u) +B(T − u)′ΣzdW z(u)

)
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d
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¯
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¯
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〉
u
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V v0,
¯
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(u)
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¯
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(u), z(u))(π(u) − π∗(u))′Σ
(
bΣ′π∗(u) + (Σzρ)′B(T − u)

)
du.

In total, this yields with λ∗(u) =
¯
λ∗(u, V v0,

¯
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(u), z(u))
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¯
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)
= b

[
V v0,π(u)
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¯
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¯
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¯
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)]
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¯
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¯
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, z)
〉
u

= L(u)
[
(π(u) − π∗(u))′

[
µ− r1− ΣΣ′π∗(u)

]
du+ ΣdW (u) + bπ∗(u)′ΣdW (u)

+B(T − u)′ΣzdW z(u) + (π(u) − π∗(u))′Σ
(
bΣ′π∗(u) + (Σzρ)′B(T − u)

)
du
]

= L(u)(π(u) − π∗(u))′
[
µ− r1 +

(
ΣzρΣ′)′B(T − u) − (1 − b)ΣΣ′π∗(u)

]
︸ ︷︷ ︸

(4.17)
= −λ∗(u)

du

+ L(u)
(

(π(u) − (1 − b)π∗(u))′ΣdW (u) +B(T − u)′ΣzdW z(u)
)
.

= L(u)
(

(π∗(u) − π(u))′λ∗(u)du+ (π(u) − (1 − b)π∗(u))′ΣdW (u) +B(T − u)′ΣzdW z(u)
)

However, Corollary 2.1.32 (resp. Theorem 2.1.31) implies

δK(
¯
λ∗(u, v, z)) +

¯
π∗(u, v, z)′

¯
λ∗(u, v, z) = 0 ∀(u, v, z) ∈ [0, T ] × (0,∞) ×Rm

⇒ δK(λ∗(u)) + λ∗(u)′π∗(u) = 0 L[t, T ] ⊗Q− a.e..

Moreover, as π ∈ ΛK(t), π(u) ∈ K holds L[t, T ] ⊗Q− a.e. and thus

δK(λ∗(u)) + λ∗(u)′π(u) = − inf
x∈K

(
λ∗(u)′x

)
︸ ︷︷ ︸

≤λ∗(u)′π(u)

+λ∗(u)′π(u) ≥ 0 L[t, T ] ⊗Q− a.e..

We finally obtain

dL(u) = L(u)
(
−
(
δK(λ∗(u)) + λ∗(u)′π(u)

)︸ ︷︷ ︸
=(∗)

du+ (π(u) − (1 − b)π∗(u))′ΣdW (u) +B(T − u)′ΣzdW z(u)
)

and for any s ∈ [t, T ] , L(s) can therefore be expressed as

L(s) = L(t) exp

(
−
∫ s

t
δK(λ∗(u)) + λ∗(u)′π(u)du

)
M(s),

for a supermartingale M = (M(u))u∈[t,T ] which satisfies the SDE

dM(u) = M(u)
(
(π(u) − (1 − b)π∗(u))′ΣdW (u) +B(T − u)′ΣzdW z(u)

)
, M(t) = 1.
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Hence, as (∗) ≤ 0, L is a supermartingale, too.

To conclude the proof, recall that U is concave and therefore U(y) ≤ U(x) + U ′(x)(y − x) for
all x, y ∈ (0,∞). This leads to

E
[
U(V v0,π(T ))
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¯
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(t), z(t))

)
.

Finally, conditioning on V v0,π(t) = V v0,
¯
π∗

(t) = v, z(t) = z yields (4.19).

Proof of Lemma 4.4.2. In MBS , the optimizer λ̂∗ from (4.14) is given as

λ̂∗(t, z, B) = argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥∥Σ(t, z)−1︸ ︷︷ ︸
Σ(t)−1

(
µ(t, z) − r(t, z)1︸ ︷︷ ︸

=µ(t)−r(t)1

+λ
)

+ (Σz(t, z)ρ(t, z))′︸ ︷︷ ︸
=0

B
∥∥∥2}

= argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ(t)−1 (µ(t) − r(t)1 + λ)
∥∥2}

= λ∗(t),

i.e., λ̂∗(t, v, z) = λ∗(t) is a deterministic function independent of z and B. Moreover, by defining

p0(t, B) = r(t) + δK (λ∗(t))

q0(t, B) =
∥∥Σ(t)−1 (µ(t) − r(t)1 + λ∗(t))

∥∥2
and setting the remaining coefficients k0, k1, h0, h1, l0, l1, p1, q1, g0 and g1 to zero, Condition
(EAS) is satisfied. The corresponding ODEs (4.15) and (4.16) simplify to

Aτ (τ) = b (r(T − τ) + δK (λ∗(T − τ))) +
1

2

b

1 − b

∥∥Σ(t)−1 (µ(T − τ) − r(T − τ)1 + λ∗(T − τ))
∥∥2

= br(T − τ) +
1

2

b

1 − b
inf

λ∈Rd

{
2(1 − b)δK(λ) +

∥∥Σ(T − τ)−1 (µ(T − τ) − r(T − τ)1 + λ)
∥∥2 }

Bτ (τ) = 0.

Hence, B ≡ 0 and A can be obtained through simple integration. In particular, the candidate
optimal portfolio (4.17) is given through

¯
π∗(t, v, z) =

1

1 − b

(
Σ(t)Σ(t)′

)−1
(µ(t) − r(t)1 + λ∗(t)) .
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Proof of Corollary 4.4.3. We verify Condition (UIλ) by showing the Lq boundedness of

G
(
τ0n,t, V

v0,
¯
π∗

0 (τ0n,t), z(τ
0
n,t)
)

in n ∈ N for arbitrary q > 1.
The market coefficients Σ(t), µ(t) and r(t) are continuous and therefore uniformly bounded in
t ∈ [0, T ]. In particular, this has the consequence that λ∗(t) is uniformly bounded in t ∈ [0, T ],
since the quadratic term in (4.14) dominates for large ∥λ∥. Hence, A(T − t) and the candidate
optimal portfolio π∗(t) :=

¯
π∗(t, v, z) are uniformly bounded in t ∈ [0, T ], too. For arbitrary

q > 1, we can thus find a constant Cq > 0 such that for all t ∈ [0, T ]∣∣∣G(t, V v0,
¯
π∗

(t), z(t))
∣∣∣q T. 4.3.5

=

∣∣∣∣1b exp
(
b ln

(
V v0,

¯
π∗

(t)
)

+A(T − t) +B(T − t)′z(t)
)∣∣∣∣q

=
1

|b|
exp

(
bq

∫ t

0
r(s) + (µ(s) − r(s)1)′ π∗(s) − 1

2
∥Σ(s)′π∗(s)∥2ds+ bq

∫ t

0
π∗(s)′Σ(s)dW (s) + qA(T − t)

)

=
1

|b|
exp

(
bq

∫ t

0
r(s) + (µ(s) − r(s)1)′ π∗(s) − 1 − bq

2
∥Σ(s)′π∗(s)∥2ds+ qA(T − t)

− 1

2

∫ t

0
b2q2∥Σ(s)′π∗(s)∥2ds+ bq

∫ t

0
π∗(s)′Σ(s)dW (s)

)

≤ Cq exp

(
−1

2

∫ t

0
b2q2∥Σ(s)′π∗(s)∥2ds+ bq

∫ t

0
π∗(s)′Σ(s)dW (s)

)
︸ ︷︷ ︸

=:Mt

= CqMt. (A.52)

The process M = (Mt)t∈[0,T ] is a non-negative local martingale and thus a supermartingale.
Doob’s optional sampling theorem (‘O.S.’) implies

sup
n∈N

E
[∣∣∣G(τ0n,t, V v0,

¯
π∗

0 (τ0n,t), z(τ
0
n,t)
)∣∣∣q] (A.52)

≤ Cq sup
n∈N

E
[
Mτ0n,t

] O.S.
≤ CqM0 = Cq <∞.

Hence, (
G
(
τ0n,t, V

v0,
¯
π∗

0 (τ0n,t), z(τ
0
n,t)
))

n∈N

is bounded in Lq for any q > 1 and t ∈ [0, T ] and is thus uniformly integrable for any t ∈ [0, T ]
(see Theorem 4.5.9 in [8] with G(t) = tq). Hence, Condition (UIλ) is satisfied and

¯
π∗ is optimal

for (P) by virtue of Theorem 4.3.7.

Proof of Lemma 4.4.6. We may rewrite any λ ∈ Rd as

λ =

λ1
...
λm

 , with λi ∈ Rdi , i = 1, ...,m.

Hence, we obtain for every λ ∈ Rd

δK(λ) = − inf
x∈K

(
x′λ
)

= − inf
xi∈Ki

i=1,...,m

(
m∑
i=1

x′iλi

)
= −

m∑
i=1

inf
xi∈Ki

(
x′iλi

)
=

m∑
i=1

δKi(λi).
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Note that we may restrict the minimization (4.14) to z ∈ (0,∞)m because Feller’s condition
(4.21) ensures that the m-dimensional CIR process has positive components L[0, T ] ⊗ Q-a.e..
Hence, for any (t, z, B) ∈ [0, T ] × (0,∞)m ×Rm we have

[(
Σ(t, z)Σ(t, z)′

)−1
λ
]′

[µ(t, z) − r(t, z)1] =


1
z1

(Σ1Σ
′
1)

−1 λ1
...

1
zm

(ΣmΣ′
m)−1 λm


′ η1z1

...
ηmzm


=

m∑
i=1

λi
(
ΣiΣ

′
i

)−1
ηi,

[
Σ(t, z)−1λ

]′
ρ′Σz(t, z)B =


1√
z1

Σ−1
1 λ1
...

1√
zm

Σ−1
m λm


′ρ1 0

. . .

0 ρm


 σ1

√
z1B1
...

σm
√
zmBm



=


1√
z1

Σ−1
1 λ1
...

1√
zm

Σ−1
m λm


′ σ1

√
z1B1ρ1
...

σm
√
z1Bmρm


=

m∑
i=1

σiBi

(
Σ−1
i λi

)′
ρi,

and

λ′
(
Σ(t, z)Σ(t, z)′

)−1
λ =

m∑
i=1

∥∥Σ−1
i λi

∥∥2 zi.
Hence, the minimizer of (4.14) can be rewritten as

λ̂∗(t, z, B) = argmin
λ∈Rd

{
2(1 − b)δK(λ) + 2λ′

(
Σ(t, z)Σ(t, z)′

)−1
[µ(t, z) − r(t, z)1]

+ 2λ′
(
Σ(t, z)Σ(t, z)′

)−1
(Σz(t, z)ρ(t, z)Σ(t, z)′)′B +

∥∥Σ(t, z)−1λ
∥∥2 }

= argmin
λ=(λ1,...,λm)′

λi∈Rdi

{ m∑
i=1

2(1 − b)δKi(λi) + 2
(
Σ−1
i λi

)′ (
Σ−1
i ηi + σiBiρi

)
+
∥∥Σ−1

i λi
∥∥2 zi}

= argmin
λ=(λ1,...,λm)′

λi∈Rdi

{
m∑
i=1

zi

[
2(1 − b)δKi

(
λi
zi

)
+ 2

(
Σ−1
i

λi
zi

)′ (
Σ−1
i ηi + σiBiρi

)
+

∥∥∥∥Σ−1
i

λi
zi

∥∥∥∥2
]}

= argmin
λ=(λ1,...,λm)′

λi∈Rdi

{
m∑
i=1

zi

[
2(1 − b)δKi

(
λi
zi

)
+

∥∥∥∥Σ−1
i

(
ηi +

λi
zi

)
+ σiBiρi

∥∥∥∥2
]}

(A.53)

Using the change of control λ̂i = λi
zi
, we see that λ̂∗(t, z, B) = λ∗(t, z, B) from the statement of

the Lemma. Letting ei denote the i-th unit vector in Rm, we can express the market coefficients
in Condition (EAS) as

µz(t, z) = κ⊙ (θ − z) = κ⊙ θ︸ ︷︷ ︸
=:k0(t)

+

−κ1 0
. . .

0 −κm


︸ ︷︷ ︸

=:k1(t)

z
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Σz(t, z)Σz(t, z) =

σ
2
1z1 0

. . .

0 σ2mzm

 =

z
′(σ21e1) 0

. . .

0 z′(σ2mem)


︸ ︷︷ ︸

=:h1(t)[z]

Σz(t, z)ρ(t, z) (Σz(t, z)ρ(t, z))′ − Σz(t, z)Σz(t, z)′

=

σ1
√
z1ρ

′
1 0

. . .

0 σm
√
zmρ

′
m


σ1

√
z1ρ1 0

. . .

0 σm
√
zmρm

−

σ
2
1z1 0

. . .

0 σ2mzm


=

σ
2
1z1
(
∥ρ1∥2 − 1

)
0

. . .

0 σ2mzm
(
∥ρm∥2 − 1

)


=

z
′ (σ21 (∥ρ1∥2 − 1

)
e1
)

0
. . .

0 z′
(
σ2m
(
∥ρm∥2 − 1

)
em
)


︸ ︷︷ ︸
=:l1(t)[z]

r(t, z) + δK(λ̂∗(t, z, B)) = r︸︷︷︸
=:p0(t,B)

+
m∑
i=1

δKi (λ∗i (Bi))︸ ︷︷ ︸
=:(p1(t,B))i

zi

∥∥∥Σ−1(t, z)
(
µ(t, z) + λ̂∗(t, z, B) − r(t, z)1

)∥∥∥2 =

m∑
i=1

∥∥Σ−1
i (ηi + λ∗i (Bi))

∥∥2︸ ︷︷ ︸
=:(q1(t,B))i

zi

Σz(t, z)ρ(t, z)Σ−1(t, z)
(
µ(t, z) + λ̂∗(t, z, B) − r(t, z)1

)
=

σ1
√
z1 0

. . .

0 σm
√
zm


ρ

′
1 0

. . .

0 ρ′m



(
Σ1

√
z1
)−1

0
. . .

0
(
Σm

√
zm
)−1


 (η1 + λ∗1(B1)) z1

...
(ηm + λ∗m(Bm)) zm



=

σ1ρ
′
1Σ

−1
1 (η1 + λ∗1(B1)) 0

. . .

0 σmρ
′
mΣ−1

m (ηm + λ∗m(Bm))


︸ ︷︷ ︸

=:g1(t,B)

z.

By setting the remaining coefficients h0, l0, q0, and g0 as zero, Condition (EAS) is satisfied.
Moreover, the ODEs (4.15) and (4.16) simplify to

Aτ (τ) = br + (κ⊙ θ)′B(τ)

(Bτ (τ))i = b (p1(T − τ,B(τ)))i + (k1(T − τ)B(τ))i +
1

2

(
B(τ)′h1[·]B(τ)

)
i

+
1

2

b

1 − b

[
q1(T − τ,B(τ)) + 2g1(T − τ,B(τ))B(τ) +B(τ)′ (l1[·] + h1[·])B(τ)

]
i

= bδKi (λ∗i (Bi(τ))) − κiBi(τ) +
1

2
σ2i (Bi(τ))2

+
1

2

b

1 − b

[∥∥Σ−1
i (ηi + λ∗i (Bi(τ)))

∥∥2 + 2σiBi(τ)ρ′iΣ
−1
i (ηi + λ∗i (Bi(τ))) + σ2i ∥ρi∥2Bi(τ)2

]
= −κiBi(τ) +

1

2
σ2i (Bi(τ))2

+
1

2

b

1 − b

[
2(1 − b)δKi (λ∗i (Bi(τ))) +

∥∥Σ−1
i (ηi + λ∗i (Bi(τ))) + σiBi(τ)ρi

∥∥2]
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= −κiBi(τ) +
1

2
σ2i (Bi(τ))2

+
1

2

b

1 − b
inf

λi∈Rdi

{
2(1 − b)δKi(λi) +

∥∥Σ−1
i (ηi + λi) + σiBi(τ)ρi

∥∥2} .
Hence, according to Theorem 4.3.5,

G(t, v, z) =
1

b
vb exp(A(T − t) +B(T − t)′z)

is a solution to the dual HJBI PDE (4.7) and the corresponding candidate optimal portfolio
(4.17) is given as in the statement of the lemma.
Furthermore,(

Σ(t, z)Σ(t, z)′
)−1 (

Σz(t, z)ρ(t, z)Σ(t, z)′
)′
B(T − t)

=
(
Σ(t, z)′

)−1
ρ(t, z)′Σz(t, z)′B(T − t)

=


(
Σ′
1
√
z1
)−1

0
. . .

0
(
Σ′
m
√
zm
)−1


ρ1 0

. . .

0 ρm


 σ1

√
z1B1(T − t)

...
σm

√
zmBm(T − t)



=

 σ1B1(T − t)
(
Σ−1
1

)′
ρ1

...

σmBm(T − t)
(
Σ−1
m

)′
ρm


and therefore

¯
π∗(t, v, z) =

1

1 − b

(
Σ(t, z)Σ(t, z)′

)−1
[µ(t, z) +

¯
λ∗(t, v, z) − r(t, z)1]

+
1

1 − b

(
Σ(t, z)Σ(t, z)′

)−1 (
Σz(t, z)ρ(t, z)Σ(t, z)′

)′
B(T − t)

=
1

1 − b

(Σ1Σ
′
1z1)

−1 0
. . .

0 (ΣmΣ′
mzm)−1


 (η1 + λ∗1(B1(T − t))) z1

...
(ηm + λ∗m(Bm(T − t))) zm


+

1

1 − b

 σ1B1(T − t)
(
Σ−1
1

)′
ρ1

...

σmBm(T − t)
(
Σ−1
m

)′
ρm



=
1

1 − b


(Σ1Σ

′
1)

−1
(
η1 + λ∗1(B1(T − t)) + σ1B1(T − t)Σ1ρ1

)
...

(ΣmΣ′
m)−1

(
ηm + λ∗m(Bm(T − t)) + σmBm(T − t)Σmρm

)
 .

Proof of Lemma 4.4.8. In MOU , the minimizer λ̂∗ from (4.14) is given as

λ̂∗(t, z, B) = argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥∥Σ(t, z)−1
(
µ(t, z) − r(t, z)1 + λ

)︸ ︷︷ ︸
η+(b(t;T̂ )′σ)

−1
λ

+ (Σz(t, z)ρ(t, z))′︸ ︷︷ ︸
=σ′

B
∥∥∥2}
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= argmin
λ∈Rd

{
2(1 − b)δK(λ) +

∥∥∥∥η + σ′B +
(
b(t; T̂ )′σ

)−1
λ

∥∥∥∥2
}

= λ∗(t, B),

i.e., λ̂∗(t, v, z) = λ∗(t, B) is a deterministic function independent of z, but dependent on B.
Considering the market coefficients in Condition (EAS), we get

µz(t, z) = κ⊙ (θ − z) = κ⊙ θ︸ ︷︷ ︸
=:k0(t)

+

−κ1 0
. . .

0 −κm


︸ ︷︷ ︸

=:k1(t)

z

Σz(t, z)Σz(t, z) = σσ′︸︷︷︸
=:h0(t)

Σz(t, z) ρ(t, z)︸ ︷︷ ︸
=Im

Σz(t, z) ρ(t, z)︸ ︷︷ ︸
=Im

′

− Σz(t, z)Σz(t, z)′ = 0

r(t, z) + δK(λ̂∗(t, z, B)) = w0 + δK(λ∗(t, B))︸ ︷︷ ︸
=:p0(t,B)

+ w′
1︸︷︷︸

=:p1(t,B)′

z

∥∥∥Σ−1(t, z)
(
µ(t, z) + λ̂∗(t, z, B) − r(t, z)1

)∥∥∥2 = ∥η +
(
b(t; T̂ )′σ

)−1
λ∗(t, B)∥2︸ ︷︷ ︸

=:q0(t,B)

Σz(t, z)︸ ︷︷ ︸
=σ

ρ(t, z)︸ ︷︷ ︸
=Im

Σ−1(t, z)
(
µ(t, z) + λ̂∗(t, z, B) − r(t, z)1

)
︸ ︷︷ ︸

=η+(b(t;T̂ )′σ)
−1

λ∗(t,B)

= ση +
(
b(t; T̂ )′

)−1
λ∗(t, B)︸ ︷︷ ︸

=:g0(t,B)

.

By setting the remaining coefficients h1, l0, l1, q1 and g1 as zero, Condition (EAS) is satisfied.
Moreover, the ODEs (4.15) and (4.16) simplify to

Aτ (τ) = b (w0 + δK(λ∗(T − τ,B(τ)))) + (κ⊙ θ)′B(τ) +
1

2
∥σ′B(τ)∥2

+
1

2

b

1 − b

(∥∥∥η +
(
b(T − τ ; T̂ )′σ

)−1
λ∗(T − τ,B(τ))

∥∥∥2
+ 2

(
ση +

(
b(t; T̂ )′

)−1
λ∗(t, B(τ))

)′
B(τ) +

∥∥σ′B(τ)
∥∥2)

= bw0 + (κ⊙ θ)′B(τ) +
1

2
∥σ′B(τ)∥2

+
1

2

b

1 − b

(
2(1 − b)δK(λ∗(T − τ,B(τ)))

+

∥∥∥∥η + σ′B(τ) +
(
b(T − τ ; T̂ )′

)−1
λ∗(T − τ,B(τ))

∥∥∥∥2
)

= bw0 + (κ⊙ θ)′B(τ) +
1

2
∥σ′B(τ)∥2

+
1

2

b

1 − b
inf

λ∈Rd

(
2(1 − b)δK(λ) +

∥∥∥∥η + σ′B(τ) +
(
b(T − τ ; T̂ )′

)−1
λ

∥∥∥∥2
)
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and

Bτ (τ) = bw1 − κ⊙B(τ).

Hence, according to Theorem 4.3.5,

G(t, v, z) =
1

b
vb exp(A(T − t) +B(T − t)′z)

is a solution to the dual HJBI PDE (4.7). The corresponding candidate optimal portfolio (4.17)
is given through

¯
π∗(t, v, z) =

1

1 − b

(
Σ(t, z)Σ(t, z)′

)−1
[
µ(t, z) +

¯
λ∗(t, v, z) − r(t, z)1

+
(
Σz(t, z)ρ(t, z)Σ(t, z)′

)′
B(T − t)

]
=

1

1 − b

(
σ′b(t; T̂ )

)−1 (
η +

(
b(t; T̂ )′σ

)−1
λ∗(t, B(T − t)) + σ′B(T − t)

)
.

Proof of Corollary 4.4.10. We again verify Condition (UIλ) by showing the Lq boundedness of

G
(
τ0n,t, V

v0,
¯
π∗

0 (τ0n,t), z(τ
0
n,t)
)

in n ∈ N for arbitrary q > 1.

As per Remark 4.4.9, there exists a closed-form expression for B which is continuously differ-
entiable. Moreover, the matrix b(t; T̂ ) is continuously differentiable in t and non-singular for all
t ∈ [0, T ] and therefore uniformly bounded in t ∈ [0, T ]. Following the same arguments as in the
proof of Corollary 4.4.3, this has the consequence that the minimizer λ∗(t, B(T − t)), A(T − t)
and the candidate optimal portfolio π∗(t) :=

¯
π∗(t, v, z) are uniformly bounded in t ∈ [0, T ].

For arbitrary q > 1, we can thus find a constant Cq > 0 such that for all t ∈ [0, T ]

∣∣∣G(t, V v0,
¯
π∗

(t), z(t))
∣∣∣q =

1

|b|
exp

(
bq

∫ t

0
w0 + w′

1z(s) + η′σ′b(s; T̂ )π∗(s) − 1

2
∥σ′b(s; T̂ )π∗(s)∥2ds

+ bq

∫ t

0
π∗(s)′b(s; T̂ )′σdW (s) + qA(T − t) + qB(T − t)′z(t)

)

≤ Cq exp

bq
∫ t

0
w′
1z(s)ds+ bq

∫ t

0
π∗(s)′b(s; T̂ )′σdW (s) + qB(T − t)′z(t)︸ ︷︷ ︸

=:Xt


= Cq exp (Xt) . (A.54)

Since, B is continuously differentiable, we can use Itô’s product rule to rewrite

B(T − t)′z(t) = B(T )′z0 +

∫ t

0
B(T − s)′dz(s) +

∫ t

0
z(s)′d

(
B(T − s)

)
+ ⟨z,B(T − ·)⟩t︸ ︷︷ ︸

=0

=B(T )′z0 +

∫ t

0
B(T − s)′κ⊙ [θ − z(s)] − z(s)′Bτ (T − s)ds+

∫ t

0
B(T − s)′σdW z(s)

(A.55)
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Due to ρ(t, z) = Im, we know that W z(t) = W (t) holds L[0, T ] ⊗ Q-a.e.. Hence, using (A.55)
and disregarding terms of finite variation, the quadratic variation of X can be computed as

⟨X⟩t =

〈
bq

∫ t

0
w′
1z(s)ds+ bq

∫ ·

0
π∗(s)′b(s; T̂ )′σ dW (s)︸ ︷︷ ︸

=dW z(s)

+qB(T − ·)′z(·)

〉
t

=

〈
bq

∫ ·

0
π∗(s)′b(s; T̂ )′σ +

1

b
B(T − s)′σdW z(s)

〉
t

= b2q2
∫ t

0

∥∥∥∥σ′(b(s; T̂ )π∗(s) +
1

b
B(T − s)

)∥∥∥∥2 ds.
Since all involved functions are bounded and deterministic, ⟨X⟩t ≤ ⟨X⟩T <∞ yields a determ-
inistic upper bound on ⟨X⟩t for all t ∈ [0, T ]. Therefore, we can continue equation (A.54) to
obtain for all t ∈ [0, T ]∣∣∣G(t, V v0,

¯
π∗

(t), z(t))
∣∣∣q (A.54)

≤ Cq exp(Xt) ≤ Cq exp

(
1

2
⟨X⟩T

)
︸ ︷︷ ︸

=:C̃q

exp

(
Xt −

1

2
⟨X⟩t

)
︸ ︷︷ ︸

=:Mt

= C̃qMt

(A.56)

The process M = (Mt)t∈[0,T ] is a non-negative local martingale and thus a supermartingale.
Doob’s optional sampling theorem (‘O.S.’) implies

sup
n∈N

E
[∣∣∣G(τ0n,t, V v0,

¯
π∗

0 (τ0n,t), z(τ
0
n,t)
)∣∣∣q] (A.56)

≤ C̃q sup
n∈N

E
[
Mτ0n,t

] O.S.
≤ C̃qM0 = C̃q <∞.

Hence, (
G
(
τ0n,t, V

v0,
¯
π∗

0 (τ0n,t), z(τ
0
n,t)
))

n∈N

is bounded in Lq for any q > 1 and t ∈ [0, T ] and is thus uniformly integrable for any t ∈ [0, T ]
(see Theorem 4.5.9 in [8] with G(t) = tq). Hence, Condition (UIλ) is satisfied and

¯
π∗ is optimal

for (P) by virtue of Theorem 4.3.7.

A.4 Proofs Chapter 5

Proof of Lemma 5.2.2. Follows immediately from Lemma 4.4.6 with d = m = 1 and Σ1 = 1.

Proof of Lemma 5.2.3. Noting that

Gv(t, v, z) =
b

v
G(t, v, z) and Gz(t, v, z) = B(T − t)G(t, v, z),

this result follows immediately from Theorem 4.3.7 and Lemma 4.4.6 with d = m = 1 and
Σ1 = 1.
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Proof of Lemma 5.2.4. The main objective of this proof is to determine the minimizing argu-
ment λ∗(B) for the minimization problem

inf
λ∈R

(
2(1 − b)δK(λ) + (η + λ+ σρB)2

)
︸ ︷︷ ︸

=:D(λ,B)

= inf
λ∈R

D(λ,B)

for any fixed value B ∈ R. The remaining statement follows immediately after substituting the
obtained minimizer λ∗(B) = λ∗(B(τ)) in (5.5).

Given any constraints K = [α, β] with −∞ ≤ α ≤ β ≤ ∞ (see (5.2)), we have for any λ ∈ R

δK(λ) = − inf
α≤x≤β

(xλ) = −αλ1{λ>0} − βλ1{λ<0}.

Thus, taking the derivative of D(·, B) on (−∞, 0) and (0,∞) yields

∂

∂λ
D(λ,B) =

{
−2(1 − b)α+ 2(η + λ+ σρB), λ > 0

−2(1 − b)β + 2(η + λ+ σρB), λ < 0.

Then, by the first-order optimality condition and the fact that D(·, B) is quadratic on [0,∞),

λ−(B) =
(
(1 − b)α− (η + σρB)

)
1{(1−b)α−(η+σρB)>0} =

(
(1 − b)α− (η + σρB)

)
1{ρB<B−}

minimises D(·, B) on [0,∞), and by the same argument

λ+(B) =
(
(1 − b)β − (η + σρB)

)
1{(1−b)β−(η+σρB)<0} =

(
(1 − b)β − (η + σρB)

)
1{ρB>B+}

minimises D(·, B) on (−∞, 0]. Therefore, noting that by construction

max
(
D(λ−(B), B), D(λ+(B), B)

)
= max

(
min

λ∈(−∞,0]
D(λ,B)︸ ︷︷ ︸

≤D(0,B)

, min
λ∈[0,∞)

D(λ,B)︸ ︷︷ ︸
≤D(0,B)

)

≤ D(0, B) = (η + σρB)2 (A.57)

and B− ≤ B+, we finally derive

infλ∈RD(λ,B)

= min
(
D(λ−(B), B), D(λ+(B), B)

)
= min

([
2(1 − b)(−α)

(
(1 − b)α− η − σρB

)
+
(
(1 − b)α

)2]
1{ρB<B−} +

[
η + σρB

]2
1{B−≤ρB},[

2(1 − b)(−β)
(
(1 − b)β − η − σρB

)
+
(
(1 − b)β

)2]
1{B+<ρB} +

[
η + σρB

]2
1{ρB≤B+}

)
(A.57)

=
[
2(1 − b)(−α)

(
(1 − b)α− η − σρB

)
+
(
(1 − b)α

)2]
1{B−≤ρB} +

[
η + σρB

]2
1{B−≤ρB≤B+}

+
[
2(1 − b)(−β)

(
(1 − b)β − η − σρB

)
+
(
(1 − b)β

)2]
1{B+<ρB}

= D(λ−(B), B)1{B−≤ρB} +D(0, B)1{B−≤ρB≤B+} +D(λ+(B), B)1{B+<ρB}.

Thus, the minimizer λ∗(B) is given as

λ∗(B) = λ−(B)1{ρB<B−} + λ+(B)1{B+<ρB}

=
(
(1 − b)α− (η + σρB)

)
1{ρB<B−} +

(
(1 − b)β − (η + σρB)

)
λ+(B)1{B+<ρB}.

Substituting λ∗(B(τ)) in (5.5) and factoring B(τ) and (B(τ))2 concludes the proof.
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Proof of Theorem 5.2.8. B is specifically constructed in such a way that it is continuous and
satisfies the corresponding Riccati ODE of (5.9), whenever ρB(τ) is within each of the zones
Z−, Z0, or Z+. Moreover, as the right hand side of the ODE (5.5) is continuous, so are the
derivatives of the constructed B. Thus, B is a solution to (5.9) and thereby (5.5).

Proof of Lemma 5.2.10. By rewriting π∗ in terms of λ∗ and B, we see that

bρ

σ
π∗(t) +B(T − t) =


bρ
σ α+B(T − t), if ρB(T − t) < B−
b

1−b
ρ
ση +

(
1 + b

1−bρ
2
)
B(T − t), if B− ≤ ρB(T − t) ≤ B+

bρ
σ β +B(T − t), if B+ < ρB(T − t)

is non-decreasing in B(T − t). Hence, as B is itself monotonous (see Remark 5.2.5), we have

sup
t∈[0,T ]

(
bρ

σ
π∗(t) +B(T − t)

)
= max

(
bρ

σ
π∗(T ) +B(0),

bρ

σ
π∗(0) +B(T )

)
. (A.58)

Hence, when first assuming that the maximum in (A.58) is attained at t = T , we obtain

bρ

σ
π∗(T )︸ ︷︷ ︸
∈[α,β]

+B(0)︸ ︷︷ ︸
=0

≤ max

(
bρ

σ
α,
bρ

σ
β

)
(5.11)

≤ κ

σ2
.

On the other hand, if we assume that the maximum in (A.58) is attained at t = 0, we need
to compare the different terminal values B(T ) based on the coefficients of the corresponding
Riccati ODE at T . Due to the monotonicity of B and the assumption that the maximum in
(A.58) is attained at t = 0, it suffices if we can find a bound for T → ∞.

• Case ρB(T ) ∈ Z+:
Then, π∗(0) = β and B(T ) is given as the solution (2.23) to the Riccati ODE (2.22) with
coefficients r+0 , r

+
1 , and r+2 . In particular, we have

bρ

σ
π∗(0)︸ ︷︷ ︸
=β

+B(T ) ≤ bρ

σ
β + lim

T→∞
B(T )

=
bρ

σ
β + lim

T→∞

2r+2 r
+
3 B0 +

(
er

+
3 T − 1

)
(r+1 + r+3 )

(
r+1 + r+2 B0 − r+3

)
2r+2 r

+
3 − r+2

(
er

+
3 T − 1

) (
r+1 + r+2 B0 − r+3

)


=
bρ

σ
β − r+1 + r+3

r+2
=
bρ

σ
β − bσρβ − κ

σ2
− r+3
σ2

=
κ

σ2
− r+3

σ2︸︷︷︸
≥0

≤ κ

σ2
.

• Case ρB(T ) ∈ Z−:
Analogous arguments as in the case ρB(T ) ∈ Z+ yield that

bρ

σ
π∗(0) +B(T ) ≤ κ

σ2
.

• Case ρB(T ) ∈ Z0: Then, π∗(0) = 1
1−b (η + σρB(T )) and B(T ) is given as the solution

(2.23) to Riccati ODE (2.22) with coefficients r0, r1, and r2. In particular, we have

bρ

σ
π∗(0) +B(T ) =

ρ

σ

b

1 − b
(η + σρB(T )) +B(T ) =

ρ

σ

b

1 − b
η +

(
1 +

b

1 − b
ρ2
)
B(T )
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≤ ρ

σ

b

1 − b
η +

(
1 +

b

1 − b
ρ2
)

lim
T→∞

B(T )︸ ︷︷ ︸
=− r1+r3

r2

=
ρ

σ

b

1 − b
η −

(
1 +

b

1 − b
ρ2
)
r1 + r3
r2

=
ρ

σ

b

1 − b
η −

(
1 +

b

1 − b
ρ2
)

r1 + r3

σ2
(

1 + b
1−bρ

2
) =

ρ

σ

b

1 − b
η − r1 + r3

σ2

=
ρ

σ

b

1 − b
η − 1

σ2

(
b

1 − b
ησρ− κ

)
− r3
σ2

=
κ

σ2
− r3

σ2︸︷︷︸
≥0

≤ κ

σ2
.

Proof of Lemma 5.2.11. Note that we may express ODE (5.5) in terms of λ∗ and π∗ as

B′(τ) = −κB(τ) +
1

2
σ2B(τ)2 +

1

2

b

1 − b

(
2(1 − b)δK (λ∗ (B(τ))) + (1 − b)2 (π∗(T − τ))2

)
.

We distinguish between three cases, depending on whether the allocation constraint is active or
not.

• Case π∗(t) ∈ (α, β):
Then, λ∗ (B(T − t)) = (λ∗)′ (B(T − t)) = δK (λ∗ (B(T − t))) = 0. Hence,

1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − t)) + σρB(T − t))2 − 1

2
b2ρ2 (π∗(t))2

+ b
ρκ

σ
π∗(t) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − t)) + σρ

]
B′(T − t)

=
1

2

b

1 − b
η2 − 1

2

b

1 − b
(σρB(T − t))2 − 1

2
b2ρ2 (π∗(t))2

+ b
ρκ

σ
π∗(t) +

b

1 − b
ρ2
[
−κB(T − t) +

1

2
σ2 (B(T − t))2 +

1

2
b(1 − b) (π∗(t))2

]
=

1

2

b

1 − b
η2 − 1

2

b

1 − b
(σρB(T − t))2 +

b

1 − b

ρκ

σ
(η + σρB(T − t))

+ ρ2
b

1 − b

[
−κB(T − t) +

1

2
σ2 (B(T − t))2

]
=

b

1 − b
η
(η

2
+
ρκ

σ

)
• Case π∗(t) = α:

Then, λ∗ (B(T − t)) = (1 − b)α− η − σρB(T − t) and[
(λ∗)′ (B(T − t)) + σρ

]︸ ︷︷ ︸
=0

B′(T − t) = 0.

Hence,

1

2

b

1 − b
η2 − 1

2

b

1 − b

=((1−b)α−η)2︷ ︸︸ ︷
(λ∗ (B(T − t)) + σρB(T − t))2−1

2
b2ρ2 (π∗(t))2︸ ︷︷ ︸

=α2

155



A Proofs

+ b
ρκ

σ
π∗(t)︸ ︷︷ ︸
=α

+
b

1 − b

ρ

σ

[
(λ∗)′ (B(T − t)) + σρ

]
B′(T − t)︸ ︷︷ ︸

=0

=
1

2

b

1 − b
η2 − 1

2

b

1 − b
((1 − b)α− η)2 − 1

2
b2ρ2α2 + b

ρκ

σ
α

=
1

2

b

1 − b
η2 − 1

2

b

1 − b

(
(1 − b)2α2 − 2(1 − b)αη + η2

)
− 1

2
b2ρ2α2 + b

ρκ

σ
α

= − 1

2

b

1 − b

(
(1 − b)2α2 − 2(1 − b)αη

)
− 1

2
b2ρ2α2 + b

ρκ

σ
α

= − 1

2
b(1 − b)α2 + bαη − 1

2
b2ρ2α2 + b

ρκ

σ
α

=bα

[
η − 1

2
α+

ρκ

σ
+

1

2
αb(1 − ρ2)

]
.

• Case π∗(t) = β:
Following the same arguments as in the case π∗(t) = α yields

1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − t)) + σρB(T − t))2 − 1

2
b2ρ2 (π∗(t))2

+ b
ρκ

σ
π∗(t) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − t)) + σρ

]
B′(T − t)

=bβ

[
η − 1

2
β +

ρκ

σ
+

1

2
βb(1 − ρ2)

]
.

Combining all three cases with Assumption 5.2.7 finally yields the claim.

Proof of Theorem 5.2.12. Let B be as in Theorem 5.2.8,

A(τ) = rbτ + κθ

∫ τ

0
B(s)ds.

and define G : [0, T ] × (0,∞)2 → R as G(t, v, z) = 1
bv

b exp(A(T − t) + B(T − t)z). Then, A
and B are solutions to the ODEs (5.4) and (5.5) and thus continuous and bounded on [0, T ].
Moreover, according to Lemma 5.2.2, G is a solution to the HJB PDE (5.3). Hence, as per
Lemma 5.2.3, it only remains to verify that the sequence(

G(τ0n,t, V
v0,π∗

(τ0n,t), z(τ
0
n,t))

)
n∈N

is uniformly integrable for all t ∈ [0, T ]. Let T denote the set of all F stopping times taking
values in [0, T ]. We verify the stronger statement that(

G(τ, V v0,π∗
(τ), z(τ))

)
τ∈T

is bounded in Lq for some q > 1 (see e.g. Theorem 4.6.2 in [27]). The argument is an adaptation
of the proof of Theorem 5.3 in [56]. Consider arbitrary t ∈ [0, T ] and q = 1 + ϵ with ϵ > 0 and
define

D(t) = bq
√

1 − ρ2
∫ t

0
π∗(s)

√
z(s)dŴ (s).

Then, by defining the deterministic, continuous function

det1(t) = q (− ln(|b|) + b ln(v0) + brt+A(T − t)) ,
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we obtain

q ln
(∣∣∣G(t, V v0,π∗

(t), z(t)
)∣∣∣)

= q
(
− ln(|b|) + b ln

(
V v0,π∗

(t)
)

+A(T − t) +B(T − t)z(t)
)

= q

(
− ln(|b|) + b ln(v0) + b

∫ t

0

(
r + ηπ∗(s)z(s) − 1

2
(π∗(s))2 z(s)

)
ds

+ b

∫ t

0
π∗(s)

√
z(s) dW (s)︸ ︷︷ ︸

=ρdW z(s)+
√

1−ρ2dŴ (s)

+A(T − t) +B(T − t)z(t)

)

= det1(t) +D(t) − 1

2
⟨D⟩t +

1

2
q2b2(1 − ρ2)

∫ t

0
(π∗(s))2 z(s)ds+ qB(T − t)z(t)

+ qbρ

∫ t

0
π∗(s)

√
z(s)dW z(s) + qb

∫ t

0

(
π∗(s)η − 1

2
(π∗(s))2

)
z(s)ds

= det1(t) +D(t) − 1

2
⟨D⟩t + qB(T − t)z(t) + qbρ

∫ t

0
π∗(s)

√
z(s)dW z(s)

+ q

∫ t

0
z(s)

{
b

(
π∗(s)η − 1

2
(π∗(s))2

)
+

1

2
qb2
(
1 − ρ2

)
(π∗(s))2

}
ds

q=1+ϵ
= det1(t) +D(t) − 1

2
⟨D⟩t + qB(T − t)z(t) + qbρ

∫ t

0
π∗(s)

√
z(s)dW z(s)

+ q

∫ t

0
z(s)

{
1

2

b

1 − b
η2 − 1

2
b(1 − b)

(
π∗(s) − η

1 − b

)2

(A.59)

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

}
ds

(5.7)
= det1(t) +D(t) − 1

2
⟨D⟩t + qB(T − t)z(t) + qbρ

∫ t

0
π∗(s)

√
z(s)dW z(s)

+ q

∫ t

0
z(s)

{
1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

}
ds (A.60)

B is continuously differentiable and monotonous, since it is the solution to an autonomous
ODE (see Remark 5.2.5). Hence, π∗ is monotonous and differentiable and has finite variation.
Therefore, Itô’s product rule yields

d (π∗(t)z(t)) = π∗(t)dz(t) + z(t)dπ∗(t)

= π∗(t)dz(t) − z(t)

1 − b

[
(λ∗)′ (B(T − t)) + σρ

]
B′(T − t)dt

= π∗(t)κ (θ − z(t)) dt+ π∗(t)σ
√
z(t)dW z(t)

− z(t)

1 − b

[
(λ∗)′ (B(T − t)) + σρ

]
B′(T − t)dt.

Hence,∫ t

0
π∗(s)

√
z(s)dW z(s) =

1

σ
(π∗(t)z(t) − π∗(0)z(0)) − κ

σ

∫ t

0
π∗(s) (θ − z(s)) ds

+
1

σ

1

1 − b

∫ t

0

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)z(s)ds (A.61)
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Substituting (A.61) in (A.60), while defining the deterministic and continuous function

det2(t) = det1(t) −
qbρ

σ

[
π∗(0)z(0) + κ

∫ t

0
π∗(s)θds

]
,

yields

q ln
(∣∣∣G(t, V v0,π∗

(t), z(t)
)∣∣∣)

= det2(t) +D(t) − 1

2
⟨D⟩t + qz(t)

[
bρ

σ
π∗(t) +B(T − t)

]
+ q

∫ t

0
z(s)

{
1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

+ b
ρκ

σ
π∗(s) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)

}
ds (A.62)

Combining Lemma 5.2.10 with (A.62) yields

q ln
(∣∣∣G(t, V v0,π∗

(t), z(t)
)∣∣∣)

≤ det2(t) +D(t) − 1

2
⟨D⟩t + q

κ

σ2
z(t)

+ q

∫ t

0
z(s)

{
1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

+ b
ρκ

σ
π∗(s) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)

}
ds

= det2(t) +D(t) − 1

2
⟨D⟩t + q

κ

σ2

(
z(0) +

∫ t

0
κ(θ − z(s))ds+ σ

∫ t

0

√
z(s)dW z(s)

)
+ q

∫ t

0
z(s)

{
1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

+ b
ρκ

σ
π∗(s) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)

}
ds

= det2(t) + q
κ

σ2

(
z(0) +

∫ t

0
κθds

)
︸ ︷︷ ︸

=:det3(t)

+D(t) − 1

2
⟨D⟩t +

qκ

σ

∫ t

0

√
z(s)dW z(s)︸ ︷︷ ︸

=:M(t)

+ q

∫ t

0
z(s)

{
− κ2

σ2
+

1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

+ b
ρκ

σ
π∗(s) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)

}
ds

= det3(t) +D(t) − 1

2
⟨D⟩t +M(t) − 1

2
⟨M⟩t
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+ q

∫ t

0
z(s)

{
− κ2

σ2
+

1

2
q︸︷︷︸

=1+ϵ

κ2

σ2
+

1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2

+ b
ρκ

σ
π∗(s) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)

}
ds

= det3(t) +D(t) − 1

2
⟨D⟩t +M(t) − 1

2
⟨M⟩t (A.63)

+ q

∫ t

0
z(s)

{
− κ2

2σ2
+

1

2

b

1 − b
η2 − 1

2

b

1 − b
(λ∗ (B(T − s)) + σρB(T − s))2

− 1

2
b2ρ2 (π∗(s))2 +

1

2
ϵb2(1 − ρ2) (π∗(s))2 +

1

2
ϵ
κ2

σ2

+ b
ρκ

σ
π∗(s) +

b

1 − b

ρ

σ

[
(λ∗)′ (B(T − s)) + σρ

]
B′(T − s)

}
ds

= det3(t) +D(t) − 1

2
⟨D⟩t +M(t) − 1

2
⟨M⟩t + q

∫ t

0
z(s)

{
(∗)
}
ds (A.64)

According to Lemma 5.2.11, the expression (∗) in (A.64) is negative for all s ∈ [0, T ] if ϵ = 0.
Hence, due to the continuity of (∗) in ϵ and the boundedness of all deterministic functions in
(∗) w.r.t. t, there exists ϵ > 0 such that (∗) < 0 for all s ∈ [0, T ]. For such a choice of ϵ we
obtain

q ln
(∣∣∣G(t, V v0,π∗

(t), z(t)
)∣∣∣) ≤ det3(t) +D(t) − 1

2
⟨D⟩t +M(t) − 1

2
⟨M⟩t

≤ sup
s∈[0,T ]

(det3(s)) +D(t) − 1

2
⟨D⟩t +M(t) − 1

2
⟨M⟩t

⇔
∣∣∣G(t, V v0,π∗

(t), z(t)
)∣∣∣q ≤ exp

(
sup

s∈[0,T ]
(det3(s))

)
· exp

(
D(t) − 1

2
⟨D⟩t

)
· exp

(
M(t) − 1

2
⟨M⟩t

)
︸ ︷︷ ︸

=:(∗∗)

.

Since D and M are local martingales with independent diffusions, (∗∗) is a supermartingale.
Hence, Doob’s optional sampling theorem finally yields

sup
τ∈T

E
[∣∣∣G(τ, V v0,π∗

(τ), z(τ))
∣∣∣q]

≤ exp

(
sup

s∈[0,T ]
(det3(s))

)
sup
τ∈T

E

[
exp

(
D(t) − 1

2
⟨D⟩t

)
· exp

(
M(t) − 1

2
⟨M⟩t

)]

≤ exp

(
sup

s∈[0,T ]
(det3(s))

)
E

[
exp

(
D(0) − 1

2
⟨D⟩0

)
· exp

(
M(0) − 1

2
⟨M⟩0

)]

= exp

(
sup

s∈[0,T ]
(det3(s))

)
<∞.

Thus,
(
G(τ, V v0,π∗

(τ), z(τ))
)
τ∈T is bounded in Lq for some q > 1 and therefore uniformly

integrable. Hence, π∗ is optimal for (P) as per Lemma 5.2.3.
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Proof of Corollary 5.2.13. Noting that δK(λ) = ∞ for all x ̸= 0 if K = R, the minimum in
(5.6) is attained by λ∗(B) = 0 for all B ∈ R and the ODE (5.5) simplifies to

B′
u(τ) = −r0 + r1Bu(τ) +

1

2
r2
(
Bu(τ)

)2
with coefficients

r0 = − b

2(1 − b)
η2, r1 =

b

1 − b
ησρ− κ, r2 = σ2

(
1 +

b

1 − b
ρ2
)
.

The expression for πu can be directly read off from Lemma 5.2.3.

Proof of Lemma 5.2.15. Let ρ = 0. Then, according to Remark 5.2.6 and Corollary 5.2.13, both
π̂∗(t) = πM and πu(t) = πM are constant in time t ∈ [0, T ]. Thus,

π∗(t) = Cap(π̂(t), α, β) = Cap(πM , α, β) = Cap(πu(t), α, β) ∀t ∈ [0, T ].

Consider now the case ρ ̸= 0 and πM ∈ K = [α, β]. Then, α(1 − b) ≤ η ≤ β(1 − b) and
thus B− ≤ 0 ≤ B+. Following Lemma 5.2.4 and Remark 5.2.6, 0 ∈ Z0 and the Riccati ODE
(5.5) has coefficients r0, r1, and r2 at τ = 0. Hence, B(τ) = Bu(τ) for all τ ∈ [0, T ] such that
ρB(τ) ∈ Z0. Moreover, following Remark 5.2.5, Bu(τ) and B(τ) (respectively πu(t) and π̂∗(t))
are solutions to autonomous ODEs and thus monotone functions in τ (respectively t). Noting
that πu(t) ∈ K = [α, β] ⇔ ρBu(T − t) ∈ Z0, we know if πu(t) ∈ K, then

πu(t) =
1

1 − b
(η + σρBu(T − t)) =

1

1 − b
(η + σρB(T − t)) = π̂(t).

Due to the monotonicity of πu and π̂∗, we have πu(t) /∈ (α, β) if and only if π̂(t) /∈ (α, β). Thus,
we have in total

π∗(t) = Cap (π̂∗(t), α, β) = Cap (πu(t), α, β) ∀t ∈ [0, T ].

In particular, in both cases ρ = 0 and πM ∈ K we have PH
K = PBS

K .

Proof of Lemma 5.2.16. The implication (ii) ⇒ (i) is trivial, because if (ii) holds, then π̂∗(t) ̸= πu(t)
and either π̂∗(t) ∈ (α, β) or πu(t) ∈ (α, β). Hence,

π∗(t) = Cap (π̂∗(t), α, β) ̸= Cap (πu(t), α, β) ,

and therefore PH
K (πu, α, β) ̸= PBS

K (πu, α, β) .
Assume now that (i) holds. According to Lemma 5.2.15, this implies ρ ̸= 0 and πM /∈ K = [α, β].
Moreover, as B and Bu are continuously differentiable,

π̂∗(t) =
1

1 − b
(η + σρB(T − t)) and πu(t) =

1

1 − b
(η + σρBu(T − t))

are continuously differentiable functions with π̂∗(T ) = πu(T ) = πM /∈ K. Thus, (i) can only be
satisfied if there exists 0 < t < T such that

{π̂∗(t), πu(t)} ∩K ̸= ∅, (A.65)

as otherwise π∗(t) = Cap(π̂∗(t), α, β) = Cap(πM , α, β) = Cap(πu(t), α, β) for all t ∈ [0, T ].
Thus, we define the latest such time point as

t̂ = sup
{

0 ≤ t ≤ T
∣∣∣ {π̂∗(t), πu(t)} ∩K ̸= ∅

}
.
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Since there exists a positive t > 0 satisfying (A.65), we know that t̂ > 0. Moreover, as πM /∈ K
and K is closed, we also know that t̂ < T. If π̂∗(t̂) ̸= πu(t̂), then only one of these portfolio
processes takes a value in K and (ii) holds for t̂.
It thus remains to verify that π̂∗(t̂) ̸= πu(t̂) to conclude the proof. This will be proven by
contradiction. Assume that π̂∗(t̂) = πu(t̂) ∈ K which is equivalent to ρB(T − t̂) = ρBu(T − t̂) ∈
Z0. Further,

T − t̂ = inf
{

0 ≤ τ ≤ T
∣∣∣ {ρB(τ), ρBu(τ)} ∩ Z0 ̸= ∅

}
.

Moreover, as πM /∈ K
ρ̸=0⇔ ρB(0) = ρBu(0) = 0 /∈ Z0, B and Bu are non-constant and thus

strictly monotone functions. However, this implies that at τ = T − t̂, ρB(τ) and ρBu(τ) have
the same value at the boundary of Z0 and satisfy the same ODE while taking values in Z0.
Hence, B(τ) = Bu(τ) for all τ ∈ [0, T ] such that B(τ) ∈ Z0. Noting that

ρB(τ) ∈ Z0 ⇔ π̂∗(τ) ∈ K and ρBu(τ) ∈ Z0 ⇔ πu(τ) ∈ K,

finally yields for all t ∈ [0, T ]:

π∗(t) = Cap (π̂∗(t), α, β) = Cap
( 1

1 − b
(η + σ ρB(T − t)︸ ︷︷ ︸
=ρBu(T−t) while π̂∗(t)∈K

), α, β
)

= Cap

(
1

1 − b
(η + σρBu(T − t)), α, β

)
= Cap (πu(t), α, β) ,

which is a contradiction to (i). Thus, π̂∗(t̂) ̸= πu(t̂).

Proof of Corollary 5.2.17. 123
Proof of (i): Let πM < α and 0 < α = 2πM < α 2

1−bη. Then, η > 0, πM > 0 and η = (1−b)πM <
(1 − b)α ⇔ B− > 0. Following Lemma 5.2.4 and Remark 5.2.6, 0 ∈ Z− and the Riccati ODE
(5.5) has coefficients r−0 , r

−
1 , and r−2 at τ = 0. However, due to the initial condition B(0) = 0,

this implies

B′(0) = −r−0 + r−1 B(0) +
1

2
r−2 B(0)2 = −r−0 = −1

2
bα ((1 − b)α− 2η) = 0,

i.e., according to Remark 5.2.5, B is constant with B(τ) = 0 for all τ ∈ [0, T ]. In particular, for
all t ∈ [0, T ] we have π̂∗(t) = πM and

π∗(t) = Cap(π̂∗(t), α, β) = Cap(πM , α, β) = α.

On the other hand, the optimal unconstrained portfolio πu does not violate the constraint at
time t∗, i.e.,

Cap(πu(t∗), α, β) = πu(t∗) ∈ (α, β),

and thus PH
K ̸= PBS

K .
Proof of (ii): According to Corollary 5.2.13,

∂

∂t
(πu(t)) =

1

1 − b

∂

∂t
(η + σρBu(T − t))

Since Bu is the solution to the autonomous ODE (5.13), Bu is a monotone function (cf. Remark
5.2.5). Therefore,

sign

(
∂

∂t
(πu(t))

)
= sign

(
−σρ
1 − b

B′
u(T − t)

)
= sign

(
−σρ
1 − b

B′
u(0)

)
(5.13)

= sign

(
σρ

1 − b
r0

)
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(5.9)
= sign

(
σρ

1 − b

(
− b

2(1 − b)
η2
))

As ση2

2(1−b)2
is positive, this implies sign

(
∂
∂t (πu(t))

)
= −sign (bρ) . As β > 0 and πM > β ⇔ 0 =

ρB(0) > B+, we follow the same line of argument for π̂∗ to obtain

sign

(
∂

∂t
(π̂∗(t))

)
= sign

(
−σρ
1 − b

B′(0)

)
= sign

(
σρ

1 − b
r+0

)
= sign

(
σρ

1 − b

1

2
bβ ([1 − b]β − 2η)

)
= sign

(
σρbβ

2
(β − 2πM )

)
Disregarding the positive factor σβ

2 finally yields

sign

(
∂

∂t
(π̂∗(t))

)
= sign

(
ρb (β − 2πM )︸ ︷︷ ︸

<0

)
= −sign (bρ) = sign

(
∂

∂t
(πu(t))

)
.

If now ρ < 0 and b < 0, then both portfolio allocation π∗(t) = Cap (π̂∗(t), α, β) and Cap (πu(t), α, β)
are non-increasing in time. In particular, as both allocations are equal to β < πM at t = T,
they must be equal (to β) throughout the entire investment horizon. Hence, the projections
PH
K and PBS

K coincide under these assumptions.

Proof of Theorem 5.3.1. We transform the portfolio optimization problem (P) into an equi-
valent optimization problem by applying the change of control πA(t) := A′π(t) for any given
π ∈ ΛPCSV . Expressing the SDE of the wealth process V v0,π in terms of πA yields

dV v0,π(t) = V v0,π(t)V v0,π(t)


r + η′A︸︷︷︸

=:η′A

diag(z(t))A′π(t)︸ ︷︷ ︸
=πA(t)

 dt+ π(t)′A︸ ︷︷ ︸
=πA(t)′

diag(
√
z(t))dW (t)


= V v0,π(t)

[(
r + η′Adiag(z(t))πA(t)

)
dt+ πA(t)′diag(

√
z(t))dW (t)

]
(A.66)

and π(t) ∈ KPCSV ⇔ πA(t) ∈×d
i=1[0,

√
βi]. In particular, we may equivalently rewrite the

portfolio optimization problem in terms of πA as

(PA)

Φ(v0) = sup
π∈ΛA

E
[
U(V v0,π(T ))

]
ΛA =

{
πA ∈ ΛPCSV

∣∣ πA(t) ∈×d
i=1[0,

√
βi] L[0, T ] ⊗Q− a.e.}

.

We proceed by solving (PA) and then inverting the change of control to obtain a solution for

the original optimization problem (P). As KA =×d
i=1[0,

√
βi] is a d-dimensional interval, (PA)

fits into the setting of the financial market MCIR in Definition 4.4.5 with m = d and Σi = 1
for i = 1, .., d. In particular, according to Lemma 4.4.6, if A : [0, T ] → R, B : [0, T ] → Rd with
A(0) = Bi(0) = 0 for i = 1, ..., d satisfy

A′(τ) = br +
d∑

i=1

κiθi

B′
i(τ) = −κiBi(τ) +

1

2
σi (Bi(τ))2

+
1

2

b

1 − b
inf
λ∈R

{
2(1 − b)δ[0,

√
βi]

(λ) + ((ηA)i + λi + σiρiBi(τ))2
}
, (A.67)

162



A Proofs

then the function G(t, v, z) := 1
bv

b exp (A(T − t) +B(T − t)′z) is a solution to the HJB PDE
associated with (PA). However, for each i = 1, ..., d, equation (A.67) contains the same ODE
and optimization that were considered in Lemma 5.2.4 and Section 5.2. Since Assumption 5.2.7
is satisfied, the solution Bi to (A.67) is given by Theorem 5.2.8. Finally, the candidate optimal
portfolio π∗A for (P) is given by

(π∗A)i (t) = Cap

(
1

b
((ηA)i + σiρiBi(T − t)) , 0,

√
βi

)
.

We still need to formally verify the optimality of π∗A for (PA). For this purpose, we define the
sequence of stopping times τn,t as τn,t = min(T, τ̂n,t), with

τ̂n,t = inf
{
t ≤ u ≤ T

∣∣∣ ∫ u

t

∥∥∥b(√z(s) ⊙ πA(s)
)
G(s, V v0,π∗

(s), z(s))
∥∥∥2 ds ≥ n,∫ u

t

∥∥∥(σ ⊙
√
z(s) ⊙B(T − s)

)
G(s, V v0,π∗

(s), z(s))
∥∥∥2 ds ≥ n

}
.

According to Theorem 3.12 in [33], the optimality of π∗A is verified if(
G
(
τn,t, V

v0,π∗
(τn,t), z(τn,t)

))
n∈N

is uniformly integrable for every t ∈ [0, T ]. However, as Assumptions 5.2.7 and 5.2.9 are satisfied
for every i = 1, ..., d, following the same steps as in the proof of Theorem 5.2.12, we can show
that there exists a constant q > 1 and a bounded, deterministic function det(t) such that the
local martingales

Di(t) = bq
√

1 − ρ2i

∫ t

0
(πA)∗i (s)

√
zi(s)dŴi(s)

Mi(t) =
qκi
σi

∫ t

0

√
zi(s)dW

z
i (s)

can be used to bound
∣∣G (t, V v0,π∗

(t), z(t)
)∣∣q for every t ∈ [0, T ] through

∣∣∣G(t, V v0,π∗
(t), z(t)

) ∣∣∣q ≤ exp

(
sup

s∈[0,T ]
det(s)

)
exp

(
d∑

i=1

Di(t) −
1

2
⟨Di⟩t +Mi(t) −

1

2
⟨Mi⟩t

)
︸ ︷︷ ︸

(∗)

.

The diffusions of the local martingales Di, Mi are independent and therefore (∗) is a super-
martingale. Since the above bound holds pointwise for every t ∈ [0, T ], Doob’s optional sampling
theorem yields the Lq-boundedness (and thereby uniform integrability) of(

G(τ0n,t, V
v0,π∗

(τ0n,t), z(τ
0
n,t))

)
n∈N

.

Hence, π∗A is optimal for (PA) and thus π∗(t) = Aπ∗A(t) is optimal for (P) in MPCSV .

Proof of Theorem 5.3.2. The proof follows similar arguments as the proof of Corollary 5.4 in
[56]. For given π ∈ Λγ,Σ, let π̂BS and π̂H be defined through

π̂BS(t) := Σ(z(t))π(t) or π̂H(t) :=
Σ(z(t))√
z(t)

π(t). (A.68)
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Proof of (i): By construction, π ∈ ΛK(·) if and only if π̂BS(t) ∈ K̂ := [α, β] L[0, T ]⊗Q-a.e., i.e.,
the constraint on π̂BS is constant. Under the present assumptions, the wealth process satisfies

dV v0,π(t) = V v0,π(t) ([r + ηΣ(z(t))π(t)]dt+ π(t)Σ(z(t))dW (t))

= V v0,π(t) ([r + ηπ̂BS(t)]dt+ π̂BS(t)dW (t)) .

Hence, maximizing E [U (V v0,π(T ))] over π̂BS subject to the constraint π̂BS(t) ∈ K̂ = [α, β]
L[0, T ] ⊗ Q-a.e. is equivalent to the constrained portfolio optimization problem in a Black-
Scholes market MBS with market price of risk η and volatility 1. Therefore, as discussed in
Section 5.2.3, the constant-mix strategy

π̂∗BS = Cap (πM , α, β) ⇔ π∗(t) = Σ(z(t))−1Cap (πM , α, β)

maximises the expected utility over all admissible π̂BS . Inverting the change of control through
multiplication by Σ(z(t))−1 yields the claim.
Proof of (ii): By construction, π ∈ ΛK(·) if and only if π̂H(t) ∈ K̂ := [α, β] L[0, T ] ⊗Q-a.e., i.e.,
the constraint on π̂H is constant. Under the present assumptions, the wealth process satisfies

dV v0,π(t) = V v0,π(t)
(

[r + η
√
z(t)Σ(z(t))π(t)]dt+ π(t)Σ(z(t))dW (t)

)
= V v0,π(t)

(
[r + ηz(t)π̂H(t)]dt+ π̂H(t)

√
z(t)dW (t)

)
.

Hence, maximizing E [U (V v0,π(T ))] over π̂H subject to the constraint π̂H(t) ∈ K̂ = [α, β]
L[0, T ] ⊗ Q-a.e. is equivalent to the constrained portfolio optimization problem in the Heston
market MH , as considered in Section 5.2. As all requirements of Theorem 5.2.12 are satisfied, π∗

(as defined in Theorem 5.2.12) maximises the expected utility over all admissible π̂H . Inverting
the change of control through multiplication by

√
z(t)Σ(z(t))−1 yields the claim.

Proof of Lemma 5.4.1. We first verify that G(t, v, z) = 1
bv

b exp(Aπ(T − t) + Bπ(T − t)z) is a
solution to the Feynman-Kac PDE (5.20). The partial derivatives of G can be computed as

Gt(t, v, z) = −
(
A′

π(T − t) +B′
π(T − t)z

)
G(t, v, z), Gv(t, v, z) =

b

v
G(t, v, z),

Gvv(t, v, z) =
b(b− 1)

v2
G(t, v, z), Gz(t, v, z) = Bπ(T − t)G(t, v, z),

Gzz(t, v, z) = (Bπ(T − t))2G(t, v, z), and Gzv(t, v, z) =
bBπ(T − t)

v
G(t, v, z).

Substituting these derivatives in (5.20), while omitting the arguments (t, v, z), yields

0 = Gt + (r + ηπ(t)z) vGv + κ (θ − z)Gz + σρπ(t)zvGzv +
1

2
v2π(t)2zGvv +

1

2
σ2zGzz

= G
[
−
(
A′

π +B′
πz
)

+ (r + ηπ(t)z) b+ κ (θ − z)Bπ

+ σρπ(t)bzBπ +
1

2
π(t)2zb(b− 1) +

1

2
σ2zB2

π

]
G ̸=0⇔ 0 = −

(
A′

π +B′
πz
)

+ (r + ηπ(t)z) b+ κ (θ − z)Bπ

+ σρπ(t)bzBπ +
1

2
π(t)2zb(b− 1) +

1

2
σ2zB2

π

= −A′
π + rb+ κθBπ︸ ︷︷ ︸
=0 by (5.18)

+z

[
−B′

π + bηπ(t) − 1

2
π(t)2b(1 − b) + (σρbπ(t) − κ)Bπ +

σ2

2
B2

π

]
︸ ︷︷ ︸

=0 by (5.19)

.
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A Proofs

Moreover, G satisfies the boundary condition G(T, v, z) = U(v) because Aπ(0) = Bπ(0) = 0.
Hence, G is a solution to the Feynman-Kac PDE (5.20). By assumption, such a solution is
unique, and therefore

1

b
vb exp (Aπ(T − t) +Bπ(T − t)z) = G(t, v, z) = Jπ(t, v, z) ∀(t, v, z) ∈ [0, T ]× (0,∞)× (0,∞).

Proof of Corollary 5.4.2. Lπ(t, z) is defined as the solution to the equation

Φ(t, v(1 − Lπ(t, z)), z) = E
[
U
(
V v0,π∗

(T )
)

| V v0,π(t) = v(1 − Lπ(t, z)), z(t) = z
]

= E [U (V v0,π(T )) | V v0,π(t) = v, z(t) = z]

= Jπ(t, v, z)

From Lemma 5.2.3 we know that

Φ(t, v(1 − Lπ(t, z)), z) =
1

b
(v(1 − Lπ(t, z)))b exp(A(T − t) +B(T − t)z).

Similarly, we have by Lemma 5.4.1

Jπ(t, v, z) =
1

b
vb exp (Aπ(T − t) +Bπ(T − t)z) .

Thus,

Φ(t, v(1 − Lπ(t, z)), z) = Jπ(t, v, z)

⇔ 1

b
(v(1 − Lπ(t, z)))b exp(A(T − t) +B(T − t)z) =

1

b
vb exp (Aπ(T − t) +Bπ(T − t)z)

⇔
(
v(1 − Lπ(t, z))

v

)b

= exp (Aπ(T − t) −A(T − t) + [Bπ(T − t) −B(T − t)] z)

⇔ Lπ(t, z) = 1 − exp

(
1

b
(Aπ(T − t) −A(T − t) + [Bπ(T − t) −B(T − t)] z)

)
.
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