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Zusammenfassung

Das Ziel dieser Dissertation ist, einige grundliegende Probleme der konvexen Geometrie

mithilfe eines Asymmetriemaß konvexer Körper anzugehen. Ein großer Teil der Konvexen

Geometrie beschäftigt sich mit geometrischen Ungleichungen auf Funktionalen der kon-

vexen Körper, wie beispielsweise dem In- und Umradius, dem Volumen, dem Durchmesser

oder der Dicke. Viele bekannte geometrische Ungleichungen wurden zuerst für den Fall

einer symmetrischen konvexen Menge gezeigt und anschließend für nichtsymmetrische kon-

vexe Körper verallgemeinert. Ein Asymmetriekoeffizient hilft dabei, eine Brücke zwischen

diesen Ergebnissen zu schlagen. Darüber hinaus, stellen viele klassische geometrische Un-

gleichungen Grenzen für Funktionale dar, die von der Dimension des Raums abhängen.

Wir ersetzen diese Grenzen durch Koeffizienten des Asymmetriemaßes. Da schließlich der

Wert des Asymmetriemaßes die Dimension nicht überschreiten kann, schärfen die erhaltenen

Ergebnisse die ursprünglichen.

Abstract

The purpose of this thesis is to tackle several fundamental problems in Convex Geometry

using an Asymmetry measure of convex bodies. A big part of Convex Geometry is dedicated

to geometric inequalities on functionals of convex bodies, such as, for instance, the in-

and circumradius, the volume, the diameter or the width. Many well-known geometric

inequalities have been first shown for the case of symmetric convex set, and afterwards

generalized for non-symmetric convex bodies. The asymmetry coefficient helps to build

a bridge between those results. Moreover, many classical geometric inequalities present

bounds for functionals depending on the dimension of the space. We replace those bounds

with coefficients on the asymmetry measure. As an advantage of the Minkowski asymmetry

is that it is computable in polynomial time for (reasonably given) polytopes. Finally, since

the value of the asymmetry measure cannot exceed the dimension, the obtained results

sharpen the original ones.



”Tomorrow – more”.

——— Bernardo González Merino
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CHAPTER 1

Introduction

1.1. Motivation. Convex geometry focuses on studying properties of convex bodies: com-

pact, convex subsets of Euclidean spaces. A given set in a real vector space is called convex,

if for any two points of the set the segment joining them is also contained in the set. Con-

vexity is a fundamental concept in mathematics. It naturally appears in many different

areas of mathematics, such as Linear Programming, Combinatorics, Probability Theory,

Functional Analysis, Partial Differential Equations, Information Theory and the Geometry

of Numbers. For instance, density functions of some of the most important probability

measures, like gaussians, exponential, or uniform densities over convex domains, are loga-

rithmically (or at least quasi) concave functions. In particular, this implies that all their

level sets are convex (c.f. [Sch]). The beauty of convexity lies in its simple formulation and

the surprisingly rich structure, that the convex bodies possess. Not only the results, but

also the methods of convex geometry are particularly relevant, for instance, in optimization

theory and in stochastic geometry (see e.g. [GrK]).

The main subject of this thesis are geometric functionals, geometric inequalities between

them and extreme relations between convex sets in general, which play a central role in

Convex geometry and have various applications in Asymptotic Geometric Analysis, Banach

Space Theory and Computational Geometry (see e.g. [AGM], [GrK], [Sch]). The goal

is to get a better understanding of the geometric functionals and to sharpen geometric

inequalities using an asymmetry measure.

An aim is to take into account an asymmetry measure, i.e., a functional that measures

how far a convex body K is away from being symmetric. The most common asymmetry

measure, which also is best suited to our purposes, is the so called Minkowski (measure of)

asymmetry. It is defined by

s(K) := inf{ρ > 0 : K − c ⊂ ρ(c−K), c ∈ Rn}.

We would like to present a motivation, which comes from dimension reduction. Many

research areas in fields, such as biology, physics, astronomy, and meteorology have to fre-

quently deal with computations involving high-dimensional data. Thus, in order to store

m vectors in Rn, one would need nm bits for the exact storage. To find a more efficient

way to store information one can find an upper bound for the Banach-Mazur distance in

conjunction with the Johnson-Lindenstrauss Flattening Lemma (see [Ve]). The latter is

a helpful tool used to project m points in a (high) dimensional space n to an O(logm)-

dimensional space, such that the distances between the points are (almost) perserved. The

1



1. INTRODUCTION 2

Banach-Mazur distance between two convex compact sets K and C, tells us how similar

these sets are, i.e., how one of the two sets can be inscribed into and circumscribed around

the other, allowing a linear transformation of one of the sets.

Finding bounds on the Banach-Mazur distance can help with dimension reduction. We

will show how the Banach-Mazur distance is connected with the Minkowski Asymmetry

and present results on the bounds on the Banach-Mazur distance involving the asymmetry

measure.
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1.2. Outline of the Results. We focus on the generalizations of means of numbers for

convex bodies. Namely, we consider the arithmetic and harmonic means of convex bodies,

together with the minimum and maximum. Also, similar to the case of means of numbers,

these four means of convex sets K and C form a chain of inclusions [Fir]. We restrict

ourselves to the means of suitably centered convex sets K and −K, which then define

symmetrizations of the convex set K, and relate all the considered means with each other

in terms of (optimal, when possible) inclusions with the help of the Minkowski asymmetry

measure. We use the Minkowski center, which is a suitable translation from the definition of

the Minkowski asymmetry. For a Minkowski centered convex body K we define the factors

α(K) and β(K), to be the smallest possible factor to cover K ∩ (−K) by conv(K ∪ (−K))

and the harmonic mean by the arithmetic mean, respectively.

In the first paper we show that the inclusion of the harmonic in the arithmetic means

of the convex sets K and −K is tight if and only if the inclusion of the minimum in the

maximum is. Thus, we have α(K) = 1 if and only if β(K) = 1. The main contribution from

the first paper is that for the planar convex body K we have: if the asymmetry value of K

is greater than the golden ratio φ = 1+
√
5

2 ≈ 1.61, then α(K) < 1. Moreover, we show that

when s(K) = φ, then α(K) = 1 holds if and only if K is (up to a linear transformation) a

special pentagon, which we call the golden house.

In the second paper we continue our analysis on symmetrizations of means of convex

sets extending our research on higher dimensions. We show all reverse inclusions for any two

considered symmetrizations, involving the Minkowski asymmetry. We also derive bounds

for the factors α(K) and β(K) in the planar case, as well as in the higher dimensions.

Moreover, we show a stability result on the α-value for ”very asymmetric” convex sets, i.e.,

when K is almost a simplex.

In the last paper we give a complete description of the possible α-values of K in the

planar case in dependence of its Minkowski asymmetry. In particular, we show that for the

planar convex body K we have: if the asymmetry value of K is greater than the golden

ratio φ = 1+
√
5

2 ≈ 1.61, then α(K) ≤ s(K)
s(K)2−1

. Moreover, we derive the family of convex

bodies that fulfill with equality this upper bound of α(K).

The breadth of a convex body K within a normed space Rn in direction of a given

hyperplane H is the distance between the two supporting hyperplanes of K parallel to H,

measured in the underlying norm. The minimal and the maximal value over all non-zero

directions are called minimal width and diameter of K. The body K is complete if every

body K ⊊ K∗ has a larger diameter. We present an application of the diagram of the

α-values of K for the diameter-width ratio for complete sets, improving the ones given in a

recent result of Richter [Ri].



CHAPTER 2

Background

2.1. Notation and the Minkowski asymmetry. First of all we introduce notations,

which are mostly standard concepts in convex geometry and can be found in [Sch].

The Minkowski sum of two sets A,B ⊂ Rn, which is given by

A+B = {x+ y : x ∈ A, y ∈ B} ,

is used in a wide range of fields in pure and applied mathematics. For instance, in motion

planning one may use the Minkowski sum of an obstacle and the robot to define the region,

where the robot may run into the obstacle.

S

−S

Figure 1. Minkowski sum (light gray) of the regular 0-centered triangles

S and −S (gray) in R2.

For any A,B ⊂ Rn let A ⊂t B denote that there exists a translate of A being a subset

of B, ρK := {ρx : x ∈ K} and −K := (−1)K. By Bp we denote the unit ball of an n-

dimensional ℓp-space. Let Kn := {K ⊂ Rn : K full-dimensional convex and compact} be

the family of convex bodies. For any set K ∈ Kn, we say that K is symmetric if K =t −K,

and 0-symmetric if K = −K. We denote the family of 0-symmetric bodies by Kn
0 . Let hK :

Rn → R denote the support function of K ∈ Kn, which is defined by hK(a) = supx∈K aTx.

Let ∥·∥K : Rn → [0,∞) be the gauge function of a set K ∈ Kn with 0 ∈ int(K), which is

defined by ∥x∥K = inf{ρ ≥ 0 : x ∈ ρK}. Let K◦ = {x ∈ Rn : xT y ≤ 1 ∀y ∈ K} be the polar

of K ∈ Kn.

The main object of this thesis is the Minkowski asymmetry. Although the idea of an

asymmetry measure was mentioned at the end of the 19th century by Minkowski [Mi], the

formal definition appeared only in 1963 by Grünbaum [Gr]. He proposed the concept of

measures of asymmetry for convex bodies, as a real-valued function, which ”for any convex

4



2. BACKGROUND 5

compact sets gives its value, reflecting how far the set is from being centrally symmetric”.

The research on measures of asymmetry is still going on. Thus, some of the studies focus

on describing new measures of asymmetry, which naturally appeared in applications, while

others are trying to get a deeper understanding of the nature of the well-known ones (see

[GuK] for an overview).

We focus on the Minkowski asymmetry of K ∈ Kn, which is the most common asym-

metry measure and is defined as

s(K) = min {ρ > 0 : K ⊂t −ρK} .
Note that since K is a convex compact set, we can write min /max instead of inf / sup in

the definitions of the considered geometric functionals.

If c−K ⊂ s(K)(K−c), we call c to be a Minkowski center of K, and if c = 0 is possible,

we say that K is Minkowski centered. It is well-known (see e.g. [Gr]) that for all K ∈ Kn we

have s(K) ∈ [1, n] with s(K) = 1 if and only if K is symmetric, and s(K) = n if and only if

K is an n-simplex, i.e., the convex hull of n+ 1 affinely independent points. Moreover, the

Minkowski asymmetry s : Kn → [1, n] is continuous with respect to the Hausdorff metric

(see [Gr]) and invariant under non-singular affine transformations.

−s(K)K

K

Figure 2. K−c ⊂ s(K)(c−K) for the Minkowski center c ∈ Rn: K (grey),

−s(K)K (light grey).

2.2. Optimal containment under homothety. We introduce some standard geometric

functionals.

Let K,C ∈ Kn. The circumradius R(K,C) (of K w.r.t. C) is defined as

R(K,C) = min {ρ ≥ 0 : K ⊂t ρC} ,
with R(K,C) = ∞ if and only if aff(K) ̸⊂ aff(C) and R(K,C) = 0 if and only if K is a

singleton. Moreover, if K ⊂ c+R(K,C)C, we call c a circumcenter of K w.r.t. C.

The inradius r(K,C) is defined as r(K,C) := max {ρ ≥ 0 : ρC ⊂t K} , and if c +

r(K,C)C ⊂ K, c is an incenter of K w.r.t. C. Note that if r(K,C) is not 0 or infin-

ity, r(K,C) := R(C,K)−1.
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2.3. Means of Convex bodies. Naturally, the Minkowski sum of two convex sets defines

a mean of those bodies. In the 1960s Firey, in his sequence of works [Fir, Fir2, Fir3],

has introduced and studied different means of convex sets, the so-called p-means. This

investigation continues even nowadays (see [MiRo, MiRo2, MiMiRo]).

The harmonic, geometric and arithmetic means of real numbers a and b are known as

the Pythagorean means. Together with minimum and maximum they form the extended

arithmetic-geometric-harmonic mean inequality

(1) min{a, b} ≤
(
a−1 + b−1

2

)−1

≤
√
ab ≤ a+ b

2
≤ max{a, b}

for any a, b > 0, with equality in any/all of the inequalities if and only if a = b (see [Sch]).

Convexity is very closely related to the notion of means. For K,C ∈ Kn the arithmetic

is defined as K+C
2 . Moreover, for K,C ∈ Kn, such that 0 ∈ int(K)∩ int(C) harmonic means

is defined as
(
K◦+C◦

2

)◦
, respectively. The inversion operation x → 1/x can be replaced

in higher-dimensional spaces by polarity (see [MiRo]). The minimum and maximum of

K,C ∈ Kn is defined as K ∩ C and conv(K ∪ C), respectively. In order to keep the

convexity of the considered means, we need to involve the convex hull in the definition of

the maximum of K and C.

Note that we can interpret the means of real numbers a and b as means of convex bodies,

too. To do so, we associate them with the segments [−a, a] and [−b, b]. Now, any mean of

a and b corresponds to a particular segment. Thus, for instance, the arithmetic mean of a

and b is associated with the segment [−1
2 (a+ b) , 12 (a+ b)] =: 1

2 ([−a, a] + [−b, b]).

Notice that the considered symmetrizations of a convex body K, i.e., K ∩ (−K), K−K
2 ,

conv(K ∪ (−K)), are frequently used in convex geometry, e.g., as extreme cases of a va-

riety of geometric inequalities. Consider, e.g., the Bohnenblust inequality [Bo], which

bounds from above the ratio of the circumradius (minx∈Rn maxy∈K ∥x− y∥) and the diam-

eter (maxx,y∈K ∥x− y∥) of convex bodies in arbitrary normed spaces endowed with a norm

∥ · ∥ by n/(n+1), and for which equality is reached in spaces with S ∩ (−S) or 1
2(S −S) as

the unit ball [BrKo] where S is a 0-centered regular simplex. These means also appear in

characterizations of spaces, for which K is complete or reduced [BGJM, Prop. 3.5 – 3.10].

Firey has shown that similarly to the Pythagorean means, the means of convex sets can

be ordered in terms of inclusions [Fir].

Proposition 2.3.1. For all K,C ∈ Kn with 0 in their interior we have

(2) K ∩ C ⊂
(
K◦ + C◦

2

)◦
⊂ K + C

2
⊂ conv(K ∪ C).

We would like also to mention that

∥x∥(K◦+C◦
2 )

◦ =
1

2
(∥x∥K + ∥x∥C) .
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Let x ∈ Rn. Then the well-known lp-norm inequality in particular states

(3) ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 and ∥x∥1 ≤
√
n∥x∥2 ≤ n∥x∥∞.

Figure 3. Symmetrizations of a regular simplex S ⊂ R3: S∩ (−S) (convex
hull of black points),

(
S◦−S◦

2

)◦
(yellow),

(
S−S
2

)
(blue), and conv(S ∪ (−S))

(red).

Notice that, for instance, in R3 the symmetrizations of a regular Minkowski centered

simplex S ∈ K3 are exactly S ∩ (−S) = B1, conv(S ∪ (−S)) = B∞. Thus, in 3-space the

inequalities (3) can be read as

∥x∥conv(S∪(−S)) ≤ ∥x∥2 ≤ ∥x∥S∩(−S) and ∥x∥S∩(−S) ≤
√
n∥x∥2 ≤ n∥x∥conv(S∪(−S)).

In general, the ℓp-norm chain of inequalities can be generalized using (2) to

(4) ∥x∥conv(K∪C) ≤ ∥x∥K+C
2

≤ ∥x∥(K◦+C◦
2 )

◦ ≤ ∥x∥K∩C .

In order to reverse the ℓp-norm inequalities, we focus on reversing (2) using scaling

factors that depend on the Minkowski asymmetry. We show those results in the next

section.

Observe also that even for a non-symmetric unit ballK, one may approximate the gauge

function by the norms induced from symmetrizations of K

(5) ∥x∥conv(K∪(−K)) ≤ ∥x∥K ≤ ∥x∥K∩(−K).

As mentioned in Section 2, for a Minkowski centered convex compact set K we define

the factor α(K) to be the smallest possible factor to cover K ∩ (−K) by conv(K ∪ (−K)),

i.e.,

α(K) := inf{ρ > 0 : K ∩ (−K) ⊂ ρ conv(K ∪ (−K))}.



2. BACKGROUND 8

Notice that there always exists some x ∈ Rn such that α(K)∥x∥K∩(−K) = ∥x∥conv(K∪(−K)),

which means that we have equality in the complete chain in (5) for that x if α(K) = 1.

Observe that α(K) = R (K ∩ (−K), conv(K ∪ (−K))), and we also define

β(K) := R

((
K◦ −K◦

2

)◦
,
K −K

2

)
,

τ(K) := R

(
K ∩ (−K),

K −K

2

)
.

In the following section we will show bounds on the parameters α(K), β(K) and τ(K).
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2.4. Diameters. Note that the diameter has several different definitions, which are equiv-

alent in normed spaces, i.e., when the gauge is symmetric. Leichweiss in [Le] defined the

diameter of K w.r.t. C in a natural way, as the maximal distance between two points in

the set (w.r.t. the gauge)

Dmax(K,C) := max
x,y∈K

∥x− y∥C .

Another way to define the diameter of K w.r.t. C is

D(K,C) := 2 max
x,y∈K

R({x, y}, C).

(see [DGK] for details). The latter definition allows to see the diameter as a best 2-point

approximation of the circumradius of the whole set K. Another advantage is that it is

translation invariant in both arguments, which is not the case for Dmax. Choosing C with

0 close to its boundary, the ratio of R(K,C)
Dmax(K,C) may even get arbitrarily small. Note that

Dmax(K,C) = D(K,C ∩ (−C)) = 2R

(
K −K

2
, C ∩ (−C)

)
, while

D(K,C) = D

(
K,

C − C

2

)
= 2R

(
K −K

2
,
C − C

2

)
.

We see that different means of C and −C naturally appear in the definition of the diameters.

Moreover, if C is Minkowski centered, the results above show us, that we can bound

those diameters in terms of the other and therefore also the circumradius-diameter ratio for

the maximal diameter.

The width of K w.r.t. C is defined by

w(K,C) = 2 min
a∈Rn\{0}

hK(a) + hK(−a)
hC(a) + hC(−a)

.

Observe that
w(K,C)

2
=

(
D(C,K)

2

)−1

.

Let K,C ∈ Kn and s ∈ Rn \ {0}. The s-breadth of K w.r.t. C is defined as

bs(K,C) := 2
maxx,y∈K sT (x− y)

maxx,y∈C sT (x− y)
.

For symmetric gauges C the s-breadth bs(K,C) of a body K is defined as the maximal

distance of the two supporting hyperplanes of K with outer and inner normal s, where the

gauge body is involved by choosing s to be a unit vector of the polar space [GrK]. Thus,

bs(K,C) = hK−K(s), s ∈ C◦,

which is equivalent to

bs(K,C) =
hK−K(s)

hC(s)
, s ∈ Rn \ {0} .

Using the definition of the s-breadth,

w(K,C) = min
s∈Rn\{0}

bs(K,C) and D(K,C) = max
s∈Rn\{0}

bs(K,C).
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One can show that (since C is symmetric),

D(K,C) = 2 max
x,y∈K

R({x, y}, C) = max
x,y∈K

∥x− y∥C = Dmax(K,C).

Observe that the choice of the diameter depends on the needed properties. Thus, if

based on the applications, one needs in the general case to have the possibility to measure

the directional length from x to y to be different than the one from y to x, one would choose

to calculate the distance as ∥x− y∥C and consider Dmax(K,C).

Instead of averaging the directional breadthes, one may also take their minimal value.

This way we arrive in the minimal diameter

Dmin(K,C) = max
s

min

{
hK−K(s)

hC(s)
,
hK−K(s)

h−C(s)

}
.

It turns out that any of the four diameters defined this way corresponds to a different

symmetrization of C :

Dmin(K,C) = D(K, conv(C ∪ (−C))),
Dmax(K,C) = D(K,C ∩ (−C)),

D(K,C) = D

(
K,

C − C

2

)
, and

Dmean(K,C) = D

(
K,

(
C◦ − C◦

2

)◦)
.

In general, from Proposition 2.3.1 we have for C ∈ Kn that

C ∩ (−C) ⊂
(
C◦ − C◦

2

)◦
⊂ C − C

2
⊂ conv(C ∪ (−C)),

which easily implies an order on the diameters

Dmin(K,C) ≤ Dmean(K,C) ≤ D(K,C) ≤ Dmax(K,C).

For general C ∈ Kn a backward relation of considered diameters is not possible, since

for a fixed size of D(K,C), the two first may be arbitrarily small, while the last may be

arbitrarily big. This is due to a possibly badly chosen position of C as D(K,C) is the

only of the four diameters being translation-invariant w.r.t. C. However, if we restrict to

Minkowski centered C we can easily bound each of the symmetrizations of C by any of the

smaller ones using the Minkowski asymmetry (see [BDG1]).

Enumerating them along the ascending set-containment chain

C1 = C ∩ (−C),

C2 =

(
C◦ − C◦

2

)◦
,

C3 =
C − C

2
, and

C4 = conv(C ∪ (−C)),
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we obtain, (see [BDG1, Theorem 1.3])

Ci+1 ⊂opt 2s(C)

s(C) + 1
Ci, i = 1, 3, and

Ci+2 ⊂opt s(C) + 1

2
Ci, i = 1, 2.

Again, this immediately implies geometric inequalities between the according diameters.
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2.5. The Brunn-Minkowski and Rogers-Shephard inequalities. The Brunn-Minkowski

theory concerns the issue of understanding the relation between two basic notions: the

Minkowski addition of K,C ∈ Kn and the (fulldimensional) volume denoted by vol(·).

The well-known Brunn-Minkowski inequality [Bru, Mi] states that

(6) vol(K + C)
1
n ≥ vol(K)

1
n + vol(C)

1
n ,

with equality if and only if K and C are homotheties of each other.

Observe that even if vol(K) = vol(C) = 0, vol(K +C) can be arbitrarily big: consider,

for instance, K to be a segment and C a line, which is orthogonal to the segment.

In particular, choosing K = −C one obtains a particular variant of the inequality

(7) vol

(
K −K

2

)
≥ vol(K),

with equality if and only if K is symmetric [Gr].

The reverse to the Brunn-Minkowski inequality (7) is the socalled Rogers and Shephard

inequality [RoSh], which in case K = −C states

(8) vol

(
K −K

2

)
≤ 1

2n

(
2n

n

)
vol(K),

with equality if and only if K is an n-dimensional simplex.

This is equivalent to

(9) vol

(
K −K

2

)
≤ (2n− 1)!!

n!
vol(K),

Here the double factorial (2n− 1)!! := 1 · 3 · · · · · (2n− 1).

Combining (7) and (9), we obtain

(10) 1 ≤ vol
(
K−K

2

)

vol(K)
≤ (2n− 1)!!

n!
.

Moreover, equality in the left inequality holds if and only if K is symmetric and in the right

one if and only if K is an n-dimensional simplex.

This is the reason why the quotient

vol
(
K−K

2

)

vol(K)

is itself a measure of asymmetry which is also known as the difference measure of symmetry

(c.f. [Gr, Ta]).

An important consequence of the Brunn-Minkowski inequality is the isoperimentric

inequality, which in the planar case states that among all subsets of R2 with some fixed

perimeter, the disc has the greatest area. This result was known even in the ancient Greece

and in R3 explains why soap bubbles are round.
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Let K ⊂ Rn and C be an Euclidean ball with an infinitely small inradius. Then (6)

leads to the isoperimetric inequality in dimension n, which states the following.

Proposition 2.5.1. Let K ∈ Kn and P (K) be the surface area of K. Then

P (K) ≥ n(vol(B2))
1
n (vol(K))

n−1
n .

Recently, there have been several new conjectures regarding inequalities, which involve

volumes of convex bodies, based on the idea of replacing the arithmetic mean K+C
2 by

other means of convex bodies K and −K, which provides an extra motivation to study

symmetrizations of convex bodies, such as, e.g., K ∩ (−K) or
(
K◦−K◦

2

)◦
.

We define the constants c(s(K)), C(s(K)) with

2n ≤ c(s(K)) ≤ C(s(K)) ≤
(
2n

n

)
,

such that for every convex body K such that 1 ≤ s(K) ≤ n holds

c(s(K)) ≤ vol(K −K)

vol(K)
≤ C(s(K)).

If s(K) grows, then the difference measure of symmetry should be reasonably big, and

vice-versa, and the same should hold for small values of the asymmetries. This intuition is

partly verified in [Di], where it was shown slightly sharpened versions of (7) and (8) using

the Minkowski asymmetry.

Indeed, if K ∈ Kn, then

(11) c(s(K)) ≥ 2n

(
1 +

1

n 4n−1

(
(s(K)− 1)nvoln−1(Bn−1

2 )

2n−1n2nvol(B2)

)2
)n

and

(12) C(s(K)) ≤ (1 + s(K))n.

Observe that in (11) we use the notation of Bn−1
2 , since it is important to stress the

dimension of the considered Euclidean ball.

Moreover, if n− 1
4n < s(K) < n, then

(13) c(s(K)) ≥
(
2n

n

)
(1− 4n2(n− s(K))) and C(s(K)) ≤

(
2n

n

)(
1− n− s(K)

n1+50n2

)
.

It is worth mentioning that (11) and (12) are especially good when s(K) is close to 1,

whereas (13) is better when s(K) is close to n.
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s(K)

vol(K−K)
vol(K)

4

6

1 2

f(K2)

Figure 4. The diagram show the impact of the asymmetry s(K) (x-axis)

onto the quotient vol(K −K)/vol(K) in the planar case. While the slightly

shaded area depicts the still possible combinations between the proven

boundaries, the darker grey area shows those combinations for which ex-

plicit examples can be given.
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2.6. The Banach-Mazur distance. For any K,C ∈ Kn the Banach-Mazur distance be-

tween K and C is defined as

dBM (K,C) := min {ρ ≥ 1 : A(K) ⊂t C ⊂t ρA(K) with A a linear map} .

Reformulating slightly, one can easily see the fundamental (yet elementary) link between

the Banach-Mazur distance and the radii measures introduced before:

(14) dBM (K,C) = min

{
R(A(K), C)

r(A(K), C)
: A a linear map

}
.

Calculating the Banach-Mazur distance between convex bodies is important in many

field, e.g. in data reduction as mentioned in the introduction, or in functional analysis,

where it is used as one of the most important metrics between normed spaces (see [Con]).

A major open task is to determine the maximal possible Banach-Mazur distance between

any two n-dimensional convex sets, which is the diameter of the Banach-Mazur Compactum

[TJ], i.e., finding

max {dBM (K,C) : K,C ∈ Kn
0} .

Observe that the Minkowski asymmetry s(K) can be understood as the minimal distance

of K to the family of symmetric bodies (as already recognized in [Gr])

(15) s(K) = min {dBM (K,C) : C =t −C} .

Very recently [KoVa] has shown that for every s ∈ [74 , 2] there exists K ∈ K2 with

s(K) = s such that

dBM (K,C) = s.

Moreover, since the Minkowski asymmetry is affine-invariant, we obtain from (23) that

(16) dBM (K,C) ≥ max

{
s(K)

s(C)
,
s(C)

s(K)

}
.

It directly follows from a result in [BrG3] that

dBM (K,C) ≤ s(K)s(C),

whenever K is complete w.r.t. C, which together with (16) implies

s(K) = dBM (K,C),

whenever K is complete w.r.t. C =t −C. Undoubtedly, John’s theorem [Jo] is the result

with highest impact until today towards the Banach-Mazur distance.

Thus, for K ∈ Kn holds

dBM (K,B2) ≤ n

and for K ∈ Kn
0

dBM (K,B2) ≤
√
n.
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Moreover, if both bodies K and C are symmetric, we have

(17) dBM (K,C) ≤ n.

Also in the case of two non-necessarily symmetric convex bodies, the upper bound n2

obtained from John’s theorem is not best possible. Indeed, so far no sequences of convex

bodies Kn and Cn could be proven to exist, fulfilling dBM (Kn, Cn) > cn1+ϵ, for any absolute

constants c, ϵ > 0 for arbitrarily large n. Thus, it may indicate that there may exists an

absolute constant c > 0 such that dBM (K,C) ≤ cn for any two n-dimensional convex bodies

K,C.

The so far best general upper bound known is given by Rudelson [Ru]. It states

(18) dBM (K,C) < cn4/3 log(n)α,

where c, α > 0 are absolute constants.

If one allows to use K and −K for the coverage of A(C) we arrive in a variant (and

lower bound) of the Banach-Mazur distance called Grünbaum distance [Gr]:

dGr(K,C) := min {|ρ| : K ⊂t A(C) ⊂t ρK with A a linear map} .

In [GLMP] it is shown through the generalized John position between K and C that

dGr(K,C) ≤ n.

Using the fact that dGr(K,C) = dBM (K,C) whenever C =t −C combined with (15) now

directly implies

(19) dBM (K,C) ≤ nmin {s(K), s(C)} .

This may in general be weaker than the one of Rudelson. However, whenever the

asymmetry of one of the sets is small (e.g. not depending on n), it gives the better bound.

Pukhov [Pu] shows that if K is an n-simplex then

dBM (K,C) ≤ n+ 2

(c.f. Perelman [Pe] and Lassak [La]).

In [Sch1] a stability result for the simplex is derived involving the Minkowski asym-

metry. It shows that for every K,C ∈ Kn, and every ε ∈ [0, 1n ], such that s(C) = n and

s(K) > n− ε it holds

(20) dBM (K,C) < 1 +
(n+ 1)ε

1− nε
.

There are several results in the planar case. In [Str] it is shown that in case when K

and C are both symmetric,

dBM (K,C) ≤ 3

2
with equality for the square and the regular hexagon.
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Dropping the symmetry condition, [La] shows that for K,C ∈ Kn holds

dBM (K,C) ≤ 3

and if C is a triangle,

dBM (K,C) ≤ 5

2
.

[La] also conjectures that both bounds get tight for the value 1+
√
5
2 ≈ 2.118, with equality

for the triangle and the regular pentagon.

Recently, the general bound in the planar case was improved to 19−
√
75

4 ≈ 2.585 [BPP]).

Based on the results from [BDG1], we observe the following. Let C ∈ Kn
0 and K ∈ Kn.

Then, since L(C) is symmetric, we get from the definition of the Banach-Mazur distance

that

dBM (K,C) ≤ s(K)

with equality if and only if there exists a transformation L ∈ GL(n) and t1, t2 ∈ Rn such

that

conv((K + t1) ∪ (−K − t1)) ⊂ L(C) ⊂ s(K)((K + t2) ∩ (−K − t2)).

For a Minkowski concentric K we now immediately obtain that all four choices

C ∈
{
K ∩ (−K),

(
K◦ −K◦

2

)◦
,
K −K

2
, conv(K ∪ (−K))

}

of symmetrizations of K considered in this paper fulfill

dBM (K,C) = s(K)

and are therefore minimizers for the Banach-Mazur distance between K and Kn
0 .

Observe, that based on the results from [BDG1, Theorem 1.3], we also obtain bounds

on the Banach-Mazur distance between different symmetrizations, such as, for instance,

dBM (K ∩ (−K), conv(K ∪ (−K)) ≤ s(K) or

dBM

(
K ∩ (−K),

(
K◦ −K◦

2

)◦)
≤ 2s(K)

s(K) + 1
.
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2.7. Constant width, Completeness and Pseudo-completeness. For K,C ∈ Kn we

define K to be of constant width (w.r.t. C) if D(K,C) = w(K,C) and (diametrically)

complete (w.r.t. C) if D(K ′, C) > D(K,C) for all K ′ ⊃ K.

In some cases, for instance, when C is the Euclidean ball or C is a planar set, those

two concepts are equal, but even in dimension three it is possible to find a set C ∈ K3
0 such

that there exists a convex set K, which is complete, but not of constant width w.r.t. C (see

[Egg]). Due to the invariance under symmetrization, completeness of K w.r.t. C implies

completeness of K w.r.t. C−C. However, as long as K is not of constant width, K complete

will not imply K −K complete (c.f. [BGJM]).

One should recognize that constant width always implies completeness, while the oppo-

site is not true. In fact, constant width is equivalent to

K −K

2
=
D(K,C)

2
· C − C

2
.

Constant width sets and complete bodies have been studied in numerous works, includ-

ing [Gro], [HMa] (in Euclidean spaces); [Egg], [MoSch] (in general Minkowski spaces).

Minkowski spaces in which all complete sets are of constant width are called perfect. Char-

acterizing those spaces is still a major open question in convex geometry (see [Egg] and

[MoSch]).

The Jung constant jC of the normed space induced by the gauge C measures the max-

imal ratio between the circumradius and the diameter of arbitrary bodies in that space.

In [Bo] and [Le] it is shown that for symmetric C ∈ Kn we have

(21) jC := max
K∈Kn

R(K,C)

D(K,C)
≤ n

n+ 1
and max

K∈Kn

w(K,C)

r(K,C)
≤ n+ 1.

As mentioned in Section 2, using the facts that for K,C ∈ Kn it holds that

r(K,C) = R(C,K)−1 and D(K,C) = 4w(C,K)−1,

these two results (21) have been unified and tightened in [BrK2] with help of the Minkowski

asymmetries of K and C:

(22)
2R(K,C)

D(K,C)
=
w(C,K)

2r(C,K)
≤ s(K)(s(C) + 1)

s(K) + 1
.

While in general R(K,C)/r(K,C) can only be bounded from below by 1 (with equality

iff K and C are homothets of each other) it is long known that for an n-simplex S it holds

R(S,B2)

r(S,B2)
≥ n.

Again using the Minkowski asymmetry this inequality was generalized in [BrK2] to

(23)
R(K,C)

r(K,C)
≥ max

{
s(K)

s(C)
,
s(C)

s(K)

}
.
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The well-known concentricity inequalities states for symmetric C that

(24) w(K,C) ≤ r(K,C) +R(K,C) ≤ D(K,C).

By (22) and (23), equation (24) can be extended to a whole inequality chain using s(K):

(25) w(K,C) ≤ (1 + s(K))r(K,C) ≤ r(K,C) +R(K,C) ≤ 1 + s(K)

s(K)
R(K,C) ≤ D(K,C).

Note that the following are equivalent:

(1 + s(K))r(K,C) =
1 + s(K)

s(K)
R(K,C),

(1 + s(K))r(K,C) = r(K,C) +R(K,C),

r(K,C) +R(K,C) =
1 + s(K)

s(K)
R(K,C).(26)

The notion of pseudo-complete sets was introduced in [BrG2] as the family of sets K ∈ Kn

and C ∈ Kn
0 that fulfill the equation

r(K,C) +R(K,C) = D(K,C).

Notice that any complete set is pseudo-complete and that the opposite does not always hold

[MoSch]. In [BrG2] it also shown that a set is pseudo-complete if and only if there exists

a circumcenter c ∈ Rn of K w.r.t. C ∈ Kn
0 , such that

c+ (D(K,C)−R(K,C))C ⊂ K.

It is shown in [BrG2] that K complete only implies the following equivalent facts:

(i) r(K,C − C) +R(K,C − C) = D(K,C − C) and

(ii) for every incenter c of K w.r.t. C − C it holds

(27) K −K ⊂ 1/2D(K,C)(C − C) ⊂ (s(K) + 1)(K − c) ∩ (−(K − c)).

One of the most important characterizations of completeness, the spherical intersection

property [Egg], holds true only for symmetric C, too:

Let K ∈ Kn, C ∈ Kn
0 be such that K complete w.r.t. C. Then

K =
⋂

x∈K
(x+D(K,C)C).

It is shown in [GuK] for C = B2 and in [BrG2] for C ∈ Kn
0 , that the Jung constant

can be expressed as follows

(28) jC = max
K complete w.r.t. C

s(K)

s(K) + 1
.

For constant width sets the diameter-width-ratio is equal to one. [Ri] recently has

shown how big this ratio can get for complete sets.
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Proposition 2.7.1. Let K ∈ Kn, C ∈ Kn
0 and K be complete w.r.t. C. Then

D(K,C)

w(K,C)
≤ n+ 1

2
.

Moreover, this bound is sharp, if n is odd, and asymptotically sharp, if n is even.

We will show in the next chapter how the bound from Proposition 2.7.1 can be sharpened

involving the asymmetry measure of Minkowski.



CHAPTER 3

Results

3.1. Summary of the first paper. First of all, we characterize optimal containment of

the means of K and −K.

Theorem 3.1.1. Let K ∈ Kn be Minkowski centered. Then the following are equivalent:

(i) α(K) = 1,

(ii) β(K) = 1,

(iii) there exist p,−p ∈ bd(K) and two parallel halfspaces H≤
a,ρ and H≤

−a,ρ, supporting

K at p and −p, respectively.

We show that in 2-space the greatest value of the Minkowski asymmetry such that

the harmonic mean can be optimally contained in the arithmetic mean is the golden ratio

φ = 1+
√
5

2 ≈ 1.61.

Theorem 3.1.2. Let K ∈ K2 be Minkowski centered such that α(K) = 1.

Then s(K) ≤ φ. Moreover, if s(K) = φ, there exists a non-singular linear transforma-

tion L, such that

L(K) = conv

({(
−1

−1

)
,

(
−1

0

)
,

(
0

φ

)
,

(
1

0

)
,

(
1

−1

)})

is the golden house GH.

0

Figure 1. The Golden house GH (red) and − 1
s(GH)GH (gray).

Observe that we also present a family of sets Ks ∈ K2 with s(Ks) = s ∈ [1, φ], such that

α(K) = 1, thus, showing that for any s ∈ [1, 2] there exists a Minkowski centered K ∈ K2

with s(K) = s and α(K) = 1.

21
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I was significantly involved in the essential phases of brainstorming and in the elabora-

tion of all parts of the work on this paper.

3.2. Summary of the second paper. We describe the inclusions between any two sym-

metrizations in the reverse direction.

Theorem 3.2.1. Let K ∈ Kn be Minkowski centered. Then

(i) conv(K ∪ (−K)) ⊂opt s(K)(K ∩ (−K)),

(ii) conv(K ∪ (−K)) ⊂opt 2s(K)
s(K)+1

K−K
2 ,

(iii)
(
K◦−K◦

2

)◦ ⊂opt 2s(K)
s(K)+1(K ∩ (−K)),

(iv) K−K
2 ⊂opt s(K)+1

2 (K ∩ (−K)), and

(v) conv(K ∪ (−K)) ⊂opt s(K)+1
2

(
K◦−K◦

2

)◦
.

Moreover, for the following containment chain always applies:

(vi) K−K
2 ⊂ s(K)+1

2

(
K◦−K◦

2

)◦
, and for all s ∈ [1, n] there exists a Minkowski centered

K ∈ Kn with s(K) = s, such that this containment is optimal.

As a consequence we show that for a Minkowski concentric K holds that

C ∈
{
K ∩ (−K),

(
K◦ −K◦

2

)◦
,
K −K

2
, conv(K ∪ (−K))

}

fulfills dBM (K,C) = s(K), and is therefore a minimizer for the Banach-Mazur distance

between K and Kn
0 .

We also show an example, for which the inclusion from Theorem 3.2.1, (vi) is not tight.

We show bounds for the parameters α(K) = R (K ∩ (−K), conv(K ∪ (−K))) and β(K) =

R
((

K◦−K◦
2

)◦
, K−K

2

)
.

Theorem 3.2.2. Let K ∈ Kn be Minkowski centered with s(K) = s. Then

2

s+ 1
≤ α(K) ≤ 1 and

4s

(s+ 1)2
≤ β(K) ≤ 1.

Moreover, for all s ∈ [1, 2] there exist Minkowski centered K1,K2 ∈ Kn with s(K1) =

s(K2) = s, such that α(K1) =
2

s+1 and β(K2) =
4s

(s+1)2
.

Finally, we show upper bounds for both factors α(K) and β(K) for Minkowski centered

K ∈ Kn with s(K) ≈ n, i.e., in case, when K is almost a simplex.

We define ψ := (n−s+1)(s+1)
1−(n−s)(n+s(n+1)) − n, and ζ := (n+ 1)

((
1 + sn

s+1

)
1+n−s

1−n(n−s) − n
)
.

Theorem 3.2.3. Let n be even and C ∈ Kn Minkowski centered with s(C) = s. Then

(i) K ∩ (−K) ⊂ ψ
n

n+ 1
conv(K ∪ (−K)), and

(ii)

(
K◦ −K◦

2

)◦
⊂ ζ

n(n+ 2)

(n+ 1)2
K −K

2
.
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Observe that we also present the parameters γ2 = γ2(s, n) and γ3 = γ3(s, n) such that

ψ n
n+1 < 1 for all s > γ2, while ζ

n(n+2)
(n+1)2

< 1 for all s > γ3. Note that for every even n holds

n− 1
n < γ2 < γ3 < n and ψ = ζ = 1 in case s = n.

I was significantly involved in the essential phases of brainstorming and in the elabora-

tion of all parts of the work on this paper.
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3.3. Summary of the third paper. We extend the results on the bounds for α(K)

from Theorem 3.2.2, and now completely describe the region of all possible values for this

parameter for Minkowski centered K ∈ K2 in dependence of the asymmetry of K.

Theorem 3.3.1. Let K ∈ K2 be Minkowski centered. Then

2

s(K) + 1
≤ α(K) ≤ min

{
1,

s(K)

s(K)2 − 1

}
.

Moreover, for every pair (α, s), such that 2
s+1 ≤ α ≤ min

{
1, s

s2−1

}
, there exists a Minkowski

centered K ∈ K2, such that s(K) = s and α(K) = α.

s(K)

α(K)

1

1 φ 2

Figure 2. Region of possible values for the parameter α(K) for Minkowski

centered K ∈ K2 (yellow): α(K) ≥ 2
s+1 (blue); α(K) ≤ 1 for s ≤ φ (red),

α(K) ≤ s
s2−1

for s ≥ φ (green).

Surprisingly, we were able to describe the number of intersection points of the boundaries

of a convex set K and its negative −K, when its asymmetry is greater than the golden ratio.

Theorem 3.3.2. Let K ∈ K2 be Minkowski centered with s(K) ≥ φ. Then the set bd(K)∩
bd(−K) consists of exactly 6 points.

However, when the asymmetry is less than the golden ratio, bd(K)∩bd(−K) can consist

of countable or uncountable number of points, as well as of a small one.

As mentioned in Section 2, [Ri] has shown that the D
w -ratio for complete sets is bounded

from above by n+1
2 . We present an improved quantitative result on the D

w -ratio for pseudo-

complete (and therefore, for complete) sets.

Theorem 3.3.3. Let K ∈ Kn, C ∈ Kn
0 , K be pseudo-complete w.r.t. C. Then

D(K,C)

w(K,C)
≤ s(K) + 1

2
.

Moreover, for n > 2 odd and any s ∈ [1, n] or for n > 2 even and any s ∈ [1, n − 1] there

exist K ∈ K2, C ∈ K2
0, K being complete w.r.t. C with s(K) = s, such that D(K,C)

w(K,C) = s+1
2 .

We sharpen the bound for pseudo-complete sets from Proposition 2.7.1 using the Minkowski

asymmetry measure in the planar case.
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Theorem 3.3.4. Let K ∈ K2, C ∈ K2
0, K be pseudo-complete w.r.t. C and s(K) = s.

Then
D(K,C)

w(K,C)
≤ min

{
s+ 1

2
,

s2

s2 − 1

}
≤ 1.42.

Since we always have s ≤ n and equality holds if and only if K is a n-simplex, Theorem

3.3.4 sharpens the bound from Proposition 2.7.1.

We show that for every pair (ρ, s), with s ∈ [1, 2] and 1 ≤ ρ ≤ min
{

s+1
2 , s

2(s−1)

}
, there

exists some Minkowski centered K, s.t. s(K) = s and a set C, s.t. K is pseudo-complete

w.r.t. C and D(K,C)
w(K,C) = ρ (c.f. Figure 3). Observe also that min

{
s(K)+1

2 , s(K)
2(s(K)−1)

}
≤

D(GH,GH∩(−GH))
w(GH,GH∩(−GH)) = φ+1

2 ≈ 1.31.

Finally, we show a result for pseudo-complete set in the Euclidean planar case.

Theorem 3.3.5. Let K ∈ K2 be pseudo-complete w.r.t. B2 and s(K) = s. Then

D(K,B2)

w(K,B2)
≤ D(H,B2)

w(H,B2)
=
s(H) + 1

2
≈ 1.135,

where H denotes a special construction called the hood with s(H) ≈ 1.27.

s(K)

D(K,C)
w(K,C)

1

1.31

1.42

1 21.84φ

Figure 3. Region of all possible values for the diameter-width ratio for

pseudo complete sets K ∈ K2 in dependence of s(K): D(K,C)
w(K,C) ≥ 1

(blue); D(K,C)
w(K,C) ≤ min

{
s(K)+1

2 , s(K)2

s(K)2−1

}
(red).

{
D(K,Cλ)
w(K,Cλ)

, 0 ≤ λ ≤ 1
}

=
[
1,min

{
s(K)+1

2 , s(K)
2(s(K)−1)

}]
(yellow, with s(K)

2(s(K)−1) in green).

I was significantly involved in the essential phases of brainstorming and in the elabora-

tion of all parts of the work on this paper.
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[BDG1] R. Brandenberg, K. von Dichter, B. González Merino, Tightening and reversing the arithmetic-

harmonic mean inequality for symmetrizations of convex sets, Communications in Contemporary Math-

ematics, online ready (2022).
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[BrG2] R. Brandenberg, B. González Merino, The asymmetry of complete and constant width bodies in

general normed spaces and the Jung constant, Israel J. Math. 218 (2017), no. 1, 489–510.
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Relating Symmetrizations of Convex Bodies:
Once More the Golden Ratio

René Brandenberg, Katherina von Dichter, and
Bernardo González Merino

Abstract. Similar to the arithmetic-harmonic mean inequality for numbers, the harmonic
mean of two convex sets K and C is always contained in their arithmetic mean. The har-
monic and arithmetic means of C and −C define two different symmetrizations of C, each
keeping some useful properties of the original set. We investigate the relations of such sym-
metrizations, involving a suitable measure of asymmetry—the Minkowski asymmetry, which,
besides other advantages, is polynomial time computable for (reasonably given) polytopes.
The Minkowski asymmetry measures the minimal dilatation factor needed to cover a set C

by a translate of its negative. Its values range between 1 and the dimension dim(C) of C,
attaining 1 if and only if C is symmetric and dim(C) if and only if C is a simplex. Restrict-
ing to planar compact, convex sets, positioned so that the translation in the definition of the
Minkowski asymmetry is 0, we show that if the asymmetry of C is greater than the golden
ratio (1 + √

5)/2 ≈ 1.618, then the harmonic mean of C and −C is a subset of a dilatate
of their arithmetic mean with a dilatation factor strictly less than 1; and for any asymmetry
less than the golden ratio, there exists a set C with the given asymmetry value, such that the
considered dilatation factor cannot be less than 1.

The golden ratio ϕ = (1 + √
5)/2 ≈ 1.618 has a history of 2400 years and wide

roots in mathematics, music, architecture, biology, and philosophy (see, e.g., [16]). It
was first studied by the ancient Greeks because of its frequent appearance in geometry.
For example, if one considers a regular pentagon of edge-length 1, its diagonals have
length ϕ. No wonder that the regular pentagram was the Pythagorean symbol [16]. The
first known definition is given in Euclid’s Elements, II.11: “If a straight line is cut in
extreme and mean ratio, then as the whole line is to the greater segment, the greater
is to the lesser segment.” Expressed algebraically, this transfers to the (probably) best-
known definition of the golden ratio:

if a > b > 0 such that
a + b

a
= a

b
, then

a

b
= ϕ. (1)

Among the fundamental inequalities in mathematics, a special place is reserved for
the arithmetic-geometric-harmonic mean inequality, which in the two-argument case,
together with the minimum and maximum, states that

min{a, b} ≤
(

a−1 + b−1

2

)−1

≤ √
ab ≤ a + b

2
≤ max{a, b} (2)

for any real numbers a, b > 0 (see [13, 21]). We may identify means of num-
bers with means of segments by associating a, b > 0 with [−a, a] and [−b, b].
By doing so we identify, e.g., the arithmetic mean of a and b with the segment
[− 1

2 (a + b) , 1
2 (a + b)] =: 1

2 ([−a, a] + [−b, b]). In this way means of convex bod-
ies can be introduced.

doi.org/10.1080/00029890.2022.2043113
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Let Kn denote the set of convex bodies, i.e., full-dimensional compact convex sets
in Rn. For X ⊂ Rn let conv(X) (respectively, pos(X) or aff(X)) be the convex hull
(respectively, positive hull or affine hull) of X, i.e., the smallest convex set in Rn

(respectively, convex cone or affine subspace) containing X. A line segment is the
convex hull of a two-point set {x, y} ⊂ Rn, which we denote by [x, y]. For any K, C ⊂
Rn, ρ ∈ R, let K + C = {a + b : a ∈ K, b ∈ C} be the Minkowski sum of K, C and
ρC = {ρx : x ∈ C} the ρ-dilatation of C. We abbreviate (−1)C by −C.

Now, the arithmetic mean of compact convex bodies K and C is defined by 1
2 (K +

C), the minimum by K ∩ C, and the maximum by conv(K ∪ C). For any K ∈ Kn

let K◦ = {a ∈ Rn : aT x ≤ 1, x ∈ K} be the polar of K . Since the polarity can be
regarded as the higher-dimensional replacement of the inversion operation x → 1/x

(see [17]), the harmonic mean of K and C is defined by
(

1
2 (K

◦ + C◦)
)◦

. The geometric
mean has been extended in several ways (see [4] or [17]); thus it would need a separate,
more involved treatment, which is the reason why we focus on the four other means
here. The study of means of convex bodies started in the 1960s [8–10], but there also
exist several recent papers [17, 18, 19].

Probably the most essential result of Firey is the extension of the harmonic-
arithmetic mean inequality from positive numbers to convex bodies containing 0 in
their interior in [8]. Moreover, one can easily show that Firey’s inequality again may
be extended involving the minimum and maximum:

Proposition 1. For all K, C ∈ Kn with 0 in their interior we have

K ∩ C ⊂
(

K◦ + C◦

2

)◦
⊂ K + C

2
⊂ conv(K ∪ C). (3)

Let us mention an application given in [11]. For two positive definite symmetric
matrices A, B ∈ Rn×n we denote by A � B if A − B is also positive definite. More-
over, A � B is strict if A − B is not a zero matrix. Since means of ellipsoids corre-
spond to combinations of the corresponding matrices, (3) also results in a (generalized)
harmonic-arithmetic mean inequality:

(1 − λ)A + λB � ((1 − λ)A−1 + λB−1)−1

for any λ ∈ [0, 1]. This inequality is strict, except of the trivial cases A = B or λ ∈
{0, 1}.

Moreover, the well-known Brunn–Minkowski determinantal inequality [14]

((1 − λ) det(A) + λ det(B))
1
n ≥ det((1 − λ)A)

1
n + det(λB)

1
n ,

can be further developed using the means of convex bodies as follows [11]: Let k ∈
{1, . . . , n} and |A|k denote the product of the k greatest eigenvalues of A; then

|(1 − λ)A−1 + λB−1|− 1
k

k ≤ ((1 − λ)|A|− 1
k

k + λ|B|− 1
k

k )−1.

For any K, C ∈ Kn we say that K is optimally contained in C, and denote it by
K ⊂opt C, if K ⊂ C and K 
⊂ t + ρC for any 0 ≤ ρ < 1 and t ∈ Rn. If C = t − C

for some t ∈ Rn, we say C is symmetric, and if C = −C, we say C is 0-symmetric. The
family of 0-symmetric convex bodies is denoted Kn

0 . By T ∈ Kn we denote a regular
simplex with (bary-)center 0.

The goal of this article is to consider optimal containments of means of C and −C of
a convex body C, i.e., symmetrizations of C. These kinds of symmetrizations are used
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frequently in convex geometry, e.g., as extreme cases of a variety of geometric inequal-
ities. Consider, e.g., the Bohnenblust inequality [3], which bounds from above the ratio
of the circumradius (minx∈Rn maxy∈K |x − y|) and the diameter (maxx,y∈K |x − y|) of
convex bodies for general norms | · | by n/(n + 1), and for which equality is reached
in spaces with T ∩ (−T ) or 1

2 (T − T ) as the unit ball [7].
Or consider the characterization of normed spaces in which C is complete or

reduced, if the unit ball is sandwiched between suitable rescalings of two different
means of C and −C [6, Propositions 3.5–3.10].

Also, well-known geometric inequalities have been re-investigated, replacing one
mean by another. Consider, e.g., the Rogers–Shephard-type inequalities, which bound
the ratio of the products of the volumes of the maximum and harmonic (respectively,
arithmetic) means of K and C with the product of their volumes [1, 2, 20].

Notice that for any C ∈ Kn we have

C ∩ (−C) ⊂opt

(
C◦ − C◦

2

)◦
and

C − C

2
⊂opt conv(C ∪ (−C)).

Moreover, (
C◦ − C◦

2

)◦
⊂opt C − C

2

is also possible, i.e., all containments in (3) may be optimal at the same time even
for nonsymmetric C. In particular, if T ∈ K3 is a regular simplex with center 0, then
we have the nice situation that the four means are a cross polytope (minimum), a
rhombic dodecahedron (harmonic mean), a cuboctahedron (arithmetic mean), and a
cube (maximum), such that even the cross polytope is optimally contained in the cube.

However, in the planar case, optimal containment of the harmonic mean of T and
−T in their arithmetic mean for an equilateral triangle T implies that the center of the
triangle cannot be 0. In contrast, for the equilateral triangle T ⊂ R2 with center 0, we
have(

T ◦ − T ◦

2

)◦
⊂opt 8

9
· T − T

2
and T ∩ (−T ) ⊂opt 2

3
· conv(T ∪ (−T )).

Clearly, symmetrizations of a symmetric C should coincide with C, which is always
true for the arithmetic mean of C and −C, but for the other means, which we consider,
this holds only if 0 is the center of symmetry of C. This indicates the need to fix a
meaningful center for every convex body first and then concentrate on translates with
that center at 0.

Since we want to investigate the optimality of the inequality chain (3) in depen-
dence of asymmetry, we will introduce one of the most common asymmetry measures,
which is best suited to our purposes, and choose the center definition matching it. The
Minkowski asymmetry of C is defined by s(C) := inf{ρ > 0 : C − c ⊂ ρ(c − C), c ∈
Rn} [12] and a Minkowski center of C is any c ∈ Rn such that C − c ⊂ s(C)(c − C)

[5]. Moreover, if c = 0 is a Minkowski center, we say C is Minkowski centered. Note
that s(C) ∈ [1, n] for C ∈ Kn, where s(C) = 1 if and only if C is centrally symmet-
ric, while s(C) = n if and only if C is an n-dimensional simplex [12]. Moreover, the
Minkowski asymmetry s : Kn → [1, n] is continuous with respect to the Hausdorff
metric (see [12, 21] for some basic properties) and invariant under nonsingular affine
transformations.

The main contribution of this article is that the golden ratio is the largest asymmetry
such that (3) can be optimal in the planar case.
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Theorem 2. Let C ∈ K2 be Minkowski centered such that(
C◦ − C◦

2

)◦
⊂opt C − C

2
;

then s(C) ≤ ϕ. Moreover, if s(C) = ϕ, then there exists a nonsingular linear trans-
formation L such that L(C) = GH := conv({p1, . . . , p5}), where p1 = (−1, −1)T ,
p2 = (−1, 0)T , p3 = (0, ϕ)T , p4 = (1, 0)T , p5 = (1, −1)T form the golden house.

Figure 1. Left: GH (red), −s(GH)GH (blue), and parallel supporting halfspaces in p2 and p4 = −p2

(dashed). Right: conv(GH ∪ (−GH)) (orange), 1
2 (GH − GH) (red),

(
1
2 (GH◦ + (−GH)◦)

)◦
(violet), and

GH ∩ (−GH) (blue). The golden house and its symmetrizations.

The important facts about the construction of the golden house are the following:
1. p2 = −p4;
2. ‖p2 − p3‖ = ‖p4 − p3‖;
3. conv({p1, −s(GH)p3, p5}) and conv({p2, p3, p4}) are similar up to reflection.

Let g := [p1, p5] ∩ [p3, −s(GH)p3], α := ‖p3 − g‖, and β := ‖p3‖. Then we
have on the one hand

s(GH) = ‖ − s(GH)p3‖
‖p3‖ = ‖p3 − g‖

‖p3‖ = α

β
, (4)

and on the other hand

s(GH) = ‖ − s(GH)p3 − p3‖
‖p3 − g‖ = α + β

α
. (5)

Combining (4) and (5) we see that s(GH) = ϕ (see Left in Figure 1).
To the best of our knowledge, this is the first explicit mention of a set with the

properties of the golden house. Theorem 3 demonstrates that items 1 and 2 above suf-
fice to show that, in the case of the golden house (and its negative), optimal contain-
ment is reached in (3) throughout the full chain (see Right in Figure 1). Even more:
from Theorem 3 it directly follows that the minimum is optimally contained in the
maximum.
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For any C ∈ Kn let bd(C) be the boundary of C and for any a ∈ Rn \ {0} and
ρ ∈ R, let H≤

a,ρ = {x ∈ Rn : aT x ≤ ρ} denote a halfspace. We say that the halfspace
H≤

a,ρ supports C ∈ Kn at q ∈ C if C ⊂ H≤
a,ρ and q ∈ bd(H≤

a,ρ).

Theorem 3. Let C ∈ Kn be Minkowski centered. Then the following are equivalent:
1. C ∩ (−C) ⊂opt conv(C ∪ (−C));
2.
(

1
2 (C

◦ − C◦))
)◦ ⊂opt 1

2 (C − C);
3. there exist p, −p ∈ bd(C), parallel halfspaces H≤

a,ρ and H
≤
−a,ρ supporting C at p

and −p, respectively.

Let us mention that for any regular Minkowski centered (2n + 1)-gon P , the ver-
tices of − 1

s(P )
P are the midpoints of the edges of P . Hence, they obviously do not

satisfy part (iii) of Theorem 3. By letting n grow, we see that there exist Minkowski
centered C ∈ K2 with s(C) arbitrary close to 1 such that not all containments in the
inequality chain (3) are optimal for C. Furthermore, one may observe that a Minkowski
centered regular pentagon has asymmetry 2/ϕ ≈ 1.236 < ϕ.

1. CHARACTERIZATIONS OF OPTIMAL CONTAINMENT. Let us first col-
lect some simple set identities under affine transformations.

Lemma 4. Let K, C ∈ Kn and A be a nonsingular affine transformation. Then

A(K) ∩ A(C) = A(K ∩ C),

(((A(K))◦ − (A(C))◦)/2)
◦ = A ((K◦ − C◦)/2)

◦
,

(A(K) + A(C))/2 = A ((K + C)/2) ,

conv (A(K) ∪ (A(C)) = A (conv(K ∪ C)) .

The following proposition characterizes the optimal containment K ⊂opt C

between two convex sets K, C ∈ Kn in terms of common boundary points and cor-
responding supporting halfspaces (see [7, Theorem 2.3]).

Proposition 5. Let K, C ∈ Kn and K ⊂ C. Then the following are equivalent:
1. K ⊂opt C;
2. There exist k ∈ {2, . . . , n + 1}, pj ∈ K ∩ bd(C), aj outer normals of supporting
halfspaces of K and C at pj , j = 1, . . . , k, such that 0 ∈ conv({a1, . . . , ak}).
Moreover, in case that K, C ∈ Kn

0 , items 1, 2 are equivalent to K ∩ bd(C) 
= ∅.

Lemma 4 together with Proposition 5 obviously yield the following corollary.

Corollary 6. Let C ∈ Kn and let L be a nonsingular linear transformation. Then
1. C is Minkowski centered if and only if L(C) is Minkowski centered.
2. C ∩ (−C) ⊂opt conv(C ∪ (−C)) if and only if L(C) ∩ L(−C) ⊂opt

conv(L(C) ∪ L(−C)).

Let us now add a proposition that is a result of Klee [15] reduced to the two-
dimensional case.

Proposition 7. Let P, C ∈ K2, where P is a polygon and C is 0-symmetric, such that
P ⊂opt C. Then 0 ∈ P .

Taking the two preceding propositions together we obtain the corollary below.
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Corollary 8. Let C ∈ K2 be Minkowski centered, but not 0-symmetric. Then there
exist p1, p2, p3 ∈ bd(C) ∩ (−s(C)bd(C)) such that 0 ∈ conv({p1, p2, p3}).
Proof. Let us first mention that the existence of two or three such touching points of
bd(C) ∩ (−s(C)bd(C)) is a direct consequence of Proposition 5, and if it were only
two it would follow that s(C) = 1.

Now let S be the intersection of the three common supporting halfspaces of C and
−s(C)C at the points pi , i = 1, 2, 3. In addition, C (together with −1/s(C)C) is
also supported in 1/s(C)pi by halfspaces with outer normals being the negatives of
the outer normals of the starting three. Hence, we obtain that conv({p1, p2, p3}) is
optimally contained in the minimum S ∩ (−S) of S and −S and therefore, by Propo-
sition 7, that 0 ∈ conv({p1, p2, p3}).
Proof of Theorem 3. (1) ⇒ (2): This part of the proof follows directly from Proposi-
tion 1.

(2) ⇒ (3): Assuming that (C◦−C◦
2 )◦ ⊂opt C−C

2 , we obtain from Proposition 5 that
there exists a common boundary point p of the two sets. Let ρ1, ρ2 > 0 be the smallest
factors such that 1

ρ1
p ∈ bd(C) and 1

ρ2
p ∈ bd(−C), respectively. On the one hand, this

implies

1

2

(
1

ρ1
+ 1

ρ2

)
p ∈ C − C

2

and since p ∈ bd
(

C−C

2

)
, we have that

1 ≤
(

1

2

(
1

ρ1
+ 1

ρ2

))−1

. (6)

On the other hand, from 1
ρ1

p ∈ bd(C) it follows that C◦ ⊂ {a ∈ Rn : aT p ≤ ρ1}
and that there exists some a1 ∈ bd(C◦) such that (a1)T p = ρ1. Similarly, we
obtain −C◦ ⊂ {a ∈ Rn : aT p ≤ ρ2} and the existence of a2 ∈ bd(−C◦) such that
(a2)T p = ρ2. Hence, 1

2 (C
◦ − C◦) ⊂ {a ∈ Rn : aT p ≤ 1

2 (ρ1 + ρ2)} and 1
2 (a

1 + a2) ∈
bd
(

1
2 (C◦ − C◦)

)
with 1

2 (a
1 + a2)T p = 1

2 (ρ1 + ρ2). This means

2

ρ1 + ρ2
p ∈ bd

(
C◦ − C◦

2

)◦
,

which by the fact that p ∈ bd
(

C◦−C◦
2

)◦
implies

2

ρ1 + ρ2
= 1. (7)

Combining (6) and (7), we obtain that the arithmetic mean is not greater than the
harmonic mean of ρ1 and ρ2, thus ρ1 = ρ2 = 1. This proves p ∈ C ∩ (−C).

Finally, let H≤
a,ρ be a supporting half space of (C − C)/2 at p and assume that

H≤
a,ρ does not support C. Hence there would exist some q ∈ C with aT q > ρ. Now,

since p ∈ −C, we obtain (p + q)/2 ∈ (C − C)/2, which, because of aT
(

p+q

2

)
> ρ,

contradicts the fact that (C − C)/2 ⊂ H≤
a,ρ . This proves that C ⊂ H≤

a,ρ and analo-
gously one obtains −C ⊂ H≤

a,ρ . However, the convexity of halfspaces now implies
conv(C ∪ (−C)) ⊂ H≤

a,ρ , which shows that condition 3 is satisfied.
(3) ⇒ (1): Assuming that C is supported by H≤

a,ρ , H
≤
−a,ρ at p, −p, respectively,

the same holds for −C. Hence, we have p, −p ∈ C ∩ (−C) and conv(C ∪ (−C))
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is supported by H≤
a,ρ , H

≤
−a,ρ at p, −p, respectively. By Proposition 5 this means that

C ∩ (−C) ⊂opt conv(C ∪ (−C)).

2. THE MAIN RESULT.

Proof of Theorem 2. Let C ∈ K2 be Minkowski centered, with s := s(C) > 1, such
that (

C◦ − C◦

2

)◦
⊂opt C − C

2
.

By Theorem 3 this optimality condition is equivalent to C ∩ (−C) ⊂opt conv(C ∪
(−C)) and to the existence of −p, p ∈ bd(−sC), as well as parallel halfplanes −H, H

supporting −sC at −p and p, respectively. Since C is Minkowski centered, we have
C ⊂opt −sC and therefore by Proposition 5 we obtain the existence of k ∈ {2, 3},
q1, . . . , qk ∈ bd(C) ∩ bd(−sC) and outer normals of supporting halfplanes a1, . . . , ak

with 0 ∈ conv({a1, . . . , ak}). Moreover, from s > 1 it easily follows that k = 3.
It cannot be that ±p 
∈ {q1, q2, q3}. Otherwise, let, e.g., q2 = p. Then we have

q2 ∈ C ∩ bd(−sC) and thus −sp = −sq2 ∈ bd(−sC), which would imply s(C) = 1.
By Corollary 8 we have 0 ∈ conv({q1, q2, q3}). Hence, we can assume with-

out loss of generality that q1 is located is on one side, while q2, q3 are on the
other side of the line aff({−p, p}), and moreover even that −p ∈ pos{q1, q3} and
p ∈ pos{q1, q2}. Observe that the lines aff({−p, q3}) and aff({p, q2}) intersect in
some point d1. Otherwise, we would have q3 ∈ bd(−H) and q2 ∈ bd(H) and there-
fore [q3, −p], [q2, p] ⊂ bd(−sC). This would imply that the segment [− 1

s
q2, − 1

s
p],

which is parallel to [q3, −p], belongs to bd(C) ∩ int(−sC). Together with q1 ∈ bd(C)

and s > 1, this would contradict the convexity of C.
We choose d2 ∈ bd(−H), d3 ∈ bd(H) such that q1 ∈ [d2, d3] and [d2, d3] is paral-

lel to [q2, q3].
Let us first prove that

−sq1 ∈ conv({q2, q3, d1}). (8)

Since 0 ∈ conv({q1, q2, q3}), we have −sq1 ∈ pos({q2, q3}). Thus using the
fact that q2, q3, −sq1 ∈ bd(−sC), the convexity of −sC implies that −sq1 ∈
conv({q2, q3, d1}).

The next fact we want to see is

−sq3 ∈ conv({p, q1, d3}). (9)

To see this, remember that −H supports −sC at −p. Moreover, directly from −p ∈
pos({q1, q3}) we obtain −sq3 ∈ pos({p, q1}). Now, since p, q1, −sq3 ∈ bd(−sC),
the convexity of −sC implies −sq3 
∈ int(conv({0, p, q1})). Collecting the facts
that q1, −sq2, −sq3 ∈ bd(−sC), q1 ∈ pos({−sq2, −sq3}), and the parallelism of
[−sq2, −sq3] and [d2, d3], we obtain −sq3 ∈ conv({p, q1, d3}).

Similarly to (9), one may prove

−sq2 ∈ conv({−p, q1, d2}). (10)

See Figure 2 for an illustration of the construction and the validness of (8)–(10).
Our goal in the following is to determine the greatest possible s such that

C ∩ (−C) ⊂opt conv(C ∪ (−C)) is still satisfied. We say that the points q1, q2, q3

present a valid situation if they satisfy conditions (8), (9), and (10). We make the
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Figure 2. Construction used in the proof of Theorem 2.

following changes to q1, q2, q3, so that after each step (see Figure 3), we still have a
valid situation for the given asymmetry s:

1. Replace q2 (respectively, q3) by the point in [q2, p] (respectively, [q3, −p]) such
that −sq2 ∈ −H (respectively, −sq3 ∈ H ). Since s > 1, q2 belongs in the strip
between H and −H , and −sp belongs outside the same strip and is closer to −H than
to H , we have that −s[q2, p] = [−sq2, −sp] intersects −H at a point −sq̃2. Let us
replace q2 by q̃2.
2. Replace q1 by μq1, for some μ < 1, such that μq1 ∈ [−sq2, −sq3].
3. Substitute q1 by −γ d1 ∈ [−sq2, −sq3], for some γ > 0.

Recognize that sγ d1 = −sq1 ∈ conv({d1, q2, q3}) implies sγ ≤ 1.
Now we can study the maximal possible value for s, which means we want to char-

acterize the situation in which s becomes maximal such that sγ ≤ 1. Thus we need to
know the explicit value of γ (depending on s).

To do so, after a suitable linear transformation, suppose that p = (1, 0), and H and
−H are vertical lines (perpendicular to [−p, p]). Because of step 1 above we may
furthermore assume that q2 = (1/s, −a)T and q3 = (−1/s, −1)T for some a ∈ (0, 1].
Now we need the coordinates of d1, which is the intersection of the lines aff{p, q2}
and aff{−p, q3}. We obtain

d1
2 = − 1

1 − 1
s

(d1
1 + 1) and d1

2 = a

1 − 1
s

(d1
1 − 1),

resulting in

d1 =
(

a − 1

a + 1
,

−2a

(1 − 1
s
)(a + 1)

)T

.
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Figure 3. Construction used in the proof of Theorem 2 after applying the transformation described in steps
1–3 obtaining the new valid situation.

Now we compute γ such that condition (3) is satisfied, i.e.,

−γ d1 ∈ [−sq2, −sq3] = [(−1, sa)T , (1, s)T ].

Hence, for some λ ∈ [0, 1], we have

−γ

(
a − 1

a + 1
,

−2a

(1 − 1/s)(a + 1)

)
= (1 − λ)(−1, sa)T + λ(1, s)T

= (−1 + 2λ, s((1 − λ)a + λ))T

and it is easy to check that this implies

γ = (s − 1)(a + 1)2

4a − (s − 1)(a − 1)2
.

Thus the problem of finding the maximal s under the condition sγ ≤ 1 may be rewrit-
ten as

max s, such that
s(s − 1)(a + 1)2

4a − (s − 1)(a − 1)2
≤ 1.

The above condition is easily rewritten as

(s2 − 1)(a + 1)2 − 4as ≤ 0.

We are interested in the maximum s, i.e., in the larger of the two roots of the equation
(s2 − 1)(a + 1)2 − 4as = 0, which is

s = 2a

(a + 1)2
+
√

1 + 4a2

(a + 1)4
=: h(a),
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a ∈ (0, 1]. Hence, the maximum of s coincides with the maximum of h(a) with a ∈
(0, 1]. It is straightforward to verify that h(a) is increasing in (0, 1], and thus we can
conclude that

max s = max
a∈(0,1]

h(a) = h(1) = 1 + √
5

2
= ϕ.

Now, note that equality holds if and only if a = 1, γ = ϕ − 1, and d1 =
(0, −ϕ/(ϕ − 1))T . Moreover, in the extreme case we have ϕγ = 1, which is true
if and only if −ϕq1 = d1, q2 = (1/ϕ, −1)T , and q3 = (−1/ϕ, −1)T . Since q2 ∈
bd(−ϕC) ∩ [d1, p], we have [d1, p] ⊂ bd(−ϕC). The same reasoning with q3 replac-
ing q2 shows that [d1, −p] ⊂ bd(−ϕC). Moreover, q1 = (0, 1/(ϕ − 1))T = −γ d1 ∈
[−ϕq2, −ϕq3]. Thus q1 ∈ bd(−ϕC) implies [−ϕq2, −ϕq3] ⊂ bd(−ϕC). Since it is
also clear that [p, −ϕq3], [−p, −ϕq2] ⊂ bd(−ϕC), we obtain a complete description
of the boundary of −ϕC, thus proving

−ϕC = conv({d1, ±p, −ϕq2, −ϕq3}).
Finally, since ϕ = 1/(ϕ − 1), we obtain

C = conv

({(
0,

1

ϕ − 1

)T

,

(
± 1

ϕ
, 0

)T

,

(
± 1

ϕ
, −1

)T
})

=
( 1

ϕ
0

0 1

)
GH,

which concludes the proof of our theorem.

Remark. For every s ∈ [1, ϕ] there exists C ∈ K2, Minkowski centered with s(C) =
s, such that

C ∩ (−C) ⊂opt conv(C ∪ (−C).

To see this, we perform a symmetrization process: making a hexagon from the pen-
tagon GH by adding the point (0, −τ)T for τ ∈ [1, ϕ2] and translating the whole set in
the direction of (1, 0)T such that it is Minkowski centered again. In this way we obtain
a continuously monotonely shrinking Minkowski asymmetry with growing τ , ending
in a 0-symmetric hexagon when τ = ϕ2, while keeping property 3 of Theorem 3 true.
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TIGHTENING AND REVERSING THE ARITHMETIC-HARMONIC

MEAN INEQUALITY FOR SYMMETRIZATIONS OF CONVEX SETS

RENÉ BRANDENBERG, KATHERINA VON DICHTER, AND BERNARDO GONZÁLEZ MERINO

Abstract. This paper deals with four symmetrizations of a convex set C: the intersection,

the harmonic and the arithmetic mean, and the convex hull of C and −C. A well-known

result of Firey shows that those means build up a subset-chain in the given order. On

the one hand, we determine the dilatation factors, depending on the asymmetry of C, to

reverse the containments between any of those symmetrizations. On the other hand, we

tighten the relations proven by Firey and show a stability result concerning those factors

near the simplex.

1. Introduction and Notation

The arithmetic-geometric-harmonic mean inequality together with minimum and maxi-

mum (which can be seen as the extreme means) states in the two-argument case

(1) min{a, b} ≤
(
a−1 + b−1

2

)−1

≤
√
ab ≤ a+ b

2
≤ max{a, b}

for any a, b > 0, with equality in any/all of the inequalities if and only if a = b (see

[HLP, Sch]).

For any X ⊂ Rn let conv(X) denote the convex hull , i.e., the smallest convex set con-

taining X. A segment is the convex hull of {x, y} ⊂ Rn, which we abbreviate by [x, y]. For

any X,Y ⊂ Rn, ρ ∈ R let X + Y = {x+ y : x ∈ X, y ∈ Y } be the Minkowski sum of X,Y

and ρX = {ρx : x ∈ X} the ρ-dilatation of X. We abbreviate (−1)X by −X. The family

of all (convex) bodies (compact convex sets) is denoted by Kn and for any C ∈ Kn we write

C◦ = {a ∈ Rn : aTx ≤ 1, x ∈ C} for the polar of C.

All the means above can be generalized for convex sets. One may identify means of num-

bers by means of segments via associating a, b > 0 with [−a, a] and [−b, b]. Thus, e.g., the

arithmetic mean of a and b is identified with [−1
2 (a+ b) , 12 (a+ b)] = 1

2 ([−a, a] + [−b, b]).
In general, the arithmetic mean of K,C ∈ Kn is defined by 1

2(K + C), the minimum by

K ∩ C, and the maximum by conv(K ∪ C). Since polarity can be regarded as the higher-

dimensional counterpart of the inversion operation x 7→ 1/x (cf. [MR]), the harmonic mean
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2 R. BRANDENBERG, K. VON DICHTER, AND B. GONZÁLEZ MERINO

of K and C is defined by
(
1
2(K

◦ + C◦)
)◦
. The geometric mean has been extended in sev-

eral ways (cf. [BLYZ] or [MR]). It would need a separate, more involved treatment. Here

we focus only on the four other means. The study of means of convex bodies has been

started by Firey in the 1960’s [Fi, Fi2, Fi3], but there also exist several recent papers (see,

e.g., [MR, MR2, MMR]).

Perphaps the most essential result of Firey is the extension of the harmonic-arithmetic

mean inequality from positive numbers to convex bodies with 0 in their interior in [Fi]

(see [MR] for a nice and short proof). Moreover, Firey’s inequality may again be extended

involving minimum and maximum.

Proposition 1.1. Let C,K ∈ Kn with 0 in their interior. Then

(2) K ∩ C ⊂
(
K◦ + C◦

2

)◦
⊂ K + C

2
⊂ conv(K ∪ C),

with equality between any of the means if and only if K = C.

In the following we analyze sharpness of the set-containment inequalities with respect to

optimal containment (instead of equality of sets): For any C,K ∈ Kn we say K is optimally

contained in C, and denote it by K ⊂opt C, if K ⊂ C and K ̸⊂ ρC+ t for any ρ ∈ [0, 1) and

t ∈ Rn. For C1, . . . , Ck ∈ Kn we say C1 ⊂ . . . ⊂ Ck is left-to-right optimal , if C1 ⊂opt Ck.

The starting point of our investigation is the following generalization of [BDG, Theorem

1.3] for arbitrary convex sets with 0 in their interior.

Theorem 1.2. Let C,K ∈ Kn with 0 in their interior. Then

K ∩ C ⊂opt conv(K ∪ C) ⇐⇒
(
1

2
(K◦ + C◦)

)◦
⊂opt 1

2
(K + C).

Note that Theorem 1.2 implies that left-to-right optimality in (2) depends solely on the

optimal containment of the harmonic in the arithmetic mean.

If C = −C + t for some t ∈ Rn, we say C is symmetric, and if C = −C, we say C is

0-symmetric. The family of 0-symmetric convex bodies is denoted by Kn
0 .

A special focus in our study lies on optimal containments of means of C and −C of a

convex body C, which are all symmetrizations of C. Symmetrizations are frequently used

in convex geometry, e.g., as extreme cases of a variety of geometric inequalities. Consider,

e.g., the Bohnenblust inequality [Bo], which bounds the ratio of the circumradius and the

diameter of convex bodies in arbitrary normed spaces. The equality case in this inequality is

reached in normed spaces with S∩(−S) or 1
2(S−S) as their unit balls [BK], where S denotes

an n-simplex with barycenter 0. These means also appear in characterizations of spaces,

for which C is complete or reduced [BGJM, Prop. 3.5 – 3.10]. We provide more motivation

for considering optimal containments between symmetrizations of C in the Appendix.

A major part of this paper is devoted to a better understanding of the optimal contain-

ments between those symmetrizations depending on the asymmetry of the initial body. We
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naturally require all symmetrizations of an already symmetric C to coincide with C up to

translations. This is always true for the arithmetic mean 1
2(C − C), but 0 has to be the

center of symmetry in case of the other three considered means. This indicates the need of

fixing a meaningful center for every convex body. The most common choice of an asymme-

try measure and a corresponding center are the Minkowski asymmetry of C ∈ Kn, which is

defined by

s(C) := inf{ρ > 0 : C − c ⊂ ρ(c− C), c ∈ Rn},

and the (not necessarily unique) Minkowski center of C, which is any c ∈ Rn fulfilling

C− c ⊂ s(C)(c−C) [Gr, BG2]. If 0 is a Minkowski center, we say C is Minkowski centered .

Note that, if C is not a singleton, s(C) ∈ [1, n], with s(C) = 1 if and only if C is

symmetric, and s(C) = n if and only if C is an n-dimensional simplex [Gr]. Moreover, the

Minkowski asymmetry s : Kn → [1, n] is continuous w.r.t. the Hausdorff metric (see [Gr],

[Sch] for some basic properties) and invariant under non-singular affine transformations. We

believe that the Minkowski asymmetry is most suitable for studying optimal containments

and consequently focus on Minkowski centered convex sets.

The classical norm relations ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 with x ∈ Rn can be naturally reversed

by the inequalities ∥x∥1 ≤ √
n∥x∥2 ≤ n∥x∥∞, which both transfer to left-to-right optimal

containments between the corresponding unit ball of these ℓp-spaces. Defining the gauge

function of a general C ∈ Kn in x by ∥x∥C = inf{ρ > 0 : x ∈ ρC} one may consider the

gauge functions induced by the means of K and C. Doing so, (2) can be read as

(3) ∥x∥conv(K∪C) ≤ ∥x∥K+C
2

≤ ∥x∥(K◦+C◦
2 )

◦ ≤ ∥x∥K∩C .

In order to reverse this chain of inequalities, we need to provide a chain of (optimal) in-

clusions, which is reverse to (2). This is not possible in general, since the needed scaling

factors of the reverse inclusions cannot always be bounded. However, assuming Minkowski

centeredness of the considered body, this problem can be fixed.

Theorem 1.3. Let C ∈ Kn be Minkowski centered. Then

(i) conv(C ∪ (−C)) ⊂opt s(C)(C ∩ (−C)),
(ii) conv(C ∪ (−C)) ⊂opt 2s(C)

s(C)+1
C−C
2 ,

(iii)
(
C◦−C◦

2

)◦ ⊂opt 2s(C)
s(C)+1(C ∩ (−C)),

(iv) C−C
2 ⊂opt s(C)+1

2 (C ∩ (−C)), and
(v) conv(C ∪ (−C)) ⊂opt s(C)+1

2

(
C◦−C◦

2

)◦
.

Moreover,

(vi) C−C
2 ⊂ s(C)+1

2

(
C◦−C◦

2

)◦
, and

for all s ∈ [1, n] there exists a Minkowski centered C ∈ Kn with s(C) = s, such that this

containment is optimal.
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After the proof of Theorem 1.3 we also provide an example that shows that the con-

tainment in Part (vi) above may not be optimal and derive a lower bound for the minimal

dilatation factor needed for this covering.

The following containment chains are a direct consequence of Theorem 1.3.

Corollary 1.4. Let C ∈ Kn be Minkowski centered.Then the following containment chains

are both left-to-right optimal:

(i) conv(C ∪ (−C)) ⊂ s(C)+1
2

(
C◦−C◦

2

)◦ ⊂ s(C)(C ∩ (−C)), and
(ii) conv(C ∪ (−C)) ⊂ 2s(C)

s(C)+1
C−C
2 ⊂ s(C)(C ∩ (−C)).

Moreover, the following two containment chains always apply:

(iii) C−C
2 ⊂ conv(C ∪ (−C)) ⊂ s(C)+1

2

(
C◦−C◦

2

)◦
,

(iv) C−C
2 ⊂ s(C)+1

2 C ∩ (−C) ⊂ s(C)+1
2

(
C◦−C◦

2

)◦
, and

for all s ∈ [1, n] there exist C ∈ Kn with s(C) = s, for which they are left-to-right optimal.

Based on this corollary, one obtains, e.g., that the following reverse inequality chain of

(3) is sharp w.r.t. s(C):

∥x∥C∩(−C) ≤
s(C) + 1

2
∥x∥C−C

2
≤ s(C)∥x∥conv(C∪(−C)).

In Lemma 3.1 we show that two of the containments of symmetrizations in forward

direction are always optimal:

C − C

2
⊂opt conv(C ∪ (−C)) and C ∩ (−C) ⊂opt

(
C◦ − C◦

2

)◦
.

Using Proposition 1.2, we see that (2) may be left-to-right optimal even for non-symmetric

C. In particular, consider a regular Minkowski centered simplex S ∈ K3, whose four means

are an octahedron (minimum), a rhombic dodecahedron (harmonic mean), a cube octahe-

dron (arithmetic mean), and a cube (maximum). They build a left-to-right optimal chain

of containments (see Figure 1). This property remains true for the four symmetrizations of

a regular Minkowski centered simplex in any odd dimension.

In contrast, for a regular Minkowski centered simplex S in even dimensions we show in

Lemma 3.2 that

S ∩ (−S) ⊂opt n

n+ 1
conv(S ∪ (−S)) and

(
S◦ − S◦

2

)◦
⊂opt n(n+ 2)

(n+ 1)2
S − S

2
.

Concerning the above, we proceed with a stability result. First we introduce several

parameters depending on n ∈ N, n ≥ 2 and s ∈ [1, n], which we need throughout the

upcoming results.
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Figure 1. Symmetrizations of a regular simplex S ⊂ R3: S ∩ (−S) an

octahedron (convex hull of black points),
(
S◦−S◦

2

)◦
a rhombic dodecahedron

(yellow),
(
S−S
2

)
a cube-octahedron (blue), and conv(S∪ (−S)) a cube (red).

ψ := ψ(n, s) :=
(n− s+ 1)(s+ 1)

1− (n− s)(n+ s(n+ 1))
− n,

ζ := ζ(n, s) = (n+ 1)

((
1 +

sn

s+ 1

)
1 + n− s

1− n(n− s)
− n

)
,

γ1 := γ1(n) :=
1

2

(
n− 1 +

√
(n− 2)n+ 5

)
,

γ2 := γ2(n) :=
n4 + n3 + 2n2 +

√
δ2

2(n3 + 2n2 + 3n+ 1)
,

γ3 := γ3(n) :=
n5 + 2n4 + 2n3 + 2n2 − 2n− 1 +

√
δ3

2n(n3 + 3n2 + 4n+ 3)
,

δ2 := δ2(n) := n8 + 6n7 + 17n6 + 28n5 + 28n4 + 12n3 − 4n2 − 12n− 4,

δ3 := δ3(n) := n10 + 8n9 + 28n8 + 56n7 + 72n6 + 66n5 + 44n4 + 16n3 − 4n2 − 8n+ 1.

One can check that for every even n holds n − 1
n < γ2 < γ3 < n and ψ = ζ = 1 in case

s = n. Moreover, we will see that ψ n
n+1 < 1 for all s > γ2, while ζ

n(n+2)
(n+1)2

< 1 for all s > γ3.

Theorem 1.5. Let n be even and C ∈ Kn Minkowski centered with s(C) = s. Then

(i) C ∩ (−C) ⊂ ψ
n

n+ 1
conv(C ∪ (−C)), if s ≥ γ2(n), and

(ii)

(
C◦ − C◦

2

)◦
⊂ ζ

n(n+ 2)

(n+ 1)2
C − C

2
, if s ≥ γ3(n).
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Whenever (2) is left-to-right optimal for some Minkowski centered convex body C there

also exists a series of Minkowski centered convex bodies with any smaller asymmetry provid-

ing a left-to-right optimality for the full chain (see Lemma 3.4). Thus, we aim to determine

the smallest number γ(n) ∈ [n−1, n] such that
(
C◦−C◦

2

)◦
is not optimally contained in C−C

2

for every Minkowski centered C ∈ Kn with s(C) > γ(n), and call this value the asymmetry

threshold of means. Notice that [BDG, Theorem 1.2] already shows that γ(2) = 1+
√
5

2 =: φ

is the golden ratio. Moreover, from Part (i) of Lemma 3.2 below we directly get γ(n) = n,

whenever n is odd.

We present a result on the asymmetry threshold for arbitrary even dimension.

Theorem 1.6. Let n be even. Then

n− 1 < γ1(n) ≤ γ(n) ≤ γ2(n) < n.

One may recognize the following: it is well-known that the golden ratio can be obtained

from solving the equation a+b
a = a

b with a > b > 0, and it is also γ(2). However, one can

similarily obtain the values of γ1 from solving the equation (n−1)a+b
a = a

b , and therefore may

consider the values of γ1 as a generalized golden ratio.

The asymmetry threshold provides us with a lower bound for the values of s such that

(2) cannot be left-to-right optimal. In the following we go one step further and determine

the possible values for the contraction factors α(C) and β(C) for which the minimum is op-

timally contained in the according contraction of the maximum and for which the harmonic

mean is optimally contained in the contraction of the arithmetic mean, respectively.

Let C ∈ Kn and α(C) > 0 be such that C ∩ (−C) ⊂opt α(C) conv(C ∪ (−C)). For

s ∈ [1, n] we define

α1(s) := inf{α(C) : C ∈ Kn Minkowski centered, s(C) = s} and

α2(s) := sup{α(C) : C ∈ Kn Minkowski centered, s(C) = s}.

Similarly, let β(C) > 0 be such that
(
1
2(C

◦ − C◦))
)◦ ⊂opt β(C) 1

2(C − C). Then

β1(s) := inf{β(C) : C ∈ Kn Minkowski centered, s(C) = s} and

β2(s) := sup{β(C) : C ∈ Kn Minkowski centered, s(C) = s}.
Theorem 1.7. Let C ∈ Kn be Minkowski centered with s(C) = s. Then

a) (i) α1(s) ≥ 2
s+1 , with equality at least for s ≤ 2.

(ii) α2(s) = 1 for s ≤ γ1, α2(s) ≤ ψ n
n+1 , for s > γ2, and

α2(s) ≥ s
s2−1

for n = 2 and s ≥ φ.

b) (i) β1(s) ≥ 4s
(s+1)2

, with equality at least for s ≤ 2.

(ii) β2(s) = 1 for s ≤ γ1, β2(s) ≤ ζ n(n+2)
(n+1)2

for s > γ3, β2(s) < 1 for s > γ2, and

β2(s) ≥ max
{

s
s2−1

, 4s
(s+1)2

}
for n = 2 and s ≥ φ.

Let us denote the canonical basis of Rn by e1, . . . , en ∈ Rn, the Euclidean norm of x ∈ Rn

by ∥x∥, and the Euclidean unit ball by B2 = {x ∈ Rn : ∥x∥ ≤ 1}. For any C,K ∈ Kn the
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Euclidean distance is denoted by d(C,K) and in case C = {p} is a singleton, we abbreviate

d({p},K) by d(p,K). For any C,K ∈ Kn the Banach-Mazur distance between C and K is

defined by dBM (C,K) = inf{ρ ≥ 1 : t1+K ⊂ L(C) ⊂ t2+ρK, L ∈ GL(n), t1, t2 ∈ Rn}. For
every X ⊂ Rn let bd(X) and int(X) denote the boundary and interior of X, respectively.

For C ∈ Kn and a ∈ Rn let hC(a) = sup{aTx : x ∈ C} be the support function of C in

a. Notice that ∥ · ∥C is a norm in the classic sense if and only if C ∈ Kn
0 and remember

that ∥x∥C = hC◦(x) for every C ∈ Kn and x ∈ Rn (see [MR]). For any a ∈ Rn \ {0}
and ρ ∈ R, H≤

a,ρ = {x ∈ Rn : aTx ≤ ρ} denotes the halfspace with outer normal a and

right-hand side ρ. We say that the halfspace H≤
a,ρ supports C ∈ Kn at q ∈ C, if C ⊂ H≤

a,ρ

and q ∈ bd(H≤
a,ρ). For any C ∈ Kn and p ∈ bd(C), the outer normal cone of K at p is

defined as N(C, p) = {a ∈ Rn : aT p ≥ aTx for all x ∈ C}. For every X ⊂ Rn let us denote

by pos(X) and aff(X) the positive and affine hull of X, respectively, while the relative

interior of X is denoted by relint(X). In case u1, . . . , un+1 ∈ Rn are affinely independent,

we say that conv({u1, . . . , un+1}) is an n-simplex . Throughout the paper we abbreviate

[n] := {1, 2, . . . , n} for any n ∈ N.

2. Preliminary results and lemmas

We recall the characterization of the optimal containment under homothety in terms of

the touching conditions (see [BK, Theorem 2.3]).

Proposition 2.1. Let K,C ∈ Kn and K ⊂ C. The following are equivalent:

(i) K ⊂opt C.

(ii) There exist k ∈ {2, . . . , n+1}, pj ∈ K ∩ bd(C), uj ∈ N(C, pj), j = 1, . . . , k, such that

0 ∈ conv({u1, . . . , uk}).

Moreover, if K,C ∈ Kn
0 , then (i) and (ii) are also equivalent to K ∩ bd(C) ̸= ∅.

One may choose uj , j = 1, . . . , k, to be extreme points of C◦ above, which in case of a

polytopal C means that they are facet normals.

The next lemma shows that all the considered means are affine invariant.

Lemma 2.2. Let K,C ∈ Kn and A be a non-singular affine transformation. Then

A(K) ∩A(C) = A(K ∩ C), (((A(K))◦ − (A(C))◦)/2)◦ = A ((K◦ − C◦)/2)◦ ,

(A(K) +A(C))/2 = A ((K + C)/2) , conv (A(K) ∪ (A(C)) = A (conv(K ∪ C)) .

Proof. From the fact that A(C◦) = ((A−1)T (C))◦, we obtain
(
(A(K))◦ − (A(C))◦

2

)◦
=

(
(A−1)T (K◦)− (A−1)T (C◦)

2

)◦

=

(
(A−1)T (K◦ − C◦)

2

)◦
=

(
(A−1)T

(
K◦ − C◦

2

))◦
= A

((
K◦ − C◦

2

)◦)
.

The other identities are trivially true. □



8 R. BRANDENBERG, K. VON DICHTER, AND B. GONZÁLEZ MERINO

The next result is a straightforward corollary of Lemma 2.2.

Corollary 2.3. Let C ∈ Kn be Minkowski centered, A ∈ Rn×n a regular linear transforma-

tion and α ∈ R. Then

C ∩ (−C) ⊂opt α · conv(C ∪ (−C))
if and only if

A(C) ∩A(−C) ⊂opt α · conv(A(C) ∪A(−C)).

The following proposition is a corollary of Proposition 2.1, which is a (variant of a)

known result, given in [GrK, (1.1)] in a more general version, and will be used in the proof

of Lemma 3.1.

Proposition 2.4. Let C,K ∈ Kn
0 . Then C ⊂opt K if and only if K◦ ⊂opt C◦. Moreover,

the touching points of C to the boundary of K become the outer normals of supporting

halfspaces of the touching points of K◦ to the boundary of C◦ and vice versa.

Let us mention that while the containment in Proposition 2.4 holds for any C,K with 0

in their interior, the optimality of this containment may in general be lost even in case of

Minkowski centered C and K (see Figure 2).

0

Figure 2. Minkowski centered C (black) and K (red), s.t. C ⊂opt K but

K◦ (green) is not optimal contained in C◦ (blue).

As mentioned in the introduction, (2) is not left-to-right optimal for regular Minkowski

centered simplices in even dimensions. The following lemma prepares us to prove this fact

in Lemma 3.2.

Lemma 2.5. Let P ∈ Kn
0 be a polytope and v ∈ bd(P ) such that v is also an outer normal

of a facet of P , closest to the origin 0. Then

P ◦ ⊂opt 1

∥v∥2P.

Proof. Let 0 < t1 ≤ · · · ≤ tm and u1, . . . , um ∈ Sn−1 be such that P = {x ∈ Rn :

|(ui)Tx| ≤ ti, i ∈ [m]}. Then P ◦ = conv({±u1/t1, . . . ,±um/tm}) and t1u1 ∈ t1B2 ∩ bd(P ),

which implies t1B2 ⊂opt P by Proposition 2.1. Since 1
t1
u1 ∈ P ◦ ∩ bd( 1

t1
B2), we have

P ◦ ⊂opt 1
t1
B2 ⊂opt 1

t21
P and 1

t1
u1 is a touching point of P ◦ to the boundary of 1

t21
P . Thus, by

Part (iii) of Proposition 2.1, we have P ◦ ⊂opt 1
t21
P . Choosing v = t1u

1 finishes the proof. □
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We recall a stability result for the Banach-Mazur distance in the near-simplex case, given

in [Sch2, Theorem 2.1].

Proposition 2.6. Let S ∈ Kn be an n-simplex and C ∈ Kn such that s(C) = n − ε, with

ε ∈ (0, 1n). Then

(4) dBM (C, S) ≤ 1 +
(n+ 1)ε

1− nε
.

3. Optimality in Firey’s inequality chain

As mentioned in the introduction, two of the containments in Proposition 1.1 are always

optimal for symmetrizations.

Lemma 3.1. Let C ∈ Kn. Then

(i) C−C
2 ⊂opt conv(C ∪ (−C)) and

(ii) C ∩ (−C) ⊂opt
(
C◦−C◦

2

)◦
, if also 0 ∈ C.

Proof. We start proving (i). By (2), we have C−C
2 ⊂ conv(C ∪ (−C)). Now, there exists

an extreme point x of C and an extreme point y of −C, s.t. [x, y] ⊂ bd(conv(C ∪ (−C))).
This implies x+y

2 ∈ C−C
2 ∩ bd(conv(C ∪ (−C)) and, since C−C

2 and conv(C ∪ (−C)) are

0-symmetric, we can conclude the proof of (i) by Proposition 2.1.

If 0 ∈ C, we have C ∩ (−C) ̸= ∅. Thus, applying (i) and Proposition 2.4 implies (ii). □

We are now ready to prove Lemma 3.2.

Lemma 3.2. Let S be a Minkowski centered regular n-simplex. Then

(i) S ∩ (−S) ⊂opt conv(S ∪ (−S)), if n is odd,

(ii) S ∩ (−S) ⊂opt n
n+1conv(S ∪ (−S)), if n is even, and

(iii)
(
S◦−S◦

2

)◦ ⊂opt n(n+2)
(n+1)2

· S−S
2 , if n is even.

Proof. In order to simplify the calculations, we assume w.l.o.g. that S = conv({p1, . . . , pn+1})
with pj ∈ Rn, such that ∥pj∥ = 1, j ∈ [n+ 1].

(i) Let n ≥ 1 be odd and p = 2
n+1

(
p1 + · · ·+ p

n+1
2

)
. Since

∑n+1
i=1 p

i = 0, we have

−p = 2
n+1

(
p

n+3
2 + · · ·+ pn+1

)
∈ S, and thus p ∈ S ∩ (−S). Define

H≤
1 :=

{
x ∈ Rn : (p1 + · · ·+ p

n+1
2 )Tx ≤ n+ 1

2n

}
,

H≤
2 :=

{
x ∈ Rn : (−p1 − · · · − p

n+1
2 )Tx ≤ n+ 1

2n

}
.

Then we obtain for j = 1, . . . , (n+ 1)/2

(p1 + · · ·+ p
n+1
2 )T pj = 1−

(
n+ 1

2
− 1

)
1

n
=
n+ 1

2n
,
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and for j = (n+ 3)/2, . . . , n+ 1

(−p1 − · · · − p
n+1
2 )T pj =

n+ 1

2n
,

and therefore S ⊂ H≤
1 ∩H≤

2 . Moreover,

|(p1 + · · ·+ p
n+1
2 )T p| = n+ 1

2n
,

which shows that H≤
1 and H≤

2 support S at p and −p, respectively. Hence, S ∩
(−S) ⊂opt conv(S ∪ (−S)).

(ii) We start by observing that S = {x ∈ Rn : (−pj)Tx ≤ 1
n , j ∈ [n + 1]}, and that

therefore

S ∩ (−S) =
{
x ∈ Rn : |(pj)Tx| ≤ 1

n
, j ∈ [n+ 1]

}
.

Now, let p = 2
n+1p

1 + · · ·+ 2
n+1p

n
2 + 1

n+1p
n+1 ∈ S ∩ (−S). Then, for j = 1, . . . , n2 we

have

(pj)T p =
2

n+ 1
−
((n

2
− 1
) 2

n+ 1
+

1

n+ 1

)
=

2

n+ 1
− 1

n
· n− 1

n+ 1
=

1

n
,

and for j = n
2 + 1, . . . , n

(pj)T p = − 1

n

(
n

2
· 2

n+ 1
+

1

n+ 1

)
= − 1

n
.

Thus, n of the constraints |(pj)Tx| ≤ 1
n , j ∈ [n+ 1] are active in p and p is a vertex of

S ∩ (−S). Moreover,

∥p∥2 = 1

(n+ 1)2

((n
2
· 4 + 1

)
+
(n
2
·
(n
2
− 1
)
· 4 + n

2
· 2
)(

− 1

n

))
=

1

n+ 1
,

which shows (n+1)p ∈ bd((S∩ (−S))◦) using the Cauchy-Schwarz inequality. Finally,

since S◦ = −nS, we have

(S ∩ (−S))◦ = conv(S◦ ∪ (−S)◦) = n · conv(S ∪ (−S)),

implying n+1
n p ∈ bd(conv(S ∪ (−S))). Hence,

S ∩ (−S) ⊂opt n

n+ 1
conv(S ∪ (−S)).

(iii) Notice that taking differences of any of the first n
2 vertices and any of the last n

2 + 1

induces a facet of S−S
2 , which is closest to the origin. Moreover,

v :=
1

2




n
2∑

i=1

pi

n
2

−
n+1∑

i=n
2
+1

pi

n
2 + 1


 ∈ bd

(
S − S

2

)

belongs to that facet and is also an outer normal of it.
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We compute

∥v∥2 = 1

4

(
n

2

1

(n2 )
2
+
(n
2
+ 1
) 1
(
n
2 + 1

)2 +
n

2

(n
2
− 1
) 1

(n2 )
2

(
− 1

n

)

+
(n
2
+ 1
) n
2

1

(n2 + 1)2

(
− 1

n

)
− 2

n

2

(n
2
+ 1
) 1

n
2

1
n
2 + 1

(
− 1

n

))

=
1

4

(
2

n
+

2

n+ 2
− n− 2

n2
− 1

n+ 2
+

2

n

)
=

(n+ 1)2

n2(n+ 2)
.

Using Lemma 2.5 and the identity S◦ = −nS again, we obtain
(
S◦ − S◦

2

)◦
=

1

n

(
S − S

2

)◦
⊂opt 1

n∥v∥2
S − S

2
=
n(n+ 2)

(n+ 1)2
S − S

2
.

□

As mentioned in the introduction, Theorem 1.2 states that left-to-right optimality in (2)

depends only on the optimal containment of the harmonic in the arithmetic mean.

Proof of Theorem 1.2. The forward direction directly follows from Proposition 1.1. Thus,

we only have to show the backward direction.

Let
(
K◦+C◦

2

)◦ ⊂opt K+C
2 . By Proposition 2.1 there exist k ∈ {2, . . . , n + 1}, pj ∈(

K◦+C◦
2

)◦ ∩ bd
(
K+C

2

)
, uj ∈ N(K+C

2 , pj), j ∈ [k], such that 0 ∈ conv({u1, . . . , uk}). Choose
any p = pj , u = uj , j ∈ [k], and β ∈ R, such that Hu,β is a hyperplane supporting K+C

2 in

p. Since p ∈
(
K◦+C◦

2

)◦ ∩ bd
(
K+C

2

)
, we have ∥p∥(K◦+C◦

2 )
◦ = ∥p∥K+C

2
= 1.

On the one hand, using p
∥p∥K

∈ K and p
∥p∥C

∈ C, we see

1

2

(
1

∥p∥K
+

1

∥p∥C

)
p ∈ K + C

2
,

and therefore,

∥p∥K+C
2

≤
(
1

2

(
1

∥p∥K
+

1

∥p∥C

))−1

.

On the other hand, since hC◦ = ∥·∥C , we have

1

2
(∥p∥K + ∥p∥C) =

1

2
(hK◦(p) + hC◦(p)) = hK◦+C◦

2
= ∥p∥(K◦+C◦

2 )
◦ .

Applying the arithmetic-harmonic mean inequality (for numbers - restating the main

argument for Proposition 1.1), we obtain

∥p∥K+C
2

≤
(
1

2

(
1

∥p∥K
+

1

∥p∥C

))−1

≤ 1

2
(∥p∥K + ∥p∥C) = ∥p∥(K◦+C◦

2 )
◦ = ∥p∥K+C

2
.

This means that we have equality between the harmonic and arithmetic mean of ∥p∥K
and ∥p∥C , which implies

∥p∥K = ∥p∥C = ∥p∥K+C
2

= 1,
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and as a direct implication

∥p∥K∩C = max{∥p∥K , ∥p∥C} = 1.

Now, it suffices to show that Hu,β also supports conv(K ∪C)) in p. Assume that the latter

is wrong. This would imply, that there exists q ∈ K \ C or q ∈ C \K such that uT q > β.

Say, w.l.o.g., q ∈ K \ C. However, this would imply uT
(p+q

2

)
> β, contradicting the fact

that Hu,β supports K+C
2 . Hence, Hu,β supports also conv(K ∪ C) at p.

Altogether, we see that pj ∈ (K ∩C)∩bd (conv(K ∪ C))) with uj ∈ N(conv(K ∪C), pj),
j ∈ [k] and 0 ∈ conv({u1, . . . , uk}). Using Proposition 2.1, we obtain the optimal contain-

ment of K ∩ C in conv(K ∪ C). □

The following proposition (see [BDG, Theorem 1.3]) is a direct consequence of Theorem

1.2, applied to C and −C.

Proposition 3.3. Let C ∈ Kn be Minkowski centered. Then the following are equivalent:

(i) C ∩ (−C) ⊂opt conv(C ∪ (−C)),
(ii)

(
1
2(C

◦ − C◦))
)◦ ⊂opt 1

2(C − C),

(iii) there exist p,−p ∈ bd(C) and parallel halfspaces H≤
a,1 and H≤

−a,1 supporting C at p

and −p, respectively.

In case, when the containment in (2) is left-to-right optimal for some Minkowski centered

C and K = −C, there also exist Minkowski centered bodies with an arbitrary smaller

asymmetry, providing left-to-right optimality in the full chain.

Lemma 3.4. Let C ∈ Kn be Minkowski centered. If

C ∩ (−C) ⊂opt conv(C ∪ (−C)),

for every s ∈ [1, s(C)] there exists a Minkowski centered Cs ∈ Kn with s(Cs) = s, such that

Cs ∩ (−Cs) ⊂opt conv(Cs ∪ (−Cs)).

Proof. Since C is Minkowski centered, we obtain from Proposition 2.1 that there exist

p1, . . . , pk ∈ − 1
s(C)C ∩ bd(C) with k ∈ {2, . . . , n + 1} and uj ∈ N(C, pj), j ∈ [k], such

that 0 ∈ conv({u1, . . . , uk}). By Part (iii) of Proposition 3.3 there also exist p,−p ∈
(C ∩ (−C)) ∩ bd(conv(C ∪ (−C))). For λ ∈ [0, 1] let us define

Kλ := conv
(
{p1, . . . , pk, αλp

1, . . . , αλp
k,±p}

)
with αλ := −((1− λ)s(C) + λ).

One may recognize, that since α0p
j = −s(C)pj ∈ C, j ∈ [k], we have Kλ ⊂ C. By the fact

that ±p ∈ Kλ, we have ±p ∈ (Kλ∩ (−Kλ))∩bd(conv(Kλ∪ (−Kλ)) for all λ ∈ [0, 1]. Hence,

Kλ fulfills Part (iii) of Proposition 3.3 and therefore the optimal containment. Moreover,

Kλ ⊂ αλKλ with αλp
j ∈ Kλ ∩ bd(αλKλ) and −uj ∈ N(αλKλ, αλp

j), j ∈ [k]. Thus, by

Proposition 2.1 Kλ is optimally contained in αλKλ, which shows that s(Kλ) = −αλ =

(1− λ)s(C) + λ ∈ [1, s(C)]. Choosing Cs := K s(C)−s
s(C)−1

concludes the proof. □
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Using Proposition 2.6 we now prove Theorem 1.5.

Proof of Theorem 1.5. Let us mention that we split the proof in (i) and (ii) only after

a while. Let S = conv({p1, . . . , pn+1}) be a regular Minkowski centered n-simplex with

∥pi∥ = n, i ∈ [n+ 1] and ρ = dBM (C, S). Since γ3 > γ2 > n− 1
n , C is under the conditions

of Proposition 2.6. Hence, we may use (4) with ε := n− s to obtain

(5) ρ ≤ ρ∗ = 1 +
(n+ 1)(n− s)

1− n(n− s)
=

n+ 1− s

1− n(n− s)
.

Let Fi = conv({pj : j ̸= i}) be the facet of S, opposing pi and Li := aff(Fi) with i ∈
[n + 1]. Since ρ = dBM (C, S), there exists a regular linear transformation L, such that

c1 + S ⊂ L(C) ⊂ c2 + ρS for some c1, c2 ∈ Rn. Since by Corollary 2.3, L(C) ∩ (−L(C)) ⊂
γ · conv(L(C) ∪ (−L(C))) for some γ > 0 is equivalent to C ∩ (−C) ⊂ γ · conv(C ∪ (−C)),
we can (w.l.o.g.) replace C by L(C), and thus obtain

(6) c1 + S ⊂ C ⊂ c2 + ρS.

We now show by contradiction that 0 ∈ c1 + S. Note that since S is Minkowski centered,

we have

S =
⋂

j∈[n+1]

{
x : − 1

n
(pj)Tx ≤ 1

}
.

Assume 0 /∈ c1 + S. Then −c1 /∈ S, which means (−pk/n)T (−c1) = (pk/n)T c1 > 1 for some

k ∈ [n+ 1]. Since ∥pk∥ = n, this implies that the distance from c1 + pk to {x : (pk)Tx = 0}
equals (pk/n)T (pk + c1) = n+ 1 + t for some t > 0.

However, since C is Minkowski centered and c1+ pk ∈ C, we also have −(c1+ pk)/s ∈ C.

This implies that the breadth of C in direction of pk is at least n + 1 + t + (n + 1 + t)/s.

Moreover, since C ⊂ c2 + ρS, we see that n + 1 + t + (n + 1 + t)/s is not larger than the

breath of ρS in direction of pk. Using (5) we obtain

(n+ 1 + t)

(
1 +

1

s

)
≤ ρ(n+ 1) ≤ (n+ 1)

(
1 +

(n+ 1)(n− s)

1− n(n− s)

)
.

Since t > 0, this implies

1 +
1

s
< 1 +

(n+ 1)(n− s)

1− n(n− s)
,

which is equivalent to (n+ 1)s2 − n2s+ 1− n2 < 0. Hence,

n2 −
√
n4 − 4(n+ 1)(1− n2)

2(n+ 1)
< s <

n2 +
√
n4 − 4(n+ 1)(1− n2)

2(n+ 1)
.

However, for both parts, (i) and (ii), of the theorem we assume that s ≥ γ2 and it is not

hard to check that γ2 >
n2+

√
n4−4(n+1)(1−n2)

2(n+1) , which contradicts the above.

Knowing that 0 ∈ c1 + S, we assume w.l.o.g. that the minimal distance µ̄ from 0 to the

facets of c1 + S is attained at c1 + L1.
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Since C is Minkowski centered and c1 + S ⊂ C, we have z := c1 + p1 ∈ C and, using the

fact that 0 ∈ (p
1

n + L1) ∩ (c1 + S), it follows that

d(z,
p1

n
+ L1) + µ̄ = d(z,

p1

n
+ L1) + d(

p1

n
+ L1, c

1 + L1)

= d(z, c1 + L1) = n+ 1.

Taking into account that −z
s ∈ C, we obtain

(7) ξ := d(
−z
s
,
p1

n
+ L1) =

d(z, p
1

n + L1)

s
=
n+ 1− µ̄

s
.

From c1 + S ⊂ c2 + ρS and considering the breadths of each simplex orthogonal to L1 one

can deduce

d(c2 + ρL1, c
1 + L1) ≤ (n+ 1)ρ− (n+ 1) = (n+ 1)(ρ− 1).

Since we also have −z
s ∈ C ⊂ c2 + ρS it follows

ξ ≤ d(c2 + ρL1,
p1

n
+ L1)

= d(c2 + ρL1, c
1 + L1) + d(c1 + L1,

p1

n
+ L1)

≤ (n+ 1)(ρ− 1) + µ̄.

(8)

Combining (7) and (8), we obtain

n+ 1− µ̄

s
≤ (n+ 1)(ρ− 1) + µ̄,

which is equivalent to

(9) µ̄ ≥ µ := µ(ρ) :=
n+ 1

s+ 1
(1− s(ρ− 1)) .

Thus, d(0, c2 + ρLj) ≥ d(0, c1 + Lj) ≥ µ for all j ∈ [n+ 1] and therefore

(10) µS ⊂ c1 + S.

as well as 0 ∈ c2 + (ρ− µ)S.

Hence,

d(0, c2 + ρLj) ≤ d(c2 + (ρ− µ)pj , c2 + ρLj) = ρ+ n(ρ− µ)

for all j ∈ [n+ 1] and therefore

(11) c2 + ρS ⊂ (ρ+ n(ρ− µ))S.

Now, we go on proving the two separate parts of the theorem.
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(i) Combining (11) and (10) with Part (ii) of Lemma 3.2 directly implies

C ∩ (−C) ⊂ (c2 + ρS) ∩ (−c2 − ρS)

⊂ (ρ+ n(ρ− µ))(S ∩ (−S))

⊂ n

n+ 1
(ρ+ n(ρ− µ))conv(S ∪ (−S))

⊂ n

n+ 1

(ρ+ n(ρ− µ))

µ
conv((c1 + S) ∪ (−c1 − S))

⊂ n

n+ 1

(ρ+ n(ρ− µ))

µ
conv(C ∪ (−C)).

Since ρ+n(ρ−µ(ρ))
µ(ρ) is increasing in ρ, it follows

C ∩ (−C) ⊂ n

n+ 1

(ρ∗ + n(ρ∗ − µ(ρ∗)))
µ(ρ∗)

conv(C ∪ (−C)).

Finally, from (5) and (9), we obtain

C ∩ (−C) ⊂ ψ
n

n+ 1
conv(C ∪ (−C)),

where

ψ =
(n+ 1)ρ∗

n+1
s+1 (1− s(ρ∗ − 1))

− n =
(n+ 1) n+1−s

1−n(n−s)

n+1
s+1

(
1− s (n+1)(n−s)

1−n(n−s)

) − n

=
(n− s+ 1)(s+ 1)

1− (n− s)(n+ s(n+ 1))
− n.

Solving ψ n
n+1 = 1 becomes a quadratic equation in s and the unique positive root

is the given constant γ2 and therefore ψ n
n+1 < 1, whenever s(C) > γ2.

(ii) From (6), (11), and (10) we obtain

µS ⊂ c1 + S ⊂ C ⊂ c2 + ρS ⊂ (ρ+ n(ρ− µ))S.

Thus, using (iii) of Lemma 3.2 and the fact 1
2(S−S) = 1

2((c
1+S)−(c1+S)) ⊂ 1

2(C−C),
it follows
(
C◦ − C◦

2

)◦
⊂
(
(c2 + ρS)◦ − (c2 + ρS)◦

2

)◦
⊂ (ρ+ n(ρ− µ))

(
S◦ − S◦

2

)◦

⊂ (ρ+ n(ρ− µ))
n(n+ 2)

(n+ 1)2
S − S

2
⊂ (ρ+ n(ρ− µ))

n(n+ 2)

(n+ 1)2
C − C

2
.

Again, using that ρ+ n(ρ− µ(ρ)) is increasing in ρ, one obtains

(
C◦ − C◦

2

)◦
⊂ (ρ∗ + n(ρ∗ − µ(ρ∗)))

n(n+ 2)

(n+ 1)2
C − C

2
.

Finally, combining (5) and (9), results in

(
C◦ − C◦

2

)◦
⊂ ζ

n(n+ 2)

(n+ 1)2
C − C

2
,
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where

ζ =
(n+ 1)(n+ 1− s− n

s+1(1− (n− s)(n+ s(n+ 1))))

1− n(n− s)

= (n+ 1)

((
1 +

sn

s+ 1

)
1 + n− s

1− n(n− s)
− n

)
.

Similar as in (i), we conclude that

n(n+ 2)

(n+ 1)2
ζ =

n(n+ 2)

(n+ 1)

n+ 1− s− n
s+1(1− (n− s)(n+ s(n+ 1)))

1− n(n− s)
< 1,

whenever s is bigger than the given constant γ3.

□

Proof of Theorem 1.6. From Theorem 1.5 we directly obtain γ(n) ≤ γ2(n) for even n.

In order to obtain a lower bound on γ(n) in even dimensions, we provide a suitable family

of sets with left-to-right optimal containment in (2) and asymmetry equal to γ1(n) > n− 1

by extending the construction of the Golden House from [BDG]. Note that this construction

also holds for odd n ≥ 3.

Let S = conv({p1, . . . , pn+1}) with pj ∈ Rn be a Minkowski centered regular n-simplex

such that ∥pj∥ = 1 and (pi)T pj = −1/n for 1 ≤ i < j ≤ n + 1. Now, define C = S ∩H±

with H± := {x ∈ Rn : ±(p1 − p2)Tx ≤ η}, where η = (p1 − p2)T p ∈ (0, 1 + 1
n) and p =

(1−λ)p1+λp2 ∈ bd(H+) for some λ ∈ [0, 12 ]. Then η = 1−λ+ 1−λ
n − λ

n−λ = (1+ 1
n)(1−2λ)

and therefore

(12) λ =
1 + 1

n − η

2(1 + 1
n)

.

We will show that there exist ν ∈ R and s ∈ [1, n] such that

ν(p1 + p2)− 1

s
C ⊂opt C.

This can be rewritten as

(13) −1

s
(C − c) ⊂opt C − c with c =

s

s+ 1
ν(p1 + p2),

which means that c is the Minkowski center of C.
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c

bd(H+)bd(H−)

p3

p2 p1

ν(p1 + p2)− p
s

p

q

Figure 3. Construction from the proof of Theorem 1.6 for n = 2:

C (black), ν(p1 + p2)− 1
sC (dashed) and bd(H+), bd(H−) (dotted).

Our starting point is to compute the vertices of ν(p1 + p2) − 1
sC that belong to the

boundary of C. Particularly, our goal is that ν(p1 + p2)− 1
s ((1− λ)pi + λpj), i, j ∈ {1, 2},

i ̸= j, and ν(p1 + p2)− 1
sp

k, k = 3, . . . , n+ 1, belong to the facets of C with outer normals

−p1,−p2 and −p3, . . . ,−pn+1, respectively. Realize that it is sufficient to make sure that

ν(p1 + p2)− p
s and ν(p1 + p2)− p3

s belong to the facets of C, that are contained in facets of

S with outer normals −p1 and −p3, respectively. This means we need

(
ν(p1 + p2)− p

s

)T
(−p1) = 1

n
and

(
ν(p1 + p2)− p3

s

)T

(−p3) = 1

n
.

The latter two conditions translate into

−
(
ν − 1− λ

s

)
+

(
ν − λ

s

)
1

n
=

1

n
and

2ν

n
+

1

s
=

1

n
,

which can be simplified to

(14) s = n− 2λ and ν =
λ

2λ− n
.

Inserting (12), results in

(15) s =
n− 1

n + η

1 + 1
n

and ν =
1 + 1

n − η

2
(
1
n − n− η

) .

Next, let q = c + ξ(p1 − p2) with ξ > 0, such that q fulfills both conditions: q ∈ bd(H+)

and q belongs to the facet of S with the outer normal −p2 (c.f. Figure 3).

Combining this with the expression of c in (13), we obtain

η = qT (p1 − p2) = (c+ ξ(p1 − p2))T (p1 − p2) =

(
s

s+ 1
ν(p1 + p2) + ξ(p1 − p2)

)T

(p1 − p2)

and

1

n
= qT (−p2) = (c+ ξ(p1 − p2))T (−p2) =

(
s

s+ 1
ν(p1 + p2) + ξ(p1 − p2)

)T

(−p2).
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Using (p1 + p2)T (p1 − p2) = 0 and (p1 − p2)T (p1 − p2) = 2
(
1 + 1

n

)
, gives

(16)

(
s

s+ 1
ν + ξ

)
1

n
−
(

s

s+ 1
ν − ξ

)
=

1

n
and η = 2ξ

(
1 +

1

n

)
.

Inserting η from (16) into (15) leads to

s = n− 1 + 2ξ and ν =
1 + 1

n − 2ξ
(
1 + 1

n

)

2
(
1
n − n− 2ξ

(
1 + 1

n

)) =
1− 2ξ

2(1− 2ξ − n)

and the obtained ν in (16) gives us
(

s

s+ 1

1− 2ξ

1− 2ξ − n
+ ξ

)
1

n
−
(

s

s+ 1

1− 2ξ

1− 2ξ − n
− ξ

)
=

1

n
.

Finally, solving for ξ and s results into

ξ =
1− n+

√
(n− 2)n+ 5

4
and s = n+ 2ξ − 1 =

n− 1 +
√

(n− 2)n+ 5

2
= γ1.

One can also verify that every vertex of ν(p1+p2)− 1
sC not considered above is contained

in int(C). Together with Proposition 2.1 this guarantees the correctness of (13). Since

condition (iii) of Proposition 3.3 is fulfilled for the Minkowski centered C − c at the points

±ξ(p1 − p2), (2) gets optimal using C − c and c− C as the arguments, as desired.

Finally, by Lemma 3.4 we see that for s ≤ γ1 there exists a Minkowski centered C ∈ Kn

such that C ∩ (−C) ⊂opt conv(C ∪ (−C)) with s(C) = s, proving γ(n) ≥ γ1. □

4. Reverse containment

In this section we prove Theorem 1.3. While the proof of Parts (i)-(v) is straightforward,

understanding (vi) needs some additional effort: on the one hand, we show that C =

S ∩ (−sS), where S is a Minkowski centered regular simplex, provides optimality in (vi)

for each s ∈ [1, n], while on the other hand, we find a more intriguing family of sets not

fulfilling that optimality (see Example 4.3).

Remark 4.1. Let C = S∩(−sS), where S = conv({p1, . . . , pn+1}) with ∥pi∥ = 1, i ∈ [n+1],

is a regular Minkowski centered simplex and s ∈ [1, n]. Notice that C = S ∩ (−sS) ⊂
s2S ∩ (−sS) = −sC. Let Fi = {x ∈ S : (pi)Tx = − 1

n} and Gi = S ∩ (−sFi) with i ∈ [n+1].

Then Fi ⊂ bd(C) and therefore Gi ⊂ bd(−sC). Moreover, the points s
np

i belong to Gi with

pi being a normal vector of −sC in s
np

i, i ∈ [n+ 1]. Thus, by Proposition 2.1, we conclude

that C ⊂opt −sC and therefore that C is Minkowski centered with s(C) = s.

Proof of Theorem 1.3. Let s := s(C). First, one should recognize that Part (i) directly

follows from the left-to-right optimality in

−C ⊂ conv(C ∪ (−C)) ⊂ s · (C ∩ (−C)) ⊂ sC.

For the remaining parts of the proof, we begin by showing the correctness of the contain-

ments in Parts (ii) - (v).
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0
v

p1

p2p3

F3

G3

Figure 4. Construction from the proof of Part (vi) of Theorem 1.3 for

s = s(C) = 1.5, n = 2: C = S ∩ (−sS) (black), S (dotted), F3 and G3 (red)

For Part (ii) notice that −C ⊂ sC directly implies (s+1)(−C) ⊂ s(C−C), and therefore

−C ⊂ 2s
s+1

C−C
2 . Using the 0-symmetry of C−C

2 , we obtain conv(C ∪ (−C)) ⊂ 2s
s+1

C−C
2 .

Since −C ⊂ sC, we have C−C
2 ⊂ s+1

2 C and, again using its symmetry, also C−C
2 ⊂

s+1
2 (C ∩ (−C)), which yields Part (iv).

Parts (iii) and (v) then follow from (ii) and (iv) using Proposition 2.4.

Since we have optimality in Part (i) for every C and since either joining Parts (ii),(iv) or

(iii),(v) recovers (i), each of the Parts (ii)-(v) must be optimal for every C, too.

The proof of Part (vi) is a bit more subtle. Let C−C
2 ⊂opt ω

(
C◦−C◦

2

)◦
for some ω ≥ 1.

Since
C − C

2
⊂ s+ 1

2
(C ∩ (−C)) ⊂ s+ 1

2

(
C◦ − C◦

2

)◦
,

we immediately see that ω ≤ s+1
2 .

Now, let C = S ∩ (−sS) for s ∈ [1, n] as given in Remark 4.1, qn, qn+1 be the centers of

the (n− 2)-dimensional facets of Gn and Gn+1, respectively, which do not contain a vertex

belonging to the line segment [pn, pn+1], and v be a vertex of Gn+1. Then v belongs to

an edge connecting pn+1 with Fn+1. Thus, v = (1 − λ)pi + λpn+1 for some λ ∈ [0, 1] and

i ̸= n+ 1. Since v ∈ Gn+1, we know by Remark 4.1 that

s

n
= ((1− λ)pi + λpn+1)T pn+1 = (1− λ)

(−1

n

)
+ λ.

This implies λ = s+1
n+1 and that the vertices of Fn+1 are n−s

n+1p
i + s+1

n+1p
n+1, i ∈ [n]. Hence,

using the fact
∑n−1

i=1 p
i = −pn − pn+1, we obtain

qn+1 =
1

n− 1

n−1∑

i=1

(
n− s

n+ 1
pi +

s+ 1

n+ 1
pn+1

)

=
1

n− 1

(
(n− 1)(s+ 1)

n+ 1
pn+1 +

n− s

n+ 1
(−pn − pn+1)

)

=
1

n2 − 1
((ns− 1)pn+1 − (n− s)pn).
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For the same reasons

−qn =
1

n2 − 1
((n− s)pn+1 − (ns− 1)pn).

Now, let z := qn+1−qn

2 ∈ C−C
2 . Then

z =
1

2(n2 − 1)

(
(ns+ n− s− 1)pn+1 − (ns+ n− s− 1)pn

)
=

s+ 1

2(n+ 1)
(pn+1 − pn).

For the final argument, let us stress the dependence on s by denoting the points qn and

qn+1 by qn(s) and qn+1(s) as well as C by C(s). On the one hand, it is immediate to

check from the above that qn+1(1) = −qn(1) = 1
n+1(p

n+1 − pn). On the other hand, since

C(s) is increasing in s w.r.t set containment, we have qn(1) ∈ Fn+1 ∩ C(s) ⊂ bd(C(s)),

independently of s ∈ [1, n]. Moreover, for the same reasons −qn(1) ∈ bd(−C(s)) for every
s ∈ [1, n]. It follows

∥z∥ s+1
2 (C◦−C◦

2 )
◦ =

2

s+ 1

(∥z∥C + ∥z∥−C

2

)
=

1

2

(
∥p

n+1 − pn

n+ 1
∥C + ∥p

n+1 − pn

n+ 1
∥−C

)

=
1

2

(
∥qn+1(1)∥C + ∥ − qn(1)∥−C

)
= 1,

where we omitted the s in C(s) again. However, this yields z ∈ bd
(
s+1
2

(
C◦−C◦

2

)◦)
, as

desired.

□

Only in Part (vi) of Theorem 1.3 the containment may not always be optimal. Below we

give two examples: the first one shows that in 2-space all regular k-gons achieve optimality,

while the second one provides a construction of sets in arbitrary dimensions where the

containment is not optimal.

Example 4.2. Let C ⊂ R2 be a Minkowski centered regular k-gon with odd k. Then

C − C

2
⊂opt s(C) + 1

2

(
C◦ − C◦

2

)◦
.

Proof. Let r(C) and R(C) be the euclidean in- and circumradius of C, respectively. As-

sume w.l.o.g. that R(C) = 1. Since the Minkowski center of C coincides with the in-

and circumcenter, we can easily conclude that s(C) = R(C)
r(C) . Now, since for any k-gon

r(C) = R(C) cos
(
π
k

)
, it follows

s := s(C) =
R(C)

R(C) cos
(
π
k

) =
1

cos
(
π
k

) .

We choose a vertex p = u−v
2 of C−C

2 , where u and v are vertices of C. Then, since C is

Minkowski centered and R(C) = 1, we have ∥u∥ = ∥v∥ = 1, C◦ = ρ(−C) for some ρ > 0,

r(C◦) = 1, and ρ = s. Since C◦ is again a regular k-gon, any edge of
(
C◦−C◦

2

)◦
is of the

same distance from the origin.
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Using C◦ = s(−C), we have that w = sp is a vertex of C◦−C◦
2 and therefore {x ∈ Rn :

wTx = ∥w∥2} determines an edge of
(
C◦−C◦

2

)◦
with outer-normal vector w. This implies

C◦−C◦
2 ⊂opt ∥w∥2

(
C◦−C◦

2

)◦
. Since cos

(
π
k

)
= 1

s and R(C) = 1, we obtain

∥w∥2 = s2

4
∥u− v∥2 = s2

4

(
∥u∥2 + ∥v∥2 − 2uT v

)
=
s2

4

(
2 + 2 cos

(π
k

))

=
s2

2

(
1 +

1

s

)
.

Altogether,

C − C

2
=

1

s

C◦ − C◦

2
⊂opt 1

s

s2

2

(
1 +

1

s

)(
C◦ − C◦

2

)◦
=
s+ 1

2

(
C◦ − C◦

2

)◦
.

□

Example 4.3. In the following we provide a planar construction, which can simply be em-

bedded in higher dimensions, keeping the Minkowski center to be 0. This keeps its asymmetry

value and the same factor for the containment of the arithmetic mean within the harmonic

mean. Thus, the construction essentially provides a family of sets in arbitrary dimensions

with asymmetry s ∈ (1, 2), such that the arithmetic mean is contained in the interior of the

harmonic mean scaled by s+1
2 .

Let K = S ∩ (−sS), where S is a Minkowski centered regular triangle and s ∈ (1, 2). By

p1, . . . , p6 we denote the vertices of K, counted in clockwise order, such that [pi, pi+1] with

i = 1, 3, 5 are the shorter edges of K. Let

C = conv({p2, p4, p6, p
1 + p2

2
,
p3 + p4

2
,
p5 + p6

2
,
p1 − p4

s+ 1
,
p3 − p6

s+ 1
,
p5 − p2

s+ 1
})

(c.f. Figure 5).

0

q1

q2

p2

p4

p6

2
s+1q

1

2
s+1q

2

p3+p4

2
p5+p6

2

p1+p2

2

Figure 5. Construction from Example 4.3, s = 1.5: C (black), −C (black

dashed), K, −K (black dotted), conv(C∪(−C)) (red), conv(K∪(−K)) (red

dotted), C−C
2 (blue), K−K

2 (blue dashed), C ∩ (−C) = K ∩ (−K) (yellow).
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Note that

K −K

2
= conv

({
±p

1 − p4

2
,±p

2 − p5

2
,±p

3 − p6

2

})
and

K ∩ (−K) = conv

({
±p

1 − p4

s+ 1
,±p

2 − p5

s+ 1
,±p

3 − p6

s+ 1

})
.

Moreover, K and C are Minkowski centered with s(K) = s(C) = s and

C − C

2
= conv

({
±2p2 − p5 − p6

4
,±2p4 − p1 − p2

4
,±2p6 − p3 − p4

4
,

±(s+ 2)p2 − p5

2(s+ 1)
,±(s+ 2)p6 − p3

2(s+ 1)
,±(s+ 2)p4 − p1

2(s+ 1)

})
.

Now, assume

C − C

2
⊂opt s+ 1

2

(
C◦ − C◦

2

)◦
.

Then there would exist a vertex of C−C
2 , which also belongs to bd

(
s+1
2

(
C◦−C◦

2

)◦)
. Since

the vertices of C−C
2 have two different types, we have to consider both of them. Denote

q1 := 2p2−p5−p6

4 and q2 := (s+2)p2−p5

2(s+1) . Then, for both i = 1, 2,

2

s+ 1
qi ∈ 2

s+ 1

K −K

2
= K∩(−K) = C∩(−C) = conv

({
±p

2 − p5

s+ 1
,±p

3 − p6

s+ 1
,±p

4 − p1

s+ 1

})
.

Remember, that by Part (ii) of Lemma 3.1, we have C ∩ (−C) ⊂opt
(
C◦−C◦

2

)◦
. Thus, we

would obtain

±p
2 − p5

s+ 1
,±p

3 − p6

s+ 1
,±p

4 − p1

s+ 1
∈ (C ∩ (−C)) ∩ bd

((
C◦ − C◦

2

)◦)
.

If 2
s+1q

1 ∈ bd
((

C◦−C◦
2

)◦)
would be true, then

p2 − p5

s+ 1
,
p3 − p6

s+ 1
,

2

s+ 1
q1 ∈ (C ∩ (−C)) ∩ bd

((
C◦ − C◦

2

)◦)
,

which is only possible if the full edge [p
2−p5

s+1 ,
p3−p6

s+1 ] ⊂ (C ∩ (−C)) ∩ bd
((

C◦−C◦
2

)◦)
. By the

symmetries of C, we would conclude that C∩(−C) =
(
C◦−C◦

2

)◦
, obtaining a contradiction to

Part (iii) of Theorem 1.3. In case 2
s+1q

2 ∈ bd
((

C◦−C◦
2

)◦)
, we obtain a similar conclusion

(c.f. Figure 5). Thus, C fulfills C−C
2 ⊂ int( s+1

2

(
C◦−C◦

2

)◦
).

Remark 4.4. Let C ∈ Kn with s(C) = s and ω(C) > 0 be such that C−C
2 ⊂opt ω(C)

(
C◦−C◦

2

)◦
.

Then there exists x ∈ Rn such that

ω(C)∥x∥C−C
2

= ∥x∥(C◦−C◦
2 )

◦ .

On the one hand, x
∥x∥C ∈ bd(C) and x

∥x∥−C
∈ bd(−C), implying 1

2

(
1

∥x∥C + 1
∥x∥−C

)
x ∈

C−C
2 . It follows ∥x∥C−C

2
≤
( 1

∥x∥C
+ 1

∥x∥−C

2

)−1

.
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On the other hand, ∥x∥(C◦−C◦
2 )

◦ =
∥x∥C+∥x∥−C

2 . Therefore,

ω(C) =
∥x∥(C◦−C◦

2 )
◦

∥x∥C−C
2

≥ ∥x∥C + ∥x∥−C

2

1
∥x∥C + 1

∥x∥−C

2
=

(∥x∥C + ∥x∥−C)
2

4∥x∥C∥x∥−C
.

Let w.l.o.g. ∥x∥C ≥ ∥x∥−C and ρ := ∥x∥C
∥x∥−C

. Then ω(C) ≥ (ρ+1)2

4ρ and since C is

Minkowski centered, we have 1 ≤ ρ ≤ s, which implies that (ρ+1)2

4ρ attains its maximum

for ρ = s. We actually achieve this upper bound, whenever x ∈ C ∩ bd(−sC).

Remark 4.5. Let P ⊂ Rn be a Minkowski centered polytope. By Proposition 2.1 (and the

remark after it) there exist ai ∈ Rn and vertices xi, such that H≤
ai,1

define facets of P , i ∈
[k+1] and s(P ) ≤ k ≤ n, such that 0 ∈ conv({a1, . . . , ak+1}) and −xi ∈ Hai,s(P ), i ∈ [k+1].

Now, we do not only have P−P
2 ⊂opt (s(P )+1)

2 (P ∩ (−P )) from Theorem 1.3, but also the fact

that for any vertex y of the facet P∩Hai,1 of P , we have
y−xi

2 ∈ H
ai,

s(P )+1
2

∩ P−P
2 ∩ s(P )+1

2 (P∩
(−P )), i.e. P−P

2 touches s(P )+1
2 (P ∩ (−P )) in all the facets s(P )+1

2 (P ∩ (−P )) ∩H
ai,

s(P )+1
2

with a full facet (c.f. [BG2, Lemma 2.8], where this fact is shown for simplices).

Remark 4.6. It is well known, that s(K) = infC∈Kn
0
dBM (K,C) for every K ∈ Kn (see,

e.g., [Gr]). Furthermore, in [BG, Prop. 3.1] it is shown that this infimum is always attained

by C = K−K
2 . In general, if C ∈ Kn

0 and K ∈ Kn, we see from the definition of the Banach-

Mazur distance that

dBM (K,C) = s(K) ⇐⇒ ∃L ∈ GL(n), t1, t2 ∈ Rn s.t. −K − t1 ⊂ L(C) ⊂ s(K)K + t2.

Since L(C) is symmetric, we may symmetrize and replace the right-hand side above by

∃L ∈ GL(n), t1, t2 ∈ Rn s.t. conv((K+t1)∪(−K−t1)) ⊂ L(C) ⊂ s(K)((K+t2)∩(−K−t2)).

For a Minkowski concentric K we now immediately obtain that all four choices

C ∈
{
K ∩ (−K),

(
K◦ −K◦

2

)◦
,
K −K

2
, conv(K ∪ (−K))

}

of symmetrizations of K considered in this paper fulfill dBM (K,C) = s(K) and are therefore

minimizers for the Banach-Mazur distance between K and Kn
0 .

Moreover, with the help of the reverse containments from Theorem 1.3 we obtain some

upper bounds on the Banach-Mazur distances of pairs of these symmetrizations, e.g.

dBM (K ∩ (−K), conv(K ∪ (−K)) ≤ s(K) or

dBM (K ∩ (−K),

(
K◦ −K◦

2

)◦
) ≤ 2s(K)

s(K) + 1

However, this bounds do not even have to be tight when the containments between those

sets are. E.g. is the Banach-Mazur distance of any two of the symmetrizations of a regular

triangle in the plane exactly 1, as they are all regular hexagons.



24 R. BRANDENBERG, K. VON DICHTER, AND B. GONZÁLEZ MERINO

5. Improving the containment factors in the forward direction

Proof of Theorem 1.7. We start showing Part a).

(i) First, we show that α1(s) ≥ 2
s+1 independently of n. By the definition of α(C)

and Part (v) of Theorem 1.3 we have C ∩ (−C) ⊂opt α(C) · conv(C ∪ (−C)) ⊂opt

α(C)(s+1)
2 ·

(
C◦−C◦

2

)◦
, while Part (ii) of Lemma 3.1 gives C ∩ (−C) ⊂opt

(
C◦−C◦

2

)◦
.

Hence, α(C) must always be at least 2
s+1 .

Next, we show α1(s) = 2
s+1 in any dimension if s ≤ 2. First, let n = 2 and

C = S ∩ (−sS) with s ∈ [1, 2], where S = conv
({
p1, p2, p3

})
is a Minkowski centered

regular triangle with ∥pi∥ = 1, i = 1, 2, 3. Now, let v be the vertex of C ∩ (−C) with
v ∈ pos

({
p2,−p3

})
and µ ≥ 1, such that µv ∈ bd(conv(C ∪ (−C))). Finally, let q be

a vertex of conv(C ∪ (−C)), such that q ∈ [p2, v].

0

v
µv

q

p1

p2p3

−p3

s
2p

2

1
2p

2

Figure 6. Construction from the proof of Part (i) of Theorem 1.7 for s =

1.5: C = S ∩ (−sS) (black), −C (dashed), S and −S (dotted).

Since ∥p2∥ = 1, we have

∥v − q∥ =

∥∥p2 −
(
1
2p

2
)∥∥−

∥∥p2 −
(
s
2p

2
)∥∥

cos(π/6)
=

2√
3

(
1

2
−
(
1− s

2

))
=
s− 1√

3

Since ∥v∥ = R((S ∩ (−S)) = 1√
3
, we obtain

∥µv∥
∥v∥ = 1 +

∥µv − v∥
∥v∥ = 1 +

∥v − q∥ sin(π/6)
∥v∥ = 1 +

1
2 ∥v − q∥

1√
3

= 1 +
s

2
− 1

2
,

which implies

α(C) =
1

1 + s
2 − 1

2

=
2

s+ 1
.

For n ≥ 3 we can simply embed the above C keeping the Minkowski center to be

still 0 into n-space. This keeps its asymmetry value and also the correct factor for the

containment between C ∩ (−C) and conv(C ∪ (−C)).
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(ii) By the definition of γ(n), we have α2(s) = 1 for s ≤ γ1(n), while α2(s) ≤ ψ n
n+1 , if

s > γ2(n), follows from Part (i) of Theorem 1.5 (see Figure 8).

We now show that if n = 2 and s ≥ φ then there exists a Minkowski centered C

with s(C) = s for which α(C) = s
s2−1

. To do so, consider the pentagon

C = conv

({(
±1

(φ+ 1)(2− s− 1
s+1)

)
,

(
±1

−φ+1
s+1

)
,

(
0

sφ+1
s+1

)})
,

with s ≥ φ (see Figure 7).

v
w

p

q

Figure 7. Construction from the proof of Part a) (ii) of Theorem 1.7 for

s = 1.7: C (black), −C (black dashed), and conv(C ∪ (−C)) (red).

Since −1
sC ⊂ C with

−1

s

(
±1

−φ+1
s+1

)
∈
[(

∓1

(φ+ 1)(2− s− 1
s+1)

)
,

(
0

sφ+1
s+1

)]

and

−1

s

(
0

sφ+1
s+1

)
∈
[(

1

−φ+1
s+1

)
,

(
−1

−φ+1
s+1

)]
,

we obtain from Proposition 2.1 that C is Minkowski centered and s(C) = s.

Let p and v be vertices of C ∩ (−C), such that

{p} =

[(
0

sφ+1
s+1

)
,

(
1

(φ+ 1)(2− s− 1
s+1)

)]
∩
[(

1
φ+1
s+1

)
,

(
−1
φ+1
s+1

)]
and

{v} =

[(
0

sφ+1
s+1

)
,

(
1

(φ+ 1)(2− s− 1
s+1)

)]
∩
[(

0

−sφ+1
s+1

)
,

(
1

−(φ+ 1)(2− s− 1
s+1)

)]
,

while q = ν1p, w = ν2v ∈ bd(conv(C ∪ (−C))) for some ν1, ν2 > 1.

On the one hand, for some x ∈ R and some λ ∈ [0, 1], we have

p =

(
x

φ+1
s+1

)
= λ

(
0

s(φ+1)
s+1

)
+ (1− λ)

(
1

(φ+1)(−s2+s+1)
s+1

)
.
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Solving for λ and x results in λ = s
s+1 , x = 1

s+1 , and

p =
1

s+ 1

(
1

φ+ 1

)
.

On the other hand, there exists λ ∈ [0, 1], such that

q = λ

(
0

s(φ+1)
s+1

)
+ (1− λ)

(
1

φ+1
s+1

)
= ν1

(
1

s+1
φ+1
s+1

)
,

which results in λ = 1
2 , ν1 =

s+1
2 , and

q =
1

2

(
1

φ+ 1

)
.

In order to compute v, notice that

v =

(
x

0

)
= (1− λ)

(
0

sφ+1
s+1

)
+ λ

(
1

(φ+ 1)
(
2− s− 1

s+1

)
)
,

for some x ∈ R and λ ∈ [0, 1]. Solving for x and λ again gives λ = x = s
s2−1

, and

v =

(
s

s2−1

0

)
. Hence,

w =
1

2

((
1

−φ+1
s+1

)
+

(
1

φ+1
s+1

))
=

(
1

0

)
= ν2

(
s

s2−1

0

)
,

which means that ν2 =
s2−1
s .

Due to the symmetries of C, we conclude

α(C) = max

{
1

ν1
,
1

ν2

}
= max

{
2

s+ 1
,

s

s2 − 1

}
=

s

s2 − 1
.

We now proceed with Part b).

(i) On the one hand, by Part (iv) of Theorem 1.3, we have
(
C◦ − C◦

2

)◦
⊂opt β(C)

C − C

2
⊂opt β(C)

s+ 1

2
C ∩ (−C).

On the other hand, from Part (iii) of Theorem 1.3, we know
(
C◦ − C◦

2

)◦
⊂opt 2s

s+ 1
C ∩ (−C).

Hence, 2s
s+1 ≤ β(C) s+1

2 , which implies β1(s) ≥ 4s
(s+1)2

.

Now, consider the hexagon

C = conv

({(
±

√
3
3

(
1− s

2

)
s
2

)
,

(
±

√
3
3

(
s+1
2

)
1−s
2

)
,

(
±

√
3
3

(
s− 1

2

)

−1
2

)})
, s ∈ [1, 2]

(see left part of Figure 9). Since −1
sC ⊂ C with

−1

s

(√
3
3

(
1− s

2

)
s
2

)
∈
[(

−
√
3
3

(
s− 1

2

)

−1
2

)
,

(√
3
3

(
s− 1

2

)

−1
2

)]
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s

α(C)

1

1 φ 2

α1(s) =
2

s+1 (blue); α2(s) = 1 for s ≤ φ (red),

α2(s) ≥ s
s2−1 for s ≥ φ (green), while α2(s) < 1

for s > φ and α2 ≤ 2
3ψ for s ≥ γ2 (red).

s

β(C)

1

1 φ 2

β1(s) = 4s
(s+1)2 (blue); β2(s) = 1 for s ≤ φ

(red), β2(s) ≥ max{ s
s2−1 ,

4s
(s+1)2 } for s ≥ φ

(green/blue), β2(s) < 1 for s > φ and β2(s) ≤
8
9ζ for s ≥ γ3 (red).

Figure 8. Regions of possible values for the parameters α(C) and β(C) for

Minkowski centered C ∈ K2 with s(C) = s from Theorem 1.7.

and

−1

s

(
±

√
3
3

(
s− 1

2

)

−1
2

)
∈
[(

±
√
3
3

(
1− s

2

)
s
2

)
,

(
∓

√
3
3

(
s+1
2

)
1−s
2

)]
,

we obtain from Proposition 2.1 that C is Minkowski centered and s(C) = s. Since C

is a hexagon with three pairs of parallel edges, it turns out that its arithmetic mean

stays to be a hexagon:

C − C

2
= conv

({(
±

√
3

12 (s+ 1)
s+1
4

)
,

(
±

√
3

12 (s+ 1)

− s+1
4

)
,

(
±

√
3
3

(
s+1
2

)

0

)})
.

The next step to do is to calculate C◦ =: conv({q1, . . . , q6}). Since the vertices of C

are the outer normals of the edges of C◦ and 0 ∈ int(C), we obtain the vertices of C◦

as the solution of pairs of inequalities of the form (vi)Tx = 1, built from consecutive

vertices vi of C. Moreover, we make use of the fact that C, and therefore also C◦, is

symmetric w.r.t. the y-axis. Hence, it suffices to calculate four of the vertices of C◦.

Let q1 fulfill the equations

(q1)T

(
±

√
3
3

(
1− s

2

)
s
2

)
= 1,

which obviously needs q1 =

(
0
2
s

)
. For q2 we demand

(q2)T

(√
3
3

(
1− s

2

)
s
2

)
= (q2)T

(√
3
3

(
s+1
2

)
1−s
2

)
= 1,
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and obtain q2 =

(√
3

1

)
. The third vertex q3 should fulfill

(q3)T

(√
3
3 ( s+1

2 )
1−s
2

)
= (q3)T

(√
3
3

(
s− 1

2

)

−1
2

)
= 1,

resulting in q3 =

(√
3
s

−1
s

)
. Finally, for q4 we have to solve

(q4)T

(
±

√
3
3

(
s− 1

2

)

−1
2

)
= 1,

which gives q4 =

(
0

−2

)
.

Altogether, we obtain

C◦ = conv

({(
0
2
s

)
,

(
±
√
3

1

)
,

(
±

√
3
s

−1
s

)
,

(
0

−2

)})
.

Since C◦ has no parallel edges, C◦−C◦
2 is a 12-gon, which computes to

C◦ − C◦

2
= conv

({(
0

± s+1
s

)
,

(
±

√
3
2

±3
2

)
,

(
±
√
3

0

)
,

(
±
√
3 s+1

2s

± s+1
2s

)})
.

Note that six vertices of C◦−C◦
2 are rescales of the outer-normals of C−C

2 , thus the 12-

gon
(
C◦−C◦

2

)◦
has six edges parallel to the corresponding edges of C−C

2 . Since

(
0

± s+1
s

)

is a vertex of C◦−C◦
2 , there exists an edge of

(
C◦−C◦

2

)◦
with the outer-normal

(
0

1

)

and

(
0
s

s+1

)
∈ bd

(
C◦−C◦

2

)◦
. Moreover, since

(
±

√
3

12 (s+ 1)
s+1
4

)
are vertices of C−C

2 , there

exists an edge of C−C
2 with the outer-normal

(
0

1

)
and

(
0

s+1
4

)
∈ bd

(
C−C
2

)
. Thus,

(
C◦−C◦

2

)◦ ⊂opt 4s
(s+1)2

C−C
2 , proving that β1(s) = 4s

(s+1)2
for all s ∈ [1, 2]. For higher

dimensions we can embed the above construction keeping the Minkowski center 0.

(ii) By the definition of γ(n), we have β2(s) = 1 for s ≤ γ1(n), while β2(s) ≤ ζ n(n+2)
(n+1)2

for

s > γ3(n) follows from Part (ii) of Theorem 1.5.

Recognize that the factor ζ n(n+2)
(n+1)2

in Part (ii) of Theorem 1.5 becomes greater than

1 for s < γ3. However, for s ∈ (γ2, γ3] the factor ψ n
n+1 from Part (i) of Theorem 1.5

is strictly less than 1. In such a case C ∩ (−C) is not optimally contained in conv(C ∪
(−C)), which by Theorem 1.2 implies that

(
C◦−C◦

2

)◦
is not optimally contained in

C−C
2 either. Hence β2(s) < 1 for s > γ2.

Finally, we provide a construction of sets in R2, showing that β2(s) ≥ max{ s
s2−1

, 4s
(s+1)2

}.
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0

Part (i)

0

Part (ii)

Figure 9. The two constructions from the proof of Part b) of Theorem

1.7 for s = 1.7: C (black) and −C (black dashed),
(
C◦−C◦

2

)◦
(yellow), C−C

2

(blue), C◦ (green), −C◦ (green dashed) and C◦−C◦
2 (red).

Let C = conv

({(
±

√
3
2 (s− 1)

3
2

(
− 1

s+1 + 2− s
)
)
,

(
±

√
3
2 (s− 1)

− 3
2(s+1)

)
,

(
0
3s

2(s+1)

)})
, s ∈ [φ, 2]

(see right part of Figure 9).

Since −1
sC ⊂ C with

−1

s

(
0
3s

2(s+1)

)
∈
[(

−
√
3
2 (s− 1)

− 3
2(s+1)

)
,

(√
3
2 (s− 1)

− 3
2(s+1)

)]
and

−1

s

(
±

√
3
2 (s− 1)

− 3
2(s+1)

)
∈
[(

∓
√
3
2 (s− 1)

3
2

(
− 1

s+1 + 2− s
)
)
,

(
0
3s

2(s+1)

)]
,

Proposition 2.1 implies that C is Minkowski centered and s(C) = s.

Note that C has five edges, two of which are parallel. Hence, C−C
2 has four different

pairs of parallel edges and eight vertices:

(
±

√
3
2 (s− 1)

±3
4(2− s)

)
,

(
±

√
3
2 (s− 1)

∓3
4(2− s)

)
,

(
±

√
3
4 (s− 1)

±3
4

)
,

(
±

√
3
4 (s− 1)

∓3
4

)
.

Next, we determine C◦ =: conv({q1, q2, q3, q4, q5}). Since the vertices of C are the

outer normals of the edges of C◦ and 0 ∈ int(C), we obtain the vertices of C◦ as the

solution of pairs of inequalities of the form (vi)Tx = 1, such that the vi are consecutive

vertices of C. Since C is symmetric w.r.t. the y-axis, so is C◦. Hence, it suffices to

calculate q1, q2, q3.
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Let q1 be such that

(q1)T

(
0
3s

2(s+1)

)
= (q1)T

( √
3
2 (s− 1)

3
2

(
− 1

s+1 + 2− s
)
)

= 1.

This gives q1 =

(
2√
3

(
s+1
s

)

2
3

(
s+1
s

)
)
. Now, assume q2 to be such that

(q2)T

(√
3
2 (s− 1)

− 3
2(s+1)

)
= (q2)T

(
−
√
3

2 (s− 1)

− 3
2(s+1)

)
= 1.

One obtains q2 =

(
0

−2
3 (s+ 1)

)
. For q3 we assume

(q3)T

( √
3
2 (s− 1)

3
2

(
− 1

s+1 + 2− s
)
)

= (q3)T

(√
3
2 (s− 1)

− 3
2(s+1)

)
= 1.

Then q3 =

(
2√

3(s−1)

0

)
and altogether

C◦ = conv

({(
± 2√

3

(
s+1
s

)

2
3

(
s+1
s

)
)
,

(
0

−2
3 (s+ 1)

)
,

(
± 2√

3(s−1)

0

)})
.

Note that C◦ has five edges, none of which are parallel, thus C◦−C◦
2 must have five

different pairs of parallel edges and ten vertices:
(
± 1√

3

(
s+1
s

)

±1
3
(s+1)2

s

)
,

(
± 1√

3

(
s+1
s

)

∓1
3
(s+1)2

s

)
,

(
± 2√

3

(
s+1
s

)

0

)
,

(
± 1√

3
s2+s−1
s(s−1)

±1
3
s+1
s

)
,

(
± 1√

3
s2+s−1
s(s−1)

∓1
3
s+1
s

)
.

The last set to be calculated is
(
C◦−C◦

2

)◦
.

Let v1 be such that

(v1)T

(
1√
3
s+1
s

1
3
(s+1)2

s

)
= (v1)T

(
1√
3
s2+s−1
s(s−1)

1
3
s+1
s

)
= 1.

Then v1 =

(√
3(s−1)
s+1
3

(s+1)2

)
. Assuming

(v2)T

(
2√
3
s+1
s

0

)
= (v2)T

(
1√
3
s2+s−1
s(s−1)

1
3
s+1
s

)
= 1

results in v2 =

( √
3s

2(s+1)
3s(s2−s−1)
2(s+1)(s2−1)

)
and

(v3)T

(
1√
3

(
s+1
s

)

1
3
(s+1)2

s

)
= (v3)T

(
− 1√

3

(
s+1
s

)

1
3
(s+1)2

s

)
= 1
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in v3 =

(
0
3s

(s+1)2

)
. From the symmetries of C◦−C◦

2 we conclude that

(
C◦ − C◦

2

)◦
= conv

({(
±

√
3(s−1)
s+1
3

(s+1)2

)
,

(
±

√
3(s−1)
s+1

− 3
(s+1)2

)
,

(
0

± 3s
(s+1)2

)
,

(
±

√
3s

2(s+1)
3s(s2−s−1)
2(s+1)(s2−1)

)
,

(
±

√
3s

2(s+1)

− 3s(s2−s−1)
2(s+1)(s2−1)

)})
.

The next thing to do is to compute scaling factors µ1, µ2, µ3 with respect to the three

different types of vertices of
(
C◦−C◦

2

)◦
mapping them to the boundary of C−C

2 . For

µ1 we have to solve

µ1v
1 = µ1

(√
3(s−1)
s+1
3

(s+1)2

)
= λ

(√
3
4 (s− 1)

3
4

)
+ (1− λ)

(√
3
2 (s− 1)
3
4(2− s)

)

for some λ ∈ [0, 1]. We obtain λ = s−1
s and µ1 = (s+1)2

4s . For µ2 exactly one of the

following equations has to be fulfilled for some λ ∈ [0, 1]:

µ2v
2 = µ2

( √
3
2

s
s+1

3s(s2−s−1)
2(s+1)(s2−1)

)
= λ

(√
3
2 (s− 1)
3
4(2− s)

)
+ (1− λ)

(√
3
4 (s− 1)

3
4

)

or

µ2v
2 = µ2

( √
3
2

s
s+1

3s(s2−s−1)
2(s+1)(s2−1)

)
= λ

(√
3
2 (s− 1)
3
4(2− s)

)
+ (1− λ)

(√
3
2 (s− 1)

−3
4(2− s)

)

It turns out that for 1
6(3+

√
57) ≤ s ≤ 2 holds the first equation, from which we obtain

λ = −s2+2s+2
2s2−s−2

and µ2 = (s2−1)(s+1)
2(2s2−s−2)

. For 1 ≤ s ≤ 1
6(3 +

√
57) the second system is the

right one, which gives us λ = s(s−1)
2(2−s)(s+1) and µ2 = s2−1

s . For the last factor, µ3, we

have to solve

µ3v
3 = µ3

(
0
3s

(s+1)2

)
= λ

(
−

√
3
4 (s− 1)

3
4

)
+ (1− λ)

(√
3
4 (s− 1)

3
4

)

for some λ ∈ [0, 1], which leads to λ = 1
2 and µ3 =

(s+1)2

4s .

Finally, since µ1 = µ3 we conclude

β(C) = max

{
1

µ1
,
1

µ2
,
1

µ3

}
= max

{
1

µ1
,
1

µ2

}
.

Notice that for 1 ≤ s ≤ 1
6(3 +

√
57) holds 1

µ2
= s

s2−1
, and in this case β(C) = s

s2−1
, if

1 ≤ s ≤ 5
3 and β(C) = 4s

(s+1)2
, if 5

3 ≤ s ≤ 1
6(3 +

√
57).

In case of 1
6(3 +

√
57) ≤ s ≤ 2 we have 1

µ2
= 2(2s2−s−2)

(s2−1)(s+1)
, and thus β(C) = 4s

(s+1)2
.

All in all, β(C) = s
s2−1

for s ∈ [1, 53 ] and β(C) =
4s

(s+1)2
for s ∈ [53 , 2].

□
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Let us remark that for any s ∈ [1, 2] and α ∈ [α1(s), α2(s)] or β ∈ [β1(s), β2(s)] from

Theorem 1.7, respectively, there exists a Minkowski centered set C with asymmetry s(C) = s

such that C ∩ (−C) ⊂opt α conv(C ∪ (−C)) or (C◦−C◦
2 )◦ ⊂opt β C−C

2 , respectively.

Finally, we would also like to mention that similar to the upper bounds ψ n
n+1 and ζ n(n+2)

(n+1)2

on α(C) and β(C), respectively, for s(C) close to n, one may use the ideas from the proof

of Theorem 1.5 to derive also lower bounds on α(C) and β(C) for s(C) close to n, i.e.,

α1(s) ≥ f1(s) and β1(s) ≥ f2(s) for some continuous functions f1, f2 fulfilling f1(n) =
n

n+1

and f2(n) =
n(n+1)
(n+1)2

.

Appendix

The circumradius of K w.r.t. the gauge body C is defined as

R(K,C) = min{ρ ≥ 0 : K ⊂ ρC + t, t ∈ Rn}.

Surprisingly, the definition of a diameter with respect to a (possibly) non-symmetric

gauge body C ∈ Kn (with 0 ∈ int(C)) is not unified. While in [Le] it is defined as

Dmax(K,C) = max
x,y∈K

∥x− y∥C ,

which we call the maximal diameter , and which at first view is the most natural generaliza-

tion of a diameter for non-symmetric gauges; others (see c.f. [DGK]) preferred and partly

argued to choose the following definition of the diameter of K w.r.t. C:

D(K,C) = 2 max
x,y∈K

R({x, y}, C).

The latter definition allows to see the diameter as a best 2-point approximation of the

circumradius of the whole set K. Another advantage of it is that it is translation invariant

in both arguments. In contrast, for the maximal diameter choosing C with 0 close to the

boundary of C, the circumradius-diameter ratio may get arbitrarily small.

However, the choice of a definition should always fit its desired properties. For instance,

if choosing an asymmetric gauge body is motivated by the desire to measure the distance

from x to y different than that from y to x, the latter should possibly be reflected in the

length measurements (instead of measuring the length of the segment [x, y] independently

of its direction). Thus there may be applications where we would prefer to measure the

distance from x to y by ∥x− y∥C , which then leads to the maximal diameter.

And, this is part of our motivation for the investigation above, one can see that

Dmax(K,C) = D(K,C ∩ (−C)), while D(K,C) = D

(
K,

C − C

2

)
.

Moreover, if C is Minkowski centered, the results above show us, that we can bound those

diameters in terms of the other and therefore also the circumradius-diameter ratio for the

maximal diameter.



MEAN INEQUALITIES FOR SYMMETRIZATIONS OF CONVEX SETS 33

Finally, it is easy to see that there are also well motivated definitions of lengths of

segments or directional breadths w.r.t. a given gauge C that lead to diameters that depend

on the harmonic mean
(
C◦−C◦

2

)◦
or the maximum conv(C ∪ (−C)).

Acknowledgements: We would like to thank the anonymous referee for his/her useful

remarks and comments that helped us in improving and correcting our article.
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[BG2] R. Brandenberg, B. González Merino, Minkowski concentricity and complete simplices,

J. Math. Anal. Appl., 454 (2017), no. 2, 981–994.
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FROM INEQUALITIES RELATING SYMMETRIZATIONS OF

CONVEX BODIES TO THE DIAMETER-WIDTH RATIO FOR

COMPLETE AND PSEUDO-COMPLETE CONVEX SETS

RENÉ BRANDENBERG, KATHERINA VON DICHTER, AND BERNARDO GONZÁLEZ MERINO

Abstract. For a Minkowski centered convex compact set K we define α(K) to be the

smallest possible factor to cover K ∩ (−K) by a rescalation of conv(K ∪ (−K)) and give

a complete description of the possible values of α(K) in the planar case in dependence of

the Minkowski asymmetry of K. As a side product, we show that, if the asymmetry of K

is greater than the golden ratio, the boundary of K intersects the boundary of its negative

−K always in exactly 6 points. As an application, we derive bounds for the diameter-

width-ratio for pseudo-complete and complete sets, again in dependence of the Minkowski

asymmetry of the convex bodies, tightening those depending solely on the dimension given

in a recent result of Richter [10].

1. Introduction and Notation

Any set A ⊂ Rn fulfilling A = t−A for some t ∈ Rn is called symmetric and 0-symmetric

if t = 0. We denote the family of all (convex) bodies (full-dimensional compact convex sets)

by Kn and the family of 0-symmetric bodies by Kn
0 . For any K ∈ Kn the gauge function

‖ · ‖K : Rn → R is defined as

‖x‖K = inf{ρ > 0 : x ∈ ρK}.

In case K ∈ Kn
0 , we see that ‖ · ‖K defines a norm. However, even for a non-symmetric unit

ball K, one may approximate the gauge function by the norms induced from symmetriza-

tions of K

(1) ‖x‖conv(K∪(−K)) ≤ ‖x‖K ≤ ‖x‖K∩(−K).

It is natural to request that K ∩ (−K) = K = conv(K ∪ (−K)) if K is symmetric, which

is true if and only if 0 is the center of symmetry of K. This motivates the definition of a

meaningful center for general bodies K. We introduce one of the most common asymmetry

measures, which is best suited to our purposes, and choose the center matching it.

The Minkowski asymmetry of K is defined as

s(K) := inf{ρ > 0 : K − c ⊂ ρ(c−K), c ∈ Rn},

Date: June 21, 2023.

Key words and phrases. Convex sets, Symmetrizations, Symmetry Measures, Completeness, Geometric

inequalities, Diameter, Width, Complete Systems of Inequalities.
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and a Minkowski center of K is any c ∈ Rn such that K− c ⊂ s(K)(c−K) [4]. Moreover, if

0 is a Minkowski center, we say K is Minkowski centered . It is well-known that s(K) ∈ [1, n]

for all K ∈ Kn, with s(K) = 1 if and only if K is symmetric and s(K) = n if and only if K

is a fulldimensional simplex [7].

For K ∈ Kn we define α(K) > 0 such that K ∩ (−K) ⊂opt α(K) conv(K ∪ (−K)). Notice

that there always exists some x ∈ Rn such that α(K)‖x‖K∩(−K) = ‖x‖conv(K∪(−K)), which

means that we have equality for that x in the complete chain in (1) if α(K) = 1.

In [2] we started an investigation of the region of all possible values for the parameter

α(K) for Minkowski centered K ∈ Kn in dependence of the asymmetry of K. It has been

shown in [2, Lemma 3.2] that for a Minkowski centered fulldimensional simplex S we have

α(S) =




1, if n is odd, and

n
n+1 , if n is even.

Moreover, it is shown in [2, Theorem 1.7] that α(K) ≥ 2
s(K)+1 for all Minkowski centered

K ∈ Kn, and that in the planar case α(K) = 1 implies s(K) ≤ ϕ, where ϕ = 1+
√
5

2 ≈ 1.61

denotes the golden ratio.

The main result of the present work is a complete description of the possible α values of

K in dependence of its asymmetry (c.f. Figure 1).

Theorem 1.1. Let K ∈ K2 be Minkowski centered. Then

2

s(K) + 1
≤ α(K) ≤ min

{
1,

s(K)

s(K)2 − 1

}
.

Moreover, for every pair (α, s), such that 1 ≤ s ≤ 2 and 2
s+1 ≤ α ≤ min

{
1, s

s2−1

}
, there

exists a Minkowski centered K ∈ K2, such that s(K) = s and α(K) = α.

s(K)

α(K)

1

1 ϕ 2

Figure 1. Region of possible values for the parameter α(K) for Minkowski

centered K ∈ K2 (yellow): α(K) ≥ 2
s+1 (blue); α(K) ≤ 1 for s ≤ ϕ (red),

α(K) ≤ s
s2−1

for s ≥ ϕ (green). Vertices are given by 0-symmetric K ∈ K2

(s = 1), the Golden House GH (see definition in Proposition 2.4) (s = ϕ)

and triangles (s = 2).
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Observe that from Theorem 1.1 directly follows for Minkowski centered K ∈ K2 that

(2)
1

s(K)
≤ 2

s(K) + 1
≤ α(K),

with equality if and only if s(K) = 1.

While developing the proof of Theorem 1.1, we also made another interesting observation,

for which we believe a separate theorem is justified.

Theorem 1.2. Let K ∈ K2 be Minkowski centered with s(K) ≥ ϕ. Then the set bd(K) ∩
bd(−K) consists of exactly 6 points.

Consider K ∈ Kn and C ∈ Kn
0 . For s ∈ Rn \ {0} the s-breadth of K w.r.t. C is the

distance between the two parallel supporting hyperplanes of K with normal vector s, i.e.,

bs(K,C) :=
maxx,y∈K sT (x− y)

maxx∈C sTx
.

The minimal s-breadth

w(K,C) := min
s∈Rn\{0}

bs(K,C)

and the maximal s-breadth

D(K,C) := max
s∈Rn\{0}

bs(K,C)

are called width and diameter of K w.r.t. C, respectively. K is said to be of constant width

with respect to C, if bs(K,C) is constant in dependence of s ∈ Rn \ {0}, i.e., w(K,C) =

D(K,C) and K−K = D(K,C)C [6]. Finally, K is called (diametrically) complete w.r.t. C,

if any proper superset of K has a greater diameter than K.

The most famous example of a set of constant width w.r.t. the euclidean ball is the

Reuleaux triangle (see, e.g. [3]). One should recognize that constant width always implies

completeness, but not the other way around [6]. Minkowski spaces, in which all complete

sets are of constant width are called perfect. Characterizing such spaces is still a major

open question in convex geometry [6, 9].

The circumradius and the inradius of K ∈ Kn w.r.t. C ∈ Kn are defined as

R(K,C) := inf{ρ > 0 : K ⊂t ρC} and r(K,C) := sup{ρ > 0 : ρC ⊂t K},

where we write K ⊂t C, if there exists t ∈ Rn, such that K ⊂ C + t. Whenever C is

symmetric, we have D(K,C) = 2maxx,y∈K R({x, y}, C) = maxx,y∈K ‖x− y‖C and

w(K,C)

2
≤ s(K) + 1

2
r(K,C) ≤ r(K,C) +R(K,C)

2
≤ s(K) + 1

2s(K)
R(K,C) ≤ D(K,C)

2

(see [5]).

While w(K,C) = D(K,C) characterizes constant width of K w.r.t. C, we know from [4]

that all sets K, which are complete w.r.t. C fulfill the following chain of equalities

s(K) + 1

2
r(K,C) =

r(K,C) +R(K,C)

2
=

s(K) + 1

2s(K)
R(K,C) =

D(K,C)

2
.
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However, this property does not characterize completeness, not even in the planar case. For

instance, the sliced Reuleaux triangle and the hood, as defined in [3] are pseudo-complete

w.r.t. the euclidean ball, but not of constant width.

We say that K is pseudo-complete w.r.t. C if r(K,C) +R(K,C) = D(K,C), and denote

by Kn
ps,C or Kn

comp,C the families of all K ∈ Kn, which are pseudo-complete or complete

w.r.t. C, respectively.

constant width completeness
pseudo-

completeness

Recently, it has been shown in [10] that the diameter-width-ratio for complete sets

K ∈ Kn is bounded from above by n+1
2 . We sharpen this result for pseudo-complete

(and therefore, for complete) sets taking the asymmetry s(K) of K into account.

Theorem 1.3. Let K ∈ Kn
ps,C. Then

D(K,C)

w(K,C)
≤ s(K) + 1

2
.

Moreover, for n > 2 odd and any s ∈ [1, n] or for n > 2 even and any s ∈ [1, n − 1] there

exists K ∈ Kn
comp,C with s(K) = s, such that D(K,C)

w(K,C) =
s+1
2 .

Euclidean spaces of any dimension as well as general planar Minkowski spaces are perfect.

Thus, obviously, in all those spaces the diameter-width-ratio of complete sets is equal to

one. However, as an application of Theorem 1.1, we are able to state a better bound than

the one given in Theorem 1.3 for pseudo-complete sets in the planar case.

Theorem 1.4. Let K ∈ K2
ps,C. Then

D(K,C)

w(K,C)
≤ min

{
s(K) + 1

2
,

s(K)2

s(K)2 − 1

}
.

We will also show that Theorem 1.4 improves the absolute upper bound for the diameter-

width-ratio of pseudo-complete planar sets from 3
2 (derived in Theorem 1.3) down to

1
6

(
4 +

3
√

19− 3
√
33 +

3
√

19 + 3
√
33
)
≈ 1.42.

Finally, we use the results on the 3-dimensional Blaschke-Santaló diagram w.r.t. the

circumradius, inradius, diameter, and width for convex bodies in the euclidean plane [3],

to derive the optimal absolut upper bound for the diameter-width-ratio of pseudo-complete

sets in that case.
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Theorem 1.5. Let K ∈ K2
ps,B2

. Then

D(K,B2)

w(K,B2)
≤ 1

2

(
1 +

1

r

)
≈ 1.135,

where

r =

√
t

2
− 1 +

√
16√
t
− t, and t =

3

√
32

9

(
3

√
9 +

√
69 +

3

√
9−

√
69

)
.

Moreover, equality holds if K is a hood (see Section 6 for details).

2. Definitions and Propositions

For any X,Y ⊂ Rn, ρ ∈ R let X + Y = {x + y : x ∈ X, y ∈ Y } be the Minkowski sum

of X, Y and ρX = {ρx : x ∈ X} the ρ-dilatation of X, and abbreviate (−1)X by −X. For

any X ⊂ Rn let conv(X),pos(X), lin(X), and aff(X) denote the convex hull , the positive

hull , the linear hull , and the affine hull of X, respectively. A segment is the convex hull

of {x, y} ⊂ Rn, which we abbreviate by [x, y]. With u1, . . . , un we denote the standard unit

vectors of Rn. For every X ⊂ Rn let bd(X) and int(X) denote the boundary and interior

of X, respectively. Let us denote the Euclidean norm of x ∈ Rn by ‖x‖, the Euclidean unit

ball by B2 = {x ∈ Rn : ‖x‖ ≤ 1}. In case u1, . . . , un+1 ∈ Rn are affinely independent, we

say that conv({u1, . . . , un+1}) is an n-simplex .

For any K,C ∈ Kn we say K is optimally contained in C, and denote it by K ⊂opt C, if

K ⊂ C and K 6⊂t ρC for any ρ ∈ [0, 1).

We recall the characterization of the optimal containment under homothety in terms of

the touching conditions [5, Theorem 2.3].

Proposition 2.1. Let K,C ∈ Kn and K ⊂ C. Then the following are equivalent:

(i) K ⊂opt C.

(ii) There exist k ∈ {2, . . . , n+1}, pj ∈ K ∩ bd(C), j = 1, . . . , k, and aj outer normals of

supporting halfspaces of K and C at pj, such that 0 ∈ conv({a1, . . . , ak}).

In the planar case Proposition 2.1 implies the following corollary (c.f. [1, Prop. 2.5]).

Corollary 2.2. Let K ∈ K2 with s(K) > 1. Then K is Minkowski centered if and only if

there exist p1, p2, p3 ∈ bd(K) ∩ (− 1
s(K)K) and ai, i = 1, 2, 3, outer normals of supporting

halfspaces of K in pi, such that 0 ∈ int(conv({p1, p2, p3})) and 0 ∈ conv({a1, a2, a3}).

For K ∈ Kn Minkowski centered we call any p ∈ bd(K) ∩ bd
(
− 1

s(K)K
)
an asymmetry

point of K, and any triple of asymmetry points, with the properties as stated in Corollary

2.2, to be well-spread .

For any a ∈ Rn \ {0} and ρ ∈ R, let H≤
a,ρ = {x ∈ Rn : aTx ≤ ρ} denote a halfspace with

its boundary being the hyperplane H=
a,ρ = {x ∈ Rn : aTx = ρ}. Analogously, we define
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H≥
a,ρ,H

<
a,ρ,H

>
a,ρ. We say that the halfspace H≤

a,ρ supports K ∈ Kn in q ∈ K, if K ⊂ H≤
a,ρ

and q ∈ H=
a,ρ. We denote the set of all extreme points of K by ext(K).

Note that α(K) = R (K ∩ (−K), conv(K ∪ (−K))), and we also define

τ(K) := R

(
K ∩ (−K),

K −K

2

)
.

The following proposition combines [2, Corollary 2.3] and [1, Theorem 1.3].

Proposition 2.3. Let K ∈ Kn be Minkowski centered with s(K) = s and let L be a regular

linear transformation. Then the following are true:

(i) α(K) = α(L(K)) and τ(K) = τ(L(K)).

(ii) α(K) = τ(K) = 1 if and only if there exist p,−p ∈ bd(K) and parallel halfspaces H≤
a,ρ

and H≤
−a,ρ supporting K in p and −p, respectively.

We recall another result from [1] based on Proposition 2.3 about the equality cases for

the upper bound in the inequality α(K) ≤ 1 in the planar case.

Proposition 2.4. Let K ∈ K2 be Minkowski centered such that α(K) = τ(K) = 1. Then

s(K) ≤ ϕ. Moreover, if s(K) = ϕ, there exists a linear transformation L such that L(K) =

GH, where

GH := conv

({(
±1

0

)
,

(
±1

−1

)
,

(
0

ϕ

)})

is the golden house.

3. Geometry of the boundaries of sets

In this section we give the proof of Theorem 1.2, describing the number of the intersection

points of bd(K) and bd(−K) for a Minkowski centered K ∈ K2 with s(K) > ϕ. In order to

do so, we provide the necessary definitions and show a lemma, which describes the locations

of the asymmetry points from Corollary 2.2. After this, we focus on the geometry of the

touching points of K ∩ (−K) and α(K) conv(K ∪ (−K)), which is needed for the proof of

the main theorem.

For K ∈ K2 we call z1, z2 ∈ bd(K) ∩ bd(−K) consecutive, if there exists no point

z ∈ bd(K) ∩ bd(−K) ∩ int(pos{z1, z2}).

Even so we assume s(K) > ϕ in this section, the arguments keep valid as long as there is

just a finite amount of points in bd(K)∩ bd(−K). In case of an infinite sequence of points

{zi}i∈N ⊂ bd(K)∩bd(−K), there exists at least a subsequence of it, converging to a common

boundary point z0, such that K and −K are commonly supportable in z0. However, the

latter would anyway imply α(K) = 1 by Proposition 2.3, and thus by Proposition 2.4 is not

possible for s(K) > ϕ.
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Lemma 3.1. Let K ∈ K2 be Minkowski centered with s(K) > ϕ, let z1, z2 ∈ bd(K) ∩
bd(−K) be consecutive, and H≤

a1,ρ1
, H≤

a2,ρ2
be two halfspaces supporting K in z1 and z2, re-

spectively. Moreover, let p1, p2, p3 be well-spread asymmetry points of K. Then the following

are true:

(i) If pi ∈ pos{z1, z2}, then s(K)pi ∈ H>
a1,ρ1

∩H>
a2,ρ2

.

(ii) There exists either an asymmetry point of K or of −K in pos{z1, z2}.

0

z1

z2

p1

sp1

p2

sp2

p3

sp3 −K

K

H≤
a1,ρ1

H≤
a2,ρ2

Figure 2. Construction from Lemma 3.1 and Theorem 1.2: K (black),

−K and − 1
s(K)K (gray), bd(K) ∩ bd(−K) (big black dots), halfspaces

H≤
a1,ρ1

, H≤
a2,ρ2

supporting K at consecutive points z1 and z2, respectively,

and p1, p2, p3 well-spread asymmetry points of K.

Proof. We start proving (i) and define s := s(K). Notice that (−K)∩H>
a1,ρ1

⊂ pos({z1, z2})
and that, since 0 ∈ conv({p1, p2, p3}), between any two of those three asymmetry points,

we find points from bd(K) ∩ bd(−K). To check the latter, consider e.g. p1 and p2. Since

sp1,−p3 ∈ bd(−K) ∩ pos({p1, p2}) and p1,−sp3 ∈ bd(K) ∩ pos({p1, p2}), we find a point

from bd(K) ∩ bd(−K) in int(pos({p1,−p3})) ⊂ int(pos{p1, p2}).
For the aim of a contradiction to (i), assume w.l.o.g. that p1 ∈ pos{z1, z2} and sp1 ∈

H≤
a1,ρ1

. Because of the observation before it follows that p2, p3 /∈ ±pos({z1, z2}). Defining

K ′ := K ∩ (−H≤
a1,ρ1

), we obtain −spj ∈ K ′, j = 1, 2, 3, and therefore −1
sK

′ ⊂ K ′, with

p1, p2, p3 being well-spread asymmetry point of K ′, too. It follows from Proposition 2.1 that

K ′ is still Minkowski centered and s(K ′) = s. Moreover, the halfspaces H≤
±a1,ρ1

support

K ′ in the points ±z1, respectively, implying α(K ′) = 1 by Proposition 2.3. However, this

means K ′ is Minkowski centered with s(K ′) > ϕ and α(K ′) = 1, contradicting Proposition

2.4.

The proof of (ii) is completely analogous to the one above, starting here with the as-

sumption that there is no asymmetry point between z1, z2. �
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Proof of Theorem 1.2. Since s := s(K) > 1, there exists a triple of well-spread asymmetry

points p1, p2, p3 of K. Then −pi ∈ pos({pj , pk}), whenever {i, j, k} = {1, 2, 3}. In partic-

ular, this means that we find at least one point from bd(K) ∩ bd(−K) within each cone

int(pos({pi,−pj})), i 6= j, which shows that bd(K) ∩ bd(−K) contains at least 6 points.

Now, let us assume that bd(K) ∩ bd(−K) contains more than 6 points. Using the

pigeonhole principle, we see that there must exist two consecutive points z1, z2 ∈ bd(K) ∩
bd(−K), such that ±pi /∈ pos({z1, z2}), i = 1, 2, 3. Let us assume w.l.o.g. that there exists

some z ∈ bd(K)∩int(−K)∩int(pos({z1, z2})). Let H≤
a,ρ be a supporting halfspace of K in z.

Then, int(−K)∩H>
a,ρ ⊂ pos({z1, z2}), and therefore K \{−pos({z1, z2})} ⊂ K∩(−H≤

a,ρ) =:

K ′. It follows that pi,−spi ∈ K ′, i = 1, 2, 3, and therefore that s(K ′) = s ≥ ϕ by the

assumption of the theorem. Moreover, since ±H≤
a,ρ are parallel supporting halfspaces of K ′

in ±z, we have α(K ′) = 1 by Proposition 2.3.

For s > ϕ this would directly contradict Proposition 2.4. In case of s = ϕ we have that

K ′ is Minkowski centered with α(K ′) = 1 and s(K ′) = ϕ. Thus, by the equality case of

Proposition 2.4, we obtain thatK ′ equals the golden houseGH up to a linear transformation.

However, this constradicts our assumption of more than 6 points in bd(K ′)∩ bd(−K ′). �

In case of 1 < s < ϕ, the set bd(K) ∩ bd(−K) may consist of an uncountably infinite

amount of points, an arbitrarily large finite amount, or a small number of points as well.

Example 3.2. (i) For any s ∈ [1, ϕ) there exists a Minkowski centered K ∈ K2 with

s(K) = s, such that the set bd(K) ∩ bd(−K) is uncountable.

Let Kt := conv
({(±1

0

)
,
(±1
−1

)
, ( 0t )

})
∈ K2 with t ∈ [0, ϕ). It is not hard to verify

that Kt − xt ⊂opt s(−Kt + xt), where

s =
t+

√
9t2 + 12t+ 4

2(t+ 1)
and xt =

(
0

t−s
s+1

)
.

Thus, we obtain {s(Kt) : t ∈ [0, ϕ)} = [1, ϕ), and since ±u1 ∈ bd(Kt), t ∈ [0, ϕ), with

H=
u1,±1 supporting Kt in ±u1, we have α(Kt) = 1 for every t ∈ [0, ϕ).

Finally,
[(

1
t−s
s+1

)
,
(

1
s−t
s+1

)]
⊂ bd(Kt)∩bd(−Kt), thus the boundaries of ±Kt possess

infinitely many common points.

(ii) Let K ∈ K2 be a Minkowski centered regular k-gon with k ≥ 5 odd. By [2, Example

4.2], s(K) = 1
cos(π

k
) < ϕ and bd(K) ∩ bd(−K) consists of 2k points.

(iii) Let S be a (regular) simplex and K = S ∩ (−sS) with s ∈ [1, ϕ). It is easy to see that

s(K) = s, that K ∩ (−K) = S ∩ (−S), and that bd(K) ∩ bd(−K) contains exactly 6

points.

We now discuss the locations of the touching points of K ∩ (−K) and α(K) conv(K ∪
(−K)).

Lemma 3.3. Let K ∈ K2 be Minkowski centered with s(K) > 1 and p ∈ bd(K ∩ (−K)) ∩
bd(α(K) conv(K ∪ (−K))). Then one of the following must be true:
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(i) p ∈ bd(K) ∩ bd(−K) or

(ii) 1
α(K)p 6∈ conv(K ∪ (−K)) \ (K ∪ (−K)).

Moreover, if (i) is fulfilled, there exist halfspaces H≤
a,ρ and H≤

−a,ρ, such that each of them

supports both, K and −K, while H≤
a,α(K)ρ and H≤

−a,α(K)ρ support K ∩ (−K) in p and −p,

respectively.

Note that Case (ii) of Lemma 3.3 is equivalent to one of the following two statements

getting true:

p ∈ bd(K) with
1

α(K)
p ∈ bd(−K) or p ∈ bd(−K) with

1

α(K)
p ∈ bd(K).

0
p−p

H≤
a,α(K)ρ

H≤
−a,α(K)ρ

H≤
a,ρ

H≤
−a,ρ

−K

K

Figure 3. Construction for Case (i) of Lemma 3.3: K (black), −K (gray),

H≤
a,ρ, H

≤
−a,ρ and H≤

a,α(K)ρ, H
≤
−a,α(K)ρ (blue) .

Proof of Lemma 3.3. Let us start observing that if α := α(K) = 1, we have p ∈ bd(conv(K∪
(−K)). Hence, p ∈ bd(K) ∩ bd(−K), i.e. (i) applies. Hence, we may assume α < 1 for the

rest of the proof.

We first show the “moreover”-part of the statement. Thus, assume p ∈ bd(K)∩bd(−K)

and let s := s(K) > 1. Since α < 1, we have ± 1
αp 6∈ K, but there exist x,−y ∈ ext(K) such

that 1
αp ∈ [x, y] ⊂ bd(conv(K ∪ (−K))) and a halfspace H≤

a,ρ supporting conv(K ∪ (−K))

in 1
αp and thus in [x, y].

Since K ∩ (−K) and conv(K ∪ (−K)) are both symmetric, the halfspace H≤
−a,ρ supports

conv(K ∪ (−K)) in − 1
αp. Using 1

α(K ∩ (−K)) ⊂ conv(K ∪ (−K)) ⊂ H≤
a,ρ, we see that

H≤
±a,αρ support K ∩ (−K) in ±p.

Now, for the sake of a contradiction, let us assume (i) and (ii) are wrong. Doing so,

we may assume w.l.o.g. that p ∈ bd(−K) ∩ int(K) and 1
αp ∈ conv(K ∪ (−K)) \K. Then

there exist x,−y ∈ bd(−K) \ K, such that 1
αp ∈ [x, y] ⊂ conv(K ∪ (−K)). Let z ∈

bd(K) ∩ bd(−K) ∩ pos({x, y}) and ξ ∈ R be such that ξz ∈ [x, y]. Since 1
αp ∈ [x, y] \K,



10 R. BRANDENBERG, K. VON DICHTER, AND B. GONZÁLEZ MERINO

we have ξ > 1. Obviously, z ∈ bd(K) ∩ bd(−K) and x ∈ bd(−K) \ K together imply

(bd(−K) ∩ int(pos({x, z}))) ∩K = ∅.

Since p ∈ bd(−K) ∩ int(K), we obtain p, x, z ∈ bd(−K) with z ∈ pos({p, x}), and, due
to the convexity of −K, z ∈ x + pos({p − x, 1

αp − x}). It follows that 1
αξp 6∈ −K and,

since p ∈ bd(−K), we have 1
α > ξ. Together with 1

α(K ∩ (−K)) ⊂ conv(K ∪ (−K)),

z ∈ K ∩ (−K), and ξz ∈ bd(conv(K ∪ (−K)), this implies the desired contradiction. �

We present a family of sets, where the situation described in Lemma 3.3 (ii) happens.

Example 3.4. Let S = conv({p1, p2, p3}) be a regular Minkowski centered triangle with

R(S,B2) = 1 and D :=
{
( ρ1ρ2 ) : 1 ≤ ρ1 ≤ 2,

ρ21−ρ1+1
ρ1+1 ≤ ρ2 ≤ ρ1

2

}
. We define

K := Kρ1,ρ2 := conv(((−S) ∩ ρ1S) ∪ ρ2S) with ( ρ1ρ2 ) ∈ D.

ρ1S

−S

0

ρ2S

−p3

p3

p1

p2

γ2z
ξzg

q

ρ2p
2

z

Figure 4. Constructions used in Example 3.4: K (yellow), −K (green),

S/−S (gray), ρ2S (gray dotted), ρ1S (gray dashed).

Let further z ∈ bd(K) ∩ bd(−K) ∩ pos({p2,−p3}) with ξz ∈ bd(conv(K ∪ (−K))) for

some ξ > 1. Let γ1 ≤ 1 and γ2 ≥ 1 be such that γ1z ∈ bd(S) ∩ bd(−S) and γ2z ∈
bd(conv(S ∪ (−S))), respectively. Then, since R(S,B2) = 1, we have ‖γ1z‖ =

√
3
3 and

‖γ2z‖ =
√
3
2 . Choose q to be the vertex of K, such that q ∈ int(pos({p2,−p3})).

Now, since ‖−p3−q‖
‖−p3−γ1z‖ =

‖−p3−(− ρ1
2
p3)‖

‖−p3−(− 1
2
p3)‖ , we have

‖ − p3 − q‖
‖ − p3 − γ1z‖

=
1− ρ1

2
1
2

= 2− ρ1.
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Therefore,
‖γ2z − γ1z‖
‖ξz − γ1z‖

= 1 +
‖ − p3 − q‖
‖q − γ1z‖

= 1 +
2− ρ1
ρ1 − 1

=
1

ρ1 − 1
.

We have

‖ξz‖ = ‖γ1z‖+ ‖ξz − γ1z‖ =

√
3

3
+

√
3

6
(ρ1 − 1) =

√
3

6
(ρ1 + 1).

Let g be the orthogonal projection of ρ2p
2 on lin({z}).

Since ‖ − ρ1
2 p

3 − q‖ = tan(π6 ) · ‖ − p3 −
(
−ρ1

2 p
3
)
‖ =

√
3
3

(
1− ρ1

2

)
, we obtain from the

Pythagorean theorem

‖q‖ =

√√√√(ρ1
2

)2
+

(√
3

3

(
1− ρ1

2

))2

=

√
ρ21 − ρ1 + 1

3
.

Now, we calculate

‖q − ξz‖ =
√

‖q‖2 − ‖ξz‖2 =

√√√√ρ21 − ρ1 + 1

3
−
(√

3

6
(ρ1 + 1)

)2

=
ρ1 − 1

2
.

Since ‖g‖ =
√
3
2 ρ2, we have

‖g − ρ2p
2‖ =

√
‖ρ2p2‖2 − ‖g‖2 =

√
ρ22 −

3

4
ρ22 =

ρ2
2
.

Since q, z, ρ2p
2 are collinear, we have ‖g−z‖

‖z−ξz‖ = ‖g−ρ2p2‖
‖q−ξz‖ , and thus

‖g − z‖
‖z − ξz‖ =

ρ2
2

ρ1−1
2

=
ρ2

ρ1 − 1
.

Using this fact, we obtain

‖ξz‖ = ‖g‖ + ‖g − z‖+ ‖ξz − z‖ =

√
3

2
ρ2 +

(
ρ2

ρ1 − 1
+ 1

)
‖ξz − z‖.

Therefore, remembering that ‖g‖ =
√
3
2 ρ2,

‖ξz − z‖ =
‖ξz‖ − ‖g‖

ρ2
ρ1−1 + 1

=
‖ξz‖ −

√
3
2 ρ2

ρ2
ρ1−1 + 1

and

‖z‖
‖ξz‖ =

‖ξz‖ − ‖ξz − z‖
‖ξz‖ = 1− 1

ρ2
ρ1−1 + 1

+

√
3
2 ρ2(

ρ2
ρ1−1 + 1

) √
3
6 (ρ1 + 1)

=
ρ2(ρ1 − 1)

ρ1 + ρ2 − 1

(
1

ρ1 − 1
+

3

ρ1 + 1

)
=

2ρ2(2ρ1 − 1)

(ρ1 + ρ2 − 1)(ρ1 + 1)
.

Since ρ2p
2 ∈ bd(K) is a vertex of ρ2S and ρ1

2 p
2 ∈ bd(ρ1S)∩ bd(−K), we have 1

α(K) ≤
ρ1
2ρ2

.

Thus, notice that

1

α(K)
= min

{
ξ,

ρ1
2ρ2

}
= min

{
(ρ1 + ρ2 − 1)(ρ1 + 1)

2ρ2(2ρ1 − 1)
,
ρ1
2ρ2

}
.
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Since
ρ1
2ρ2

≤ (ρ1 + ρ2 − 1)(ρ1 + 1)

2ρ2(2ρ1 − 1)
,

is equivalent to

(3)
ρ21 − ρ1 + 1

ρ1 + 1
≤ ρ2,

we obtain α(K) = ρ1
2ρ2

, whenever (3) is fulfilled. Since
ρ21−ρ1+1
ρ1+1 ≤ ρ1

2 , for any fixed ρ1 ∈ [1, 2]

we can select ρ2, such that
ρ21−ρ1+1
ρ1+1 ≤ ρ2 ≤ ρ1

2 , and thus selecting any ( ρ1ρ2 ) ∈ D would give

us examples of bodies fulfilling the condition above.

4. The Proof of Theorem 1.1

Lemma 4.1. Let K ∈ K2 be Minkowski centered with s(K) > ϕ and p1, p2, p3 a triple of

well-spread asymmetry points of K.

a) Then there exists a Minkowski centered K ′ ∈ K2 with

(i) conv(K ′ ∪ (−K ′))) = conv({±sp1,±sp2,±sp3}),
(ii) α(K ′) ≥ α(K),

(iii) s(K ′) = s(K), and

(iv) p ∈ bd(K ′∩ (−K ′))∩α(K ′)(bd(conv(K ′∪ (−K ′)))) implies p ∈ bd(K ′)∩bd(−K ′).

b) Taking p as above and defining d1 to be the intersection point of aff({−p, p3}) and

aff({p, p2}), there exists γ ≤ 1, such that the set

K̄ := conv({±p, p2, p3, γs(K ′)d1,−s(K ′)p2,−s(K ′)p3})

fulfills

(i) α(K̄) ≥ α(K ′),

(ii) s(K̄) = s(K ′), and
(iii) p ∈ bd(K̄ ∩ (−K̄)) ∩ α(K ′)(bd(conv(K̄ ∪ (−K̄)))).

Proof. a) Let s := s(K). Since s > ϕ, there exists a triple of well-spread asymmetry points

p1, p2, p3 of K by Corollary 2.2 and by Theorem 1.2, we know that bd(K) ∩ bd(−K)

consists of exactly 6 points. Moreover, by Lemma 3.1 there exist consecutive points

zi,1, zi,2 ∈ bd(K) ∩ bd(−K) with −pi ∈ pos{zi,1, zi,2}, i = 1, 2, 3. Let the halfspaces

H≤
ai,1,ρi,1

, H≤
ai,2,ρi,2

be defined such that zi,1,−spi ∈ H=
ai,1,ρi,1

and zi,2,−spi ∈ H=
ai,2,ρi,2

,

i = 1, . . . , 3. We define

(4) K ′ := K ∩
⋂

i=1,...,3

(
H≤

ai,1,ρi,1
∩H≤

ai,2,ρi,2

)
.

We now show the properties (i)-(iv) for the set K ′.

Obviously, ±spi ∈ bd(conv(K ′∪(−K ′))), i = 1, 2, 3. Assume z ∈ (bd(K ′)∪bd(−K ′))\
({±sp1,±sp2,±sp3}∪bd(K ′∩(−K ′))), w.l.o.g. z ∈ bd(K ′)∩ int(pos({−sp1, z1,1})). The
way we constructed K ′, this implies z ∈ [−sp1, z1,1]. Since −sp1 ∈ bd(conv(K ′∪(−K ′)))
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0

z3,1

z3,2 = p

z1,2

z2,1 = −p

z1,1

z2,2

p1

p2
p3

−sp1

−sp2

−sp3
K

−K

Figure 5. Construction from Lemma 4.2: K (black), −K and − 1
s(K)K

(gray), K ′ (yellow), segments [−spi, zi,j ], i = 1, 2, 3 and j = 1, 2 (red).

and z1,1 ∈ int(conv(K ′ ∪ (−K ′))), we obtain z ∈ int(conv(K ′∪ (−K ′))), a contradiction.

Thus, conv(K ′ ∪ (−K ′))) = conv({±sp1,±sp2,±sp3}).
Moreover, we also have K ′∩ (−K ′) = K ∩ (−K), which together with K ′ ⊂ K implies

α(K ′) ≥ α(K).

We now need to show that s(K ′) = s(K). Since pi,−spi ∈ K ′, i = 1, 2, 3, we only

need to check the (non-obvious) fact that −1
sK

′ ⊂ K ′.
Notice that for any i = 1, 2, 3 we have

−(K ′ ∩ pos({−zi,1,−zi,2})) = −K ′ ∩ pos({zi,1, zi,2}) = −K ∩ pos({zi,1, zi,2})
= −(K ∩ pos({−zi,1,−zi,2})).

On the one hand, since K ′ ⊂ K, we have −1
sK

′ ⊂ −1
sK ⊂ K, and therefore

(
−1

s
K ′
)
∩ pos({−zi,1,−zi,2}) ⊂ K ∩ pos({−zi,1,−zi,2}) = K ′ ∩ pos({−zi,1,−zi,2}),

for every i = 1, 2, 3.

On the other hand, we need to show

(−K ′) ∩ pos({zi,1, zi,2}) ⊂ K ′ ∩ pos({zi,1, zi,2}), i = 1, 2, 3.

Clearly,

(−K ′) ∩ pos({zi,1, zi,2}) = (−K) ∩ pos({zi,1, zi,2}) ⊂ K ∩ pos({zi,1, zi,2}), i = 1, 2, 3.

To show the needed inclusion, we additionally prove

(−K ′) ∩ pos({zi,1, zi,2}) ⊂
⋂

j=1,2

H≤
ai,j ,ρij

, i = 1, 2, 3.

Let H≤
bij ,µi,j

be a supporting halfspace of −K in zi,j , i = 1, 2, 3 and j = 1, 2. By Part (i)

of Lemma 3.1, we know that −spi ∈ H>
bij ,µi,j

. Thus,

H>
ai,j ,ρi,j

∩ pos({zi,1, zi,2}) ⊂ H>
bij ,µi,j

∩ pos({zi,1, zi,2}).
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We conclude

−K ′ ∩ pos({zi,1, zi,2}) = −K ∩ pos({zi,1, zi,2}) ⊂
⋂

j=1,2

H≤
bi,j ,µi

j
∩ pos({zi,1, zi,2})

⊂
⋂

j=1,2

H≤
ai,j ,ρij

∩ pos({zi,1, zi,2}) = K ′ ∩ pos({zi,1, zi,2}).

Hence −1
sK

′ ∩ pos({zi1, zi2}) ⊂ K ′ ∩ pos({zi1, zi2}), i = 1, 2, 3 and therefore −1
sK

′ ⊂ K ′.

Since the points p1, p2, p3 also build a triple of well-spread asymmetry points of K ′,
we obtain s(K ′) = s(K).

Now, let p ∈ bd(K ′∩(−K ′))∩α(K ′)bd(conv(K ′∪(−K ′))). Within the next paragraph

we show by contradiction that p ∈ bd(K ′) ∩ bd(−K ′). To do so, assume p 6∈ bd(K ′) ∩
bd(−K ′). Then, by Lemma 3.3, we obtain 1

α(K ′)p 6∈ conv(K ′∪(−K ′))\(K ′∪(−K ′)), and

therefore that either 1
α(K ′)p belongs to bd(K ′) or bd(−K ′). Thus, by our cutting-offs of

K and −K above,

1

α(K ′)
p ∈ bd(conv(K ′ ∪ (−K ′))) ∩ (bd(K ′) ∪ bd(−K ′)) = {±sp1,±sp2,±sp3}.

Since by (2) 1
α(K ′) < s, this implies that one of the points ±p1,±p2,±p3 is not in

K ′∩(−K ′)∩α(K ′)(bd(conv(K ′∪(−K ′)))), a contradiction. Thus, p ∈ bd(K ′)∩bd(−K ′),

and hence we may assume w.l.o.g. in the following that p := z3,2 and −p := z2,1.

b) Notice that, because of 0 ∈ conv({p1, p2, p3}) and the way we have chosen the points

−p, p, we know that p1 is located on the one side, while p2, p3 are on the other side of

aff({−p, p}). Moreover, p ∈ pos{p1, p2} and −p ∈ pos{p1, p3} and again, by Lemma 3.3,

there exists a pair of halfspaces H≤
±u, 1

α(K′)ρ
supporting conv(K ′ ∪ (−K ′)) in ± 1

α(K ′)p.

Hence, −sp2,−sp3 ∈ H≤
u, 1

α(K′)ρ
∩ H≤

−u, 1
α(K′)ρ

and, because 1
α(K ′) < s, this implies

p2, p3 ∈ H<
−u,ρ ∩ H<

u,ρ. Together with p ∈ H=
u,ρ, we obtain the existence of some

d1 ∈ aff({−p, p3}) ∩ aff({p, p2}). Moreover, since p1,−sp2,−sp3 ∈ bd(K ′) with p1 ∈
pos({−sp2,−sp3}), we have p1 6∈ int(conv({0,−sp2,−sp3})).

Now, we show −sp1 ∈ conv({p2, p3, d1}) \ [p2, p3].
Since 0 ∈ conv({p1, p2, p3}), we have −sp1 ∈ pos({p2, p3}), and since all the points

−p, p, p2, p3 belong to bd(K ′), with p3 ∈ pos({−p,−sp1}), and p2 ∈ pos({p,−sp1}), we
obtain −sp1 ∈ conv({−p, p, d1}). Finally, −sp1 ∈ bd(K ′) and s > 1 imply −sp1 6∈
conv({−p, p, p2, p3}).

Thus, combining the results from above, we obtain

(5) −sp1 ∈ conv({p2, p3, d1}) \ [p2, p3] and p1 6∈ int(conv({0,−sp2,−sp3})).

In the following, we say that a well-spread triple of asymmetry points p1, p2, p3 presents

a valid situation, if they satisfy (5).

Notice that since K ′ is of the form (4), we also have [−sp2,−p], [p,−sp3] ⊂ bd(K ′).
The next part of the proof describes a three-step transformation of K ′ into K̄, such

that s(K̄) = s, p ∈ bd(K̄ ∩ (−K̄)) ∩ α(K ′)
(
bd(conv(K̄ ∪ (−K̄))

)
, and p̄1, p2, p3 ∈

bd(K̄) ∩ bd
(
−1

sK̄
)
is a well spread triple of asymmetry points that presents a valid

situation.



INEQUALITIES RELATING SYMMETRIZATIONS OF CONVEX BODIES 15

u

0

p−p 1
αp− 1

αp

p2
p3

d1

p1

−sp1

−sp2

−sp3

u

0

p−p 1
αp− 1

αp

p2
p3

−sp1

d1

p1

−sp2

−sp3

Figure 6. Construction used in the proof of Lemma 4.1b). On the left:

the construction before applying the three-step transformation and on the

right the set after the transformation (yellow). In red: Kmin,s (see definition

before Lemma 4.3).

Step 1 Replace p1 by p̃1 := µp1, for some µ ≤ 1, such that p̃1 ∈ [−sp2,−sp3].

Obviously, p̃1 6∈ int(conv({0,−sp2,−sp3})), and since µ < 1 and s > 1, we obtain

directly from −sp1 ∈ conv({p2, p3, d1}) that also −sp̃1 ∈ conv({p2, p3, d1}) \
[p2, p3]. Hence, the points p̃1, p2, p3 stay to present a valid situation.

Step 2 Replace p̃1 by p̄1 := −γd1 ∈ [−sp2,−sp3], for some γ > 0.

Obviously again, p̄1 6∈ int(conv({0,−sp2,−sp3})). Moreover, since replacing p̃1

by p̄1 means moving −sp̃1 onto −sp̄1 parallel to [p2, p3] such that it belongs to

lin{d1}. Thus, sγd1 = −sp̄1 ∈ conv({d1, p2, p3}) \ [p2, p3], again. In particular,

we obtain sγ ≤ 1, which shows that the points p̄1, p2, p3 stay to present a valid

situation.

Step 3 Replace K ′ by K̄ := conv({±p, p2, p3,−sp̄1,−sp2,−sp3}).
The points p̄1, p2, p3 still form a well-spread triple of asymmetry points of K̄,

which implies also s(K̄) = s. Moreover, we still have p ∈ bd(K̄ ∩ (−K̄)) ∩
α(K ′)

(
bd(conv(K̄ ∪ (−K̄)))

)
, which implies that α(K̄) ≥ α(K ′).

�
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Let us explicitely mention, that we do not show (since not needed and possibly false in

some cases) that α(K) = α(K̄) is always true.

Lemma 4.2. Let K ∈ K2 be Minkowski centered such that s(K) > ϕ. Then

(6) α(K) ≤ s(K)

s(K)2 − 1
.

Proof. In order to show (6), we determine for any fixed α ∈
[
2
3 , 1
]
below the maximal

s = s(α), such that there exists a Minkowski centered K ∈ K2 with α(K) = α and

s(K) = s. This way we show that s ≤ 1
2α +

√
1 + 1

4α2 , which is equivalent to α ≤ s
s2−1 .

ConsideringK ′ to be defined as in Lemma 4.1, we have α(K) ≤ α(K ′) and s(K) = s(K ′).

Hence, if K ′ fulfills (6), then

α(K) ≤ α(K ′) ≤ s(K ′)
s(K ′)2 − 1

=
s(K)

s(K)2 − 1
,

i.e., K also fulfills (6). Thus, it suffices to show (6) for K ′.

In the following, instead of directly showing (6) forK ′, we simplify the task by considering

K̄ as given in Lemma 4.1. By Lemma 4.1 b) we have s(K ′) = s(K̄) and p ∈ bd(K̄ ∩
(−K̄)) ∩ α(K ′)(bd(conv(K̄ ∪ (−K̄)))). Thus, we can study the maximal possible value for

s := s(K) = s(K̄), while keeping p ∈ bd(K̄ ∩ (−K̄)) ∩ α(K ′)
(
bd(conv(K̄ ∪ (−K̄))

)
.

Observe that from the convexity of K̄ we directly obtain that sγ ≤ 1. Thus, we want to

characterize the situation, in which s becomes maximal, under the condition sγ ≤ 1. To do

this, we compute the explicit value of γ in dependence of s.

By Lemma 3.3, there exists a pair of halfspaces H≤
±u, 1

α
ρ
supporting conv(K̄ ∪ (−K̄)) in

± 1
αp. In the following, we assume w.l.o.g. that p = ( α0 ) and, since we may choose the above

hyperplanes to be orthogonal to [−p, p], u = ( 10 ) and ρ = α.

Remembering that we have conv(K̄ ∪ (−K̄)) = conv({±sp1,±sp2,±sp3}) and that, fol-

lowing the notations from Lemma 4.1, we assumed p = z3,2, −p = z2,1, we see that
1
αp ∈ [sp2,−sp3] and − 1

αp ∈ [−sp2, sp3]. Hence, sp2 ∈ H≤
( 10 ),1

and sp3 ∈ H≤(−1
0

)
,1

and

therefore the first coordinates of p2 and p3 are 1
s and −1

s , respectively. Knowing this fact

and remembering that p2, p3 are located on the same side of aff{−p, p}, we may further

assume that p2 =
(

1/s
−a

)
and p3 =

(
−1/s
−1

)
for some a ∈ (0, 1].

Let d2 denote the intersection point of H=(−1
0

)
,1

and aff({−p, p3}). Hence, d2 = −p +

µ(−p + p3) =
(−α

0

)
+ µ

(
−α+ 1

s
1

)
for some µ > 0 and we directly see that d22 = µ. Now,

since we have d21 = −1 we obtain d22 =
s(1−α)
sα−1 . Altogether,

d2 =
( −1

s(1−α)
sα−1

)
.

By definition, d2 should be in [− 1
αp,−sp2], which implies, because of −sp2 = (−1

sa ), that
s(1−α)
sα−1 ≤ sa or, equivalently, a ≥ 1−α

sα−1 .
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Now, we calculate the coordinates of d1 as the intersection point of the lines aff{p, p2}
and aff{−p, p3}. We obtain that those coordinates satisfy the following system of equations:

d12 =
sa

sα− 1
d11 −

saα

sα− 1
,

d12 =
−s

sα− 1
d11 −

sα

sα− 1
.

Solving, gives us

d1 =

(
α(a−1)
a+1

−2saα
(sα−1)(a+1)

)
.

Now, we compute γ such that

−γd1 ∈ [−sp2,−sp3] =

[(
−1

sa

)
,

(
1

s

)]
.

This means we are looking for some λ ∈ [0, 1], such that

−γ

(
α(a−1)
a+1

−2saα
(sα−1)(a+1)

)
= (1 − λ)

(
−1

sa

)
+ λ

(
1

s

)
=

(
−1 + 2λ

s((1− λ)a+ λ)

)
,

and it is easy to verify that this implies

γ−1 =
2α

(a+ 1)2

(
2a

sα− 1
− (a− 1)2

2

)
.

One may check that, since a ≥ 1−α
sα−1 , we have γ−1 ≥ 0.

Thus, finding the maximal s with sγ ≤ 1 may now be rewritten as

max s, such that s ≤ −2α

(a+ 1)2

(
2a

1− sα
+

(a− 1)2

2

)
,

which can be transformed into

s2 +

(
α

(
a− 1

a+ 1

)2

− 1

α

)
s− 1 ≤ 0.

We are interested in the maximal s, i.e., in the larger of the two roots of the quadratic on

the left, which is (independently of α and a)

s =
1

2


 1

α
− α

(
a− 1

a+ 1

)2

+

√√√√4 +

(
α

(
a− 1

a+ 1

)2

− 1

α

)2

 =: s(a, α).

Hence, we obtain the maximal s (in dependence of α) from maximizing s(a, α) over a, where
1−α
sα−1 ≤ a ≤ 1. It is straightforward to verify that s(·, α) is increasing in (0, 1]. We conclude

max s = s(1, α) =
1

2α
+

√
1 +

1

4α2
.

�
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For any fixed s ∈ (ϕ, 2] we define

Kmin,s := conv

({(
± s

s2−1

0

)
,

(
0

−s2

)
,

(
±1

s

)})
and

Kmax,s := conv

({(
±1

s(s2 − s− 1)

)
,

(
0

−s2

)
,

(
±1

s

)})
.

The following lemma deals with the equality case of Lemma 4.2.

Lemma 4.3. Let K ∈ K2 be Minkowski centered such that s(K) > ϕ and α(K) = s(K)
s(K)2−1 .

Then there exists a non-singular linear transformation L such that

Kmin,s(K) ⊂ L(K) ⊂ Kmax,s(K).

Proof. We know from the proof of the previous lemma that s := s(K) > ϕ and α := α(K) =
s

s2−1
imply α ∈ [23 , 1] and s = 1+

√
1+4α2

2α . Moreover, equality holds in the maximization

process of Lemma 4.2 if and only if a = 1, γ = 1
s . If we use these values in the respective

formulas above, we obtain for the set K̄ from Lemma 4.1 that

K̄ := conv

({(
±α

0

)
,

(
±1

s

−1

)
,

(
0

−s2

)
,

(
±1

s

)})
.

However, since
(

±1/s
−1

)
= 1

s2

(
0

−s2
)
+ (1− 1

s2
)
(

±s/(s2−1)
0

)
, we essentially have K̄ = Kmin,s.

Thus, we have shown that the only Minkowski centered convex body with s(K) > ϕ and

α(K) = s(K)
s(K)2−1 of the form given in Lemma 4.1b) is Kmin,s.

Next, we show that the only Minkowski centered convex body K ′ of the form (4) with

s(K ′) > ϕ and α(K ′) = s(K ′)
s(K ′)2−1

is still Kmin,s. Notice that before Step 3 of Part (b) in

Lemma 4.1, both segments, [−sp2,−p] and [−sp3, p] already belong to bd(K ′) and that

from the previous paragraph the lines aff({−sp1, p}), aff({−sp1,−p}), aff({−sp2,−sp3})
support K ′. Thus, K ′ must equal Kmin,s also before Step 3. In Step 2, nothing can change

(as otherwise −sp1 would lie outside K ′) and the same holds true in Step 1 (as only for

µ = 1 we have −sp1 ∈ K ′).

Finally, we investigate the freedom in the design of K before one applies the transforma-

tion (4). Let d2 =
(

−1
s(s2−s−1)

)
denote the intersection point of H=(−1

0

)
,1
and aff({−p, p3}),

as in Lemma 4.2. Moreover, let d3 be defined, s.t. {d3} = H=

( 10 ),1
∩ aff({p, p2}). The

only possible freedom we have in choosing the original set K is to replace the linear

boundaries [p,−sp3] and [−p− sp2], s.t. bd(K) ∩ pos({−sp3, p}) ⊂ conv({−sp3, p, d3}) and
bd(K) ∩ pos({−sp2,−p}) ⊂ conv({−sp2,−p, d2}), respectively (c.f. Figure 7). However,

since we need to ensure that s(K) = s, we also have to fulfill

bd(K) ∩ pos({−sp3, p}) 6⊂ int(conv({0,−sp3, p})) and

bd(K) ∩ pos({−sp2,−p}) 6⊂ int(conv({0,−sp2,−p})).



INEQUALITIES RELATING SYMMETRIZATIONS OF CONVEX BODIES 19

u

0
p−p 1

αp− 1
αp

p1

p2p3

d1 = −sp1

−sp2 −sp3

d2 d3

Figure 7. Construction used in the proof of Lemma 4.3, Kmax,s (yellow).

Assuming now, there exists some x ∈ bd(K) ∩ pos({−sp3, p}) \ conv({−sp3, p, d3}), we
would have that [sp2, x] ⊂ conv(K ∪ (−K)). This would imply x, 1

αp, sp
2 ∈ bd(conv(K ∪

(−K)) with 1
αp ∈ pos({sp2, x}) and therefore p ∈ bd(K) as well as 1

αp ∈ int(conv({p, x, sp2})) ⊂
int(conv(K∪ (−K))) and, since ± 1

αp were the only points in 1
αK∩ (−K)∩conv(K∪ (−K)),

this would imply α(K) < α(K ′) = α in contradiction to our assumption that α(K) = α.

Thus, bd(K) ∩ pos({−sp3, p}) ⊂ conv({−sp3, p, d3}). Using a similar argument, it follows

that bd(K) ∩ pos({−sp2,−p}) ⊂ conv({−sp2,−p, d2}).
On the other hand, observe that we may choose K = conv

({
−sp1, d2,−sp2,−sp3, d3

})
,

which equals Kmax,s up to a linear transformation (such that K ′ = Kmin,s). All in all,

we have shown that there always exists some linear transformation L such that Kmin,s ⊂
L(K) ⊂ Kmax,s.

Finally, let us realize that for any K with s = s(K), s ∈ (ϕ, 2], such that Kmin,s ⊂
K ⊂ Kmax,s we have α(K) = s

s2−1
. Notice that in the proof of [2, Theorem 1.7 a),(ii)]

it is shown that α(Kmax,s) =
s

s2−1 . Since Kmin,s ∩ (−Kmin,s) = Kmax,s ∩ (−Kmax,s) and

conv(Kmin,s ∪ (−Kmin,s))) = conv(Kmax,s ∪ (−Kmax,s))), we have α(Kmin,s) =
s

s2−1
, too.

Thus, for any Kmin,s ⊂ K ⊂ Kmax,s holds α(K) = s
s2−1 . �

Now, we are ready to prove the main Theorem.

Proof of Theorem 1.1. In [2, Theorem 1.7] it is shown that 2
s(K)+1 ≤ α(K) ≤ 1.
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Combining this with Lemma 4.2, we obtain

2

s(K) + 1
≤ α(K) ≤ min

{
1,

s(K)

s(K)2 − 1

}
.

Now, for any given s ∈ [1, 2] consider the set Kmax,s and notice that u1 ∈ bd(Kmax,s) ∩
bd(−Kmax,s)∩ bd(conv(Kmax,s ∪ (−Kmax,s)) if s ≤ ϕ, which shows α(Kmax,s) = 1. On the

other hand, for s > ϕ, Lemma 4.2 shows that α(Kmax,s) =
s(K)

s(K)2−1 .

We now show that for every s ∈ [1, 2] and α ∈
[

2
s+1 ,min{1, s

s2−1
}
]
there exists Ks,α ∈ K2,

such that s(Ks,α) = s and α(Ks,α) = α. To do so, let S = conv({p1, p2, p3}) be a regular

Minkowski centered triangle and Ks = S ∩ (−sS), s ∈ [1, 2]. By [2, Remark 4.1] we have

that Ks is Minkowski centered with s(Ks) = s and α(Ks) = 2
s+1 . Moreover, defining qi,

i = 2, 3, to be the vertices of Ks, which are the intersection point of the edges with the

normal vectors s
2p

i and −1
2p

1, respectively, we see that −1
2p

1,−1
s q

2,−1
sq

3 is a well-spread

triple of asymmetry points of Ks.

The idea is to define a continuous transformation f : {Ks : s ∈ [1, 2]} × [0, 1] → K2 with

s(f(Ks, t)) = s for all t ∈ [0, 1], while f(Ks, 0) = Ks and α(f(Ks, 1)) = min
{
1, s(K)

s(K)2−1

}
.

0

p1

p2p3
q2

s
2p

1

s
2p

2s
2p

3

−1
sq

3−1
sq

2

q3 −1
2p

1

Figure 8. Transformation within the proof of Theorem 1.1: −S ∩ (sS)

(gray), Ks = S ∩ (−sS) before the transformations (green), the transformed

set after Step 1 (filled yellow), the transformed set after Step 2 (red), the

asymmetry points −1
2p

1,−1
sq

2,−1
s q

3 (big black dots) of f(Ks, t), t ∈ [0, 1],

and S as well as −S (dotted).

This is done in two steps:

Step 1 For t ∈ [0, 12 ], continuously rotate the lines containing the edges of Ks supporting

the point s
2p

2 around q2 and s
2p

3 around q3, respectively, such that at the end of the

transformation, the new edges are both orthogonal to the edge containing −1
2p

1.

Step 2 For t ∈ [12 , 1], continuously rotate the lines containing the edges of Ks, which contain

−1
sq

2 and −1
sq

3, respectively, around those points, s.t. at the end of the transfor-

mation, the new edges intersect in s
2p

1.
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For every u ∈ bd(B2) let ρ(u) > 0 be defined such that ρ(u)u ∈ bd(Ks). It is very simple

to verify that ρ(u)/ρ(−u) ∈ [1/s, s] for all u ∈ bd(B2) after each step. Thus, −1
sf(Ks, t) ⊂

f(Ks, t), t ∈ [0, 1]. Moreover, these transformations are done in a way that the asymmetry

points −1
2p

1,−1
s q

2,−1
sq

3 ∈ bd(f(Ks, t)), t ∈ [0, 1] are kept to be asymmetry points. Hence,

by Proposition 2.1, s(f(Ks, t)) = s for every s ∈ [ϕ, 2]. Recognize that f(Ks, t) equals

(up to a linear transformation) the corresponding Kmax,s. Since the transformation f is

continuous, α(f(Ks, 0)) = α(Ks) =
2

s+1 , and α(f(Ks, 1)) = min{1, s
s2+1}, we conclude that

{α(f(Ks, t)) : t ∈ [0, 1]} =
[

2
s+1 ,min

{
1, s

s2−1

}]
, for every s ∈ [1, 2], as desired. �

5. Diameter-width-ratio for (pseudo-)complete sets

For C1, . . . , Ck ∈ Kn we say C1 ⊂ . . . ⊂ Ck is left-to-right optimal, if C1 ⊂opt Ck.

We recall the characterization of pseudo-completeness from [4].

Proposition 5.1. Let K,C ∈ Kn with s(C) = 1. Then the following are equivalent:

(i) K is pseudo-complete w.r.t. C,

(ii) (s(K) + 1)r(K,C) = r(K,C) +R(K,C) = s(K)+1
s(K) R(K,C) = D(K,C), and

(iii) for every incenter c of K we have

s(K) + 1

2s(K)
(−(K − c)) ⊂ K −K

2
⊂ 1

2
D(K,C)C ⊂ s(K) + 1

2
(K − c)

is left-to-right optimal, which implies that c is also a circumcenter and a Minkowski

center of K.

For K ∈ Kn a regular supporting slab of K is a pair of opposing supporting hyperplanes

of K, such that at least one of the two hyperplanes supports K in a smooth boundary

point. In case when K is a polytope, the latter means that at least one of the hyperplanes

supports K in a whole facet.

In[9] a characterization of complete sets using the concept of regular supporting slabs is

presented.

Proposition 5.2. Let K,C ∈ Kn. Then the following are equivalent:

(i) K is complete w.r.t. C,

(ii) bs(K,C) = D(K,C) for all s such that s is the normal vector of a regular supporting

slab of K.

Now, we are ready to prove the general dimension bound on the diameter-width ratio for

(pseudo-)complete sets.

Recall that τ(K) = R
(
K ∩ (−K), K−K

2

)
= r

(
K−K

2 ,K ∩ (−K)
)−1

.
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Proof of Theorem 1.3. We assume w.l.o.g. that K is Minkowski centered and r(K,C) = 1.

Abbreviating s := s(K) again, we obtain D(K,C) = (s+ 1)r(K,C) = s+ 1 and

K −K

2
⊂ D(K,C)

2
C =

s+ 1

2
C ⊂ s+ 1

2
K ∩ (−K)

from Proposition 5.1. Thus, C ⊂ K ∩ (−K), which implies w(K,C) ≥ w(K,K ∩ (−K)) and

since w(K,K ∩ (−K)) = w
(
K−K

2 ,K ∩ (−K)
)
= 2r

(
K−K

2 ,K ∩ (−K)
)
(see [11] for basic

properties of the width)

(7)
D(K,C)

w(K,C)
=

s+ 1

w(K,C)
≤ s+ 1

2r
(
K−K

2 ,K ∩ (−K)
) =

s+ 1

2
τ(K) ≤ s+ 1

2
.

Moreover, remember that α(K) = 1 if and only if τ(K) = 1 by Proposition 2.3 (ii).

Now, consider first the case n odd. Let S = conv({p1, . . . , pn+1}) be a regular Minkowski

centered simplex, and for any s ∈ [1, n] we define the sets K = S∩(−sS) and C = S∩(−S).

Then s(K) = s, K ∩ (−K) = S ∩ (−S) = C (see [2, Remark 4.1]) and since K−K
2 ⊂opt

s+1
2 (K ∩ (−K)) (see [2, Theorem 1.3]), we have

D(K,C) = 2R

(
K −K

2
, C

)
= 2R

(
K −K

2
,K ∩ (−K)

)
= s+ 1.

Since all facets of K are facets of S or −sS, the normal vectors of the facets of K and

C are exactly ±pi, i ∈ {1, . . . , n + 1} and therefore all the regular supporting slabs of K

have those normal vectors. Now, since s
2p

i,−1
2p

i ∈ bd(K), while ±1
2p

i ∈ bd(C) it follows

that bpi(K,C) = s + 1 = D(K,C) for all i ∈ {1, . . . , n}, and therefore the completeness of

K w.r.t. C by Proposition 5.2.

Moreover, from [2], we know S ∩ (−S) ⊂ S−S
2 ⊂ conv(S ∪ (−S)) is left-to-right optimal

for odd n. Using K ∩ (−K) = S ∩ (−S) we obtain

K ∩ (−K) ⊂opt S − S

2
.

and since K ⊂ S implies K−K
2 ⊂ S−S

2 we conclude that

K ∩ (−K) ⊂opt K −K

2
,

i.e., τ(K) = 1.

Hence, we see that, with this choice of K and C = K ∩ (−K), we have equality all

through the inequality chain (7) for all s ∈ [1, n].

Finally, for even n, let K ′ := K × [−1, 1] and C ′ := C ×
[
− 2

s+1 ,
2

s+1

]
with K,C ∈ Kn−1

as above. Then, K ′, C ′ ∈ Kn, and we easily see that s(K ′) ≤ n− 1.

By [2, Theorem 1.3],

K −K

2
⊂opt s+ 1

2
K ∩ (−K) =

s+ 1

2
C.
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Moreover, ±un ∈ bd
(
K ′−K ′

2

)
∩ bd

(
s+1
2 C ′). Hence, K ′−K ′

2 ⊂opt s+1
2 C ′. Thus,

D(K ′, C ′)
2

= R

(
K ′ −K ′

2
, C ′
)

=
s+ 1

2
.

Notice, that the set of all regular supporting slabs of K ′ consists of those of K and the

new additional one in the direction un. For all normal vectors u of such regular supporting

slabs of K ′ we have bu(K
′, C ′) = s + 1 = D(K ′, C ′). Hence, K ′ is complete w.r.t. C ′ by

Proposition 5.2. �

Next, we state the proof for the even tighter diameter-width ratio bound for pseudo-

complete sets in the planar case.

Proof of Theorem 1.4. Again, we may assume w.l.o.g. that K is Minkowski centered and

use the abbreviation s := s(K). It is easy to see that conv(K ∪ (−K)) ⊂ 2s
s+1

K−K
2 (c.f. [2,

Theorem 1]). Thus,

K ∩ (−K) ⊂ α(K)conv(K ∪ (−K)) ⊂ α(K)
2s

s+ 1

K −K

2
,

which implies τ(K) ≤ 2s
s+1α(K). Using the inequality chain (7), we obtain the tighter bound

D(K,C)

w(K,C)
≤ s+ 1

2
τ(K) ≤ s+ 1

2
min

{
1,

2s

s+ 1

s

s2 − 1

}
= min

{
s+ 1

2
,

s2

s2 − 1

}
.

Finally, let s̃ := maxs∈[1,2]min
{

s+1
2 , s2

s2−1

}
. Since s+1

2 is increasing and s2

s2−1
decreasing in

s ∈ [1, 2], we see that s̃ is the solution of the equation s+1
2 = s2

s2−1
and has the value

s̃ =
1

3

(
1 +

3

√
19− 3

√
33 +

3

√
19 + 3

√
33

)
≈ 1.8393.

Thus, we obtain for all pseudo-complete K

D(K,C)

w(K,C)
≤ s̃+ 1

2
≈ 1.42,

independently of the asymmetry of K. �

Remark 5.3. Of course, there exist Minkowski centered K ∈ K2 with α(K) 6= τ(K) [2,

Example 4.3]. Observe, however, that for any s ∈ [ϕ, 2] and K such that Kmin,s ⊂ K ⊂
Kmax,s with s(K) = s, we have α(K) = τ(K).

In the proof of Theorem 1.1 we have shown that α(K) = s
s2−1

. Note that K ∩ (−K)

is a hexagon, which we can denote by conv{−p, p, q1, q2, q3, q4}, where p is defined as in

the proof of Theorem 1.1. Hence, the touching points of K ∩ (−K) and bd
(
τ(K) K−K

2

)

must be vertices of K ∩ (−K). From the proof of [2, Theorem 1.7 a),(ii)] we also have

p ∈ s
s2−1

bd
(
K−K

2

)
and qi ∈ s+1

2 bd
(
K−K

2

)
, 1 ≤ i ≤ 4. Since s ≥ ϕ, this implies τ(K) =

min
{

s
s2−1

, 2
s+1

}
= s

s2−1
.
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Observe that if one could show

τ(K) ≤ min

{
1,

s(K)

s(K)2 − 1

}
,

the bound in Theorem 1.4 could be improved to

D(K,C)

w(K,C)
≤ min

{
s(K) + 1

2
,

s(K)

2(s(K)− 1)

}
≤ D(GH,GH ∩ (−GH))

w(GH,GH ∩ (−GH))
=

ϕ+ 1

2
≈ 1.31.

Remark 5.4. We show that for every pair (ρ, s), with s ∈ [1, 2] and 1 ≤ ρ ≤ min
{

s+1
2 , s

2(s−1)

}
,

there exists some Minkowski centered K, s.t. s(K)=s and a set C, s.t. K is pseudo-complete

w.r.t. C and D(K,C)
w(K,C) = ρ (c.f. Figure 9).

s(K)

D(K,C)
w(K,C)

1

1.31

1.42

1 21.84ϕ

Figure 9. Region of all possible values for the diameter-width ratio for

pseudo complete sets K in dependence of their Minkowski asymmetry s(K):
D(K,C)
w(K,C) ≥ 1 (blue); D(K,C)

w(K,C) ≤ min
{

s(K)+1
2 , s(K)2

s(K)2−1

}
(red). Construc-

tion from Remark 5.4:
{

D(K,Cλ)
w(K,Cλ)

, 0 ≤ λ ≤ 1
}
=
[
1,min

{
s(K)+1

2 , s(K)
2(s(K)−1)

}]

(yellow, with s(K)
2(s(K)−1) in green).

To do so, let K ∈ K2 be Minkowski centered with K := Kmax,s (where Kmax,s is defined

as in Section 5) and s := s(K) ∈ [1, 2]. Then define Cλ = (1−λ)
(
K−K

2

)
+λ s+1

2 (K∩ (−K))

with λ ∈ [0, 1]. This way Cλ is a convex combination of K−K
2 and s+1

2 (K ∩ (−K)), and

therefore K ∈ K2
ps,Cλ

with D (K,Cλ) = 2 by Proposition 5.1.

By Remark 5.3, we have τ(K) = min
{
1, s

s2−1

}
and

w(K,C1) = w

(
K −K

2
,
s+ 1

2
K ∩ (−K)

)
=

2

s+ 1
w

(
K −K

2
,
s+ 1

2
K ∩ (−K)

)

=
4

s+ 1
r

(
K −K

2
,
s+ 1

2
K ∩ (−K)

)
=

4

s+ 1

1

τ(K)
.

Thus,
D(K,C1)

w(K,C1)
=

s+ 1

2
τ(K).
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Moreover, D(K,C0)
w(K,C0)

= 1. Hence,

{
D(K,Cλ)

w(K,Cλ)
, 0 ≤ λ ≤ 1

}
=

[
1,min

{
s+ 1

2
,

s

2(s − 1)

}]
.

Note that s+1
2 is increasing, while s

2(s−1) is decreasing on s ∈ [1, 2]. Thus, min
{

s+1
2 , s

2(s−1)

}

attains its maximum of ϕ+1
2 ≈ 1.31, when s = ϕ.

We conclude the paper with a consideration of the diameter-width ratio of pseudo-

complete sets in the euclidean plane. We do this by first recalling the definition of the

hood from [3] (Hmin there).

The hood may be defined by

H := conv

({(
0

1

)
,

(
r√

1− r2

)
,

(
−r√
1− r2

)}
∪ (r · B2)

)
,

where

r =

√
t

2
− 1 +

√
16√
t
− t, and t = 2

(
2

3

) 2
3 (

(9 +
√
69)

1
3 + (9−

√
69)

1
3

)
.

0

R

r

w

D

D

Figure 10. The hood H (red); r(H,B2)B2 and R(H,B2)B2 (gray).

As shown in [3], the hood has the following properties. First of all,

r(H,B2)B2 ⊂ H ⊂ R(H,B2)B2,

with R(H,B2) = 1 and r(H,B2) = r ≈ 0.7935.

The triangle conv

({(
0

1

)
,

(
r√

1− r2

)
,

(
−r√
1− r2

)}}
is isosceles, with the long edges

of length D(H,B2) = r + 1 and the short of length w(H,B2) = 2r. Moreover, we have

r(H,B2) +R(H,B2) = D(H,B2),
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thus H ∈ K2
ps,B2

by Proposition 5.1 and s(H) = R(H,B2)
r(H,B2)

= 1
r(H,B2)

≈ 1.27. Thus,

D(H,B2)

w(H,B2)
=

r + 1

2r
=

1
s(H) + 1

2 1
s(H)

=
s(H) + 1

2
≈ 1.135.

Proof of Theorem 1.5. Let K ∈ K2
ps,B2

, i.e. r(K,B2) = D(K,B2) − R(K,B2). W.l.o.g., we

assume R(K,B2) = 1.

Now, on the one hand, since 2r(K,B2) ≤ w(K,B2), it follows

D(K,B2)

w(K,B2)
≤ D(K,B2)

2r(K,B2)
=

D(K,B2)

2(D(K,B2)−R(K,B2))
=

(
2

(
1− 1

D(K,B2)

))−1

However, 2
(
1− 1

x

)
is an increasing function for any positive values of x, and therefore

max
D(K,B2)∈[D(H,B2),2]

D(K,B2)

w(K,B2)
≤
(
2

(
1− 1

D(H,B2)

))−1

=
D(H,B2)

w(H,B2)
.

On the other hand, since r(K,B2) = D(K,B2)− 1, we obtain from [3, Theorem 3.2]

D(K,B2)

w(K,B2)
≤


2

√
1−

(
D(K,B2)

2R(K,B2)

)2

cos

[
arccos

(
D(K,B2)

2(D(K,B2)− r(K,B2))

)

+arccos

(
D(K,B2)

2R(K,B2)

)
− arcsin

(
r(K,B2)

D(K,B2)− r(K,B2)

)])−1

=


2

√
1−

(
D(K,B2)

2

)2

cos

(
2 arccos

(
D(K,B2)

2

)
− arcsin (r(K,B2))

)


−1

=

(√
4−D(K,B2)2 cos

(
2 arccos

(
D(K,B2)

2

)
− arcsin (D(K,B2)− 1)

))−1

.

It is easy to verify that
√
4− x2 cos(2 arccos(x2 ) − arcsin(x − 1)) is decreasing for x ≥

√
3.

Thus,

max
D(K,B2)∈[

√
3,D(H,B2)]

D(K,B2)

w(K,B2)
≤ D(H,B2)

w(H,B2)
.

Since [
√
3, 2] covers the full range of possible diameters for pseudo-complete sets with cir-

cumradius 1 [3] and because H attains equality in each of the two inequalities derived above,

we conclude
D(K,B2)

w(K,B2)
≤ D(H,B2)

w(H,B2)
=

s(H) + 1

2
≈ 1.135

for K ∈ K2
ps,B2

. �
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[1] R. Brandenberg, K. von Dichter, B. González Merino, Relating Symmetrizations of Convex Bodies:

Once More the Golden Ratio, American Mathematical Monthly, 129 (2022), no. 4, 1–11.
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