
 

Technische Universität München 

School of Computation, Information and Technology 

 

 

 

 

Multi-Agent Reinforcement Learning for the 

Computation of Market Equilibria 

 

 
Nils Kohring  

 

 

 

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology 

der Technischen Universität München zur Erlangung eines 

Doktors der Naturwissenschaften (Dr. rer. nat.) 

genehmigten Dissertation. 

 

 

Vorsitz:                     Prof. Dr. Julien Gagneur 

 

Prüfende der Dissertation: 

 

1.     Prof. Dr. Martin Bichler 

2.     Prof. Dr. Florian Matthes 

3.     Prof. Ioannis Panageas, Ph. D. 

 

Die Dissertation wurde am 28.06.2023 bei der Technischen Universität München eingereicht 

und durch die TUM School of Computation, Information and Technology am 23.05.2024 

angenommen. 





To my late grandfather Günter.



iv



v

Abstract

Understanding and analyzing both the dynamics of self-interested agents in markets and
the possible resulting equilibrium outcomes are of the utmost importance for economic the-
ory. Yet, a general framework for equilibrium computation, particularly in auction theory, is
still lacking. Equilibrium outcomes react sensitively to changes in the underlying properties
and assumptions, such as the information structure, the agents’ utility preferences, and the
pricing mechanism. Previous methods for analytically or numerically solving for the equi-
librium typically are subject to two fundamental limitations. They either rely on exploiting
particular market properties, which limits their applicability to more realistic scenarios, or
they are computationally demanding, which limits their scalability to realistic market sizes.
Therefore, except for relatively small and restricted economic settings, we lack the knowl-
edge of equilibria and the tools to compute them. This thesis proposes a general and scalable
approach for equilibrium computation based on reinforcement learning methods. We model
the agents’ strategies by neural networks that learn to bid optimally through repeated self-
play. The application of such learning dynamics, where all agents simultaneously adapt
their behavior, is challenging in general games. On top of that, the technical implementa-
tion for markets specifically is involved. This is mainly due to the agents’ discontinuous
utility functions, which make the application of gradient-based methods more challeng-
ing, and the agents’ continuous valuation and action spaces, which necessitate the search
for optimal strategies in an infinite-dimensional function space. The classes of gradient-
based and particle-swarm-based approaches and their respective trade-offs regarding accu-
racy and computational efficiency are examined. We provide strong numerical results where
these methods successfully compute approximate equilibria in markets ranging from small
single-item auctions to larger combinatorial auctions with multiple heterogeneous goods
and double auctions, where buyers and sellers act strategically. We successfully extend the
algorithms to markets where the bidders’ valuations for the goods are correlated and to
markets with more general preference structures, such as those that account for risk aver-
sion. Finally, we show local convergence of the gradient-based approach under additional
regularity conditions. With this, we pave the way for employing reinforcement learning
methods in settings of economic theory, which ultimately may assist economists in better
understanding market dynamics and their equilibria.

Keywords: Auction Theory • Equilibrium Computation • Machine Learning • Multi-
Agent Reinforcement Learning
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Zusammenfassung

Die Analyse der Dynamik von selbstinteressierten Agenten in Märkten sowie der resul-
tierenden Gleichgewichte ist von höchster Bedeutung für die Wirtschaftstheorie. Dennoch
existiert kein allgemeingültiger Ansatz, solche Gleichgewichte zu berechnen, insbesondere
in der Auktionstheorie. Gleichgewichte reagieren sehr empfindlich auf Änderungen in den
Markteigenschaften und -annahmen, wie zum Beispiel der Informationsstruktur, den Nut-
zenfunktionen und den Preismechanismen. Bisherige Ansätze für das analytische oder nu-
merische Berechnen von Gleichgewichten haben im Allgemeinen zwei fundamentale Pro-
bleme. Entweder beruhen sie auf der Ausnutzung von speziellen Markteigenschaften, was
ihre Anwendbarkeit für realistischere Märkte limitiert, oder sie erfordern erheblichen Re-
chenaufwand, was die Skalierbarkeit zu größeren Märkten limitiert. Abgesehen von sehr
kleinen ökonomischen Modellen, sind daher weder Gleichgewichte noch Methoden diese
zu berechnen, bekannt. In dieser Dissertation stellen wir einen allgemeinen und skalier-
baren Ansatz zur Gleichgewichtsberechnung basierend auf Methoden des Reinforcement
Learning vor. Die Strategien von Agenten werden durch neuronale Netze modelliert, die
durch wiederholtes Ausprobieren und Adaptieren optimales Bieten lernen. Die Anwen-
dung solcher Lerndynamiken, in denen Agenten gleichzeitig ihr Verhalten anpassen, ist in
Spielen generell herausfordernd. Darüber hinaus ist die technische Umsetzung, speziell in
Märkten, erschwert. Dies ist zum einen durch die unstetigen Nutzenfunktionen der Agenten
bedingt, was die Anwendung von gradientbasierten Methoden erschwert, und zum ande-
ren durch die kontinuierlichen Werte- und Aktionsbereiche der Agenten, welche die Suche
nach optimalen Strategien in einem unendlich dimensionalen Funktionenraum bedingen.
Die Klassen von gradientenbasierten Algorithmen und Partikelschwarmoptimierung wer-
den mit ihren jeweiligen Abwägungen auf Genauigkeit und Rechenbedarf untersucht. Die
numerischen Ergebnisse sind durchweg positiv, da diese Lernverfahren erfolgreich Annähe-
rungen der Gleichgewichte berechnen. Dies gelingt in kleinen Auktionen mit einem Gut
sowie in größeren kombinatorischen Auktionen mit mehreren heterogenen Gütern und in
Double-Auction-Märkten, in denen sowohl die anbietenden als auch die bietenden Agen-
ten strategisch agieren. Wir erweitern die Anwendung dieser Algorithmen erfolgreich auf
Märkte, in denen die Bewertungen der Güter abhängig voneinander sind und auf Märk-
te mit allgemeingültigeren Nutzenfunktionen, z. B. auf solche die Risikoaversion abbilden.
Des Weiteren zeigen wir lokale Konvergenz des gradientenbasierten Ansatzes unter zusätz-
lichen Regularitätsannahmen. Insgesamt zeigen wir damit einen Weg zur Anwendung von
Reinforcement Learning in mikroökonomischen Modellen auf, der auf lange Sicht Wirt-
schaftswissenschaftler und -wissenschaftlerinnen dabei unterstützen kann, Marktdynami-
ken und ihre Gleichgewichte besser zu verstehen.

Stichwörter: Auktionstheorie • Gleichgewichtsberechnung • Maschinelles Lernen •
Multi-Agent Reinforcement Learning
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Chapter 1

Introduction

Economic theory is the study of relationships in markets by using formal mathematical con-
structs. Considering the rules and regulations of a market, one strives for an understanding
of the dynamics of various economic elements, such as the allocation of goods and the be-
havior of agents. How do new technological advances, market entries and exits, or changes
by the policymaker influence the market dynamics, such as prices or supply and demand?

Economists have always debated the amount and type of regulatory interventions nec-
essary. Over the past decades, some desiderata, such as ensuring market efficiency, stability,
and fairness, were not explicitly enforced by regulation, but delegated to the markets’ pric-
ing dynamics. Discussions on these topics are often driven by ideology, and assessments
are difficult to conduct. However, some recent studies aim to objectively and quantitatively
evaluate economic regulation (Parker and Kirkpatrick, 2012; Vannoni and Morelli, 2021). It
remains largely an open question how various incentives may influence market participants
in implicitly agreeing upon, ideally, a favorable outcome or equilibrium.

Analytically predicting equilibria has only been achieved under very specific market
designs. Any extensions of existing models or relaxations of their assumptions can funda-
mentally change the equilibrium behavior and may render methods of analytically deriving
equilibria inapplicable. Knowledge of equilibria enables economists and policymakers to
compare several scenarios and prevent market failures. For a systematic approach to such
questions, auction theory provides the mathematical framework by modeling the interac-
tion of buyers and sellers under different information structures (Krishna, 2009). The fo-
cus on an algorithmic perspective on such problems has received more attention in recent
years. This was mainly driven by the availability of ever more computational power and
market data as well as the emergence of new digital markets (Tardos and Vazirani, 2007)
and algorithmically guided agents (Calvano et al., 2020). Examples of such markets in-
clude online display advertisement auctions for sponsored search or on social media, public
spectrum auctions for mobile network frequencies, or financial exchanges where bids and
offers must be matched. The domains of market and mechanism design are more specif-
ically concerned with the influencing factors of agents’ utilities and the setup of markets
where agents reveal their preferences truthfully in equilibrium. It turns out that this requires
rigorous assumptions, and even the outcomes of the famous Vickrey-Clarke-Groves mech-
anism (Groves, 1973, most general form) fail to achieve such favorable properties in many
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2 CHAPTER 1. INTRODUCTION

settings (Conitzer and Sandholm, 2006; Guo and Conitzer, 2009). Therefore, economists
usually face a trade-off between multiple design criteria, such as incentivizing truthfulness
or welfare maximization, that do not preclude one another (Bichler, 2017), and access to
equilibria is crucial in this decision-making process.

As a computational approach to learning from interaction, reinforcement learning (RL)
has been successfully applied to a wide range of applications in recent years (Mnih et al.,
2015; Silver et al., 2016). RL agents explore their available actions but must exploit those
that proved good in earlier rounds via trial-and-error and without human guidance. These
actions may determine not only current but also future utilities. Most algorithms in the
RL literature focus on single-agent learning. In contrast, the theory of learning in games
studies the processes in which multiple, usually self-interested, agents are iteratively trying
to maximize their utilities by adapting to the environment and their opponents (Fudenberg
et al., 1998).

1.1 Research Question

In light of the importance of equilibria in models of auction theory and our limited knowl-
edge of them, the objective of this dissertation is the computation of such equilibria. Few
computational approaches to learning to bid exist for continuous-action games with in-
complete information. Most models drastically restrict the auctions to finite action spaces,
independent private valuations, single-object auctions, or quasi-linear utilities. This reduces
the problem’s complexity and allows the application of conventional learning algorithms.
Two of the most notable approaches are from Bosshard et al. (2020) and Balseiro and Gur
(2019). In the former, bidding strategies are learned in discretized combinatorial auctions
under the assumptions of risk neutrality and independent valuations. Crucially, the intro-
duced error by discretizing the action space (and valuation space) is hard to quantify in
general, and there is no guarantee that an ever finer discretizing granularity will lead to a
better approximation of the continuous game (Waugh et al., 2009). The latter has a different
approach by heavily restricting the action space to linear bid functions in sequential auc-
tions. Both approaches to simplifying the equilibrium problem allow the establishment of
convergence guarantees and corresponding bounds on the utility loss when following the
learned strategies compared to optimal bidding.

We aim to overcome these limitations by proposing a generally capable RL framework
for computing optimal strategic behavior in market environments. We model the agents’
strategies by neural networks, which adapt via trial-and-error during repeated simulations
of the market. The main finding is strong evidence for consistent equilibrium convergence.
But we further investigate under which circumstances learning dynamics converge as well
as their limitations in terms of the market’s complexity and scalability to larger scenarios.

There are some fundamental challenges to this computational endeavor of the equilib-
rium problem. It has been shown that finding or even approximating equilibria is a prob-
lem of high computational complexity (Daskalakis et al., 2009). Furthermore, there are re-
sults on algorithms not converging to a steady state, and the currently known conditions on
guaranteed convergence are prohibitively restrictive (Hsieh et al., 2021; Mertikopoulos and
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Zhou, 2019). They are rarely met beyond game theoretic toy examples (such as potential or
two-player, zero-sum games). Additionally, there are two main technical challenges. Firstly,
state-of-the-art RL methods are prohibitively sample-inefficient. Hence, they require access
to a highly performant simulation engine of the market. Secondly, most machine learning
algorithms are built on gradient-based updating rules that almost exclusively rely on back-
propagation. However, this procedure is not applicable to first-order gradient estimation in
markets because it assumes a continuous objective. The simplest example of this issue is
the binary decision of whether or not an agent is allocated an item and the resulting jump
in the agent’s utility. In view of this, this dissertation’s contributions can be summarized as
follows.

1.2 Contribution

In the first publication (Bichler et al., 2021, see chapter 4), we have proposed a new RL
method for approximating market equilibria, called neural pseudogradient ascent (NPGA).
Agents employ neural networks as their strategies and let them submit competing bids.
They adjust their strategies by repeated interaction and subsequently following the gradient
in the direction of higher expected utility. Thereby, the networks reach equilibrium without
having to solve the corresponding equilibrium condition explicitly. The article focuses on
symmetric auctions, that is, settings where the bidders face exactly the same situation ex-
ante, e.g., they have the same prior valuation distributions and preferences. However, unlike
previous work, NPGA can handle diverse correlations between the bidders’ preferences and
general utility functions, such as those that account for risk aversion. The analysis of con-
vergence is approached from a theoretical and an empirical standpoint. The former uses the
current understanding of learning dynamics and establishes local convergence under rel-
atively strict conditions. The latter consists of a suite of experiments in specific auctions
where convergence to equilibrium is observed and a verification technique for the learned
strategies. By utilizing advanced conditional sampling techniques and an exhaustive search
of the discretized action space for approximate best responses, a close proximity of the
learned strategies to the maximal utility can be verified. The learning and verification pro-
cedures are applicable to an extensive range of environments. Despite being optimized for
parallel execution on graphics processing units (GPUs), it remains computationally chal-
lenging considering the dimensionality of multi-agent auction games, mainly driven by the
discretization granularity of the verifier and the sampling size. NPGA provides a generic
approach for learning to bid in auctions with different distributional assumptions, valuation
interdependencies, or risk attitudes.

The second publication (Bichler et al., 2023, see chapter 5) extends the empirical analy-
sis of NPGA to a range of asymmetric markets. This extension is crucial for modeling more
realistic markets. These include larger combinatorial auctions from the family of local-
local-global auctions that are used to model high-stakes spectrum auctions. Having access
to approximate equilibria computed by NPGA helps to understand phenomena such as more
aggressive bidding by buyers with lower valuations, which is essential from a practitioner’s
standpoint. We find empirically that NPGA performs just as well as in symmetric auctions.
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In the third publication of this dissertation (Bichler et al., 2022, see chapter 6), the above
learning method, as well as another one based on a discretization of the market, has been
extended to models of bilateral bargaining. This is the basic model of double auctions, as
they can be observed in financial markets where multiple sellers and buyers come together.
We again find robust convergence empirically and present a local convergence guarantee.
All settings have been implemented in a vectorized fashion such that hundreds of thousands
of games can be simulated in parallel. This makes training the deep neural network policies
exceptionally efficient. The combined codebase of these first three publications establishes
the most expansive suite of implemented market mechanisms.

We also proposed and analyzed two alternative updating approaches. The discrete nature
of allocating indivisible goods to economic agents renders the game non-differentiable and
performant first-order methods inapplicable. The default algorithmic choices, such as the
REINFORCE or NPGA algorithm, rely on zeroth-order gradient feedback and hence suffer
from high variance and computational costs. In the fourth publication of this thesis (Kohring
et al., 2023, see chapter 7), we construct a surrogate market model in which the application
of first-order gradient estimators becomes possible. As we show empirically and theoreti-
cally, the bias resulting from smoothing the utility function and the empirical variance can
be controlled for in practice, making this procedure a substantially more performant and
robust option for learning to bid. The surrogate approach exploits the structure of the utility
function; thus, it remains open to what extent it can be generalized to markets beyond the si-
multaneous sale of independent goods, such as full-scale combinatorial auctions. Lastly, in
(Kohring et al., 2022, not included workshop paper), each bidder deploys a particle swarm
that heuristically searches for the optimal parameters of the bidder’s neural network strat-
egy. It replaces the conventional gradient-based updating and comes with a greater ability
to escape local optima, as it keeps track of multiple candidate solutions (so-called particles)
but with less mathematical justification. Only some limited stability analysis has been con-
ducted for the single-agent case. Empirically, we find the results to be on a par with the
gradient-based NPGA algorithm, both in terms of accuracy and robustness as well as the
computational needs.

1.3 Outline

The remainder of this dissertation is structured as follows. First, we will outline the con-
cepts of game and auction theory (chapter 2) that set the stage for the equilibrium learning
algorithms considered in this work. Before presenting these algorithms and applying them
to learning in markets specifically, the fundamentals of learning in games are briefly re-
visited by introducing classic learning dynamics (chapter 3). At last, after presenting the
publications themselves, we summarize the contributions and conclude with open questions
and future work in chapter 8.



Chapter 2

Fundamentals of Game Theory

Game theory dates back to the work of von Neumann and Morgenstern (1944) and Nash
(1951). It concerns itself with the strategic interactions among rational agents that are as-
sumed to follow some exogenous objective. That is, agents are aware of possible alterna-
tives, form expectations about uncertainties, and choose actions after some process of op-
timization over their objectives. Thereby, game theory allows the creation and subsequent
analysis of abstract representations of real-life problems involving multiple parties. A game
defines the rules of the interactions by stating a set of possible actions for players and defin-
ing how actions influence the players’ individual objectives. We refer the interested reader
to (Osborne and Rubinstein, 1994) for more details on the underlying game theory concepts.

Economic theory leverages much of this formalism. It constructs games representing
parts of the economy or individual markets and focuses on elements of economic interest,
such as market efficiency and welfare. Typically, markets are modeled as non-cooperative
games where agents possess private information.

2.1 Types of Games

A complete and exhaustive taxonomy of all types of games is elusive as there are many
dimensions to consider, some of which are conflicting with one another. We present the
core concepts relevant to the microeconomic models considered in this thesis as well as for
learning in games. With this, the main research problem and question of this thesis will be
stated formally. To put these economic models into perspective, let us briefly take a look at
the most common points of differentiation.

Cooperative and Non-Cooperative Games

Most work on game theory analyzes competitive or non-cooperative games. In its most ex-
treme, one player’s win is proportional or equal to another player’s loss. Such games are
called zero-sum, and equilibrium computation reduces to well-studied saddle-point prob-
lems. At the other end of the spectrum, the objectives are perfectly aligned, and agents
effectively have a joint goal and a strong incentive to cooperate.

5



6 CHAPTER 2. FUNDAMENTALS OF GAME THEORY

Strategic and Extensive Form Games

Historically, there has been a strong focus on strategic games, where players choose their
complete plans of action before the game starts. The most basic case is a single-shot game,
where agents are simultaneously asked to submit their sole action, and the game terminates
thereafter by assigning the corresponding utilities. For relatively large and sequential games,
it has proven to be more useful to consider games in their extensive form. The extensive form
arranges the sequence of possible events in a tree-like structure, and the players consider one
action at a time (Osborne and Rubinstein, 1994). Markets modeled as single-shot games are
the primary focus of this thesis, and extensions to sequentially conducted markets are only
outlined briefly.

Information Structure in Games

In games of complete information, players are fully informed about the characteristics of
the game and the players. In contrast, in games with incomplete information, players may
have private information that is not available to others. As we will see in section 2.2, auction
theory emphasizes games of incomplete information as this tends to be a central assumption
for modeling economic interactions.

Game Properties

In addition to the above properties of games, some notable other properties include

• whether the game is discrete or finite in the number of possible actions and outcomes
or continuous as in Definition 2.1,

• the type of players involved, i.e., if the set of players is finite (as in Definition 2.1)
as opposed to mean-field games, where players are modeled as a continuum of an
infinitely large population, and

• whether the game exhibits any symmetries, e.g., whether the players face the same
strategic decisions under the same conditions (Cheng et al., 2004).

With a focus on auction games, we will mainly consider non-cooperative, simultaneous
move games with continuous action spaces and a finite number of players in this thesis.

Definition 2.1 (Continuous Game). The triple G = (N ,X , u) is called a game, whereContinuous
game

• N = {1, . . . , N} is the finite set of players with N ∈ N≥2,

• X =
∏

i∈N Xi is the set of action profiles with Xi = Rdi being the action space for
player i ∈ N and di ∈ N≥1, and

• u = (u1, . . . , uN ) with ui : X → R being the utility function of player i which maps
an action profile x ∈ X to its associated utility.
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A game is called finite if X is finite instead. For example, the process of action buck-
etization transforms a continuous game into a finite one, where some structure is lost in a
trade-off for more tractability.

Going forward, we will make use of the shorthand notation (xi, x-i) = (x1, . . . , xN ) ∈
X for actions and analogously for other concepts defined for all agents. This helps to formu-
late the game from the perspective of player i and combine the opponents under the index
-i. In the following, we will extend Definition 2.1 by introducing the concept of incomplete
information. Agents then have private information they can base their decisions on.

2.2 Auction Theory

Economists try to understand the structures and dynamics of strategic behavior in different
markets. Auction theory, as a subfield of game theory, provides the formal means to model
markets. This primarily comprises games of incomplete information (Klemperer, 1999; Kr-
ishna, 2009). Applications range from energy and commodity markets, bond issues by pub-
lic utilities, public-to-private auctions such as spectrum auctions, display advertisements, or
e-commerce auctions to the process of procurement in supply chains.

The origins of auction theory date back to work by Vickrey (1961) in the early 1960s,
in which he proposed modeling auctions as non-cooperative games of incomplete informa-
tion and noticed that participants use their private information to their advantage. Agents
are assumed to be strategic; that is, they may bid less than they are willing to pay. This
involves each bidder receiving a privately observed valuation, conditioned on which the
bidder acts on the market. A mechanism determines the allocation of goods and the cor-
responding transaction prices. Bids are submitted so as to maximize individual expected
utility. Especially when the number of participants is relatively small, their strategies highly
impact the market dynamics. Mechanism design is the field of study concerned with an-
alyzing and setting up markets that optimize certain desiderata, such as yielding efficient
outcomes or maximizing total welfare or seller revenue, which are of interest to the policy-
makers or the market participants (Bichler, 2017). In contrast, the bidders’ main question
is, given the mechanism designed by the policymaker, what is their best strategy in order to
maximize individual utility? This raises the general need for access to equilibria of strate-
gically acting market participants. As alluded to above, analytical equilibria remain largely
unknown because mathematical solution methods require expert knowledge or may even be
inapplicable, motivating the need for computational methods.

We will formally introduce a sealed-bid auction as an extension of and in conformity
with the above definition of continuous games. We will only present the single-item and
single-sided case (i.e., only buyers act strategically in a competition for the good) to mini-
mize the notational clutter. This constitutes the starting point for much of auction theory.

Definition 2.2 (Auction Game). The quintuple G = (N ,V,A, f, u) is called a first-price Auction game
sealed-bid single-item auction, where

• N = {1, . . . , N} is the finite set of players or bidders,
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• V =
∏

i∈N Vi is the product space of valuation profiles with Vi ⊂ R≥0 being the
space for bidder i ∈ N ,

• A =
∏

i∈N Ai is the product space of action or bid profiles with Ai ⊂ R≥0 being the
action space for bidder i ∈ N ,

• f : V → R≥0 is the joint prior valuation density and is assumed to be bounded and
atomless (with marginals fi), and

• u = (u1, . . . , uN ) with ui : Vi ×A → R being the utility function of bidder i which
maps a valuation vi and an action profile b to i’s associated utility:

ui(vi, b) = vi xi(b)− pi(b) =

{
vi − pi(b) bi > maxj ̸=i bj ,

0 else.
(2.1)

Here, xi and pi define the allocation and first-price payment rule, respectively:

xi(b) =

{
1 bi > maxj ̸=i bj ,

0 else,
pi(b) =

{
bi bi > maxj ̸=i bj ,

0 else.
(2.2)

Ties are broken uniformly at random when needed.

Thus, most of the market is incorporated in the utility function u. It captures the auction
mechanism that allocates the item to a specific bidder and determines its price. The marketMechanism
is called a sealed-bid auction because there is a single bidding round, and bidders can base
their decisions only on their observed valuations and not anyone else’s bids. And it is called
a first-price auction because the price corresponds to the highest bid. Hence, we call this a
first-price sealed bid (FPSB) auction. This contrasts, for example, second-price sealed bidFPSB auction
auctions (SPSB), where the highest bidding bidder wins but pays the second-highest bid.
Considering the literature on game theory, this game specifies a continuous Bayesian game.Bayesian game

Now, one is not only interested in optimal behavior for one particular sample of prior
valuations but, more broadly, in an optimal strategy that reasons over the uncertainty of the
opponents’ behaviors and the bidder’s private information. Therefore, we define a bidding
strategy for bidder i as βi : Vi → Ai that assigns each valuation one action or bid. We
denote the resulting set of strategy profiles by Σ =

∏
i∈N Σi and a strategy profile β ∈ Σ by

β = (β1, . . . , βN ) = (βi, β-i). Although large parts of game theory and RL consider mixed
strategies (that map valuations or observations to a distribution over actions), in auction
theory, it is generally sufficient to reduce the space to pure strategies (Krishna, 2009), as
done here.

The utility ui from Equation 2.1 is commonly referred to as ex-post utility because itEx-post utility
can only be evaluated at the end of a game, that is, once the valuations have been drawn,
bids submitted, and the allocation and payments determined. Based on the ex-post utility,
one can define the interim utilityInterim utility

ūi(vi, bi, β-i) := Ev-i∼f-i [ui(vi, bi, β-i(v-i))] (2.3)
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as expectation of i’s utility, when having valuation vi and submitting bid bi, over the op-
ponents’ valuations v-i and their subsequent bids β-i(v-i). Going a step further, with the
ex-ante utilityEx-ante utility

ũi(β) := Evi∼fi [ūi(vi, βi(vi), β-i)] = Ev∼f [ui(vi, β(v))], (2.4)

one can characterize utilities at all different stages of the game. The bidders’ objective is
now to decide on strategies β that maximize their ex-ante utility.

With this, we are set to discuss the main challenges of applying and analyzing learning
to bid and equilibrium computation.

1. Auctions are neither fully cooperative nor competitive: Despite the profit of one bid-
der tending to decrease those of other bidders (e.g., all bidders compete for the same
goods), by collectively bidding low, they decrease the prices and increase the win-
ner’s profit. This can be considered a form of collusion and exemplifies that auctions
are general-sum games.

2. One can simplify the computation of symmetric equilibria by learning a single strat-
egy for all players in a symmetric game, where the identity of an agent does not
matter. However, there exist many auctions that consider asymmetries for the partici-
pants. These include different demand structures in terms of the valuation priors (e.g.,
some bidders may be interested in a different set of goods than their competitors) or
different utility preferences (e.g., individual attitudes towards risk aversion). We in-
vestigate how learning to bid can be applied to symmetric markets in (Bichler et al.,
2021, see chapter 4) and to more challenging asymmetric markets in (Bichler et al.,
2023, see chapter 5).

3. In mathematical optimization, concavity of the objective function is a common re-
quirement for global convergence. Analogous but more demanding conditions for
the convergence of multi-agent reinforcement learning have been established. In auc-
tions, however, the ex-ante utilities are not globally concave even under quite simple
parameterizations of the bid functions. This makes the convergence analysis more
challenging.

4. More than two parties are typically involved in auction markets. Consequently, the
large literature on learning in two-player games and its positive results on conver-
gence are inapplicable.

What is more, we face the following technical challenges in addition to the above general
hurdles.

5. One of the main challenges is the discontinuity of a bidder’s utility in his or her
action at the bid level around the highest opponent bid. Bidding just below the highest
opposing bid leads to a utility of zero, whereas a bid just above leads to a high positive
utility (assuming the bidder is not bidding above his or her valuation). This issue is
thoroughly analyzed in (Kohring et al., 2023, see chapter 7).
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6. The equilibrium search space is an infinite-dimensional space of bid function pro-
files. We will overcome this by parameterizing the strategies by neural networks and
thereby reducing the game to a finite-dimensional version as defined in Definition 2.1.
This obviously reduces the space of bid functions and excludes less regular strategies.
Nevertheless, we provide a bound on the utility error based on the networks’ expres-
siveness (Bichler et al., 2021, see chapter 4, Lemma 3).

7. What is more, as bidders only have partial information on the environment’s state,
they must act under uncertainty. Their expected ex-ante utilities depend on the oppo-
nents’ strategies, which makes calculating the expected values infeasible analytically.
Therefore, we will approximate the ex-ante utilities via Monte Carlo integration over
sampled ex-post utilities.

We will elucidate all of these points in subsequent parts and propose and discuss solution
methods.

The auction model of Definition 2.2 can readily be extended to more plausible scenar-
ios. These will only be briefly outlined here and not formally introduced in an attempt to
keep this introductory section focused on the main building blocks of learning to bid. For
instance, the utility function may also capture preference structures that seem plausible to
the application, such as risk aversion, or one may introduce correlations in the bidders’ val-
uations (Milgrom and Weber, 1982). From a practical standpoint, it seems reasonable that
bidders competing for the same good or bundle of goods also have similar valuations for
it. For notational convenience, the above model assumes risk-neutral bidders and indepen-
dent private values (IPV). Nonetheless, both extensions are considered and discussed inIndependent

private values (Bichler et al., 2021, see chapter 4). Other straightforward extensions include auctions of
multiple goods, such as multi-unit or more general combinatorial auctions. Then, the val-
uation Vi and bid spaces Ai are of higher dimension, which exacerbates learning the bid
functions βi : Vi → Ai. Such markets will be analyzed in (Bichler et al., 2023, see chap-
ter 5). Furthermore, the model can be extended to double auctions, where not only bidders
are interested in buying goods, but also sellers strategically determine their offers as consid-
ered in (Bichler et al., 2022, see chapter 6). We will also take a look at reverse auctions in
(Bichler et al., 2023, see chapter 5) that model procurement processes where multiple sellers
make offers. This is motivated by applications within industrial supply chains. Other exten-
sions to Definition 2.2 include all-pay auctions (Ewert et al., 2022), contests, or considering
budget-constrained bidders.

2.3 Solution Concepts

This section first introduces the necessary solution concepts before algorithmic frameworks
for optimizing gameplay are considered. As we have seen, this comes with additional chal-
lenges compared to single-agent learning and mathematical optimization.
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Nash Equilibrium

The Nash equilibrium (NE) is the starting point of most discussions on solution concepts.
Informally, no player has the incentive to deviate from his or her strategy unilaterally in an
NE. More formally, we state:

Definition 2.3. Let G = (N ,X , u) be a game and ε ≥ 0. The action profile x⋆ ∈ X is said Nash
equilibriumto be a local ε-Nash equilibrium of G if there exist open sets Ui ⊆ Xi such that x⋆i ∈ Ui and

ui(x
⋆
i , x

⋆
-i) + ε ≥ ui(xi, x

⋆
-i) (2.5)

for all xi ∈ Ui and all i ∈ N . It is called global if Ui = Xi for all i and exact or simply NE
if ε = 0.

For fixed opponent actions x-i, we call any action xi that achieves maximal utility a
best response. With this, an NE can be interpreted as all agents best responding to their Best response
opponents. The definition is straightforwardly extended to Bayesian games, such as the
auction from Definition 2.2, by considering the expected utility of the players across the
prior distributions:

ũi(β
⋆
i , β

⋆
-i) + ε ≥ ũi(βi, β

⋆
-i) (2.6)

for all strategies βi ∈ Σi and all i ∈ N . Such a strategy profile β⋆ is called an (ex-ante)
ε-Bayes-Nash equilibrium (ε-BNE). Similarly, in an ε-BNE, no bidder is able to deviate and ε-Bayes-Nash

equilibriumgain ε or more expected utility.
Attempts to analytically derive the BNE strategies usually involve stating the distribu-

tion of the highest opponent valuation, assuming symmetric strategies, and then solving the
resulting differential equation for the inverse bid function.

Example 2.1. Consider the single-item FPSB auction of Definition 2.2 with N bidders.
Let the prior valuations be independently and uniformly distributed on the unit interval.
Following the above procedure, one verifies βi(vi) = N−1

N vi to be a symmetric BNE in this
auction (Krishna, 2009, Example 2.1). Intuitively, the prices rise with increasing levels of
competition.

The main goal of this thesis is the computation of such equilibrium strategies or approx-
imations thereof, that map each valuation to a bid leading to the highest expected utility such
that no bidder can deviate profitably from his or her strategy. Considering the auction from
Definition 2.2, we employ a parameterized bid function for bidder i via

βi(vi) = πθi(vi), (2.7)

where θi ∈ Θ = Rd are the parameters of the neural network π. Let θ = (θ1, . . . , θN )
and πθ = (πθ1 , . . . , πθN ). Importantly, this reduces the infeasible search in the infinite-
dimensional space of bid functions to a finite-dimensional search for optimal parameters.
However, depending on the network’s architecture, some equilibrium strategy profiles may
be excluded.
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Assuming the availability of the expected utilities allows us to interpret the parameter-
ized auction in its ex-ante form as a complete information continuous game as in Defini-
tion 2.1. We call

Gproxy = (N ,Θ, ũ) (2.8)

the proxy game of the auction G with utilities ũi(πθ) for all i in accordance with (BichlerProxy game
et al., 2021, chapter 4, Definition 2). With this perspective, we are looking for a set of pa-
rameters θ⋆ that satisfies the Nash condition of Definition 2.3 for the ex-ante utilities ũ. Fur-
thermore, the ex-ante utilities are usually more regular (particularly differentiable), unlike
the discontinuous ex-post utilities. Loosely speaking, when taking the expected utility over
all the possible valuations and respective bids by the opponents, the discontinuity of win-
ning or losing an item is averaged out. In practice, these expected utilities are not available
and, instead, must be approximated via sampling. We will come back to this observation in
later sections on learning in games.

Correlated Equilibrium

A relaxation of NE is given by correlated equilibrium (CE). These are motivated by someCorrelated
equilibrium simple learning methods leading to them. Informally, the players choose their actions fol-

lowing some public correlation mechanism in a CE. Importantly, CE have a lower compu-
tational complexity than NE.1 Additionally, the set of coarse correlated equilibria (CCE)Coarse

correlated
equilibrium

has been introduced. CCE can be considered the weakest solution concept and may contain
undesirable, strictly dominated strategies. We have the inclusions NE ⊂ CE ⊂ CCE. CCE
are motivated by being the consequence of many simple learning methods, where players
adapt their strategies according to how much they regret historical actions.

A strategy is called no-regret if it leads to a utility at least as high as any fixed strategy
in retrospect. Hence, playing according to a CCE can be understood as being no-regret
(Cesa-Bianchi and Lugosi, 2006). Furthermore, in cases where the (C)CE is unique, it must
coincide with an NE. Consequently, any methods converging to (C)CE will find an NE under
these circumstances. This is an important observation that may explain the convergence of
learning to bid in some settings.

Existence and Uniqueness

Nash (1951) proved that every (mixed strategy extension of a) finite game admits an NE.
Extending this result, Debreu (1952) showed the existence of NE in continuous games with
compact action spaces. And Athey (2001) proved the existence of pure strategy BNE for
multiple auction types of incomplete information by introducing and verifying the so-called
single-crossing condition. Essentially, this requires all participants to have non-decreasing
strategies in their valuations. Assuming concavity of the utility functions, Rosen (1965)
gave a sufficient condition for Nash equilibrium existence and uniqueness. Ui (2008) gener-
alized these results in smooth games to CE uniqueness. Obviously, the results only apply to

1These complexity results were derived for finding mixed strategy equilibria in finite games.
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a limited set of games, and we know of some auction games with multiple equilibria. More
substantial strategy space restrictions are needed for equilibrium uniqueness, even in sym-
metric single-item SPSB auctions with two bidders. Besides the equilibrium of all bidders
truthfully revealing their valuations, there exists a second “ill-behaved” BNE with constant
strategies, where one bidder bids zero and the other bids one regardless of their valuations.

Solving for the Nash Equilibrium

For relatively simple models of independent private valuations, such as the symmetric FPSB
auctions from Example 2.1 (Holt Jr, 1980; Riley and Samuelson, 1981) or bilateral bargain-
ing (Leininger et al., 1989), closed-form solutions have been derived by writing the optimal-
ity condition of Equation 2.6 for the inverse bid function as an ordinary differential equation
(ODE). Marshall et al. (1994) and Bajari (2001) use numerical algorithms for computing
optimal strategies in IPV FPSB single-item auctions, and Hubbard and Paarsch (2014) con-
sidered auctions with asymmetries and risk-aversion. Campo et al. (2003) extended this
beyond the IPV model to affiliated values for single-item auctions. The convergence prop-
erties of these approaches are unknown, and they have been criticized for instability (Fibich
and Gavish, 2011). Further, it remains open if these methods can successfully be applied to
more general markets, such as combinatorial auctions.
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Chapter 3

Learning in Games: Theory and
Algorithms

By pursuing optimal decision-making in dynamic environments, we have established crite-
ria for desirable solutions in the last section. At the core of learning in games is the question
of the consequences of autonomous agents simultaneously learning in a common environ-
ment. As such, the game itself evolves over time, making independent optimization for the
agents a complicated affair as agents can only adapt their own strategies, yet their utilities
depend on all agents’ strategies. What is more, there exists a hierarchy of solution con-
cepts which translates to a hierarchy of computational complexity. This stands in contrast
to single-agent learning or mathematical optimization, where the convergence of gradient
ascent to local optima is essentially guaranteed. Unfortunately, the famous Nash equilib-
rium (Definition 2.3), as the arguably most desirable solution concept, has been shown to
be of high computational complexity. Specifically, it is PPAD-complete already for two-
agent finite games (Daskalakis et al., 2009). Such complexity results extend to games of
incomplete information. To be precise, it was shown that finding a BNE or best response in
simultaneous single-item second-price auctions, in which bidders have non-trivial combina-
torial valuations, is PP-hard (Cai and Papadimitriou, 2014). The authors also show that the
computation of a Bayesian extension of the weaker notion of a CE is NP-hard. Currently,
two common conclusions on these complexity results are discussed. Firstly, it may suggest
the usage of a specialized algorithm for games of a computationally manageable subclass.
Secondly, some researchers have suggested that the dynamics are possibly interesting by
themselves. According to them, one should focus more on the process of repeated inter-
action itself instead of its possible terminal states, such as static equilibria (Papadimitriou
and Piliouras, 2019). A good point of reference for this debate and learning in games more
generally is the book by Fudenberg et al. (1998).

Motivated by the empirical success of deep learning and single-agent RL, there has
been a resurgence of interest in multi-agent reinforcement learning (MARL) (Zhang et al.,
2021). RL-based approaches have outperformed humans in some video games (Mnih et al.,
2015) and board games with prodigious state- and action-spaces via a combination of deep
learning and Monte Carlo tree search (Silver et al., 2016). There has been no shortage of

15
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newly proposed algorithms from the domains of machine learning, operations research, and
multi-agent systems, mainly driven by the diverse landscape of games and their inherently
different properties. Yet, their theory is not well understood. The main challenges in MARL
include the environment becoming non-stationary due to the opponents’ changing strate-
gies and the exponentially increasing joint action space in the number of players. MARL is
usually subdivided into value- and policy-based approaches. The former methods first com-
pute the players’ values for particular states of the environment, based on which they try to
move to more promising states (with higher values). The latter methods directly optimize
for a strategy that maps observations to the best actions, which is generally more robust but
less sample efficient. Both can be extended to leverage function approximation for large
and continuous state and action spaces. We will introduce and discuss the suitability of
policy-based methods to economic applications below. Most importantly, any algorithm for
learning in auctions must handle incomplete information and continuous action spaces.

Note that this chapter does not claim to be a general introduction to the topic of learning
in games. Instead, the concepts are presented from the perspective of an economic theorist,
focused on learning to bid in the auction game from Definition 2.2 and extensions thereof.

3.1 Algorithms

The first attempts at algorithmic learning in games date back to work by Brown (1951)
and the solver by Lemke and Howson (1964) for finite bimatrix games. These and other
classic approaches are mainly concerned with finite and full information games and do not
scale well to large or continuous action spaces. For example, the computation of exact best
responses becomes insurmountable, requiring global maximization as a subroutine at each
iteration. These limitations motivate the focus on gradient-based methods utilizing function
approximation as simple and computationally attractive alternatives. These are at the center
of this dissertation’s analysis. This section starts by revisiting the classic approaches and
highlights whenever an algorithm has been applied or explicitly extended for learning to
bid.

We highly recommend the habilitation by Mertikopoulos (2019) and the references
therein for an overview of the fundamentals of multi-agent learning and Shalev-Shwartz
(2007) for a concise look at the online learning literature.

3.1.1 Classic Learning Dynamics

The direct application of classic tabular methods to discretized auctions quickly becomes
infeasible due to the exponential growth of the valuation and action space for finer reso-
lutions in multi-agent games. However, they comprise the conceptual core of much of the
learning in games literature. Thus, the following overview puts the algorithms considered
in this dissertation into perspective and enables assessing when alternative approaches are
viable. Thereby, it demarcates the contribution of this thesis from existing work.

With fictitious play, Brown (1951) introduced one of the most basic procedures forFictitious play
adaptive behavior in finite games. Here, players best respond to the historical frequency of
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their opponents’ actions. Some convergence results are known, such as for two-player or
zero-sum games (Robinson, 1951; Miyasawa, 1961), and multiple variants, such as smooth
fictitious play, have been introduced over the decades (Hofbauer and Sandholm, 2002).

Application 3.1. Rabinovich et al. (2009, 2013) propose a generalization of ficti-
tious play that learns BNE in auctions with continuous valuations and discrete ac-
tions. They do so by utilizing the anonymous nature of auctions, in the sense that
outcomes are independent of the identity of the players and only depend on the bids.
Consequently, the finite number of opponents can be interpreted as a continuum of
anonymous players representing the same amount of competition. In contrast, Gemp
et al. (2022) are in the pursuit of automated mechanism design. They employ bidders
with fictitious play in an inner loop and use a gradient-based method in an outer loop
for the objective of designing a seller-optimal all-pay auction.

In contrast to fictitious play, where equal weight is put on all historical actions, best Best response
dynamicsresponse dynamics only consider the most recent actions. That is, agents respond with their

pure best response to their opponents’ actions in the last round of play.

Application 3.2. There have been multiple approaches to applying best response
dynamics to learning to bid. Reeves and Wellman (2004) propose an iterative best re-
sponse approach that learns piecewise-linear pure strategies in two-bidder auctions.
Bosshard et al. (2020) learn in IPV combinatorial auctions via an iterated best re-
sponse procedure, and they are additionally able to verify closeness to BNE. Dütting
and Kesselheim (2022) apply best response dynamics to combinatorial auctions with
item bidding (i.e., multiple simultaneous single-item auctions) on restricted prior val-
uations. Although these dynamics are slow to converge or may even fail to do so, they
provide social welfare guarantees.

In a similar spirit, under the follow-the-regularized-leader (FTRL) procedure, players Follow-the-
regularized-
leader

select actions that are optimal in hindsight while considering a regularization term that pre-
vents too drastic updates (as they may occur under best response dynamics). Under standard
concavity and Lipschitz assumptions on the utility, it is shown to achieve no-regret, which
implies convergence to CCE (Shalev-Shwartz, 2007; Flokas et al., 2020). The main draw-
backs of this class of algorithms are the requirement of full access to the objective functions
and the need for solving an optimization problem in each iteration.

Application 3.3. Daskalakis and Syrgkanis (2016) propose and analyze a variant of
the follow-the-leader scheme in simultaneous auctions with fixed valuations and risk-
neutral bidders. They provide theoretical bounds for market efficiency and the gap to
optimal welfare. Balseiro and Gur (2019) learn in repeated auctions via so-called
adaptive pacing strategies. By limiting the bidders’ strategies to clipped linear func-
tions, where the clipping is conducted to satisfy the budget constraints, they restrict
the game and strategic possibilities. Still, they can establish a convergence guarantee
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and corresponding bounds on the utility loss.

Let us also consider the multiplicative weights method (Auer et al., 1995; Arora et al.,Multiplicative
weights 2012) for finite games. Weights on the past utilities of all actions are maintained, and future

actions are simply chosen randomly with probability proportional to these weights. At the
end of each iteration, they are updated based on the utility of the associated action. Over
time, the algorithm tends to assign higher weights to actions of higher utility. This allows
the establishment of tighter regret bounds compared to gradient ascent in some situations
(Shalev-Shwartz, 2007).

Another class of algorithms is given by the dual averaging method. Unlike FTRL, itDual averaging
does not require full information feedback but instead is based on first-order gradient feed-
back. The gradients are accumulated in the dual space (instead of only considering the most
recent gradient evaluation) and then projected back to the feasible region (Nesterov, 2009;
Mertikopoulos, 2019). We will conduct an in-depth comparison of using gradient ascent in
the parameter space of neural networks representing the bid functions to the application of
dual averaging in a fully discretized auction game in (Bichler et al., 2022, see chapter 6).

Application 3.4. Kolumbus and Nisan (2022) use the multiplicative weights algo-
rithm for repeated auctions with finite valuations and actions. They provide a conver-
gence analysis in the resulting finite game. Feng et al. (2021) study the convergence
of an extension of the multiplicative weights algorithm in discretized repeated auc-
tions with unknown valuation distributions. Their choice of model is motivated by
online advertisement auctions. They also propose an extension to deep Q-learning
for better scalability to finer discretizations.

Application 3.5. Online advertising auctions are a key motivation for learning auto-
mated bidding strategies. Weed et al. (2016) apply a form of online learning to such
repeated second-price auctions. They provide regret bounds, but their analysis is lim-
ited to the IPV model and bidders with an unlimited budget. Further, they show that
discretizing the action space in auctions leads to regret growing at least linearly.

At last, let us mention a modern approach to learning in finite games of incomplete
information. Hart and Mas-Colell (2000) propose regret matching where players try to reachRegret matching
equilibrium by counting regrets over the history of play and adapting future play inversely
proportional to the regrets. Zinkevich et al. (2007) extend this to games of sequential play
by introducing counterfactual regret minimization (CFR). CFR achieves an average overallCounterfactual

regret
minimization

regret that is linear in the number of possible observations. It is at the core of current state-
of-the-art poker bots (Brown and Sandholm, 2018), but considerable engineering efforts are
required to scale this computationally and memory-demanding tabular method to the full
game size with a sufficiently fine discretization.



3.1. ALGORITHMS 19

3.1.2 Simultaneous Gradient Ascent

Gradient-based methods are the algorithm of choice in statistical learning theory due to their
low computational costs per iteration, albeit their relatively slow convergence rate. Under
mild conditions, one can find the global optimum of concave functions and local optima
of non-concave functions (Lee et al., 2016). At each iteration of gradient ascent, a step is
taken in the direction of the steepest ascent of the payoff by slightly adjusting the actions (in
the dual space). When the domain is restricted, a projection step back to the feasible region
follows (sometimes also called mirroring).

For an action profile x ∈ X in the game from Definition 2.1, let

∇u(x) = (∇x1u1(x), . . . ,∇xNuN (x)) (3.1)

be the simultaneous gradient of the utilities, where ∇xiui denotes the derivative of ui with
respect to xi. Now in simultaneous gradient ascent, agents independently and myopically Simultaneous

gradient ascentfollow the gradient of their respective utility to update their actions.1 In the context of learn-
ing in games, gradient ascent can be interpreted as a regularized best response with momen-
tum. Then, in analogy to single-agent learning, necessary and sufficient conditions for local
optimality have been established:

Proposition 3.1 (Ratliff et al. (2016), Proposition 1). Let ui ∈ C2(X ,R) for all i ∈ N . If
x⋆ ∈ X is a local NE, then ∇u(x⋆) = 0 and the second partial derivative of ui with respect
to xi is negative semi-definite for all i ∈ N .

Convergence to local NE is all we can hope for in general non-concave games with
gradient-based approaches. Proposition 3.1 seems like a straightforward extension of the
single-agent case. However, the question of how uncoupled multi-agent dynamics behave is
much more involved. Here, uncoupled dynamics are understood in these sense that agents
only have access to their own utilities and the partial derivatives with respect to their own
actions.

In the case of learning to bid, recall that some auction games are known to have multiple
equilibria and that modeling the players’ strategies by neural networks is usually performed
with an over-parameterization, i.e., there may be multiple parameter configurations for the
same strategy. Thus, even if convergence were to be guaranteed, which equilibrium would
be reached? To answer this, a setting with multiple known equilibria will be analyzed in
(Bichler et al., 2023, see chapter 5, Subsection 6.1.1). The discussion on the convergence of
simultaneous gradient ascent is continued in section 3.2.

Remark 3.1. Letcher et al. (2019a) establish a result similar to that of Proposition 3.1.

Remark 3.2. There are two dimensions to consider for the type of feedback or oracle avail-
able to a learning scheme.

1Following the literature on online (convex) optimization, some authors call this procedure online gradient
ascent as discussed in (Zinkevich, 2003).
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1. Occasionally, the payoffs of a game cannot be accessed exactly, but there may be
a certain amount of noise in the measurements. Most commonly, this is due to the
stochasticity of the environment or the opponents. In Bayesian games such as auc-
tions, one takes a sample of finite size from the valuation distribution of the agents.
Hence, noticeable noise will be in the players’ utility estimates, especially for small
sample sizes.

2. We consider the order of feedback. Being able to evaluate the payoffs is referred to as
zeroth-order feedback, whereas having access to its gradient is considered first-order
feedback. Constructing a gradient estimate based on zeroth-order feedback is less
desirable in terms of computational efficiency and usually requires multiple payoff
evaluations. The next section investigates different gradient estimation techniques.

Remark 3.3. Let us also mention the continuous-time viewpoint on learning dynamics. The
continuous dynamics can be considered the limiting state of iterative updating procedures
with an infinitesimal learning rate. This makes possible the application of some techniques
from evolutionary game theory and allows for easier analytical analysis. In particular, some
regret bounds can be tightened in the continuous time framework (Kwon and Mertikopoulos,
2017).

To apply gradient ascent (or some other updating rule) to learning to bid, either the auc-
tions must be discretized, or the strategies must be parameterized via function approxima-
tion. The following section considers the latter option. This approach comes in particularly
handy for large or continuous action spaces as it reduces the infinite-dimensional search
space (finding optimal bid functions) to a finite-dimensional one (finding optimal sets of
parameters). The most important implementations will also be highlighted.

3.1.3 Policy Optimization

A policy defines a function that maps game observations to actions (or distributions thereof).
Typically, policies are parameterized by neural networks. The main hurdle for practical
usage is the necessity of a highly efficient simulator capable of supplying enough data for
the sample-inefficient training of neural networks.

Let us consider the parameterized auction game Gproxy from Equation 2.8. The exact
gradient update step for bidder i at iteration t takes the form

θti = θt−1
i + η · ∇θt−1

i
ũi
(
πθt−1

)
, (3.2)

for a step size η > 0. Unfortunately, neither can we calculate the exact ex-ante utilities
nor their gradients. We can only approximate the utilities via sampling the ex-post utilities,
which gives noisy unbiased estimates of the ex-ante utilities.

With deep learning theory still in its infancy, the theoretical analysis of deep MARL
is very limited. Coming from a supervised or offline learning problem formulation, there
are two key challenges regarding the training of neural networks. Firstly, the environment
is highly dynamic, and once the policy is updated, subsequently playing according to this
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changed policy will result in a different data distribution. This is even more severe when
there are multiple learners involved who are continuously updating their strategies. This
invalidates the common assumption of independent and identically distributed samples for
stochastic gradient ascent. That is why many RL algorithms use replay buffers that effec-
tively alleviate the issues of correlation between sampled game outcomes. Secondly, most
games or RL applications do not provide a differentiable loss or utility function. Informally,
they are considered black boxes that take in a policy and return a utility without revealing
a functional structure. The gradient estimate is influenced by policy updates that change
the state and action distributions and the resulting utilities. More specifically, in auctions,
the ex-post utility is discontinuous in the agent’s bid. At a bid magnitude around the highest
opponent bid, bidding just below that value results in losing the auction and a utility of zero,
whereas bidding just above results in a positive utility, assuming that bidder i is not over-
bidding. This prevents the application of backpropagation for first-order gradient estimation
via Monte Carlo sampling. Let us now consider different ways of estimating the gradients,
where this discussion will be continued.

REINFORCE

The REINFORCE algorithm (Williams, 1992) is central to modern RL and lays the concep- REINFORCE

tional foundation for actor-critic methods such as the famous proximal policy optimization Proximal policy
optimization(PPO), which was introduced by Schulman et al. (2017) and also found widespread adoption

in continuous control and robotics.
At its core, the policy gradient theorem is applied, which allows rewriting the policy’s

gradient in terms of the action distribution instead of the inaccessible gradient of the utility
function via the log derivate trick. For that, one is necessarily interested in learning mixed
strategies. We will write πθi( · |vi) for the probability density function of bidder i’s bids
given the valuation vi. This conditional distribution is assumed to be Gaussian, but any type
of absolute continuous distribution can be utilized. The opponents stick to playing pure
strategies β-i in the following for ease of notation. Following the derivations of Mohamed
et al. (2020, Section 4) adapted to learning to bid, the policy gradient is given as

∇θi ũi(πθi , β-i) = ∇θiEv∼fEbi∼πθi
( · |vi) [ui(vi, bi, β-i(v-i))] (3.3)

= ∇θi

∫

V
f(v)

∫

Ai

πθi(bi|vi) · ui(vi, bi, β-i(v-i)) dbi dv. (3.4)

We can now apply the Leibniz rule and interchange integration and differentiation. Impor-
tantly, this is valid even for the discontinuous utilities in auctions (Flanders, 1973). ui was
discontinuous in bi when considering pure strategies, whereas now, ui is independent of
θi and the product of πθi and ui is continuous in θi after the interchange (Equation 3.5).
Formally, we can write

∇θi

∫

V
f(v)

∫

Ai

πθi(bi|vi) · ui(vi, bi, β-i(v-i)) dbi dv (3.4)

=

∫

V
f(v)

∫

Ai

∇θi πθi(bi|vi) · ui(vi, bi, β-i(v-i)) dbi dv (3.5)
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= Ev∼fEbi∼πθi
( · |vi)

[
∇θi log πθi(bi|vi) · ui(vi, bi, β-i(v-i))

]
, (3.6)

where the log derivate trick, ∇θiπθi(bi|vi) = πθi(bi|vi)∇θi log πθi(bi|vi), is applied in the
last step to regain an expected value. The resulting expected gradient can be approximated
by sampling from the prior distribution and utilizing standard backpropagation. Concluding,
the evaluation of the utility gradient can be circumvented by transferring the “gradient flow”
through the action probabilities instead and only evaluating the utility itself.

Application 3.6. Tan et al. (2022) employ an actor-critic RL method and empirically
validate the approach in the continuous valuation auction setting.

The REINFORCE estimate falls in the class of zeroth-order methods because it only
relies on evaluating the utility and not on any of its derivatives. The estimate can be of high
variance, especially once the policy collapses to an almost pure strategy, i.e., when it assigns
most of the probability mass to a single approximate best response. This is frequently the
case in games considered in auction theory because they are known to have pure strategy
BNE. Thus, the variances of the learned action distributions converge to zero, which results
in ever larger gradient magnitudes. This shortcoming renders the REINFORCE algorithm
not to be the estimator of choice. A good reference on the details of this estimator and a
comparison to alternative approaches provides the survey paper by Mohamed et al. (2020).

Remark 3.4. REINFORCE can be proven to converge locally under standard stochastic
approximation conditions for offline or single-agent learning (Bhandari and Russo, 2019).
They also provide conditions for preventing convergence to suboptimal policies. Giannou
et al. (2022) prove a convergence rate of O(1/

√
n) for the REINFORCE algorithm for finite

games under appropriate step sizes.

Alternatively, deep deterministic policy gradient (DDPG) (Silver et al., 2014) is an ap-Deep
deterministic

policy gradient
proach capable of learning pure strategies directly. This is possible by concurrently learning
the Q-function (mapping pairs of observations and actions to the player’s estimated utility)
and a policy. As an off-policy method, it tends to use data more effectively than on-policy
methods, such as REINFORCE or PPO, but the usage of two networks per learner adds a
layer of complexity to the architecture and training design.

Application 3.7. Jin et al. (2018) consider online advertising auctions and apply a
method based on a multi-agent version of DDPG.

Evolution Strategies

An alternative zeroth-order approach for estimating the policy gradient is based on evolu-
tion strategies (ES). These were utilized by Salimans et al. (2017) in the context of RL andEvolution

strategies originally proposed by Spall (1992). They give an asymptotically unbiased estimator, even
when the utility gradient is inaccessible, or the utilities are discontinuous, and tend to cir-
cumvent the problem of high variance that the REINFORCE algorithm suffers from. Hence,
ES are used in our NPGA algorithm (Bichler et al., 2021, see chapter 4).
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ES sample nearby parameter configurations of the network such that the local utility
surface can be approximated in a manner similar to finite difference approximation. For a
small σ > 0, consider a pure strategy πθi and

∇θi ũi(πθi , β-i) = ∇θiEv∼f

[
ui(vi, πθi(vi), β-i(v-i))

]
(3.7)

≈ ∇θiEε∼N (0,I)Ev∼f

[
ui(vi, πθi+σε(vi), β-i(v-i))

]
(3.8)

= Eε∼N (0,I)Ev∼f

[ ε
σ
ui(vi, πθi+σε(vi), β-i(v-i))

]
. (3.9)

As this term directly approximates the ex-ante utilities, which can be assumed sufficiently
well-behaved and continuous (Bichler et al., 2022, see chapter 6, Assumption 1), one again
overcomes the issue of discontinuous ex-post utilities. In practice, Equation 3.9 can be esti-
mated via the utility-weighted parameter configurations where the prior is sampled and the
expected utility approximated for each set of parameters. The additional sampling of param-
eters and resulting computational costs are one of the main disadvantages of this approach.

Application 3.8. Li and Wellman (2021) use a similar gradient estimation technique
to the one used by NPGA. They empirically evaluate the algorithm in two simulta-
neous sealed-bid auctions but do not make any theoretical considerations. Noti and
Syrgkanis (2021) employ simultaneous gradient ascent to learn in repeated sponsored
search auctions and provide some empirical results.

First-Order Policy Gradient

If available, first-order gradient estimates are often favorable compared with zeroth-order
estimates due to lower variances (Ghadimi and Lan, 2013; Suh et al., 2022). The wide use of
zeroth-order methods, such as REINFORCE and PPO, is mainly due to the fact that RL en-
vironments are given as black boxes without explicit access to gradients. In auction games,
the discrete allocation of goods additionally makes the ex-post utility function discontinu-
ous. As a result, the first-order Monte Carlo gradient estimate is inapplicable, as noted in
(Bichler et al., 2021). Therefore, we propose a surrogate market in (Kohring et al., 2023)
where allocations (and corresponding payments) are smoothed to reestablish the continuity
of the ex-post utility. For single-item auctions, we establish:

Theorem 3.1 (Kohring et al. (2023), informal Theorem 4.2). The first-order estimate of the
interim utility’s gradient under the smoothed version of the auction from Definition 2.2 with
utilities uSM is unbiased under some regularity conditions. That is,

∇θi u
SM
i (vi, bi, β-i) = Ev-i∼f-i

[
∇θiu

SM
i (vi, bi, β-i(v-i))

]
, (3.10)

for all i ∈ N , vi ∈ Vi, and bi ∈ Ai.

Furthermore, we verify this change to only introduce a bounded bias on the underlying
game dynamics by proving that any approximate equilibrium in the surrogate auction also
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constitutes one in the original auction (Kohring et al., 2023, Theorem 4.6). With additional
theoretical and empirical bounds on the sample variance (which increases with the smooth-
ing strength), we conclude this approach to be superior to previous methods. We showed
a significant improvement to NPGA and REINFORCE in performance and computational
costs in variously sized markets. However, it remains open if and how this technique can be
extended beyond independent single-item auctions to general combinatorial auctions where
bids on bundles of items are submitted.

3.1.4 Advanced Policy-Based Methods

This section briefly outlines non-gradient-based and more advanced updating procedures.
Some tabular methods have also been extended to incorporate parameterized policies. Such
hybrid methods enable alternative updating schemes instead of greedily following the direc-
tion of locally higher utility as standard policy gradient methods do. Noteworthy is neuralNeural fictitious

self-play fictitious self-play (Heinrich and Silver, 2016), which approximates fictitious play by learn-
ing a best response against the average of past policies. Other approaches include policyPolicy space

response oracles space response oracles (Lanctot et al., 2017), which keeps a population of policies and it-
eratively adds approximate best responses for each player as well as regret policy gradientRegret policy

gradient (Srinivasan et al., 2018), which makes a connection between CFR and policy gradients,
where the gradient-update rule is adjusted according to regret matching. However, no guar-
antees on its convergence are available yet.

Swarm Optimization

Particle swarm optimization (PSO) is a heuristic that is not gradient-based and was intro-Particle swarm
optimization duced in the 1990s by Kennedy and Eberhart (1995). It maintains a fixed-sized set of so-

lution candidates throughout the optimization process. All candidates (so-called particles)
adjust their parameters based on their current utilities, momentum, and information ex-
change shared by other particles. By maintaining multiple candidates, it is considered more
capable of escaping suboptimal local optima; however, a good theoretical understanding of
the swarm dynamics is still lacking, even in the single-agent case.

In our MARL application, each agent is represented by a separate swarm of particles,
and they repeatedly interact in self-play. In contrast to PSO, NPGA only considers a sin-
gle candidate, and in each iteration, a fixed number of parameter samples is evaluated in
close proximity to the current candidate to estimate the gradient. Therefore, a comparable
number of objective function evaluations is needed. We found the performance and the com-
putational needs of PSO to be competitive with NPGA’s gradient-based learning (Kohring
et al., 2022).

Coupled Dynamics

Learning with opponent-learning awareness (LOLA) was proposed by Foerster et al. (2018).Learning with
opponent-

learning
awareness

As the name suggests, each agent tries to anticipate the learning of the other agents. Its
update rule includes a second-order correction term that accounts for anticipated policy
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updates by the opposing agents. However, LOLA may change the stationary points of the
original dynamics, which inspired a new iteration of the algorithm (Letcher et al., 2019b).
Also, symplectic gradient adjustment (SGA) has been introduced by Letcher et al. (2019a). Symplectic

gradient
adjustment

They decompose the utility function into its well-behaved potential and so-called Hamilto-
nian part and add a correction term to the updating rule that is based on the Hessians. The
provided convergence guarantees of this divide-and-conquer approach still require assump-
tions on the structure of the utility functions.

This dissertation does not further investigate coupled approaches due to the empirical
success of uncoupled dynamics such as NPGA or PSO. In a student project, we found LOLA
applicable to learning in auctions. Yet, the additional computational burden of computing
second-order terms tends to be not worth the effort (Liu, 2021).

3.2 Convergence to Equilibrium

It is well-established that unconditioned global Nash convergence is out of reach. Results
from single-agent learning do not generalize, and multi-agent learning trajectories may end
up in limit cycles or chaos (Sanders et al., 2018; Hsieh et al., 2021). A simple example
illustrates the failure of uncoupled gradient dynamics:

Example 3.1. Consider the two-player bilinear continuous game with objectives u1 : R2 →
R, (x1, x2) 7→ x1x2 and u2 = −u1. Following the individual gradient components leads
to cyclic orbits and prevents convergence to the unique critical point (NE) located at the
origin.

This phenomenon results from the misalignment of utilities and has no counterpart in
single-agent learning or optimization. Mertikopoulos et al. (2019) have rigorously analyzed
this behavior in zero-sum games by considering recurrences in the gradient orbits and lever-
aging results from the literature on dynamical systems. Hart and Mas-Colell (2003) provide
an impossibility result and argue that non-convergence is intrinsic to learning being uncou-
pled. So, as providing global convergence guarantees for general-sum games remains chal-
lenging or even impossible in some games, the literature has considered, on the one hand,
more restricted classes of games and, on the other hand, weaker notions of convergence.

Firstly, it is well-known that algorithms with the no-regret property lead to the weaker
equilibrium notion of CCE when considering convergence in empirical frequencies (Freund
and Schapire, 1999; Hartline et al., 2015; Cesa-Bianchi and Lugosi, 2006). Considering the
empirical frequencies refers to taking the average strategy over all historic strategies instead
of considering the actual strategy played in the last iteration.

Secondly, for special families of games, such as two-player zero-sum games or poten-
tial games (Monderer and Shapley, 1996), there exist uncoupled dynamics that do converge
to NE. The simultaneous gradient constitutes a conservative vector field in potential games,
effectively reducing the problem to finding the maximum of a single function. For exam-
ple, Hofbauer and Sandholm (2002) show global convergence of a variant of fictitious play
in zero-sum and potential games. Notwithstanding, these are relatively strong restrictions
and hard to verify in continuous games with infinite-dimensional strategy spaces, such as
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auctions. The notion of a game being potential can be relaxed in some sense by the con-
cepts of monotonicity (Rosen, 1965) and by variational stability (Mertikopoulos and Zhou,
2019). The latter of these essentially ensures that all individual utility gradients point in the
direction of the equilibrium. Hence, one is guaranteed to move toward equilibrium when
following the gradients with an appropriate step size.

Remark 3.5. Some convergence results have been extended to settings of stochastic or noisy
feedback. This usually involves assuming zero mean and finite variance errors; see (Mer-
tikopoulos and Zhou, 2019, Theorem 4.7), (Chasnov et al., 2020, Section 4), and (Mazumdar
et al., 2020, Theorem 4.3). This is important for our sampling-based approaches to auction
games, where ex-ante utilities are only approximated.

Remark 3.6. Following the alternative methodology of considering coupled dynamics, as
Letcher et al. (2019a) do, local convergence to NE can be proved in a slightly broader class
of games.

3.2.1 Local Convergence

Local convergence is all one can hope for under general non-concave objectives when em-
ploying some form of (stochastic) gradient ascent in mathematical optimization (Bottou,
1998; Karimi et al., 2016). In this spirit, Chasnov et al. (2020) establish local convergence
results for learning in games based on the refinement of differential equilibria. In the fol-
lowing, let Xi = Rd and the utilities be twice differentiable, ui ∈ C2(X ,R), for all agents
i.

Definition 3.1 (Ratliff et al. (2016), Definition 3). An action profile x⋆ ∈ X is called aDifferential
Nash

equilibrium
differential Nash equilibrium if ∇u(x⋆) = 0 and the matrix of second partial derivatives of
u(x⋆) is negative-definite for all i ∈ N .

This narrower definition of equilibrium rules out some degenerate strategy profiles in
terms of the utility structure, such as plateaus of utility. In the cycle-game from Example 3.1,
the region of attraction is the singleton of the NE, which explains the non-convergence. As
the name suggests, the region of attraction of a point (or set of points) is simply a neigh-
borhood of all points such that their trajectories lead to said point (or set). With the notion
of stability of differential NE (see (Chasnov et al., 2020) for details), the following local
guarantee can be established:

Proposition 3.2 (Chasnov et al. (2020), informal Proposition 2). Consider a game G satis-
fying some regularity conditions on its utilities and second partial derivatives. Let x⋆ ∈ X
be a stable differential Nash equilibrium. Suppose players use gradient-based learning with
some step size constraint. Then, x→ x⋆ for x in the region of attraction of x⋆.

3.2.2 Convergence in Markets

As we have seen in section 2.3, the uniqueness of an NE is a strong condition, and we know
of markets that admit multiple equilibria. For example, the reverse auction considered in
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(Bichler et al., 2023, see chapter 5, Section 6.4) has a winner-takes-all and a pooling equi-
librium. The single-item auction with asymmetric priors from (Kaplan and Zamir, 2015)
also has multiple BNE. So even if convergence can be established, which equilibria will
be reached? Because games satisfying the condition of global monotonicity can exhibit
no more than a single equilibrium, these auctions with multiple BNE trivially violate the
monotonicity condition. Hence, global monotonicity does not explain the convergence of
gradient dynamics in general. Furthermore, we made the violation of monotonicity explicit
in a double auction market (Bichler et al., 2022, see chapter 6, Appendix F).

With these impossibility results established, let us go forward with a local analysis.
We have transferred the local convergence result of Proposition 3.2 to establish local con-
vergence in a restricted version of bilateral trade in (Bichler et al., 2022, see chapter 6,
Proposition 2). We limited the neural network policies to consist of a single neuron with-
out a non-linear activation function (i.e., we restrict the strategy space to linear functions),
which allowed keeping track of the functional forms of utilities and their derivatives. Still,
this strengthens the argument for local convergence in auction games.

Concluding, we conjecture that many auction games are monotonic or their equilibria
attracting, at least on large subsets of their strategy spaces. Another aspect that possibly
explains the robust convergence across many markets, despite the absence of global mono-
tonicity or stability, may be the alignment of the set of NE with the set of CCE. This would
mean that the learning dynamics converge to CCE and only end up in NE, as the sets are
perfectly aligned. Dütting et al. (2014) investigated this idea and showed the uniqueness
of CE in a class of full-information games that include procurement auctions and Bertrand
competitions.

3.2.3 Verification

As we have seen, a priori certifying convergence in auctions is usually infeasible. That
motivated our development and implementation of a verification method. On a high level,
it computes approximate best responses by exhaustively trying out alternative actions and
comparing the resulting utilities via Monte Carlo sampling. Formally, we are interested in
the loss of not playing a best response strategy against the current opponents,

ℓ̃i(β) = sup
β′
i ∈Σi

ũi(β
′
i, β-i)− ũi(βi, β-i). (3.11)

Clearly, we cannot possibly try out all alternative strategies β′i, and neither are bounds easy
to establish without further restrictions on the strategy space and utility function. To estimate
ℓ̃i, we first draw nbatch samples from i’s prior, and, for each of these samples, we find the
approximate (interim) best response from a discrete set of bids of size ngrid:

ℓ̂i(β) =
1

nbatch

nbatch∑

h=1

max
j ∈{1,...,ngrid}

(
1

nbatch

nbatch∑

k=1

ui

(
vhi , b

j , β-i(v
k
-i)
)

− ui

(
vhi , βi(v

h
i ), β-i(v

k
-i)
))

. (3.12)
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This equation also highlights the high computational demand of verification: For all nbatch
valuations of bidder i, ngrid alternative actions by i are evaluated against nbatch actions by
the opponents (each corresponding to samples from their priors and subsequent evaluations
of their bid functions). The calculation becomes incredibly prohibitive for a larger number
of agents and higher dimensional action spaces.

Details on this procedure, which includes an extension to handle interdependent prior
valuations (which requires advanced conditional sampling methods), can be found in (Bich-
ler et al., 2021, see chapter 4, Section Evaluation Criteria). In (Bichler et al., 2023, see chap-
ter 5, Section 2 of the Online Supplement), we have analyzed the performance of the utility
loss considering different sample and grid sizes.

Remark 3.7. Bosshard et al. (2020) propose a similar verification approach for the dis-
cretized auctions they consider. Assuming linear utilities (risk neutrality), bounded valua-
tion spaces, and an IPV model allows them to quantify a theoretical upper bound on the
utility loss in full combinatorial auctions (Bosshard et al., 2020, Theorem 2).

Reducing the Computational Demand

From the perspective of each bidder, an anonymous auction can be interpreted as competing
against an aggregate opponent who bids according to the maximum distribution of the bids
of the actual opponents. This observation holds true for all auction formats where only the
highest opponent bid is considered, as in the case of the first- and second-price payment
rules. It was already noted by Rabinovich et al. (2009), where results from games with a
continuum of anonymous players were applied to auctions. When this maximum distribu-
tion is available, sampling it instead breaks the curse of dimensionality in the number of
agents as the game is effectively reduced to two players. This insight can be leveraged both
during learning and during verification. For example, in the case of N symmetric bidders
with uniform priors, it is common knowledge that the distribution of the maximum valuation
simplifies to a Beta distribution with parameters N − 2 and 1.
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Con�rmation. No Work may be used in any way that is unlawful, including without limitation if such use would violate

applicable sanctions laws or regulations, would be defamatory, violate the rights of third parties (including such third

parties' rights of copyright, privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually

explicit, or obscene. In addition, User may not conjoin a Work with any other material that may result in damage to the

reputation of the Rightsholder. Any unlawful use will render any licenses hereunder null and void. User agrees to inform

CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC

or the Rightsholder in connection therewith.

8) Third Party Materials. In the event that the material for which a License is sought includes third party materials (such

as photographs, illustrations, graphs, inserts and similar materials) that are identi�ed in such material as having been

used by permission (or a similar indicator), User is responsible for identifying, and seeking separate licenses (under this

Service, if available, or otherwise) for any of such third party materials; without a separate license, User may not use such

third party materials via the License.

9) Copyright Notice. Use of proper copyright notice for a Work is required as a condition of any License granted under

the Service. Unless otherwise provided in the Order Con�rmation, a proper copyright notice will read substantially as

follows: "Used with permission of [Rightsholder's name], from [Work's title, author, volume, edition number and year of

copyright]; permission conveyed through Copyright Clearance Center, Inc." Such notice must be provided in a reasonably

legible font size and must be placed either on a cover page or in another location that any person, upon gaining access to

the material which is the subject of a permission, shall see, or in the case of republication Licenses, immediately adjacent

to the Work as used (for example, as part of a by-line or footnote) or in the place where substantially all other credits or

notices for the new work containing the republished Work are located. Failure to include the required notice results in

loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to

twice the use fee speci�ed in the Order Con�rmation, in addition to the use fee itself and any other fees and charges

speci�ed.

10) Indemnity. User hereby indemni�es and agrees to defend the Rightsholder and CCC, and their respective employees

and directors, against all claims, liability, damages, costs, and expenses, including legal fees and expenses, arising out of

any use of a Work beyond the scope of the rights granted herein and in the Order Con�rmation, or any use of a Work

which has been altered in any unauthorized way by User, including claims of defamation or infringement of rights of

copyright, publicity, privacy, or other tangible or intangible property.

11) Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT,

INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF

BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE

A WORK, EVEN IF ONE OR BOTH OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the

total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total

amount actually paid by User for the relevant License. User assumes full liability for the actions and omissions of its

principals, employees, agents, a�liates, successors, and assigns.

12) Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED "AS IS." CCC HAS THE RIGHT TO GRANT TO USER THE

RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER

WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE

REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS, OR OTHER PORTIONS OF THE WORK

(AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT

NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.

13) E�ect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of

the License set forth in the Order Con�rmation and/or the Terms, shall be a material breach of such License. Any breach



not cured within 10 days of written notice thereof shall result in immediate termination of such License without further

notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be

liquidated by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that

is not terminated immediately for any reason (including, for example, because materials containing the Work cannot

reasonably be recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of less

than three times the Rightsholder's ordinary license price for the most closely analogous licensable use plus

Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment.

14) Additional Terms for Speci�c Products and Services. If a User is making one of the uses described in this Section 14,

the additional terms and conditions apply:

a) Print Uses of Academic Course Content and Materials (photocopies for academic coursepacks or classroom

handouts). For photocopies for academic coursepacks or classroom handouts the following additional terms apply:

i) The copies and anthologies created under this License may be made and assembled by faculty members

individually or at their request by on-campus bookstores or copy centers, or by o�-campus copy shops and other

similar entities.

ii) No License granted shall in any way: (i) include any right by User to create a substantively non-identical copy of

the Work or to edit or in any other way modify the Work (except by means of deleting material immediately

preceding or following the entire portion of the Work copied) (ii) permit "publishing ventures" where any

particular anthology would be systematically marketed at multiple institutions.

iii) Subject to any Publisher Terms (and notwithstanding any apparent contradiction in the Order Con�rmation

arising from data provided by User), any use authorized under the academic pay-per-use service is limited as

follows:

A) any License granted shall apply to only one class (bearing a unique identi�er as assigned by the institution,

and thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays,

poems or articles;

C) use is limited to no more than the greater of (a) 25% of the text of an issue of a journal or other periodical

or (b) two articles from such an issue;

D) no User may sell or distribute any particular anthology, whether photocopied or electronic, at more than

one institution of learning;

E) in the case of a photocopy permission, no materials may be entered into electronic memory by User except

in order to produce an identical copy of a Work before or during the academic term (or analogous period) as

to which any particular permission is granted. In the event that User shall choose to retain materials that are

the subject of a photocopy permission in electronic memory for purposes of producing identical copies more

than one day after such retention (but still within the scope of any permission granted), User must notify CCC

of such fact in the applicable permission request and such retention shall constitute one copy actually sold for

purposes of calculating permission fees due; and

F) any permission granted shall expire at the end of the class. No permission granted shall in any way include

any right by User to create a substantively non-identical copy of the Work or to edit or in any other way

modify the Work (except by means of deleting material immediately preceding or following the entire portion

of the Work copied).

iv) Books and Records; Right to Audit. As to each permission granted under the academic pay-per-use Service,

User shall maintain for at least four full calendar years books and records su�cient for CCC to determine the

numbers of copies made by User under such permission. CCC and any representatives it may designate shall have

the right to audit such books and records at any time during User's ordinary business hours, upon two days' prior

notice. If any such audit shall determine that User shall have underpaid for, or underreported, any photocopies

sold or by three percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC shall

bear the costs of any such audit. Any amount determined by such audit to have been underpaid by User shall

immediately be paid to CCC by User, together with interest thereon at the rate of 10% per annum from the date

such amount was originally due. The provisions of this paragraph shall survive the termination of this License for

any reason.

b) Digital Pay-Per-Uses of Academic Course Content and Materials (e-coursepacks, electronic reserves, learning

management systems, academic institution intranets). For uses in e-coursepacks, posts in electronic reserves, posts

in learning management systems, or posts on academic institution intranets, the following additional terms apply:

i) The pay-per-uses subject to this Section 14(b) include:



A) Posting e-reserves, course management systems, e-coursepacks for text-based content, which grants

authorizations to import requested material in electronic format, and allows electronic access to this material

to members of a designated college or university class, under the direction of an instructor designated by the

college or university, accessible only under appropriate electronic controls (e.g., password);

B) Posting e-reserves, course management systems, e-coursepacks for material consisting of photographs

or other still images not embedded in text, which grants not only the authorizations described in Section

14(b)(i)(A) above, but also the following authorization: to include the requested material in course materials

for use consistent with Section 14(b)(i)(A) above, including any necessary resizing, reformatting or modi�cation

of the resolution of such requested material (provided that such modi�cation does not alter the underlying

editorial content or meaning of the requested material, and provided that the resulting modi�ed content is

used solely within the scope of, and in a manner consistent with, the particular authorization described in the

Order Con�rmation and the Terms), but not including any other form of manipulation, alteration or editing of

the requested material;

C) Posting e-reserves, course management systems, e-coursepacks or other academic distribution for

audiovisual content, which grants not only the authorizations described in Section 14(b)(i)(A) above, but also

the following authorizations: (i) to include the requested material in course materials for use consistent with

Section 14(b)(i)(A) above; (ii) to display and perform the requested material to such members of such class in

the physical classroom or remotely by means of streaming media or other video formats; and (iii) to "clip" or

reformat the requested material for purposes of time or content management or ease of delivery, provided

that such “clipping” or reformatting does not alter the underlying editorial content or meaning of the

requested material and that the resulting material is used solely within the scope of, and in a manner

consistent with, the particular authorization described in the Order Con�rmation and the Terms. Unless

expressly set forth in the relevant Order Conformation, the License does not authorize any other form of

manipulation, alteration or editing of the requested material.

ii) Unless expressly set forth in the relevant Order Con�rmation, no License granted shall in any way: (i) include

any right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the

Work (except by means of deleting material immediately preceding or following the entire portion of the Work

copied or, in the case of Works subject to Sections 14(b)(1)(B) or (C) above, as described in such Sections) (ii)

permit "publishing ventures" where any particular course materials would be systematically marketed at multiple

institutions.

iii) Subject to any further limitations determined in the Rightsholder Terms (and notwithstanding any apparent

contradiction in the Order Con�rmation arising from data provided by User), any use authorized under the

electronic course content pay-per-use service is limited as follows:

A) any License granted shall apply to only one class (bearing a unique identi�er as assigned by the institution,

and thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays,

poems or articles;

C) use is limited to not more than the greater of (a) 25% of the text of an issue of a journal or other periodical

or (b) two articles from such an issue;

D) no User may sell or distribute any particular materials, whether photocopied or electronic, at more than

one institution of learning;

E) electronic access to material which is the subject of an electronic-use permission must be limited by means

of electronic password, student identi�cation or other control permitting access solely to students and

instructors in the class;

F) User must ensure (through use of an electronic cover page or other appropriate means) that any person,

upon gaining electronic access to the material, which is the subject of a permission, shall see:

a proper copyright notice, identifying the Rightsholder in whose name CCC has granted permission,

a statement to the e�ect that such copy was made pursuant to permission,

a statement identifying the class to which the material applies and notifying the reader that the material

has been made available electronically solely for use in the class, and

a statement to the e�ect that the material may not be further distributed to any person outside the class,

whether by copying or by transmission and whether electronically or in paper form, and User must also



ensure that such cover page or other means will print out in the event that the person accessing the

material chooses to print out the material or any part thereof.

G) any permission granted shall expire at the end of the class and, absent some other form of authorization,

User is thereupon required to delete the applicable material from any electronic storage or to block electronic

access to the applicable material.

iv) Uses of separate portions of a Work, even if they are to be included in the same course material or the same

university or college class, require separate permissions under the electronic course content pay-per-use Service.

Unless otherwise provided in the Order Con�rmation, any grant of rights to User is limited to use completed no

later than the end of the academic term (or analogous period) as to which any particular permission is granted.

v) Books and Records; Right to Audit. As to each permission granted under the electronic course content Service,

User shall maintain for at least four full calendar years books and records su�cient for CCC to determine the

numbers of copies made by User under such permission. CCC and any representatives it may designate shall have

the right to audit such books and records at any time during User's ordinary business hours, upon two days' prior

notice. If any such audit shall determine that User shall have underpaid for, or underreported, any electronic

copies used by three percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC

shall bear the costs of any such audit. Any amount determined by such audit to have been underpaid by User

shall immediately be paid to CCC by User, together with interest thereon at the rate of 10% per annum from the

date such amount was originally due. The provisions of this paragraph shall survive the termination of this license

for any reason.

c) Pay-Per-Use Permissions for Certain Reproductions (Academic photocopies for library reserves and interlibrary

loan reporting) (Non-academic internal/external business uses and commercial document delivery). The License

expressly excludes the uses listed in Section (c)(i)-(v) below (which must be subject to separate license from the

applicable Rightsholder) for: academic photocopies for library reserves and interlibrary loan reporting; and non-

academic internal/external business uses and commercial document delivery.

i) electronic storage of any reproduction (whether in plain-text, PDF, or any other format) other than on a

transitory basis;

ii) the input of Works or reproductions thereof into any computerized database;

iii) reproduction of an entire Work (cover-to-cover copying) except where the Work is a single article;

iv) reproduction for resale to anyone other than a speci�c customer of User;

v) republication in any di�erent form. Please obtain authorizations for these uses through other CCC services or

directly from the rightsholder.

Any license granted is further limited as set forth in any restrictions included in the Order Con�rmation and/or in

these Terms.

d) Electronic Reproductions in Online Environments (Non-Academic-email, intranet, internet and extranet). For

"electronic reproductions", which generally includes e-mail use (including instant messaging or other electronic

transmission to a de�ned group of recipients) or posting on an intranet, extranet or Intranet site (including any

display or performance incidental thereto), the following additional terms apply:

i) Unless otherwise set forth in the Order Con�rmation, the License is limited to use completed within 30 days for

any use on the Internet, 60 days for any use on an intranet or extranet and one year for any other use, all as

measured from the "republication date" as identi�ed in the Order Con�rmation, if any, and otherwise from the

date of the Order Con�rmation.

ii) User may not make or permit any alterations to the Work, unless expressly set forth in the Order Con�rmation

(after request by User and approval by Rightsholder); provided, however, that a Work consisting of photographs

or other still images not embedded in text may, if necessary, be resized, reformatted or have its resolution

modi�ed without additional express permission, and a Work consisting of audiovisual content may, if necessary,

be "clipped" or reformatted for purposes of time or content management or ease of delivery (provided that any

such resizing, reformatting, resolution modi�cation or “clipping” does not alter the underlying editorial content or

meaning of the Work used, and that the resulting material is used solely within the scope of, and in a manner

consistent with, the particular License described in the Order Con�rmation and the Terms.

15) Miscellaneous.

a) User acknowledges that CCC may, from time to time, make changes or additions to the Service or to the Terms, and

that Rightsholder may make changes or additions to the Rightsholder Terms. Such updated Terms will replace the



prior terms and conditions in the order work�ow and shall be e�ective as to any subsequent Licenses but shall not

apply to Licenses already granted and paid for under a prior set of terms.

b) Use of User-related information collected through the Service is governed by CCC's privacy policy, available online

at www.copyright.com/about/privacy-policy/.

c) The License is personal to User. Therefore, User may not assign or transfer to any other person (whether a natural

person or an organization of any kind) the License or any rights granted thereunder; provided, however, that, where

applicable, User may assign such License in its entirety on written notice to CCC in the event of a transfer of all or

substantially all of User's rights in any new material which includes the Work(s) licensed under this Service.

d) No amendment or waiver of any Terms is binding unless set forth in writing and signed by the appropriate parties,

including, where applicable, the Rightsholder. The Rightsholder and CCC hereby object to any terms contained in any

writing prepared by or on behalf of the User or its principals, employees, agents or a�liates and purporting to govern

or otherwise relate to the License described in the Order Con�rmation, which terms are in any way inconsistent with

any Terms set forth in the Order Con�rmation, and/or in CCC's standard operating procedures, whether such writing

is prepared prior to, simultaneously with or subsequent to the Order Con�rmation, and whether such writing appears

on a copy of the Order Con�rmation or in a separate instrument.

e) The License described in the Order Con�rmation shall be governed by and construed under the law of the State of

New York, USA, without regard to the principles thereof of con�icts of law. Any case, controversy, suit, action, or

proceeding arising out of, in connection with, or related to such License shall be brought, at CCC's sole discretion, in

any federal or state court located in the County of New York, State of New York, USA, or in any federal or state court

whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Con�rmation. The

parties expressly submit to the personal jurisdiction and venue of each such federal or state court.

Last updated October 2022
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The literature on machine learning largely focuses on 
single-agent learning. Multi-agent learning has become more 
popular recently due to the advent of generative adversarial 

networks and applications in complex competitive game playing1–3. 
Although complete-information games have seen some progress, 
equilibrium learning for incomplete-information (also known as 
Bayesian) games with continuous action spaces is in its infancy. For 
complete-information games, the worst-case complexity of finding 
Nash equilibria is known4, and a number of learning algorithms 
have been developed for finding equilibria in specific normal-form 
games such as zero-sum games5–7. Auctions arguably form the 
best-known and practically most relevant application of Bayesian 
games, central to modern economic theory8,9 and with a multitude 
of applications in the field. The derivation of Bayes Nash equilib-
rium (BNE) strategies for the first- and second-price sealed-bid 
auction in the independent private values model led to a compre-
hensive theoretical framework for the analysis of single-item auc-
tions, a landmark result of economic theory10,11.

Although single-item auctions in this model are well under-
stood, we only know equilibrium strategies for very few multi-item 
auction environments. For example, no explicit characterization of 
BNE strategies is known for first-price sealed-bid auctions of mul-
tiple homogeneous goods (multi-unit auctions), nor for first-price 
sealed-bid combinatorial auctions in which bidders can submit bids 
on packages of goods11. Value interdependencies turn out to be even 
more challenging12. In fact, very little is known about BNE strategies 
in standard auction formats with multiple objects for sale and value 
interdependencies. Even for single-object auctions, the specification 
of equilibria can end up in a system of partial differential equations 
and no closed-form solution is available13; however, such environ-
ments are important to understand. In fact, the Nobel Memorial 
Prize in Economic Sciences that was awarded to Paul Milgrom and 
Robert B. Wilson in 2020 highlighted their contribution to auctions 
with interdependent values14.

Numerical techniques to compute BNEs can be very valu-
able. Although there has been substantial recent work on 
imperfect-information finite-dimensional extensive-form games 

such as Poker or other card games15–18, relatively few papers focus 
on continuous-type and -action Bayesian games such as auctions. 
The few initial attempts make strong restrictions such as finite 
action spaces, single-object auctions, or independent private values 
with uniform priors and quasilinear utilities19–25. The motivation 
for such restrictions is the computational hardness of equilibrium 
computation.

We know of the existence of a mixed Nash equilibrium for finite, 
complete-information games and that computation is PPAD hard4. 
For Bayesian games with continuous types and actions, we neither 
know whether (possibly mixed) BNEs exist in the general case 
nor do we know how hard they are to find if they exist. Cai and 
Papadimitriou26 showed that finding a BNE in simultaneous auc-
tions for individual items and bidders with independent private val-
ues is already hard for PP, a complexity class above the polynomial 
hierarchy and close to PSPACE, and we know little about the com-
plexity of finding BNEs in other multi-item auctions. Even approxi-
mating equilibria in these auction games is NP hard26.

The theory of learning in games examines what kind of equilib-
rium arises as a consequence of a process in which agents are trying 
to maximize their own payoff by adapting to the actions played by 
other learning agents27. Research on equilibrium learning has largely 
focused on complete-information normal-form games. So far there 
is no comprehensive characterization of games that are learnable, but 
there are some important results. For example, it is well-known that 
no-regret dynamics converge to a coarse correlated equilibrium in 
arbitrary finite games28–31 in their average history of play. Coarse cor-
related equilibria encompass the set of correlated equilibria. The latter 
is a non-empty convex polytope that in turn contains the convex hull 
of the game’s Nash equilibria such that we get Nash equilibria ⊂ cor-
related equilibria ⊂ coarse correlated equilibria. By contrast to cor-
related equilibria, coarse correlated equilibria may contain strictly 
dominated (pure) strategy profiles with positive probability. This 
means that although CCEs are learnable via no-regret algorithms, 
they are a rather weak solution concept32. The question is therefore 
when learning dynamics converge to a Nash equilibrium. A different 
relaxation of Nash equilibria is given by local equilibria33 that only 

Learning equilibria in symmetric auction games 
using artificial neural networks
Martin Bichler    ✉, Maximilian Fichtl, Stefan Heidekrüger   , Nils Kohring and Paul Sutterer

Auction theory is of central importance in the study of markets. Unfortunately, we do not know equilibrium bidding strategies 
for most auction games. For realistic markets with multiple items and value interdependencies, the Bayes Nash equilibria (BNEs) 
often turn out to be intractable systems of partial differential equations. Previous numerical techniques have relied either on 
calculating pointwise best responses in strategy space or iteratively solving restricted subgames. We present a learning method 
that represents strategies as neural networks and applies policy iteration on the basis of gradient dynamics in self-play to prov-
ably learn local equilibria. Our empirical results show that these approximated BNEs coincide with the global equilibria whenever 
available. The method follows the simultaneous gradient of the game and uses a smoothing technique to circumvent discontinui-
ties in the ex post utility functions of auction games. Discontinuities arise at the bid value where an infinite small change would 
make the difference between winning and not winning. Convergence to local BNEs can be explained by the fact that bidders in 
most auction models are symmetric, which leads to potential games for which gradient dynamics converge.
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require stability when allowing agents to make infinitesimal—rather 
than arbitrary—adjustments to their strategies.

Bayesian auction games have received little attention in equilib-
rium learning until recently. Given how hard it is to find BNEs even 
in simple simultaneous single-item auctions in the worst case26, 
it is far from obvious that no-regret dynamics can find a BNE in 
continuous-type and -action Bayesian games. Recent work used 
deep learning for auction design34–37 but it did not attempt to find 
BNEs in auctions. Challenges in computing NEs in general-sum 
games have also led to alternative solution concepts38. Apart from 
this, artificial intelligence and machine learning are increasingly 
used to predict strategic behaviour of humans39 or outcomes of auc-
tions in the field40, as well as for other problems in automated mar-
ket design, for example, discovery of socially optimal tax policies41.

We introduce neural pseudogradient ascent (NPGA) as a method 
to learn ex ante equilibrium bid functions in symmetric Bayesian 
auction games with continuous-type and action-spaces. The method 
is generic in that it allows for different types of value interdependen-
cies and utility functions (for example, accommodating risk aver-
sion). Neural networks are used to represent the bid functions of the 
players, and the agents learn via self-play. Unfortunately, using neu-
ral self-play in this environment is not straightforward: although we 
assume the expected utility of the players (over the distribution of 
other players’ types) are differentiable in the chosen action, a key 
challenge is that in auctions, their ex post utilities (which are based 
on specific realizations of types) have discontinuities. Only the lat-
ter, however, can be directly observed in the data generated from 
self-play. As a result, standard ways of gradient computation (that 
is, backpropagation from the observed data) fail and would result in 
constant-zero bids by all bidders. We address this problem by deriv-
ing pseudo-gradients via evolutionary strategy optimization rather 
than exact gradients via standard learning methods.

Given the computational hardness of BNE computations in gen-
eral Bayesian auction games26, it is not obvious that gradient-ascent 
schemes such as ours would converge to BNEs. To prove conver-
gence of NPGA to local equilibria, we leverage the fact that the 
vast majority of auction games described in the literature assume 
symmetric bidders and equilibrium bid functions11. This leads to a 
potential game, and gradient dynamics converge to local Nash equi-
libria in potential games. Although there can also be asymmetric 
equilibria, such equilibria are often unnatural and the symmetry 
assumption encompasses a very large set of interesting auction envi-
ronments. An example of such an asymmetric equilibrium is given 
in a second-price auction when one player bids the upper bound of 
the distribution whereas all of the others bid constant zero, inde-
pendent of their respective private valuations.

In our experiments we illustrate NPGA via a combinatorial auc-
tion in the local–local–global (LLG) model42, which has received 
considerable attention due to the use of core-selecting combina-
torial auctions for spectrum sales worldwide43. In the LLG model, 
core-selecting auctions with risk-neutral bidders are known to be 
economically inefficient. It is one of the few multi-object auction 
models in which correlation among bidder valuations has been 
investigated analytically with quasilinear utility functions, but this 
is not the case for risk aversion. Yet such multi-object environ-
ments with interdependencies and non-quasilinear utility func-
tions have not been explored in the scarce literature on equilibrium 
computation. Using NPGA, we can show that risk aversion miti-
gates the inefficiencies that arise in the equilibrium of risk-neutral 
bidders, while correlation among the bidders’ valuations has little 
impact. This result is of independent interest to policymakers. In 
the Supplementary Information we discuss further experiments in 
a number of additional environments to demonstrate the versatility 
of the method.

To apply NPGA, we neither need to specify the equilibrium as a 
system of differential equations, nor do we need to derive complex 

conditional type distributions in settings with interdependencies. 
As a result, NPGA provides a convenient method to explore sym-
metric sealed-bid auction models and study the BNEs that arise 
with different types of interdependencies, distributional assump-
tions or different levels of risk aversion.

the algorithm
We will now introduce the necessary notation before stating the 
algorithm and discussing its convergence properties.

Notation. An incomplete-information or Bayesian game is given by 
a sextuplet G = (I,V ,O,A, f, u). Here I = {1,…, n} denotes the 
set of agents participating in the game. The joint probability density 
function f : V ×O → R≥0 describes an atomless prior distribu-
tion over agents’ types, given by tuples (oi, vi) of observations and 
valuations. We make no further restrictions on f, thus allowing for 
arbitrary correlations; f is assumed to be common knowledge and 
we will denote its marginals by fvi, foi and so on; its conditionals by 
fvi|oi and so on; and its associated probability measure by F. Agent 
i’s private observation is then given as a realization oi ∈ Oi, with 
O = O1 × · · · × On being the set of possible observation profiles. 
Similarly, V  denotes the set of true but possibly unobserved valua-
tions. Crucially, we make this distinction to model interdependencies 
in settings beyond purely private values or purely common values. 
Based on oi, the agent chooses an action or bid, bi ∈ Ai, and the set 
of possible action profiles is given by A = A1 × · · · × An. For each 
possible action and valuation profile, the vector u = (u1, … , un) of 
F-integrable, individual (ex post) utility functions ui : A× Vi → R 
assigns the game outcome to each player. Ex ante (before the game), 
agents neither possess observations nor valuations, only knowledge 
about f. In the interim stage, agents also observe oi that provide (pos-
sibly partial or noisy) information about their own vi. Full access to 
the outcomes u(v, b) is given only after taking actions (ex post). In 
our formulation, we do not assume explicit ex post access to any 
values (for example, vi,v−i,b−i) beyond the outcome u itself. An index 
−i denotes a partial profile of all agents but agent i.

Taking an ex ante view, players are tasked with finding strate-
gies βi : Oi → Ai that map observations to bids. We denote the 
resulting spaces of individual and joint pure strategies by Σi ≡ A

Oi
i  

and Σ ≡ ∏iΣi, respectively. Note that even for pure strategies, the 
spaces Σi are infinite dimensional unless Oi are finite (in which 
case they are finite-dimensional but remain infinite for continuous 
Ai). We will slightly restrict ourselves to square-integrable strate-
gies and equip Σi with the inner product ⟨·, ·⟩Σi

: Σi ×Σi → R, 
(α, β) �→ Eo ∼ fo

[
α(o)Tβ(o)

]
 and the norm ∥ β∥Σi

≡

√

⟨β, β⟩Σi
 

such that they form Hilbert spaces44.
The primary Bayesian games we will consider are sealed-bid auc-

tions on m indivisible items. In general combinatorial auctions, we 
thus have a set K of possible bundles of items and the valuation- 
and action-spaces are therefore of dimension |K| = 2m. We always 
have oi = vi in the private values setting, whereas in the common 
values setting there is some unobserved constant vc = v1 = ⋯ = vn, 
where oi can be considered noisy measurements of vc. Mixed set-
tings are likewise possible. In any case, based on bid profile b, an 
auction mechanism will determine two things: (1) an allocation 
x = x(b) = (x1, … xn), which constitutes a partition of m where bid-
der i is allocated the bundle xi; and (2) a price vector p(b) ∈ Rn, 
where the component pi is the monetary amount bidder i has to pay 
to receive xi. Formally, one may consider the individual alloca-
tions to be one-hot-encoded vectors xi ∈ {0, 1}|K|. In the standard 
risk-neutral model, ui values are then described by quasilinear (QL) 
payoff functions uQLi (vi, b) = (xi(b) · vi − pi(b)), that is, by how 
much a player values their allocated bundle minus the price they 
have to pay. An extension to this basic setting includes risk aver-
sion (RA). Here we model risk-aversion via utilities uiRA =

(

uiQL
)ρ 

Nature MacHiNe iNteLLigeNce | VOL 3 | AUGUST 2021 | 687–695 | www.nature.com/natmachintell688



ArticlesNATUrE MAChiNE iNTElligENCE

where ρ ∈ (0, 1] is the risk attitude; ρ = 1 describes risk neutrality, 
where smaller values lead to strictly concave, risk-averse transfor-
mations of ui

QL. Risk aversion is an established way to explain why 
bidders in field studies of single-object first-price sealed-bid (FPSB) 
auctions bid higher than their risk-neutral counterparts in analyti-
cal BNEs45.

For fixed-strategy profiles β ∈ Σ, we can extend the notion of util-
ity to the interim and ex ante stages and use this to characterize the 
Nash equilibria of Bayesian games: although other agents follow β,  
we define agent i’s interim utility as the expected utility of choosing 
an action bi conditioned on oi:

ui(oi, bi, β−i) = Evi,o−i|oi
[

ui(vi, bi, β−i(o−i))
]

. (1)

We will also introduce the interim utility loss ℓ  that is incurred by 
not playing a best response b′i:

ℓi(oi;bi, β−i) = supb′i∈Ai
ui(oi, b′i , β−i)− ui(oi, bi, β−i). (2)

Then, an (interim) ϵ-Bayes Nash equilibrium (ϵ-BNE) is a strat-
egy profile β∗

= (β∗
1 ,…, β∗

n) ∈ Σ such that no agent can improve 
their own interim utility by more than ϵ ≥ 0 by unilaterally deviating 
from β*; thus, the following holds in an ϵ-BNE:

∀i ∈ I, oi ∈ Oi : ℓi
(

oi;β∗
i (oi), β∗

−i
)

≤ ϵ. (3)

For ϵ = 0, we will call the BNE exact, or simply drop the 
ϵ prefix. We will also need the ex ante utility (defined as 
ũi(βi, β−i) = Eoi∼foi [ui(oi, βi(oi), β−i)]), which can be inter-
preted as the expected utility over all of f for a particular βi 
against fixed opponents β−i. Similarly, we will define ex ante loss 
˜ℓi(βi, β−i) and ex ante ϵ-BNEs analogously to equations (2) and (3). 
Note that now we can interpret the ex ante state of the Bayesian 
game as a complete-information game ˜G = (I,Σ, ũ) with an 
infinite-dimensional action space Σ that is identical to the strat-
egy space of the Bayesian game. Every exact (interim) BNE also 
clearly constitutes an exact ex ante BNE. The reverse holds almost 
surely, that is, any ex ante equilibrium fulfills equation (3), except 
possibly on a set O ⊂ O with F(O) = 0. To see this, one may con-
sider the equations 0 =

˜ℓi(β∗
) = Eoi

[

ℓi(oi;β∗
i (oi), β∗

−i)
]

 and the 
fact that ℓi(oi, β) ≥ 0 by definition. Importantly, this almost sure 
equivalence of ex ante and (interim) BNEs holds for ϵ = 0 but not 
for strictly positive ϵ: given an ex ante κ-BNE, equation (3) (with 
ϵ = κ > 0) must only hold in expectation but may be violated with 
strictly positive probability. To delineate this difference between ex 
ante and interim approximate equilibria, we will write κ and ϵ to 
denote their respective approximation bounds.

Due to the known computational hardness of computing NEs 
and BNEs, one is often interested in relaxations of equilibria that 
may be easier to find in some circumstances. For example, in local 
BNEs, the loss requirement is relaxed to only consider best responses 
from a neighbourhood of the equilibrium strategy profile: we call β∗ 
a local ex ante BNE if there exists an open set ∅ ̸= Wi ⊂ Σi such 
that β∗

i ∈ Wi and ũi(β∗
i , β∗

−i) ≥ ũi(β′
i , β∗

−i) for all agents i and all 
alternative strategies β′

i ∈ Wi. If all utility functions ui are strictly 
concave in i’s action, the game admits a unique global BNE46 and no 
other local BNEs.

Smoothness of the (ex post) utilities is a standard assumption in 
the analysis of Bayesian games46, but this is commonly violated in 
auctions due to the discrete nature of x. Instead let us introduce a 
weaker notion of smoothness at the interim stage, which lends itself 
for theoretical analysis while being consistent with auction games.

Definition 1 (interim-smooth Bayesian game). We call a 
Bayesian game with continuous types Vi ×Oi and actions Ai ⊆ RK  
interim smooth if: (1) the interim utilities ūi(oi, bi, β−i) are continu-
ously differentiable with respect to their second argument for each 

i ∈ I  and any oi ∈ Oi, β−i ∈ Σ−i; (2) all partial derivatives are uni-
formly bounded by a finite constant Z < ∞:

∀i, oi, β−i, bi, k ∈ [K] :
∥

∥

∥

∥

∂ūi
∂bik

(oi, bi, β−i)

∥

∥

∥

∥

≤ Z; (4)

and (3) the ex post utilities are F-square-integrable: there exists S < 
∞, such that for all i ∈ I, β ∈ Σ:

Evi,o
[

ui
(

vi, βi(oi), β−i(o−i)
)2
]

≤ S (5)

To see why the assumption of interim differentiability is justi-
fied, consider that ex post utilities in auctions are generally piece-
wise smooth. Non-differentiability only occurs at the bid profiles 
in which the auctioneer is indifferent between multiple possible x. 
In theory, one could therefore interpret the interim expected utility 
as a lottery over many smooth ex post utility functions that each 
describe a particular x. The choice probabilities for these are given 
by P(x∣bi, oi, β−i), bidder i’s Bayesian belief that x will be chosen if 
they bid bi. If β−i are continuous and f is atomless, these probabili-
ties—and therefore the interim expected utilities as a whole—are 
smooth in bi.

In interim-smooth Bayesian games, we write 
∇ūi(oi, bi, β−i) ≡ (∂ūi(oi, bi, β−i)/∂bik)k and call it the interim pay-
off gradient. Furthermore, when G is interim-smooth, the ex ante 
gradients ∇βi ũi(βi, β−i) ∈ Σi are also guaranteed to exist and given 
by the Gateaux derivatives in the Hilbert spaces Σi.

Finally, symmetric models are prevalent in auction theory11. We 
will call a Bayesian game symmetric if all players’ i, j ∈ I  marginal 
prior-type distributions are identical (but not necessarily indepen-
dent), that is, fvi,oi = fvj,oj, as are their individual utilities (almost 
surely, up to tiebreaking): ui(βi, β−i) = uj(βi; β−i), with probability 1. 
The literature primarily discusses11 equilibria that are likewise sym-
metric, that is, where β∗

= (β∗
1 , β∗

1 ,…β∗
1 ). We will refer to auctions 

that are both symmetric and interim-smooth as symmetric and 
smooth auction games.

NPGA. Our numerical technique to learn BNEs, NPGA, is based 
on neural networks and repeated self-play, in which players con-
tinually update strategies in response to observed game outcomes, 
that is, all agents follow the game dynamics. By game dynamics, we 
mean the vector field of the simultaneous gradients of the ex ante 
utility functions of all players. The goal will be to find an ex ante 
BNE β∗ for a continuum of observations o that bidders can draw. In 
other words, we search for a profile of equilibrium bid functions in 
infinite-dimensional spaces. We will first introduce the procedure 
in the general case before showing convergence for symmetric and 
smooth auction games in the ‘Convergence’ section.

We start by taking the infinite-dimensional, complete-information 
game interpretation ˜G = (I,Σ, ũ) mentioned in the previous 
section. To implement gradient ascent in the Hilbert space Σ, we 
replace the bid functions by neural networks called policy networks 
that are parametrized by finite-dimensional parameter vectors 
θi ∈ Θi ⊆ Rdi. This lets us define a finite-dimensional approxima-
tion of ˜G, which we will call the proxy game.

Definition 2 (proxy game). Let G = (I,V ,O,A, f, u) be a 
Bayesian game with ex ante utilities ũi and let its strategy functions 
be implemented by neural networks: βi(oi) ≡ πi(oi; θi), where θi are 
the networks’ parameters chosen from finite-dimensional vector 
spaces Θi ⊆ Rdi. Set Θ ≡ ∏iΘi and (with slight abuse of notation) 
write ũi(θi, θ−i) ≡ ũi (πi(·;θi),π−i(·;θ−i)). We then call the result-
ing finite-dimensional complete-information game on parameters, 
Γ = (I, Θ, ũ), the proxy game of G.

Common neural network architectures have been shown to be 
able to approximate any sufficiently regular function arbitrarily 
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well47; thus, this choice of function approximation enables the 
learning of a wide variety of bid functions with minimal structural 
constraints. Neural networks also demonstrably achieve good per-
formance in machine learning settings with very high-dimensional 
input vectors, as is the case in larger auctions with many items. Using 
neural networks we therefore effectively reduce the problem from 
finding an infinite-dimensional vector in Σ to finding finitely many 
(di) weights and biases of the neural networks, and we can now per-
form gradient ascent in the finite-dimensional parameter spaces.

Each agent aims to maximize the objective function of their net-
work, which is given by ũi and estimated via the empirical sample 
mean of ex post utilities of a batch of H auctions, where H is a large 
integer: after playing a batch of games, agents observe their utility, 
estimate its gradient with respect to θi and apply an update to θi that 
is expected to lead to an increase in utility.

Traditionally, gradient estimates in neural networks are com-
puted via backpropagation; however, training neural networks 
in auction games is challenging as the ex post utility functions of 
individual auctions are discontinuous, leading to a failure to back-
propagate gradients through the empirical objective. We solve this 
problem by leveraging an evolutionary strategy (ES) optimization 
technique that effectively smoothes the objective48,49. This allows us 
to derive an adequate estimate of the ex ante payoff gradients even 
under ex post non-smoothness.

Algorithm 1 (NPGA using ES gradients). 
Input:  agents i ∈ I  with initial policies β0

i := πi(·;θ0
i ) induced 

by initial parameters θ0
i ; ES population size P; ES noise 

standard deviation σ; learning rate η; batch size H
for  t ≔ 1, 2, … do
  Sample a batch (vh, oh)h=1,…,H of valuation and obseravtion 

profiles from the prior f
 Calculate joint utility in current strategy profile:

ũt−1
:=

1
H

∑

h
ũ
(

vh, βt−1
(oh)

)

 for each agent i ∈ I  do
  Sample P perturbations of agent i’s current policy:

πi;p := πi(·;θp)

    with θp := θt−1
i + εp where εp ≈ N (0, σ2I) i.i.d. for all 

p ∈ {1, …, P}
   For each p, evaluate the fitness of θp by playing against cur-

rent opponents:

φp :=
1
H

∑

h
ui
(

vh,i, πi;p(oh,i), βt−1
−i (oh,−i)

)

− ũt−1
i

︸︷︷︸

baseline

   Calculate ES pseudogradient as fitness-weighted perturba-
tion noise:

∇
ESũt−1

i :=

1
σ2P

∑

p
φpεp

  Perform a gradient update step on the current policy:

Δθt
i := ηt∇ESũt−1

i ,

θt
i := θt−1

i + Δθt
i ,

βt
i := πi(·;θt

i)

 end
end

We provide the pseudocode of NPGA in Algorithm 1. At each 
time-step t, every agent i ∈ I  receives a noisy estimate ˆ∇ũi of their 
individual (ex ante) payoff gradient at the current strategy profile. 
The noise is an artefact of limited-precision Monte Carlo sampling 
over V  and O. The agents simultaneously take a step along this 
gradient estimate to determine the strategies for the next stage and 
continue playing.

Convergence. In our experimental results below and the 
Supplementary Information, we find that NPGA always converges 
very close to the global ϵ-BNE, which was surprising at first given 
the known results about non-convergence of gradient play to Nash 
equilibria in general50, and the locality of gradient-based learning. 
Non-convergence can be due to conflicting utility functions of play-
ers. For example, even in simple two-player zero-sum games with 
one-dimensional actions, the simultaneous gradient may cycle 
around the Nash equilibrium51.

A few observations help explain why NPGA converges to an 
approximate BNE in a wide range of auction games. First, the vast 
majority of models studied in the literature are symmetric auction 
games with symmetric equilibria (see the ‘Notation’ section). As a 
result, we no longer need to learn multiple bid functions for each 
bidder in NPGA, but merely a single symmetric bid function β1 ∈ Σ1 
that optimizes the single ex ante utility function ũ1(β1,…, β1), 
which serves as a potential function of the game. Any maximum 
β∗
1 of this potential function directly yields a symmetric pure strat-

egy ex ante BNE β∗
= (β∗

1 ,…, β∗
1 ). For the finite-dimensional proxy 

game, we can formalize the claim in the following section.
Definition 3 (potential game). A complete-information game 

Γ = (I,Θ, ũ) is an (exact) potential game52 if there exists a potential 
function ϕ : Θ → R, s.t. for all i ∈ I , θi, θ′

i ∈ Θi and θ−i ∈ Θ−i, it 
holds that

ũi(θi, θ−i)− ũi(θ′
i , θ−i) = ϕ(θi, θ−i)− ϕ(θ′

i , θ−i). (6)

When the auction game is symmetric and we additionally 
enforce symmetric strategies by sharing a common neural network 
architecture π(⋅) and common parameter vector θi ≡ θ1 among all 
players (symmetric NPGA); it is easy to see that with ϕ ≡ ũ1, the 
proxy game is an exact potential game. Gradient play provably con-
verges to a pure local Nash equilibria in finite-dimensional, contin-
uous potential games33. This leads us to the following proposition.

Proposition 1. In any symmetric and smooth auction game, 
symmetric NPGA with appropriate gradient update step sizes 
almost surely converges to a local ex ante κ-BNE.

A formal proof can be found in the Methods.

empirical evaluation
We illustrate the versatility of NPGA in the context of combina-
torial auctions in the well-known LLG environment, which has 
been an important model for the discussion about spectrum auc-
tion formats43,53. The NPGA model allows us to analyse how cor-
relation and risk aversion impact the outcome in equilibrium. 
There are many other interesting environments one can explore. 
In the Supplementary Information we present further results for 
single-object auctions with different types of value interdependen-
cies (including common values models), small and larger mult-unit 
auctions, and a larger combinatorial auction setting with eight items 
and six bidders. Note that even for a multi-unit auction with three 
items and bidders, no analytical solutions are known anymore. For 
single-object, multi-unit and combinatorial auctions with only a few 
bidders, as reported below, NPGA computes equilibria within hun-
dreds of iterations, each taking a few seconds or less. Larger settings 
such as multi-unit FPSB auctions with four units and bidders or 
combinatorial auctions with five items and six bidders reported in 
the Supplementary Information converged to an approximate BNE 
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with estimated relative utility loss of less than 1% within 15 min; 
however, the runtime depends on the specific model analysed (for 
example, the prior distribution, the number of bidders and the auc-
tion format).

The LLG model. The LLG model consists of two objects {1, 2}, two 
local bidders i ∈ {1, 2} and one global bidder i = 3, with each only 
interested in one specific bundle (of the single object i (locals) or 
both objects (global)42. We will simply denote the valuation of each 
bidder’s single bundle by vi ∈ R. We consider a private values (but 
not independent private values) setting with oi = vi, which allows 
for correlation. The situation is akin to spectrum sales in countries 
with regional spectrum licences such as Australia or Canada, where 
local telecoms compete against operators who provide their services 
nationwide, and governments have used core-selecting combina-
torial auctions. The core of an auction game describes the set of 
outcomes such that no coalition of bidders (and possibly the auc-
tioneer) can profitably deviate. Core-selecting auction mechanisms 
enforce this notion of stability by their choice of prices. Although 
there are hardly any game-theoretical analyses of combinatorial 
auctions, this model is simple enough to allow for the derivation 
of analytical results54. It was shown that with independent private 
values and risk-neutral bidders, core-selecting payment rules lead 
to considerable inefficiencies in equilibrium42 in combinatorial auc-
tions. The two local bidders attempt to free ride on each other. If 
one bidder bids less, the other has to bid more to overbid the global 
bidder. Due to incomplete information, both local bidders could bid 
too low in total and fail to outbid the global bidder, even if their 
combined valuations are higher than those of the global bidders. 
This results in an inefficient outcome. This fact has been used as an 
argument against core-selecting combinatorial auctions43.

It is interesting to understand equilibria with different assump-
tions. For example, it is reasonable to believe that bidder valuations 
in spectrum auctions are correlated, because telecoms face the same 
downstream market. The model was recently analysed with differ-
ent types of correlation54; however, with standard core-selecting 
payment rules, it turns out that correlation alone cannot mitigate 
the efficiency and revenue loss encountered with independent pri-
vate values. Risk aversion has not yet been analysed, although it 
plays a role in the revenue ranking of single-object auctions. By con-
trast to single-object auctions, it has been unclear how risk-aversion 
plays out in equilibrium. If one local bidder knows that the other is 
risk averse and might thus bid higher, they might bid even lower as a 
result of this knowledge. The environment is not symmetric as there 
are two local bidders and a global bidder. However, the global bid-
der has a simple dominant strategy to bid truthfully under certain 
core-selecting payment rules. The gradient dynamics of the global 
player’s network will then stably approach this dominant strategy 
regardless of the local bidders’ behaviour, and the two local bidders 
can indeed be considered symmetric whenever fv1 = fv2 and thus 
form a ‘local potential game’. NPGA can therefore be expected to 
converge to a BNE despite the environment’s asymmetry.

Ausubel and Baranov54 investigate two models of correlation 
among local bidders’ private values and derive analytical BNEs, 
which we will use as a baseline in our experiments. Let us define 
the joint prior f to be the five-dimensional uniform distribution of a 
latent random variable ω ∼ U [0, 1]5. Then let v3 = 2ω3 be the valua-
tion of the global bidder and

v1(ω) = wω4 + (1− w)ω1, v2(ω) = wω4 + (1− w)ω2 (7)

be the valuations of the local bidders where the weight w is a ran-
dom variable depending on ω5 only. The valuations of the local 
bidders can be thought of as a linear combination of an individual 
component ωi and a common component ω4. Now given an exog-
enous correlation parameter γ ∈ [0, 1], Ausubel and Bananov54 

propose two different ways to choose w such that corr(v1, v2) = γ: the 
Bernoulli weights model:

w(ω) =

{

1 if ω5 < γ,
0 else ,

(8)

and the constant weights model (which does not require w5):

w(ω) =







γ−
√

γ(1−γ)
2γ−1 if γ ̸= 1/2,

1/2 else .
(9)

They analytically derive the unique symmetric BNE strategies 
for multiple bidder-optimal core-selecting payment rules includ-
ing the nearest-zero (NZ), nearest-VCG (NVCG, named after the 
Vickrey–Clarke–Groves (VCG) payments) and nearest-bid (NB) 
rule in the Bernoulli weights model. These rules all choose efficient 
x (according to the submitted bids), but select different price vectors 
p from the set of core-stable outcomes. For example, the NVCG rule 
picks the point in the core that minimizes the Euclidean distance 
to the (unique) VCG payments. Similarly, the NZ point takes the 
origin of the coordinate system as a reference point, whereas the NB 
rule minimizes the distance to the vector of submitted bids b. Only 
the NVCG rule has been used in spectrum sales so far. Apart from 
these core-selecting payment rules, we will also report the results in 
FPSB auctions, for which no analytical BNEs are known, as these are 
used in some spectrum sales43, and in the VCG mechanism, which 
is not core-stable but always prescribes truthful bidding as a BNE.

Evaluation criteria. Let us discuss how we will evaluate any learned 
β to certify that it indeed constitutes an (approximate) equilibrium. 
This evaluation is entirely independent of the learning process of 
NPGA and tries to answer the question of how good a given strategy 
is. Whenever we encounter a setting where an analytical equilib-
rium β∗ is known, we draw on it for direct comparison. In this case, 
we sample the BNE utility of each player, ûi(β∗

) ≈ ũi(β∗
), as well as 

the utility βi played against the BNE, ûi(βi, β∗
−i) ≈ ũi(βi, β∗

−i), with 
a batch size of 222. We then report the resulting relative utility loss:

Li(βi) = 1−
ûi(βi, β∗

−i)

ûi(β∗
i , β∗

−i)
. (10)

We also report the probability-weighted r.m.s.e. of βi and β∗
i  in the 

action space, which approximates the L2 distance ∥ βi − β∗
i ∥Σi

 of 
these two functions:

L2(βi) =

(

1
nbatch

∑

oi

(βi(oi)− β∗
i (oi))

2
) 1

2

. (11)

This metric circumvents the drawback of Li that even a strategy 
with a loss very close to zero could be arbitrarily far from the actual 
BNE in strategy space.

When no analytical BNE is available for certification of the 
learned bid function, we aim to compute the ex ante utility loss 
˜ℓi(βi, β−i) = supβ′i∈Σi

ũi(β′
i , β−i)− ũi(βi, β−i). Evaluating this 

supremum exactly in function space Σi is not tractable and approxi-
mations are computationally expensive. Our estimator ˆℓi of ˜ℓi relies 
on finding approximate interim best responses. To do so, we place 
an equidistant grid indexed with w = 1, …, ngrid over the action space 
Ai ranging from zero to the maximum valuation for all dimensions. 
For oi and each of the alternative bids bw, we evaluate the interim 
utility ūi(oi, bw, β−i) against the current opponent strategy profile. 
This is challenging as it requires access to the distribution of i’s true 
valuation and the opponents’ observations, both conditioned on 
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oi (see equation (1)). For nbatch samples of oi and nbatch samples of 
vi, o−i∣oi for each oi, we then have

ˆℓi(β) = 1
nbatch

∑

oi

max
w

λi(oi, bw, β) (12)

with λi being the estimated expected utility gain by deviating from 
playing according to βi to playing action b′:

λi(oi, b′, β) = 1
nbatch

∑

vi,o−i|oi

(

ui
(

vi, b′, β−i(o−i)
)

−ui
(

vi, βi(oi), β−i(o−i)
))

.
(13)

For an increasing number of samples and alternative actions, this 
estimate converges to ˜ℓi. Our estimate for ϵ in an ex ante ϵ-BNE is 
then ϵ ≡ max

i
ˆℓi.

The conditional distribution vi, o−i∣oi is rarely available upfront. 
For simple cases one can derive the analytical distributions and 
draw samples; however, in most programming environments, one 
is only able to sample from very basic (pseudo)random numbers 
such as the uniform or normal distribution. For more complicated 
multivariate conditional distributions, we use the conditional dis-
tribution method (for details, see Supplementary Section 3). Based 
on these estimates, we can compute a relative ex ante utility loss 
without access to the analytical BNEs:

ˆLi(β) = 1− ûi(β)
ûi(β) + ˆℓi(β)

. (14)

This metric is the average loss incurred by not playing a best 
response but instead playing the strategy learned via NPGA. Note 
that we do not need to make any assumption about the utility func-
tion or independence of valuations for this estimator.

Due to the multiple levels of Monte Carlo sampling, the estima-
tor ˆLi has a higher variance than those that rely on an analytical 
BNE β∗, even when the performance of NPGA itself is not affected. 
Our reported estimates are based on ngrid = 210 possible bids for each 
sampled interim state using a batch size of nbatch = 212, thus each 
estimate of ˆL is based on ngrid · n2batch = 234 simulated auctions. To 
sample that many games efficiently, both NPGA and our evaluation 
procedures leverage parallelization on GPU hardware. Certification 
of BNEs is a challenge in all computational approaches to equilib-
rium computation. A thorough discussion for environments with 

standard quasilinear utility functions and independent private val-
ues are provided in ref. 23.

Results. Let us first provide the aggregate convergence results in 
Table 1, which almost perfectly reproduce the BNE found in ref. 54.  
The utility loss is small in all environments and so is the L2 differ-
ence to the analytical BNE wherever it is known. Figure 1 shows 
the analytical BNE bid function and the NPGA result for a specific 
setting as an illustrative example. Note that in the FPSB auction, 
the global bidder does not have a dominant strategy and yet we 
uncover his equilibrium strategy in spite of the environment being 
asymmetric.

Next we look at risk aversion. Figure 2 shows that with higher 
risk aversion, the market efficiency denoted by E increases for both 
correlation models in a similar way. Correlation of the local bidders 
does not influence E with the widespread VCG nearest payment 
rule at a precision of ±1% of E. For the highest level of risk aversion 
of ρ = 0.1, E rose to about 98% from about 84% under risk neutral-
ity; thus, although higher correlation of valuations does not lead to 
higher E, risk aversion mitigates the efficiency loss, which is impor-
tant to know for spectrum sales by governments. A similar result 
has previously been found for an ascending core-selecting auction 
with a specific tie-breaking rule55, but the analysis could not yet be 
extended to the general sealed-bid case.

Similarly, the approximate revenue of the seller can be analysed. 
In Figure 3 we observe a strong, steady increase of the seller revenue 
R with increasing risk aversion and a slight increase with decreas-
ing correlation between the local bidders. Different levels ρ and 
varying strengths of γ are plotted in the Bernoulli correlation model 
in the LLG setting with the NVCG payment rule. Results are similar 
for the constant weights correlation model. Increasing risk aversion 
has substantial positive impact on revenue, which is important to 
know for policymakers.

Discussion
Auction theory—and game theory in general—is often very sensi-
tive to model assumptions. Although the results of early studies on 
auctions in the symmetric independent private values model with 
quasilinear bidders provided important insights, the assumptions 
are very restrictive56. Value interdependencies and changes in the 

Table 1 | convergence results of NPga in risk-neutral 
combinatorial LLg auctions with a correlation of γ = 0.5 
among local bidders’ valuations. We report mean and s.d. of 
experiments over ten runs

auction game L2 L L̂

LLG Bernoulli NZ 0.011 (0.005) 0 (0) 0.007 (0.007)

LLG Bernoulli VCG 0.008 (0.003) 0.001 (0) 0.007 (0.005)

LLG Bernoulli NVCG 0.016 (0.016) 0 (0) 0.008 (0.007)

LLG Bernoulli NB 0.021 (0.021) 0.001 (0) 0.009 (0.008)

LLG Bernoulli FPSB – – 0.010 (0.008)

LLG constant NZ – – 0.011 (0.010)

LLG constant VCG – – 0.008 (0.007)

LLG constant NVCG – – 0.011 (0.012)

LLG constant NB – – 0.013 (0.015)

LLG constant FPSB – – 0.009 (0.006)
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Fig. 1 | Bid functions in the LLG auction with the nearest-zero core payment 
rule. Bidders are independent and risk neutral. The strategies learned 
by NPGA (dotted) almost perfectly recover the analytical equilibrium 
strategies (dashed).
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utility function can have substantial impact on the resulting equilib-
rium bidding strategies. Although simple single-object auctions in 
the independent private values model are relatively well understood, 
we do not know equilibrium bidding strategies for most environ-
ments involving multiple objects, interdependencies and different 
levels of risk aversion to this day.

With NPGA we introduce a numerical technique to compute 
approximate equilibria in these Bayesian games and show that we 
converge to a local equilibrium quickly and with high precision. The 
method can provide a convenient tool for analysts to explore new 
environments or perform sensitivity analysis with various behav-
ioural assumptions, different priors and value interdependencies. 
The Supplementary Information provides further experiments to 
illustrate the versatility of the method.

It is all but clear that gradient dynamics as in NPGA can find 
global or even local BNEs in auction games. For much simpler 
min–max games that play an important role in machine learning 
techniques such as generative adversarial networks, we cannot 
expect gradient dynamics to find an equilibrium57. Convergence of 
NPGA to approximate local BNEs relies on insights about the sym-
metry assumptions of bidders in most of the auction models in the 
literature and their relation to potential games. These assumptions 
provide the necessary structure for gradient dynamics to converge 
to local equilibria, and explain our results. Beyond the study of 
equilibria in games, our techniques can possibly contribute to auto-
mated and empirical mechanism design58,59.

Methods
Proof of Proposition 1. Let G be a symmetric and smooth Bayesian auction game. 
Per definition, all players in such games have the same marginal type distributions 
and individual utility functions. Furthermore, assume the auction mechanism to be 
anonymous: the identity and order of bidders almost surely have no influence on 
the allocation and payments (tiebreaking on a nullset notwithstanding). Assume 
that all players play the same strategy βi. Then, the symmetric ex ante utility 
function ũi(βi , …, βi) is a potential function and G̃ is a potential game. The same 
holds for the finite-dimensional proxy game Γ. To use this symmetry, we restrict 
all players to use the same neural network π(⋅, θ) with a shared parameter vector 
θ ∈ R

d. Let us first remark that the restriction to symmetric strategies does not 
alter the gradient vector field in any way, as symmetric strategy profiles also have 
symmetric gradients.

We draw on a known result that gradient-play with appropriate (summable 
but not square-summable) step sizes converges almost surely to a local Nash 
equilibrium in finite-dimensional continuous potential games (see Corollary 4.2 
of ref. 33). It thus remains to be shown that (1) NPGA implements gradient-play in 
the proxy game Γ and thus finds a local Nash equilibrium θ* of the proxy game, and 

(2) that this Nash equilibrium of the proxy game Γ—which restricts the strategy 
space to neural networks expressible by Θ—is indeed also a BNE of the original 
unrestricted game G. To show (1) and (2) below, we will rely on some auxiliary 
lemmata. The proofs of these lemmata are of a technical nature and can be found 
in Supplementary Section 2. In the following, for a given neural network π(⋅, θ), we 
denote its utility and loss in G by ũ(θ), ℓ̃(θ) and in Γ by ũΓ

(θ), ℓ̃Γ
(θ), respectively, 

where we drop the indices i due to symmetry.
To prove (1), one would need to show that the gradient estimates computed 

by NPGA have finite variance and at most a small bias with regard to the true 
gradients of the proxy game Γ. This is not necessarily the case, but let us set 
ũσ
i (θi , θ−i) ≡ Eε∼N(0,σ2I)[ũi(θi + ε, θ−i)] call Γ σ

= (I, Θ, ũσ
) the smoothed 

proxy game and define ℓ̃σ analogously. Then Γσ is likewise a symmetric potential 
game and we obtain the lemmata described next.
Lemma 1. The gradient estimates ∇ES in NPGA are unbiased and have finite mean 
squared error with respect to the smoothed utilities ũσ

i  of the game Γσ.
Lemma 2. For any θ ∈ Θ, the loss in Γ is bounded by that in Γσ:

ℓ̃
Γ
(θ) ≤ ℓ̃

σ
(θ) + 2ZL

√

dσ

where Z is the partial derivative bound from Definition 1, d is the number 
of parameters in the neural network, σ is the standard deviation of the ES 
perturbations, and the constant L is a property of the neural network architecture 
π, describing its regularity. By Lemma 1, NPGA implements exact gradient play in 
Γσ and thus finds a local Nash equilibrium θ* of that game via the result in ref. 33. By 
Lemma 2, any Nash equilibrium of Γσ is an approximate Nash equilibrium of Γ.

For the latter (2), the universal approximation theorem47 guarantees that a 
sufficiently large neural network architecture can approximate every βi ∈ Σi with 
arbitrary precision δ. This yields another error bound:
Lemma 3. Let the neural network π be sufficiently expressive, that is for any βi ∈ Σi 
one can find θ ∈ Θ such that ∥ βi − π(·, θ)∥Σi

≤ δ. Then the loss of θ in G is 
bounded by that in Γ: ℓ̃(θ) ≤ ℓ̃Γ

(θ) + Zδ.
In summary, NPGA almost surely converges to an (approximate) local Nash 

equilibrium θ∗ of Γσ, which, by application of local versions of Lemma 2 and 
Lemma 3, retains a (local) ex ante loss of at most κ = Z(δ + 2L

√

dσ), thus 
constituting a κ-BNE of G. In practice, one may choose the parameters δ (via the 
neural network architecture and size d) and σ sufficiently small such that the error 
vanishes.

Neural network architecture and hyperparameters. In our implementation, 
we use fully connected policy networks with two hidden layers of ten nodes 
each, using SeLU activation in the hidden layers and a ReLU activation function 
in the output layer. These simple networks are sufficient for the settings here, 
but even single-layer nets work with a slight decrease in performance. Instead 
of standard gradient ascent, we apply the Adam optimization algorithm60 with 
standard parameters. In each iteration we generate 64 perturbations of the network 
πi for ES gradient estimation, using zero-mean Gaussian noise with a standard 
deviation of σ = 1/di (as suggested in ref. 49). We use batch sizes of 217 chosen such 
that the largest settings would fit into available GPU memory. In the presence 
of asymmetries or multiple items, degenerate initializations (for example, when 
some players never win) can impede convergence. To alleviate this and improve 
comparability, we force close-to-truthful initializations by pre-training the 

1.00

0.99

0.98ε

0.97

Constant

Bernoulli

ρ

0.96
0.2 0.4 0.6 0.8 1.0

Fig. 2 | the empirical impact of risk-aversion on market efficiency. We 
depict the market efficiency E in approximate equilibrium calculated via 
NPGA for different levels of bidders’ risk aversion. The mean (line) and s.d. 
(shaded bands) of ten runs for each risk-level are depicted.
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Fig. 3 | the effect of bidder correlation and risk attitudes on seller 
revenue. The seller revenue R in approximate equilibrium of LLG auctions 
with nearest-VCG payments and correlated bidders is shown. The 
underlying BNEs for each combination of the risk parameter ρ and the 
correlation strength γ between local bidders have been computed  
via NPGA.
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networks towards the truthful strategy using supervised learning (RMSE-loss, 500 
steps of vanilla stochastic gradient descent). We did not perform setting-specific 
hyperparameter tuning to allow for comparable results. There are possibilities to 
improve the performance of our results when tuning the hyperparameters for a 
specific environment.

We implemented the auctions using the PyTorch framework61 with a focus 
on computing many auctions in parallel. Unless noted otherwise, all experiments 
were performed on a single consumer-grade Nvidia GeForce RTX 2080Ti GPU 
with 1,000 iterations for the single-item auctions and 2,000 iterations for the large 
setting with correlated values (n = 10) and the multi-unit auctions, where each 
experiment was run ten times.

Data availability
All data analyses in this study are based exclusively on data generated by our 
custom simulation framework (see Code Availability). Raw simulation artefacts 
(all-iteration logs and trained models) will be made available by the corresponding 
author on request. Source data are provided with this paper.

code availability
The source code of our simulation framework62, including instructions to 
reproduce all models and datasets referenced in this study, is freely available at 
https://github.com/heidekrueger/bnelearn, licensed under GNU-GPLv3.
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7) General Limits on Use. Unless otherwise provided in the Order Con�rmation, any grant of rights to User (i) involves
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duration of use or circulation) included in the Terms. Upon completion of the licensed use as set forth in the Order
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of the Work(s) and shall render inaccessible (such as by deleting or by removing or severing links or other locators) any

further copies of the Work. User may only make alterations to the Work if and as expressly set forth in the Order

Con�rmation. No Work may be used in any way that is unlawful, including without limitation if such use would violate

applicable sanctions laws or regulations, would be defamatory, violate the rights of third parties (including such third

parties' rights of copyright, privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually
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CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC

or the Rightsholder in connection therewith.

8) Third Party Materials. In the event that the material for which a License is sought includes third party materials (such

as photographs, illustrations, graphs, inserts and similar materials) that are identi�ed in such material as having been

used by permission (or a similar indicator), User is responsible for identifying, and seeking separate licenses (under this

Service, if available, or otherwise) for any of such third party materials; without a separate license, User may not use such

third party materials via the License.

9) Copyright Notice. Use of proper copyright notice for a Work is required as a condition of any License granted under

the Service. Unless otherwise provided in the Order Con�rmation, a proper copyright notice will read substantially as

follows: "Used with permission of [Rightsholder's name], from [Work's title, author, volume, edition number and year of

copyright]; permission conveyed through Copyright Clearance Center, Inc." Such notice must be provided in a reasonably

legible font size and must be placed either on a cover page or in another location that any person, upon gaining access to

the material which is the subject of a permission, shall see, or in the case of republication Licenses, immediately adjacent

to the Work as used (for example, as part of a by-line or footnote) or in the place where substantially all other credits or

notices for the new work containing the republished Work are located. Failure to include the required notice results in

loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to

twice the use fee speci�ed in the Order Con�rmation, in addition to the use fee itself and any other fees and charges

speci�ed.
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copyright, publicity, privacy, or other tangible or intangible property.
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IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE
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14) Additional Terms for Speci�c Products and Services. If a User is making one of the uses described in this Section 14,

the additional terms and conditions apply:

a) Print Uses of Academic Course Content and Materials (photocopies for academic coursepacks or classroom

handouts). For photocopies for academic coursepacks or classroom handouts the following additional terms apply:

i) The copies and anthologies created under this License may be made and assembled by faculty members

individually or at their request by on-campus bookstores or copy centers, or by o�-campus copy shops and other

similar entities.

ii) No License granted shall in any way: (i) include any right by User to create a substantively non-identical copy of

the Work or to edit or in any other way modify the Work (except by means of deleting material immediately

preceding or following the entire portion of the Work copied) (ii) permit "publishing ventures" where any

particular anthology would be systematically marketed at multiple institutions.

iii) Subject to any Publisher Terms (and notwithstanding any apparent contradiction in the Order Con�rmation

arising from data provided by User), any use authorized under the academic pay-per-use service is limited as

follows:

A) any License granted shall apply to only one class (bearing a unique identi�er as assigned by the institution,

and thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays,

poems or articles;

C) use is limited to no more than the greater of (a) 25% of the text of an issue of a journal or other periodical

or (b) two articles from such an issue;

D) no User may sell or distribute any particular anthology, whether photocopied or electronic, at more than

one institution of learning;

E) in the case of a photocopy permission, no materials may be entered into electronic memory by User except

in order to produce an identical copy of a Work before or during the academic term (or analogous period) as

to which any particular permission is granted. In the event that User shall choose to retain materials that are

the subject of a photocopy permission in electronic memory for purposes of producing identical copies more

than one day after such retention (but still within the scope of any permission granted), User must notify CCC

of such fact in the applicable permission request and such retention shall constitute one copy actually sold for

purposes of calculating permission fees due; and

F) any permission granted shall expire at the end of the class. No permission granted shall in any way include

any right by User to create a substantively non-identical copy of the Work or to edit or in any other way

modify the Work (except by means of deleting material immediately preceding or following the entire portion

of the Work copied).

iv) Books and Records; Right to Audit. As to each permission granted under the academic pay-per-use Service,

User shall maintain for at least four full calendar years books and records su�cient for CCC to determine the

numbers of copies made by User under such permission. CCC and any representatives it may designate shall have

the right to audit such books and records at any time during User's ordinary business hours, upon two days' prior

notice. If any such audit shall determine that User shall have underpaid for, or underreported, any photocopies

sold or by three percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC shall

bear the costs of any such audit. Any amount determined by such audit to have been underpaid by User shall

immediately be paid to CCC by User, together with interest thereon at the rate of 10% per annum from the date

such amount was originally due. The provisions of this paragraph shall survive the termination of this License for

any reason.

b) Digital Pay-Per-Uses of Academic Course Content and Materials (e-coursepacks, electronic reserves, learning

management systems, academic institution intranets). For uses in e-coursepacks, posts in electronic reserves, posts

in learning management systems, or posts on academic institution intranets, the following additional terms apply:

i) The pay-per-uses subject to this Section 14(b) include:

A) Posting e-reserves, course management systems, e-coursepacks for text-based content, which grants

authorizations to import requested material in electronic format, and allows electronic access to this material

to members of a designated college or university class, under the direction of an instructor designated by the

college or university, accessible only under appropriate electronic controls (e.g., password);

B) Posting e-reserves, course management systems, e-coursepacks for material consisting of photographs

or other still images not embedded in text, which grants not only the authorizations described in Section

14(b)(i)(A) above, but also the following authorization: to include the requested material in course materials



for use consistent with Section 14(b)(i)(A) above, including any necessary resizing, reformatting or modi�cation

of the resolution of such requested material (provided that such modi�cation does not alter the underlying

editorial content or meaning of the requested material, and provided that the resulting modi�ed content is

used solely within the scope of, and in a manner consistent with, the particular authorization described in the

Order Con�rmation and the Terms), but not including any other form of manipulation, alteration or editing of

the requested material;

C) Posting e-reserves, course management systems, e-coursepacks or other academic distribution for

audiovisual content, which grants not only the authorizations described in Section 14(b)(i)(A) above, but also

the following authorizations: (i) to include the requested material in course materials for use consistent with

Section 14(b)(i)(A) above; (ii) to display and perform the requested material to such members of such class in

the physical classroom or remotely by means of streaming media or other video formats; and (iii) to "clip" or

reformat the requested material for purposes of time or content management or ease of delivery, provided

that such “clipping” or reformatting does not alter the underlying editorial content or meaning of the

requested material and that the resulting material is used solely within the scope of, and in a manner

consistent with, the particular authorization described in the Order Con�rmation and the Terms. Unless

expressly set forth in the relevant Order Conformation, the License does not authorize any other form of

manipulation, alteration or editing of the requested material.

ii) Unless expressly set forth in the relevant Order Con�rmation, no License granted shall in any way: (i) include

any right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the

Work (except by means of deleting material immediately preceding or following the entire portion of the Work

copied or, in the case of Works subject to Sections 14(b)(1)(B) or (C) above, as described in such Sections) (ii)

permit "publishing ventures" where any particular course materials would be systematically marketed at multiple

institutions.

iii) Subject to any further limitations determined in the Rightsholder Terms (and notwithstanding any apparent

contradiction in the Order Con�rmation arising from data provided by User), any use authorized under the

electronic course content pay-per-use service is limited as follows:

A) any License granted shall apply to only one class (bearing a unique identi�er as assigned by the institution,

and thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays,

poems or articles;

C) use is limited to not more than the greater of (a) 25% of the text of an issue of a journal or other periodical

or (b) two articles from such an issue;

D) no User may sell or distribute any particular materials, whether photocopied or electronic, at more than

one institution of learning;

E) electronic access to material which is the subject of an electronic-use permission must be limited by means

of electronic password, student identi�cation or other control permitting access solely to students and

instructors in the class;

F) User must ensure (through use of an electronic cover page or other appropriate means) that any person,

upon gaining electronic access to the material, which is the subject of a permission, shall see:

a proper copyright notice, identifying the Rightsholder in whose name CCC has granted permission,

a statement to the e�ect that such copy was made pursuant to permission,

a statement identifying the class to which the material applies and notifying the reader that the material

has been made available electronically solely for use in the class, and

a statement to the e�ect that the material may not be further distributed to any person outside the class,

whether by copying or by transmission and whether electronically or in paper form, and User must also

ensure that such cover page or other means will print out in the event that the person accessing the

material chooses to print out the material or any part thereof.

G) any permission granted shall expire at the end of the class and, absent some other form of authorization,

User is thereupon required to delete the applicable material from any electronic storage or to block electronic

access to the applicable material.

iv) Uses of separate portions of a Work, even if they are to be included in the same course material or the same

university or college class, require separate permissions under the electronic course content pay-per-use Service.



Unless otherwise provided in the Order Con�rmation, any grant of rights to User is limited to use completed no

later than the end of the academic term (or analogous period) as to which any particular permission is granted.

v) Books and Records; Right to Audit. As to each permission granted under the electronic course content Service,

User shall maintain for at least four full calendar years books and records su�cient for CCC to determine the

numbers of copies made by User under such permission. CCC and any representatives it may designate shall have

the right to audit such books and records at any time during User's ordinary business hours, upon two days' prior

notice. If any such audit shall determine that User shall have underpaid for, or underreported, any electronic

copies used by three percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC

shall bear the costs of any such audit. Any amount determined by such audit to have been underpaid by User

shall immediately be paid to CCC by User, together with interest thereon at the rate of 10% per annum from the

date such amount was originally due. The provisions of this paragraph shall survive the termination of this license

for any reason.

c) Pay-Per-Use Permissions for Certain Reproductions (Academic photocopies for library reserves and interlibrary

loan reporting) (Non-academic internal/external business uses and commercial document delivery). The License

expressly excludes the uses listed in Section (c)(i)-(v) below (which must be subject to separate license from the

applicable Rightsholder) for: academic photocopies for library reserves and interlibrary loan reporting; and non-

academic internal/external business uses and commercial document delivery.

i) electronic storage of any reproduction (whether in plain-text, PDF, or any other format) other than on a

transitory basis;

ii) the input of Works or reproductions thereof into any computerized database;

iii) reproduction of an entire Work (cover-to-cover copying) except where the Work is a single article;

iv) reproduction for resale to anyone other than a speci�c customer of User;

v) republication in any di�erent form. Please obtain authorizations for these uses through other CCC services or

directly from the rightsholder.

Any license granted is further limited as set forth in any restrictions included in the Order Con�rmation and/or in

these Terms.

d) Electronic Reproductions in Online Environments (Non-Academic-email, intranet, internet and extranet). For

"electronic reproductions", which generally includes e-mail use (including instant messaging or other electronic

transmission to a de�ned group of recipients) or posting on an intranet, extranet or Intranet site (including any

display or performance incidental thereto), the following additional terms apply:

i) Unless otherwise set forth in the Order Con�rmation, the License is limited to use completed within 30 days for

any use on the Internet, 60 days for any use on an intranet or extranet and one year for any other use, all as

measured from the "republication date" as identi�ed in the Order Con�rmation, if any, and otherwise from the

date of the Order Con�rmation.

ii) User may not make or permit any alterations to the Work, unless expressly set forth in the Order Con�rmation

(after request by User and approval by Rightsholder); provided, however, that a Work consisting of photographs

or other still images not embedded in text may, if necessary, be resized, reformatted or have its resolution

modi�ed without additional express permission, and a Work consisting of audiovisual content may, if necessary,

be "clipped" or reformatted for purposes of time or content management or ease of delivery (provided that any

such resizing, reformatting, resolution modi�cation or “clipping” does not alter the underlying editorial content or

meaning of the Work used, and that the resulting material is used solely within the scope of, and in a manner

consistent with, the particular License described in the Order Con�rmation and the Terms.

15) Miscellaneous.

a) User acknowledges that CCC may, from time to time, make changes or additions to the Service or to the Terms, and

that Rightsholder may make changes or additions to the Rightsholder Terms. Such updated Terms will replace the

prior terms and conditions in the order work�ow and shall be e�ective as to any subsequent Licenses but shall not

apply to Licenses already granted and paid for under a prior set of terms.

b) Use of User-related information collected through the Service is governed by CCC's privacy policy, available online

at www.copyright.com/about/privacy-policy/.

c) The License is personal to User. Therefore, User may not assign or transfer to any other person (whether a natural

person or an organization of any kind) the License or any rights granted thereunder; provided, however, that, where

applicable, User may assign such License in its entirety on written notice to CCC in the event of a transfer of all or

substantially all of User's rights in any new material which includes the Work(s) licensed under this Service.



d) No amendment or waiver of any Terms is binding unless set forth in writing and signed by the appropriate parties,

including, where applicable, the Rightsholder. The Rightsholder and CCC hereby object to any terms contained in any

writing prepared by or on behalf of the User or its principals, employees, agents or a�liates and purporting to govern

or otherwise relate to the License described in the Order Con�rmation, which terms are in any way inconsistent with

any Terms set forth in the Order Con�rmation, and/or in CCC's standard operating procedures, whether such writing

is prepared prior to, simultaneously with or subsequent to the Order Con�rmation, and whether such writing appears

on a copy of the Order Con�rmation or in a separate instrument.

e) The License described in the Order Con�rmation shall be governed by and construed under the law of the State of

New York, USA, without regard to the principles thereof of con�icts of law. Any case, controversy, suit, action, or

proceeding arising out of, in connection with, or related to such License shall be brought, at CCC's sole discretion, in

any federal or state court located in the County of New York, State of New York, USA, or in any federal or state court

whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Con�rmation. The

parties expressly submit to the personal jurisdiction and venue of each such federal or state court.

Last updated October 2022
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Computing Bayesian Nash equilibrium strategies in auction games is a challenging problem that is not well

understood. Such equilibria can be modeled as systems of nonlinear partial differential equations. It was

recently shown that Neural Pseudogradient Ascent (NPGA), an implementation of simultaneous gradient

ascent via neural networks, converges to a Bayesian Nash equilibrium for a wide variety of symmetric auction

games. While symmetric auction models are widespread in the theoretical literature, in most auction markets

in the field one can observe different classes of bidders having different valuation distributions and strategies.

Asymmetry of this sort is almost always an issue in real-world multi-object auctions, where different bidders

are interested in different packages of items. Such environments require a different implementation of NPGA

with multiple interacting neural networks having multiple outputs for the different allocations the bidders

are interested in. In this paper, we analyze a wide variety of asymmetric auction models. Interestingly, our

results show that we closely approximate Bayesian Nash equilibria in all models where the analytical Bayes-

Nash equilibrium is known. Additionally, we analyze new and larger environments for which no analytical

solution is known and verify that the solution found approximates equilibrium closely. The results provide

a foundation for generic equilibrium solvers that can be used in a wide range of auction games.

Key words : equilibrium learning, neural networks, Bayes-Nash equilibria

1. Introduction

Auction theory is arguably the best-known and practically most relevant application of

Bayesian game theory, central to modern economic theory (Klemperer 2000) and with a

multitude of applications in the field, ranging from industrial procurement to treasury

auctions and spectrum sales (Krishna 2009, Milgrom 2017, Bichler and Goeree 2017). The

derivation of Bayesian Nash equilibrium strategies (BNE) for the first-price and second-

price sealed-bid auction led to a comprehensive theoretical framework for the analysis of

single-item auctions by Nobel laureate William Vickrey, a landmark result of economic

theory (Vickrey 1961). Also, the Nobel Prize in Economic Sciences 2020 to Paul Milgrom

and Robert Wilson was awarded for contributions to auction theory. However, while single-

item auctions are well understood and closed-form BNE strategies are known for a variety

1
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of auction formats, we only know equilibrium strategies for a few restricted multi-item

auction environments with heterogeneous goods. Even for uniform or discriminatory multi-

unit auctions with homogeneous goods and symmetric bidders, we can only characterize

properties of the Bayes-Nash equilibrium but do not have a general closed-form solution

(Krishna 2009). So, the realm of auction markets where we know a Bayes-Nash equilibrium

is very limited.

Equilibrium computation is well-known to be hard even for simple, finite, complete-

information games: Finding Nash equilibria in normal-form games is known to be in the

complexity class PPAD1 (Daskalakis et al. 2009). Mathematically, auctions are typically

described as Bayesian games. Bidders’ valuations are considered samples from some con-

tinuous and atomless prior valuation distribution and their strategies are represented by

continuous bid functions mapping these valuations to bids. Vickrey (1961) have enabled

a deep understanding of common single-item auction formats. However, there still remain

many open questions for more involved multi-item auctions such as combinatorial auc-

tions, in which players bid on bundles of multiple goods simultaneously. We also know

little about the existence of Bayesian Nash equilibria in such auction games (Jackson and

Swinkels 2005). Importantly, the computational complexity of computing BNE is hardly

understood. Typically, for a fully specified setting, we can model the equilibrium problem

as systems of nonlinear partial differential equations for which no exact solution theory is

known (Klainerman 2010). Given the relevance of auctions, understanding their equilib-

ria is crucial, and numerical methods for computing or approximating such steady states

would be a significant step forward in the theory of auctions and also in their design and

in applications.

This paper can be viewed in the context of equilibrium learning via gradient dynam-

ics. Whether learning agents’ strategies in repeated games converge to equilibria has been

studied for complete-information normal-form games (Fudenberg and Levine 2009). In con-

trast, equilibrium learning in Bayesian auction games is largely unexplored (see Section 2).

First, the ex-post utility function is non-differentiable in auctions, which makes it diffi-

cult to apply gradient dynamics. Secondly, it is a known fact that multi-agent gradient

dynamics do not converge in general games: Convergence to Nash equilibria has only been

1 The class of Polynomial Parity Arguments on Directed graphs (PPAD) problems is believed to be hard and is related
to NP.
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established for restricted classes of complete-information normal-form games. In summary,

it is all but clear how gradient dynamics would be implemented in Bayesian auction games,

and even if this was done, whether the algorithm would converge to a BNE in auction

games. We draw on Bichler et al. (2021), who recently introduced Neural Pseudogradient

Ascent (NPGA), an algorithm that relies on simultaneous gradient ascent of bidders with

respect to their ex-ante utility functions. More specifically, NPGA models all players’ bid-

ding strategies as neural networks, and trains them via self play based on approximate

ex-ante gradients computed from observations of the discontinuous ex-post utility function

using evolutionary strategies. It can be applied to a wide range of Bayesian auction games,

since it does not require any auction-specific sub-procedures beyond access to simulating

auction outcomes. Likewise, its computational steps can exploit massive parallelization and

GPU hardware acceleration.

The results by Bichler et al. (2021) focus on symmetric auction models, assuming sym-

metric prior distributions and symmetric equilibrium bidding strategies of the bidders.

This allows them to train only a single neural network to provably find the symmetric equi-

librium bidding strategy. While symmetric models cover some important auctions in the

theoretical literature, many interesting environments include asymmetries. For example,

asymmetric priors are a concern for single-object auctions with strong and weak bidders

drawn from different distributions, but they are even more prevalent in multi-item auctions

where it is unlikely that bidders are interested in the same items with their values drawn

from the same distribution. It is also these more general market environments for which

the literature on auction theory does not provide analytical equilibrium predictions.

1.1. Contributions

In this paper, we explore a number of challenging environments, models which clearly

violate the symmetry assumption. Nothing is known about the convergence and speed

of equilibrium learning in such environments where one needs to train multiple neural

networks with multi-dimensional outputs modeling different actions of bidders. We show

that the NPGA algorithm also converges with multiple neural networks which are required

to model asymmetric environments. We explore a wide range of wicked models from the

literature where the BNE is known analytically and find that NPGA computes a very close

approximation of the Bayes-Nash equilibrium in all of them. In addition, we explore large
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environments where no analytical solution is known and we can verify empirically that a

close approximation to a BNE is found.

We start with a single-object auction with two asymmetric priors (Plum 1992). Apart

from this original model, we also analyze one that allows for (rational) overbidding and

admits multiple equilibria (Kaplan and Zamir 2015). Here, we only know closed-form equi-

librium strategies for uniform prior distributions, for which NPGA finds a BNE. However,

we also discuss a specific model with two bidders competing for a single object where

the valuations are drawn from a non-linear beta distribution. No equilibrium strategy is

known, but we find bidding strategies with a very low estimated utility loss for all players.

This indicates that the computed strategy profile is a close approximation of a BNE.

Second, we explore a specific type of multi-unit uniform-price auction of homogeneous

goods with two classes of bidders, those with a high and with a low type. The environ-

ment is very large with up to 12 units and NPGA is able to compute a sufficiently close

equilibrium in under five minutes. Such mechanisms are used in treasury bill auctions but

also electricity markets. Demand reduction is a well-known phenomenon in such auctions

and it is interesting to observe how it plays out under different model assumptions about

the strength of the competitors.

Third, we analyze a combinatorial auction in the well-known local-local-global (LLG)

model. The model has two items and three bidders and it has become a standard envi-

ronment to discuss spectrum auction design and more generally combinatorial auctions

(Bichler and Goeree 2017). Two local bidders want to win one item each and they compete

against a global bidder interested in the package of both items. Bidders are assumed to

only bid for the single item for which they have a strictly positive expected valuation. In

this standard LLG model, the local bidders are assumed to have symmetric priors, and

NPGA converges quickly to the BNE strategy (Bichler et al. 2021). In contrast to this

standard setting, we analyze a variant where one of the local bidders is favored and bidders

are not precluded a priori from bidding on bundles for which they do not have a strictly

positive value. While a bidder would not actually be interested in winning such a bundle,

it turns out that sometimes it may nevertheless be rational to submit a positive bid for it.

Ott and Beck (2013) showed that, in fact, this version of the local-local-global model has

an equilibrium where the second local bidder bids on the package of both items and even

overbids—in spite of being interested in a single item only. Such equilibrium strategies
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are not obvious. Again, we find that NPGA recovers this analytical solution with high

precision.

Fourth, we experiment with another reverse combinatorial auction model with two homo-

geneous objects and two bidders. This model is interesting because there are two pure

BNE (Anton and Yao 1992, Kokott et al. 2019). Similar to the analysis of the asymmetric

single-object environment (Kaplan and Zamir 2015), NPGA finds an equilibrium, which is

also the efficient one.

Finally, we report the results for a large combinatorial auction model with six bidders,

belonging to two symmetry classes, and eight items, which has recently been proposed as

a challenging problem for equilibrium computation and which, to the authors’ knowledge,

is the largest combinatorial auction for which an approximate BNE has been computed

numerically with a setting-specific algorithm (Bosshard et al. 2020). Going beyond the

existing challenge model, we also study NPGA in an even larger extension by introducing an

additional seventh bidder belonging to a new third symmetry class. In both these settings,

strategy profiles learned by NPGA converge to approximate BNE. Such environments can

already be considered very large and beyond what is typically analyzed in auction theory.

Overall, The empirical results we show in this paper provide evidence that gradient

dynamics implemented in NPGA are significantly more powerful than expected and they

converge in a much wider range of (asymmetric) auction games. This raises hope that

gradient dynamics can be used to compute equilibria in a much broader variety of market

models and that general auction equilibrium solvers are in reach.

1.2. Organization

In the next section, we discuss related literature. Section 3 introduces preliminaries and

notation before we discuss gradient dynamics in the context of auctions in Section 4.

Section 5 introduces metrics to evaluate the quality of our results before we report our

results in Section 6. Finally, we provide a summary and conclusions in Section 7. The

source code and configurations can be found at the repository (Bichler et al. 2023).

2. Related Literature

In what follows, we survey existing hardness results, approaches to equilibrium learning,

and initial research on computing approximate Bayes-Nash equilibria.
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2.1. Hardness of Equilibrium Computation

The computation of Nash equilibria received significant attention after the initial contribu-

tion by John Nash on the existence of such equilibria in complete-information normal-form

games (Nash et al. 1950). However, it was shown that the problem is already PPAD-

complete for two-agent normal-form games (Daskalakis et al. 2009) and it is hard to

approximate (Rubinstein 2016). The computation of Nash equilibria for three or more

agents is even FIXP-complete, i.e., complete for the class of search problems that can be

cast as fixed-point computation problems (Etessami and Yannakakis 2007).

Determining whether a pure-strategy BNE exists in a finite Bayesian game is NP-

complete and these hardness results also hold if there are only two agents and the game

is symmetric (Conitzer and Sandholm 2008). Finding a mixed Bayesian equilibrium in

a Bayesian game is, of course, PPAD-hard, but might be even harder; however, little is

known in general. As indicated in the introduction, Cai and Papadimitriou (2014) show

that finding a BNE in simultaneous single-item Vickrey auctions for which the bidders

have combinatorial valuations is hard for the class PP (the decision version of ♯P), which is

much harder than NP. Even certifying a BNE is PP-hard, which casts doubt on the ques-

tion of whether BNE can be at all predictive in the field. Additionally, the authors show

that it is even NP-hard to find an approximate BNE in the simultaneous Bayesian auction

game. Note that environments with continuous action space are not finite games, and the

existence result by Nash does not carry over. We are not aware of proof that a possibly

mixed Bayesian equilibrium always exists in such games. Athey (2001) showed conditions

for pure BNE to exist, Carbonell-Nicolau and McLean (2018) provided conditions that

guarantee the existence of a BNE, while Ui (2016) characterized strong payoff-monotonicity

as a sufficient condition for uniqueness of BNE in ex-post differentiable continuous-action

Bayesian games.

2.2. Equilibrium Learning

Our research is best situated in the literature on equilibrium learning (Fudenberg and

Levine 2009). Learning in complete-information normal form games has a long history and

has been extensively studied in game theory and, more recently, multi-agent reinforcement

learning. One class of methods is formed by best response dynamics. The earliest such

method, published by Cournot in 1838, has agents play a pure strategy best response

against other agents’ strategies used in the previous iteration. In Fictitious Play (FP)
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(Brown 1951), a best response is instead played against the strategy profile induced by

opponents’ empirical frequencies of play in all previous iterations. Whenever the empirical

frequencies of FP converge, the limit constitutes a Nash equilibrium, but the actual (last-

iteration) play only converges in special cases of normal form games such as potential

games (Monderer and Shapley 1996).

Gradient dynamics constitute another class of equilibrium learning algorithms. Gener-

alized infinitesimal gradient ascent (GIGA) (Zinkevich 2003) or GIGA-WoLF (Bowling

2005) are examples of gradient dynamics in normal form games, where in each iteration, for

each agent we move a step along the direction of the utility gradient and then project the

resulting point back to the set of feasible mixed strategies. If aggregating over the stages of

the process, the agent’s regret grows sublinearly, then there is “no regret” asymptotically.

GIGA’s total regret is O(
√
T ), where T is the number of steps in a repeated strategic game.

Hazan et al. (2007) have given an algorithm with a total regret of O(log(T )). Complete-

information games with continuous action spaces and smooth utility functions have also

received some attention in the context of generative adversarial networks (Letcher et al.

2019, Balduzzi et al. 2018, Schäfer and Anandkumar 2019). A common observation in

this line of research is that gradient-based learning does not necessarily converge to an

equilibrium and may even exhibit cycling or chaotic behavior. However, it often achieves

no-regret properties and thereby converges to a weaker form of equilibrium, so called coarse

correlated equilibria (CCE). Similar conclusions were drawn for finite-type (and possibly

continuous-action) Bayesian games. Here, no-regret learners were shown to converge to

Bayesian CCEs (Hartline et al. 2015).

Gradient dynamics are only known to converge to a Nash equilibrium in certain types of

normal-form games such as potential games, bilinear games (Singh et al. 2000), and convex

games (Mertikopoulos and Zhou 2019). Letcher et al. (2019) explore gradient dynamics

in complete-information continuous-action differential games. If ex-post payoffs are twice

continuously-differentiable, they find properties such that gradient dynamics converge to

at least local equilibria. Unfortunately, the ex-post utility in our auction games is not

differentiable. More importantly, these techniques are defined for complete-information

games with finite-dimensional action spaces while we search for strategies over a function

space. Unfortunately, a thorough understanding of the convergence and limiting behaviors

in general, continuous games is missing. Actually, the analysis of gradient dynamics, in

general, can be arbitrarily complex (Andrade et al. 2021).
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2.3. Algorithms for Computing Approximate BNE

Earlier approaches to compute approximate BNE in auctions either comprised solving the

set of nonlinear differential equations resulting from the first-order conditions of simul-

taneous maximization of the bidders’ payoffs (Marshall et al. 1994, Bajari 2001) or of

restricting the action space, e.g., through discretization (Athey 2001). Then, however, one

has no guarantees on the quality of the corresponding ϵ-BNE of the original auction game.

Armantier et al. (2008) introduced a BNE-computation method that is based on expressing

the Bayesian game as the limit of a sequence of complete-information games, but defining

this sequence requires setting-specific analysis.

Numerical BNE in more complex combinatorial auctions were first computed by

Bosshard et al. (2017, 2020) in two recent papers; in particular, they study the LLG and

LLLLGG markets, both of which are also analyzed in this paper. Their algorithm com-

putes point-wise best responses in a linearization of the strategy space via Monte Carlo

integration. They prove an an upper bound ϵ on the interim utility loss achieved by their

algorithm using a verification method that assumes identical independent priors (Fvi|v−i
=

Fvi) and risk-neutral attitudes of all bidders. High worst-case interim precision comes at a

computational cost for more complex environments with multi-minded bidders.

NPGA (Bichler et al. 2021) follows a different approach and is rooted in gradient dynam-

ics rather than best response dynamics. It directly learns the bid functions expressed across

the entire value space (as opposed to point-wise) by updating the parameters of the neural

networks via ex-ante gradient ascent. NPGA neither requires discretization of the value

or action space as in Athey (2001) nor does it rely on twice differentiable payoff or loss

functions as required in the literature on differentiable games (Singh et al. 2000, Letcher

et al. 2019). Further, it makes no assumptions about the risk attitude or independence of

the bidders’ valuations. For symmetric auctions, Bichler et al. (2021) show that NPGA

converges (at least) to local BNE.

3. Problem Statement and Notation

We next introduce the necessary notation and concepts from Bayesian game theory relevant

to our paper.

3.1. Auctions as Bayesian Games

A Bayesian game or game with incomplete information is defined by the quintuple G=

(I,A,V, F,u). The set of players is denoted by I = {1, . . . , n}, A≡A1×· · ·×An is the set of
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possible action profiles, where agent i∈ I has access to the action set Ai. V ≡V1× · · ·×Vn

we denote the set of type profiles and F : V → [0,1] defines the joint probability distribution

over V that is known to all players. Throughout this paper, FX will denote the cumulative

distribution function of a random variable X. For example, Fvi will denote the marginal

distribution of player i’s type. In each game, a type profile v∼ F is drawn and all agents i

are privately informed of their own types vi. Based on this private information, each player

must then choose an action bi from Ai. After actions have been chosen, every player will

observe their ex-post utility according to a function ui :A×Vi →R that notably depends

on all agents’ actions but only on i’s own type.

This paper considers not only sealed-bid auctions of a single object, but also multi-

unit auctions and combinatorial auctions with m heterogeneous items, M= {1, . . . ,m}. In
these auctions, each agent, also called bidder, is allocated a bundle xi ∈ K ≡ 2M of items

(possibly xi =∅). In the private value setting most commonly studied in auction theory,

types vi ∈ Vi can then be interpreted as a vector of private valuations that is composed

of the valuations the bidder has for all possible bundles: vi ≡ (vi(k))k∈K. For a treatment

beyond private values (e.g., interdependent bidder types) we refer the interested reader

to Bichler et al. (2021). Bidders map these valuations to their individual bids bi = βi(vi)

according to some pure strategy or bid function βi : Vi →Ai. In line with most work in

auction theory, we will focus on pure strategies that choose a specific action with certainty.

In an exclusive-OR (XOR) bid language, a bidder submits bids for every possible bundle

but can only win one of the bids. This means that bids are generally in Ai ⊆ R|K|
+ , and

every player must thus submit a total of 2m scalar bids.

By Σi ⊆ AVi
i we denote the strategy space of bidder i and by Σ ≡∏iΣi the space of

available joint strategies. Note that the spaces Σi are infinite-dimensional as a consequence

of infinite Vi.

The auctioneer then applies an auction mechanism which will determine an allocation x

and a price vector p. The allocation determines the bundles of goods xi ∈K received by each

bidder which must be disjoint: xi ∩ xj =∅. Payments p ∈ Rn determine a scalar amount

of money that each payer will have to pay to the auctioneer in exchange for receiving the

bundle xi. We will rely on the standard environment in auction theory where bidders have

a quasi-linear utility function given by ui : Vi×A→R,

ui(vi, bi, b−i) = vi(xi)− pi, (3.1)
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where the index −i denotes a profile of types, actions, or strategies for all agents but agent

i. That is, each bidder’s utility is given by her valuation of her allocated bundle, minus the

payment she has to make. Quasi-linear utilities correspond to risk-neutral bidders. Note

that NPGA is not restricted to the risk-neutral setting. (See e.g. Bichler et al. (2021) or

Ewert et al. (2022) for applications in the presence of risk-averse agents.) However, the

environments discussed in this paper assume quasi-linear utility, which simplifies notation.

We will differentiate between the ex-ante, interim, and ex-post states of the game, where

bidders first know only F , then additionally their valuations vi ∼ Fvi , and finally also the

observed utility ui(vi, b), respectively.

3.2. Bayes-Nash Equilibrium

The notion of Nash equilibria (NE) is the central equilibrium solution concept in noncoop-

erative game theory. An action profile b∗ is a pure-strategy NE of the complete-information

game G= (I,A, u) iff no player has any incentive to deviate unilaterally while other agents

adhere to the equilibrium: ui(b
∗
i , b

∗
−i) ≥ ui(bi, b

∗
−i) for all bi ∈ Ai and all i ∈ I. Bayesian

Nash equilibria (BNE) generalize this concept to incomplete-information games. To do so,

we will need to consider the expected interim utility ui of i of a given bid choice bi ∈ Ai

over the conditional distribution of opponent valuations v−i, given i’s observed type vi and

assuming opponents play fixed strategies β−i ∈Σ−i:

ui(vi, bi, β−i)≡Ev−i|vi [ui (vi, bi, β−i(v−i))], (3.2)

In our analysis, we will also use the interim utility loss of action bi that is incurred, in

hindsight, by not playing a best response action. Given vi and β−i it is defined as

ℓi(bi;vi, β−i) = sup
b′i∈Ai

ui(vi, b
′
i, β−i)−ui(vi, bi, β−i). (3.3)

Typically, ℓi is not actually observable to any agent because it requires knowledge of (a)

the opponents’ strategies and (b) a corresponding best response.

An interim ϵ-Bayesian Nash Equilibrium (ϵ-BNE) is a strategy profile β∗ = (β∗
1 , . . . , β

∗
n)∈

Σ in which no deviation could yield an interim utility improvement of more than ϵ≥ 0 for

any player. Formally, an ϵ-BNE is described as follows:

ℓi
(
bi;vi, β

∗
−i

)
≤ ϵ for all i∈ I, vi ∈ Vi, and bi ∈Ai. (3.4)
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In a true BNE, where ϵ = 0, every bidder’s strategy maximizes her expected interim

utility everywhere on her type space Vi given the opponents’ strategies. While this interim

stage definition of BNE is most common in the literature, we will instead focus on ex-ante

Bayesian equilibria as strategy profiles that concurrently maximize each player’s ex-ante

expected utility ũ, i.e., at the stage where only the priors F are known, but players have

not yet learned their own private valuation. We thusly define ũ and the ex-ante utility

losses ℓ̃ of a strategy profile β ∈Σ by

ũi(βi, β−i)≡Ev[ui(vi, βi(vi), β−i(v−i))] (3.5)

=Evi∼Fvi
[ui(vi, bi, β−i)], (3.6)

and

ℓ̃i(βi, β−i)≡ sup
β′
i∈Σi

ũi(β
′
i, β−i)− ũi(βi, β−i). (3.7)

Ex-ante BNE strategy profiles β∗ ∈Σ can be characterized by the equations ℓ̃i(β
∗
i , β

∗
−i) = 0

for all i ∈ I. Note that interim BNE also constitute an ex-ante equilibria and the reverse

holds almost everywhere: every ex-ante equilibrium fulfills Equation 3.4, except possibly

on a set of type profiles with measure 0 under F . In this paper, we concern ourselves with

finding ex-ante equilibria of auction games.

4. Neural Pseudogradient Ascent

In this section, we introduce Neural Pseudogradient Ascent (NPGA), an algorithm that

was recently introduced by Bichler et al. (2021) for Bayesian games with continuous type-

and action-spaces. We briefly summarize the algorithm for the paper to be self-contained

before we discuss issues around computational hardness and scalability.

4.1. The Algorithm

Intuitively, NPGA simply follows the ex-ante gradient dynamics of the game. However,

computing these dynamics is not trivial for auctions, where the ex-post utility functions

have discontinuities. Suppose that in each iteration of the learning algorithm players have

access to a gradient-oracle ∇βi
ũi(βi, β−i) with respect to the current joint strategy profile

βt. Then the gradient dynamics would require that each player perform a projected gradient

update:

βt
i ≡PΣi

(
βt−1
i +∆t

i

)
where ∆t

i ∝∇βi
ũi(βi, β−i), (4.1)
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where PΣi
( · ) projects its argument onto the set of feasible strategies. Some nuances of

Equation 4.1 deserve discussion: Importantly, the gradient dynamics are to be understood

with respect to the ex-ante utility ũ, rather than interim or ex-post utilities. As such, any

update iteration aims to marginally improve on the player i’s expected utility across all

possible type realizations of the game. Furthermore, when computing the gradient oracle

∇βũ via self-play, one may need to rely on access to other players’ strategies, but evaluating

each player’s policy requires only on their own valuation. Finally, βi ∈Σi are functions in an

infinite-dimensional function space, so the gradient ∇βi
ũi is itself a functional derivative.

We formally consider this to be the Gateaux derivative, a generalization of the directional

derivative in Euclidean spaces, over the Hilbert space Σi equipped with the inner product

⟨ψ,βi⟩ = Evi∼Fvi

[
ψ(vi)

Tβi(vi)
]
. This choice of space specifies the projection operation in

Equation 4.1 to PΣi
(β)≡ argminσ∈Σi

⟨σ−β,σ−β⟩.
To implement these gradient updates in practice, NPGA considers all bidders’ strate-

gies to be policy networks βi(vi)≡ πi(vi;θi) specified by some neural network architecture

and parameters θi ∈Rdi . Importantly, when a suitable neural network architecture is cho-

sen, all relevant θi will yield feasible bids, and the projection operation in the update

can be neglected as a result. In the empirical part of this study, we restrict ourselves to

fully-connected feed-forward neural networks with SeLU activations in the hidden layers

(Klambauer et al. 2017) and ReLU activations in the output layer. The latter guarantees

satisfaction of nonnegativity of the bids – the only feasibility constraint in the auctions

studied below. Note that in contrast to Bichler et al. (2021), we analyze more complex

auction models with multi-minded bidders, such that the output layer includes multiple

neurons defining bids for different packages of items in a multi-item auction. Importantly,

we need to train multiple neural networks that compete rather than only a single one. As

network sizes di ∈N are finite, the problem of choosing an infinite-dimensional strategy is

thus transformed into choosing a finite-dimensional parameter vector θi.

As auction allocations x are inherently discrete, the ex-post utilities ui(vi, bi, b−i) in

auction games have discontinuities and, as a result, are not (sub)differentiable in bi. While

the set of discontinuities is typically a v-nullset, taking the analytical gradient elsewhere

nevertheless would yield systematically misleading updates: As an example, consider a first-

price sealed-bid auction of a single item where the winner i pays her bid pi = bi. Players’

utility functions are then separated into two intervals: When bidding below the highest
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other bid, one will lose the auction, have a constant payoff of 0, with ∇biui = 0 on this

interval. Thus there will be no usable learning feedback. When i’s bid wins the auction, any

further increase in bi will marginally decrease ui, ∇biui=− 1. Analytical gradient updates

via backpropagation on the ex-post utility will thus always send nonincreasing feedback,

until all players finally bid a constant amount of zero no matter their type.

NPGA alleviates this feedback-breakdown of the ex-post gradients by instead estimating

the effect of parameter changes on the ex-ante utility using finite differences, and computing

gradient estimates ∇θũ using a natural evolution strategy (ES) approach Salimans et al.

(2017). Given parameters P ∈ N and ϵ > 0, we perturb the parameter vector P times

θi;p ≡ θi + εp using zero-mean Gaussian noise εp ∼ N (0, σ2). NPGA then calculates each

perturbation’s fitness, φp ≡ ũi(πi(vi;θi;p), β−i), via Monte Carlo integration, and estimates

the gradients as the fitness-weighted perturbation noise ∇ES
θ ≡ 1

σ2P

∑
pφpεp. This results in

an unbiased estimator of the ex-ante gradients ∇θũ even when the ex-post gradients ∇bu

are not well-defined. Pseudo-code of NPGA is given in Algorithm 1.

Unlike in Bichler et al. (2021), where the “symmetric” version of NPGA has been ana-

lyzed, here we focus on the asymmetric case where agents can differ (in their prior Fvi,

or in how the auctioneer treats their bids) and each agent must learn their own optimal

bid function. As indicated earlier, this necessitates each bidder to train her own neural

network, rather than allowing a simplification of a single shared network, which is essential

to the theoretical convergence analysis in Bichler et al. (2021). Instead, in each iteration,

we iterate over bidders who perform their own individual gradient updates.

In summary, NPGA “implements” Equation 4.1 by parametrizing strategies using neural

networks and training them with ES-pseudogradients:

βt
i ≡ πi( · ;θti) with θti ≡ θt−1

i +∆t
i where ∆t

i ∝∇ES
θti
. (4.2)

The computation of these updates in each iteration only relies on values of the ex-ante

utility ũ= Ev∼F [u]. No further information about the game is necessary. Thus, whenever

the joint ex-post utility u can be calculated in a vectorized fashion, ũ can leverage paral-

lel computations to efficiently perform Monte Carlo integration over V. In practice, this

approach lends itself to accelerated computation using GPUs. We built custom vector-

ized implementations of many common auction mechanisms using the PyTorch framework

(Paszke et al. 2017) that allow us to perform the Monte Carlo estimation multiple orders

of magnitude faster than prior numerical work on auctions.
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Algorithm 1 Neural Pseudogradient Ascent using Evolutionary Strategies

1: input: Initial policy, ES population size P , ES noise variance, learning rate, batch size

2: for t= 1,2, . . . do

3: Sample a batch of valuation profiles from prior

4: Calculate joint utility of current strategy profile

5: for each agent i∈ I do

6: for each p∈ {1, . . . , P} do

7: Perturb agent i’s current policy

8: Evaluate fitness of perturbation p by playing against current opponents

9: end for

10: Calculate ES pseudogradient as fitness-weighted perturbation noise

11: Perform a gradient ascent update step on the current policy

12: end for

13: end for

5. Evaluation

We will provide three metrics for evaluating the quality of the learned strategy profiles β.

Whenever an analytical BNE β∗ is known, we may simply check whether β→ β∗. To do

so, we calculate the agents’ utility losses Li that result from playing the learned strategy

βi rather than the equilibrium strategy β∗
i .

The relative utility loss is then given by

L(βi) ≡ 1− ûi(βi, β
∗
−i)/ûi(β

∗). (5.1)

Additionally, we will also measure the distance in strategy space, which tells us how close

the learned strategy is to the analytical one:

L2(βi) ≡ ∥βi −β∗
i ∥Σi

. (5.2)

Both of these metrics use Monte Carlo integration over a large number of valuations v∼ F

to approximate û≈ ũ.

When no equilibrium is available for comparison we will instead qualify β by considering

the potential gains of deviating from β itself: ℓ̂i ≈ ℓ̃i(βi, β−i). We will also estimate the

“true” epsilon of β, i.e., the smallest ϵ such that β forms an interim ϵ-BNE. This estimator



Author: Learning Equilibria in Asymmetric Auction Games
Article submitted to INFORMS Journal on Computing; manuscript no. 15

will be denoted by ϵ̂. As we will see, these additional metrics in the absence of analytical

solutions are costly: Calculating ℓ̂ and ϵ̂ relies on a grid {bi,w|w= 1, . . . , ngrid} of equidistant

feasible bids for each player i, in order to cover the spaces Ai. For given vi and bi, one can

then approximate the interim loss ℓ via

λ̂i(vi; bi, β−i)≡ max
w∈{1,...,ngrid}

1

nbatch

nbatch∑

h=1

ui (vi; bi,w, β−i(vh,−i))−ui (vi; bi, β−i(vh,−i)) . (5.3)

Here the batch nbatch only runs across opponent valuations v−i. Evaluating λ̂i for a single

valuation vi therefore requires (nbatch + 1) · ngrid simulations of the auction. The ex-ante

loss can then be estimated as ℓ̂= 1
nbatch

∑
h λ̂i(vh,i;βi(vh,i), β−i).

The worst-case interim loss is then given by ϵ̂= maxh λ̂i(vh,i;βi(vh,i), β−i). Bosshard et al.

(2020) proofed that this estimator can be shown to be an upper bound under further

assumptions on the mechanism and the strategies. They additionally provide empirical

evidence of the approximation quality of the estimator which justifies its usage.

Both computations can use a shared state for the estimations of λ̂ but nevertheless O(n ·
ngrid · n2

batch) auction simulations are necessary to compute these metrics. In comparison,

a learning update in NPGA needs O(n · P · nbatch) simulations only, with the population

size P ≪ ngrid. Due to the high cost of these additional metrics on dense grids bi,w, we

evaluate the metrics ℓ̂ and ϵ̂ on smaller batch sizes than L, and only once at the end of an

experiment. Finally, to approximate the relative utility loss (Equation 5.1) in the absence

of known BNE, we estimate the relative ex-ante utility loss incurred in hindsight by not

playing a best response, given as

L̂(βi) ≡ 1− ûi(β)

ûi(β)+ ℓ̂i(β)
. (5.4)

We choose this as our main evaluation criterion as its calculation is feasible and its values

are comparable across the variety of settings considered.

6. Results

In this section, we report the results of several challenging auction models that allow

for various types of asymmetries among bidders and fairly general market environments.

In many of these environments, we have analytical solutions which provide unambiguous

baselines. Note that these environments already describe some of the most challenging

equilibrium problems to solve analytically. For more complex models, closed-form solutions
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of Bayesian Nash equilibrium strategies are typically not available. We introduce these

environments individually and report the results and the runtimes. As we will observe,

NPGA converges to approximate equilibria in all presented settings.

We use common hyperparameters across almost all settings (except where noted other-

wise): fully connected neural networks with two hidden layers of ten nodes each with SeLU

activations (Klambauer et al. 2017), as well as ReLU activations in the output layer. The

parameters θi are then given by the weights and biases of these networks. The resulting

parameter dimensionality di for each bidder thus depends on the dimensionality of the

input and output layers and ranges from di = 141, in the single-item settings, to di = 372 in

the 12-item multi-unit setting. All experiments were performed on a single Nvidia GeForce

2080Ti with 11GB of RAM and batch sizes in Monte Carlo sampling were chosen to max-

imize GPU-RAM utilization: A learning batch size of 218; primary evaluation batch size

(for L, L2) of 2
22; and secondary evaluation batch size nbatch = 212 and grid size ngrid = 210

(for ℓ̂, ϵ̂). Each experiment was repeated ten times with 2,000 learning iterations each.

Section 1 in the online supplement (Bichler et al. 2023) gives insights on the influence of

the batch size and the population size, arguably the most important hyperparameters of

NPGA. In the single-item auctions, it takes approximately 0.3 seconds to compute each

learning iteration, whereas the combinatorial LLG auction takes about 2.0 seconds due to

the complexity of the auction mechanism. For the larger LLLLGG and LLLLRRG auctions

under the first-price payment rule, the computation takes under one second per iteration.

We present a thorough discussion of the factors which influence the computational cost

and runtimes in Subsection 6.6.

6.1. Single-Item Auctions with Asymmetric Priors

Our initial analysis focuses on a standard single-object first-price sealed-bid (FPSB) auction

with asymmetric priors, where bidder valuations are drawn from two different distributions.

FPSB auctions have mostly been analyzed with symmetric priors and equilibrium bid

functions. Asymmetric prior distributions are harder to analyze analytically compared to

symmetric environments, but a few environments with analytical solutions are known. We

analyze three different environments, one with two overlapping uniform distributions and a

unique BNE, one with two disjunct uniform distributions and multiple BNE, and another

one where the priors are non-linear beta functions.
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Figure 1 Equilibrium bid function and strategies

learned by NPGA in the asymmet-

ric single-item setting with overlapping

valuations.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
valuation vi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bi
d 
b i
(v

i)

BNE 1 weak bidder
BNE 2 weak bidder
BNE 3 weak bidder
NPGA weak bidder

BNE 1 strong bidder
BNE 2 strong bidder
BNE 3 strong bidder
NPGA strong bidder

Figure 2 Equilibrium bid function and strategies

learned by NPGA in the asymmetric

single-item setting with non-overlapping

valuations.

Table 1 Average losses achieved in the asymmetric first-price setting with overlapping valuations. Mean and

standard deviation are aggregated over ten runs of 2,000 iterations each. The time per iteration is 0.2886

(0.0280) seconds.

bidder L L̂ L2

strong bidder 0.0024 (0.0026) 0.0178 (0.0037) 0.0104 (0.0055)

weak bidder 0.0074 (0.0031) 0.0524 (0.0134) 0.0128 (0.0029)

6.1.1. Asymmetries Induced by Priors with Different Domains. We first analyze an

environment with two bidders who have overlapping uniform prior distributions supported

on (0, 1/2) and (0,1) describing a weak and a strong bidder, respectively. The analysis goes

back to Plum (1992). In the BNE, the weaker bidder bids more aggressively than the strong

bidder. Figure 1 shows an example of the learned and the analytical BNE bid functions

for both bidders. NPGA achieves a relative loss L below 1% for both types of bidders.

Aggregated performance results over ten runs are displayed in Table 1.

This Bayes-Nash equilibrium is unique (Maskin and Riley 2000, Lebrun 2006) given the

requirement that bidders may never bid above their observed valuation. Kaplan and Zamir

(2015) relaxed this assumption. In their model, the prior distributions are non-overlapping,

which results in additional equilibria. In particular, in BNE 1 and 2, which are also depicted

in Figure 2, the weaker bidder has incentives to overbid. They conclude that the commonly

used assumption of no overbidding, or more generally, the elimination of weakly dominated

strategies, should be taken more carefully in asymmetric auctions.
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Table 2 Average NPGA losses achieved in asymmetric first-price setting with non-overlapping valuations.

Aggregated over ten runs of 2,000 iterations each and compared against the second equilibrium of Kaplan and

Zamir (2015). The time per iteration is 0.2856 (0.0221) seconds.

bidder LBNE2 L̂ LBNE2
2

strong bidder 0.0080 (0.0097) 0.0104 (0.0012) 0.0109 (0.0085)

weak bidder 0.1687 (0.2310) 0.0229 (0.0140) 0.0544 (0.0161)

We analyzed NPGA in this setting with bidders that have non-overlapping uniform prior

distributions, V = (0,0.5)× (0.6,0.7) (see Table 2). In this model, there are three Bayesian

Nash equilibria. Despite the equilibrium selection problem in this game, starting from

truthfully initialized strategies, the bidding converges to BNE 2. The stronger bidder is

able to decrease her relative utility loss below 1%. Only the weaker bidder has difficulties

finding a particular strategy for low valuations because bids in this range are far from

competitive for any opposing bids and rarely, if ever, win. This strategic disadvantage

leads to sparse opportunities to learn in this specific setting, which in turn causes higher

relative errors. In fact, only about 1/5 of the sampled data, i.e., the highest valuations of

the weak bidder, are relevant for learning.

6.1.2. Asymmetries Induced by Different Prior Densities. For the single-item sym-

metric FPSB auction with two bidders and assuming uniform priors on (0,1), the equi-

librium strategies and market outcomes are well understood analytically. Apart from the

uniform distribution, we also want to analyze asymmetric environments with more complex

non-linear prior distributions. Therefore, we analyzed an environment with two bidders

whose values are drawn from a beta distribution B with parameters α,β > 0. Note that

for α= β = 1 the beta distribution equals the uniform distribution. Except for this special

case, no analytical equilibrium is known for the asymmetric case. Now we can analyze

diverse market outcomes by running NPGA for various combinations of these parame-

ters. As an example, we have selected a valuation prior of B(0.8,1.2) for the weak bidder

and B(1.2,0.8) for the strong bidder’s valuations prior. Note that NPGA has no access

to the underlying distributions explicitly, but it learns the opponent’s prior implicitly by

observing frequencies of the played actions.

As a result of the change in the prior distributions, we already see the change in strategy

in Figure 3 compared to the BNE of β(v) = 1
2
v under common uniform priors. As expected,
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Figure 3 Learned bid functions after 2,000 iterations for bidders with asymmetric priors: B(0.8,1.2) for the weak

bidder with an expected valuation of 0.4 and B(1.2,0.8) for the strong bidder with an expected valuation

of 0.6.

because of its strategic disadvantage, the weaker bidder bids more aggressively, whereas

the stronger bidder can lower its bids. As no analytical equilibrium is available to compare

against, we report the approximated utility loss L̂ from Equation 5.4—the amount of a

possible utility gain against the opponent—which decreases below 2.37% for the strong

bidder and to 3.48% for the weaker bidder. The time per iteration of NPGA of 0.3131

(±0.0220) seconds is comparable with the previous single-item experiments.

6.2. Multi-Unit Auctions with Asymmetric Bidders

This section is concerned with a specific type of multi-unit uniform-price auction with

two different classes of bidders for which a closed-form expression of the equilibrium is

not available. Such mechanisms are used in treasury bill auctions and also in electricity

markets. The environment is very large, with up to 12 units, and NPGA is able to compute

a sufficiently close equilibrium in a few minutes.

Demand reduction is an important characteristic of equilibrium bidding strategies in

uniform-price auctions (Krishna 2009): Bidders submit bids on fewer items in order to

reduce competition, lower the price, and increase their payoffs. The phenomenon of demand

reduction can be observed in all our experiments.

In our experiments, we consider two weak bidders with uniform, marginally decreasing

valuations on Vi = {vi ∈ [0,1]m : vi,1 ≥ · · · ≥ vi,m} and one strong bidder with analogously

distributed valuations on [0,2]. Unlike in general CAs in multi-unit auctions it is sufficient

to bid on individual items rather than bundles. Thus, the action space is given by Ai =Rm
+

and the neural network strategies take m inputs (the marginal valuations) and produce m

outputs (the bids for each incremental unit received).
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Figure 4 Revenue R and efficiency E during self-play in different asymmetric multi-unit auctions. The means

(opaque lines) and the standard deviations (shaded area) are depicted.

Simulating market sizes with m∈ {4,8,12}, one can observe that the agents reduce their

demand by lowering bids for multiple goods to zero. For example, in the market with four

goods, the strong bidder and weak bidders only bid on two items and one item, respectively.

Thus, they learn to collaborate to maximize their payoff. For the remaining demand, the

bids are approximately truthful. Similar observations can be made in the other markets for

a corresponding higher demand. Figure 4 shows how the seller’s revenue decreases to zero

when bidders learn to reduce demand and how the efficiency decreases when initialized

with truthful bidding strategies. We do not plot the exact bid functions learned due to

space constraints. Note that demand reduction happens when the bidders’ demand can be

easily distributed among the available goods. In other experiments, where there are only

very few items and many bidders, the prices stay high.

The approximate utility loss decreases consistently below 1% for all runs.2 With the

default batch size, the experiments with 4, 8, and 12 units took on average about 1.1557

(±0.022), 1.3056 (±0.0207), and 2.405 (±0.0259) seconds, respectively.

6.3. The Asymmetric LLG Model

Next, we focus on the LLG model with three single-minded bidders and two heteroge-

neous objects or items (Ausubel et al. 2006). This model has received significant attention

2 Note that we have increased the grid size used for computing the utility loss for the 4, 8, and 12 item case to 214,
216, and 222, respectively. The resulting grid is not as dense as if it was applied in single-dimensional environments.
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in the study of core-selecting combinatorial auctions, which are being used in spectrum

auctions worldwide (Goeree and Lien 2016, Bichler and Goeree 2017). After the auction-

eer has determined the welfare-maximizing allocation, she computes a minimum-revenue

core-selecting payment, where winning bidders merely have to pay enough such that no

coalition of bidders could potentially deviate together with the auctioneer.

The LLG model is small enough to allow for game-theoretical analysis. Here, the global

bidder is interested only in winning the package of both objects while the two local bidders

desire exactly one of the objects each. The local bidders thus only need to outbid the global

bidder. Both local bidders have an incentive to free-ride on each other, reminiscent of public

goods problems. In the original model, the local bidders’ priors are symmetric and the

global bidder has a simple dominant strategy to bid truthfully in any core-selecting auction.

Analytical solutions for core-selecting combinatorial auctions with different payment rules

exist (Goeree and Lien 2016, Ausubel and Baranov 2019). Gradient dynamics were shown

to achieve very good results in this standard model and approximate the BNE of the local

bidders closely (Bichler et al. 2021).

Ott and Beck (2013) introduced a version with asymmetry among the local bidders

that causes overbidding by one of the local bidders, which may help explain the outcomes

observed in several real-world spectrum auctions. Unlike in the original LLG model, Ott

and Beck (2013) define bidder local 2 to be favored, meaning that she pays VCG prices3 for

every realization of bids and for every optimal assignment of the items. As a result, bidder

local 1 has to pay a higher price. The authors derive an intriguing BNE in which bidder

local 1 overbids while both other bidders report their valuations truthfully. More precisely,

bidder local 1 places bids for two bundles: the bundle containing only her desired item, as

well as the package of both items. Her bid for the package of both items always exceeds

the bid for the single desired good, which implies positive demand for the second item

even though it provides no additional value to the bidder. This results from an incentive

of bidder local 1 to raise the other bidders’ payments so that her payment decreases.

Such overbidding can increase the prices for opponents, which might lead to high revenues

and price differences among bidders. They characterize the exact BNE strategy which is

depicted in Figure 5 below. This model is important as it shows that the assumption

3 Vickrey-Clarke-Groves (VCG) payments are calculated such that each bidder pays for the harm they cause to other
bidders by participating in the auction.
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Table 3 Results in the asymmetric LLG setting after 2,000 iterations and averaged over ten repetitions. The

mean and standard deviation are shown.

bidder L L̂ L2

local 1 0.0005 (0.0005) 0.0119 (0.0107) 0.0353 (0.0082)

local 2 0.0001 (0.0001) 0.0172 (0.0151) 0.1146 (0.0600)

global 0.0000 (0.0000) 0.0058 (0.0054) 0.0281 (0.0112)

that each player only needs to bid for her bundle of interest is, in fact, restrictive, even

when the single-mindedness of bidders is common knowledge. Without this assumption,

very different equilibrium behavior can emerge as was recently discussed by Bosshard and

Seuken (2021).
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Figure 5 Learned strategies in the asymmetric LLG setting. The left two subplots depict the bids on the individual

items that must compete with the bundle bids in the rightmost plot. Bidders 1 and 3 learn to bid

almost truthfully and bidder 1 indeed learns to overbid on the bundle as the theory suggests.

Table 3 shows the performance of NPGA in this market. The resulting loss in equilibrium

compared to adhering to the analytical BNE strategy L is well below 0.1% across all agents.

Note that the bidders local 2 and global indeed learn to report their valuations truthfully

for item B and the bundle, respectively. There is a small deviation from the analytical BNE

for bidder local 2, who decreases her bundle bid slightly below her valuation. However, she

would not have to bid on the bundle at all in equilibrium: Note that when bidding the same

value on item B and the bundle, she would never be allocated the bundle in this auction.

As such, the bid on the package of both items learned is irrelevant and the outcome of
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the auction under the learned NPGA strategies will always be identical in terms of prices

and allocations to those in the analytical BNE. Importantly, the bundle bid for bidder

local 1 indeed lies above the truthful bid for high valuations, which describes a non-obvious

bidding strategy. Notably, NPGA can discover this incentive for overbidding. We point out

that there is a minor difference in the NPGA strategy and the BNE in the bundle bid of

bidder local 1 for low valuations. However, this difference has a negligible impact on the

expected utility of any of the agents.

The time per NPGA update iteration averages at 1.9602 (±0.0358) seconds. Here, we

clearly see the computational impact of allocating a bundle of goods, and computing the

corresponding prices, as compared to auctions with a single good or multiple goods that

are sold individually. The computational workload lies mainly in simulating the auction

outcomes and not in learning and updating the strategies themselves, as we will discuss in

Subsection 6.6.

6.4. The Split-Award Auction Model

Even in the asymmetric LLG model discussed above, each bidder is only interested in

one package. An environment of a combinatorial auction with multi-minded bidders was

analyzed in Anton and Yao (1992) and later in Kokott et al. (2019). This model is known

to have multiple pure BNE, and it is interesting to understand how NPGA deals with the

resulting equilibrium selection problem.

The model is a reverse auction and it is described by the bidders’ type (or cost) distri-

bution

Vi = {vi ∈R2 : vi,1 ∼ F, vi,2 =C · vi,1}, i= 1,2,

where vi,1 corresponds to the cost of the 50% lot (or items) and the efficiency parameter

C corresponds to the fraction of total costs for one of the lots. In our experiments we

set parameters F = U(1.0,1.4) with C = 0.3, being consistent to prior experimental work

(Kokott et al. 2019). The environment describes diseconomies of scale in the production

costs, which make the game strategically interesting.

There are two classes of Bayesian Nash equilibria in this game: First, there is a (single) so-

called “winner-takes-all” equilibrium (WTA), which is economically inefficient and in which

one bidder wins both items. The other class comprises a continuum of efficient “pooling

equilibria” where both suppliers coordinate and reach a common price such that each
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Figure 6 The figure depicts the winner-takes-all equilibrium (solid line), the bounds for the range of efficient

pooling equilibria (shaded), and the NPGA strategies (dotted line) for the first-price split-award auction.

As the NPGA strategy is within the continuum of efficient pooling equilibria, two bidders playing

according to this strategy always end up with a split contract for one lot each.

bidder wins one of the goods (Anton and Yao 1992). In Figure 6, this class is represented

by the shaded area. In such a pooling strategy, the two bidders select a price independent

of their type or value. The payoff-dominant strategy for each bidder is achieved in the

pooling equilibrium with the highest bids on a single lot. Apart from these two classes of

pure-strategy Nash equilibria, hybrid equilibria are known to exist and there might also

be mixed equilibria in nondeterministic strategies, which makes this setting strategically

challenging.

Figure 6 depicts the analytically known pure-strategy BNE alongside a strategy learned

via NPGA. Running NPGA multiple times, it always converges to a state close to the

bidder-optimal pooling BNE: the bidders cooperate in the split equilibrium, where each

one wins one lot a high price. NPGA reaches an average utility of 0.384 over ten runs

compared to an expected utility of 0.34 in the analytical BNE. This outcome is notable as

it requires coordination between the players which is strategically much more challenging

than the simple competition to win both items at once, which resembles a single-item

auction: To achieve a pooling equilibrium, players must not only submit a high bid for the

single-lot, but also need to coordinate on a bid for the two-item bundle, such that deviating

from the pooling strategy does not become profitable for the opponent.
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Table 4 Results of NPGA after 5,000 iterations in the LLLLGG first-price auction. Results are averages over

ten replications and the standard deviation is displayed in brackets.

bidder ũ ϵ̂ L̂

globals 0.2366 (0.0040) 0.0235 (0.0026) 0.0171 (0.0006)

locals 0.1793 (0.0012) 0.0241 (0.0024) 0.0230 (0.0006)

With NPGA, the agents learn to bid accordingly on the 100% share in this equilibrium,

but this bid becomes subject to minor random changes as there is no “reward signal,” that

is, the bid does not determine the price. In Figure 6 one can also see that bidding on the

50% lot is very close to the payoff-dominant (highest) pooling bid, whereas the bid on the

100% share lies within the continuum of possible equilibria. The distance in strategy space

L2 decreases to 0.0251, where we only measure the distance of the winning bid as the other

bid falls within the continuum of possible BNE bids. The relative ex-ante utility loss L
decreases to 0.0185 and L̂ also falls below 2%. The average time per iteration of 0.4627

(±0.0154) seconds is again much lower than in the combinatorial LLG auction.

6.5. Large Combinatorial Auction Models

Finally, we analyze the LLLLGG model which was introduced by Bosshard et al. (2020) as

a benchmark for equilibrium computation, as well as an extension, the LLLLRRG model.

There is little hope for analytical solutions to such problems and the fact that the win-

ner determination and payment rules involve NP-hard problems makes them challenging

problems for equilibrium computation.

In the LLLLGG model six bidders compete for eight items: Inspired by geographical

constraints, four of the bidders are “local” and are interested in two overlapping bundles

of two items each. The other two bidders are “global”, and each aims to win one of two

larger bundles comprising four items each. These bidder classes are asymmetric and no

analytical BNE is known. Therefore, we again report the utility loss that we find after

learning with NPGA.

As shown in Figure 7, the bidders’ utility converges quickly to around 0.24 (local bid-

ders) and 0.18 (global bidders) and the utility losses drop quickly. Due to the computa-

tional requirements of this model, we reduced the number of experiments. Both bidders

show a small relative ex-ante utility loss of L̂ < 1.8% and 2.4% for the global and local

bidders, respectively. Direct runtime comparisons to other state-of-the-art methods like
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Figure 7 Ex-ante utility ũ and loss L̂ of in NPGA self-play in the LLLLGG first-price auction. The shaded area

and line show mean and standard deviation over ten repetitions.

Bosshard et al. (2017, 2020) are difficult due to differences of NPGA and their method in

terms of goals (ex-ante vs. “stronger” ex-interim equilibria), implementation (generic vs.

setting-specific), and hardware architecture (consumer-grade GPU vs. CPU-cluster). For

the LLLLGG first-price auction, Bosshard et al. (2017) report an estimated absolute ex-

interim 0.0037-BNE computed in 54,384 CPU-core hours. NPGA, on the other hand, finds

an estimated (absolute) ex-ante 0.0042-BNE (absolute ex-interim 0.0241) in 38.3 minutes

(corresponding to 0.4616 (±0.0010) seconds per iteration times 5,000 iterations) on a single

GPU (≈ 2,895 CUDA-core-hours).

We also explore a modified version, which we call LLLLRRG, which adds a third class

of bidders interested in winning all eight items. Figure 4 in the online supplement (Bichler

et al. 2023) depicts the valuation structure. This larger setting has not been explored

in the literature previously and, to our knowledge, is the largest combinatorial auction

for which a numerical BNE has been computed to date. Note that this environment is

highly challenging for equilibrium computation because the auction mechanism needs to

solve an NP-hard problem. One iteration of NPGA in this first-price auction takes on

average 0.8097 (±0.0010) seconds on our machine. Table 5 shows the full results under the

same hyperparameters as in the LLLLGG experiments. The relative utility loss decreases

proportionally to the bidders’ strength: to values below 1% for the global bidder and to

values below 3.9% for the local bidders.
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Table 5 Results (mean and standard deviation) in the LLLLRRG setting after 5,000 iterations and averaged

over three repetitions.

bidder ũ ϵ̂ L̂

locals 0.0939 (0.0009) 0.0194 (0.0013) 0.0382 (0.0016)

regionals 0.1069 (0.0024) 0.0192 (0.0004) 0.0288 (0.0001)

global 0.4396 (0.0044) 0.0356 (0.0031) 0.0093 (0.0009)

Table 6 Overview of all auction environments with the corresponding NPGA hyperparameters and the resulting

number of simulations and runtimes. One NPGA iteration requires nmodels ·nbatch · (P +1) auction evaluations,

where batches are computed in parallel and model perturbations sequentially.

setting nbatch P
number of
iterations

per iteration total
time (s) auctions time (h:m:s) auctions

single-item uniform
overlapping FPSB
(6.1.1)

262,144 64 2,000 0.2886 34,078,720 0:09:37.20 68,157,440,000

single-item uniform
non-overlapping
FPSB (6.1.1)

262,144 64 2,000 0.2856 34,078,720 0:09:31.20 68,157,440,000

single-item beta
asymmetric FPSB
(6.1.2)

262,144 64 2,000 0.3131 34,078,720 0:10:26.20 68,157,440,000

multi-unit with
4 units (6.2)

262,144 64 2,000 1.1557 34,078,720 0:38:31.40 68,157,440,000

multi-unit with
8 units (6.2)

262,144 64 2,000 1.3056 34,078,720 0:43:31.20 68,157,440,000

multi-unit with
12 units (6.2)

262,144 64 2,000 2.4050 34,078,720 1:20:10.00 68,157,440,000

LLG, adapted
VCG (6.3)

131,072 64 2,000 1.9602 25,559,040 1:05:20.40 51,118,080,000

split-award
FPSB (6.4)

262,144 64 2,000 0.4627 17,039,360 0:15:25.40 34,078,720,000

LLLLGG
FPSB (6.5)

262,144 64 5,000 0.4616 34,078,720 0:38:28.00 170,393,600,000

LLLLRRG
FPSB (6.5)

262,144 64 5,000 0.8097 51,118,080 1:07:28.50 255,590,400,000

6.6. Scalability and Computational Costs

Let us now provide a summary of all experiments with their runtimes (Table 6) and a

discussion of the computational cost. The runtimes range from a few minutes up to 80

minutes for the most complex scenarios with an NP-hard allocation problem and eight

bidders. Let us put these empirical results into perspective. At first sight, it is surprising

that we can solve such equilibrium problems at all. As discussed in the introduction, the
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computational complexity of computing BNE in auction games is, in general, an open

problem. The analysis by Cai and Papadimitriou (2014) for a specific asymmetric multi-

object auction model proves PP-hardness of exact BNE computation and this suggests that

the class of problems is generally very hard. They also show that learning only approximate

BNE cannot be polynomial in the number of items to be sold in the auction. As a result,

no algorithm can be expected to efficiently compute approximate BNE in the general case.

Note that the hardness of approximating a BNE also hinges on the observation that the

number of strategies grows quickly in the number of items in their environment. In many

auction models, the number of relevant strategies is small even with multiple items. For

example, bidders might only be interested in a few out of many items in a combinatorial

auction. Even in large combinatorial auctions with many bidders, one can typically limit

attention to the strategic analysis of a few pivotal bidders.

In this paper, we have analyzed a number of challenging environments which are sig-

nificantly more complex than models for which we can derive an equilibrium strategy

analytically. For example, combinatorial auctions require solving an NP-hard winner deter-

mination problem. Yet, we can solve problems with eight items and seven bidders interested

in multiple packages within 67 minutes.

Let us analyze the computational costs of NPGA in more detail. As a zeroth-order

method, the vast majority of the computational cost required by NPGA results from cal-

culating samples of the ex-post utilities u across the joint valuation space V, in order to

compute estimates of ũ via Monte Carlo integration (i.e., lines 4 and 8 of Algorithm 1).

Here, the main driver of computational cost is the auction mechanism itself, i.e., the cost of

computing the winning allocation and the price vector. The role of the remaining computa-

tions in NPGA — namely sampling joint valuations v ∈ V and noise vectors εp, performing

forward passes bi = πi(vi;θi), aggregating auction sample results into the gradient esti-

mates, and updating the parameters — is negligible in comparison. The cost of computing

an approximate BNE using NPGA is thus determined, on the one hand, by the sample

efficiency of the algorithm, that is, the number of auction simulations required, and, on

the other hand, the computational cost of computing the individual auction samples. As

we will see, both of these aspects vary significantly across different auction settings.

First, let us discuss the computational cost of performing auction simulations ui(vi, b)

for given joint valuations v and bids b according to the players’ current or perturbed
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neural net strategies. This complexity varies significantly between auction settings and

pricing rules. For example, in a single-item first-price auction, determining the allocation

and prices only requires finding a (batch-wise) maximum, which is computable in O(n),

whereas computing core prices in a combinatorial auction requires solving a sequence of

constrained quadratic problems, which themselves already constitute NP-hard problems

(in the number of bidders and items) in general.

For all settings analyzed in this paper, we leverage custom implementations of the auction

mechanisms that allow data-parallel simulation on GPUs. As a result, the time to compute

auction samples is approximately constant in the batch size as long as an entire batch fits

in GPU memory, and grows linearly with batch size thereafter. (The utility loss estimator,

whose computation is independent of the learning algorithm NPGA, exhibits the same

dynamic. Figure 3 in the online supplement (Bichler et al. 2023) depicts the constant-then-

linear time complexity as a function of memory footprint.) For the experiments presented in

this paper, performing a single iteration of NPGA, which involves computing P +1 batches

of auctions for each player, takes between 0.3 and 2.4 seconds on a single Nvidia GeForce

RTX 2080Ti GPU (see Table 6). While our implementation sequentially computes the

utilities for each of the P model perturbations, these operations could easily be parallelized

across larger or multiple GPUs.

The other important aspect is the sample complexity of the algorithm, which further

breaks down into the number of samples needed for gradient estimation in each iteration,

and the number of iterations needed to converge to an equilibrium. As discussed above, the

asymmetric settings we study differ from those in Bichler et al. (2021) in that no theoretical

convergence guarantee is available for simultaneous gradient methods (or any no-regret

learner), even asymptotically. Consequently, it is difficult to characterize the number of

gradient updates needed to converge to an approximate equilibrium, even if an exact oracle

for the ex-ante gradient were available.

The gradient estimation in one iteration of NPGA requires nbatch · (P +1) auction sim-

ulations for each player (or class of identical players). Both higher batch sizes and higher

population sizes will reduce the variance of the estimator at the expense of higher com-

putational costs. An exemplary analysis of the impact of these hyperparameters on the

learned equilibrium outcomes in the LLLLGG setting is presented in the online supple-

ment (Bichler et al. 2023). As the estimation is performed via Monte Carlo integration,
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it is susceptible to the curse of dimensionality: Given a fixed batch size of samples, the

variance of the estimator will increase with the dimensionality of the valuation space V.
Furthermore, the specific prior distributions F may also affect the fidelity of the Monte

Carlo estimator: For example, we observe that ceteris paribus, settings with uniform priors

exhibit lower variance in the gradient estimator, compared to nonuniform priors. Intu-

itively, this is because the tails of the distribution, particularly for the highest valuations,

play a significant role in the total achievable utility of a player. As a result, more samples

are necessary to adequately calculate the utility contribution of these low-density regions.

For example, NPGA would require more iterations to achieve the same performance in

the asymmetric setting with Beta-distributed priors (Subsection 6.1.2). In practice, one

may employ several variance-reduction techniques, such as importance-sampling or low-

discrepancy sequences of quasi-random valuation samples to further improve the sample

efficiency of Monte Carlo integration (Bosshard et al. 2020). While these methods are con-

ceptually applicable to NPGA, they require setting-specific implementations and are not

explored further in this work.

In summary, the key drivers for the total runtime of NPGA are the number of players,

number of items, choice of prior distribution, and auction mechanism, as they influence

the ability to efficiently calculate low-variance gradient estimates. Importantly, we demon-

strate that NPGA, for the first time, finds close approximations of BNE in two of the

largest settings to date, namely a 12-item, 3-bidder multi-unit auction (Subsection 6.2),

and the 8-item, 7-bidder combinatorial auction with multi-minded bidders (“LLLLRRG”,

Subsection 6.5).

7. Conclusion

Understanding the result of strategic interaction on markets is a fundamental problem

and one that appears everywhere in economics and the management sciences. Equilibrium

solution concepts are our primary approach to studying the outcome of games with mul-

tiple interacting agents. They help understand fundamental questions about the efficiency

of markets, but equilibrium analysis can also provide tangible guidance for bidding in spe-

cific markets such as in procurement auctions or in high-stakes spectrum sales and for

the design of specific auction mechanisms. Algorithms to compute equilibrium strategies

in games would have a substantial impact on theory and practice. However, computing
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equilibrium in auction games with continuous action space and value distributions turned

out very challenging. We know little about the existence of equilibrium in such auctions

and do not have a mathematical solution theory for the underlying differential equations

in more complex markets. Obviously, an equilibrium solution concept that is intractable is

of little value and can hardly serve as a prediction for the outcome of a game. Equilibrium

learning provides a reasonable behavioral model of agents in a market. While the imple-

mentation of equilibrium learning algorithms in auction games is challenging, we show that

NPGA reliably finds equilibrium in a surprisingly wide array of complex auction models.

The experimental results reported in this paper show that the gradient-based algorithm

implemented in NPGA finds BNE even in asymmetric environments with multiple equi-

libria. Such asymmetric environments required us to train multiple neural networks with

multiple outputs, where convergence to the bidder-optimal equilibrium is far from obvious.

An open question concerns a broader theoretical characterization of Bayesian games in

which NPGA converges to a Bayesian Nash equilibrium. However, this is a very challenging

theoretical endeavor that is beyond this article. Learning dynamics do not generally obtain

a Nash equilibrium (Benaim and Hirsch 1999). A number of recent results on matrix games

showed that gradient dynamics can either circle, diverge, or even be chaotic (Sanders et al.

2018). Actually, the study of gradient dynamics in games is akin to studying dynamical

systems and characterizing environments, where gradient dynamics converge to a Nash

equilibrium (if one exists), can be arbitrarily complex (Andrade et al. 2021).

However, even if we do not know a priori if an algorithm converges, we can verify an

approximate BNE ex-post, if the algorithm converges. If we analyze many environments

as in this article, we might be able to induce characteristics of auction models that can

be learned via NPGA and those that cannot. In our experiments, we found that NPGA

always converged to an approximate Bayes-Nash equilibrium in single- and multi-object

auctions and we did not encounter cycling or chaotic behavior as was observed for finite

games. As such, NPGA provides the foundation for widely applicable equilibrium solvers.
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List of Symbols

A The set of feasible action profiles in a Bayesian game, i.e., bid profiles in actions. Cross product of

individual players’ action sets: A≡A1 × · · ·×An

β A joint strategy profile in a Bayesian Game.

β∗ A strategy profile that constitutes a Bayesian Nash equilibrium.

βi A feasible pure strategy of player i: βi : Vi →Ai.

b An action/bid profile. b∈A
B(α,β) The Beta-distribution with shape parameters α and β.

bi An action/bid for player i. bi ∈Ai.

C Efficiency parameter in split-award auction setting. See Subsection 6.4.

di The dimension of the parameter vector θi of player i’s neural network πi.

ϵ The approximation-bound in an approximate BNE, indicating that each player’s incentive to deviate

is less than ϵ≥ 0.

ϵ̂ An ex-post estimator for the worst-case ex-interim loss. Does not require access to an analytical

BNE. See Section 5.

εp The Gaussian noise vector of perturbation p in NPGA gradient computation.

ϕp The fitness of perturbation θi;p of player i’s neural network in NPGA gradient computation.

Fv The joint prior distribution over types, marginalized by Fvi .
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G A Bayesian Game G= (I,A,V, F,u).
−i Index identifying a partial action/bid/strategy profile for all bidders except player i.

I The set of players in a game. Indexed by i. Total number of players is n.

i Index identifying a particular player.

K The set of feasible bundles of items, generally the power set of M.

ℓ̂i An estimator of i’s ex-ante loss ℓ̃i(βi, β−i) computed ex-post from observational data. Does not

require access to an analytical BNE. See Section 5.

λ̂i Auxiliary quantity in the computation of ℓ̂ and ϵ̂. λ̂i(vi; bi, β−i) constitutes an ex-post estimator for

the interim utility loss ℓi of playing bi at valuation vi. See Equation 5.3.

L̂ An ex-post estimator for the relative utility loss L(βi), when no access to the analytical BNE is

available. See Equation 5.4.

L The relative utility loss L(βi) of strategy βi compared to an analytical BNE β∗. See Equation 5.1.

ℓi The interim utility loss of player i. See Equation 3.3.

ℓ̃i The ex-ante utility loss of player i. See Equation 3.7.

L2 The L2-loss L2(βi) of a strategy βi compared to BNE β∗, i.e., the distance of βi and β
∗
i in strategy

space. See Equation 5.2.

M The set of items sold in an auction. Total number of items is m. Items can be homogenous or

heterogeneous.

m Total number of items in an auction.

N (µ,σ2) Gaussian Distribution with mean µ and standard deviation σ.

N The set of natural numbers.

n The total number of players in a game.

nbatch Batch size used in sampling opponent behavior when computing ex-post estimators ℓ̂ and ϵ̂. See

Section 5.

ngrid Size of the discrete grid of alternative bids evaluated to compute ex-post estimators ℓ̂ and ϵ̂. See

Section 5.

PΣi
The projection function onto the set Σi.

πi Neural network for player i, implementing i bidding strategy βi via βi(vi) := πi(vi;θi), where θi ∈
Θi =Rdi are the network’s parameters.

P Hyperparameter in NPGA. The population size, or number of perturbations of θi considered for each

iteration of gradient computation.

p Index used for permutations 1, . . . , P in NPGA gradient computation.

pi Price paid by bidder i to the auctioneer after receiving bundle xi.

R The set of real numbers.

Σ The set of feasible joint strategy profiles.
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σ Hyperparameter in NPGA. The standard deviation of the Gaussian noise used in permuting neural

network parameters.

Σi The set of feasible (pure) strategies for player i. Generally an infinite-dimensionally Hilbert space.

θi The parameter vector of player i’s neural network πi.

t Time / iteration number.

ûi An estimator of ex-ante expected utility ũ, computed ex-post via Monte Carlo integration over a

large batch of realizations of v∼ Fv.

U(l, h) Uniform distribution with lower bound l and upper bound h.

ui The expected interim utility ui(vi, bi, β−i) of player i. See Equation 3.2.

ũi The expected ex-ante utility ũi(βi, β−i) of player i. See Equation 3.5.

ui The ex-post utility function ui(vi, bi, b−i) of player i. Generally nondifferentiable.

V The set of possible valuation profiles, i.e., generally the support of Fv.

v The private valuation or type profile, v ∈ V. Generally used to refer to the Random Variable, some-

times also used to refer to a realization of the RV.

vi The private valuation of player i. Generally a random vector of length 2m, indicating i’s willingness

to pay when allocated a certain bundle. We also write vi(xi) for the entry of vi corresponding to the

(scalar) valuation of player i for bundle xi ∈K.

xi The bundle of items allocated to player i. xi ∈K.
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of electronic password, student identification or other control permitting access solely to students and
instructors in the class;

F) User must ensure (through use of an electronic cover page or other appropriate means) that any person,
upon gaining electronic access to the material, which is the subject of a permission, shall see:

a proper copyright notice, identifying the Rightsholder in whose name CCC has granted permission,

a statement to the effect that such copy was made pursuant to permission,

a statement identifying the class to which the material applies and notifying the reader that the material
has been made available electronically solely for use in the class, and



a statement to the effect that the material may not be further distributed to any person outside the class,
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shall immediately be paid to CCC by User, together with interest thereon at the rate of 10% per annum from the
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Any license granted is further limited as set forth in any restrictions included in the Order Confirmation and/or in
these Terms.

d) Electronic Reproductions in Online Environments (Non-Academic-email, intranet, internet and extranet). For
"electronic reproductions", which generally includes e-mail use (including instant messaging or other electronic
transmission to a defined group of recipients) or posting on an intranet, extranet or Intranet site (including any
display or performance incidental thereto), the following additional terms apply:
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or other still images not embedded in text may, if necessary, be resized, reformatted or have its resolution
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be "clipped" or reformatted for purposes of time or content management or ease of delivery (provided that any
such resizing, reformatting, resolution modification or “clipping” does not alter the underlying editorial content or
meaning of the Work used, and that the resulting material is used solely within the scope of, and in a manner
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15) Miscellaneous.



a) User acknowledges that CCC may, from time to time, make changes or additions to the Service or to the Terms, and
that Rightsholder may make changes or additions to the Rightsholder Terms. Such updated Terms will replace the
prior terms and conditions in the order workflow and shall be effective as to any subsequent Licenses but shall not
apply to Licenses already granted and paid for under a prior set of terms.

b) Use of User-related information collected through the Service is governed by CCC's privacy policy, available online
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New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, suit, action, or
proceeding arising out of, in connection with, or related to such License shall be brought, at CCC's sole discretion, in
any federal or state court located in the County of New York, State of New York, USA, or in any federal or state court
whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. The
parties expressly submit to the personal jurisdiction and venue of each such federal or state court.
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a b s t r a c t 

Bilateral bargaining of a single good among one buyer and one seller describes the simplest form of 

trade, yet Bayes–Nash equilibrium strategies are largely unknown. Only for the average mechanism in the 

standard independent private values model with independent and uniform priors, we know that there is 

a continuum of equilibria. However, a non-uniform prior distribution already leads to a system of non- 

linear differential equations for which closed-form bidding strategies cannot be derived. Recent advances 

in equilibrium learning provide a numerical approach to equilibrium analysis, which can push the bound- 

aries of existing results and allow for the analysis of environments that have been considered intractable 

so far. We study Neural Pseudogradient Ascent (NPGA) and Simultaneous Online Dual Averaging (SODA), 

two new equilibrium learning algorithms for Bayesian auction games with continuous type and action 

spaces. Although the environment is simple to describe, the continuum of equilibria makes it challenging 

for equilibrium learning algorithms. Empirically, NPGA finds the payoff-maximizing linear equilibrium, 

while SODA also finds non-differentiable step-function equilibria. Interestingly, the algorithms also find 

equilibrium with non-uniform priors and risk-averse traders for which we do not know an analytical so- 

lution. We show that the game is not globally monotone, but we can prove local convergence for a model 

with uniform priors and linear bid functions. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

Trade in some of the most important markets for homoge- 

nous goods is governed by double auctions. For example, major 

exchanges use versions of a double auction for trading stocks, 

bonds, agricultural commodities, metals, and derivative securities 

( Friedman, 1992 ). Yet, the game-theoretical analysis of such simple 

institutions has turned out challenging. Even the simple bilateral 

trade model with only one buyer, one seller, and one indivisible 

good has led to several decades of research trying to prove exis- 

tence and equilibrium bidding strategies under different assump- 

tions. The strategic problem of the traders in this literature is usu- 

ally modeled as a Bayesian game. In the independent private val- 

ues model, both buyers know their value ex-interim but only have 

distributional information about the opponent’s value. In a semi- 

nal paper, Myerson & Satterthwaite (1983) showed that no mecha- 

nism simultaneously satisfies individual rationality, budget balance, 

incentive-compatibility, and efficiency in bilateral trade. 

The Vickrey-Clarke-Groves (VCG) mechanism is individually ra- 

tional, incentive-compatible, and efficient, but not budget-balanced 

in such two-sided markets, which provides a reason why it can 
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rarely be found in practice. As a result, the analysis of non-truthful 

mechanisms has received significant attention. The k -double auc- 

tion has assumed a central role in the literature ( Gresik, 2011; 

Kadan, 2007; Leininger et al., 1989; Satterthwaite & Williams, 

1989; Satterthwaite et al., 2022 ). It is not incentive-compatible but 

simple and closer to real-world practices such as a uniform price 

call market as it is often used on financial markets, where there is 

a single price at which all trades are cleared. The k -double auction 

determines the terms of trade when a buyer and a seller negotiate 

the sale of an item. The buyer submits a bid b, and the seller sub- 

mits an ask s . Trade occurs if b exceeds s at a price kb + (1 − k ) s . 

For example, if k = 0 . 5 , this is the average mechanism or 0.5-double 

auction. Given that the traders’ reports affect the price and the 

likelihood of trade in the average mechanism, there is an incen- 

tive to misrepresent the true value. As a result of this strategic 

bidding, some trades that could happen do not, which leads to an 

efficiency loss. The model is so simple to explain that it has be- 

come central to the equilibrium analysis of trading mechanisms. 

Wilson (1985) argues that understanding bilateral bargaining pro- 

vides a foundation for a theory of large markets. 

Yet, even for this simple and central model of trade, we only 

know equilibrium bidding strategies for very restricted model as- 

sumptions. In a seminal contribution, Leininger et al. (1989) ana- 

lyze the average mechanism with independent private values and 
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quasi-linear utility functions and find a multitude of equilibria. 

One family of equilibria has differentiable strategies, another fam- 

ily is composed of (non-differentiable) step-functions with arbitrar- 

ily many jumps. In the earlier paper by Chatterjee & Samuelson 

(1983) also strategies for risk-averse bidders were derived in this 

setting. While some extensions have been analyzed (e.g., with gen- 

eral k , interdependent private values, or multiple bidders), explicit 

equilibrium bid functions are unavailable. The equilibrium problem 

in the k -double auction and many other auction models can often 

be described as the solution to a system of differential equations. 

Unless there are simple (uniform) distributional assumptions and 

simple assumptions about the bidders’ utility functions and the 

goods, we typically do not have a general solution theory. Even 

setting up the differential equations can be challenging. 

1.1. Equilibrium computation 

Numerical methods for computing approximate equilibria in 

Bayesian games with continuous type and action space would be 

very useful for equilibrium analysis and comparative statics. Actu- 

ally, there is a long history of thought on equilibrium computation 

in operational research ( Bigi et al., 2013; Jofré et al., 2007 ). How- 

ever, while there has been significant research on equilibrium com- 

putation in complete-information n -player games with finite ac- 

tions and players, the computation of Bayes–Nash equilibria (BNE) 

in games with continuous type- and action-spaces, as they are 

used to model auctions, has received little attention. The infinite 

type-space is a key challenge because equilibrium computation al- 

gorithms need to find an equilibrium bid function of unknown 

shape. 

Only recently, there have been a number of advances in devel- 

oping equilibrium learning methods with notable success in single- 

sided auction games (see Section 2 ). Neural Pseudogradient Ascent 

(NPGA) ( Bichler et al., 2021 ) and Simultaneous Online Dual Averag- 

ing (SODA) ( Fichtl et al., 2022 ) have led to breakthroughs provid- 

ing versatile equilibrium solvers that find equilibrium in a wide 

variety of single-sided auctions, including single-object, multi-unit, 

and combinatorial auctions. NPGA and SODA are both based on 

simultaneous gradient ascent on the expected utility function of 

each player. Both methods allow for interdependent types and var- 

ious utility functions, including ones with risk or loss aversion. 

While NPGA learns approximate pure Bayes–Nash equilibria using 

self-play and neural networks, SODA learns distributional strategies 

on a discretized version of the game. Although there is not yet a 

complete theory of games that are “learnable” and those that are 

not, we know that if SODA converges to a pure strategy, then it is 

an equilibrium. 

Unfortunately, identifying characteristics of games where 

gradient-based algorithms converge to a BNE turned out to be 

a daunting task. Recent results on complete-information normal- 

form games showed that gradient dynamics either circle, diverge, 

or are even chaotic ( Sanders et al., 2018 ). Actually, the study of 

gradient dynamics in games is akin to studying dynamical systems 

and characterizing environments, where gradient dynamics con- 

verge to a Nash equilibrium (if one exists), has been described as 

arbitrarily complex ( Andrade et al., 2021 ). The study of Bayesian 

games with continuous action and type space adds a layer of com- 

plexity. This is because we not only need to learn an equilibrium 

bid but a bid function that can take an arbitrary shape. The fact 

that we do find equilibrium consistently in a wide variety of auc- 

tion games demands a closer look. The k -double auction with one 

buyer and one seller is the simplest environment that still cap- 

tures the main challenges of the equilibrium computation in auc- 

tion mechanisms and allows us deeper insights into the reasons 

for convergence in this paper. 

1.2. Contributions 

The contributions of this article are two-fold: First, we provide 

a novel convergence result for NPGA for the bilateral bargaining 

model. Already the convergence analysis of gradient dynamics in 

this simple model is very challenging. The difficulty arises from 

the fact that the equilibrium problem is a system of non-linear or- 

dinary differential equations that has the inverse of an unknown 

bid function as one of its components. There is no analytical solu- 

tion theory for such differential equations for general priors, and 

even standard numerical techniques for solving differential equa- 

tions lead to problems, as we will discuss. 

If a game satisfies a payoff monotonicity condition, no-regret 

learning algorithms are known to converge to an equilibrium in 

continuous- and finite-action games. This corresponds to mono- 

tonicity in variational inequalities, which guarantees convergence 

of various algorithms. In the bilateral trade environment with uni- 

formly distributed types, we know that there is a linear equilib- 

rium strategy for both traders. Assuming that we know that the 

equilibrium bid function is linear, we can explore the expected 

utility function of each player and check for monotonicity. Un- 

fortunately, we can show via an explicit counterexample that the 

monotonicity condition is not satisfied globally. However, the as- 

sumption of a linear bid function allows us to show local con- 

vergence of the NPGA equilibrium learning algorithm. More pre- 

cisely, we prove that in the 0.5-double auction with two quasi- 

linear traders and linear strategies, the NPGA equilibrium learner 

will converge locally. Our analysis of this restricted bilateral trade 

model sheds light on the question why it is so difficult to provide a 

priori convergence guarantees for gradient dynamics in more gen- 

eral Bayesian games with continuous type and action space. 

Second, we provide empirical results of equilibrium computa- 

tion on bilateral trade and explore equilibria with different prior 

distributions, different levels of risk-aversion, or different numbers 

of buyers and sellers and their impact on overall efficiency. So far, 

no explicit equilibrium bid functions have been known for these 

environments. In the standard environment with uniform priors 

for which explicit equilibrium bid functions are known, we reliably 

find the linear equilibrium with NPGA. Interestingly, with SODA, 

we find step-function equilibria. This has to do with NPGA only be- 

ing able to learn continuous equilibrium bid functions. In contrast, 

the discretization of the type and action space allows SODA also to 

learn non-differentiable equilibrium bid functions. The multitude 

of equilibria differs from many single-sided auction models, and it 

is surprising that equilibrium learning algorithms find one of these 

equilibria consistently. They do not cycle or end up in disequilib- 

rium with a high utility loss. This way, we push the boundaries of 

equilibrium analysis to the challenging case of bilateral trade with 

a continuum of equilibria. 

The remainder of this article is structured as follows. The fol- 

lowing section will discuss literature on bilateral trade and equi- 

librium learning. Section 3 introduces the economic model as 

Bayesian games, whereas in Section 4 the two learning methods 

will be introduced. Section 5 provides our numerical results before 

we conclude in Section 6 . 

2. Related literature 

In what follows, we introduce additional related literature on 

bilateral trade and equilibrium learning. 

2.1. Bilateral trade 

The famous theorem by Myerson & Satterthwaite (1983) states 

that in the simple bilateral trade environment, for a single good 

2 
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between one buyer and one seller, no mechanism can be individu- 

ally rational, budget balanced, incentive-compatible, and efficient. 

The impossibility result spawned substantial research on bilat- 

eral trade. A number of different mechanisms for double auctions 

with multiple buyers and sellers have been proposed in Gresik & 

Satterthwaite (1989) ; McAfee (1992) , or Williams (1999) . The k - 

double auction is probably the most popular one as it is deter- 

ministic and budget-balanced and, as such, resembles real-world 

practices. Already Chatterjee & Samuelson (1983) examined BNE 

and showed that double auctions are asymptotically efficient as 

the agents become strongly risk-averse. Leininger et al. (1989) an- 

alyzed the case of identically distributed costs and benefits of the 

participants. With a uniform distribution, the sealed-bid game has 

a continuum of equilibria. Obviously, such equilibrium predictions 

are weak. One family of equilibria consists of differentiable strate- 

gies (including a linear BNE). Another family is composed of step- 

functions with arbitrarily many jumps. With general independent 

distributions of benefits and costs the, authors find similar families 

of equilibria. Radner & Schotter (1989) experimentally analyze the 

properties of the average mechanism and find linear equilibrium 

strategies also in the lab. Furthermore, Satterthwaite & Williams 

(1989) model the environment as a Bayesian game and prove the 

existence of a multiplicity of equilibria. Their paper focuses on dif- 

ferentiable equilibrium strategies. 

Leininger et al. (1989) provide closed-form equilibrium strate- 

gies for quasi-linear traders and uniformly distributed priors. For 

general independent prior distributions, they only show the ex- 

istence of equilibria. A number of articles analyze different ef- 

fects on market efficiency under this mechanism. The ineffi- 

ciency in a k -double auction decreases for increasingly risk-averse 

agents ( Chatterjee & Samuelson, 1983 ). Additionally, Satterthwaite 

& Williams (2002) show that the k -double auction reduces the 

worst-case inefficiency at the fastest possible rate among all in- 

terim individually rational and budget-balanced mechanisms. More 

recent work goes beyond the independent private values model 

( Kadan, 2007; Satterthwaite et al., 2022 ), and it explores posted- 

price ( Blumrosen & Dobzinski, 2021 ) or randomized mechanisms 

( Garratt & Pycia, 2020 ). 

Overall, this stream of literature spans almost forty years by 

now, but explicit equilibrium bid functions are unknown except 

for specific models with uniform distributions, quasi-linear util- 

ity functions, and independent private values. Numerical methods 

that allow us to derive equilibrium predictions for specific mod- 

els with non-uniform, possibly asymmetric or interdependent, pri- 

ors or risk-averse traders in minutes rather than years could push 

the boundaries of equilibrium analysis for bilateral trade with two 

traders also for larger environments. 

2.2. Equilibrium learning algorithms 

Let us also discuss related literature on equilibrium learning. 

As indicated earlier, most of this literature deals with finite games 

( Fudenberg & Levine, 2009 ). Gradient dynamics in games have been 

studied in evolutionary game theory and multi-agent learning. 

While earlier work considered mixed strategies over normal-form 

games ( Bowling, 2005; Bowling & Veloso, 2002; Busoniu et al., 

2008; Zinkevich, 2003 ), more recently, motivated by the emer- 

gence of GANs, there has been a focus on (complete-information) 

continuous games ( Bailey & Piliouras, 2018; Balduzzi et al., 2018; 

Letcher et al., 2019; Mertikopoulos & Zhou, 2019; Schaefer & 

Anandkumar, 2019 ). A common result for many settings and algo- 

rithms is that gradient-based learning rules do not necessarily con- 

verge to Nash equilibria and may exhibit cycling behavior but often 

achieve no-regret properties and thus converge to weaker Coarse 

Correlated equilibria (CCE). An analogous result exists for finite- 

type Bayesian games, where no-regret learners are guaranteed to 

converge to a Bayesian CCE ( Hartline et al., 2015 ). 

Earlier approaches on finding equilibria in auctions were usu- 

ally setting specific and relied on reformulating the BNE first-order 

condition of Eq. (9) as a differential equation and then solving this 

equation analytically (where possible) ( Ausubel & Baranov, 2020; 

Krishna, 2009; Vickrey, 1961 ). Armantier et al. (2008) introduced a 

BNE-computation method based on expressing the Bayesian game 

as the limit of a sequence of complete-information games. They 

show that the sequence of Nash equilibria in the restricted games 

converges to a BNE of the original game. While this result holds for 

any Bayesian game, setting-specific information is required to gen- 

erate and solve the restricted games. Rabinovich et al. (2013) study 

best-response dynamics on mixed strategies in auctions with finite 

action spaces. These articles were focused on single-object auc- 

tions. Bosshard et al. (2017, 2020) were the first to compute equi- 

libria for combinatorial auctions. The method explicitly computes 

point-wise best responses in a fine-grained discretization of the 

strategy space via sophisticated Monte–Carlo integration. 

We focus on NPGA ( Bichler et al., 2021 ) and SODA ( Fichtl et al., 

2022 ). These two recent contributions have shown to be very ver- 

satile and allowed for the computation of BNE in a large vari- 

ety of different (single-sided) auction models. Moreover, in con- 

trast to earlier work, both techniques implement gradient dynam- 

ics compared to the best-response algorithms mentioned above. 

They compute approximate equilibria in minutes for standard auc- 

tion models from the literature. A more detailed explanation will 

be provided in Section 4 . 

3. Economic model 

We first introduce notation and equilibrium solution concepts 

used in our analysis. Next, we discuss the k -double auction and 

equilibrium bidding strategies. 

3.1. Preliminaries 

A simple two-sided exchange market with unit demand can be 

modeled as a Bayesian game G = (I, A , V, u, F ) . The agents I con- 

sist of n B buyers and n S sellers. Each buyer wants to buy one item 

and each seller wants to sell one item. The action space A = A 1 ×
. . . × A n B × A n B +1 × . . . × A n B + n S represents the possible bids that 

buyers and sellers can submit. A buyer’s bid denotes the amount 

he is willing to pay, whereas a seller’s bid denotes how much she 

wants to receive when selling her good. The agents’ type space 

V = V 1 × . . . × V n B + n S denotes their possible values for the good. 

That is, v i ∈ V i denotes the value agent i places on the good. For 

a buyer, that is the maximum value he is still willing to pay. For a 

seller, it might denote the cost that she invested and is the mini- 

mum amount she wants to receive when selling the good. We as- 

sume the type and action spaces to be non-negative A i = V i = R 

+ 
0 

. 

The joint probability density function f : V → R 

+ 
0 

describes a prior 

distribution over the agents’ types and is assumed to be common 

knowledge. The marginal distributions are denoted by f i , and F i 
denotes the associated cumulative distribution function. The vec- 

tor u = (u 1 , . . . , u n B + n S ) of f -integrable, individual ( ex-post ) utility 

functions u i : V i × A → R assigns the game outcome for each pos- 

sible action and valuation profile. In the game’s interim stage, an 

agent knows its valuation but not those of the others, whereas, in 

the ex-ante stage, each agent only knows about the prior distribu- 

tion f . 

In the ex-ante stage of the game, each agent is tasked with find- 

ing a strategy βi that maps from each type to an action, i.e., βi : 

V i → A i . The strategy profile is denoted by β = (β1 , . . . , βn B + n S ) = 

(βi , β−i ) for every i . An index −i denotes a partial profile for all 

agents but agent i . We denote the ex-ante action space of agent i 

3 
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by �i ≡ A 

V i 
i 

and the joint ex-ante action space by � ≡ ∏ 

i �i . Note 

that the spaces �i are, in general, infinite-dimensional. The equi- 

librium learning algorithms described in Sections 4.1 and 4.2 trans- 

form the infinite-dimensional game with � into one with finite- 

dimensional strategies while maintaining sufficient expressiveness 

to approximate arbitrary equilibrium strategies. 

Fixing a strategy profile β , we can formulate utilities for the 

game’s interim and ex-ante stages. Agent i ’s interim utility is de- 

fined as 

u 

interim 

i (v i , βi (v i ) , β−i ) = E v −i | v i [ u i (v i , βi (v i ) , β−i (v −i )) ] . (1) 

Extending this to the ex-ante stage gives the ex-ante utility of 

agent i by 

u 

ante 
i (βi , β−i ) = E v i 

[
u 

interim 

i (v i , βi (v i ) , β−i ) 
]
. (2) 

An ε-Bayes–Nash equilibrium ( ε-BNE) is given by a strategy profile 

β∗, such that no agent can increase its utility by more than ε ≥ 0 

by unilaterally deviating from it. That is, 

u 

ante 
i (βi , β

∗
−i ) − u 

ante 
i (β∗

i , β
∗
−i ) ≤ ε for all βi ∈ �i and i ∈ I. (3) 

The case of ε = 0 corresponds to a Bayes–Nash equilibrium (BNE). 

The interim stage formulates the individual agent’s task when 

the valuation is already known, reducing the complexity of the 

strategy space to a single action. In contrast, the ex-ante stage cap- 

tures the full complexity of the given strategic interaction, which 

is, e.g., needed to analyze the algorithms’ convergence properties 

(see Section 4 ). 

The game outcomes, i.e., the goods’ allocation and the respec- 

tive prices the buyers need to pay and payments the sellers re- 

ceive, are determined by a market mechanism . The mechanism col- 

lects the bids b ∈ A of buyers and sellers and outputs an alloca- 

tion vector x (b) ∈ { 0 , 1 } n B + n S and a payment vector p(b) ∈ R 

n B + n S . 
It holds that a buyer i ∈ { 1 , . . . , n B } gets an item if and only if 

x i (b) = 1 . A seller j ∈ { n B + 1 , . . . , n B + n S } sells her item if and only 

if x j (b) = 1 . Tie-breaking rules may be encoded into the allocations 

x . Agent i ’s payment satisfies p i (b) = 0 if x i (b) = 0 . The baseline 

utility function is that of a risk-neutral agent with quasi-linear util- 

ity. The quasi-linear ex-post utilities for the buyers are given by 

u 

QL 
i 

(v i , b) = 

{
x i (b) · v i − p i (b) for i ∈ { 1 , . . . , n B } , 
0 else. 

(4) 

The sellers’ ex-post utilities are respectively 

u 

QL 
j 

(v j , b) = 

{
p j (b) − x j (b) · v j for j ∈ { n B + 1 , . . . , n B + n S } , 
0 else. 

(5) 

We extend this by including risk-aversion into our setting, arguably 

one of the most studied behavioral effects in single- and double- 

sided markets. We model this via utilities u RA 
i 

= (u QL 
i 

) ρ where ρ ∈ 

(0 , 1] denotes the risk-attitude. The case of ρ = 1 corresponds to 

the risk-neutral traders with quasi-linear utilities. If not stated oth- 

erwise, we assume risk-neutral bidders. 

3.2. K-double auction 

We focus on the k -double auction , because, as discussed, it is 

relevant, strategically complex, and some BNE strategies are known 

for non-trivial settings. 1 Special cases are the average double auc- 

tion with k = 0 . 5 , the buyer’s bid double auction with k = 1 , and 

1 Other common mechanisms for two-sided markets are not as strategically 

complex Blumrosen & Dobzinski (2021) ; Hagerty & Rogerson (1987) or applicable 

McAfee (1992) . 

the seller’s bid double auction with k = 0 . Sellers and buyers si- 

multaneously submit asks and bids for one unit each. After col- 

lecting the bids b = (b 1 , . . . , b n B + n S ) , the mechanism sorts them ac- 

cording to a natural ordering, i.e., 

b 1 ≥ b 2 ≥ . . . ≥ b n B and b n B +1 ≤ b n B +2 ≤ . . . ≤ b n B + n S , (6) 

to form supply and demand curves. The buyers’ bids are sorted to 

be decreasing, whereas the sellers’ bids are ordered so that they 

are increasing. One then determines the break-even index � such 

that � is the largest index satisfying b � ≥ b n B + � and b � +1 < b n B + � +1 . 

This corresponds to the crossing of the supply and demand curves. 

In the case of ties, a lottery decides the ordering and break-even 

index. The index � determines the allocations. The first � sellers 

with the lowest asks pass their goods to the first � buyers with 

the highest bids, i.e., x i (b) = 1 for i ≤ � and n B + 1 ≤ i ≤ n B + � and 

0 otherwise. The market-clearing trade price is derived from b � and 

b n B + � and fixed at P i (b) = kb � + (1 − k ) b n B + � for agents that trade, 

i ≤ � and n B + 1 ≤ i ≤ n B + � , and 0 otherwise. Unlike in some other 

mechanisms like the famous VCG auction, having this constant 

market-clearing price ensures budget balance by definition. 

3.3. Equilibrium analysis 

This subsection focuses on the bilateral bargaining setting with 

two traders for the k -double auction mechanism. For this case, 

we present different classes of equilibrium strategies. However, we 

start by deriving the first-order conditions for continuous bidding 

functions, that play a central role in deriving equilibria, as well as 

for a convergence analysis of NPGA in Section 4.1 . We simplify the 

notation for the case of bilateral bargaining, i.e., a two-sided mar- 

ket with exactly one buyer and seller so that the buyer’s variables 

are indexed by B , and the seller’s by S, e.g., the buyer’s valuation 

is denoted by v B and the seller’s by v S . Let us first introduce some 

assumptions. 

Assumption 1. Let the priors be defined on bounded intervals 

�B = [ v B , v B ] and �S = [ v S , v S ] ⊂ R . 2 We assume that the strategies 

βB : �B → [ b B , b B ] =: ˆ �B and βS : �S → [ b S , b S ] =: ˆ �S of buyer and 

seller respectively, satisfy the following: 

1. βB and βS are strictly increasing, 

2. βB , β
−1 
B 

, βS and β−1 
S 

are Lipschitz continuous. 

These assumptions do not constitute strong restrictions for the 

setting. It is common to consider strictly increasing bid functions 

and some additional regularity to derive the first-order condi- 

tions ( Chatterjee & Samuelson, 1983; Leininger et al., 1989 ). In- 

dependently, they will allow us to prove our convergence result 

( Proposition 1 ), which describes a first set of ex-ante criteria for 

which NPGA finds an equilibrium. Property 1 will be relaxed at 

other occasions. Here, together with property 2, it ensures that 

there exist inverse functions β−1 
B 

and β−1 
S 

. Assuming independent 

prior distributions, the interim utilities of the buyer and seller can 

now be derived and are given by 

u interim 

B (v B , βB (v B ) , βS ) 

= 1 { βB (v B ) ≥b S } 
∫ min { βB (v B ) , b S } 

b S 

(v B − P(βB (v B ) , y )) f S (β−1 
S (y ))(β−1 

S ) ′ (y ) dy 

(7) 

2 Note that allowing unbounded intervals for the prior distributions leads to an 

additional (but well-behaved) error term for the seller’s interim utility. Therefore, 

we omit this special case for clarity. 
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and 

u interim 

S (v S , βB , βS (v S )) 

= 1 { b B ≥βS (v S ) } 
∫ b B 

max { βS (v S ) , b B } 
(P(x, βS (v S )) − v S ) f B (β−1 

B (x ))(β−1 
B ) ′ (x ) dx, 

(8) 

where 1 denotes the indicator function of wether or not trade 

takes place. The detailed derivations can be found in Appendix C . 

The first-order conditions to optimize the interim utilities can now 

be summarized in the following system of non-linear ordinary dif- 

ferential equations (ODE): 

A (v B , v S , βB , βS ) := 

( 

d 
dβB (v B ) 

u 

interim 

B 
(v B , βB (v B ) , βS ) 

d 
dβS (v S ) 

u 

interim 

S 
(v S , βB , βS (v S )) 

) 

= 

(
0 

0 

)
. (9) 

How to solve such systems to determine strategies βB and βS , 

which are non-trivial (i.e., such that trade occurs over a set of non- 

zero measure) is an open problem. In general, there is no princi- 

pled method to derive closed-form solutions for systems of non- 

linear ODEs, and also numerical techniques turned out challenging. 

A few articles discuss the related equilibrium problem in the 

asymmetric independent private values model of one-sided auc- 

tions, which also results in a system of non-linear ODEs ( Hubbard 

& Paarsch, 2014 ). Because the Lipschitz condition is not satisfied 

for the system, much of the theory concerning systems of ODEs 

no longer applies and numerical methods for differential equa- 

tions such as the class of Runge–Kutta methods ( Butcher, 2008 ) 

have been explored. Fibich & Gavish (2011) discuss the inherent 

numerical instability of such shooting methods. Importantly, the 

derived solutions might not constitute inverses of valid bidding 

strategies. That is due to the solution’s dependence on the ini- 

tial value and boundary conditions, which do not guarantee that 

Assumption 1 holds for the derived strategies. Additionally, the 

system’s complexity increases tremendously with more types of 

bidders or by allowing interdependent prior distributions, which 

holds true for asymmetric auctions and bilateral trade. For gen- 

eral interdependent priors, an agent i needs access to the condi- 

tional distribution F v −i | v i to find its optimal action. Thus, one can- 

not even state the ODEs because they require explicit knowledge of 

the conditional distributions for which there is no general analyt- 

ical framework ( Hormann, 2013 ). Moreover, such numerical tech- 

niques to solve asymmetric independent private values auctions 

lack convergence guarantees ( Hubbard & Paarsch, 2014 ). 

Only when making further assumptions on the system of ODEs, 

such as a specific payment rule and prior, can one derive analyt- 

ical solutions by finding the inverse bid functions for well-chosen 

initial values and then using the implicit function theorem to find 

the optimal bid function. Linear equilibrium bid strategies satisfy 

Eq. (9) in a model with independent uniform priors under the k - 

DA pricing rule (see Satterthwaite & Williams, 1989 ): 

βB (v B ; k ) = 

{
1 

1+ k v B + 

k (1 −k ) 
2(1+ k ) , if v B ∈ 

[
1 −k 

2 
, 1 

]
, 

h B (v B ) , else , 
(10) 

βS (v S ; k ) = 

{
1 

2 −k 
v S + 

1 −k 
2 

, if v S ∈ 

[
0 , 2 −k 

2 

]
, 

h S (v S ) , else . 
(11) 

The functions h B and h S can be arbitrary as long as they do not 

lead to more trade, i.e., h B < 

1 −k 
2 and h S > 

2 −k 
2 . We refer to the 

whole class and any strategy from this class of equilibrium strate- 

gies as linear equilibrium . The linear equilibrium is of special inter- 

est as it has the highest expected gains from trade of any equilib- 

rium ( Myerson & Satterthwaite, 1983 ). 

For the special case of the average double auction ( k = 0 . 5 ) with 

uniform distributions, one can derive a broader continuum of equi- 

librium strategies (see Chatterjee & Samuelson, 1983; Leininger 

et al., 1989 ). For example, if we set h B and h S to be the contin- 

uation of the corresponding linear functions in the linear equilib- 

rium, one obtains an equilibrium strategy that belongs to the class 

of symmetric equilibria . This class has been derived by using the 

symmetry condition 

βB (v B ) = 1 − βS (1 − v B ) , (12) 

which means that the curve of βS is obtained from βB by a rotation 

of π . In a symmetric equilibrium, the buyer underbids, when his 

valuation is v B , by the same amount that the seller overbids when 

her valuation is v S = 1 − v B . It turns out that a symmetric equilib- 

rium is uniquely determined by choosing a value g sym 

∈ ( 0 , 1 / 2 ) at 

the symmetry point 1 / 2 , which constitutes a unique equilibrium 

strategy for each value of g sym 

. See Fig. 1 (a) for some exemplary 

strategies from this class. The linear equilibrium is attained for 

g sym 

= 3 / 8 and is the only value where a closed-form solution is 

known ( Leininger et al., 1989 ). This class of equilibria has several 

notable properties. It consists of infinitely many different equilibria 

and the efficiency obtained in equilibrium, and the resulting gains 

from trade range from zero to second-best. 

The third class of equilibria consists of strategies where bid- 

ders only submit a finite number of different bids. That means 

buyer and seller may post identical bids for different valuations. 3 

This class has particular relevance for real-world situations where 

it is usually required to submit bids in, e.g., full dollars. We de- 

note this set as the class of step function equilibria . Leininger et al. 

(1989) provide properties and explicit equilibria for the case of the 

average mechanism and the case of buyer and seller using strate- 

gies with an equal amount of steps. They show that all step func- 

tion equilibria with exactly n steps are of the following form: 

βS (v S ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

a 1 , 0 � v S � x 1 , 

a 2 , x 1 < v S � x 2 , 

. 

. 

. 

a n , x n −1 < v S � x n , 

1 , x n < v S � 1 , 

βB (v B ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 , 0 � v B < z 1 , 

a 1 , z 1 � v B < z 2 , 

a 2 , z 2 � v B < z 3 , 

. 

. 

. 

a n , z n � v B � 1 , 

(13) 

where 

0 < a 1 < a 2 < . . . < a n < 1 , 

z 1 = a 1 , z i = a i + 

x i −1 

( x i − x i −1 ) 

( a i − a i −1 ) 

2 

for i = 2 , . . . , n, 

x i = a i − ( 1 − z i +1 ) 

( z i +1 − z i ) 

( a i +1 − a i ) 

2 

for i = 1 , . . . , n − 1 , x n = a n . 

Note that this is only a necessary condition and does not guaran- 

tee functions of the form of Eq. (13) to be an equilibrium for all 

a ∈ [0 , 1] n such that 0 < a 1 < . . . < a n < 1 . We denote this subset 

of step function equilibria as the class of n -step equilibria. Some of 

their notable properties are that, 

1. the buyer’s lowest bid has to be zero, whereas the seller’s high- 

est bid has to be one, 

2. every non-marginal bid (non-zero for the buyer and unequal 

one for the seller) of one bidder lies in the set of potential bids 

of the other, 

3. the supports of non-marginal bids for both bidders coincide. 

Furthermore, Leininger et al. (1989) provide several explicit ex- 

amples of n -step equilibria that in part constitute continua of equi- 

libria on their own. Fig. 1 (b) shows some strategies for a differ- 

ent number of steps. However, these are not determined by the 

number of steps alone. For example, for a single step, a 1 = a (see 

Eq. (13) ) constitutes an equilibrium for any a ∈ (0 , 1) . For more de- 

tails on this class of equilibria, we refer to Leininger et al. (1989) . 

3 Note that these equilibrium strategies do not satisfy Assumption 1 . 
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Fig. 1. Exemplary equilibrium strategies for symmetric and step function equilibria classes. 

Another important property of every n -step equilibrium is its ro- 

bustness to small perturbations (see Proposition 3.6 in their work), 

which indicates that these equilibria are likely to be attracting un- 

der local search algorithms. Even though their results only regard 

n -step equilibria, we observe similar properties for general step 

function equilibria in our experiments in Section 5.3 . 

For the special case of an average mechanism, Chatterjee & 

Samuelson (1983) also derived another linear BNE under risk- 

averse traders. With a risk parameter of ρ , the equilibrium profile 

is given as: 

βB (v B ) = 

(
1 − 1 

2 c 

4 c 2 − 1 

)
+ 

(
1 − 1 

2 c 

)
v B , (14) 

βS (v S ) = 

(
c − 1 

2 

2 c 2 − 1 
2 

)
+ 

(
1 − 1 

2 c 

)
v S , (15) 

for c = 2 1 /ρ − 1 
2 . This also covers the special case of risk-neutral 

traders in the linear BNE from Eq. (10) . Intuitively, the higher the 

risk aversion, the lower the marginal utility of misreporting one’s 

valuation compared to the possible loss under no trade. This leads 

to risk-averse traders asymptotically biding truthfully for increasing 

risk aversion. 

So, given these different assumptions on the market and pos- 

sibly multiple classes of equilibria, bidders face a substantial co- 

ordination problem. Moreover, it is unclear which equilibria will 

be found by equilibrium learning algorithms or if such algorithms 

even find an equilibrium. 

3.4. Expected utility with linear strategies 

The analysis of gradient dynamics and the types of equilib- 

ria emerging in a game requires a thorough understanding of the 

participants’ utility functions. For example, Rosen (1965) showed 

that games admit a unique Nash equilibrium when the partici- 

pants’ utility functions satisfy the strict monotonicity. More re- 

cently, Mertikopoulos & Zhou (2019) showed conditions of the util- 

ity functions for which no-regret learning algorithms result in a 

Nash equilibrium if they converge to a pure equilibrium. In the 

following, we derive an a priori result for local convergence by 

drawing on a recent result by Chasnov et al. (2020) . Among other 

things, one needs to show specific properties, such as Lipschitz 

continuity, of the ex-ante utility functions and negative definite- 

ness of the game Jacobian in equilibrium. However, without know- 

ing the parametric form of the bid function, it is impossible to 

study the properties of the expected utility functions. Therefore, 

we now choose a specific parametrization of linear bid functions, 

allowing us to derive an analytical equilibrium. The procedure 

works for other parametrizations as well. We provide results for 

this highly restricted setting which already turns out to be diffi- 

cult, thereby illustrating how limited the current approach in solv- 

ing the resulting system of differential equations is. 

We focus on bilateral bargaining with one buyer and one seller, 

independent and uniform prior distributions F B (x ) = F S (x ) on [0 , 1] , 

and assume linear strategies, which are known to include a BNE in 

the unrestricted game, as we have seen in the previous subsection. 

This means, there exist m B , m S , t B , t S ∈ R such that the strategies 

are given by 

βB (v B ) = m B v B + t B , βS (v S ) = m S v S + t S . (16) 

Based on Assumption 1 , we can define the feasible set for all pos- 

sible linear strategies for this setting. 

1. m B , m S > 0 ; 

2. �B = �S = [0 , 1] and 

ˆ �B = [ t B , m B + t B ] , ˆ �S = [ t S , m S + t S ] ; 

3. β−1 
B 

(y ) = 

1 
m B 

· (y − t B ) ; 

4. β−1 
S 

(y ) = 

1 
m S 

· (y − t S ) . 

Besides, we need to make the following assumption to restrict 

the slope of the linear strategies so that they cannot be arbitrarily 

flat, ensure that the intersects t B and t S are bounded, and restrict 

ourselves to situations where demand is not strictly exceeding 

supply. 

Assumption 2. In the restricted setting of linear strategies, we 

make the following additional assumptions: 

1. There exists an ε0 > 0 such that m B , m S ≥ ε0 > 0 , 

2. there exists a K > 0 such that | t B | , | t S | ≤ K < ∞ , 
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Fig. 2. Ex-ante utility of the buyer under an opposing seller that plays according to 

the linear BNE strategy. The maximal utility on the feasible action set (black dot) 

is achieved by also playing the BNE strategy βB (v ) = 

2 
3 
v + 

1 
12 

. Note that the points 

are restricted to the feasible set according to Assumption 1 . 

3. m B x + t B ≤ m S + t S for all x ∈ [ v B , v B ] , i.e., the highest ask price 

of the seller is at least as high as any bid of the buyer, 

4. m S y + t S ≥ t B for all y ∈ [ v S , v S ] , i.e., the lowest bid price of the 

buyer is less or equal to any ask of the seller. 

The first two properties guarantee Lipschitz continuity of the 

ex-ante utilities later on. Properties three and four considerably 

simplify calculations by restricting the setting to competitive mar- 

ket scenarios. Note that this simplification is not restrictive, in the 

sense that the resulting feasible set includes the equilibrium. We 

can now derive the ex-ante utility of the buyer and seller for the 

general k -double auction (see Appendix E for details): 

u 

ante 
B (m B , t B , m S , t S , k ) (17) 

= − 1 

6 m B 
2 m S 

( m B + t B − t S ) 
2 

· ( t B − t S + m B ( m B + t B + 2 t S − 2 ) + m B k ( m B + t B − t S ) ) . 

Similarly, the seller’s ex-ante utility is 

u 

ante 
S (m B , t B , m S , t S , k ) (18) 

= − 1 

6 m B m S 
2 
( m B + t B − t S ) 

3 

+ 

1 

6 m B m S 
2 

m S ( m B + t B − t S ) 
2 (m B + t B + 2 t S + km B + kt B − kt S ) . 

Fig. 2 depicts the utility landscape (based on m B and t B ) from 

the buyer’s perspective when faced with a seller playing the lin- 

ear BNE in the average double auction. This resulting utility sur- 

face is concave in large parts, which gives some rationale why 

gradient-based learners converge in this environment. Following 

Rosen (1965) , we demonstrate that global monotonicity of the 

game is not satisfied (see Appendix F ). Even in this restricted game 

with linear strategies, the game is only locally monotone, e.g., in a 

neighborhood of the equilibrium. This is a strong indication that 

global monotonicity is not satisfied for more complex parametriza- 

tions as well. 

Additional visualizations of the expected utility landscape as- 

suming arbitrary linear, concave, or convex bid functions can be 

found in Appendix D . These figures plot utility as a function of 

value and bid submitted. Interestingly, all of them are concave in 

large regions, as well. 

4. Learning algorithms 

Let us briefly introduce NPGA and SODA, the two learning al- 

gorithms we will use in our numerical experiments, and discuss 

important properties. On a high level, both methods rely on an ap- 

proximation of the original problem. NPGA uses neural networks 

to approximate pure strategies with a finite-dimensional parame- 

ter space and learns Bayes–Nash equilibria through self-play. Indi- 

vidual agents submit bids, observe the ex-post utility of their bids 

in a large batch of auctions, and then go a step in the direction 

of their utility gradient. The fact that the ex-post utility is discon- 

tinuous describes a key technical challenge, which is solved using 

smoothing techniques. In contrast, SODA solves a discretized ver- 

sion of the game with discrete type and action space. While this 

leads to an additional error term in the original game, the util- 

ity gradient is available exactly and does not need to be estimated 

from the smoothed utility function. The method uses the dual aver- 

aging method and learns distributional strategies, an extension of 

mixed strategies for Bayesian games. We also know that if SODA 

converges, then it has to converge to an equilibrium. While SODA 

is very fast for small environments with only a few participants 

and strategies, it suffers from a curse of dimensionality for larger 

markets with many players and strategies. Let us now introduce 

these algorithms in more detail. 

4.1. NPGA 

NPGA follows the gradient dynamics of a game via simultane- 

ous gradient ascent of all bidders. Conceptually, players observe a 

gradient-oracle ∇ βi 
u ante 

i 
(βi , β−i ) with respect to the current strat- 

egy profile βt in each iteration. Then the rule proposes that players 

perform a gradient update: 

βt 
i ≡ βt−1 

i 
+ 	t 

i with 	t 
i ∝ ∇ βi 

u 

ante 
i (βi , β−i ) , (19) 

Note that in this high-level description, we refer to the gradient 

dynamics of the ex-ante utility u ante . Consequently, βi ∈ �i are 

functions in an infinite-dimensional function space, so the gra- 

dient ∇ βi 
u ante 

i 
is itself a functional derivative such as a Gateaux 

derivative 4 over the Hilbert space �i . To compute the gradient es- 

timate in practice, NPGA represents each bidder’s strategy by a 

neural network βi (v i ) ≡ πi (v i ; θi ) and a corresponding parameter 

vector θi ∈ R 

d i . d i ∈ N is finite and we thus transform the problem 

of choosing an infinite-dimensional strategy into choosing a finite- 

dimensional parameter vector θi . 

Due to the discrete nature of the allocations x , the ex-post 

utilities u i (v i , b i , b −i ) are usually discontinuous, and thus the 

gradient provides wrong signals. Therefore, NPGA estimates the 

gradient using evolutionary strategies (ES) as it was used by 

Salimans et al. (2017) . To calculate ∇ θ u ante , we perturb the pa- 

rameter vector P times, θi ;p ≡ θi + ε p , using zero-mean Gaussian 

noise ε p ∼ N (0 , σ 2 ) for p ∈ { 1 , . . . , P } , where P and σ are hy- 

perparameters. NPGA then calculates each perturbation’s fitness, 

ϕ p ≡ u ante 
i 

(πi (v i ; θi ;p ) , β−i ) , via Monte–Carlo integration, and es- 

timates the gradients as the fitness-weighted perturbation noise 

∇ 

ES 
θ

≡ 1 
σ 2 P 

∑ 

p ϕ p ε p . The technique gives an asymptotically unbi- 

ased estimator of ∇ θ u ante . The pseudo-code of NPGA is given 

in Algorithm 1 . Note that the original paper by Bichler et al. 

(2021) focuses on symmetric auctions, where all bidder valuations 

are drawn from the same prior distribution, and all bidders share 

the same equilibrium bid function. Therefore, only a single neural 

network needs to be trained in such one-sided auctions. The bilat- 

eral bargaining model that we analyze in this paper is inherently 

4 Gateaux derivatives are a generalization of directional derivatives in Euclidean 

spaces to Banach spaces (of which Hilbert spaces are a subset of). 
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Algorithm 1: Neural pseudogradient ascent using evolution- 

ary strategies. 

Input : Initial policy, ES population size P , ES noise variance, 

learning rate, batch size 

for t = 1 , 2 , . . . do 

Sample a batch of valuation profiles; 

Calculate joint utility of current strategy profile; 

for each agent i ∈ I do 

for each p ∈ { 1 , . . . , P } do 

Perturb agent i ’s current policy; 

Evaluate fitness of perturbation p by playing 

against current opponents; 

end 

Calculate ES pseudogradient as fitness-weighted 

perturbation noise; 

Perform a gradient ascent update step on the current 

policy; 

end 

end 

asymmetric, and we train two neural networks, one for the buyer 

and one for the seller. In larger environments with more partici- 

pants, symmetry among some or all of the bidders on one side is 

a widespread assumption. Therefore, we only need to train a single 

neural network for bidders in a symmetry class, which makes the 

implementation of larger markets much more efficient. 

Given a vectorized implementation of the joint ex-post utility 

u , estimating u ante via Monte–Carlo integration over V is feasible 

due to parallel execution on hardware accelerators such as GPUs. In 

our experiments, we use custom vectorized implementations of the 

double auction mechanisms considered using the PyTorch frame- 

work ( Paszke et al., 2017 ). This effectively allows us to simulate 

hundreds of thousands of games in parallel to get more precise 

approximations for the gradients and utilities on consumer-level 

hardware. 

The action space is usually restricted, e.g., for auctions, the 

bids and asks must be non-negative. This can be achieved, e.g., 

by equipping the neural networks’ last layer with a ReLU activa- 

tion function so that negative values are mapped to be zero. If 

not stated otherwise, we pretrain the neural networks for 500 it- 

erations to submit truthful bids, similar to the original paper by 

Bichler et al. (2021) . This makes the experiments easier to com- 

pare, prevents numerical instabilities (see Section 5.2 for details) 

and prevents the so-called dead-ReLU problem. 

It is interesting to understand when NPGA converges to an 

equilibrium. Unfortunately, the analysis of gradient dynamics, in 

general, can be arbitrarily complex ( Andrade et al., 2021 ). Learning 

dynamics do not generally obtain a Nash equilibrium ( Benaim & 

Hirsch, 1999 ). A number of recent results on matrix games showed 

that gradient dynamics may circle, diverge, or are even chaotic 

( Sanders et al., 2018 ). However, for bilateral bargaining with uni- 

form priors, we can show that the linear equilibrium is locally at- 

tracting for NPGA in the space of linear strategies. That means, if 

one initializes the algorithm close enough, it is ensured to con- 

verge to the equilibrium. In other words, assuming that NPGA re- 

ceives exact gradient feedback, the learning rate is small enough, 

and the starting point is in the region of attraction, NPGA con- 

verges to the linear BNE strategy: 

Proposition 1. Consider the bilateral bargaining model with two 

quasi-linear traders and independent uniform priors under the aver- 

age double auction ( k = 1 / 2 ) satisfying Assumptions 1 and 2 . Suppose 

agents learn with NPGA under exact gradient feedback, neural net- 

works consisting of a single neuron, and a learning rate s.t. 0 < γ < 

˜ γ , where ˜ γ = arg min h> 0 max j | 1 − hλ j (J(θ ∗)) | = 1 and λ j (J(θ ∗)) 
denotes the j’th eigenvalue of the game Jacobian J(θ ∗) . Then, NPGA 

converges to the linear BNE from Eq. (10) when initialized in the re- 

gion of attraction, θ0 ∈ R (θ ∗) : θk → θ ∗ exponentially. 

The detailed proof with the corresponding derivations can be 

found in Appendix G . We draw on a recent result by Chasnov et al. 

(2020) on local convergence of gradient-based learners. Note that 

even without a priori convergence guarantees, we can certify an 

approximate BNE ex-post (see Section 4.3 ). 

4.2. SODA 

Instead of approximating pure strategies β : V → A , simultane- 

ous online dual averaging (SODA) ( Fichtl et al., 2022 ) aims for dis- 

tributional strategies in a discretized version of the auction game. 

Distributional strategies ( Milgrom & Weber, 1985 ) are a form of 

mixed strategies for Bayesian games and are modeled as prob- 

ability measures over V i × A i . By discretizing the type spaces V i 

and action spaces A i , we get discrete versions of the distributional 

strategies. In this setting, the set of feasible discrete distributional 

strategies S i is a compact and convex subset of the probability 

simplex 	N·M , where N is the number of discretization points of 

the type space and M of the action space. Learning discrete dis- 

tributional strategies means learning an N × M matrix, where each 

coefficient denotes the probability of the respective discrete type- 

action pair. The discretized auction game can be interpreted as a 

complete information game, where the set of feasible strategies S i 
corresponds to a compact, convex action set, and the expected util- 

ity function corresponds to the respective utility function that is 

linear in the bidders’ own actions. 

This discretized formulation allows us to compute the gradi- 

ent exactly, which implement well-known gradient-based learning 

methods for complete information games such as dual averaging. 

Dual Averaging ( Nesterov, 2009 ) is based on two steps: (1) Given 

the current strategies of all traders, bidder i computes the individ- 

ual gradient of the expected utility and performs a gradient ascent 

step in the dual space. (2) The updated dual variable is mirrored 

back to the feasible set in the primal space using a link function 

which leads to an updated strategy. This step is performed simul- 

taneously by all bidders. It can be shown that if this procedure 

converges to a pure strategy for all bidders, then this profile is 

a Bayes–Nash Equilibrium for the discretized auction game ( Fichtl 

et al., 2022 , Corollary 1). Therefore, SODA provides an ex-post cer- 

tificate. Moreover, for some single-object auction formats such as 

first or second-price sealed bid and all-pay auctions, it is shown 

that if SODA finds an approximate equilibrium of the discretized 

game, this is also an approximate equilibrium of the continuous 

auction game ( Fichtl et al., 2022 , Theorem 1). 

To evaluate the computed strategies in the settings we consider, 

bids are sampled from the discrete distributional strategy. Given 

an observed valuation in the original continuous setting, the near- 

est discrete valuation is identified and a bid is sampled from the 

induced conditional probability distribution over the discrete bids. 

4.3. Empirical certification 

While global a priori convergence guarantees might be out of 

reach, we can verify the quality of a solution ex-post. Our primary 

evaluation metric will be the relative efficiency in terms of the gains 

from trade achieved in an equilibrium, which allows us to compare 

different environments. Besides, we will report metrics about the 

quality of the learned strategy profile β learned with NPGA and 

SODA. 

Whenever we know the analytical equilibrium β∗, we use it for 

direct comparison. In this case, we sample the BNE utility of each 
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player, ˆ u i (β
∗) = 

1 
n batch 

∑ 

v u i (v i , βi (v i ) , β−i (v −i )) ≈ u ante 
i 

(β∗
i 
, β∗

−i 
) , as 

well as the utility βi played against the BNE, ˆ u i (βi , β
∗
−i 

) ≈
u ante 

i 
(βi , β

∗
−i 

) , with a sample size of n batch = 2 22 valuations from V . 

Then, we report the resulting relative ex-ante utility loss : 

L i (βi ) = 1 − ˆ u i (βi , β
∗
−i 

) 

ˆ u i (β
∗
i 
, β∗

−i 
) 
. (20) 

Besides, we report the probability-weighted root mean squared er- 

ror of βi and β∗
i 

in the action space, which approximates the L 2 
distance ‖ βi − β∗

i 
‖ �i 

of these two functions: 

L 2 (βi ) = 

( 

1 

n batch 

∑ 

v i 

(
βi (v i ) − β∗

i (v i ) 
)2 

) 

1 
2 

. (21) 

This metric circumvents the drawback of L i that even a strategy 

with a loss very close to zero could be arbitrarily far from the ac- 

tual BNE in strategy space. 

When no analytical BNE is available, we compute the ex-ante 

utility loss 

� ante 
i (βi , β−i ) = sup 

β ′ 
i 
∈ �i 

u 

ante 
i (β ′ 

i , β−i ) − u 

ante 
i (βi , β−i ) . (22) 

Our estimator ˆ � i of � ante 
i 

relies on finding approximate interim 

best-responses. For this, we place an equidistant grid indexed with 

w = 1 , . . . , n grid over the action space A i ranging from zero to the 

maximum valuation. For a value v i and each of the alternative bids 

b w 

we evaluate the interim utility, u interim 

i 
(v i , b w 

, β−i ) , against the 

current opponent strategy profile. In the case of independent pri- 

vate values, this is easily done by keeping v i fixed and drawing 

a batch of samples from the opponents’ valuations v −i . For n batch 

samples of v i and n batch samples of v −i | v i for each of the v i ’s, we 

then have 

ˆ � i (β) = 

1 

n batch 

∑ 

v i 

max 
w 

λi (v i , b w 

, β) (23) 

with λi being the estimated expected utility gain by deviating from 

playing according to βi to playing action b ′ : 

λi (v i , b ′ , β) = 

1 

n batch 

(24) 

·
∑ 

v −i | v i 

(
u i 

(
v i , b ′ , β−i (v −i ) 

)
− u i ( v i , βi (v i ) , β−i (v −i ) ) 

)
. 

For an increasing number of samples and alternative actions, we 

have ˆ � i → � ante 
i 

. Our estimate for ε in an ex-ante ε-BNE is then ε ≡
max i ˆ � i . Based on these estimates, we can compute an approximate 

relative ex-ante utility loss without access to an analytical BNE: 

ˆ L i (β) = 1 − ˆ u i (β) 

ˆ u i (β) + 

ˆ � i (β) 
. (25) 

This metric is the average loss incurred by not playing a best- 

response but instead playing the strategy learned via NPGA. For 

SODA we achieve a similar approximation of the utility loss by in- 

creasing the discretization to n grid . The computed strategy is trans- 

lated to the higher level of discretization by assigning the proba- 

bility weights for a given valuation action pair to the nearest dis- 

crete action of the new discretization and distributing it among the 

closest valuations such that we get a feasible strategy. We can then 

compute the best-response and hence the relative utility loss ˆ L . 

Hyperparameters that were used throughout our experiments 

for both algorithms can be found in Appendix A . 

5. Results 

This section summarizes the experimental results using NPGA 

and SODA. We analyze the few environments for which we have a 

Table 1 

Mean and standard deviation for different initialization procedures for the 1/2- 

double and VCG auction for NPGA over ten different seeds. The selective random 

initialization is a random initialization excluding those runs where one starts with 

non-trading strategies. The training period was 20 0 0 iterations for all runs. 

Auction Initialization Bidder L 2 L 

0.5-DA truthful buyer 0.0081 (0.0042) 0.0028 (0.0004) 

seller 0.0076 (0.0031) 0.0004 (0.0003) 

VCG selective 

rand. 

buyer 0.0090 (0.0040) 0.0009 (0.0002) 

seller 0.0089 (0.0039) 0.0003 (0.0003) 

closed-form equilibrium strategy and others for which this is not 

the case. Sometimes, we use the VCG mechanism as a baseline, 

for which we know that bidders have a dominant strategy to bid 

truthfully. 

Further experimental results for multiple buyers and sellers can 

be found in Appendix B . 

5.1. Two quasi-linear traders with uniform priors 

First, let us analyze the average mechanism ( k = 0 . 5 ) with two 

quasi-linear traders and a uniform prior distribution for which 

closed-form solutions are available. We first report the results us- 

ing NPGA and then those achieved with SODA. We show that NPGA 

reliably finds the welfare-maximizing linear BNE from Fig. 1 (a), 

whereas SODA converges to different step function equilibria de- 

pending on the initialization. 

5.2. NPGA 

The first experiment is meant to validate that NPGA finds an 

equilibrium strategy and, if so, which one. The strategies are ini- 

tially pretrained to be truthful to make them more comparable 

(see Section 4.1 ). The agents are subsequently trained for 20 0 0 iter- 

ations. The results for ten different seeds are presented in the first 

two rows of Table 1 . The relative utility loss L is close to zero, i.e., 

each bidder plays close to a best-response given that the opponent 

plays the linear BNE strategy. The L 2 loss is also low, which means 

the learned strategies are close to the linear BNE strategy in the 

L 2 -norm. These results indicate that NGPA finds the linear equi- 

librium reliably for the truthful initialization, bypassing any sub- 

optimal equilibrium from the class of differentiable equilibria (see 

Fig. 1 (a)). 

5.3. SODA 

With SODA the results look different. In general the algorithm 

finds step function equilibria that show similar properties as the 

n-step equilibria mentioned in Section 3.3 . One might argue that 

due to the discretization of the valuation and action space the 

computed strategies always resemble step function, but our ex- 

periments show that there are significant differences. For exam- 

ple, if we initialize the strategy near the welfare-maximizing linear 

equilibrium, the algorithm converges to a strategy that resembles a 

step function but closely approximates this equilibrium, which in- 

dicates that the equilibrium is at least locally attracting for SODA. 

In Table 2 we can see that the approximated L 2 distance to the 

linear equilibrium has almost the same accuracy as NPGA. 

On the other hand, if we start with random initializations, we 

can observe that SODA consistently finds step function equilibria 

that might look different depending on the initialization or even 

the step size used in the algorithm. In this case, the computed 

strategies approximate step functions with very few steps ( Fig. 3 ). 

Note that for low valuations of the buyer or high costs of the seller 

where no trade takes place, no strategy is learned and the bids 

are more or less at random in the respective interval. For the VCG 

9



M. Bichler, N. Kohring, M. Oberlechner, F. R. Pieroth European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 11, 2023;15:12 ] 

Fig. 3. 500 bids sampled from the strategies computed with SODA after initialization near the linear equilibrium BNE1 (left) and after random initilization (right) for the 

average mechanism with uniform prior. 

Table 2 

Mean and standard deviation over ten runs of SODA for the two most common 

mechanisms in the bilateral bargaining setup. For the average double auction, we 

only compare the learned strategies to the payoff dominant equilibrium strategies. 

Auction Initialization Bidder L 2 L 

0.5-DA near 

equil. 

buyer 0.0103 (0.0000) 0.0014 (0.0012) 

seller 0.0081 (0.0000) 0.0009 (0.0011) 

random buyer 0.0734 (0.0063) 0.0398 (0.0151) 

seller 0.0725 (0.0064) 0.0386 (0.0150) 

VCG random buyer 0.0140 (0.0003) 0.0006 (0.0000) 

seller 0.0139 (0.0004) 0.0006 (0.0000) 

Table 3 

Mean and standard deviation over ten runs of 20 0 0 itera- 

tions with NPGA and SODA of the learning metrics for the two 

most common mechanisms in the bilateral bargaining setup 

for a Gaussian prior with Mean 15 and standard deviation 5. 

The NPGA strategies were pretrained on the truthful strategy 

for 500 iterations whereas SODA was initialized with random 

strategies. 

Auction Bidder NPGA ˆ L SODA ˆ L 

0.5-DA buyer 0.030 (0.002) 0.001 (0.002) 

seller 0.034 (0.006) 0.001 (0.001) 

VCG buyer 0.024 (0.000) 0.001 (0.000) 

seller 0.024 (0.000) 0.001 (0.000) 

mechanism, the bids derived from the learned distributional strat- 

egy closely match the analytical equilibrium regardless of different 

initializations. 

5.4. Two quasi-linear traders with Gaussian priors 

The uniform distribution makes the analytical treatment much 

easier, but often one is interested in predictions for non-uniform 

priors. Below, we report SODA and NPGA for scenarios with a 

Gaussian prior for which no closed-form equilibrium is known. 

Table 3 shows the results for the VCG and average auction for 

Gaussian priors with a mean 15 and a standard deviation of 5 

when running NPGA and SODA. The results are comparable to the 

uniform case in the sense that the learned strategies reach simi- 

lar low levels of utility loss and SODA ends up in different step- 

function equilibria depending on the initialization in the average 

auction. 

5.5. Two risk-averse traders 

It is well-known that risk aversion among bidders mitigates 

the efficiency loss in double auctions and dates back to work by 

Chatterjee & Samuelson (1983) . For the specific case of uniform 

priors and equal risk attitudes of the traders, we again can com- 

pare our results to the analytical equilibrium from Eq. (14) . Fig. 4 

compares the efficiency loss of the average double auction and the 

VCG double auction as predicted analytically and when learning 

with NPGA and SODA. Here, we measure the gains from trade in 

the strategy profile at hand compared to the gains from trade if 

the agents were truthful. As expected, the VCG mechanism is effi- 

cient throughout. 

5.5.1. NPGA 

For the average double auction, efficiency increases for higher 

levels of risk-aversion from about 84% under risk neutrality to 

above 99% for high levels of risk-aversion. One observes higher 

deviations from the predicted levels of efficiency for stronger risk 

aversion. This is explained by the fact that a decreasing exponent 

in (u QL 
i 

) ρ leads to its convergence to 1 for all values of u QL 
i 

, effec- 

tively squishing the learning signals of NPGA that only has a fixed 

absolute precision. This is also measured in the relative utility loss 

of NPGA (see Table 4 ), where we observe a correlation between 

low-risk attitudes (larger values of ρ) towards better performance. 

Overall, the relative utility loss decreases consistently below 1.4%. 

5.5.2. SODA 

When learning with SODA, the increasing efficiency with higher 

levels of risk-aversion can also be observed for the step-function 

equilibria, albeit at a lower level. It is surprising that despite the 

different outcomes in the computed strategies regarding the num- 

ber and position of the steps, a consistent level of efficiency with a 

standard deviation of less than 1% is achieved for fixed risk param- 

eters. In general, we see that as risk aversion increases, the number 

of steps in the approximated strategies increases and the strategies 

continue to converge to the linear equilibria (see Table 4 ). 
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Fig. 4. Mean and standard deviation of efficiency for NPGA (left) and SODA (right) applied to the average and VCG double auction with different risk parameters. Dashed 

lines depict efficiency in the linear BNE. 

Table 4 

Evaluation of the algorithms for multiple levels of risk aversion in the average double auc- 

tion. Results are averaged over five runs each. 

Risk ρ Bidder NPGA L 2 NPGA L SODA L 2 SODA L 

0.1 buyer 0.015 (0.002) 0.011 (0.002) 0.016 (0.000) 0.014 (0.000) 

seller 0.016 (0.002) 0.014 (0.003) 0.016 (0.000) 0.014 (0.000) 

0.5 buyer 0.007 (0.001) 0.001 (0.000) 0.044 (0.003) 0.018 (0.003) 

seller 0.007 (0.003) 0.001 (0.000) 0.043 (0.004) 0.018 (0.004) 

0.9 buyer 0.007 (0.002) 0.002 (0.000) 0.066 (0.005) 0.033 (0.010) 

seller 0.007 (0.002) 0.000 (0.000) 0.065 (0.006) 0.031 (0.011) 

6. Conclusions 

Bilateral trade is an interesting environment to study. First, it 

is as simple as possible, with only a single participant on each 

side and a single object. With independent and uniform prior dis- 

tributions and possibly risk-averse bidders, we even have a sim- 

ple linear equilibrium bidding strategy. The environment, nonethe- 

less, is very challenging because there is a continuum of equilibria, 

so it is unclear whether equilibrium computation would converge 

in this setting. Under strong assumptions, such as linear bid func- 

tions, one can study the expected utility landscape in much more 

detail than would be possible in richer environments. In this case, 

one can even derive analytical solutions to the equilibrium prob- 

lem, but the necessary assumptions also illustrate how restrictive 

the analytical approach is to provide a priori convergence guaran- 

tees. 

The equilibrium learning algorithms analyzed in this paper al- 

low for equilibrium analysis in far more general environments. An 

open question concern ex-ante properties for convergence to equi- 

librium. The concavity of the utility functions and payoff mono- 

tonicity of the game are known properties of convergence. How- 

ever, they are difficult to check in games with continuous type- 

and action spaces. We show that the utility functions are concave 

in large domains in equilibrium. However, we can also show that 

the game is not globally monotone, and we cannot rely on con- 

vergence results for variational inequalities. Nevertheless, we can 

prove local convergence of NPGA in this specific bilateral trade 

model. Further, we use both techniques to find equilibrium in a 

variety of bilateral trade environments for which no explicit equi- 

librium bid function has been known so far. This includes bilat- 

eral bargaining with Gaussian priors or risk-averse traders. We re- 

port experiments with multiple buyers, multiple sellers, or both in 

the appendix. This way, the paper pushes the boundaries of equi- 

librium computation and contributes to understanding equilibrium 

learning in the simplest and arguably most well-known model of 

trade. 
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Appendix A. Reproducibility and hyperparameters 

All our experiments are run with the following learning param- 

eters, if not specified otherwise. 

A1. NPGA 

We use common hyperparameters across almost all settings 

(except where noted otherwise): Fully connected neural networks 

with two hidden layers of ten nodes each with SeLU activations on 

the inner nodes ( Klambauer et al., 2017 ), as well as ReLU activa- 

tions in the output layer. The parameters θi are then given by the 

weights and biases of these networks. All experiments were per- 

formed on a single Nvidia GeForce 2080Ti with 11 gigabyte of RAM 

and batch sizes in Monte–Carlo sampling were chosen to maximize 

GPU-RAM utilization: A learning batch size of n batch = 2 18 ; primary 

evaluation batch size (for L and L 2 ) of 2 22 ; and secondary evalua- 

tion batch size 2 13 and grid size n grid = 2 10 (for ˆ � and ˆ ε). The code 

will be available at blinded for review . Run times for the markets 

with a single seller and a single buyer are around 0.36 seconds 

per iteration. The more extensive experiments with up to eight 

agents took about 0.95 seconds per iteration. The middle column of 
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Table A1 

Mean runtime per iteration for NPGA and SODA with a differ- 

ent number of agents. The average is over all iterations and 

experiments with a uniform prior distribution. 

Num agents Time/iter [s] NPGA Time/iter [s] SODA 

2 0.363 0.001 

3 0.506 0.035 

4 0.561 2.281 

5 0.624 –

6 0.823 –

8 0.949 –

Table A1 shows the average time per iteration for a different num- 

ber of agents per experiment. We found that it made no difference 

for the runtime whether we have more buyers or sellers but only 

the total number of agents. We averaged over all seeds and runs 

with the same total number of agents using a uniform distribution 

to make the results comparable. The results show that the runtime 

increases sublinearly in the number of agents, demonstrating the 

efficiency of running the whole learning process on GPU. 

A2. SODA 

To discretize the problem we split the valuation and action 

space in n discr = 64 equally sized intervals and take the respec- 

tive midpoints as discretization points. If the valuation space is un- 

bounded we only consider a suitable compact interval, e.g., [0 , 30] 

for the Gaussian prior N (15 , 5) . Further, we assume that the action 

space is equal to the valuation space. For the update step in the 

dual space we use a decreasing step size of the form ηt = η0 /t β

where t is the current iteration, β = 0 . 05 and η0 = 200 for uni- 

form priors, and η0 = 20 for the gaussian prior. The algorithms ei- 

ther stops after 20 0 0 iterations or when the relative utility loss 

within the discretized setting is less than 10 −4 . All experiments 

where performed on a single Intel Core i7-8565U CPU @ 1.80 gi- 

gahertz and 16 gigabyte of RAM. The way the game is discretized 

limits the applicability of SODA due to the curse of dimensionality. 

To compute the gradient or the utility, given a strategy profile, one 

must take the weighted sum over all possible valuation and action 

profile combinations. The number of such possible combinations 

increases exponentially in the number of agents, i.e., n 
n B + n S +1 

discr 
. This 

has significant impact on the running time as we can observe in 

Table A1 and on the amount of storage required. For this reason, 

we could not, for instance, calculate the utility loss ˆ L for three or 

four agents, or even compute the respective strategies for larger 

settings on our current hardware with SODA. Therefore, we only 

report the results for NPGA in Appendix B . 

Appendix B. Experiments for multiple buyers and sellers 

Up to this point, we considered bilateral bargaining with one 

buyer and one seller only. Next, we study markets with multiple 

buyers or sellers. For the k -double auction, already for one seller 

and two buyers (or vice versa), there is no closed-form BNE. From 

the view of a single buyer (seller), the task is symmetric in the 

sense that each buyer (seller) has the same utility function and 

faces opponents from the same market side with the same prior 

distributions. We conducted experiments allowing different strate- 

gies for all agents on both sides of the market, thus, allowing for 

the discovery of asymmetric equilibria. We found that there was 

no significant difference and, therefore, restrict our presentation to 

symmetric strategies for each market side for clarity in the presen- 

tation. This slightly reduces memory consumption and the variance 

in learning. 

We are going to place a special emphasis on the market effi- 

ciency in analyzing equilibria in markets using the k -double auc- 

Table B1 

Mean and standard deviation over ten runs of 20 0 0 iter- 

ations with NPGA for the 0.5-DA mechanism with several 

buyers and one seller for a uniform prior. 

Auction Bidder ˆ L L truthful 
2 

2b1s buyers 0.065 (0.004) 0.060 (0.004) 

seller 0.051 (0.001) 0.200 (0.004) 

3b1s buyers 0.065 (0.004) 0.039 (0.007) 

seller 0.043 (0.001) 0.248 (0.004) 

4b1s buyers 0.070 (0.004) 0.035 (0.011) 

seller 0.038 (0.002) 0.281 (0.003) 

Fig. B1. The strategies of four buyers and one seller after 20 0 0 iterations with 

NPGA for a uniform prior in the average mechanism. 

tion. That is due to a number of articles that analyze the impli- 

cations of increasing the level of competition market efficiency 

Rustichini et al. (1994) ; Wilson (1985) . Overall, the inefficiency 

in a k -double auction decreases for symmetrically growing mar- 

kets ( Cripps & Swinkels, 2006 ). However, this increase in effi- 

ciency does not happen if the market is growing asymmetrically, 

e.g., if the number of buyers grows faster than the number of 

sellers. 

B1. Asymmetrically growing markets 

Let us first analyze asymmetric markets with multiple buyers 

and one seller (or vice versa). Imagine a case with n B buyers and 

one seller, where the buyers’ priors are independent. For a drawn 

valuation v S of the seller, denote the probability that the valua- 

tion v B i of one of the buyers is below v S by P (v B i < v S ) . Then the 

probability that all buyers’ valuations are below v S is given by ∏ n 
i =1 ( 1 − P (v B −i < v S ) ) . This means, for more buyers, it becomes 

more likely that at least one buyer’s valuation is above that of the 

seller. A seller can leverage this asymmetry for his strategy, which 

is something that we can observe in our experiments. 

Table B1 shows the approximate relative utility loss of the 

traders and the distance to the truthful strategies for 2, 3, and 

4 buyers (2b-4b) and one seller (1s). Whereas the buyers’ strate- 

gies tend towards the truthful strategy the more buyers partici- 

pate in the market, the single seller’s strategy deviates more from 

it. Fig. B1 illustrates this observation for the case of four buyers 

and one seller. The buyers’ strategy is very close to being truthful 
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Fig. B2. The strategies of buyers and seller after 4,0 0 0 iterations with NPGA for a 

uniform prior with four buyers and sellers in the average-auction. 

Table B2 

Mean and standard deviation over ten runs of 4,0 0 0 

NPGA iterations of the learning metrics for the 0.5-DA 

mechanism in a double auction setup with several buy- 

ers and sellers for a uniform prior. 

Auction Bidder ˆ L L truthful 
2 

2b2s buyers 0.046 (0.001) 0.104 (0.005) 

sellers 0.046 (0.001) 0.107 (0.002) 

3b3s buyers 0.039 (0.001) 0.089 (0.004) 

sellers 0.039 (0.002) 0.093 (0.002) 

4b4s buyers 0.036 (0.001) 0.083 (0.003) 

sellers 0.036 (0.001) 0.085 (0.003) 

(blue downward-pointing triangles), whereas the seller’s strategy is 

to bid significantly higher for lower costs (red upward-pointing tri- 

angles). One gets qualitatively similar results for the reversed sce- 

nario with multiple sellers and one buyer. 

B2. Symmetrically growing markets 

Theoretical results suggest that a symmetric market with more 

buyers and sellers should become more and more efficient with 

growing size ( Cripps & Swinkels, 2006 ). That is, for the number of 

buyers and sellers going to infinity, all non-trivial BNE strategies 

for buyers and sellers are converging towards the truthful strategy. 

Fig. B2 shows the learned strategies in a scenario with four buy- 

ers and sellers with NPGA after 4,0 0 0 iterations. We can see that 

the learned strategies are closer to the truthful strategy (which 

is also depicted as reference). This observation is supported by 

Table B2 . The distance to truthful strategies is decreasing with an 

increasing number of buyers and sellers. 

Appendix C. First-order conditions in bilateral bargaining 

For drawn valuations v B ∼ f B and v S ∼ f S of buyer and seller, 

respectively, let the buyer’s bid be b B = βB (v B ) and the seller’s ask 

be b S = βS (v S ) . Then, the ex-post utility of the buyer is given by 

u B (v B , b B , b S ) = 1 { b B ≥b S } · ( v B − P (b B , b S ) ) , 

where P denotes the price function that the buyer has to pay and 

the seller receives. For some other mechanisms, one may also want 

to differentiate between the payments. The seller’s corresponding 

ex-post utility is given by 

u S (v S , b B , b S ) = 1 { b B ≥b S } · ( P (b B , b S ) − v S ) . 

If the buyer’s bid b B is smaller than the lowest ask price b S , the 

buyer’s interim utility is zero. This describes a case where the 

buyer bids so little that there is no trade for any valuation of the 

seller. Reversely, the same holds for the seller’s interim utility if 

the seller’s ask price b S is higher than the highest bid of the buyer 

b B . We derive the interim utilities for all other cases next. We will 

start with the buyer’s assuming that βB (v B ) ≥ b S : 

E v S ∼ f S [ u B (v B , b B , βS (v S )) ] 

= 

∫ 
�S 

u B (v B , βB (v B ) , βS (v S )) · f S (v S ) dv S 

= 

∫ 
β−1 

S 
( ̂ �S ) 

u B (v B , βB (v B ) , βS (v S )) · f S (v S ) dv S 

(∗1 ) = 

∫ 
ˆ �S 

u B (v b , βB (v B ) , y ) · f S (β
−1 
S (y )) · | (β−1 

S ) ′ (y ) | dy 

prop. 1 = 

∫ min { βB (v B ) , b S } 

b S 

(v B − P (βB (v B ) , y )) · f S (β
−1 
S (y )) · (β−1 

S ) ′ (y ) dy 

PI = 

[
( v B − P (βB (v B ) , y ) ) · F S (β

−1 
S (y )) 

]min { βB (v B ) , b S } 
y = b S 

+ 

∫ min { βB (v B ) , b S } 

b S 

d 

dy 
P (βB (v B ) , y ) · F S (β

−1 
S (y )) dy 

(∗2 ) = ( v B − P (βB (v B ) , βB (v B )) ) · F S 
(
β−1 

S 

(
min { βB (v B ) , b S } 

))
+ 

∫ min { βB (v B ) , b S } 

b S 

d 

dy 
P (βB (v B ) , y ) · F S (β

−1 
S (y )) dy. 

Note that we used substitution in multivariate integrals for 

bi-Lipschitz functions ( Federer, 1996 ) in step (∗1 ) which uses 

both conditions of Assumption 1 . In step (∗2 ) , one can see 

that β−1 
S 

( b S ) = v S , again due to Assumption 1 . This results in 

F S (β
−1 
S 

( b S )) = F S ( v S ) = 0 , as F S is the CDF of f S on [ v S , v S ] = �S . 

Analog derivations for the seller’s interim utility give the fol- 

lowing under the assumption that βS (v S ) ≤ b B . 

E v B ∼ f B [ u S (v S , βB (v B ) , b S ) ] 

= 

∫ b B 

max { βS (v S ) , b B } 
(P (x, βS (v S )) − v S ) · f B (β

−1 
B (x )) · (β−1 

B ) ′ (x ) dx 

PI = 

[
( P (x, βS (v S )) − v S ) · F B (β

−1 
B (x )) 

]b B 

x = max { βS (v S ) , b B } 

−
∫ b B 

max { βS (v S ) , b B } 
d 

dx 
P (x, βS (v S )) · F B (β

−1 
B (x )) dx 

= 

(
P ( b B , βS (v S )) − v S 

)
−
(
P 
(
max { βS (v S ) , b B } , βS (v S ) 

)
− v S 

)
· F B 
(
β−1 

B 

(
max { βS (v S ) , b B } 

))
−
∫ b B 

max { βS (v S ) , b B } 
d 

dx 
P (x, βS (v S )) · F B (β

−1 
B (x )) dx. 
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Fig. D1. Utility of the buyer under an opposing seller that plays according to the linear strategy that constitutes a BNE under uniform priors. 

Fig. D2. Utility of the buyer under an opposing seller that plays according to some different linear strategy: β(v ) = 

2 
5 
v . 

Note that the term including the maximal buyer’s bid does 

not equal zero, which was the case for the minimal seller’s ask 

price in the derivations for the buyer’s interim utility. With the 

definition of the allocation as above and for the case of the 

k -double auction, the buyer’s interim utility is given by 

u 

interim 

B (v B , βB (v B ) , βS ) 

= 1 { βB (v B ) ≥b S } ·
(

( v B − βB (v B ) ) · F S (β
−1 
S ( min { βB (v B ) , b S } )) 

+ (1 − k ) ·
∫ min { βB (v B ) , b S } 

b S 

F S (β
−1 
S (y )) dy 

)
, (C.1) 

and the seller’s interim utility by 

u interim 

S (v S , βB , βS (v S )) 

= 1 { b B ≥βS (v S ) } ·
((

k · b B + (1 − k ) · βS (v S ) − v S 
)

· F B (β
−1 
B ( b B )) 

−
(
k max 

(
βS (v S ) , b B 

)
+ (1 − k ) βS (v S ) − v S 

)
· F B (β

−1 
B ( max { βS (v S ) , b B } )) 

− k ·
∫ b B 

max { βS (v S ) , b B } 
F B (β

−1 
B (x )) dx 

)
. (C.2) 

The first-order conditions are then given by the following system 

of non-linear ODEs: 

A (v B , v S , βB , βS ) := 

(
d 

dβB (v B ) 
u 

interim 

B 
(v B , βB (v B ) , βS ) 

d 
dβS (v S ) 

u 

interim 

S 
(v S , βB , βS (v S )) 

)
= 

(
0 

0 

)
. 

(C.3) 

Appendix D. Utility landscape 

In this section, we will take an empirical look at the utility 

landscape that the buyer faces under different circumstances in 

the bilateral trade setting. Figs. D1 –D4 show the buyer’s utility 

for all his possible valuations and actions against different sellers. 

Assuming specific priors and specific strategies of the sellers, the 

utility can be derived analytically. All resulting utility functions of 

the buyer are concave in large ranges, which might explain why 

gradient-based methods consistently converge in all settings con- 

sidered. 

Appendix E. Expected utility with linear strategies 

In what follows, we derive the expected utility of buyer and 

seller with independent uniform priors and quasi-linear utility 

in the average double auction. Furthermore, we assume that the 

strategies are linear. That is, there exist m B , t B , m S , t S ∈ R such 

that βB (v B ) = m B v B + t B and βS (v S ) = m S v S + t S . Finally, we re- 

strict the feasible set as described in Section 3.4 according to 

Assumptions 1 and 2 . 

Using Eqs. (2) and (7) , the buyer’s ex-ante utility is given by 

u 

ante 
B (βB , βS , k ) = u 

ante 
B (m B , t B , m S , t S , k ) (E.1) 

= E v B ∼ f B 

[
u 

interim 

B (v B , m B v B + t B , (m S , t S ) , k ) 
]

(E.2) 

= 

∫ 1 

1 
m B 

(t S −t B ) 
u 

interim 

B (v B , m B v B + t B , (m S , t S ) , k ) dv B . (E.3) 

Note that here we used that the PDF of the uniform distribu- 

tion is constant on the unit interval, f B (v B ) = 1 , and that the in- 

tegral’s lower bound comes from the buyer’s interim utility be- 

ing zero if the bid is below the lowest ask price of the seller. 

That is βB (v B ) = m B v B + t B < b S = t S . As the strategies are strictly 

increasing, we get for all valuations v B < 

1 
m B 

(t S − t B ) that the inner 

term in the integral is zero. That means we can calculate the in- 

ner term first and then take the integral afterward. For the case of 

βB (v B ) ≥ t S , the inner term is given by 

u interim 

B (v B , m B v B + t B , (m S , t S ) , k ) 

= ( v B − βB (v B ) ) · F S (β
−1 
S (βB (v B ))) + ( 1 − k ) ·

∫ βB (v B ) 

b S 

F S (β
−1 
S (y )) dy 

(E.4) 

= (v B − m B v B − t B ) · F S (β
−1 
S (m B v B + t B )) (E.5) 

+ ( 1 − k ) 

∫ m B v B + t B 

t S 

F S 

(
1 

m S 
( y − t S ) 

)
dy 

= (v B − m B v B − t B ) · F S 

(
1 

m S 

(m B v B + t B − t S )) 
)

(E.6) 

14 
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Fig. D3. Utility of the buyer under an opposing seller that plays according to some convex strategy: β(v ) = 

1 
2 
v 2 . 

Fig. D4. Utility of the buyer under an opposing seller that plays according to some concave strategy: β(v ) = 

√ 

v . 

+ ( 1 − k ) 

∫ m B v B + t B 

t S 

F S 

(
1 

m S 
( y − t S ) 

)
dy 

(∗1 ) = (v B − m B v B − t B ) · 1 

m S 

(m B v B + t B − t S ) (E.7) 

+ ( 1 − k ) 

∫ m B v B + t B 

t S 

1 

m S 
( y − t S ) dy 

= 

1 

m S 

·
[
(v B − m B v B − t B )(m B v B + t B − t S ) + ( 1 − k ) 

[ 
1 

2 
y 2 − t S y 

] m B v B + t B 

y = t S 

]
(E.8) 

= 

1 

m S 

[
−m 

2 
B v 

2 
B − 2 m B t B v B + m B v 2 B + t S m B v B − t 2 B + t B v B + t S t B − t S v B 

]
+ 

1 − k 

2 m S 

[
m 

2 
B v 

2 
B + 2 m B t B v B − 2 m B t S v B + t 2 B − 2 t B t S + t 2 S 

]
(E.9) 

= 

1 

m S 

[(
−m 

2 
B + m B 

)
v 2 B + ( −2 m B t B + t S m B + t B − t S ) v B − t 2 B + t S t B 

]
+ 

1 − k 

2 m S 

[
m 

2 
B v 

2 
B + ( 2 m B t B − 2 m B t S ) v B + (t B − t S ) 

2 
]
. (E.10) 

In step (∗1 ) , we get that the argument of F S always comes from 

the unit interval. The lower bound of the integral t S evaluates to 

an argument of zero, whereas the upper bound gives 1 
m S 

((m B v B + 

t B ) − t S ) ≤ 1 
m S 

((m S + t S ) − t S ) = 1 by property 3 of Assumption 2 . 

We proceed by calculating the integral from Eq. (E.3) . This gives 

us 

u ante 
B (m B , t B , m S , t S , k ) 

= 

(
m B − m 

2 
B 

m S 

+ 

1 − k 

2 m S 

m 

2 
B 

)
·
∫ 1 

1 
m B 

(t S −t B ) 
v 2 B dv B 

+ 

(
t S m B − 2 m B t B + t B − t S 

m S 

+ 

1 − k 

2 m S 
( 2 m B t B − 2 m B t S ) 

)
·
∫ 1 

1 
m B 

(t S −t B ) 
v B dv B 

+ 

(
t S t B − t 2 B 

m S 

+ 

( 1 − k ) ( t B − t S ) 
2 

2 m S 

)(
1 − t S − t B 

m B 

)
(E.11) 

= 

(
−m B ( m B + km B − 2 ) 

2 m S 

)(
( t B − t S ) 

3 

3 m 

3 
B 

+ 

1 

3 

)

+ 

(
− t S − t B + m B t B + km B t B − km B t S 

m S 

)(
1 

2 

− ( t S − t B ) 
2 

2 m 

2 
B 

)

+ 

(
t S t B − t 2 B 

m S 

+ 

( 1 − k ) ( t B − t S ) 
2 

2 m S 

)(
1 − t S − t B 

m B 

)
. (E.12) 

We expand each of the three terms first, before collapsing it back 

into a function of m B , m S , t B , t S , and k . 

= 

(
− 1 

2 m S 

)
·
(

1 

3 m 

2 
B 

)
( m B + km B − 2 ) 

(
( t B − t S ) 

3 + m 

3 
B 

)
+ 

(
− 1 

2 m S 

)
·
(

1 

3 m 

2 
B 

)
· 3 ( t S − t B + m B t B + km B t B − km B t S ) 

(
m 

2 
B − ( t S − t B ) 

2 
)

+ 

(
− 1 

2 m S 

)
·
(

1 

3 m 

2 
B 

)
· 3 m B 

(
2 t S t B − 2 t 2 B + (1 − k )(t B − t S ) 

2 
)
( t S − t B − m B ) 

(E.13) 

= − 1 

6 m S m 

2 
B 

(
km 

4 
B + m B t 

3 
B − m B t 

3 
S − 6 t B t 

2 
S + 6 t 2 B t S − 2 m 

3 
B + m 

4 
B − 2 t 3 B + 2 t 3 S 

)
− 1 

6 m S m 

2 
B 

(
km B t 

3 
B − km B t 

3 
S + 3 m B t B t 

2 
S − 3 m B t 

2 
B t S + 3 km B t B t 

2 
S − 3 km B t 

2 
B t S 
)

− 1 

6 m S m 

2 
B 

(
3 m 

3 
B t B − 3 m B t 

3 
B − 3 m 

2 
B t B + 3 m 

2 
B t S + 9 t B t 

2 
S − 9 t 2 B t S + 3 t 3 B 

−3 t 3 S − 3 km B t 
3 
B 

)
− 1 

6 m S m 

2 
B 

(
3 km 

3 
B t B + 3 km B t 

3 
S − 3 km 

3 
B t S − 3 m B t B t 

2 
S + 6 m B t 

2 
B t S − 9 km B t B t 

2 
S 

+9 km B t 
2 
B t S 
)

− 1 

6 m S m 

2 
B 

(
3 m 

2 
B t 

2 
B − 3 m 

2 
B t 

2 
S + 3 m B t 

3 
B + 3 m B t 

3 
S + 3 km B t 

3 
B − 3 km B t 

3 
S − 3 m B t B t 

2 
S 

)
− 1 

6 m S m 

2 
B 

(
−3 m B t 

2 
B t S + 3 km 

2 
B t 

2 
B + 3 km 

2 
B t 

2 
S + 9 km B t B t 

2 
S − 9 km B t 

2 
B t S − 6 km 

2 
B t B t S 

)
(E.14) 

= − ( m B + t B − t S ) 
2 
(
t B − t S + m B ( m B + t B + 2 t S − 2 ) + m B k ( m B + t B − t S ) 

)
6 m 

2 
B 
m S 

. 

(E.15) 

Inserting the seller’s linear equilibrium strategy, βS (v S ) = 

2 
3 v S + 

1 
4 , 

into the equation of the buyer’s ex-ante utility indeed verifies that 

it has a local maximum at the buyer’s corresponding equilibrium 

15 
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strategy, βB (v B ) = 

2 
3 v B + 

1 
12 . (See Section 3.3 for more details on 

the equilibrium strategies.) The buyer’s ex-ante utility landscape in 

this scenario is depicted in Fig. 2 , which shows the local maximum 

at that point. 

We repeat this process for the seller’s ex-ante utility. 

u 

ante 
S (m B , t B , m S , t S , k ) 

= E v S ∼ f S 

[
u 

interim 

S (v S , (m B , t B ) , m S v S + t S , k ) 
]

(E.16) 

= 

∫ 1 
m S 

(m B + t B −t S ) 

0 

u 

interim 

S (v S , (m B , t B ) , m S v S + t S , k ) dv S (E.17) 

= − ( m B + t B − t S ) 
3 − m S ( m B + t B − t S ) 

2 (m B + t B + 2 t S + km B + kt B − kt S ) 

6 m B m S 
2 

. 

(E.18) 

Appendix F. Monotonicity of the parametrized game 

Rosen (1965) introduced the notion of (strict) monotonicity 5 in 

games, which has been established as central concept to show con- 

vergence of learning algorithms in games ( Guo et al., 2021; Mer- 

tikopoulos & Zhou, 2019 ). One can formulate the ex-ante game 

as variational inequality over the infinite dimensional action space 

�. As we know that the game has more than one equilibrium in 

�, one can already derive that the game is not strictly monotone 

( Cavazzuti et al., 2002 ). In this section, we demonstrate that this 

negative result extends to discretizations of the strategy space, as 

is done with NPGA and SODA. NPGA considers the parameter space 

of a neural network, whereas SODA discretizies the type and action 

spaces themselves. Monotonicity, by itself thus cannot explain the 

positive convergence results we observed in practice. 

Let us start by considering NPGA. For simplicity, we formu- 

late the monotonicity condition for two players and refer to Rosen 

(1965) for additional details. Consider a game between two play- 

ers i ∈ { 1 , 2 } , with action spaces E i ⊂ R 

m i , m i ∈ N , and continuously 

differentiable utility functions U 1 , U 2 : E → R for E = E 1 × E 2 . De- 

note the payoff gradients by v i = ∇ y i U i (y 1 , y 2 ) for i ∈ { 1 , 2 } and 

v = [ v 1 , v 2 ] T . 

Definition 1. Such a game is called strictly monotone if 

〈 v (y ′ ) − v (y ) , y ′ − y 〉 ≤ 0 for all y, y ′ ∈ E, (F.1) 

where equality holds if and only if y � = y ′ . 

The NPGA algorithm’s setting in general double auctions can be 

identified with the game above (see Section 4.1 ). We consider the 

setting with linear strategies introduced in Section 3.4 for the av- 

erage double auction (i.e., k = 0 . 5 ). Using the derivations for the 

ex-ante utilities from Eqs. (E.15) , Eq. (18) in Appendix E , we can 

derive the payoff gradients 

v ls (m B , t B , m S , t S ) = 

⎛ 

⎜ ⎜ ⎝ 

d 
dm B 

u 

ante 
B 

d 
dt B 

u 

ante 
B 

d 
dm S 

u 

ante 
S 

d 
dt S 

u 

ante 
S 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

( t B −t S ) 
3 

3 m B 
3 m S 

− 6 m B +9 t B −3 t S −4 
12 m S 

+ 

( t B + t S ) ( t B −t S ) 
2 

4 m B 
2 m S 

− ( m B + t B −t S ) 

(
t B −m B −t S + 3 m B t B 

2 + m B t S 2 + 3 m B 2 2 

)
2 m B 

2 m S 

( m B + t B −t S ) 
3 

3 m B m S 
3 − ( m B + t B −t S ) 

2 
( m B + t B + t S ) 

4 m B m S 
2 

( m B + t B −t S ) 
2 −m S ( m B + t B −t S ) 

(
m B 
2 + 

t B 
2 + 

3 t S 
2 

)
2 m B m S 

2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

5 Rosen originally referred to strict monotonicity as diagonal strict concavity. 

Consider the following two points 

y ′ = 

⎛ 

⎜ ⎝ 

0 . 080 

0 . 171 

0 . 250 

0 . 200 

⎞ 

⎟ ⎠ 

and y = 

⎛ 

⎜ ⎝ 

0 . 080 

0 . 171 

0 . 260 

0 . 199 

⎞ 

⎟ ⎠ 

. 

Then one can directly verify that these points do satisfy 

Assumptions 1 and 2 . However, plugging these points into 

Eq. (F.1) gives 

〈 v ls (y ′ ) − v ls (y ) , y ′ − y 〉 = 

3 , 631 

3 , 0 0 0 , 0 0 0 , 0 0 0 

> 0 . 

Therefore, the monotonicity condition does not hold. This is a 

strong indication that using monotonicity to derive global conver- 

gence guarantees, also for more complex parametrizations, is im- 

possible without further restrictions. 

For the discretized game from SODA, the experimental results 

already show that the monotonicity does not hold. From Rosen 

(1965 , Theorem 2) we know that monotonicity implies unique- 

ness of the equilibrium point. Since we can observe that SODA 

converges to different equilibrium points, uniqueness and hence 

monotonicity cannot be satisfied. Moreover, we can check the 

monotonicity condition directly. The set of discrete distributional 

strategies together with the expected utilities of the discretized 

game (see Section 4.2 ) define a game as defined above. Analo- 

gous to NPGA, we then checked the inequality Eq. (F.1) for different 

strategies and could verify numerically that the condition does not 

hold. This was done for different numbers of discretization points 

of the game. 

Appendix G. Local convergence of NPGA assuming linear 

strategies 

This section presents the proof of Proposition 1 . For this, we use 

a result of Chasnov et al. (2020) , which is stated first. Then, we 

draw on the formulas for the interim utilities derived in Section 

Appendix C , where we derive the buyer’s and seller’s ex-ante util- 

ities assuming linear equilibrium bid functions. With these, we 

formulate the ex-ante game explicitly and successively show all 

needed properties for the result to hold. 

G1. Convergence of gradient-based learning 

Consider a set of I = { 1 , . . . , n } agents, an action space R 

d = 

R 

d 1 × . . . × R 

d n (or possibly subsets thereof). Let f i : R 

d → R denote 

agent i ’s cost function. This corresponds to the negative utilities 

for participants in bilateral bargaining. Then, the collection of costs 

( f 1 , . . . , f n ) on the action space R 

d defines a continuous game. Let 

D i f i and D 

2 
i 

f i denote the first and second partial derivative of f i 
with respect to θi and D ji f i denote the partial derivative of D i f i 
with respect to θ j . Define the game gradient as 

ω(θ ) = ( D 1 f 1 (θ ) , . . . , D n f n (θ ) ) , (G.1) 

and the game Jacobian , i.e., the Jacobian of ω, by 

J(θ ) = 

⎡ 

⎣ 

D 

2 
1 f 1 (θ ) . . . D 1 n f 1 (θ ) 

. . . 
. . . 

. . . 

D n 1 f n (θ ) . . . D 

2 
n f n (θ ) 

⎤ 

⎦ . (G.2) 

We make the following assumption so that the game gradient and 

Jacobian exist and are well-defined. 

Assumption 3. For each i ∈ I , f i ∈ C q (R 

d , R ) for q ≥ 2 and ω(θ ) is 

L -Lipschitz. 

The following two definitions characterize local properties of a 

Nash equilibrium strategy θ ∗ ∈ R 

d . 
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Definition 2 (Definition 3 of Ratliff et al. (2016) ) . A strategy θ ∗ ∈ 

R 

d is a differential Nash equilibrium if ω(θ ∗) = 0 and D 

2 
i 

f i (θ
∗) > 0 

for each i ∈ I . 

Definition 3. Let θ ∗ ∈ R 

d be a differential Nash equilibrium. If 

the game Jacobian J(θ ∗) is non-degenerate, i.e., det J(θ ∗) � = 0 , and 

the spectrum of J(θ ∗) is strictly in the right half-plane, i.e., 

spec (J(θ ∗)) ⊂ C 

o + ) , then we call θ ∗ a stable differential Nash equi- 

librium . 

Now, we state a special case of Proposition 2 of Chasnov et al. 

(2020) , which gives conditions on convergence to a Nash equilib- 

rium assuming exact gradient feedback and a constant learning 

rate. 

Proposition 2. Consider an n -player game G = ( f 1 , . . . , f n ) satisfy- 

ing Assumption 3 . Let θ ∗ ∈ R 

d be a stable differentiable Nash equi- 

librium with R (θ ∗) being its region of attraction. Suppose agents 

use the gradient-based learning rule θk +1 = θk − �ω(θk ) with � = 

γ · I m 

s.t. 0 < γ < ˜ γ , where ˜ γ = arg min h> 0 max j | 1 − hλ j (J(θ ∗)) | = 

1 and λ j (A ) denotes the j’th eigenvalue of matrix A . Then, for θ0 ∈ 

R (θ ∗) , θk → θ ∗ exponentially. 

G2. Proof of Proposition 1 

Combining the findings up to this point, we can state the proof 

of Proposition 1 . 

Proof. We aim to use Proposition 2 to show the final result. For 

this, we check that Assumption 3 holds and the linear equilibrium 

needs to be a stable differentiable NE. 

We start by showing that Assumption 3 holds. Note that the 

ex-ante utilities of buyer and seller from Eqs. (E.15) to (E.18) are 

rational functions in m B and m S and polynomials in t B and t S , 

where the poles are not in the feasible set as m B , m S > 0 according 

to Assumption 1 . Therefore, these are in C ∞ . The game gradient is 

given by 

ω(m B , t B , m S , t S ) 

= 

⎛ 

⎜ ⎜ ⎝ 

∂ 
∂m B 

u 

ante 
B 

∂ 
∂t B 

u 

ante 
B 

∂ 
∂m S 

u 

ante 
S 

∂ 
∂t S 

u 

ante 
S 

⎞ 

⎟ ⎟ ⎠ 

(G.3) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

3 m B ( t B −t S ) 
2 
( t B + t S ) −m 

3 
B ( 6 m B +9 t B −3 t S −4 ) +4 ( t B −t S ) 

3 

12 m 

3 
B 
m S 

− ( m B + t B −t S ) ( t B −m B −t S + 3 2 m B ( t B + t S + m B ) ) 
2 m 

2 
B 
m S 

− ( m B + t B −t S ) 
2 ( 2 ( t S −t B −m B ) 

3 
2 m S ( m B + t B + t S ) ) 

6 m B m 

3 
S 

− ( m B + t B −t S ) ( t S −t B −m B + 1 2 m S ( m B + t B +3 t S ) ) 
2 m B m 

2 
S 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (G.4) 

The game gradient ω is Lipschitz continuous if its derivative is 

bounded. Therefore, we proceed by verifying that every entry of 

the game Jacobian is bounded under Assumptions 1 and 2 . For this, 

we derive the game Jacobian next, which is given by 

J(m B , t B , m S , t S ) (G.5) 

= 

[
D 

2 
B u 

ante 
B 

(m B , t B , m S , t S ) D B,S u 

ante 
B 

(m B , t B , m S , t S ) 
D S,B u 

ante 
S 

(m B , t B , m S , t S ) D 

2 
S u 

ante 
S 

(m B , t B , m S , t S ) 

]
. 

All terms are 4 × 4 matrices, which are given by 

D 

2 
B u 

ante 
B (m B , t B , m S , t S ) = 

(
d 1 , 1 

B,B 
d 1 , 2 

B,B 

d 2 , 1 
B,B 

d 2 , 2 
B,B 

)
, 

where 

d 1 , 1 
B,B 

= −
m B 

(
m 

3 
B + ( t B − t S ) 

2 
( t B + t S ) 

)
+ 2 ( t B − t S ) 

3 

2 m 

4 
B 
m S 

, 

d 1 , 2 
B,B 

= −
m B 

(
3 m 

2 
B + ( t S − t B ) ( 3 t B + t S ) 

)
− 4 ( t B − t S ) 

2 

4 m 

3 
B 
m S 

, 

d 2 , 1 
B,B 

= −
m B 

(
3 m 

2 
B + ( t S − t B ) ( 3 t B + t S ) 

)
− 4 ( t B − t S ) 

2 

4 m 

3 
B 
m S 

, 

d 2 , 2 
B,B 

= − t B − t S + 

3 
2 

m B ( t B − t S + m B ) 

m 

2 
B 
m S 

. 

Further, 

D B,S u 

ante 
B (m B , t B , m S , t S ) = 

(
d 1 , 1 

B,S 
d 1 , 2 

B,S 

d 2 , 1 
B,S 

d 2 , 2 
B,S 

)
, 

where 

d 1 , 1 
B,S 

= 

m B 

(
m 

2 
B ( 6 m B + 9 t B − 3 t S − 4 ) − 3 ( t B + t S ) ( t B − t S ) 

2 
)

− 4 ( t B − t S ) 
3 

12 m 

3 
B 
m 

2 
S 

, 

d 1 , 2 
B,S 

= −−m B 
3 + m B t B 

2 + 2 m B t B t S − 3 m B t S 
2 + 4 t B 

2 − 8 t B t S + 4 t S 
2 

4 m B 
3 m S 

, 

d 2 , 1 
B,S 

= 

( m B + t B − t S ) 
(
t B − m B − t S + 

3 
2 

m B ( t B + t S + m B ) 
)

2 m B 
2 m S 

2 
, 

d 2 , 2 
B,S 

= 

2 t B − 2 t S + m B t B + m B t S + m B 
2 

2 m B 
2 m S 

. 

Further, 

D S,B u 

ante 
S (m B , t B , m S , t S ) = 

(
d 1 , 1 

S,B 
d 1 , 2 

S,B 

d 2 , 1 
S,B 

d 2 , 2 
S,B 

)
, 

where 

d 1 , 1 
S,B 

= 

4 ( m B + t B − t S ) 
2 
( 2 m B − t B + t S ) − 3 m S ( m B + t B − t S ) 

(
2 m B 

2 + m B t B + m B t S − t B 
2 + t S 

2 
)

12 m 

2 
B 
m 

3 
S 

, 

d 1 , 2 
S,B 

= 

4 ( m B + t B − t S ) 
2 − m S ( m B + t B − t S ) ( 3 m B + 3 t B + t S ) 

4 m B m S 
3 

, 

d 2 , 1 
S,B 

= 

m 

2 
B ( 2 − m S ) − 2 ( t B − t S ) 

2 + m S ( t B − t S ) ( t B + 3 t S ) 

4 m 

2 
B 
m 

2 
S 

, 

d 2 , 2 
S,B 

= 

m B ( 2 − m S ) + 2 t B − 2 t S − m S ( t B + t S ) 

2 m B m 

2 
S 

. 

Lastly, 

D 

2 
S u 

ante 
S (m B , t B , m S , t S ) = 

(
d 1 , 1 

S,S 
d 1 , 2 

S,S 

d 2 , 1 
S,S 

d 2 , 2 
S,S 

)
, 

where 

d 1 , 1 
S,S 

= − ( m B + t B − t S ) 
3 − 1 

2 
m S ( m B + t B − t S ) 

2 
( m B + t B + t S ) 

m B m S 
4 

, 

d 1 , 2 
S,S 

= 

m S ( m B + t B − t S ) ( m B + t B + 3 t S ) −4 ( m B + t B − t S ) 
2 

4 m B m S 
3 

, 
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d 2 , 1 
S,S 

= 

m S ( m B + t B − t S ) ( m B + t B + 3 t S ) −4 ( m B + t B − t S ) 
2 

4 m B m S 
3 

, 

d 2 , 2 
S,S 

= 

−m B ( m S + 2 ) − 2 t B + 2 t S − m S ( t B − 3 t S ) 

2 m B m 

2 
S 

. 

As each entry of J is bounded under Assumption 2 , we get that 

ω is Lipschitz continuous. Therefore, Assumption 3 is satisfied in 

bilateral bargaining with linear strategies. 

It remains to show that θ ∗ = 

(
2 
3 , 

1 
12 , 

2 
3 , 

1 
4 

)
is a stable differential 

Nash Equilibrium. One can readily check that 

ω 

(
2 

3 

, 
1 

12 

, 
2 

3 

, 
1 

4 

)
= 0 . 

Furthermore, the matrices 

D 

2 
B u 

ante 
B 

(
2 

3 

, 
1 

12 

, 
2 

3 

, 
1 

4 

)
= 

(
− 189 

256 
− 135 

128 

− 135 
128 

− 27 
16 

)
, 

D 

2 
S u 

ante 
S 

(
2 

3 

, 
1 

12 

, 
2 

3 

, 
1 

4 

)
= 

(
− 81 

256 
− 81 

128 

− 81 
128 

− 27 
16 

)
are negative definite. One easily verifies this using the principal 

minor criterion. Note that the matrices need to be negative defi- 

nite instead of positive definite, as we are maximizing utilities in- 

stead of minimizing cost functions. Therefore, θ ∗ is a differential 

Nash Equilibrium. The Jacobian’s determinant at θ ∗ satisfies 

det 

(
J 

(
2 

3 

, 
1 

12 

, 
2 

3 

, 
1 

4 

))
= 

531441 

33554432 

� = 0 . 

Finally, using a computer program ( Matlab, 2020 ), we calculate the 

eigenvalues of J(θ ∗) , which are given by 

λ( J(θ ∗) ) = 

⎛ 

⎜ ⎝ 

λ1 ( J(θ
∗) ) 

λ2 ( J(θ
∗) ) 

λ3 ( J(θ
∗) ) 

λ4 ( J(θ
∗) ) 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

σ3 

√ 

214 66411919 3 / 4 σ2 σ1 ( σ11 
3 / 4 + σ5 + σ6 ) σ7 

69036339115606897664 

σ3 

√ 

214 66411919 3 / 4 σ2 σ1 ( σ11 
3 / 4 −σ5 + σ6 ) σ7 

69036339115606897664 

σ3 

√ 

214 66411919 3 / 4 σ2 σ1 ( −σ11 
3 / 4 + σ4 + σ6 ) σ7 

69036339115606897664 

− σ3 

√ 

214 66411919 3 / 4 σ2 σ1 ( σ11 
3 / 4 + σ4 −σ6 ) σ7 

69036339115606897664 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where 

σ1 = 

(
29221932781 − 604 8 

√ 

14026 82838 i 
)1 / 6 

, 

σ2 = 

(
−29221932781 + 604 8 

√ 

14026 82838 i 
)1 / 4 

, 

σ3 = ( −1 ) 
3 / 4 

, 

σ4 = 

√ 

−σ8 + σ9 − σ10 − 9487417 

√ 

σ11 , 

σ5 = 

√ 

σ8 + σ9 − σ10 − 9487417 

√ 

σ11 , 

σ6 = 63 

√ 

3 σ12 
1 / 6 σ11 

1 / 4 , 

σ7 = 

(
σ12 

1 / 3 
(
−153710549 + 72 

√ 

1402682838 i 
)

+ 121846 σ12 
2 / 3 

− 473375263673 − 319752 

√ 

1402682838 i 

)
1 / 4 

σ8 = 161784 

√ 

87665798343 + 18144 

√ 

1402682838 i , 

σ9 = 8882 σ12 
1 / 3 √ 

σ11 , 

σ10 = σ12 
2 / 3 √ 

σ11 , 

σ11 = 4 4 41 σ12 
1 / 3 + σ12 

2 / 3 + 9487417 , 

σ12 = 29221932781 + 604 8 

√ 

14026 82838 i . 

One can numerically verify that all eigenvalues have a strictly neg- 

ative real part. Therefore, it holds that spec (J(θ ∗)) ⊂ C 

o −. 

That means we can use Proposition 2 to show that, if we use a 

sufficiently small learning rate, gradient-based algorithms, in par- 

ticular, NPGA with exact gradient feedback, indeed converges to 

the linear equilibrium strategies, which finishes the proof. �

Remark 1. Note that the proof is conducted for the special case 

of k = 1 / 2 as stated in the proposition, but essentially works for 

any k . However, in the final step, we rely on a computer program 

to calculate the eigenvalues of the game Jacobian matrix, because 

there is no obvious way of doing so for general k . Nonetheless, we 

successfully conducted the proof for k ∈ { 0 
10 , 

1 
10 , . . . , 

10 
10 } . 
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Enabling First-Order Gradient-Based Learning
for Equilibrium Computation in Markets

Nils Kohring 1 Fabian R. Pieroth 1 Martin Bichler 1

Abstract
Understanding and analyzing markets is crucial,
yet analytical equilibrium solutions remain largely
infeasible. Recent breakthroughs in equilibrium
computation rely on zeroth-order policy gradient
estimation. These approaches commonly suffer
from high variance and are computationally ex-
pensive. The use of fully differentiable simulators
would enable more efficient gradient estimation.
However, the discrete allocation of goods in eco-
nomic simulations is a non-differentiable oper-
ation. This renders the first-order Monte Carlo
gradient estimator inapplicable and the learning
feedback systematically misleading. We propose
a novel smoothing technique that creates a surro-
gate market game, in which first-order methods
can be applied. We provide theoretical bounds
on the resulting bias which justifies solving the
smoothed game instead. These bounds also al-
low choosing the smoothing strength a priori such
that the resulting estimate has low variance. Fur-
thermore, we validate our approach via numerous
empirical experiments. Our method theoretically
and empirically outperforms zeroth-order meth-
ods in approximation quality and computational
efficiency.

1. Introduction
Auctions are at the center of modern economic theory. Given
some private valuation of goods available for purchase, par-
ticipants must place bids on the market that maximize their
expected payoff while remaining unaware of the other par-
ticipants’ valuations. In the seminal paper (Vickrey, 1961)
the foundation for most auction theory results of today was
laid. It is crucial to understand the strategic behavior in

1School of Computation, Information and Technology, Tech-
nical University of Munich. Correspondence to: Nils Kohring
<nils.kohring@tum.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

various auction applications, ranging from treasury and in-
dustrial procurement auctions to spectrum sales. Depending
on the circumstances and behavioral assumptions, optimal
strategies may differ drastically, starting from strategies,
such as understating demand (bid-shading) (Krishna, 2009)
and overstating demand (overbidding) (Ott & Beck, 2013),
or much more convoluted strategies. However, computing
such equilibria and approximations a priori remains chal-
lenging. Analytical equilibria can only be derived under
strong assumptions such as in single-item auctions or the
independent private values model.

A recent approach based on policy optimization uses ran-
domized finite difference approximations of the gradient
(Bichler et al., 2021). They proposed an algorithm called
neural pseudogradient ascent (NPGA), which parametrizes
the bidding strategies using neural networks and follows
the approximate gradient dynamics of the game via simul-
taneous gradient ascent of all agents. The gradients are
computed via evolution strategies (ES) (Salimans et al.,
2017), which smoothen the objective by adding noise in
the parameter space, thereby treating the environment as a
black box. Compared with the well-known REINFORCE
algorithm, where the actions are perturbed, this also results
in zeroth-order gradient estimates with better precision and
lower variance but much higher computational cost.

Under the differentiable programming paradigm, there is a
growing interest in computing gradients for numerous re-
inforcement learning applications that allow for first-order
gradient estimates. It is possible to create a full compu-
tational graph for applications with a certain amount of
structure. First-order methods have the advantage of much
lower variance, which leads to faster convergence rates to
local minima of non-convex objective functions (Mohamed
et al., 2020). However, there are two common problems in
employing first-order methods. First, most reinforcement
learning environments are provided only as black boxes.
This implies that there is no explicit access to the underly-
ing state transition function and the gradient can only be
estimated by repeatedly evaluating the reward function. The
wide applicability of zeroth-order policy optimization, like
REINFORCE and more advanced actor-critic techniques
(Schulman et al., 2017), contributes to their popularity. Sec-
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ond, in some applications, such as the training of varia-
tional autoencoders, the computational path of the derivate
is blocked (i.e., repeatably applying the chain rule to calcu-
late the gradient of the reward with respect to the parameters
of the policy) because it consists of sampling a random vari-
able, which is a non-differentiable operation (Bangaru et al.,
2021).

The situation is similar in auction games. The allocation
of indivisible goods causes biased gradients of first-order
methods. Example 1.1 showcases this observation. It was
observed that the first-order Monte Carlo gradient estimate
does not converge to equilibrium and quickly causes con-
sistent zero-bidding (Bichler et al., 2021). From a mathe-
matical standpoint, the single-sample (ex post) utility has a
discontinuity. Thus, the sample mean of its exact gradients
is an inadequate estimate for its true (ex ante) utility gradient
(the expected utility over all possible valuations).

Example 1.1. Consider a first-price sealed-bid (FPSB)
single-item auction. Two bidders compete for a single good,
where the winner pays his or her bid. The derivative of the
utility with respect to the bid is zero for losing bids and
minus one for winning bids after a point of discontinuity.
Either the bidder loses and receives no feedback or wins and
could have won with an even smaller bid.

In this study, we propose transforming multi-agent auction
games such that their utility functions are sufficiently regu-
lar for applying efficient first-order gradient methods while
keeping the overall gradient dynamics close to the original
game. In contrast to the original allocations of indivisible
items, we use soft allocations instead. We effectively treat
the items as divisible and allocate the proportional fraction
of an item to the bidders based on their reported bids. An
additional adaption to the pricing rule eliminates the dis-
continuity at the threshold of winning and losing an object.
However, this comes at the expense of introducing a bias in
the utility function. For example, a losing bidder has zero
utility the original auction. However, in the smoothed auc-
tion, this bidder receives a small fraction of the good (and
pays a correspondingly small price), such that the gradient
indicates that a higher bid would have resulted in higher
utility. The feedback to bid lower when winning remains
of similar magnitude. Thus, there is always appropriate
feedback on the current bidding strategy in the smoothed
game. Figure 1 shows the utility function and its relaxed
version.

This approach is applicable widely to economic models and
general auction formats, such as sequential or simultane-
ous sales of multiple goods, as in combinatorial auctions
with item bidding. It is further independent of the number
of bidders, payment rule, risk preferences of the bidders,
or correlations among the bidders’ valuations. We demon-
strate that the choice of a smoothing parameter follows
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Figure 1. Ex post utility in the original FPSB single-item auction
(blue) and its smoothed version (red) for a temperature of λ = 0.01
and a highest opponent bid of 0.5. The utility in the original auction
is zero for losing bids and decreases linearly for winning bids.

a natural trade-off. Importantly, computing equilibria in
multi-agent games is not straightforward and many negative
results are known (Chasnov et al., 2020; Mazumdar et al.,
2020; Letcher, 2020). Therefore, changes to the game dy-
namics must be implemented with great caution, and we
can prove that an approximate equilibrium in the smoothed
game still constitutes an approximate equilibrium in the
original game.

Computational-wise, the smoothing only comes with the
cost of tracking the gradients of the individual operations,
upon which the game dynamics are built. Compared with
NPGA, learning in the smooth market (SM) via the first-
order estimator is more than ten times faster while yielding
better results. For example, an iteration of NPGA in a small
single-item auction with the default hyperparameters from
(Bichler et al., 2021) takes approximately 0.16 s, whereas
first-order policy gradients applied to the SM take an average
of 0.01 s.

Our contribution can be summarized as follows: We intro-
duce the SM and show that first-order methods provide an
unbiased estimator of the utility gradient of the SM game.
Furthermore, we provide theoretical guarantees showing
that policy improvements in the SM result in improvements
in the original game, and we provide theoretical and em-
pirical insights showing that the empirical variance can be
controlled. Finally, we demonstrate a substantial improve-
ment to previous methods in performance and computational
speed via multiple experiments.

2. Related Work
The theory of learning in games largely considers complete-
information finite games, hence, traditional techniques rely
on discretization. However, it is unclear how well a dis-
cretized strategy performs in the original continuous game
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in general (Waugh et al., 2009) and it suffers from the curse
of dimensionality. The first attempts to compute equilibria
in imperfect-information auction games followed such an
approach (Athey, 2001) or expressed the game as a limit
of a sequence of complete-information games (Armantier
et al., 2008). In larger combinatorial auctions equilibria
were first computed with an algorithm that computes point-
wise best responses in a discretization of the strategy space
via Monte Carlo integration (Bosshard et al., 2020). Besides
the aforementioned NPGA, an approach that similarly learns
continuous-action strategies was proposed (Li & Wellman,
2021). Both algorithms learn bid functions via zeroth-order
gradient estimates that are used during simultaneous gradi-
ent ascent in self-play. Our method considers a continuous
surrogate game and enables the use of first-order gradient
methods.

The idea of analytically smoothing markets is conceptually
similar to that of differentiable physics simulations. Smooth
approximations of the underlying dynamics were used in
these simulations (Huang et al., 2021). Zeroth- and first-
order methods were compared and the pros and cons of both
when available were discussed (Suh et al., 2022). Further-
more, they demonstrated that the presence of discontinuities
in the objective causes the first-order estimator to be bi-
ased, whereas the zeroth-order estimator remains unbiased.
Smooth markets transfer these ideas to auctions.

3. Preliminaries
We restrict the formulations to the case of single-item auc-
tions for brevity in the presentation. The extension to auc-
tions of multiple independent items is straightforward and
we present some experimental results for both cases.

3.1. Auctions as Bayesian Games

A Bayesian auction game is defined as a quintuple G =
(I,A,V, F, u). I = {1, . . . , n} describes the set of bidders
participating in the game. The set of possible bid profiles is
given as A = A1 × · · · × An, where Ai is the set of bids
available to agent i ∈ I. Whereas V = V1 × · · · × Vn is
the set of valuation profiles. F : V → [0, 1] defines the joint
prior probability distribution over valuation profiles, which
is assumed to be common knowledge among all agents
and atomless. Fi denotes agent i’s marginal distribution of
valuations. In this study, the index -i denotes a profile of
valuations, bids, or strategies for all bidders, except bidder i.

At the beginning of the game, nature draws a valuation
profile v ∼ F , and each agent i is informed of his or her
valuation vi ∈ Vi. We denote by Fi the marginal distribution
of bidder i and by F-i|i the conditional distribution of the
opponents given vi. Based on the drawn valuation vi, each
agent submits a bid bi according to the strategy, policy, or

bid function βi: Vi → Ai. We denote the resulting strategy
space of bidder i as Σi ⊆ AVi

i and the space of possible
joint strategies as Σ =

∏
i Σi.

As part of the environment, the auctioneer collects these
bids and applies an auction mechanism that determines al-
locations xi ∈ {0, 1} for each bidder i, such that the item
is allocated to at most one bidder. Also, it determines pay-
ments p(b) ∈ Rn

≥0 according to a payment rule p, which the
agents must pay to the auctioneer. We will consider bidders
with risk-neutral utility functions given by ui: Vi ×A → R,

ui(vi, b) = vi xi(b)− pi(b) (1)

=

{
vi − pi(b) bi > max b-i,

0 else,
(2)

i.e., the players’ utility is given by how much they value the
good allocated to them minus the price to be paid. We will
also write ui(vi, bi, b-i) = ui(vi, b) with a slight abuse of
notation. Thus, the bidders’ utilities depend on all bidders’
actions but only on their own valuations. They aim to maxi-
mize their utility ui. We omit bidders with risk aversion or
other forms of utility and valuation correlations for brevity.
Notwithstanding, our treatment of equilibrium computation
also extends to these settings. We will differentiate between
the ex ante state of the game, where bidders know only the
prior F , the interim state, where bidders additionally know
their valuation vi ∼ Fi, and the ex post state, where all bids
have been submitted; thus, ui(vi, b) can be evaluated.

3.2. Equilibria

Nash equilibria (NE) are often regarded as the central so-
lution concept in game theory. Informally, given the equi-
librium strategy of the opponents in an NE, no agent has
an incentive to unilaterally deviate. Bayesian Nash equi-
libria (BNE) extend this concept to games of incomplete
information. Here, the expected utility over the distribution
of opponent valuations is calculated instead. For a private
valuation vi ∈ Vi, bid bi ∈ Ai, and opponent strategies
β-i ∈ Σ-i, we denote the interim utility of bidder i as

ui(vi, bi, β-i) = Ev-i|vi [ui(vi, bi, β-i(v-i))], (3)

where v-i|vi denotes the expectation over the opponent’s
conditional prior distribution given the valuation vi. We
also denote the interim utility loss of bid bi incurred by not
playing a best response, given vi and β-i by:

ℓi(vi, bi, β-i) = sup
b′i∈Ai

ui(vi, b
′
i, β-i)− ui(vi, bi, β-i). (4)

An ε-Bayes Nash equilibrium (ε-BNE) with ε ≥ 0 is a
strategy profile β∗ = (β∗

1 , . . . , β
∗
n) ∈ Σ, such that no bidder

can improve his or her interim expected utility more than ε
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by deviating. Therefore, in an ε-BNE for all i ∈ I, it holds
that

sup
vi∈Vi

ℓi(vi, β
∗
i (vi), β

∗
-i) ≤ ε. (5)

A 0-BNE is simply called a BNE. In a BNE, every bidder’s
strategy maximizes his or her expected interim utility across
his or her valuation space, given the opponents’ strategies.
While BNEs are often defined at the interim stage of the
game, we also consider ex ante equilibria as strategy profiles
that concurrently maximize each bidder’s ex ante utility

ũi(βi, β-i) = Evi [ui(vi, βi(vi), β-i)]. (6)

To estimate the worst-case interim utility loss ℓmax, we
choose an equidistant grid of ngrid alternative actions rang-
ing from zero to the maximum valuation for all dimensions
and calculate approximate best responses based on the aver-
age utility over a sample of nbatch prior distributions. Taking
the maximum over all valuations and bidders then gives
an estimate of ℓmax, bounding ε for the ex ante case from
above.

As a second metric, we additionally report the probability-
weighted root mean squared error of the learned strategy
βi to the exact BNE strategy β∗

i for those settings where
an analytical BNE is known. For a sample from the prior
valuation of size nbatch, this approximates the L2 distance
∥βi − β∗

i ∥Σi of these two functions as

L2(βi) =

(
1

nbatch

∑

vi

(βi(vi)− β∗
i (vi))

2

)1/2

. (7)

Unlike ℓmax, this metric is much easier to compute and does
not suffer the drawback that a strategy with a negatable
small loss may still be arbitrarily distant from the actual
BNE. However, it is only computable when an analytical
BNE is available and may need multiple evaluations when
there are multiple BNE.

3.3. Gradient Optimization Methods

Policy gradient methods are concerned with learning a pa-
rameterized policy βθi that selects actions based on the
current observations (Sutton & Barto, 2018). To maximize
utility, bidder i updates the parameters θi according to gradi-
ent ascent. This process is intended to compute approximate
ex ante BNEs, that is, to find mutual best responses of the
bidders for all possible valuations. The exact gradient up-
date for valuation vi in iteration t is

θti = θt−1
i + η · ∇θt−1

i
ui(vi, βθt−1

i
(vi), βθt−1

-i
). (8)

This must be approximated in practice. Two common meth-
ods are zeroth- and first-order gradient approximations. The
former solely relies on evaluating the objective function ui,
whereas the gradient ∇θiui can be evaluated in the latter.

As stated in the introduction, the discontinuous nature of
the ex post utility function stems from the sampling of the
opponents’ priors and their corresponding actions. We en-
counter ui from Equation 2 and its derivative (in general) is
discontinuous in bi. The observation of this inapplicability
persists for all pricing regimes and behavioral assumptions
that are commonly considered in auctions. Thus, an unbi-
ased gradient estimate of the interim utility function cannot
be derived by sampling the ex post gradient. Specifically,
interchanging taking an expectation and differentiating is
invalid:

∇θi Ev-i|vi [ui] ̸= Ev-i|vi [∇θi ui]. (9)

We supply the mathematical details in Appendix A. There-
fore, the naive application of backpropagating the accumu-
lated exact ex post gradients may not be expected to provide
a meaningful estimate of the ex ante gradient. This study es-
tablishes a path towards valid first-order gradient estimates
in auction games.

3.4. Zeroth-Order Approximation Methods

(Bichler et al., 2021) employed ES to circumvent the in-
terchange of differentiation and integration. ES rely on a
randomized finite difference approximation of the gradi-
ent based on perturbations in the parameter space of the
neural networks which can be computed after averaging
over the priors (Salimans et al., 2017). This is an alterna-
tive zeroth-order method to the REINFORCE algorithm.
Unlike ES, REINFORCE relies on perturbations in the ac-
tion space by using mixed strategies (typically Gaussian
distributions) such that the gradient of the action probabil-
ity density can be approximated. (Salimans et al., 2017)
compared these estimates for RL applications and argued
that the variance of the ES estimate can be significantly
lower. We overload the notation for the ease of readabil-
ity and write ui(θi, v-i) = ui(vi, βθi(vi), βθ-i(v-i)). For a
hyperparameter σ > 0, the ES estimator can be derived
from

∇θi Ev-i|vi [ui(θi, v-i)]

≈ ∇θi Eϵ∼N (0,I)Ev-i|vi [ui(θi + σϵ, v-i)] (10)

= Eϵ∼N (0,I)Ev-i|vi

[ ϵ
σ
ui(θi + σϵ, v-i)

]
. (11)

The last term can now be approximated via sampling. How-
ever, the ES gradient estimate comes at massive computa-
tional costs. It requires a large number of additional envi-
ronment evaluations for the sampled population values of ϵ.
Parallelization is essentially unavailable, because it would
reduce the number of samples from the prior when consider-
ing a fixed amount of memory. Latter of which is the main
limiting factor in getting precise estimates of the expected
utility in auction games. Thus, (Bichler et al., 2021) kept
a large batch size and computed the ES sequentially using
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a default population size of 64. Based on the variance of
the estimate, (Salimans et al., 2017) argued that ES are an
attractive choice if the number of episodes is large, which is
not the case for single-round auctions.

4. Smoothing Single-Item Auctions
This section proposes the market-specific approach.

4.1. Allocation and Price Smoothing

The allocation of indivisible objects in auction games is
typically modeled as a binary vector, with a one indicating
that the item is allocated to the corresponding buyer. The
set of legitimate allocations is defined as

X =
{
x ∈ {0, 1}n

∣∣∣
n∑

i=1

xi ≤ 1
}
. (12)

For all commonly considered auctions, the allocations label
the bids as winning or losing to maximize the auctioneer’s
revenue. They are calculated according to

x(b) = argmax
x′ ∈X

n∑

i=1

bix
′
i. (13)

Typical auction mechanisms only differ in their payment
rules. Two noteworthy examples are the first-price mecha-
nism, where bidders pay what they bid and the celebrated
VCG mechanism (second-price), where they pay for the
harm they cause others by competing (Krishna, 2009).

These allocations result in the utilities not being continu-
ous. Therefore, we propose relaxing the calculation of the
allocations using the softmax function as a surrogate for the
argmax operation:

x
SM(λ)
i (b) =

exp
(
bi
λ

)
∑n

j=1 exp
(

bj
λ

) , i = 1, . . . n. (14)

The temperature λ > 0 denotes the smoothing strength.
This can be interpreted as dividing the item among all bid-
ders according to their proportional bid magnitudes, where∑

i x
SM(λ)
i (b) = 1 remains valid. The softmax asymptot-

ically recovers the true argmax as λ approaches zero. As
we are interested in a continuous utility surface, the discon-
tinuity in the prices (only the winners pay) must also be
considered. An obvious choice is to calculate the original
prices of the good and then distribute the price according to
the fractional allocations xSM(λ):

pSM(b) =
n∑

j=1

pj(b). (15)

Hence, the ex post utility in the relaxed game takes the form

u
SM(λ)
i (vi, b) =

(
vi − pSM(b)

)
x

SM(λ)
i (b). (16)

By definition, we have almost everywhere (a.e.) pointwise
convergence of xSM(λ)

i (vi, bi, β-i( · )) to xi(vi, bi, β-i( · )) as
functions of v-i, except at bi = max b-i. Furthermore, the
fractional prices pSM(λ)(bi, β-i( · )) also converge a.e. point-
wise to pi(bi, β-i( · )). Thus, the ex post utilities are re-
covered (a.e.) for ever smaller temperature. The resulting
utilities are visualized for the special case of an FPSB auc-
tion (Figure 1). Throughout the rest of the article, we make
the following regularity assumptions.

Assumption 4.1. Consider a Bayesian auction game G and
assume:

1. The action Ai and valuation spaces Vi are compact
intervals.

2. F is an atomless prior.

3. The bidding and pricing functions are measurable.

We regain continuity of the ex post utility and its gradient
by this smoothing of allocations and payments. Specifically,
we have the following theorem:

Theorem 4.2. Let the conditions of Assumption 4.1 hold
and assume the pricing function pSM, the marginal den-
sity functions {f-i|i}vi∈Vi,i∈I , and strategies {βi}i∈I to be
Lipschitz continuous. Then, the estimator on the smooth
interim utility’s gradient by sampling from the smoothed ex
post utilities’ gradients is unbiased, i.e.,

∇θi u
SM
i (vi, bi) = Ev-i|vi [∇θiu

SM
i (vi, bi, β-i(v-i))], (17)

for all i ∈ I, vi ∈ Vi, and bi ∈ Ai.

We refer to Appendix A for the proof. Importantly, this
relaxation technique is applicable to general markets with
different payment rules, utility functions, or correlated pri-
ors. Compared with the ES gradient estimate, where the
parameter space is perturbed, the SM gradient estimate per-
turbs the utility function. Thus, the origin of bias is different
and can be controlled by σ for ES and by λ for SM.

4.2. Approximation Quality

We check the validity of the smoothing intervention by
ensuring that the error to the original game dynamics can be
controlled by choosing a sufficiently small value of λ. This
ensures that conducting policy optimization in the smoothed
game can be expected to result in policy improvements in
the original game. Furthermore, this will clarify the question
of an optimal choice of the temperature value.

Generally, analytically computing equilibria of the SM game
is infeasible. Instead, we focus on comparing the expected
interim and ex ante utilities in the original and SM game. A
small error implies similar utility surfaces and gradient dy-
namics. Note that the ex post utilities can be quite different.
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Suppose multiple bidders compete for a single commodity
and bidder i has approximately the same bid magnitude as
the strongest opponent. The smoothed allocation is close
to one-half, whereas the true allocation is either zero or
one. This would result in a significant difference in the ex
post utility driven by the magnitude of the utility disconti-
nuity in the original auction. The probability of such large
errors decreases with smaller smoothing factors; however,
this event cannot be completely ruled out. We verify in the
following theorem, that the error in expected interim and ex
ante utility approaches zero under mild assumptions on the
auction format.

Theorem 4.3. Let the conditions of Assumption 4.1 hold
and suppose the payment rule p is bounded. Then, for
bidder i, we have convergence in interim and ex ante utility:

1. Let vi ∈ Vi and bi ∈ Ai, then

lim
λ→0

u
SM(λ)
i (vi, bi, β-i) = ui(vi, bi, β-i). (18)

2. Further assume βi to be measurable. Then,

lim
λ→0

ũ
SM(λ)
i (βi, β-i) = ũi(βi, β-i). (19)

The proof is delegated to Appendix B. Theorem 4.3 ensures
that for ever smaller λ, the bias in the expected utilities van-
ishes compared with the utilities in the original game. This
implies that the smoothed gradients converge, thus justifying
gradient-based learning in the perturbed game. Although
Theorem 4.3 ensures convergence, it does not state how
fast the error approaches zero. However, this information is
crucial for practical applications. Therefore, we make the
following additional assumptions on the auction format.

Assumption 4.4. For all i ∈ I assume:

1. βi is strictly increasing and Lipschitz continuous.

2. β−1
i is Lipschitz continuous.

3. There exists a uniform bound for all marginal condi-
tional prior density functions fi| · .

4. pi is bounded.

Note that assuming Lipschitz continuous strategies is sat-
isfied by common function approximations, e.g., neural
networks. With these stronger assumptions, we can present
a worst-case convergence rate of the interim and ex ante
utility errors.

Proposition 4.5. Consider an auction with n bidders that
satisfies Assumptions 4.1 and 4.4. Then, the absolute interim
and ex ante utility errors are of order O(λ).

Proof Sketch. Use substitution on the opponents’ bidding
strategies, followed by iterated use of Hölder’s inequality.
The details of the proof can be found in Appendix C.

Note that Restrictions 1 and 4 in Assumption 4.4 are stan-
dard in the literature (Krishna, 2009). Restriction 2 is
slightly stronger by demanding that strategy βi cannot be-
come infinitely flat (e.g., a saddle-point would not be al-
lowed). However, this restriction can be somewhat lifted
resulting in a worse convergence rate. Details on this can
be found in Appendix C. Finally, Restriction 3 holds for
all commonly used prior distributions, however, it rules out
perfect correlation. Based on the previous result, we can
characterize how a learned ε-BNE of the SM game translates
to an approximate BNE the original game:

Theorem 4.6. In an auction with n bidders that satisfies
Assumptions 4.1 and 4.4, let β∗ be an ex ante ε-BNE in the
smoothed game with smoothing parameter λ. Then β∗ is an
ex ante ε+O(λ)-BNE of the original game.

The proof can be found in Appendix D. The derived bounds
in the previous results consider worst-case scenarios. How-
ever, we observed that the error may be significantly lower
in practice. To rationalize this observation, we compare the
worst-case bound to the exact error in a restricted setting.
Consider an FPSB auction with two bidders, independent
uniform priors, and a linear bidding function of the sec-
ond bidder, β2(v2) = sv2 + t. Then, the bound derived in
Proposition 4.5 translates to

∣∣∣ũSM(λ)
1 (β1, β2)− ũ1(β1, β2)

∣∣∣ ≤ ln(2) + 1

s
λ. (20)

In Figure 2, we compare this bound (for bidder 2’s BNE
strategy with s = 0.5 and t = 0) to the exact interim utility
error, which can be derived for this restricted setting (see
Appendix E). The convergence rate of the interim utilities
depends on the specific prior sample v1 and bid b1. The ex
ante utilities converge more rapidly than predicted by the
worst-case bound. We conjecture that this often holds in
practice, resulting in better learning behavior than suggested
by Proposition 4.5.

4.3. Choosing the Smoothing Temperature

Let us consider the question of an optimal smoothing
strength. There is an incentive to keep temperature val-
ues as low as possible, such that the original game dynamics
are distorted as little as possible. On the other hand, one
does not want to decrease λ too low, as this causes numeri-
cal problems. The magnitude of the gradient goes towards
infinity at the former discontinuity as λ decreases. There-
fore, with finite sample size, the first-order gradient estimate
might have a high empirical variance (Suh et al., 2022).
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Figure 2. Comparison of the absolute utility errors. (i) The linear
ex ante bound that holds for all valuations (gray dashed line) from
Equation 20. (ii) Exact interim utility errors when both bidders act
according to the BNE for some exemplary valuations (colorized
lines) and their sampled mean values ± standard deviation (shaded
areas). (iii) The approximate ex ante error (black dotted line).

We propose to use the utility sampling precision as a nat-
ural way to choose the temperature. For the special case
presented in Figure 2 and the default batch size of 218, one
can see that the sample precision is reached at about 10-4.
That is, for a drawn batch, the Monte Carlo estimation of
ex ante utilities has a precision of about 10-4, and we can
no longer distinguish between the smoothed and original
utilities. Therefore, one can use Proposition 4.5 to derive
a lower bound for λ for a given sampling precision. As
discussed at the end of Section 4.2, the true ex ante utility
error is usually lower, so that one can choose a higher λ
without losing any performance.

The empirical sampling precision is affected by several fac-
tors, such as the valuation and bidding ranges, the number
of bidders, prior distributions, and complexity of bidding
functions. Some of these influences can be standardized,
e.g., by normalizing the bidding ranges. Ultimately, a suf-
ficiently high batch size can overcome any bias introduced
by aforementioned factors, such that it should be chosen
as high as computationally possible to achieve an optimal
sampling precision.

5. Empirical Results
We provide experimental evaluation of the new technique
and compare the results with those of NPGA and REIN-
FORCE by measuring how closely they approximate the
analytical BNE. Results for settings with risk aversion or
correlated valuations are similar and omitted for simplicity.
Furthermore, we provide some insights and guidance on ap-

Table 1. Learning results in FPSB and SPSB auctions with differ-
ent numbers m of items. We report the mean values of the L2 and
ℓmax losses (smaller is better) and the time per iteration across five
runs. We also report the standard deviation in parentheses for the
losses.

m Algorithm L2 ℓmax t/iter

FP
SB

1
NPGA 0.011 (0.005) 0.005 (0.002) 0.155
REINFORCE 0.021 (0.008) 0.003 (0.000) 0.009
SM 0.005 (0.003) 0.004 (0.002) 0.009

2
NPGA 0.013 (0.005) 0.010 (0.002) 0.150
REINFORCE 0.041 (0.020) 0.016 (0.010) 0.009
SM 0.008 (0.002) 0.006 (0.003) 0.009

4
NPGA 0.028 (0.002) 0.021 (0.003) 0.148
REINFORCE 0.064 (0.018) 0.039 (0.012) 0.009
SM 0.015 (0.004) 0.011 (0.004) 0.009

8
NPGA 0.104 (0.054) 0.127 (0.109) 0.206
REINFORCE 0.187 (0.073) 0.331 (0.169) 0.012
SM 0.036 (0.003) 0.034 (0.009) 0.012

SP
SB

1
NPGA 0.012 (0.001) 0.002 (0.000) 0.170
REINFORCE 0.028 (0.005) 0.002 (0.000) 0.009
SM 0.004 (0.001) 0.001 (0.000) 0.011

2
NPGA 0.018 (0.002) 0.003 (0.000) 0.264
REINFORCE 0.082 (0.020) 0.009 (0.002) 0.011
SM 0.007 (0.001) 0.002 (0.000) 0.015

4
NPGA 0.043 (0.002) 0.011 (0.003) 0.457
REINFORCE 0.140 (0.045) 0.028 (0.018) 0.017
SM 0.029 (0.003) 0.006 (0.002) 0.024

8
NPGA 0.214 (0.112) 0.299 (0.238) 0.869
REINFORCE 0.320 (0.128) 0.262 (0.174) 0.031
SM 0.074 (0.002) 0.020 (0.002) 0.043

propriate choices of λ and verify that our gradient estimate’s
variance is sufficiently small. We list all hyperparameters
and details on the network architecture in Appendix G.

5.1. Single-Item Auctions

For the two common payment rules of FPSB and second-
price sealed-bid (SPSB) and a uniform prior on [0, 1], we
can measure the distance in action space to the unique BNE,
as described in Equation 7 and compute an estimate of ex-
ploitability in the form of Equation 5. Table 1 shows the re-
sults. The losses are computed after training 2,000 iterations
with each algorithm. The time per iteration, t/iter, decreases
notably when comparing NPGA to SM across both payment
rules, while also achieving a better approximation quality.
Since the estimation of ℓmax relies on a discretization of the
action space and an exhaustive search thereon, L2 detects
smaller deviations, ceteris paribus. Although REINFORCE
has a low iteration time, it is unable to learn high quality
strategies due to its high variance (Section 5.3). We found
that results for auctions with interdependent prior valuations
or risk-aversion are quantitatively consistent with the results
presented here.
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Figure 3. Empirical variance of the NPGA and REINFORCE
zeroth-order and the SM first-order gradient estimates. Both zeroth-
order methods are run in the original auction game. The mean
values ± standard deviations over five runs each are depicted. Left:
Comparing the variance throughout the learning procedure. Right:
Comparing the variance for different smoothing temperatures (av-
eraged over complete training runs).

5.2. Large Simultaneous Auctions

Furthermore, we study the separate sales of up to m = 8
distinctive goods and an increase in the number of bidders
of up to n = 4. For simplicity, we do not consider any
synergy effects on the items (this would include cases such
as those where a bidder only values the bundle of two items
but not either one of them individually), such that the BNE
simplifies to the single-item strategy profile for each item
separately. There are multiple motivations for these auctions.
They can be considered as the base case of combinatorial
auctions with item bidding and as a simple and practical
alternative to full combinatorial auctions. Furthermore, com-
binatorial auctions with item bidding are being deployed,
e.g., a bidder who is interested in a bundle of objects in par-
allel online display ad auctions or on a consumer shopping
website is implicitly partaking in these auctions. Finally,
asking a bidder to submit bids on all possible combina-
tions of bundles (2m − 1) is practically infeasible and there
are positive results on the welfare properties of limiting
the action space in this way (Bhawalkar & Roughgarden,
2011). Again, we draw i.i.d. uniform valuations on [0, 1]
and consider the FPSB and SPSB auctions. Learning in the
SM game outperforms both previous approaches (Table 1).
Since first-order methods are generally faster, we assume
that the strong results in these settings will scale to even
larger ones.

5.3. Empirical Variance

As stated in Section 4.3, there is a trade-off between low
and high values of λ. Here, we consider the base setting of
two bidders competing in a single-item FPSB auction. We
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Figure 4. Action space distance for learned strategies to the BNE
for different numbers of bidders and temperature values λ. The
mean values ± standard deviations over five runs each are depicted.

decrease the batch size to 216 as the single-sample gradients
require more memory. Considering NPGA that is based
on a sample of 64 evaluations of the objective by default,
the empirical variance of the SM estimate is lower for all
λ > 0.002 (compare intersection of Figure 3, right plot).
Even after increasing NPGA’s population size by a factor
of two (which scales the run time in the same way), SM’s
variance remains lower for most choices, as can be seen
in the left figure. The empirical variance of REINFORCE
rapidly increases as the mixed-strategies get closer to the
pure-strategy BNE. This degradation is to be expected when
the learned variance of the Gaussian distributed actions
decreases, see Exercise 13.4 of (Sutton & Barto, 2018).

Results for markets of different sizes are depicted in Fig-
ure 4. Keeping everything else fixed, the highest achievable
performance decreases for larger markets, as is expected
in multi-agent learning. The optimal smoothing strength
is only affected indirectly via the bid magnitudes. At last,
we note that the performance boost of larger batch sizes
diminishes and best results are achieved for similar values
of λ just below 0.01, indicating that the variance of the gra-
dient estimate counteracts the lower bias. The results are
presented in Appendix F.

6. Conclusion and Future Work
How can first-order gradient estimation methods be success-
fully applied to learning in auctions? We showed that our
proposed smooth game formulation of strategic interactions
in auctions provides a strong answer to this question. We
established theoretical bounds on the bias caused by the
smoothing, and an empirical evaluation verified that the
variance of the gradient estimate can be controlled, leading

8



to low computational costs and high precision. Overall, we
verified that equilibrium computation in smooth markets via
fist-order gradient estimation is more efficient than previous
learning methods.
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Chapter 8

Conclusion

Concluding this dissertation, the following sections summarize and discuss its key results
in light of the literature on learning to bid and point out future research directions.

8.1 Summary and Discussion

This dissertation investigated if and how RL-based equilibrium computation can be lever-
aged in microeconomic models. This may help economists and policymakers to develop a
better understanding of markets and make more informed decisions in the long run. Despite
equilibria being computationally complex in general and convergence guarantees being lim-
ited to a few scenarios, this dissertation provides strong theoretical and empirical results on
the success of utilizing RL to compute approximate equilibria.

Prior research has been mainly focused on two extremes. On the one hand, the mar-
ket simulations were drastically simplified by discretization, assuming independent priors,
risk neutrality, et cetera. These either allowed solving the ODE equilibrium condition (an-
alytically or numerically) or the application of simple learning dynamics. This becomes
especially contentious as many equilibria in auction theory are sensitive to the underlying
assumptions. Even results from closely related markets do not usually have explanatory
power. On the other hand, large-scale experiments have been conducted, e.g., for online
advertisement auctions, where no general understanding of the dynamics of the applied
algorithms could be established. Instead, the qualitative assessment usually compared the
results to expert-designed heuristics or simply checked if the utilities increased during learn-
ing. We contributed to bridging the gap between these two extremes. Our framework allows
for a multitude of different settings with variable market sizes in terms of participants and
goods, ranging from single-item to larger combinatorial auctions, assumptions on the in-
formation structure of the agents, and their behavioral preferences. We provide the most
extensive simulation suite of single-sided and two-sided auctions. Using the policy gradient
method NPGA, we were able to approximate equilibria in auctions for which no analytical
equilibrium was known previously. These include multi-unit auctions with valuation inter-
dependencies or asymmetric bargaining markets. Our approach maintains tractability of the
underlying dynamics that allows the verification of the equilibrium proximity in terms of the
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utility left on the table. This gives insights into the generally robust convergence of policy
gradient methods. Despite these positive results, we were able to construct a non-degenerate
example where current convergence guarantees from MARL do not hold. Refining the pre-
cise conditions for equilibrium convergence of learning dynamics in markets is the most
pressing question for future research.

8.2 Future Work

There are a couple of promising directions for future research that we want to outline. As we
have briefly discussed, it remains open if a set of reasonable assumptions exists explaining
the global convergence of learning to bid that we consistently observe empirically. What is
the broadest possible class of markets for which a convergent learning algorithm exists, and
which algorithm is that? Do auctions satisfy some regularity condition not yet connected
to equilibrium convergence? We have seen the violation of currently available convergence
conditions in bilateral bargaining, i.e., concavity and monotonicity of the utility functions
(in the sense of Rosen (1965) and Mertikopoulos and Zhou (2019), respectively), but were
able to show local convergence in a restricted setting with linear strategies (Bichler et al.,
2022, see chapter 6). Mertikopoulos (2019) suggests, in a spirit similar to Letcher et al.
(2019a), to further consult the theory of dynamical systems that provides a unified way
of explaining and decomposing learning dynamics and their convergence to equilibria or
cycling and chaotic behavior.

From the practitioner’s point of view, scalability and applicability to more realistic do-
mains is arguably of the highest relevance. Applications include procurement auctions con-
ducted along industrial supply chains, high-stakes spectrum auctions, or display ad auctions
for which some early empirical research already exists. One stepping stone for learning
strategic interaction in these scenarios is the extension of existing simulation frameworks to
markets of sequential sales. Agents are then able to adapt their bids and offers depending
on past and current sales and prices. Early experiments in a simple sequential auction with
unit-demand bidders (Krishna, 2009, Chapter 15) show promising results for gradient-based
learning.

On the technical side, it remains open if the specialized first-order gradient estimation
technique can be generalized to more markets or if general zeroth-order methods are favor-
able. NPGA is widely applicable but comes with a high computational burden, whereas the
first-order smoothing approach is currently limited to the independent sale of goods. So the
question of generalizability comes up. PPO, as the state-of-the-art actor-critic approach for
continuous games and control problems, may also be a viable alternative. There are results
on the convergence of PPO and, more generally, on actor-critic methods (Perkins et al.,
2017; Liu et al., 2019), but it remains open, which results are transferable to equilibrium
computation in markets.

Already with some promising initial work, automated mechanism design may help de-
sign markets that maximize certain criteria. Dütting et al. (2014) use a neural network to
model and learn the optimal auction itself. Depending on the underlying assumptions, bid-
ders may either be considered truthful or strategic. In the latter case, they may also follow
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learning dynamics in an inner loop while the mechanism is learned in an outer loop. Can this
hierarchical learning setup be implemented in a robust manner, and would non-interpretable
pricing regimes be accepted in practice?

Another path forward is to depart from the black-box function approximation approach
towards an attempt to gain insight into the underlying functional relationship between the
valuations and the bids. Let us again consider the simple example of sequentially selling
one unit at a time via an FPSB (under independent priors and risk neutrality). Then, the
optimal strategy is linear in the valuation across all stages, and only the slope parameter
changes. Some authors have suggested simply learning this factor of the linear function,
but this approach is based on the expert knowledge that bidding functions must be of a
linear type and, thus, it does not generalize. It fails as soon as the assumption of indepen-
dent priors is relaxed, and optimal bidding strategies become non-linear. Neural network
training becomes especially difficult in large markets with more decision-making options
and periods. In the case of sequential sales, the action space’s dimension increases with the
number of stages, making it even harder to learn via function approximation. Most notably,
the strategies for low-probability events are poorly learned. So this question arises if one
can design a procedure to find the exact functional form of bid functions. One may hope
to apply concepts from symbolic optimization or regression (D’Ascoli et al., 2022) to learn
the functional form. It would allow for more interpretability and better generalization across
stages. However, a naive application of these concepts would obviously struggle when no
closed-form solutions exist.
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