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Abstract

As weather can suddenly change, future self-driving system have to be able to cope with
adverse weather for at least as many seconds as needed for the driver to take over. Given
that weather affects each of the main sensors used to accomplish the driving task, fast
and accurate weather simulations are an important step towards the successful validation
and testing of autonomous driving systems. From the main sensors used in autonomous
driving, this thesis focuses on the LIDAR sensor. Given its high resolution and active
distance measurement principle, the LIDAR provides valuable information for the driving
task but simultaneously its performance is considerably affected by adverse weather.
This thesis presents hybrid models for the simulation of weather related effects. These
models are hybrid because some aspects of the models are physically based while others
are phenomenological. The combination of both modes allows the proposed models
to be able to run in real time while simultaneously been intuitive in their use. For
the simulation of the sensor itself Raytracing is suggested due to its flexibility, broad
adoption and speed.

The first model is related with the simulation of dirt and other substances that accu-
mulate on the cover of the sensor. These substances change the optical properties of the
cover. A general consideration of this phenomena is not possible as the way and type
of substances that adhere to the sensor cover depend on the shape and material of the
cover itself. To solve this problem a methodology is defined to collect real world samples
and measure their optical properties. The obtained data can be used to create a texture
database that can be easily included into a Raytracing based simulation.

The second model considers the effect of rain, fog, snow and changing background
radiation. Similarly to the first model the development of a generic model for any
LIDAR sensor is discarded, as a physically accurate simulation of the scattering caused
by millions of drops or snowflakes would not be possible in real time. Additionally,
usually not all the sensor internal parameters are known. For this reason a stationary
measurement set up is proposed, collecting data from a sensor placed outdoors for a
period of nine months. Using the extracted data is possible to build a stochastic sensor
model that reproduces the distribution of real world detections caused by each of the
considered weather types. It is also found that the effect of a changing background
radiation can be simulated in real time by changing the noise level of the sensor.

The third model reproduces the effect of spray water on the LIDAR sensor using par-
ticle systems. These particles do not represent single water drops but a concentration
of drops high enough to generate a detection on the LIDAR sensor. With this simpli-
fication the number of needed particles can be enormously reduced making real time
simulations possible. For the collection of point clouds affected by spray water a set up
is used with two vehicles. One vehicle generates the spray and the other captures the
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Abstract

generated point clouds using a LIDAR, while simultaneously measuring the street wa-
ter level using a specialized measuring device. A comparison of the proposed synthetic
model and the corresponding real point clouds shows a Pearson correlation of 0.5 up to
0.73 of the distribution of detections in space.

Finally, the spray model is used to demonstrate how synthetic and real data combined
form a powerful tool for the development of autonomous driving systems. The example
used analyses the performance of a classifier for detection of solid objects on spray clouds.
This classifier can be trained without having to collect real data for such a situation,
which would be extremely dangerous and difficult. This is done by adding an object to
the spray simulation, automatically extracting the synthetic detections generated by this
object and using them to augment real spray point clouds. The resulting point clouds
are a labeled and physically accurate representation of the desired scene.

This thesis shows that all the previously mentioned models can be related into a
common framework for the simulation of weather related effects by dividing the path of
the light emitted by the sensor into three parts: sensor cover, atmosphere and object
emission. Object emission describing for example spray water but also something like
sand or snow falling from a truck or water vapor from the exhaust pipe. Different
simulation techniques adapt better to each of the regions but in general the model,
weather it is a 2D texture an stochastic distribution or a particle system is sampled by a
ray changing its intensity and/or direction. This framework is integrated with the main
current standards for the simulation of Advanced Driver Assistance Systems (ADAS) and
Self-Driving Systems (SDS) like OpenDRIVE and OpenSCENARIO. The combination
of the standards and the framework allow the user to flexibly adjust the complexity
of the simulation based on his needs and available data. In this way the developer of
autonomous driving system can use simulation from the start of development until the
end of the life of the product and even for new products (e.g new vehicle models). By
doing this is possible to reduce costs, risks and time to market.
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Zusammenfassung

Da das Wetter sich plötzlich ändern kann, müssen zukünftige selbstfahrende Systeme
in der Lage sein, unter ungünstigen Wetterbedingungen für mindestens so viele Sekun-
den weiterzufahren, wie der Fahrer benötigt, um die Kontrolle zu übernehmen. Da das
Wetter jeden der wichtigsten Sensoren beeinflusst, die für die Bewältigung der Fahrauf-
gabe verwendet werden, sind schnelle und präzise Wettersimulationen ein wichtiger
Schritt auf dem Weg zu einer erfolgreichen Validierung und Erprobung von autonomen
Fahrsystemen. Von den wichtigsten Sensoren, die im autonomen Fahren verwendet
werden, konzentriert sich diese Arbeit auf den LIDAR-Sensor. Aufgrund seiner hohen
Auflösung und des aktiven Abstandsmessprinzips liefert der LIDAR wertvolle Informa-
tionen für die Fahraufgabe, ist aber gleichzeitig stark von ungünstigen Wetterbedingun-
gen beeinträchtigt. Diese Arbeit präsentiert hybride Modelle für die Simulation von
Wettereffekten auf einen automotiven LIDAR-Sensor. Die Modelle sind hybrid, weil
einige Aspekte physikalisch modelliert sind, während andere phänomenologisch model-
liert sind. Die Kombination aus beiden Simulationsarten ermöglicht es den vorgeschla-
genen Modellen, in Echtzeit zu laufen, während ihre Nutzung intuitiv bleibt. Für die
Simulation des Sensors wird Raytracing aufgrund seiner Flexibilität, breiten Akzeptanz
und Geschwindigkeit vorgeschlagen.

Das erste Modell befasst sich mit der Simulation von Schmutz und anderen Sub-
stanzen, die sich auf dem Sensordeckel akkumulieren. Diese Substanzen ändern die op-
tischen Eigenschaften des Sensordeckels. Eine allgemeine Betrachtung dieses Phänomens
ist nicht möglich, da die Verteilung und Art der Substanzen, die auf dem Sensordeckel
kleben, von der Form und dem Material des Deckels abhängig sind. Um dieses Problem
zu lösen, wird eine methodologische Vorgehensweise vorgeschlagen, um reale Proben
zu sammeln und ihre optischen Eigenschaften zu messen. Die so gesammelten Daten
können verwendet werden, um eine Texturdatenbank zu erstellen, die auf einfache Weise
in einer Raytracing-basierten Simulation verwendet werden kann.

Das zweite Modell betrachtet den Effekt von Regen, Nebel, Schnee und einer wechsel-
nden Hintergrundstrahlung. Ähnlich wie beim ersten Modell wird von der Entwicklung
eines generischen Modells abgesehen, das für jeden beliebigen LIDAR-Sensor gültig ist.
Der Grund dafür ist, dass eine genaue physikalisch basierte Simulation der Streuung,
die bei Millionen von Tropfen oder Schneeflocken erzeugt wird, nicht in Echtzeit berech-
net werden könnte. Außerdem sind normalerweise nicht alle internen Sensorparameter
bekannt. Aus diesem Grund wird ein statisches Messsetup vorgeschlagen, bei dem ein
Sensor im Außenbereich platziert wird, um Daten zu sammeln. Die Sammlung findet
über eine Periode von neun Monaten statt. Auf den extrahierten Daten basierend kann
ein stochastisches Sensormodell gebaut werden, das die Verteilung von realen Detektio-
nen für jede Wetterart reproduziert. In diesem Zusammenhang wird auch festgestellt,
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Zusammenfassung

dass Änderungen in der Hintergrundstrahlung durch Anpassung des Rauschpegels des
Sensors in Echtzeit simuliert werden können.

Das dritte Modell reproduziert den Effekt von Sprühwasser auf den LIDAR-Sensor
mithilfe von Partikelsystemen. Diese Partikel entsprechen nicht einzelnen Wassertropfen,
sondern einer Sammlung von Tropfen, die eine Reflexion des Laserlichts bewirken und
stark genug sind, um eine Detektion auf dem LIDAR-Sensor zu verursachen. Durch die
vorgeschlagene Vereinfachung kann die Anzahl der benötigten Partikel enorm reduziert
werden, wodurch ein Echtzeit-Betrieb der Simulation möglich wird. Um die durch Gis-
cht betroffenen Punktwolken zu sammeln, wird ein Messsetup verwendet, bei dem zwei
Fahrzeuge eingesetzt werden. Das erste Fahrzeug generiert Gischt, während das zweite
die entsprechenden Punktwolken speichert. In dem zweiten Fahrzeug wird ein Gerät
zur Messung des aktuellen Wasserpegels auf der Straße montiert. Ein Vergleich der
Raumverteilung zwischen synthetisch generierten und realen Punktwolken ergibt einen
Pearson-Korrelationskoeffizienten von 0,5 bis 0,73. Schließlich wird das Gischtmodell
verwendet, um zu demonstrieren, wie durch die Kombination von synthetischen und
realen Daten ein mächtiges Tool für die Entwicklung von autonom fahrenden Systemen
entsteht. Das verwendete Beispiel bewertet die Leistung eines Klassifikators, der in der
Lage ist, feste Objekte in einer Gischtwolke zu detektieren. Dieser Klassifikator kann
trainiert werden, ohne reale Daten sammeln zu müssen, was in diesem Fall unter ex-
tremer Gefahr und sehr selten möglich wäre. Um synthetische Daten zu erzeugen, wird
ein Objekt in die Gischtsimulation hinzugefügt. Die Detektionen, die durch dieses Ob-
jekt generiert werden, werden automatisch extrahiert und verwendet, um eine reale aus
Gischt generierte Punktwolke zu augmentieren. Die resultierenden Punktwolken sind
eine beschriftete und physikalisch korrekte Repräsentation der gewünschten Szene.

Dieses Thesis zeigt, dass alle zuvor genannten Modelle in ein gemeinsames Framework
eingeführt werden können, indem der Lichtweg in drei Bereiche unterteilt wird: Sen-
sordeckel, Atmosphäre und Objektemission. Objektemission beschreibt zum Beispiel
Sprühwasser, aber auch etwas wie Sand oder Schnee, der von einem Lastwagen fällt
oder Wasserdampf aus der Auspuffrohre. Verschiedene Simulationstechniken passen sich
besser an die einzelnen Bereiche an, aber im Allgemeinen wird das Modell, ob es eine
2D-Textur, eine stochastische Verteilung oder ein Partikelsystem ist, durch einen Strahl
gesamplet, der dadurch seine Intensität und/oder Richtung ändert. In dem Framework
werden die wichtigsten aktuellen Standards für die Simulation von autonomen Fahrsyste-
men und sicherheitskritischen Systemen, wie OpenDRIVE und OpenSCENARIO, inte-
griert. Durch die Nutzung dieser Standards und des Raytracings wird es für den Nutzer
möglich, die Komplexität der Simulation flexibel zu justieren, die auf seinen Bedarf und
den verfügbaren Daten basiert. Somit wird es für die Entwickler von autonom fahren-
den Systemen möglich, von Anfang der Entwicklung bis zum Ende der Lebensdauer des
Produkts und sogar für neue Produkte (z.B. neue Fahrzeugmodelle) Simulationen zu
nutzen. Auf diese Weise können Kosten, Risiken und Markteinführungszeit reduziert
werden.
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1 Introduction

1.1 Background

The amount of single lines of code present in vehicles is increasing very fast. For a
modern vehicle, including driving and safety systems as well as infotainment and apps
it is calculated to be around 100 million [1].

As every other software, this software has to be tested to validate it is working as
expected. The testing requirements are based on the classification of the respective
function based on its criticality. For example a breaking system that works by wire
(electronically controlled) needs to have a much higher reliability and therefore testing
requirements [2] as for instance an app used to pre-heat the vehicle. The high reliability
requirements for safety-critical functions conduces to very high validation times. This
problem can be understood by looking af the following equation [3]:

Psys(t) = 1 − e−Ktp (1.1)

Were K is the number of inputs per unit time to a certain system for example a software
module and p is the probability of failure per input which is assumed constant. This
equations provides the probability of a system failure after a certain time using a Poisson
approximation of a binomial distribution. Under this approximation the time it takes
to find a failure in a system with a probability of failure of 10−7 to 10−9 in an hour is in
the order of 1010 hours. This number can be reduced if simultaneously multiple copies
of the same system are tested [3], by using formal proofs when possible and by using
fault injection [4].

Additionally, testing needs to happen very early in the development process, a paradigm
known as shift-left, in which software bugs should be found and corrected as soon as
possible to reduce costs and decrease time to market [1].

Summarizing, there is a need for having software tests during the development of
vehicle software. In general, but specially when considering safety-critical functions,
these tests should be:

• Available early in the development process.

• Fast.

• Frequent.

• Parallelizable.

• Automatic.
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• Cheap.

Considering now specifically the software required for autonomous driving functions, we
can broadly divide it into: a perception module, followed by a planing module and finally
an action module as shown in Figure 1.1. The environment, which includes other road
users, roads, traffic signals, weather, etc. is the input to the perception module but also
reacts to the actions taken by the vehicle. If we want to test these modules under the
previously presented requirements we are forced to ”emulate” the environment. This
environment emulation may exist in different quality levels depending on the types of
tests that are needed. For some of these tests the quality of the emulation needs to be
high enough so that it should rather be called a simulation.

Environment

Perception

Planning

Action

Environment

Perception

Planning

Action

SuT Emulation

Figure 1.1: Close loop used in autonomous driving functions (up). For testing purposes the loop
is broken into a System under Test (SuT) composed by the perception, planing and
action modules and an environment which is replaced by a emulation / simulation
(down)

We can for example start in the development process with a very simple model of the
environment which is already enough to discover some bugs in the code. After those bugs
are corrected a more complex environment is needed to discover new bugs. This process
continous until a very accurate model of the environment is needed. Figure 1.2 shows
an example in which each iteration uses an environment version that is good enough
to reach a certain maturity (development cycle). For the next version a more advanced
environment is needed, otherwise the performance of the function in the real world may
diverge from the test results. This problem is known as the reality gap [5]. When a
real prototype is available (dashed line) is possible to add the information obtained from
real measurements into the simulation increasing its quality and reducing the reality
gap. This has to be done carefully as prototypes may still considerably diverge in some
aspects from the final hardware version. Another way of using the simulation is to guide
the data collection efforts to focus on those aspects that are not well understood or are
difficult to simulate.
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1.1 Background

Perception v1

Planing v1

Action v1

Perception v2

Planing v2

Action v2

Perception v3

Planing v3

Action v3

Data
Collection

Guide

Improve

Figure 1.2: Sequential improvement of the environment model based on the needs of the SuT.
The version number: v1, v2, v3 indicate how the SuT improves. An initial model
can use simple synthetic geometries and materials. Later, complex geometries and
textures can be used. Weather related effects like for instance the effect of spray
water and sunlight can also be added. As soon as a real prototype is available
(dashed line) is possible to improve the simulation using real data and hence to
reduce the reality gap. The simulation can also be used to guide data collection
campaigns.

In conclusion advanced environment models are a necessary part of the development
and validation of autonomous driving functions. The development of these kind of
models has been however impaired for three main reasons:

• There is no consensus about how to effectively transfer knowledge regarding weather
related effects between real measurements and simulation and vice versa (improve
and guide loops in 1.2).

• There is no standard approach for progressively including weather related effects
into the simulation.

• The reality gap is not being measured or is measured in late development stages
reducing confidence on simulation results.

This thesis proposes alternatives to deal with each of these problems. Solving these
problems is an important step towards a cost effective use of simulation. When used cor-
rectly simulation can save costs over multiple vehicle generations because the knowledge
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and technology can be easily adjusted. As illustrated at the begining of the chapter, a
cost effective simulation is a key enabler for autonomous vehicles. These kind of vehicles
are expected to improve transportation by: increasing safety, comfort, accesibility and
sustainability as well as reducing transportation costs [6].

1.2 Methodology

The focus of this thesis will be one of the sensors used for autonomous vehicles: the
LIDAR sensor [7]. For this sensor the logical interface between the environment as
presented in 1.1 and the SuT is taken to be the point cloud. Although smart sensors
are able to provide higher abstractions, like pre-classified objects, the point cloud is a
generic interface for many LIDAR sensors [8, 9]. Additionally, it will be assumed that
there is a prototype available for the sensor and therefore that it is possible to make real
measurements to improve the simulation (lower part of Figure 1.2). The interface to the
action module is taken to be the 3D coordinates of the sensor axis and its orientation.
In this way every kind of movement in 3D space can be simulated. The schema of the
environment can hence be concretized as shown in Figure 1.3.

Action

Perception

Figure 1.3: Environment as perceived by the LIDAR sensor. The image shows an eagle view
of one layer of a highly simplified point cloud (red points) generated by a LIDAR
sensor for a certain environment. The sensor’s field of view is shown in blue. The
generated point cloud is the input for the perception module. The position and
orientation of the sensor is provided by the action module (position marked with a
’x’). The reflections in the near field of the sensor simulate extra detections caused
by weather related effects or dirt on the sensor cover.

After having defined the logical interfaces, the question remains how the virtual envi-
ronment and the sensor should be simulated. There have been different approaches to
simulate the sensor as well as the environment. Sensor models can broadly be divided
into [10]
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1.2 Methodology

• Low fidelity: is a fast but simple model of the sensor that considers mostly geo-
metrical aspects.

• Medium fidelity: includes physical effects and detection probabilities. As it works
on a phenomenological level data collection is required.

• High fidelity: is computationally very expensive but provides the highest level of
realism. It works by solving the physics equations of the problem in consideration.

The environment can also be classified into three categories:

• Synthetic: generated manually, automatically or semi-automatically without hav-
ing a equivalent in the real world.

• Measured: obtained by collecting aerial or terrestrial measurements of real envi-
ronments.

• Hybrid: combines elements that are measured with elements that are generated.

The next section explain the differences of each category and introduces the sensor
and environment type used in this thesis. Before doing that some of the more widespread
standards used to simulate virtual environments in the context of autonomous driving
are presented.

1.2.1 Standards

Proposing a method to simulate weather related effects is of lesser use if it is not compati-
ble with the most popular simulation standards used currently in industry and academia.
For this reason in this section the main standards are introduced. They are divided based
on the type of information each of them describe.

1.2.1.1 Dynamic Behaviour

A way to implement the improve and guide loop from figure 1.2 is to use a scenario based
approach. In this approach a scenario that describe a certain manouver involving one or
more vehicles and other traffic participants is defined. The scenario is followed in reality
and in simulation, the obtained results are compared and in case of relevant differences
either actions to improve the simulation or actions to focus the data colletion efforts
can be taken. In case no hardware exists the scenario can be tested in simulation until
a certain maturity is reached. Another advantage of using scenarios is that a scenario
library can constitute a common basis for industry and gouvernamental organizations
to respectivelly test or verify that a SDS is working as it should [11].

There are two versions of OpenSCENARIO the version 1.x uses eXtensible Markup
Language (XML) as serialization format. The advantage of XML being that multiple
tools are available to validate, extract or add information to it. The scenario is com-
posed by stories, which contain acts, which contain events and actions [11]. The events
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and actions define when something happens and what happens. The definition is how-
ever ambiguous Association for Standardization of Automation and Measuring systems
(ASAM) so that different simulation tools may produce different results. The version
2 of OpenSCENARIO deal with this problem by defining constrains. If the solution
fullfills the constrains then the scenario is considered as successfully pased. Instead of
XML OpenSCENARIO 2 uses a Domain Specific Language (DSL), scenarios are seen as
complex programs that can call each other serially or in parallel. The entry point for
the program execution (begining of the scenario) is freely selectable [12].

Regarding weather phenomena OpenSCENARIO 2 defines a celestial light source that
depends on the current weather, geodetic position and date-time. Using this light source,
a sun and /or moon can be defined. Weather itself is a data structure containing variables
for: precipitation intensity (either rain or snow), the visual range of fog and wind speed
and direction between others.

Besides OpenSCENARIO there are other standards to define dynamic behavior. For
example OpenODD is standard to define in a machine readable way the ODD. The
International Organization for Standardization/ Working Draft (ISO/WD) 34501 up to
ISO/WD 34504 standarize general terminology, define a scenario based framework for
safety evaluation, define the ontology for the ODD and quality levels and categorizations
for scenarios respectively [13].

1.2.1.2 Static Behaviour

The OpenDRIVE standard similarly to OpenSCENARIO 1.x uses XML as file format.
In this case not for the descriptions of maneuvers but to describe the road geometry,
road marks and traffic signs. To define the road a reference line is used. Road lanes can
be added as needed to the left and right of this reference line. Increasing integer values
mean extra lanes further left of the reference line while decreasing negative values mean
extra lanes further right of the reference line. The beginning of the reference line defines
the origin of a two dimensional reference system (relative to the reference line). Using
either this 2D reference system or a global 3D coordinate system (whose origin is defined
in the file) features like traffic signs or road marks can be placed. A whole road network
is built by joining roads together. When more that two roads have to be joined a junction
can be used. The junctions define how the lanes of the different roads are connected with
each other. Road geometries can be adjusted by selecting different primitives to define
the reference line, e.g. lines, spiral, arc or polynom between others. The lateral and
elevation profile of the road can also be adjusted. Having all these degrees of freedom is
possible to describe the complexity of real roads. This description can then be shared by
multiple simulation tools making co-simulation possible. It can also be used as exchange
format between industries and other organizations as happens with OpenSCENARIO
[14]. Addtionally, as OpenDRIVE defines the exact location of the lanes, a driving
simulator can be built that simply follows the middle of a lane. This is an advantage
with respect to other formats to store geometry, like glTF, in which the mesh information
is compresed [15]. In contrast however, as mentioned in the introduction section, glTF
can be used to store not only the road and traffic signs information but also any other
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mesh, for instance those representing other traffic participants and including material
properties. This drawback can be solved if the OpenDRIVE geometry is converted to
glTF in order to display it in a 3D engine. The original OpenDRIVE file can still be
used to move the vehicles on their respective lanes (see figure 1.5).

Other formats that can be used to store static data are OpenCRG, which can be used
to store precise road information like a dense height profile or the friction coefficient in
order to improve when needed upon the geometry defined using OpenDRIVE [13]. City
Geography Markup Language (CityGML) is data model using XML for serialization
with focus on storing 3D city and landscapes models. One advantage of CityGML is
that the data model allows for sofisticated data hierarchies which make it a powerful
representation in order to do data analysis. Navigation Data Standard (NDS) is also
a popular standard with focus on storing high definition maps information [13]. Data
stored in NDS can be converted into OpenDRIVE [16].

Finally, PLM XML [17] is a standard needed to close a hole in the description of the
scene. For example none of the previously mentioned standards stores vehicle specific
information, like the position of the rotation axis of the steering wheel, the position of
the rotation axis of the doors, the position of the headlights, the rotation axis of each
wheel, between others. This information is important, because otherwise is not easy to
animate the movement of all those parts, which maybe needed on for example vehicle
interior simulations.

1.2.1.3 Interfaces

In order to make the exchange of modules easy, for example the perception, action or
environment modules in figure 1.1, some standards were created to concertize the in-
terfaces that these modules should provide. Open Simulation Interface (OSI) is one of
those standards, for example it defines a data structure called LidarSensorView that
contains, between others, the mounting position of the sensor with respect to a reference
coordinate system on the vehicle. It also contains a number of reflections based on the
resolution of the sensor. Each reflection may contain values for time of flight, Doppler
shift, signal strength and others. These values are relative to the sensor’s mounting po-
sition. In this way the point cloud generated by certain LIDAR sensor can be converted
into a generic data structure. OSI also defines an object based message passing mecha-
nism that can be used to send and receive standard data [13]. FMI is another standard
used to exchange simulation models. In order to do that it also standarizes interfaces
but additionally it defines the way in which the models should be packed (content and
type). Based on the standard interfaces an API is defined in order to start and run
a simulation containing multiple modules [13]. The modules are assumed to contain
integro-differential equations that have to be solved using a numeric solved. The option
is given to the user to use a solver per module or a common solver. System Structure and
parametrization (SSP) can be seen as an extension of FMI in which not the connection
of modules but of systems (containing themselves modules) is specified. AUTomotive
Open System ARchitecture (AUTOSAR) is another standard that takes the standariza-
tion one step further as OSI or FMI. Here the whole architecture is standarized. The
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standarized modules have access to the AUTOSAR API. In contrast to FMI or OSI
this API provides a broad range of services that go beyond communication including
for example diagnostics, log and trace between other services [13]. Finally, the Interna-
tional Organization for Standardization (ISO) 23150 standarizes the interface between
environment sensors, like OSI does, and the output of a fusion unit that generates an
environment model (from the vehicle perspective) using the sensor data [13]. The fusion
unit is a concrete implementation of the perception module in figure 1.1

1.2.2 Sensor models

Although there are different alternatives to classify different sensor models. The fidelity
based classification has the advantage of having a direct relation with how the model is
used. A higher degree of fidelity does not mean that a model is in general better, each
type has its purpose and use case.

1.2.2.1 Low fidelity

In this model the focus is to verify if an object, usually described by its 2D or 3D
bounding box, is inside the field of view of the sensor. Occlusion between objects is also
considered. Aspects like material properties, weather related effects and sensor specific
effects are not taken into consideration. The field of view of the sensor may be defined
precisely or be approximated by a simpler shape in order to reduce computation time.
This kind of model is mostly used at the beginning of the project when requirements
are defined [10], or as basis for medium fidelity models. Low fidelty models are usually
created using the depth-buffer (z-buffer) generated per frame by the GPU when doing its
normal rendering calculations. This buffer can be accessed using for example OpenGL
[18]. In this case the virtual camera is placed in the position which the LIDAR sensor
would occupy in the 3D scene. The obtained image can then be sampled based on the
resolution of the sensor. The result is a 3D point cloud of the scene. Alternatively the
output can be provided in form of an object list containing the objects that are visible
for the sensor [10]. Another performant way to generate low fidelity sensor models is
using raycasting. In raycasting a ray is cast from a source (the sensor) and only the first
hit of this ray with an object is considered [19, 20]. It is not taken into consideration if
the ray has a return path to the receptor (i.e. photodiode) in the Lidar. One advantage
of using raycasting over z-buffer is that the effect of the scanning pattern of a scanning
Lidar can be simulated.

The main advantage of these algorithms is that they can provide results deterministi-
cally and in very short times.

1.2.2.2 Medium fidelity

These models are usually built on top of ideal sensor models to increase the level of
realism. They constitute a compromise between realism and computational costs. These
models are based on real measurements from which the noise pattern of the sensor is
learned [21, 22] or from physically based models [23, 24] from which a probability for the
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detection performance of the sensor is extracted. Neural networks have also been used
to transform the point clouds generated by ideal sensor models into more realistic point
clouds using domain adaptation [25, 26, 27]. The object description is usually refined
from just a box to more complex shapes [10].

These models are usefull to simulate the effect of phenomena like rain, fog, snow [22]
or dirt [28] on the performance of the sensor. An accurate physical simulation would take
far too long and the phenomena described dont have strong locality, this means that the
effect of snowflakes or raindrops can be described as a group using few variables without
taken into consideration each single trajectory. The same considerations as in statistical
physics [29]. For phenomena like spray water, locality plays a more important role as
the LIDAR detections depend on the trajectory of the drops. This kind of phenomena
is therefore better described using particle systems (as part of the environment, i.e.
separate from the sensor model) [30].

These models are also usefull to simulate the effect of sunlight or other light sources
containing the same wavelength as the LIDAR, which cause an increament in the noise
level [31], or to simulate electrical noise [32].

1.2.2.3 High fidelity

Physically based sensor models are models where very few simplifications are made about
the way in which light propagates and interacts with objects, about the objects them-
selves (material properties and shape) and about the internal workings of the sensor (e.g.
optical properties, electronic characteristics, mechanical structure, temperature depen-
dency). Based on our current physical understanding of each phenomena, the results
obtained with this kind of sensors are known to be correct. This reduces the validation
effort, increases the generality of the model [33] and makes easier the comparison be-
tween real measurements and simulations, as the same physical units are used in both
cases. Usually some form of raytracing is used in this kind of models. In contrast to
raycasting, in raytracing the whole path of light from sender to receiver is considered.

Although this model is very accurate it doesn’t mean that it is warrantied that the
simulation results will match real measurement. Some causes for a remaining reality gap
are:

• Unknowns due to intellectual property protection.

• Missing theoretical models.

• Incorrect simulation parameters [34].

• Incomplete simulation models [34].

• Numerical errors [34].

• Non-simulability of the phenomena.

Besides, one big drawback of this type of model have been the very long simula-
tion times [33, 35]. Recently however, the possibility of doing raytracing in real time
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[36, 37, 38] has made the interest on more physically accurate models grow [39, 40].
This development goes hand in hand with preasure on the entertainment industry to
provide more and more realistic experiences in real time (e.g. Virtual reality (VR) and
Augmented reality (AR)) [41] and is therefore expected to remain or intensify in the
future [42].

1.2.3 Virtual Environment models

The virtual environment constitutes a common ground truth for all the entities in the
simulation. Its purpose is to be sampled by the different sensors and to display the effect
of the actions taken by the simulation participants. While the virtual environment can be
classified also based on its quality, in the context of this thesis a more useful classification
is based on the way it is generated. The next sections present a broad classification of
the available options. Commercial tools like Vires Virtual Test Drive (VTD) [43] and
IPG CarMaker [44] where not included in this list as they contain workflows for each
of the three categories. The methods proposed in this thesis can be included in any of
these commercial tools as long as raytracing is available.

1.2.3.1 Synthetic virtual environment

Traditionally, tools like Blender [45] or Maya [46] have been used to manually create
3D geometries and textures which were then imported into a terrain. The terrain itself
was either manually or automatically generated. The techniques used for the generation
of the terrain are varied, for example using pink or Perlin noise, fractals, L-Systems,
agent-based or AI-based [47, 48, 49, 50]. The terrain may also include automatically
generated vegetation [51] and road networks [52] using the same techniques. Similar
techiques are also used to automatically generate the required textures [53]. There are
also new methods to automate or simplify the generation of 3D characters [54, 55] and
to animate their movements [56, 57].

Regarding light sources, a skybox is usually used to illuminate 3D virtual worlds [58].
The skybox may also simulate variations on weather as weel as a day night cycle and
atmospheric scattering [59]. In general these models are not physically accurate and are
not conceived to be used by other sensors except by the camera. Physically accurate
light sources are however possible by importing the IES profiles of real lamps or other
light emmiting objects [60].

The main advantage of synthetic environments is that they can be generated automat-
ically or semi-automatically, this means in a short time a portion of a city or a whole city
can be created for testing. Additionally, every object is automatically labeled, i.e. every
triangle is related to a known category. Doing this kind of labeling for real data for a
whole city would be extremelly expensive. Techniques that allow automatic labeling [61]
help reducing the costs but human verification is still needed. The main disadvantage
of synthetic environments lie on the validation of the simulation results. As the envi-
ronment is synthetic, comparing real measurements with the obtained simulation data
may be difficult.
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1.2.3.2 Measured virtual environment

Measured geometries and textures can be obtained by doing ”drive by scanning” using
for example high resolution LIDARs [62] usually combined with cameras [63] or using
stereoscopic cameras [64, 65]. Similar methods exist using helicopters or fixed-wing
aircraft [62] and satelites [66]

In order to run simulations using the measured data an alternative is to generate
OpenDRIVE (Standard for the representation of road information) [67] files automati-
cally [68] which can then be employed in a tools like VTD [43]. OpenDRIVE files can
also be extracted from OpenStreetMap files [69] or from real accident videos [70]. Al-
ternativelly, OpenStreetMap (OSM) files can be used [71] or even the 3D point clouds
directly [72].

Although ”x by scanning” can provide fast shape measurements it doesnt provide a
very precise description of the optical properties of the scanned objects. A precise mea-
surement of the optical properties of materials can be done using gonio-spectrometers
to extract their Bidirectional Reflection Distribution Function (BRDF) [73]. This tech-
nique provides very accurate results and can be done simulataneously for visible and
infrared wavelengths. Recently, inverse rendering methods have improved due to the
use of neural networks and are able to extract the BRDF from the objects in a scene
automatically [74, 75] using photos. Additionally, data driven methods are able to au-
tomatically define material properties as a composition of known BRDFs [76]. This is
an interesting alternative as there are multiple databases containing Physically Based
Rendering (PBR) materials. The use of these types of materials measured in the visible
range to simulate LIDARs in the Near Infrared (NIR) range has to be verified based on
the accuracy required for the simulation [77].

In contrast to synthetic virtual environments, the results obtained in measured envi-
ronments should be easier to compare and validate. Additionally, because high resolution
maps are often used as part of the self driving vehicle functions [78]. They can readily
be used for simulation.

1.2.3.3 Hybrid virtual environment

Besides a purely synthetic and a purely measured virtual environment is also possible
to have a combination of both. For instance using data augmentation techniques is
possible to combine real and synthetic data. This approach combines the advantages
of the previous two: as synthetic data does not have to be labeled and measured data
can be easily validated. For instance is possible to use a measured static environment
augmented with synthetic dynamic objects [79]. It is also possible to augment real good
weather data with adverse weather data or adverse weather data with synthetic objects
[30]. When augmenting a measured environment with synthetic data usually some ad-
justments are needed to match the two underlying data distributions, i.e reducing the
domain shift. This can be done by simply adding a certain amount of noise [30] or using
more sophisticated approaches like Generative Adversarial Network (GAN)s trained on
real and simulated data [80]. Another alternative is to deliberately generate samples out-
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side of the real data underlying distribution and use then as negative examples. These
examples can be used to train a classifier about common pitfalls and help it avoid them
[81]. Besides considering domain shift also tracking is important when placing synthetic
object in a real environment or vice versa. This refers to the reference frame that will be
used to locate the object. It may be a dynamic reference frame, for example relative to
a vehicle [30] or a static reference frame. Additionally, the object may need to interact
with other already existing objects in the simulation. Examples of these interactions
are mutual occlusion but can evolve to more complex behaviors, for instance a synthetic
object may need to bounce or break when hitting the road [30].

1.3 Raytracing based sensor model and hybrid virtual
environment

Based on the initial discussion regarding the testing requirements for self driving func-
tions, the model presented in figure 1.2 and the previous analysis of each of the sensor
and environment models, the following strategy is proposed:

• Use Raytracing as basis for the development of the sensor model.

• Use a hybrid environment as basis for the virtual environment model.

Raytracing has as advantage that it can be evolved from raycasting (low fidelity sensor
model) all the way up to bidirectional raytracing (high fidelity sensor model) making
the simulation as physically accurate as required during development. This is presented
in figure 1.4. Additionally, raytracing can be combined with conventional or neural
network based statistical methods using as input the rays intensities and directions and
generating as output new intensities and directions [23].

Regarding the environment, a hybrid environment is the best basis to implement the
concept from figure 1.2. As with raytracing we can evolve the environment starting
from a simple synthetic one and go all the way up to a photorealistic environment with
measured object models. In order to do this however, we need to define the environment
in a way in which replacing 3D models or materials or adding weather related effects is
simple. Figure 1.5 presents the result of putting all these ideas together under a frame-
work that can evolve from low fidelity up to high fidelity simulations including weather
related effects. Here OpenDRIVE is used to represent the road together with Graphics
Language Transmission Format (glTF)), and OpenSCENARIO is used to represent the
scene. Product Lifecycle Management eXtensible Markup Language (PLM XML) is used
to contain geometry related metadata. The vehicle geometry itself is stored in glTF [15].
Regarding weather related phenomena, in front of the sensor two regions are defined,
the brown region simulates reflections in the near region of the sensor, these kind of
reflections are mostly caused by substances on the sensor cover (dirt, water, etc.) [28].
The green region simulates reflections caused by rain, snow, fog [32] or hail. Close to the
vehicle a third region is defined, this region corresponds to extra detections caused by
spray water [30] or other object related emissions like water vapor from the exhaust pipe.

12



1.4 Structure of the thesis
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Figure 1.4: Using Raytracing as basis for the sensor model has as advantage that it can be
evolved as needed during development. For example the sensor can start by doing
simple Raycasting (red dashed line), later path tracing (blue dashed line), and
finally if needed bidirectional path tracing (purple dashed line). The sensor is
represented as a light source together with a camera (dash-dot line). Only the 3D
objects in the frustrum (doted line) are detected by the sensor.

Additionally, the dotted line represents a sky box used to simulate the light generated
by sun and moon (dashed lines, used to represent area lights. The moon is not relevant
for the LIDAR sensor but it is important for the camera sensor). All these regions are
controlled by the OpenSCENARIO description which defines date, time, weather and
the relevant actions (e.g. speed). Although not shown in the picture, the noise level
inside the sensor may also be adapted based on these values. Besides the geometry
representation, glTF stores the material properties. In its version 2.0 glTF defines PBR
materials [15]. It is important that the chosen material format supports PBR in order to
cover the range from simple sensor models up to photorealistic models. Additionally, the
standard interfaces defined by OSI are used to connect the environment simulation with
the perception and action modules shown on figure 1.1 OSI, in that way the different
modules can be replaced without much effort.

The use of the mentioned standards and regions allows for the desired flexibility. The
XML descriptions may remain the same, while the geometries, materials and simulation
models change or are replaced by real measurements. In this context, besides formalizing
the setup from figure 1.4 and figure 1.5 under the requirements mentioned in section 1.1,
the main contributions of this thesis are a new model for the spray region, techniques
to extract the model parameters for each of the other regions using real measurements
as well as a methodology to measure the reality gap that can be applied to all three
regions.

1.4 Structure of the thesis

Based on the regions introduced in 1.5, this thesis can be grouped as follows:

13



1 Introduction

1. Sensor cover: The sensor cover is a special optical element as it protects the sensor
from the environment while being itself directly exposed to it. As it is the visible
part of the sensor it influences the overall appearance of the vehicle and therefore
its design is subjected to more constrains as just its size (e.g color, shape, weath-
ering profile). Besides esthetical aspects, changes in the optical properties of the
cover have an important influence on how the environment is perceived by the
sensor. As the cover is part of the optical path of light, changes in its reflection,
transmission or scattering characteristics may have a considerable impact on the
sensor operation. In order to evaluate these changes and be able to include them
in a simulation an experimental setup is proposed. Using the proposed setup is
possible to measure all three parameters in a reproducible manner. To evaluate
the proposed method the accumulation of dirt on the cover is characterized. Dirt
is important because although there are cleaning mechanism they may not work
under certain conditions [28]. The obtained transmission, reflection and scatter-
ing values can be used to create textures which when sampled by a raytracer can
reproduce the corresponding effects in simulation. These textures can be used to
create a database which can be shared as is done with other textures.

2. Atmosphere: It is well known that the presence of water droplets, snowflakes or
hail on the atmosphere affects the perception of the LIDAR sensor by increasing
the noise level and generating extra detections. What has not been deeply studied
is the connection between those changes and the simultaneous change that these
phenomena causes on the optical properties of other objects in the environment
e.g change in the reflection pattern of the street when wet or when covered by
snow. An accurate simulation of these phenomena has to include both effects.
A measurement setup is proposed to simultaneously measure both changes for
rain, fog and snow. From the measurements is possible to generate stochastic
models which can be included in a raytracing based simulation to simulate the
extra detections. They can also be used to adapt the material properties of objects
in this case of the street.

3. Object emission: Objects themselves can also be a source of extra detections. One
example that has been mostly ignored until recently is the generation of spray
water. When driving at high speeds in wet roads, vehicles driving in front or next
to the vehicle using a LIDAR sensor can impact its perception by producing clouds
of spray. These spray clouds tend to float for enough time on the air to be confused
with a real object and may cause phantom breaking. A simulation model for this
kind of phenomena was missing and was developed during this thesis [30]. The
model is based on particle systems which can be sampled by a raytracer generating
similar spatial distributions as real spread clouds do. Additionally, a methodology
is presented to extract the simulation parameters directly from real measurements
as well as the corresponding measurement setup.

4. Background radiation: Although the sensors are protected by an interference filter,
the presence of sun light increases the noise level reducing the average number of
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detections [32]. This effect has to be considered in high fidelity simulations. A
region is not assigned to it however because it can be simulated directly as part
of the sensor model. The parameters required for simulating this effect can be
extracted from the same measurement setup used for the atmosphere region.

5. Data augmentation: Having completed a model that is able to simulate the most
relevant weather related phenomena one question remain: how can real and syn-
thetic data be used together in order to solve concrete issues faced by self driving
systems. A solution is proposed by showing a data augmentation workflow in
which synthetic obstacles are added into real point clouds affected by spray. The
synthetic obstacles are generated using the previously developed simulation and
hence produce point clouds that are physically plausible under the correspond-
ing weather conditions. The final augmented scenes are an example of data that
would be almost impossible to collect in reality and that can be easily generated
by combining real and synthetic data.

The document itself is thematically divided into the following sections:

• Chapter 2. Presents the fundamentals concepts and technologies discussed in this
thesis. First, the classification of the ADAS and SDS functions is presented. This
classification is important because it is the basis upon which the testing require-
ments, sensor set and operational domain are derived. When the automatization
level grows the validation effort increases making the role of simulation increase.
The LIDAR sensor is introduced, relating it to the automatization level required.
The advantages of the LIDAR are contrasted with the problems generated by us-
ing the technology under adverse weather conditions. The argument is presented
that deactivating the sensor under all adverse weather conditions would cause a
drastic reduction of the operational domain of self driving functions. Finally, 3D
engines are presented, this engines are focused on providing real time high quality
3D content and therefore constitute the technological basis used for the proposed
simulation models.

• Chapter 3. Discusses the different options used for validating ADAS and SDS
functions. The traditional ways to validate ADAS functions: proving ground and
test drives are presented and it is discussed why these methods are not sufficient
to validate highly autonomous systems. The new methods: shadow mode and
simulation are described. Both have advantages and disadvantages and as proposed
in figure 1.2 complement each other very well. The use of dedicated lanes for self
driving vehicles is also discussed. As simulation is the focus of this thesis the
topic is discussed more thoroughly including the current standards (some of which
were mentioned in figure 1.5), the current trend towards co-simulation and the
available alternatives to combine software and hardware as well as the use of cloud
technologies. The main problem of simulation the ”reality gap” is discussed at the
end mentioning the methods used to quantify and if possible reduce it.
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• Chapter 4. Based on the discussion of the previous two chapters, this chapter
presents the concrete methods proposed to reduce the reality gap when simulating
the effect of weather on the perception of an automotive LIDAR sensor using real
time technologies. The proposed methods are divided into four parts based on
the different components of a virtual environment and the corresponding weather
effects. First, the effect of weather on materials and textures including changes on
the optical properties of the sensor cover. Second, the mesh-based simulation of
rain, fog and snow. Third, the particle-based simulation of spray water (extensi-
ble also to phenomena like exhaust gases). Fourth, the simulation of changes in
background radiation. Finally, a concrete example is given in which the use of the
proposed simulations allows to tackle a problem which would be almost impossi-
ble to solve using real data. Each of the sections in this chapter presents a brief
description of the problem and solution. The full discussion can be found on the
corresponding papers on the Appendix.

• Chapter 5. In this final section a summary of the results is presented relating
them with the objectives formulated in the section 1.1. Additionally, suggestions
are given to further improve and expand upon this work.
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Sensor cover
Atmosphere
Object emission

Figure 1.5: Flexibility in the conformation of the virtual environment is reached throw the
use of standards. OpenSCENARIO defines the position of any active participant
in the simulation over time as well as the date, time and weather. OpenDRIVE
defines the road geometry, the lanes and the position and type of traffic signs.
The geometry information may be converted to glTF for efficient storage. The
OpenDRIVE file may still be used for example to extract the middle of the lane
(dotted coarse line). OSI defines data structures for the exchange of sensor data for
example the mounting position of the sensor and parameters of each single LIDAR
detection. PLM XML is an example of a file containing metadata and geometry
information about the vehicle. The metadata is necessary in order to animate the
different parts of the vehicle, e.g. turning headlights on or off. In general textures
and geometry information are stored in glTF. The fine dotted line represents the
skybox containing two light sources (sun and moon, dashed lines). The skybox
is controlled using the data contained in the OpenSCENARIO file. To simulate
weather effects on the sensor perception three regions are proposed, one focused on
reflections caused by the sensor cover (brown), one focused on reflections caused
by the different types of precipitation (green) and a third region focused on spray
related reflections (or other types of emissions). The reason for using different
regions is to allow for different simulation methods e.g. mesh based in one vs
particle based in other and to facilitate their independent activation/deactivation.
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2 Fundamentals

2.1 Advanced Driver Assistance Systems and Self Driving
Systems

The international standard SAE J3016 defines different levels of automation for on-road
motor vehicles [82]. Six different levels are defined going from 0 to 5. From levels 0
to 2 the driver performs continously part of the driving task including monitoring the
environment [83].

SAE Level Name Description

0 No automation Driver performs all tasks

1 Driver assistance
Driver is assisted with steering

or braking/acceleration

2 Partial automation
Driver is assisted with steering

and braking/acceleration

3 Conditional automation
The system performs all tasks

inside a certain ODD, the driver has
to take over if requested

4 High automation
The system performs all driving tasks
inside a certain ODD, the driver may

not take over if requested

5 Full automation The system performs all driving tasks

Table 2.1: Levels of automation as defined for on-road motor vehicles.

Starting with level 3 up to 5 the automated driving system performs the driving task
and monitors the environment by itself [84, 85]. There is however a fallback mechanism
that differentiates levels 3 and 4. In level 3, in case of failure or hazardous weather the
driver is responsable of taking over the driving task. In level 4 the automated driving
system is responsible of fullfilling the fallback task by itself [86]. In all levels up to 5
there is a Operational Design Domain (ODD) which defines certain conditions that are
required for the driving function to be available. In level 5 the system is able to drive
automatically under all conditions. For levels lower than 5 the vehicle manufacturer is
free to choose for which ODD which automation level applies. One ODD that is consid-
ered appropriate for level 3 systems is traffic jams and stop-and-go traffic on highways
at low speeds. This kind of traffic is quite tiring and monotonous for a human driver in-
creasing the risk of accidents. Simultaneously due to the low speeds, physical separation
of the highway and the possibility of extending already existing Adaptive Cruise Control
(ACC) systems is considered technologically approachable. Another ODD in which some
Original Equipment Manufacturer (OEM)s are working on is level 3 and level 4 highway
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driving up to the maximum allowed speed [84]. Additionally, some companies are work-
ing on level 4 systems known as robotaxis which are able to transport passengers along
certain routes in cities at low speeds. In general most ODDs on which companies are
currently working on are not isolated from weather and therefore have to cope in some
way or another with it. The next section will consider the fallback mechanism under
adverse weather conditions.

2.1.1 Fallback mechanism and weather

In order to ask the driver to take over, a level 3 system will have to identify that the
weather has changed, or is expected to change, enough for it to be outside its ODD. After
the take over request the driver may need up to 30s to take over depending on the mental
load of his previous task and the complexity of the driving situation [87]. Additionally,
due to its finite time predictability barrier [88] weather can not be predicted with enough
precision to precalculate the Take over request (TOR). Alternatives like using Vehicle to
Everything (V2X) are also affected by weather [89], besides, although the first vehicles
that encounter adverse weather may be able to inform other vehicles, those first vehicles
will have to use their own sensors in order to measure the current weather and initiate
their TORs. This means that a vehicle may have to cope with adverse weather for
around 30s. After the adverse weather has passed the vehicle will have to evaluate again
if a re-engagement is possible when requested by the driver. A similar analysis applies
to level 4 systems with the difference that level 4 systems may have to cope with adverse
weather for even longer intervals.

Reasons why weather has to be considered in level 3 systems:

• Evaluate current weather in order to start a TOR.

• Cope with adverse weather for as long as the driver needs to take over.

• Evaluate current weather when the driver request re-engagement.

Reasons why weather has to be considered in level 4 systems:

• Evaluate current weather in order to start a maneuver to reduce the risk.

• Cope with adverse weather until ODD is breached or driving task is completed.

2.2 The LIDAR sensor

The following table shows the wavelength and the broad influence that weather has on
each of the main sensors used in autonomous vehicles [90] [91] [92]. The table shows
that the smaller the wavelength used by the sensor the higher the effect weather has on
its environment perception. At the same time it is known from the physics of imaging
systems (Rayleigh criterion [93]) that the smaller the wavelength the higher the details
that can be extracted from the reflected light. The short wavelength used in RGB cam-
eras and LIDAR sensors is specially important for localization and scene interpretation.
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For example only the RGB camera is able to read traffic signs while the LIDAR sensor
is ideal for doing real time matching between the measured 3D pointclouds and a high
definition map of the area [94]. The improved localization provided by the LIDAR op-
erates in conjunction with the one provided by the GPS system and is a fallback when
the GPS signal is not available. The advantages provided by the LIDAR relative to its
cost make it relatively uncommon in level 2 systems [95] but usually present in level 2+
(hands free driving), level 3 [96] and level 4 systems [97].

Sensor Wavelength Influence of weather Main advantage

LIDAR 850-950nm and 1550nm High High resolution 3D information

RGB Camera 400-750nm High Same wavelength as human eye

Thermal camera 2 − 10µm Medium Object detection at low light

Radar 1.2cm, 4mm 2.5mm low
Direct measurement

of relative speed

Ultrasonic 7.5 - 14km low
Low cost, short

range distance measurement

GPS 19cm
low (local),

medium (atmospheric)
Low cost localization

Table 2.2: Influence of weather on each of the main sensors used in ADAS and SD.

While the radar and the camera have been used for many years in level 1 vehicles,
the LIDAR has been introduced only relatively recently as part of the sensor set in
vehicles of level 2+ automation and higher [98]. Due to its novelty and short wavelength
the LIDAR is a perfect candidate for investigating the effect of weather on a sensor’s
perception. The resulting simulation framework is nevertheless general enough to be
applied with small adjustments to any of the sensors listed in table 2.2. This is due the
high flexibility provided by raytracing, which can be used to simulate the propagation
of electromagnetic as well as mechanical waves [99] [100].

2.2.1 Working principle

LIDAR is a sensor technology which compared with the others sensors used in vehicles:
RADAR, camera, ultrasound and GPS is relatively new. For this reason there are still
multiple alternatives currently contending for the market. This thesis will however focus
on the technology used during the measurements which is a Time of flight (TOF) LIDAR
using a 905nm wavelength LASER, a rotating mirror and an Avalanche Photo Diode
(APD) as receiver [101]. There is a similar variant mostly used in robotaxis [102] in
which the whole optics are rotated. The two options are shown in the following figures
for comparison. The used wavelength, receiver technology and LIDAR type correspond
to the currently most commonly used configuration in autonomous vehicles [103].

Instead of rotating the whole optical unit, the used LIDAR rotates only the mirror
reducing the horizontal field of view. The vertical field of view is also reduced by confining
the possible tilt values of the mirror to only two: using a slightly different tilt for each
side of the mirror. These simplifications allow to reduce energy consumption, costs and
size.
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Receiver

Laser

Tilting mirror

Sender and
receiver optics

Rotating
head

Figure 2.1: Simplified schema of a mechanical LIDAR in which the whole head containing the
optics rotates providing a 360◦ horizontal field of view. The vertical field of view
is obtained by mechanically tilting the mirror [104]. This kind of set up provides a
low frame rates due to the weight of the rotating head in the range of 5 to 15 Hz
[105]. Notice how sender and receiver path share the same mirror but are separated
from each other in a biaxial configuration.

The following table presents the most important characteristics of the used sensor.
Notice that its size, package and field of view constrain the possible mounting positions
in the vehicle. The mounting position as well as the sender and receiver technologies have
a significant impact on the way in which adverse weather affects the sensor. Additionally
the used sensor has the characteristic of providing multiple echos per pixel, considering
a pixel the minimal unit of resolution of the sensor. Up to three echos can be detected
this means that as long as an object does not block the whole pixel other objects in
the sensor range can be detected. This is specially important for non-solid objects like
small droplets in which case depending on the concentration other objects can still be
detected.

Now we precede to discuss each technology aspect in detail.

2.2.1.1 Wavelength

The wavelength is the distance at which the shape of a wave repeats [93]. The wavelength
is equivalent to the period of the wave but measured in space instead of in time. It is more
convenient to use as frequency in order to characterize light sources and receivers at very
high frequencies as the ones used in LIDAR systems. Due to the presence of molecules on
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Laser

Receiver

optics

APD

Rotating
mirror

Figure 2.2: Simplified schema of the Valeo Scala LIDAR sensor used in the measurements
presented in this thesis [98]. In this mechanical set up only the mirror rotates while
the sender and receiver optics remain fixed. Here also a biaxial configuration is used
for the sender and receiver optical path. The two sides of the rotating unit contain
mirrors with a sightly different tilt, which allows to increase the vertical field of
view. The mirror rotates with a frequency of 25 Hz. Due to the mirror tilting not
all layers are sampled in each rotation. From the 4 layers of the sensor only the
middle ones are updated with this frequency. The lowest and highest layers are
updated with 12.5 Hz [101].

the atmosphere there are certain windows in which the transmitted light is more or less
absorved. For the application needed in automotive it is desired to avoid absorption on
the atmosphere. Therefore the regions from 0.85µm to 0.95µm NIR and around 1.55µm
Short-Wave Infrared (SWIR) are usually used [106]. Additionally, it is important that
the used laser light doesn’t cause harm to other traffic participants. The IEC-60825-1
defines this concretelly as class 1 or 1M LASER systems [107]. This regulation limits the
maximum power level depending on the wavelength, which limits the maximum range.
The price of LASERs and detectors for the respective wavelengths are also an important
factor, for instance considering the use of the same or similar lasers or receivers in
other areas like telecommunications. Another factor in the selection of the wavelength
is the effect of sunlight on the sensor. Sunlight has a broad spectrum including the
wavelengths used in LIDAR sensors, in the infrared region however the intensity is much
lower than in the visible region and reduces further with longer wavelengths. This makes
the 1.55µm more convenient in order to reduce the effect of sunlight. Finally, the sizes
of the available senders and receivers are important as they influence the final size of the
sensor which is a very important factor for vehicle manufacturers. With all these factors
taken into consideration the industry is currently mainly using the 905 nm wavelength
[106]. Considering the 905 nm wavelength the different particles in the atmosphere
scatter light in different ways which are summarized in table 2.4. Except for snow and
hail it is assumed that the shape of the particles is approximately spherical. Symmetric
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Parameter Value

Wavelength 905 nm

Horizontal field-of-view 145◦

Vertical field-of-view 3.2◦

Layers 4 (0.8◦ each)

Data refresh time 40/80 ms

Distance resolution < 0.1m

Typical range 150 m

Typical mounting position 40 to 80 cm height at vehicle front

Table 2.3: Relevant parameters of the used LIDAR sensor.

indicates that the forward and the backwards scattering are similar. In the case of snow
and hail the spherical approximation is not valid anymore and therefore the scattering
profile depends on the exact shape.

Type Radius (µm) Scattering profile Concentration

Air molecules 0.0001 Symmetric < 3x1025m−3

Haze, smoke, dust 0.01-1 Symmetric 105 − 5x1010m−3

Fog 1-20 Slightly forward 106 − 5x109m−3

Rain 100-10000 Mostly forward 10 − 103m−3

Snow 1000-5000 Depending on shape 10−2 − 103m−3

Hail 5000-50000 Depending on shape 10−2 − 1m−3

Table 2.4: Usual ranges for the size and concentration of droplets/flakes based on weather type.

2.2.1.2 Measurement type

Time of flight scanning LIDAR: The most simple approach to measure the distance
of an object to the sensor is to send a pulse of light which is then reflected by an object
and sent back to the sensor. The receiver optics then identify the pulse intensity over
the noise level as shown in figure 2.3. Knowing the time in which the pulse was sent and
recording the time in which the pulse returns gives the traveled distance after conversion
based on the speed of light. Besides its simplicity, the scanning pulse approach has as
advantage a higher tolerance to noise as the other methods because the LASER energy
is concentrated in time and space. One disadvantage however is the peak-to-peak power
variation of the LASER which maybe around 10% and that is temperature dependent
[108]. Additionally, the distance resolution is limited by the temporal resolution of the
receiver optics and generates resolutions that are usually in the order of centimeters. This
technology is nevertheless the most commonly used approach for automotive applications
[103] [102].

2.2.1.3 Sender technology

Mechanical: This type of technology uses rotating or oscilating mirrors or prisms to
produce the scanning pattern in one of the two dimensions. To increase the field of view
in the other dimension a tilting mirror can be used, multiple lasers or receiver arrays.
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Figure 2.3: Working principle of the time of flight LIDAR. Here idealized the sender pulse in
red shown simultaneously with the signal in the receiver. After sending the pulse
the time is measured until a pulse is received with an intensity higher than a certain
factor ’x’ of the standard deviation of the noise. When the pulse arrives the time
measurement is stooped and is translated to a distance

In order to reduce costs however, this method usually provides a large field of view in
one direction and a small one in the other. Due to the inertia of the moving parts:
mirrors, prisms or whole optical units (fig 2.1) this kind of system usually consumes
higher amounts of energy, is bigger and heavier as systems with micromechanical or non-
moving parts [102].Additionally due to its bulky nature these LIDARs are suceptible to
miss-calibration under vibration or shock [103]. Despite the disadvantages this scanning
technology is the most common in current LIDARs used in autonomous vehicles [109]
as it still provides a higher range as the alternatives [102].

2.2.1.4 Receiver technology

In order to process the incoming light the receiver contains a photodiode (or a photodiode
array) that make use of the photoelectric effect in order to convert photons into electrons.
The photodiode is usually a combination of a ’p’ and ’n’ doped layers with an ’i’ undoped
layers. The used sensor employs an avalanche photodiode array of 3 layers on the detector
side. To better understand the APD is worth to introduce first the p-i-n photodiode (also
PIN photodiode) [110].

PIN Photodiode: This diode is a photodiode with an ’i’ region between a ’n’ and
a ’p’ regions, in which the applied reverse bias voltage is not very high. This has as
consequence that the diode when hit by photons produces a current with a gain of 1.
This limits its use to applications in which the amount of light hitting the photodiode
is high. One advantage of these diodes is that they can operate up to a very high
bandwidth [103]. This is due to their low noise level caused by their operation in the
linear region of the V-I curve [110].

Avalanche Photodiode: In this case the applied reverse bias voltage is higher than
for the PIN diodes. The gain becomes proportional to the applied inverse voltage lin-
early up to the break-down voltage of the diode, at which point it becomes non-linearly
dependent. When working in the non-linear region the APD is said to work in Geiger-
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mode. The name avalanche comes from the effect that a photon has when hitting the
’i’ region. This causes an avalanche of electrons and therefore a higher current as for
the PIN diode. Although the avalanche effect makes the APD very sensitive it also pro-
duces more noise as in a PIN photodiode due to the gain fluctuations produced during
the avalanche. For this reason is usually prefered to use a gain lower as the maximum
possible [103]. APDs can provide gains of up to 1000 [111]. For the 905nm wavelength
silicon is used to create the junctions [106]. When APDs are built into an array there is
a second source of noise caused by the crosstalk between each cell [112].

2.2.1.5 Optical System

As shown in figure 2.2 the used LIDAR uses two different parallel axis for the sender and
receiver path. This type of configuration is called biaxial and has consequences related
with the influences on weather on the sensor. In this section the biaxial configuration is
contrasted with the coaxial one showing the characteristics of each.

Coaxial: In this case sender and receiver use the same axis. Internally a beam splitter
can be used to redirect part of the light into the receiver optics for example while the
sender path is left unchanged (except for the losses caused by the beam splitter) [113].
In contrast to the biaxial setup in this setup the field of view of the receiver can be
reduced to match the size of the sender field of view and the same aperture can be used
for both. This reduces the amount of background noise. Additionally, objects can be
detected that are very close to the sensor which is not the case for the biaxial setup
in which the first objects that can be detected are those at the distance at which the
sender and receiver field of view first overlap. Another reason for using coaxial systems
is that the allignment of the sender and recevier path in a biaxial system can be very
complicated [114].

Biaxial: The sender and receiver axis in this configuration are usually parallel to
each other and are separated by a certain gap. As a consequence the sender and receiver
path only start to overlap after a certain distance. This may help to reduce the noise
if detections very close to the sensor are not important. This is usually the case in an
automotive LIDAR system, for instance when rain drops or snow flakes accumulate on
the sensor cover is useful to avoid overlapping of the sender and receiver field of view
for a distance of at least 50cm (considering multiple reflection) [32]. The fact that the
receiver field of view has to be designed to cover the sender field of view increasing
background noise in this setup may be compensated by the losses that would otherwise
originate by including the beam splitter.

2.3 Phenomena affecting the perception of LIDAR sensors

As mentioned in the previous section the power of the laser beam is limited by the laser
class. This limit on the power of the laser has as consequence that the only parameter
that can be adjusted to reach a certain range is the receiver. A very sensible receiver is
therefore employed. A sensible receiver paired with the short wavelength of the NIR light
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causes a high sensibility to weather phenomena. The effects caused by these phenomena
on the perception of the LIDAR are discussed in the next sections.

2.3.1 Rain, fog, snow

As mentioned in table 2.4 when the laser light hits the rain, fog or snow particles (drops
or ice crystals) the photons may be scattered, transmitted or absorved depending on
the wavelength of light and the particle size and refractive index. Photons scattered in
directions different to the receiver of the LIDAR or absorved reduce the intensity of the
beam and hence the range. However, photons that are scattered in the direction of the
receiver either directly or throw multiple reflections become a source of noise and false
detections [115, 32]. The spurious detections caused by each of these phenomena tend to
concentrate radially up to a maximum distance from the sensor after which the intensity
of the reflections is not high enough to generate a detection [32] [116]. These spurious
detections tend to have the following characteristics when compared to the detections
caused by solid objects[117] [32]:

• Higher density.

• Higher level of randomness in their spatial distribution.

• Lower intensity.

These characteristics of the precipitation related detections allow the construction of
outliers removal filters with accuracies higher than 90% [116], or of weather classifiers
[32].

Besides the spurious detections, all these three precipitations may cause changes in
the reflection of the objects in the environment. Not only the reflection value but the
directions (BRDF) may change, making objects with a diffuse reflection pattern become
more specular in their radiation. The opposite is also possible if we consider for example
a metalic object that is covered by snow [32]. The extra water or snow left after the
precipitation is also relevant, water on the road can generate spray [30] and snow can
mix with dirt and salt in winter soiling the sensor [28].

Summarizing these different precipitations affect the performance of the LIDAR in
three main ways [32]:

• Increase the noise level reducing the total number of detections.

• Increase the number of spurious detections.

• Change the optical properties of objects in the environment.

2.3.2 Sunlight and other light sources

The presence of sunlight or in general the presence of any light source with a wavelength
similar or equal to that of the LIDAR sensor and directed towards it is a source of noise
and perhaps also of false detections. As a reference in a sunny day the sunlight intensity
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may vary between 10 to 130 klx [118]. As mentioned in the introduction section LIDARs
usually have an interference filter covering the receiver that rejects light of wavelengths
different to those of the sender [31, 28]. However this rejection is not perfect and the
sun produces light in a very broad spectrum including NIR and SWIR. To counteract
this effect the LIDAR may automatically detect the higher noise level and accordingly
increase the minimum detection intensity. For this reason during the night the average
number of detections in the same location is higher [32]. This mechanism is specially
useful against the average increment in background radiation. Direct or indirect sunlight,
for example by reflecting on a metallic object may still cause spurious detections [119].
Regarding other light sources it is necessary to consider that in the future many cars
may use a LIDAR sensor and that the probability is high that the wavelength of those
sensors is the same making interference very common. A technique to reduce this kind of
interference is to introduce random delays on the time in which the light pulse is emitted.
By informing the receiver about these delays and assuming that the scene remains the
same between two consecutive scans, is possible to reject returning pulses that do not
correlate with the expected temporal patterns [120].

2.3.3 Spraywater

Due to rain and depending on how good is the drainage, a thin water film can accumu-
late on the street surface. This water enters into the treads of the vehicle wheels and
depending on the speed of the wheels is sling in a trajectory that depends on the size of
the spray droplets. The average drop size and standard deviation are themselves depen-
dent on the rotation speed of the wheel as shown in figure 2.4. In addition to spray, also
splash water is generated. Splash generate usually bigger droplets as spray that fall close
to the wheels and are therefore usually not problematic for the LIDAR. Additionally, a
portion of the water remains due to capillary adhesion in the tread all the way until the
wheel has done a half rotation. This water is then blown away by the wind creating extra
spray. The smaller the particles are, the more important are the wind forces so the final
spray cloud is a combination of bigger particles following a parabolic trajectory with
smaller particles following the wind trajectories and particles in between following a mix
trajectory. Very small droplets can also remain on the wind for long times creating an
effect similar to light rain or fog [32, 30]. The use of spray suppression devices common
in trucks is not common in other vehicles and doesn’t completely remove spray.

The following points summarize the effect of spray on the LIDAR sensor:

• Some small droplets remain floating on the air on a random distribution and cause
an effect similar to fog or fine rain. They are perceived as spurious detections with
a high density close to the sensor and with a fast radial reduction desapearing
almost completelly after a certain distance ( 5m, for the use sensor [30]).

• Depending on the wind speed some droplets may follow a turbulent trajectory and
cause groups of spurious detections at random locations if a high concentration of
particles is formed not very far from the LIDAR sensor ( 20m, for the used sensor
[30]).
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Figure 2.4: Probability distribution of the particle size depending on the rotation speed of the
wheel vc. Higher speeds generate particles of smaller diameters in average and at
the same time reduce the possible size range

• At lower wind speeds some droplets follow an inertial (parabolic) trajectory and
cause groups of spurios detections close to the wheels of the vehicle generating the
spray.

• As happens with rain and fog droplets may be deposited on the LIDAR cover.

2.3.4 Substances and deformations on the sensor cover

The LIDAR as well as the camera are very sensible to substances or objects covering
their field of view. The RADAR as well, but mostly due to the precense of wetness which
can be reduced using appropriate radome shapes and hidrophobic films [121]. As already
mentioned, the LIDAR laser power is limited and therefore any object placed infront of
it may considerably reduce its range. As a consequence placing it behind the windshild
to protect it from dirt as is done with some cameras is usually not an option [122].
Placing the LIDAR close to the vehicles’ roof may also be inconvenient either esteticaly
or due to a limited vertical field of view of the sensor. There are also mechanisms to
clean up the sensor [123], or to free it from snow [124], these mechanism are however
not perfect and some depend on water or cleaning liquid which may be exhausted. The
effect of hydrophobic films sinks with time and doesn’t protect from all forms of dirt.
It is therefore necessary to consider the effect of substances on the sensor cover, some
examples are:

• Snow: either accumulated when parking or sling perhaps in combination with salt
or dirt by other vehicles.

• Insects.

• Water: caused by rain or spray coming from other vehicles, combined perhaps with
dirt or salt.

• Dust: accumulated when parking or sling by other vehicles.

As happens to objects under the effect of rain, fog or snow these substances change
their optical properties over time so for instance the dust initially combined with water
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may dry out leaving small dirt patches on the sensor. As rain, fog and snow these
substance may cause a reduction of the range, false detections and/or higher noise [28].

In addition to substances, the optical properties of the cover may also change due to
rock impacts, temperature, the use of abrasives, or the effect of UV light [32].

2.4 Creating low cost real time simulations

2.4.1 3D Engines

In order to create a game or in general a 2D or 3D virtual interaction software, some parts
are needed over and over again. For example collision detection, artificial intelligence,
a renderer and more recently certain networking capabilities. Those parts were usually
developed separately by each game development studio. Recently however, the high costs
and the short deadlines present in game development make the use of games engines more
and more common. Figure 2.5 shows the idea of a game engine. A game engine or, due
to their use outside of games, a 3D engine is a layer of code that implements much of
the functionality needed to develop a game. The functionality is provided to the user in
form of modules that abstract away a big part of the inherent complexity. In addition to
reducing the amount of work over multiple games, the engine reduces also the amount
of work required to port a game to different platforms.

OS

Device drivers

3D Engine

Renderer

Physics

UI

Networking

Virtual world

AI

Console Web Phone

Figure 2.5: In order to avoid developing each time the same functionality. A 3D engine de-
livers modules covering the requirements of most games or in general 3D virtual
interactive software. The low level programming required to comunicate with the
device drivers is done in the engine once and can be used for multiple projects in
different industries. Porting the code to other platforms is also simplified by using
the engine (Based on [125]).

Besides game studios other industries in need of 3D content have discovered game
engines. For instance the visual effects industry for film and television that used to have
specialized software is recently moving towards 3D engines [126]. The same is happening
with architecture and design companies [127] as well as the automotive industry [128].
These industries and others interested in VR, AR, the Metaverse and Digital Twins
provide high amounts of resources towards the development of 3D engines, making it
difficult for specialized software to compete, except in certain niches. The scientific use
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of game engines have been limited by the gray or black box aproach of certain companies
developing the engines. Recently however, open source game engines are available like
Godot [129] and Open 3D engine (O3DE) [130]. The researcher can hence use, verify
and modify the code and in that way obtain reliable results that other researchers or
institutions can reproduce. An alternative to 3D engines is to use specialized libraries
for each of the modules mentioned in figure 2.5. This is a good option if only for example
the renderer and the physics engine are needed and not the rest. Tools like Blender [45]
are also a good option having a production quality open source path tracer [131] and a
physics engine.

2.4.2 Rendering, materials, and light sources

As mentioned in the introduction section the use of Raytracing is recommended for the
simulation of the LIDAR sensor. Raytracing has the advantage that it can be very fast
if just the first intersections of the rays are calculated (Raycasting) or it can be very
precise but also slow (although modern graphics card make this less of a problem) if
required. Raytracing in general tries to solve an equation called the light transport
equation. This is an integral equation that defines the equilibrium radiance distribution
in a scene. This equation can not be solved analitically for most cases and has to be
solved numericaly. Conventional numerical integration methods like quadrature require
a computation time proportional to the number of dimensions of the integral, for that
reasons other methods are prefered like Monte Carlo integration whose computation
time is dimension independent. In broad terms the method consists on sending rays
randomly from the camera pixels and calculating their trajectories until eventually they
hit a light source, having the intensity of the light source and the losses caused by each
reflection and free space propagation the intentisity reaching the pixel can be calculated.
The disadvantage of the Monte Carlo techniques is that they requires a certain amount
of rays per pixel to smooth out otherwise the variance is high which is perceived as noise
in the image. Tracing rays takes time for that reason a number of techniques have been
developed in order to obtain an image with low variance while tracing a few rays as
possible [132]. The Cycles renderer used in this thesis is an open source path tracer that
uses some of these techniques [131].

Regarding materials and textures the use of some kind of principled BRDF [133] is
common. The advantage of this kind of material definition is that the material can be
improved as needed. For instance if only the base color is known or needed the other
parameters can be ignored. If more information is available like roughness, specular and
metalic they can be added succesively increasing the level of realism. The PBR material
definition in glTF 2.0 is also compatible [134]. This is important because glTF will
probably become the default standard for storing 3D assets.

As with the other parts of the simulation the type of light source depends on the
type of data needed for testing. For example point light sources are very fast to sample
but using them to simulate the laser light would ignore the scanning pattern. For a
non flash LIDAR it may or may not be an issue depending on how far the objects are,
how fast the vehicle is moving, etc. If the scan pattern is important a better technique
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would be to use raycasting from the light source with multiple rays per pixel [135], this
technique however ignores multiple reflections and is therefore good for objects that are
perpendicular to the sensor.

2.4.3 Physics engine

Similarly to what happened with the creation of game engines. Physics simulations
in games were initially programed over and over again as needed for each game. As
the desire for higher levels of realism increased and the deadlines became shorter the
necesity appeared of using a general and reusable approach to the simulation of physics
in games. In this way the physics engine was born. Broadly speaking, the role of the
physics engine is to take the current positions and velocities of objects and apply the
equations of motion to update these values considering the effect of all the forces currently
acting on each object. Additionally, the physics engine need to identify collisions and
add the effect of the forces generated by those collisions [136]. The equations of motion
are integro-differential equations that have to be solved numericaly usually during the
interval provided by the refresh rate of the screen. Due to this real-time requirement
some simplifications and approximations may be made which may produce results that
are not physically correct. This is however not a reason for discarding the use of physics
engines for software testing. One option to overcome this issue is to validate the results
for the needed range using a realiable solver. Another alternative, if the code of the
engine is open source, is to directly verify the code. Some examples of open source
physics engines are: MuJoCo [137], Bullet [138] and ODE [139]. The main advantage of
using this kind of engines is their real time capability and low cost (or no cost) compared
to conventional tools.

2.4.3.1 Mesh-based vs Particles-based methods for fluid simulation

Fluid simulations are an important part of the physics engine. Although it is possible
to simulate aerodynamic forces or bouyancy without having to solve the Navier-Stokes
equations [136], many games include water, fire, smoke and other fluids in some way
in their gameplay, for which solving the fluid equations is necesary. There are two ap-
proaches to solve the fluid equations: Eulerian and Lagrangian. The first one uses a
mesh (2D or 3D), the second one uses particles. It is also possible to combine both,
in this case particles are used to store variables that are not fundamental for the fluid
simulation like the position of boubles or foam [140]. In the mesh approach the vari-
ables that characterize the fluid are stored in the mesh and are update by numericaly
solving the Navier-Stokes equations [140]. The fluid is then rendered using volumetric
rendering techniques that sample the content of the mesh. In the particles approach the
information is stored in the particles [141], in the same way as previously discussed for
the physics engine. The position of the particles are updated each frame and it is the
particles themselves that are rendered. In this case normal surface rendering techniques
can be used. Fluid simulation if done in a big mesh or using a high number of particles
are not warranted to finish before the next frame and are therefore calculated offline and
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stored. In general particle based fluid simulations are faster than their grid counterparts
and if the number of particles is limited can run in real time [141]. An open source solver
like mantaflow [142] contains solvers for both methods and is integrated in Blender.

2.5 Conclusions

• The LIDAR as sensor for autonomous driving is still in a development phase. There
are multiple technologies competing in the market with different advantages and
disadvantages. In general a trend towards the use of solid state technologies is
desired for robustness, size and cost reduction.

• The maximum power that the LIDAR sensor can emit is limited by safety restric-
tions. There is certain leeway regarding the wavelength but this is also limited
by commercial and technological reasons. These two restriction make difficult to
develop a sensor that is not affected by adverse weather as much as for example the
RADAR sensor. This disadvantage is compensated by the high resolution, depth
measurement and ability to work under low or no light.

• Simulation models of the effect of weather on the sensor are needed to monitor
the ODD and correctly assets the risks. This is relevant for level 3 and level 4
systems as in level 3 systems the vehicle needs to decide when to start the fallback
mechanism.

• Creating the kind of simulations needed to validate the performance of self driv-
ing system has become easier due to the existence of open source game engines
and related tools which strongly reduce the amount of code needed to create 3D
interactive software.
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Depending on the level of automation there are different alternatives to test autonomous
systems . Classically a combination of proving ground tests, laboratory experiments and
test drives in public roads was enough to verify that a system was working as expected.
Starting with advanced level 2 systems new ways were introduced to complement the
initial methods. Some of these methods are shadow mode and simulation. Dedicated
lanes although normally not considered a testing method can be seen as a public road
test where human drivers as factor are removed [143] and are therefore included in the
discussion.

3.1 Proving ground

The core idea behind the proving ground is to test scenarios that are safety critical
but which would be unsafe or unethical to tests on public roads. These scenarios are
usually part of homologation or quality tests required for the SuT to be approved [144].
Besides these core scenarios, the proving ground may also contain scenarios that are
representative of the situations that the SuT may find on public roads compresed in a
small scale [145]. New proving grounds may also include areas specifically for autonmous
vehicles for example a small portion of a smart city in which the SDS is by itself or
interact with other SDSs, human drivers or vulnerable road users [146]. This new kind
of proving ground starts to be very similar to geographycaly limited public road tests.
One difference however is that the humans taking part on the experiments are employed
to do so. In addition to real humans some road users or obstacles may exist only virtually
making use of simulations [44].

3.2 Laboratory experiments

Laboratory tests are usefull for component and integration tests [146]. For example is
possible to check that the communication between the different parts of the system work
using Hardware In the Loop (HIL) tests. For each sensor, besides durability tests, the
sensor’s perception can be verified using target simulators [147, 148] in Vehicle In the
Loop (VIL) setup to test the sensor front end. The effect of weather can be analized with
a static outdoors test setup [32] or using for example fog chambers [22]. Using driving
simulators or virtual reality is possible to check how humans interact with the system
(Driver In the Loop (DIL)). Software In the Loop (SIL) tests can be considered also in
this category although both HIL and SIL tests make an increasingly use of simulation.
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3.3 Public roads

Tests in proving ground and laboratory are done in an area to which the public has no
access. The following methodologies remove this restriction.

3.3.1 Shadow mode and automatic data collection

In shadow mode the next version of the autonomous driving software runs its perception
and planing algorithms but does not actively controls the vehicle [149]. The current
software version drives the vehicle while a human driver supervices the operation. If a
situation happens in which the driver has to intervene, also known as a disengagement,
the action of the human driver is compared with the action that the software in shadow
mode would have taken. If the two differ the data is stored in order to train and improve
the software. Besides triggering data collection based on disengagements other triggers
can be used, for example novelty or anomaly triggers can be used to automatically
identify content in the data that significantly deviates from the previously observed
data. One way to do this is using autoencoders which are able to automatically find a
compressed data representation. The data can then be decompresed and by comparing
it with the original data a quality metric can be calculated. If the value of this metric
decreases the existance of an anomaly can be infered [150]. Another possibility is to
trigger data collection based on the presence of a certain label in the data. Simulation
plays a role in shadow mode as it has to be understood what would have happened if
the human driver would not have taken action. This question is solved using counter
factual, also known as what-if simulations. Knowing what would have happened helps
to confirm if the driver acted correctly and if that is the case a new scenario can be
created to test and improve the SDS [151].

3.3.2 Test drives with driver in vehicle or remote

Test drives with a trained driver sitting on the driver seat and paying atention to the
behavior of the SDS are a traditional way to verify that the ADAS or SDS systems are
working as expected. A new variation of this approach is the use of remote drivers. In
this case when the fallback procedure starts the control is not taken by a driver in the
vehicle but a remote one. The remote driver handles the adverse situation and when
possible returns control to the SDS. In this case it is assumed that the fallback mechanism
would be rarely required and therefore a remote agent can supervice multiple vehicles
simultaneously, reducing costs. The remote driver controls the vehicle using the already
existing sensors. This information is streamed to the remote driver and the driving
actions are streamed back to the vehicle. This introduces multiple safety, quality and
latency requirements over the connection [152]. Additionaly, compresion techniques are
needed to be able to transfer the sensor information in real time [153].
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3.3.3 Geographically limited zone

This is a public road or portion of a city in which there is an agreement with the
community to test SDSs. The public should be informed that SDSs are being tested in
the area and the SDSs are not allowed to leave the region [44]. As other public road
tests, this kind of tests are only possible once the SDS has reached a very high maturity
level. Its main advantage been the high level of realism (stochasticity), although the
geographical limitation translates into a limitation over possible weather types.

3.3.4 Dedicated lanes and parking garages

There are two types of dedicated lanes. Those that are physically separated from other
driving lanes used by human drivers (by a divider, tunnel, etc.) and those which are
not isolated. In the case of lanes that are not isolated the driver can activate the
autonomous driving mode and the vehicle will move to this lane and keep driving on it
until the driver decides to take back control or there is an unexpected problem [143].
Both types are good oportunities for testing the SDS without having the influence of
human drivers, additionally the dedicated lanes may include extra sensors to help the
SDS fullfill its tasks. Parking garages may also be reserved for autonomous vehicles only,
in this case the driver would get out before the vehicle goes into the building. As in the
case of the dedicated lanes the garage may include extra sensors to help the vehicle park
[154, 155]. One difference in the parking lot case is that no humans are present in the
area reducing risks. In tunnels or parking garages besides human factors also weather
effects are removed, the developer of the SDS can hence focus on testing the remaining
aspects.

3.4 Simulation

In contrast to other testing methods, simulations can be done from the very begining of
the development of the autonomous driving software. As discussed in the introduction
section and shown in figure 1.2 even without any hardware prototype a simulation model
can be built to progresively test the perception algorithms, verify how other traffic par-
ticipants react to the actions of the autonomous vehicle and verify if communication with
the infraestructure (V2X) work as needed. Some of these simulations are relatively new
and complement traditional ones like testing and development of vehicle dynamics [146].
In addition, simulation is becomming an important input for other testing methods. As
shown in figure 3.1 each of the other testing methods can profit from a simulated envi-
ronment. For example, as mentioned before, the proving ground can use virtual traffic
participants synchronized with the real ones placed appropiately in 3D space. These
participants can substitute real objects, persons or animals [156]. SIL, HIL, VIL and
DIL tests make an increasing use of virtual environments and virtual traffic and all other
methods can make use of counter factual (what-if) simulations when a disengagement
happens.
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Figure 3.1: In addition of being an important testing method by itself, simulation complements
the other testing methods. Proving ground tests can be expanded using virtual
traffic participants or objects (AR techniques). In laboratory tests simulation can
provide the virtual environment for SIL, HIL, VIL and DIL test benches and in all
other cases it can be used to do counter factual analysis.

3.4.1 Software/Hardware Co-simulation

Some of the interface standards mentioned before provide also an API for message pass-
ing between modules and to start and configure the simulation. There are additional
tools specificaly to achieve these tasks. Using these tools is possible to create X-in-
the-loop test benches combining hardware and software modules as needed that run
automatically. For example Functional Engineering Platform (FEP) is an open source
framework and Software Development Kit (SDK) that allows the creation of simulation
systems consisting of multiple modules that comunicate with each other in a time trig-
gered or data triggered way [157]. In the time triggered mode FEP allows to define a
module which is responsible for the time. This module generates time update events
that are distributed to the other modules generating a common time basis for the sim-
ulation. Alternatively, the timing-slave modules can synchronize continuously with the
timing master clock. FEP provides also mechanisms to start, configure and finalize the
simulation system and each of its modules. In order to do this consistently a state ma-
chine is used that controls the initialization and deinitialization of each module. Robot
Operating System (ROS) is another group of libraries and tools with the focus of helping
in the development of robots [158], at its core there is also a message passing system
between nodes (modules). As in FEP there are tools to control single nodes or systems
of nodes and different timing configuration possibilities. While FEP and ROS use other
protocols like Data Distribution Service (DDS) to transport messages between modules
Distributed Co-simulation Protocol (DCP) defines itself a protocol, a data model and
a finite state machine. As with ROS and FEP the result is a way to define, configure
and run a co-simulation system in this case being independent of other tools [159]. Fi-
nally, X-In the Loop (XIL) is different to the previous standards as it defines how the
communication between the test automation tools (e.g. ControlDesk, ECU-Test, TPT)
and the test bench should take place. In order to do that XIL defines a port-based API.
Using these ports is possible to configure, control and record data from the test bench.
Changing the test bench is then simple as the test definition remains the same.
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3.4.2 Scaling the simulation using cloud technologies

While co-simulations involving hardware or other modules that have real time require-
ments are better done using dedicated test benches, other types of simulation that do not
have this requirement can be done using cloud technologies. The advantage of running
the simulations on the cloud is that thousands of scenarios can be simulated parallely.
The previously presented algorithms and tool used for co-simulation are well adapted
for use in the cloud. For example, one or more modules can run in a container. A simu-
lation system can then be formed by using multiple containers. If the network interface
is configured so that the modules in a system can communicate with each other [160],
protocols like DDS would allow message passing between them [161] and other services
like establishing a common simulation time. Multiple simulations systems with different
parameters can be created, configured and started using the tools provided by FEP or
ROS. The simulation results can then be used for example for training of neural networks
directly in the cloud, for validation by comparing them with real data also stored in the
cloud or simply as testing stage in the development of a SDS.

3.4.3 Quantifying the reality gap

As mentioned in the introduction section there are multiple reasons for simulation results
to diverge from real measurements. Some of these reasons can be corrected by improving
the simulation model and adjusting its parameters. While others can not be solved in
reasonable time frames and can hence be considered unsolvable in the context of an
industry project. The problem however is that usually is not clear what is the acceptable
reality gap, i.e. how much and in which aspects can simulation and measurements diverge
so that the simulation data remains useful. Defining useful is important here. How
useful the simulation results are depends on how they are used. In the context of this
thesis simulation is used to generate point clouds which are consumed by a perception
module. The question is then how the perception module is implemented. If we assume
a conventional object-based sensor fusion algorithm then it is important to know how
objects hypothesis are created based on the LIDAR detections. The generation of objects
has usually as first step the segmentation of the point cloud. Segmentation can be done
in different ways, one of them is using Random Sample Consensus (RANSAC) [162]. In
RANSAC there is a parameter called the noise threshold, if for example a line is fitted
then the detections outside the noise threshold measured from the line are considered
outliers. We could then define an acceptable reality gap as equal to the noise threshold
because two point clouds with detections that differ a distance (nearest neighbor) lower
than this threshold will generate similar segmentations and objects. The reality gap
itself can be measured based on how different position, size and rotation are between
real and synthetic object for the same scene. This approach however reaches its limits
when something like raw data sensor fusion using deep neural networks is used. As
the classification results are based on multiple non-linearly interrelated parameters an
acceptable reality gap has to be defined in a differnt way. One approach to do this is by
comparing the performance of a network trained using real data and one trained using
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synthetic data in classifying unseen real data. The performance difference is caused by
the reality gap (also known as domain gap in this case) [163]. An acceptable reality gap
is then the one that produces an acceptable performance difference considering the costs
and risks of collecting real data.

If simulation is used to do counter factual analysis the reality gap can be calculated
by measuring how well the model can predict the position and direction of the traffic
participants into the future using replayed real data. An acceptable reality gap is then
determined by the tolerable difference between real and projected trajectories over time.

Once an acceptable reality gap is determined and the current reality gap is measured
a cause analysis can be done. In this way is possible to define if the needed simulation
quality can be reached for the phenomena in consideration, otherwise it may be better
to guide the data collection campaigns towards capturing the needed data (see figure
1.2). The next chapter will focus on techniques for reducing the reality gap on LIDAR
point clouds considering weather related effects.

3.5 Conclusions

• Traditional methods for testing ADAS have been evolving to deal with the demands
introduced by SDS. The proving ground is growing adding more interaction with
other traffic participants either real or synthetic and with the infrastructure. Lab-
oratory tests add in all their forms: SIL, HIL, DIL, VIL increasingly new aspects
of the real environment into a virtual replica. Innovations in public road tests
include the use of automatic or manual trigger mechanism for data collection, as
well as infrastructure adjustments in order to isolate human traffic participants or
assist autonomous vehicles with their task reducing risks.

• Simulation is becoming a central part of the validation of SDS as it can be used to
complement each other testing method. Either to generate the virtual environment
needed for laboratory test, to augment the proving area with virtual elements or
to do counter factual analysis.

• Due to the importance of having a common source of truth for the virtual environ-
ment in all testing methods, multiple standards and tools to define the static and
dynamic parts of the virtual environment, as well as to connect simulation models
with each other, have appeared. Together with the use of cloud technologies these
standards and tools provide a very flexible framework to build simulations that
can be scaled as needed.

• Measuring the reality gap and knowing what is the acceptable level is fundamental
for correctly using simulation data. There are different techniques for measuring
the reality gap depending on the algorithms that are consuming the data. Once it
is measured if found bigger than the acceptable level the roots for the difference
have to be considered. Some may be unsolvable in the time frames of the project
but some may need only small adjustments in the simulation. Even in the first
case the analysis is valuable because it can be used to guide data collection.
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sensors

This chapter shows how the effect of weather on the radar and camera sensors can
also be organized on the basis provided by the framework introduced in figure 1.5.
This framework divides the effect of weather into three different regions: sensor cover,
atmosphere and object emission. This division is useful because it allows to organize
the different approaches used in simulating the effect of weather on each sensor. It also
increases flexibility as the regions can be activated or deactivated separately, which also
facilitates testing. Comparing models also becomes easier. Aditionally, it is important to
show that the proposed framework can be used for other sensors, as the fusion of multiple
sensors is a common method in autonomous vehicles [164]. The simulation framework
must be able to provide a common ground truth for weather related phenomena in the
same way as it does for the environment and traffic participants. Sensors whose main role
is localization and not perception like GPS and Inertial Measurement Unit (IMU) are
not included in this discussion, as well as short range sensors like the ultrasonic sensors.
Internal adjustments of the sensor like for example increasing or reducing the noise level
or failure injection are also not mentioned as these effects can be added directly into the
sensor model. Simulation models based on GANs are not mentioned but can be easily
integrated into the framework. In this case the GAN generated image or point cloud
can be augmented with the extra pixels or detections generated by the models in each
of the regions. The same method applies for real images or point clouds [165] as shown
in the following figure.

4.1 Sensor cover

This region includes all soling effects. Soiling affects all sensors even the ones behind
a windshield as the cleaning system doesn’t act automatically, doesn’t clean perfectly,
there may not be enough water or there may be some defect. This region also include
the effect of any other substance or particle that accumulates on the sensor as well as
deterioration of the surface due to weather, sunlight, abrasives, rock impacts, etc.

4.1.1 Camera

Due to its small wavelength and high resolution the camera sensor is highly affected by
soiling or droplets covering it [167]. Besides reducing the visibility this substances may
also alter the perception by causing scattering or lensing effects. In order to classify and
simulate the effect of soiling on the camera sensor a tile based approach is useful [167]
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Figure 4.1: Real images and point clouds acquired with data collection as well generated using
GANs can be combined with the results generated by each of the regions. This
can be done by applying a selection mask in order to extract the needed pixels or
detections which are then applied in the original images or point clouds. The aug-
mentation process may require multiple steps to adjust the original and augmented
data into a consistent whole. For example adjusting occlusion [165] or in the case
of images reconstructing the 3D scene in order to correctly place the augmented
data [166].

[168]. This approach is similar to the one suggested in this thesis for the LIDAR sensor
in which the cover is divided into small regions from which the transmission values are
measured [32]. In contrast to a LIDAR in the case of a camera is not possible to remove
the sensor cover in order to measure its optical properties. For this reason a manual
classification is suggested [167] (although GANs have also been used to automatically
generate soiled images from real images [168]). The following classes were used: clean,
opaque and transparent, depending on how strongly the light is blocked. Transparent
tiles are those that are affected by some kind of soling but where the visibility is not
zero, in opaques ones the visibility is zero and in clean ones it is 100%. The tiles are
choosen with a size of 64x64 pixels and are then used to train a classifier to be able to
automatically activate a cleaning system [167]. To create this texture the classified tiles
could be used translating the label into a percentage. In this case a higher number of
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classes would be desirable. This method can also be used to simulate the accumulation of
snow that blocks certain parts of the sensor. Besides soiling, to simulate droplets caused
either by rain or fog that accumulate on the windshield or lens photo realistic rendering
can be employed. Droplets are simulated using spherical caps distributed around the
lens or windshield [169]. This method provides a high level of realism. In case a high
level of realism is not needed a texture can be used containing an approximate image of
the drops.

4.1.2 Radar

The accumulation of a thin water, dirt or ice films on the radome of the radar sensor
changes its transmission and reflection characteristics [170]. There are equations avail-
able that quantify the thickness of a water film formed in a spherically shaped radome
[171]. Similarly as occurs with the LIDAR cover [32] a multi-layer structure is formed
in this case from air, radome, water and air again. Besides absorbing part of the energy
of the wave, the water-air interface generate an extra reflection that interacts with the
already present reflection generated by the air-radome interface [170]. In contrast to the
camera or LIDAR in which multiple samples on the cover are necessary to characterize
or simulate the phenomena, for the radar most researchers use a single value [170] [172]
[173] corresponding to the thickness of the film to calculate a single new value for trans-
missivity and reflectivity which is frequency dependent. After calculation these values
can be easily integrated into the simulation using a texture as is done with the other
sensor types. This covers the possibility of new radars having a higher resolution and
requiring a finer grid.

4.2 Atmosphere

This region includes all scattering or absorption effects caused by weather phenomena.
For some use cases these effects can be simulated directly by adjusting the sensor model
for example to homogeneously reduce the range. There are nevertheless use cases, for
example when multi-path effects are important, in which is necessary to simulate the
effects using this region. Another motive could be that the effect of forces like wind or
gravity upon the drops or snowflakes has to be simulated accurately.

4.2.1 Camera

Rain, fog and snow reduce contrast and visibility in the scene. They may also scatter
the light from existing light sources in the direction of the sensor difficulting further the
interpretation of the scene, for example in the case of headlights. Although snow, fog
and rain can be simulated using textures [174] this means that depth and an accurate
representation of the dynamics of the drops or flakes are lost [166]. An alternative is to
use particles, these particles can be distributed in a certain volume based on physically
accurate probability distributions for their size and concentration. The effect of each
of the relevant forces can be simulated and then the scene can be rendered. Each
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particle can consist of a simple texture with the shape of a snowflake in order to increase
rendering time. The size of the region in which the particles are located and their
number can be controlled depending on the allowed rendering time and the level of
realism needed. Rain can be simulated in a similar way by adjusting the corresponding
probability distributions for the particles in this case based on real rain data. For each
particle either textures or spheres can be used. The scene is then rendered under the
same considerations as for snow. In the case of fog, single particle simulation is neither
needed nor practicable for this reason volumetric rendering techniques are used [166].

4.2.2 Radar

At 77Ghz which is the usual frequency used in automotive radar systems fog appears
to cause only a very small attenuation of the propagating radar signal [173] [175] and is
usually not considered from the perspective of been able to generate extra detections.
Something similar happens with snow as ice has a lower dielectric constant as water. The
attenuation caused by snow although higher than for fog is still relatively small as well
as its back-scattering value. This changes in case of wet snow in which case the values
increase and become similar to that of water [176]. The main issue for radar sensors is
rain specially at high rainfall rates [173]. Besides attenuation the higher back-scattering
value of rain translates into a bigger back-scattering cross section when a whole volume is
considered. This cross section can be big enough to generate extra detections in case the
beam of the radar is narrow enough [175]. This is the case for Long range radar (LRR)
which use a narrow beam to be able to detect object at high distances. Another factor
in rain is a reduction of the accuracy in the perception of other objects in the scene as
Radar Cross-section (RCS) of the objects becomes unstable. In order to simulate radar
sensors a variation of raytracing can be used called Shooting and bouncing ray method
(SBR). In the SBR method as is done to generate LIDAR point clouds the lengths of
the rays are added as they advance in this case from the transmitting antenna until
reaching the receiver antenna [175] [30], with this information the range but also the
Doppler velocity and angle of each object in the scene can be calculated. One important
difference is that to simulate the Doppler effect multiple temporal samples have to be
acquired in order to calculate a single sensor frame [177]. In order to simulate the extra
detections caused by rain particles can be used, as suggested for the LIDAR sensor a
phenomenological model can be employed in which the particles do not correspond en
number to the number of drops but to the number of detections that those drops generate
reducing the simulation time [30].

4.3 Object emission

This region includes any weather phenomena that has a direct relation with an external
emitter. Considering for example spray this region can be used to simulate the extra
detections caused by particles following an inertial trajectory from the wheels. Very
fine spray droplets that remain floating on the air would rather be simulated using the
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atmosphere region and the ones deposited on the sensor cover would be simulated using
the sensor cover region.

4.3.1 Camera

Experiments considering the effect of spray on RGB camera images report a reduction
of the contrast around the vehicle generating the spray due to the scattering of light
produced by the spray droplets. Additionally, the field of view of the camera is blocked
by the droplets that adhere to the windshield. Although the windshield wipers reduce
this effect new droplets keep accumulating. The reduced contrast make it difficult to
identify the edges of vehicles leading to miss-classifications. Additionally, during the
night the reduced contrast caused by spray difficults the identification of rear lights
[178]. In order to reconstruct these effects in simulation a method similar to the one
proposed in this thesis for the LIDAR sensor [30] has been used for the camera [179].
The calculation of the droplets size are alike as well as the trajectory equations for the
droplets. The rendering is more complicated due to the high resolution of the camera
sensor in comparison with the LIDAR. The reflection of other objects in the scene on
the spray drops is also taken into consideration. As the authors use case is to augment
real images, they reconstruct the scene in 3D using the distance information provided by
other sensors in the used dataset and project the pixels in the original image into their
corresponding positions in 3D [179]. If the virtual environment is synthetic this step is
not needed, all other steps remain identical.

4.3.2 Radar

Experiments related with measuring the attenuation caused by spray on the radar signal
show a level of attenuation of 0.1 dB/m in average for a system using a 76 Ghz frequency
[121]. This would correspond to around 1 dB losses for a 10 m spray cloud and is
considered unlikely to prevent the detection of a vehicle. Other studies report similar
results indicating that the detection of the radar remains stable under the precense of
spray [178]. Although currently no information was found, it would be interesting to
investigate how stable remains the detection with and without spray. As happens with
rain it is possible that the RCS becomes unstable. Additionally, specifically narrow
beam radars will have to be considered as in that case spurious detections are more
likely. The secondary effects of spray for instance the accumulation of fine particles on
the air are expected to cause only a small attenuation as they should be similar to fog
or light rain. In contrast to LIDAR and camera a detailed particle simulation is in the
case of radar not needed. Possible instabilities of the RCS can be simulated using error
injection methods.
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As mentioned in the previous chapter this thesis proposes 3 different regions in which
each relevant weather related phenomena is simulated. In this chapter the concrete
models to simulate each of the regions for a concrete LIDAR sensor are presented. The
only assumption is that raytracing is used to sample each of the regions. Although the
way in which each region is simulated as well as their sizes and locations can change
depending on the sensor used for the simulation, the methodology proposed should
remain applicable for other LIDAR sensors or even other sensor types (see chapter 4).
The examples shown here have the focus on being able to run fast, use open source
software and have a quantified reality gap. The proposed simulation models are able to
reproduce the most important adverse weather effects on a LIDAR sensor. As shown
in the previous chapter 4 the results from each of the regions can be directly used for
testing and development of SDS or can be combined with real data, an example of which
is also shown here. Although the next sections present the main results you may refer
to the corresponding papers in the attachments for more information.

5.1 Characterization and Simulation of the Effect of Road Dirt
on the Performance of a Laser Scanner

This region is the first region hit by the rays after leaving the sensor. For this reason the
rays still contain a high intensity and changes in the reflection values of the cover can
generate strong interference. Additionally, it makes the spurious detections generated in
this region more difficult to filter out due to multiple reflections between the cover and the
sender / receiver mirror used in mechanical LIDARS, which can cause the detections to
be perceived at a distance further away than the physical limits of the cover. This thesis
proposes to simulate these effects using a single texture which can cover most scattering,
absorption and reflection phenomena. Extra detections due to multiple reflections can
be integrated directly into the atmosphere region. As the following case study shows is
possible to create the proposed textures using real measurements. The measurements
can be highly automatized making the generation of textures a fast process, assuming
data collection happens simultaneously. The resolution of the textures can be controlled
based on the diameter of the measuring light source after collimation if the measurement
is done in transmission or the size of the homogenizing rod if the measurement is done
in reflection. Figure 5.1 exemplifies a measurement setup in transmission.

In order to be able to collect real samples, sensor covers are placed in the grill region
of a vehicle doing a 12 days test drive. The roads chosen are normal roads where dirt
accumulation is considered likely. The samples are placed in two different grill positions
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Figure 5.1: The sensor cover is sampled using a moving mechanism. The simplicity of this
mechanism can vary depending on the shape of the sensor cover as ideally the
laser light should hit the surface perpendicularly so the effect measured is due to
changes in transmission and not due to variations in shape. The mechanism can
be as simple as a linear motor or as complex as a robot arm. The rest of the setup
corresponds to a conventional spectrometric measurement. For more details see the
corresponding paper in the attachments section [28]

and are replaced every two days, documenting the weather conditions during those days
with labels: dry, wet/sleet and sun/rain. The advantage of using only the covers is
that the physical properties that influence dirt accumulation are the same as for the
complete sensor. Additionally, the obtained covers can be replaced on a working sensor
to verify how its performance is affected. To quantify changes on the optical properties
transmission, reflection and scattering measurements are made for each of the collected
samples (dirty covers) with respect to a clean sample. Performance measurements are
made by measuring the position of a static object for multiple frames and comparing how
the standard deviation of the measured distance changes for each sample with respect
to a clean one. The measurements show a maximum variation in the transmission
of 34.6%. Measurements done using the reflection setup show a maximum change of
37.5% with respect to a clean sample. The variation on the standard deviation of the
distance measurements has a maximum value of 81.8% and is generated by the same
cover with the largest variation in transmission and reflection values. This cover contains
a combination of heavy and fine dirt and was generated during sunny/rain changeable
weather. Using this kind of approach is possible to create a texture database for different
types of dirt or other substances. In contrast to most textures in computer graphics that
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are sampled in reflection these textures should be sampled in transmission. As shown
in figure 1.5 the texture(s) would be placed in front of the sensor and would cause
that some rays are absorbed, scattered or reflected. Changes in other optical properties
like phase can also be added if needed (for example to simulate other LIDAR types
for which phase differences are important). One disadvantage of this approach is that
the dynamical changes of the optical properties are not captured. One way to do this
would be to create a miniaturized reflection measurement system. This system could
run periodic measurements of the cover. In simulation the dynamic changes in materials
can be reproduced by exchanging textures or interpolating between them. In order to
switch the textures the material name can be send using the data types defined by OSI.
While the texture itself would be stored in a glTF format. The textures selected should
depend on the weather related properties defined in OpenSCENARIO or / and on the
road conditions defined in OpenDRIVE.
The author of this dissertation was responsible or co-responsible for conceptualization,
methodology, validation, investigation, resources, writing of original draft preparation,
writing of review and editing and visualization.

5.2 Weather Classification Using an Automotive LIDAR Sensor
Based on Detections on Asphalt and Atmosphere

This region can reach from the sensor cover up to many meters radially. As the laser
light propagates due to dispersion its intensity reduces. For this reason the probability
of finding extra detections caused by atmospheric effects also reduces with distance.
After a certain distance further back-scattering reduces the amount of light available for
detecting other objects in the scene but is not able to create spurious detections anymore.
This is an advantage from the perspective of simulation as it reduces the resources
needed to simulate such complex phenomena. The amount of computing needed remains
nevertheless high. In case the effect of forces like gravity and wind on the particles are
not relevant for the simulation using volumetric scattering can be a good approach
to simulate this region. Otherwise particles can be employed, in this case a second
simplification can be used regarding the number of particles employed. The number
of particles can be reduced to an amount similar to the number of spurious detections
rain, fog or snow generate instead of the actual drops or snowflakes. For a sensor with
a resolution in the thousands of pixels and considering that only a percentage of those
pixels detect spurious reflections a reduction of one to two orders of magnitude in the
number of particles needed can be reached. The remaining absorption and scattering
effects can be treated as an homogeneous reduction of range dependent on rain intensity.

Collecting information about different weather types in a moving vehicle introduces
multiple factors that complicate the analysis of an already complex interaction between
light, particles and other objects in the environment. Therefore in this paper it was
decided to use a static set up. Based on the information obtained using this set up it is
possible, in a next step, to add the effects caused by the vehicle movement. Additionally,
the information obtained is relevant for LIDARs placed as part of the road infrastructure.
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For example inside of a road side unit on a pole [180]. Three different weather types were
considered: rain, snow and fog, as well as the effect of a changing background radiation
which will be discussed later. The measurement was done by placing the sensor outdoors
for 9 months. Two factors were considered for the placement of the sensor. First it was
placed high enough to reduce the effect of nearby buildings on the local weather and
second the it was placed at an angle in which it had as a target an asphalt region of a
parking lot. It is important to have a target as weather causes changes in the atmosphere
but also changes in the material properties of objects in the environment. For a complete
simulation of the phenomena these two changes have to be taken simultaneously into
consideration and therefore they are also measured simultaneously. The measurements
show that in the atmosphere all three weather types generate extra detections up to a
distance of 5m. These detections are distributed radially over the whole field of view of
the sensor. The form of the distribution of the detections is a decreasing exponential
one from 0 to 50 cm. These detections are mostly caused by multiple reflections on the
sensor cover. After 50 cm the detections tend to be distributed more uniformly with
a peak at the point in which the sender and receiver fields of view of the used biaxial
sensor start to overlap. The exact shape of the distribution depends on the weather type.
The paper formulates the problem as a classification problem but simultaneously shows
which parameters are relevant to generate a distribution (e.g. using particle systems
or volumetric scattering) that simulates the detections caused by each weather type.
The same findings apply to the detections on the asphalt region. The distribution of
detections in this case can be used to parameterize the BRDF of the material used in the
simulation. One important difference in the asphalt region is the material accumulation
caused by snow. Due to the accumulation of snow on the street the detection distance
changes. To introduce this change in a simulation the surface normals could be adjusted
but eventually the mesh itself will have to be modified. The weather related configuration
parameters provided by OpenSCENARIO can be easily mapped into the atmosphere
region simulation model. In the case of fog a conversion from visibility into concentration
could be used [181]. For rain and snow the precipitation intensity can be used directly.
From the perspective of classification this case study shows that it is possible to classify
weather using 10s intervals into: clear, fog, rain and snow with a F1 score higher than
80%. The intervals may refer to the detections caused either on the atmosphere or
due to an object in the environment exposed to changing weather (although the paper
uses a big horizontal object: asphalt region). The two classification methods can be used
independently of each other or simultaneously. Between the most important classification
parameter for both regions are the maximum number of detections as well as the average
intensity of the reflections.
As indicated in the author contributions the author of this dissertation was responsible
or co-responsible for conceptualization, methodology, software, validation, investigation,
resources, data curation, writing of original draft preparation, writing of review and
editing and visualization.
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5.3 The Effect of Spray Water on an Automotive LIDAR
Sensor: A Real-Time Simulation Study

As mentioned in the fundamentals section part of the effect caused by spray is the
generation of spray clouds around the vehicle wheels. These spray clouds move together
with the vehicle. From a 3D modeling perspective they can be considered as parented
with the object that represents the vehicle in the simulation. Spray is not the only
phenomena in which this kind of parenting relation is present. Exhaust gases as well as
snow falling from the roof of a vehicle or sand failing from a truck are all phenomena
in which extra detections are generated by an emitter which move together with the
vehicle generating it. The consequence of moving together with the emitting vehicle
is that the phenomena acquires new temporal dynamics. In contrast to atmospheric
phenomena that are homogeneous in space, object emission phenomena are relevant for
a time interval dependent on the actions taken by the emitter. When the emitter is
behind or sufficiently far away no extra detections are generated but if it overtakes or
remain in an adjacent lane it may generate spurious detections during long time intervals.
The following case study shows how a spray model can be generated and how to evaluate
its reality gap.

In order to collect real spray data four different measurement campaigns were done.
One of them was done on a proving ground using two vehicles, one generating the spray
and driving in front and a second one capturing the generated point clouds using a
LIDAR sensor. Both vehicles were driven at a constant speed and distance from each
other. The vehicle in front was driven on a tile covered road which was floated with
water. Multiple measurements were done at speeds going from 39 kmh up to 60 kmh at
a distance of 17.4± 0.3m. A device was also mounted on the vehicle having the LIDAR
which is able to measure the water level on the road. The other three measurements
were done on public highways during rainy days at an average speed of 89± 4kmh. The
measurement set up was the same in all four cases and is shown in figure 5.2. As it is not
possible to maintain a constant distance between the two vehicles in a public highway
the measurements were classified in this case based on the distance between the vehicles
going from 15.5 m up to 32.6 m.

The proposed simulation model is a semi-phenomenological one, as some aspects are
physically based while others are extracted directly from the measurements. The ad-
vantage of the model however is that it is able to run on real time. The particles were
inserted at specific portions of the wheels. Their number being determined from the
measurements and depending on the vehicle speed and water level on the road. Their
longitudinal trajectory being determined by their mass, the wheel rotation speed and
the longitudinal wind force, whose value depends on the vehicle speed. Their transversal
trajectory is defined by the effect of lateral wind forces which are not calculated but
are adjusted in intensity and direction based on the measurements. This is similar to
the method used in the Reynolds-Average Navier-Stokes (RANS) equations in which a
time dependent and a time independent components are used [182, 183, 184]. Similarly
to what was done for the atmosphere the reality gap of the proposed spray model was
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Figure 5.2: Eagle and side view of the measurement setup used for collection of spray data.

calculated by creating a histogram in this case in 2D of the whole spray region. The real
and simulated distributions were compared using different metrics. The paper suggest
the use of the Pearson correlation coefficient but Jaccard distance or Hamming distance
could also be used. The correlation reduces from lower speeds in which it is around 0.7
to higher speeds in which it reaches the minimum of 0.5. As shown in the figure 1.5 a
particle based model similar to the one proposed here can be integrated into the sug-
gested simulation framework by inserting the particles into the simulation at the correct
position on the wheel meshes. This position can be determined if the wheel axis and
wheel size are known. The street water level can be saved on the OpenDRIVE file. The
wind forces can be placed on the scene based on the the wind speed and wind direction
parameters from OpenSCENARIO. Instead of particles a mesh based model (see chapter
Fundamentals) could be used. In this case the volume containing the boundaries of the
mesh would be parented to the moving vehicle.

5.3.1 Background radiation

For the used LIDAR sensor it was found that the presence of sunlight causes a reduc-
tion in the total number of detections [32]. This may vary for other LIDARs depending
on the algorithm the manufacturer uses to deal with an increased noise level. For this
reason a phenomenological simulation model is suggested, which also has as advantage
to be able to run in real time. The simulation parameters can be extracted from a static
setup, similar to the one suggested in the weather classification use case, by counting
the total number of detections in the scene while measuring the radiation level normal
to the sensor surface. The variations in the number of detections can them be added
directly into the sensor model.
The author of this dissertation was responsible or co-responsible for conceptualiza-
tion, methodology, software, validation, investigation, resources, writing of original draft
preparation, writing of review and editing and visualization.
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5.4 Data Augmentation of Automotive LIDAR Point Clouds
under Adverse Weather Situations

While each of the previous regions provide a model of a certain weather effect that can
be activated or deactivated as needed in a simulation, it is also important to consider
how these results can be combined with real data or with data generated using GANs.
Being able to combine simulation, real and GANs generated data provides the maximum
flexibility and allows for the framework to be usable to test and validate ADAS functions
in all their maturity levels. The following case study shows how the selection mask and
augmentation block in figure 4.1 can be implemented in a concrete example. Addition-
ally, the selected example shows how simulation can reduce the complexity and risk of
the data collection task while simultaneously being able to provide realistic results.

As mentioned in the fundamentals chapter a human driver may require up to 30s
in order to understand the driving situation and be able to take over from a SDS.
In a highway at high speeds this time could translate into a long traveled distance.
Assuming it is raining and other vehicles are generating spray the SDS will have to
clearly differentiate between detections caused by spray and possible solid objects on the
highway, for example objects that fell off from other vehicles. Considering a situation
in which there is a real solid object on the street it is important for the SDS to be able
to detect this object(s) and activate a safety mechanism, for instance: slightly reducing
speed and activating the seat belt pretensioner of the passengers. Collecting real data
for this use case would be extremely difficult and dangerous even in a proving ground.
Simulation can be used in this case in order to generate training data for a classifier,
which would then be able to trigger the safety mechanism. The proposed method is to
use the previously discussed spray and rain models and add a solid object (a box for
simplicity) placed at different positions on the road. The reason for using the spray
and rain models in the simulation is to match the changes in echo number and number
of detections that otherwise would make the obtained object point cloud less realistic.
The synthetic object position, size, rotation and reflection values are changed and the
scene is rendered obtaining the corresponding point cloud. From the point cloud the
detections caused by the synthetic object can be easily extracted as the renderer (Cycles
in Blender) creates a separate mask for each object in the scene. Figure 5.3 shows the
simulation setup used.

The point cloud of the object is extracted and is used to augment real spray point
clouds. After recalculating object occlusion noise is added to the synthetic detections
based on the noise profile of the point cloud generated around real moving vehicles. The
final result is a plausible and labeled point cloud including the desired solid object.

This method has three main advantages:

• The classifier can be thoroughly evaluated, as simulation allows the modification
of all possible characteristics of the solid object.

• Although real spray point clouds have to be collected, the dangerous aspect: the
solid object(s), doesn’t have to be present.
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Figure 5.3: This figure shows the simulation setup used to generate the synthetic object point
clouds. The spray particles are injected from the vehicle wheels and follow a tra-
jectory based on their mass and the wind forces. The size of the particles and their
number are selected to match the average number of detections that real spray
clouds generate. The region marked with the black line corresponds to the region
of interest. This region is determined based on the presence of spray and the min-
imum time required to activate safety actions. The light gray region simulates the
effect of rain on the sensor. For more information refer to the corresponding paper
on the attachment section [165].

• The degree of realism is high as only the object is synthetic and it is rendered in
a way in which the resulting detections match those that real detections would
cause.

As indicated in the author contributions the author of this dissertation was responsible
or co-responsible for conceptualization, methodology, software, validation, investigation,
resources, data curation, writing of original draft preparation, writing of review and
editing and visualization.

5.5 Conclusions

• The use of phenomenological models together with the tools provided by 3D engines
allow the creation of simulation models for weather related effects that are able to
run in realtime. Additionally, these models have a measured reality gap that can
be calculated based on the correlation of their 1D or 2D histograms with those of
real point clouds.
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5.5 Conclusions

• Particle systems are very flexible and can be adjusted interactively to the presence
of new forces making their use more intuitive and modifications of the simulation
simpler for the user. When the number of particles exceed a certain value in which
real time simulation is not possible or when the effect of forces is not relevant
volumetric scattering models can be used.

• In order to reduce the number of needed particles the proposed spray model sim-
ulates the minimum necessary number of them in order to match the detections
observed in real point clouds. The particles in the simulation correspond therefore
to a high enough concentration of real drops to generate a reflection and not to a
single drop. The same approach can be used to simulate rain or snow.

• Each of the proposed models corresponds to a region along the path followed by
the light emitted by the sensor. Having separate regions allow to combine the
models between them and also together with real data or data generated using
GANs.
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A methodology is presented and validated for the simulation of weather related effects on
an automotive LIDAR sensor. The proposed methodology has as characteristic that it
makes use of simulation techniques that are able to run in real time. In order to achieve
this, a hybrid sensor model is proposed that combines as much as possible from the
known physics of the corresponding phenomena with a phenomenological representation
of the effect of water drops, snowflakes and other substances on the sensor perception.
Using this simplification is possible to synthetically generate point clouds that highly
correlate with measured ones while reducing the number of used particles to a minimum.
Due to their phenomenological nature the proposed models require a certain amount of
real data collection either in measurements campaigns or in the laboratory. This is how-
ever not a disadvantage as the reality gap of the simulation has always to be measured.
Because the proposed models use established simulation standards and Raytracing they
can be included in early development phases when no real sensor prototype exists. The
different sections simulating the effect of weather on the sensor cover, on the near region
and on the spray region can be deactivated until enough information is available. When
enough information is available the regions can be activated independently as needed.
Differences between the synthetic and real point clouds can be used to guide data col-
lection campaigns until the reality gap is reduced to the required level. In addition to
its flexibility and real time capability, the proposed model has also advantages regarding
costs as it can be implemented using existing open source tools. Costs savings also ex-
press in the reduction of the amount of data that needs to be collected and of the risks
incurred by collecting it.

6.1 Summary

While developing the proposed methodology a number of partial achievements was
reached. These achievements are listed below.

1. A method is defined to collect samples of dirt accumulated on the cover of a
LIDAR sensor as generated on conventional road trips. The optical properties of
these samples are analyzed. Methods are proposed to measure the transmission,
reflection and forward scattering caused by each dirt type as well as the effect on
the distance resolution. The experimental results are quantized in a way in which
they can be easily included into a Raytracing based simulation.

2. A nine months measurement is done placing a LIDAR sensor outdoors and col-
lecting point clouds affected by rain, snow, fog and changing background radiation
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(sunlight). The sensor is placed in a position so that it has as target an asphalt
region of a parking lot. Using the collected data the effect of each weather type
is analyzed for two regions: the atmosphere region (extra detections in the near
field of the sensor) and the street region (target area). The analysis are based on
changes on the statistical properties of the histogram obtained by accumulating the
detections for each respective region. A relation is established between the statisti-
cal changes and the optical properties changes that caused them. Besides showing
that an automotive LIDAR sensor is able to classify different weather types, the
results also show the main parameters to consider when simulating these type of
phenomena and how to validate the simulation results.

3. Measurements were made on a proving ground and on the highway (three different
rainy days) in order to collect point clouds affected by spray. In the proving ground
a street was used that can be fluted with few millimeters of water. In both cases
two vehicles were used. One producing spray and the other capturing the LIDAR
data. Additionally, an extra sensor was used in order to measure the water level
on the street. All this information was analyzed based on the physical background
of the spray generating process and the working principle of the LIDAR sensor.
A simulation model was proposed and validated using particle systems and forces
to simulate the detections caused by spray. Cycles [131] was used as path tracer
to render the image. The material properties were adjusted in order to obtain per
pixel the distance that the rays traveled in a set up similar to the one shown in
figure 1.4. The simulated point clouds show a high correlation with the real ones,
the simulation times go from 40 ms to 240 ms per frame.

4. The proposed spray simulation model is used in a problem in which collecting
real data would be extremely difficult. Here a function is proposed to protect the
vehicle passengers by activating certain safety measures in case a solid object is
seen on the current highway driving lane. It is however assumed that the street
is wet and that there are other vehicles generating spray. Considering only the
LIDAR sensor the question is asked what would be the performance of a classifier
trained to detect solid objects on the spray cloud. This question is solved by
generating physically accurate synthetic objects using the spray model. The point
cloud generated by those objects is used to augment real point clouds containing
spray. The results show in which areas the classifier would struggle and what kind
of performance is to be expected. The results also show the importance of the
improve / guide loop in figure 1.2.

5. The different models for each of the regions: cover, near and spray, are integrated
into a complete framework based on Raytracing and established simulation stan-
dards. These three characteristics: the use of regions, the use of Raytracing and
the use of standards, make the resulting framework flexible enough to be used in
all stages of development of the autonomous driving function. The simulation can
in this way evolve or devolve as needed.
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6.2 Outlook

The simulation framework introduced in figure 1.5 constitutes a basis upon which col-
laboration between different companies and institutions developing autonomous driving
system can flourish. It will be upon this collaboration that robust simulation models,
best practices and further standards will emerge. The following list mentions improve-
ment options in the development of weather related simulations for LIDAR and other
sensors.

1. It would be desirable and it is likely that over time the industry converges to one
or two main LIDAR technologies for use in autonomous vehicles. This convergence
will free resources that are currently focused in the many different alternatives into
the winning ones. When this happens it will be possible to build large databases
using data collected with those sensors. Something like an open access dirt (and
other substances) database will then be possible. This database could contain
as proposed a detailed measurement of the transmission and scattered caused by
different substances accumulated on the LIDAR cover. These textures can then
be shared for use in simulation. If possible, the database will also contain a mea-
surement of the environment by the sensor been affected by the corresponding
substance. In this way the simulation results can be validated.

2. The proposed models work well with the used sensor but the question remains
how well they would work with a different LIDAR sensor of the same or different
technology. Using two different LIDARs for data collection could allow to bet-
ter differentiate the aspects that are valid in general based on the physics of the
phenomena and those that are sensor or vendor specific. The use of other sen-
sor types like high resolution RADAR could also help to improve the quality and
generality of the proposed simulation models. The use of Raytracing in industry
and academia for the simulation of many of the sensor used in autonomous driving
helps in comparing the obtained results.

3. The reliable measurement of the level of water on the street is an important aspect
for a correct simulation of spray water. This measurement is however challenging
using moving platforms. The broad adoption of sensors to measure this quantity as
part of the street infrastructure would be an important step towards the develop-
ment of autonomous driving vehicles. It helps with simulation and provides online
information to the SDS while driving. In a closed loop the simulation results and
the currently measured data can be directly compared.

4. While for each of the proposed simulation models a brief description was given
about how it can be integrated into the current main simulation standards, a better
integration would be desirable in the future. Ideally the standards would define
some default sensor models for each weather phenomena and find a parametrization
that is valid for all of them. The user could use the default models or use his own
based on the defined parametrization. Similarly to the texture database for dirt,
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a database with ”ready to use” weather models would highly increase the use of
simulation and strongly reduce the time required to develop it. This is to be
expected however, when the convergence in technologies mentioned in the first
point happens.

5. The existence of a common database for industry wide exchenage of sensor data
would highly help to improve the proposed models and in general the use of simu-
lation. Projects like GAIA-X [185] could provide companies with a lot of data to
validate their simulation models and create new ones. This common database also
helps in the development of best practices and standards.
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Acronyms

ADAS Advanced Driver Assistance Systems.
AI Artificial intelligence.
AR Augmented reality.
ASAM Association for Standardization of Automation and

Measuring systems.
AUTOSAR AUTomotive Open System ARchitecture.

BRDF Bidirectional Reflection Distribution Function.

CityGML City Geography Markup Language.

DCP Distributed Co-simulation Protocol.
DDS Data Distribution Service.
DGR Detection generating region.
DIL Driver In the Loop.
DSL Domain Specific Language.

FEP Functional Engineering Platform.
FMI Functional Mock-up Interface.

GAN Generative Adversarial Network.
glTF Graphics Language Transmission Format.

HIL Hardware In the Loop.

IIHS Insurance Institute for Highway Safety.
ISO International Organization for Standardization.
ISO/WD International Organization for Standardization/

Working Draft.

LASER Light Amplification by Stimulated Emission of Radi-
ation.

MEMS Micro Electromechanical Mirror.
MPPC Multipixel Photon Counter.
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NDS Navigation Data Standard.
NIR Near Infrared.

O3DE Open 3D engine.
ODD Operational Design Domain.
OPA Optical Phased Array.
OSI Open Simulation Interface.
OSM OpenStreetMap.

PBR Physically Based Rendering.
PLM XML Product Lifecycle Management eXtensible Markup

Language.

RANSAC Random Sample Consensus.
ROS Robot Operating System.

SDK Software Development Kit.
SDS Self-Driving Systems.
SIL Software In the Loop.
SiPMT Silicon Photomultiplier.
SNR Signal to Noise Ratio.
SSP System Structure and parametrization.
SuT System under Test.
SWIR Short-Wave Infrared.

V2X Vehicle to Everything.
VIL Vehicle In the Loop.
VR Virtual reality.
VTD Virtual Test Drive.

XIL X-In the Loop.
XML eXtensible Markup Language.
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rotating head in the range of 5 to 15 Hz [105]. Notice how sender and
receiver path share the same mirror but are separated from each other in
a biaxial configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Simplified schema of the Valeo Scala LIDAR sensor used in the measure-
ments presented in this thesis [98]. In this mechanical set up only the
mirror rotates while the sender and receiver optics remain fixed. Here
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ror rotates with a frequency of 25 Hz. Due to the mirror tilting not all
layers are sampled in each rotation. From the 4 layers of the sensor only
the middle ones are updated with this frequency. The lowest and highest
layers are updated with 12.5 Hz [101]. . . . . . . . . . . . . . . . . . . . . 23
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2.3 Working principle of the time of flight LIDAR. Here idealized the sender
pulse in red shown simultaneously with the signal in the receiver. After
sending the pulse the time is measured until a pulse is received with an
intensity higher than a certain factor ’x’ of the standard deviation of the
noise. When the pulse arrives the time measurement is stooped and is
translated to a distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Probability distribution of the particle size depending on the rotation
speed of the wheel vc. Higher speeds generate particles of smaller diame-
ters in average and at the same time reduce the possible size range . . . . 29

2.5 In order to avoid developing each time the same functionality. A 3D engine
delivers modules covering the requirements of most games or in general
3D virtual interactive software. The low level programming required to
comunicate with the device drivers is done in the engine once and can
be used for multiple projects in different industries. Porting the code to
other platforms is also simplified by using the engine (Based on [125]). . . 30

3.1 In addition of being an important testing method by itself, simulation
complements the other testing methods. Proving ground tests can be
expanded using virtual traffic participants or objects (AR techniques). In
laboratory tests simulation can provide the virtual environment for SIL,
HIL, VIL and DIL test benches and in all other cases it can be used to
do counter factual analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Real images and point clouds acquired with data collection as well gen-
erated using GANs can be combined with the results generated by each
of the regions. This can be done by applying a selection mask in order
to extract the needed pixels or detections which are then applied in the
original images or point clouds. The augmentation process may require
multiple steps to adjust the original and augmented data into a consistent
whole. For example adjusting occlusion [165] or in the case of images re-
constructing the 3D scene in order to correctly place the augmented data
[166]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 The sensor cover is sampled using a moving mechanism. The simplicity
of this mechanism can vary depending on the shape of the sensor cover as
ideally the laser light should hit the surface perpendicularly so the effect
measured is due to changes in transmission and not due to variations in
shape. The mechanism can be as simple as a linear motor or as complex
as a robot arm. The rest of the setup corresponds to a conventional
spectrometric measurement. For more details see the corresponding paper
in the attachments section [28] . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Eagle and side view of the measurement setup used for collection of spray
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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5.3 This figure shows the simulation setup used to generate the synthetic ob-
ject point clouds. The spray particles are injected from the vehicle wheels
and follow a trajectory based on their mass and the wind forces. The size
of the particles and their number are selected to match the average num-
ber of detections that real spray clouds generate. The region marked with
the black line corresponds to the region of interest. This region is deter-
mined based on the presence of spray and the minimum time required to
activate safety actions. The light gray region simulates the effect of rain
on the sensor. For more information refer to the corresponding paper on
the attachment section [165]. . . . . . . . . . . . . . . . . . . . . . . . . . 54
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[42] P. E. Kivi, M. J. Mäkitalo, J. Žádńık, J. Ikkala, V. K. M. Vadakital, and P. O.
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[144] S. Duleba, T. Tettamanti, Á. Nyerges, and Z. Szalay. Ranking the key areas for
autonomous proving ground development using pareto analytic hierarchy process.
IEEE Access, 9:51214–51230, 2021.

[145] R. Chen, M. Arief, W. Zhang, and D. Zhao. How to evaluate proving grounds for
self-driving? a quantitative approach. IEEE Transactions on Intelligent Trans-
portation Systems, 22(9):5737–5748, 2020.

[146] Z. Szalay. Structure and architecture problems of autonomous road vehicle testing
and validation. In 15th Mini Conference on Vehicle System Dynamics, Identifica-
tion and Anomalies-VSDIA, pages 229–236, 2016.

[147] A. Diewald, C. Kurz, P. V. Kannan, M. Gießler, M. Pauli, B. Göttel, T. Kayser,
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Abstract—Automotive environment sensors such as LIDARs 

(light detection and ranging) are the backbone of automated 
driving. It has to be made sure that the performance of these 
sensors is sufficient, even under adverse environment influences 
like accumulated dirt on a sensor cover. This paper describes the 
collection and analysis of real world road dirt samples, 
accumulated on the plastic cover of a LIDAR sensor. The effect 
of the dirt on the sensor performance is experimentally 
quantified by measuring the transmission and reflection 
properties of the dirty sensor plastic cover. Moreover, an analysis 
of the sensor’s uncertainty in raw data position measurements is 
presented. Different alternatives to include these effects in a 
virtual simulation of the sensor are discussed. While the sample 
size of the dirty plastic covers is too small to representatively 
describe the effect of dirt on LIDAR performance, this study 
shows that an abstract effect on sensor performance such as dirt 
can be described, quantified and eventually be represented in a 
virtual simulation. 

Keywords—LIDAR; Laser scanner; dirt; sensor simulation; 
automated driving vehicle. 

I. INTRODUCTION  
Highly automated driving is a development goal of almost 
every major car manufacturer and highly automated concept 
cars have already been realized in different projects [1-5]. 
While these projects show the technical feasibility of highly 
automated driving, its safety for real traffic scenarios still has 
to be demonstrated. One important aspect for safe automated 
driving is a detailed and reliable knowledge of a vehicle’s 
environment. This knowledge is provided by sensors such as 
radar, lidar and camera. A major challenge for the reliable 
environment perception is however the influence of 
environmental conditions such rainfall and dirt on the sensor 
cover. It has to be validated that the environment perception of 
the sensors is reliable despite these influences. Statistical 
validation of an automated driving vehicle’s safety would 
require extensive testing as it is argued that a highly automated 
car should have a smaller accident probability than an average 
human driver [6]. Generally this also holds for a safety 
validation of the environment sensing [7], making field 

operational testing through real-world driving as a main test 
method economically unviable. Therefore, virtual simulation 
and laboratory tests are put forward as feasible alternatives in 
the validation process of highly automated cars. In a virtual 
world, it is possible to artificially generate a large number of 
permutations of the situations in which a wrong behavior of a 
function or sensor under test could occur. The main challenge 
with virtual simulations however is that the objects and the 
sensors in the simulation need to behave in a reproducible and 
realistic way. Only then, the required approval process for a 
certain function can be based on virtual testing. 

The purpose of this study is to examine the effect of dirt on 
the performance of a LIDAR with the aim of including this 
effect in a virtual simulation. As no cleaning mechanism is 
able to achieve a perfect cleaning under all conditions and the 
amount of cleaning water is limited, the characterization of the 
dirt effect is an important step towards a realistic virtual 
simulation. We collect samples of dirty LIDAR sensor plastic 
covers under real world driving conditions and analyze the 
covers’ transmission and reflection properties. Further, the 
effect of dirt on the sensor’s position measurement accuracy in 
terms of the position standard deviation is analysed. This 
study is structured as follows: First, the problem of validating 
the safety of an automotive LIDAR sensor in the context of 
automated driving is further discussed in section II. In section 
III, the transmission and reflection measurement method is 
outlined with a presentation of the measurement results. The 
effect of dirt on a LIDAR’s position measurement accuracy is 
analyzed and experiments are conducted to indentify potential 
forward scattering caused by the dirt. In section IV it is 
discussed how the evaluated influence of dirt on sensor 
performance can be incorporated in a virtual simulation. 
Conclusions are provided in section V. 

II. BACKGROUND: SAFETY VALIDATION OF AUTOMOTIVE LIDAR 
SENSORS 

Based on the automated driving function specifications and 
existing car safety regulations, a number of requirements have 
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to be met by the implemented sensor set. Some of these 
requirements are for example the use of redundant components, 
different measurement principles, and ensuring that even under 
adverse conditions a safe state is reached [8] which all help to 
achieve reliable environment sensing. To fulfill the 
environment perception requirements for highly automated 
driving (SAE level 3 and BASt level 3 [9]) such as sensor 
redundancy with independent physical measurement methods, 
range and resolution, LIDAR sensors are being developed to 
complement the use of the already common camera and radar 
sensors. On the one hand, a LIDAR has advantages compared 
to a radar regarding resolution and compared to a camera due 
to its direct distance measurements. On the other hand, as a 
disadvantage, a LIDAR in comparison with a radar is more 
sensitive to weather phenomena in terms of its environment 
perception quality [10]. The laser light of a LIDAR, which is in 
the near infrared spectrum, is easily absorbed and scattered by 
particles in the atmosphere or dirt on the plastic cover of the 
sensor because of its short wavelength. The different factors 
that influence the propagation of a LIDAR’s Laser beam 
through scattering and attenuation are illustrated in Fig. 1. As is 
illustrated, attenuation and scattering occur on the plastic 
cover, on particles in the atmosphere (rain, snow, fog…) and 
on the objects that are to be detected.  

 
Fig. 1. Factors that cause scattering/ attenuation of the laser rays.  

The mean attenuation of gases, haze, fog, rain, snow and dust 
for a certain (laser) wavelength and the increment of ground 
level noise in the laser scanner receiver due to solar radiation 
have been studied and simulated in different publications [11-
14]. These effects are usually described in terms of their mean 
values, can be predicted and partially corrected by measures 
implemented during the sensor design phase. In contrast to 
existing studies, we are not interested in the atmospheric 
attenuation but in the unwanted attenuation and scattering of 
the laser rays on the sensor plastic cover due to dirt. Also, from 
the perspective of a safety validation, we are interested not in 
the mean values of those effects but rather in the fluctuations 
and safety relevant extreme values which can occur. 

Due to the dirt cover, the visibility and range of a sensor can 
degrade considerably. Moreover, the accuracy (e.g. the 
standard deviation of the distance measurements) might 
decrease. The performance degradation due to dirt correlates 
well with the presence of rain which facilitates the dirt 
accumulation through spray water but it depends also on the 
conditions of the specific street, the time of the year, the speed 
of the car, the shape, temperature and material of the sensor 
and the environment temperature. 

It is pointed out that not only the sensor range is reduced by 
dirt but also the form of the field of view might be affected. For 

example, dirt can scatter and reflect the light to regions which 
previously were not visible. This effect is shown in Fig. 2. The 
blue area represents the original field of view. Under the 
influence of dirt, the laser beams are scattered, changing the 
original field of view (blue) to the field of view under dirty 
conditions (red). This effect is physically caused by forward 
scattering by the dirt particles. 

 
Fig. 2. Possible effect of forward scattering caused by some kinds of dirt. 

The original field of view (blue area) is altered by dirt on the sensor to 
the red area.  

To summarize, there are four main ways in which dirt can 
affect the perception performance of a sensor: 

-Reducing the range.  

-Partly blinding a sensor, leading to decreased detection 
capabilities. 

-Changing the field of view.  

-Increasing the uncertainty of physical measurement quantities 
such as position measurements. 

To analyze the presented effects of dirt on LIDAR 
performance, real world samples of dirty plastic covers are 
collected which is explained in the next section. 

III. ANALIZING THE EFFECT OF DIRT ON AUTOMOTIVE LIDAR 
SENSING PERFORMANCE 

In this section we first describe the experimental setup to 
collect dirty sensor cover samples and to measure the 
transmission and reflection properties of these covers. Further, 
the effect of dirt on the sensor performance is analyzed. 

A. Experiment setup and data collection: Transmission and 
reflection of dirty sensor covers 

It is very difficult to realistically replicate the varying types and 
degrees of dirt accumulation on the sensors in a labor 
environment as the environment conditions and processes that 
cause dirty sensor covers are highly variable. Therefore, we 
conducted experiments in field tests under real-world 
conditions. For this purpose, two sensor plastic covers were 
placed on the grill of a test car as shown in Fig. 3.  

 
Fig. 3. Position of the plastic covers on the radiator grill. 

The driving route was chosen in a way that high levels of dirt 
were reached with a total travelling time of approximately 2 
days for each plastic cover. In total 12 samples (i.e. dirty sensor 
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plastic covers) are obtained of which 6 correspond to the upper 
position (≈ 72 cm over the floor, 22 cm to the left) and 6 to the 
lower position (≈ 41 cm over the floor, 29 cm to the left). In 
the following, the samples are named using a number 1-6 and a 
letter u (upper position) and l (lower position).  

Fig. 4 exemplarily illustrates two of the sensor plastic cover 
samples with the accumulated dirt. One mechanism of dirt 
accumulation consists of dust adhering to the plastic cover in 
combination with water (e.g. dirty spray water) which later 
evaporates leaving dust and dirt chunks. Alternatively a fine 
layer of dust is formed on the plastic cover on which bigger 
dust particles adhere. 

 
Fig. 4. Microscope pictures of the accumulated dirt on the sensor plastic 

covers. The top picture shows big chunks of dust formed due to the 
combination of fine dust particles with water (sample 5l with 2 times 
magnification). The bottom picture shows a relativelly clean cover 
where micro scratches can be seen (sample 1l with 6 times 
magnification). 

To study the effect of the dirt on LIDAR performance with 
the aim of implementing it in a virtual simulation, 
Transmission  [%] and reflection  [%] measurements were 
conducted with the collected samples. Fig. 5 and Fig. 6 show 
the setups for the transmission and reflection measurements, 
respectively. As is visible in Fig. 5, a robotic arm is used to 
place the sample close and parallel to an integrating sphere. 
The measurements were conducted in the near infrared region 
corresponding to the wavelength of the LIDAR under test. A 
total of 72 measurement values (4 layers of 18 measurement 
points on a plastic cover) of transmission are obtained for each 
dirty plastic cover sample. The spacing between the 
measurement points was selected such that the central region of 
the plastic cover had a smaller distance between two 
measurement points (see also Fig. 7).  

 
Fig. 5. Transmission measurement setup for the dirty sensor covers. 

Similarly, for the reflection measurement in Fig. 6 a robotic 
arm was used to place the sample close and parallel to the 
homogenizing rod respectively. In contrast to the transmission 
measurements only one reflection measurement value is 
collected due to the big size of the homogenizing rod in 
comparison to the plastic cover. 

 
Fig. 6. Reflection measurement setup for the dirty sensor covers. 

In principle, information on either transmission or reflection is 
enough for a virtual simulation. The advantage of measuring 
the reflection is that the plastic cover in a real sensor wouldn’t 
have to be removed in order to perform the measurement. Here 
however, compared to the reflection measurements, the 
transmission measurements are more accurate because of the 
small diameter of the beam from the collimator lens (the beam 
diameter is comparable with the real laser source). The spatial 
distribution of the dirt is with the given experiment design 
better accounted for by the transmission measurement. 

Additionally, a slightly modified version of the transmission 
measurement (Fig. 5) is performed to estimate the amount of 
forward scattering that each dirt samples causes. For this 
measurement series, the overall distance between the 
collimator lens and the integrating sphere is increased. The 
robot moves the dirty plastic cover sample between the 
collimator lens and the integrating sphere. This procedure leads 
to different measured intensities for each position of the 
sample. The resulting curves of transmissions (indirectly the 
intensities) over position can then be used to estimate the 
forward scattering that the dirt generates.  

In another experiment, we study the influence of dirt on the 
uncertainty of the LIDAR’s position measurements. For this 
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purpose, a test target with reflectivity of around 50% was 
located at a distance of 19 m from the LIDAR sensor. 
Measurements were conducted for 30 s utilizing all the dirty 
plastic covers, i.e. the covering plastic of the sensor under test 
was for each measurement replaced with that corresponding to 
the different dirt samples. For each plastic cover, a 30 s time 
series of data was collected which contains the point cloud 
corresponding to the test object. The position measurement 
variability of the points corresponding to the test object are 
analyzed and expressed in terms of their standard deviation. 

B. Results: Transmission and reflection measurements 
The reflection measurements reveal a ripple in the spectrum 

which is due to a thin film coating of the plastic cover. This 
effect can be characterized by the thin film equation with the 
approximation that the substrate is infinite [15]:  

                   =  (1) 

Where  is the thin film thickness,  and  are the 
wavenumbers of two consecutive extremes (peak to valley) in 
the ripple profile,  corresponds to the refractive index of the 
coating and  is the angle of incidence of the beam. With Eq. 
(1) it is checked if the ripple pattern in the measurements are 
due to the thin film. Normal incidence is assumed ( = 0) 
although in reality the rays will be distributed in a cone given 
by the radius of the homogenizing rod. With =1/887 nm , = 1/899 nm  and ≈ 1.45  Eq (1) coincides 
with the expected thickness  of the thin film. This interference 
pattern is a limitation of the reflection measurement because in 
principle, each plastic cover can have a different reflection 
value at a certain wavelength depending on how this pattern is 
distributed. Therefore, it is difficult to select a representative 
reflection value. In the transmission measurement this effect is 
not present because the amount of light which reaches the 
receiver is much bigger than the ‘noise’ generated by the 
interference pattern. This means that the measured 
transmission information is here preferred for a virtual 
simulation. 

 Fig. 7 exemplarily shows the distribution of the measured 
transmission values on a part of one of the plastic cover 
samples. It can be seen that measured transmission values for 
this particular sample vary between 64.0% and 77.5%.  

 
Fig. 7. Exemplary results of a transmission measurement (near infrared) for 

one dirty plastic cover samples. 

 Fig. 8 exemplarily illustrates the distribution of the 
measured transmission values for the samples 1u, 1l, 3u, 3l, 5u 
and 5l. The variability of the transmission for one specific 
plastic cover is due to the spatially non-uniform distribution 
and composition of the dirt on the cover.  

 
Fig. 8. Histogram showing the probability densitiy of the measured 

transmissions for the samples 1u,1l,3u,3l,5u and 5l. 

It is seen that for samples 1u and 1l, the most likely 
transmission is close to 100% with the smallest measured 
values around 98%. The variability here might thus be 
neglected. From samples 3u, 3l, 5u and 5l it is however clear 
that this does not hold in general. For these samples the 
transmission is substantially smaller and also the variability is 
large. This (spatial) variability should in a simulation be taken 
into account with adequate statistical models and methods. 

The reflection   and transmission   measurements (averaged 
over the whole area of the sensor plastic cover) as well as the 
relative decrease or increase |∆  |  and |∆ |  in transmission 
and reflection are presented in Table I. For the transmission 
and reflection values, a clean plastic cover is the reference.  

TABLE I.  COMPARISON: TRANSMISSION AND REFLECTION 
MEASUREMENTS. 

Sample 
number   [%]  [%] |∆  | [%] |∆ | [%] 

Reference 100 100% 0 0 

1u 99.5 101.5 0.5 1.5 

1l 99.8 98.5 0.3 1.5 

2u 95.8 91.5 4.3 8.5 

2l 94.5 89.4 5.6 10.6 

3u 65.8 65.7 34.2 34.3 

3l 65.4 62.5 34.6 37.5 

4u 96.1 94.1 3.9 5.9 

4l 94.1 98.8 6.0 1.2 

5u 72.0 92.1 28.0 7.9 

5l 73.9 92.9 26.1 7.1 

6u 95.4 92.6 4.6 7.4 

6l 95.6 89.5 4.4 10.5 
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It is assumed that the absorption remains constant during the 
measurement and that it can be neglected. Therefore, it is 
expected that the relative change in transmission equals that of 
reflection. In Table I it can however be seen that the relative 
change in reflection |∆ |  for almost all samples exceeds the 
relative change in transmission |∆  |. This is due to the much 
bigger beam diameter of the homogenizing rod compared with 
the collimator lens (see Fig. 5 and Fig. 6). The different beam 
diameters and consequently spot areas on the plastic covers of 
the transmission and reflection measurements make it difficult 
to compare both values. Due to the before mentioned problem 
with the ripple pattern in the reflection measurements and the 
here found discrepancy between the relative change in 
transmission and reflection, it is concluded that the 
transmission measurements are here preferable for a virtual 
simulation. Improvements to the measurement setup might 
allow to get better reflection information.  

For most samples the averaged transmission is bigger than 90% 
(see Table I) which indicates that the LIDAR performance will 
only slightly be influenced by dirt. However, for four of the 
samples, the transmission is between 60-75% which means the 
performance such as detection capability of the LIDAR might 
be severely impaired. It can also be noticed that the difference 
in the mean transmission  for the upper and lower position on 
the grill (l and u) is negligible whereas the difference between 
the samples (i.e. 3 and 6) seems to matter more. From this 
observation it is concluded that the composition and type of 
dirt has a larger influence on the transmission than the position 
of the sensor on the grill. 

C. Results: Forward scattering due to dirt on sensor cover 
A first qualitative evaluation of forward scattering (see Fig. 2 
for an illustration of this effect) for each sample of dirty plastic 
covers can be obtained by measuring the transmission over an 
increasing distance between the lens and the integrating sphere. 
If the difference in transmission between dirty and clean plastic 
cover changes with increasing distance to the integrating 
sphere, then some form of forward scattering occurs due to 
dirt. Fig. 9 shows the difference in transmission (substracting 
the transmission corresponding to a clean plastic cover from 
the measured transmission) at different distances of the sample 
plastic cover from the integrating sphere (see Fig. 5).  

 
Fig. 9. Difference in transmission of the sample and clean plastic covers at 

varying distances from the integrating sphere. A constant difference in 
transmission indicates no forward scattering due to dirt.  

As is visible in Fig. 9, samples 3 and 5 generate a larger 
forward scattering of the light beam in comparison with the 
samples 1 and 2. Not illustrated in the figure are the samples 4 
and 6 which show similar behavior as samples 1 and 2. This is 
in accordance with Table I where samples 3 and 5 show the 
strongest influence on the transmission and the position 
standard deviation. 

D. Results: Effect of dirt on sensor position measurement 
performance 

The last sections quantify the effect of dirt on the beam 
propagation through the plastic cover in terms of transmission 
and reflection. The reduction of transmission and the increase 
in reflection leads to a decreased sensor performance which is 
here analyzed in terms of position measurement uncertainties 
in the raw data, i.e. the point cloud. Table II presents the 
relative difference between the standard deviation of the 
position measurements for each dirt sample with respect to the 
clean plastic cover. 

TABLE II.  RESULTS: INFLUENCE OF DIRT ON THE POSITION 
MEASUREMENT STANDARD DEVIATION RELATIVE TO A CLEAN SENSOR. 

Sample 
number Conditions Dirt 

Description 
( − )/  

[%] 

Reference Laboratory Clean 0 

1u Dry  Very light  26.7 

1l Dry  Very light  -2.1 

2u Wet, Sleet Light  17.6 

2l Wet, Sleet Light  17.1 

3u Changeable 
(Sun/Rain) Heavy, fine 72.2 

3l Changeable 
(Sun/Rain) Heavy, fine 81.8 

4u Changeable 
(Sun/Rain) Medium 59.4 

4l Changeable 
(Sun/Rain) Medium 55.1 

5u Changeable 
(Sun/Rain) 

Heavy, 
coarse 

65.8 

5l Changeable 
(Sun/Rain) 

Heavy, 
coarse 

39.6 

6u Changeable 
(Wet/Dry) Light  78.6 

6l Changeable 
(Wet/Dry) Light  55.1 

 

It can be seen that the sample 3, which also corresponds to the 
highest reduction in transmission (see Table I), leads to the 
largest increase in distance measurement uncertainty. 
However, also samples 4 and 6 show a large increase in the 
uncertainty, even though the mean transmission for these 
samples is still around 95 %. This means that the mean 
transmission itself is not sufficient to describe the effect of the 
dirt on the LIDAR performance. Instead, the whole 
transmission matrix including scattering and electro-
mechanical effects need to be integrated into a virtual 
simulation in order to better account for the statistical variation. 
To account for additional variation statistical methods can be 
used. It is pointed out that the absolute values of the standard 
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deviation underlying Table II are low even for the dirty plastic 
covers. 

IV. INTEGRATING THE RESULTS IN A SIMULATION 
 The previous section quantified the effects of dirt on 
LIDAR performance. This section discusses how to 
incorporate these findings into virtual simulations to reproduce 
the dirt effects.  

The (potential) reduction of the range – which was not 
evaluated here in detail – is caused by an increased absorption 
and scattering and should according to the Lidar equation [10] 
be similar to the relative change in transmission squared 
(considering two way losses). Therefore with the transmission 
measurements, one is able to account for the range reduction. 
Using the measured values from each plastic cover sample, it is 
possible to calculate the new range values for the whole field 
of view of the sensor by multiplying the transmission matrix – 
a matrix with values between 0 to 1 representing the 
transmission properties at each sampled location on the plastic 
cover – with the previous form of the field of view 
(corresponding to a clean sensor). To account for the spatial 
variability illustrated in Fig. 7 and summarized in Fig. 8, one 
could model the spatial distribution of the transmission values 
on a plastic cover with a random field. As is apparent from the 
different samples shown in Fig. 8, the distribution parameters 
of the random field (i.e. the mean and standard deviation) itself 
are subject to uncertainties and should be modeled for instance 
with a hierarchical statistical model. The application of such 
models to performance analysis of automotive environment 
sensing is discussed in [16]. 

One possibility to integrate the forward scattering effect (Fig. 
9) into a real time simulation is using a virtual material. An 
example is Nvidia MDL[17] which is a render independent 
material definition language that can be used to define a level 
of diffuse, specular reflection and transmission of a layer 
located in front of a ray tracer in a way that the rays that hit this 
layer are reflected, transmitted, absorbed or scattered as occurs 
with a real type of dirt. An alternative to calibrate the 
parameters of the simulation is to reconstruct the measurement 
shown in Fig. 5 using a render like OptiX [17] to simulate the 
beams (as spectral light source) and integrate the intensity on 
the receiver, simulating the working principle of the 
spectrometer for the required wavelength. 

 To account for increased measurement uncertainties (as 
illustrated in Table II) in a simulation, one could utilize a 
random generator based on Monte Carlo simulation. This is 
equivalent to adding noise to the values of the corresponding 
3D coordinate of the points in the cloud of a virtual simulation. 
A similar approach can be followed for the detection 
capabilities and false-negatives. 

V. CONCLUSIONS 
The influence of dirt on LIDAR performance is analyzed by 
measuring its effect on the transmission and reflection 
properties of (dirty) sensor covers and by studying its effect on 
distance measurement uncertainties. Samples of dirty sensor 
covers are collected through real world driving to perform this 
analysis. The dirt effect for two different positions of the 
plastic cover on the grill was found to be similar, while 

different samples (containing different real world dirt profiles) 
showed considerable variability. A physical simulation of the 
dirt effects on the sensor performance needs to include 
absorption and scattering in order to successfully replicate the 
effects observed in real road conditions. Future tasks include 
the direct measurement of the changes in range for each type of 
dirt and the effect over other uncertainties like the probability 
of detection. 

 

REFERENCES 
[1] Audi, “Mission accomplished: Audi A7 piloted driving car completes 

550-mile automated test drive”, https://www.audiusa.com/newsroom/ 
news/press-releases/2015/01/550-mile-piloted-drive-from-
silicon-valley-to-las-vegas, 2016. 

[2] Google, “Google Self-Driving Car Project”, 
http://static.googleusercontent.com/media/www.google.com/en/
us/selfdrivingcar/, 2016. 

[3] Franke, U., Pfeiffer, D., Rabe, C., Knoeppel, C., Enzweiler, M., Stein, 
F., Herrtwich, G., “Making Bertha See,” 2013 IEEE International 
Conference on Computer Vision Workshops (ICCVW), Sydney, 
Australia:214-221, 2013. 

[4] Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., 
Pilat, Y., Homm, F.,Huber, W., Kämpchen, N., “Experience, Results 
and Lessons Learned from Automated Driving on Germany's 
Highways”, IEEE Intell. Transport. Syst. Mag. 7(1):42-57, 2015, 
doi:10.1109/MITS.2014.2360306. 

[5] Jens Mazzega, Hans-Peter Schöner, “Wie PEGASUS die Lücke im 
Bereich Testen und Freigabe von automatisierten Fahrzeugen schließt”, 
http://www.pegasus-projekt.info/files/tmpl/pdf/ 
PEGASUS_Tagung_Methodenentwicklung%20Folien.pdf, 2016.  

[6] Markus Maurer, J.Christian Gerdes, Barbara Lenz, Hermann 
Winner. “Autonomes Fahren: Technische, rechtliche und 
gesellschaftlich Aspekte”,2015. 

[7] Berk, M., Kroll, H., Schubert, O., Buschardt, B., Straub, D., "Bayesian 
Test Design for Reliability Assessments of Safety-Relevant 
Environment Sensors Considering Dependent Failures," SAE Technical 
Paper 2017-01-0050, 2017, doi:10.4271/2017-01-0050. 

[8] Thomas Haller, “Funktionale Sicherheit in der Praxis”, https://rg-
muenchen.gi.de/sites/default/files/13-02-04a.pdf, 2014. 

[9] Hermann Winner, Walther Wachenfeld, Philipp Junietz M, “Safety 
Assurance for Highly Automated Driving – The PEGASUS Approach 
validation and releasing the autonomous vehicle”, 2016. 

[10] R. H. Rasshofer, M. Spies, H. Spies, “Influences of weather phenomena 
on automotive laser radar systems”, Advances in radio science, 9, p 49–
60, 2011. 

[11] Michael E. O’Brien, Daniel G. Fouche, “Simulation of 3D Laser Radar 
Systems”, 1st edn, 2005. 

[12] Çaglar Kavak, “GPU based infrared signature modeling and scene 
simulation”, Master Thesis, 2014. 

[13] Matt Pharr, Greg Humphreys, “Physically based rendering: From 
Theory to Implementation”, Second Edition. MK, 2010. 

[14] Ristorcelli Thomas . “Evaluation de l'apport des visées multi-angulaires 
en imagerie laser pour la reconstruction 3D des couverts 
végétaux”,Thesis, 2013. 

[15] Olaf Stenzel, “The physics of thin films optical spectra, an 
introduction”, Springer, p. 111, 2005. 

[16] Berk, M., Kroll, H., Schubert, O., Buschardt, B., Straub, D., “Eine 
stochastische Methodik zur Berücksichtigung von Umgebungseinflüssen 
am Beispiel von LiDAR Sensoren”, VDI/VW Gemeinschaftstagung 
Fahrerassistenz und automatisiertes Fahren, p.455–475, 2016. 

[17] Detlef Röttger, “Implementing physically based ray tracing with OptiX 
and MDL”, GPU Technology conference, http://on-
demand.gputechconf.com/gtc/2016/presentation/s6244-roettger-optix-
mdl.pdf, 2016. 

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

Authorized licensed use limited to: Volkswagen AG. Downloaded on July 04,2022 at 06:33:34 UTC from IEEE Xplore.  Restrictions apply. 



��������	�
�����	�����	�
	���������	����



sensors

Article

Weather Classification Using an Automotive LIDAR
Sensor Based on Detections on Asphalt
and Atmosphere

Jose Roberto Vargas Rivero 1,2 , Thiemo Gerbich 1, Valentina Teiluf 3, Boris Buschardt 1

and Jia Chen 2,4,*
1 Audi AG, Auto-Union-Str., D-85057 Ingolstadt, Germany; jose-roberto.vargas-rivero@audi.de (J.R.V.R.);

thiemo.gerbich@audi.de (T.G.); boris.buschardt@audi.de (B.B.)
2 Electrical and Computer Engineering, Technical University of Munich, Theresienstr. 90,

D-80333 München, Germany
3 Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University of

Erlangen, Schloßplatz 4, D-91054 Erlangen, Germany; valentina.teiluf@fau.de
4 Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2 a,

D-85748 Garching, Germany
* Correspondence: jia.chen@tum.de

Received: 29 June 2020; Accepted: 29 July 2020; Published: 1 August 2020
����������
�������

Abstract: A semi-/autonomous driving car requires local weather information to identify if it
is working inside its operational design domain and adapt itself accordingly. This information
can be extracted from changes in the detections of a light detection and ranging (LIDAR) sensor.
These changes are caused by modifications in the volumetric scattering of the atmosphere or surface
reflection of objects in the field of view of the LIDAR. In order to evaluate the use of an automotive
LIDAR as a weather sensor, a LIDAR is placed outdoor in a fixed position for a period of 9 months
covering all seasons. As target, an asphalt region from a parking lot is chosen. The collected sensor
raw data is labeled depending on the occurring weather conditions as: clear, rain, fog and snow,
and the presence of sunlight: with or without background radiation. The influence of different
weather types and background radiations on the measurement results is analyzed and different
parameters are chosen in order to maximize the classification accuracy. The classification is done
per frame in order to provide fast update rates while still keeping an F1 score higher than 80%.
Additionally, the field of view is divided into two regions: atmosphere and street, where the influences
of different weather types are most notable. The resulting classifiers can be used separately or together
increasing the versatility of the system. A possible way of extending the method for a moving
platform and alternatives to virtually simulate the scene are also discussed.

Keywords: autonomous driving; automotive LIDAR; weather conditions; sunlight; classification;
atmosphere; street

1. Introduction

One of the main challenges for the safety validation of autonomous driving vehicles lies on the
influence of weather phenomena [1,2]. As each of the main sensors, namely LIDAR, radar and cameras
increases its sensitivity in order to detect smaller objects faster and hence be able to drive autonomously
at higher speeds, the possible influence of environmental perturbations on their perception increases.
On the one hand, those perturbations could cause false positives (the term false positives in this
paper refers to a false detection in the point cloud before segmentation and classification are done),
confuse self-calibration algorithms and reduce the sensor range [3,4]. On the other hand, they could
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constitute a source of valuable information if the dependencies are known and properly characterized
to better evaluate and predict road conditions or adapt its operation mode, for example, [5].

In this paper, we focus on the influence of rain, fog and snow on a LIDAR sensor. Previous results
are expanded by considering not only absorption and reflection [2] as well as changes in the reflection
characteristics of the target [3], but also the simultaneous influence of a changing ambient illumination
in outdoor conditions.

With that objective in mind, a LIDAR was placed outdoors in a static position. As target, an asphalt
region of a parking lot was used. The collected point cloud data was separated between detections on
the atmosphere and street. The detections on those two areas were analyzed using a classifier in order to
identify if, in a static scenario, reliable information about the current weather could be extracted based
on the information provided by an automotive LIDAR. Finally, possible applications of the results are
shown, including a way of extending the method for use in a moving platform (car/bus/truck) in which
sensor and targets move. For the virtual simulation, the use of physically-based rendering is suggested
in order to include the effects of a changing background illumination together with changing reflection
properties of targets in a reproducible way.

The next section introduces the current state of the art regarding the influence of weather on
the LIDAR performance and the use of weather classification algorithms with focus on LIDAR data.
Section 3 presents the experimental setup and Section 4 the results for the atmosphere and street regions.

2. State of the Art

2.1. Influence of Weather on a Performance

One of the main disadvantages of optical sensors (camera and LIDAR) in comparison to radar is
their higher performance degradation under the presence of rainfall, fog and snow [6]. In general,
the influence of adverse weather on the performance of a LIDAR sensor can be divided as follows:

• Changes in the mechanical, optical and chemical properties of the LIDAR cover like: change in
the transmission caused by water absorption [7]. Deformation and change in the refractive index
caused by changes in temperature. Changes in its chemical composition due to constant exposure
to ultraviolet light [8].

• New layers formed on the LIDAR cover such as: dirt layers [9], water layers (or ice layers)
deposited due to the presence of rain, fog, insects and spray from other vehicles.

• Scattering or absorption caused by rain drops, exhaust gasses or other pollutants [10] and dust [11].
• Changes in the optical properties of the target [2] which can be: wet, covered with snow,

covered with dirt, etc.
• Changes in the background illumination.

Previous attempts to simulate the impact of weather on the performance of a LIDAR make use of
the LIDAR equation [3], which calculates the absorption and scattering coefficients of rain, snow or fog
based on the drop size distribution [12]. Given the relationship between drop size distribution and
rain intensity, it is possible to use Monte Carlo simulations to calculate a false positives rate caused
by the drops [13] for a given rain intensity. Alternatively, the detections can be filtered out using a
Kalman filter or dynamic radius outlier removal filters [14,15].

The effect of rain on the reflectance of different targets has also been studied [2,7]. In this case,
the absorption and scattering caused by rain is characterized simultaneously with the change in target
reflectance by measuring the range, intensity and number of reflected points using a LIDAR sensor
for targets placed outdoors. It is found that rain causes a decrement in the intensity and number of
detected points for all targets tested, which included materials such as metal, asphalt, concrete and a
retro reflective surface, each one placed at a different distance [2]. The authors mention that the change
in the reflection characteristics of the target seem to generate an intensity change bigger than the one
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generated by absorption and scattering caused by rain [2]. The material with the maximum reduction
in number of reflected points is found to be asphalt.

This paper will focus on the case in which the LIDAR sensor and target are both placed outdoors.
In that way, the effect of a changing background illumination and the change in the optical properties
of the LIDARs cover are also included. As target, an asphalt portion of a parking lot is used.
Besides physical effects, the influence of sensor internal algorithms that dynamically adapt the
performance of the sensor like automatic gain control [16], for example, are left active.

2.2. Effect of Water on a Surface’s Transmission and Reflection

For analysis purposes, the effect of water upon the transmission and reflection of a porous material
can be divided into three stages: first, the pores of the material are filled with water. When the material
reaches saturation, a thin water film forms on top of it. As the water level increases, the characteristics
of the material itself lose importance and the reflection starts to depend mostly on the optical properties
of water.

The first stage can be understood by considering the change in the optical path length of the
material when its pores are filled with water instead of air. This implies a higher probability of
absorption of the photons and hence a reduction in its transmission. Regarding reflection, the scattering
of the surface changes to a more forward scattering. Consequently, as can also be seen in the visible
spectral range, the surface becomes more opaque [7]. A comparison of different dry and wet materials
shows an average reflectivity reduction of around 10% for a wavelength of 900 nm and of around 30%
for a wavelength of 1.5 µm [1]

The second stage can be analyzed assuming a thin and homogenous water layer. In this case,
considering the plastic cover of a LIDAR, for example, a multilayer interface is built consisting of
air, plastic or glass, a coating, and a water layer. The Fresnel equations can then be used to calculate
the reflectance. In most cases, though, the layer will not be homogeneous. In that case, the surface
can be characterized in transmission and reflection by measuring its bidirectional transmittance
distribution function (BTDF) and bidirectional reflectance distribution function (BRDF) [17] for the
required wavelength.

For further increments in the water level, the reflection can be analyzed by using the bathymetric
LIDAR equation [16].

This equation uses the parameters as illustrated in Figure 1. It is defined as:

Pr =
cPTρcos2θ

(nwH + D)2 exp(−2αD secφ) (1)

where Pr corresponds to the received power, PT to the transmitted power, ρ to the reflectance of the
bottom material, θ to the incident angle of the transmitted laser beam in air,φ to the refracted beam angle
in water, H to the altitude of the LIDAR above the water, D to the distance between the water surface
and the bottom material, nw the refraction index of water, α which combines stretching and attenuation
of the pulse, and c is a constant containing sensor-related values [16]. This equation corresponds to the
conventional LIDAR range equation for an extended target, with an added exponential decay in a
scattering medium corresponding to the Beer-Lambert law.



Sensors 2020, 20, 4306 4 of 20

Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 

 

 
Figure 1. Illustration of the parameters used in the bathymetric LIDAR equation. Although the used 
LIDAR is not a bathymetric LIDAR the equation is used to show the dependencies present when the 
amount of water on top of a certain surface is high. These dependencies are used for the analysis of 
the street region when covered by water in Section 4. 

2.3. Effect of Ambient Light on LIDAR Measurements 

Since at the end, the information obtained from the LIDAR is based on detections over the noise 
level, the APD (avalanche photo diode) equation also needs to be considered: 𝑆𝑁𝑅 =  (2)

where 𝑃  can be calculated as shown in Equation (1) and 𝑁 corresponds to the noise which is a 
combination of the shot noise 𝑁 , the background noise 𝑁 , which is proportional to the background 
light optical power collected by the detector, and the thermal noise 𝑁  [1]. 𝑃(𝑁(𝑡) = 𝑛) = √ 𝑒  (3)

𝐼(𝑡 ) = 𝜇 + 𝑥𝜎 (4)𝑇𝑂𝐹 = 𝑡 − 𝑡  (5)

Finally, the time of flight (TOF) is defined as the time difference between the start of the sent 
pulse 𝑡  and the moment when the detected intensity reaches a certain minimum value 𝑡  (5). 
Assuming a Gaussian distribution for the noise (3), a SNR of 3𝜎 (0.27% probability that a detection 
is caused by noise) with respect to the mean noise level can be used, for example, in order to define 
a valid detection (4). If the average noise level increases from 𝜇  to 𝜇  as shown in Figure 2, and the 
shape of the echo pulse remains the same, there is no detection. Correspondingly, the total number 
of reflected points is reduced. This fact is used for the analysis in the measurement section. 

As can be deduced from Figure 2 the intensity of the detection 𝐼 , its distance, which is 
calculated using the TOF, and the EPW (Echo pulse width) value also change depending on the noise 
level. This kind of walk error, which can also be caused by a change in the form of the echo pulse, 
can in some cases be compensated but not completely avoided [18]. The EPW, which is measured in 
meters [19], corresponds to the width of the pulse above the noise level. It is proportional to the 
reflection of the object. 

Figure 1. Illustration of the parameters used in the bathymetric LIDAR equation. Although the used
LIDAR is not a bathymetric LIDAR the equation is used to show the dependencies present when the
amount of water on top of a certain surface is high. These dependencies are used for the analysis of the
street region when covered by water in Section 4.

2.3. Effect of Ambient Light on LIDAR Measurements

Since at the end, the information obtained from the LIDAR is based on detections over the noise
level, the APD (avalanche photo diode) equation also needs to be considered:

SNR =
Pr

N
(2)

where Pr can be calculated as shown in Equation (1) and N corresponds to the noise which is a
combination of the shot noise NS, the background noise NB, which is proportional to the background
light optical power collected by the detector, and the thermal noise NT [1].

P(N(t) = n) =
1

σ
√

2π
e−

1
2 (

n−µ
σ )

2

(3)

I(td) = µ+ xσ (4)

TOF = td − tp (5)

Finally, the time of flight (TOF) is defined as the time difference between the start of the sent pulse
tp and the moment when the detected intensity reaches a certain minimum value td (5). Assuming a
Gaussian distribution for the noise (3), a SNR of 3σ (0.27% probability that a detection is caused
by noise) with respect to the mean noise level can be used, for example, in order to define a valid
detection (4). If the average noise level increases from µ1 to µ2 as shown in Figure 2, and the shape of
the echo pulse remains the same, there is no detection. Correspondingly, the total number of reflected
points is reduced. This fact is used for the analysis in the measurement section.
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As can be deduced from Figure 2 the intensity of the detection Id, its distance, which is calculated
using the TOF, and the EPW (Echo pulse width) value also change depending on the noise level.
This kind of walk error, which can also be caused by a change in the form of the echo pulse, can in some
cases be compensated but not completely avoided [18]. The EPW, which is measured in meters [19],
corresponds to the width of the pulse above the noise level. It is proportional to the reflection of
the object.

2.4. Light Scattering and Absorption by Particles in the Atmosphere

Particles in the atmosphere scatter and absorb the laser light depending on their shape, size and
complex index of refraction [20]. Spherical particles with a size parameter α = 2πr/λ smaller than 0.1
(Rayleigh regime) tend to have a symmetric forward/backwards scattering. Particles with α values
between 0.1 and 50 (Mie regime) have a bigger forward as backward scattering lobe, while particles
with α values bigger than 50 (Geometric regime) have a very large forward scattering lobe and almost
no backwards scattering [20]. In case of snow, the analysis is more complicated and depends on the
exact shape of the crystal, which depends on the temperature [3]. For multiple particles, the scattering
coefficient is also proportional to particle concentration and size [21].

Table 1 shows the average radius and size parameter for typical particles in the atmosphere.
The size parameter is based on a laser with a wavelength of 905 nm, which is in the range of wavelengths
typically used for autonomous driving cars [22,23]. The refractive index for both water and ice at this
wavelength has an imaginary part in the order of 10−7 [24] and hence the single scattering albedo (SSA)
for both drops and crystals in the geometric regime approximates 0.53 [25,26]. For fog, it approximates
0.8 [26].

Table 1. Typical atmospheric scattering particles with their average size parameter for a wavelength
from 905 nm and concentration [21,24,27–29].

Type Radius (µm) Size Parameter Concentration

Air molecules 0.0001 0.0007 <3 × 1025 m−3

Haze, smoke, dust 0.01–1 0.07 105–5 × 1010 m−3

Fog 1–20 7–139 106–5 × 109 m−3

Rain 100–10000 694–69427 10–103 m−3

Snow 1000–5000 6943–34714 10−2–103 m−3

Hail 5000–50000 34714–347137 10−2–1 m−3

Although the parameters are distributed over a broad range, not all the sizes occur with the same
probability, with common sizes for snowflakes around 1 mm [29], for rain drops around 0.2 mm and
for fog droplets around 3 µm (Chu Hogg) and 18 µm (Advection) [3].
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2.5. Weather Classification Using LIDAR

There are different alternatives to evaluate current weather and road friction in the vicinity
of a car. One alternative is using the information provided by the vehicle, for example from
windshield wipers, fog lights, torque and speed of engine and tires, anti-lock braking system (ABS),
electronic stability control (ESC) and traction control system (TCS) intervention events, temperature,
global navigation satellite system (GNSS) position, steering wheel angle and breaking signal [30].
Another alternative is to use sensors specific for road surface analysis like polarization cameras or
short distance multi-wavelength IR sensors. These sensors use the change in the amount of vertically
polarized light or its resonance frequency caused by the different phases of water to classify between
ice, snow and mixtures [31]. A third alternative, and the focus of this paper, is to use advanced driver
assistance systems (ADAS) sensors like visible spectrum (VIS) cameras, ultrasound, radar or LIDAR
whose main purpose is the detection of static and moving objects but whose performance is affected by
weather [32]. All these techniques can be used by themselves or combined to provide different levels
of classification accuracy [30]. Additionally, the information provided by other cars or sensors can be
included using vehicle-to-everything (V2X) technologies [33].

LIDAR sensors have been used to classify aerosols on the atmosphere using the difference between
the extinction cross section and backscatter cross section caused by the different types of aerosols.
The differences in the linear depolarization ratio and the frequency differences caused by inelastic
scattering (Raman LIDAR systems) are also used [34,35]. These kinds of systems are able to provide
the type, size and concentration of the different aerosols. A drawback regarding automotive LIDAR
systems is that they usually use monochromatic unpolarized light and measure only elastic scattering
effects. This is compensated in some systems by providing multi target detection (multiple echoes),
which facilitates the differentiation of detections caused by rain, fog or snow from those caused by a
solid objects [36,37].

Regarding the types of classifiers used, in the context of removal of detections caused by fog [38],
support vector machine (SVM) and K-nearest neighbor (KNN) were used reporting a classification
accuracy of heavy fog vs. solid objects higher than 90% (F-Score) with SVM and 79.4% (F-Score) with
KNN. The room in which the experiment took place had a size of 5 m by 4 m. A recent study [32]
with a focus similar to the present paper used a Velodyne LIDAR puck (VLP) and a SCALA sensor
to classify between clear, rain, and fog. They reported a true positive rate higher than 95% for all
three classes using the VLP sensor. The SCALA sensor had a true positive rate (TPR) of 99.78% for
fog, but it fell to 84.92% for rain and 83.19% for clear using SVM. It is important to mention that the
measurements were done in a climate chamber where the visibility values for the fog and rain intensity
were kept within relatively constant ranges. The measurements are reported in a region with a size of
10 m by 25 m. A second set of measurements was performed on the road using only the VLP sensor.
In this case, only two classes were used: clear and rain. A TPR of 92.45% for rain and 97.60% for clear is
reported using KNN. To train the classifier, a parameter vector based on the position of the detection in
Cartesian and spherical coordinates as well as the echo number and the intensity (for the VLP sensor)
or echo-pulse width (for the SCALA sensor) is used.

In a recent paper [39], the measurement distance was reduced to a region close to the LIDAR
cover (<1.6 m). In this case, the classes used were: clean, salt, dirt type 1, dirty type 2 and frost.
Images where constructed from two different views: front view image, with layer number on the y
axis, horizontal angle on the x axis and echo-pulse width as color and top view image with vertical
angle on the y axis radial distance in the x axis and layer number as color. These two image types were
used to train a deep neural network reaching a classification accuracy of 77.98%. If only classifying
between clean, salt and frost, the accuracy increased up to 95.41%. Although in this case the focus is
not weather classification, the state of the LIDAR cover provides an important hint about it.
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3. Experiment

As mentioned in the introduction, the sensor was placed outdoors and the recorded data
was extracted for two regions: atmosphere region (distance from sensor <5 m) and street region
(distance from sensor between 33 m and 37 m).

The measurement setup consisted of a LIDAR sensor, which was installed on the roof of a
building, as illustrated on the left side of Figure 3 (see Appendix A for detailed setup information).
The reflectance of water for non-polarized light coming from air is almost constant and close to 2%
up to an angle of around 45◦ to the surface normal, and increases exponentially [40] above this angle.
Hence, an angle close to 45◦ or less would be convenient in order to preserve a dependency on ρ

(see (1)) in the results for thin water layers. In our test setup, an angle of 46◦ is used.Sensors 2019, 19, x FOR PEER REVIEW 7 of 21 
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Right: Picture from top of the building. The field of view of the sensor is illustrated by the red triangle.

The recorded data was obtained by activating and deactivating the laser scanner at predefined
times, from April to December 2017. In total, 639 h were recorded, during which it was raining 74 h
(12%), foggy 45 h (7%) and snowing 9 h (1%).

For the evaluation, the recorded hours were discriminated in four weather classes: Clear, Rain,
Fog and Snow. The recorded data was classified using information from a weather station from the
Bavarian Environmental Agency [41]. As fog is not reported, we performed the fog measurements
manually started and stopped them. The precipitation values are reported with an interval of five
minutes and for snow and background radiation each hour (see Appendix B for detailed weather
information). The weather station was located at a distance of 7 km from the measurement setup.

Due to an automatic gain control system, which will be further explained in the Results section,
only two values were used for background radiation: (1) with background radiation and (2) without
background radiation. For each sample, the following procedure was followed:

• It was verified that no people, cars or other objects were passing by during the measurement.
• For Fog, Rain and Snow samples it was verified that the weather remained the same during a

period of at least 5 min before and after.
• Clear samples were taken from days were the weather station did not report rain or snow and no

fog was seen.
• The samples were randomly chosen over different days in order to increase the variability.

From each sample, which had a duration of 10s, the single frames were extracted. This resulted in
a total of 6130 frames without background radiation and 1930 with background radiation for each
weather type. The reason for having a lower number of frames during the day is the difficulty of
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recording snow data on the street region during that time. The total number of frames is nevertheless
within the range used for similar classifiers [32,39].

Each frame contains possibly up to thousands of detections distributed on the cover of the sensor,
the atmosphere and the street region. Section 4.1 explains the features used for the parameter vector
upon which the classification takes place. These features are based on the analysis of each region:

• Region A (Section 4.1.1) corresponds to changes in the optical characteristics of the atmosphere
and the LIDAR cover.

• Region B (Section 4.1.2) corresponds to changes in the reflection of the street. The term region is
used instead of surface or plane because it includes reflections coming from water drops splash
which may be a few cm away from the street surface or also from a snow cover.

In both figures, the distances are measured horizontally across the axis of symmetry of the sensor
(x-direction; Cartesian coordinates were used instead of polar coordinates to facilitate the extraction of
the detections corresponding to the street region).

4. Results

In the first step, the influence of a changing background radiation was investigated.
Background radiation is measured in watts per square meters and gives a numeric value for the
brightness. During the night, its value is zero, the biggest value measured during the day and also in
the group of selected samples was 779 W/m2.

The number of scan points shown in Table 2 corresponds to the average of 3800 frames during
clear weather. The frames are separated based on their echo number: ne1 for the first echo and ne2 for
the second. It can be seen that with no background radiation, the mean number of scan points is on
average 35% higher for the first echo and for the second echo it is 2.3 times higher. This is caused
by the reduction on the noise level (as explained in Figure 2) which also causes the increment of the
EPW (~30%). When comparing the number of detections in the atmosphere region with and without
background radiation (Section 4.1.1) a reduction in the number of detections can also be seen.

Table 2. Influence of background radiation on the total number of echoes and EPW for 1900 frames
during the day and 1900 during the night including both regions during clear weather. The results
show mean value ± standard deviation.

W/m2 ne1 ne2 EPW [m]

Global radiation = 0 257 ± 19 66 ± 67 1.21 ± 0.39
Global radiation > 0 190 ± 110 20 ± 25 0.93 ± 0.27

4.1. Characterization of the Distributions in the Atmosphere and Street Region

In order to characterize each of the obtained distributions, a group of seven different parameters
were used as shown in Figure 4. The same parameters apply to the atmosphere and street regions with
and without background radiation, as in each case they capture the main changes in the shape of the
different distributions.
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The meaning of each parameter is as follows:

(1) The number of detections in the maximum of the histogram (npeak).

(2) The position of the maximum of the histogram in meters (xmax).
(3) Total number of detections in the region (ntotal).
(4) Mean detection distance in x-direction (xmean).
(5) Standard deviation of the detection distance in x-direction (xσ).
(6) Distance at which 90% of the total number of detections in the region is reached. The points are

accumulated per bin from left to right starting at 0 m or 33 m, respectively (x90%).
(7) Number of discrete distances (ndd) where detections take place relative to the total number of

detections. Especially useful when there is background radiation. This parameter is proportional
to the number of bars in the histogram.

(8) Number of first echo detections (ne1).
(9) Number of second echo detections (ne2).
(10) Number of third echo detections (ne3).
(11) Mean value of the echo-pulse width (EPWmean).
(12) Standard deviation of the echo-pulse width (EPWstd).

As will be examined in the discussion section, not all parameters are equally relevant for
both regions. For this reason, Tables 3 and 4 summarize the most relevant parameters for each.
Furthermore, they constitute the bases for the presented analysis, which tries to relate the theoretical
background about the variation in the optical properties of the LIDAR cover, the street and the
atmosphere as presented in Section 2 with the change in the distribution of the detections.

Table 3. Most important parameters for the atmosphere region (0–5 m)*. (w/o) Without background
radiation, (w) with background radiation. With ntotal: total number of detections in the region,
npeak: number of detections in the maximum, xσ: standard deviation of the detection distance,
ne1: number of first echo detections and EPW: echo-pulse width. The results show mean value
± standard deviation.

Clear Fog Rain Snow

w w/o w w/o w w/o w w/o

ntotal 86 ± 34 244 ± 16 114 ± 14 313 ± 55 238 ± 161 661 ± 113 137 ± 13 344 ± 57
npeak 55 ± 18 113 ± 19 74 ± 14 124 ± 34 159 ± 124 287 ± 60 79 ± 14 126 ± 21

xσ [cm] 5 ± 11 10 ± 8 3 ± 2 7 ± 5 3 ± 3 15 ± 8 57 ± 22 84 ± 23
ne1 86 ± 34 244 ± 16 114 ± 14 313 ± 55 238 ± 161 659 ± 112 135 ± 12 324 ± 46

EPW [m] 0.75 ± 0.29 0.95 ± 0.35 0.82 ± 0.29 0.94 ± 0.34 0.86 ± 0.30 1.00 ± 0.35 0.86 ± 0.32 1.02 ± 0.38

* In contrast to Figures 5 and 6, in which multiple frames are used and the parameters are calculated once for all of
them, in this table as well as in Table 4 the parameters are calculated per frame and compared.
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Figure 6. Distribution of the detections for each weather class (1900 frames each) in the street region:
(w/o) without and (w) with background radiation. With xσ: standard deviation of the detection distance
in x-direction in cm.

Table 4. Most important parameters for the street region (33–37 m). (w/o) Without background radiation,
(w) with background radiation. With npeak: number of detections in the maximum, xmean: mean detection
distance, xσ: standard deviation of the detection distance, ne2: number of second echo detections and
EPW: echo-pulse width. The results show mean value ± standard deviation.

Clear Fog Rain Snow

w w/o w w/o w w/o w w/o

npeak 77 ± 39 45 ± 37 88 ± 30 72 ± 26 97 ± 39 125 ± 33 89 ± 30 132 ± 33
xmean [cm]* 74 ± 15 96 ± 27 73 ± 02 74 ± 03 69 ± 03 71 ± 03 70 ± 05 60 ± 03

xσ [cm] 27 ± 22 68 ± 30 17 ± 5 24 ± 5 21 ± 5 31 ± 7 22 ± 8 37 ± 9
ne2 40 ± 21 131 ± 20 37 ± 11 128 ± 21 52 ± 19 300 ± 52 51 ± 9 193 ± 32

EPW [m] 1.10 ± 0.24 1.48 ± 0.23 1.02 ± 0.25 1.09 ± 0.30 1.01 ± 0.26 1.22 ± 0.33 1.03 ± 0.26 1.63 ± 0.30

* This value is shown after subtracting the same value (34 m) from each class in order to show the differences in cm.
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4.1.1. Atmosphere Region

In order to facilitate the interpretation of the data, the results are shown using a histogram with a
bin size of 5 cm. For each class, 1900 frames are used.

Figure 5 shows the detections in the atmosphere region without and with background radiation.
A logarithmic scale is chosen to point out the differences between the different weather types.
The relevant numerical parameters extracted from each distribution are presented in Table 3.

The reflections in the region from 0 to 0.5 m are caused by a combination of multipath reflections
on the LIDAR cover and detections on drops or snowflakes. The presence of water or dirt on the cover
caused by the different weather types also influences the form of the distribution.

Regarding the region from 0.5 m to 5 m for Clear, some detections are seen. An explanation is that
in this case the noise level is at its minimum and hence the sensibility is high. Therefore, some of these
detections could have been caused by other particles in the air like pollen, dust or insects.

For Snow, the total number of detections is larger than for Fog, but smaller than for Rain.
In comparison with raindrops, the snowflakes tend to be bigger. However, their concentration tends to
be smaller (Table 1) and given that the SSAs are similar, it is reasonable to assume that the number
of detections is lower. In contrast to Clear and Fog, the distribution for Snow is not homogeneous
and shows a maximum around 1.8 m (also slightly visible in the rain distribution w/o), which most
probably depends on the optical design of the sensor.

In the case of Fog, it is interesting to see that the total number of detections is lower than for
Rain. Fog drops tend to have a higher SSA than snow and raindrops and since they have a bigger
backscattering lobe, their concentration is also higher. On the other hand, their size is much smaller
which seems to cause - together with the increment in the noise level - that more detections fall under
the minimum required voltage (Figure 2) in comparison with raindrops or snowflakes. The increased
noise level also explains why the xσ value is the lowest of all classes.

As already mentioned with background radiation, the number of detections generally smaller
(Table 2) and therefore the differences between the distributions for each weather type (Figure 5 w,
compared to Figure 5 w/o) are reduced. This influences the classification accuracy as will be seen in
Table 5. Besides that, most of the characteristics already described remain valid. It is interesting to see
that even with a higher noise level due to sunlight, the number of detections while snowing maintains
a value over distance higher than the other classes. As a result of this, the value of xσ is much higher.
This effect is caused by the bigger size, on average, of the snowflakes.

Table 5. Confusion matrix for the atmosphere region without background radiation (left, 6130 samples
per class) and with background radiation (right, 1930 samples per class) (classifier: Weighted KNN).

Predicted Class

Without Background Radiation With Background Radiation

Clear Rain Fog Snow Clear Rain Fog Snow

A
ct

ua
l

C
la

ss

Clear 5284 1 844 1 1670 32 188 40
Rain 3 6055 32 40 0 1877 43 10
Fog 980 16 5132 2 58 80 1785 7

Snow 2 19 1 6108 0 50 42 1838
F-Score 84.97 99.04 84.36 99.42 91.42 94.74 89.78 96.23

4.1.2. Street Region

Measurements of the optical properties of the street provide direct information about road friction,
which are relevant for self-driving cars to identify situations like aquaplaning. As proof of concept,
it is hence interesting to know if the same method can be used for this region. In comparison with
the atmosphere, measurements in the street region have a higher degree of uncertainty. Especially
during the day and during winter, the use of de-icing or cleaning agents as well as the change in
surface temperature could influence measurements. Other factors are the presence of dew, ice and the
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inhomogeneous distribution of water on the street surface. Nevertheless, the distributions for each
weather type (Figure 6) are distinct enough to allow for a useful interpretation and classification. As in
Figure 5, the bin size is 5 cm.

Figure 6 w/o shows the detections on the street without background radiation and Figure 6 w
with background radiation. In this case, a linear scale is preferable. As for the atmosphere region, the
relevant numerical parameters extracted from each distribution are presented in Table 4. However,
ntotal is not present and its place is taken by xmean, additionally ne1 is replaced by ne2 the reason being
that for the street region, the new parameters allow for a better separation between the classes as will
be analyzed in the Discussion section (feature ablation study).

Considering Figure 6 w/o as well as the information provided by Table 4 first, the EPW (the
analysis is based on the mean value of each variable) value is lower as would be expected from the
reflection of the different surfaces going from Snow to Clear to Rain. This is reasonable given that
the street had a snow cover of a few cm [41], which has a higher albedo (0.8) [42] than dry asphalt
(0.12) [43] or wet asphalt (0.03 at 46◦). Fog has the lowest EPW value, which contrasts with the results
reported using a climate chamber [32] in which the EPW increased proportionally with fog density
beyond the values for Rain and Clear. We believe this may apply to surfaces perpendicular to the laser
beam in which the backscattering caused by fog particles and the reflection of the surface have the same
main direction; in our case, due to the angle of 46◦ between the laser beam and the surface normal, the
net effect is a reduction of the EPW. Besides having the highest EPW, Snow is also characterized by
having the smallest xmean value due to the presence of a snow cover.

The class Clear has a xσ and xmean value higher than all other classes. This is caused by the more
Lambertian reflection lobe of dry asphalt. The presence of humidity or water—as is the case for Fog
and Rain—reduces this lobe and increases the forward reflection, as was discussed in Section 2.2. Clear
is also characterized by a low number of second echo detections (ne2) in comparison with Rain and
Snow where the laser beam hits many drops or snowflakes first before hitting the street surface.

Rain is characterized by a relatively low EPW. The number of second echo detections is the highest
in all the classes. This, as already mentioned for the atmosphere region, is caused by the higher
concentration of drops over snowflakes and their bigger size in comparison with fog droplets. More
first echo detections on the drops cause more second echo detections on the street.

Fog has the lowest xσ value as happened for the atmosphere region. As mentioned before, this
hints to an increment of the average noise level which causes weak detections to vanish (Figure 2). The
number of second echo detections is similar to Clear.

Considering Figure 6 w, the EPW for Snow is reduced to a value similar to that of Fog and Rain.
This could have been caused by melting of part of the snow cover and the presence of footsteps and
wheel marks, which reduced the average albedo of the surface.

Clear has the highest xσ and Fog the smallest, as happens without background radiation. Regarding
xmean it remains the highest for Clear but now Fog has the second highest value. Those for Snow are
similar. This also indicates a partial melting of the snow cover and the reduction of any extra humidity
caused by fog on the street surface.

Rain and Snow become very similar with Rain having a higher npeak value. The value of npeak
increases when ne2 increases and therefore is higher for Snow and Rain and decreases with xσ. This
causes that the npeak values for Clear and Fog with background radiation are higher than without. In
general, though, an increase in the noise level due to sunlight causes in both atmosphere and street
regions a reduction of the mean values of all the parameters. The next section presents the classification
results and relates them with the analysis presented in this section.

4.2. Classifier

The results show that there is enough variability in the data for classification. However, a single
sample by itself cannot be accurately classified, especially with background radiation when the number
of detections is low. For that reason, all frames are used to train a classification algorithm. The inputs
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for the classifier are the parameters shown in Figure 4, the most important of which were discussed in
the previous section: number of detections in the maximum of the histogram (npeak), mean detection
distance in x-direction (xmean), standard deviation of the detection distance in x-direction (xσ), number
of second echo detections (ne2) and mean value of the echo-pulse width (EPWmean).

For the classification, KNN was employed due to its good performance and use in previous
studies [32,38]. To balance the number of samples per class random under sampling was used. With the
aim of allowing for comparison and avoiding bias, the same classifier was used in all cases. Five-fold
cross validation was used; meaning that four fifths of all data is used for training and one fifth for
validation. The process is repeated five times with different partitions of the data, the result is then
averaged. The confusion matrix shows the number of samples which where correctly classified in its
diagonal. A gray scale is used to facilitate the interpretation going from white for zero frames to black
for the maximum number of frames (6130 without and 1930 with background radiation). The F-score
is presented as metric. Being the harmonic mean of the precision and recall metrics [44], it provides a
good evaluation of the classifier’s performance.

4.2.1. Atmosphere Region

As shown in Table 5, the F-Score for Snow and Rain for the atmosphere region is higher than 94%
in both cases. Without background radiation, it is higher than 99%. This is due to the characteristically
high xσ value of Snow and the high amount of total detections ntotal and first echo detection ne1 of Rain
in comparison with the other two classes.

Clear and Fog have a higher F-Score with and without background radiation. The reduction
of the average xσ values for Fog during the day to values smaller than those for Clear reduces the
number of misclassifications between the two classes. This, on the other hand, has as disadvantage
that more frames are incorrectly classified between Rain and Fog as the similarities between the two
classes increase.

4.2.2. Street Region

The street region (Table 6) shares some similarities with the atmosphere region. As before, Snow
and Rain have the highest classification values. The values for Clear and Fog are slightly better, as
fewer frames are confused between the two classes. This happens mostly because the variations
between the xσ values are higher. Misclassifications between Rain and Fog are also far less common.
This coincides with previous results [2] in which it is mentioned that changes in surface reflection are
the ones that cause the most notable effects on the detections.

Table 6. Confusion matrix for the street region without background radiation (left, 6130 samples per
class) and with background radiation (right, 1930 samples per class) (classifier: Weighted KNN).

Predicted Class

Without Background Radiation With Background Radiation

Clear Rain Fog Snow Clear Rain Fog Snow

A
ct

ua
l

C
la

ss

Clear 5462 0 667 1 1761 32 112 25
Rain 0 6078 52 0 5 1912 1 12
Fog 315 6 5809 0 13 0 1900 17

Snow 11 0 3 6116 0 0 13 1917
F-Score 91.62 99.45 91.67 99.89 95.04 98.71 96.11 98.31

5. Discussion

In this section, the obtained results are compared with known weather classification results using
LIDAR. Furthermore, feature ablation is used to reduce the number of features to the most relevant ones
while simultaneously increasing in some classes the classification accuracy. Finally, the possibility of
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using the same classifiers in a moving platform like a car or truck, for example, is briefly discussed as well
as ways to improve accuracy and robustness. The section finishes with a short note about simulation.

5.1. Atmosphere Region

Compared with previous results mentioned in Section 2.5, the classifier for Fog has a slightly lower
F-Score: 84.4 (w/o BR (Background radiation)) and 89.8 (w BR) than a classifier trained specifically to
distinguish between fog an solid objects (F-Score: 90.1) [38]. When compared to the results obtained
using a climate chamber, our classifier has a TPR for Fog of 83.7% (w/o BR) and 92.5% (w BR) versus
99.8% [32]. The slightly lower results are mostly a consequence of the innate variability of the outdoor
measurement as the parameters and algorithm used for the classification are similar. In case of
Rain and Clear, this variability could have been an advantage as in both cases the TPRs are higher.
For Rain, our classifier has a TPR of 98.8% (w/o BR) and 97.2% (w BR) compared to 84.9% in a climate
chamber [32]. For Clear, the values are 85.0% (w/o BR) and 91.4% (w BR) compared to 83.2% in a
climate chamber [32].

5.2. Street Region

For this region, the results are better. Consequently, only the TPR for Fog is lower when comparing
it with the result obtained in a climate chamber [32]: 94.8% (w/o BR) and 98.4% (w BR) versus 99.8%.
In all other cases, our classifier provides better results.

5.3. Feature Ablation Study

Some features provide a very small separation between the classes and in some cases may even
reduce the classification accuracy. For that reason, a feature ablation study is done. The results
are presented in Table 7 for the atmosphere region and Table 8 for the street region. In each case,
the classifier is trained with all features minus one, the results are compared with the original result
using all features. The F1-score is used as evaluation parameter as was done in Tables 5 and 6.

Table 7. Results of the feature ablation analysis for the atmosphere region using the F1-Score as
evaluation parameter. In comparison with the score using all features, the features are marked with X
when the F1-Score for two or more classes decreases more than 0.4 (marked in grey), with X when
increases more than 0.4 (marked in blue) and with - in other cases (All-EPWstd is marked as neutral
because the F1-Score of Clear increases).

Feature
Atmosphere w/o BR (F1-Score) Atmosphere w BR (F1-Score)

Evaluation
Clear Rain Fog Snow Clear Rain Fog Snow

All 84.97 99.04 84.36 99.42 91.42 94.74 89.78 96.23

All-npeak 85.11 98.94 84.48 99.36 91.10 94.23 89.15 96.05 X

All-xmax 84.83 99.11 84.34 99.41 91.54 94.76 89.65 96.02 -

All-ntotal 84.50 99.04 83.85 99.40 91.04 94.65 89.16 96.10 X

All-xmean 84.94 99.11 84.24 99.48 91.60 94.54 89.74 96.11 -

All-xσ 84.71 99.02 84.01 99.31 91.40 94.38 89.12 95.17 X

All-x90% 84.76 99.09 84.18 99.47 91.36 94.66 89.49 96.16 -

All-ndd 85.62 99.12 85.20 99.38 91.25 94.67 89.64 96.13 X
All-ne1 84.43 99.04 83.84 99.42 91.20 94.86 89.26 96.18 X

All-ne2 85.21 99.09 84.50 99.49 91.37 94.43 89.55 96.02 -

All-ne3 85.25 99.11 84.63 99.44 91.50 94.59 89.63 96.21 -

All-EPWmean 82.01 98.09 80.71 98.79 91.55 92.51 88.22 95.48 X

All-EPWstd 84.86 98.92 84.21 99.47 91.93 93.59 88.55 96.42 -
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Table 8. Results of the feature ablation analysis for the atmosphere region using the F1-Score as
evaluation parameter. In comparison with the score using all features the features are marked with X
when the F1-Score for two or more classes decreases more than 0.4 (marked in gray), with X when
increases more than 0.4 (marked in blue) and with - in other cases.

Feature
Street w/o BR (F1-Score) Street w BR (F1-Score)

Evaluation
Clear Rain Fog Snow Clear Rain Fog Snow

All 91.62 99.45 91.67 99.89 95.04 98.71 96.11 98.31

All-npeak 91.19 99.51 91.42 99.81 95.18 98.71 96.23 98.15 X

All-xmax 91.62 99.37 91.66 99.85 94.94 98.79 95.89 98.18 -

All-ntotal 91.63 99.44 91.67 99.90 94.89 98.76 95.93 98.23 -

All-xmean 91.58 99.23 91.42 99.90 94.09 98.63 94.80 98.10 X

All-xσ 91.67 99.50 91.77 99.89 94.70 98.50 95.94 97.87 X

All-x90% 91.44 99.46 91.58 99.82 94.90 98.66 96.04 98.31 -

All-ndd 91.57 99.62 91.75 99.89 95.98 98.91 96.67 98.39 X
All-ne1 91.35 99.37 91.32 99.89 94.76 98.61 95.91 98.05 -

All-ne2 91.32 99.42 91.33 99.91 93.76 97.86 95.31 96.51 X

All-ne3 91.55 99.45 91.68 99.77 96.15 98.87 96.95 99.07 -

All-EPWmean 91.07 99.27 90.99 99.86 94.00 97.91 95.49 97.67 X

All-EPWstd 92.05 99.55 92.08 99.95 95.79 99.07 96.61 98.59 X

Half of the features seem to have a very small impact on the classification. The number of
discrete distances (ndd) when removed mostly improves the classification results while, for example,
removing the mean value of the EPW (EPWmean) notably reduces the classification values.
Something similar happens for the street region. In this case, besides the (ndd) the standard deviation
of the EPW (EPWstd) also seems to have a detrimental impact on the classification.

Based on these results the number of parameters used for the classification was reduced with
minor reduction in the F1-Scores and in half of the cases with minor increases. The final classification
results are presented in Tables 9 and 10.

Table 9. F1-Score per class for the atmosphere region when using only the parameters: ntotal, npeak, xσ,
ne1, EPWmean.

Atmosphere w/o BR (F1-Score) Atmosphere w BR (F1-Score)

Clear Rain Fog Snow Clear Rain Fog Snow

85.30 98.82 84.82 99.27 92.54 93.27 89.01 96.86

Table 10. F1-Score per class for the street region when using the parameters: npeak, xmean, xσ, ne2, EPWmean.

Street w/o BR (F1-Score) Street w BR (F1-Score)

Clear Rain Fog Snow Clear Rain Fog Snow

91.29 99.43 91.42 99.76 96.67 99.09 96.81 98.86

While for the atmosphere region: Clear, Fog and Snow (w BR) improve, all classes with background
radiation improve for the street region.

5.4. Extension for a Moving Platform (Street)

In a dynamic environment, the surface of the road doesn’t remain constant with respect to the
sensor, additionally other objects block dynamically the field of view of the sensor, the road itself
changes and the effect of the wind becomes more important. Nevertheless, it should be possible to use
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a ground plane classification algorithm to select a region on the road as long as it is not blocked. If the
measurement is done for sufficient time in order to compensate for the surface deviations, a similar
analysis as done for the street before could be used. The change in the reflection of the road would also
need to be considered.

5.5. Increasing Classification Accuracy and Robustness

Much more snow data needs to be collected with as many different types of snow as possible.
Specifically for the street, the measurement should be repeated using different types of asphalt;
additionally, a direct measurement of the state of the surface needs to be done using a reference
sensor in order to reduce the uncertainty of the measurements. There are already special sensors
that can accomplish this task, but they are in most cases not designed for automotive applications.
This, together with the advantage of using a sensor, which is already installed in various car models,
are the main motivations for further research.

With enough data it may be possible to return a probability per class instead of a binary
classification, this may increase the robustness and usefulness of the method allowing for weather
combinations. Furthermore, the acquisition of a weather station which can be placed next to the sensor
would increase accuracy.

Finally, the use of the same method with other LIDAR sensors would provide important
information about the influence of internal sensor calibration algorithms and architecture upon the
most important classification parameters and the best size for the atmosphere region.

5.6. Virtual Simulation

Some form of ray tracing is usually used for the simulation of LIDAR sensors [45,46]. Regarding the
atmosphere, it is possible to use volumetric scattering or particle systems. Particles would have the
advantage of being able to interact with forces. For example, the effect of wind could be simulated,
but the computational cost would be higher. The change in the background illumination can be
simulated using a lamp placed at infinity (parallel rays without distance falloff). For the street,
different BRDFs and textures can be used to simulate the reflection properties and roughness.

6. Conclusions

This paper shows that it is possible to use an automotive LIDAR sensor to differentiate between
four different weather types: Clear, Rain, Fog and Snow. Two alternatives were presented, using the
detections in the atmosphere region or using the detections on asphalt. Additionally, the presence of
background radiation was taken into consideration. For the atmosphere region the F1-Scores were:
Clear (85.30 w/o BR, 92.54 w BR), Rain (98.82 w/o BR, 93.27 w BR), Fog (84.82 w/o BR, 89.01 w BR)
and Snow (99.27 w/o BR, 96.86 w BR). For the street region the F1-Scores were: Clear (91.29 w/o BR,
96.67 w BR), Rain (99.43 w/o BR, 99.09 w BR), Fog (91.42 w/o BR, 96.81 w BR) and snow (99.76 w/o BR,
98.86 w BR)

Different parameters were defined and used as input for the classifier based on the changes in
the distribution of the detection distances for each weather type as well as the number of echoes and
the EPW.

For the atmosphere region, the average particle size and density seem to be the most important
physical parameters that influences the total number of detections. For the street region, the surface
albedo and scattering profile are the most important parameters.

The presence of background illumination increases the noise and hence reduces the total number
of detections and the EPW.

The classification based on the atmospheric region does not depend on the road surface or the
angle of the LIDAR sensor and hence can be directly used in a moving car. The classification results
can be combined with the information provided by other sensors in the car or cooperative with other
cars [47] in order to increase the confidence level.
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An algorithm like the one presented can help to improve the evaluation of road friction and
be an input for other sensors or semi-/autonomous functions whose performance depends on local
weather [48,49].
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The Effect of Spray Water on an Automotive LIDAR
Sensor: A Real-Time Simulation Study

Jose Roberto Vargas Rivero , Thiemo Gerbich, Boris Buschardt, and Jia Chen , Member, IEEE

Abstract—This paper presents the first of its kind real-time
simulation of the effect of spray water on an automotive LIDAR
sensor. The simulation is based on physically measurable quantities
in order to facilitate its validation and extension. Both the sensor
and the environment are simulated using open source software
tools: Blender and Cycles, with the objective of facilitating stan-
dardization and broader adoption. The parameters required to
construct and calibrate the simulation are extracted from real mea-
surements done on a test area and highway covering different water
film thicknesses and vehicle speeds. The simulation is validated in
different stages, first by comparing the trajectories of the particles
with a regular solver and secondly, by the spatial distribution of
the virtual and real point clouds with the measurement results. The
resulting framework can be easily expanded to cover scenarios that
are more complex and other phenomena counterproductive to the
performance of a LIDAR sensor like dirt, exhaust gases, snow, rain
and fog. The virtually generated point clouds can be used to validate
the performance of the software required for the segmentation,
classification and tracking of objects generated by the LIDAR
sensor, thereby reducing development costs and increasing software
quality.

Index Terms—LIDAR sensor, self-driving car, real time
simulation, spray water, virtual point cloud, ray tracing, particle
system.

I. INTRODUCTION

TRADITIONALLY, the testing of self-driving (SD) and
ADAS (Advanced Driver Assistance System) functions

has been done open-loop, reprocessing data captured with test
vehicles for each new software version.

The performance of the software (SD or ADAS function) is
verified against collected data in a series of tests evaluating each
successive abstraction level, going from the perception to the
decision-making modules. Although this approach provides the
highest level of realism, it is also limited in practice not only
due to the nature of the open loop testing but also due to the
increasing costs, complexity and time required for driving all
the required scenarios in reality [1]–[3].
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An alternative is to use simulation to expand the real data
by introducing thousands of variations to a real scenario and
creating synthetic scenarios based on known weaknesses of the
system, which are difficult or impossible to test in reality.

Nevertheless, the use of simulation has been limited in some
cases due to the “reality gap”. The reality gap refers to the
differences between simulation and physical system. These dif-
ferences can in some cases be ignored but in some cases, they are
fundamental and can cause a simulation to diverge completely
from reality [4], [5].

In order to reduce the reality gap, there is a tendency towards
the use of a photorealistic- and physics-based simulation in
academic and commercial products [6]–[8]. Physically based
sensors and actuators can potentially reduce the validation ef-
fort by using models known to be correct. However, their use
has been limited by the significant hardware resources that an
accurate reproduction of the physics of the problem requires,
especially under the constraint of having to generate results
in real time or faster than real time in order to speed up the
validation process.

Recently, however, ray tracing has reached a level in which
is possible to trace millions of rays in few milliseconds using
GPUs. With this technique it is possible to simulate: LIDAR,
Radar [9], ultrasonic sensors [10] and cameras [8], [11]. Besides
ray tracing, which is done by the render engine, the movement
and interaction of the different objects in the environment, can
be simulated using a physics engine [12]–[15] like Pybullet [16]
or PhysX [17] or can be animated. The animation can be done
manually or data driven [18].

Based on the previously mentioned developments, this paper
proposes the use of the Cycles [19] physically-based render for
the simulation of a LIDAR sensor together with the physics
and animation engine in Blender [20]. These tools provide the
basis for a testing framework in which a broad range of complex
scenarios can be simulated. The reality gap is reduced by adjust-
ing the simulation based on real measurements and validating
the relevant parts of the physics engine using MATLAB [21].
Specifically, the effect of spray water on the detections of a
LIDAR sensor is simulated. Spray water was chosen because
it generates extra detections [22] on different positions of the
LIDAR field of view depending on multiple factors including
wind forces. These spray detections can be critical in a driving
situation like the one illustrated in Fig. 1. In this case, the
segmentation and classification algorithm detects an ‘L’ shape on
the spray cloud and creates an object hypothesis. In the following
frames, the hypothesis is not refuted and an unknown object is
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Fig. 1. Sequence illustrating the creation of a ghost object due to LIDAR
detections caused by spray water. Initially, the points are accidentally ordered
in a way in which a partial ‘L’ shape similar to the one for a real car is formed.
Consecutive frames do not totally contradict the hypothesis and hence a ghost
object is created after three frames. Although this object exists for a very short
time, it could cause problems for the function using the sensor data.

created. Although the duration of this object can be only a couple
of frames, it increases the risk of phantom breaking, especially
if a second sensor like a radar or camera accidentally validates
its existence.

To reduce the risk in a scenario with a large amount of spray,
the following alternatives exist:� Deactivate the function and ask the driver to take control.� Degrade the function by reducing the speed, for example.� Filter out the detections/objects caused by the spray cloud.

From the driver’s perspective, the third alternative is the most
comfortable but it requires that the system correctly identifies
which detections/objects are being caused by the spray. This
could be achieved using supervised or unsupervised learning
on collected point cloud data [23]. As this data needs to be
captured for different vehicle speeds, rain intensities, car and
asphalt types, etc., it would constitute a highly time and cost
consuming task. Another alternative would be to improve the
accuracy of the object generation algorithms (segmentation and
classification) by adding noise to “spray free” point clouds [24],
[25]. Although this option can be useful to simulate detections
caused by rain or snow, spray has the characteristic of generating
regions with a high number of detections (as shown in Fig. 1).
These regions are not randomly distributed but depend on the
forces that act upon the spray drops. A third alternative is to inject
a false object hypothesis into the sensor fusion algorithm and
improve it in order to reject those objects [26]. This alternative,
however, has the same disadvantages as the first two depending
on how these extra objects are generated.

Therefore, the alternative followed in this paper is to combine
the data collection efforts with a partially physically based
simulation model. Instead of simulating real scattering, particles
are used to generate the required number of detections. Their
trajectories are adjusted based on the real forces that affect the
movement of spray drops. The obtained model generates similar
point clouds as the ones collected and is versatile enough to
generate with simple variations a vast amount of new data for
the validation of SD and ADAS functions.

The theoretical basis for the construction of the simulation is
presented in the next section. Section III presents the methodol-
ogy used for data collection and Section IV presents the obtained
results. The Results section is divided into four parts: parts A
and B present real measurements from spray clouds collected in
a proving ground and highway. Part C combines the theoretical
background and the results presented in the previous two parts to
construct the simulation. Finally, part D compares the simulation
results with the measurements.

II. BACKGROUND

In the path of the laser beam from the sensor and back, there
are different stages in which its intensity and direction can be
changed. The first is the cover of the sensor. The changes on
the material properties of the cover and any possible solid or
liquid deposited on it greatly influences its performance [27].
Going further are the effects caused by rain, snow, fog and
exhaust gases, which generate extra detections mostly in the near
region [28]–[30]. Spray is more complicated as the detections
are distributed depending on multiple factors like [31], [32]:� Vehicle shape.� Vehicle load.� Ambient wind.� Type of asphalt.� Water film thickness.� Street topology.� Wheel type.� Asphalt temperature.� Target and ego car velocities and relative position.� The presence of spray suppression devices.
The water film thickness can be related to the rainfall intensity
using [32]:

h = ks · T s
0.3 · (LsIR)0.5 · Ss

−0.3 (1)

where h is the water film thickness, Ts is the texture depth which
characterizes the porosity of the material, Ls and Ss correspond
to the drainage length and surface slope of the street, IR is the
rainfall intensity and ks is a constant [32]. The values of Ts

can go from 0.208 [mm] for smooth concrete to 1.644 [mm]
for porous asphalt. Although this formula ignores evaporation
effects, together with (2) and (3) it shows the main variables that
at the end define the average size of the spray drops.

The next section will cover the spray generation from the
wheel and its dispersion; further dependencies important for the
simulation will be discussed in the Results section.

A. Spray Generation

A useful distinction is to separate the spray phenomenon into
splash and spray. Splash is the name given to large droplets,
which move mostly following an inertial trajectory (large Stokes
number), whereas spray is the name given to smaller particles
that remain suspended in the air and follow its streamlines (small
Stokes number) [31], [33].

A systematic classification from the spray/splash contribution
from the different parts of the wheel without any spray suppres-
sion device is shown in Fig. 2 [31]. The bow and side waves
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Fig. 2. Different ways in which splash and spray are generated from a wheel
[31]. The bow and side wave are considered splash because of the large droplet
size. The capillary adhesion and the tread pick up generate smaller drops which
are considered spray [34].

Fig. 3. Parameters used to approximate the amount of water captured by the
wheel treads, a and b correspond to the width and height of the tread while h
corresponds to the water film thickness [31].

generate primarily splash. The water captured in the tread is
mostly ejected in the direction marked as tread pick up. The
water remaining due to thin film capillarity is blown away by
the wind when it reaches the top of the wheel [31].

A simple model of the amount of water that is picked up by
the treads for water levels smaller or equal to 3 [mm] uses the
tread height b, width a and water level h as shown in Fig. 3 [31].

The amount of water picked up per second is:

ẇtread =
h

3
· vc · nt · a · b (2)

where besides a, b and h, the tire velocity vc is also considered.
The width is indirectly represented by the parameter: nt which
corresponds to the number of grooves in the wheel [31].

The average size of the drops generated by the tread pick up
was found to be inversely proportional to the square root of the
Weber number [35] which relates the fluid inertia with its surface
tension [36].

Dmean =
k

vc

√
σ

ρb
(3)

where Dmean is the average drop size diameter, vc and b are as
defined before, σ is the surface tension for water against air, ρ
is the density of water and k is a proportionality constant [35],
[36].

B. Spray Dispersion

A precise calculation of the trajectories of the droplets can
be done using CFD (Computational Fluid Dynamics) software,

Fig. 4. Parameters that influence the detection of spray by a LIDAR sensor.
The wheel rotation speed vc influences particle size distribution. The wheel type
and water level influence the amount of water picked up per second ẇtread

and hence the number of particles. The different forces change the particles
trajectories and generate a certain concentration C. Considering a pulsed laser
depending on its frame rate, pulse width, divergence and SNR a detection will
take place or not [35], [36], [41].

frequently used to predict the possible surface contamination
(“soiling”) pattern in a vehicle [33], [34], [37]. Nevertheless, as
mentioned in the introduction section, the proposed simulation
should speed up the development of self- driving functions and
hence run ideally in real time. For this reason, approximations
are used that although less exact, roughly replicate the trajecto-
ries of the drops, or more specifically, the detections that those
drops cause on the LIDAR sensor. Concretely, the wind speed
and particle size are assumed to be constant. The effect of the
gravity, drag and wind forces upon the particles trajectory can
hence be calculated using a fast numerical integration method.
The injection velocity of the particles is calculated based on the
wheel rotation speed, as will be shown in Section IV-C.

Additionally, turbulence is assumed, as in the Pasquill-Gifford
dispersion relation [38], [39], to be caused by small eddies that
move the particles laterally [31]. These eddies are simulated
using the curl of a Perlin noise texture [12].

C. Spray Detection

Based on the trajectories of the particles a certain spatial
distribution is created which is sampled by the sensor at regular
intervals. A detection takes place when the concentration of
particles with a certain size scatter an amount of energy back in
the direction of the receiver that is higher than the current SNR
(Signal-to-Noise Ratio) [40]. As the SNR is variable due to a
changing background illumination [30], for example, the point at
which a detection takes place will change dynamically over time.
Fig. 4 shows the relation of the main parameters that influence
whether a detection takes place or not. The wheel speed vc influ-
ences the shape and mean value of the particle size distribution.
The detection itself happens when a certain concentration C is
reached for a certain SNR value. The concentration depends on
the trajectories of the particles and correspondingly on the forces
that act upon them. Additionally, the concentration depends on
the water picked up per second by the wheel.

Authorized licensed use limited to: Volkswagen AG. Downloaded on July 04,2022 at 07:00:30 UTC from IEEE Xplore.  Restrictions apply. 



60 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 1, MARCH 2022

D. Simulation

In this section, the tools and concepts used for the simulation
are introduced.

1) Blender and Cycles: As will be discussed in section IV-C
in order to reconstruct a scene as shown in Fig. 1 in simulation,
two main tools were needed: a physics engine and a physically
based render. Both capabilities are available in Blender. Blender
is an open source 3D creation suite which has been already
used for robotics [42] and sensor simulations [43]. It includes a
physically based path tracer called Cycles [44].

As a 3D creation suite, the use of Blender in scientific simula-
tions has the disadvantage that it has to be adjusted and validated
for the specific use case [45]. Depending on the required accu-
racy however, these kind of tools can provide very high frame
rates and therefore their use for the generation of synthetic data
has increased [46]–[48]. The proposed method is not limited to
Blender. Some alternative physics engines besides those already
mentioned (Pybullet [16], PhysX [17]) are: ODE [49] and Havok
[50]. Some alternative physically based renderers are: Arnold
[51], RenderMan [52] and LuxCoreRender [53].

2) Particles System: Particles are defined as a collection of
objects which are often represented using a simple shape [54].
Particles are characterized by having a source called an emitter.
Each particle also possesses a lifespan, which starts from the
moment the particle is created. The particles disappear when
their lifespan is reached or they collide with certain objects
[54]. Besides having a shape, particles also possess a material
property that defines how they are rendered. Physically, particles
are treated as point masses with a trajectory depending on the
forces acting upon them [55].

3) Particle Systems Toolbox: The Particles System Toolbox
(PST) [21] was used to validate the trajectories of the particles
generated by the physics solver in Blender. PST uses a conven-
tional fixed-step fourth-order Runge-Kutta solver in MATLAB
to solve the nonlinear differential equations that govern the
movement of particles under the effect of multiple forces.

4) Principled BSDF: The principled shader was used be-
cause it provides a physically accurate microfacet model. This
model can be used to simulate the scattering properties of many
different materials by changing its parameters without having
to use different shaders [56], [57]. By fitting the BSDF (Bidi-
rectional Scattering Distribution Function) from a measured
material at the corresponding wavelength with the parameters of
the principled BSDF, a material database can be created, which
can be shared between different tools [58].

5) Using a Path Tracer to Calculate Distances: In order to
calculate not only intensities per pixel but also the distance
traversed by the rays, some modifications are required over the
normal computations done with a path tracer. This is illustrated
in Fig. 5 .

The resulting intensity, considering one color and one pixel, is
the product of the falloff, material reflection terms and intensity
of the lamp [59], [60].

By adjusting in the shader the base color of two of the primary
colors in the following way [59]:� For red, setting: R3,R2, R1 = 1

Fig. 5. Ray tracing principle. The ray(s) is/are sent from the camera (C) and
is/are affected by falloff terms (F) and the reflection of the different materials
on its way (R). Eventually, if the ray reaches a lamp (Ls), the intensity of the
pixel can be calculated [59], [60].

Fig. 6. Calculation of the intensity per pixel. The configuration of the shader
for each material and the light source determine the result. The shader determines
the material reflection and the light source determines the intensity and the
intensity reduction parameters.

� For blue, setting: R3 = ax3 , R2 = ax2 , R1 = ax1

Where a is a number chosen close to one in order to avoid an
overflow in the numerical calculation for very short or long
distances and x1, x2, x3 correspond to the length of the ray
segment. The following intensities are generated:

Ired = Ls · F 4 · F 3 · F 2 · F 1 (4)

Iblue = Ls · F 4 · ax3 · F 3 · ax2 · F 2 · ax1 · F 1 (5)

Which means we can calculate [ 59 ]:

loga

(
Iblue

Ired

)
= x3 + x2 + x1 (6)

which corresponds to the total path length of the ray. If we assign
to the green channel the real reflection of the materials at the
sensor’s wavelength, it is possible to get, after the render finishes,
a matrix containing the distance and intensity per ray.

For the method to work correctly, anti-aliasing needs to be
deactivated. Additionally, the number of samples in the render
needs to be adjusted to try to reach a compromise between
precision and rendering time.

III. METHODOLOGY

The methodology is divided into two parts. Part A explains
how the sensor is simulated. Part B describes the physical setup
and the characterization of the water film measurement device
(WFMD).
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Fig. 7. Electrical signals generated by the receiver in a LIDAR sensor under
low and high noise levels. Multiple parameters combine to create a signal, which
may or may not be over the minimum required level over noise (here defined as
a certain number x of standard deviations σ from the mean noise value µ) [30].
Although in reality, the scattering is a very complex process (dotted blue box)
similar results can be generated in simulation using particles if their number is
adjusted based on the real number of detections.

A. Sensor Simulation

As mentioned in Fig. 4 and supplemented in Fig. 7 the process
through which a certain concentration of particles generates a
detection in a time of flight LIDAR depends on multiple factors
[40], [61]:� The particles distribution, sizes, shapes, and compositions.� The intensity and shape of the light source pulse.� The wavelength of the LIDAR.� The divergence of the light source beam.� The receiver parameters.� The scanning pattern.
When the detection process is considered for the whole field of
view of the sensor, over multiple frames, a certain probability
distribution for the number of detections per frame is generated
(Fig. 12, 14).

A purely physically based simulation including all these
factors together with the factors mentioned in the background
section would be too complex to be done with a high frame
rate. For that reason as mentioned in the introduction section,
a hybrid model is proposed. In this model, the distribution of
the number of spray detections per frame is learnt from the real
data. This information is used to adjust the number and lifetime
of the particles used for the simulation. These particles do not
correspond in size and number to real spray drops. Their size is
optimized based on the divergence of the sensor light source to
generate a similar number of detections per frame.

With this approach, the sender and receiver can be simplified.
Their purpose is to illuminate the scene and provide a certain
intensity per pixel, which can be compared to a fixed noise
level. If the intensity is higher than the noise level, a detection
is registered.

This approach has the following advantages:� The computing power required to calculate the particles’
trajectories is reduced to a minimum making high frame
rates possible.� Although the used particles do not correspond to real drops,
a detection still depends on their relative position, size,
material and distance from the light source.

Fig. 8. Water film measuring device placed on the back of a car having also
a LIDAR sensor placed in the grill region. The information provided by both
devices is internally synchronized.

� The formation of complex patterns, as the one shown in
Fig. 1 are still possible as long as the particles remain
smaller than the angular and distance resolution of the used
LIDAR.� Because the mesh size is independent from the mass of the
particles, the calculation of the trajectories is not affected
by this approximation.� As particles can collide and are effected by forces, the
versatility of the model is high.

The following disadvantages are however present:� The model is valid only for the LIDAR technology used to
collect the data.� The acquired distribution will depend on the background
radiation and rain intensity present during the measure-
ments [30]. For that reason our measurements were done
in intervals where those conditions remained more or less
constant.� The spray detections per frame distribution does not pro-
vide information about the spatial distribution of the parti-
cles. The model parameters need to be adjusted to achieve
an acceptable spatial distribution.

To complete the sensor model, the modified path tracer men-
tioned on Section II-D can be used by placing the lamp relative to
the camera as in the real sensor and adjusting the parameters of
both: camera and lamp, to approximate those of the real sensor.

Because in each frame the lamp illuminates the whole field
of view of the sensor, the scanning pattern is ignored for all
objects except for the particles, for which it implicitly affects
their number. This may be a drawback for some use cases but is
an acceptable approximation in our case.

B. Experimental Setup

The setup consisted of a device to measure the water film
thickness (Water Film Measuring Device) placed at a distance
around 2 m diagonally from the asphalt and at an angle of around
45°. The device was mounted on the back as shown in Fig. 8 to
be able to satisfy the recommended installation angle (35° to 65°
from the street) without blocking the field of view of the LIDAR
sensor or the driver. It was placed in the middle to reduce the
impact from the spray generated by the wheels. This device
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Fig. 9. Measurement in the proving ground. Track length of approximately
122 m. Surface covered by white tiles and filled with water [64].

uses an optical spectroscopic measuring principle to measure
the amounts of water, ice, and snow on the street [62].

The same car had an automotive LIDAR sensor [63] in front
from which the point cloud and object list were collected. The
two devices were synchronized using their UTP timestamps.

1) Measurement of Water Level at Walking Pace: In order
to get an impression about the characteristics of the WFMD,
a measurement of water level was done in a porous asphalt
region with a depression having the dimensions: 32 × 47 cm
filled with water with a maximum depth of 11 mm. The spot
of the sensor was driven over the water region at walking pace
multiple times going forwards and backwards. Additionally, the
film thickness of the same region was manually measured with
a caliper. The relation between the manual measurement of the
layer thickness (hm) and the value provided by the WFMD
(hs) is given by the equation: hs = 0.36 · hm. The maximum
value registered by the WFMD was from 4 mm. It must be
mentioned that the WFMD is constructed to measure values up
to 2 mm, but such small layer thickness are very difficult to
measure on granular asphalt. Additionally, it seems that when
the spot covers an inhomogeneous region, the reported value
tends to be the smallest water thickness of the region. In order
to compensate for some of these issues, in subsequent results
the presented water levels are averaged over a high number of
frames. Additionally, when used for classification (Fig. 14), only
broad ranges are utilized.

2) Measurement of Water Level in the Proving Ground: A
second type of water level measurement was done using a special
track on a test area. The track is covered with white tiles. The
used region had a length of approximately 122 m and is shown
in Fig. 9. The whole track was filled with water, using nozzles
at ground level. The water flows from the nozzles to a drainage
creating an uneven distribution.

The experiment was divided into two parts: In the first part,
the car with the WFMD and LIDAR sensor was driven at
different speeds and positions on the water filled track in order
to get an idea about the effect of increasing speeds upon the
water film measurement, further described in this section. In the
second part, two cars where used: One car traveled in the spray
generated by the water filled track, captured by the car with the
LIDAR sensor driving behind. This measurement is described
in Section IV.

Fig. 10. Box plot showing the dependencies between measured water level
and mean speed. With higher speeds, the mean water level decreases.

Due to the uneven water distribution, three water level mea-
surements were done per speed: left, middle and right of the
track. The speeds used were (25 ± 2) km/h, (39 ± 2) km/h, (48
± 4) km/h, (55± 3) km/h and (60± 3) km/h. The average results
are shown in Fig. 10.

A notable effect is the reduction of the measured water level
with higher speeds. This effect could have been caused by the
wind pushing the water under the car away and hence reducing
the water film thickness in the place where the spot measures
it. Although this effect was observed in the used track, which is
covered by tiles, it could also take place in normal streets covered
by an ice layer. Considering (1), when the street is covered by
porous asphalt, the pores should obstruct the water being pushed
by the wind, reducing the dependency between water level and
vehicle speed.

IV. RESULTS

A. Measurements in the Proving Ground

As mentioned before, a second experiment was done using
two cars. The car with the LIDAR sensor (ego) and the target
car were driven in a way to try to keep a distance of around 17m
in x-direction and 4m in y-direction between them. The speeds
used were the same as in the previous experiment: (39± 2) km/h,
(48 ± 4) km/h, (55 ± 3) km/h and (60 ± 3) km/h, excluding the
(25 ± 2) km/h as, in this case, the amount of spray detected by
the sensor was very low. The track was driven six times for each
speed. The accumulated point clouds for all six measurements
and speeds are shown in Fig. 11. The data is filtered so that
the variation in the vertical and horizontal distances between
the two cars remains low. The data shown corresponds to 6858
scans. The position of the target car was extracted by tracking
the middle of the line formed by the detections hitting the rear
part or the car.

Given its trajectory, most of the spray seems to come from
the tread pick up, only at 60 km/h some spray detections appear
to come from the side wave. For speeds up to 48 km/h, the
dispersion remains relative low but with higher and higher
speeds, turbulence increases dispersion, and the contribution
from each wheel cannot be clearly separated. Additionally, the
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Fig. 11. Accumulated point cloud for measurements in the test area at different
speeds. The field of view of the LIDAR is shown. The distance from the ego
to the target car has a value of (17.4 ± 0.3) m in x and of (3.6 ± 0.3) m in y.
The water level is (0.5 ± 0.08) mm. The spray cloud spreads mostly in the x
direction for higher speeds due to the higher rotation speed of the wheels and
the effect of the wind. The contribution of each wheel, which is initially clearly
separated, is combined for the higher speeds. The effect of occlusion is shown
in d. The spray from the left wheel absorbs or scatters the rays before they can
reach the right wheel.

spray from the left wheel reduces the detections on the right
wheel by occluding them from the perspective of the sensor.

The size of the spray cloud increases mostly longitudinally
with speed. Besides the increased wind force and initial velocity
of the drops, the reduction of the drop size (3) also probably
causes the particles to fly farther away from the wheel given
their reduced mass.

As predicted by (2), the number of spray detections and hence
the amount of spray increases with speed as can be seen in
Fig. 12. Here, Nmean corresponds to the average number of
spray detections per scan. The relation between LIDAR spray
detections and speed, although initially close to lineal, seems to
reach saturation for higher speeds due to occlusion.

Even though the previous results help to understand these
phenomena, it is unlikely to find a street area with such a constant
water distribution. Most real streets are built so water can flow
into a drainage as fast as possible. Besides, the effect of rain is
not included. For these reasons and also in order to study the
effect of higher speeds, a series of measurements were made on
the regional A9 autobahn close to Ingolstadt during rainy days.
Section V shows the results.

B. Measurements in the Highway

The measurements were done on three different rainy days:
In the first measurement, only one car was used in order to

sample spray from different leading vehicles of similar size to in-
clude more variation in the data. In the other two measurements,
two cars were used in order to coordinate the maneuver and
hence be able to realize longer measurements. The ego car tried
to remain on the low speed lane collecting the spray generated

Fig. 12. Histogram showing the probability distribution of the number of spray
detections under the same conditions as in Fig. 11. Bin size 1 detection. The
probability of a higher number of spray detections increases with the car speed,
as also the average number of spray detections per scan Nmean. The increment
is caused by the higher wheel rotation (2).

Fig. 13. Accumulated point cloud for highway measurements with an average
speed of (89 ±4) km/h. The field of view of the LIDAR is shown. The x distance
of the ego to target car is shown in the figure. The y distance from ego to target
has a value of (3.6± 0.2) m. The water level is (0.7 ± 0.4) mm. With increasing
distance between the ego and the target car, fewer detections happen on the spray
cloud due to the exponential decrease in intensity of the LIDAR with distance.
After a certain distance, mostly only the detections corresponding to raindrops
remain.

by the target car in the middle lane while trying to maintain a
similar speed. Fig 13 shows the accumulated point cloud from
the three measurements. The vertical distance was filtered into
five different distances, going from 15.5 m to 32.6 m with an
average standard deviation in each case from 0.3 m. The data
was filtered for a speed of (89 ±4) km/h, a water level of (0.7±
0.4) mm and a horizontal distance of (3.6 ± 0.2) m. The data
shown corresponds to 13162 scans. In this case, the information
provided by the sensor internal object tracker was used as ground
truth for the leading vehicle position.

It was raining during the whole measurement and for that
reason a very high number of detections are seen in the region
from 0 to 5 m. These detections, although partially caused
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Fig. 14. Histogram showing the probability distribution of the number of spray
detections for a speed of 60 to 100 km/h on the left side and 100 to 140 km/h on
the right side for measurements in the highway. Detections with a distance to
the ego car smaller than 5 m are subtracted from the sample. The distance from
ego to target car has a value of (17.5 ± 0.3) m in x and (3.7 ± 0.1) m in y. Bin
size 1 detection. As also seen in the test area (Fig. 7), the probability of a higher
number of spray detections increases slightly with speed but most notably with
water level. Due to the increased noise level caused by rain the average number
of detections is smaller than it would be expected without rain (Fig. 12).

by spray water, are mostly due to raindrops. This agrees with
previous results [30] in which the extra detections caused by
rain, fog and snow took place mostly in this region.

In contrast to the results in the test area, the spray detections
are not concentrated close to the wheels anymore and it is not
possible to differentiate the contribution of each wheel. Due to
occlusion and turbulences, a big and unified cloud is seen. It
is also interesting to notice that after a certain distance from
the ego, the number of spray detections radically decreases.
This is due to the divergence of the beam, the reduction in
mean drop size due to higher speeds (3) as in the test area and
increased noise level due to rain. The drops acquire a dynamic
corresponding to a small Stokes number tending to follow more
the wind flow instead of their own inertial trajectory. They also
tend to remain suspended longer in the air, thereby affecting
the LIDAR detections even when the target car is far away. The
net effect is an increased number of drops but a more drastic
reduction in the number of spray detections with distance.

As similarly done for the test area, a histogram of the spray
detections for different speeds and in this case, also for water
levels, is shown in Fig. 14. The region from 0 to 5 m is filtered
out. The effect of increasing the speed is relatively small for both
low and high water levels. This was already the tendency seen
in Fig. 12 and is attributed to occlusion. When the wheel speed
increases, the water pick up per second also increases but at the
same time, smaller drops are generated, the occlusion generated
by this many small drops close to the sensor results in an overall
reduction in the SNR, therefore only a small increment in the
number of detections is seen. The change in water film thickness,
on the other hand, noticeably increases the average number of
spray detections as it increases the number of drops of all sizes.

In comparison with the spray measurements in the test area,
the probability of zero to one detection is much higher for the
highway. This is due to the highly uneven distribution of the
water on the street surface and the fast drainage. Nevertheless,
the maximum number of spray detections coincides with what
was registered for speeds higher than 55km/h in the test area
(Fig. 12). Those relatively big point clouds are the main cause
of false object detections as seen in Fig. 1.

After having identified the main factors that influence the
creation, dispersion and detection of spray in theory and in
practice using measurements with different water levels and
speeds, we proceed to introduce the simulation framework in
Section IV-C. Section IV-D compares the simulation results
with the measurement results presented in this section.

C. Simulation

As already mentioned in Section IV-A, most of the regis-
tered spray detections are caused by tread pick up. The spray
generation section will hence focus on simulating this part. The
second part related to spray dispersion mentions how the effect
of the wind and drag forces is added to the simulation. These two
parts complete the physical simulation in regards to the particle
trajectory. Nevertheless, in order to simulate the sensor, the scene
needs to be rendered and this requires defining a material and
mesh size for the particles. This is done in the spray detection
section.

1) Spray Generation: The physics engine simulates the par-
ticles assuming they are point masses. With this assumption and
considering the frame rate of the simulation to be high enough,
a simple integrator can be used to calculate the trajectories in
real time [55].

Besides the solver it is important to know how the initial
position and velocities of the particles are calculated and how
the forces are defined.

Regarding the initial position and velocity of the particles,
it was found that the vector fields coincide when using the
following equations:

vvertexx
= − vc · i

N
· sin

(
2πi

N
− π

2
+

vc ·Δt · i
Nr

)
(7)

vvertexz
=

vc · i
N

· cos
(
2πi

N
− π

2
+

vc ·Δt · i
Nr

)
(8)

pvertexx
= r · cos

(
2πi

N
− π

2
+

vc ·Δt · i
Nr

)
(9)

pvertexz
= r · sin

(
2πi

N
− π

2
+

vc ·Δt · i
Nr

)
+ r (10)

where vvertex and pvertex correspond to the initial velocity and
position of the particles emitted by a vertex, N to the number
of vertices, i to an index going from 0 to N , vc to the wheel
velocity, r the radius of the circle and Δt to the time difference
between two frames.

Fig. 15 shows an example of a quiver plot for a circle with 36
vertices as obtained by using (11-14). The radius of the circle
corresponds to a wheel of type 255/40R19, which is the wheel
size of the target car used in the test area and should be a common
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Fig. 15. Quiver plot showing the initial velocities and positions of the particles
emitted from each of the different vertices of a circle. This circle will be used
to construct the wheel. The number of vertices N is 36. The vertex marked as
V ertex0 emits particles with a velocity of zero. The velocity increases counter
clock wise for each vertex, as stated in (7, 8).

Fig. 16. Trajectories generated by a rotating circle using different rotation
velocities and drag values. The trajectories in blue are from Blender and those
in red are calculated using the PST using (7-10) to set the initial velocity and
position of the emitted particles. a) vc = 40 km/h, KD= 0.2, b) vc = 40 km/h,
KD= 0.5, c) vc = 40 km/h, KD= 1, d) vc = 50 km/h, KD= 0.2, e) vc = 50
km/h, KD= 0.5, f) vc = 50 km/h, KD= 1, g) vc = 60 km/h, KD= 0.2, h)
vc = 60 km/h, KD= 0.5, i) vc = 60 km/h, KD= 1. For particles with a high
injection angle Blender tends to underpredict the trajectories. When adding the
rest of the vehicle, however, most of these particles will hit the vehicle mesh and
be removed.

wheel size. This kind of rotating circle is used later as basis
for constructing the whole wheel. The vertex corresponding to
i = 0 is marked as V ertex0.

Regarding how the forces are defined, a similar method was
used comparing in this case the trajectories of the particles
for different combinations of particles masses and sizes, wheel
velocities, drag values and wind forces.

Fig. 16 shows an example of the trajectories obtained in
Blender (blue) and PST (red) for different values of drag and
wheel speeds for a particle with a mass of 1 and size of 1.
Except for the wheel speed, these values do not relate with real
physical values. For the same reason, the different constants as
implemented in Blender are shown using variables in capital
letters to differentiate them from the real physical constants.
The forces are implemented as follows:

Fig. 17. Construction of a wheel model using three loop cuts on a cylinder
with dimensions based on a real wheel of type 255/40R19. The left side shows
the loop cuts and the right side a vertex group used to control where particles
are created (red region).

Fig. 18. 3D scene showing the different elements used for the simulation,
excluding the sensor. The wheels are placed in a low poly car body, which acts
as collision object. Particles (blue) flow away from the wheel due to the initial
velocity acquired from the wheel rotation and the wind force. The wind force is
constant and acts only in the x direction.

FD = KD ·L2 · v2 (11)

FW = KW (12)

FG = M ·G (13)

Here, L corresponds to the particle diameter, KD to the drag
value, KW to the wind force value, M to the particle mass, G
to the gravity acceleration value, and FD , FW and FG to the
drag, wind and gravity forces, respectively.

From the previous results, it is concluded that the particle
simulation in Blender for the parameter region tested is accurate
and stable enough to be used for the simulation of spray in real
time. With this knowledge, the rest of the wheel is completed
using a cylinder with three loop cuts, as shown on the left side of
Fig. 17. As mentioned before, the width of the wheel corresponds
to the 255/40R19 wheel type. The loop cuts are positioned trying
to imitate the profile of a real wheel with three treads. Each of
these loops is equivalent to the circles previously used in the
validation.

A vertex group, as shown on the right side of Fig. 17, is used
in order to limit the emission of particles to only the three loop
cuts (red region) without including the edges at each side of the
cylinder (blue region).

After having completed the wheels, each of them is positioned
in a 3D car body. The model is simplified to include only the
external hull. Any gap in the mesh of the car is closed. When a
particle hits the car body, its lifetime is set to zero to simulate
the breaking of the drop against the real car hull. An openGL
rendering of the scene is shown in Fig. 18. The particles are
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Fig. 19. Force diagram illustrating the forces that act upon one particle. The
dotted line marks the trajectory of the particle as generated by the different forces
and the initial velocity and position with which the particle was created.

colored in blue for easier visualization. For the real sensor
simulation, different materials are used for the wheels, car body
and particles approximating the real reflection properties of each
material. The wind force field is also shown. In this case, only
a constant force in the x direction (15) is used. The effect of the
y component of the wind force is shown in Fig 20.

2) Spray Dispersion: The spray dispersion is simulated using
the same forces, which were characterized in the previous section
(11–13) by adjusting the values of the coefficients used by the
physics engine in a way that the trajectories of the particles
coincide with the theoretical trajectories. The real values for
the different coefficients cannot be directly used as their value
is too small and conflict with the solver. For example, we can
calculate the mean particle size by using (3). Using the values
provided in [35] to get an approximate value of the constantk and
considering a car speed of 40 km/h and tread height b = 11 mm
we obtain an average particle diameter of Dmean = 330μm ,
after considering a spherical water drop shape, this corresponds
to a mass of only m = 1.95x10−8kg.

The proposed model is expanded upon by adding a component
of the wind force in the y direction and finally turbulences using
the curl of a Perlin noise texture.

To start with, the forces acting upon one particle, which is the
analogous of one or more drops, are shown in Fig. 19. As the
wind force field FWx

is aligned with the x-axis, this force affects
only the x component of the particle acceleration vector. The
wind force is opposed by the drag force FDx

. In the z direction,
the gravity force Fg is opposed by the drag force FDz

.
The wind and drag forces are defined as [67]:

FD = − 1

2
ρairvp

2CDAp (14)

FW =
1

2
ρairvw

2CDAp (15)

where ρair is the air density, vp the velocity of the particle, vw

the wind velocity, Ap the cross sectional area of the particle
and CD the drag coefficient, which is a dimensionless number
dependent on the shape of the object. It has a value of around
0.5 for spherical objects [67].

The values of the constants KD, L, M, G and KW can then
be calculated by solving (16-17) for the z-direction and (20-
21) for the x-direction. Notice that although the magnitude of
each force will be different between simulation and theory, the
resulting acceleration will be the same. If the initial position
and velocity also coincide, then the resulting trajectory should

Fig. 20. Top view of a scene showing the addition of two extra wind force
fields that bring the spray tracks from each wheel close to each other depending
on the car speed. The range of these fields and their strength is chosen to make
the simulations coincide with the spray measurements. Particles are shown in
blue.

coincide.

−KDL2vpz
2 +MG = Maz (16)

−1

2
ρairvpz

2CDAp +mg = maz (17)

If we assign M = 1 and G = g and replace (16) in (17)
we obtain:

−1

2
ρairvpz

2CDAp +mg = m
(
−KDL2vpz

2 + g
)

(18)
After simplifying and solving for KD we get:

KD =
1

2

ρairCDAp

mL2 (19)

The same can be done in the x direction:

KWx
−KDL2 vpx

2 = max (20)

1

2
ρairv

2
wCDAp − 1

2
ρairvpx

2CD Ap = max (21)

Replacing (20) in (21) we get:

1

2
ρairv

2
wCDAp − 1

2
ρairvpx

2CD Ap

= mKWx
−mKDL2vpx

2 (22)

Using the result from (23) we can solve for KWx
:

KWx
=

1

2

ρairv
2
wCDAp

m
(23)

As can be observed in Fig. 11, with increasing speed the wind
stream starts to push the spray generated by each wheel in the
y-direction towards each other. This effect increases with speed
up to the point that a single spray source is seen for highway
speeds (Fig. 13). In order to simulate this effect, it is possible to
use two extra wind force fields placed as illustrated in Fig. 20.
These fields have an effect area from 0 to 6 m behind the car
and are used to add an extra force in the required direction. The
size of the effect area was chosen based on the test area spray
measurements. The left field affects only the particles from the
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left wheel. The same happens for the right wheel. As the relation
betweenKWx

andKWy
controls how much the two spray tracks

come together, it is possible to vary KWy
to make the real and

simulated point clouds coincide.
The effect of turbulence is also modeled phenomenologically

using a similar strategy as for the y component of the wind
force. In this case, the particles from the left wheel generate a
turbulence force that affects the particles on the right wheel and
vice versa. This effect increases the more the particles from each
wheel come closer to each other.

The strength of the turbulence is adjusted to make the real and
synthetic distributions coincide. In this matching, it is important
to consider that the tracking of the target car in both the test area
and highway is not perfect and hence part of the effect that seems
to be caused by turbulence may have been caused by tracking
errors. Additionally, as wind direction was not measured some
of the perturbations may have been caused by side wind.

3) Spray Detection: If we consider the average size of the
particles as previously calculated, it is of a fraction of a millime-
ter. The drops generated by the bow and side waves (splash)
have a larger average size between 1 and 2 mm [31] but travel
only a short distance from the wheel before hitting the floor or
breaking. Therefore, it would be required to simulate thousands
of very small particles from which only few are detected. As
mentioned in the Section III-A a better alternative is to use a
bigger mesh size for the particles. These bigger particles would
then represent a group of drops that in a certain moment create
a concentration high enough to cause a detection. The number
of particles required and their lifetime can be extracted from
histograms like the ones shown in Fig. 12 and Fig. 14. The exact
shape of the histogram cannot be reconstructed in simulation
due to the way particles are buffered in version 2.79 of Blender.
Blender uses a fixed-size monolithic buffer to store the particles
data. The size of the buffer is defined at the beginning of the
simulation and the user can only control the total amount of
particles and the start and end frame of their emission resulting
in a fixed emission rate [68].

The exact size of the mesh can be chosen based on the
parameters shown in Fig. 21. Based on the characteristic of the
sensor there will be a maximum distance after which spray is
rarely detected (see also Fig. 13). Besides, there will also be a
minimum valid distance for the model, in our case caused by
the non-separable presence of rain drops in the region from 0
to 5 m. The mesh size can hence be chosen equal to Dmin or
between Dmin and Dmax. This analysis is similar to the LOD
(Level Of Detail) considerations in computer graphics.

The mesh size of the particles and their quantity also influence
the amount of occlusion (Fig. 11). This effect is nevertheless
difficult to accurately reconstruct in simulation because a very
high amount of particles is required. An alternative is to man-
ually reduce the number of particles of the occluded wheel or
increase the hardware resources.

Regarding the materials, the principled BSDF was used as
mentioned in the background section. Four different materials
were defined, one for the car body, one for the wheels, one for
the license plate and one for the particles. In order to keep the
rendering time as low as possible, only the albedo and the index

Fig. 21. Based on the sensor resolution and the region in which the spray
model is valid, is possible to choose a value for the mesh size of each particle.
This value is only relevant for rendering and does not influence the particles
trajectory.

of refraction were adjusted. All other parameters were set to
zero.

The albedo is obtained by setting the subsurface scattering to
1− SSA and using black as scattering color, which is equivalent
to absorbing that portion of the light. For the particles, the
SSA (Single Scattering Albedo) is known from the literature
to approximate 0.53 [30]. For the car body and wheels, the
reflection was measured manually for the required wavelength
and averaged. For the license plate, it was extracted from the
literature [69].

D. Validation

In order to have a better overview of how the different param-
eters of the simulation are selected, Fig. 22 presents a summary
of the information provided in parts A, B and C (Measurements
in the proving ground, Measurements in the Highway and Sim-
ulation). All parameters were previously explained except for
the detection level. This variable defines the minimum intensity
that a pixel needs to have in order to be considered a detection
(Fig. 7c). The rest of the section presents a comparison between
the real measurements and the obtained synthetic point cloud
for the test area (Fig. 23) and highway (Fig. 24), respectively.

In order to evaluate the quality of the simulation 2D his-
tograms are used. The Pearson correlation coefficient between
the real distributions and the synthetic ones is calculated.1 This
follows previous studies related with the validation of virtual
point clouds [70].

A grid size from 0.5 m by 0.5 m is used is in the same
order of magnitude as the standard deviation of the distance
measurements. Besides measurement inaccuracies, the grid size
and correlation coefficient required from the simulation would
depend on the algorithm that uses the synthetic data (e.g., the
algorithm creating the object hypothesis in Fig. 1). If object
segmentation is done fitting lines using Ransac, the grid size can

1Other metrics are presented in Table VI and VII.
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Fig. 22. Relation between the main simulation parameters and the source(s) used for their extraction. A combination of real measurements with physically based
values is used.

Fig. 23. Comparison of the real measurements as show in Fig. 11 and the
respective simulation results using a 2D histogram with a bin size of 0.5×0.5
m. For each pair, the average speed and Pearson correlation coefficient (Cp)
are shown. The whole region inside the dotted box is used to calculate the
correlation. Although it is possible to increase the similarity between simulation
and measurements to obtain better correlation values, over fitting should be
avoided. Additionally, the simulation must be based on known physical effects
as much as possible.

be defined based on the inlier distance threshold. If the algorithm
is a neural network, it can be trained to identify detections caused
by spray using real data. The same network can then be used to
classify synthetic spray detections; if the accuracy is similar,
it can be assumed that for the network both real and synthetic
are not distinguishable. Otherwise, the simulation would have
to be adjusted to reach a higher correlation coefficient for an
equal/smaller grid size until the network is not able to differen-
tiate between the two cases anymore. Notice that this is similar
to what GANs (Generative Adversarial Networks) do with the
difference that in our case, the generation uses a physically based
simulation instead of a neural network.

Unknowns regarding the sensor internal algorithms can also
cause a low correlation value. This issue can be solved if the
sensor manufacturer provides these algorithms in the form of

Fig. 24. Comparison of the real measurements as shown in Fig. 13 and the
respective simulation results using a 2D histogram with a bin size of 0.5 × 0.5
[m]. For each pair, the corresponding distance between ego and target car and
the Pearson correlation coefficients (Cp) are shown. The whole region inside
the dotted box is used to calculate the correlation. The detections in the region
from 0 to 5 m from the sensor are removed from the measurements as they are
not considered in the simulation.

compiled code. The data provided by the simulation can then be
used as input for this module.

Finally, it is important to balance the desired correlation value
and the complexity of the simulation. For example, by increasing
the number of particles or the number of forces is possible
to increase the similarity between the real and synthetic spray
clouds. However, this would require better hardware for the same
number of frames per second.

Based on the previously mentioned aspects, the results shown
in Fig. 23 for the test area and Fig. 24 for the highway have
the main goal of demonstrating that with the proposed method,
many of the characteristics of the spray generation, dispersion
and detection can be reproduced. Additionally, it shows that the
same model can be used to cover a wide range of speeds: (39 to
89 km/h) by only adjusting the simulation parameters.

The particle diameter used for the simulation was 4 mm
(Table II), which is the maximum value measured in spray
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TABLE I
HIGHWAY MEASUREMENTS

TABLE II
MATERIAL PARAMETERS (PRINCIPLED BSDF)

TABLE III
SIMULATION PARAMETERS (PROVING GROUND MEASUREMENTS)

from tread throw experiments [31]. Additionally, the wind speed
(vw) was set as 40% of the vehicle speed (vc). If a smaller
particle, size is used or in a higher wind speed, the spray
detections concentrate much farther from the target car as in
the measurements. In the future, CFD simulations can be used
to get a better approximation of the wind speed value behind the
car close to the wheels. This value can be used to calculate KWx

for each required speed. This parameter will nevertheless remain
a challenge as each particle represents one or multiple drops that
come together to cause a detection.

Additionally, the turbulence in the real measurements appears
to be higher. This could be easily corrected but care is required
not to attribute to turbulence the effects caused by the movement
of the reference point (tracking errors). Therefore, more data
capture using two cars with a differential GPS system would be
needed before adjusting this value.

The values for each of the different coefficients are shown in
Table II.

For the highway (Fig. 24), the region from 0 to 5 m in the real
data was removed because it contains mostly detections caused
by rain drops (compare with Fig. 13).

In this case, the wind speed was set equal to the car speed.
From the results it appears that with distance, the reduction in
the number of spray detections is stronger in the measurements.
Because during the highway measurements it was raining (rain-
fall rate <3.6 mm), the noise level of the real sensor increased
causing a reduction in the number of spray detections for the
whole region (>5 m) [30]. This effect is included in the simula-
tion by adjusting the number of particles per frame (Table III).
The use of a constant emission rate and particles size reduce

however the quality of the approximation. For instance, if the
rate were exactly as shown in Fig. 14 there will be many frames
in which few particles are generated. With few particles being
generated close to the wheels most of the detections would have
been caused by particles still floating on the air and closer to the
sensor. As there is a unique particle size however, the behavior of
the particles is to follow inertial trajectories and hence relatively
quickly fall to the ground.

For higher rainfall rates (>3.6 mm), further modifications on
the simulation model may be needed. In this case is likely that
most of the detections concentrate directly in front of the sensor,
as the noise level is very high occluding spray detections.

In the region close to the wheels in the synthetic data, the
degree of turbulence is small and increases only after a certain
distance when the particles come closer to each other. In reality,
the contribution from each wheel is indistinguishable. As already
mentioned, in the simulation the effect of occlusion is difficult
to generate without a very high number of particles. When the
distance of the ego increases (see Fig. 24 at 23.5 m), the region
close to the wheels is not visible anymore and the correlation
improves. A second problem is the concentration of particles.
In the simulation, they tend to concentrate on the middle of
the two streams coming from each wheel. In reality, though,
their concentration increases the closer they are to the sensor.
As explained in Section IV-B (Measurements in the highway),
this is due to the accumulation of small particles in the air.
To include this effect a second type of particles would have
to be added to the simulation with a behavior corresponding
to low Stokes number. The number of particles of each type
(low and high Stokes number) would have to be optimized
depending on the real number of spray detections per frame and
their distribution. Whether the improved correlation value justify
higher complexity and rendering times is an open question.

Because occlusion and the change from high to low Stokes
numbers are most notable at higher speeds the correlation values
for the highway are lower than those for the proving ground
(Fig. 21).

Table III shows the parameters used for the highway region. In
this case, there is only one set as only one speed is used (which
corresponds to the average speed of the measurements). The
mean particle size is kept the same as for the proving ground as
the average behavior is still mostly inertial (Table II). The mesh
size remained the same as it depends on the sensor resolution.

The wind speed was set equal to the car speed in this case.
As mentioned before, these two values are difficult to adjust
because one detection can correspond to one or more real spray
drops.

The constant L was arbitrarily chosen in all cases. It acts as
a scale factor for the drag constant to keep its value within an
acceptable numerical range.

V. CONCLUSION

This paper shows that it is possible to reconstruct the spatial
distribution of the detections caused by spray on a LIDAR sensor
by using a path tracer, a real time physics engine and particle
systems. The simulated and measured spatial distributions cor-
relate with a Cp going from 0.5 in the worst case to 0.74 in the
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TABLE IV
SIMULATION PARAMETERS (HIGHWAY MEASUREMENTS)

best case. This kind of synthetic data can be used to improve
the performance of algorithms generating object hypothesis in
SD and ADAS functions increasing their robustness against
phantom breaking.

A simulation setup was defined as simply as possible in
order to keep the simulation time low while still capturing the
main forces that influence the movement of spray water. The
parameters of the simulation were partially deduced from real
measurements and partially based on known physical values. In
the simulation, each particle represented a spray detection which
corresponds to one or more real drops with a concentration high
enough to generate a reflection that can be registered by the
LIDAR sensor.

It was also shown that if the water level is constant, the mean
and maximum number of spray detections per frame increases
with higher speeds. After a certain speed, the amount of spray
from one wheel is high enough to occlude the spray from the
other. The effect of occlusion is difficult to recreate in the
simulation and is one of the causes for lower correlation values.

With higher vehicle speeds, the source of spray changes from
being clearly generated by each wheel to a cloud coming some-
where from the back of the target car. If the distance between the
target and ego vehicles increases, the spray cloud concentrates
mostly in front of the ego car. This is caused by the reduction
of the spray drop sizes with increasing wheel rotation speed
(smaller drops remain longer in the air). The presence of these
drops in the near region of the sensor increases the noise level,
reducing the number of detections on other regions. The net
effect on the sensor perception is similar to that of rain [30].

The inertial trajectory of the particles in Blender was validated
using a conventional solver (PST). The effect of the turbulence,
which increases with vehicle speed, was simulated as a random
perturbance upon the inertial trajectory.

VI. OUTLOOK

The integration of particle systems into a real time physics
based simulation of the LIDAR sensor provides a framework in
which other phenomena can be easily included. For example:
dirt on the LIDAR cover, exhaust gases, rain, fog and snow.

Even though these phenomena can be simulated using vol-
umetric scattering or stochastic simulations [25], the use of
particles allows for the easy inclusion of external forces making
the simulation more realistic.

TABLE V
PARAMETERS OF THE USED LIDAR SENSOR (IBEO SCALA [63])

TABLE VI
PARAMETERS OF THE USED WFMD (VAISALA DSC111 [62]∗)

∗USED VERSION WAS OPTIMIZED FOR ROAD MEASURE-
MENTS.

TABLE VII
ADDITIONAL PERFORMANCE METRICS FIG 23

∗The Jaccard’s distance is the percentage of non-zero samples that
differ. If the number of spray detections is binarized (setting a bin to
one if it has one or more detections) it corresponds to comparing the
shapes of the two point clouds. As it ignores zero samples it is a very
strict metric.
∗∗The Hamming distance is the percentage of samples that differ
(including zero samples).

TABLE VIII
ADDITIONAL PERFORMANCE METRICS FIG 24

The validation can be done in each case based on the corre-
lation between the real and synthetic point clouds using a 2D
histogram that captures the relevant properties.

The use of a variable injection rate for the particles as well as
variable particles sizes should improve in the future the correla-
tion between the simulation model and the real measurements.

A precise measurement of the water film thickness using a
single device remains a challenge. In the future, the use of V2X
technologies should improve these kinds of measurements.

Table IV and V present extra information related with the used
sensors.

Table VI and VII present additional performance metrics to
evaluate the correlation between the simulation results and the
real point clouds.
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Abstract: In contrast to previous works on data augmentation using LIDAR (Light Detection and
Ranging), which mostly consider point clouds under good weather conditions, this paper uses point
clouds which are affected by spray. Spray water can be a cause of phantom braking and understanding
how to handle the extra detections caused by it is an important step in the development of ADAS
(Advanced Driver Assistance Systems)/AV (Autonomous Vehicles) functions. The extra detections
caused by spray cannot be safely removed without considering cases in which real solid objects
may be present in the same region in which the detections caused by spray take place. As collecting
real examples would be extremely difficult, the use of synthetic data is proposed. Real scenes are
reconstructed virtually with an added extra object in the spray region, in a way that the detections
caused by this obstacle match the characteristics a real object in the same position would have
regarding intensity, echo number and occlusion. The detections generated by the obstacle are then
used to augment the real data, obtaining, after occlusion effects are added, a good approximation of
the desired training data. This data is used to train a classifier achieving an average F-Score of 92.
The performance of the classifier is analyzed in detail based on the characteristics of the synthetic
object: size, position, reflection, duration. The proposed method can be easily expanded to different
kinds of obstacles and classifier types.

Keywords: LIDAR; point cloud; spray water; ADAS; AV; data augmentation; classification; synthetic
data; sensor model

1. Introduction

The high degree of reliability required by newer ADAS and AV functions makes the
combination of different sensors necessary [1–3]. Among those sensors, radar, cameras,
ultrasound and GPS (global positioning system) are common. Recently, LIDAR sensors
have also been used mostly due to their high resolution, ability to work under low light
conditions and direct distance measurement [4,5]. However, the high resolution obtained
by using infrared light comes at the cost of a reduced performance when dirt [6], rain,
fog [7], snow [8], exhaust gases [9] and spray water [10] are present. Besides reducing range,
these phenomena cause extra detections which can have negative effects like phantom
braking. Mechanisms to filter out those extra detections are difficult to implement, as there
is a risk of removing detections caused by real objects.

In this context, this paper focuses on correctly classifying solid objects in point clouds
affected by spray water. Spray water is especially problematic because it can generate point
clouds with characteristics that highly resemble those of solid objects. Figure 1 shows a real
example in which the spray cloud generates detections with a shape close to the ‘L’ shape
of a vehicle [10]. True positives are needed to train a classifier to remove this kind of false
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positive. This corresponds to cases in which real solid objects are present simultaneously
with spray, as caused, for example, by objects falling off of a vehicle. As the amount of
spray shown in Figure 1 is usually generated at highway speeds, collecting this kind of
data is extremely dangerous even if done at a proving ground. Even using a high number
of data collecting vehicles, the number of examples obtained may be too low for training.
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Figure 1. Bird’s eye view of a sequence in which a ghost object is generated due to spray water. A
wrong object hypothesis created at the beginning (dashed line) is not rejected in subsequent frames;
as a consequence, an extra object is generated (solid line). The field of view of the sensor is shown in
light grey (based on [10]).

State of the Art

Regarding data augmentation, there have been multiple approaches going from trans-
formations of a real training set [11–16], to combinations of real and synthetic data [17–20],
to purely synthetic data [21–23] and domain adaptation techniques [24–26]. In [12], the
point clouds of previously labeled objects are added by concatenation at different positions
into the training data in order to improve the training of the network. Possible collisions
between added objects are automatically removed. In [15], an adversarial strategy is used
in order to simultaneously train an ‘augmentor,’ which is a neural network specialized
in creating augmented data which causes a reduction in the performance of a classifier.
When trained simultaneously, the classifier learns features that are independent of the
possible modifications caused by the augmentor. As there is a broad range of operations
that can be applied for augmentation, in [16] a search method is proposed in order to find
the optimal augmentation policy, understood as a series of augmentation operations with
their respective parameters.

Similar to our method in [17], real scans are used for the background which corre-
sponds to portions of streets in which the movable objects and pedestrians are removed.
Synthetic movable objects and pedestrians are then placed with a number, position and
pose based on probabilities extracted from labeled real datasets. A sensor model is then
used to generate the final point clouds. This permits the generation of high amounts of
annotated 3D data for training. A similar approach is used in [18]. In this case, a synthetic
object is added on top of the roof of vehicles in real point clouds. This synthetic object
is modeled in order to attack the point cloud-based classification algorithm, reducing its
accuracy and hence identifying possible vulnerabilities.

Unique to our approach is the use of real point clouds affected by spray water. The
collection of this data and the setup used are explained in Section 2. The ROI (region of
interest) in which the synthetic object is generated is based on previous results regarding
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the spatial distribution of spray and the possible actions that can be taken to protect
the passengers.

As the synthetic object needs to match the characteristics of a real object placed in the
ROI, spray itself has to be simulated. As done in previous works, the scene is rendered. In
our case, a physically based render is used to simulate the LIDAR sensor [27] with material
properties based on real reflection values. Spray and rain are simulated using particle
systems which generate detections with a spatial distribution similar to those caused by
real spray [10]. After rendering, the detections caused by the obstacle are extracted and
concatenated into the real point clouds. Finally, the effect of occlusion and noise are added.

With the obtained point clouds, a two-layer feedforward neural network is trained.
The results are presented in Section 3. The classifier is trained to identify detections caused
by the added obstacle. The method uses a bird’s eye view of the 3D point cloud in which
detections are assigned to bins in a 2D histogram similar to what is done in [28,29] for the
extraction of vehicle bounding boxes. The obtained histogram(s) is then convoluted with
objects having the dimensions and orientation corresponding to the features that need
to be extracted. The use of the bird’s eye view with fixed histogram sizes and a simple
network for classification allows to keep the required time budget. Classification based on
detections instead of a binary classification of the whole scene has as advantage that the
decision to activate any safety mechanism can be made based on the extracted obstacle:
dimensions, position, rotation and/or reflection and the characteristics of the ego vehicle,
such as its ground clearance, for example. The results are discussed in Section 4.

2. Experiment
2.1. Region of Insterest

The region at which spray detections are usually seen, based on our measurements
on the highway and considering that the spray is generated by one leading vehicle (LV),
corresponds approximately to 6 m to each side of the ego vehicle and up to 20 m in front
of it [10]. These measurements were taken with an average ego speed of 89 km/h. Under
these circumstances, if a solid object is present in the spray cloud, it is not possible to
correct the vehicle trajectory in time. An emergency stop would also not be enough to stop
the vehicle before hitting the possible object and would be quite dangerous. There are,
however, corrective measures that can be taken. The actuator of the seatbelt pretensioner
can be activated as fast as 100 ms to 300 ms [30]. There are also numerical studies regarding
the rotation of the seats, in which rotations up to 90◦ under 200 ms are considered possible
and useful in order to protect the passengers [31]. Additionally, a slight brake can be
applied. Taking 200 ms as the average for the actuator and adding 300 ms for the detection
and classification of the object yields a total of 500 ms. Based on the previously mentioned
average speed of our spray measurements, this corresponds to a distance of 12.36 m.
Additionally, in order to take curved roads into account and the possibility that a falling
object moves from an adjacent lane to the ego lane, we used a cone-shaped ROI. The angle
is based on the value of the vehicle exit angle for European roads, which corresponds to
the angle between the road edge line and the vehicle straight trajectory [32]. An angle of
30◦, which should cover most of the left and right curves found in European highways,
was chosen. The final ROI is shown in Figure 2. During the measurements the ego vehicle
occupied either the second or third lane while the LV occupied the first or second lane,
respectively. For this reason, to the right there could be either a road boundary or another
lane. This makes the classification more challenging, as can be seen in Figure A1 in
Appendix A.
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2.2. Measurement

An automotive LIDAR sensor on the position indicated in Figure 3 was used for data
collection. The measurement was taken on a highway during the dates indicated in Table 1.
Those days were rainy days. The rainfall during the measurement as reported by nearby
weather stations is also indicated [10].

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 2. Region of interest. The size is based on the region in which spray is usually detected [10] 

for the LIDAR and speeds used. Before 12.4m, even if a solid object is detected no meaningful ac-

tion can take place. The 30° are based on the curve radii found in European roads. The ‘x’ marks 

the center of the added synthetic object. 

2.2. Measurement 

An automotive LIDAR sensor on the position indicated in Figure 3 was used for data 

collection. The measurement was taken on a highway during the dates indicated in Table 

1. Those days were rainy days. The rainfall during the measurement as reported by nearby 

weather stations is also indicated [10]. 

 

Figure 3. Placement of the LIDAR sensor in the ego vehicle (based on [10]). 

A total of 13.162 frames were collected. In each measurement there is a LV, which 

generates spray, located in the lane to the left of the ego vehicle. The position of the LV 

was tracked using the internal tracker of the sensor and is reported in Figure A3. The ego 

speed had a value of (89±4) km/h.  

Table 1. Highway measurements (taken from [10]). 

Date Duration Rainfall 

13.04.2018 1 hour 17 min 2 mm 

16.05.2018 3 hours 26 min 3.6 mm 

17.05.2018 2 hours 20 min 3.1 mm 

 

Figure 3. Placement of the LIDAR sensor in the ego vehicle (based on [10]).

Table 1. Highway measurements (taken from [10]).

Date Duration Rainfall

13 April 2018 1 h 17 min 2 mm
16 May 2018 3 h 26 min 3.6 mm
17 May 2018 2 h 20 min 3.1 mm

A total of 13.162 frames were collected. In each measurement there is a LV, which
generates spray, located in the lane to the left of the ego vehicle. The position of the LV was
tracked using the internal tracker of the sensor and is reported in Figure A3. The ego speed
had a value of (89 ± 4) km/h.
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2.3. Simulation

The simulation setup used is presented in Figure 4. This setup is based on the model
introduced in [10]. The original simulation setup was based on the following assumptions:

• Simulating real water drops as well as the exact forces that act upon them cannot be
done in real time. However, the number of detections that those drops cause is usually
much smaller as a high concentration of drops is needed to cause a reflection strong
enough to cause a detection. Therefore, a more efficient approach is to use particles to
directly simulate detections instead of single drops.

• The solver used by Blender [33] to calculate the trajectories of the particles is stable in
the required parameter range.

• The LIDAR sensor itself can be simulated in the same way as a camera image is
rendered by adapting the calculation done inside the material shader. The calculation
is changed from the default multiplication of intensities to an addition of ray distances.
One color channel is left unchanged; as a result, each camera pixel contains the
information about the distance that the ray traveled from the light source and its
corresponding intensity. The light source is placed next to the camera and both camera
and light source are configured based on the resolution and field of view of the sensor.

• If physically based values are used for the materials, as shown inside the dashed line
region of Figure 4, the calculated intensities per pixel should be proportional to the
ones obtained using the real sensor.
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Figure 4. Simulation setup. The object index (OI) is a parameter used by the render to create a
separate mask for the object to add composition effects [34] and makes it is possible to identify which
object caused which detections. Notice the correspondence with Figure 2. The ROI is marked in red.
The region in violet corresponds to a volume in which confined particles are uniformly distributed to
simulate the detections caused by rain. The index of refraction (IOR) and absorption used for the
material of each object is shown in the dashed line region [10].

These assumptions were validated by comparing the trajectories of the particles
generated by Blender with those generated by a fourth order Runge-Kutta solver for the
required parameter range. Additionally, the correlation of the spatial distribution of the
real and simulated point clouds was calculated using the Pearson correlation coefficient
obtaining values going from 0.5 to 0.74. The rendering time per frame using an Intel CORE
i7-8850H CPU varies from 40 ms (8 particles per wheel per frame) up to 260 ms (50 particles
per wheel per frame) [10].
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In this setup, the camera was configured on the basis of the resolution of the sensor
but, instead of a one-to-one relation, a three-to-one relation was used. The extra pixels were
used to simulate multiple echoes: secondary and tertiary reflections coming from the same
direction. Additionally, the confined particles inside the violet volume were unique to this
simulation. These detections were needed in order to make the echo values in simulation
and in reality coincide. The number of free and confined particles used is presented in
Table 2.

Table 2. Number of particles used.

Particles Number of Particles Distribution Mesh Diameter

Free ~50 per wheel per frame Defined by acting forces 1.8 cm
Confined 200.000 Uniformly 6 mm

A box was used as an obstacle. Any other obstacle shape could be used, but we
decided to use a box for simplicity in the description of its shape.

The position of the LV in the simulation was set equal to the real position for the
corresponding frame. This means every real frame has an equivalent synthetic frame. The
number of free particles in the simulation was based on the number of detections caused
by spray in reality [10]. These particles are emitted from the wheels, and their size and the
forces that act upon them (i.e., wind x and y components) are calibrated on the basis of
physical values and the spatial distribution of spray in real measurements [10]. For this
specific simulation, the effect of the wind in y, which originally is simulated using two
forces, was reduced to only one and the value of this force increased to direct the spray
towards the ROI.

The confined particles were distributed uniformly over the violet volume in Figure 4
but were emitted randomly with a lifetime of one frame. This generates a distribution
of detections similar to the one observed in real rain measurements using the same
sensor [8,10].

In order to calibrate the intensity of the light source, the accumulated histogram of the
real and synthetic echo pulse width (EPW, proportional to the intensity of the reflection [8])
values were compared. This was done before adding the box to the simulation. The
intensity of the lamp in the simulation was adjusted to generate a similar intensity range as
in the measurements.

After calibration of the light source was completed, the box was added to the simu-
lation. The position of the center of the box is distributed uniformly over the whole ROI.
It was verified that there was no collision between the box and the LV. Possible collisions
with the point clouds generated by other vehicles or by the road boundary in the real data
were dealt with afterwards. The width, length and height of the box were sampled from a
uniform distribution going from 20 cm to 2 m. The z position of the box was adjusted to be
half its height to ensure that it remained on the street surface. The rotation was uniformly
distributed between 0◦ and 90◦ as is the reflectivity, which goes from 0 to 1. Its duration,
which corresponds to the number of frames in which it remains in the same position, was
varied between 1, 2 and 3. An equal number of examples for each duration was used.
Figure 5 presents the results obtained by accumulating the boxes generated over multiple
frames keeping the LV position constant. The transparency in the boxes in the figure is
proportional to their reflection value.
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Figure 5. Examples of the generated synthetic obstacles accumulated over multiple frames. The red
and dotted lines mark the ROI. The transparency of the box is proportional to its reflection value.
The blue box marked ‘LV’ corresponds to the position of the leading vehicle and collisions with it are
automatically removed.

Figure 6 shows the results obtained after rendering. The left side of the figure uses colors
for the detections based on their EPW, while the right side uses different colors to identify
the corresponding echo number. Three different frames are shown. In Figure 6a,b the box is
not added. A direct comparison can be made with Figure 7a,b which corresponds to the real
equivalent (same position of LV). As can be noticed, there are similarities in the distributions
of the EPWs (before training the classifier the histogram of the EPW values of the detections
caused by the synthetic object is adjusted to resemble the one obtained by the real reflections
on the rear of the LV (see Figure A4). This is done in order to avoid biasing the classifier
towards this difference. The histograms are also trimmed to have the same maximum value.)
and echo values. The region close to the sensor (<5 m) contains detections caused mostly by
rain, with very low intensity and an echo number of one or two. The detections caused by
spray tend to have a very low to low EPW. Mostly first and second echoes are seen with very
few third echoes. Something similar happens with the vehicle itself, which is a reason why
removing detections caused by spray is difficult. The intensities and echoes are in similar
ranges, and only the shape allows for a clear differentiation.

figfig:sensors-1246607-f006c,d shows a frame in which the box is added, causing occlu-
sion to a portion of the vehicle (the box height goes from 20 cm to 2 m which allows for the
occlusion of multiple layers). Notice how the distribution of the intensities in the box makes
physical sense with the size perpendicular to the sensor having a higher intensity. The
echo number also coincides to what would be expected. Finally, in Figure 6e,f an example
is given in which the box does not occlude the vehicle. This occlusion, which happens
naturally in the simulation, has to be artificially added when the real data is augmented.

After the synthetic data is generated, the object with OI 4 is extracted and concatenated
to the corresponding frame of the measured point clouds. Additionally, Gaussian noise is
added to the detections caused by the box. This noise has a standard deviation of 5 cm and
mean of zero. The value of the standard deviation is extracted from real reflections caused
by the rear of the LV. The effect of adding the noise is shown in Figure 7e,f.

As previously explained, the cases in which the box intercepts with the LV are auto-
matically removed. It is, however, possible that the box intersects with the road boundary
or with vehicles in the adjacent lane as shown in Figure 8c. Additionally, the presence of
the box would occlude objects further in the light path as shown in Figure 8a. In order to
tackle these two issues, an algorithm based on the radial histogram of the detections per
layer is used (Figure 8 right, radial histograms).
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Figure 6. Examples of the generated synthetic frames. On the left side the detections are colored
based on the EPW value and on the right are based on the echo number. In (a,b) there is no added
obstacle. In (c,d) the effect of occlusion caused by the box is shown. In (e,f) a box that does not cause
occlusion is added. The arrows in (c,e) show the position of the obstacle.
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Figure 7. Examples of a real frame before (a,b), after augmentation (c,d) and after adding noise (e,f).
On the left side the detections are colored based on the EPW value and on the right based on the echo
number. The frame in (a,b) is the corresponding real frame to the synthetic one shown in Figure 6a,b.
The arrows mark the position of the box after augmentation. Notice how the intensity distribution
on the box makes physical sense due to the way in which the synthetic data was generated. The
echo number is also plausible. The effect of adding noise extracted from real measurements (e,f) also
increases the similarity.
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Figure 8. Examples of cases in which occlusion has to be calculated after adding the synthetic object. In (a) the detections
caused by the LV in the same angular region and layer as the obstacle (dotted line) should be removed. Equivalently in (c),
the obstacle itself should be removed as its random position happens to be inside another vehicle. The (b,d), respectively.
The angular bin size needs to be selected to avoid strong undersampling of the point cloud if the value is too high. However,
if it is too small, the desired occlusion effect does not take place. In our case, a value slightly higher than the resolution of
the sensor was used. The occlusion is calculated before the Gaussian noise is added to the synthetic detections.

The algorithm works as follow:

1. For each frame, the radial histogram per layer is calculated.
2. The bins that contain detections caused by the box are extracted.
3. The detections inside the bins are organized in ascending order based on their radial

distance from the sensor.
4. The first detection is used and the rest are removed. The detections in the region from

0 to 5 m are not taken into consideration as their effect was already included when
generating the synthetic data.

Notice that the examples shown in Figure 8a,c and in Figure 6c,d correspond to cases
in which all layers are occluded. This is done to clearly identify the effect but would only
happen in rare cases in which the synthetic object’s height approaches the upper limit of its
range (2 m).

3. Results

As a classifier, a feedforward neural network was used with two layers, one hidden
layer with 10 neurons and one output layer. As a training function, scaled conjugate
gradient backpropagation was used. Cross entropy was used to evaluate performance.

As output classes: No Box (NB) and Box (B) were used. The NB class included the
detections caused by spray, other vehicles, the road boundary and raindrops. The B class
corresponded to the detections caused by the synthetic obstacle. In order to compensate
for the class imbalance, an error weighting of 20% was used for the NB class and of 100%
for the B class.

For training, the region from −6 m to 6 m in ‘y’ and 0 to 20 m in ‘x’ was divided into
histograms with different bin sizes. The following bin sizes were used on the basis of the
features they should help to identify:
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• Small features: 10 cm in ‘x’ by 10 cm in ‘y’.
• Vehicle rear: 20 cm in ‘x’ by 2 m in ‘y’.
• Vehicle side: 4 m in ‘x’ by 10 cm in ‘y’.
• Middle size features: 50 cm in ‘x’ by 50 cm in ‘y’.
• Radial: 1◦.

The following classification parameters were used (per detection). The number of counts
correspond to those of the bin containing the detection for the corresponding histogram:

1. X position.
2. Y position.
3. Echo number.
4. Layer number.
5. EPW value.
6. Number of counts (radial).
7. Number of counts (small features).
8. Number of counts (vehicle rear).
9. Number of counts (vehicle side).
10. Number of counts (middle size feature).
11. Absolute value of the subtraction of parameter six of the current frame from parameter

six of previous frame.
12. Convolution with horizontal matrix (Appendix B) (small features).
13. Convolution with corner matrix1 (small features).
14. Convolution with corner matrix1 rotated 90◦ (small features).
15. Convolution with impulse matrix1 (small features).

Table 3 presents the classification results using the F-Score as metric. The results
are divided between ‘All durations,’ which corresponds to the classification results for
durations of one, two and three frames, and ‘Duration 3f’ which contains only the examples
in which the object remains in the same position for three frames. The results for durations
of one and two frames were very similar and hence are not shown. An F-Score for the B
class of 92.13 and 92.26 was obtained, respectively. This indicates, as expected, that the
classification improves the longer the box remains in the same position and that adding
more parameters like parameter 11 could further improve the results.

Table 3. Classification results.

Predicted Class

All Durations Duration 3f

NB B NB B

Actual
class

NB 12,454,236 20,036 4,150,856 6686
B 3848 141,545 1178 47,055

F-Score 99.90 92.22 99.91 92.29

In order to find problematic regions in the parameter space, Figure 9 shows the results
obtained by using the previously trained classifier on smaller clusters of the data. Here
the focus is on the effect of changes in the obstacle size and the position of the LV. Further
dependencies can be seen in the Figure A2.

Regarding execution times, a single threaded, not optimized version of the proposed
algorithm is required to extract the feature vector and complete the inference of 182 ± 51 ms
per frame, using C++ in a computer with an Intel CORE i7-8850H CPU. The variation
was caused by the changing number of detections. However, current platforms used for
AV like RENESAS R-Car and NVIDIA Drive integrate accelerators for image processing
tasks [35,36], which, given our use of fixed histogram sizes, can be employed to highly
parallelize the computation, reducing the execution time. If for example three consecutive
sensor frames are used, this corresponds to ~120 ms [37], and segmentation of the ROI
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for each of those frames should take few milliseconds, leaving around 150 ms for the
calculation of the feature vector and classification which should be attainable. The time
required to generate the synthetic data and train the neural network is not included as it is
assumed that it can be done offline. The pretrained network can then be used in a vehicle
and updated if needed over the air.
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contain any example). On the right, the meaning of each of the parameters is shown. SOvol corresponds to the volume of
the synthetic object, SOx and SOy to its coordinates. LVx and LVy correspond to the coordinates of the leading vehicle. In
both cases, the position is calculated with respect to the position of the LIDAR sensor on the Ego vehicle. The difficulty of
the classification task increases when the synthetic object is located close to the road boundary (a,b) or when is close to the
LV and has a small size (b), additionally when the synthetic object is farther away in x-direction as the LV (c) or when the
LV moves to the Ego lane (d).

4. Discussion

Figure 9 shows that the classification becomes difficult when the center of the box
moves closer to the road boundary SOy < −2.5 m Figure 9a,b. This is due to the multitude
of shapes that the road boundary can generate (see Figure A1), which can be easily confused
with a rectangular-shaped object. Additionally, when the LV moves into the ego lane while
overtaking LVy < 2.25 m Figure 9d, the accuracy of the classifier is reduced as it probably
learns that when there is an object in the ego lane, it is most likely an obstacle. Something
similar happens when the synthetic object is far away from SOx > 16.5 m Figure 9c. In this
case especially, if the box is not big enough and there is lots of spray, it is likely to result
in a misclassification. Finally, when the LV is quite far to the left LVy > 4.25 m Figure 9d
or close to the beginning of the ROI LVx < 15.5 m Figure 9c, only a portion of the vertical
sideline of its shape can be seen. This is easier to misclassify than the usually expected
‘L’ shape. Although these regions are challenging to classify, accuracy in general is high.
This would not be the case if the probability of finding objects in the driving lane for the
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used ROI were not as low. For instance, at lower speeds or in urban traffic the task would
be more challenging, as the position of the synthetic object would not be as important
a classification parameter as it is on a highway at high speeds. Additionally, although
care was taken to make the synthetic data as similar as possible to the real data, it can be
that some of the parameters are still different enough to make the classification task easier.
For instance, a unique reflection value was used while real obstacles would probably be
composed of different materials with different reflection values.

The presented model constitutes a basis upon which more complex scenarios can be
simulated with relatively small changes. For example, the type of synthetic object can be
easily changed and its position can be animated or simulated as desired. Their number can
also be increased and they do not have to be static. For instance, they can simulate other
vehicles. Real and synthetic data can also be combined in different ways. The spray could
be generated completely synthetically, keeping just the real detections caused by the LV, or
a synthetic LV can be used leaving just the real spray detections.

The proposed methodology is based on open-source tools and can be easily applied
to other LIDAR sensors. It can also be used to simulate other weather-related effects. For
instance, the simulation of the detections caused by exhaust gases.

A certain amount of data collection is needed as many of the simulation parameters
are extracted from the characteristics of the real point clouds. It is, however, a much easier
collection task as no real obstacles need to be present on the spray region.

5. Conclusions

Regarding future research directions, even though a shallow neural network was
considered enough for the current use case, the use of a more sophisticated network type
and architecture can increase classification accuracy. This is especially true if other obstacle
types are introduced, for instance bicycles, tires, vehicle parts, etc., in which case manually
defining the classifier features is difficult. Additionally, even though only one reflection
value for the whole obstacle object was used, a texture can be used to give different parts
different reflection values. More complex physics can also be added for the obstacle, such
as bouncing or breaking apart.
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Abbreviations

ADAS Advanced driver assistance systems.
AV Autonomous vehicles.
EPW Echo pulse width.
GPS Global positioning system.
IOR Index of refraction.
LIDAR Light detection and ranging.
LV Leading vehicle.
OI Object index.
ROI Region of interest.
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Appendix A

Some of the road boundary shapes are shown in Figure A1a–c. Figure A1d shows
another vehicle. As can be noticed, the road boundary can generate shapes that can be
easily confused with other objects and, due to curves, it is not limited to a specific region.
Other vehicles like trucks can also generate complex point clouds.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16 
 

 

GPS: Global positioning system. 

IOR: Index of refraction. 

LIDAR: Light detection and ranging. 

LV: Leading vehicle. 

OI: Object index. 

ROI: Region of interest. 

Appendix A 

Some of the road boundary shapes are shown in Figure A1 a, b and c. Figure A1d 

shows another vehicle. As can be noticed, the road boundary can generate shapes that can 

be easily confused with other objects and, due to curves, it is not limited to a specific re-

gion. Other vehicles like trucks can also generate complex point clouds.   

 

Figure A1. Examples of the point clouds generated by different road boundaries (a, b, c) and vehi-

cles in other lanes (d). The ROI is limited in ‘y’ by the read lines and in ‘x’ by the dotted line. 

 

Figure A2. Continuation of Figure 9, including the dependencies for other parameters. In black 

regions with a F-Score lower than 92% are shown, and blue regions that are empty are shown (the 

Figure A1. Examples of the point clouds generated by different road boundaries (a–c) and vehicles
in other lanes (d). The ROI is limited in ‘y’ by the read lines and in ‘x’ by the dotted line.
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Figure A2. Continuation of Figure 9, including the dependencies for other parameters. In black regions
with a F-Score lower than 92% are shown, and blue regions that are empty are shown (the combination
of parameters currently does not contain any example). Besides the already explained parameters, SOR

corresponds to the reflection of the synthetic object and SOrot to its rotation in degrees. In (a–c) high
reflection values for the synthetic object seem to reduce the F-Score. A high reflection generates a high
EPW value, high EPW values are more likely on the LV (Figure A4) making the classification harder.
The rotation (d) and volume (c–e) do not seem to have a strong influence by themselves.
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Figure A3. Probability distribution for the position of the LV with respect to the ego vehicle. The
reference point in the LV is the middle of the lower side of its bounding box (considering bird’s
eye view).
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