
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Enabling Client Model Heterogeneity for
Serverless Federated Learning Using

Knowledge Distillation

Pulkit Khera

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Enabling Client Model Heterogeneity for
Serverless Federated Learning Using

Knowledge Distillation

Unterstützung von
Clientmodell-Heterogenität für serverloses

föderiertes Lernen mithilfe von
Wissensdestillation

Author: Pulkit Khera
Supervisor: Prof. Dr. Michael Gerndt
Advisor: M.Sc. Mohak Chadha
Submission Date: 15.05.2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.05.2023 Pulkit Khera

Acknowledgments

I would like to express my heartfelt gratitude to all those who have contributed to
the successful completion of my master’s thesis.

Firstly, I would like to thank my advisor Mohak Chadha for his guidance, invaluable
support, and patience throughout the research and implementation process. He
provided me with valuable feedback and suggestions at all the various stages and also
arranged the adequate computing infrastructure required for the success of this project.

Importantly, I would like to thank my supervisor Prof. Dr. Michael Gerndt for
providing me with the opportunity to work on this interesting project and for the
assistance and support throughout the whole process.

Finally, I would like to thank my family and friends for their constant support and
encouragement which have been invaluable in keeping me inspired throughout my
studies.

Abstract

Recently, Federated Learning(FL) has emerged as a promising approach for training
machine learning models on distributed data, while preserving privacy and ownership.
In FL, multiple clients can collaboratively train a model without providing access to their
sensitive private data sets to a central server. FL clients train their models locally and
perform periodic weight updates to the server which are then aggregated and afterward,
the global parameters are distributed back to the clients at the end of each round.
Common challenges of traditional Infrastructure-as-a-Service(IaaS) based federated
learning systems are less resource efficiency and high infrastructure costs/management
due to idle resources. The serverless computing paradigm eliminates these issues by
automatically provisioning resources and scaling on a pay-per-use basis. Therefore,
previous work proposed a serverless federated learning framework that supports
multiple commercial and self-hosted Function-as-a-Service (FaaS) providers as clients
integrating the benefits of serverless computing into federated machine learning.
However, it requires each client to have the same model architecture since it is based on
global parameter averaging techniques but this is not possible in practice due to system
heterogeneity among the clients resulting in their inability to agree on a global model
architecture. Moreover, due to statistical data heterogeneity among clients, they must
have the independence to choose model architectures optimized for their private data
distribution but also learn from other clients at the same time. Finally, these averaging
techniques require client weight transfer to a central server which can lead to privacy
issues. Our work mainly focuses on extending the ability of this framework to enable
heterogeneous client models using Knowledge Distillation(KD) which addresses these
problems while obtaining similar performance results. We analyze existing IaaS-based
federated KD algorithms and finally implement two algorithms i.e. FedMD[38] and
FedDF[42] in the current FaaS-based framework based on their performance and ease
of integration along with other optimization-related enhancements. We evaluate the
system in a distributed setting with 100 FaaS clients(having heterogeneous model
architectures) based on accuracy performance across different data heterogeneity levels,
execution duration, and FaaS costs for various learning tasks. We achieve accuracy
levels similar to our predecessor FedLesScan[17] across all learning tasks along with an
average 3.5x speed-up in the FedMD pretraining process and a 76.7% execution time
reduction for FedDF aggregation compared to sequential execution times.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Problem Definition . 4
1.2 Methodology . 5

1.2.1 Research Questions . 5
1.2.2 Approach . 6
1.2.3 Evaluation and experiments . 6

2 Background 8
2.1 Federated Learning . 8

2.1.1 Limitations of Federated Learning 9
2.2 Serverless Computing . 10

2.2.1 Function-as-a-Service (FaaS) . 10
2.3 Knowledge Distillation (KD) . 11

2.3.1 Distillation Process . 12
2.3.2 Basic Distillation Example . 12
2.3.3 Benefits of Knowledge Distillation 12

3 Related Work 14
3.1 Serverless Federated Learning . 14
3.2 Knowledge Distillation in standard FL . 18

3.2.1 In-Depth Explanation - FedMD[38] and FedDF[42] 20
3.3 Model Architecture Agnostic Serverless Federated Learning 24

4 Enabling Model Heterogeneity Using Knowledge Distillation 25
4.1 Central Controller Enhancements . 25
4.2 Tunable Data Heterogeneity . 26
4.3 Intelligent Client Selection for Heterogeneous Architectures 26
4.4 FedMD Integration . 29

4.4.1 Training Workflow . 29

v

Contents

4.5 FedDF Integration . 32
4.5.1 Ensemble Distillation for Model Fusion 32
4.5.2 Training Workflow . 34

4.6 Overall System Design Improvements . 35
4.6.1 Optimized FedMD Pre-Training using Ray 35
4.6.2 FedDF Parallel Aggregation using FaaS 37

5 Experiments and Evaluation 38
5.1 Experiment Setup . 38

5.1.1 Overall Evaluation Procedure . 38
5.1.2 Datasets and Heterogeneous Client Data Distribution 39
5.1.3 Client Model Architectures . 43
5.1.4 Hyperparameters . 45
5.1.5 Infrastructure and Experiment Setup 48

5.2 Learning Task Performance and Accuracy 48
5.2.1 FedMD . 49
5.2.2 FedDF . 54

5.3 Time and Cost Analysis . 56
5.3.1 FedMD . 58
5.3.2 FedDF . 60

5.4 Quantitative comparison - FedMD and FedDF 63

6 Conclusion and Future Work 66

Abbreviations 68

List of Figures 69

List of Tables 71

Bibliography 72

vi

1 Introduction

In recent years, with the availability of increased amounts of data and computing power,
Machine Learning (ML) has become ubiquitous with applications in nearly every field
and it continues to be on a similar growth trajectory at least for the near future.ML
has revolutionized the way we process, analyze and interpret large amounts of data. It
has led to breakthroughs in the fields of image recognition, speech recognition, natural
language processing, and many other applications. Overall, recent progress in ML has
led to significant advances in fields including healthcare, finance, transportation, and
many others [51]. Currently, the most common method to train these ML models is
to train a single centralized model with access to the complete data set to be used for
the training process. This centralization allows for a more efficient and streamlined
approach to ML due to relatively simple algorithms and central resource management.
However, there are several issues associated with centralized ML such as data privacy
concerns, security risks, scalability limitations, bias, and lack of transparency [4]. Data
is often dispersed among multiple sources, such as individual devices, institutions,
or organizations. Federated Learning (FL)[33] is a relatively new ML model training
technique that tackles these issues and provides similar results as compared to the
centralized training methods. In contrast to centralized ML, FL enables distributed
data to be used for training machine learning models without any need of centralizing
the data.

Federated Learning(FL) is a new paradigm that allows for distributed training of
ML models across multiple devices while maintaining data privacy and security. The
general idea is multiple parties train local models on their private data sets and exchange
parameters to train a global model shared by all the parties with robustness to non-
independent and identically distributed (i.i.d.) data samples among the participating
clients. This approach has numerous advantages, including reduced communication
costs, improved scalability, and increased data privacy[57]. In FL, clients can be
mobile, edge devices, or virtual machines managed by Infrastructure-as-a-Service (IaaS)
providers however, all these traditional FL systems can immensely benefit from a new
computing paradigm called serverless computing as proposed by Chadha, Jindal, and
Gerndt in FedKeeper[11].

As the technology sector is migrating towards the cloud due to high availability
and easy resource access and management, serverless computing is one of the most

1

1 Introduction

widely used cloud computing models [52] in which the cloud provider manages
and dynamically provisions the resources required for running processes completely
abstracting away the back end infrastructure-related details from the user. It is offered
by most of the big cloud providers in the form of Function-as-a-Service (FaaS) platforms
such as AWS Lambda [6], Google Cloud Functions [14], and Microsoft Azure Cloud
Functions [7] on a pay-per-use basis. Open-source frameworks such as OpenFaaS [43]
and OpenWhisk [48] are also available to deploy such functions on managed clusters.

Using FaaS technologies for FL as proposed in FedKeeper [11] leads to improvements
in resource efficiency and cost since FaaS clients can scale down to zero instead of
waiting for other clients to complete their local training process in contrast to IaaS based
systems that stay idle incurring costs and resources during the complete process. These
idle times are further increased due to differences in clients’ computing capabilities
and data heterogeneity.

Grafberger et. al [23] proposed FedLess as an evolution of FedKeeper in which
more FaaS providers were added to the existing system along with other features such
as client authentication and authorization, Local Differential Privacy(LDP) for model
weights, and a lightweight process controller for faster convergence.

In the existing FedLess[23] framework, there is an implicit assumption that all the
clients need to have the same ML model architecture to train a global model through
weight averaging however a practical FL system is affected by different types of client
level issues that are difficult to address with this particular assumption:

• Computational Heterogeneity: In the real-world federated learning setting, FL
clients can vary from edge devices to fully-fledged GPU-enabled systems and each
of these clients may have different memory, computing, and storage capacities[40].
As a result, it is not possible for each participating client to agree on a single
global model architecture. Even if a client model architecture is really simple due
to computational constraints, it might contain crucial private data that can be
useful for the convergence of the global model.

• Statistical Data Heterogeneity: In a distributed FL system, it is a common
scenario for clients to have non-IID data distributions which greatly impact
the accuracy of the global model as demonstrated in figure 1.1 which shows
the negative impact of non-i.i.d. data distribution on the FedMD[38] federated
learning algorithm for the MNIST and CIFAR-10 image classification task. A
smaller value of Dirichlet alpha indicates a higher level of non-i.i.d. distribution
among the clients as also demonstrated in section 5.1.2. We observe an accuracy
drop of about 50% for MNIST and 10% for the CIFAR task between alpha values
of 100 and 0.1. This happens mostly because the final models do not generalize
well after the model aggregation process due to variance among the trained

2

1 Introduction

local client models. Also, it is important for each participating client to have the
independence to choose their own model architecture specifically tailored to their
private distribution but also benefit from other collaborating clients at the same
time.

• Privacy: The current system involves federated averaging of the client model
weights on a central aggregator. However, federated learning clients can be
distributed across various different organizations and every organization might
not be willing to share personal model architecture details and parameters specific
to their private datasets as they can be used for inferring the original training
data[25, 12, 38]. Although the existing FedLess system provides Local Differential
Privacy(LDP) mechanism to prevent such attacks, it can not fully guarantee
protection as long as client parameters are being shared with a centralized server.
Even though this issue does not directly demand client model heterogeneity, it
comes as an added benefit with the knowledge distillation techniques that we
will be using to enable model heterogeneity.

100 50 1 0.1
Data Heterogeneity Level (Dirichlet alpha)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

ac
cu

ra
cy

(%
)

MNIST
CIFAR

Figure 1.1: Impact of increasing data heterogeneity on the test accuracy of the FedMD
distributed learning algorithm for MNIST and CIFAR image classification
tasks

Therefore this assumption of homogeneous architectures is not always possible
in practical scenarios. To allow all the devices to contribute as well as benefit from

3

1 Introduction

the training process, we need the ability for clients to have heterogeneous model
architectures and this brings us to an active area of research known as Knowledge
Distillation (KD) first introduced by Hinton et. al [27]. We choose knowledge distillation
to enable model heterogeneity since it allows a high level of flexibility in the choice of
client model architectures in contrast to other approaches like parameter decoupling [3]
that only allows flexibility in particular layers of the overall architecture. Additionally,
knowledge distillation-based approaches are more communication efficient in federated
learning since they usually involve the transfer of only the prediction logits to the
aggregation server instead of complete model parameters.

KD is a technique used in ML to transfer knowledge from a large, complex model
(teacher model) to a smaller and more efficient model (student model). The goal is to
improve the performance of the student model by allowing it to learn from the teacher
model’s knowledge. These distillation techniques can be applied in the FL setting and
enable client model heterogeneity since it does not include a direct exchange of model
weights among the client and teacher models.

Most KD techniques such as FedMD[38], DS-FL[29], MHAT[28] comprise a series of
steps such as private training, prediction on public datasets, and aligning local models
to these logits. Due to the synchronous nature of these algorithms, the central controller
cannot move to subsequent steps until all the participating clients finish a particular
step which results in a lot of resources being idle and incurring unnecessary costs
for every round. Additionally, due to system heterogeneity and data imbalance, the
variation in step execution times for each client increases further leading to even more
idle time and resource wastage. However, implementing these algorithms using FaaS
eliminates this issue because of the auto-scaling capabilities which can scale down
resources to zero during these idle times and bring the execution costs significantly
down for such algorithms through its pay-per-use billing model.

Thus, the focus throughout this work would be to build upon the existing Fed-
Less[23] FaaS based FL framework and extend it to enable client model heterogeneity
while obtaining similar training results and execution costs compared to the existing
framework. We explore various KD techniques in the federated learning setting based
on their ability to support client model heterogeneity and data heterogeneity among
the participating clients and enhance the current FedLess architecture to integrate them.

1.1 Problem Definition

In server-based standard FL techniques, the same model architecture is used by the
FL clients and server which is usually difficult in practice because of computation
capacity limitations on the clients as explained in the previous section. Knowledge

4

1 Introduction

Distillation in federated learning tackles this issue by providing flexibility to accommo-
date heterogeneous model architectures for the clients by following a student-teacher
paradigm.

We evaluate these existing state-of-the-art KD algorithms based on their performance
as well as the ease of integration into the current FedLess system architecture. We want
to make use of some of these approaches and develop an extension of FedLess that
allows for client model heterogeneity with at least similar or better performance than
the current FedLess system as well as the IaaS-based counterparts of these approaches
in terms of accuracy, convergence time, and execution cost. Also, statistical data
heterogeneity among the heterogeneous client architectures is a common scenario that
occurs in real-world distributed learning settings which has been addressed in this
work.

Out of all the KD techniques mentioned in table 3.1, we only consider those which
allow client model heterogeneity since that forms the basis of the problem we want
to address. In addition, we want the technique to be robust towards non-i.i.d. data
distribution among the participating clients and able to perform well on all types
of tasks and not be limited to a specific domain for better generalization of our
implementation.

1.2 Methodology

In this section, we provide an overview of the research objectives, structure, and
milestones throughout the project. We also provide a summary of the evaluation
criteria that we use.

1.2.1 Research Questions

• How can knowledge distillation techniques enable client model heterogeneity in
a Serverless FL setting? [Main Question]

• What effect does client model heterogeneity have on the accuracy of such a
system?

• What effect do different levels of client data heterogeneity have on the accuracy
of such a system?

• How much FaaS execution time and cost is required for such a system?

5

1 Introduction

1.2.2 Approach

Firstly, we conduct an in-depth analysis of the currently published IaaS-based ap-
proaches and their implementations. We finally boil down to two best-suited IaaS
approaches FedMD[38] and FedDF[42] based on their performance and the ease of
integration into the current system. We implement the shortlisted approaches from the
previous step along with further optimization of the existing processes by making use
of serverless computing demonstrated in the upcoming chapter 4. In terms of changes
to the overall FedLess system, we incorporate the following enhancements:

• Support for heterogeneous client model architectures across all strategies.

• Tunable data heterogeneity to create synthetic non-i.i.d. data distributions across
participating clients for experimentation.

• Extended version of the FedLesScan[17] client selection algorithm that incorpo-
rates heterogeneous client model architectures in the clustering process.

• Most importantly, the optimized implementation of FedMD[38] and FedDF[42] al-
gorithms in our serverless federated model training framework with the following
main optimizations:

– FedMD pre-training using the Ray[49] serverless distributed training frame-
work.

– Fast parallel aggregation for FedDF using multiple FaaS aggregators.

1.2.3 Evaluation and experiments

We evaluate the system on a variety of computer vision and Natural Language Pro-
cessing (NLP) tasks, heterogeneous client architectures, and varying levels of data
heterogeneity among the clients. First, we conduct an in-depth accuracy performance
analysis for both FedMD and FedDF at various data heterogeneity levels, then we shift
our focus towards the FaaS execution time and incurred costs individually for each
algorithm. Finally, we perform a quantitative comparison between both algorithms in
terms of accuracy, execution time, and FaaS costs.

Overall, our experiments show that we are able to achieve similar accuracy levels
and even better for language modeling tasks across both algorithms in a standard
i.i.d. data distribution setting when compared to the performance of our predecessor
FedLesScan[17]. In the case of extreme non-i.i.d. distribution, FedDF demonstrates
much more robustness yielding performance accuracy similar to FedLesScan on both
MNIST as well as Shakespeare tasks in contrast to FedMD which results in an average

6

1 Introduction

drop of 46.5% test accuracy on the MNIST dataset for the extreme data heterogeneity
case. In terms of system optimizations, we were able to achieve an average speed-up
of 3.5x for the FedMD pre-training process using the Ray platform. We also achieved
a decrease of 76.7% in the aggregation process execution time for FedDF. Finally, in
terms of overall experiment execution duration and FaaS costs, FedMD had an average
execution time of 193 minutes costing $13.24 whereas FedDF had an execution time of
191.5 minutes costing $5.59 on average. Consequently, FedDF outperforms FedMD in
terms of accuracy performance, especially in extreme cases of data heterogeneity, and
has a similar FaaS execution time but is relatively cheaper in terms of invocation costs.

7

2 Background

This section introduces some key concepts and technologies that are being used through-
out this project. Section 2.1 defines federated learning, its benefits, and its limitations.
Then we move on to section 2.3 which dives into Knowledge Distillation that enables
the main objective of this project which is to client model heterogeneity in a serverless
federated learning setting.

2.1 Federated Learning

Federated learning is an emerging machine learning paradigm that enables training ML
models without requiring the centralization of data. It allows various data owners such
as institutions and organizations to collaboratively learn a shared model by exchanging
model parameters, instead of raw data. This approach has the potential to address the
privacy and security concerns associated with centralized machine learning systems.

It was first introduced by McMahan et al. [33] at Google and was integrated into
GBoard (Google Keyboard)[45] on the Android mobile operating system across millions
of heterogeneous mobile phones where federated learning processes the typing history
on-device to suggest improvements to the next iterations of the query suggestions
model.

Typical federated machine learning algorithms mainly comprise the following steps
as shown in Figure 2.1:

1. Model initialization: The central server initializes the machine learning model
with some pre-defined parameters.

2. Local model training: Client devices perform local training on their private data.
The local training updates the model’s parameters using the private data that
is available on the device. The device then sends the updated parameters back
to the centralized server. Usually, a fraction of clients are selected for each local
training round and this can be done using selection schemes like FedLesScan [17]
which uses a clustering-based approach for client selection.

3. Model Aggregation: The central server aggregates the updated parameters
from all the client devices and calculates a new set of parameters for the model.

8

2 Background

FL Server

Model Aggregation

1

2

3

4

1 Server sends global model to clients

2 Clients perform local training

3 Clients send updated model to server

4 Server performs aggregation of client models

Client 1 Client n-1 Client n

Private data
 store

Figure 2.1: Standard FL setup

This process is done using aggregation algorithms such as Federated Averag-
ing(FedAvg)[53].

4. Client Model Update: The updated parameters are then sent back to each client
device for further local training, and the process repeats until the desired accuracy
is achieved.

2.1.1 Limitations of Federated Learning

Two major challenges relevant to this project in federated learning are device and
data heterogeneity[39]. Since the training is distributed across a set of devices, each
device has different computing capabilities and access to different data samples which
usually results in a non-i.i.d. distribution of samples among clients. For instance, a
smartphone may have very limited processing power compared to a desktop which
makes it challenging to train the same model on both these devices.

9

2 Background

In the case of data heterogeneity, clients have access to different distributions of data
as well as varying numbers of training data samples depending on the storage capacity.
This can lead to biased models that do not generalize well to the entire data population.
There has been a lot of research on this side to tackle the problem of data heterogeneity
in federated learning such as [44] where they use data augmentation to tackle data
heterogeneity for inducing equal or greater performance.

2.2 Serverless Computing

A relatively new cloud computing paradigm is serverless computing which has gained
a lot of popularity. It is a cloud computing application execution model in which the
complete underlying infrastructure and resource management is abstracted away from
developers by the cloud providers so that they can focus on the main application logic
and code without having to deal with any server management and other operational
tasks. Another major benefit of the serverless model is that the developers pay only
for the resources that are actually used. The cloud provider automatically scales up
and provisions more computing resources when required and can scale them back to
zero when demand decreases. This means that developers are only billed according
to the exact execution time and the computing resources used during that period
of time which has significant cost benefits. All the major cloud providers such as
AWS, GCP, and Azure are moving their services toward the serverless model with
function-as-a-service (FaaS) being at the core of this paradigm shift.

2.2.1 Function-as-a-Service (FaaS)

One of the most popular and widely used ways to implement a serverless computing
model is Function-as-a-Service (FaaS). It allows developers to write code in the form of
a stateless event-based microservice function and then these individual functions can be
deployed in the cloud with the help of containers. Once deployed, these functions can
be triggered via HTTP requests and also through other connected cloud services that
the provider offers such as message queues both in a synchronous and asynchronous
way. Since this is an event-driven function execution model, the incoming events
are monitored and these functions are auto-scaled based on certain triggers like the
frequency of incoming requests, CPU usage, and many more depending on the use
case. Below are some of the most popular FaaS providers that are being widely used in
the industry:

• Amazon - AWS Lambda [6]

• Google - Google Cloud Functions(GCF) [14]

10

2 Background

• Microsoft - Azure Functions [7]

• OpenFaaS (Open Source) [43]

• Apache OpenWhisk (Open Source) [48]

In terms of applications, FaaS is suitable for any cloud application that has repetitive
event-driven behaviors such as microservices for web applications and in Internet of
Things (IoT) for streaming data processing tasks since several individual functions can
also be combined to create complex processing workflows.

2.3 Knowledge Distillation (KD)

KD is a technique used in ML to transfer knowledge from a larger, more complex
teacher model to a smaller, simpler student model without losing validity. It was
first introduced by Hinton et. al [27] for neural networks. Since then, it has been
used for many applications such as improving generalization performance through
self-distillation[58], learning with noisy data[2], and transfer learning[56]. For this
work, the key motivation behind using KD is its ability and flexibility to accommodate
personalized heterogeneous model architectures. Based on whether both the teacher
and student models are updated or not, distillation techniques can mainly be placed
into 3 categories as mentioned in [22]:

1. Offline Distillation: This is the most common type of knowledge distillation[27,
50] in which knowledge is transferred from a pre-trained model to a student
model. Firstly, the complex teacher model is trained on some training samples and
then knowledge is extracted from this model in the form of logits or intermediate
features which is in turn used to guide the training process of smaller student
models. Therefore, only the student models are updated during the distillation
process. However, one drawback of this distillation type is that we need a
large-capacity high performing complex teacher model.

2. Online Distillation: In this type, both the teacher and the student models are
updated simultaneously and therefore it overcomes the issues of offline distil-
lation. The training in this case is completely end-to-end and can be efficiently
parallelized. Some interesting works in this area are [24, 1, 59].

3. Self-Distillation: In this category, the same networks are used as student and
teacher models. The main idea is to use the predictions of the trained model as
target values for the retraining process iteratively. Some interesting works are [20,
46].

11

2 Background

2.3.1 Distillation Process

A lot of research has been performed on various ways to distill knowledge between
models as shown in table 3.1. A very basic idea as mentioned in [27] to transfer the
generalization ability of the complex teacher model to a small model is to use class
probabilities (from the softmax layer) produced by the teacher model as "soft targets"
for training the smaller model. For this transfer, the same training set can be used or it
can be done using a separate transfer set that may be labeled or unlabelled depending
on the algorithm. Since probabilities close to zero have very less impact on the cross
entropy loss function, alternatively class logits (output before softmax) from the teacher
model can be used as the "soft" targets with a standard L2 loss for optimizing the
smaller models.

2.3.2 Basic Distillation Example

In this section, we take a look at a basic distillation method from [27]. Equation 2.1
represents a "softmax" output layer that converts the output logits zi into probability pi
where T is known as the temperature. Temperature controls the entropy of the output
distribution and higher temperatures lead to softer output distributions which means
that bigger logits are penalized more than smaller logits.

pi =
exp(yi/T)

∑j exp(yj/T)
(2.1)

In a simple form of distillation, the distilled student model is trained on a transfer set
and using a soft target distribution for each case in the transfer set that is produced by
the larger teacher model with a high softmax temperature. The same high temperature
is used when training the distilled model, but after it has been trained it uses a
temperature of 1 during inference.

2.3.3 Benefits of Knowledge Distillation

Some important uses of KD and its relevance are mentioned below:

1. Model Compression: Although deep and complex neural networks might have
very high learning capabilities, it is not always the case that these capabilities are
being utilized completely. Consequently, it makes sense to transfer this learned
knowledge to smaller and simpler student models to reduce computational
complexity without a significant performance loss for deployment on simpler and
less powerful hardware.

12

2 Background

2. Model Heterogeneity: Since in KD, we do not exchange weights directly between
the teacher and student models to transfer learned knowledge but rather rely on
the output class logits. Therefore this enables separate model architectures for the
teacher and student models. We will be using this property of KD in this project
extensively.

3. Better Generalisation: As we distill knowledge from larger teacher models, it can
lead to an increased generalization performance in the smaller student models
since the larger models are usually trained on larger data sets along with complex
features. This improves the student model’s accuracy and reduces overfitting.

13

3 Related Work

In this chapter, we first explore the current literature in the field of serverless federated
learning in section 3.1 with a major focus on the architecture and in-depth working
of FedLess[23], FedKeeper[11] and FedLesScan[17] since it is the baseline of works on
which we are building in this work. Then in section 3.2 we provide an overview of
client model architecture agnostic federated learning techniques where we first focus
on knowledge distillation-based methods and some other approaches. Finally, we look
into works combining client model heterogeneity and serverless federated learning
which is also the main focus of this project.

3.1 Serverless Federated Learning

Serverless computing mainly refers to a cloud computing model where the cloud
provider manages the infrastructure and automatically allocates computing resources
to event-based processing functions. This saves developers, the hassle of infrastructure
management and only pays for the computing resources that they are using while also
being highly scalable. A relatively new direction of research in federated learning is
the integration of serverless capabilities into FL which mainly helps in reducing idle
resource costs and easier infrastructure management.

Kotsehub et al. proposed FLoX[34] which is based on the funcX[19] serverless
computing platform where they try to decouple FL model training/inference from
infrastructure management and enable users to easily deploy FL models on heteroge-
neous and distributed compute endpoints. Their workflow involves a "controller" and
several participating computing devices. The controller is responsible for selecting eligi-
ble training devices from an available device pool, transmitting the training task along
with the global model to these devices, and then receiving and aggregating the trained
local model weights from each device for the next round using FedAvg[53] method. An
interesting aspect of this work is lightweight endpoints with experiments on various
low-powered edge devices such as the Raspberry Pi. However, this framework is not
generalized and is built specifically on the funcX serverless platform.

Jayaran et. al[30] proposed λ-FL, which is a serverless aggregation method for fed-
erated learning. They aim to reduce resource wastage which is a common bottleneck
in most FL processes and have better fault tolerance. They treat the aggregators as

14

3 Related Work

Figure 3.1: Original architecture of FedKeeper [11]

serverless functions without any state where every aggregator acts on a particular
sequence of inputs and produces a single output. Since the approach depends on
hierarchical result aggregation by multiple serverless aggregator instances, the aggrega-
tion operation has to be associative. They split this associative aggregation operation
into two types of serverless functions- Leaf Aggregation Function and Intermediate
Aggregation Function. First, they fuse the raw gradient updates from a fixed number
of parties to obtain a partially aggregated model update by simple averaging of the
gradients using leaf aggregation functions. Then intermediate aggregation functions
perform a further aggregation of the partially aggregated model to produce the final
aggregated model. In terms of implementation, they use the topic-based message
queues, Kafka for party-aggregator communication. Each FL job has a TaskID identifier
and two queues TaskID-Agg and TaskID-Parties are created at the start of the process.
Once the job starts, the aggregator publishes the initial model on the TaskID-Agg queue
which can be downloaded by parties to download and start their training. Once local
training is complete, parties push their model to TaskID-Parties at end of each round.
After every few updates of TaskID-Parties, an aggregation function gets triggered for
the leaf aggregation process and pushes the result back to the Kafka queue triggering
other intermediate aggregate functions for the final aggregation result. This work
shows a promising research direction toward the use of serverless technology in FL.

One of the first fully serverless federated learning architectures FedKeeper was

15

3 Related Work

Figure 3.2: Original architecture of FedLess [23]

proposed by Chadha et. al[11] in the form of a Python framework that works over a
combination of FaaS platforms for training across heterogeneous devices with unified
invocation methods. It runs an OpenWhisk[48] based deployment which is responsible
for automatic creation, deletion, and invocation of FL clients for various FaaS platforms
and also keeps track of all FaaS functions. All these tasks are achieved by several sub-
components i.e. Client Register, Weights-Updater, Client-Invoker, and the FL-Server as
individual OpenWhisk functions. Client-Register is a local Mongo database instance
for storing client invocation details. FL-Server initializes the model to be trained along
with the required training hyperparameters and creates a configuration file for each
client. This configuration file is used by Client-Invoker for the invocation of FL clients
through their URL with a 1-1 mapping between invoker and client functions. Once
clients return updated weights to the Client-Invoker, it triggers the Weights-Updater
which aggregates the client weights and stores them in the local object store and then
the FL-Server repeats the whole process until convergence for the specific task. System
architecture showing all these components can be seen in figure 3.1.

FedLess was proposed by Grafberger et al.[23] which was an evolution of the existing
FedKeeper[11] architecture as shown in figure 3.2. It has multiple enhancements in
terms of support for more FaaS platforms, authentication, and authorization of clients
along with privacy-protecting training mechanisms. From the architectural perspective,
FedLess supports four commercial and two open-source FaaS platforms. Its main
component is the control pane which runs on a Kubernetes cluster consisting of a Pa-
rameter Server(MongoDB), a Client Database(MongoDB), an OpenWhisk-based central

16

3 Related Work

Figure 3.3: Modified architecture of FedLess[11] for FedLesScan[17]

aggregator function, and the FedLess Controller. Parameter Server is responsible for
storing the global model weights, hyperparameters, and architecture whereas the Client
Database stores client-specific information such as invoke URL, their hyperparameters,
dataset locations, and any other information supplied by the administrator for the
client to execute successfully. The stateful controller manages the complete training
cycle and is responsible for client selection and invocation of the client as well as
aggregator functions. The aggregator function is invoked by the controller once all
participating clients have finished their local data training and it uses FedAvg[53] to
aggregate the client model parameters and pushes it into the Parameter Server. It
also AWS Cognito[5] for authentication, authorization, and integration with external
identity providers based on JSON Web Tokens (JWTs)[31] attached to all HTTP requests
between the server and clients.

Another work FedLesScan proposed by Elzohairy et al.[17] builds on top of FedLess
in which the key contribution is to mitigate stragglers in the system along with some
architecture enhancements. A common issue in large-scale FL systems are stragglers
which are the slower clients that affect the overall training process negatively in terms

17

3 Related Work

of time, resources, and accuracy of the global model. The main causes of stragglers
are differences in clients’ computation and communication capabilities along with the
presence of unbalanced non-i.i.d. data. They propose an adaptive clustering-based
client selection algorithm that selects current round clients based on their behaviors in
the previous round and a staleness-aware aggregation scheme to reduce slow model
updates and avoid wasted client contribution. As shown in figure 3.3, it has the
following architecture extensions to the existing FedLess system with new components
highlighted in blue:

• Central stateful controller does not depend on complex Kubernetes deployments
and can now be run on any system as a lightweight process

• To reduce development costs and better debugging on FedLess, they implemented
mock functions to test the whole system on a single local machine without
deployment

• Added Strategy Manager component to the controller responsible for controlling
client selection as well as selecting the aggregation strategy

Apart from these changes, the overall training process flow remains similar to
FedLess.

3.2 Knowledge Distillation in standard FL

Several works apply distillation-based approaches to federated learning[54] as the
demand for more personalized models on resource-constrained devices has increased.
FL algorithms mainly use KD for[47]: (1) Enabling client heterogeneity; (2) Mitigating
the impact of data heterogeneity on global model accuracy. KD based FL architectures
can mainly be divided into four categories[54]:

1. Distillation of knowledge to each FL client to learn stronger personalized
models: In these architectures, the focus is to learn client-level personalized
architectures. An interesting work in this category is FedMD proposed by Li and
Wang[38]. It comprises a publicly labeled "transfer" dataset and client-specific
private data sets. In every round, the public dataset is used for logit-based
distillation between all the clients and then each client fine-tunes its model on
their private datasets. Therefore, every client obtains a personalized model while
also leveraging knowledge from other clients. We have used this architecture in
our work and will dive deeper in the upcoming sections.

18

3 Related Work

2. Distillation of knowledge to the FL server to learn stronger server models: In
this type, the focus is on learning stronger student server models with the help of
several candidate teacher models. We will be using FedDF architecture [42] in
this work as it is designed for edge clients having different model architectures
and computing capacities.

3. Bidirectional distillation to both the FL clients and the FL server: These are
also known as online distillation techniques where both the FL server and clients
distill knowledge to each other within the same training procedure. Interesting
state-of-the-art architectures in this paradigm include FedET[13] and FedGKT[26]
that use alternative minimization techniques to train the small client models and
the large server model through bi-directional distillation.

4. Distillation amongst clients: KD in a federated learning setting can also be per-
formed among neighboring clients in the network such as Distributed Distillation
Algorithm proposed by Bistritz et al. [8] where each client uses an unlabeled
public dataset and broadcasts it’s soft decisions to its neighbors for distillation.

Since the main focus of this work is client model heterogeneity, we analyze several
approaches by taking two important factors into account:

1. Does it require a public data set? If yes, then labeled or unlabelled.

2. Does it allow all possible modeling tasks and architecture types?

Table 3.1 shows heterogeneous client model KD algorithms with an analysis of
the above-mentioned factors. FedMD belongs to the first category of KD algorithms
in which knowledge distillation occurs to each FL client in order to get stronger
personalized models, it requires a carefully chosen labeled public transfer dataset and
can be used to perform any learning task ranging from image to text data applications.
For the second KD category, we evaluated two algorithms i.e. MHAT and FedDF which
involve knowledge distillation to the server for better central server models, and both of
them require an unlabelled public dataset for the distillation process. Most algorithms
belonging to category three above involve alternate model training between the server
and clients for every round which results in high communication costs in terms of
a serverless architecture since the aggregator and client functions need to exchange
parameters frequently. Similarly, category four involves knowledge distillation among
all the participating clients resulting in even higher communication costs because of all
the clients distilling knowledge to their neighbors. Therefore, we do not consider any
distillation algorithms from categories three and four for our serverless implementation.

19

3 Related Work

Method Needs Public Data? KD Category Possible Tasks

FedMD [38] Yes, Labeled 1 Any
MHAT [28] Yes, Labeled/Unlabeled 2 Any

FedDF [42] Yes, Unlabeled 2 Any

FedGKT [26] N/A 3 Only Image

FedET [13] Yes, Unlabeled 3 Any

DS-FL [29] Yes, Unlabeled 4 Any

Table 3.1: Evaluated model heterogeneous KD techniques

Taking all these factors into account along with the robustness towards data hetero-
geneity among the clients, we decide to extend the FedLesScan[17] system using the
FedMD[38] and FedDF[42] algorithms for enabling client model heterogeneity. From
category one, we choose FedMD since it satisfies all our requirements i.e. allows client
model heterogeneity and generalization to any machine learning task. Additionally, it
is relatively robust to a certain level of data heterogeneity compared to other algorithms
in this category. Also importantly, considering there are several synchronous steps
involved during each training round for FedMD, we believe that it can greatly benefit
from a serverless implementation in terms of execution costs. In the second category,
we choose FedDF because of its simple yet powerful server-side knowledge distillation
scheme that does not require any modifications on the client side and is very robust to
heterogenous data distribution among the participating clients. FedDF does not place
any restrictions on the unlabelled public dataset which can even be generated from
generative networks in case of unavailability. Also, the knowledge distillation method
of FedDF can greatly benefit from being parallelized using serverless functions which
will result in reduced costs and execution time. We go into more depth about these
algorithms in section 3.2.1 since it would be crucial for the understanding of this work.

3.2.1 In-Depth Explanation - FedMD[38] and FedDF[42]

In this section, we introduce the two KD-based federated learning architectures FedMD
and FedDF in depth since we have used them as base algorithms throughout this
work to enable client model heterogeneity. Also, both these methods can be applied to
various tasks such as Computer Vision (CV) and NLP.

20

3 Related Work

FedMD

FedMD[38] involves the distillation of knowledge to each FL client to learn stronger
personalized models. Also, each participant can design their unique model architecture
and they can still benefit from collaborative distillation with the other clients. In this
approach, the centralized server does not need to have any information regarding
the client models and it can be considered a black box. In terms of data, there is a
labeled public dataset accessible to all clients and individual private client datasets. It
comprises several steps for completing each round of collaborative training as shown
in figure 3.4:

1. Initial Transfer Learning: Each client trains on the labeled public dataset until
convergence and then on its private dataset

2. Communicate: Each client performs a forward-pass inference on the public data
samples and sends the resulting class logits to the central server

3. Aggregate: Server combines these class logits by averaging

4. Distribute: Each client downloads the averaged logits from the server

5. Digest: Each client trains its model using the averaged logits as soft targets on
the public dataset

6. Revisit: Each client trains on its private dataset for a few epochs for personaliza-
tion of the model

Step 1 mentioned above only takes place once initially and steps 2-6 occur repetitively
for each communication round until the required client model accuracy is achieved.
Some issues with this approach are the following:

• Requires an initial transfer learning step where all the clients need to be trained
on the public dataset till convergence before starting the actual collaboration
rounds and it is relatively time-consuming.

• Final output layer of the client model architecture needs to have a total number of
output neurons equivalent to (#PrivateDataClasses + #PublicDataClasses) since
the same model needs to be trained on both the public as well as the private
dataset during the complete training process and in most of the cases, both these
datasets have a mutually exclusive set of classes. Therefore, the performance of
the final model is affected in case there is a higher number of classes in the public
dataset. Consequently, a good public dataset should have more data samples
divided among less number of overall classes.

21

3 Related Work

Figure 3.4: Original algorithm for FedMD[38]

FedDF

FedDF[42] involves learning stronger server models by distilling knowledge from
several student models. It proposes an ensemble distillation approach for model fusion
which supports heterogeneous client models and data. This approach solves both issues
mentioned previously in section 3.2.1 as it works with unlabelled public data with can
also be generated optionally by a Generative adversarial network (GAN) since it is
quite robust to dataset selection.

In the case of homogeneous model architectures, an ensemble of several selected
teacher models distills knowledge to a single server student model. In every round,
each client performs its local model training and sends the updated weights to the
central aggregation server. The aggregation server then initializes a student model
using a federated averaging [53] of the client model parameters. Now, several iterations
of ensemble distillation take place from the client models to the server model via the
unlabeled dataset according to equation 3.1 which is one of the key contributions of
this paper (Please refer [42] for details). Also, it is important to note that the complete
distillation process takes place on the server side without any modifications to the
regular local client training process. It comprises several steps for completion of each
training round as shown in figure 3.5:

1. Three hashmaps are initialized in the beginning i.e. model-weights, client-model,
and model-clients mappings which are required for the distillation process

2. A subset of random clients is selected for each communication round where they
first perform their local private data training similar to FedLess.

22

3 Related Work

Figure 3.5: Original algorithm of FedDF[38] for heterogeneous client architectures

3. Now for each model prototype, the distillation process occurs in parallel for
several iterations until the validation loss flattens out.

4. In this distillation process, we first initialize a student server model using Fe-
dAvg[53] of the participating clients’ weights for the particular model architecture

5. Then all the client teacher models participating in the communication round
distill their knowledge to the initialized student server model using the update
step mentioned in equation 3.1

6. Finally, we obtain one trained model for each unique model architecture that
contains collaborative knowledge from all the participating clients across all the
model architectures

xt,j := xt,j−1 − η
∂ KL

(
σ
(

1
|St| ∑k∈St

f
(
x̂k

t , d
))

, σ
(

f
(
xt,j−1, d

)))
∂xt,j−1

(3.1)

23

3 Related Work

In the equation 3.1, KL stands for Kullback-Leibler divergence, σ is the softmax
function, and η is the step size.

3.3 Model Architecture Agnostic Serverless Federated Learning

As we saw in section 3.2, there has been a lot of research with a focus on applying
model-agnostic knowledge distillation to standard IaaS-based federated learning ar-
chitectures. Moreover, experiments conducted for FedMD are simulated locally only
for 10 participating clients without much emphasis on the infrastructure components
and therefore do not provide a full picture of the algorithm performance in an actual
distributed setting which involves many other factors such as system heterogeneity
and stragglers. Similarly, for FedDF, there has not been any focus on the distributed
infrastructure, its optimization, and execution time in such a setting and they leave
this part as future work. To the best of our knowledge, we are the first ones to apply
KD methods in the serverless federated learning paradigm. In this work, we present
an extension of the FedLess[17] architecture that allows clients with heterogeneous
model architectures to participate in the serverless federated learning process and is
also robust towards data heterogeneity among the clients while yielding performance
results comparable to its predecessors. We also perform rigorous execution time and
cost analysis for the FedMD and FedDF algorithms in a distributed computing setting
across 100 participating clients.

24

4 Enabling Model Heterogeneity Using
Knowledge Distillation

As mentioned in the previous sections, we will be using existing knowledge distillation
algorithms to achieve this and we decided to go ahead with FedMD[38] and FedDF[42]
algorithms based on their performance and ease of integration into the existing system
design. In this chapter, we will highlight the major changes and new components
added to the existing base framework for achieving our final research goals.

4.1 Central Controller Enhancements

The central stateful controller is responsible for initializing clients and global models,
executing training strategies, and monitoring the complete process. Earlier, creating the
data configurations and the global model was a relatively straightforward process due
to homogeneous client architectures. However, to enable heterogeneous model training,
we added the capability to create and initialize heterogeneous model architectures for
each client based on the input configuration. Currently, we can build and initialize the
following models for each FaaS client depending on the task:

• Convolutional Neural Networks up to 3 layers with any dimensional specifica-
tions depending on the input size and a specific dropout rate that will be applied
after each layer followed by a fully connected layer in the end for classification
tasks.

• LSTMs up to 2 layers with configurable hyperparameters such as units, vocab
size, sequence length, and embedding size followed by a fully connected layer.

In the original FedLess framework, we have a fixed set of network architectures
depending on the task which is used for all the participating clients without any option
of architecture-related input parameters or arguments. We have now added generic
network creation functions for convolutional neural networks and LSTMs that can
create arbitrary model architectures based on a specific set of variable inputs such as
the number of filters in the case of convolutional networks and the number of units for
LSTMs. We modified the existing YAML input configuration file structure such that

25

4 Enabling Model Heterogeneity Using Knowledge Distillation

these architecture-dependent variables can be specified for each participating client
function.

All the network-related hyperparameters are currently being passed from the input
configuration YAML file separately for each client participating in the collaborative
training. These current model architectures are limited to the experimentation learning
tasks in the scope of this thesis. However, we have created a modular code structure so
that new architectures for other learning tasks can be added to the system with ease
and without any difficulty.

Also, since distillation algorithms require a separate public "transfer" dataset to
transfer knowledge between models, we have enhanced the client data configuration
creation process to take care of all these algorithm-specific data requirements. In
sections 4.4 and 4.6 we will go into more detail regarding these required datasets.

4.2 Tunable Data Heterogeneity

One of the major challenges in FL is non-independently and identically (non-iid)
distributed data among the participating clients where each client’s data reflects only
a fraction of the data distributions of all the clients. This can lead to issues such as
slow convergence and poor generalization performance of the FL model therefore it
becomes an important factor to consider in FL benchmarks such as LEAF[9]. We enable
controlling client data heterogeneity for classification tasks with the help of Dirichlet
distribution as in [42]. This helps us in analyzing the behavior and robustness of training
strategies towards different levels of data heterogeneity among the participating clients.
We perform sampling using draws from a Dirichlet distribution controlled by the
parameter α where a smaller α increases the probability of clients holding training
samples from only one class and vice-versa.

4.3 Intelligent Client Selection for Heterogeneous Architectures

In the original FedDF[42] algorithm, they select a random subset of clients for participa-
tion in each round. In this work, we customize the existing FedLesScan[17] intelligent
clustering-based client selection algorithm to integrate it with the FedDF algorithm for
straggler mitigation. We modify FedLesScan[17] such that it considers heterogeneous
client model architectures while selecting the participation clients for every round.
Algorithm 1 represents the pseudo-code for this modified selection scheme and we
recommend having a look at algorithm 2 in the paper FedLesScan[17] first since most
of the algorithm components are similar to our implementation and we will not dive
deep into the individual components in this section. In terms of terminology, we refer

26

4 Enabling Model Heterogeneity Using Knowledge Distillation

Algorithm 1: Intelligent Client Selection for Heterogeneous Architectures

1 Function Select_Clients(clients, round, maxRounds, nClientsPerRound):
2 init map Rookies: maps model prototypes to associated rookie clients
3 init map Participants: maps model prototypes to associated participant clients
4 init map Stragglers: maps model prototypes to associated straggler clients
5 totalRookies = # clients not called before
6 totalParticipants = # clients available for clustering
7 totalStragglers = # clients where Rounds.last + cooldown > round
8 startClusteringRound = -1
9 if totalRookies ≥ nClientsPerRound then

10 return RoundRobinSelection(Rookies, nClientsPerRound)
11 end
12 nClientsFromClustering = min(nClientsPerRound - totalRookies,

totalParticipants)
13 if nClientsFromClustering ≥ 0 and startClusteringRound == -1 then
14 startClusteringRound = round
15 end
16 nStragglers = nClientsPerRound - nClientsFromClustering - totalRookies
17 roundStragglers = RoundRobinSelection(Stragglers, nStragglers)
18 for each model prototype p in P do
19 clusteringData = []
20 for each client in participants[p] do
21 trainingEma = getEma(client.trainingTimes)
22 missedRoundRatios = divide(client.missedRounds, round)
23 missedRoundEma = getEma(missedRoundRatios)
24 clusteringData.append((trainingEma, missedRoundEma))
25 end
26 labels = DBScanClustering(clusteringData)
27 sortedClusters = sortClusters(Participants[p], labels, round)
28 clusteringResults[p] = Sample(sortedClusters, round, maxRounds,

startClusteringRound, len(participants[p]))
29 end
30 roundClustering = RoundRobinSelection(clusteringResults,

nClientsFromClustering)
31 roundRookies = RoundRobinSelection(Rookies, "All")
32 return [roundRookies + roundClustering + roundStragglers]

27

4 Enabling Model Heterogeneity Using Knowledge Distillation

to each unique model architecture as a model prototype. Therefore the model architec-
ture for each client belongs to a particular model prototype. First, we initialize three
mappings that map respective rookies, clustering participants, and straggler clients to
their associated model prototypes/architectures since we perform this client separation
separately for each model prototype (lines 2-4). As per the original FedLesScan paper,
this is how they are defined:

1. Rookies (first-tier): Clients that have never been called before to participate in the
training

2. Participants (second-tier): Clients that can participate in the clustering for the
current round

3. Stragglers (third-tier): Clients that have missed one or more successive rounds
cooldown ≥ 0

If the current remaining rookie clients are more than or equal to the number of clients
to be selected, we perform a standard Round Robin [21] based selection from the pool
of rookie clients i.e. selecting one rookie client at a time from each model prototype
group in a circular fashion until the required number of clients have been selected(lines
9-11). Then, the number of clients available for clustering is selected by subtracting
the total number of rookies from the clients required to be selected for the current
round (line 12). We also keep track of the first clustering round in order in order to
decide which cluster to train (lines 13-15). If the clients from rookies and participants
are not enough for the training round, we randomly sample the remaining clients from
stragglers (lines 16-17). Now we perform clustering for participating clients associated
with each model prototype separately. In the clustering process, first, we calculate two
attributes trainingEma (line 19) and missedRoundEma (line 21) for each participating
client which is defined as follows:

1. trainingEma: It is the exponential moving average of the training time for previous
rounds.

2. missedRoundEma: It is a penalty factor based on the previous missed rounds. It
is calculated by dividing the numbers in the missed rounds list by the current
round number to obtain a list of ratios and then we get an exponential moving
average of this list.

totalEma = trainingEma + missedRoundEma ∗ maxTrainingTime (4.1)

28

4 Enabling Model Heterogeneity Using Knowledge Distillation

Once this data has been collected for all participating clients of the current model
prototype group, we use the DBSCAN [18] algorithm for partitioning this data into
separate clusters (line 24). After this, obtained clusters are increasingly sorted based on
the average totalEma (equation 4.1) of the cluster member clients (line 25). Then, we start
sampling clients from these sorted clusters by first choosing clients belonging to the
faster clusters and slowly moving towards slower clusters until we obtain the required
number of clients (line 26). After the complete clustering process for all model prototype
groups, we obtain the clusteringResults mapping that maps the sampled participant
clients to their model prototype groups. In order to get a similar representation for
clients from all model prototypes, we then sample the final participating clients through
Round Robin-based selection from clusteringResults (line 30) and perform a similar
selection in order to get all the rookie clients(line 31). Finally, the algorithm returns a
list of clients comprising a combination of selected rookies, participants, and stragglers.

To summarize, the original FedLesScan client selection algorithm performs the
clustering process across the complete client pool without taking the model architectures
of each client into account during this process. However, since we have enabled the
clients to have heterogeneous model architectures now, it becomes important to perform
this clustering process at a model architecture level because the clustering metrics
such as training times vary across different architectures based on their complexity.
Therefore, in this extended version of FedLesScan, we first perform clustering across
clients belonging to the same model prototype groups and finally perform a round-
robin selection of the sorted clients from each model prototype group until the required
number of clients is selected.

4.4 FedMD Integration

FedMD algorithm[38] uses transfer learning and knowledge distillation to enable
collaborative federated learning across clients with different model architectures and
we recommend having a look at 3.2.1 to understand the algorithm. In this section, we
dive into the optimized implementation-specific details of this algorithm for serverless
federated learning systems.

4.4.1 Training Workflow

In figure 4.1, we demonstrate the complete training workflow for FedMD in the
serverless paradigm. We have omitted some technical details like client invocation
authorization and authentication along with other minor interactions with the database
for simplicity. Firstly, the FL admin configures the client models, datasets (public and
private), and the required client and FedMD-specific hyperparameters before starting

29

4 Enabling Model Heterogeneity Using Knowledge Distillation

Figure 4.1: Serverless training flow for FedMD

the training process. After the training process starts, the controller first builds and
initializes the heterogenous client models according to the provided configuration as
explained in section 4.1 and also creates the required data loaders for each client. In
FedMD, each client has access to various datasets as follows:

• Private training dataset: This is the learning task-specific dataset and each client
may have a different number of samples as well as data heterogeneity with partial
access which can be controlled by the α configuration parameter as mentioned in
section 4.2.

• Private testing dataset: The whole testing dataset is available to each client
since we would like to test every client on all test samples to see the effect of
collaborative training.

• Public training dataset: This is a labeled public dataset fully accessible by every
client and is used for knowledge distillation among the clients for collaborative
learning. It should be chosen carefully depending on the learning task.

Now we perform a one-time initial transfer learning process for all the individual
client models before the start of the collaboration phase where each client model is

30

4 Enabling Model Heterogeneity Using Knowledge Distillation

trained until convergence on the public training data and then on its private training
data. To optimize this process, we divided this into two successive steps as follows:

• Transfer Learning (Public Data): Since the public dataset is available openly
to all clients, we perform this training on an autoscaling KubeRay[49] operator
deployed on a Kubernetes cluster as explained in section 4.6.1. We perform this
initial public training in parallel depending on the cluster compute capacity for all
the client models until convergence. To achieve this, the controller communicates
with the deployed Ray cluster and schedules the training jobs accordingly.

• Transfer Learning (Private Data):: Now the controller performs client invocations
where each client trains its model further on their private data before starting the
collaboration rounds.

After the initial transfer learning phase, we now move on to the collaborative training
rounds where the clients start distilling knowledge to each other to achieve higher
overall test accuracies. Each collaborative training round comprises several steps which
are separated into individual FaaS client invocations that occur until the required
individual client model performances are reached:

• Communicate: All clients run a prediction on the public dataset and store the
prediction logits (pre-softmax) in the database. In this phase, we use a random
subset of the total public data samples for each round to speed up the process
without performance loss.

• Aggregate: Controller invokes the aggregator function which computes the mean
of these prediction logits from all the clients. We can also try more sophisti-
cated aggregation methods such as weighted averages based on the client model
architectures.

• Digest: In this step, each client loads the averaged logits and trains their model to
approach the averaged prediction logits from the previous step. In other words,
they try to align their logits with the globally averaged logits and therefore distill
knowledge towards each other.

• Revisit: Finally, each client fine-tunes their model on private data for a few epochs
to retain their model personalization.

• Evaluation: After the end of every collaborative training round, the controller
performs an evaluation invocation to get the performance of each client model on
the global test data samples.

31

4 Enabling Model Heterogeneity Using Knowledge Distillation

Importantly, we observe that there are no model weight or parameter exchanges in
the above learning process therefore it can be performed across heterogeneous model
architectures. Another interesting aspect to note is that the complete training process
is synchronous in nature since all the participating clients need to finish a particular
step invocation before moving on to the next step. Therefore, it is hugely beneficial to
execute this algorithm in a serverless environment in terms of cost and total execution
times since clients can scale down to zero when they are idle and awaiting other clients
to finish a particular invocation step. Once the learning process is complete, we observe
significant gains in client test accuracy in contrast to their performance when trained
only on their private data without collaboration.

4.5 FedDF Integration

In FedDF[42], we aim to train central classifiers through predictions of client models
on unlabelled data. It is an on-server distillation method for model fusion on the
aggregator side and does not require any changes in the client training process i.e.
it uses unlabelled data to aggregate knowledge from all the client models to train
student server models and this ensemble distillation process allows heterogeneous
client models and data. Similarly in our serverless system, there are no significant
changes and additional inference burden on the FaaS clients however there are major
modifications in the aggregator function to enable this ensemble knowledge distillation.
Unlike FedMD, this method relies on unlabeled data for knowledge transfer that can
be from any other domain and even works well with synthetic data from pre-trained
generators like GANs.

4.5.1 Ensemble Distillation for Model Fusion

The key feature of this knowledge distillation process lies in the ensemble distillation
step. Originally, ensemble learning methods like bagging and boosting involved
combining predictions from multiple weakly supervised models however that it is
difficult in a federated learning setting since model parameters are distributed among
the clients and it is not possible to keep such a large number of models on the server and
combine predictions from them during inference. FedDF makes the ensemble learning
process possible in a federated learning setting with the help of knowledge distillation
and therefore the term ensemble distillation which helps in distilling knowledge from
an ensemble of multiple client models with heterogeneous architectures towards a
master server model.

Once all the clients have completed their local training for the current round, we
start with the ensemble distillation process in our FaaS-based aggregator function. We

32

4 Enabling Model Heterogeneity Using Knowledge Distillation

Model ID # Layer 1 Filters # Layer 2 Filters
1 256 512
2 256 512
3 512 512
4 512 512
5 512 1024

Table 4.1: Example of client model configuration for convolutional networks

already know that each participating client may have a different model architecture
therefore each client can be part of a specific model prototype. For instance, please
refer to table 4.1, we observe that there are 3 model prototypes comprising model ID -
(1,2), (3,4), and (5). We execute this ensemble distillation process in parallel for each
model prototype i.e. in our example, the aggregator function is invoked three times in
parallel once for each model prototype.

The distillation process for each model prototype comprises the following steps:

1. We initialize a client set with all the clients belonging to the particular model
prototype.

2. Then we create a student server model with the same architecture as the clients
belonging to the current model prototype/architecture group and initialize it
using FedAvg[53] of all the client model parameters selected in the previous step.
The student server model is just a temporary model created and initialized in the
aggregator memory every time it is invoked.

3. Finally, we start with the iterative ensemble distillation process where we sample
mini-batches of unlabeled data and then use this data to perform training updates
to the student server model as mentioned in equation 4.2 to distill knowledge
from the ensemble of all teacher client models to the student server model until
the server model validation performance plateaus.

xt,j := xt,j−1 − η
∂ KL

(
σ
(

1
|St| ∑k∈St

f
(
x̂k

t , d
))

, σ
(

f
(
xt,j−1, d

)))
∂xt,j−1

(4.2)

where:

33

4 Enabling Model Heterogeneity Using Knowledge Distillation

Controller

Configures and starts
collaborative training

client model/data init

Intelligent Client
Selection for current
round

MongoDB FaaS Clients
(1..n)

Update all client models with new distilled weights

FaaS Aggregators
(1..k)

FL
Admin

Iterate until
convergence

Private Training of selected clients

Store updated client model

Invoke k aggregator functions for distillation (k = #Unique Model Architectures)

Return final results

Figure 4.2: Serverless training flow for FedDF

σ = Softmax function
St = Subset of selected clients for the training round
f
(
x̂k

t , d
)
= Logit outputs of all clients on mini-batch d

Also, KL stands for Kullback-Liebler divergence[32] in equation 4.2. After each
round of the ensemble distillation process, we obtain distilled server models for every
architecture/prototype group that contains knowledge from all the participating clients.
These server models are then distributed back to the clients based on their respective
model prototypes for the next training round.

4.5.2 Training Workflow

In figure 4.2, we demonstrate the serverless training workflow which is relatively simple
given that FedDF is a server-side distillation algorithm. However, since our serverless
implementation does not have a central aggregation server, we make use of FaaS
aggregation functions for this server-side distillation process which is more efficient
as explained in section 4.6.2. Similar to FedMD, first the FL admin configures the
client models, public and private datasets, as well as the required client FedDF-specific
hyperparameters mentioned in table 5.8 before starting the training process. Now
we start iterating through the training rounds in which firstly, the controller selects

34

4 Enabling Model Heterogeneity Using Knowledge Distillation

a fraction of clients from the client pool using our clustering-based intelligent client
selection algorithm explained in section 4.3. Afterward, these selected clients are then
invoked for their local training process on their private datasets and then these clients
store their updated models back into the MongoDB parameter server. Once all the
invoked clients have completed their individual training process, the central controller
invokes the aggregator functions for the ensemble distillation process explained in
section 4.5.1. These aggregator functions are invoked in parallel for each unique model
architecture and once finished, each aggregator function updates the weights of clients
associated with their particular model architecture. This private client training and
the ensemble distillation process iterate until we reach the desired accuracies for each
model architecture. Similar to FedMD, all the invocation steps are synchronous and we
require results from all the invoked functions until we can proceed to the next round
which provides a solid reason to execute this algorithm in a serverless setting resulting
in cost benefits.

4.6 Overall System Design Improvements

In the previous sections, initially, we discussed the implementation details of the
framework enhancements such as the central controller changes, tunable heterogeneous
data distribution among the clients, and an extended version of the intelligent client
selection algorithm to incorporate heterogeneous client architectures. Then we focused
on the implementation of FedMD and FedDF in our serverless federated learning
framework. In this section, we highlight the system architecture-level enhancements and
modifications that were implemented on top of the existing FedLesScan[17] architecture
in order to execute these algorithms in an efficient and optimized manner in a serverless
environment. Figure 4.3 provides an overview of the updated system architecture and
the existing core components where the modified components are highlighted in green.
Overall, there are two major changes that we discuss in the upcoming sections 4.6.1
and 4.6.2. Also, we have added a Client Parameter Server MongoDB database that stores
the model weights at a client level because we cannot have a single global parameter
server due to different client model architectures.

4.6.1 Optimized FedMD Pre-Training using Ray

The first major enhancement is the addition of an auto-scaling serverless Ray[49] cluster
which runs on top of a Kubernetes deployment. As we explained in section 4.4, the
FedMD algorithm requires an initial pre-training of all the client models on the public
dataset until convergence before we start with the communication rounds. However,
this training cannot take place inside the FaaS clients since the execution time and

35

4 Enabling Model Heterogeneity Using Knowledge Distillation

Auth Server
AWS Cognito

Data / Model Transfer
Request/ Invocation

FedLess Database
MongoDB

Global Parameter Server

Client Database

Client History

Client Parameter Server

Client Registry

FedLess Controller
Stateful Process

Invoker

Client Selection Scheme

Aggregation Scheme

Strategy Manager fe

Clients

Client Function

Client #1
AWS

Amazon
S3

Train Data

Train Data

Client Function Cloud Storage

Client #2
Google Cloud

Client #3
Azure

Train Data

Client Function Blob Storage

NFS

Client #N
Knative

Client Function
fnTrain Data

NFS

Client #N
Hosted On-Premise

Client Function
fnTrain Data

Aggregator Functionsfn Aggregator Functionsfn Aggregator Functionsfn

Kubernetes Cluster

KubeRay Operator

Auto-Scaling Serverless
Ray Cluster

Client #1
Trainable Function Instance

Client #2
Trainable Function Instance

Client #N
Trainable Function Instance

Figure 4.3: Modified architecture of FedLesScan [17]. Enhancements and modifications
are highlighted in green.

computation required for this pre-training are relatively higher than the FaaS function
limits. The central controller can directly invoke client function instances for model
training in an autoscaling Ray cluster. We use the Ray Tune[41] feature for this which
creates a Ray Actor for each client trainable function instance which are independent
Python processes that execute in a distributed parallel manner across the cluster. The
deployed Ray cluster automatically creates replica worker pods for function execution
based on the number of submitted jobs and then downscales the resources as the jobs
finish without any execution time limitations. This helps us to achieve significant speed
up for the pre-training process on the public data in FedMD since we can train all
the client models in parallel as well as optimize resource usage due to the serverless
nature of Ray on Kubernetes. For the FedMD MNIST and CIFAR image classification
experiments, we use the EMNIST Letters and CIFAR-10 public datasets as explained in
section 5.1.2. We allocate 1vCPU and about 2GB RAM to each parallel training Ray

36

4 Enabling Model Heterogeneity Using Knowledge Distillation

function instance in the cluster and achieve a speed-up of 3.2x and 3.7x for MNIST and
CIFAR respectively when compared to the total pre-training time for each client model
in a sequential fashion.

4.6.2 FedDF Parallel Aggregation using FaaS

The framework has now been enhanced to use multiple aggregator functions instead
of only one earlier. This was done specifically in order to optimize the knowledge
distillation process for the FedDF serverless implementation. The ensemble distillation
process explained in section 4.5.1 can take place in parallel for each model prototype-
/architecture group and therefore in order to benefit from this property of the algorithm
in the serverless setting, we trigger individual aggregator functions for each model
prototype in parallel as soon as the knowledge distillation step starts. In the original
FedDF implementation, this aggregation process takes place sequentially for each
model prototype. However, due to the parallelism in our serverless FaaS aggregators,
we achieve speed-ups equivalent to the number of unique model prototypes since
that decides the degree of parallelism. For our experiments, we set up 6, 5, and 3
OpenFaaS aggregator functions for MNIST, CIFAR, and Shakespeare respectively based
on our choice of unique model architectures as shown in tables 5.3, 5.4 and 5.5 with
each aggregator function having limits of 6vCPUs and 16GB RAM. We achieved a
decrease in the overall execution time of about 83.33% for MNIST, 80% for CIFAR,
and 66.67% for Shakespeare compared to sequential execution i.e. when we have a
single aggregator function performing knowledge distillation for each unique model
architecture sequentially.

37

5 Experiments and Evaluation

In this section, we first provide an insight into our experiment setup that includes
evaluation procedure and metrics, various datasets used along with their distribution
among clients, and the heterogenous client model architectures used depending on the
tasks. Then we demonstrate the system’s performance and accuracy on various CV and
NLP tasks. Finally, we conduct the time and FaaS-based cost analysis of our proposed
system. .

5.1 Experiment Setup

5.1.1 Overall Evaluation Procedure

In this section, we give an overview of the evaluation methodologies and metrics that
we have used in order to evaluate our system. For the evaluation, we focus on the
following three major aspects for our serverless implementation of FedMD[38] and
FedDF[42] algorithms:

• Performance, test accuracy, and convergence rates of heterogeneous client models
for different CV and NLP learning tasks at various levels of data heterogeneity

• Fine-grained time and cost analysis of different system components for specific
learning tasks and datasets

For evaluating model performance, we use the conventional top-1 accuracy metric
which means that the model output with the highest probability should be the expected
answer. We analyze the top-1 test accuracy as well as the model loss for each client
model prototype with respect to the increasing number of communication rounds
until convergence. We perform a test performance evaluation for every client after
each training round. In the case of FedMD, since the algorithm focuses on training
a personalized model for each client, we average the accuracy from clients belonging
to the same model prototype group. We perform this complete analysis for different
levels of data heterogeneity among the clients as mentioned in section 4.2 since this is a
common situation in the FL setting.

We perform a fine-grained time analysis for various knowledge distillation steps
that take place in both algorithms in order to complete a collaborative training round.

38

5 Experiments and Evaluation

Our client and aggregator functions are deployed and managed in-house using the
OpenFaaS serverless framework on a self-managed Kubernetes cluster. For cost-related
analysis, we use Google’s Cloud Function pricing[15] in order to estimate the costs for
each client function invocation and aggregate them for the complete serverless process
execution cost.

5.1.2 Datasets and Heterogeneous Client Data Distribution

In our experiments, we evaluate the framework on both CV and NLP tasks and each
algorithm requires different types of data loaders including private datasets as well as
labeled/un-labeled public datasets. We run experiments on image classification and
text character prediction benchmarks as demonstrated in table 5.1 and table 5.2.

MNIST dataset[37] is a classic handwritten digit classification dataset comprising
60,000 training images and 10,000 testing images. EMNIST Letters[16] is a dataset
comprising images of handwritten letters from the English language with 145,600
characters distributed across 26 balanced classes and this has been used as a public
dataset in both our implementations.

For evaluating more complex image tasks, we use CIFAR-10/100[35, 36] image
classification datasets that comprise 60000 color images divided uniformly into 10 and
100 mutually exclusive classes for CIFAR-10 and CIFAR100 respectively.

For the language modeling domain, we use the Shakespeare dataset from LEAF [10]
which is a federated learning benchmark as the main private training dataset in both
our implementations and a self-prepared character prediction dataset from the openly
available Nietzsche text corpus.

As mentioned in section 4.2, the value of Dirichlet distribution α controls the data
heterogeneity i.e. the degree of non-i.i.d. private data distribution among the partic-
ipating clients for classification tasks. As the value of α goes towards zero, the data
heterogeneity among the clients increases.

FedMD

In the FedMD algorithm, we require a private dataset that represents the main federated
learning task and a carefully chosen public dataset to which all the clients have complete
access since it is used to distill the learned knowledge among the various heterogeneous
participating client models. Each client is initially trained on this public dataset
until convergence, and then 5000 randomly sampled records are used for knowledge
distillation in each collaboration round for computational efficiency.

39

5 Experiments and Evaluation

Task Task FedMD
Domain Type Private Public

CV Classification MNIST EMNIST Letters
CV Classification CIFAR100 (Subset) CIFAR10

NLP Character Prediction Shakespeare Nietzsche

Table 5.1: Summary of evaluation tasks and datasets for serverless FedMD

Figure 5.1 visualizes the client private data distribution of MNIST among 100 clients
for different values of α where the size of each data point represents the number of
samples for a particular class. A small α value increases the likelihood of a client
containing data for only a subset of unique classes whereas a high value ensures
uniform distribution of classes across all the clients. Furthermore, we use the EMNIST
Letters as the public distillation dataset for the MNIST classification task. In terms of
the testing, each client model gets evaluated on the complete test dataset comprising
10000 testing images.

For the CIFAR benchmark, we use a subset of classes from CIFAR-100 {0, 2, 20, 63, 71,
82} for the main learning task, and the client private data distribution is visualized in
figure 5.2 at different levels of data heterogeneity. We use the complete CIFAR-10 as the
public distillation dataset for this task. As explained earlier in section 3.2.1, the final
output layer of the client model architecture in FedMD has a total number of output
neurons equal to (#PrivateDataClasses + #PublicDataClasses) since the same model
needs to be trained on both the public as well as the private dataset for the training
process and both these datasets have a mutually exclusive set of classes in most cases.
Therefore, we choose the public dataset in such a way that we can minimize the total
number of output classes and maximize the amount of available public data for better
performance of the algorithm since a greater number of output neurons negatively
affects the final accuracy levels. For testing, each client is evaluated on the complete
global CIFAR-100 test dataset subsetted for these six classes.

For the language modeling benchmark, we use the Shakespeare dataset from the
LEAF federated benchmarking framework for the next character prediction given the
previous 80 characters of a sentence. It contains texts from 1129 different users and
in the non-i.i.d. sampling scenario, we simply distribute data according to the raw
users since data distributions naturally vary across users. For the i.i.d. sampling
scenario, every text data point is equally likely to be sampled, and therefore all clients
have similar distributions. Individual client-specific test sets are also created during
data pre-processing using similar sampling strategies for performing a distributed
evaluation of the clients. In terms of the public knowledge transfer dataset, we create

40

5 Experiments and Evaluation

0

1

2

3

4

5

6

7

8

9

C
la

ss
la

be
ls

alpha: 100 alpha: 50

0 10 20 30 40 50 60 70 80 90 100
Client ID

0

1

2

3

4

5

6

7

8

9

C
la

ss
la

be
ls

alpha: 1

0 10 20 30 40 50 60 70 80 90 100
Client ID

alpha: 0.1

Figure 5.1: FedMD/FedDF Private Client Data Distribution for MNIST Dataset

synthetic character prediction data samples from the openly available Nietzsche text
corpus with a sequence length of 80 as the feature and a single character as the label
similar to the structure of Shakespeare and a major chunk of code for this processing
was borrowed from [55].

41

5 Experiments and Evaluation

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

C
la

ss
la

be
ls

alpha: 100 alpha: 50

0 10 20 30 40 50 60 70 80 90 100
Client ID

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

0

2

63

71

20

82

C
la

ss
la

be
ls

alpha: 1

0 10 20 30 40 50 60 70 80 90 100
Client ID

alpha: 0.1

Figure 5.2: FedMD Private Client Data Distribution for CIFAR-100 (Subset) Dataset

FedDF

Similar to other algorithms, FedDF requires a private client dataset and an unlabelled
public dataset which can be chosen with fewer restrictions compared to the FedMD
algorithm in terms of both sizes as well as quality.

In the case of MNIST, we use the private and public data distributions similar to
the FedMD algorithm in terms of both training and testing where the private client

42

5 Experiments and Evaluation

Task Task FedDF
Domain Type Private Public

CV Classification MNIST EMNIST Letters(Unlabeled)
CV Classification CIFAR10 CIFAR100 (Unlabeled)

NLP Next Character Prediction Shakespeare Nietzsche

Table 5.2: Summary of evaluation tasks and datasets for serverless FedDF

distribution is shown in figure 5.1 however, we do not use any labels from the public
dataset in this case and just require the image features for the distillation process.

For the CIFAR classification task, we use CIFAR-10 as the private training dataset
and the client distribution has been visualized in figure 5.3 for various degrees of data
heterogeneity. For the public dataset, we use 20000 randomly sampled unlabelled data
points from the CIFAR-100 dataset which are available to all the participating clients
for knowledge distillation. Also, we use the complete CIFAR-10 test set comprising
10000 images for evaluating individual client models.

For the language modeling benchmark, we use exactly the same datasets and dis-
tribution as FedMD without any labels for the public Nietzsche dataset since we only
require an unlabelled public dataset of the same modality for FedDF. Please refer
previous FedMD data section for more details on the preparation of this public dataset.

5.1.3 Client Model Architectures

Since the main goal of this project is to enable clients with heterogenous model
architectures to collaborate and learn in a federated setting, we use several different
architectures depending on the task which are divided among 100 participating clients.

For both MNIST as well as CIFAR, we use 2-layer and 3-layer convolutional neural
networks which are divided unevenly among the clients in order to simulate real-world
scenarios as shown in tables 5.3 and 5.4. We use the same client model distributions for
both FedMD and FedDF in order to ensure a fair comparison between the performance
of both algorithms in the serverless paradigm. Each convolution filter layer is followed
by batch normalization, ReLU activation, and a dropout of 0.2 for regularization and
to prevent the client models to overfit on small amounts of private local data. Finally,
we have a fully connected layer with output neurons equal to (#PrivateDataClasses +
#PublicDataClasses) in the case of FedMD and (#PrivateDataClasses) in case of FedDF
followed by softmax activation and a sparse categorical cross-entropy loss.

43

5 Experiments and Evaluation

0

1

2

3

4

5

6

7

8

9

C
la

ss
la

be
ls

alpha: 100 alpha: 50

0 10 20 30 40 50 60 70 80 90 100
Client ID

0

1

2

3

4

5

6

7

8

9

C
la

ss
la

be
ls

alpha: 1

0 10 20 30 40 50 60 70 80 90 100
Client ID

alpha: 0.1

Figure 5.3: FedDF Private Client Data Distribution for CIFAR-10 Dataset

For Shakespeare, we make use of Long Short-Term Memory (LSTM) Recurrent
Neural Networks with a single layer and a varying number of units as shown in table
5.5. Every network takes an input sequence length of 80 units followed by an initial
embedding size of 8 and then a single LSTM layer. Finally, we have a softmax output

44

5 Experiments and Evaluation

Model ID #Clients #Layer 1 Conv
Filters

#Layer 2 Conv
Filters

#Layer 3 Conv
Filters

#Trainable
Parameters

0 10 128 256 - 729,856
1 30 128 512 - 1,458,176
2 20 64 128 128 193,280
3 20 64 128 256 352,640
4 10 128 128 128 226,816
5 10 128 128 256 386,176

Table 5.3: Client Convolutional Neural Network Models for MNIST

Model ID #Clients #Layer 1 Conv
Filters

#Layer 2 Conv
Filters

#Layer 3 Conv
Filters

#Trainable
Parameters

0 10 128 256 - 729,856
1 10 64 128 192 274,112
2 30 64 64 128 104,128
3 30 64 128 256 352,640
4 20 128 128 128 226,816

Table 5.4: Client Convolutional Neural Network Models for CIFAR

layer comprising a vocabulary size of 82 units with a sparse categorical cross-entropy
loss. We did not use deeper LSTM networks since these networks are resource hungry
and FedMD requires every client to participate in each round.

5.1.4 Hyperparameters

Both algorithms require several important hyperparameters for various steps involved
in each collaboration round in order to achieve the required performance.

Model ID #Clients #Units Embedding Dim #Trainable Parameters
0 60 128 8 81,378
1 10 64 8 24,674
2 30 256 8 293,090

Table 5.5: 1-Layer LSTM Network Models for Shakespeare

45

5 Experiments and Evaluation

Dataset Step Epochs Batch Size
MNIST Transfer Learning (Public) 20 256

Transfer Learning (Private) 5 128
Digest 1 128
Revisit 3 5

CIFAR Transfer Learning (Public) 20 256
Transfer Learning (Private) 6 64

Digest 1 64
Revisit 2 5

Shakespeare Transfer Learning (Public) 40 256
Transfer Learning (Private) 10 256

Digest 1 128
Revisit 2 5

Table 5.6: Hyper Parameters for FedMD

FedMD

Table 5.6 shows the various hyperparameters that were used depending on the task
for FedMD. We use the Adam optimizer in all the steps with a fixed learning rate of
0.001. For the digest step, we randomly sample 5000 data points from the public dataset
for each round in order to accommodate the computational resources. We observe a
higher number of epochs for the Transfer Learning (Public) step since it takes place on
the server side in a Ray training cluster and involves training on the complete public
dataset until convergence. We also apply validation accuracy-based early stopping in
the public transfer learning step.

FedDF

Table 5.7 shows the local client training hyperparameters for the FedDF learning tasks.
Since this is a server-side aggregation algorithm, the client training parameters are
relatively simple without involving any separate steps. Similar to the previous section,
all clients use the Adam optimizer with a fixed learning rate of 0.001 for private training.

The noisy knowledge distillation process for FedDF takes place on the server side
which involves transferring knowledge from all the individual client-teacher models

46

5 Experiments and Evaluation

Dataset Epochs Batch Size
MNIST 5 64
CIFAR 8 64

Shakespeare 10 128

Table 5.7: Client Private Training Hyper Parameters for FedDF

Hyperparameter Value Description

Pseudo Batches 200
Total number of public data batches used for
noisy knowledge distillation

Pseudo Batch Size 64 Size of each pseudo batch

Eval Frequency 10
Frequency for evaluation on validation dataset
to perform early stopping

Patience 6
Number of evaluations with no improvement
after which distillation will be stopped

Table 5.8: FedDF Aggregator Hyperparameters

to the server student models as means of aggregation. This server-side knowledge
distillation process takes place in parallel for each unique model architecture by in-
voking multiple aggregator functions having the same distillation hyperparameters
as mentioned in table 5.8. As explained in section 4.5.1, the distillation process in-
volves the transfer of learning knowledge from a set of clients towards a central server
model with the help of a public dataset because of different architectures. For each
invocation of this aggregator function to perform the distillation process, a set of
aggregator-specific parameters for the execution of this process are required since it
requires several iterations of small noisy knowledge transfer steps for each invocation.
These knowledge transfer steps take place using batches of the public data set until the
validation accuracy does not increase for Patience number of evaluations. We perform
an evaluation using the validation data after every Eval Frequency number of batches
and table 5.8 shows the values of these hyperparameters that we have used in all
our FedDF experiments along with their descriptions. They need to be selected very
carefully especially in a serverless environment since these parameters determine the
total execution time and computation capacity required by the aggregator function for
each invocation. Therefore, we limit the Pseudo Batches parameter to 200 since that is the
maximum amount of public data batches that can be used for knowledge distillation in
a single invocation and it fits easily into the FaaS execution time limit of 20 minutes
without any loss in performance.

47

5 Experiments and Evaluation

5.1.5 Infrastructure and Experiment Setup

The MongoDB parameter server and the Nginx file server hosting all the required
datasets were deployed on individual virtual machines with 10 vCPUs and 45GB
RAM. Furthermore, we executed the central controller script on a separate machine
with 10 vCPUs and 45GB RAM in order to avoid any resource interference with other
components.

We deployed 100 OpenFaaS client functions for all the experiments. Each client had
a limit of 2vCPUs and 4GB RAM with a maximum execution timeout of 20 minutes.
In terms of aggregation functions, we deployed a single OpenFaaS-based aggregation
function with limits of 4vCPUs and 8GB RAM for FedMD since the algorithm does
not require many resources on the aggregator side. However, in the case of FedDF, we
deployed 6 aggregator functions (one for each unique model architecture) with each
function having limits of 6vCPUs and 16GB RAM because most of the processing takes
place on the aggregator side. For the Ray training cluster, we set up a Ray head pod
with limits 4vCPUs and 20GB RAM along with auto-scaling pods with up to 8 replicas
where each replica has limits of 4vCPUs and 20GB RAM.

For image classification datasets, we perform experiments at different levels of data
heterogeneity i.e. {100, 50, 1, 0.1} as mentioned in section 5.1.2 in both FedMD as well
as FedDF in order to evaluate the robustness of both algorithms. For Shakespeare text
character prediction task, we perform two experiments i.e. i.i.d. and non-i.i.d. data
distribution for both algorithms. Overall, we perform around 20 training runs overall
with each run lasting 20 communication rounds. For time and cost-related analysis, we
combine the data generated from all 4 levels of data heterogeneity in order to get better
variance estimates since execution times are independent of the data heterogeneity
levels among the clients.

5.2 Learning Task Performance and Accuracy

In this section, we perform an in-depth analysis of the test performance and convergence
for both algorithms on the different machine learning tasks we described in the previous
section. For classification tasks, we perform this analysis at different levels of data
heterogeneity among the clients which are controlled by the α parameter as explained
earlier in section 5.1.2, and each client is evaluated on a global test dataset after the
end of each collaboration round in order to understand the performance improvement
through client collaboration and knowledge distillation. We use relatively simple model
architectures for all the learning tasks because our system is based on FaaS training

48

5 Experiments and Evaluation

clients, therefore our goal in this section will be to demonstrate convergence and
increased accuracy through knowledge distillation among heterogeneous model clients
in contrast to achieving state-of-the-art accuracies on these tasks.

5.2.1 FedMD

On the MNIST image classification task, we performed four experiments with varying
levels of data heterogeneity for 20 communication rounds. Each line in the plots be-
longing to figure 5.4 represents the average test accuracy across the clients belonging to
a particular model architecture group since we distribute 6 unique model architectures
across the clients as shown in table 5.3. We observe that the majority of the knowledge
distillation takes place during the first few epochs and then the accuracy curve plateaus
without much change in the performance levels. Interestingly, we observe that as
we go towards the maximum level of client data heterogeneity, there is a significant
negative impact on the top test accuracies that can be achieved which means that this
algorithm is robust to data heterogeneity but only upto a certain extent and cannot
handle extreme heterogeneity levels. In the standard i.i.d. scenario, we were able to
achieve maximum accuracy of 96% for model 4. The average accuracy across all models
drops by around 46.5% at alpha equal to 0.1 compared to the i.i.d. scenario with alpha
equal to 100. One of the major reasons for this decrease in accuracy with increased data
heterogeneity is the divergence of the global model gradients due to high variance in
the private data distribution among the clients especially for personalized federated
learning algorithms like FedMD.

Furthermore, we show the test loss curves for these experiments in Figure 5.5 and
observe a clear correlation with the increasing accuracy levels. As expected, we see
a high loss during the initial rounds, especially for smaller convolutional network
models with fewer learning capacities which stabilizes and plateaus later on after a few
distillation rounds.

Similarly, for the next image classification task CIFAR, we distribute 5 unique con-
volutional model architectures among the participating clients as shown in table 5.4.
Figure 5.6 depicts the test accuracy curves over increasing communication rounds for
different data heterogeneity levels. We observe a relatively smooth accuracy increment
with collaboration rounds in contrast to the MNIST dataset. Here as well, we were
able to achieve similar accuracy levels compared to the original IaaS-based FedMD[38]
implementation in the serverless paradigm with a small difference of 4-5% due to
varying model architectures. We got a maximum test accuracy of 66.4% for model
2. However, we observe a drop in test accuracy with increasing data heterogeneity
equivalent to a 13% average drop across all model architectures for the case where
alpha is equal to 0.1 compared to the standard i.i.d. scenario. Taking a look at the loss

49

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
te

st
ac

cu
ra

cy
(%

)
alpha: 100

Model: 0
Model: 1

Model: 2
Model: 3

Model: 4
Model: 5

0 4 8 12 16 20
Collaboration Round

alpha: 50

0 4 8 12 16 20
Collaboration Round

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
te

st
ac

cu
ra

cy
(%

)

alpha: 1

0 4 8 12 16 20
Collaboration Round

alpha: 0.1

Figure 5.4: Test accuracies for FedMD on MNIST Dataset with different data hetero-
geneity levels. Refer to table 5.3 for model specifications.

curves in Figure 5.7, it varies with the accuracy as expected along with jitters for the
smallest low-capacity model: 0 which eventually reduces as the knowledge distillation
process moves further in time.

Finally, figure 5.8 shows the client test performance on the Shakespeare dataset for
the next character prediction task averaged across three unique model architectures. In
this case, we run experiments for IID and Non-IID scenarios since creating synthetic
heterogeneity using Dirichlet distribution is only suitable for classification tasks. The

50

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0

2

4

6

8

Te
st

lo
ss

alpha: 100

Model: 0
Model: 1

Model: 2
Model: 3

Model: 4
Model: 5

0 4 8 12 16 20
Collaboration Round

0

2

4

6

8

alpha: 50

0 4 8 12 16 20
Collaboration Round

0

2

4

6

8

alpha: 1

0 4 8 12 16 20
Collaboration Round

10

20

30

40

Te
st

lo
ss

alpha: 0.1

Figure 5.5: Test loss for FedMD on MNIST Dataset with different data heterogeneity
levels. Refer to table 5.3 for model specifications.

LEAF[9] FL benchmark already provides preprocessing scripts for distributing data
across clients in both IID and non-IID scenarios. We were able to achieve similar
performance compared to our predecessor FedLesScan with only 3% lower accuracy
even with single-layer heterogeneous LSTM models whereas FedLesScan uses a two-
layer stacked LSTM recurrent neural network. Model 1 achieved the highest test accuracy
in both i.i.d. as well as non-i.i.d. cases equivalent to 36% and 37.8% respectively.
In terms of data heterogeneity, we were able to converge much earlier in the IID
case however, we do not see much difference in the highest achieved test accuracy
performance between IID and non-IID scenarios. We believe that this might be due to
the nature of the task at hand since we perform the FedMD transfer learning step on a

51

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
te

st
ac

cu
ra

cy
(%

)
alpha: 100

Model: 0
Model: 1

Model: 2
Model: 3

Model: 4

0 4 8 12 16 20
Collaboration Round

alpha: 50

0 4 8 12 16 20
Collaboration Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
te

st
ac

cu
ra

cy
(%

)

alpha: 1

0 4 8 12 16 20
Collaboration Round

alpha: 0.1

Figure 5.6: Test accuracy for FedMD on CIFAR Dataset with different data heterogeneity
levels. Refer to table 5.4 for model specifications.

public dataset(Nietszche) predicting the same set of classes as the private Shakespeare
dataset with just a difference in the text corpus between both of them. As a result,
we already have strong character prediction models at the start of the collaborations
rounds and then it is just a matter of performing collaborative fine-tuning among the
clients specific to the Shakespeare dataset. Also interestingly, in terms of loss curves as
shown in figure 5.9, we observe that we were able to achieve the minimum loss much

52

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0

1

2

3

4

5

6

7

8

9
Te

st
lo

ss
alpha: 100

Model: 0
Model: 1

Model: 2
Model: 3

Model: 4

0 4 8 12 16 20
Collaboration Round

alpha: 50

0 4 8 12 16 20
Collaboration Round

0
2
4
6
8

10
12
14
16
18
20
22

Te
st

lo
ss

alpha: 1

0 4 8 12 16 20
Collaboration Round

alpha: 0.1

Figure 5.7: Test loss for FedMD on CIFAR Dataset with different data heterogeneity
levels. Refer to table 5.4 for model specifications.

before completing all the training rounds as it is also evident from the accuracy curves
and the loss starts diverging when we train further leading to minor drops in the test
accuracy.

53

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0.0

0.1

0.2

0.3

To
p-

1
te

st
ac

cu
ra

cy
(%

)
IID

Model: 0 Model: 1 Model: 2

0 4 8 12 16 20
Collaboration Round

Non-IID

Figure 5.8: Test accuracy for FedMD on Shakespeare Dataset for IID and Non-IID
scenarios. Refer to table 5.5 for model specifications.

0 4 8 12 16 20
Collaboration Round

2.5

3.0

3.5

4.0

4.5

Te
st

lo
ss

IID

0 4 8 12 16 20
Collaboration Round

Non-IID

Figure 5.9: Test loss for FedMD on Shakespeare Dataset for IID and Non-IID scenarios.
Refer to table 5.5 for model specifications.

5.2.2 FedDF

For our serverless FedDF implementation, we perform 4 experiments at different levels
of data heterogeneity similar to the FedMD experiments. In the case of classification
tasks MNIST and CIFAR, each accuracy line represents the top-1 test accuracy of the

54

5 Experiments and Evaluation

global server model for that particular model architecture group. As a further clarifi-
cation, in the case of FedDF, we have one aggregator function per model architecture
that distills knowledge from all the participating clients to the corresponding server
model for that model architecture and then reports test accuracy for this model on a
global test dataset before distributing the updated model back to the clients. However,
in the case of Shakespeare, we do not have access to a central global test dataset but
rather individual client-level test datasets therefore we follow a client-level test accuracy
averaging approach similar to FedMD after each communication round. Also, since
not all aggregators for each model architecture type are invoked during the initial
rounds based on our intelligent client selection scheme, we interpolate the test accuracy
data for these rounds. We do not show any loss curves for FedDF since it is a noisy
knowledge distillation process and loss curves do not provide us with much useful
performance-related information.

Investigating the performance on the MNIST task as shown in figure 5.10 different
data heterogeneity levels, we observe a maximum accuracy of 97% in standard i.i.d. sce-
nario with alpha 100 and 94.8% in extreme non-i.i.d. scenario with alpha 0.1. We were
able to achieve similar test accuracy compared to our predecessor FedLesScan[17](98.5%
in 60 rounds) for heterogeneous client architectures in relatively lower communication
rounds. We observe that FedDF is much more robust to extreme non-IID data distri-
bution since it retains the test accuracy on all heterogeneity levels in contrast to the
FedMD algorithm having 44% less test accuracy averaged across all the architectures
for 0.1 alpha level.

For the next image classification task based on the CIFAR dataset, figure 5.11 demon-
strates the learning task convergence over collaboration rounds. Given the relatively
simple convolutional networks that we use for this particular task, we were able to
achieve a maximum test accuracy levels of 57.5% in the ideal i.i.d. scenario and 55% in
the extreme non-i.i.d. case. Similar to MNIST, FedDF shows a similar robustness to
increasing data heterogeneity on the CIFAR dataset.

Finally, for the Shakespeare dataset, figure 5.12 shows the test performance where
we distribute 3 single-layer recurrent neural networks with different numbers of LSTM
units among the participating clients. We achieved a maximum test accuracy of 40% for
the IID case and 43% for the non-IID dataset which again demonstrates the robustness
of FedDF to non-IID data distribution across the clients for the text data modality.
Therefore, for this dataset, we were able to achieve 4.2% higher accuracy for the non-
i.i.d. case compared to standard FedLesScan[17] results even with smaller single-layer
heterogeneous LSTM neural networks and a lesser number of rounds.

55

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
te

st
ac

cu
ra

cy
(%

)
alpha: 100

Model: 0
Model: 1

Model: 2
Model: 3

Model: 4
Model: 5

0 4 8 12 16 20
Collaboration Round

alpha: 50

0 4 8 12 16 20
Collaboration Round

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
te

st
ac

cu
ra

cy
(%

)

alpha: 1

0 4 8 12 16 20
Collaboration Round

alpha: 0.1

Figure 5.10: Test accuracy for FedDF on MNIST Dataset with different data heterogene-
ity levels. Refer to table 5.3 for model specifications.

5.3 Time and Cost Analysis

We talked about the accuracy and performance of our implementation in the previous
section, however, an important factor in analyzing federated learning systems is the
time and cost required to accomplish these training tasks, especially in our case since
we use serverless FaaS which involves invocation time-based billing for computations.
In this section, we perform an in-depth time and cost analysis of all the performed

56

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
te

st
ac

cu
ra

cy
(%

)
alpha: 100

Model: 0
Model: 1

Model: 2
Model: 3

Model: 4

0 4 8 12 16 20
Collaboration Round

alpha: 50

0 4 8 12 16 20
Collaboration Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
te

st
ac

cu
ra

cy
(%

)

alpha: 1

0 4 8 12 16 20
Collaboration Round

alpha: 0.1

Figure 5.11: Test accuracy for FedDF on CIFAR Dataset with different data heterogeneity
levels. Refer to table 5.4 for model specifications.

experiments for both FedMD and FedDF algorithms. We aggregate the timings and
costs for the different levels of data heterogeneity since data heterogeneity does not
have an impact on the execution times.

57

5 Experiments and Evaluation

0 4 8 12 16
Collaboration Round

0.20

0.25

0.30

0.35

0.40

To
p-

1
te

st
ac

cu
ra

cy
(%

)
IID

Model: 0 Model: 1 Model: 2

0 4 8 12 16
Collaboration Round

Non-IID

Figure 5.12: Test accuracy for FedDF on Shakespeare Dataset for IID and Non-IID
scenarios. Refer to table 5.5 for model specifications.

5.3.1 FedMD

Time

For FedMD, we analyze the time taken by the participating clients in each step of
the algorithm as well as the total time taken for completing each collaboration round
comprising all the steps for all three datasets. In these graphs, we only analyze the time
taken for steps involved in every communication round and not the initial one-time
pre-training process.

On the MNIST dataset, we observe in figure 5.13 that each complete round takes
approximately 360 to 390 seconds with more than 40% of the time being taken by the
single aggregator function since we aggregate public dataset prediction logits from
all the 100 participating clients in each round. Other than that, the revisit and digest
steps take a similar amount of time and the communicate step being the fastest since it
only involves a forward pass inference on the public dataset by all the clients. On the
CIFAR dataset, as demonstrated in figure 5.14, the overall round time is relatively less
compared to MNIST mainly because of the faster revisit step because of fewer local
revisit epochs and a relatively smaller private dataset. Other than that, all the steps
look similar in proportion with the aggregate step taking the largest amount of time.
Finally, looking at figure 5.15 for the Shakespeare dataset, we observe a significant skew
of timings with the majority of the chunk i.e. more than 90% being taken by the revisit

58

5 Experiments and Evaluation

step since the LSTM text models require a much greater number of epochs for this local
training step in contrast to the convolutional neural networks for images.

Com
mun

ica
te

Agg
reg

ate

Dige
st

Rev
isi

t

50

100

150

St
ep

D
ur

at
io

n
(s

)

0 4 8 12 16 20
Collaboration Round

340

360

380

400

420

440

To
ta

lR
ou

nd
D

ur
at

io
n

(s
)

Figure 5.13: Individual step duration and overall round duration for FedMD on the
MNIST dataset

Com
mun

ica
te

Agg
reg

ate

Dige
st

Rev
isi

t
0

50

100

150

St
ep

D
ur

at
io

n
(s

)

0 4 8 12 16 20
Collaboration Round

240

250

260

270

To
ta

lR
ou

nd
D

ur
at

io
n

(s
)

Figure 5.14: Individual step duration and overall round duration for FedMD on the
CIFAR dataset

59

5 Experiments and Evaluation

Com
mun

ica
te

Agg
reg

ate

Dige
st

Rev
isi

t
0

250

500

750

1000

St
ep

D
ur

at
io

n
(s

)

0 4 8 12 16 20
Collaboration Round

1050

1075

1100

1125

To
ta

lR
ou

nd
D

ur
at

io
n

(s
)

Figure 5.15: Individual step duration and overall round duration for FedMD on the
Shakespeare dataset

Cost

In this section, we perform a fine-grained analysis of the FaaS costs for all the FedMD
experiments. We factor in the total client as well as the aggregator function invocation
times for the various steps in order to calculate these costs. We use the Google Cloud
function cost computation model [15] to convert these execution times into expected
costs.

Table 5.9 shows the total function execution durations as well as the cost for each
execution incorporating the hardware capabilities of those functions for the three
different datasets. For MNIST and CIFAR datasets, we observe that a major part of
the total cost is due to the Digest step since it is executed on each client for every
round. On the Shakespeare dataset, we observe a high increase in the costs which can
be attributed to the revisit step as also evident from the timing graphs in the previous
section.

5.3.2 FedDF

FedDF is an algorithm with each round majorly involving two steps that are the client
side private training and the knowledge distillation process that takes place in the
aggregator function invocations. In contrast to FedMD, we only use a small subset of

60

5 Experiments and Evaluation

Dataset Metric Aggregate Communicate Revisit
Transfer
Learning
(Private)

Digest Overall

MNIST Duration (min) 55.2 378.4 867 42.5 1329.8 2672.9

Cost ($) 0.37 1.32 3.02 0.15 4.63 9.49

CIFAR Duration (min) 47.7 579.4 111.6 6.5 746.4 1491.6

Cost ($) 0.32 2.02 0.39 0.02 2.6 5.35

Shakespeare Duration (min) 64.5 300.8 5945.2 122.7 656.3 7089.5

Cost ($) 0.43 1.05 20.69 0.43 2.28 24.88

Table 5.9: Overall client execution time and cost analysis for FedMD on all datasets.

clients for training in each round which leads to significantly lower overall execution
time and cost.

Time

For the MNIST and CIFAR dataset, figure 5.16a and 5.16b shows the total duration for
each round along with the individual client and knowledge distillation components.
Also, the highlighted area around these lines shows the variation for several runs across
different levels of data heterogeneity. We see that a major part i.e. more than 90% of
the total round duration is taken by the knowledge distillation process that takes place
in the aggregator functions for each unique model architecture. Overall, each round
takes about 400-600 seconds on average to complete for both datasets. For Shakespeare,
figure 5.17 shows that the knowledge distillation and the client training have similar
duration because of the high number of local epochs required in the client private
training for LSTM networks. Consequently, this leads to higher overall round durations
with each round taking around 500-1100 seconds. Also, it is worth noting that the
knowledge distillation duration is in a constant range for all three datasets and only the
private client training duration increases the overall round time beyond this duration.

Cost

In terms of cost, table 5.10 shows the total aggregator and client training durations
for FedDF across all three tasks. In contrast to FedMD, the total costs for FedDF
are relatively lower and close for all experiments and this is mainly because only a
certain fraction of clients take part in each communication round which is selected
by our intelligent selection algorithm explained in section 4.3. We perform a deeper

61

5 Experiments and Evaluation

0 4 8 12 16 20
Collaboration Round

0

200

400

600

D
ur

at
io

n
(s

)

Knowledge Distillation
Clients
Round

(a) MNIST.

0 4 8 12 16 20
Collaboration Round

200

400

600

800

D
ur

at
io

n
(s

)

Knowledge Distillation
Clients
Round

(b) CIFAR

Figure 5.16: Collaboration round duration for FedDF

0 4 8 12 16 20
Collaboration Round

200

400

600

800

1000

1200

1400

D
ur

at
io

n
(s

)

Knowledge Distillation
Clients
Round

Figure 5.17: Collaboration round duration for FedDF on Shakespeare dataset.

quantitative analysis between FedDF and FedMD in terms of costs in the upcoming
section 5.4.

62

5 Experiments and Evaluation

Dataset Metric Aggregators Clients Overall

MNIST Duration (min) 152 56.4 208.4

Cost ($) 6.07 0.2 6.27

CIFAR Duration (min) 163.87 213.55 377.42

Cost ($) 5.46 0.74 6.2

Shakespeare Duration (min) 134.4 466.9 601.3

Cost ($) 2.68 1.62 4.3

Table 5.10: Overall client execution time and cost analysis for FedDF on all datasets

5.4 Quantitative comparison - FedMD and FedDF

In this section, we compare the FedMD and FedDF algorithms quantitatively in terms
of performance, experiment execution duration, and FaaS execution costs across all
three datasets i.e. MNIST, CIFAR, and Shakespeare. Table 5.11 shows the maximum
Top-1 test accuracy that was achieved during the 20 rounds of collaborative training
by each unique model architecture for both FedMD and FedDF on three datasets. For
simplicity, we keep the data heterogeneity alpha level equal to 1 for all the comparisons
since that simulates a standard non-i.i.d. data distribution scenario and gives us a
good picture of the algorithm’s robustness towards data heterogeneity. The model
architecture level comparison is fair since we use the same architectures and client
distribution for both algorithms. In the case of MNIST, FedDF has better accuracy
levels for all model types than FedMD with an average performance improvement of
5% across the 6 unique model architectures. For CIFAR, we see a similar trend except
for model 1 where FedMD outperforms FedDF, however, we see a positive difference of
3.2% on average across all 5 unique model architectures for FedDF when compared
with FedMD in this case as well. Finally, for the Shakespeare language modeling task,
FedDF again outperforms FedMD by an average of 5% across the three unique model
architectures.

Table 5.12 compares both the algorithms regarding the complete experiment exe-
cution duration and the computation costs incurred by FaaS invocations during the

63

5 Experiments and Evaluation

Maximum Top-1 test accuracy (%)

MNIST CIFAR Shakespeare

Model ID FedMD FedDF FedMD FedDF FedMD FedDF

0 0.86 0.90 0.40 0.52 0.33 0.43

1 0.86 0.93 0.58 0.52 0.38 0.37

2 0.90 0.96 0.54 0.55 0.34 0.40

3 0.89 0.96 0.51 0.55 - -

4 0.92 0.93 0.51 0.56 - -

5 0.91 0.96 - - - -

Table 5.11: Comparison of maximum Top-1 test accuracy achieved across each dataset
and client model architecture between FedMD and FedDF with data het-
erogeneity α = 1. For model architecture details, please refer table 5.3 for
MNIST, table 5.4 for CIFAR and table 5.5 for Shakespeare.

Duration (min) Cost ($)

Dataset FedMD FedDF FedMD FedDF

MNIST 123.4 154.5 9.49 6.27

CIFAR 86.3 194 5.35 6.2

Shakespeare 369.3 226.2 24.88 4.3

Table 5.12: Comparison of overall experiment duration and FaaS invocation cost be-
tween FedMD and FedDF

complete training process comprising 20 collaboration rounds. To make the comparison
fair, we do not include the time and costs of Ray-based pre-training for the FedMD
algorithm but it should be kept in mind when considering the complete execution
costs. Also, we average the durations and costs across experiments with different data
heterogeneity levels to get more confident estimations. In terms of execution duration,
FedMD performs better for both the MNIST as well as CIFAR datasets since the FedDF
knowledge distillation step takes up a major chunk of execution time i.e. around 77%
of the total execution time. For Shakespeare, FedMD takes relatively more execution

64

5 Experiments and Evaluation

time mainly due to its revisit step which requires a higher number of local epochs for
text data modality compared to image classification tasks.

In terms of FaaS costs, we see relatively stable costs for FedDF across all three tasks
in contrast to FedMD which incurs significantly high costs for the Shakespeare task
that is mainly due to the expensive revisit step because it involves training for a high
number of local epochs by each participating client. However, in the case of FedDF, we
only select a subset of clients for each training round and the aggregation process takes
place in parallel for these selected clients leading to less costs. To summarize, in the
case of MNIST and Shakespeare, FedDF costs 34% and 82.7% less compared to FedMD,
and for CIFAR, FedDF costs around 16% more compared to FedMD.

65

6 Conclusion and Future Work

In this work, our main focus was to extend the existing serverless federated learning
system FedLess[23] to allow the participating clients to have heterogenous model
architectures and still collaborate with each other to achieve good performance. In
order to achieve this, we explored various IaaS-based knowledge distillation techniques
and finally implemented two of these techniques i.e. FedMD[38] and FedDF[42] based
on their performance and the ease of integration into our current serverless federated
learning platform. We faced some limitations with FedMD in the serverless paradigm
since it involves multiple client invocations and most of the knowledge distillation
process takes place on the client side which is not ideal due to limited processing and
function execution times. Also, it involves calling all or at least a major chunk of the
participating clients for each round which is not scalable when we are dealing with
thousands of client functions. FedDF on the other side, being a completely server-side
knowledge distillation algorithm and with only a fraction of clients participating in
each round was more natural and simpler to integrate into our existing system and
also yielded a better overall performance in most of our experiments. Overall, we were
able to demonstrate that similar performance levels can be achieved without much
cost and overall execution time differences in serverless federated learning systems
with heterogeneous client model architectures when compared to our predecessors
FedLesScan[17] and FedLess[23] that only allow homogeneous architectures.

Secondly, we performed a thorough analysis of the impact and robustness of different
data heterogeneity levels among the participating clients for both algorithms using
a Dirichlet distribution data sampling approach. Also, we enhanced the existing
FedLesScan[17], an adaptive clustering-based intelligent client selection algorithm to
perform the client selection by also taking their model heterogeneity into account and
performing clustering on a client-model architecture level rather than just client level.

Finally, we performed a detailed analysis of both algorithms on different learning
tasks and different levels of data heterogeneity in order to understand their performance
as well as the durations and associated FaaS costs for each of them. We were able
to achieve good results in terms of both performance as well as execution costs,
however, since these algorithms were developed mainly for IaaS-based federated
learning systems, we believe that better results can be achieved by spending more effort
on tuning the many complex parameters of these algorithms to work better in the time

66

6 Conclusion and Future Work

and computation constrained serverless environments.
It is worth exploring some more advanced data-free knowledge distillation algorithms

like FedGen[60] in a serverless setting since they do not require separate public transfer
datasets which can result in a much more robust self-contained collaborative training
process. In the current system, both our knowledge distillation implementations are
synchronous and require central aggregation functions for the distillation process which
is a bottleneck. More sophisticated decentralized knowledge distillation algorithms like
[8] where client functions can invoke and distill knowledge to their neighboring clients
can help eliminate this bottleneck and lead to better results in terms of efficiency.

To conclude, considering the increasing usage of edge devices of varying computa-
tional capacities across the world, enabling client model heterogeneity in serverless
federated learning settings is something that needs to be tackled further and we be-
lieve that there is significant research potential in developing federated knowledge
distillation algorithms tailored to serverless environments.

67

Abbreviations

ML Machine Learning

FL Federated Learning

FaaS Function-as-a-Service

IaaS Infrastructure-as-a-Service

i.i.d. independent and identically distributed

KD Knowledge Distillation

NLP Natural Language Processing

CV Computer Vision

GAN Generative adversarial network

68

List of Figures

1.1 Impact of increasing data heterogeneity on the test accuracy of the
FedMD distributed learning algorithm for MNIST and CIFAR image
classification tasks . 3

2.1 Standard FL setup . 9

3.1 Original architecture of FedKeeper [11] 15
3.2 Original architecture of FedLess [23] . 16
3.3 Modified architecture of FedLess[11] for FedLesScan[17] 17
3.4 Original algorithm for FedMD[38] . 22
3.5 Original algorithm of FedDF[38] for heterogeneous client architectures . 23

4.1 Serverless training flow for FedMD . 30
4.2 Serverless training flow for FedDF . 34
4.3 Modified architecture of FedLesScan [17]. Enhancements and modifica-

tions are highlighted in green. 36

5.1 FedMD/FedDF Private Client Data Distribution for MNIST Dataset . . 41
5.2 FedMD Private Client Data Distribution for CIFAR-100 (Subset) Dataset 42
5.3 FedDF Private Client Data Distribution for CIFAR-10 Dataset 44
5.4 Test accuracies for FedMD on MNIST Dataset with different data hetero-

geneity levels. Refer to table 5.3 for model specifications. 50
5.5 Test loss for FedMD on MNIST Dataset with different data heterogeneity

levels. Refer to table 5.3 for model specifications. 51
5.6 Test accuracy for FedMD on CIFAR Dataset with different data hetero-

geneity levels. Refer to table 5.4 for model specifications. 52
5.7 Test loss for FedMD on CIFAR Dataset with different data heterogeneity

levels. Refer to table 5.4 for model specifications. 53
5.8 Test accuracy for FedMD on Shakespeare Dataset for IID and Non-IID

scenarios. Refer to table 5.5 for model specifications. 54
5.9 Test loss for FedMD on Shakespeare Dataset for IID and Non-IID scenar-

ios. Refer to table 5.5 for model specifications. 54

69

List of Figures

5.10 Test accuracy for FedDF on MNIST Dataset with different data hetero-
geneity levels. Refer to table 5.3 for model specifications. 56

5.11 Test accuracy for FedDF on CIFAR Dataset with different data hetero-
geneity levels. Refer to table 5.4 for model specifications. 57

5.12 Test accuracy for FedDF on Shakespeare Dataset for IID and Non-IID
scenarios. Refer to table 5.5 for model specifications. 58

5.13 Individual step duration and overall round duration for FedMD on the
MNIST dataset . 59

5.14 Individual step duration and overall round duration for FedMD on the
CIFAR dataset . 59

5.15 Individual step duration and overall round duration for FedMD on the
Shakespeare dataset . 60

5.16 Collaboration round duration for FedDF 62
5.17 Collaboration round duration for FedDF on Shakespeare dataset. 62

70

List of Tables

3.1 Evaluated model heterogeneous KD techniques 20

4.1 Example of client model configuration for convolutional networks . . . 33

5.1 Summary of evaluation tasks and datasets for serverless FedMD 40
5.2 Summary of evaluation tasks and datasets for serverless FedDF 43
5.3 Client Convolutional Neural Network Models for MNIST 45
5.4 Client Convolutional Neural Network Models for CIFAR 45
5.5 1-Layer LSTM Network Models for Shakespeare 45
5.6 Hyper Parameters for FedMD . 46
5.7 Client Private Training Hyper Parameters for FedDF 47
5.8 FedDF Aggregator Hyperparameters . 47
5.9 Overall client execution time and cost analysis for FedMD on all datasets. 61
5.10 Overall client execution time and cost analysis for FedDF on all datasets 63
5.11 Comparison of maximum Top-1 test accuracy achieved across each

dataset and client model architecture between FedMD and FedDF with
data heterogeneity α = 1. For model architecture details, please refer
table 5.3 for MNIST, table 5.4 for CIFAR and table 5.5 for Shakespeare. . 64

5.12 Comparison of overall experiment duration and FaaS invocation cost
between FedMD and FedDF . 64

71

Bibliography

[1] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E. Hinton. Large scale
distributed neural network training through online distillation. 2020. arXiv: 1804.03235
[cs.LG].

[2] E. Arani, F. Sarfraz, and B. Zonooz. Noise as a Resource for Learning in Knowledge
Distillation. 2020. arXiv: 1910.05057 [cs.LG].

[3] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary. “Federated
Learning with Personalization Layers.” In: CoRR abs/1912.00818 (2019). arXiv:
1912.00818.

[4] M. Asad, A. Moustafa, and T. Ito. Federated Learning Versus Classical Machine
Learning: A Convergence Comparison. 2021. arXiv: 2107.10976 [cs.LG].

[5] AWS Cognito. https://aws.amazon.com/cognito/. Accessed: 2023-03-27.

[6] AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2023-03-24.

[7] Azure functions – Serverless functions in computing: Microsoft Azure. https://azure.
microsoft.com/en-us/products/functions/. Accessed: 2023-03-24.

[8] I. Bistritz, A. J. Mann, and N. Bambos. “Distributed Distillation for On-Device
Learning.” In: Proceedings of the 34th International Conference on Neural Information
Processing Systems. NIPS’20. Vancouver, BC, Canada: Curran Associates Inc., 2020.
isbn: 9781713829546.

[9] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and A. Talwalkar.
“LEAF: A Benchmark for Federated Settings.” In: arXiv preprint arXiv:1812.01097
(2018).

[10] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar.
“LEAF: A Benchmark for Federated Settings.” In: CoRR abs/1812.01097 (2018).
arXiv: 1812.01097.

[11] M. Chadha, A. Jindal, and M. Gerndt. “Towards Federated Learning Using
FaaS Fabric.” In: Proceedings of the 2020 Sixth International Workshop on Serverless
Computing. WoSC’20. Delft, Netherlands: Association for Computing Machinery,
2021, pp. 49–54. isbn: 9781450382045. doi: 10.1145/3429880.3430100.

72

https://arxiv.org/abs/1804.03235
https://arxiv.org/abs/1804.03235
https://arxiv.org/abs/1910.05057
https://arxiv.org/abs/1912.00818
https://arxiv.org/abs/2107.10976
https://aws.amazon.com/cognito/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://arxiv.org/abs/1812.01097
https://doi.org/10.1145/3429880.3430100

Bibliography

[12] Y. Chang, S. Laridi, Z. Ren, G. Palmer, B. W. Schuller, and M. Fisichella. Robust
Federated Learning Against Adversarial Attacks for Speech Emotion Recognition. 2022.
arXiv: 2203.04696 [cs.SD].

[13] Y. J. Cho, A. Manoel, G. Joshi, R. Sim, and D. Dimitriadis. “Heterogeneous
Ensemble Knowledge Transfer for Training Large Models in Federated Learning.”
In: (2022). doi: 10.48550/ARXIV.2204.12703.

[14] Cloud functions - Google Cloud. https://cloud.google.com/functions. Accessed:
2023-03-24.

[15] Cloud Functions pricing. https://cloud.google.com/functions/pricing. Ac-
cessed: 2023-04-02.

[16] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. “EMNIST: an extension of
MNIST to handwritten letters.” In: CoRR abs/1702.05373 (2017). arXiv: 1702.
05373.

[17] M. Elzohairy, M. Chadha, A. Jindal, A. Grafberger, J. Gu, M. Gerndt, and O.
Abboud. “FedLesScan: Mitigating Stragglers in Serverless Federated Learning.”
In: arXiv preprint arXiv:2211.05739 (2022).

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.” In: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining. KDD’96.
Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[19] funcX. https://funcx.org/. Accessed: 2023-03-26.

[20] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar. Born Again
Neural Networks. 2018. arXiv: 1805.04770 [stat.ML].

[21] H. Gibet Tani and C. El Amrani. “Cloud Computing CPU Allocation and Schedul-
ing Algorithms using CloudSim Simulator.” In: International Journal of Electrical
and Computer Engineering (IJECE) 6 (Aug. 2016), p. 1866. doi: 10.11591/ijece.
v6i4.pp1866-1879.

[22] J. Gou, B. Yu, S. J. Maybank, and D. Tao. “Knowledge Distillation: A Survey.” In:
CoRR abs/2006.05525 (2020). arXiv: 2006.05525.

[23] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt. “FedLess: Secure
and Scalable Federated Learning Using Serverless Computing.” In: 2021 IEEE
International Conference on Big Data (Big Data). 2021, pp. 164–173. doi: 10.1109/
BigData52589.2021.9672067.

[24] Q. Guo, X. Wang, Y. Wu, Z. Yu, D. Liang, X. Hu, and P. Luo. “Online Knowledge
Distillation via Collaborative Learning.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). June 2020.

73

https://arxiv.org/abs/2203.04696
https://doi.org/10.48550/ARXIV.2204.12703
https://cloud.google.com/functions
https://cloud.google.com/functions/pricing
https://arxiv.org/abs/1702.05373
https://arxiv.org/abs/1702.05373
https://funcx.org/
https://arxiv.org/abs/1805.04770
https://doi.org/10.11591/ijece.v6i4.pp1866-1879
https://doi.org/10.11591/ijece.v6i4.pp1866-1879
https://arxiv.org/abs/2006.05525
https://doi.org/10.1109/BigData52589.2021.9672067
https://doi.org/10.1109/BigData52589.2021.9672067

Bibliography

[25] N. Haim, G. Vardi, G. Yehudai, O. Shamir, and M. Irani. Reconstructing Training
Data from Trained Neural Networks. 2022. arXiv: 2206.07758 [cs.LG].

[26] C. He, M. Annavaram, and S. Avestimehr. “Group Knowledge Transfer: Federated
Learning of Large CNNs at the Edge.” In: (2020). doi: 10.48550/ARXIV.2007.
14513.

[27] G. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a Neural
Network.” In: (2015). doi: 10.48550/ARXIV.1503.02531.

[28] L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang. “MHAT: An efficient model-
heterogenous aggregation training scheme for federated learning.” In: Information
Sciences 560 (2021), pp. 493–503. issn: 0020-0255. doi: https://doi.org/10.1016/
j.ins.2021.01.046.

[29] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto. “Distillation-Based
Semi-Supervised Federated Learning for Communication-Efficient Collaborative
Training with Non-IID Private Data.” In: IEEE Transactions on Mobile Computing
(2021), pp. 1–1. doi: 10.1109/tmc.2021.3070013.

[30] K. Jayaram, V. Muthusamy, G. Thomas, A. Verma, and M. Purcell. λ-FL: Serverless
Aggregation For Federated Learning. 2022.

[31] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519. May
2015. doi: 10.17487/RFC7519.

[32] J. M. Joyce. “Kullback-Leibler Divergence.” In: International Encyclopedia of Statisti-
cal Science. Ed. by M. Lovric. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 720–722. isbn: 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_327.

[33] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon.
Federated Learning: Strategies for Improving Communication Efficiency. 2017. arXiv:
1610.05492 [cs.LG].

[34] N. Kotsehub, M. Baughman, R. Chard, N. Hudson, P. Patros, O. Rana, I. Foster,
and K. Chard. “FLoX: Federated Learning with FaaS at the Edge.” In: 2022
IEEE 18th International Conference on e-Science (e-Science). 2022, pp. 11–20. doi:
10.1109/eScience55777.2022.00016.

[35] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute for Advanced
Research).

[36] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-100 (Canadian Institute for Advanced
Research).

[37] Y. LeCun and C. Cortes. “MNIST handwritten digit database.” In: (2010).

74

https://arxiv.org/abs/2206.07758
https://doi.org/10.48550/ARXIV.2007.14513
https://doi.org/10.48550/ARXIV.2007.14513
https://doi.org/10.48550/ARXIV.1503.02531
https://doi.org/https://doi.org/10.1016/j.ins.2021.01.046
https://doi.org/https://doi.org/10.1016/j.ins.2021.01.046
https://doi.org/10.1109/tmc.2021.3070013
https://doi.org/10.17487/RFC7519
https://doi.org/10.1007/978-3-642-04898-2_327
https://arxiv.org/abs/1610.05492
https://doi.org/10.1109/eScience55777.2022.00016

Bibliography

[38] D. Li and J. Wang. “FedMD: Heterogenous Federated Learning via Model Distil-
lation.” In: (2019). doi: 10.48550/ARXIV.1910.03581.

[39] T. Li. Federated Learning: Challenges, Methods, and Future Directions. https://blog.
ml.cmu.edu/2019/11/12/federated- learning- challenges- methods- and-
future-directions/. Accessed: 2023-03-24.

[40] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. “Federated Learning: Challenges,
Methods, and Future Directions.” In: CoRR abs/1908.07873 (2019). arXiv: 1908.
07873.

[41] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. “Tune:
A Research Platform for Distributed Model Selection and Training.” In: arXiv
preprint arXiv:1807.05118 (2018).

[42] T. Lin, L. Kong, S. U. Stich, and M. Jaggi. “Ensemble Distillation for Robust Model
Fusion in Federated Learning.” In: 33 (2020). Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, pp. 2351–2363.

[43] O. Ltd. Home. https://www.openfaas.com/. Accessed: 2023-03-24.

[44] A. B. de Luca, G. Zhang, X. Chen, and Y. Yu. Mitigating Data Heterogeneity in
Federated Learning with Data Augmentation. 2022. arXiv: 2206.09979 [cs.LG].

[45] B. McMahan and D. Ramage. Federated Learning: Collaborative Machine Learn-
ing without Centralized Training Data. https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html. Accessed: 2023-03-24.

[46] H. Mobahi, M. Farajtabar, and P. L. Bartlett. Self-Distillation Amplifies Regularization
in Hilbert Space. 2020. arXiv: 2002.05715 [cs.LG].

[47] A. Mora, I. Tenison, P. Bellavista, and I. Rish. Knowledge Distillation for Federated
Learning: a Practical Guide. 2022. arXiv: 2211.04742 [cs.LG].

[48] Open source serverless cloud platform. https://openwhisk.apache.org/. Accessed:
2023-03-24.

[49] Ray Homepage. https://www.ray.io/. Accessed: 2022-10-30.

[50] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. FitNets:
Hints for Thin Deep Nets. 2015. arXiv: 1412.6550 [cs.LG].

[51] I. H. Sarker. “Machine Learning: Algorithms, Real-World Applications and Re-
search Directions.” In: SN Computer Science 2.3 (2021), p. 160. doi: 10.1007/
s42979-021-00592-x.

[52] H. Shafiei and A. Khonsari. “Serverless Computing: Opportunities and Chal-
lenges.” In: CoRR abs/1911.01296 (2019). arXiv: 1911.01296.

75

https://doi.org/10.48550/ARXIV.1910.03581
https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
https://arxiv.org/abs/1908.07873
https://arxiv.org/abs/1908.07873
https://www.openfaas.com/
https://arxiv.org/abs/2206.09979
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/2002.05715
https://arxiv.org/abs/2211.04742
https://openwhisk.apache.org/
https://www.ray.io/
https://arxiv.org/abs/1412.6550
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://arxiv.org/abs/1911.01296

Bibliography

[53] T. Sun, D. Li, and B. Wang. “Decentralized Federated Averaging.” In: (2021). doi:
10.48550/ARXIV.2104.11375.

[54] A. Z. Tan, H. Yu, L. Cui, and Q. Yang. “Towards Personalized Federated Learn-
ing.” In: IEEE Transactions on Neural Networks and Learning Systems (2022), pp. 1–17.
doi: 10.1109/TNNLS.2022.3160699.

[55] K. Team. Keras documentation: Character-level text generation with LSTM.

[56] S. Thapa. On effects of Knowledge Distillation on Transfer Learning. 2022. arXiv:
2210.09668 [cs.LG].

[57] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao. “A survey on federated
learning.” In: Knowledge-Based Systems 216 (2021), p. 106775. issn: 0950-7051. doi:
https://doi.org/10.1016/j.knosys.2021.106775.

[58] L. Zhang, C. Bao, and K. Ma. “Self-Distillation: Towards Efficient and Compact
Neural Networks.” In: IEEE Transactions on Pattern Analysis amp; Machine Intel-
ligence 44.08 (Aug. 2022), pp. 4388–4403. issn: 1939-3539. doi: 10.1109/TPAMI.
2021.3067100.

[59] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep Mutual Learning. 2017.
arXiv: 1706.00384 [cs.CV].

[60] Z. Zhu, J. Hong, and J. Zhou. “Data-Free Knowledge Distillation for Heteroge-
neous Federated Learning.” In: (2021). doi: 10.48550/ARXIV.2105.10056.

76

https://doi.org/10.48550/ARXIV.2104.11375
https://doi.org/10.1109/TNNLS.2022.3160699
https://arxiv.org/abs/2210.09668
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1109/TPAMI.2021.3067100
https://arxiv.org/abs/1706.00384
https://doi.org/10.48550/ARXIV.2105.10056

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Definition
	Methodology
	Research Questions
	Approach
	Evaluation and experiments

	Background
	Federated Learning
	Limitations of Federated Learning

	Serverless Computing
	Function-as-a-Service (FaaS)

	Knowledge Distillation (KD)
	Distillation Process
	Basic Distillation Example
	Benefits of Knowledge Distillation

	Related Work
	Serverless Federated Learning
	Knowledge Distillation in standard FL
	In-Depth Explanation - FedMDfedmd and FedDFfeddf

	Model Architecture Agnostic Serverless Federated Learning

	Enabling Model Heterogeneity Using Knowledge Distillation
	Central Controller Enhancements
	Tunable Data Heterogeneity
	Intelligent Client Selection for Heterogeneous Architectures
	FedMD Integration
	Training Workflow

	FedDF Integration
	Ensemble Distillation for Model Fusion
	Training Workflow

	Overall System Design Improvements
	Optimized FedMD Pre-Training using Ray
	FedDF Parallel Aggregation using FaaS

	Experiments and Evaluation
	Experiment Setup
	Overall Evaluation Procedure
	Datasets and Heterogeneous Client Data Distribution
	Client Model Architectures
	Hyperparameters
	Infrastructure and Experiment Setup

	Learning Task Performance and Accuracy
	FedMD
	FedDF

	Time and Cost Analysis
	FedMD
	FedDF

	Quantitative comparison - FedMD and FedDF

	Conclusion and Future Work
	Abbreviations
	List of Figures
	List of Tables
	Bibliography

