
Technische Universität München

TUM School of Computation, Information and Technology

Environmental stress level � a mathematical modeling

framework to investigate the in�uence of the

microenvironment on tumor cell survival

Sabrina Schönfeld

Vollständiger Abdruck der von der TUM School of Computation, Information

and Technology der Technischen Universität München zur Erlangung einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Andreas Wiese

Prüfer*innen der Dissertation:

1. Prof. Dr. Christina Kuttler

2. Assistant Prof. Dr. Laura Scarabosio

3. Prof. Dr. Helen Byrne

Die Dissertation wurde am 22.06.2023 bei der Technischen Universität München eingereicht und durch

die TUM School of Computation, Information and Technology am 30.11.2023 angenommen.





Acknowledgements

Freude am Schauen und Begreifen ist die schönste Gabe der Natur.

� Albert Einstein �

First and foremost, I want to thank Prof. Dr. Christina Kuttler and Dr. Laura Scarabosio for
their wonderful supervision, guidance and tireless support over the last few years. You always had
an open ear for me and gave me a good feeling about myself � work-related and beyond. I really
appreciated all of our conversations and feel greatly thankful for the opportunity to contribute
to the exciting and meaningful research �eld of biomathematics, especially in the medical context.

I am very grateful to Prof. Dr. Helen Byrne for taking her precious time to review and examine
this thesis as well as to Prof. Dr. Andreas Wiese for assuming the chair of the examination
committee. I want to thank Dr. M. Nichole Rylander and Dr. Alican Ozkan for providing the
experimental data, which motivated the modeling ideas and played an essential part in this work,
as well as for supporting me with valuable insights and explanations.

I really enjoyed being part of the chair M6 for mathematical modeling. This is thanks to all the
thoughtful colleagues who created a very pleasant and friendly working environment. Special
thanks goes to Dr. Pirmin Schlicke for helping me getting settled at the beginning of my PhD as
well as Dr. Gabriele Witterstein for being my mentor and � together with Prof. Dr. Christina
Kuttler � sparking my fascination for mathematical modeling during my bachelor studies. I also
want to thank Veronika Hofmann for lending me a helping hand towards the end of my PhD by
trying out all of my calibration ideas. Furthermore, I want to thank Dr. Hannes Petermeier,
who passed on the excitement and enjoyment for teaching to me.

Finally, the success of my PhD would not have been possible without the loving environment
of my family � my parents Precy and Ludwig, my sister Katja and my brother Mario. I am
deeply grateful to my parents for planting the seed of excitement about science during our little
stargazing sessions when I was a kid, for letting me �nd my own path in life and inexhaustibly
supporting me along the way. Furthermore, I want to give my heartfelt thanks to my husband
Ladi for always having my back, no matter what, and �nding words of encouragement in every
situation, especially towards the end of my PhD. A special thanks goes to all of my friends as
well as Günther the cat and everyone who came before him.





Abstract

This thesis presents a novel mathematical modeling approach: the so-called environmental stress
level (ESL). It describes the collective in�uence of the microenvironment on the viability of cells.
We apply the ESL approach to di�erent biological experiments. In combination with data-based
parameter estimation using Bayesian inference, this allows for investigating the impact of nu-
trient supply, oxygen concentration, chemotherapeutic drugs and sti�ness of the extracellular
matrix on particular hepatocellular carcinoma cell lines.

In dieser Arbeit wird ein neuartiger mathematischer Modellierungsansatz vorgestellt: das soge-
nannte Environmental Stress Level (ESL). Es beschreibt den kollektiven Ein�uss der Zellumge-
bung auf die Lebensfähigkeit von Zellen. Wir wenden den ESL-Ansatz auf verschiedene biolo-
gische Experimente an. Die Kombination mit datenbasierter Parameterschätzung mithilfe von
Bayesscher Inferenz ermöglicht die Untersuchung des Ein�usses von Nährsto�versorgung, Sauer-
sto�konzentration, Chemotherapeutika und Stei�gkeit der extrazellulären Matrix auf bestimmte
hepatozelluläre Karzinom-Zelllinien.
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1

1 Introduction

As one of the leading causes of death worldwide, cancerous diseases are a highly relevant �eld
of research in medicine and biology. Up to this day, there is a great demand on advancing
the understanding of fundamental dynamics of tumor growth and treatment strategies. For
this, gaining empirical data is essential, which can be done by in vivo or in vitro studies, i.e.
assessment of the tumor growth inside the living body (humans or animals) or based on e.g. cell
cultures.

Mathematics for biology. Besides the statistical investigation of the acquired data [1], mathe-
matical methods in general provide powerful tools to increase the knowledge gain.

Mathematical modelinggggg. One of such tools is applied mathematical modeling [2, 3], i.e. the
mathematical description of processes incorporating biological, physical or chemical background
knowledge. In the context of tumor modeling, it can help to understand fundamental biolog-
ical dynamics or to optimize treatment by adequate quantitative descriptions and predictions.
Naming di�erential equations of all types, stochastic models, phenomenological models as well as
more mechanistic ones, there are numerous mathematical models and methods already available
(see [4, 5]). For in vivo settings, the quanti�cation of realistic tumor growth in terms of parame-
ter values is still challenging without harming a patient or a�ecting a potential treatment, despite
good new experimental techniques [6�8]. Alternatively, in vitro approaches allow for observing
tumor cells, individually or as populations, under well-controlled conditions to examine at least
parts of the underlying processes and how they are potentially in�uenced by their environment
(see e.g. [9, 10]).

There are various starting points for mathematical models to investigate tumor dynamics,
depending on which processes should be investigated and which omitted: e.g. describing tumor
growth for solid tumors or cell populations [2, 11, 12], potentially in consideration of treat-
ment [13�15] and/or environmental in�uences like blood supply or mechanical forces [16�20].
Modeling can give insight into unknown causal relations, especially in combination with empir-
ical data. In this work, a novel modeling approach is proposed based on the introduction of an
immeasurable auxiliary variable � the so-called environmental stress level (ESL) � quantifying
the collective e�ect of environmental factors on the cell growth and death. In particular, we in-
vestigate the in�uence of nutrient supply, oxygenation, tissue sti�ness and/or drug treatment on
the cells, showcasing the potential of the ESL to provide a �exible and easily adjustable modeling
framework for considering an arbitrary number of environmental factors � especially if combined
with empirical observations. Using the experimental in vitro data from [21, 22], we estimate
the involved model parameters to acquire quantities with biological interpretation, eventually
providing a deeper understanding of speci�c environmental in�uences on the chemoresistance of
particular tumor cell lines.

Uncertaintyyyyy qqqqquantification. The reconstruction of model parameters from data is referred to as the
inverse problem. This work employs uncertainty quanti�cation with Bayesian inversion [23�25],
in particular with Sequential Monte Carlo (SMC) methods [26, 27]. These fall into the category
of statistical inversion methods, which allow to quantitatively address uncertainties/inaccuracies
in the observations as well as the mathematical model. As a result, we obtain probability distri-
butions for the parameters, giving access to more information, in particular the uncertainty in the
parameter estimates, compared to deterministic inversion methods like least-square estimation
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(see e.g [28, Ch. 10]) at the cost of increased computational e�ort. The latter provide only the
one set of parameter values which is considered as the �best� (depending on the mathematical
assumptions) possible match to the data. Currently, the application of uncertainty quanti�cation
in the context of deterministic tumor modeling, especially for parameter inference, is scarce and
sometimes limited to synthetic data [29].

There are of course other possibilities besides SMC to approach the Bayesian inverse problem
in practice, which have also been partially applied in biological context. While the so-called pos-
terior distribution of the parameters can be constructed deterministically in suitable applications
(e.g. quasi-Monte Carlo [30] or sparse grids [31, 32]), sampling-based methods (like SMC) have
shown to be more practical for this task and hence are commonly used. In particular, they rely
on fewer regularity assumptions of the posterior with reference to the parameters and require less
tuning to handle concentrated posteriors. Simple Markov Chain Monte Carlo (MCMC) methods
are among the most popular ones [33, Ch. 6-7] as they are simple to implement and well un-
derstood theoretically. Using appropriate experimental data, they are applied e.g. for modeling
tumor growth [21, 29, 34] or tissue growth [35]. Hence, particle-based methods, like sequential
importance sampling and resampling (annealed importance sampling [36] and SMC) and popula-
tion MCMC [37�39], have gained popularity in the last decade due to their higher e�ciency and
robustness compared to simple MCMC [40, 41]. Note that SMC based on �ltering distributions
is especially computationally cheaper for time-resolved data. An alternative approach is the
ensemble Kalman �lter [42], which is similar to SMC but assumes a Gaussian approximation of
the posterior [43]. However, it has been shown in [44] that for nonlinear forward models (which
are typically used for tumor modeling), the ensemble Kalman �lter is not consistent with the
full posterior distribution and can be rather looked at as a derivative-free optimization method
to obtain point estimates [43, 45, 46].

Alternatively to sampling-based methods like MCMC or SMC, the posterior distribution
could also be constructed via measure transport [47], based on the task of solving an optimization
problem over maps, i.e. determining a function transporting a given reference probability density
measure to the the posteriors measure. There are also likelihood-free approaches for solving the
inverse problem [48], also with applications in experimental biology (see e.g. [49�52]).

Outline The thesis is structured as follows: The subsequent Chapter 2 provides some back-
ground information about the biological processes, which are described by mathematical models
in Chapter 3. We present a novel modeling approach to consider the in�uence of the tumor
microenvironment on cancer cells (Section 3.1). This approach is then applied to two di�erent
biological settings: tumor cells under nutrient deprivation (Section 3.2) and under chemothera-
peutic treatment in varying environments (Section 3.3). Each application is based on respective
in vitro experiments.

The corresponding measurements are used to estimate the unknown parameters of the models
using the methods introduced in Chapter 4. In particular, under consideration of experimental
and modeling inaccuracies (Section 4.1) we use Bayesian inversion (Section 4.2) and Sequential
Monte Carlo methods (Section 4.3) to calibrate the mathematical models. Chapter 5 explains
how the calibration methods are actually applied to the mathematical models. In particular,
it gives the problem-speci�c algorithmic settings (Section 5.1), demonstrates how the available
experimental data are utilized (Section 5.2) and how a priori knowledge about the parameters
is incorporated (Section 5.3).

In Chapter 6 the corresponding calibration results are presented and discussed in the biologi-
cal context of nutrient deprivation (Section 6.2) and chemoresistance (Section 6.3). Beforehand,
we give an overview over the mathematical tools which are employed to investigate the calibra-
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tion results (Section 6.1). Eventually, Chapter 7 summarizes the obtained insights (Section 7.1)
and observed di�culties/limitations (Section 7.2) while presenting possible solutions. We con-
clude with an outlook in view of further extensions of the ESL approach and the calibration
algorithm (Section 7.3).

The subsequent appendices give additional material to support the comprehensibility of the
thesis. In particular, we summarize important notations and terminologies (Appendix A) and
outline relevant mathematical basics for mathematical modeling with di�erential equations (Ap-
pendix B). Furthermore, we provide calculations yielding some properties of the mathematical
models from Section 3.3 (Appendix C) as well as some supplementary material regarding the
model calibration and post processing of the calibration results (Appendix D). Lastly, we give
further investigations of the results, complementary to Chapter 6, on both biological applica-
tions (Appendix E).
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2 Biological and experimental background

This chapter provides a short overview of the biological background of (tumor) cell dynamics and
the role of the cells' surroundings. Furthermore, we brie�y describe the experimental methods
in the studies [21] and [22], from which we utilize data to calibrate the mathematical models.

Cell dynamics. Cells are basic structural units of every life form. By ful�lling speci�ed functions
they play a signi�cant role in developing and maintaining a well-functioning organism [53]. Under
healthy conditions, a cell replicates and dies in a highly regulated manner. In particular, cells
can proliferate, i.e. grow and divide to increase the number of cells (tissue growth). This process
is balanced by programmed cell death as part of the cells' life cycle. During proliferation, a
cell divides and produces a genetically identical copy of itself. It can happen that the genetic
information of the new cell shows alternations in comparison to the original one, i.e it mutates.
Certain mutations can lead to a disturbance of the balance between cell proliferation and death,
resulting in cancerous cells [54], which divide in an uncontrolled manner.

Tumor cells and their environment. When considering cancerous diseases in the body, we
can � in simpli�ed terms � distinguish between the tumor cells and the surrounding tumor mi-
croenvironment (TME). The latter includes, for instance, blood vessels, signaling molecules and
the extracellular matrix (ECM), a three-dimensional, �brous structure supporting the surround-
ing cells. On the one hand, the TME is known to play a signi�cant role in cancer development
and progression by biochemically and physically stimulating the cells [55] as well as in�uencing
drug e�cacy [56]. On the other hand, the tumor cells can actively modify the TME, e.g. by in-
ducing the growth of blood vessels (so-called angiogenesis) [57] or altering the ECM's mechanical
properties [58, 59] to improve their survival conditions.

A su�cient blood supply provides oxygen and essential nutrients, hence is crucial for any
cells' survival. Due to the excessive growth of tumor cells, their demand is even higher compared
to healthy cells and the tumor can easily outgrow its blood supply. In this situation, tumor cells
experience nutrient and/or oxygen deprivation (the latter is called hypoxia), which can change
the cells' behavior and their interaction with the TME [55, 60]. This also applies to the ECM
and especially its sti�ness and elasticity, as cells are able to sense and react to the mechanical
properties of the ECM. Even under healthy conditions, the ECM plays an important role in the
regulation of cell dynamics. However, a sti� ECM can also contribute to tumor progression [55].

Experimental investigation of tumor cell viability under controlled conditions. In an ex-
perimental in vitro setting, a way of monitoring cell viability is the so-called CellTiter-Blue®

assay [61]. In particular, cell populations are exposed to a certain chemical, which is then metab-
olized by viable cells: the resulting product emits measurable light. A higher amount of living
cells yields an increased metabolization of the chemical. Therefore, measuring the light intensity
quanti�es the metabolic activity, which is proportional to the population's viability. In practice,
we observe a combination of this emitted light and the background �uorescence of the cell-free
medium (the latter has to be measured separately and subtracted from the total �uorescence).

The cell population itself is placed in a particular, controlled environment. This allows
for investigating the in�uence of ambient features on the viability. To maintain stable growth
conditions, the cells are incubated at an adjustable temperature, humidity and oxygen supply.
The culture medium can be supplemented with e.g. a speci�c nutrient or chemo-therapeutic drug
concentration. In the experiments from [21, 22] the cell populations are either seeded directly
into the culture medium or into a collagen hydrogel. The latter is used to mimic the ECM with
speci�c mechanical properties [62].
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3 Mathematical modeling

In this chapter we present the novel modeling approach of using a so-called environmental stress
level (ESL) to describe how the viability of tumor cells is in�uenced by its environment (Sec-
tion 3.1). This framework is used for two applications. The �rst one is a simple biological setting
to investigate the e�ect of nutrient deprivation on the tumor cells (Section 3.2). The correspond-
ing model calibration results using the methods of Section 4.3 focus on showing the applicability
and reasonableness of the ESL approach. In a second application, we investigate the in�uence
of a more complex environment considering chemotherapeutic drugs, oxygen concentration and
tissue sti�ness (Section 3.3). In this setting we are interested in getting a deeper understanding
of the e�ect of each individual environmental component as well as their combined in�uence on
the cells.

Preliminaries on conventional techniques and notations regarding mathematical modeling
with di�erential equations can be found as supplementary material in Appendix B. The imple-
mentation of all models and the calculation of their solutions is done in Python 3.

3.1 General approach: Environmental stress level (ESL) in�uencing tumor cells

The TME can in�uence cell reproduction, viability and movement. We use the term environmen-
tal factors to denote the features of the TME, which potentially a�ect the tumor cells' survival
in a harmful or bene�cial way, e.g. nutrient supply, oxygen saturation, drug concentrations or
ECM sti�ness.

The following paragraphs explain a novel modeling approach, which was �rstly introduced
in [63]1 as part of the thesis project. Each environmental factor, which should be considered in
the model, is mathematically represented by a time-dependent system variable: E1(t), . . . , En(t),
where n ∈ N is the number of factors/variables and t ≥ 0 is the time. These quantities might
in�uence each other as well as be in�uenced by present tumor cells. Such dynamics can be
captured by a respective reaction function gj (1 ≤ j ≤ n), leading to an initial value problem for
each variable of the form

Ėj = gj(E1, . . . , En, V, t) , Ej(t0) = Ej,0 , (3.1)

with V = V (t) ≥ 0 being the density of viable (i.e. alive) tumor cells and t0 an initial time point.

3.1.1 In�uence of the tumor microenvironment on viable cells

The collective in�uence of all environmental variables on the tumor cells is modeled by an aux-
iliary time-dependent variable η = η(t), which we call the environmental stress level or ESL for
short. It is an immeasurable quantity and describes how stressful the conditions, generated
by the present environmental factors, are for viable cells. By de�nition, the ESL is bounded
by 0 ≤ η(t) ≤ 1 ∀t, where the bounds η = 0 resp. η = 1 mean that cells �nd optimal resp. most
inexpedient survival conditions. Note that �most inexpedient� always has to be seen in the con-
text of the given environmental factors, since the ESL is normalized. This means that there
is no point in comparing the ESL for two settings which respectively consider di�erent sets of
environmental factors.

1Note that content and formulations in this section are partly taken from this article.
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Optimal growth conditions. For η ≡ 0, the viable cells V can proliferate with a maximal
possible growth rate β, and they only die from programmed cell death with a constant rate λ,
i.e.

η ≡ 0 ⇒ V̇ = β V

(
1−

(
V

Vcap

)b
)

− λV .

The right hand side of this ordinary di�erential equation (ODE) is a combination of a generalized
logistic growth and an additional exponential death term. In this context, 1/b is a dimensionless
measure for the strength of contact inhibition and K the corresponding carrying capacity of the
biological system. As a feature of the logistic part of the ODE, population growth for very small
populations (i.e. V ≪ Vcap) can be approximated by exponential growth with rate β. It is a
reasonable assumption that, independently of the initial population size V0, the cell population's
size actually increases over time under optimal growth conditions, which translates to a parameter
relation: β > λ. With this constraint, the ODE can be rewritten as a purely logistic growth term

V̇ = (β − λ)︸ ︷︷ ︸
=β∗

V

 1−

 V

Vcap
(
1− λ

β

)1/b︸ ︷︷ ︸
=V ∗

cap

b
 ,

with �net� growth rate β∗ = β − λ and �net� carrying capacity V ∗
cap = Vcap(1− λ

β )
1/b.

Most inexpedient conditions. For the extreme situation of η ≡ 1, the cells cannot reproduce
anymore and cell death is induced by the poor growth conditions. In this case, the cells' dynamics
can be described by

η ≡ 1 ⇒ V̇ = −(λ+ λind)V ,

where λind is the maximal possible death rate due to the stressful environment.

Varying conditions. In general, the induced death rate λind increases whereas the proliferation
rate β decreases with rising ESL. Consequently, for arbitrary values of η these rates need to be
scaled accordingly. Since η(t) ∈ [0, 1] ∀t, this can be achieved by

V̇ = (1− η) · β V

(
1−

(
V

Vcap

)b
)

− (λ+ η · λind)V . (3.2)

With this modeling approach the tumor population size is only regulated by the ESL η, which it-
self depends on the present environmental factors E1, . . . , En. They in�uence the reaction terms
of the ODE for η, which will be constructed in the following two Sections 3.1.2 and 3.1.3. Before-
hand, we brie�y summarize the mathematical features of the solution V ; analogous properties
for the ESL η are presented in Subsection 3.1.3.

With the boundedness of η, equation (3.2) yields V = 0 ⇒ V̇ = 0 , i.e. positivity of the
solution V . Hence, its biological reasonableness is preserved given a non-negative initial con-
dition V (t0) = V0 ≥ 0. By generalizing the calculations in our publication [63], we achieve the
steady states V̄ of V :

V̇ |V=V̄ ,η=η̄ = 0 ⇒ V̄ = 0 or V̄ = Vcap
b

√
1− λ+ η̄ · λind

(1− η̄) · β .

Since the root has to be well-de�ned for arbitrary b ≥ 1, the latter steady state only exists in
case of λ+η̄·λind

(1−η̄)·β < 1, with η̄ denoting the only steady state of η (see (3.4) in Subsection 3.1.3).



3.1 General approach: Environmental stress level (ESL) in�uencing tumor cells 7

Rewriting this constraint gives λ+ η̄ · λind < (1− η̄) · β, which means that the net growth rate
has to be larger than the net death rate even under stressful conditions, in order to have a non-
trivial steady state of the population size V . The stability of the steady states depends on the
given reaction terms of the remaining variables. Similar calculations (for details see [63]) yield

the upper bound of V , which is max
{
V0 , Vcap b

√
1− λ

β

}
.

3.1.2 In�uence of a speci�c environmental factor

To describe how exactly these environmental factors in�uence the ESL, we use in�uence func-
tions, which are respectively de�ned for each Ej (1 ≤ j ≤ n) by

δ+j : (E1, . . . , En) 7→ δ+j (E1, . . . , En) ∈ [0, 1]

and δ−j : (E1, . . . , En) 7→ δ−j (E1, . . . , En) ∈ [0, 1] .

The superscript �+� resp. �−� of δj indicates whether the function describes a positive or
negative in�uence of the variable Ej on the cells' survival. Hence, we call them positive/negative
in�uence function accordingly. An in�uence function δ±j can depend on the other environmental
variables Ei (i ̸= j), as well: for instance, the in�uence of a chemotherapeutic drug on the cells'
viability might be a�ected by the presence of another drug. We use E1:n as a short notation
for E1, . . . , En in the following.

We call an environmental factor bene�cial if increasing its corresponding variable Ej (with
�xed Ei, i ̸= j) increases the value of δ+j and decreases the value of δ−j (see Figure 1). We call it
harmful if it is the other way round. Examples for a bene�cial and harmful environmental factor
can be nutrient saturation and anti-cancer drug concentration, respectively.

Figure 1: Plots of exemplary in�uence functions δ+, δ− for a system with only one (i.e. n = 1) bene�cial

environmental factor E1 = E, here using δ+(E) = E2

E2
thr

+E2 and δ−(E) = 1− δ+(E).

To model the in�uence functions for bene�cial/harmful environmental variables, we use ideas
from so-called ultrasensitive responses [64]. In this context, a response is triggered by a stimulus
in a switch-like manner: for low stimulus there is hardly any response; the response ampli�es
with increasing stimulus, but not before the latter overcomes a speci�c threshold. This behavior
is depicted by a sigmoid stimulus-response curve, which can be mathematically described, for
instance, by a Hill-type function

H : R+ → [0, 1] , E 7→ Em

Em
thr + Em

, with m > 1 .

Note that, in general, the positive Hill coe�cient m can also be smaller than one. However,
for m ∈ (0, 1] the function H loses the sigmoidal shape, which is not useful for this application.
Translating this concept to our setting, E is the variable of a bene�cial resp. harmful environ-
mental factor and we use δ+(E) = H(E) resp. δ−(E) = H(E) for the in�uence functions. The
(switch) threshold Ethr can be interpreted as the critical value of E, where the cells get in�uenced



8 3 MATHEMATICAL MODELING

by this environmental factor (see Figure 2, left). The Hill coe�cient m regulates how sensitive
the cells are to a change in E (see Figure 2, right).

0.0 1.0 2.0 3.0

0.0

0.5

1.0

𝐸

𝐸𝑚

𝐸𝑚
thr

+𝐸𝑚 with 𝑚 = 2

𝐸thr = 0.5
𝐸thr = 1.0
𝐸thr = 1.5

0.0 1.0 2.0 3.0

0.0

0.5

1.0

𝐸

𝐸𝑚

𝐸𝑚
thr

+𝐸𝑚 with 𝐸thr = 1

𝑚 = 1
𝑚 = 2
𝑚 = 10

Figure 2: Graphs of the Hill function E 7→ Em

Em
thr

+Em for varying values of Ethr (left) resp. m (right).

For such a bene�cial/harmful variable E, a relation of the form δ−(E) = 1− δ+(E), or equiva-
lently δ+(E) = 1− δ−(E), means that the thresholds, for which the cells experience stress and
recover from it, are the same, namely Ethr (recall Figure 1). This does not necessarily have to
be the case: if, for example, E denotes the nutrient supply (bene�cial), then the cells might
need a larger amount of nutrients to recover from nutrient deprivation compared to the nutri-
ent threshold, at which falling below induces stress � this would be modeled by the in�uence
functions

δ+(E) =
Em

Em
thr,1 + Em

and δ−(E) = 1− Em

Em
thr,2 + Em

, with Ethr,1 > Ethr,2 .

3.1.3 Dynamics of the environmental stress level

With the in�uence functions introduced in the previous subsection, the collective of positive and
negative in�uences of all environmental factors on the cells' survival can be described by the
following ODE for the ESL:

η̇ =

 n∑
j=1

α−
j · δ−j (E1:n)

 (1− η)

increasing stress level
(stressful conditions)

−

 n∑
j=1

α+
j · δ+j (E1:n)

 η

recovery from stress
(bene�cial conditions)

, with η(t0) = η0 ∈ [0, 1] . (3.3)

We call the parameters α−
j resp. α+

j impact rates2. These variable-speci�c rates describe how fast

the stress level increases (α−
j ) or decreases (α

+
j ) if the cells' viability is impacted negatively resp.

bene�cially by the environmental factor of the associated variable Ej . A distinction between α−

and α+ per variable takes into consideration that cells can react di�erently fast to a progressively
stressful resp. bene�cial environment. All parameters and function codomains in (3.3) are non-
negative, resulting in η = 0 ⇒ η̇ ≥ 0, i.e. positivity of the solution η is preserved for η0 ∈ [0, 1].
The steady state η̄ of η is given by

η̇
∣∣
η=η̄ , E1:n=Ē1:n

= 0 ⇒ η̄ =

∑n
j=1 α

−
j · δ−j (Ē1:n)∑n

j=1

(
α−
j · δ−j (Ē1:n) + α+

j · δ+j (Ē1:n)
) ≤ 1 , (3.4)

where Ē1:n denotes the respective steady states of the variables E1, . . . , En.
2For our applications, it was su�cient that the impact rates are constants. Note that for other biological

processes, it might make sense to consider time-dependent impact rates, for instance, in the context of tumor cells
potentially building a resistance to a chemotherapeutic drug, see e.g. [65].
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3.2 Application 1: Tumor cells under nutrient deprivation

In a �rst application, we consider a very simple biological setting, where the nutrient saturation
is the only environmental factor. The presented model (using the ESL) will be analyzed and
the calibration results will be compared with a corresponding model not using an ESL (see
Section 6.2). This application serves as a proof of principle demonstrating that the ESL modeling
approach is a feasible alternative way to describe the in�uence of the environment on a tumor
population. The content and formulations of this section are taken from our publication [63] (for
consistency within this work, some notations may be altered).

The environmental setting, which should be described by the model, is given by the exper-
iments in [21]. In particular, cell viability is being monitored while the cells are supplemented
with a concentration between 0% to 10% of fetal bovine serum (FBS). A supplementation with
0%FBS does not provide the cells with any nutrients, whereas 10%FBS generates optimal growth
conditions. The nutrient supply is kept constant throughout the whole duration of each experi-
ment. It serves as an energy source for cell proliferation and strong deprivation thereof inhibits
growth and induces cell death. Hence, the nutrient saturation serves as a bene�cial environ-
mental factor in our modeling framework and it is the only one to be considered in this model.
With t0 = 0 as starting point of the experiments, we denote the dimensionless variable for the
nutrient supply by

N(t) = N(t0) = N0 = const. ∀ t ≥ 0 ,

i.e. it is bounded and normalized: N(t) ∈ [0, 1]. The bounds represent a complete absence of nu-
trients (N = 0) and an optimal nutrient supply (N = 1) with 10%FBS. Following notation (3.1)
from the previous section, the environment is described by only one (i.e. n = 1) variable:

E1(t) = N(t) = N0 ⇒ Ṅ = 0 ∀ t ≥ 0 .

3.2.1 Environmental stress by nutrient deprivation

For simplicity, we assume that the cells react in the same manner to bene�cial and harmful
nutrient conditions, that is

α−
1 = α+

1 = αN , δ−1 (E1) = δ−N (N0) and δ+1 (E1) = δ+N (N0) = 1− δ−N (N0) ,

with nutrient impact rate αN and corresponding nutrient in�uence functions δ−N (N) and δ+N (N).
Since we do not consider other environmental variables in this application, we omit the sub-
script �N � for the rest of this section to improve readability. Given an initial ESL η(0) = η0 ∈ [0, 1],
we now consider the ODE

η̇
(3.3)
= αNδ−N (N0) · (1− η)− αN

(
1− δ−N (N0)

)
· η = αN

(
δ−N (N0)− η

)
(3.5)

for the ESL. Since this equation is independent of the variable V , the exact solution can be
calculated by separation of variables and, for t ≥ 0, it is given by

η(t) = δ−N (N0) · (1− e−αN t) + η0e
−αN t . (3.6)

With N being a bene�cial environmental variable, a possible choice for δ±(N) are Hill type
functions (cf. Section 3.1), e.g. with Hill coe�cient m = 2. The nutrient sensitivity functions
can then be de�ned by

δ+ : N 7→ N2

N2
thr +N2

and δ− : N 7→ 1− δ+N (N) = 1− N2

N2
thr +N2

, (3.7)
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where 0 < Nthr < 1 denotes the nutrient sensitivity threshold, for which the cells proliferate/starve
with half-maximal rate. This parameter quanti�es how tolerant viable cells are to a lack of nu-
trients. In particular, we can assume Nthr ≪ 1, since we know from the experiments that the
cells can endure a severe shortage of nutrients.

Overall, this results in the following initial value problem:

V̇
(3.2)
=
(
1− η(t)

)
· β V

(
1−

(
V

Vcap

)b
)

−
(
λ+ η(t) · λind

)
V ,

η̇ = αN

(
1− N2

0

N2
thr +N2

0

)
· (1− η)− αN

N2
0

N2
thr +N2

0

· η ,

V (0) = V0, η(0) = η0 .

(Mη
N
)

By inserting the explicit time-dependent analytical solution η(t) from (3.6) into the right-hand
side of the �rst ODE of model Mη

N , the system reduces to a non-autonomous ODE for V , which
is solved numerically. Table 1 summarizes the model variables and parameters as well as their
biological interpretation (their units result from the experimental setting).

Table 1: Overview over the variables and parameters of model Mη
N .

Meaning Scaling

Variables V = V (t) Density of viable tumor cells 105 cells/mL
η = η(t) Environmental stress level �

N = N0 Nutrient saturation (constant) 10%FBS

Parameters V0 Initial viable cell density 105 cells/mL
η0 Initial environmental stress level �

β Maximal possible proliferation rate 1/day
Vcap Carrying capacity of the biological system 105 cells/mL
1/b Strength of proliferation contact inhibition �
λ Natural death rate 1/day

λind Maximal possible induced death rate 1/day
αN Impact rate of nutrient changes on stress level 1/day
Nthr Nutrient sensitivity threshold 10%FBS

As stated in Section 3.1, the solutions V and η remain bounded and their positivity is preserved.
The latter is an important feature for biological reasonableness. Table 2 summarizes the com-
puted bounds as well as the steady states (V̄ , η̄)T and their stability. These features depend on
the relationship between the terms

β̃ = δ+(N0) · β and λ̃ = λ+ δ−N (N0) · λind ,

which are the net growth and death rates while the ESL has reached its equilibrium. The
detailed calculations providing these results can be found in the supplementary material of our
publication [63] (note that the notation of some variables and parameters might di�er).
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Table 2: Bounds of the solutions and steady states of model Mη
N for non-negative initial values V0, η0.

Steady states (V̄ , η̄)T

Bounds of the solutions V (t), η(t) stable unstable

for all λ̃, β̃ : 0 ≤ η(t) ≤ max
{
η0, δ

−
N (N0)

}
≤ 1

for λ̃ < β̃ : 0 ≤ V (t) ≤ max

{
V0, Vcap

b

√
1− λ̃/β̃

} (
Vcap

b

√
1− λ̃/β̃

δ−N (N0)

) (
0

δ−N (N0)

)

for λ̃ ≥ β̃ : 0 ≤ V (t) ≤ V0

(
0

δ−N (N0)

)

3.2.2 Quasi-steady state: Immediate reaction to nutrient deprivation

Under the assumption that nutrient changes in�uence the viable cells immediately (i.e. αN → ∞)
the stress level tends to the value of the in�uence function at N0:

η(t)
(3.6)
= δ−N (N0) · (1− e−αN t) + η0e

−αN t αN→∞−→ δ−N (N0) = const.

The same stress level is achieved by a quasi-steady state assumption, stating that changes in the
ESL happen on a much faster time scale than changes in the tumor cell density. In this case, the
stress level reaches its steady state virtually instantly, which is:

η̇
(3.5)
= αN

(
δ−N (N0)− η

)
= 0 ⇒ η = δ−N (N0) .

By using 1− δ−N (N0) = δ+(N0), insertion of the now constant ESL into model Mη
N reduces the

system to the autonomous ODE
V̇ = δ+(N0) · β︸ ︷︷ ︸

= β̃

V

(
1−

(
V

Vcap

)b
)

− (λ+ δ−N (N0) · λind)︸ ︷︷ ︸
= λ̃

V ,

V (0) = V0 ,

(MN )

which has the analytical solution

V (t) =


V0Vcap ·

 β̃ − λ̃

β̃V b
0 +

((
β̃ − λ̃

)
V b
cap − β̃V b

0

)
e−(β̃−λ̃)mt

1/b

if β̃ ̸= λ̃ ,

V0Vcap ·
(

1

mtβ̃V b
0 + V b

cap

)1/b

if β̃ = λ̃ ,

(3.8)

for t ≥ 0. The corresponding calculations can be found in the supplementary material of our
publication [63] (note that the notation of some variables and parameters might di�er). WithMN

we have an alternative model without using the ESL η, but neglecting the impact rate αN of the
cells to nutrient changes. In Section 6.2, we compare the calibration results of both models Mη

N

and MN to demonstrate the feasibility of the ESL approach.
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3.3 Application 2: In�uence of oxygen supply and ECM sti�ness on chemother-
apeutic e�ect on tumor cells

In a second application, we consider a more complex environmental setting consisting of the
oxygen supply, ECM sti�ness and chemotherapeutic drugs. In the corresponding experimental
setting from [22], for which we design a suitable mathematical model, the cell population size
stays su�ciently smaller than the system's capacity (V ≪ Vcap) during the whole experiment,
which allows to simplify the ODE (3.2) to an initial value problem with a purely exponential,
stress- and hence time-dependent rate βη(t):

V̇
V≪Vcap

=
((

1− η(t)
)
· β −

(
λ+ η(t) · λind

))
V =

(
β − λ−

(
β + λind

)
η(t)︸ ︷︷ ︸

βη(t)

)
V . (3.9)

Depending on its sign, βη(t) is the actually observable net growth/death rate. In a stress-free
environment (i.e. η(t) ≡ 0), the population grows with constant rate βη(t) ≡ β − λ > 0. The
population size starts to decline once the stress level exceeds a certain threshold:

η(t) >
β − λ

β + λind
⇒ βη(t) < 0 . (3.10)

Environmental factors/variables. The model should describe the in�uence of oxygen concen-
tration, ECM sti�ness and a combination therapy with two chemotherapeutic drugs on viable
tumor cells. In this setting, the nutrient supply is maintained optimal for cell growth. Therefore,
it does not in�uence the stress level and hence it is not necessary as an environmental variable in
the model. In total, we need four environmental variables E1, . . . , E4. The �rst two variables E1

resp. E2 represent the dosage of the drugs doxorubicin (DOX) and sorafenib (SOR), respectively.
The oxygen supply varies between normoxic (21%O2) and hypoxic (1%O2) conditions. For an
easier mathematical description, the corresponding variable E3(t) ∈ [0, 1] describes the present
hypoxia level, i.e. E3 ≡ 0 resp. E3 ≡ 1 represent a normoxic resp. hypoxic environment. Similarly,
the last variable E4(t) ∈ [0, 1] models the cirrhosis level, as the ECM sti�ness ranges between
normal (E4 ≡ 0) and cirrhotic (E4 ≡ 1) conditions. For better readability, instead of E1, . . . , E4

we use more intuitive notations for the environmental variables:

doxorubicin concentration: D(t) = E1(t) , sorafenib concentration: S(t) = E2(t) ,

hypoxia level: H(t) = E3(t) , cirrhosis level: C(t) = E4(t) .

During all experiments, the cells grow under constant oxygen (either normoxic or hypoxic) and
sti�ness (either normal or cirrhotic) conditions, i.e.

H(t) = H0 ∈ {0, 1} and C(t) = C0 ∈ {0, 1} ∀ t ≥ 0 .

In�uence on the tumor cells. Following the de�nition of the general stress equation (3.3), we
now consider an ODE of the form

η̇ =
(
α−
Dδ

−
D + α−

Dδ
−
S + α−

Hδ−H + α−
Cδ

−
C

)
· (1− η)−

(
α+
Dδ

+
D + α+

S δ
+
S + α+

Hδ+H + α+
Cδ

+
C

)
· η ,

with η(0) = 0. In general, each in�uence function can depend on all environmental variables,
which means δ−∗ = δ−∗ (D,S,H,C) and δ+∗ = δ+∗ (D,S,H,C), with ∗ ∈ {D,S,H,C}.
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To specify these functions, we have to consider the time line of the underlying experiment, which
can be divided into three phases (see Figure 3):

1. Adaption phase: The tumor cells grow under speci�c oxygen (normoxic/hypoxic) and sti�-
ness (normal/cirrhotic) conditions for three days to reach native morphology before starting
the drug treatment.

2. Treatment phase: Chemotherapy is applied for 24 or 48 hours with a certain dosage of
DOX, potentially in combination with a normal/high dosage of SOR.

3. Growth phase: After treatment, remaining drugs are washed from the cells and the popu-
lation is grown for further three days. Eventually, viability is measured to investigate the
treatment e�ect.

Figure 3: Schematic overview of the phases of the underlying experimental setting.

The mathematical description of the experimental phases is explained in the following Sec-
tion 3.3.1.

3.3.1 Construction of the mathematical model

The reaction terms for each environmental variable and their in�uence on the ESL depend on
the considered phase and will be summarized in one model in Section 3.3.2 after the following
paragraphs.

Adaption phase: t ∈ [0, t0]. There are no drugs involved in this phase, hence the only environ-
mental variables in�uencing the ESL are the hypoxia level H ≡ H0 and cirrhosis level C ≡ C0,
and the reaction terms of the environmental variables are all zero:

Ḋ ≡ 0 , Ṡ ≡ 0 , Ḣ ≡ 0 , Ċ ≡ 0 .

The cells were grown under optimal conditions before starting the experiment, i.e. there is no
initial stress at the beginning of the adaption phase. Overall, this leads to the initial value
problem

η̇ =
(
α−
H · δ−H + α−

C · δ−C
)
· (1− η)−

(
α+
H · δ+H + α+

C · δ+C
)
· η , η(0) = 0 for t ∈ [0, t0] .

We assume that the cells' reaction to hypoxia resp. cirrhosis is not in�uenced by the sti�ness
resp. oxygen supply, i.e. that the in�uence functions of H do not depend on C and vice versa:

δ−H = δ−H(H) , δ+H = δ+H(H) , δ−C = δ−C (C) and δ+C = δ+C (C) .
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The adaption phase allows the tumor cells to reach native morphology, i.e. to completely adapt to
normoxic/hypoxic and normal/cirrhotic conditions before the drug treatment is started. There-
fore, it is reasonable to assume that the stress level η has reached its steady state

η(t0)
(3.4)
=

α−
H · δ−H(H0) + α−

C · δ−C (C0)

α−
H · δ−H(H0) + α−

C · δ−C (C0) + α+
H · δ+H(H0) + α+

C · δ+C (C0)

not later than the end of this phase. If we assume that the cells react with the same sensitivity
to stress inducing and reducing oxygen resp. sti�ness conditions, i.e. α−

∗ = α+
∗ (abbreviated α∗)

and δ−∗ = 1− δ+∗ for ∗ ∈ {H,C}, this steady state simpli�es further. This leads to the stress
level ηHC at the end of the adaption phase:

ηHC(H0, C0) = η(t0) =
αH · δ−H(H0) + αC · δ−C (C0)

αH + αC
∈
[
0,

β − λ

β + λind

]
(3.11)

under the constant environmental conditions H ≡ H0 and C ≡ C0. The upper bound of ηHC

follows from relation (3.10), since it is reasonable to assume that stress induced solely by hypoxic
and/or sti� environment will not lead to a declining population size. We do not have any
particular information on how the in�uence functions δ−H and δ−C can be de�ned. Therefore, we
will proceed with the more general notation ηHC .

Note that in the following we omit the arguments of ηHC for better readability. An anal-
ogous way of notation is adopted for all upcoming quantities which depend on the constant
environmental factors H0 and C0, by indicating this with the subscript �HC �.

Treatment phase: t ∈ [t0, ttreat]. After the cells have adapted to the oxygen and sti�ness
conditions (H ≡ H0 and C ≡ C0), chemotherapeutic drugs are added to the biological system:

D(t0) = D0 > 0 and S(t0) = S0 ≥ 0 .

Both drugs might degrade over time with constant, drug-speci�c rates. Additionally, liver cells,
as they are used in the underlying experiments, can express the so-called CYP3A4 enzyme, which
is able to metabolize drugs. In the human body, the half-life of DOX and SOR is approximately
1-2 days, where the metabolization in the liver via CYP3A4 plays a major role [66, 67]. Assuming
constant exponential decay of the drugs, this half-life translates to total decay rates in the range
of approximately 0.35−0.70 1

day . Since this decay includes both degradation and metabolization,
it is reasonable to assume that the degradation rates are signi�cantly smaller than these total
decay rates. Hence, we choose to omit the degradation rates in our model and only focus on the
metabolization rates. These are expected to be proportional to the cell-speci�c CYP expression.
We see in [22] that the latter can depend on the environmental factors H0 and C0, which is
modeled by the following reaction terms for D and S in the treatment phase:

Ḋ = −γD,HC ·D and Ṡ = −γS,HC · S for t ∈ [t0, ttreat],

with γD,HC and γS,HC being the environment-dependent metabolization rates of DOX and SOR,
respectively. For t ∈ [t0, ttreat], these ODEs have the analytical solutions

D(t) = D0 exp
(
− γD,HC · t

)
and S(t) = S0 exp

(
− γS,HC · t

)
. (3.12)

The stress level is now in�uenced only by the present drugs, since the cells have already adapted
to the oxygen and sti�ness conditions. Hence, we use the steady state (3.11) from the previous
phase as initial condition for the ESL. It is reasonable to assume that the cells do not signi�cantly
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recover from the drug treatment during the period of the experiment, i.e. α+
D, α

+
S ≈ 0 . Overall,

for t ∈ [t0, ttreat] we arrive at

η̇ =
(
α−
D · δ−D + α−

D · δ−S
)
· (1− η) with η(t0) = η0,HC = ηHC

Both, DOX and SOR can directly induce stress to the cells. As described in Section 3.1, Hill-type
functions are a suitable choices for δ−D and δ−S . In this context, the respective threshold values
can be interpreted as a measure for the cells' chemoresistance to the corresponding drug. A large
threshold means that the cells tolerate higher drug dosages before their survival is impaired.
We know that the chemoresistance can be in�uenced by other environmental factors. On the
one hand, we know that varying SOR dosage, oxygen supply and ECM sti�ness can in�uence
the chemoresistance of the tumor cells to DOX. On the other hand, the cytotoxic e�ect of SOR
might be in�uenced by the present oxygen and sti�ness conditions [22]. Overall, this translates
to

δ−D,HC(D,S) =
Dm1(

Dthr,HC(S)
)m1 +Dm1

and δ−S,HC(S) =
Sm2

Sm2
thr,HC + Sm2

,

where the thresholds Dthr,HC(S) = Dthr,HC(S,H0, C0) and Sthr,HC = Sthr,HC(H0, C0) are func-
tions depending on the environmental factors, which in�uence chemoresistance to the respective
drug. In particular, we assume that each variable of the threshold's argument can shift the critical
(switch) value of the corresponding Hill function. For DOX, this can be written mathematically
as

Dthr,HC(S) = Dnorm · dS(S) · dH(H0) · dC(C0) , (3.13)

where each d∗ is a positive function, describing how the respective variable ∗ ∈ {S,H,C} scales
the una�ected threshold Dnorm (i.e. the chemoresistance under normal conditions, una�ected by
other environmental in�uences):

d∗ < 1 ⇒ reduces chemoresistance,

d∗ = 1 ⇒ does not in�uence chemoresistance,

d∗ > 1 ⇒ increases chemoresistance.

Therefore, d∗(0) = 1 should hold by de�nition. Figure 4 visualizes the change of chemoresistance
to DOX for an example case of only SOR in�uencing the threshold.

𝑑𝑆 (𝑆0) < 1

𝑑𝑆 (𝑆0) > 1

𝑑𝑆 (𝑆0) = 1

0 𝐷thr < 𝐷norm < 𝐷thr

0.0

0.5

1.0

𝐷

𝛿−𝐷,𝐻𝐶 (𝐷, 𝑆0)

Figure 4: Illustration of how the threshold Dthr = Dthr,HC(S0) of the in�uence function δ−D,HC is
shifted compared to Dnorm by dS(S0) for �xed dH(H), dC(C) = 1 .

For de�ning dS , we know that a su�cient dosage of SOR can decrease the cells' chemoresistance
to DOX, i.e. dS is a monotonically decreasing function on [0, 1]. To implement an appropriate
dose-response relation, we can again use a Hill-type function:

dS(S) = 1− amaxS
m3

Sm3
supp + Sm3

, (m3 > 0) ,
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where Ssupp is the critical dosage of SOR, after which the chemoresistance to DOX is signi�cantly
in�uenced. The parameter amax ∈ (0, 1) ensures that dS does get arbitrarily small for very
large S. For the remaining functions dH and dC , we do not have enough understanding of
how hypoxia and/or high ECM sti�ness in�uence chemoresistance to explicitly de�ne them.
Therefore, for better readability, we summarize them in a shorter notation:

dHC = dH(H0) · dC(C0) .

Analogously to (3.13), for functions sH , sC : [0, 1] → (0,∞) with sH(0), sC(0) = 1 we de�ne

Sthr,HC = Snorm · sH(H0) · sC(C0)

as the in�uenced threshold of the sensitivity function δ−S for SOR. Again, we do not have further
information to explicitly de�ne the positive functions sH(H) and sC(C) , so we proceed with
the more general notation Sthr,HC . Altogether, in the treatment phase, i.e. for t ∈ [t0, ttreat], we
consider the ODE system

V̇ =
(
β − λ−

(
β + λind

)
η
)
V ,

η̇ =

(
α−
DD

m1(
Dthr,HC(S)

)m1 +Dm1
+

α−
SS

m2

Sm2
thr,HC + Sm2

)
(1− η) ,

(3.14)

with D and S as given in (3.12) and the initial conditions: V (t0) = V0 and η(t0) = η0,HC = ηHC .

Growth phase: t ∈ [ttreat, tend]. At the beginning of the experiment's last phase, all drugs are
removed from the cells' environment, motivating the initial conditions D(ttreat), S(ttreat) = 0 .
The cell population is left to grow under drug-free conditions for the remaining time of the
experiment, meaning the reaction terms of the environmental variables are again all zero:

Ḋ ≡ 0 , Ṡ ≡ 0 , Ḣ ≡ 0 , Ċ ≡ 0 .

For the other variables, the corresponding solutions V (ttreat) and η(ttreat) from system (3.14) are
used as initial conditions. Since the stress level is not in�uenced by treatment anymore and the
cells are still fully adapted to oxygen and sti�ness conditions, the ESL stays constant. Hence,
we can use a single ODE to model the dynamics of the growth phase, i.e. for t ∈ [ttreat, tend]:

V̇ =
(
β − λ−

(
β + λind

)
η(ttreat)

)
V . (3.15)

After numerically solving ODE system (3.14) from the treatment phase, the initial value problem
above has the analytical solution

V (t) = V (ttreat) · exp
((

β − λ− η(ttreat) ·
(
β + λind

))
· (t− ttreat)

)
, for t ∈ [ttreat, tend] .
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3.3.2 The complete chemoresistance model for di�erent cell lines

We can collect all results from Section 3.3.1 into one model. Since the dynamics of the adaption
phase are covered by the value of η(t0) = η0,HC , we set the initial time of model MCYP

DS to t0 = 0.
By denoting the treatment phase with T = [t0 = 0, ttreat] and 1T (t) the indicator function on T ,
we achieve the complete chemoresistance model for t ≥ 0:

V̇ =
(
β − λ− η ·

(
β + λind

))
V ,

η̇ =

 α−
DD

m1(
Dnorm

(
1− amaxS

m3

Sm3
supp + Sm3

)
dHC

)m1

+Dm1

+
α−
SS

m2

Sm2
thr,HC + Sm2

 (1− η) ,

D(t) = D0 exp
(
− γD,HC · t

)
· 1T (t) ,

S(t) = S0 exp
(
− γS,HC · t

)
· 1T (t) ,

(MCYP
DS

)

with the initial conditions

V (0) = V0 and η(0) = ηHC

(3.11)

≤ β − λ

β + λind
.

The following tables summarize the variables (Table 3) and parameters (Table 4) of modelMCYP
DS .

Table 3: Variables of model MCYP
DS .

Meaning Scaling

General V = V (t) Density of viable tumor cells �
η = η(t) Environmental stress level �

Environmental D = D(t) Doxorubicin (DOX) concentration 1 µM
S = S(t) Sorafenib (SOR) concentration 22 µM

H = H0 Hypoxia level (constant), representing �
oxygen supply: 21%O2 (H ≡ 0) or 1%O2 (H ≡ 1)

C = C0 Cirrhosis level (constant), representing �
ECM sti�ness: normal (C ≡ 0) or cirrhotic (C ≡ 1)
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Table 4: Parameters of model MCYP
DS .

Meaning Scaling

Time point of
t0 = 0 the end of adaption phase / beginning of treatment phase day
ttreat the end of treatment phase / beginning of growth phase day
tend the end of growth phase day

V0 Number of viable tumor cells at t0 �
η0,HC Environmental stress level at t0 �
D0 Doxorubicin (DOX) concentration at t0 1 µM
S0 Sorafenib (SOR) concentration at t0 22 µM

β Maximal possible growth rate (under optimal growth conditions) 1/day
λind Maximal possible induced death rate (under stressful conditions) 1/day
λ Natural death rate 1/day

γD,HC Drug metabolization rate of DOX (can be in�uenced by H and C) 1/day
γS,HC Drug metabolization rate of SOR (can be in�uenced by H and C) 1/day

Impact rate of cells reacting to
αH , αC changes in hypoxia level resp. cirrhosis level 1/day
α−
D, α

−
S stressful changes in DOX resp. SOR concentration 1/day

Sensitivity threshold of cells reacting to stressful changes
Dnorm in DOX concentration, if S,H,C = 0 1 µM

Dthr,HC(S) in DOX concentration (can be in�uenced by S,H and C) 1 µM
Sthr,HC in SOR concentration (can be in�uenced by H and C) 22 µM

Ssupp SOR concentration threshold to support DOX treatment 22 µM

Hill-coe�cient regarding the
m1, m2 in�uence function δ−D,HC resp. δ−S,HC �
m3 supportive e�ect of SOR, i.e. function dS(S) �

amax Scaling parameter for bounding the supportive e�ect �

To clarify their role in the underlying biological setting, we will refer to Dthr,HC resp. Sthr,HC

as DOX/SOR susceptibility threshold and to δ−D,HC resp. δ−S,HC as DOX/SOR dose-response
function.

Reduced model in CYP-free environment. Measurements quantifying the CYP expression
from [22] show that one of the cell lines (Hep3B2), which we want to investigate with the model,
did not express CYP for any combination of oxygen and sti�ness conditions. Hence, for this
cell line the drug concentrations stay constant during the whole treatment phase: D(t) = D0

and S(t) = S0 for t ∈ [0, ttreat] = T . Omitting the ODEs for D and S in MCYP
DS yields the
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following reduced chemoresistance model for t ≥ 0:

V̇ =
(
β − λ−

(
β + λind

)
η
)
V ,

η̇ =

(
α−
DD

m1
0(

Dthr,HC(S0)
)m1 +Dm1

0

+
α−
SS

m2
0

Sm2
thr,HC + Sm2

0

)
(1− η)1T (t) ,

with V (0) = V0 , η(0) = η0,HC .

(M0
DS

)

In contrast, the remaining investigated cell lines (HepG2 and C3Asub28) both show signi�cant
CYP expression [22], i.e. it is not possible to simplify the dynamics for D and S and the complete
model MCYP

DS is used to describe their population dynamics.

Mathematical properties of the models. For both models MCYP
DS and M0

DS positivity and
hence biological meaningfulness can be concluded. Except for the cell density V , all variables
are bounded from above. However, unboundedness of V is acceptable in the time-limited setting
(t ≤ tend) of both models, which motivated the simpli�cation of the logistic growth to an expo-
nential one (recall (3.9)). The only relevant steady state (V̄ , η̄) of the models is the situation of a
dying cell population up to the point of extinction: V̄ = 0. Since all drugs are manually removed
from the system by the end of the modeled experiment, their steady states are not of interest. As
mentioned at the beginning of Section 3.3, the cell population can only decline if a su�ciently
large stress level η is reached during the treatment phase, which gives η̄ = η(ttreat) >

β−λ
β+λind

,

recall equation (3.10). Due to this condition, the steady state (V̄ , η̄) is stable. If the stress
threshold β−λ

β+λind
is not exceeded, there exists no realistic steady state. All calculations and fur-

ther details yielding the described boundedness and steady states can be found in Appendix C.

3.3.3 Solving the cell line-speci�c models

Depending on the coupling of the ODEs, it may not be possible to solve each model analytically.
Nevertheless, doing some calculations towards solving the initial value problemsMCYP

DS andM0
DS

are still useful to understand the mathematical structure of the solutions, especially after the
treatment phase (for details on the calculations see Appendix C).

Towards solving the general model MCYP
DS . For model calibrations the model MCYP

DS is solved
numerically using the Python function scipy.integrate.odeint3. Applying separation of vari-
ables on each ODE yields, for a time point t ≥ ttreat after �nishing the treatment:

V (t) = V0 exp

(
(β − λ)t− (β + λind)

(
η(ttreat)

(
t− ttreat

)
+

∫ ttreat

0
η(τ) dτ

))
, (3.16)

η(t) = 1− (1− η0,HC︸ ︷︷ ︸
≤ β−λ

β+λind

) exp

(
−
∫ t

0
α−
D δ−D,HC

(
D(τ), S(τ)

)
+ α−

S δ−S,HC

(
S(τ)

)
dτ

)
(3.17)

with D(t) = D0 exp
(
− γD,HC · t

)
· 1T (t) and S(t) = S0 exp

(
− γS,HC · t

)
· 1T (t) .

3Depending on the sti�ness of the problem, this function switches automatically between Adams methods
(nonsti�) resp. backward di�erentiation formula methods (sti�) by using the LSODA algorithm [68, 69]. All
methods use adaptive time stepping.



20 3 MATHEMATICAL MODELING

The model calibrations in this biological context consider the so-called percentage viability, i.e.
the ratio between the viability of a treated population V treat and a corresponding4 control pop-
ulation V ctrl without treatment (D0, S0 = 0). Equation (3.16) gives for t ≥ ttreat:

V treat

V ctrl
(t) = exp

(
−(β + λind)

(
η(ttreat)

(
t− ttreat

)
− η0,HC · t+

∫ ttreat

0
η(τ) dτ

))
. (3.18)

We conclude two observations: First, in (3.16), (3.17) and (3.18) the growth and death rates show
up solely in the form of (β − λ) and (β + λind). For model calibrations, this means that instead
of β, λ and λind we can only estimate (β − λ) and (β + λind). Second, the term (β − λ) does
not show up explicitly in (3.18) and it is also not implicitly involved, since the stress level (3.17)
does not depend on V . This means (β − λ) has no in�uence on the percentage viability (the
quantity of interest, for which we have measurements) and thus cannot be reconstructed by
model calibration. For the same reason, the relation η0,HC ≤ β−λ

β+λind
cannot be incorporated in

the prior information for estimating η0,HC in Section 5.3.

Analytical solution of the reduced model M0
DS. Due to the absence of CYP in the system,

the present drug concentrations stay constant during the whole treatment phase, i.e. D(t) = D0

and S(t) = S0 ∀t ∈ T . Therefore, using (3.17), we get

η(t) = 1− (1− η0,HC) exp

(
−
(
α−
D · δ−D,HC(D0, S0) + α−

S · δ−S,HC(S0)
)
t

)
as solution for the ESL. This term is independent from all other variables, especially from V ,
and easy to integrate. By insertion into (3.16), we achieve the explicit solution of V . Hence,
model M0

DS is analytically solvable and the percentage viability (3.18) can be calculated explic-
itly.

4This means that except for the drug supply the remaining environmental conditions (oxygen concentration
and sti�ness) and hence all terms not depending on D and S are the comparable for both populations.
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4 Model calibration: estimating unknown parameters with data

It not possible to obtain a quantitative model solution without having values for the involved
model parameters. Unknown parameters can be estimated on the basis of data. We distinguish
between deterministic and probabilistic approaches to do so. The �rst ones aim on obtaining
parameter values, which analytically minimize the distance between the experimental data and
the model solution. The second ones allow to additionally quantify uncertainties such as mea-
surement inaccuracy or model imperfection by the so-called Bayesian inversion method, which
we realize numerically by using a Sequential Monte Carlo (SMC) algorithm.

In Section 4.1 we introduce uncertainty into our mathematical setting by considering inac-
curacies and variation in measurements and modeling. The mathematical details about the idea
of Bayesian inversion and SMC methods are presented in Section 4.2 resp. 4.3. Note that the
majority of the content and formulations in this chapter are taken and adopted from [63] (for con-
sistency within this work, some notations may be altered). For basic mathematical background
on probability theory see e.g. [70�72].

4.1 Uncertainties in measurements and modeling

We use data from the experiments described in [21] resp. [22] to calibrate the unknown parameters
from for models Mη

N and MN resp. M0
DS and MCYP

DS . In both studies a CellTiter-Blue®

assay was used to monitor the viability of tumor cells as described in Chapter 2. Let Itotal

be an intensity measurement of a speci�c cell line at time point t̃. Excluding the corresponding
measured background intensity IBG (constant) of the cell-free medium, the �uorescence intensity
produced by viable cells IV at time t̃ is assumed to be directly proportional to the density of
viable tumor cells V ( t̃ ), which leads to the relation

IV = Itotal − IBG ∝ V ( t̃ ) ⇒ nI/V =
IV

V ( t̃ )
, (4.1)

where nI/V denotes the proportionality constant translating �uorescence intensity to cell density.
Whenever we refer to intensity measurements in the following, we mean the �uorescence produced
by the cells IV and neglect the superscript �V � for better readability. For the same reason, we
will omit the subscript �I/V � of nI/V if its meaning is clear from the context.

4.1.1 Cell viability data/modeling

In reality, the equation n = I/V ( t̃ ) is not rigorously ful�lled. Possible reasons are model inade-
quacy, measurement noise and biological �uctuations of the cells' metabolism, which again can
a�ect measurement accuracy. From a mathematical perspective, it makes sense to distinguish
the source (model or data) of discrepancies between the observations and the simulation.

Uncertainty in the observations. To capture the biological and measurement uncertainty, we
assume a multiplicative noise for each element of a set of M ∈ N measurements {Ii}Mi=1 and a
set of corresponding model solutions {Vi}Mi=1. In the Bayesian framework that we adopt (see
Section 4.3), we model this to be a random variable εV,i , which we call uncertainty factor, such
that

Ii = nVi · εV,i for i = 1, . . . ,M . (4.2)
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The reason for considering a multiplicative (and, for instance, not additive) noise term is twofold.
From a mathematical perspective, it allows to preserve positivity of the data. A more practical
motivation is the reasonable assumption that the �uorescence noise of the intensity measurements
is proportional to the density of viable cells. This is also supported by the observation of a
larger variance for experiments with larger cell numbers in the data from [21]. Furthermore,
multiplicative noise has demonstrated to be better suited for �uorescence than additive noise in
other experimental settings [73].

Let εV,i be i.i.d. and have the unimodal and continuous distribution of a random variable ε
with probability density function (PDF) fε. Then, the following properties should hold:

[P1] : supp(fε) ⊆ R+ , i.e. all measurements are positive;

[P2] : E(ε) = 1 , i.e. measurements are accurate on average;

[P3] : fε(x)
x→∞−→ 0 and fε(x)

x→0−→ 0 , i.e. outliers are possible but not likely.

Di�erent distributions are possible to accomplish these properties. A small number of shape
parameters and an easy calculation to ensure property [P2] are desirable. Therefore, we choose
a Gamma distribution ε ∼ Γ(a, b), a, b > 0 with a few restrictions. This is a plausible choice
for multiplicative noise and often used in imaging theory (see e.g. [74�76]). The corresponding
expected value is E(ε) = a

b and the PDF is given by fa,b
ε (x) = ba

Γ(a) x
a−1e−bx, where Γ( · ) denotes

the Gamma function. Property [P1] and the desired behavior near in�nity of [P3] are satis�ed
by de�nition. The remaining properties can be achieved with the constraint b = a > 1:

E(ε) =
a

a
= 1 ⇒ [P2] and lim

x→0
fa,a
ε (x) = lim

x→0

(
aa

Γ(a)
xa−1e−ax

)
a>1
= 0 ⇒ [P3].

Note that by constraining b = a > 1 the shape of the distribution depends only on the param-
eter a. In fact, a is directly related to the standard deviation σ and hence the variance of
the distribution: σ2 = Var(ε) = a

a2
= 1

a ⇒ a = 1
σ2 . Therefore, for i = 1, . . . ,M the uncertainty

factor εV,i for a particular measurement Ii can be modeled by

εV,i =
Ii

n · Vi
∼ Γ

(
1

σ2
,
1

σ2

)
with σ2 ∈ (0, 1) . (4.3)

Model inadequacy. Aside from �uctuations in the observations, it is reasonable to assume that
a corresponding mathematical model from Chapter 3 can only give a simpli�ed description of
the complete underlying biological processes due to their high complexity. This can be captured
by incorporating model inadequacy, e.g. by including an additive random term in (4.2):

Ii = (nVi + χi) · εV,i .

The modeling error χi could for example be de�ned as a random variable with a zero-centered
truncated (from below) normal distribution to preserve positivity. The latter could also be ob-
tained by a multiplicative error like in [77]. Since the variance of the error's distribution is
unknown, it needs to be estimated as a hyper-parameter with the modeling calibrations. This
increases the dimension of the parameter space as well as requires appropriate prior assumptions.
While the consideration of modeling inadequacy in combination with suitable prior information
can be important for obtaining good calibration results [78], we choose to omit it for the appli-
cations in this thesis.

On the one hand, this reduces the number of unknown parameters for the model calibra-
tions, i.e. potentially demands less computational e�ort as well as increases the chance that the
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informational content of the data is su�cient to retrieve all parameters. On the other hand,
we expect the considerable variation observable in the viability data of [21] to dominate and
basically �absorb� the modeling error. In fact, even without considering the modeling error, the
calibration results of the �rst application achieved comparable parameter estimates (see later
Section 6.2) as a similar approach in [21], where the error was included.

4.1.2 Percentage viability data/modeling

While in [21] a time series of intensity measurements is available, viability was only measured
once in the chemoresistance experiments of [22]. In this context, the so-called percentage viability
is constructed from the viability measurements to monitor the treatment e�cacy. It is given by
the ratio between the population sizes of a treated and a corresponding5 untreated (control) cell
population, denoted by V treat and V ctrl respectively. Therefore, the percentage viability data has
the form

I% =
Itreat

Ictrl
(4.2)
=

nV treat · ε1
nV ctrl · ε2

=
V treat

V ctrl
· ε1
ε2

,

where the uncertainty factors are respectively Gamma distributed according to (4.3):

ε1 ∼ Γ

(
1

σ2
1

,
1

σ2
1

)
and ε2 ∼ Γ

(
1

σ2
2

,
1

σ2
2

)
with σ2

1, σ
2
2 ∈ (0, 1) .

The ratio between two such independent random variables is distributed according to a general-
ized Beta prime distribution via

ε1
ε2

∼ β′
(

1

σ2
1

,
1

σ2
2

, 1,
σ2
1

σ2
2

)
,

which is shown in Appendix D.I. Under the assumption that the uncertainty variance is not
in�uenced by the treatment of the cells, i.e. σ1 = σ2, this distribution simpli�es to a standard Beta
prime distribution. In particular, the uncertainty factor ε% = ε1/ε2 for a percentage viability
data point is given by

ε% =
Itreat/Ictrl

V treat/V ctrl
∼ β′

(
1

σ2
,
1

σ2

)
with σ2 ∈ (0, 0.5) . (4.4)

Note that in this context we need 1
σ2 > 2 ⇒ σ2 < 0.5 to have a well-de�ned variance.

4.1.3 Range of uncertainty

We can use the percentiles P0.05 and P0.95 of an (Γ- or β′-distributed) uncertainty factor ε to
de�ne the

90% (uncertainty) range around the solution V :
[
V · P0.05 , V · P0.95

]
. (4.5)

In particular, given a speci�c uncertainty variance, the model expects 90% of the data within
this interval, whereas respectively 5% are expected below and above it. The left side of Figure 5
depicts exemplary plots of the PDF fε of a Gamma distributed ε for di�erent values of σ2. It
also shows the positive skewness of the distribution. Under consideration of the measurement
method, this is a reasonable feature for the uncertainty factors, assuming the cells might not

5treated and untreated populations are exposed to the same environmental conditions, with exception of the
drug concentration
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metabolize the assay to their full potential. On the right side of Figure 5 we see an example of
a 90% uncertainty range around a solution.

0 1 2 3
0

1

2

P0.05 P0.95

E[𝜀]

𝒙

𝒇𝜺 (𝒙)
𝜎2 = 0.05

𝜎2 = 0.25

𝜎2 = 0.50

𝜎2 = 0.95

0 2 4 6 8 10
0

1

2

3

𝑉 (𝑡)

P0.05 · 𝑉

P0.95 · 𝑉
90% uncertainty range

model solution

=⇒

𝒕

cell density

Figure 5: Left: Probability density function fε of ε ∼ Γ
(
1/σ2 , 1/σ2

)
for varying variances σ2. The

percentiles P0.05 and P0.95 are illustrated for σ2 = 0.05.
Right: Resulting 90% uncertainty range (shaded area) around an exemplary model solution.

4.2 Bayesian inversion

The task to identify the unknown true parameters from given data is called the inverse problem.
We solve it using a Bayesian approach, which leads, under mild assumptions, to a naturally
well-posed inverse problem [25]. Furthermore, this approach allows to quantify the uncertainty
in the estimated parameters and hence it brings more information than a deterministic inversion
method, at the price of a higher computational cost.

4.2.1 Data likelihood

Assuming we want to estimate d ∈ N parameters by using a set ofM ∈ N intensity measurements
(excluding background intensity), we collect them respectively in a vector:

θ ∈ Θ ⊆ Rd and
(
I1, . . . , IM

)T
=
(
Ii
)M
i=1

∈ RM
+ ,

where Θ denotes the parameter space. The forward operator

GM
I :

Θ → RM ,

θ 7→
(
GM
I,i (θ)

)M
i=1

, with GM
I,i (θ) = nVi ,

(4.6)

maps parameter values to intensities. In particular, it calculates the scaled cell density Vi ob-
tained as the solution of model M using the parameter values of θ. Similarly, we can de�ne

GM
% :


Θ → [0, 1]M ,

θ 7→
(
GM
%,i(θ)

)M
i=1

, with GM
%,i(θ) =

V treat
i

V ctrl
i

,
(4.7)

as the forward operator calculating percentage viability with equation (3.18) using the parameter
values in θ. Since the choice of the particular model does not matter for the following paragraphs,
we omit the superscript M for better readability.

Likelihood of viability data. If a measurement Ii was received under the same environmental
conditions as GI,i(θ), we can rewrite Ii with

Ii
(4.3)
= GI,i(θ)︸ ︷︷ ︸

=nVi

· εV,i ⇒ Ii
GI,i(θ)

= εV,i ∼ Γ

(
1

σ2
,
1

σ2

)
with σ2 ∈ (0, 1) .
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Therefore, the likelihood associated to an observation Ii (i = 1, . . . ,M) is de�ned by

Li(Ii | θ) =
1

Zi

(
Ii

GI,i(θ)

)1/σ2−1

exp

(
− 1

σ2

Ii
GI,i(θ)

)
,

with a normalization constant Zi. This gives the data likelihood

L(I | θ) ∝
M∏
i=1

(
Ii

GI,i(θ)

)1/σ2−1

exp

(
− 1

σ2

Ii
GI,i(θ)

)
(LI )

for a set of viability measurements I =
{
Ii
}M
i=1

.

Likelihood of percentage viability data. Analogously, we obtain

Itreati

Icrtli

(4.4)
=

V treat
i

V ctrl
i

· ε%,i = G%,i(θ) · ε%,i with ε% ∼ β′
(

1

σ2
,
1

σ2

)
, σ2 ∈ (0, 0.5) .

With a normalization constant Z̃i this leads to the likelihood

Li

(
I%i

∣∣∣ θ) =
1

Z̃i

(
I%i

G%,i(θ)

)1/σ2−1(
1 +

I%i
G%,i(θ)

)−2/σ2

for an observed percentage viability I%i = Itreati /Icrtli . Given a set I% =
{
I%i
}M
i=1

of such data,
the corresponding data likelihood is then:

L
(
I%
∣∣∣ θ) ∝

M∏
i=1

(
I%i

G%,i(θ)

)1/σ2−1(
1 +

I%i
G%,i(θ)

)−2/σ2

. (L%)

4.2.2 Bayesian inference

Given a set of data I ∈ RM , we now want to use the data likelihood L(I | θ) to reconstruct the
unknown parameter values of the underlying model. Note that for the rest of this chapter we use
the general notation I. In practice, I can refer to a set of intensity measurements or percentage
viability data, depending on the application. Hence, L(I | θ) has to be chosen accordingly to
formula (LI ) resp. (L%).

The parameter vector θ and the uncertainties
(
εV,i
)M
i=1

,
(
ε%,i

)M
i=1

are modeled as multi-
dimensional random variables taking values in Θ and RM , respectively. The Bayesian formula-
tion of the problem is the following: Given a prior (measure) µ0 on Θ, compute the posterior
(measure) µI given the data I. The prior in the Bayesian setting is the correspondent of a regu-
larization in deterministic inverse problems [25]. It re�ects the knowledge about the parameters
before including any information given by the data, whereas the posterior describes the knowl-
edge after seeing the data. With π0 resp. πI denoting the probability densities of µ0 resp. µI ,
the Bayes' formula yields the following relation between prior and posterior:

πI(θ) =
L(I | θ) · π0(θ)∫

Θ L(I | θ) · π0(θ) dθ
∝ L(I | θ)π0(θ) . (4.8)

The proportionality constant of this relation depends only on I. It is called model evidence and it
can be used to quantitatively compare two models (more details will be provided in Section 6.1.1).
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In order to make predictions about the parameter values, we want to sample from the given
posterior distribution (4.8). While we can choose the prior, such that we can sample exactly
from it with a random number generator, this cannot be done for the posterior, which has a
complicated, concentrated density. So-called Monte Carlo methods are a class of algorithms
based on repeated random sampling and provide several approaches to draw from a probability
distribution like µI . The following Section 4.3 presents a selection of such methods, which we
use to calibrate the models from Sections 3.2 and 3.3.

4.3 Sequential Monte Carlo (SMC) algorithm

To approximate the posterior measure µI , we use the Sequential Monte Carlo (SMC) method6,
which we explain in this section based on [26, 40, 79]. In SMC, one considers a sequence ofK ∈ N
intermediate distributions (µk)

K
k=0 , such that µ0 is the prior and µK = µI coincides with the

posterior distribution. In particular, over the course of K so-called SMC steps we approximate
the respective intermediate distribution µk at the k-th step (k = 1, . . . ,K).

The SMC method sequentially draws from the intermediate measures µk using a swarm
of samples, so-called particles {θp}Pp=1 with associated weights {W k

p }Pp=1 , where P ∈ N is the
sample size (i.e. the number of particles). This particle approximation gives the probability
density of µk (k = 1, . . . ,K) by

πk(θ) ≈
P∑

p=1

W k
p δθp(θ) ∝ Lk · π0(θ) , (4.9)

where Lk = Lk( · | θ) is an appropriate intermediate data likelihood (its explicit argument depends
on the method to construct πk: more details will be provided in the subsequent Subsection 4.3.1)
and the proportionality assumption is reasoned analogously to (4.8). There are di�erent possibil-
ities to obtain such particle approximations of πk. In general, the intermediate distributions µk

should transition between the prior µ0 and posterior distribution µK = µI as �smoothly� as
possible. This is obtained by sequentially updating the weights W k−1

p ⇝W k
p and �ltering for

particles in the high-probability region by resampling according to these weights. Therefore,
SMC is also known as Sequential Importance Resampling (SIR) or sometimes just called particle
�ltering [80].

Each SMC iteration consists of three steps, to which the respective details are explained in
the following Sections 4.3.1�4.3.3 . We start with the reweighting step, in which the particle
weights are updated as mentioned previously. There are di�erent approaches to do this (Sec-
tion 4.3.1). Since this step incorporates the �data knowledge� into the particle representation of
the distribution, it can be seen as the centerpiece of each SMC iteration. It is followed by the
resampling step (Section 4.3.2) and mutation step (Section 4.3.3). Both independently contribute
to improve the numerical stability and ensure practicability of the algorithm.

4.3.1 Reweighting step � construction of intermediate distributions

In the following paragraphs we describe two methods to perform the reweighting of the particles:
data splitting7 [26] and likelihood tempering [40]. Data splitting divides up the available data
set I, such that the intermediate likelihoods Lk in (4.9) consider the respective chunks over the

6Another frequently used method is Markov Chain Monte Carlo (MCMC) [33, Ch. 6-7]. However, SMC is
more e�cient in the context of time-series data [40, 41], and it allows an easier computation of the so-called model
evidence for model comparison [41].

7Note that, as there is no commonly used distinctive name, the term data splitting is introduced within this
thesis for the purpose of being able to terminologically distinguish between the reweighting methods.
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course of the SMC steps until the full data set I is taken into account. In contrast, likelihood
tempering makes use of L(I | θ)ν=0 π0(θ) = π0(θ) and L(I | θ)ν=1 π0(θ) ∝ πI(θ) from (4.8) to tune
the data likelihood L(I | θ) by step-wisely increasing the exponent ν ∈ [0, 1] over the course of
the SMC steps. Figure 6 schematically compares and summarizes the idea of both approaches.

Figure 6: Schematic description of the idea behind SMC with data splitting or likelihood tempering:
Sequential construction of intermediate distributions with densities πk (k = 1, . . . ,K) to
bridge from the prior, from which we can sample directly, to the posterior, from which we
want to obtain samples.

Note that in general the reweighting solely changes the weights and not the position of the
particles.

Data splitting. As mentioned previously, the idea of data splitting is based on splitting the set
of all available measurements I into progressively increasing data sets:

∅ = I:0 ⊂ I:1 ⊂ I:2 ⊂ . . . ⊂ I:k︸︷︷︸
calibration data

at the k-th SMC step

⊂ . . . ⊂ I:K = I .

Then, the intermediate distribution µk (k = 1, . . . ,K) is approximated at the k-th SMC step
using the data likelihood of I:k . In particular, analogously to (4.8), Bayesian rule gives

πk(θ) ∝ L
(
I:k | θ

)
· π0(θ) ,

which relates the prior and the k-th intermediate distribution. However, for a sequential construc-
tion of the intermediate distributions, we want to have a relation between two consecutive densi-
ties πk−1 and πk. Hence, we consider the increment data Ik−1:k = I:k\I:k−1 at the k-th SMC step.
This yields the disjoint data sets {Ik−1:k}Kk=1. Therefore, with I:k = I0:1 ∪̇ I1:2 ∪̇, . . . , ∪̇ Ik−1:k

we can follow

πk(θ) =

∏k
s=1 L

(
Is−1:s | θ

)
Zk

· π0(θ) or, equivalently, πk(θ) =
L
(
Ik−1:k | θ

)
Z∗
k

· πk−1(θ) , (4.10)

where the denominators Zk resp. Z∗
k are normalizing constants and L(Ik−1:k | θ) is the incremental

data likelihood as de�ned in (LI ) or (L%). We recall (4.9), i.e the representation of the intermediate
distribution at the k-th SMC step by a collection of weighted particles: πk(θ) ≈

∑P
p=1W

k
p δθp(θ).

With (4.10), we now have a relation between two consecutive intermediate densities πk and πk−1 ,
which is used to construct the weightW k

p of each particle θp by updating its previous weightW k−1
p

with importance sampling:

W k
p =

wk
p∑P

p=1w
k
p

, with wk
p

(4.10)
= L(Ik−1:k | θp)W k−1

p for p = 1, . . . , P . (RWI )

We see thatW k
p is normalized to ensure that

∑P
p=1W

k
p = 1, i.e. having a probability distribution,

without the need to compute the normalization constant Z∗
k explicitly.
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Likelihood tempering. With data splitting we basically start from �nothing� (I:0 = ∅) at the
prior and incrementally incorporate the information of the whole data (I:K = I) to reach the
posterior. One could say that the approach of likelihood tempering somehow �thinks� the other
way around. The following explanations are based on [40].

We recall from (4.9) that πk(θ) ∝ Lk( · | θ) · π0(θ) , i.e. an intermediate distribution µk is deter-
mined by an appropriate data likelihood Lk (besides the prior). This means, two consecutive dis-
tributions µk and µk+1 are su�ciently similar, if their respective likelihoods Lk and Lk+1 are sim-
ilar as well. Since the posterior is given by the last intermediate density πK(θ) ∝ L(I | θ)π0(θ) , a
reasonable choice of the previous one can be πK−1(θ) ∝ L

(
I | θ

)ν
π0(θ) for an exponent ν ∈ [0, 1]

su�ciently close to one. Repeatedly carrying on this idea to the precedent densities πN−2, . . . , π0
results in the following approach to construct a �smooth� sequence of intermediate distribu-
tions µk (k = 1, . . . ,K):

πk(θ) =
L
(
I | θ

)νk
Z̃k

· π0(θ) =
L
(
I | θ

)νk−νk−1

Z̃∗
k

· πk−1(θ) , (4.11)

with temperatures 0 = ν0 < ν1 < . . . < νK = 1 and normalizing constants Z̃k resp. Z̃∗
k . Analo-

gously to (RWI ), the reweighting of each particles θp is now achieved by

W k
p =

wk
p∑P

p=1w
k
p

, with wk
p

(4.11)
= L(I | θp)νk−νk−1 ·W k−1

p for p = 1, . . . , P . (RWν )

However, we still need to de�ne an appropriate sequence of temperatures {νk}Kk=1 . To do so, we
introduce the concept of the so-called e�ective sample size (ESS), which we use for selecting the
temperature adaptively [40].

Unless two consecutive intermediate distributions are very similar to each other in terms of
their low/high probability area, reweighting (independently of the applied method) will even-
tually associate a low weight to a signi�cant amount of particles over the course of the SMC
steps. Particles with vanishing weights barely contribute to the sample representation of the
distribution, i.e. they are in a sense �ine�ective�. Therefore, we use the ESS Pe� to access the
depletion of the particle representation of µk. It is given by [41]:

Pe�

(
{W k

p }Pp=1

)
≈

(∑P
p=1W

k
p

)2
∑P

p=1

(
W k

p

)2 ∈ [0, P ] .

If there are many particles with low weights, i.e. Pe� ≪ P , the estimation is only as accurate
as a Monte Carlo approximation with a very small number of particles [81]. Since this is not
desirable, it is reasonable the choose the temperatures νk to maintain a su�cient ESS over the
course of the SMC iterations. Hence, given the previous exponent νk−1 we select νk to make the
according to (RWν ) updated weights W k

p ful�ll

Pe� = P ∗ ,

with a user-set threshold P ∗ = τ · P, τ ∈ (0, 1). In practice, this can be done e.g. by the bisection
method.
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4.3.2 Resampling step � improving the particle representation

Independently from the reweighting method, it is reasonable to discard particles with low weight
to focus the computational e�ort on the high portability region [80]. This can be done by
resampling, which replaces particles according to their weights. Whether resampling is necessary,
can be decided with the ESS:

Pe�

{
< P ∗ ⇒ resample {θp}Pp=1 according to {W k

p }Pp=1 and uniformly weigh new particles,

≥ P ∗ ⇒ do not resample.

The appropriate selection of P ∗ as well as of the resampling method depends on the underlying
inverse problem (see Section 5.1 for the particular choices in our calibrations).

We make use of two di�erent resampling schemes8. The �rst approach, which we refer to as
random resampling (RR), is given in [81] and basically draws P i.i.d. samples with replacement
from the set of indices {p}Pp=1, where p has the probabilityW

k
p . Alternatively, we apply systematic

resampling (SR) as described in [80], see Appendix D.II for the algorithmic details. This method
has the advantage that it returns the same collection of input samples, if they all have the same
weight, i.e. no samples get lost [84]. Recalling that Pe� ≈ P indicates almost uniformly weighted
particles, we observed this feature to be especially useful for a relatively large ESS Pe� at the
moment of resampling. Then, SR tends to generate less duplicates (i.e. particles with the same
values) compared to RR. This can be bene�cial for the algorithmic stability, since duplication
reduces the sample diversity, i.e. the coverage of the parameter space. Figure 7 illustrates this
observation by comparing the two resampling methods for di�erent ESS in terms of the resulting
sample diversity. We see that SR generates less duplicates in total compared to RR (plots
in second column), while also resulting in a lower count of the most replicated sample (third
column).

Figure 7: Illustrative comparison of the sample diversity after systematic or random resampling
(SR/RR). The horizontal axis of all line plots shows ten di�erent draws (markers).
Column 1: Exemplary histograms of sample weights with di�erent ESS
(from top to bottom: Pe� ≈ P, 0.98P, 0.76P, 0.45P ).
Column 2: Sample size after resampling and removing duplicates.
Column 3: Highest count of a sample after resampling.

8others are possible, see e.g. [80, 82, 83]
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4.3.3 Mutation step � exploring the parameter space

Performing only importance sampling (known as Sequential Importance Sampling, or SIS for
short, see e.g. [80]) will eventually lead to degeneracy in the diversity of the particle population,
since resampling will discard more and more low-weighted particles in the course of the algorithm.
To prevent this we scatter the particles by applying a Markov kernel κk( · , · ). Such a kernel
is µk-invariant, i.e. it preserves the particle distribution. A large variety of possible choices for κk
can be found in the literature on so-called Markov Chain Monte Carlo (MCMC) methods (see
e.g. [33, 85]).

For our applications, we adopt the adaptive strategy developed in [40] to construct an ap-
propriate Markov kernel. A random walk Metropolis-Hastings (RWMH) proposal is used on
each univariate component, conditionally independently. More precisely, remembering from Sec-
tion 4.2.1 that each particle is a vector θp ∈ Rd, RWMH proposes another set of samples {qp}Pp=1

with qp ∈ Rd by computing its j-th component via

(qp)j = (θp)j + ξj with random walk step size ξj ∼ N (0, ϵ2j ) . (4.12)

Eventually, the positions of the current particles are adapted by randomly accepting the proposed
samples, i.e.

set θp = qp with probability min

{
πk(qp)

πk(θp)
, 1

}
.

To further improve the particle diversity, this process can be repeated more than once by apply-
ing κk again on the moved particles. We refer to each application of κk as an MCMC update.
For H ∈ N such updates, we can de�ne the average acceptance ratio

ak =
1

H

H∑
h=1

Ah

P
, (4.13)

with Ah ∈ {1, . . . , P} being the number of accepted samples in the h-th MCMC update. The
step size ξj of (4.12) as well as the number of MCMC updates H a�ect to which extent the
proposed particles are able to explore the parameter space [40].

Role of the acceptance ratio. A small/large value of ak from (4.13) means that the majority
of the proposed particles lie in the low/high probability region of the current density πk. For a
su�cient ESS Pe� , the particles {θp}Pp=1 are mostly located in the high probability area. Hence,
if ak is small/large, {qp}Pp=1 were potentially proposed close/far from the the current particles.
A balanced acceptance ratio �nds a compromise between su�ciently exploring the parameter
space while moving enough particles. To achieve that, it is reasonable to take the variance of
the current distribution µk as a basis for the random walk's variance [40], which determines the
step size. In particular, the variance ϵ2j from (4.12) is given by the tuned empirical marginal

variance V̂ark of the j-th component of all current particles θj = {(θ1)j , . . . , (θP )j} via

ϵ2j = ρ2 · V̂ark
(
θj
)
, (4.14)

with a scaling factor ρ > 0. Eventually, we want to choose ρ in such a way that an appropriate
acceptance ratio ak is reached. Depending on the underlying application, we use two approaches
to select ρ , which are explained in the following paragraph. Note that it is also possible to adapt
the proposal using empirical covariances instead [86]. However, this would be computationally
more expensive in view of possible extensions to parameters which are random �elds and therefore
very high dimensional.
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Adaptive step size tuning. We want to choose the factor ρ in (4.14) to achieve a balanced
acceptance ratio. According to [87], it is reasonable to aim for ak ≈ 0.23 (for more than two
scalar parameters). We present two approaches in the following paragraphs. The choice of the
adaptive scheme for our model calibrations depends on the underlying inverse problem (details
can be found in Section 5.1).

Scheme 1. One possibility is introduced in [40] as checking the acceptance ratio ak−1 of the
previous SMC step to judge, whether the step sizes ξj (j = 1, . . . , d) need to be increased or
decreased. In particular, we adaptively set the random walk variance at the k-th SMC step to

ϵ2j = ρ2k−1 · V̂ark
(
θj
)

with recursively de�ned scaling factor

ρ0 = 1 and ρs =


ρs−1 · 2 if ak−1 > 0.30,

ρs−1 / 2 if ak−1 < 0.15,

ρs−1 otherwise,

for s = 1, . . . ,K − 1 . (MHk−1)

One drawback of this approach is that the readjustment of ϵ2j can only be done once per SMC
step. If this is not enough to reach an appropriate acceptance ratio, this can only be noticed
and counteracted with a delay of one SMC step. Depending on the evolution of the marginal
variances, it might not be possible to reach a reasonable acceptance ratio over the course of
several SMC steps.

Scheme 2. We extend the idea of [40] by the possibility to readjust the step size of the ran-
dom walk between consecutive MCMC updates. Let H∗ ∈ {1, . . . , H} be the number of MCMC
updates, after which we want to check the acceptance ratio and potentially adapt the step
size. Then, we can split the H MCMC steps into ⌈H/H∗⌉ compartments, which we denote
by Hl , l = 1, . . . , ⌈H/H∗⌉ . For example, suppose we want to do H = 10 MCMC updates and
check the acceptance ratio after every H∗ = 4-th step to potentially update the scaling fac-
tor. Then, we get ⌈H/H∗⌉ = 3 compartments of MCMC steps after which the scaling factor is
updated, respectively:

{1, . . . , 10} = {1, 2, 3, 4}︸ ︷︷ ︸
H1

∪̇ {5, 6, 7, 8}︸ ︷︷ ︸
H2

∪̇ {9, 10}︸ ︷︷ ︸
H3

.

Analogously to (4.13), we de�ne the partial acceptance ratio for the l-th compartment as

a∗k,l =
1

|Hl|
∑
h∈Hl

A∗
h

P
,

where A∗
h ∈ {1, . . . , P} is the number of accepted proposals in the h-th MCMC update. We

check this acceptance ratio analogously to scheme (MHk−1): we set the variance of the random
walk for the h-th MCMC update at the k-th SMC step as

ϵ2j = ρ2k,h · V̂ark
(
θj
)
, (4.15)

where the scaling factor ρk,h is de�ned recursively as follows. After each compartment Hl of
MCMC updates is done, we adapt the scaling ρk,h according to the partial acceptance ratio of
the recently completed compartment of steps. For the �rst MCMC update of a SMC step, we
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adapt the scaling factor according to the partial acceptance ratio of the last compartment of the
previous SMC step. The mathematical description of this recursive scheme is given by:

ρk,s+1 =


ρk,s · 2 if s = lH∗ and a∗k,l > 0.30,

ρk,s / 2 if s = lH∗ and a∗k,l < 0.15,

ρk,s otherwise,

ρk+1,1 =


ρk,H · 2 if a∗k,⌈H/H∗⌉ > 0.30,

ρk,H / 2 if a∗k,⌈H/H∗⌉ < 0.15,

ρk,H otherwise,

for k = 1, . . . ,K − 1 ,

s = 1, . . . , H − 1

and l = 1, . . . , ⌈H/H∗⌉ − 1 .

(MH∗)

Table 5 demonstrates the described scheme for exemplary MCMC updates withH∗ = 4 andH = 10 .

Table 5: Application of the adaptive scheme (MH∗
) for the k-th SMC step and h-th MCMC update,

given exemplary acceptance ratios A∗
h/P . It splits the H = 10 MCMC steps into compart-

ments Hl of maximal size H∗ = 4 and checks the respective partial acceptance ratios a∗k,l to
readjust the scaling factor ρk,h in between MCMC steps.

k = 1 k = 2

h 1 2 3 4 5 6 7 8 9 10 1 · · ·︸ ︷︷ ︸
Hl=1

︸ ︷︷ ︸
Hl=2

︸ ︷︷ ︸
Hl=3

A∗
h/P 0.10 0.12 0.09 0.10 0.35 0.36 0.33 0.30 0.22 0.21 · · · · · ·︸ ︷︷ ︸

a∗k,l=1 < 0.15
︸ ︷︷ ︸

a∗k,l=2 > 0.30
︸ ︷︷ ︸

0.15<a∗k,l=3 < 0.30

ρk,h 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 · · ·
|

·1/2
⇑ |

· 2
⇑ |

keep
⇑

Note that Table 5 is just a demonstration example. In practice, the acceptance ratios in the
last compartment H3 will not lie in the range [0.15, 0.30] after rescaling ρ1,8 ⇝ ρ1,9 . Instead, we
expect them to be similar to the ones of H1 , since the scaling factor has the same value. In such
situations, where consecutive partial acceptance ratios a∗k,l ⇝ a∗k,l+1 switch from being too small
(< 0.15) to being too large (> 0.30), or vice versa, the scaling factor will jump back and forth
between two values due to alternating division and multiplication with the factor 2 (e.g. Ta-
ble 5: 1.0⇝0.5⇝1.0 for H1 ⇝ H2 ⇝ H3). This indicates that by picking a scaling factor between
the two alternating values, we could achieve an acceptance ratio in the desired range [0.15, 0.30] .
We make use of this observation by enhancing (MH∗), resulting in the following adaptive scheme
to set the variance (4.15) of the random walk:

ρk,s+1 =


ρk,s · 2 if s = lH∗ and a∗k,l > 0.30,

ρk,s / 2 if s = lH∗ and a∗k,l < 0.15,

ρk,s otherwise,

ρ̃k+1,1 =


ρk,H · 2 if a∗k,⌈H/H∗⌉ > 0.30,

ρk,H / 2 if a∗k,⌈H/H∗⌉ < 0.15,

ρk,H otherwise,

ρk+1,1 =

{
1
2

(
ρk,H + ρ̃k+1,H

)
if ā∗k ∈ [0.15, 0.30],

ρ̃k+1,1 otherwise,

for k = 1, . . . ,K − 1 ,

s = 1, . . . , H − 1

and l = 1, . . . , ⌈H/H∗⌉ − 1 ,

(MH∗
k,h)
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where ā∗k = 1
2

(
a∗k,⌈H/H∗⌉−1 + a∗k,⌈H/H∗⌉

)
is the mean of the last two partial acceptance ratios of

the k-th SMC step and ρ1,1 = 1 .

Appropriate number of MCMC updates. So far, we have considered the number of MCMC
updates H to be constant for the whole SMC algorithm. However, the more often the Markov
kernel is applied, the further we can reach to explore the parameter space. This becomes es-
pecially relevant if the selected variance ϵ2j and hence the step size ξj of the random walk are
small. Therefore, it can be reasonable to adaptively choose the number of MCMC updates in
dependence of the scaling factor ρk,h for h = 1, . . . , H. Based on [40] we can use for example

Hk,h = min

{
max

{⌊
ζ

ρ2k,h

⌋
, Hmin

}
, Hmax

}
, (MHH )

where ζ > 0 is a global parameter and Hmin resp. Hmax are lower/upper bounds. The latter
should enable a minimum extent of particle movement (lower bound) as well as avoid an exploding
number of MCMC updates (upper bound). Note that, while this adaptive approach improves
the exploration of the parameter space, it can signi�cantly increase the computational cost of the
algorithm, since the forward model has to be solved for each MCMC update. Hence, we make
it dependent on the underlying model calibration, whether we employ H = const. or Hk,h(ρk,s) ,
see upcoming Section 5.1.
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5 Applied model calibration frameworks

As described in Section 4.3, we use the SMC method to calibrate the models of Chapter 3
and investigate the underlying biological processes. This chapter explains how we choose the
algorithmic features of the SMC method. We discuss which aspects have to be considered to make
appropriate decisions and how these are implemented in the model calibrations. First, we have
to choose the reweighting, resampling and MCMC methods for the SMC algorithm (Section 5.1).
Second, if data splitting is applied, we need to determine how to utilize the available data in the
course of the SMC steps (Section 5.2). Eventually, we construct reasonable prior distributions
for the unknown parameters (Section 5.3).

Parameter estimation is performed in Python 3 adapting the code structure from [81]. Note
that some content and formulations of Sections 5.2.1 and 5.3.1 are taken from our publication [63].
For consistency within this work, some notations may be altered � this concerns especially the
notation for the data sets in Section 5.2.1.

5.1 Application of SMC on the model calibrations

Recalling from the previous sections, we have several choices for the methods to do the reweight-
ing step (data splitting or likelihood tempering), resampling (random or selective resampling)
and MCMC updates (adaptive scheme (MHk−1) or (MH∗

k,h)). The particular selection of those is
motivated and justi�ed in the following.

5.1.1 Selection of the reweighting method

As introduced in Section 4.3.1, we can use data splitting or likelihood tempering to construct
the intermediate distributions. However, data splitting is computationally more e�cient if the
model solution has to be calculated numerically and the available measurements are given as a
time-series9. This is applicable for calibrating the models Mη

N and MN using the corresponding
data from [21]. Hence, data splitting is used for these applications, as it showed to be e�ective
in combination with a large sample size (P = 50 000).

For the calibration of models M0
DS and MCYP

DS with data from [22], we observed di�culties
to construct the intermediate distributions using only data splitting. Recalling that the corre-
sponding measurements are given in terms of percentage viability data for a particular selection
of drug dosages, the change of viability between two consecutive data sets I:k−1 and I:k can
be drastic. This causes a large information gain between two the respective SMC steps, which
translates mathematically to a large discrepancy between the respective data likelihoods. In this
case, the majority of particles are in the low-probability region and are sorted out by resam-
pling. Eventually, if the sample size P is not su�ciently large, the remaining particles are not
enough to appropriately represent the intermediate distribution µk. Increasing P would allow
for compensating this issue. However, this also signi�cantly increases the computational cost of
the algorithm as the forward operator G has to be calculated for each particle and each time

9In particular, for 0 ≤ t1 < t2 < . . . < tk, suppose Itk being the data increment for the k-th SMC step, con-
sisting of measurement(s) at a time point tk, and {It1 , . . . , Itk−1} being the calibration data set of the previous
SMC step. Then, to get the respective data likelihoods, we actually do not need to call the numerical solver for
each time point ti (i = 1, . . . , k) separately, but only once on the interval [t0, tk] (where t0 ∈ [0, t1] is the initial
time point of the model) and specify that the time discretization should include all time points {t1, . . . , tk}.
In contrast, if the calibration data set is not a time-series, we need to call the solver for each data increment,
respectively.
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the algorithm uses the data likelihoods, recall (LI ) and (L%). Due to the model complexity
of M0

DS and MCYP
DS , it is not practical to increase the sample size P up to the point where this

issue is resolved. Therefore, for these models we choose to do a �nested� approach [79]: while
still using data splitting to construct the intermediate distributions to get from the prior to
the posterior, we additionally perform likelihood tempering to bridge between two consecutive
intermediate distributions, if necessary. The algorithmic details can be found in Algorithms 2
and 3 in Section 5.1.3.

5.1.2 Selection of the resampling method and MCMC scheme

After the reweighting step, the particle approximation of the respective intermediate distribu-
tion is improved by resampling and subsequent mixing of the particles (recall Sections 4.3.2
and 4.3.3). In general, we try to keep the calibration algorithms as simple as possible to main-
tain a manageable computation time. For models Mη

N and MN applying random resampling
and the basic adaptive MCMC scheme (MHk−1) over the course of H = 5 MCMC steps showed
to be su�cient to get robust results. Resampling is performed if the e�ective sample size Pe� is
below the threshold P ∗ = 0.75 · P . The choices of H and P ∗ are adopted from [81].

However, for models M0
DS and MCYP

DS the e�ectiveness of the calibration turned out to be
dependent on the underlying data set/cell line. We started with investigating the data of cell line
Hep3B2 (with no signi�cant CYP expression). For this purpose, we found random resampling
and scheme (MHk−1) with H = 5 to be still expedient, but not optimal. In particular, the
algorithm occasionally shows di�culties to su�ciently mix the particles if resampling generates
a large number of duplicates. Hence, for the investigation of cell lines HepG2 and C3Asub28 we
switch to systematic resampling and the extended adaptive MCMC scheme (MH∗

k,h) to reduce the
generation of duplicates and improve the mixing. The method of likelihood tempering is designed
to keep the ESS Pe� from dropping below the threshold P ∗. Unless we have reached the the
last tempering step (i.e. a temperature ν = 1), the ESS after reweighting will be Pe� ≈ P ∗ by
construction. Therefore, we resample at each tempering step with ν < 1 [41].

5.1.3 Summary of the applied calibration algorithms

Concluding the methodological choices made in Sections 5.1.1�5.1.2 , we get three di�erent algo-
rithms depending on the underlying inverse problem. The general structure of all algorithms is
the same: we achieve appropriately weighted particles to approximate µK = µI by starting with
uniformly weighted particles distributed according to the prior µ0 and iteratively move the sam-
ples to the next measure µk+1 (k = 0, . . . ,K) in a resampling and a mutation step [27, Ch. 5].
Additional information on the appropriate choice of the particular sample size P for both appli-
cations will be provided in Section 5.3.

For the nutrient deprivation models Mη
N and MN a basic version of the SMC method in

combination with a large sample size P = 50 000 was su�cient to get reasonable results, see
Algorithm 1. In particular, we use data splitting over the course of K SMC steps with random
resampling and a �xed number of MCMC updates using scheme (MHk−1).
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Algorithm 1 � SMC with data splitting (for models Mη
N and MN )

Sampling settings: sample size P = 50 000 (particle index p = 1, . . . , P ), threshold P ∗ = 0.75 · P
1: k = 0 : sample θp ∼ µ0 and set W 0

p = 1/P
2: for k = 1, . . . ,K do ▷ data splitting

3: wk
p = L(Ik−1:k | θp)W k−1

p ⇒ W k
p = wk

p/
(∑P

p=1 w
k
p

)
▷ reweighting with (RWI ) and (LI )

4: if Pe� < P ∗ = 0.75 · P then resample: ▷ random resampling
5: (i): sample indices ιp acc. to distribution R of particle indices,

i.e. (ι1, . . . , ιP ) ∼ R
(
W k

1 , . . . ,W
k
P

)
6: (ii): set θp = θιp and W k

p = 1/P
7: end if

8: for h = 1, . . . , H = 5 do ▷ MCMC updates with (MHk−1)

9: move θp ∼ κk(θp , · ) with MCMC scheme (MHk−1)

10: end for

11: end for

For the chemoresistance modelsM0
DS andMCYP

DS , sole data splitting was not su�cient to achieve
reasonable posteriors with a practical sample size. Hence, we use a nested approach of performing
likelihood tempering within an external data splitting scheme to calibrate these models with a
sample size of P = 10 000. The choice of the resampling and MCMC methods depends on the
investigated data/cell line. For Hep3B2 (no CYP expression) we use Algorithm 2 with random
resampling and MCMC scheme (MHk−1), while for HepG2/C3Asub28 (relevant CYP expression)
we apply Algorithm 3 with selective resampling and MCMC scheme (MH∗

k,h).

Algorithm 2 � SMC with nested reweighting (for cell line Hep3B2)

Sampling settings: sample size P = 10 000 (particle index p = 1, . . . , P ), threshold P ∗ = 0.75 · P ;

MCMC settings: Hmin = 8 , Hmax = 64 , ζ = 1

1: k = 0 : sample θp ∼ µ0 and set W 0
p = 1/P , H0,H = Hmin

2: for k = 1, . . . ,K do ▷ external: data splitting

3: s = 0 : set Ĩ = Ik−1:k , W̃
0
p = W k−1

p , νs = 0 ▷ internal: likelihood tempering

4: while νs < 1 do ▷ reweighting with (RWν ) and (L%)

5: determine νs+1 ∈ (νs, 1] such that Pe�
(
{W̃ s+1

p }Pp=1

)
= P ∗

for W̃ s+1
p = w̃s+1

p /
(∑P

p=1 w̃
s+1
p

)
with w̃s+1

p = L(Ĩ | θp)νs+1−νs W̃ s
p

6: resample particles: ▷ random resampling
7: (i): sample indices ιp acc. to distribution R of particle indices,

i.e. (ι1, . . . , ιP ) ∼ R
(
W k

1 , . . . ,W
k
P

)
8: (ii): set θp = θιp and W k

p = 1/P

9: h = 1 : set H = Hk−1,H acc. to MHH ▷ MCMC updates with (MHk−1)

10: while h ≤ H do
11: move θp ∼ κk(θp , · ) with MCMC scheme (MHk−1) while updating H = Hk,h

12: h = h+ 1
13: end while

14: s = s+ 1

15: end while

16: set W k
p = W̃ s

p

17: end for



5.2 Fragmentation of the full calibration data for data splitting 37

Algorithm 3 � SMC with nested reweighting (for cell lines HepG2 and C3Asub28)

Sampling settings: sample size P = 10 000 (particle index p = 1, . . . , P ), threshold P ∗ = 0.75 · P ;

MCMC settings: Hmin = 8 , Hmax = 64 , ζ = 1

1: k = 0 : sample θp ∼ µ0 and set W 0
p = 1/P , H0,H = Hmin

2: for k = 1, . . . ,K do ▷ external: data splitting

3: s = 0 : set Ĩ = Ik−1:k , W̃
0
p = W k−1

p , νs = 0 ▷ internal: likelihood tempering

4: while νs < 1 do ▷ reweighting with (RWν ) and (L%)

5: determine νs+1 ∈ (νs, 1] such that Pe�
(
{W̃ s+1

p }Pp=1

)
= P ∗

for W̃ s+1
p = w̃s+1

p /
(∑P

p=1 w̃
s+1
p

)
with w̃s+1

p = L(Ĩ | θp)νs+1−νs W̃ s
p

6: resample particles acc. to weights {W̃ s+1
p }Pp=1 ▷ systematic resampling

7: h = 1 : set H = Hk−1,H acc. to MHH ▷ MCMC updates with (MH∗
k,h)

8: while h ≤ H do
9: move θp ∼ κk(θp , · ) with MCMC scheme (MH∗

k,h) while updating H = Hk,h

10: h = h+ 1
11: end while

12: s = s+ 1

13: end while

14: set W k
p = W̃ s

p

15: end for

Note that, in general, the calibration of the Hep3B2 data with model M0
DS did work well with

Algorithm 2. However, for two out of altogether sixteen calibrations the posteriors showed
unwanted artifacts due to a large amount of duplicates in the particles. These calibrations were
repeated using Algorithm 3, which improved the robustness of the calibration results for Hep3B2.

5.2 Fragmentation of the full calibration data for data splitting

Besides deciding on particular algorithmic methods, we need to appropriately split the set of
available measurements I into the calibration data sets I:1 ⊂ I:2 ⊂ . . . ⊂ I:K = I to use them
for the data splitting over K SMC steps. In this matter, we need to consider that a data point
has a particular informative content on speci�c parameters. For example, given an exemplary
viability measurement Ṽ , this data point contains the information that the parameter Vcap for
the maximal possible population size, has to be larger than this value: Vcap ≥ Ṽ (up to measure-
ment/model inaccuracy). Therefore, the informative gain between two consecutive calibration
data sets I:k and I:k+1 has a signi�cant in�uence on the data likelihood of a particle and hence
on the reweighting process, which we explain in more detail in the following paragraphs. Sub-
sequently, we give the particular calibration data sets for the calibration of models Mη

N , MN

(Section 5.2.1) and M0
DS , MCYP

DS (Section 5.2.2).

Omitting uninformative data. If we have no signi�cant information gain between two consec-
utive data sets I:k and I:k+1, the weights of the particles will barely change from W k to W k+1.
This means that considering the data increment Ik:k+1 = I:k+1 \ I:k does not contribute to the
approximation the posterior. Therefore, we can omit Ik:k+1 to save computational time, since
we need a smaller number of SMC steps to eventually cover the whole set of calibration data.

Avoiding �information jumps�. In contrast, if the information gain from I:k to I:k+1 is very
large, the consideration of the corresponding data increment can signi�cantly alter the high
probability region in the parameter space. As a result, very small weights might be associated
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to the majority of the parameter samples in the reweighting step. This yields an ine�ective
particle representation of the intermediate distribution and triggers resampling, which discards
the low-weighted samples. We end up with a small number of distinct samples, i.e. the variance
of the particle distribution tends to zero and the intermediate distribution degenerates. At this
point the calculations possibly fail due to numerical issues. If the algorithm proceeds, the MCMC
updates might reintroduce sample diversity in the course of the subsequent SMC steps. This
could su�ce for reaching the correct posterior distribution, however it is not guaranteed, since
the reach of the random walk is proportional to the (vanishing) variance of the intermediate
distributions.

Note that reweighting by likelihood tempering can counteract this issue, since it preserves
a su�cient ESS. This is the reason why for some model calibrations sole data splitting is not
su�cient and we switch to the nested SMC approach. However, in this context large information
jumps between two consecutive data sets I:k and I:k+1 will result in the execution of many internal
tempering steps to appropriately bridge between the respective intermediate distributions µk

and µk+1. This can signi�cantly increase the computation time of the algorithm. Hence, in
summary it is desirable to avoid excessive information jumps while deciding on the fragmentation
of the data.

5.2.1 Calibration with the nutrient deprivation data

As described in Section 4.1.1, the experiments in [21] modeled by Mη
N and MN monitor the

dependence between cell viability V (t) and nutrient supply N(t) over time t.

Structure of the available viability data. The tumor cells grow under constant nutrient condi-
tions N0 and viability is measured daily over a period of seven days (at t ≈ 0, 1, . . . , 7). Nutrients
are supplied with a particular concentration between 0% to 10% of fetal bovine serum (FBS). A
concentration of N0 = 0 ∝ 0%FBS does not provide any nutrients, whereas N0 = 1 ∝ 10%FBS
generates optimal growth conditions. All experiments are started with several populations of
di�erent initial size V0 ∝ 105 cells/mL. There are four biological replicates to estimate statistical
signi�cance and repeatability of the measurements, i.e. in total we have four data points for each
combination of t, V0 and N0. We collect all viability measurements corresponding to a speci�c
nutrient concentration N0 in a data set. These are denoted by �D0�, �D1�, . . . , �D4� respectively
for a concentration of 0/2.5/5/7.5/10% FBS and are employed for model calibrations. There is
another experiment in [21], which particularly investigates cell viability under optimal growth
conditions over a period of 21 days. The corresponding data set is not considered for the model
calibrations, but used in addition to D0�D4 to validate the calibration results. We denote it with
�DV� (�V�alidation data set). Table 6 summarizes the available data sets.

Table 6: Overview over the nutrient deprivation data and the corresponding initial values. D0�D4 are
used to calibrate the models Mη

N and MN and DV to validate the calibration results. The
initial values η0 are only needed for model Mη

N .

Nutrition Duration Initial values in the models
Data set (in %FBS) (in days) V0 N0 η0

D0 0.0 7 1.00, 0.50, 0.25 0.00 0.00
D1 2.5 7 1.00, 0.50, 0.25 0.25 0.00
D2 5.0 7 1.00, 0.50, 0.25 0.50 0.00
D3 7.5 7 1.00, 0.50, 0.25 0.75 0.00
D4 10.0 7 1.00, 0.50, 0.25 1.00 0.00

DV 10.0 21 1.00, 0.50, 0.25, 0.10, 0.05 1.00 0.00



5.2 Fragmentation of the full calibration data for data splitting 39

Order and segmentation of the calibration data. As depicted in Figure 8, we use the mea-
surements of D0�D4 over the course of K = 8 · 3 = 24 SMC steps. In particular, at the k-th step
we include 4 · 5 = 20 measurements (four biological samples per N0) to the data of the previous
step while iterating over the eight points in time (inner loop) and over the three seeding densities
(outer loop). In total, we use MK = 24 · 20 = 480 measurements. For k = 1, . . . ,K , the data
collections I:k with I:1 ⊂ I:2 ⊂ . . . ⊂ I:K can be schematically outlined by:

■ calibration data at k-th SMC step: I:k = {Ik,i}Mk
i=1 with |I:k| = Mk = k · 20,

■ I:1 = {I1,1, . . . , I1,20} contains all measurements for t = 0, V0 = 1,

■ I:2 = I:1 ∪
{
all measurements for t ≈ 1, V0 = 1

}
,

■ analogously: I:3, . . . , I:8 respectively add measurements for t ≈ 2, . . . , 7 and V0 = 1,

■ I:9, . . . , I:16 resp. I:17, . . . , I:24 add data for t ≈ 0, . . . , 7 and V0 = 0.5 resp. V0 = 0.

Figure 8: Schematic description of the data utilization to calibrate the models Mη
N and MN : The

data splitting steps k = 1, . . . ,K iterate over the observations on day t ∈ {0, . . . , 7} (inner
loop) and initial cell density V0 ∈ {1.00, 0.50, 0.25} (outer loop).

By considering parts of all data sets D0�D4 at each SMC step, we aim to maximize the infor-
mation about the e�ect of varying nutrients on the cells. Apparently, although considering a
notable amount of data with high informative content per step, this does not lead to degenerating
intermediate distributions as discussed at the beginning of Section 5.2.

5.2.2 Calibration with the chemoresistance data

The models M0
DS and MCYP

DS describe the experiments from [22]. In particular, that study an-
alyzes the e�ect of chemotherapy on di�erent hepatocellular carcinoma cell lines under various
oxygen (normoxic/hypoxic) and ECM sti�ness (normal/cirrhotic) conditions. In our investi-
gations we are particularly interested in the behavior of the cell lines Hep3B2, HepG2 and
C3Asub28, which especially di�er in their CYP expression, i.e. their drug metabolization activ-
ity. In particular, we want to calibrate model M0

DS with the CYP-free Hep3B2 data and MCYP
DS

with HepG2 resp. C3Asub28. All experiments start with the same initial cell density V0 .
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Structure of the available percentage viability data. We brie�y recall the experimental design
from Section 3.3. After allowing the tumor cells of a speci�c cell line to adapt to the present oxy-
gen and sti�ness conditions, combination therapy with DOX and SOR is applied; subsequently,
the cell population is grown in the absence of drugs for further three days and, eventually, via-
bility is examined by an intensity measurement (at time point tend = ttreat + 3, given in days).
Control populations are grown under the same experimental setting but without adding drugs
to the system to investigate the treatment e�cacy. The latter is quanti�ed by the ratio be-
tween ItreatD0

and Ictrl, i.e. the measured viability of a treated population (with dosage D0) and
a corresponding control population. This yields an observation for the percentage viability:

I%D0
=

ItreatD0
(tend)

Ictrl(tend)
. (5.1)

By performing the described experiment for various DOX dosages, we get a discrete reversed10

representation of a dose-response relationship. Figure 9 illustrates the experimental design and
the resulting percentage viability data, which is used for model calibrations.

Figure 9: Outline of the experimental design yielding the calibration data for modelsM0
DS andMCYP

DS .
Left plot: Exemplary time evolution of the cell density over the course of the experiment
(adaption/treatment/growth phase), showing the untreated growth of a control population
(black dotted curve) compared to populations exposed to di�erent DOX dosages D0 in the
treatment phase T = [t0, ttreat] (colored solid curves, where a darker shade indicates a higher
dosage). Viability is measured once at tend.
Right plot: Resulting percentage viability data in form of a dose-response relationship.

Repeating this procedure for di�erent conditions (treatment duration, oxygen supply, ECM sti�-
ness and supportive drug dosage) allows to investigate the environment's in�uence on the treat-
ment e�cacy. Per cell line, this results in measurements I%D0

for each combination of

■ D0 ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 1000} (µM) DOX dosage,

■ ttreat ∈ {1, 2} ∝ 24/48 hours treatment duration,

■ S0 ∈ {0, 0.5, 1} ∝ 0/11/22 µM SOR dosage (supportive drug),

■ H0 ∈ {0, 1} ∝ normoxic/hypoxic oxygen supply,

■ C0 ∈ {0, 1} ∝ normal/cirrhotic ECM sti�ness,

i.e. in total we have data for 11 · 2 · 3 · 2 · 2 = 264 di�erent environmental settings.

10Usually a �dose-response� is given by a term like (1− I%D0
) ∈ [0, 1], i.e. in our context I%D0

≡ 0 represents the

maximal response to the drug, while I%D0
≡ 1 means no response.
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Deliberate utilization of the data. For each combination of the above quantities, there are three
biological replicates. Due to the complexity of the chemoresistance models, we want to minimize
the e�ect of biological variation and potential outliers on the model calibrations. Hence, we
consider the median over the corresponding replicates instead of the separate measurements ItreatD0,i

and Icrtli (i-th replicate) to construct the percentage viability I%D0
of (5.1). Consequently, for

given ttreat, D0, S0, H0 and C0, the uncertainty factor ε% determining the data likelihood (L%)

is:

I%D0
=

median
{
ItreatD0,1

, ItreatD0,2
, ItreatD0,3

}
median

{
IctrlD0,1

, IctrlD0,2
, IctrlD0,3

} ⇒ ε% =
I%D0

V %(D0)

(4.4)∼ β′
(

1

σ2
,
1

σ2

)
,

where V % is the percentage viability derived by the mathematical model M0
DS or MCYP

DS .
Due to biological variation and measurement inaccuracies some (median) data points appear

outside of the range of 0− 100%. However, both models can only give percentage viabilities
within this range by construction, i.e. we clip these data points to the interval [0.001, 1] . Note
that we cannot choose the lower bound of the data arbitrarily small without excessively increasing
the uncertainty variance of ε% , since the high probability area of the multiplicative noise gets
more narrow for measurements closer to zero. This could lead to numerical issues during the
reweighting steps of the SMC algorithm.

As the data points I%D0
represent a (noisy but smooth) dose-response relationship, it is rea-

sonable to iterate over the measurements along the D0-axis for the data splitting steps. As
mentioned at the beginning of Section 5.2, there are situations where particular data points
do not contribute to signi�cantly improve the estimation of the posterior distribution. In this
context, we can make the following observation (illustrated in Figure 10). If the calibration has
already incorporated the information �no response for dosages D0,1 and D0,2� with D0,1 < D0,2 ,
then a data point D0 ∈ (D0,1, D0,2) will not provide additional information to that statement,
since the cells will show no response for this dosage either. An analogous observation can be made
for dosages, which trigger a maximal response. Hence, such data points are feasible candidates
to be omitted for the calibration process.

Figure 10: Illustration of the informative content of exemplary (undisturbed) dose-response
data

{
I%D0,i

}
i
. Once the measurements suggest no resp. maximal response to the ap-

plied dosage D0 (i.e. I%D0
= 1 resp. I%D0

= 0), there is no signi�cant information gain from
considering data for smaller resp. larger dosages in the calibration.

The particular omitted measurements for each data set are mentioned while discussing the re-
spective calibration results in Sections 6.3.1 and 6.3.2.

Order and segmentation of the calibration data. Instead of time-resolved measurements (like
in the calibrations of models Mη

N and MN ), we now have measurements describing the dose-
response over D0 for a given combination of ttreat, S0, H0 and C0 . We have to consider that
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tumor cells of distinct cell lines can react di�erently to the treatment, especially depending on
the present oxygen supply and ECM sti�ness. Hence, we calibrate the corresponding model
separately to the measurements for each combination of H0 ∈ {0, 1} and C0 ∈ {0, 1}, i.e. four
individual calibrations are performed per cell line.

Figure 11 illustrates how the measurements are used for each calibration to construct the
consecutive data sets {I:k}Kk=1 . Over the course of the K data splitting steps, we iterate over
the drug dosages S0 and D0 , where a data increment Ik:k+1 consists of the two respective mea-
surements for ttreat ∈ {1, 2} (right side of Figure 11). The algorithm starts with data for S0 = 0
and iterates over the relevant values of D0 in ascending order, which is repeated for S0 = 0.5 and
eventually S0 = 1 (left side of Figure 11).

Figure 11: Schematic description of the data utilization to calibrate the models M0
DS and MCYP

DS .
The data splitting steps k = 1, . . . ,K iterate over the observations for a selec-
tion of DOX dosages D0,1, . . . , D0,z , z ∈ {1, . . . , 11} (inner loop) and all SOR
dosages S0 ∈ {0.0, 0.5, 1.0} (outer loop).

This order has the advantage that the data of the �rst third of SMC steps (S0 = 0) contains no
information about any SOR-related parameter. Hence, before considering the �rst measurements
with S0 > 0 we can reset the values of these parameters to their prior samples without chang-
ing the current intermediate distribution. This improves the sample diversity of the particle
approximation.

5.3 Prior distributions of the parameters

The prior distribution represents the knowledge about the parameters' values without having
seen the associated data. Depending on the parameter, we can use biological or experimental
background information to get a feeling for its magnitude. There can also be mathematical
restrictions, which give actual bounds for feasible parameter values. This mostly applies to the
lower bound, e.g. if a parameter is per de�nition non-negative. However, often the biological
and mathematical a priori information is not enough to distinctively give an upper bound. This
can complicate the choice of the prior distribution, since it a�ects the decision on an appropriate
sample size P .

Prior support vs. sample size. The support of the prior distribution ideally covers all biologi-
cally reasonable parameter values. If we want to use prior distributions with bounded supports,
the supports of their marginals need to be large enough to cover the actual parameter values.
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However, it is not practical to choose the support arbitrarily large, as this means a large variance
for the prior, which can, for a given sample size P , reduce the coverage of the high probability
region of the parameter space. With basic algorithmic methods, e.g. sole data splitting or a
�xed number of mixing steps, this can lead to numerical issues, if the majority of particles is
associated with a low weight. For a given P , likelihood tempering and an adaptive number of
mixing steps can counteract this problem at the cost of computational e�ort. In general, a scarce
prior coverage of the high probability region can be compensated by increasing the sample size.
However, this will also increase the computational cost, since the ODE model has to be solved
for each parameter sample several times in the course of the SMC algorithm. Hence, we need to
�nd a tradeo� of su�ciently large prior support and sample size P to perform the calibration
within a practical time frame.

The models Mη
N and MN were calibrated with a very large sample size: P = 50 000. This

improved the comparability of the two models, as a large sample size reduces the numerical
variations in the calibration results. Note that using a smaller sample size might have been
enough for this application, but the computational time was still manageable due to the simplicity
of the models and the time-resolved data.

For calibrating the chemoresistance models M0
DS and MCYP

DS �nding the balance between
sample size and prior support is more challenging for two reasons. First, the ODE systems have
a higher number of unknown parameters compared to the previous models. Hence, a su�ciently
large sample size is necessary to generate enough qualitatively di�erent and biologically reason-
able parameter combinations when sampling from the prior distribution. Second, we need to
perform several, consecutive calibrations (one for each combination of H0 and C0 and cell line),
which increases the total computation time signi�cantly � additionally to more costly solving
procedures. Therefore, special attention is directed to selecting the prior support and sample
size only as large as necessary (for more details see Section 5.3.2). Eventually, this led to using
the sample size P = 10 000 together with the nested reweighting approach and adaptive number
of mixing steps as described in Algorithms 2 and 3.

Mathematical implementation of prior knowledge11. Information about the parameters' mag-
nitude can be described by using an appropriate uniform distribution U(a, b) on an interval [a, b].
If we can additionally assume that the neighborhood of a parameter value h has a high proba-
bility, a triangular distribution Triang(a, h, b) on [a, b] is used, where h ∈ [a, b] is the mode of the
distribution, i.e. the value that is most likely to be sampled. Note that the mode can also lie on
the interval bounds, if low/large values within the interval are assumed to have high probability.
We set h = (a+ b)/2 to the center of the interval, if we expect the borders a, b to have a low
probability but there is no particular tendency to a value within the interval.

5.3.1 Prior information to calibrate the nutrient deprivation models

For calibrating Mη
N and MN , the set of unknown parameters can be distinguished between

model parameters (part of the ODE systems) and hyperparameters. The latter include the
uncertainty variance σ2 and the proportionality constant n (their de�nitions will be recalled in
the corresponding following paragraphs). A summary of all prior distributions from the following
paragraphs can be found in Table D.1 in Appendix D.III.

Most of the content and formulations of the following paragraphs are taken from our publi-
cation [63]. Note that some prior distributions will di�er from the published ones: We observed
that instead of triangular distributions, all calibrations of models Mη

N and MN actually started

11Remark: Content and formulations of this paragraph are taken from our publication [63].
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with uniform prior samples on the corresponding support (due to a minor coding error). How-
ever, this would not alter the calibration results signi�cantly, as using a uniform prior is more
conservative (i.e. less informative) than using a triangular one.

Prior distributions for the model parameters. We recall the models from Section 3.2:

(MN ) : V̇ = δ+(N0) · β V

(
1−

(
V

Vcap

)b
)

− (λ+ δ−N (N0) · λind)V with V (0) = V0 ,

(Mη
N
) :


V̇ =

(
1− η

)
· β V

(
1−

(
V

Vcap

)b
)

−
(
λ+ η · λind

)
V with V (0) = V0 ,

η̇ =
αN ·N2

N2
thr +N2

· (1− η)− αN ·
(
1− N2

N2
thr +N2

)
· η with η(0) = η0 .

We want to utilize biological and experimental knowledge to construct appropriate prior distri-
butions for all involved model parameters. If possible, we try to �nd a bounded interval which
covers all reasonable values of the respective parameter. For better readability, in the following
we omit units of variables and parameters where not necessary.

The doubling time τ of the used cell type is larger than one day while in exponential
growth [88, 89], i.e. τ > 1. We can estimate an upper bound for the growth rate β :

2V0 = V (τ) = V0e
βτ ⇒ β =

ln(2)

τ

τ>1
< ln(2) < 1 .

Therefore, it is reasonable to expect β ∈ (0, 1). Under optimal nutrient conditions, we know that
the cell population size increases. This translates to the parameter relation β > λ , which can
also be written as

λ = cβ · β with cβ ∈ (0, 1) .

With cβ we have found a bounded parameter, which we can calibrate instead of λ. A similar
reparametrization can be given for the induced death rate λind: it is reasonable to assume that
cells in a nutrient-free environment die faster from starvation than from natural causes, which
leads to

λind > λ ⇒ λind =
λ

cλ
=

cβ
cλ

β with cλ ∈ (0, 1).

The underlying experimental setting in [21] implies that the populations do not exceed a density
of 3 · 105 cells/mL. Furthermore, all experiments start with initial densities which are smaller
than the carrying capacity. Since V0 = 1 (corresponding to 105 cells/mL) is the largest seeding
density, we can eventually assume Vcap ∈ (1, 3) . The restrictions b > 1 and Nthr ∈ (0, 1) are
motivated by the modeling framework. Utilizing all this information, we adopt the following
prior distributions for the model parameters of MN :

β ∼ U(0, 1) , cβ ∼ U(0, 1) , cλ ∼ U(0, 1) ,
Vcap ∼ U(1, 3) , b ∼ U(1, 12) , Nthr ∼ U(0, 1) .

The same prior distributions are used for the common parameters in model Mη
N . Additionally,

the impact rate αN needs to be calibrated for that model. However, since we do not have any
particular information about this parameter, we set its prior distribution to

αN ∼ U(0, 12) .
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For better comparability between the models, we start the respective calibrations from the same
prior particle sample. In particular, the SMC algorithm is performed for model Mη

N and the
generated initial sample, but without the component regarding to parameter αN , is used to start
the calibration of model MN .

Prior distributions for the hyperparameters. Additionally to the model parameters, the un-
certainty variance σ2 as well as the proportionality constant n need to be estimated � recall from
relation (4.3):

ε =
I

n · V ∼ Γ

(
1

σ2
,
1

σ2

)
with σ2 ∈ (0, 1) .

To consider a certain degree of con�dence in the measurements, we assume a smaller upper
bound for the uncertainty variance: σ2 ∈ (0, 1/2). All experiments are started with cells from a
batch with optimal nutrient conditions. If they are put into a nutrient-free environment without
going through a weaning process beforehand, they can undergo a starvation shock. This might
disturb or decrease the cells' ability to metabolize the chemical for the �uorescence measurements.
To consider this in the hyperparameters, we allow the data sets to have di�erent uncertainty
variances and proportionality constants: σ2

0 and n0 for N0 = 0 resp. σ2
N and nN for N0 > 0 ,

where potentially nN ≥ n0. Using the latter for the reparametrization

n0 = cn · nN with cn ∈ (0, 1)

leads to the prior distributions

σ2
0 , σ

2
N ∼ U(0, 1/2) , nN ∼ U(0, 1/2) , and cn ∼ U(0, 1) .

The upper bound for nN is motivated by the known magnitude of the intensity measurements.
A large value for the uncertainty variance σ2 allows a larger deviation of the model solution from
the data. For the purpose of model comparison, using the same uncertainty variance for both
models is desirable to increase comparability. Hence, we �rst calibrate each model separately
to get estimates for the variances σ2

0 and σ2
N . Then, we respectively take the average over both

models, in particular:

σ̄2
0 =

E
(
σ2
0 |Mη

N

)
+ E

(
σ2
0 |MN

)
2

and σ̄2
N =

E
(
σ2
N |Mη

N

)
+ E

(
σ2
N |MN

)
2

, (5.2)

with E
(
· |M

)
denoting the expected value of the marginal posterior distribution of σ2

0 resp. σ
2
N

from calibrating model M ∈ {Mη
N , MN}. Eventually, these average values σ̄2

0 and σ̄2
N are used

deterministically and are especially not estimated anymore in further calibrations.

5.3.2 Prior information to calibrate the chemoresistance models

We recall the de�nition of percentage viability data from Section 4.1.2 . By taking the ratio of
two intensity measurements Itreat/Ictrl, the proportionality constant n , which scales the observed
light intensity to the present viable cell density via I = n · V , cancels. Hence, it is not necessary
to consider n in the calibrations and the only unknown hyperparameter is the variance of the
uncertainty factor ε% in the context of percentage viability:

ε% =
Itreat/Ictrl

V treat/V ctrl
∼ β′

(
1

σ2
,
1

σ2

)
⇒ Var(ε%) =

σ2(2− σ2)

(1− 2σ2)(1− σ2)2
for σ2 ∈ (0, 1/2) ,

where σ2 is the variance of the uncertainty factor ε = I
n·V ∼ Γ

(
1
σ2 ,

1
σ2

)
for cell viability. The

variance Var(ε%) can be tuned by the value of σ2. To ensure comparability of the calibration
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results for all cell lines and environmental conditions, the parameter σ2 is used deterministically.
As a rough benchmark, we orient ourselves by the magnitude of the estimated values of σ̄2

o

and σ̄2
N from equation (5.2), which were obtained by pre-calibrations of the nutrient deprivation

models Mη
N and MN . Anticipating the corresponding calibration results from Section 6.2.1, we

found σ2 = 0.10 resp. σ2 = 0.15 to be suitable choices for the calibrations to the data of cell
lines Hep3B2 resp. HepG2/C3Asub28, achieving a balance between numerical stability of the
algorithm and su�cient concentration of the distributions. This results in uncertainty variances
of Var(ε%) ≈ 0.29 resp. Var(ε%) ≈ 0.55 .

Before proceeding with constructing the prior distributions in the following paragraphs, we
note: If we do not give a biological/mathematical criterion to set a distinctive upper bound
for a parameter, we choose the corresponding prior support as small as possible without being
too restrictive. This allows to initialize the SMC algorithm with a computationally manageable
sample size. A summary over the prior distributions to calibrate model M0

DS resp. MCYP
DS can

be found in Tables D.2a resp. D.2b in Appendix D.III.
Recall from Section 5.2.2 that we calibrate a particular model separately to the measurements

for each combination of H0 ∈ {0, 1} and C0 ∈ {0, 1} , i.e. we perform four individual calibrations
per cell line/model. In particular, we start with the case H0, C0 = 0 . For the remaining thesis we
will use the following terms and abbreviations to denote the underlying environmental conditions:

�normal conditions� : H0, C0 = 0
abbr.
⇝ HC0 ,

�sole hypoxia� : H0 = 1, C0 = 0 ⇝ H1 ,

�sole cirrhosis� : H0 = 0, C0 = 1 ⇝ C1 ,

�cirrhosis and hypoxia� : H0, C0 = 1 ⇝ HC1 .

To minimize numerical deviations between the separate calibrations within a SMC run, we start
each of the four calibrations from the same prior particle sample (regarding common parameters).

Prior distributions for model M0
DS . Given the treatment phase T = [0, ttreat] , we consider

the unknown parameters of system

M0
DS :



V̇ =
(
β − λ−

(
β + λind

)
η
)
· V ,

η̇ =

 α−
DD

m1
0(

Dnorm

(
1− amaxS

m3
0

Sm3
supp + Sm3

0

)
dHC

)m1

+Dm1
0︸ ︷︷ ︸

δ−D,HC(D0,S0)

+
α−
SS

m2
0

Sm2
thr,HC + Sm2

0︸ ︷︷ ︸
δ−S,HC(S0)

 (1− η)1T (t) ,

with V (0) = V0 and η(0) = η0,HC ≤ β − λ

β + λind
∈ (0, 1) .

While the values of ttreat, H0, C0, D0, S0 and V0 are given from the experiment, the remaining
parameters need to be calibrated. Recall two observations from Section 3.3.3. First, the param-
eters β , λ and λind can only be estimated in combination as the terms (β − λ) and (β + λind).
Second, the percentage viability (measurements) are modeled by (3.18) as

V treat

V ctrl
(t) = exp

(
−(β + λind)

(
η(ttreat)

(
t− ttreat

)
− η0,HC · t+

∫ ttreat

0
η(τ) dτ

))
.

Since this equation is independent from (β − λ), it is neither necessary nor possible to estimate
this term. Consequently, we cannot incorporate the particular upper bound β−λ

β+λind
< 1 in the



5.3 Prior distributions of the parameters 47

prior information for η0,HC . Summarizing these observations yields the prior distributions

η0,HC ∼ Triang(0, 0, 1) and (β + λind) ∼ U(0, 3) .

Note that by de�nition η0,HC = 0 for H0, C0 = 0 (HC0), i.e. η0,HC only needs to be estimated
for data with hypoxic and/or cirrhotic conditions (H1/C1/HC1). Furthermore, we know that
the parameter (β + λind) is unin�uenced by H0 and C0 . Hence, we can use the estimate12

for (β + λind) resulting from the �rst calibration (HC0) to set the parameter �xed for the re-
maining calibrations (H1/C1/HC1).

Next, we take a closer look at the cells' stress response to DOX and SOR. The sensitivity
function δ−D,HC is determined by (among others) the una�ected sensitivity threshold Dnorm and
its shifting terms

dS(S0) = 1− amaxS
m3
0

Sm3
supp + Sm3

0

and dHC .

Since we do not have an explicit de�nition of dHC , we can only estimate it with the combined
term (Dnorm · dHC), which we denote by Dnorm,HC . Based on the experimental design, it is
reasonable to assume that signi�cant changes of cytotoxicity of DOX occur in a logarithmic
scale in the magnitude of the applied dosages 0.0001 − 1000 µM [22]. We do not expect the
threshold Dnorm,HC to be very close to the bounds of this range, i.e. we assume

Dnorm,HC ∈
[
10−4, 104

]
and de�ne log10(Dnorm,HC) = D̂norm,HC ∼ Triang(−4, 0, 4) .

The Hill coe�cient m1 tunes the slope of δ
−
D,HC . If m1 is in a high magnitude, large variations

are necessary to signi�cantly change the slope. Therefore, we use a logarithmic scale to obtain
useful prior samples and set

m1 ∈ [1, 50] ≈
[
100, 101.7

]
⇒ log10(m1) = m̂1 ∼ U(0, 1.7) .

For the DOX impact rate we assume

α−
D ∼ U(0, 20) ,

where the upper bound can be interpreted as an immediate reaction to the DOX treatment.
The supportive in�uence of SOR is given by dS(S0). For this Hill-type function we do not

know an upper bound for the threshold Ssupp. In particular, it is possible that its value is
signi�cantly larger than the investigated dosages S0 ∈ {0, 0.5, 1}, i.e. potentially Ssupp > 1. For
large values of Ssupp, especially in combination with a large Hill coe�cient m3 (i.e. a steep
switch), the function values of dS(S) can be very similar in the range of S ∈ [0, 1]. As Figure 12
illustrates, the exact shape of dS and hence the values of amax, Ssupp and m3 are di�cult to
reconstruct from the available data in such a situation. To be precise, it might even be not
possible to distinctively reconstruct the three unknowns, i.e. three degrees of freedom, with the
information for only two non-zero dosages S0.

12We use its so-called marginal MAP estimate, which will be introduced in the upcoming Section 6.1.2 .
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Figure 12: Schematic plots of the supportive function dS(S) = 1− amaxS
m3/

(
Sm3
supp + Sm3

)
. The

available data provides just enough information to estimate dS(S0) for S0 ∈ {0.5, 1} (blue
markers). Especially for dS(0.5), dS(1) ≈ 1, the parameters amax, Ssupp and m3 are not
distinctively reconstructable.

To counteract this issue, we make use of the fact that in the reduced model M0
DS the SOR

concentration remains constant during treatment. Then, instead of estimating the continuous
shape of dS with the parameters amax , Ssupp and m3 , we only consider the discrete values dS(S0)
for S0 ∈ {0, 0.5, 1}. Knowing that by de�nition dS(S0 = 0) = 1, we calibrate the unknown values
of dS(0.5) and dS(1) (blue markers in Figure 12). Since dS : R+ → [0, 1] is strictly monotonically
declining with 0 < dS(1) < dS(0.5) < 1, we de�ne

dS(0.5) ∼ U(0, 1) and dS(1) = cd · dS(0.5) with cd ∼ U(0, 1) .

If the estimated values for dS(0.5) and dS(1) are signi�cantly distinguishable, we could recon-
struct some information about the values of Ssupp and m3.

While for dS the constant SOR dosage improves the traceability of the involved unknowns
and simpli�es an appropriate choice for their priors, we observe di�culties in the context of the
cells' reaction to SOR. Their corresponding stress response is given by

α−
S δ

−
S,HC(S0) =

α−
S · Sm2

0

Sm2
thr,HC + Sm2

0

,

i.e. it has three unknowns and hence three degrees of freedom. However, since α−
S δ

−
S,HC(0) = 0

is given by de�nition, the data do only provide information for two dosages S0 = 0.5 and S0 = 1 .
This means we do not have enough data to distinctively trace back the shape of α−

S δ
−
S and hence

the involved parameters (see Figure 13).

Figure 13: The available two data points provide just enough information to estimate α−
S δ

−
S,HC(S0)

for S0 ∈ {0.5, 1} (blue markers). Since the function α−
S δ

−
S,HC has three free parameters,

this data is not enough to reconstruct the curve of the function.

In summary, with the available data we can only reconstruct the values of α−
S δ

−
S,HC(S0) for

dosages S0 ∈ {0.5, 1}. Keeping in mind that δ−S,HC ∈ [0, 1] ⇒ α−
S δ

−
S,HC ≤ α−

S , we can use a similar
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approach as for dS to reparametrize α−
S δ

−
S,HC . Since δ−S is strictly monotonically increasing, we

de�ne

α−
S δ

−
S,HC(1) ∼ U(0, 2) and α−

S δ
−
S,HC(0.5) = cδ · α−

S δ
−
S,HC(1) with cδ ∼ Triang(0, 0, 1) .

The choice of the upper bound of α−
S δ

−
S,HC(1) follows the assumption that the tumor cells are

more sensitive to treatment with DOX than with SOR, as the latter mainly serves as a supportive
drug. According to [90], even high dosages of SOR show relatively low cytotoxicity compared to
DOX. Furthermore, the cells show no obvious reaction to the treatment with a standard SOR
dosage (S0 = 0.5) for low D0, motivating the triangular prior for cδ. For a summary of the above
derived prior distributions, see Table D.2a in the appendix.

Prior distributions for the general model MCYP
DS . For the priors of the full model

MCYP
DS :



V̇ =
(
β − λ−

(
β + λind

)
η
)
· V ,

η̇ =

 α−
DD

m1(
Dnorm,HC ·

(
1− amaxS

m3

Sm3
supp + Sm3

))m1

+Dm1

+
α−
SS

m2

Sm2
thr,HC + Sm2

 (1− η) ,

D(t) = D0 exp
(
− γD,HC · t

)
· 1T (t) ,

S(t) = S0 exp
(
− γS,HC · t

)
· 1T (t) ,

with V (0) = V0 and η(0) = η0,HC ≤ β − λ

β + λind
∈ (0, 1) ,

we take the prior distributions of the previous model M0
DS as an orientation. In particular, while

it is still not possible to estimate (β − λ) , we adopt the priors

η0,HC ∼ Triang(0, 0, 1) and (β + λind) ∼ U(0, 3) .
Again, η0,HC resp. (β + λind) are only calibrated under hypoxia and/or cirrhosis (H1,C1,HC1)
resp. under normal environmental conditions (HC0).

Furthermore, as S = S(t) is now explicitly time-dependent, we cannot employ a discrete
approach for estimating the SOR-related dynamics anymore. Hence, for the stress reaction
parameters we set

D̂norm,HC ∼ Triang(−4, 0, 4) , m1 ∼ U(0, 6) , α−
D ∼ U(0, 20) ,

Sthr,HC ∼ U(0, 3) , m̂2 ∼ U(0, 1.7) , α−
S ∼ U(0, 10) ,

Ssupp ∼ U(0, 1) , m̂3 ∼ U(0, 1.7) ,

where D̂norm,HC = log10(Dnorm,HC) and m̂i = log10(mi) , i ∈ {2, 3}. For the DOX-related param-
eters D̂norm,HC , α

−
D andm1, we adopt the priors fromM0

DS , except that we choose a smaller prior
support for the Hill coe�cientm1. This was found to be su�cient, especially after seeing the cali-
bration results from modelM0

DS using the Hep3B2 data (details will follow in Section 6.3.1). For
the SOR impact rate α−

S , we enlarged the prior support of α−
S δ

−
S,HC(1) from model M0

DS , since

by de�nition it holds α−
S δ

−
S,HC(1) ≤ α−

S . The supports of the thresholds Sthr,HC and Ssupp are

based on experimental observations from [22]. Additionally to these parameters, model MCYP
DS

considers the drug metabolization rates, for which we set

γD ∼ U(0, 20) and γS ∼ U(0, 20) .
All prior distributions to calibrate model MCYP

DS are summarized in Table D.2b in the appendix.
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6 Calibration results and biological interpretation

The results from calibrating the models Mη
N , MN and MCYP

DS , M0
DS are presented in this

chapter in Sections 6.2 resp. 6.3. Beforehand, Section 6.1 provides an overview over the methods
which are used to analyze the calibration results. The implementation is done in Python 3. The
main results of Sections 6.2 and 6.3 will be summarized and concluded in Section 7.1 at the
beginning of the subsequent chapter.

6.1 Mathematical investigation of the calibration results

Once a model calibration has �nished, we can mathematically post process the resulting ap-
proximation of the posterior distribution to obtain insight into the modeling and the biological
interpretation. The following sections explain how we extract useful information from the par-
ticle approximation for further investigation. In particular, we can quantify the quality of �t
between estimated model solution and the data (Section 6.1.1), get estimates for the unknown
parameters values (Section 6.1.2), and check for correlations between them (Section 6.1.4). For
the following explanations, we assume that the SMC algorithm was performed with a sample
size P to calibrate d parameters over the course of K steps (P, d,K ∈ N).

6.1.1 Quality of �t between model and data

The SMC algorithm provides direct access to measures for the quality of �t of the model cali-
brations to the underlying data, which will be presented in the following paragraphs13.

Validation metric � comparing model solution with data. The validation metric proposed
in [91] quantitatively compares the model prediction with the corresponding set of measurements.
Their mismatch is measured as the area between the data distribution F data and the prediction
distribution F sol

M using the calibration results of a model M. Mathematically, this is de�ned by
the metric

dvalid
(
F data, F sol

M
)
=

∫ ∞

0

∣∣F data(O)− F sol
M (O)

∣∣ dO . (6.1)

We consider a set of observations {Oi}Mi=1 of a quantity of interest given the same circumstances,
e.g. cell viability measurements of several biological samples at a speci�c time point and grown
under the same environmental conditions. For our applications, these observations are either
intensity measurements Oi = Ii or percentage viability measurements Oi = Itreati /Icrtli (recall
Sections 4.1.1 resp. 4.1.2). The data distribution function is then given by

F data(O) =
M∑
i=1

I
(
Oi, O

)
with I

(
Oi, O

)
=

{
1/M for Oi ≤ O ,

0 for Oi > O .

The prediction distribution function F sol
M is estimated using the particle approximation: with all

weighted particle θp of the posterior, we calculate the empirical cumulative distribution function
from the solution of model M. By applying the problem-speci�c forward operator GM from

13Note that most of the content and formulations of the paragraphs regarding the validation metric and Bayes
factor are taken from our publication [63].
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equations (4.6) resp. (4.7) on all parameter samples θp , we get a set
{
GM(θp)

}P
p=1

which then
approximates the prediction distribution by

F sol
M (O) ≈

P∑
p=1

IW
(
GM(θp), O

)
with IW

(
GM(θp), O

)
=

{
WK

p for GM(θp) ≤ O ,

0 for GM(θp) > O ,

where WK
p is the �nal weight of the p-th particle after the SMC algorithm has �nished. Figure 14

illustrates the above distribution functions and the resulting validation metric for a set of four
exemplary observations.
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Figure 14: Plots of the data distribution function F data given by four exemplary observa-
tions O1, . . . , O4 and an approximate prediction distribution function F sol

M . The corre-
sponding validation metric dvalid

(
F data, F sol

M
)
is the enclosed area between the two func-

tions.

Bayes factor � comparing how well di�erent models describe the same data. The so-called
Bayes factor [92] can be used for a quantitative comparison of two models based on the same
set of data I. It gives the ratio between the respective model evidences, which describe the
posterior probability of the data given the model in consideration of the parameter distribution.
As mentioned at the end of Section 4.2.2, the model evidence is the proportionality constant in
the relation πI(θ) ∝ L(I | θ)π0(θ) between the parameter distribution πI and the prior π0 . In
particular, the evidence of a model M is de�ned by the marginal data likelihood of I :

L(I |M) =

∫
Θ

π0(θ |M)

prior on θ
using M

· L(I | θ,M)

likelihood of I
given θ and M

dθ .

Following [41], the evidence ZM
k of model M at the k-th SMC step can be approximated with

the weighted particle collection {θp}Pp=1 by

ZM
k ≈ ZM

0 ·
k∏

s=1

P∑
p=1

L
(
Is−1:s

∣∣ θp , M)
·W s−1

p for k = 1, . . . ,K ,

where L
(
Is−1:s

∣∣ θp , M)
is the likelihood of the data increment Is−1:s = I:s \ I:s−1 at the s-th

SMC step given the parameter sample θp with model M, and W s−1
p denotes the normalized

weight of θp before reweighting. Since we start the calibrations with priors, from which we can
sample directly, the initial evidence is Z0 = 1. The Bayes factor of two models M1 and M2

regarding the whole calibration data set I:K = I is then given as

ZI(M1,M2) =
L(I |M1)

L(I |M2)
≈ ZM1

K

ZM2
K

.
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For ZI(M1,M2) > 1 = 100 , i.e. L(I |M1) > L(I |M2) , the strength of evidence can be de-
scribed by the following scale [41]:

log10

(
ZI(M1,M2)

)
∈



(
0, 12
]

barely worth mentioning ,(
1
2 , 1
]

substantial support for M1 ,(
1, 2
]

strong support for M1 ,(
2,∞

)
decisive support for M1 .

(6.2)

6.1.2 Estimated parameters values

There are several quantities to characterize the estimates of the parameter values resulting from
the obtained posterior approximation. Recalling the de�nition of the particle approximation of
the posterior πK = πI , the marginal distribution πI

j of the j-th parameter (j = 1, . . . , d) is
obtained by

πK(θ) ≈
P∑

p=1

Wp · δθp(θ) ⇒ πI
j

(
(θ)j

)
≈

P∑
p=1

Wp · δ(θp)j
(
(θ)j

)
,

where Wp = WK
p is the posterior weight of particle θp and (θp)j resp. (θ)j is the j-th component

of a particle θp resp. of an element θ of the parameter space Θ . Due to the discrete nature of the
particle approximation, the statistics of the marginal distributions tend to be more robust than
the ones of the global distribution. Hence, it is reasonable to access the parameter estimates by
the marginals.

We take a look at the most interesting moments of the distributions. The marginal mean
resp. variance of the j-th parameter (j = 1, . . . , d) can be calculated directly from the particle
approximation:

E
(
(θ)j

)
=

P∑
p=1

(θp)j ·Wp and Var
(
(θ)j

)
=

P∑
p=1

(
(θp)j − E

(
(θ)j

))2
·Wp . (6.3)

These quantities can give �rst insight into the parameter estimates and their uncertainty. If
the corresponding marginal distribution is unimodal and symmetric (not skewed), the marginal
mean is a good approximate for the mode of the distribution, i.e. the maximum of the probability
density function. Otherwise, the mode of the posterior has to be accessed di�erently. It was
found that some kind of smoothing of the particle approximation is necessary to get a robust
estimate of the mode. We obtain the corresponding probability density function by a kernel
density estimation (KDE) on {(θp)j}Pp=1 with Gaussian kernels and Scott's bandwidth selection
method14 [93]. Evaluating this function on the marginalized particle population and selecting
the argmax gives an estimate of the marginal mode. In the context of Bayesian statistics, this
quantity is also called marginal maximum a posteriori probability (MAP) estimate. Note that
we adapted the KDE, if needed, to ensure that the support of the obtained density function lies
within the bounds of the prior support � we will refer to this adjusted routine as truncated KDE
or trKDE for short (details can be found in Appendix D.IV). By combining the marginal means
resp. MAPs of all calibrated parameters, we can calculate a corresponding model solution and
investigate the underlying biological processes.

14executed with Python function scipy.stats.gaussian_kde with {Wp}Pp=1 as the weights argument
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6.1.3 Variation of the estimates and statistical signi�cance

The SMC algorithm is performed several times for each application to investigate dispersion of
the results. For biological and numerical investigation we want to compare di�erent estimates
of the same quantity (e.g. a parameter) and judge whether an observed di�erence is systematic
or a result of sampling noise (biological, numerical or experimental variation). We can assess
the statistical signi�cance of such observations by the so-called p-value psig . We consider a
value smaller than 0.05 as signi�cant and classify the signi�cance level with the widely used
�star notation�: psig < 0.05/psig < 0.01/psig < 0.001 which are respectively denoted by ∗/∗∗/∗∗∗ .
It is important to note that psig ≥ 0.05 does not lead to the conclusion that there is actually
no di�erence between two estimates. It merely states that if there is a di�erence, it cannot be
distinctively distinguished from the sample noise.

Nutrient deprivation models. The simplicity of the models Mη
N and MN allowed to perform

many repetitions of the model calibrations within a manageable calculation time. Hence, for
each quantity of interest (e.g. a marginal mean of a particular parameter) we achieve statis-
tically independent samples x1, . . . , x12 , where q = 12 is the number of performed SMC runs.
Motivated by the central limit theorem, we assume that these samples are normally distributed
via N (µ, σ2) . As the exact values for µ and σ are unknown, they are estimated by the sample
mean x̄ = (

∑q
i=1 xi)/q resp. sample standard deviation σx =

√∑
(xi − x̄)2/(1− q). We can use

the associated standard error σxq
−1/2 to state numerical deviations of the quantity of interest

in terms of the corresponding 95% con�dence interval: x̄± 1.96 · σxq−1/2 . This notation will
be used in Section 6.2.1 to present the dispersion of the calibration results, especially for the
marginal means and variances of the posteriors.

Furthermore, we want to compare the two models Mη
N and MN based on the respective

calibration results obtained by considering the same data. As mentioned before, given a particular
model, we can construct an average estimate x̄ for a quantity of interest by summarizing all SMC
runs. By doing so for each model, we obtain two estimates of the same quantity x̄1 and x̄2 . In
order to judge the statistical signi�cance of the di�erence between x̄1 and x̄2 , we use the Python
function scipy.stats.ttest_ind(..., equal_var=False) to do a two-tailed Welch's t-test [94]
which allows for unequal variances σ2

x,1 ̸= σ2
x,2 .

Chemoresistance models. Due to the increased model complexity and hence computational
e�ort it is not practical to do a large number of SMC runs for calibrating the models M0

DS

and MCYP
DS . We did q = 4 repetitions of the SMC algorithm for each cell line and environmental

setting. However, for this limited number of SMC runs, an analysis of numerical deviation and
signi�cance analogously to the nutrient deprivation models is less useful/reliable. Therefore, we
collect all the weighted particles from the individual runs in one set of samples. As their weights
are normalized on the run-speci�c particle sets, we have to make the collected particles compara-
ble by updating their weights appropriately. We do this by removing the duplicates and recalcu-
lating the posterior densities of the remaining particles with equation (4.8): πI(θ) = L(I | θ)π0(θ).
After normalizing these calculated densities and associating them as weights to the respective
particles, we get a new particle approximation of the posterior with a larger sample size. The
model parameters are then investigated based on the estimates of this posterior.

We can do a cross-validation to check the robustness of the results obtained by collecting
the particles of all SMC runs. Numerical variation is assessed by applying the same reweighting
approach as described above on a set of particles obtained by collecting all except one run. This
yields four di�erent �extended� particle representations of the posterior. Suppose we want to
investigate the numerical variation of a quantity x (e.g. the marginal mean of a parameter),
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each of these posteriors gives an estimate xi (i = 1, . . . , q and q = 4) and we can state the cross-
validated 95% con�dence interval : x̄± 1.96σxq

−1/2 with x̄ being the average over x1, . . . , x4
and σx the corresponding standard deviation. This notation will be used in Section 6.3 to depict
the dispersion of the calibration results in the context of marginal MAPs.

In this application, we want to compare the estimates of the same quantity (e.g. a par-
ticular parameter) obtained in di�erent environmental settings. Such an estimate is given by
the particle representation of the respective marginal posterior distribution. There are several
possibilities (e.g. Student's [95] or Welch's [94] t-test, Mann�Whitney U -test [96, 97], Brunner-
Munzel test [98]) to compare two distributions given by samples which are each based on dif-
ferent assumptions15. A visualization of the calibrated marginal distributions implies that we
cannot consistently assume normal-distributed samples or equal variances. Hence, we use the
Brunner-Munzel test in Python (scipy.stats.brunnermunzel) to compare marginal distribu-
tions. However, this test (as well as the others) is not designed for very large samples sizes.
From a mathematical perspective, it is nearly impossible to achieve analytically equal marginal
distributions due to the approximative and non-deterministic nature of the calibration. Hence,
in our setting we will always encounter mathematically di�erent marginal posteriors. The more
accurate the approximation of these distributions, i.e. the larger the sample size, the more ob-
vious the di�erences between them show up for the statistical tests. In fact, trying to use the
whole particle sets as samples for statistical testing appeared to be ine�ective since this yields
vanishing p-values. Therefore, we need to compare the distributions based on a considerably
smaller sample size (note that before testing we resample the particles for uniform weights).
To get an impression of the role of the sample size on the signi�cance results, we perform the
test with di�erent sample sizes which should work well for this testing method [98]: 500, 100,
50 and 30. Furthermore, we repeat each test 1000 times to consider numerical variation of the
test results. Eventually, we can visualize the obtained p-values to �nally judge statistical signif-
icance (illustrated in Figure 15). This testing approach will be referred to as signi�cance check
for the rest of the thesis. We use this method in Section 6.3 to compare particular marginal
posteriors as well as for comparing obtained �tted16 estimates with the given uncertainty of the
�t. Note that the latter is given by a con�dence interval of a normal distribution. Hence, we
use the two-tailed Welch's test (Python: scipy.stats.ttest_ind(..., equal_var=False)) for
checking the signi�cance of observed di�erences between �tted estimates.

Figure 15: Di�erent scenarios for the boxplots (box: �rst to third quartile; horizontal line: median)
of the 1000 p-values obtained by signi�cance checks with sample sizes 500, 100, 50 and
30 (from left to right per subplot, i.e. horizontal axis). The shaded background gives
the signi�cance level and determines the upper limit of the vertical axis (the lower limit
is always zero): mainly white (upper limit: 1), two-shaded green marked with (∗) (upper
limit: 0.05), dark green marked with (∗∗) or (∗∗∗) (upper limit: 0.01 resp. 0.001). Note that
some boxplots might not be visible due to vanishing p-values.

15Student's resp. Welch's: normal distributed samples with equal resp. unequal variances;
Mann�Whitney resp. Brunner-Munzel: non-normally distributed samples with equal resp. unequal variances

16More details on the context of �tting are given in Section 6.3 where the method is applied.
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However, note that this approach can only discern clear statistical signi�cance or provide an
overview over the degree of similarity between distributions. As mentioned previously, it does
especially not imply irrelevance or non-existence of di�erences between estimates if we do not
see obvious statistical signi�cance.

6.1.4 Parameter correlations

Knowing signi�cant correlation between di�erent parameters can give useful insight into their
interplay in the mathematical model. The particle approximation directly gives a weighted
sample representation of the parameter distribution. We resample the particles {θp}Pp=1 to obtain

equally weighted samples {θ̃p}Pp=1. These can be used to calculate the Pearson's correlation
coe�cient [99] of each pair of parameters (j, l = 1, . . . , d):

rj,l =

sample covariance of j-th and l-th parameter

P∑
p=1

(
(θ̃p)j − (θ̃)mean

j

)(
(θ̃p)l − (θ̃)mean

l

)
√√√√ P∑

p=1

(
(θ̃p)j − (θ̃)mean

j

)2
sample standard deviation

of j-th parameter

·

√√√√ P∑
p=1

(
(θ̃p)l − (θ̃)mean

l

)2
sample standard deviation

of l-th parameter

with respective sample mean (θ̃)mean
s =

∑P
p=1(θ̃p)s/P for s ∈ {j, l} . This coe�cient measures

the strength of the linear relationship between the j-th and l-th parameter. Accepted guidelines
for interpreting the correlation coe�cient (see e.g. [100, 101]) are:

|rj,l| ∈


(0.0, 0.3] weak correlation,

(0.3, 0.7] moderate correlation,

(0.7, 1.0] strong correlation.

(6.4)

In practice, we calculate this coe�cient by applying the Python function scipy.stats.pearsonr

on the samples {θ̃p}Pp=1 . This function also gives access to the p-value of each coe�cient to judge
the statistical signi�cance of the correlation. To visualize the correlation between two parameters,
we can do a 2D scatter diagram of the corresponding sample components (see Figure 16). The
strength of correlation shows itself by the degree of accumulation of the points along a straight
non-vertical/non-horizontal line, whereas samples of uncorrelated parameters are rather wide-
spread.

Figure 16: Illustration of how point clouds of samples from the 2D-marginalized posterior distribution
can show pairwise correlation. The line plots in the �rst row/column show KDEs of the
respective 1D marginal distributions for exemplary parameters ϑ1, ϑ2 and ϑ3. The axis
labels for the parameter value correspond to the ones of the scatter plots in the respective
column/row. The �rst scatter plot indicates that parameters ϑ1 and ϑ2 are strongly pos-
itively correlated with r1,2 ≈ 0.9 , while the second one shows no obvious correlation for
parameters ϑ1 and ϑ3 .
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The above visualization can also help the �nd non-linear correlations, for which the Pearson's
correlation coe�cient is not optimal. They might only be captured by a relatively small value
of rj,l or remain completely undetected by the coe�cient. There are other correlation measures
which are better suited to �nd non-linear correlations, see e.g. [102, 103]. However, we found the
coe�cient rj,l to be su�cient for our investigations.

6.2 Cell viability under nutrient deprivation

We consider the simple biological setting of the nutrient saturation being the only environmental
factor to in�uence the tumor cells. Model Mη

N uses the ESL approach to implement the cells'
reaction on nutrient deprivation. In contrast, model MN assumes a quasi-steady state for the
stress level η , i.e. the cells react immediately and the impact rate αN is not considered. The
calibration results of both models are presented and compared in this section. They serve as a
proof of principle for using the ESL approach to describe the in�uence of the TME on tumor
cells. In particular, we investigate estimated parameter values and their biological interpreta-
tion (Sections 6.2.1) and compare the models in terms of quality of �t to the available data
(Section 6.2.2).

Note that content and formulations (some notations may be altered) of this section are taken
from our publication [63], in which we used the sample standard deviation σx instead of the
standard error σxq

−1/2 to quantify numerical deviations. To maintain consistency within this
work, the respective values from that article were adapted accordingly.

6.2.1 Calibration results for models Mη
N and MN

A pre-calibration of the models (recall equation (5.2) from Section 5.3.1) yields the average
uncertainty variances

σ̄2
0 ≈ 0.2410 (for N0 = 0 , i.e. data set D0)

and σ̄2
N ≈ 0.0355 (for N0 > 0 , i.e. data sets D1�D4).

These values are used deterministically for further calibrations to estimate the remaining un-
known parameters of the models.

We see that, in the absence of nutrients, the variance is considerably larger (σ̄2
0 > σ̄2

N ), which
is in general a reasonable observation. From a biological perspective, this could be the conse-
quence of a starvation shock disturbing the cells' metabolism. Furthermore, the measurement
accuracy of small data points, which make the majority of data set D0, might be decreased due
to weak �uorescence. Additionally, such small data points play a special role for our modeling
approach of using a multiplicative uncertainty factor. Due to the multiplicativity, the range of
the high probability region is proportional to the magnitude of the observations. In particular,
the region is more narrow the smaller the data, which might be necessary to compensate with a
lager uncertainty variance.

Estimated model parameters. Since all calibrations yield su�ciently unimodal and symmetric
posterior distributions, we use the marginal means and variances (6.3) to present the parameter
estimates (see Table 7). Comparing both models, the estimations appear to be very similar and
observed di�erences are found to be statistically insigni�cant (psig > 0.05). Numerical deviations
from performing the SMC algorithm q = 12 times are given as 95% con�dence interval.
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Table 7: Comparison of the estimated model parameters of models Mη
N and MN .

(a) Posterior's marginal means E( · ) for each model parameter.

β λ λind αN

Mη
N 0.437± 0.007 0.106± 0.007 0.196± 0.005 6.930± 0.739

MN 0.435± 0.012 0.103± 0.012 0.186± 0.009

V cap b N thr

Mη
N 1.731± 0.028 5.315± 0.856 0.106± 0.002

MN 1.740± 0.038 4.731± 0.685 0.104± 0.003

(b) Posterior's marginal variances Var( · ) for each model parameter.

β λ λind αN

Mη
N 0.010± 0.006 0.009± 0.006 0.012± 0.007 3.211± 0.870

MN 0.007± 0.005 0.006± 0.004 0.010± 0.006

V cap b N thr

Mη
N 0.033± 0.019 1.071± 0.515 0.004± 0.002

MN 0.028± 0.018 0.751± 0.224 0.004± 0.002

The obtained parameter values can be concluded as biologically reasonable, since we chose re-
spective prior distributions ensuring this (recall Section 5.3.1). Up to some adaptions regarding
units and reparametrization, their meaningfulness is also supported by comparing the estimated
values to the calibration results of [21], where a set of similar models is used together with parts
of the same data.

Cells' reaction to nutrient changes. Both models use the same in�uence functions from (3.7)

δ+N (N) =
N2

N2
thr +N2

and δ−N (N) = 1− N2

N2
thr +N2

for the e�ect of the nutrients on the cell dynamics. In model MN these functions scale the
rates β (growth) and λind (induced death) directly, whereas in model Mη

N they scale them
indirectly via the stress level η(t). Therefore, the value of the nutrient sensitivity thresh-
old Nthr should not depend on the choice of the model, which actually holds true in the re-
sults: E (Nthr) ≈ 0.1 (see Table 7a).

Next, we take a closer look at the cells' reaction owing to an ESL η. For the following
investigations, we �x Nthr = 0.106 to its estimate from model Mη

N , since we already observed
su�ciently small variations of this parameter. The nutrient impact rate αN shows a large average
variance of its marginal posterior (Table 7b: Var(αN ) ≈ 3.211) as well as relatively large numerical
deviations between the SMC runs. This could be explained by the fact that only a minority of
the measurements contain meaningful information to estimate αN . In particular, if the provided
nutrient supply is su�ciently large (N0 ≫ Nthr = 0.106), the corresponding value of the in�uence
function δ−N (N0) is virtually zero and

η(t) = δ−N (N0) · (1− e−αN t) + η0︸︷︷︸
=0

e−αN t
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from (3.6) barely changes from its initial value η0 = 0 . The stress level is the only quantity of the
system coupling the parameter αN with the cell viability (i.e. the data), hence η(t) ≈ 0 provides
little information to estimate αN . In fact, due to the small value of Nthr = 0.106 , the rela-
tionN0 ≫ Nthr holds true for most of the calibration data, recallN0 ∈ {0.00, 0.25, 0.50, 0.75, 1.00}.
Nevertheless, we can argue that the observed variance of αN does not have a big in�uence on
the estimated average solution of model Mη

N . We calculate the ESL η(t) with Nthr = 0.106 and
varying αN . In particular, we assume αN to be normally distributed with sample mean and
standard deviation as given in Table 7a. The resulting time evolution is depicted in the �rst two
plots of Figure 17. The left one shows η(t) for varying αN , while in the middle one we also �x αN

to its estimated marginal mean. The third plot shows the corresponding in�uence functions δ+N
and δ−N .
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Figure 17: Left: Time evolution of η(t) on the �rst day for di�erent nutrient conditions N0

with Nthr = 0.106 and varying αN ∼ N (x̄, σx), where x̄ = 6.930 and σx = 1.707 are the
sample mean resp. standard deviation of the di�erent SMC runs.
Middle: Corresponding time evolution of η(t) over seven day and �xed αN = 6.930 .
Right: Illustration of how the values δ−N (N0) of the in�uence functions coincide with the
steady states of η.

Figure 17 shows that the steady state of η is already reached after approximately one day (see
middle plot). This means the cells react quickly to nutrient changes due to the large estimated
value for αN (Table 7a: E(αN ) ≈ 6.930). This behavior remains unchanged even for the large
deviations in the estimate of αN (see left plot). Therefore, variation of αN within the calibrated
scale does not signi�cantly alter η(t) and hence the solution of model Mη

N .
The right plot demonstrates how the steady state of η(t) actually coincides with the function

value δ−N (N0) of the in�uence function (which was stated in Table 2 in Section 3.2). Therefore,
the high nutrient sensitivity explains why the remaining parameters estimates turn out to be
very similar for both models, as model MN was achieved from Mη

N by assuming a very fast
reaction to nutrient changes.

Parameter correlation in the models. To identify parameter correlations resulting from the
modeling, we investigate the estimated posterior from a single run of the SMC algorithm. We
choose a run whose resulting expected values of the parameters' marginal distributions approx-
imately match the ones in Table 7a. Figure 18 shows the KDEs of the corresponding marginal
posteriors (line plots in �rst row/column) for each model (red/blue) and samples drawn from the
2D posterior distributions of pairwise parameter combinations (scatter diagrams). As explained
in Section 6.1.4, the shape of the point clouds can give an impression regarding the pairwise
correlations between parameters.
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Figure 18: Figure structure: Each subplot regards to the parameter combination of the respective
horizontal and vertical axis label on the bottom resp. right side � in particular:
Line plots in �rst row/column: KDEs of marginal posterior distributions of the model
parameters (note: KDE axes have di�erent scale).
Scatter plots: 5000 samples drawn from the 2D distributions of pairwise parameter com-
binations (red, below diagonal: MN ; blue, above diagonal: Mη

N ). A regression line and
correlation coe�cient r is depicted if a considerable linear correlation is observable.

We see that the SMC algorithm leads to unimodal marginal distributions. For the majority
of parameters, the scatter plots indicate no correlation, especially between the stress-related
parameter αN and other parameters (last column of blue scatter diagrams). For both models,
a signi�cant (psig < 0.001) linear correlation can be observed between β and λ (Mη

N : r ≈ 0.89 ;
MN : r ≈ 0.84) as well as between Vcap and b (Mη

N : r ≈ −0.58 ; MN : r ≈ −0.68).
Both correlations can be reasoned by the design of the models. Recall from Section 3.1 that

the ratio between the cells' maximal growth rate β and the natural death rate λ is crucial for
the behavior of the population: it determines the �net� growth rate β∗ = β − λ and the �net�
capacity V ∗

cap = Vcap(1− λ/β)1/b and requires the relation β > λ . This motivates the observed
strong positive correlation (r > 0.7). For the carrying capacity Vcap and the parameter b, we see
a moderate negative correlation (−0.7 < r < −0.5). These parameters regulate the proliferation
contact inhibition with the term (V/Vcap)

b in the logistic part of the models' ODE for V . This
term is smaller, the larger Vcap or b are. Hence, these parameters need to be negatively correlated
to mathematically describe a certain level of contact inhibition.
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6.2.2 Comparison of the models Mη
N and MN with data

In this section we compare the estimated solutions of the respective models with each other as
well as with the available data from [21].

Estimated model solution compared to the data. We use the marginal means of the model
parameters in Table 7a to calculate the corresponding estimated model solution V . Following
relation (4.1): I = n · V , the intensity measurements I are scaled with the calibrated marginal
means of n0 and nN (see Table E.3 in the appendix) � in particular for model Mη

N resp. MN :

E(n0) = 0.182 resp. E(n0) = 0.190 (for N0 = 0 , i.e. data set D0) ,

E(nN ) = 0.243 resp. E(nN ) = 0.244 (for N0 > 0 , i.e. data sets D1�D4) .

Figure 19 shows the resulting time evolution of V (t) compared to the calibration data sets D0�D4.
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Figure 19: Time evolution of the estimated model solution V of model Mη
N resp. MN for di�erent V0

and N0 compared to the corresponding median of the scaled viability measurements I/n
with n = n0 resp. n = nN for N0 = 0 resp. N0 > 0 as estimated with the corresponding
model (error bars: median absolute deviation considering the four biological replicates).

In general, we observe a good �t for both models. As expected, the similar model parameter
values in Table 7a result in nearly the same solution for each model � at least for all cases
of N0 > 0 (�rst two rows of plots in Figure 19). In these cases, the estimated proportionality
constant is nN ≈ 0.24 for both models, whereas for N0 = 0 they are slight di�erences: n0 ≈ 0.18
resp. n0 ≈ 0.19 (Mη

N resp. MN ). This results in di�erent scaling of data set D0 (markers of
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bottom row plots of Figure 19). However, the di�erence of the estimates of n0 between the
models is found to be statistically insigni�cant (psig > 0.05), see Appendix E.I.1 for more details.

Taking a closer look into the measurements in Figure 19, we see that the population size
drops at the third day of the experiment (t ≈ 3) for almost all seeding densities V0 and nutrient
saturations N0 > 0 , most obviously visible for N0 = 0.75 (top right plot). However, there is no
obvious biological reason for this as long as there are nutrients available. Hence, it is reasonable
to assume that the discrepancy between the corresponding data and model solution results
from an unknown experimental bias rather than modeling inaccuracy or biological variation.
The hypothesis that these measurements might be outliers can be supported by checking the
amount of data which is actually situated in the 90% uncertainty range of the solution (i.e. the
neighborhood in which we would expect 90% of the data points to be, recall Section 4.1.3). In
fact, for the measurements on the third day, we see an extraordinarily large amount of data (up
to 78%) is below the uncertainty range, where only 5% would be expected. The detailed analysis
can be found in Appendix E.I.2.

Quality of �t to the data. We calculate the Bayes factor as well as the validation metric as
described in Section 6.1.1. The resulting values of the latter do not show any preference of a
particular model (see Appendix E.I.3) � in contrast to the Bayes factor

log10

(
ZI(Mη

N ,MN )
)
= log10

(
L(I |Mη

N )

L(I |MN )

)
.

Figure 20 shows and interprets its average trend over the course of the SMC steps according to
the scale given in (6.2). Additionally to the averaged trend, the plot shows the evolution of the
Bayes factor for one particular run of the algorithm (dashed line)17. For this run, the estimated
marginal means of the parameters match approximately with the ones in Table 7a.

decisive...

strong...

substantial...

insigni�cant...

substantial...

strong...

decisive...

...support

for M𝜼
𝑵

...support

for M𝑵

data with 𝑉0 = 1.00 data with 𝑉0 = 0.50 data with 𝑉0 = 0.25

SMC step

B
a
y
e
s
fa
c
to
r

lo
g
10

( Z
)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7day:

0 3 6 9 12 15 18 21 24

−3
−2
−1
0

1

2

3

trend of an exemplary SMC run

average trend (over all SMC runs)

Figure 20: Logarithm of the Bayes factor Z = ZI(Mη
N ,MN ) over the course of the SMC steps (error

bars: 95% con�dence interval from 12 runs of the SMC algorithm). The dashed trendline
shows the evolution for a single run, which estimated the model parameters close to the
average values of all runs. The gray labels on top of the plot give the data increments of
each step.

Overall, the average trend of the Bayes factor indicates support for model Mη
N , despite needing

an additional variable and parameter. In particular, for the �rst eight SMC steps, the Bayes
factor indicates strong evidence to prefer model Mη

N over MN . Until this point, only data

17this is the same run for which we investigated the parameter correlations in Section 6.2.1
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regarding V0 = 1.00 are considered. Incremental inclusion of the next data set (day 0 , V0 = 0.50)
weakens the weight of the support for model Mη

N , but still allows to conclude a tendency of the
evidence towards this model. This can be observed further until SMC step 19. At step 20 (i.e.
with inclusion of data for day 3 and V0 = 0.25) the uncertainty increases signi�cantly, which does
not allow a clear interpretation of the Bayes factor anymore. The 95% con�dence interval reaches
from areas of decisive support for modelMη

N to almost substantial support for modelMN . After
this step, the uncertainty decreases again but stays on a high level, still not allowing a distinct
interpretation of the Bayes factor.

The large deviations in the Bayes factor at SMC step 20 could be explained by our previous
�nding that the measurements on the third day show characteristics of an outlier. Further
investigation of the 90% uncertainty range yields another observation: For small values of V0 ,
more data points, within the measurements of a particular day, tend to be below the 90% range
(see Table E.4 in Appendix E.I.2). This might be the reason for the high deviations of the Bayes
factor in Figure 20 when including data with V0 ≤ 0.50 in the SMC calibration.

Validation of the model calibration. For additional validation of the calibration results we con-
sider another data set DV (see Table 6), which was not used for calibrations. In the corresponding
experiment from [21] tumor cells were seeded in �ve di�erent initial densities V0 and supplied
with 10% FBS (N0 = 1) for the duration of 21 days. Since the scaling factor nN for N0 > 0
showed to be su�ciently similar for both models Mη

N and MN , we use their estimate nN = 0.24
to scale the measurements of this data set. The density of viable cells is calculated as the solution
of a population model under optimal growth conditions. In particular, we solve

V̇ = β V

(
1−

(
V

Vcap

)b
)

− λV with V (0) = V0 (Mopt)

using the estimated marginal means of the model parameters β, Vcap, b and λ from Table 7a.
This model can be solved analytically (for details see [63]). Figure 21 compares the corresponding
scaled viability data I/nN with the modeled time course of V (t).
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Figure 21: Time evolution of the average model solution V (t) under optimal growth conditions for
di�erent V0 using the parameter estimates from the calibration of model Mη

N resp. MN

compared to the corresponding median of the scaled measurements I/nN (error bars: me-
dian absolute deviation considering the four biological replicates).
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As expected, both solutions are very similar as the parameters β, Vcap, b and λ showed almost
the same estimates for Mη

N and MN . In general, we see a good �t to the data (see also ratios
of validation metrics in Table E.5 in the appendix).

It is observable that the model solutions tend to overestimate the data after the steady state
is reached. In reality, population growth often follows the concept of �overshoot�: this describes
the observation that a population might exceed its carrying capacity and drop back down after-
wards [104, Ch. 4]. Reasons can be a lag in sensing the available resources in the environment or
the time interval between birth and death. The measurements starting with V0 ∈ {1.00, 0.50, 0.25}
(orange/triangle, purple/diamond and green/square markers in Figure 21) suggest an observable
overshoot e�ect, but the model solutions cannot reproduce this phenomenon due to the limited
structure of the logistic growth model. This could explain the discrepancy between solution and
data close to the carrying capacity.

6.3 Chemoresistance of tumor cells under hypoxia and high tissue sti�ness

We now move on to the more complex application of the ESL approach. We calibrated the
models M0

DS and MCYP
DS with the experimental data in [22] to investigate the e�ect of oxygen

and sti�ness conditions on the chemoresistance of di�erent hepatocellular carcinoma cell lines
(Hep3B2, HepG2, C3Asub28). These cells, among others, di�er in the extent of CYP3A (CYP)
enzyme expression, which metabolizes the chemotherapeutic drugs doxorubicin (DOX, D) and
sorafenib (SOR, S). This dynamic is incorporated in the complete model MCYP

DS by the metab-
olization rates γD, γS and omitted in the reduced model M0

DS , where the drug concentrations
to stay constant (D = D0 , S = S0) during treatment.

In the following Subsections 6.3.1 resp. 6.3.2, the calibration results will be investigated ac-
cording to the explanations in Subsection 6.1.3 and subsequently summarized in Subsection 6.3.3.
In particular, the parameter estimates are given by the marginal MAPs, as the marginal posteri-
ors partially showed strong skewness, and we present numerical variations with the cross-validated
95% con�dence interval, visualized by error bars. In general, the cross-validation showed high
robustness and only small numerical variations of the calibration results. Therefore, it is rea-
sonable to base our investigations on the estimates of the posterior obtained by collecting the
particles of all four runs and do the signi�cance check as proposed in Subsection 6.1.3 and Fig-
ure 15. Before we go into detail with the calibration results, we discuss the fact that it was not
possible to calibrate all models and data sets.

Applicability of the models. Recall that only cell line Hep3B2 exhibits no signi�cant CYP ex-
pression [22], i.e. for these data we use the reduced model M0

DS . However, attempts to calibrate
the remaining data sets for HepG2 and C3Asub28 with model MCYP

DS did not give reasonable
posterior distributions to calculate an appropriate model solution reproducing the measurements.
In particular, the algorithm shows di�culties to estimate the drug impact rates α−

D and α−
S as

well as the metabolization rates γD and γS . A possible reason is the sparse time resolution of
the available data: Viability was measured only once, three days after a one- or two-day treat-
ment. Hence, the only time-related information is given by the variation in viability for di�erent
treatment durations. It appears that this information is not su�cient to properly estimate the
rates. This conjecture is supported by trying to calibrate the Hep3B2 data with the complete
model MCYP

DS , which did not result in vanishing metabolization rates as we would expect know-
ing that the cells express almost no CYP. As an alternative, we calibrate the data for HepG2
and C3Asub28 with the reduced model M0

DS instead and focus our investigations on potential
correlations between parameters and the available measurements of CYP expression from [22].
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Applicability of the data. Recall the investigated treatments with combined drug dosages of

DOX (main drug): D0 ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 1000} (in µM),

SOR (supportive drug): S0 ∈ {0.0, 0.5, 1.0} (in 22 µM),

as well as the terms and abbreviations for the underlying environmental settings:

�normal conditions� : H0 , C0 = 0
abbr.
⇝ HC0 ,

�sole hypoxia� : H0 = 1 , C0 = 0 ⇝ H1 ,

�sole cirrhosis� : H0 = 0 , C0 = 1 ⇝ C1 ,

�cirrhosis and hypoxia� : H0 , C0 = 1 ⇝ HC1 .

As explained in Section 5.2.2, the percentage viability data was clipped to the interval [0.001, 1]
to accommodate the models' limited co-domain (0, 1]. Clipping the measurements to this upper
bound should omit characteristics of enhanced growth which was observed in some data sets,
where the percentage viability was strongly overshooting the mark of 100% . In particular, such
characteristics can be seen for the cell lines HepG2 (C1, HC1) and C3Asub28 (all). However,
attempting model calibrations with these data sets resulted in degenerating variances of the in-
termediate distributions and unreasonable posteriors. We found that the issues are caused by the
inclusion of speci�c data points. A closer analysis of the respective measurements suggests that
obvious growth enhancement only occurs in combined chemotherapy, i.e. in the presence of SOR.
This leads to situations where for a particular DOX dosage the viability of cells which underwent
combined treatment is signi�cantly higher than for cell exposed to sole DOX treatment. Since
the models assume that SOR can only decrease the cell viability, such measurements appeared
to be impossible to reproduce without disproportionately increasing the noise variance. There-
fore, it is not possible to reasonably investigate the concerned data sets (HepG2: C1, HC1 and
C3Asub28: all) with our models. In the following Subsections 6.3.1 resp. 6.3.2 we present and
discuss the calibration results of the remaining data sets Hep3B2 (all) and HepG2 (HC0, H1).

6.3.1 Chemoresistance for cell line Hep3B2 without drug metabolization

We investigate the calibration results of model M0
DS using the data of Hep3B2, i.e. a cell line

with negligible CYP expression and hence drug metabolization. Complementary material will
be provided in Appendix E.II and referenced in the following where relevant.

Treatment response. Figure 22 shows the data (markers) with the corresponding model so-
lution (line plots) based on the estimated marginal MAPs of the parameters18. For a easier
comparison, the small plots in the upper right corners illustrate the trend of the data. Note
that, following the approach mentioned in Subsection 5.2.2 (recall also Figure 10), we omitted
the measurements for D0 ≥ 10 for the calibration data set of this cell line.

18Note that using the MAP of the joint posterior to calculate the corresponding model solution would be
more appropriate. However, its derivation is highly non-trivial due to the high dimensionality. As we need it for
visualization purposes only, we use the marginal MAPs which are much easier to compute.
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Figure 22: Comparison of the measured percentage viability for cell line Hep3B2 with the correspond-
ing estimated model solutions using model M0

DS for di�erent environmental settings. Note
that some of the gray line plots might not be visible, as they overlap with the yellow ones.

In general, we see reasonable �ts of the model solutions to the measurements. For H1 and HC1
the model tends to overestimate the corresponding data for small DOX dosages D0 ≤ 10−2 and
SOR dosages of S0 ∈ {0.0, 0.5} (gray and yellow). This could be a result of the uncertainty
modeling. On the one hand, the assumed Beta prime distribution of the uncertainty factor
from (4.4) is

ε% =

measured

Itreat/Ictrl

V treat/V ctrl

modeled

∼ β′
(

1

σ2
,
1

σ2

)
with σ2 = 0.1 ,

which is positively skewed with a mode (maximum of the density function) of approximately 0.82 .
Hence, a modeled percentage viability of

V treat

V ctrl
=

1

0.82
· I

treat

Ictrl
≈ 1.22 · I

treat

Ictrl
,

i.e. larger than the corresponding measurement, maximizes the data likelihood function. On
the other hand, the multiplicativity of the uncertainty allows larger deviations between solution
and data for larger measurements. Therefore, the calibration algorithm might to some extent
�prioritize� a closer �t to small data. Another reason could be the modeling of the DOX stress
response α−

D · δ−D by a symmetric Hill function δ−D . The line plots of the solutions in Figure 22
show that this leads to a symmetric viability-dose relationship as well. However, the measure-
ments of H1 and HC1 indicate a less steep slope for smaller DOX dosages, which the model
cannot reproduce. In summary, the model �t could be further improved by reconsideration of
the modeling assumptions for the uncertainty and the DOX dose-response function (more de-
tails will be provided in Section 7.2). In the following paragraphs we present more details on
the estimated model parameters and discuss them in the biological context of the underlying
experiments.
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Stress induction by hypoxia and/or cirrhosis. The direct in�uence of hypoxia and ECM sti�-
ness on the tumor growth is modeled by the initial ESL η0,HC = η0(H,C) ∈ [0, 1] . Its marginal
MAP estimates are given by

(by de�nition � HC0: 0.000) , H1: 0.2 · 10−6 , C1: 4.5 · 10−6 , HC1: 0.119

and Figure 23 shows the corresponding marginal posteriors as violin plots19.

Figure 23: Comparison of marginal posteriors (violin plots) and corresponding MAPs of η0,HC for
Hep3B2. Due to minor numerical variations, the cross-validated 95% con�dence intervals
(error bars) are not visible.

The distributions indicate that sole hypoxia or cirrhosis (H1/C1) does not induce a signi�cant
level of stress on the tumor cells, while a combination of both (HC1) does (∗∗∗ , see appended
Figure E.6). This suggests a synergistic e�ect of those environmental factors, since the estimates
of η0,HC for H1 and C1 clearly do not add up to the one of HC1. Mathematically, this means
our modeling assumption in (3.11), i.e.

η0(H0, C0) =
αH · δ−H(H0)

αH + αC︸ ︷︷ ︸
η0(H0 , 0)

+
αC · δ−C (C0)

αH + αC︸ ︷︷ ︸
η0(0 , C0)

,

has to be reconsidered, and we should allow both in�uence functions δ−H and δ−C to respectively
depend on both variables H and C. Since we do not have any suitable data to estimate these
functions or the impact rates αH and αC , we cannot make any further conclusions about the
in�uence of hypoxia and high ECM sti�ness on the tumor growth.

Cell growth and death. Due to the context of percentage viability, we were not able to directly
estimate the growth/death rates β, λind and λ (recall Subsection 3.3.3). In particular, we could
only estimate the term β + λind , which was done just for the setting HC0 and �xed to its
marginal MAP for the remaining calibrations (H1/C1/HC1). Figure 24 shows the estimates of
this term for each SMC run in comparison with the respective estimation resulting from the
particle approximation collecting all runs. While the run-speci�c MAPs were used to perform
further calibrations, the MAP considering all runs was used to calculate the new weights of the
posterior approximation collecting the particles of all runs.

19A violin plot is basically a shaded representation of the (truncated) KDE, additionally �ipped on a mirror
axis (here: vertical), i.e. the width of each �violin� gives the density (or the twice of it to be more precise). Note
that the scaling of the width is not the same when comparing di�erent violin plots, as this is not the focus of the
investigations.
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Figure 24: Estimations of β + λind for Hep3B2 in the setting HC0: Marginal posteriors as violin plot
and corresponding MAPs (used deterministically in each run for calibrating the remaining
settings H1/C1/HC1). Due to minor numerical variations, the cross-validated 95% con�-
dence interval (error bar) is not visible.

We see that the estimation of β + λind is very consistent and all calibrations of H1/C1/HC1
suppose virtually the same value for each run. Using the MAP β + λind ≈ 1.099 from the particle
approximation combining all SMC runs, we can conclude

β + λind > β − λ ⇒ β , λind , λ < 1.099 .

Furthermore, we know that η0,HC ≤ β−λ
β+λind

holds for all environmental conditions (recall bounds
in (3.11)). By using the largest observed estimate of η0,HC , we obtain a lower bound for β − λ :

0.119
HC1≈ η0,HC ≤ β − λ

β + λind︸ ︷︷ ︸
≈ 1.099

⇒ β − λ ≳
0.119

1.099
≈ 0.108 .

Cytotoxic e�cacy of SOR. Besides its supportive e�ect, SOR can be directly cytotoxic for the
tumor cells. Given our modeling approach, this would show in signi�cantly non-zero values of
the stress response function

α−
S δ

−
S,HC(S) = α−

S δ
−
S (S,H,C) =

α−
S · Sm2

Sthr(H,C)m2 + Sm2

for S = S0 > 0 . Recall from Figure 13 in Subsection 5.3.2 that for the reduced model M0
DS

we could only estimate the function values of α−
S δ

−
S,HC pointwise for S0 ∈ {0.5, 1.0} due to the

limited number of experimentally investigated SOR dosages. This means that we cannot isolate
quantitative information on how fast the cells are impacted by the SOR treatment (α−

S ) or the
dose-response (δ−S,HC) for continuous S. Figure 25 shows the marginal posteriors of the stress
response as violin plots as well as the estimated marginal MAPs.

Figure 25: Comparison of marginal posteriors (violin plots) and corresponding MAP estimates
of α−

S δ
−
S,HC(S0) for Hep3B2. Note that for S0 = 1.0 it was directly calibrated, while

for S0 = 0.5 the estimates are obtained by calibration of cδ = α−
S δ

−
S,HC(0.5) /α

−
S δ

−
S,HC(1.0).

Due to minor numerical variations, the cross-validated 95% con�dence intervals (error bars)
are not visible.
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Although we cannot reconstruct the parameters of α−
S δ

−
S,HC from the estimates in Figure 25, we

still get a feeling for the rough shape of the sigmoid function. First, the fact that a standard
dosage of SOR (S0 = 0.5) barely shows any stress response compared to a high dosage (S0 = 1.0)
in all environments indicates a SOR susceptibility threshold with

Sthr(H,C) > 0.5 ∀H,C ∈ {0, 1} .

Second, due to 0 ≤ δ−S,HC(S) < 1 ∀S ≥ 0 , the response for a high dosage α−
S δ

−
S,HC(S0 = 1.0)

yields a lower bound for the respective SOR impact rate

α−
S ≥ α−

S δ
−
S,HC(S0 = 1.0) ,

for given H and C and up to variations in the magnitude of the corresponding marginal vari-
ance. We proceed with a closer investigation of the individual estimates of Figure 25, where all
mentioned signi�cance results are derived from Figure E.7 in the appendix.

Higggggh SOR dosaggggge. We see a clear stress response for S0 = 1.0 under all environmental conditions
where the introduction of cirrhosis and hypoxia has a signi�cant in�uence on the drug e�cacy. In
particular, oxygen deprivation increases the response to SOR (∗∗∗), while sti�ening of the ECM
decreases it (∗∗∗):

sole hypoxia (HC0⇝H1): 0.489 ↗ 0.566 (+15.7%) ,

hypoxia in cirrhosis (C1⇝HC1): 0.294 ↗ 0.458 (+55.8%) ,

sole cirrhosis (HC0⇝C1): 0.489 ↘ 0.294 (−39.9%) ,

cirrhosis in hypoxia (H1⇝HC1): 0.566 ↘ 0.458 (−19.1%) .

We see that the degree of the increase/decrease of the response to SOR is di�erent for sole
cirrhosis/hypoxia compared to a combination of both, which hints on a synergistic e�ect of those
environmental factors. Furthermore, the combination of high ECM sti�ness and hypoxia appears
to slightly diminish the response compared to normal conditions:

HC0⇝HC1 : 0.489 ↘ 0.458 (−6.3%) .

However, we see no statistical signi�cance of latter observation, i.e. its relevance is unclear.

Standard SOR dosaggggge. For S0 = 0.5 we overall get relatively small marginal MAP estimates
for α−

S δ
−
S,HC(S0) and a non-zero stress response is only visible if hypoxia involved (H1/HC1):

HC0: 4.4 · 10−9 , H1: 0.019 , C1: 5.0 · 10−7 , HC1: 0.011 .

We again see an increasing (∗∗∗) resp. decreasing (unclear signi�cance) in�uence of hypoxia
resp. cirrhosis on the treatment response. The fact that we only see a reaction under hypoxic
conditions, even in combination with a sti� ECM (HC1), indicates a dominating increase of SOR
e�cacy due to hypoxia compared to the decrease by tissue sti�ening (∗∗∗).

Cytotoxic e�cacy of DOX. Next, we analyze the estimated stress response to DOX given by

α−
D · δ−D(D0, S0, H0, C0)︸ ︷︷ ︸

δ−D,HC(D0,S0)

= α−
D · Dm1

0(
Dnorm · dH(H0) · dC(C0))︸ ︷︷ ︸

Dnorm,HC

· dS(S0)
)m1 +Dm1

0

for varying DOX and SOR dosages D0 resp. S0 and di�erent environmental conditions H0 , C0 .
Recall that the functions dH , dC (environmental e�ects) and dS (supportive e�ect of SOR)
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shift the DOX susceptibility threshold Dnorm . As expected, the particle approximation indicates
relevant correlations of the DOX susceptibility thresholdDnorm,HC and the remaining parameters
of α−

D · δ−D (see Figure E.4 in the appendix). To consider these, we calculate α−
Dδ

−
D,HC(D0, S0) for

each particle and each combination of D0 and S0 . Figure 26 depicts the resulting distributions
(gray violin plots) for particular DOX dosages D0 and without the support of SOR (S0 = 0).
Furthermore, it shows a weighted least square �t of α−

Dδ
−
D,HC (dotted black line) to the MAPs of

these distributions under consideration of the respective variances20. The resulting �tted values
of Dnorm,HC are illustrated (dotted blue line) in comparison with the marginalized posterior
distribution of Dnorm,HC (blue shaded truncated KDE plots on the top/bottom).

Figure 26: Comparison of marginal posteriors (violin plots) and corresponding MAP estimates of the
unsupported DOX e�cacy α−

Dδ−D,HC(D0, 0) for Hep3B2. The sigmoidal line is the corre-
sponding least square �t. Note the only measurements for DOX dosages up to D0 = 5 were
actually used for the model calibration, hence the marginals for larger D0 are extrapolated
to reach the horizontal asymptote for reasonable �tting. Due to minor numerical variations,
some cross-validated 95% con�dence intervals (error bars) are not visible.

In general, we achieve good21 and reasonable �ts where the resulting values for the susceptibility
threshold Dnorm,HC are in the high probability region of the respective marginal posteriors,
i.e. close to the global modes of the truncated KDEs. Furthermore, the estimated sensitivity
parameterm1 (steepness of the stress response) shows no obvious di�erences for all environmental

20We use the Python function scipy.optimize.curve_fit(..., sigma=stdev, absolute_sigma=True),
where stdev are the standard deviations obtained from the respective marginal variances.

21A possible measure to judge the quality of the �t is the so-called coe�cient of determination R2(≤ 1),
where R2 = 1 indicates a perfect �t (see e.g. [105] for details). In particular, we get the values:
R2 ≈ 0.991 , 0.982 , 0.990 , 0.981 for HC0/H1/C1/HC1.
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conditions:

HC0: 1.858 (�t), 1.772 (MAP) , H1: 2.059 (�t), 1.807 (MAP) ,

C1: 1.992 (�t), 1.898 (MAP) , HC1: 1.907 (�t), 1.857 (MAP) .

For such small variations, a closer biological interpretation of the di�erences is of minor interest.
Hence, we focus the following investigations on the susceptibility threshold Dnorm,HC and the
impact rate α−

D .

DOX susceppppptibilityyyyy threshold. We analyze the �tted estimates of Dnorm,HC as they are obtained
in consideration of the parameter correlations. However, they do not provide a sample represen-
tation of the estimates and hence we cannot judge the statistical signi�cance of our observations
in contrast to the approach of investigating the marginal distributions (without considering cor-
relations) of Dnorm,HC instead. The latter is done for comparison in Appendix E.II.3 and will be
referred to as marginalized investigation for the rest of this paragraph. The signi�cance checks
for both �tted and marginal estimates can be found in Appendix E.II.3, as well.

The �tted values of Dnorm,HC are:

sole hypoxia (HC0⇝H1): 3.646 ↘ 2.161 (−40.7%) ,

hypoxia in cirrhosis (C1⇝HC1): 3.689 ↘ 2.762 (−25.1%) ,

sole cirrhosis (HC0⇝C1): 3.646 ↗ 3.689 (+ 1.2%) ,

cirrhosis in hypoxia (H1⇝HC1): 2.161 ↗ 2.762 (+27.8%) .

The smaller Dnorm,HC , the more susceptible the cells' are to DOX. Hence, the above esti-
mates show an increase/decrease of the cells' susceptibility to DOX due to hypoxia/cirrhosis.
Qualitatively, the same result is obtained by the marginalized investigation. The degree of
increase/decreases of Dnorm,HC appears to be di�erent for sole and combined environmental fac-
tors, indicating a synergistic e�ect between hypoxia and cirrhosis. This is not observable by the
marginalized investigation. However, this does not necessarily imply contradicting results, as the
marginals of Dnorm,HC neglect the parameter correlations. Since incorporation of the correlations
gives a more holistic approach, it is reasonable to assume a higher validity for the observations
obtained with �tting. Furthermore, comparing the �tted values

HC0⇝HC1 : 3.646 ↘ 2.762 (−24.2%)

suggests that the increase of susceptibility due to hypoxia prevails the decreasing e�ect of high
ECM sti�ness, which is consistent with the marginalized investigations.

DOX impppppact. Figure 26 shows that the MAPs as well as the �t of the stress response α−
Dδ

−
D,HC

tend to a horizontal asymptote for large DOX dosages. Mathematically, this asymptote is given
by the DOX impact rate α−

D scaling the sigmoid function δ−D,HC ∈ [0, 1). Due to the observ-

able asymptotic behavior, it is reasonable to assume that δ−D,HC ≈ 1 for the largest applied

dosage D0 = 103. Hence, the estimates of α−
Dδ

−
D,HC(10

3, 0) can be seen as estimates for α−
D (i.e.

the rightmost gray marginals in each subplot in Figure 26).
In general, we see relatively large estimates for α−

D , i.e. a fast reaction to the DOX treatment.
The corresponding MAPs as well as the �tted value of α−

D appear to be smaller for HC0 than
for the other environmental conditions:

HC0: 14.564 (�t), 15.365 (MAP) , H1: 17.919 (�t), 19.619 (MAP) ,

C1: 17.507 (�t), 18.553 (MAP) , HC1: 17.551 (�t), 18.978 (MAP) ,
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which suggests a faster reaction to the DOX treatment if hypoxia and/or cirrhosis is involved.
Comparing the marginal distributions does not imply statistical signi�cance of this observation,
see Figure E.10 in the appendix. However, recall that this does not necessarily indicate that the
impact rate is actually the same in all environments, i.e. that there is no environmental e�ect.

The distributions for α−
D show relatively high variances, which might play a role for the

unclear statistical signi�cance. A possible reason for the large variances is the sparse time
resolution of the data. Recalling that viability was measured once at tend (three days after a
one- or two-day treatment), the only time resolution of the data is given by the variation in
viability for di�erent treatment durations. For large DOX dosages, the percentage viability is
generally close to zero, i.e. the correspondingly small variation might be hardly distinguishable
from measurement inaccuracy. Furthermore, if the cells' reaction to the DOX treatment is
considerably fast (and for a su�ciently large induced death rate λind), the cell population might
go extinct at some time point before viability is measured. Then, the single measurement at tend
has no information about when in particular the cells have ceased.

Supppppppppportive effect of SOR. Additionally to direct cytotoxicity, SOR can have a supportive e�ect
on the DOX treatment. This is modeled by the quantity dS(S) ∈ [0, 1] , which potentially shifts
the DOX susceptibility threshold of the dose-response function δ−D,HC via

Dthr(S,H,C)
(3.13)
= Dnorm · dH(H) · dC(C)︸ ︷︷ ︸

Dnorm,HC

·
(
1− amax · Sm3

Sm3
supp + Sm3

)
︸ ︷︷ ︸

dS(S)

.

Again, due to the limited number of experimentally investigated SOR dosages we could only
estimate the values of dS(S) for S ∈ {0.5, 1.0} instead of the separate parameters amax , m3

and Ssupp (recall Figure 12 in Subsection 5.3.2). The smaller the value of dS(S) , the stronger
the supportive in�uence of SOR. Therefore, we can take the term 1− dS(S) ∈ [0, 1] as a measure
for the supportive e�ect.

In order to judge if the obtained estimates for 1− dS(S0) actually result in considerable
support of the DOX treatment, we set them into relation with the estimates of the unsup-
ported stress response α−

Dδ
−
D,HC(D0, S0 = 0). More precisely, we calculate α−

Dδ
−
D,HC(D0, S0) for

each particle and each combination of H0 , C0 , D0 and S0 ∈ {0.5, 1.0} for comparison. This
way we also consider the observed correlations between dS and Dnorm (see Figure E.4 in the
appendix). Analogously to the �ts of the unsupported stress response in Figure 26, we can
now �t α−

Dδ
−
D,HC(D,S0) for S0 ∈ {0.5, 1.0} to the respective MAP estimates at D = D0 . For

better comparability, we �x the parameters α−
D and m1 to the calculated values from the �t

of α−
Dδ

−
D,HC(D, 0) . Eventually, the resulting �ts as well as the MAPs do not show an obvious

supportive e�ect of SOR on the DOX treatment, which is illustrated in Figure 27.

Figure 27: Comparison of the �tted DOX e�cacy α−
Dδ−D,HC(D,S0) (sigmoidal lines) for Hep3B2 and

the resulting shifted DOX susceptibility thresholdDnorm,HC · dS(S0) (vertical line) for vary-
ing SOR dosages S0 ∈ {0.0, 0.5, 1.0} to support the DOX treatment.
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Although the estimates for 1− dS(S0) do not yield a noticeable treatment support, it might be
interesting to take a closer look at its marginals. Figure 28 shows the corresponding marginal
posteriors and the estimated marginal MAPs.

Figure 28: Comparison of marginal posteriors (violin plots) and corresponding MAPs of 1− dS(S0)
for Hep3B2. Note that for S0 = 0.5 we directly calibrated dS(S0), while for S0 = 1.0 the
estimates are obtained by calibration of cd = dS(1.0) / dS(0.5) . Due to minor numerical
variations, the cross-validated 95% con�dence intervals (error bars) are not visible.

As expected, the MAPs for a standard SOR dosage (S0 = 0.5) show no signi�cant support on the
DOX treatment under all environmental conditions. For a high dosage (S0 = 1.0) we see non-zero
MAPs indicating that hypoxia (HC0⇝H1 and C1⇝HC1) resp. high ECM sti�ness (HC0⇝C1
and H1⇝HC1) might increase resp. decrease the supportive e�ect of SOR, if there is any.
When comparing the marginal distributions in di�erent environmental settings for given S0 ,
clear statistically signi�cant di�erences are only visible for a high SOR dosage: HC0 vs. C1,
H1 vs. HC1 (in�uence of sti�ness) and C1 vs. HC1 (in�uence of hypoxia in sti� environment), see
Figure E.11 in the appendix. However, it is hard to judge whether these are relevant observations
in the context of the negligible support that we observed.

6.3.2 Chemoresistance for CYP-expressing cell line HepG2

Next, we analyze the calibration results using data (HC0, H1) of cell line HepG2, which exhibits
a considerable CYP expression. Although this means that the drugs are potentially metabolized
during treatment, it was not possible to reasonably estimate the parameters of the respective
model MCYP

DS to this data (recall the explanations at the beginning of Section 6.3). Attempts to
calibrate the reduced model M0

DS instead (which neglects drug metabolization) cause algorith-
mic issues. Hence, we had to re�ne M0

DS , which will be denoted by M0,⋆
DS . The reason for the

adjustment, the construction of model M0,⋆
DS and the resulting adapted calibration setting will

be explained respectively in the following three paragraphs. Subsequently, we investigate the
calibration results. Corresponding complementary material can be found in Appendix E.III and
will be referenced where relevant. Recall that the analysis of the calibration results follows Sub-
section 6.1.3 and numerical variations will be presented with the cross-validated 95% con�dence
interval and visualized by error bars.

Algggggorithmic issues. We performed calibrations of the reduced model M0
DS with the same prior

assumptions as for the calibration of the Hep3B2 data (see Table D.2a). However, this repeat-
edly lead to numerical di�culties with degenerating marginal variances for both HC0 and H1
when the algorithm reaches a speci�c SMC step, i.e. when certain measurements are added to
the calibration data set. A closer investigation of the respective data points suggests that the
modeling approach for the supportive e�ect of SOR in model M0

DS might be too restrictive
to appropriately replicate the measured cell behavior for HepG2. The observed discrepancy is
illustrated in Figure 29.
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Figure 29: Schematic description of how model M0
DS fails to appropriately describe the trend of the

HepG2 data in terms of the supportive e�ect of SOR. The approach of shifting the DOX
susceptibility threshold by dS(S) leads to a systematic underestimation of the measurements
by the model solution for high DOX dosages.

In particular, by shifting the DOX susceptibility threshold Dnorm,HC of the dose-response func-
tion δ−D,HC(D,S0) with dS(S0) ∈ (0, 1], the treatment support shows itself by an analogous shift
of the percentage viability. This means, except for the horizontal shift, the shape of the un-
supported (gray graph) and supported (orange graph) percentage viability function is the same,
which results in a �symmetric� supportive e�ect (left side of Figure 29). By contrast, the mea-
surements indicate an asymmetric supportive in�uence which can be weaker for larger DOX
dosages (right side of Figure 29).

Although this discrepancy appears not to be very drastic, it can cause algorithmic di�culties
by concerning mainly data points of low percentage viability. As discussed in the beginning of
Subsection 6.3.1, the applied uncertainty modeling results in two observations. First, to some
extent overestimation of the data is preferred over an exact �t and even more over an underesti-
mation. Second, smaller measurements allow for less deviation between data and model solution,
since we only consider a multiplicative noise without an additive modeling error (recall Subsec-
tion 4.1.1). In combination, this means that particles yielding a solution which considerably
underestimates small measurements can be associated to very small weight. Hence, once the
SMC algorithm includes such critical data points in the reweighting process, the systematic un-
derestimation by model M0

DS (see Figure 29) results in vanishing weights for the majority of the
particle sample, i.e. degenerating variances.

Model adappppption. As a consequence, we change the modeling of the supportive e�ect of SOR
appropriately. In particular, we introduce a DOX dose-dependent damping factor by

dS(S) = 1− amax · Sm3

Sm3
supp + Sm3

adapt
// d⋆S(S,D) = 1− amax · Sm3

Sm3
supp + Sm3

supportive e�ect
1−dS(S)

·
(
1− D

Ddamp +D

)
damping factor

∈(0,1]

, with Ddamp ∈ (0, Dnorm,HC ] ,

and propose the adjusted model

V̇ =
(
β − λ− η ·

(
β + λind

))
· V ,

η̇ =

(
α−
D ·Dm1

0(
Dnorm,HC · d⋆S(S0, D0)

)m1 +Dm1
0

+
α−
S · Sm2

0

Sm2
thr,HC + Sm2

0

)
· (1− η) · 1T (t) ,

with V (0) = V0 , η(0) = η0,HC .

(M0,⋆
DS

)
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Figure 30 visually compares the supportive e�ect as described by both models M0
DS and M0,⋆

DS

as well as shows the role of the term 1− dS(S0) and the damping threshold reparameterized by

Ddamp = Dnorm,HC · cdamp , with cdamp ∈ (0, 1] . (6.5)

Figure 30: Comparison of the di�erent approaches of models M0
DS (left) and M0,⋆

DS (middle and right)
to describe the supported DOX dose-response. Each plot illustrates the in�uence of the
terms 1− dS(S0) resp. cdamp on the dose-response curve (for all plots: Dnorm,HC = 1 , mid-
dle plot: cdamp = 1 , right plot: 1− dS(S0) = 0.99).

For both models, the term 1− dS(S0) is a measure for the strength of the supportive e�ect.
Furthermore, we see that, the smaller Ddamp in comparison to Dnorm,HC (i.e. the smaller cdamp),
the stronger the damping. Note that the constraint Ddamp ≤ Dnorm,HC , which basically assumes
a base degree of damping, is not necessary from a mathematical perspective. For larger values
of Ddamp , the shape of d⋆S progressively approaches the one of the undamped one dS . However,
pre-calibrations gave no indication that Ddamp ≤ Dnorm,HC too restrictive. Hence, we use the
reparametrization (6.5) to construct a reasonably bounded prior (see subsequent paragraph).

Adapppppted calibration settingggggs. We want to calibrate the data of cell line HepG2 with model M0,⋆
DS

instead. To do so, we again use the same prior assumptions as for calibrating the Hep3B2 data
(from Table D.2a) except for the following adaptions:

log10(m1) = m̂1 ∼ U(0, 1.7) instead
// m1 ∼ U(0, 6) ,

dS(0.5) ∼ U(0, 1) instead
// 1− dS(1.0) ∼ U(0, 1) ,

dS(1.0)

dS(0.5)
= cd ∼ U(0, 1) instead

//
1− dS(0.5)

1− dS(1.0)
= c̃d ∼ U(0, 1) .

The adjusted prior for the Hill coe�cient m1 is motivated by the estimated marginal posteriors
of this parameter from the calibration of cell line Hep3B2 (see Figure E.3 in the appendix). The
remaining adaptions result from the fact that the damping factor is applied to the supportive
e�ect term 1− dS(S) and that 1− dS(0.5) ≤ 1− dS(1.0). With the damping factor comes along
another parameter: the damping threshold Ddamp ≤ Dnorm,HC . By using the reparametriza-
tion (6.5) in log scale, i.e.

(0, 1] ∋ cdamp = 10ĉdamp ⇒ log10(cdamp) = ĉdamp ≤ 0 ,

we can assume the prior distribution

ĉdamp ∼ U(−3, 0) .
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The support of this uniform distribution translates to cdamp ∈ (0.001, 1] and is motivated by
the observation that even smaller values for cdamp would only marginally change the damping
e�ect (see right subplot of Figure 30, where cdamp = 1/50 already almost completely damped
the supportive e�ect of SOR). In the remaining parts of this section we will present the results
obtained by calibrating model M0,⋆

DS to the HepG2 data with these prior assumptions.

Treatment response. Figure 31 shows the data (markers) with the corresponding model so-
lution (line plots) given the estimated marginal MAPs of the parameters. The small plots in
the upper right corners illustrate the trend of the data for a easier visual comparison. Follow-
ing the approach described in Subsection 5.2.2 and Figure 10, we omitted the measurements
for D0 ∈ {10−3, 10−2} for the calibration data set of this cell line.

Figure 31: Comparison of the measured percentage viability for cell line HepG2 with the corresponding
estimated model solutions using model M0,⋆

DS for di�erent environmental settings.

In general, we get reasonable �ts of the model solutions to the measurements. We see tendencies
to overestimate the data as well as observe more asymmetry in the viability-dose relationship
of the measurements in contrast to the solution. The latter is only clearly visible for the gray
markers/lines, i.e. without the treatment support of SOR. Overall, these are similar observations
as for cell line Hep3B2 (Subsection 6.3.1). Likewise, this suggests the potential to improve the
model by reconsidering the symmetry assumption for the DOX dose-response function δ−D and
the uncertainty modeling (more details will be provided in Section 7.2).

The following paragraphs respectively present the estimated model parameters and discuss
them in the underlying biological context. An overview over all marginal distributions, MAPs
and corresponding numerical deviations from cross-validation can be found in Figure E.12 in the
appendix.

Drug-independent dynamics. The marginal MAP estimate of the initial ESL η0,HC is

(by de�nition � HC0: 0.000) , H1: 1.2 · 10−6 ,

i.e. we see no signi�cant stress induction by sole hypoxia. This result is comparable to the
observation from cell line Hep3B2. As for the cell dynamics, Figure 32 shows the estimates
of β + λind for each SMC run in comparison with the respective estimation resulting from the
particle approximation collecting all runs.
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Figure 32: Estimations of β + λind for HepG2 in the setting HC0: Marginal posteriors as violin plots
and corresponding MAPs, which were used deterministically in each run for calibrating the
setting H1. Due to minor numerical variations, the cross-validated 95% con�dence interval
(error bar) is not visible.

Again, the estimation of β + λind is consistent and all calibrations of H1 assumed a su�ciently
similar value. In particular, the estimated MAP using all SMC runs gives β + λind ≈ 1.210.
Hence, an analogous approach as for cell line Hep3B2 (Subsection 6.3.1) yields

β , λind , λ < 1.210 .

Since we do not have a su�ciently non-zero estimate of η0,HC for HepG2, we cannot use its
mathematical upper bound of (β − λ)/(β + λind), recall (3.11), to derive a numeric lower bound
for β − λ .

Cytotoxic e�cacy of SOR. The marginal estimates of the stress response α−
S δ

−
S,HC(S0) to SOR

for a standard resp. high dosage S0 ∈ {0.5, 1.0} are shown in Figure 33.

Figure 33: Comparison of marginal posteriors (violin plots) and corresponding MAP estimates
of α−

S δ
−
S,HC(S0) for HepG2. Note that for S0 = 1.0 it was directly calibrated, while

for S0 = 0.5 the estimates are obtained by calibration of cδ = α−
S δ

−
S,HC(0.5) /α

−
S δ

−
S,HC(1.0) .

Due to minor numerical variations, the cross-validated 95% con�dence intervals (error bars)
are not visible.

Similarly to cell line Hep3B2 (Subsection 6.3.1), we can follow the parameter bounds

Sthr(H, 0) > 0.5 for H ∈ {0, 1} and α−
S ≥ α−

S δ
−
S,HC(S0 = 1.0)

for given H and C = 0 and up to variations in the magnitude of the corresponding marginal vari-
ance. While observing almost no stress response for a standard SOR dosage, we see considerably
non-zero MAP estimates for a high SOR dosage:

α−
S δ

−
S,HC(S0 = 0.5) : 1.6 · 10−6 (HC0) , 0.9 · 10−6 (H1) ,

α−
S δ

−
S,HC(S0 = 1.0) : 0.103 (HC0) , 0.063 (H1) .

The cytotoxic e�cacy of a high SOR dosage appears to be weaker for cell line HepG2 compared
to Hep3B2 (recall HC0/H1: 0.489, 0.566). Furthermore, a statistical comparison of the corre-
sponding marginal distributions (Figure E.14 in the appendix) shows a signi�cant (∗∗∗) reduction
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of the stress response to SOR for S0 = 1.0 due to hypoxia. For S0 = 0.5 the estimates indicate
the same tendency, but with unclear signi�cance.

Interestingly, a decreasing e�ect of hypoxia on the stress response is just the opposite in�uence
as observed for cell line Hep3B2. However, one should keep in mind that there is a di�erence
between the stress response α−

S δ
−
S,HC(S) and the cells' susceptibility threshold Sthr,HC . While

the �rst describes the treatment response for a particular dosage S = S0, the latter gives a more
general measure independent from S. Therefore, the apparently contrary in�uence of hypoxia
observed for α−

S δ
−
S,HC(S0) does not necessarily imply that the cells react oppositely to the SOR

treatment in general.

Cytotoxic e�cacy of DOX. We proceed with analyzing the estimated stress response to DOX:

α−
Dδ

−
D,HC(D0, S0) =

α−
D ·Dm1

0(
Dnorm,HC ·

(
1−

(
1− dS(S0)

)
·
(
1− D

Ddamp+D

)))m1

+Dm1
0

.

Like for Hep3B2 (Subsection 6.3.1), we calculate α−
Dδ

−
D,HC(D0, S0) for each particle and each

combination of D0 and S0 to consider the correlations (see Figure E.17a in the appendix)
of the involved parameters. Figure 34 shows the weighted least square �ts (dotted curves)
of α−

Dδ
−
D,HC(D,S0) to the MAPs (markers) of the resulting distributions. Note that the marginals

of D0 > 103 are extrapolated to reach the horizontal asymptote for reasonable �tting.

Figure 34: Comparison of distributions (violin plots) and corresponding MAP estimates (black mark-
ers) of the unsupported DOX e�cacy α−

Dδ−D,HC(D0, 0) for HepG2 for particular dosages D0.
Note the respectively di�erent scaling of the vertical axis for the left and right part of the
plot (separated by the vertical light gray wavy line). The non-black markers are the MAPs
for combination therapy (corresponding violin plots are not shown; they do not bring more
clarity as they have a similar shape to the gray ones). The dotted curves are the least square
�ts to the respective MAPs and the �tted values of Dnorm,HC are illustrated as light blue
dotted lines in comparison with the marginalized posterior distribution of Dnorm,HC (light
blue shaded truncated KDE plots on the top/bottom). Due to minor numerical variations,
some cross-validated 95% con�dence intervals (error bars) are barely visible.
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We achieve good and reasonable �ts22 with a susceptibility threshold Dnorm,HC (blue dotted
line) close to the global modes of the corresponding marginal truncated KDEs (blue distribu-
tions). Table 8 summarizes the �tted values of the parameters involved in the stress response in
comparison with their marginal MAPs and shows a high consistency.

Table 8: Comparison of the parameter estimates regarding the stress response to DOX for HepG2 in
normal (HC0) and sole hypoxic (H1) environment. The 95% con�dence intervals of the �tted
values can be found in Table E.6 in the appendix.

(a) Parameters of the unsupported (S0 = 0) stress response. The statistical signi�cance of di�erences
between HC0 an H1 is checked with Figure E.15 in the appendix.

HC0 ⇝⇝⇝ H1 signi�cant?

α−
D

�tted 10.694 ↗ 17.413 ∗∗∗
MAP 11.043 17.997 ∗∗∗

Dnorm,HC
�tted 501.122 ↘ 318.290 ∗∗∗
MAP 574.812 272.357 ∗∗∗

m1
�tted 1.128 ↗ 1.433 ∗∗∗
MAP 1.074 1.405 ∗∗∗

(b) Parameters of the supportive in�uence of SOR on the stress response for S0 ∈ {0.5, 1.0},
where 1− dS(S0) ∈ [0, 1) shows the undamped supportive e�ect and 1/cdamp the strength of damp-
ing. For 1/cdamp we have two di�erent �ts for S0 = 0.5 (top value) and S0 = 1.0 (bottom value). The
statistical signi�cance of di�erences between HC0 an H1 is checked with Figure E.14 in the appendix.

HC0 ⇝⇝⇝ H1 signi�cant?

1− dS(0.5)
�tted 0.879 ≈ 0.873 potentially insigni�cant
MAP 0.903 0.910 potentially insigni�cant

1− dS(1.0)
�tted 0.948 ≈ 0.942 potentially insigni�cant
MAP 0.960 0.963 potentially insigni�cant

1
cdamp

�tted
22.542

↘
18.864 potentially signi�cant

22.467 19.128 ∗
MAP 20.532 16.742 potentially signi�cant

When comparing the parameter values for HC0 and H1, Table 8a shows an increase of α−
D and a

decrease ofDnorm,HC , which both indicate an enhanced cytotoxic e�cacy of DOX due to hypoxia.
This is similar to the observations for cell line Hep3B2 (Subsection 6.3.1). We also see a slight
increase of m1 , i.e. a steeper dose-response relationship.

The estimated values of 1− dS(S0) in Table 8b as well as the left side of Figure 34 exhibit a
considerable supportive e�ect for both a standard and high SOR dosage (in contrast to cell line
Hep3B2). The e�ect is respectively similar under normal and hypoxic conditions. Furthermore,
we see 1/cdamp ≫ 1 for both HC0 and H1, which yields a considerable DOX dose-dependency
of the supportive e�ect. This is also visible on the right side of Figure 34, where the supportive
e�ect vanishes for large DOX dosages.

22HC0/H1: R2 ≈ 0.999, 0.996 ∀S0
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Drug metabolization and CYP expression. Recall that by calibrating model M0,⋆
DS instead

of MCYP
DS , we omitted the in�uence of the drug metabolizing enzyme CYP3A4 (CYP) and

assumed constant drug concentrations D(t) = D0 and S(t) = S0 during treatment. However,
according to [22], the cell line HepG2 actually exhibits a considerable CYP expression. In
model MCYP

DS the resulting drug metabolization would have been incorporated via exponential
decay, i.e.

D(t) = D0 · e−γDt and S(t) = S0 · e−γSt

with the drug-speci�c metabolization rates γD, γS ≥ 0. Without loss of generality, let ϕ ∈ {D,S}
be the dosage of DOX or SOR and γϕ its respective metabolization rate. Then, if we consider a
Hill function in ϕ with threshold ϕthr > 0 and Hill coe�cient m > 0, drug metabolization would
show as

ϕ(t)m

ϕm
thr + ϕ(t)m

=
ϕm
0 · e−mγϕt

ϕm
thr + ϕm

0 · e−mγϕt
=

ϕm
0

(eγϕt · ϕthr)m + ϕm
0

.

This corresponds to a Hill function in ϕ assuming a constant dosage ϕ(t) = ϕ0 , but with an
adapted threshold

ϕCYPthr (t) = eγϕt · ϕthr
which increases exponentially over time, where ϕthr is the threshold at the beginning of the
treatment (t = 0).

Constant apppppppppproximation of druggggg metabolization. Obviously, such a time-dependent dynamic is not
considered by model M0,⋆

DS . Instead, it basically approximates ϕCYPthr by a constant. As t will
progress from 0 to ttreat ∈ {1, 2} during the treatment phase andM0,⋆

DS does not di�erentiate ϕCYPthr

for varying treatment durations, it is reasonable to assume that the calibrations approximate t
with a positive constant smaller than two. Hence, we propose

ϕCYPthr ≈ eγϕ · ϕthr = ωϕ · ϕthr ⇒ γϕ ≈ ln(ωϕ) with ωϕ ≥ 1 . (6.6)

As the variables D and S do not occur outside from Hill functions in M0,⋆
DS , the simpli�ed

consideration of the drug metabolization with this model can be summarized by

DCYP
norm,HC ≈ ωD ·Dnorm,HC , SCYP

thr,HC ≈ ωS · Sthr,HC ,

DCYP
damp ≈ ωD ·Ddamp , SCYP

supp ≈ ωS · Ssupp ,

with ωD, ωS ≥ 1 quantifying the drug metabolization, where a value of one represents no metabolic
activity. We expect ωD and ωS to be positively correlated to the CYP expression, i.e. more CYP
yields a stronger e�ect of drug metabolization. In particular, let both

ωD = ωD(ϱHC) and ωS = ωS(ϱHC)

be monotonically increasing functions [0,∞) → [1,∞) in the CYP concentration ϱHC ≥ 0 which
we suppose to be constant but potentially dependent on H and C. We will use the short
notations ωD,HC = ωD(ϱHC) and ωS,HC = ωS(ϱHC).

Estimated druggggg metabolization. For the SOR-related thresholds, we cannot reconstruct ωS,HC as
we do not have estimates for Sthr,HC and Ssupp. Hence, it is not possible to investigate the role of
SOR metabolization with the calibration results. For the DOX-related thresholds, it is reasonable
to assume that we actually estimated DCYP

norm,HC and DCYP
damp instead of Dnorm,HC resp. Ddamp .

Therefore, the estimates of these parameters from Table 8 could be used to reconstruct ωD,HC .
However, we have only su�cient information to do so if we take two modeling assumptions as a
starting point. Both suppose that cell lines Hep3B2 and HepG2 respond comparably to the DOX
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treatment. According to [106], it is reasonable to assume some degree of similarity between those
two cell lines although we have to keep in mind that there are also several di�erences. Hence, the
following investigations only make sense under the premise that these di�erences are not relevant
in our modeling context, which we cannot validate yet with the available data.

First assumption: The environmental factors have the same e�ect on the stress response to
DOX for cell lines Hep3B2 and HepG2. In sole hypoxic conditions (H1:H = 1, C = 0) this means
that we let the value of dH(H = 1) from the relation Dnorm,HC = Dnorm · dH(H = 1) · dC(C = 0)
be the same for both cell lines. Second assumption: Except for the in�uences of drug metabo-
lization and the environment (in particular hypoxia), Hep3B2 and HepG2 have the same DOX
susceptibility threshold Dnorm. Then, combining the calibration results from both cell lines yields

HC0: DCYP
norm,HC = ωD,HC ·

Dnorm,HC︷ ︸︸ ︷
Dnorm · dH(H = 0) ·

=1︷ ︸︸ ︷
dC(C = 0) ,

(6.7)
H1: DCYP

norm,HC

estimated
with HepG2

= ωD,HC

unknown
(HepG2)

· Dnorm · dH(H = 1)︸ ︷︷ ︸
Dnorm,HC

estimated
with Hep3B2

· dC(C = 0)︸ ︷︷ ︸
=1

by de�nition

.

Solving each of the above equations for ln(ωD,HC) eventually provides environment-speci�c esti-
mates for the involved DOX metabolization γD,HC based on the approximating assumption (6.6).
Using the �tted values of DCYP

norm,HC (Table 8a) and of Dnorm,HC (Subsection 6.3.1), we get23

HC0: γD,HC = γD(ϱHC) ≈ 4.904± 0.930 ,

H1: γD,HC = γD(ϱHC) ≈ 5.022± 0.705 .

On the one hand, we see a considerable DOX metabolization (γD,HC ≫ 0) for HepG2. On the
other hand, the metabolic activity appears to be stronger under sole hypoxic conditions (po-
tentially statistically insigni�cant, see Figure E.16 in the appendix). It might be interesting to
note that calibration attempts with the complete model MCYP

DS resulted in fairly concentrated
marginal distributions for γD,HC (in contrast to other parameters) and the corresponding es-
timates are actually in a magnitude of γD,HC ≈ 5 (see Figure E.13 in the appendix). Hence,
there could indeed be potential in calibrating MCYP

DS to gain deeper understanding of the drug
metabolization.

We could now proceed with using the estimates of ωD,HC to reconstruct the threshold Ddamp

from DCYP
damp = ωD,HC ·Ddamp . However, there are indications that in this context the cell lines

Hep3B2 and HepG2 are not su�ciently comparable as we observe a clear supportive e�ect for
HepG2 in contrast to Hep3B2. Intuitively, we would expect the opposite due to potentially lower
SOR concentrations in the presence of CYP, which suggests that the support of SOR might occur
di�erently for the respective cell lines.

Measured CYP expppppression. Since γD,HC = γD(ϱHC) is de�ned as a function of the CYP ex-
pression ϱHC , we can compare those quantities using the corresponding CYP data24 from [22].
Figure 35 visualizes the relation between the derived estimates of γD,HC (for Hep3B2 we as-
sume γD,HC = 0, i.e. no DOX metabolization) with the measured CYP expression.

23In particular, we draw 107 samples of DCYP
norm,HC and Dnorm,HC respectively according to a normal distribution

(truncated to R+) which is centered at their �t and using the corresponding standard deviation. Then, the
presented 95% con�dence interval of γD,HC is obtained by calculating its value for each sample.

24The data is given in the form of luminescence measurements which are (similarly to the intensity measure-
ments for cell viability) assumed to be directly proportional to the CYP expression [107]. Since the proportionality
constant has no qualitative in�uence on the results, we treat the measurements as direct quantities for ϱHC .
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Figure 35: Relation between the estimated DOX metabolization γD,HC and corresponding measured
CYP expression ϱHC (dotted line: trendline). The error bars show the 95% con�dence
interval of the CYP data (horizontal) and of the estimated values of γD,HC (vertical).

The observed relation suggests a positive and potentially non-linear correlation between γD,HC

and ϱHC , which �ts to γD actually being a monotonically increasing function in ϱHC . This
implies that the two assumptions for approach (6.7) can make sense from an experimental per-
spective. Obviously, the validity is quite limited by being based on only three observations.
With this small number of points, it is not expedient to �t and compare di�erent possibilities
for the monotonic function γD(ϱHC). However, we can conjecture the rough shape of the func-
tion (dotted trendline). Due to the monotonicity and the considerable distance of the left-most
marker (Hep3B2) from the origin, it appears that γD stays close to zero for su�ciently small
values, i.e. approx. ϱHC ∈ [0, 1000]. Furthermore, the markers for HepG2 indicate the function's
slope to be relatively �at in the range of ϱHC ∈ [4000, 5000] , especially in comparison to the
increase between the Hep3B2 and HepG2 markers. Combining these observations to a smooth,
monotonically increasing function suggests e.g. a Hill-type function

γD(ϱHC) =
γ̃D · ϱmHC

ϱmthr + ϱmHC

,

with a threshold ϱthr ∈ [1000, 4000], a horizontal asymptote γ̃D ≳ 5 and a Hill coe�cient m ≥ 2
for sigmoidal shape (supposing the non-zero CYP data for Hep3B2 is not an e�ect of sole mea-
surement inaccuracy). On the one hand, this would mean that there needs to be a su�cient
amount of CYP present to achieve considerable DOX metabolization. On the other hand, the
metabolic activity appears to not increase unlimitedly the higher the CYP expression.

In general, this shape of the function γD(ϱHC) seems reasonable considering the experimen-
tally observed treatment e�ect for Hep3B2 and HepG2 (see Figure 4 in [22]). In particular, the
experiments show a considerable shift of the DOX e�ect if we compare Hep3B2 and HepG2,
which �ts to γD being signi�cantly larger for HepG2 (HC0, H1) compared to Hep3B2. However,
the treatment e�ect for HepG2 in di�erent environments (i.e. comparing HC0/H1/C1/HC1 with
each other) appears to be less drastic, although the cells exhibit nearly double the amount under
cirrhotic conditions (ϱHC ≈ 9000 resp. 10600 for C1/HC1). This supports the indication of an
upper bound for γD(ϱHC) and that it is almost reached by the CYP expression for HC0 and H1.

6.3.3 Summary and comparison of the treatment response for Hep3B2 and HepG2

We conclude with a brief overview over the obtained calibration results for cell lines Hep3B2 (Sub-
section 6.3.1) and HepG2 (Subsection 6.3.2) regarding the treatment response. In general, both
cell lines show a qualitatively similar behavior, except for the supportive in�uence of SOR. The
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latter appears to be cell line-speci�c, as we only observe a considerable e�ect for HepG2. Table 9
summarizes the observed in�uences of hypoxia (for both cell lines) and high ECM sti�ness (for
Hep3B2).

Table 9: In�uence of introducing hypoxia (H), tissue sti�ening (C) or a combination of both (HC) on
the treatment response of the investigated cell lines. Recall that for HepG2 we could not
apply model calibrations on any data considering high sti�ness.

Hep3B2 HepG2

DOX impact rate H faster reaction faster reaction
α−
D C faster reaction

[
N/A

]
HC faster reaction,

synergism

DOX susceptibility H higher susceptibility higher susceptibility

Dnorm,HC C lower susceptibility
[
N/A

]
HC hypoxia prevails,

synergism

SOR support H
 unclear due to

inconsiderable
support

 similar support

dS(S0) resp. d⋆S(S0, D) C
[
N/A

]
HC

SOR stress response H increased response decreased response

α−
S δ

−
S,HC(S0) C decreased response

[
N/A

]
HC hypoxia prevails for S0 = 0.5,

synergism

Overall, the calibration results consistently show an enhancing e�ect of hypoxia on the treatment
e�cacy of both drugs, whereas tissue sti�ening increases the chemoresistance (for Hep3B2). The
only apparent discrepancy appears for the stress response to SOR under hypoxia. As mentioned
in Subsection 6.3.2, this does not necessarily imply a generally opposite reaction to the SOR
treatment. For comparison, we check the unsupported stress response α−

Dδ
−
D,HC(D0, 0) to DOX

in Table 10.

Table 10: Comparison (HC0⇝H1) of the MAP estimates of α−
Dδ−D,HC(D0, 0) given particular D0.

D0 Hep3B2 HepG2

0.5 0.368 ↗ 0.889 0.005 ↘ 0.001
1.0 1.223 ↗ 2.804 0.010 ↘ 0.004
5.0 7.971 ↗ 12.761 0.060 ↘ 0.047

10.0 11.607 ↗ 15.463 0.130 ↘ 0.127

In fact, analogously to the stress response to SOR, we also observe an increasing resp. decreasing
e�ect of hypoxia on the response to DOX for Hep3B2 resp. HepG2. Nevertheless, the impact
rate α−

D and susceptibility threshold Dnorm,HC in Table 9 both indicate consistency regarding
the DOX treatment response for both cell lines. Hence, the alleged discrepancy does not imply
a di�erent in�uence of hypoxia on the SOR dose-response.
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7 Conclusions and perspectives

In this thesis, we have introduced and applied the modeling approach of an environmental stress
level (ESL) to describe and biologically investigate the collective in�uence of di�erent environ-
mental factors on tumor viability. In summary, we see that the ESL can feasibly model various
environmental in�uences on the cells. It provides a modular framework which can be easily
extended to a large number of environmental factors and allows a biological interpretation of the
parameters. With this approach, we are able to reproduce and investigate the cell behavior ob-
served in the experiments [21] (response to nutrient deprivation) and [22] (e�ect of hypoxia and
cirrhosis, i.e. high ECM sti�ness, on chemoresistance) by parameter estimation with SMC meth-
ods. This last chapter concludes the main results of the model calibrations (Section 7.1) and
discusses the observed challenges while presenting possibilities for improvement (Section 7.2).
Finally, Section 7.3 provides an outlook over the further potential of the ESL approach from
the perspective of mathematical modeling as well as in view of algorithmic improvements of
the model calibration. In general, future work with more re�ned mathematical approaches and
additional data could allow to further enhance the biological understanding, while this thesis
already provides a good basis.

7.1 Main results

In general, we observe reasonable parameter estimates for the calibration of each model to its
respective data. The estimated model solutions show good agreement with the measurements
and allow for a closer investigation of the underlying biological processes with the ESL approach,
see subsequent paragraphs.

ESL as an e�cient modeling framework. With the �rst application, we calibrated two mod-
els � one based on the ESL approach (Mη

N ) and one without (MN ) � to data from [21] describing
how tumor cells react to nutrient deprivation. While obtaining a good �t to the measurements
with both models, their comparison via the Bayes factor shows a preference for using the ESL
approach, despite needing an additional variable and parameter, which is implicitly penalized
by the Bayes factor itself [92]. However, as the investigated biological system is very simplistic
and considers only one environmental factor (nutrients), there would be no strong need from a
quantitative perspective to use the more complex ESL model.

The usefulness of the general modular ESL framework (3.3) becomes more evident for the
second application, in which we investigate the in�uence of several environmental factors on
the cell dynamics of two cell lines Hep3B2 and HepG2 with data from [22]. In particular, the
calibration of models M0

DS and M0,⋆
DS (for Hep3B2 resp. HepG2) gives insight into the e�ect

of hypoxia and/or cirrhosis on the chemoresistance to a combination therapy with the drugs
doxorubicin (DOX) and sorafenib (SOR), see the following paragraph.

Insights into chemotherapeutic e�cacy. While the �rst application mainly served to test
and validate the ESL approach in a simple setting, the second one actually provides insightful
information about the underlying biological processes. The calibration results imply that hy-
poxia enhances the treatment e�cacy. In contrast, a cirrhotic environment increases the cells'
chemoresistance. There appears to be a synergistic in�uence of hypoxia and sti�ness on the
treatment response as well as directly on the cell growth. The e�ect of hypoxia is observable
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for both investigated cell lines Hep3B2 and HepG2, whereas the in�uence of cirrhosis could only
be investigated for Hep3B2 with the current state of the models (for details see Section 7.2).
We generally see an increased drug susceptibility for Hep3B2 compared to HepG2. There are
indications that the cell-speci�c expression of the drug metabolizing enzyme CYP3A4 (which is
higher for HepG2) can be a reason for this. However, further investigations with additional data
would be needed to validate this assumption.

7.2 Challenges and opportunities

For the �rst application, we did not observe any challenges coming from the modeling assumptions
and algorithmic choices. Some limitations became more obvious when performing the model
calibrations in the chemoresistance setting (second application), which will be discussed in the
following paragraphs.

Structure of the data. We noticed two limitations of the explanatory power of the calibra-
tion results due to the structure of the corresponding data from [22]. First, the experiments
only examine two dosages of SOR in contrast to eleven dosages for DOX. While the latter pro-
vide enough information to reasonably reconstruct the corresponding continuous stress response
function α−

Dδ
−
D,HC , this was not the case for the stress response to SOR. Therefore, it was not

possible to estimate the involved parameters and properly investigate the in�uence of hypoxia
and/or cirrhosis on the treatment response to SOR. Second, percentage viability is measured
only once in the course of the whole experiment, which results in a sparse time resolution of
the data. As the di�erential equations in this context are designed to describe the change of
quantities over time, this can diminish the informational content for parameter estimation. In
our application, the experimental investigation of two di�erent treatment durations provided
su�cient information to apply model calibrations, despite having only viability measurements
of one time point. However, we achieved only rough estimates for the impact rate α−

D of the
DOX treatment. Furthermore, having time-resolved data over the course of the treatment and
subsequent growth phase could be interesting in (future) scenarios, as it might allow for explic-
itly distinguishing between the negative and positive impact rate (i.e. the reaction to stressful
conditions and the recovery thereof).

We suspect a combination of both observations to be the main reason why we are not able
to adequately calibrate the full chemoresistance model MCYP

DS to the available data. It may
not be practical to acquire additional data for improving the model calibrations of this use
case. Nevertheless, we can use the above observations to state general guidelines for future
applications of mathematical modeling and parameter estimation with di�erential equations (if
circumstances allow for adjusting the experimental design accordingly). On the one hand, the
measurements should provide information about the state of relevant parts (e.g. cell viability)
of the biological system for at least two points in time. On the other hand, if we want to
reconstruct the continuous relationship between an environmental factor and the cells' response
with the current modeling approach, the experiments need to examine at least three di�erent
states of that environmental factor (e.g. three di�erent drug dosages). These are minimum
requirements from a mathematical point of view. However, in practice more time points resp.
environmental states might be necessary if the corresponding cell behavior is not su�ciently
di�erent.
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Mathematical model. From a modeling perspective, the most restricting feature of the current
chemoresistance models is the omission of growth enhancing in�uences, which appears to play
a dominant role for parts of the available data in [22]. As a result, we had to exclude all mea-
surements for cell line C3Asub28 and half of the ones for HepG2 from the investigations, which
limits the possibilities for gaining biological insights. The incorporation of growth enhancement
itself into the model equations could be done easily by adding a term which upscales of the
growth rate β. However, we do not have any biological information on the potential cause of the
observed growth enhancement to explicitly de�ne the upscaling term in dependence of the envi-
ronmental factors. Furthermore, it is not clear whether the available data structure is suitable
to appropriately reconstruct the growth enhancement with model calibrations.

For the data which we could investigate with the current modeling assumptions, we saw
a potentially systematic overestimation of percentage viability measurements regarding DOX
dosages below the respective susceptibility threshold Dnorm,HC . The �t to the data might be
improved by assuming an asymmetric dose-response function δ−D,HC . This allows to model
a stronger stress response for these dosages without a�ecting the ones for which we already
obtained a decent �t. Note that this introduces an additional unknown parameter for the model
calibration, i.e. the bene�t of this model adaption is unclear.

Uncertainty modeling. Lastly, the calibration results of the second application indicated some
drawbacks of the current uncertainty modeling. Due to considerable variation in the viability
data, which we suppose to be a combination of measuring inaccuracy and biological variation,
we assumed the measurement uncertainty to dominate over the modeling error. Therefore, the
latter was omitted and the multiplicative uncertainty factor ε was supposed to cover all e�ects
of randomness and inaccuracy (recall Section 4.1.1).

While we generally achieved reasonable and �tting results with this approach, the calibrations
failed in situations where the model becomes too inaccurate. However, this issue is not caused by
the estimations actually exhibiting very large deviations from the data, but rather by the range of
acceptable discrepancy (determined by the variance of ε), as it decreases proportionally with the
magnitude of the measurements due to the multiplicativity. Hence, for very small measurements,
even a relatively small deviation between the estimated model solution and the corresponding
data is considered as �too inaccurate� by the calibration algorithm. In the worst case, this applies
to the majority of the particle sample, which eventually leads to degenerating variances and the
calibration to fail. Except for the data sets exhibiting growth enhancement (recall previous
paragraphs), these issues could be compensated with increasing the model accuracy by adjusting
the modeling assumptions for the supportive e�ect of SOR and appropriately choosing a larger
uncertainty variance where necessary.

Nevertheless, for future applications, it might be worth to actually consider an additive mod-
eling error supplementary to the multiplicative measurement noise as mentioned in Section 4.1.1.
This can resolve the di�culties of allowing some degree of discrepancy between estimation and
data also for very small measurements without having to unreasonably increase the variance of
the multiplicative noise. Moreover, it might even be possible to choose a smaller value for latter
variance and overall improve the accuracy of the estimation. With the current approach, the
calibrations might be slightly biased in favor of �tting small measurements at the cost of allowing
more discrepancies for large ones.
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7.3 Outlook: Potential of the ESL approach and particle �ltering

This section provides a short outlook on how the ESL approach could be used to describe cell
movement in�uenced by the stress level (Subsection 7.3.1) as well as on how we could improve
the process of parameter estimation with arti�cial intelligence (Subsection 7.3.2).

7.3.1 ESL approach in a spatially inhomogeneous setting

At some point, we might want to mathematically investigate the interactions between the cells
and the tumor microenvironment in a spatially inhomogeneous setting. The general ESL ap-
proach can be easily extended by a spatial component, see the following example25.

Without loss of generality, suppose a two-dimensional point in space x⃗ = (x1, x2)
T ∈ R2

+.
Then, by adding a space dependency to a variable A(t) ⇝ A(t, x⃗), we can adapt its ODE to
achieve a corresponding partial di�erential equation (PDE):

d
dt

A = Ȧ = reaction terms ⇝ ∂tA = reaction terms + spatial dynamics .

A common term for such spatial dynamics is the classical di�usion

∇ · (DA∇A) ,

which describes an omnidirectional movement to achieve even spreading of A. This movement
is proportional to the (concentration) gradient of A, i.e. ∇A, with the di�usion coe�cient DA

which we suppose to be constant. In practice, it might depend on the state of the environment
(e.g. temperature, pressure, porosity or viscosity � depending on the application).

Furthermore, there might also be active or passive (depending on the application) directed
movement of A motivated by the presence of another quantity B = B(t, x⃗), which can similarly
be given as

±∇ ·
(
AMA(B)∇B

)
,

describing a repulsive (+) resp. attractive (−) e�ect of B proportional to its gradient ∇B with
coe�cient MA . The latter potentially depends (among others) on B, e.g. if the movement is
faster the higher B. In the context of A denoting the density of an organism like cells and B
being the concentration of a substance, this phenomenon is called chemotaxis.

We can apply the above principles to construct a PDE for the viable tumor cell density V
by assuming some kind of survival strategy to migrate towards regions with bene�cial growth
conditions, i.e.

∂tV =
(
1− η

)
β V

(
1−

(
V

Vcap

)b
)

−
(
λ+ η λind

)
V

reaction term from ODE (3.2)

+∇ · (DV ∇V )

random
migration

+∇ ·
(
V MV (η)∇η

)
stress-motivated

movement

,

with coe�cients DV and MV (η) denoting the undirected resp. stress-motivated cell motility.
Regarding the ESL, there is no need add spatial dynamics to its ODE (3.3), as it is an arti�cial
quantity with no physical/biological counterpart. Then, for a system of n ∈ N environmental

25We keep the explanations more on a super�cial level to demonstrate how the ESL approach could work in
a spatially inhomogeneous (one/two/three-dimensional) setting. For the mathematical details of the biological
application of partial di�erential equations, like reaction-di�usion equations and chemotaxis, see e.g. [108].
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factors E1, . . . , En , we can de�ne a basic general system of PDEs via

∂tE1 = g̃1(E1, . . . , En, V, t) ,
...

∂tEn = g̃n(E1, . . . , En, V, t) ,

∂tη =

 n∑
j=1

α−
j δ

−
j (Ej)

 (1− η)−

 n∑
j=1

α+
j δ

+
j (Ej)

 η ,

∂tV =
(
1− η

)
β V

(
1−

(
V

Vcap

)b
)

−
(
λ+ η λind

)
V +∇ · (DV ∇V ) +∇ ·

(
V MV (η)∇η

)
,

where each right hand side g̃j (1 ≤ j ≤ n) contains both the reaction term and the potential
spatial dynamics of the respective environmental variable Ej . We want to showcase exemplary
simulation results of such a system in the simplistic (n = 1) biological setting of the nutrient
deprivation model Mη

N but with non-constant nutrient supply E1(t) = N(t), i.e.

∂tN = −γNV N +Next(t, x⃗) +∇ · (DN∇N) ,

where the terms respectively describe (from left to right): the nutrient consumption by the cells
with constant rate γN ≥ 0, a local and time-dependent external nutrient source Next ≥ 0 and
nutrient di�usion with a constant coe�cientDN ≥ 0. In particular, Figure 36 shows the following
behavior for this system starting from the initial conditions as illustrated for t = 0:

■ day 5: cells grow and consume nutrients,

■ day 10: increasing ESL due to nutrients running low,

■ day 15: cells start to die due to stress from nutrient deprivation,

■ days 20�45: cells migrate to regions with low ESL, i.e. su�cient nutrient supply, while
consuming nutrients on their way and enlarging the region with high ESL,

■ day 50: adding a constant nutrient source to the system (bottom left corner),

■ day 55: ESL starts to decrease around the nutrient source,

■ day 75: nutrient conditions and hence ESL are most bene�cial around the nutrients source,

■ days 90�160: cells move towards the nutrient source by migrating to the region with the
most bene�cial growth conditions (lowest ESL).
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Figure 36: Exemplary simulation results demonstrating a conceivable survival strategy of tumor cells
(green, bottom) migrating towards regions with bene�cial growth conditions, i.e. low ESL
(red, middle), due to su�cient nutrient supply (blue, top). The parameter values are
chosen appropriately to make this e�ect visible (but are roughly based on the calibra-
tion results of the ODE model Mη

N ): DN = 0.00015, γN = 0.3, αN = 7, β = 0.45, λ = 0.1,
λind = 0.2, b = 4, Vcap = 1.6, Nthr = 0.1. Cells do only move stress-motivated to demon-
strate the principle: DV = 0, MV = 0.00015. External nutrient source: Next(t < 50, x⃗) = 0
resp. Next(t ≥ 50, x⃗) = 0.1 (for x⃗ located in a small triangular area in the bottom left cor-
ner). We assume closed boundaries.

7.3.2 Utilizing arti�cial neural networks

All mathematical models presented in this thesis fall into the category of physical/biological
models, which describe processes based on knowledge of the underlying physical dynamics and
relationships between involved quantities. An almost completely contrary approach are comput-
ing systems like arti�cial neural networks (for details see e.g. [109, 110]), which are commonly
used for pattern recognition (e.g. images or speech) and natural language processing. They
are based on translating a collection of input values to an output value through a network of
mathematical functions. Given a su�cient amount of inputs with known respective outputs, the
neural network can be trained to recognize the relation between input and corresponding output
without needing any speci�c preknowledge thereof. In the ideal case, an appropriately trained
network can give the correct output for arbitrary new, previously unseen inputs (this is called
generalization). In practice, this is obviously connected with numerous non-trivial challenges,
which can be highly problem-speci�c. In general, the processing through the network happens
in a black box nature, i.e. eventually we cannot reconstruct an explicit function connecting the
inputs with the output.

In the context of biological processes, neural networks could be used to learn about the
relation between a quantity of interest (output) and a collection of system features (inputs)
without needing any preknowledge of the underlying processes themselves. However, without
the incorporation of any modeling assumptions, such networks will not provide quantities with a
physical/biological meaning to gain a deeper understanding of the underlying real-world processes
due to the network's black box nature. Furthermore, we have to keep in mind that such a neural
network has to be trained with a su�cient amount of reliable data (inputs and output), whose
acquisition can be a challenge in biological applications. Nevertheless, there might be potential
in applying neural networks in the context of the model calibration itself instead of using it as
a complementary approach to the biological models. The subsequent paragraph brie�y outlines
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the idea of how a neural network could act as a surrogate to the model calibrations. Note
that there are also other surrogates which could be considered, naming e.g. Gaussian process
regression [111, Ch. 2], stochastic collocation [112�114], polynomial chaos [115][116, Ch. 2] (if
the model is su�ciently linear), and reduced basis [117]. The latter is an example of a method
for model order reduction while the remaining ones build approximations of model solutions
in the parameter space. Neural networks can be used in the context of both approaches (see
e.g. [118, 119] resp. [120�122]). In general, the feasibility of the mentioned methods might be
more restricted compared to neural networks in our highly non-linear setting and hence should
be checked, especially in terms of robustness with reference to the dimension of the parameter
space as well as of necessary smoothness assumptions for the dependence of the approximated
quantity on the parameters.

The details on how to construct an appropriate neural network and how to feasibly incorporate
it in the calibration process are highly non-trivial and would be subject of future work. In
particular, we suggest to apply the neural network to potentially improve the total calculation
time of the SMC algorithm by using it as an alternative way to numerically solve the biological
model, especially in a spatially inhomogeneous setting (there is no need to improve the calculation
time for su�ciently simple ODE models or if the analytical solution is available). For neural
networks the most time-consuming aspect is the training process itself, whereas its application
on new, unseen inputs afterwards can be relatively fast. During the calibration process, we
solve the corresponding model for each particle in order to reweight them according to their
data likelihood at each SMC step. If we calibrate a model based on P particles over the course
of K SMC steps, we solve the system at least P ·K times (in practice even more often due to
mutation and potential tempering steps). Hence, we collect a considerable amount of known
relations between inputs (parameter vector) and an output (model solution) while constructing
the posterior distribution. This fact could be utilized by letting a neural network learn the
numerical solution in parallel to the parameter estimation. Then, e.g. by tracking the output
error of the neural network and checking it against a user-set upper threshold, the forward solving
could be switched (partially/gradually) from the numerical solver to the neural network. After
switching, it might make sense to occasionally check the output error to keep track of accuracy.
Note that the choice of the �switching point� would be not trivial. It is possible to over�t the
neural network by training on too much data. This can lead to poor generalization ability of
the network [123] and has to be taken into account when de�ning the details of the learning
process. There are several other aspects to consider for good generalization, e.g. an appropriate
and unbiased representation of the complete input space by the training data. It is actually
desirable to tune the surrogate to the posterior and not to the prior, see e.g [32, 124, 125].
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Appendices

Appendix A Notations and symbols

This section brie�y summarizes the most important notations introduced in this thesis.

Mathematical modeling. In Section 3.1, the general ESL modeling approach de�nes:

V Density of viable tumor cells

η Environmental stress level (ESL)

n Number of environmental variables/factors

Ej Speci�c environmental variable (j = 1, . . . , n)

gj Reaction function for Ej de�ning the right hand side of Ėj = . . .

δ+j / δ−j Positive/negative in�uence function regarding the stress response to Ej

α+
j /α−

j Positive/negative impact rate regarding the stress response to Ej

Similar notations are used for each application of the ESL approach in Sections 3.2 resp. 3.3,
given by the following models:

Mη
N Nutrient deprivation model using the ESL approach

MN Nutrient deprivation model without the ESL approach

MCYP
DS Complete chemoresistance model

M0
DS Reduced chemoresistance model

M0,⋆
DS Adapted reduced chemoresistance model

The corresponding variables and parameters can be found in Table 1 (for Mη
N , MN ) resp.

Tables 3 and 4 (for MCYP
DS , M0

DS). Furthermore, we construct the adapted model M0,⋆
DS in

Subsection 6.3.2, which introduces additional parameters compared to M0
DS :

d⋆S(S,D) Adapted function to model the supportive e�ect of SOR on the DOX treatment

Ddamp Threshold of the damping factor of d⋆S(S,D)

cdamp Reparametrization parameter for calibrating Ddamp

Model calibration with SMC. Section 4.1 explains the structure of the measurements as well
as the role of uncertainty for model calibrations with the following notations:

I Intensity measurement (proportional to density of viable cells V )

nI/V Proportionality constant for intensity measurements

εV / ε% Uncertainty factor for viability data/percentage viability data

σ2 Uncertainty variance of εV

Section 4.2 introduces the concept of Bayesian inversion for parameter estimation via:

d Number of estimated parameters

Θ d-dimensional parameter space

θ Parameter vector in Θ
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GM Forward operator for a model M mapping parameter values to intensities

I Set of intensity measurements

M Number of measurements considered for model calibration

Li( Ii | θ ) Likelihood of observation Ii (i = 1, . . . ,M)

L( I | θ ) Data likelihood of I
µ0 /µI Prior/posterior (measure) given calibration data I
π0 /πI Probability density of µ0 /µI

Section 4.3 elaborates the Sequential Monte Carlo (SMC) method for model calibrations, using:

K Number of SMC steps

µk Intermediate distribution at k th SMC step (k = 1, . . . ,K)

πk Approximation of probability density of µk

P Sample size

θp Particle (p = 1, . . . , P )

W k
p Weight associated to p-th particle at k-th SMC step

Lk Intermediate data likelihood

I:k Calibration data at k-th SMC step

Ik−1:k Increment data at k-th SMC step, i.e. I:k \ I:k−1

νk Temperature at k-th SMC step if reweighting with likelihood tempering

Pe� E�ective sample size (ESS)

P ∗ Threshold for resampling or tempering

Subsection 4.3.3 describes how Markov Chain Monte Carlo (MCMC) updates are used for mixing
the particles during the SMC algorithm � we introduce:

κk Markov kernel for MCMC updates at k-th SMC step (k = 1, . . . ,K)

qp Proposed sample (p = 1, . . . , P )

ξj Random walk step size for j-th parameter (j = 1, . . . , d)

ϵ2j Variance of ξj ∼ N (0, ϵ2j )

ρ Scaling factor for adapting step size variance

H Number of MCMC updates

Ah Number of accepted samples at h-th MCMC update (h = 1, . . . , H)

ak Average acceptance ratio of proposed samples at k-th SMC step

H∗ Number of MCMC updates after which the acceptance ratio is checked
for adjusting ρ

Post processing of the calibration results. Further notations to investigate the quality of �t
and the statistical signi�cance of the calibration results are introduced in Subsection 6.1 as:

dvalid Validation metric comparing the model prediction with corresponding data

L(I |M) Model evidence of a model M
ZI(M1,M2) Bayes factor comparing two models M1, M2 by their evidence

psig p-value for judging statistical signi�cance
∗ / ∗∗ / ∗∗∗ Star notation to denote the signi�cance level psig < 0.05 / 0.01 / 0.001
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Appendix B Mathematical preliminaries:
Modeling with di�erential equations

This chapter explains the idea behind mathematical modeling with di�erential equations, espe-
cially for biological applications, as well as important concepts in this context. In particular, after
a basic introduction to di�erential equations (Appendix B.I), we outline how to obtain solutions
and their mathematical features (Appendix B.II). Eventually, we provide a simple example to
illustrate the previous explanations (Appendix B.III).

B.I Di�erential equations

Mathematically, a di�erential equation sets an unknown function f in relation with its deriva-
tive(s). In practice, such equations can be used to describe the dynamics of a physical or
biological quantity f (e.g. the size of a population). Then, the derivative(s) of f represent its
change (e.g. over time) and the equation itself incorporates the known information about the
particular dynamics (e.g. reproduction rate, death rate, ...). The following paragraphs pro-
vide the mathematical fundamentals to get a basic understanding of di�erential equations and
their application, esp. in the context of this thesis. Note, within this section we always assume
su�cient di�erentiability of the involved functions. For further reading see e.g. [108, 126, 127].

Ordinary di�erential equation (ODE). We consider a scalar function and its j-th derivative:

f :

{
T → R ,

t 7→ f(t) ,
and f (j) :

{ T → R ,

t 7→
(
d
dt

)j
f(t) ,

with T ∈ R , j ∈ N .

In this case, a di�erential equation of k-th order (k ∈ N) can be de�ned via

G
(
f(t), f ′(t), f ′′(t), . . . , f (k)(t), t

)
= 0 , (B.1)

where G is a function Rk × T → R , which describes the relationship between f , its derivatives up
to order k and the independent function variable t. In applications, the latter often represents the
time dimension, i.e. f(t) ∈ R gives the state of a quantity of interest at a speci�c time point t ≥ 0 .
An equation like (B.1) is called ordinary di�erential equation (ODE) and can be distinguished
from a partial di�erential equations (PDE), which involves a function f depending on more than
one variable. They can be analogously de�ned, but consider the partial derivatives instead. In
practice, such equations are often used for describing the dynamics of a quantity f = f(t, x),
where t denotes the time and x a point in space (in up to three dimensions).

Depending on the de�nition of G , several terminologies are used for characterizing a di�er-
ential equation. We write G in the form of

G
(
f(t), f ′(t), f ′′(t), . . . , f (k)(t), t

)
= h(t) + g

(
f(t), . . . , f (k)(t), t

)
,

where h : T → R collects all terms which do not depend explicitly on f or its derivatives,
and g : Rk × T → R the remaining ones. Then, a di�erential equation is called:

� linear, if g(. . .) =
∑k

j=0 aj · f (j)(t) with aj ∈ R � nonlinear otherwise;

� homogeneous, if the so-called inhomogeneity h is h(t) ≡ 0 � inhomogeneous otherwise;

� autonomous, if the variable t only occurs implicitly via f and its derivatives, i.e. h = const.
and g = g

(
f(t), . . . , f (k)(t)

)
� non-autonomous otherwise.
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These characteristics in�uence how easy it is to determine the solution f from the equation,
or if it is even possible in an analytical way. In Section B.II we present a selection of solving
strategies.

System of (�rst order) ODEs. By using a set of di�erential equations we can model a physi-
cal/biological system, considering the interplay between multiple quantities of interest f1, . . . , fn .
For the sake of simplicity and relevance for this thesis, we focus on ODE systems of �rst order,
which can be given in the form of

ḟ1(t) = r1
(
f1(t), . . . , fn(t), t

)
,

...

ḟn(t) = rn
(
f1(t), . . . , fn(t), t

)
,

(B.2)

where ri : Rn × T → R (i = 1, . . . , n) is the reaction function for the respective system vari-
able fi . Note that the notation ḟ is equivalent to f ′ and often used in the context of time-
dependent ODEs. Since the reaction functions ri can also depend on variables fj ̸=i , this is a
coupled system of ODEs. If additionally to (B.2) initial conditions

f1(t0) = f0,1 , . . . , fn(t0) = f0,n (B.3)

are given with t0 ∈ T and f0,i (i = 1, . . . , n) , we have a so-called initial value problem (IVP).

B.II Model solutions and their mathematical features

A (model) solution of an IVP like (B.2) is a collection {f1(t), . . . , fn(t)} which ful�lls all equations
of the system as well as the initial conditions (B.3). If the characteristics of the ODEs allow it
and the degree of coupling is not too complex (e.g. for linear, autonomous ODEs), the system
could be solved analytically, i.e. we derive explicit formulas for all fi(t). Otherwise, numerical
methods are needed to approximately calculate a model solution by discretization of the system.
So-called Runge-Kutta methods (see e.g. [128, Ch. 2]), and within them the explicit/implicit
Euler methods, are among the most popular ones.

Analytical solver: Separation of variables. If a model is analytically solvable, there are dif-
ferent approaches to obtain the solution, depending on the characterization of the system (see
e.g. [126]). Often, several methods are feasible to the same system. For the models within this
thesis, we focus on a method called separation of variables [126, Ch. 1.3]. It is applicable for
a separable ODE which has the form

ḟi(t) = u(t) · v(fi) , with fi(t0) = fi,0 ,

i.e. it can be written by a product of two terms which only depend on t or fi , respectively (for
an example, see Subsection B.III). Then, the solution can be derived by solving∫ fi(t)

fi,0

1

v(ζ)
dζ =

∫ t

t0

u(τ) dτ (B.4)

for fi(t), given that the involved integrals can be calculated explicitly.
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Positivity and boundedness of solutions. Especially for modeling biological systems, having a
non-negative solution can be a necessity for reasonableness. Often, the model variables represent
densities, concentrations or count individuals, i.e. negative values do not make sense in this
context. Hence, it is desirable to check a model for positivity of the solution and conclude pa-
rameter constraints where necessary. If the model solution can be derived analytically, positivity
can be checked directly. Otherwise, each variable has to be examined respectively. We can check
the positivity of a solution fi (1 ≤ i ≤ n) by investigating the sign of ri under the assumption
of a non-negative initial condition and that fi = 0 and fj ̸=i ≥ 0. If these circumstances result
in ri ≥ 0 , positivity of fi can be concluded, as this means that fi will not decline any further
once it reaches zero. If positivity of a variable is preserved, it automatically implies zero as a
respective lower bound for the solution. Investigating boundedness can give useful insight into
the meaningfulness of the model and the observed behavior. Bounds can be derived e.g. by
analyzing the analytical solution or the so-called steady state solution(s).

Steady states and their stability. A steady state (solution)26 is a solution where the de-
scribed system does not change in time � you could say all system variables do not show any
net reaction. Hence, mathematically, this means that the reaction term of each variable van-
ishes: ri = 0 (i = 1, . . . , n). For autonomous systems, this gives the ansatz to determine the
steady states, i.e. the solution set f̄ = {(f̄1, . . . , f̄n)T | ri=1 ,... ,n(f̄1, . . . , f̄n) = 0}. In practice,
the existence of a steady state might be coupled to parameter constraints.

The stability of a steady state f̄ can give information about the long-time behavior of the
underlying biological/physical system. It is called (asymptotically) stable if the state of the
system converges towards the steady state when starting su�ciently close to it, i.e. if

∃ϵ > 0 : lim
t→∞

f(t) = f̄ ∀ |f(t0)− f̄ | < ϵ ,

for f(t) =
(
f1(t), . . . , fn(t)

)T
, and unstable otherwise. For a single ODE ḟi = ri(fi), stability

can be checked with:

d
dfi

ri
∣∣
fi=f̄i


< 0 ⇒ stable,

> 0 ⇒ unstable,

= 0 ⇒ unclear stability.

If stability by linearization is unclear, another method is needed (e.g. by investigating the change
of a time-dependent perturbation from the steady state).

For a system of ODEs, we can use the theorem of Hartman and Grobman [129, 130] to
determine the stability of a steady state f̄ from the eigenvalues of the Jacobian matrix

J
∣∣
f=f̄

=


∂
∂f1

1 · · · ∂
∂fn

r1
...

. . .
...

∂
∂f1

rn · · · ∂
∂fn

rn


∣∣∣∣∣∣∣∣
f=f̄

which linearizes the system. Then, the steady state f̄ is stable if the real parts of all eigenvalues
of J

∣∣
f=f̄

are negative and unstable otherwise. Note however, that this theorem is only applicable
if all eigenvalues of the Jacobian matrix have a non-zero real part.

26other common names are: stationary state/solution, equilibrium (state)
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Quasi-steady state approximation. Another, related principle is the quasi-steady state approx-
imation. It describes the assumption that the dynamics described by the mathematical model
follow two di�erent time scales: a fast and a slow one. Then, variables whose dynamics happen
on the fast time-scale are approximated by their steady states. This allows to reduce the model
to a system only considering the �slow system�. A classical example are the Michaelis-Menten
kinetics [108, Ch. 6.1], which model a basic enzyme dynamics (fast: complex formation, slow:
reaction).

B.III Exemplary application: Modeling population dynamics

Let P = P (t) denote the size of a population (e.g. cells, bacteria, animal species, ...) at
time t ≥ 0. Then, the derivative Ṗ (t) describes the change of P over time. It is reasonable
to assume that the population growth is directly proportional to its current size, as a larger
population means more reproducing individuals. Since �growth� of a quantity mathematically
translates to a positive derivative, this can be modeled e.g. by the di�erential equation

Ṗ (t) = a · P (t) ,

where the parameter a > 0 can be interpreted as the (constant) growth rate of the population.
Analogously, a larger population contains a higher number of �old� individuals. Hence, for a
limited life expectancy the negative change of the population size can be included by

Ṗ (t) = a · P (t)− b · P (t) = (a− b) · P (t)

reaction term r(P )

(B.5)

with death rate b > 0. This ODE is an example of a linear, homogeneous, autonomous di�erential
equation.

Model solution. Given an initial population size P (t = 0) = P0 ≥ 0, the initial value problem
for (B.5) can be solved analytically e.g. by separation of variables:

dP
dt

= (a− b) · P (t)
(B.4)⇒

∫ P (t)

P0

1

p
dp =

∫ t

0
(a− b) dτ ⇒ P (t) = P0 e

(a−b)t for t ≥ 0 . (B.6)

The solution shows that the relation between growth and death rate determines if we observe
an increasing (a > b ⇒ P (t) ≥ P0) or declining (a < b ⇒ P (t) ≤ P0) population size. Due to the
form of this solution, equation (B.5) is also called an exponential growth/decay model.

Positivity and boundedness of the solution. With having the analytical solution (B.6), posi-
tivity of P can be followed directly by P0 ≥ 0 and the non-negativity of the exponential function.
The same result can be concluded by investigating the respective ODE (B.5) as described in Sec-
tion B.II: P = 0 ⇒ r(P ) = 0 . Positivity of the solution implies the lower bound P ≥ 0. For a
declining population (a < b) the initial population size is an upper bound P ≤ P0, while for an
increasing population (a > b) we see from (B.6) that P can be arbitrarily large for a su�ciently
large t, i.e. there is no upper bound for the population size P .
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Steady states. The long-term behavior of the biological system can be investigated with the
steady states. Before we actually calculate these, we give thought to which behavior we would
expect intuitively. If the population grows faster than it dies, we observe unlimited population
growth. In contrast, if the reproduction cannot compensate the occurring death, the population
will go extinct eventually. Lastly, if growth and death are balanced, the population size will
remain constant at its initial state. In summary, we would expect:

P (t)
t→∞−→


∞ for a > b,

0 for a < b,

P0 for a = b.

Now for the mathematical analysis: For a = b the last result follows directly by insertion into
the analytical solution (B.6): P (t) = P0 · e0 = P0 ∀t ≥ 0. For a ̸= b we set Ṗ = r(P̄ ) = 0 in equa-
tion (B.5), yielding only the trivial steady state P̄ = 0 of the system. Di�erentiation of the
reaction term r and subsequent insertion of the steady state P̄ shows how its stability depends
on the relation between the rates a and b :

d
dP

r(P )

∣∣∣∣
P̄=0

= (a− b)
∣∣
P̄=0

{
> 0 for a > b ⇒ P̄ = 0 unstable,

< 0 for a < b ⇒ P̄ = 0 stable.

All together, the obtained steady state and its stability con�rm the intuitive long-term behavior.

From exponential to logistic growth. Although exponential growth is a reasonable choice to
describe an increasing population, in reality the population size might be limited to a capacity
(e.g. due to limitations in space or resources). To capture this in the modeling, we can modify
the exponential growth term in (B.5) by including a damping factor:

Ṗ (t) = a · P (t)

exponential
growth

·
(
1− P (t)

KP

)
damping factor

− b · P (t) ,

where KP is the capacity of the biological system. For P ∈ (0,KP ) the ratio P/KP ranges
between zero and one. In particular, the closer the population size P is to the capacity KP ,
the closer the ratio P/KP gets to one and hence the stronger the damping factor (1− P/KP )
slows down the exponential growth. To tune the strength of damping with respect to the �dis-
tance� between the current population size P and the capacity KP , we can introduce another
parameter ν > 0 by

Ṗ (t) = a · P (t) ·
(
1−

(
P (t)

KP

)ν )
general logistic growth

− b · P (t) . (B.7)

The larger the parameter ν , the closer the population size can get to the capacity before the
exponential growth is signi�cantly damped. Without the death term b · P (t), equation (B.7)
describes the so-called general logistic growth. Some special cases for ν yield further widely used
growth models: if ν = 1 resp. ν ↘ 0 we refer to logistic growth resp. Gompertz growth [131].
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Appendix C Properties of the chemoresistance models

In this section, we investigate the mathematical properties of the chemoresistance models MCYP
DS

and M0
DS in terms of positivity and boundedness of the solutions as well as the steady states

and their stability.

Positivity of the solutions. Positivity of V and η was already reasoned in Section 3.1, which
applies to both models. For the variables D and S we only need to check the solutions during
the treatment phase, since afterwards they are zero, hence non-negative. In model M0

DS the
drug concentrations are constant and non-negative by de�nition: D = D0 ≥ 0 and S = S0 ≥ 0.
For MCYP

DS positivity follows directly by

Ḋ = −γ · V ·D D=0
= 0 and Ṡ = −γ · V · S S=0

= 0 for V ≥ 0 .

Boundedness of the solutions. Positivity of the solutions means boundedness from below by
zero, which is ful�lled for all variables in both models. The population dynamics are given by
exponential growth, i.e. V is unbounded from above in the biological setting modeled by MCYP

DS

and M0
DS . The ESL η is bounded from above by one due to the de�nition of its ODE (recall

Section 3.1). Since Ḋ, Ṡ ≤ 0 ∀t ≥ t0, their solutions are bounded from above by the respective
initial value D0 and S0.

Steady states and their stability. Due to the unlimited exponential cell growth in both mod-
els MCYP

DS and M0
DS given by the ODE

V̇ =
(
β − λ− (β + λind)η

)
· V , (C.1)

there are only two possibilities to obtain

V̇
∣∣
V=V̄ ,η=η̄

= 0 , which are V̄ = 0 or η̄ = β−λ
β+λind

.

We are interested in potential steady states of the models after the treatment, i.e. for t ≥ ttreat.
Since all remaining drugs are removed after the treatment phase, the ESL stays constant at the
value η = η(ttreat), i.e. we have D̄, S̄ = 0 and η̄ = η(ttreat).

If this stress level is su�ciently large, i.e. η(ttreat) >
β−λ

β+λind
(recall (3.10)), the tumor cells go

extinct, yielding the stable steady state(
V̄ , D̄ , S̄ , η̄

)T
=
(
0 , 0 , 0 , η(ttreat)

)T
, for η(ttreat) >

β−λ
β+λind

.

The stability follows from

d
dV

((
β − λ− (β + λind)η

)
· V
)∣∣∣

V=V̄ ,η=η̄
= β − λ−

(
β + λind

)
η(ttreat)︸ ︷︷ ︸
> β−λ

β+λind

< 0 ,

as the model system can be reduced to only ODE (C.1) after the treatment phase. If by the end
of the treatment the ESL does not exceed the mentioned threshold, i.e. η(ttreat) <

β−λ
β+λind

, there
exists no steady state, since the induced stress was not enough and the population continues to
grow.
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If the ESL reaches the value β−λ
β+λind

exactly at the time ttreat where the drugs are removed,
it stays constant at this level resulting in a stationary population size V = V (ttreat). This gives
the steady state (

V̄ , D̄ , S̄ , η̄
)T

=
(
V (ttreat) , 0 , 0 ,

β−λ
β+λind

)T
.

In a real life setting, this scenario is not realistic and further investigation of the stability of this
steady state is of minor interest.

Towards solving the chemoresistance models. We recall the models, with T = [t0 = 0, ttreat]
denoting the treatment phase:

MCYP
DS :



V̇ =
(
β − λ−

(
β + λind

)
η
)
· V ,

η̇ =
(
α−
Dδ

−
D,HC

(
D(t), S(t)

)
+ α−

S δ
−
S,HC

(
S(t)

))
(1− η) ,

D(t) = D0 exp
(
− γD,HC · t

)
· 1T (t) ,

S(t) = S0 exp
(
− γS,HC · t

)
· 1T (t) ,

M0
DS :

V̇ =
(
β − λ−

(
β + λind

)
η
)
· V ,

η̇ =
(
α−
Dδ

−
D,HC

(
D0, S0

)
+ α−

S δ
−
S,HC

(
S0

))
(1− η)1T (t) ,

with respectively V (t0 = 0) = V0 and η(t0 = 0) = η0,HC ≤ β−λ
β+λind

∈ (0, 1). Both models have the
�rst ODE in common, on which we can apply separation of variables (B.4):∫ V (t)

V0

1

v
dv =

∫ t

t0=0
β − λ−

(
β + λind

)
η(τ) dτ

⇒ ln
(
V (t)

)
− ln

(
V0

)
= (β − λ)t−

(
β + λind

) ∫ t

0
η(τ) dτ

⇒ V (t) = V0 exp

(
(β − λ)t−

(
β + λind

) ∫ t

0
η(τ) dτ

)
,

for t ∈ [0, tend]. If t ∈ [ttreat, tend] , we have∫ t

0
η(τ) dτ =

∫ ttreat

0
η(τ) dτ +

∫ t

ttreat

η(ttreat) dτ =

∫ ttreat

0
η(τ) dτ + η(ttreat)(t− ttreat) ,

as then η̇ = 0 ⇒ η(t) = η(ttreat) ∀t ∈ [ttreat, tend]. An analogous approach for the second ODE
(which di�ers for both models only by the time-dependence of δ−D,HC and δ−S,HC) yields:∫ η(t)

η0,HC

1

1− ζ
dζ =

∫ t

0
α−
Dδ

−
D,HC + α−

S δ
−
S,HC dτ

⇒ ln
(
1− η0,HC

)
− ln

(
1− η(t)

)
=


∫ t
0 α

−
Dδ

−
D,HC

(
D(τ), S(τ)

)
+ α−

S δ
−
S,HC

(
S(τ)

)
dτ for MCYP

DS ,∫ t
0 α

−
Dδ

−
D,HC

(
D0, S0

)
+ α−

S δ
−
S,HC

(
S0

)
dτ for M0

DS ,

eventually resulting in

η(t) =


1− (1− η0,HC) exp

(
−
∫ t
0 α

−
Dδ

−
D,HC

(
D(τ), S(τ)

)
+ α−

S δ
−
S,HC

(
S(τ)

)
dτ
)

for MCYP
DS ,

1− (1− η0,HC) exp

(
−
(
α−
Dδ

−
D,HC

(
D0, S0

)
+ α−

S δ
−
S,HC

(
S0

))
t

)
for M0

DS ,

for t ∈ [ttreat, tend] and η(t) = η(ttreat) ∀t ∈ [ttreat, tend].
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Appendix D Supplementary material:
Model calibration and post processing

We provide additional material regarding the model calibrations and the post processing of
the results. In particular, we give details on the uncertainty modeling for percentage viability
measurements (Appendix D.I) as well as on systematic resampling (Appendix D.II). Furthermore,
we summarize the prior distributions for the applied model calibrations (Appendix D.III) and
explain how we obtain a KDE for a marginal posterior distribution on the bounded support of
its respective prior (Appendix D.IV).

D.I Uncertainty modeling: Ratio distribution of two Gamma distributions

We consider two uncertainty factors ε1 and ε2 which are respectively Gamma distributed accord-
ing to (4.3), i.e.

ε1 ∼ Γ

(
1

σ2
1

,
1

σ2
1

)
= Γ(a1, a1) and ε2 ∼ Γ

(
1

σ2
2

,
1

σ2
2

)
= Γ(a2, a2) ,

with variances σ2
1, σ

2
2 ∈ (0, 1) and the short notations a1 = 1/σ2

1 resp. a2 = 1/σ2
2. We show in this

section that the ratio between two such independent random variables is distributed according
to a generalized Beta prime distribution via

ε1
ε2

∼ β′
(
a1, a2, 1,

a2
a1

)
, with PDF fa1,a2

(ε1/ε2)
(y) =

(
y

a2/a1

)a1−1(
1 + y

a2/a1

)−a1−a2

B(a1, a2) · a2/a1
, (D.1)

where B( · , · ) denotes the Beta function. Recall the PDF for a random variable ε ∼ Γ(a, a):

fa,a
ε (x) =

aa

Γ(a)
xa−1e−ax ,

with x, a > 0 and the Gamma function

Γ(a) =

∫ ∞

0
ua−1e−u du . (D.2)

Since ε1 and ε2 are independent, their joint PDF is given by:

fa1,a2
ε1,ε2 (x1, x2) = fa1,a1

ε1 (x1) · fa2,a2
ε2 (x2) =

aa11 · aa22
Γ(a1) · Γ(a2)

xa1−1
1 · xa2−1

2 e−a1x1−a2x2 ,

with x1, x2 > 0. The PDF of the ratio ε1/ε2 can be calculated with the so-called ratio distribu-
tion (RD) of two independent random variables [132]. In particular, for y = x1

x2
⇒ x1 = yx2, it

follows:

fa1,a2
(ε1/ε2)

(y)
RD
=

∫ +∞

−∞
fa1,a2
ε1,ε2 (yx2, x2) · |x2| dx2

=

∫ ∞

0

aa11 · aa22
Γ(a1) · Γ(a2)

(yx2)
a1−1 · xa2−1

2 e−a1yx2−a2x2 · x2 dx2

=
aa11 · aa22

Γ(a1) · Γ(a2)
ya1−1

∫ ∞

0
xa1+a2−1
2 e−x2(a1y+a2) dx2 .
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By the substitution u = x2(a1y + a2) ⇒ x2 =
u

a1y+a2
, we get:

fa1,a2
(ε1/ε2)

(y) =
aa11 · aa22

Γ(a1) · Γ(a2)
ya1−1

∫ ∞

0

ua1+a2−1

(a1y + a2)a1+a2−1
e−u · 1

a1y + a2
du

=
aa11 · aa22

Γ(a1) · Γ(a2)
ya1−1 (a1y + a2)

−a1−a2

∫ ∞

0
ua1+a2−1 e−u du︸ ︷︷ ︸
(D.2)
= Γ(a1+a2)

=
aa11 · aa22
B(a1, a2)

ya1−1 a−a1−a2
2

(
a1
a2

· y + 1

)−a1−a2

,

where we used the relation B(a1, a2) =
Γ(a1+a2)
Γ(a1)·Γ(a2) in the last step. Eventually, we achieve the

desired PDF from (D.1) by

fa1,a2
(ε1/ε2)

(y) =
ya1−1

B(a1, a2)
aa11 aa22 a−a1−a2

2︸ ︷︷ ︸
=

(a1/a2)
a1−1

(a1/a2)
−1

(
a1
a2

· y + 1

)−a1−a2

=

(
y

a2/a1

)a1−1 (
1 + y

a2/a1

)−a1−a2

B(a1, a2) · a2/a1
,

i.e. the ratio of the uncertainty factors ε1 ∼ Γ(a1, a1) and ε2 ∼ Γ(a2, a2), with a1, a2 > 1, is Beta
prime distributed according to ε1

ε2
∼ β′(a1, a2, 1, a2a1 ).

D.II Methodological details for SMC: Systematic resampling

The following Algorithm D.1 gives the steps of systematic resampling according to [80]. As
explained in Subsection 4.3.2, this method can be used alternatively to random resampling to
appropriately reweight the particles during SMC.

Algorithm D.1 � Systematic resampling (SR)

1: sample r ∼ U(0, 1/P )
2: set ω = W k

1 , s = 1, R = ∅
3: for p = 1, . . . , P do
4: set u = r + p−1

P
5: while u > ω do
6: set s = s+ 1 and ω = ω +W k

s

7: end while
8: include particle θs to R, i.e. R = R ∪ {θs}
9: end for

D.III Applying SMC: Prior distributions for model calibrations

The following Tables D.1 resp. D.2 summarize the prior distributions to perform the calibrations
for models Mη

N and MN resp. M0
DS and MCYP

DS . The reasoning behind these distributions is
explained in Subsections 5.3.1 resp. 5.3.2.

Table D.1: Overview of the a priori information used to calibrate the models Mη
N and MN .

Note that αN and η0 do only appear in model Mη
N . The following notations are used:

�a, b� (uniform prior on [a, b]), �= a� (not calibrated, �xed to a).

hyperparameters cell dynamics nutrients' in�uence

σ2
0 σ2

N nN cn

0, 0.5 0, 0.5 0, 0.5 0, 1

β cβ cλ Vcap b

0, 1 0, 1 0, 1 1, 3 1, 12

Nthr αN η0

0, 1 0, 12 = 0



102 D SUPPLEMENTARY MATERIAL: MODEL CALIBRATION, POST PROCESSING

T
a
b
le
D
.2
:
O
ve
rv
ie
w
o
f
th
e
a
p
ri
o
ri

in
fo
rm

a
ti
o
n
u
se
d
to

ca
li
b
ra
te

m
o
d
el

M
0 D
S
re
sp
.
M

C
Y
P

D
S

fo
r
d
i�
er
en
t
co
m
b
in
a
ti
o
n
s
o
f
H

0
∈
{0
,1
}
a
n
d
C

0
∈
{0
,1
}.

T
h
e
fo
ll
ow

in
g
n
o
ta
ti
on
s
a
re

u
se
d
:

�N
/
A
�
(n
o
t
ca
li
b
ra
te
d
),
�a
,b
�
(u
n
if
o
rm

p
ri
o
r
o
n
[a
,b
])
,
�a
,h

,b
�
(t
ri
a
n
g
u
la
r
p
ri
o
r
o
n
[a
,b
]
w
it
h
m
o
d
e
h
),

�=
a
�
(n
o
t
ca
li
b
ra
te
d
,
�
x
ed

to
a
),
�=

M
A
P
�
(n
o
t
ca
li
b
ra
te
d
,
�
x
ed

to
M
A
P
es
ti
m
a
te

fr
o
m

ca
li
b
ra
ti
o
n
fo
r
H

0
,C

0
=

0,
i.
e.

H
C
0
).

(a
)
P
ri
o
rs

fo
r
ca
li
b
ra
ti
o
n
o
f
m
o
d
el

M
0 D
S
u
si
n
g
H
ep
3
B
2
d
a
ta
.

c
e
ll
d
y
n
a
m
ic
s

E
S
L
d
y
n
a
m
ic
s

e
n
v
ir
o
n
m
e
n
t

H
C
0

H
1
/
C
1
/
H
C
1

(β
−
λ
)

(β
+
λ
in
d
)

N
/A

0
,3

=
M
A
P

η 0
,H

C
α
− D

D̂
n
o
rm

,H
C

m̂
1

α
− S
δ− S

(1
)

c δ
d
S
(0
.5
)

c d

=
0

0
,2
0

−
4
,0
,4

0,
1
.7

0,
2

0,
0,
1

0
,1

0
,1

0,
0,
1

(b
)
P
ri
o
rs

fo
r
ca
li
b
ra
ti
o
n
o
f
m
o
d
el

M
C
Y
P

D
S

u
si
n
g
H
ep
G
2
o
r
C
3
A
su
b
2
8
d
a
ta
.

c
e
ll
d
y
n
a
m
ic
s

E
S
L
d
y
n
a
m
ic
s

d
ru
g
d
y
n
a
m
ic
s

e
n
v
ir
o
n
m
e
n
t

H
C
0

H
1
/
C
1
/
H
C
1

(β
−
λ
)

(β
+
λ
in
d
)

N
/A

0
,3

=
M
A
P

η 0
,H

C
α
− D

D̂
n
o
rm

,H
C

m
1

α
− S

S
th
r,
H
C

m̂
2

S
su
p
p

m̂
3

=
0

0
,2
0

−
4
,0
,4

0,
6

0,
10

0
,3

0
,1
.7

0,
1

0,
1
.7

0,
0,
1

γ
D

γ
S

0
,2
0

0
,2
0



D.IV Post processing of the calibration results: Truncated KDE 103

D.IV Post processing of the calibration results: Truncated KDE

In this section, we explain how we truncate a kernel density estimation (KDE), i.e. a smoothed
approximation of the PDF, based on the particle representation of a marginal posterior distri-
bution with bounded support. The boundedness of the posterior support is carried over from
the prior (recall that we used either uniform or triangular priors), as the posterior measure µI

is absolutely continuous with respect to the prior µ0 [81], i.e. supp(πI) ⊆ supp(π0).

Native KDE. Suppose we want to approximate the PDF of the marginal posterior of the
j-th parameter (j = 1, . . . , d ∈ N), for which we assumed a prior distribution whose support is
bounded on an interval [a, b], a < b. We use a KDE with Gaussian kernels and Scott's bandwidth
selection method [93]. In practice, this can be calculated by applying the Python function

scipy.stats.gaussian_kde( particles_j

{(θp)j}Pp=1

, weights = w_particles

{Wp}Pp=1

) ,

where the arguments are the j-th component of all particles with the corresponding weights.
If a ≪ (θp)j ≪ b ∀p ∈ {1, . . . , P}, i.e. the collection of marginalized particles is situated �far
enough� (which depends on the bandwidth) away from the bounds, the support of this KDE is
virtually included27 in [a, b]. Therefore, in this case, there is no need to truncate the KDE to
obtain the desired boundedness.

However, the above scenario might not always apply in practice, especially if the bounds of the
prior are motivated by mathematical modeling. For instance, if a parameter c ∈ [0, 1] quanti�es
some kind of response, the mathematical bounds can be interpreted as �no response� (c ≡ 0) and
�maximal response� (c ≡ 1). Then, depending on the underlying data, it can actually happen
that the corresponding marginal particles accumulate at one of these bounds. In general, if a
considerable part of the particles is close to a border, the support of the KDE will overshoot this
border due to its construction by [133], that is

KDEh(θ) =
1

Ph

P∑
p=1

κ

(
θ − (θp)j

h

)
,

where h > 0 is the bandwidth, P the sample size and κ the kernel density, i.e. in our case the
PDF of a standard normal distribution. We see that with the latter, a particle close to the
border b (w.l.o.g.), i.e. (θp)j ≲ b, contributes to the estimator in such a way that KDEh(θ) > 0
also for θ ≳ b. This contribution accumulates with the number of particles which are situated
close to b. Hence, in such a scenario, the above KDE is not feasible to obtain an approximation of
the marginal PDF with bounded support. To preserve the boundedness of the marginal posterior
particles, we present an adapted version of the native KDE in the following.

27To be precise, the actual support of the KDE is unbounded due to the Gaussian kernels. However, sup-
pose θmin,j resp. θmax,j being the smallest/largest value of {(θp)j}Pp=1, then the value of the KDE will approach
zero if evaluated at points su�ciently smaller/larger than θmin,j resp. θmax,j .
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Truncated KDE. Figure D.1 illustrates how we appropriately limit the native KDE to the
bounded support of the prior distribution � we will refer to this as the truncated KDE (trKDE).
Note that the latter needs to sustain the features of a PDF, especially having an integral of one.

Figure D.1: Outline of how the truncated KDE is obtained from the native KDE, based on the
weighted particle approximation of a marginal posterior.

Without the truncation, the probability mass of the particle approximation close to a boundary
gets spread outside of the bounded support of the prior (Figure D.1: �rst plot). In practice, we
observed that the distance of any external (i.e. outside of [a, b]), signi�cantly non-zero mass of
the KDE has a distance from the boundaries which is not larger than the interval length b− a.
Hence, we can move all external mass into the interval [a, b] by de�ning the truncated KDE as

trKDEh(θ) =
(
KDEh(a+ τa) + KDEh(a− τa)

external mass

+KDEh(b− τb) + KDEh(b+ τb)

external mass

)
· 1[a,b](θ) ,

with τa, τb ∈ [0, b− a] being the distance of θ ∈ [a, b] from a resp. b and 1[a,b] denoting the indica-
tor function on [a, b]. In particular, we basically �shift� external mass with distance τ∗ (∗ ∈ {a, b})
from the respective boundary to the point with the same distance, but inside the interval [a, b]
(Figure D.1: second plot). Therefore, we can set trKDEh(θ) = 0 ∀θ /∈ [a, b] without losing any
mass (Figure D.1: third plot), i.e. preserving an integral of one. This results in an appropri-
ate approximation of the marginal posterior PDF given by the particles and truncated on [a, b]
(Figure D.1: fourth plot).
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Appendix E Complementary calibration results

In this part of the appendix, we present further investigations of the results regarding the model
calibrations for both applications (nutrient deprivation models: Section E.I, chemoresistance
models for cell line Hep3B2/HepG2: Sections E.II resp. E.III), complementary to Chapter 6.

E.I Application 1: Nutrient deprivation models

This section28 gives additional material regarding the calibration results for comparing the nu-
trient deprivation models Mη

N and MN , which are discussed in Subsection 6.2.2. We summarize
the obtained estimates for the hyperparameters (Subsection E.I.1) as well as provide more details
on the �t of model solution and data in terms of the uncertainty range (Subsection E.I.2) and
validation metric (Subsection E.I.3).

E.I.1 Estimates of the hyperparameters

Table E.3 lists the marginal means and variances of the posteriors for the proportionality con-
stants and reparametrization parameters. We see similar results for both models. In fact, ob-
servable di�erences between the parameter estimates, i.e. the mean values in Table E.3a, of both
models are found to be statistically insigni�cant (psig > 0.05) by applying a two-tailed Student
t-test on the q = 12 estimates assuming unequal variances.

Table E.3: Comparison of further estimated parameters of modelsMη
N andMN . Numerical deviations

from performing the SMC algorithm q = 12 times are given as 95% con�dence interval
(x̄± 1.96 · σxq

−1/2 with x̄, σx mean resp. standard deviation of observations).

(a) Marginal means E( · ) of the posterior.

nN n0 cn cβ cλ

Mη
N 0.243± 0.001 0.182± 0.006 0.752± 0.027 0.240± 0.013 0.554± 0.046

MN 0.244± 0.002 0.190± 0.006 0.780± 0.024 0.236± 0.022 0.576± 0.085

(b) Marginal variances Var( · ) of the posterior.

nN n0 cn cβ cλ

Mη
N 0.002± 0.001 0.007± 0.004 0.032± 0.016 0.016± 0.010 0.069± 0.035

MN 0.002± 0.001 0.008± 0.005 0.034± 0.020 0.011± 0.007 0.053± 0.029

28Note that content and formulations of this section are taken from our publication [63] and some notations,
especially regarding the numerical deviations, might di�er to maintain consistency within the thesis.
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E.I.2 Uncertainty range of the estimated solution

To investigate if the observable drop in the measured viability on the third day in Figure 19
in�uences the quality of the �t, we consider the underlying measurement uncertainty. Depending
on the uncertainty variance σ2, we can calculate the percentiles P0.05 and P0.95 of the Gamma
distributed uncertainty factor ε:

σ̄2
N = 0.0355 ⇒ P0.05 = 0.712 , P0.95 = 1.329 ,

σ̄2
0 = 0.2410 ⇒ P0.05 = 0.350 , P0.95 = 1.920 .

These determine the 90% uncertainty range (4.5) for the calibration data D1�D4 resp. D0, i.e.
give an interval around the solution V (t), where the model expects 90% of the measurements.
We want to know how many measurements are actually situated where they are expected.

For each data set, we count the scaled measurements I/n, which are situated below, within
or above the 90% uncertainty range of the corresponding average solution V . A visual overview
of the calculated percentages can be seen in Figure E.2. In each subplot (left/right: model MN

resp. Mη
N ), there are three di�erent markers per data set (vertical axis), showing how many data

points (horizontal axis) are situated below/within/above the 90% range. For instance, regarding
data set D4 (topmost on vertical axis), in both plots the black bullet marker shows that approx.
87% of the measurements actually lie within the 90% range, whereas the dark/light blue triangle
marker shows that about 4%/9% of them are above/below the 90% range.

0 5 10

D0

D1

D2

D3

D4

parameters calibrated with M𝑵

amount of data points (in %)

d
a
ta

se
t

85 90 95 0 5 10

parameters calibrated with M𝜼
𝑵

amount of data points (in %)

85 90 95

percentage of data below / within / above 90% uncertainty range

Figure E.2: Percentage of data points which are situated below/within/above the 90%
range [V · P0.05 , V · P0.95] around the solution V . The dotted lines in the corresponding
color give the average over all data sets D0�D4. Error bars show the numerical devia-
tions from performing the SMC algorithm q = 12 times by the 95% con�dence interval
(x̄± 1.96 · σxq

−1/2 with x̄, σx mean resp. standard deviation of observations).

We see that averaging over the data sets (dotted vertical lines), for both models roughly 90%
(black line) of the scaled data is actually situated within the 90% uncertainty range. Regarding
the remaining data points, we observe that the model solutions tend to be larger than the
measurements, since about 8.3�8.5% (light blue line) of the data points lie below the 90% range,
whereas only about 2.1% (dark blue line) are above.

To investigate this observation, we take a closer look at the data below the 90% range by
checking if the discrepancy focuses on speci�c measurements, see Table E.4. On the third day, the
measurements show an extraordinarily large amount of data below the 90% uncertainty range,
where only 5% would be expected. This supports the hypothesis that the measurements on that
day might be outliers.
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Table E.4: Average (over the q = 12 SMC runs) percentage of data points in D0�D4 which are be-
low the 90% uncertainty range for di�erent initial cell densities V0 (rows) and days t
(columns). Numerical deviations between the runs are given by the 95% con�dence in-
terval (x̄± 1.96 · σxq

−1/2 with x̄, σx mean resp. standard deviation of observations). If
there are no deviations, we omit the con�dence intervals and decimal places (which are
zero) for better readability.

Day of measurement
V0 0 1 2 3 4 5 6 7

Mη
N 1.00 0 0 0.8± 1.1 5 3.3± 1.4 0 5 5

0.50 5 0 7.9± 1.5 35 0 0 0 0
0.25 14.2± 1.1 5 32.1± 1.5 72.9± 1.5 5.4± 0.8 0 1.3± 1.3 5

MN 1.00 0 0.8± 1.1 0 0 0 0 0 0
0.50 5.8± 1.1 0 5.8± 1.1 35 0 0 0 0
0.25 13.8± 1.8 5 30.8± 1.1 73.8± 1.3 5.4± 0.8 0 1.3± 1.3 4.2± 1.1

Furthermore, we observe that the percentages are higher the smaller V0 is: approx. 35% resp.
68�78% of the measurements are below the 90% range for V0 = 0.50 resp. V0 = 0.25. This
negative correlation is expectable, since the width of the range

[
V · P0.05 , V · P0.95

]
decreases

with smaller V (recall right side of Figure 5). This also explains that, within the measurements
of a particular day, more data points tend to be below the 90% range for smaller V0.

E.I.3 Quality of �t to the data

As the validation metric (6.1) measures the mismatch between data and model prediction, we
use the following scale to compare the quality of �t between both nutrient deprivation models:

dcomp =
dvalid

(
F data, F sol

Mη
N

)
dvalid

(
F data, F sol

MN

)


≪ 1 indicates: better �t for Mη
N ,

≊ 1 indicates: MN and Mη
N �t equally well ,

≫ 1 indicates: better �t for MN .

Table E.5 summarizes dcomp for each data set and initial cell density V0. For data set DV
(validation data set), the solution of the reduced model Mopt was used by inserting the average
estimated parameters resulting from the calibration of Mη

N resp. MN .

Table E.5: Ratio dcomp of the validation metrics using model Mη
N resp. MN averaged over all time

points considering measurements regarding various V0 (columns) and data sets, i.e. di�er-
ent N0 (rows). The values in the last row/column are averaged over all data sets/initial
cell densities before taking the mean over the SMC runs. Numerical deviations between
the runs are given by the 95% con�dence interval (x̄± 1.96 · σxq

−1/2 with x̄, σx mean resp.
standard deviation of observations).

Initial cell density V0

Data set 1.00 0.50 0.25 0.10 0.05 all (avg.)

DV 1.05± 0.16 1.04± 0.09 1.07± 0.05 1.01± 0.07 1.03± 0.04 1.04± 0.08

D4 1.04± 0.04 1.01± 0.03 1.00± 0.03 - - 1.02± 0.01
D3 1.01± 0.02 0.99± 0.05 0.99± 0.04 - - 1.00± 0.03
D2 1.02± 0.01 1.02± 0.06 1.03± 0.04 - - 1.02± 0.02
D1 1.00± 0.02 1.01± 0.04 1.01± 0.01 - - 1.01± 0.02
D0 0.94± 0.04 1.06± 0.05 1.03± 0.02 - - 1.01± 0.03

all (avg.) 1.01± 0.03 1.02± 0.04 1.02± 0.01 1.01± 0.07 1.03± 0.04 1.02± 0.02
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All values are close to one and the di�erences between them are in the scale of numerical variations
of the SMC algorithm. Hence, the investigation of the validation metric does not show any clear
preference of a particular model.

E.II Application 2: Chemoresistance of Hep3B2

This section provides complementary details to Subsection 6.3.1 regarding the calibration results
of the reduced chemoresistance model M0

DS with the data for cell line Hep3B2. In particular, we
present the marginal estimates (Subsection E.II.1), investigate the parameter correlations (Sub-
section E.II.2) and compare the marginal distributions of speci�c parameters (Subsection E.II.3).

E.II.1 Marginal estimates

Figure E.3 compares the marginal distributions of the model parameters based on the parti-
cle approximation collecting all SMC runs. Note that the parameters Dnorm,HC and m1 were
calibrated in log scale to improve the coverage of the high probability region with the prior
sample (recall Subsection 5.3.2), but their marginal distributions and corresponding MAPs are
determined by calculating the KDE in linear scale.

Figure E.3: Marginal posteriors of Hep3B2 calibrations. The numerical deviations for cross-validating
the MAP estimates according to Subsection 6.1.3 are shown as error bars, which might
not be visible due to high robustness of the respective estimate. Recall that β + λind
resp. η0,HC are only calibrated for HC0 resp. H1/C1/HC1 (β + λind is �xed to its MAP
for H1/C1/HC1 and η0,HC = 0 for HC0 per de�nition).
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E.II.2 Parameter correlations

We check the (linear) parameter correlations of the particle approximation collecting all SMC
runs as described in Subsection 6.1.4. To capture numerical variations, we repeated the calcula-
tion of the correlation coe�cients 1000 times for respectively di�erent set of 5000 samples. Since
this resulted in robust coe�cients29, we give the average values of r in the following Figures E.4
an E.5 . Note that in all subplots of both �gures the axis limits are not consistent and especially
not labeled as this is not the focus of this investigation. Figure E.4 depicts the correlations
between the DOX susceptibility threshold Dnorm,HC and the remaining parameters of the ODE
for the ESL η.

Figure E.4: Scatter plots with 5000 samples drawn from the 2D distributions of pairwise parameter
combination of Dnorm,HC with the remaining calibrated parameters (columns) resulting
from model calibrations with Hep3B2 data. Only statistically signi�cant (psig < 0.05)
correlation coe�cients r are given and a regression line is depicted if at least a moderate
linear correlation (|r| > 0.3) is observable.

Recalling the categorization of the correlation coe�cient r from (6.4), we observe a strong neg-
ative correlation with m1 (potentially nonlinear as the L-shaped point cloud suggests) and a
moderate positive one with α−

D for all environmental conditions. Furthermore, there are less ob-
vious indications from the shape of the point clouds that there is a relevant positive correlation
with 1− dS . Note that for 1− dS the correlation results could be distorted due to the proximity
of the respective marginal posteriors to the lower bound of zero (see Figure 28). In summary, all
parameters involved in the DOX stress response α−

Dδ
−
D,HC show considerable correlations.

For the sake of completeness, Figure E.5 shows analogous plots for the remaining parameter
estimations. Note that we do not show the correlations of pairwise combinations of α−

D, α
−
S δ

−
S,HC

and 1− dS since they are mostly found to be statistically insigni�cant and/or very weak. The
only exception is a moderate positive correlation between 1− dS(0.5) and 1− dS(1.0) which is an
expected result as we used the parametrization dS(1.0) = cd · dS(0.5) and calibrated cd ∈ (0, 1]
instead of dS(1.0).

29The standard deviation of the numerical dispersion is in the magnitude of 10−2 , i.e. the deviations are of
minor interest, as the interpretation guidelines in (6.4) are not rigid.
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(a) Illustration of the correlations between β + λind (top row) resp. η0,HC (rows 2�4) with the remaining
calibrated parameters (columns).

(b) Illustration of the correlations between m1 with the remaining calibrated parameters (columns).

Figure E.5: Scatter plots with 5000 samples drawn from the 2D distributions of pairwise parameter
combinations resulting from model calibrations with Hep3B2 data. Only statistically
signi�cant (psig < 0.05) correlation coe�cients r are given and a regression line is depicted
if at least a moderate linear correlation (|r| > 0.3) is observable.

E.II.3 Comparison of the marginal parameter estimates

We provide further results from investigating the marginalized estimates (which neglects correla-
tions) of particular parameters. We focus on comparing the respective marginal distributions in
di�erent environments with the signi�cance check as proposed in Subsection 6.1.3 and Figure 15.

Marginal posterior comparison: Initial stress level. Figure E.6 illustrates the statistical sig-
ni�cance of the di�erences between the marginal distributions of η0,HC from Figure 23. We see
clear signi�cance for all cases.
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Figure E.6: Resulting p-values of the signi�cance check (sample sizes per subplot from left to right:
500, 100, 50, 30) comparing the marginal distributions of η0,HC for Hep3B2 in di�erent
environmental settings. Vertical axis limits: 0�0.001. Note that some boxplots are not
visible due to vanishing p-values.

Marginal posterior comparison: Cytotoxic e�cacy of SOR. Figure E.7 statistically com-
pares the marginal distributions of α−

S δ
−
S,HC(S0) from Figure 25. We see clear signi�cance for

the marginals for almost all scenarios, except for the cases of tissue sti�ening with S0 = 0.5
(potentially insigni�cant for sole cirrhosis resp. potentially signi�cant for cirrhosis in hypoxic
conditions) and combined hypoxia and cirrhosis with S0 = 1.0 (potentially insigni�cant).

Figure E.7: Resulting p-values of the signi�cance check (sample sizes per subplot from left to right:
500, 100, 50, 30) comparing the marginal distributions of α−

S δ
−
S,HC(S0) for Hep3B2 in

di�erent environmental settings. Vertical axis limits are given by the receptive mark in
the subplot: 0 � 1/0.001 (no mark / ∗∗∗). Note that some boxplots are not visible due to
vanishing p-values.

Marginalized investigation: Estimates of DOX susceptibility. We investigate the marginals of
the DOX susceptibility thresholdDnorm,HC(H0, C0) = Dnorm · dH(H0) · dC(C0) forH0, C0 ∈ {0, 1},
i.e. without considering correlations to other parameters. Figure E.8 compares the respective
marginal posteriors and MAPs of Dnorm,HC for di�erent environments.

Figure E.8: Comparison of marginal posteriors (violin plots) and corresponding MAPs ofDnorm,HC for
Hep3B2. Due to minor numerical variations, the cross-validated 95% con�dence intervals
(error bars) are not visible.
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The marginal MAPs of Dnorm,HC show the following environmental e�ects:

sole hypoxia (HC0⇝H1): 2.659 ↘ 1.778 (−33.1%) ,

hypoxia in cirrhosis (C1⇝HC1): 2.805 ↘ 1.903 (−32.2%) ,

sole cirrhosis (HC0⇝C1): 2.659 ↗ 2.805 (+5.5%) ,

cirrhosis in hypoxia (H1⇝HC1): 1.778 ↗ 1.903 (+7.0%) .

Since a smaller value for Dnorm,HC translates to an enhanced susceptibility, we observe hypoxia
resp. cirrhosis to increase/decrease the DOX susceptibility. Furthermore, we do not see a large
di�erence between the e�ect of sole hypoxia/cirrhosis and a respective combination of both. This
suggest no synergistic e�ect between hypoxia and sti�ness on the susceptibility. In general, the
relative decrease of Dnorm due to hypoxia (approx. −31%) appears to outweigh the increase by
cirrhosis (approx. +6%). This is consistent with the observation

HC0⇝HC1 : 2.659 ↘ 1.903 (−28.4%) .

Comparing the marginal posteriors of Dnorm,HC for di�erent environmental settings shows a
clear statistical signi�cance of the increasing e�ect of hypoxia on the DOX susceptibility, in
contrast to the in�uence of ECM sti�ness (see Figure E.9). This could indicate that the DOX
susceptibility is actually not e�ected by cirrhosis, however this cannot be concluded distinctively.
Figure E.9 shows that the signi�cance results for observed di�erences between the �tted estimates
of Dnorm,HC are mostly very similar to the ones for the marginals. The only exception is visible
for comparing H1 with HC1, which appears to be clearly signi�cant for the �tted estimates in
contrast to the marginals. This weakens the indications obtained with the marginals that the
DOX susceptibility is generally not in�uenced by cirrhosis.

Figure E.9: Resulting p-values of the signi�cance check comparing the marginal distributions resp.
�tted estimates ofDnorm,HC (in Figure E.8) for Hep3B2 in di�erent environmental settings
(sample sizes per subplot from left to right: 500, 100, 50, 30). Vertical axis limits are given
by the receptive mark in the subplot: 0 � 1/0.05/0.01/0.001 (no mark / ∗ / ∗∗ / ∗∗∗). Note
that some boxplots are not visible due to vanishing p-values.

Marginal posterior comparison: DOX impact. Figure E.10 depicts the statistical signi�cance
of the di�erences between the marginal distributions of α−

D from Figure 26. We observe poten-
tially insigni�cant di�erences between the marginals for all cases. For the �tted values however,
the di�erences appear to be clearly signi�cant for sole hypoxia resp. cirrhosis (columns 1 and 3)
and a combination of both (column 5). In general, this could hint on a signi�cant in�uence of
hypoxia/sti�ening on the DOX impact rate.
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Figure E.10: Resulting p-values of the signi�cance check comparing the marginal distributions resp.
�tted estimates of α−

D for Hep3B2 in di�erent environmental settings (sample sizes per
subplot from left to right: 500, 100, 50, 30). Vertical axis limits are given by the receptive
mark in the subplot: 0 � 1/0.001 (no mark / ∗∗∗). Note that some boxplots are not visible
due to vanishing p-values.

Marginal posterior comparison: Supportive e�ect of SOR. Figure E.11 shows the statisti-
cal comparison of the marginal distributions for 1− dS(S0) from Figure 28. For S0 = 0.5 , we
see potentially insigni�cant di�erences between the marginals when comparing HC0 with HC1
(column 5) and an unclear signi�cance for the remaining cases (columns 1�4). For S0 = 1.0 ,
the observed di�erences appear to be clearly (columns 2�4) or potentially (columns 1 and 5)
signi�cant.

Figure E.11: Resulting p-values of the signi�cance check comparing the marginal distributions
of 1− dS(S0) for Hep3B2 in di�erent environmental settings (sample sizes per subplot
from left to right: 500, 100, 50, 30). Vertical axis limits are given by the receptive mark
in the subplot: 0 � 1/0.01/0.001 (no mark /∗∗ / ∗∗∗). Note that some boxplots are not
visible due to vanishing p-values.

E.III Application 2: Chemoresistance of HepG2

This section provides complementary details to Subsection 6.3.2 regarding the calibration re-
sults of the adjusted reduced chemoresistance model M0,⋆

DS with the data for cell line HepG2.
We start with some additional information regarding the obtained parameter estimates (Subsec-
tion E.III.1). Next, we check the statistical signi�cance of observed di�erences between parame-
ter estimates for HC0 and H1 (Subsection E.III.2). Eventually, we take a look at the parameter
correlations in the particle sample (Subsection E.III.3).
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E.III.1 Marginal estimates

Figure E.12 compares the marginal distributions of the model parameters based on the particle
approximation collecting all SMC runs. Note that the parameters Dnorm,HC and 1/cdamp were
calibrated in log scale to improve the coverage of the high probability region with the prior
sample (recall Subsection 5.3.2), but their marginal distributions and corresponding MAPs are
determined by calculating the KDE in linear scale.

Figure E.12: Marginal posteriors of HepG2 calibrations. The numerical deviations for cross-validating
the MAP estimates according to Subsection 6.1.3 are shown as error bars, which might
not be visible due to high robustness of the respective estimate. Recall that β + λind
resp. η0,HC are only calibrated for HC0 resp. H1 (β + λind is �xed to its MAP for H1
and η0,HC = 0 for HC0 per de�nition).

Furthermore, Subsection 6.3.2 presented alternative estimates for parameters regarding the stress
response to DOX. They were obtained by a weighted least square �t to take the corresponding
parameter correlations (see later Subsection E.III.3) into account. Table E.6 provides the corre-
sponding 95% con�dence intervals of these �ts.

Table E.6: 95% con�dence intervals (± 1.96 · standard deviation) resulting from the least square �ts in
Figure 34 and Table 8.

HC0 H1

α−
D 10.694± 4.589 17.413± 3.391

Dnorm,HC 501.122± 305.410 318.290± 103.267
m1 1.128± 0.129 1.433± 0.147

1− dS(0.5) 0.879± 0.069 0.873± 0.084
1− dS(1.0) 0.948± 0.032 0.942± 0.043

1
cdamp

22.542± 12.446 18.864± 8.756
22.467± 9.174 19.128± 6.296
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Recall that it was not possible to achieve reasonable parameter estimates with the complete
model MCYP

DS to appropriately reconstruct the HepG2 (HC0/H1) data from [22]. Neverthe-
less, for some parameters, these calibrations yield fairly concentrated marginal distributions.
One of them is the DOX metabolization rate γD,HC , which results in estimates γD,HC ≈ 5 for
both HC0 and H1 (see Figure E.13). This value is close to the estimates constructed in Sub-
section 6.3.2. However, we cannot be entirely sure that these marginals are reliable since the
underlying model/algorithmic assumptions are currently not at a stage to get reasonable results
as a whole. Hence, there is no interest in presenting further results from these calibrations at
the moment.

Figure E.13: Marginal distributions and corresponding MAPs estimates (markers and dotted line) of
the DOX metabolization rate γD,HC from two test runs for calibrating model MCYP

DS to
HepG2 (HC0/H1) data. The solid line shows the KDEs and the scaling of vertical axis
is not consistent for all subplots.

E.III.2 Signi�cance checks

This subsection compares parameter estimates (HC0 vs. H1) according to Subsection 6.1.3
and Figure 15. Figure E.14 shows the statistical comparison of the marginal distributions
of α−

S δ
−
S,HC(S0) , 1− dS(S0) and 1/cdamp from Figure E.12 as well as of their least square �ts

from Table E.6. We see clear signi�cance for the marginals of α−
S δ

−
S,HC(S0) for S0 = 1.0 in

contrast to S0 = 0.5 . The di�erences between corresponding estimates for 1− dS(S0) (�t and
marginals) are potentially statistically insigni�cant. For 1/cdamp , signi�cance is only clear for
the �t with S0 = 1.0 , however the remaining plots indicate a similar tendency.
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Figure E.14: Resulting p-values of the signi�cance check comparing the marginal distributions of the
SOR-related parameters (HepG2) for HC0 and H1 (sample sizes per subplot from left
to right: 500, 100, 50, 30). Vertical axis limits are given by the receptive mark in the
subplot: 0 � 1/0.05/0.001 (no mark /∗ / ∗∗∗). Note that some boxplots are not visible due
to vanishing p-values.

Analogously, Figure E.14 statistically compares the marginal distributions of α−
D , Dnorm,HC

and m1 from Figure E.12 as well as their least square �ts from Table E.6. For all parameter
estimates (�tted and marginals), we observe a clear statistical signi�cance of observed di�erences.

Figure E.15: Resulting p-values of the signi�cance check comparing the �tted resp. marginal estimates
of the parameters regarding the unsupported stress response to DOX (HepG2) for HC0
and H1 (sample sizes per subplot from left to right: 500, 100, 50, 30). Vertical axis
limits: 0 � 0.001 . Note that most of the boxplots are not visible due to vanishing p-
values.

Lastly, Figure E.16 shows the potential statistical insigni�cance of the observed di�erences for
the DOX metabolization rate γD,HC , which were reconstructed with the approach in (6.7) in
Subsection 6.3.2.

Figure E.16: Resulting p-values of the signi�cance check comparing estimates of γD,HC (HepG2) for
HC0 and H1 (sample sizes per subplot from left to right: 500, 100, 50, 30). Vertical axis
limits: 0 � 1 .
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E.III.3 Parameter correlations

We check the (linear) parameter correlations of the particle approximation collecting all SMC
runs analogously to the previous Subsection E.II.2. Again, we get su�ciently robust coe�cients
(standard deviation in the magnitude of 10−2 ). Hence, we present the average values of r in
the following. Figure E.17 depicts the selection of considerable correlations (i.e. psig < 0.05
and |r| > 0.1) between the parameters.

(a) Illustration of considerable correlations between parameters regarding the stress response to DOX.

(b) Illustration of further considerable correlations (for the sake of completeness).

Figure E.17: Scatter plots with 5000 samples drawn from the 2D distributions of pairwise parameter
combinations resulting from model calibrations with HepG2 data. Only statistically sig-
ni�cant (psig < 0.05) correlation coe�cients r are given and a regression line is depicted
if at least a moderate linear correlation (|r| > 0.3) is observable.

As expected, we see relevant correlations between all parameters regarding the stress response
to DOX (Sub�gure E.17a), which is similar to Hep3B2 (recall Figure E.4). As HepG2 exhibits a
considerable supportive in�uence of SOR contrary to Hep3B2, the correlations of Dnorm,HC , α−

D

and m1 to the supportive parameters (1− dS and cdamp) are more distinct. We observe L-shaped
point clouds indicating non-linear correlations between Dnorm,HC and m1 resp. cdamp .
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