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ABSTRACT
The formal verification of neural networks is essential for their

application in safety-critical environments. However, the set-based

verification of neural networks using linear approximations often

obtains overly conservative results, while nonlinear approximations

quickly become computationally infeasible in deep neural networks.

We address this issue for the first time by automatically balanc-

ing between precision and computation time without splitting the

propagated set. Our work introduces a novel automatic abstraction

refinement approach using sensitivity analysis to iteratively reduce

the abstraction error at the neuron level until either the specifica-

tions are met or a maximum number of iterations is reached. Our

evaluation shows that we can tightly over-approximate the output

sets of deep neural networks and that our approach is up to a thou-

sand times faster than a naive approach. We further demonstrate

the applicability of our approach in closed-loop settings.
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eral and reference→ Verification; • Theory of computation
→ Abstraction.
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1 INTRODUCTION
Neural networks have achieved significant progress in a variety

of applications, including safety-critical tasks [30]. However, they

are vulnerable to small perturbations of the input, also known as

adversarial examples [13, 41]. This demonstrates the limitations of
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neural networks in safety-critical environments. Thus, the formal

verification of neural networks has gained importance in recent

years [28], both in terms of open-loop neural networks [3] and

neural-network-controlled systems [20]. A short overview of dif-

ferent approaches is given below.

Related Work. Some approaches formulate the verification of

neural networks as satisfiability modulo theories (SMT) [21, 22,

31, 46] or symbolic interval propagation [14, 38] problems. These

approaches reason about neural networks by introducing relaxed

constraints for each neuron and solve these instances using SMT

and linear programming solvers. These solvers can return a coun-

terexample if a specification is violated. Most approaches provide

a sound verification procedure for neural networks with specific

activation functions, such as piecewise-linear neurons. Branch-

and-bound strategies [9] can improve the results by splitting the

problem at the neuron level [8, 37], e.g., splitting ReLU neurons at

the intersection of the linear parts makes each subproblem linear.

Further performance improvements are made by implementing the

solvers on a GPU [45]. The major limitation of these approaches

is that recursive splitting leads to an exponential growth of sub-

problems [4, 17], which requires more advanced branch-and-bound

approaches [43].

More closely related to this work are approaches deploying reach-

ability analysis. Here, the input set is propagated through the net-

work, applying specific operations on the chosen set representation

for each layer. While linear layers can be computed exactly, this

is not possible for nonlinear layers. Thus, these approaches of-

ten compute an over-approximation of the true output set and

thus require additional methods to obtain counterexamples [26].

Early approaches focused on convex set representations such as

zonotopes [11, 36]. Several publications [27, 44] have shown that

splitting sets helps to reduce the over-approximations, however,

splitting does not usually scale well with the dimension of the

problem. Since neural networks are universal approximators [15],

more advanced set representations are necessary to obtain tight

over-approximations without splitting. Examples are Taylor mod-

els [7, 16, 18], star sets [42], and polynomial zonotopes [25]. In this

work, we use polynomial zonotopes [24] as they are closed under

many typical set operations with polynomial complexity with re-

spect to the dimension, such as linear map, quadratic map, and

order reduction (Sec. 2).

A major limitation of the related works is their shortcoming in

improving the computed over-approximation in the event that the

specifications cannot be verified. To the best of our knowledge, there

is no work on automatically refining the degree of approximation to

reduce the over-approximation of the output set without splitting

sets. This is especially useful in closed-loop settings [20], where
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splitting sets is particularly computationally expensive due to the

repeated evaluation of the neural network. In this work, we address

this research gap.

Contributions. We present a novel automatic approach for itera-

tively reducing the over-approximation of the outputY of a neural

network for a given input set X. Our approach continues to refine

Y until it no longer intersects with given specifications S, defin-
ing an unsafe set in the output space, up to a maximum number

of iterations. Our automatic refinement is guided by a refinement

heuristic, which determines the neurons for which the abstraction is

refined. We compare multiple heuristics, specifically a novel heuris-

tic derived from sensitivity analysis. Further, we reuse expensive

computations from previous iterations to save computation time.

Our approach falls into the category of counter-example-triggered

abstraction refinement (CETAR [33]), because no specific counterex-

ample is used as in counter-example-guided abstraction refinement

(CEGAR [10]). Further, we present an efficient approach to remove

redundancies in the representation of polynomial zonotopes dur-

ing the evaluation on polynomials, which is used throughout our

approach. The applicability of our approach is shown in an exten-

sive evaluation. Our algorithm does not split the propagated sets,

making it attractive for open-loop [3] and closed-loop [20] settings.

The remainder of this paper is structured as follows. Sec. 2 states

the background on set-based neural network verification. In Sec. 3,

we present an efficient approach to evaluate polynomial zonotopes

on polynomials. Sec. 4 provides a detailed description of our novel

automatic abstraction refinement approach. Finally, we evaluate

our approach in Sec. 5.

2 PRELIMINARIES
2.1 Notation
We denote vectors with lower-case letters, matrices with upper-

case letters, and sets with calligraphic letters. The 𝑖-th element

of a vector 𝑏 ∈ R𝑛 is written as 𝑏 (𝑖 ) . Consequently, 𝑏2(𝑖 ) is the
𝑖-th element of a vector 𝑏2. The element in the 𝑖-th row and 𝑗-th

column of a matrix 𝐴 ∈ R𝑛×𝑚 is written as 𝐴(𝑖, 𝑗 ) , the entire 𝑖-th
row and 𝑗-th column are written as 𝐴(𝑖,· ) and 𝐴( ·, 𝑗 ) , respectively.
We indicate the 𝑖-th power of 𝑐 ∈ R by 𝑐𝑖 , whereas 𝑐 (𝑖 ) refers to
𝑐 in iteration 𝑖 . We denote the 𝑝-norm of a vector 𝑐 with ∥𝑐 ∥𝑝 .
The empty matrix is represented by []. The concatenation of two

matrices 𝐴 and 𝐵 is denoted by [𝐴 𝐵]. The symbols 0 and 1 refer to
matrices with all zeros and ones of proper dimensions, respectively.

Given two sets S1,S2 ⊂ R𝑛 , then the Minkowski sum is defined as

S1 ⊕ S2 = {𝑠1 + 𝑠2 | 𝑠1 ∈ S1, 𝑠2 ∈ S2}. Given a function 𝑓 : R𝑛 →
R𝑚 and a set S ⊂ R𝑛 , then 𝑓 (S) = {𝑓 (𝑥) | 𝑥 ∈ S}. We denote the

𝑖-th component of 𝑓 by 𝑓(𝑖 ) : R
𝑛 → R. An interval with bounds

𝑎, 𝑏 ∈ R𝑛 is denoted by [𝑎, 𝑏]. The term 𝑎 → 𝑏 denotes that 𝑎

approaches 𝑏. We reference an element 𝑒 of an object 𝑂 using 𝑂.𝑒 .

2.2 Neural Networks
In this work, we intentionally focus on feed-forward neural net-

works [6] with alternating linear and activation layers; however,

our approach can be extended to a variety of neural networks.

Definition 2.1. (Layers of Neural Networks [6, Sec. 5.1]) Let 𝑣𝑘
denote the number of neurons in a layer 𝑘 , ℎ𝑘−1 ∈ R𝑣𝑘−1 the input,

and ℎ𝑘 ∈ R𝑣𝑘 the output. Further, let𝑊 ∈ R𝑣𝑘×𝑣𝑘−1 , 𝑏 ∈ R𝑣𝑘 , and
𝜎𝑘 (·) be the respective continuous activation function (e.g. sigmoid

or ReLU), which is applied element-wise. Then, the operation 𝐿𝑘 :

R𝑣𝑘−1 → R𝑣𝑘 on layer 𝑘 is given by

ℎ𝑘 = 𝐿𝑘 (ℎ𝑘−1) =
{
𝑊𝑘ℎ𝑘−1 + 𝑏𝑘 , if layer 𝑘 is linear,

𝜎𝑘 (ℎ𝑘−1), otherwise.

(1)

Definition 2.2. (Neural Networks [6, Sec. 5.1]) Let there be given

𝐾 alternating linear and nonlinear layers, 𝑣0 input and 𝑣𝐾 output

neurons, the input 𝑥 ∈ R𝑣0 , and the output 𝑦 ∈ R𝑣𝐾 of the neural

network. Then, a neural network can be formulated as

ℎ0 = 𝑥,

ℎ𝑘 = 𝐿𝑘 (ℎ𝑘−1), 𝑘 = 1 . . . 𝐾,

𝑦 = ℎ𝐾 .

(2)

We denote the number of neurons per layer in a network by

[𝑣0, 𝑣1, 𝑣3 . . . , 𝑣𝐾−1] because nonlinear layers do not change the

number of neurons. We can measure the linear influence of each

neuron on the output using sensitivity analysis [40, 47] based on

backpropagation [35].

Definition 2.3. (Neuron Sensitivity [40]) The sensitivity of the

neurons in the 𝑘-th layer on the output𝑦 ∈ R𝑣𝐾 of a neural network

w.r.t. its input ℎ𝑘−1 ∈ R𝑣𝑘−1 can be computed as

𝑆𝑘 = 𝑆𝑘 · . . . · 𝑆𝐾 ,

with 𝑆𝑘 (𝑖, 𝑗 ) =
𝜕𝐿𝑘 ( 𝑗 )
𝜕ℎ𝑘−1(𝑖 )

=

{
𝑊𝑘 ( 𝑗,𝑖 ) , if layer 𝑘 is linear,

𝜕𝜎𝑘 ( 𝑗 )
𝜕ℎ𝑘−1(𝑖 )

, otherwise.

(3)

Then, 𝑆𝑘 (𝑖, 𝑗 ) provides the linear influence of small changes on the

input of neuron 𝑖 in the 𝑘-th layer on the output neuron 𝑗 .

2.3 Set-Based Computation
Given an input set X, the true output setsH∗

𝑘
of each layer 𝑘 are

given by:

H∗
0
= X,

H∗
𝑘
= 𝐿𝑘 (H∗𝑘−1), 𝑘 = 1 . . . 𝐾,

Y∗ = H∗𝐾 .
(4)

We use (sparse) polynomial zonotopes [24] as set representation

for over-approximating the propagated setsH𝑘 ⊇ H∗𝑘 , as they can

represent non-convex sets and have polynomial time complexity

for many operations on them, particularly nonlinear maps.

Definition 2.4. (Polynomial Zonotope [24]) 1 Given an offset 𝑐 ∈
R𝑛 , a generator matrix of dependent generators𝐺 ∈ R𝑛×ℎ , an expo-

nent matrix 𝐸 ∈ N𝑝×ℎ
0

, and a generator matrix of independent gen-

erators𝐺𝐼 ∈ R𝑛×𝑞 , a polynomial zonotope PZ = ⟨𝑐,𝐺,𝐺𝐼 , 𝐸⟩𝑃𝑍 is

defined as

PZ =

𝑐 +
ℎ∑︁
𝑖=1

(
𝑝∏
𝑘=1

𝛼
𝐸 (𝑘,𝑖 )
𝑘

)
𝐺 ( ·,𝑖 ) +

𝑞∑︁
𝑗=1

𝛽 𝑗𝐺𝐼 ( ·, 𝑗 )

������
𝛼𝑘 , 𝛽 𝑗 ∈ [−1, 1]

}
.

(5)

1
As in [23, 25], we adapt the definition from [24] and do not integrate the offset 𝑐 into

the generator matrix𝐺 and omit the identifier vector for simplicity.
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Figure 1: Over-approximation of the output set to arbitrary precision on a random network with one linear layer and one
sigmoid activation layer. Note that the over-approximation with order 5 tightly encloses the gap in the bottom right.

A polynomial zonotope is regular if the exponent matrix 𝐸 does

not contain duplicate or all-zero columns. A non-regular polynomial

zonotope can be made regular using the compact operation [23,

Prop. 3.1.7] with computational complexity

O(compact) = O(ℎ(𝑛 + 𝑝 log(ℎ))). (6)

For some operations, we need zonotopes [12, Def. 1], which are

a special case of polynomial zonotopes.

Definition 2.5. (Zonotope [12, Def. 1]) Given a center vector 𝑐 ∈
R𝑛 and a generator matrix 𝐺 ∈ R𝑛×𝑞 , a zonotope is defined as

Z = ⟨𝑐,𝐺⟩𝑍 =

𝑐 +
𝑞∑︁
𝑗=1

𝛽 𝑗𝐺 ( ·, 𝑗 )

������ 𝛽 𝑗 ∈ [−1, 1]
 . (7)

Further, we introduce enclosures to compute bounds for polyno-

mial zonotopes using the following two propositions.

Proposition 2.6. (Zonotope Enclosure [23, Prop. 3.1.14]) Given a
PZ = ⟨𝑐,𝐺,𝐺𝐼 , 𝐸⟩𝑃𝑍 , then PZ ⊆ Z = zonotope(PZ) with

Z =

〈
𝑐 +

∑︁
𝑖∈H

0.5𝐺 ( ·,𝑖 ) ,
[
0.5𝐺 ( ·,H) 𝐺 ( ·,K) 𝐺𝐼

]〉
𝑍

, (8)

whereH contains the indices of the generators with all even exponents
and K = {1 . . . ℎ} \H .

Proposition 2.7. (Interval Enclosure [1, Prop. 2.2]) Given a zono-
topeZ = ⟨𝑐,𝐺⟩𝑍 , the interval bounds [𝑙, 𝑢] with 𝑙 ≤ 𝑧 ≤ 𝑢, ∀𝑧 ∈ Z,
where the inequalities are applied element-wise, are given by

𝑙 = 𝑐 − Δ𝑔
𝑢 = 𝑐 + Δ𝑔 , with Δ𝑔 =

𝑞∑︁
𝑗=1

|𝐺 ( ·, 𝑗 ) |. (9)

Next, we briefly state all operations on polynomial zonotopes

required for the verification of neural networks. Some operations

are simplified as the more complex case is not needed in this work

and the notation is harmonized. For linear layers, we require linear

maps:

Proposition 2.8. (Linear Map [23, Prop. 3.1.18/19]) Given a
PZ ⊂ R𝑛 , a matrix 𝑊 ∈ R𝑚×𝑛 , and an offset vector 𝑏 ∈ R𝑚 ,
the result of a linear map is given by

𝑊 PZ + 𝑏 = ⟨𝑊𝑐 + 𝑏,𝑊𝐺,𝑊𝐺𝐼 , 𝐸⟩𝑃𝑍 . (10)

For nonlinear layers, we require polynomial maps, which are

based on quadratic maps. As nonlinear layers are evaluated element-

wise, we only consider one-dimensional polynomial zonotopes

(𝑛 = 1) here. Additionally, we only consider dependent generators

to reduce over-approximations.

Proposition 2.9. (QuadraticMap [23, Prop. 3.1.30]) GivenPZ1 =

⟨𝑐1,𝐺1, [], 𝐸1⟩𝑃𝑍 , PZ2 = ⟨𝑐2,𝐺2, [], 𝐸2⟩𝑃𝑍 ⊂ R with a common
identifier vector, the result of the standard quadratic map is

sq(PZ1,PZ2) =〈
𝑐,

[
𝑐2𝐺1 𝑐1𝐺2 𝐺1 . . . 𝐺ℎ1

]
, [],

[
𝐸1 𝐸2 𝐸1 . . . 𝐸ℎ1

]〉
𝑃𝑍

,
(11)

where 𝑐 = 𝑐1𝑐2, the generator matrix is given by𝐺 𝑗 = 𝐺𝑇
1( ·, 𝑗 )𝐺2, and

the exponent matrix by 𝐸 𝑗 = 𝐸2 + 𝐸1( ·, 𝑗 ) · 1, 𝑗 = 1 . . . ℎ1.

Proposition 2.10. (Polynomial Map [23, Prop. A.1]) Given a poly-
nomial zonotope PZ ⊂ R, the standard polynomial map of order
𝑜 ∈ N≥2 defined by 𝑜 multiplications of PZ is given by

poly(PZ, 𝑜) = PZ𝑜 = sq
(
PZ,PZ𝑜−1

)
(12)

with PZ1 = PZ.

To evaluate the nonlinear layers element-wise, we introduce the

projection and the Cartesian product to split a polynomial zonotope

by dimension and recombine the separated sets afterwards.
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Proposition 2.11. (Projection [23, Prop. 3.1.16]) The projection of
a polynomial zonotope PZ = ⟨𝑐,𝐺,𝐺𝐼 , 𝐸⟩𝑃𝑍 ⊂ R𝑛 on dimension 𝑖
is computed as

project(PZ, 𝑖) =
〈
𝑐𝑖 ,𝐺 (𝑖,· ) ,𝐺𝐼 (𝑖,· ) , 𝐸

〉
𝑃𝑍
⊂ R. (13)

Proposition 2.12. (Cartesian Product [25, Prop. 2]) Let PZ1 =

⟨𝑐1,𝐺1,𝐺𝐼1, 𝐸1⟩𝑃𝑍 andPZ2 =

〈
𝑐2,

[
𝐺2 𝐺2

]
,

[
𝐺𝐼2 𝐺𝐼2

]
, [𝐸1 𝐸2]

〉
𝑃𝑍

with a common identifier vector, their Cartesian product is

PZ1 × PZ2 =

〈[
𝑐1
𝑐2

]
,

[
𝐺1 0
𝐺2 𝐺2

]
,

[
𝐺𝐼1 0
𝐺𝐼2 𝐺𝐼2

]
, [𝐸1 𝐸2]

〉
𝑃𝑍

. (14)

The order 𝜌 of a polynomial zonotope is defined as 𝜌 =
ℎ+𝑞
𝑛

with ℎ, 𝑞, 𝑛 as in Def. 2.4. While propagating the polynomial zono-

topes through the neural network, 𝜌 increases and order reduction

methods become necessary to remain computationally feasible.

Proposition 2.13. (Order Reduction [23, Prop. 3.1.39]) Given a
PZ = ⟨𝑐,𝐺,𝐺𝐼 , 𝐸⟩𝑃𝑍 and a desired order 𝜌𝑑 > 1+1/𝑛, the operation
reduce returns a new polynomial zonotope with an order 𝜌 ≤ 𝜌𝑑
that encloses PZ:

reduce(PZ, 𝜌𝑑 ) =
〈
𝑐𝑧 ,𝐺 ( ·,K̂ ) ,

[
𝐺
𝐼 ( ·,Ĥ) 𝐺𝑧

]
, 𝐸 ( ·,K̂ )

〉
𝑃𝑍

(15)

with ⟨𝑐𝑧 ,𝐺𝑧⟩𝑍 = reduce(Z, 1) [23, Def. 2.6.1] and

Z = zonotope
(〈
𝑐,𝐺 ( ·,K ),𝐺𝐼 ( ·,H) , 𝐸 ( ·,K)

〉
𝑃𝑍

)
(16)

where K,H contain the indices of the smallest generators of 𝐺,𝐺𝐼 ,
respectively, and Ĥ = {1, . . . , ℎ}\K , Ĥ = {1, . . . , 𝑞}\H .

2.4 Neural Network Verification
For the propagation of the set through the neural network, we recall

the previous approaches deploying reachability analysis, specifi-

cally using zonotopes [11, 36] and polynomial zonotopes [25].

Proposition 2.14. (Image Enclosure [25, Sec. 3]) Let H𝑘−1 ⊇
H∗
𝑘−1 be an input set to layer 𝑘 , then

H𝑘 = enclose(𝐿𝑘 ,H𝑘−1) ⊇ H∗𝑘 (17)

is the over-approximative output set.

The propagation through linear layers is computed according

to Prop. 2.8 and the propagation through nonlinear layers is sum-

marized in Alg. 1 and Fig. 2: We apply the transformation of each

neuron𝑤 in layer 𝑘 sequentially by projecting it to the respective

dimension in line 2. Line 3 refers to finding lower and upper bounds

𝑙𝑘−1, 𝑢𝑘−1 ofH𝑘−1 (Prop. 2.7). We use polynomial regression [32]

to obtain an approximating polynomial 𝑝𝑘,𝑤 in line 4 for the previ-

ously computed lower and upper bound. The approximation error

𝑑𝑘 (𝑤 ) is bounded in line 5: Given a user-defined precision 𝛿 > 0,

we sample points 𝑥 ∈ X̂ ⊂ R evenly within 𝑙𝑘−1,𝑤 , 𝑢𝑘−1,𝑤 such

that

𝑑𝑘 (𝑤 ) ≤ 𝑑𝑘 (𝑤 ) = max

𝑥∈X̂

��𝜎𝑘 (𝑥) − 𝑝𝑘,𝑤 (𝑥)�� + 𝛿. (18)

Note that sampling is not required for piecewise linear functions, for

which the error can be computed exactly [25, Sec. 3.2]. In line 6, we

approximate 𝜎𝑘 by evaluatingH𝑘−1 on the polynomial 𝑝𝑘,𝑤 (Sec. 3).

Finally, line 7 introduces the over-approximation by appending

𝑑𝑘 (𝑤 ) as an additional dependent generator to H̃𝑘,𝑤 . The resulting

O
u
t
p
u
t

Step 1 Step 2 Step 3

Input

O
u
t
p
u
t

Step 4

Input

Step 5

Input

Step 6

Figure 2: Sixmain steps to over-approximate nonlinear layers
corresponding to line 2–7 in Alg. 1.

Algorithm 1 Image enclosure for nonlinear layer 𝑘 [25]

Require: H𝑘−1 ⊂ R𝑣𝑘−1 , nonlinear function 𝜎𝑘
1: for𝑤 = 1 . . . 𝑣𝑘−1 do
2: H𝑘−1,𝑤 ← project(H𝑘−1,𝑤) ⊲ Prop. 2.11

3: Find bounds 𝑙𝑘−1,𝑤 , 𝑢𝑘−1,𝑤 ofH𝑘−1,𝑤 ⊲ Prop. 2.7

4: Find polynomial 𝑝𝑘,𝑤 (𝑥) approximating 𝜎𝑘 (𝑥) ⊲ [32]

5: 𝑑𝑘 (𝑤 ) ← max
𝑥∈X̂

��𝜎𝑘 (𝑥) − 𝑝𝑘,𝑤 (𝑥)�� + 𝛿 ⊲ (18)

6: H̃𝑘,𝑤 ← EvaluateH𝑘−1,𝑤 on 𝑝𝑘,𝑤 (𝑥) ⊲ Sec. 3

7: H𝑘,𝑤 ← Append 𝑑𝑘 (𝑤 ) to generators of H̃𝑘,𝑤
8: end for
9: H𝑘 ←H𝑘,1 × . . . ×H𝑘,𝑣𝑘−1 ⊲ Prop. 2.12

10: returnH𝑘

polynomial zonotopes of each neuron are then combined in line 9

using Prop. 2.12. Alt. 1 can compute tight over-approximations of

nonlinear layers (see Fig. 1).

2.5 Problem Statement
Given an input set X, a neural network as specified in Def. 2.2 for

which the neuron sensitivity (Def. 2.3) is computable, and an unsafe

set S, then the problem statement is to formally verify that 𝑦 ∉ S
for an output 𝑦 of the network for all inputs 𝑥 ∈ X.

3 EFFICIENT POLYNOMIAL EVALUATION
Higher-order polynomials allow us to over-approximate the image

enclosure of nonlinear layers (Alg. 1) and thus the final output set

to an arbitrary precision (Fig. 1). In this section, we present a more

efficient polynomial evaluation of polynomial zonotopes than a

naive approach, which we derive in the appendix (Prop. A.2). We

consider polynomials of the form 𝑝 (𝑥) = 𝑎0 +
∑𝑜
𝑖=1 𝑎𝑖𝑥

𝑖
and poly-

nomial zonotopes of the form PZ = ⟨𝑐,𝐺, [], 𝐸⟩𝑃𝑍 ⊂ R. However,
the extension to higher-dimensional sets is straight-forward. The
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computational complexity of the naive approach is

O(𝑝 (PZ)) + O(compact) = O(𝑝ℎ𝑜 ) + O(𝑝ℎ𝑜 logℎ𝑜 )
= O(𝑜𝑝ℎ𝑜 logℎ),

(19)

with 𝑝, ℎ as defined in Def. 2.4, 𝑛 = 1, and compact (6) makes the

resulting P̃Z regular. Note that the computational complexity is

dominated by the compact operation, which is necessary even in

simple cases:

Example 3.1. Let PZ = ⟨1, [1 2], [], [1 2]⟩𝑃𝑍 and 𝑝 (𝑥) = 𝑥 + 𝑥2.
Then,

𝑝 (PZ) = ⟨2, [

PZ1︷︸︸︷
[1 2]

PZ2︷             ︸︸             ︷
[1 2 1 2 1 2 2 4] ], [],

[ [1 2] [1 2 1 2 2 3 3 4] ] ⟩𝑃𝑍

(20)

is non-regular due to the redundant exponents.

We present a novel approach that avoids the compact operation.

Note that 𝑝 (PZ) boils down to a polynomial substitution by a

sparse polynomial [19], for which basic arithmetic operations are

well studied. Intuitively, our novel approach sorts the columns

of the exponent matrix of PZ once and maintains this sorting

throughout the polynomial evaluation:

Proposition 3.2. (sort) Given a regular PZ = ⟨𝑐,𝐺, [], 𝐸⟩𝑃𝑍 ,
then

P̂Z = ⟨ 𝑐,𝐺, [], 𝐸 ⟩𝑃𝑍 = sort(PZ) (21)

with𝐺 = 𝐺 ( ·,K) , 𝐸 = 𝐸 ( ·,K) , where K is a permutation of {1, . . . , ℎ}
such that 𝐸 ( ·,𝑖 ) ≤ 𝐸 ( ·,𝑖+1) , 𝑖 = 1 . . . ℎ − 1, and ≤ refers to the lexico-
graphic ordering. The computational complexity is O(𝑝ℎ logℎ).

Proof. The computational complexity follows from the sorting

of the columns. □

We introduce the operation sortPlus to efficiently sum a list

of sorted polynomial zonotopes. For a convenient definition of the

sortPlus operation, we additionally introduce the merge opera-

tion:

Proposition 3.3. (merge) Given a sorted non-regular PZ =

⟨𝑐,𝐺, [], 𝐸⟩𝑃𝑍 , then P̂Z = merge(PZ) is sorted and regular with a
computational complexity of O(𝑝ℎ).

Proof. P̂Z is computed by iterating over the ℎ columns of 𝐸

and merging subsequent equal columns. □

Proposition 3.4. (sortPlus) Given𝑚 sorted PZ1, . . . ,PZ𝑚
with PZ𝑖 = ⟨𝑐𝑖 ,𝐺𝑖 , [], 𝐸𝑖 ⟩𝑃𝑍 ⊂ R, a common identifier vector, and
a total number of ℎ̂ generators. Then,

P̂Z = sortPlus (PZ1, . . . ,PZ𝑚)

= merge
(〈
�̂�,𝐺 ( ·,K) , [], 𝐸 ( ·,K)

〉
𝑃𝑍

) (22)

computes the Minkowski sum with the common identifier vector ex-
plicitly considered. P̂Z is regular and sorted, where �̂� =

∑𝑚
𝑖=1 𝑐𝑖 ,

𝐺 = [𝐺1, . . . ,𝐺𝑚], 𝐸 = [𝐸1, . . . , 𝐸𝑚], andK contains the indices such
that 𝐸 ( ·,K) is sorted. The computational complexity of sortPlus is
O(𝑝ℎ̂ log𝑚).

Proof. The operation sortPlus computes the same set as the

exact addition by construction (Prop. A.1). The sorted indices K
can be computed using a min-heap [19, Sec. 3.2], where we only

store the first unprocessed column of each 𝐸𝑖 in the heap as all PZ𝑖
are sorted. Then, we can repeatedly remove the current minimum

from the heap and add the next column of the corresponding 𝐸𝑖

into the heap in O(𝑝 log𝑚) until all ℎ̂ columns are processed. □

Algorithm 2 Efficient Polynomial Evaluation

Require: PZ = ⟨𝑐,𝐺, [], 𝐸⟩𝑃𝑍 ⊂ R, 𝑝 (𝑥) = 𝑎0 +
∑𝑜
𝑖=1 𝑎𝑖𝑥

𝑖

1: PZ1 ← sort(PZ) ⊲ Prop. 3.2

2: for 𝑖 = 2 . . . 𝑜 do ⊲ Compute sorted PZ𝑖

3: PZ𝑖 ← sq
(
PZ1

,PZ𝑖−1
)

⊲ Prop. 2.10

4: [𝐺1 𝐺2 [𝐺3 . . . 𝐺ℎ+2]] ← PZ𝑖 .𝐺 ⊲ Prop. 2.9

5: [𝐸1 𝐸2 [𝐸3 . . . 𝐸ℎ+2]] ← PZ𝑖 .𝐸
6: for 𝑗 = 1 . . . ℎ + 2 do
7: PZ𝑖𝑗 ←

〈
0,𝐺 𝑗 , [], 𝐸 𝑗

〉
𝑃𝑍

⊲ PZ𝑖𝑗 is sorted
8: end for
9: 𝑐𝑖 ← PZ𝑖 .𝑐
10: PZ𝑖 ← 𝑐𝑖 + sortPlus(PZ𝑖

1
, . . . ,PZ𝑖

ℎ+2) ⊲ Prop. 3.4

11: end for
12: for 𝑖 = 1 . . . 𝑜 do
13: PZ𝑖 ← 𝑎𝑖 · PZ

𝑖
⊲ Prop. 2.8

14: end for
15: P̃Z ← 𝑎0 + sortPlus

(
PZ1

, . . . , PZ𝑜
)

⊲ Prop. 3.4

Proposition 3.5. (Efficient Polynomial Evaluation) Given a poly-
nomial zonotope PZ = ⟨𝑐,𝐺, [], 𝐸⟩𝑃𝑍 ⊂ R and a polynomial 𝑝 (𝑥) =
𝑎0+

∑𝑜
𝑖=1 𝑎𝑖𝑥

𝑖 , Alg. 2 computes a sound polynomial evaluation P̃Z =

𝑝 (PZ) where PZ is regular, sorted, and has O(ℎ𝑜 ) generators. The
computational complexity is O(𝑝ℎ𝑜 (logℎ + log𝑜)).

Proof. All subsequent line numbers are with respect to Alg. 2.

Soundness. Alg. 2 computes 𝑎𝑖PZ
𝑖
soundly as in the naive ap-

proach (Prop. A.2), but each 𝑎𝑖PZ
𝑖
is regular and sorted: PZ1

is

sorted and regular (line 1). For 𝑖 = 2 each 𝐸 𝑗 of 𝑃𝑍
𝑖
(lines 3–5)

is sorted per construction (Prop. 2.9). Thus, sortPlus computes

a regular and sorted PZ𝑖 because PZ1

,PZ𝑖−1 are regular and
sorted (line 10), and per induction, it holds ∀𝑖 ∈ {1, . . . , 𝑜}. The
multiplication with 𝑎𝑖 does not change the exponents (line 13). Fi-

nally, sortPlus sums all PZ𝑖 and the resulting P̃Z is regular and

sorted because each PZ𝑖 is regular and sorted (Prop. 3.4).

Number of Generators. Follows from Prop. A.2.

Computational Complexity. The initial sorting is in O(𝑝ℎ logℎ)
(line 1). For 𝑖 = 2 . . . 𝑜 holds: PZ𝑖 can be computed in O(𝑝ℎ𝑖 ) with
O(ℎ𝑖 ) generators (line! 3), and sortPlus (line 10) in O(𝑝ℎ𝑖 logℎ).
Thus, the computation of all PZ𝑖 is in O(𝑝ℎ𝑜 logℎ). The construc-
tion of all 𝑎𝑖PZ

𝑖
is in O(ℎ𝑜 ). Finally, as we have a total number of

O(ℎ𝑜 ) generators and𝑜 sorted polynomial zonotopes, the sortPlus
operation in line 15 is in O(𝑝ℎ𝑜 log𝑜). Thus, the computational

complexity of Alg. 2 is O(𝑝ℎ𝑜 (logℎ + log𝑜)). □
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Our novel approach reduces the computational complexity from

O(𝑜𝑝ℎ𝑜 logℎ) to O(𝑝ℎ𝑜 (log𝑜 + logℎ)). As the polynomial order

𝑜 is typically much smaller than the number of generators ℎ, our

approach is linearly faster in the polynomial order than the naive

approach.

4 AUTOMATIC ABSTRACTION REFINEMENT
APPROACH

In this section, we present our novel approach for automatically

refining the abstraction of neurons to balance precision and compu-

tational feasibility, which is also summarized in Alg. 3. The refine-

ment is performed by increasing the order of the approximation

polynomial used in Prop. 2.14. The order of the approximation poly-

nomial used in each neuron of a nonlinear layer 𝑘 is stored in an

order pattern tuple

\ = (\2, \4, . . . , \𝐾 ), \𝑘 ∈ N
𝑣𝑘
0
. (23)

To remain computationally feasible using higher-order polynomials,

we apply an order reduction in Alg. 3 (line 5) before propagating

the set through each layer (line 6), thus limiting the number of

generators to ℎmax:

𝜌
(pre)
𝑘

= ℎ
1/max\𝑘
max

/𝑣𝑘
=⇒ 𝜌

(post)
𝑘

≈ ℎmax/𝑣𝑘 . (Prop. 3.5)

(24)

Sec. 4.1 shows how the expensive range bounding during the

image enclosure for nonlinear layers (Alg. 1, line 3) from previous

iterations can be reused for later computations. In Sec. 4.2, we

indicate how many neuron abstractions are refined per iteration.

Sec. 4.3 defines multiple heuristics to determine the neurons, for

which we refine the abstraction. Finally, we provide the properties

of our novel approach in Sec. 4.4.

Algorithm 3 Automatic Abstraction Refinement

Require: X, S, 𝐾 layers 𝐿𝑘 , 𝑘 = 1 . . . 𝐾 , max. iteration 𝐼

1: Initialize order pattern \ with 1

2: for 𝑖 = 1 . . . 𝐼 do ⊲ Iteration 𝑖

3: H (𝑖 )
0
← X

4: for 𝑘 = 1 . . . 𝐾 do ⊲ Network Evaluation

5: H (𝑖 )
𝑘−1 ← reduce

(
H (𝑖 )
𝑘−1, 𝜌

(pre)
𝑘

)
⊲ Prop. 2.13, (24)

6: H (𝑖 )
𝑘
← enclose

(
𝐿𝑘 ,H

(𝑖 )
𝑘−1

)
⊲ Sec. 4.1

7: end for
8: Y (𝑖 ) ←H (𝑖 )

𝐾
⊲ Y (𝑖 ) ⊇ Y∗

9:

10: if Y (𝑖 ) ∩ S = ∅ then ⊲ Check Specifications

11: return VERIFIED
12: end if
13: ⊲ Refine Abstraction

14: 𝐻 ← Compute refinement heuristics ⊲ Sec. 4.3

15: Refine neuron abstractions by increasing \ ⊲ Sec. 4.2

16: end for
17: return UNKNOWN

4.1 Reuse of Bounds
During the execution of Alg. 1, we need to compute the bounds of

H𝑘−1,𝑤 (line 3) of a neuron𝑤 in the 𝑘-th layer. Tight range bound-

ing is in general computationally expensive for polynomial zono-

topes due to recursive splitting [23, Prop. 3.1.44][29]. On the other

hand, the exact bounds of zonotopes can be computed efficiently

(Prop. 2.7). Unfortunately, the zonotope enclosure (Prop. 2.6) re-

moves all dependencies between generators stored in the exponent

matrix, which can lead to a very conservative over-approximation

as shown in the following example.

Example 4.1. Given a PZ =

〈
0, [1 − 1], [],

[
1 1

0 2

]〉
𝑃𝑍

. Using

Prop. 2.6 we obtain Z = zonotope(PZ) = ⟨0, [1 − 1]⟩𝑍 . The
exact interval enclosure ofPZ is [−1, 1], whereas the exact interval
enclosure ofZ is [−2, 2] (Prop. 2.7).

As new dependencies are introduced with each refinement step

(Prop. 2.10), we reuse bounds from previous iterations for later

computations. Specifically, we use

𝑙
(𝑖 )
𝑘−1(𝑤 ) = max

(
𝑙
(1)
𝑘−1(𝑤 ) , . . . , 𝑙

(𝑖 )
𝑘−1(𝑤 )

)
,

𝑢
(𝑖 )
𝑘−1(𝑤 ) = min

(
𝑢
(1)
𝑘−1(𝑤 ) , . . . , 𝑢

(𝑖 )
𝑘−1(𝑤 )

)
,

(25)

where 𝑙
( 𝑗 )
𝑘−1(𝑤 ) , 𝑢

( 𝑗 )
𝑘−1(𝑤 ) are the conservative bounds of the input

H ( 𝑗 )
𝑘−1,𝑤 using the zonotope enclosure in iteration 𝑗 = 1 . . . 𝑖 . We

indicate the use of 𝑙
(𝑖 )
𝑘−1(𝑤 ) , 𝑢

(𝑖 )
𝑘−1(𝑤 ) in Alg. 1 by enclose.

Proposition 4.2. (Reuse of Bounds) Let H (𝑖 )
𝑘−1 be the input of

layer 𝑘 in iteration 𝑖 . IfH∗
𝑘−1 ⊆ H

( 𝑗 )
𝑘−1,∀𝑗 ∈ {1, . . . , 𝑖}, then it holds

H∗
𝑘
⊆ H (𝑖 )

𝑘
= enclose

(
𝐿𝑘 ,H

(𝑖 )
𝑘−1

)
. (26)

Proof. From Prop. 2.14 it follows that all points within the

bounds 𝑙
(𝑖 )
𝑘−1(𝑤 ) , 𝑢

(𝑖 )
𝑘−1(𝑤 ) are enclosed. Thus, (26) holds as 𝑙

(𝑖 )
𝑘−1(𝑤 ) ,

𝑢
(𝑖 )
𝑘−1(𝑤 ) are bounds ofH

∗
𝑘−1 by construction (25). □

In practice, many specifications of the input set are based on in-

tervals [3, 20] with no dependencies between the dimensions. In the

first iteration, our Alg. 3 does not introduce additional dependen-

cies between generators as we only use linear abstractions (line 1).

Thus, we can efficiently compute the exact bounds of the linear

over-approximationsH (1)
𝑘−1, 𝑘 = 1 . . . 𝐾, using Prop. 2.7 and reuse

them in all subsequent iterations (Sec. 4.1). AlthoughH (1)
𝑘−1 might

not encloseH∗
𝑘−1 tightly, the bounds are usually sufficiently viable

for polynomials to approximate the activation function well. As

lower-order polynomials can approximate sigmoid and tanh well,

our approach can compute particularly tight over-approximations

for networks using these activations in just a few iterations.

4.2 Number of Refinements
Evaluating the over-approximation of the output set is the most

expensive step of our approach (Prop. 3.5). Thus, we want to limit

the number of iterations by refining multiple neuron abstractions
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Figure 3: Automatic abstraction refinement on a random neural network with [2, 5, 5, 2] neurons. The figure shows the output
of the network and how each refinement step reduces the over-approximation Y ⊇ Y∗.

before recomputing the over-approximation. Our approach auto-

matically determines which neuron abstractions should be refined

based on a refinement heuristic 𝐻 as defined in Sec. 4.3. Let us first

discuss the number of generators ofH𝑘 after each layer 𝑘 :

Lemma 4.3. (Number of Generators) Given a nonlinear layer 𝑘 , an
input setH𝑘−1, and an order pattern \𝑘 of that layer, then the number
of generators of the outputH𝑘 = enclose(H𝑘−1) is determined by
the maximum order in \𝑘 .

Proof. Follows from Alg. 1, line 9 and Prop. 2.12. □

Thus, we limit the number of order reductions by refining only

neuron abstractions within one layer per iteration. We present a

neuron-wise and a layer-wise refinement approach. Let us start

with the neuron-wise refinement:

Definition 4.4. (Neuron-wise Refinement) Given a refinement

heuristic 𝐻 , let 𝑘∗,𝑤∗ = argmax𝑘,𝑤 𝐻𝑘 (𝑤 ) be the neuron within

layer 𝑘∗ with the maximum heuristic 𝐻∗ = 𝐻𝑘∗ (𝑤∗ ) . We refine all

abstractions of neurons𝑤 of layer 𝑘∗ for which

𝐻𝑘∗ (𝑤 ) ≥ 𝛾𝐻∗, 𝛾 ∈ [0, 1] . (27)

Example 4.5. In the example shown in Fig. 3, 𝑘∗ = 2 and𝑤∗ = 3

in the first iteration. Thus, with 𝛾 = 0.5 we refine the abstraction of

the neurons 3 and 5 of layer 2 by increasing the respective order in

\𝑘∗ .

Due to Lemma 4.3, we can also set the order of the approximation

polynomial of all neurons of a layer𝑘 to the maximum of \𝑘 without

increasing the overall number of generators:

Definition 4.6. (Layer-wise Refinement) Given a refinement heuris-

tic 𝐻 , we refine all neuron abstractions of layer 𝑘∗, where

𝑘∗ = argmax

𝑘
∥𝐻𝑘 ∥2 . (28)

Example 4.5. (cont.) Using the layer-wise refinement approach,

𝑘∗ = 2. Thus, we increase the order of the approximation polyno-

mial in \2 for all neurons in layer 2. This is also shown in Fig. 3

(right, second order pattern in legend).

However, refining the neuron abstraction also increases the time

to compute the image enclosure (Prop. 3.5). We evaluate this trade-

off in Sec. 5 by comparing the neuron-wise refinement with the

layer-wise refinement. Note that we might also refine neuron ab-

stractions unnecessarily using the layer-wise refinement as can be

seen in Fig. 3: The abstraction of neuron 4 in layer 2 is not refined

using the neuron-wise refinement but still obtains a similar over-

approximation of the output set as the layer-wise refinement in the

last iteration.

4.3 Refinement Heuristics
A refinement heuristic 𝐻𝑘 (𝑤 ) ∈ R should provide information

on how beneficial it is to refine the abstraction of a neuron 𝑤

in a nonlinear layer 𝑘 , that is the largest reduction of the over-

approximation, which we again store in a tuple:

𝐻 = (𝐻2, 𝐻4, . . . , 𝐻𝐾 ), 𝐻𝑘 ∈ R𝑣𝑘 . (29)

Which neuron abstraction refinement has the largest impact on the

reduction of the over-approximation is non-trivial, thus, we define

multiple refinement heuristics in this section that are later evaluated

in Sec. 5, specifically a novel heuristic derived from sensitivity

analysis.

Definition 4.7. (𝐻 -All) The heuristic considers all neurons to be

equally beneficial:

𝐻
(𝐴)
𝑘 (𝑤 ) = 1. (30)
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Definition 4.8. (𝐻 -Random) The heuristic is randomly sampled

between 0 and 1:

𝐻
(𝑅)
𝑘 (𝑤 ) ∼ Uniform(0, 1). (31)

Definition 4.9. (𝐻 -Approximation Error) The approximation error

𝑑 is used as a heuristic:

𝐻
(𝐴𝐸 )
𝑘 (𝑤 ) = 𝑑𝑘 (𝑤 ) . (32)

Definition 4.10. (𝐻 -Layer Bias) The heuristic has a bias towards

earlier layers as later layers depend on good results from earlier

layers:

𝐻
(𝐿𝐵)
𝑘 (𝑤 ) = 𝑑𝑘 (𝑤 )/𝑘. (33)

Definition 4.11. (𝐻 -Sensitivity) The heuristic is based on sensi-

tivity analysis:

𝐻
(𝑆 )
𝑘 (𝑤 ) = 𝑠𝑘 (𝑤 )

with 𝑠𝑘 (𝑤 ) = ∥𝑆𝑘 (𝑤,· ) ∥2 .
(34)

As the heuristic 𝐻𝑘 (𝑤 ) must be a scalar value, we reduce the sensi-

tivity 𝑆𝑘 (𝑤,· ) (3) of a neuron𝑤 in layer 𝑘 on all output neurons to

a scalar value using the Euclidean norm. We draw the evaluation

point randomly from the input set.

Definition 4.12. (𝐻 -Weighted Error) The heuristic weights the

approximation error using sensitivity analysis:

𝐻
(𝐸+𝑆 )
𝑘 (𝑤 ) = 𝑑𝑘 (𝑤 ) · 𝑠𝑘 (𝑤 ) . (35)

4.4 Properties
Finally, we state the properties of Alg. 3. For simplicity, we only

consider layer-wise refinements.

Proposition 4.13. (Layer Convergence) Given a neural network
with two layers, that is 𝑓 (𝑥) = 𝜎 (𝑊𝑥 + 𝑏), and an input set X, then
for 𝐼 → ∞, 𝛿 → 0, and ℎmax → ∞, it holds that the output of the
network Y (𝐼 ) converges to Y∗ using Alg. 3.

Proof. The linear layer is computed exactly. It remains to show

that the nonlinear layer does not induce an over-approximation,

where the over-approximation could be induced from the order

reduction, the polynomial evaluation, and the approximation error.

From ℎmax →∞ it follows that no order reduction is applied (24).

Polynomial zonotopes can be evaluated exactly on polynomials

(Prop. 2.10). For a neuron 𝑤 = 1 . . . 𝑣1, the approximation error

𝑑 (𝑤 ) is bounded by 𝑑 (𝑤 ) (18) using a discrete set X̂ within the

bounds 𝑙 (𝑤 ) , 𝑢 (𝑤 ) , where 𝑑 (𝑤 ) has to converge to 0 for no induced
over-approximation, and thus Y (𝐼 ) to converge to Y∗. From (18) it

also follows that

𝑑
(𝑖 )
(𝑤 ) ≤ 𝑑

(𝑖 )
(𝑤 ) ≤ 𝑑

(𝑖 )
(𝑤 ) + 𝛿. (36)

We find the coefficients of the approximation polynomial 𝑝𝑤 (𝑥) by
regression, which minimizes the sum of squared differences (𝑆𝑆𝐷)

between 𝑝𝑤 (𝑥) and 𝜎 over X̂ [6, Sec. 3.1.1]. With the number of

iterations 𝐼 → ∞, it follows that \ (𝑤 ) → ∞ (Alg. 3, line 15) and

thus the order of 𝑝𝑤 (𝑥) (23). Together with the bounds 𝑙 (𝑤 ) , 𝑢 (𝑤 )
and 𝜎 being continuous, from [39, Thm. 15] it follows that 𝑆𝑆𝐷 → 0.

Thus, also 𝑑
(𝐼 )
(𝑤 ) → 0 and 0 ≤ 𝑑 (𝐼 )(𝑤 ) ≤ 𝛿 holds due to (36). With

𝛿 → 0, 𝑑
(𝐼 )
(𝑤 ) → 0 and thus the over-approximationY (𝐼 ) converges

to Y∗. □

Theorem 4.14. (Network Convergence) Alg. 3 is sound and the
computed over-approximation Y (𝐼 ) converges to Y∗ for 𝐼 → ∞,
𝛿 → 0, and ℎmax → ∞ if the approach uses a heuristic 𝐻 that is
proportional to the approximation error 𝑑 . Thus, our approach can
verify the problem statement in Sec. 2.5 with an arbitrarily small
over-approximation.

Proof. Soundness and Termination. The approach is sound be-

cause each operation is over-approximative (Prop. 4.2). Further, if

𝐼 ∈ N, the algorithm terminates in finite time as each operation

needs finite time and the maximum number of iterations is 𝐼 .

Convergence. We give a proof for the heuristic 𝐻 (𝐴𝐸 ) (Def. 4.9).
An analogous proof can be given for 𝐻 (𝐿𝐵) (Def. 4.10) and 𝐻 (𝑆+𝐸 )

(Def. 4.12). Consider each two subsequent layers as a separate sub-

network as in Prop. 4.13. In each iteration, Alg. 3 refines the nonlin-

ear layer 𝑘 with the largest approximation error (Def. 4.6). We show

that from Prop. 4.13 it follows that 𝑑
(𝑖 )
𝑘 (𝑤 ) → 0 ∀𝑘 by contradiction:

If there were a neuron𝑤1 of a nonlinear layer 𝑘1 with 𝑑
(𝐼 )
𝑘1 (𝑤1 ) > 0,

then the layer 𝑘1 would not have been refined infinitely often be-

cause of Prop. 4.13. Thus, a neuron𝑤2 of another nonlinear layer

𝑘2 needs to exist with 𝑑
(𝐼 )
𝑘2 (𝑤2 ) > 𝑑

(𝐼 )
𝑘1 (𝑤1 ) > 0 which got refined

infinitely often because of 𝐼 →∞ and the finite number of layers

𝐾 . However, such a layer cannot exist because of Prop. 4.13. Thus,

H∗
𝑘
= H (𝐼 )

𝑘
= enclose(H (𝐼 )

𝑘−1), 𝑘 = 1 . . . 𝐾, (37)

andH (𝐼 )
𝐾

= Y∗ forH (𝐼 )
0

= X. □

5 EVALUATION
Our approach is implemented in the MATLAB toolbox CORA [2]

and will be made publicly available with the next release. All com-

putations were performed on an Intel® Core™ Gen. 11 i7-11800H

CPU @2.30GHz with 64GB memory.

5.1 Comparison of Refinement Heuristics
We compare the heuristics by evaluating the resulting outputsY (𝑖 )
of 10 neural networks with 𝐾 layers, randomly initialized weights,

and sigmoid activation. The networks have 2 input neurons, 2 out-

put neurons, and 50 neurons in each intermediate layer. The input

set X = [−1, 1] ⊂ R2 is used for all networks. We intentionally

choose a two-dimensional output of the networks to compute a

tight over-approximation of the size of the outputY (𝑖 ) by recursive
splitting, where the size of Y (𝑖 ) is given by the area covered in R2.

The area of Y (𝑖 ) is normalized, where we define the area of Y (1)
as 1 per network. Our approach refines the output until 𝐼 = 15 or

the set explodes due to order reduction. The maximum number of

generators is limited to ℎmax = 10
6
and the largest used polyno-

mial order is 5. For the neuron-wise refinement, we choose 𝛾 = 0.1

to refine many neuron abstractions in each iteration because we

find this setting obtains good results. Additionally, we present the

results using a naive approach, where we refine all neuron abstrac-

tions after each iteration and do not apply Prop. 4.2. Refining all
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Figure 4: Average change in normalized area over compu-
tation time on 10 random neural networks (𝐾 = 14) with
sigmoid activation (double-log scale).

Table 1: Comparison of refinement heuristics: Number of
times the respective heuristic leads to the tightest over-
approximation, i.e. the smallest area, per number of layers
𝐾 .

𝑲 𝑯 (𝑨) 𝑯 (𝑹) 𝑯 (𝑨𝑬 ) 𝑯 (𝑳𝑩) 𝑯 (𝑺 ) 𝑯 (𝑺+𝑬 )

4 0 5 5 5 0 1

6 0 0 4 0 0 6
8 0 0 0 0 0 10
10 0 0 2 0 0 8
12 0 0 1 0 0 9
14 0 0 1 0 0 9
16 0 0 0 0 0 10

neuron abstractions while applying Prop. 4.2 is essentially carried

out using the heuristic 𝐻 (𝐴) .
Fig. 4 shows the averaged results for all refinement heuristic

and type combinations on 10 networks with 𝐾 = 14. While all

heuristics utilizing the approximation error work well, we find

that using 𝐻 (𝑆+𝐸 ) results in the smallest area and more refinement

steps are possible before the set explodes due to order reduction.

While our approach using𝐻 (𝐴𝐸 ) tends to refine neuron abstractions
primarily in earlier layers, the refinements are better distributed

across all layers using 𝐻 (𝑆+𝐸 ) . Thus, 𝐻 (𝑆+𝐸 ) considers a relatively
large approximation error in an earlier layer to be less important

than a smaller error in later layers, if such an error contributes more

to the output. We observe similar results for different network sizes

(Tab. 1), where the benefit of 𝐻 (𝑆+𝐸 ) increases with the size of the

network. Additionally, our approach is up to a thousand times faster

and obtains tighter results than the naive approach for deep neural

networks (Fig. 4). Note that the naive approach has to use splitting

to obtain viable bound estimates to compute tight Y (𝑖 ) after the
first iteration (Ex. 4.1). Lastly, we find that refining the abstraction

Table 2: Examples for increased perturbation radii 𝑟 per im-
age, where idx refers to the corresponding vnnlib specifica-
tion file. The original radius was 𝑟 = 0.012 for all images.

idx 3370 5087 3867 5747 7142 2683

𝒓 0.0167 0.0145 0.0138 0.0132 0.0257 0.0125

of all neurons in a layer usually obtains better results. Thus, in our

current implementation there is no benefit in refining at the neuron

level, even for small 𝛾 .

5.2 Open-Loop Verification Benchmark
We show the applicability of our approach on the eran benchmark

from the VNN’21 competition [3]. This benchmark takes correctly

classified images from the MNIST handwritten digits dataset. The

images have 28 × 28 pixels with 10 possible labels for the digits

0 − 9. The goal of the benchmark is to verify that these images

are still classified correctly with a 𝑙∞-norm perturbation of at most

𝑟 = 0.012. Thus, for a flattened image 𝑐 ∈ R784 we construct an
input set

X = ⟨𝑐, 𝑟 · 𝐼784, [], 𝐼784⟩𝑃𝑍 , (38)

where 𝐼𝑛 is the identity matrix of dimension 𝑛. Let𝑤0 ∈ {1, . . . , 10}
be the dimension of the correct label, then the unsafe set is

S =
{
𝑦 ∈ R10

�� ∃𝑤 ∈ {1, . . . , 10} : 𝑦 (𝑤 ) > 𝑦 (𝑤0 )
}
. (39)

The network has [784, 200, 200, 200, 200, 200, 200, 10] neurons (𝐾 =

14) and sigmoid activation. Further, we apply some smaller verifi-

cation tricks as described in Appendix B.

To demonstrate our approach, we take 10 images that we can

verify using linear abstractions in all neurons. For these images,

we increase the perturbation radius 𝑟 until they can no longer be

verified using linear abstractions in all neurons. Our approach is

still able to verify this more challenging version of the benchmark

using the increased perturbation radius 𝑟 . An example is shown in

Fig. 5. Examples for increased perturbation radii 𝑟 per image are

provided in Tab. 2. The average computation time is 48s, where the

original eran benchmark has a timeout limit of 5 minutes.

5.3 Closed-Loop Verification Benchmark
We additionally show that our approach is also applicable for closed-

loop verification: A neural network controls an actor in a continu-

ous dynamic systemwith uncertain initial state. The goal is to verify

a given specification for a given time horizon, where the neural-

network controller is evaluated everyΔ𝑡 . The controller receives the
current system state as input and the output is used as a static input

to the system dynamics for the next time interval. We demonstrate

our automatic refinement approach on the QUAD benchmark [5]

of the ARCH’22 competition
2
. The goal of the benchmark is to

show that a neural-network-controlled quadrotor stabilizes within

5 seconds within a given goal set. This benchmark is particularly

difficult to verify as it requires a tight over-approximative compu-

tation of the network’s output set. To the best of our knowledge,

the only other tool able to verify this benchmark is POLAR [16].

2
https://cps-vo.org/group/ARCH/FriendlyCompetition

https://cps-vo.org/group/ARCH/FriendlyCompetition
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2683) with correct label 4. The figures show the bounds of
the prediction for each label, where we applied the argmax
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Figure 6: Our approach is able to verify the QUAD benchmark
after one refinement step.

Table 3: Comparison of the closed-loop QUAD benchmark.

Tool Approach Result Time

POLAR [16] Taylor Models VERIFIED 1533s

CORA [25] Polynomial Zonotopes UNKNOWN 15s

Ours Abstraction Refinement VERIFIED 296s

We refine the abstraction of the neural network based on the input

set and reuse the returned order pattern throughout the entire time

horizon. We use 𝐻 (𝑆+𝐸 ) as a heuristic and layer-wise refinement.

The result of our approach is shown in Fig. 6 (compare with [16,

Fig. 5a]). While we are unable to verify the benchmark using linear

approximation in all layers due to a set explosion after a few time

steps, one refinement iteration is enough to verify the benchmark,

where the first nonlinear layer is refined. Our approach is five times

faster than POLAR (Tab. 3) and obtains tighter results. This is a

promising result for future research in this direction.

6 CONCLUSION
In this paper, we present a novel automatic abstraction refinement

approach for the set-based verification of neural networks based on

a novel heuristic derived from sensitivity analysis. To the best of

our knowledge, our approach is the first approach to automatically

refine the abstraction without splitting sets, where the abstraction

refinement is done at the neuron level. Our approach works on a va-

riety of common activation functions including ReLU, sigmoid, and

tanh. We find that the image enclosure of networks with sigmoid

and tanh activation is particularly tight after a few iterations as

they can be approximated well using lower-order polynomials. Fur-

ther, for the first time, we present a method for reusing expensive

bound computations in nonlinear layers to save computation time.

Additionally, we present a more efficient approach for evaluating

polynomial zonotopes on polynomials than a naive approach. In

our evaluation, we demonstrate the applicability of our approach to

open-loop and closed-loop verification. Our approach can compute

a tight over-approximation of the output set in a few iterations,

allowing a fast verification of the specifications. Since splitting sets

is particularly computationally expensive in closed-loop settings,

we expect further progress in closed-loop verification in future

work using our approach.
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A EFFICIENT POLYNOMIAL EVALUATION
Subsequently, we provide the proofs for the naive approach in Sec. 3.

The naive approach computes each term of the polynomial using

polynomial maps (Sec. 3) and sums up the terms using the exact

addition:

Proposition A.1. (Exact Addition [23, Prop. 3.1.20]) Let PZ1 =

⟨𝑐1,𝐺1,𝐺𝐼1, 𝐸1⟩𝑃𝑍 , PZ2 = ⟨𝑐2,𝐺2,𝐺𝐼2, 𝐸2⟩𝑃𝑍 ⊂ R𝑛 with a com-
mon identifier vector, then their exact addition is

PZ1 ⊞ PZ2 = ⟨𝑐1 + 𝑐2, [𝐺1 𝐺2] , [𝐺𝐼1 𝐺𝐼2] , [𝐸1 𝐸2]⟩𝑃𝑍 . (40)

Proposition A.2. (Naive Approach) Given a polynomial zonotope
PZ = ⟨𝑐,𝐺, [], 𝐸⟩𝑃𝑍 ⊂ R with ℎ > 0 generators and a polynomial

https://doi.org/10.1016/j.rcim.2021.102231
https://doi.org/10.1145/3498704
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𝑝 (𝑥) = 𝑎0 +
∑𝑜
𝑖=1 𝑎𝑖𝑥

𝑖 , the polynomial evaluation can be obtained by

P̃Z = 𝑝 (PZ) = 𝑎0 + 𝑎1PZ1 ⊞ . . . ⊞ 𝑎𝑜PZ𝑜 . (41)

The number of generators of P̃Z = 𝑝 (PZ) is given by 𝐻 (𝑜) =
(ℎ+1)𝑜+1−1

ℎ
− (𝑜 +1) ∈ 𝑂 (ℎ𝑜 ). The computational complexity to make

P̃Z regular is O(𝑝 (PZ)) + O(compact) = O(𝑜𝑝ℎ𝑜 log(ℎ)).

Proof. Soundness & Termination. Follows directly fromProp. 2.10,

2.8, A.1, and (6). Number of Generators. Note that

P̃Z =

〈
�̃�,𝐺, [], 𝐸

〉
𝑃𝑍

with �̃� = 𝑎0 +
𝑜∑︁
𝑖=1

𝑎𝑖𝑐
𝑖 , (42)

𝐺 =


𝑎1PZ1 .𝐺︷    ︸︸    ︷
[𝑎1𝐺 (1) ],

𝑎2PZ2 .𝐺︷                                             ︸︸                                             ︷
[𝑎2𝐺 (2)

1
𝑎2𝐺

(2)
2
[𝑎2𝐺

(2)
1

. . . 𝑎2𝐺
(2)
ℎ ]]

. . .

𝑎𝑜 PZ𝑜 .𝐺︷                                              ︸︸                                              ︷
[𝑎𝑜𝐺 (𝑜 )

1
𝑎𝑜𝐺

(𝑜 )
2
[𝑎𝑜𝐺

(𝑜 )
1

. . . 𝑎𝑜𝐺
(𝑜 )
ℎ ]]


,

(43)

𝐸 =


PZ1 .𝐸︷   ︸︸   ︷
[PZ.𝐸],

PZ2 .𝐸︷                                      ︸︸                                      ︷
[PZ.𝐸 PZ1 .𝐸 [𝐸 (2)

1
. . . 𝐸

(2)
ℎ ]]

. . .

PZ𝑜 .𝐸︷                                          ︸︸                                          ︷
[PZ.𝐸 PZ𝑜−1 .𝐸 [𝐸 (𝑜 )

1
. . . 𝐸

(𝑜 )
ℎ ]]


,

(44)

where each matrix 𝑖 = 1 . . . 𝑜 within𝐺, 𝐸 corresponds to the compu-

tation of PZ𝑖 . Let 𝐻 (𝑖) return the number of generators of PZ𝑖 .
With 𝐻 (1) = ℎ, 𝐻 (𝑖), 𝑖 ≥ 2, is given by

𝐻 (𝑖) =

PZ.𝐺︷︸︸︷
𝐻 (1) +

PZ𝑖−1 .𝐺︷   ︸︸   ︷
𝐻 (𝑖 − 1) +

[
𝐺
(𝑖 )
1

... 𝐺
(𝑖 )
ℎ

]︷        ︸︸        ︷
ℎ · 𝐻 (𝑖 − 1) (Prop. 2.10)

= ℎ + (ℎ + 1) · 𝐻 (𝑖 − 1)
= ℎ + Σ𝑖−1𝑗=1 (ℎ + 1)

𝑗ℎ (expand recursion)

=

(
Σ𝑖−1𝑗=0 (ℎ + 1)

𝑗
)
ℎ

=
(ℎ + 1)𝑖 − 1
(ℎ + 1) − 1 ℎ [34, Sec. 3.5]

= (ℎ + 1)𝑖 − 1 ∈ O(ℎ𝑖 ).

(45)

Note that 𝐻 (1) = ℎ = (ℎ + 1)1 − 1. Thus,
𝐻 (𝑜) = Σ𝑜𝑖=1𝐻 (𝑖) (Prop. A.1)

= Σ𝑜𝑖=1 (ℎ + 1)
𝑖 − 1 (45)

= −𝑜 + (1 − 1) + Σ𝑜𝑖=1 (ℎ + 1)
𝑖

= −(𝑜 + 1) + Σ𝑜𝑖=0 (ℎ + 1)
𝑖

=
(ℎ + 1)𝑜+1 − 1
(ℎ + 1) − 1 − (𝑜 + 1) [34, Sec. 3.5]

=
(ℎ + 1)𝑜+1 − 1

ℎ
− (𝑜 + 1) .

(46)

Computational Complexity. The computational complexity of

PZ𝑖 = poly(PZ,PZ𝑖−1) with 𝑛 = 𝑤 = 1, 𝑖 = 2 . . . 𝑜 , is given by

O(𝑝ℎ𝑖 ) [23, Prop. 3.1.30: (3.24)], where we do not apply assumption

3.1.3 in the last line of (3.24) and do not call compact immediately.

Thus, PZ𝑜 can be computed in O(𝑝ℎ𝑜 ), as ∑𝑜
𝑖=2 O(𝑝ℎ𝑖 ) ∈ O(𝑝ℎ𝑜 )

(Prop. 2.10). Further, 𝑎𝑖PZ𝑖 can be computed in O(𝑝ℎ𝑖 ) using (45)
and the exact additions in O(𝑝ℎ𝑜 ) using (46). Finally, compact is

computed in O(𝑝ℎ𝑜 log(ℎ𝑜 )) using (46). □

B VERIFICATION TRICKS
In this section, we show some tricks to improve the verification in

certain scenarios.

Example B.1. Consider a classification task with two outputs,

thus, the network should output a larger value for the correct class

1 for all elements in an input set X. Thus, the unsafe set is
S =

{
𝑦 ∈ R2

�� 𝑦 (2) > 𝑦 (1) } . (47)

Let

Y =

〈[
1

0

]
,

[
1

1

]
, [],

[
1

]〉
𝑃𝑍

(48)

be the computed output set of a neural network forX. The property
Y∩S = ∅ holds forY. However, in complex polynomial zonotopes

we have to check the interval bounds of Y (Prop. 2.7), obtaining

[0, 2] for the first dimension and [−1, 1] for the second dimension.

As these intervals overlap, we cannot guarantee safety.

We can apply the following proposition to mitigate such over-

lapping examples in classification tasks by transforming the output

space and making the specifications S axis-aligned.

Proposition B.2. (Argmax Trick) Given an output set Y ⊂ R𝑣𝐾
for a classification task with 𝑣𝐾 classes and unsafe specifications S ={
𝑦 ∈ R𝑣𝐾

�� ∃𝑤 ∈ {1, . . . , 𝑣𝐾 } : 𝑦 (𝑤 ) > 𝑦 (𝑤0 )
}
, where the prediction

for the correct label is given in dimension 𝑤0 ∈ {1, . . . , 𝑣𝐾 }. Then,
we can transform the output space by a multiplication with a matrix
𝑀 ∈ R𝑣𝐾 ×𝑣𝐾 such that

𝑀S =
{
𝑦 ∈ R𝑣𝐾

�� ∃𝑤 ∈ {1, . . . , 𝑣𝐾 } : 𝑦 (𝑤 ) > 0

}
(49)

without additional over-approximation, where

𝑀(𝑤1,𝑤2 ) =


1, 𝑤1 = 𝑤2 ∧𝑤1 ≠ 𝑤0

−1, 𝑤2 = 𝑤0 ∧𝑤1 ≠ 𝑤0

0, otherwise
(50)

with𝑤1,𝑤2 = 1 . . . 𝑣𝐾 .

Proof. Follows by construction of𝑀 and Prop. 2.8. □
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Example B.1. (cont.) Using Prop. B.2, the interval bounds of𝑀Y
are [0, 0] and [−1,−1]. Note that the interval for dimension 𝑤0

is always [0, 0] but the interval for all other dimensions can be

arbitrary.

Proposition B.3. (Masking) Given an output set Y ⊂ R𝑣𝐾 , spec-
ifications S ⊂ R𝑣𝐾 , and a dimension𝑤 ′ where all specifications are
verified w.r.t. S. Then, we can ignore the dimension𝑤 ′ in future iter-
ations by transforming the output space by a multiplication with a
matrix𝑀 ∈ R𝑣𝐾 ×𝑣𝐾 , where

𝑀(𝑤1,𝑤2 ) =
{

1, 𝑤1 = 𝑤2 ∧𝑤1 ≠ 𝑤
′

0, otherwise (51)

with𝑤1,𝑤2 = 1 . . . 𝑣𝐾 , 𝑀 ∈ R𝑣𝐾 ×𝑣𝐾 , and remove the verified specifi-
cations from S. Thus, the time to check the specifications is decreased
and sensitivity analysis only considers neurons contributing to vio-
lated dimensions in future iterations.

Proof. Follows directly from Prop. 4.14 and Def. 2.3. □

Note that both, Prop. B.2 and B.3, can be implemented by ap-

pending a linear layer at the end of the network using𝑀 as weight

matrix and 0 as bias.
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