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Abstract
Quantum Computing (QC) has proven to be a promising technology in several business
applications. Notably, this technology is worth studying on problems whose complexity
demands an overwhelming amount of solving time. Additionally, due to Moore’s law,
the increase in computing capability is starting to be limited. Alternative algorithms
for solving complex problems must be evaluated.

Quantum Annealing (QA) is a meta-heuristic quantum algorithm designed for solving
combinatorial optimization problems. A well-known combinatorial optimization prob-
lem many companies face nowadays is distribution logistics. A fleet of vehicles picks up
or delivers goods optimally from one depot to various customer locations. Truck-specific
capacity and schedule constraints must be fulfilled. This problem is known as the
Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), classified
as an NP-hard problem. Throughout this work, CVRPTW was adapted to solve a
Siemens AG operational process, expecting to find a real-time QA solution response
required for potential industrial applicability. Furthermore, the modeling approach
is based on a binary programming formulation of the CVRPTW in a time-expanded
network. A time-expanded network allows discretizing time by expanding the location
nodes with time dependencies, enabling the utilization of indicator decision variables.

This work introduces a performance comparison of an adjusted CVRPTW on a
four-month simulation task solved via an exact optimization algorithm (CBC) and QA,
respectively. D-Wave’s quantum annealer Advantage 6.1 (5,640 qubits) with the CBC
solver as a baseline was employed. Both solvers were run remotely. The four-month
simulation was split into pieces of three days, run sequentially. Each of these three-day
instances included a different number of nodes. QA handled up to 12 nodes instances,
plus two exceptions that could not be solved with seven and nine nodes. It was found
that the transformations of the initial problem into an eligible QA intake hinder the
solving time advantages of this algorithm, such as parameter tuning and quantum
embedding for each instance. Therefore, a real-world application of the CVRPTW
via QA is not yet recommended. However, QA outperformed the CBC, by an order
of about two of magnitude, in finding the optimal solution once all parameters and
transformations were completed; demonstrating the potential of this technology in the
nearer future.





“...nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum-mechanical....”

- Richard Feynman, 1981.
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Chapter 1

Introduction

Nowadays, technology has helped us to find more useful organizational structures.
However, there are still topics that current technologies cannot yet adapt to. One
sort of challenges faced by enterprises regards goods distribution. For instance, the
EU assessed the impact of this sector because of problems related to the COVID-19
pandemic. Contingency strategies to address these problems include reducing the
number of vehicles required for cross-border transport, thereby reducing the economic
risk of this sector.

On the other hand, the European Union envisions a net-zero greenhouse gas emissions
economy by 2050; nonetheless, future trends show that without additional actions to
curb CO2 emissions, the share of CO2 from Heavy Goods Vehicle (HGV)1 transports
will increase from 27% in 2016 to 32% in 2030, [1]. Consequently, testing new technolo-
gies that help us to address this problem is vital to foster a global-economic development
without sacrificing certain services. Vehicle Routing Problem (VRP) is a class of com-
binatorial optimization problems that could help allay these concerns. Unfortunately,
the solving time required for large instances increases exponentially as more customers
or visiting points are added; therefore, the industry is not encouraged to employ it in
its operational processes. Quantum Annealing (QA) is developed to solve optimization
problems making it a proper candidate for overcoming VRPs implementation difficulties.

1.1 Problem Definition
This research explores a meta-heuristic algorithm based on Quantum Computing (QC)
principles, QA, designed to solve combinatorial optimization problems. Notably, this
work is interested in solving a well-known combinatorial optimization problem called the
Vehicle Routing Problem (VRP). The VRP is classified as an NP-hard2 class problem;
therefore, solving a problem using standard optimization techniques in an acceptable

1HGV is any goods vehicle over 3.5 tonnes.
2A problem is NP-hard if all problems in NP can be reduced to it [2].
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Chapter 1 Introduction

time is challenging [3]. Moreover, a mathematical routing optimization formulation
based on the requirements of Siemens AG3 is presented. The requirements included
scheduling hours, specific-truck parameters such as capacity and volume and driv-
ing hours. Further details regarding the model assumptions will be explain in Chapter 4.

The main idea is to simulate the distribution of products. The simulation was derived
using almost four months of data from a logistic operational process of Siemens. In
order to obtain possible routing solutions from the simulation, two approaches were
employed, a classical and a quantum solver, seeking to compare their performances.
The classical solver work as a benchmark model that will be run remotely on a classical
computer4. Throughout the thesis, the classical solver will also be referred to as an
exact solver.

1.2 Theoretical Background
The following section introduces two central topics of this thesis. The first subsection
defines the VRP, while the second subsection explains the basic concepts related to
Quantum Mechanics helpful to understanding the QA algorithm.

1.2.1 Vehicle Routing Problem
The VRP can be defined as the problem of optimally designing routes for goods delivery,
starting and ending at a warehouse, through multiple customers at distinct geographical
locations. This problem also considers a loading capacity, contrary to a similar problem
known as the Traveling Salesman Problem (TSP). Further information concerning
this class of problems will be explained in Chapter 2. VRPs are subject to certain
constraints, giving them new names accordingly. For instance, scheduling constraints
generate a new branch called VRP with Time Windows. Further discussions regarding
VRP variants are studied in Chapter 2. The set of constraints employed to address the
problem is described in Chapter 3.

1.2.2 Quantum Mechanical Theory
Quantum annealing uses quantum physics to find low-energy states of a problem; this
algorithm helps find an optimal or near-optimal solution to a combinatorial problem
[4]. QA relies on a physics compass that can be observed in nature’s behavior. Nature
always attempts to utilize the minimal available energy. For example, it is possible to

3Multinational company with headquarters in Munich, Germany.
4Current John von Neumann computers architecture.
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1.2 Theoretical Background

observe this pattern in the straight line drawn when an object falls to earth and on the
refraction in the light when it is going through a glass of water. QA uses this principle
to find optimal possible solutions through quantum tunneling5, which is considered a
valuable property to reaching a global minimum solution faster and of better quality
than classical annealers6.

Hamiltonian

The Hamiltonian is a mathematical formulation of a physical system in terms of its
energy; under certain circumstances, it accurately describes a physical system. By
designing the Hamiltonian model to mimic an optimization problem, we can prepare a
final quantum state that represents the solution to the original optimization problem
[6]. Chapter 3 defines the Hamiltonian corresponding to the problem that is solved in
this thesis.

Qubit

In Classical Computing (CC), a bit is the most basic unit of information. This
information is handled through transistors, which either let energy pass through or
not, giving a 0 or a 1. The evolution in the capacity of classical processing has been
given by its ability to house more significant numbers of transistors in smaller spaces.
Unfortunately, this evolution is being threatened due to the physical property of the
electrons. The barriers established by the transistors are not enough to stop the path
of energy due to a quantum effect. QC has its own basic unit of information called
qubit. A qubit represents the energy state of a system, and contrary to a bit, it can be
in a superposition of the state 0 and state 1. Once the final state is achieved, the qubit
collapses from its quantum state into a classical one, 0 or 1. Qubits are particularly
useful since a series of them can be connected through a physical property called
quantum entanglement. In quantum mechanics, quantum entanglement is referred to
as coupling due to the short distance between the qubits. The following Subsection
describes how the connection through coupling between qubits is handled for using
QA.

5Quantum tunneling refers to the nonzero probability that a particle in quantum mechanics can be
measured to be in a state that is forbidden in classical mechanics [5]; this can also be described as a
particle ability to transfer through possible energy barriers.

6In metallurgy, annealing is the process of material heating so its temperature can be stabilized by
cooling it down slowly.
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(a) QUBO graph (Logical problem graph). (b) Minor-embedding graph (Physical qubit
graph).

Figure 1.1: Example of a QUBO graph (a) onto a graph (b). Each node in (a) maps to a
chain (qubit coupling) in (b). Chain nodes and edges are colored to match their source nodes,
and logical edges from the original graph are black. Qubits and edges that are unused in this
embedding are gray. The blue circle highlights an example of a node mapped onto a two qubits
chain [4].

Embedding

Formulating the original objective function in a format such that QA can be employed
is necessary. QA starts with the embedding process. Firstly, the problem of interest
needs to be defined in its Quadratic Unconstrained Binary Optimization (QUBO)
form, so the translation from CC to QC can be performed through the embedding.
For example, the value 11 in the binary number system is x = 1011, representing the
4-qubit |1011〉. The general mapping process is called minor-embedding, consisting of
mapping the QUBO problem onto a sub-graph of the quantum graph7. Figure 1.1
dispatches an example of a minor-embedding of a QUBO map onto a minor-embeding
graph. Information from "The D-Wave8 Advantage2 Prototype" report [4].

D-Wave Systems developed the quantum graphs that were considered for this work.
As explained, qubits connect to others via couplers; nonetheless, D-Wave QPU9 graphs
are not fully connected; rather, qubits connect according to the selected topology10.
The subgraph of qubits and couples available for computing is a working graph. Figure
1.2 depicts some of the topologies developed by D-Wave. For example, Chimera can
be employed under 2,048 and 6,016 couplers, whereas Pegasus is the latest and most
powerful structure by the time this work is written, with 5,640 and 40,484; Pegasus’

7The quantum graph represents the qubits and their connections.
8Quantum computing company with headquarters in British Columbia, Canada. D-Wave Systems

Official Webpage: https://www.dwavesys.com/
9QPU is a lattice of connected qubits.

10D-Wave’s graph architectures. In D-Wave Systems, the topology is the structure where the qubits
and couplers are set up on the chip.
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1.2 Theoretical Background

(a) Chimera Topology. Released 2017. (b) Pegasus Topology. Released 2020.

(c) Zephyr Topology (D-Waves’ next generation
QPUs, release planned for 2023-2024).

Figure 1.2: D-Wave most import topologies. Qubits are tiled vertically or horizontally. a)
D-Wave 2000Q QPU, supports 2,048 qubits mapped into a 16× 16 matrix of unit cells of 8
qubits. Graph degree of 6 [4]. b) Advantage QPUs, Pegasus qubits are shifted allowing each
qubit to have a degree of 15 [7]. c) Zephyr graph, contrary to Pegasus, achieves a degree of 20.
By June 2022 an experimental prototype is available in D-Waves Leap, quantum cloud service
from D-Wave [8]. Figure 1.1, b) depicts an example of Zephyr’s degree 3 connectivity topology.

latest version was released in 2021 under the name Advantage QPUs [4]. Siemens
provided financial support to test the experiments on the D-Wave Advantage QPUs.
Further details concerning the applicability of this technology to our problem are
explained in Chapter 4 4.

Holding a more extensive topology structure facilitates the mapping. However,
finding minor-embeddings is already considered an NP-hard problem if the QUBO and
the quantum graph are not fixed [9]. Different heuristic methods are used to solve the
problem. Throughout this project, we must work with binary decision variables pre-
cisely due to the embedding procedure. Finally, once the quantum graph is embedded,
quantum mechanics is used to finding the minimal energy through quantum tunneling.
Quantum tunneling is achieved via qubits superposition and coupling. Figure 1.3
depicts a simplified effect of quantum tunneling in a system, in which depending on
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Chapter 1 Introduction

Figure 1.3: Comparison diagram between simulated annealing and using the tunneling effect
in quantum annealing. Adapted from Wang et al. [10].

the variable’s configuration, coupling affects the system’s energy.

1.3 Contributions
The main contributions from this study are as follows:

1. A VRP optimization model was designed according to a real-world operation.
2. Implementation of a four-month simulation and a performance evaluation of an

adjusted VRP; model based on Siemens’ logistics requirement operation.
3. Evaluate the QA scope applied to a vehicle routing class optimization problem

variant.
4. Finally, an extension of the VRP-solving between the classical approach and

quantum annealing is presented, providing an overview of the state-of-the-art
performance in solving these combinatorial optimization problems in terms of
the quality of the solution and time.

1.4 Outline
The remainder of this thesis is structured as follows: Chapter 2 provides an overview
of the evolution of VRP and its approach to solving real-world problems. In there,
variants of the VRP and its solution strategies, such as heuristics methods employed

6
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to address this problem’s complexity, are reviewed. Subsequently, modeling results
through quantum computing and quantum annealing with a particular focus on the
applicability of this technology for solving VRPs are studied. In Chapter 3 , three
sections are presented. The first one studies the mathematical framework for the
classical Capacitated Vehicle Routing Problem with Time Windows (CVRPTW).
Afterward, a modification of the CVRPTW formulation is presented, and lastly, the
mathematical framework required for the application of QA is defined. Chapter 4 is
divided into two main components. The first describes the experimental framework,
from the procedure for modeling the adjusted CVRPTW to a detailed explanation
of QA’s implementation. The last part presents the experiments conducted for the
adjusted CVRPTW. The classic approach is evaluated as a benchmark for results
obtained when utilizing QA. Both in terms of time and solution quality. The final
Chapter 5 summarizes the insights gained throughout this work and assesses the
limitations and scope of using QA technology for solving a class of VRPs.

7





Chapter 2

Literature Review

This chapter outlines essential studies regarding the topics studied in the thesis found in
the literature: VRP and its variants, as well as QC coupled with the QA meta-heuristic.
The organization of this chapter is divided into two major parts. Section 2.1 presents
several models related to the Vehicle Routing Problem, whereas, Section 2.2 explains
quantum computing technology and its applications.

2.1 The Vehicle Routing Problem
In a Vehicle Routing Problem, the manufacturer must optimize its routes’ distribution
to deliver its products to a group of customers. The first formal record for this problem
was by Dantzig et al. [11] in 1954. The authors introduced a solution for the TSP for
48 cities and one vehicle. The primary objective of the TSP is to find the shortest
tour1 to visit n cities a single time, except the origin city, which is the starting and
returning point. The TSP is one of the most widely studied NP-hard combinatorial
optimization problems [12]. Some authors consented that the first introduction of
an additional salesman was accomplished in Clarke et al. [13], opening the path for
a multi-Traveling Salesman Problem (mTSP). Different versions for addressing the
mTSP were developed afterward, e.g., Gillett et al. [14] introduced a heuristics method
in 1974, and Husban [15] presented a solution approach using branch-and-bound in 1989.

In the taxonomy review from Eksioglu et al. [16], is mentioned that the first time
the word vehicle was used in a research paper was in 1977 by Golden et al. [17]. This
work is considered the first time the VRP was introduced in the literature as we know
it today. The introduction of the vehicle concept opened space for different notions,
such as vehicle capacity in terms of volume or weight, since the TSP or mTSP is
formulated with no capacity constraints. Therefore, during this research, it may be
used the term Capacitated Vehicle Routing Problem (CVRP) for the extended mTSP
with m homogeneous trucks [18]–[20]. Conversely, it is also possible to find studies
considering a heterogeneous fleet of vehicles [21], [22]. Additional studies introduce a

1Route driven by each vehicle, from the first supplier until the arrival at the depot.
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probabilistic guideline to the VRP to address real-life challenges of this problem, such
as probabilistic capacity constraints or locations due to parking availability [23], [24].

In 1988, Solomon [25] introduced one of the most important variants of the classical
VRP, according to the current focus problem setting, namely the window constraints.
The VRP with Time Window constraints is its generalization, in which a customer’s
service can begin within the time window defined by the earliest and the latest times
allowed by the customer [26]. Solomon [25] remarked that time window constraints
alter the computational complexity of even easy problems.

A distinct class of optimization problem is called Vehicle Routing Problem with
Pick-up and Delivery Problem (VRPPD). VRPPDs belong to the VRP family, where
goods must be transported from an origin to a destination; the sole distinction is that
the goods are allowed to leave or enter the vehicle at any node [27]–[29]. One typical
example of a VRPPD is courier transportation. The class of VRPPDs can be classified
into three different groups [30]. The first group consists of many-to-many problems,
inhere any node can serve as a source (pick-up) or as a destination (deliver) for any
commodity. The second group is known as the one-to-many-to-one. Here, commodities
are initially picked up at the depot and are destined for the customer; in addition,
commodities available at the customers for pick-up may be destined to the depot. This
setting is highly similar to the combination of an inbound and outbound logistic service.
Finally, the third group are one-to-one problems; each commodity is picked up and
delivered to a given destination. The problem described in this study corresponds
to a one-to-one service, in which each supplier requests a commodity pick-up whose
final destination is one common depot. The pick-up and delivery problem can be
extended into a Vehicle Routing Problem with Backhauls (VRPB), which includes a
set of customers and vendors whose products are delivered and picked up back to the
distribution center, respectively [31].

Several algorithms such as meta-heuristics, and problem-independent heuristics,
were developed to address this problem’s complexity. For instance, one of the earliest
publications that used Simulated Annealing (SA)2 to solve this problem can be found
in Alfa et al. [33]; the most known papers include Osman [34] and Lim et al. [35].
Another well-known meta-heuristics technique is the genetic algorithm, a biological
evolution optimization model, introduced by Filipec et al. [36]. The ant colony systems,
an optimization model approach that consists of finding optimal paths through a
graph [37]. Although nowadays neural networks are a hot topic, in 1996, Ghaziri [38]

2A probabilistic method for solving optimization problems. Simulated Annealing "works by
emulating the physical process whereby a solid is slowly cooled so that when eventually its structure is
frozen, this happens at a minimum energy configuration" [32].

10



2.1 The Vehicle Routing Problem

proposed utilizing this approach. The development of the VRP addressed with QA
will be reviewed in 2.1.

The frameworks presented above considered operating with a single depot and mul-
tiple suppliers. However, a more convenient strategy relies upon the assumption of
more than one manufacturer in the goods distribution, namely Multi-Depot Vehicle
Routing Problem (MDVRP). One of the earliest studies of this branch can be found
in Fleischmann [39]. This guideline presents an advantage for large enterprises with
several manufacturers and customers in various cities. A proposed two-step approach,
where a customer is first assigned to a cluster of depots and secondly performs the
route optimization, is introduced in Giosa et al. [40]. A comparable heuristic procedure
based on the problem decomposition was done by Min et al. [31] in 1992. It allowed
solving the problem with three depots and 134 customers. As reviewed, several authors
employed multi-level composite heuristics to address this problem setting, e.g., for a
heterogeneous fleet [41]. Alternatively, Lim et al. [35] involved SA for solving MDVRP
with a fixed distribution of vehicles. Compared to the best-known results published
at that time, the SA yielded a reduction of 12% in the total distance. One of the
most robust model proposals for the VRP family reviewed in this project was found
in Pisinger et al. [42]; which studied the Multi-Depot Vehicle Routing Problem with
Pick-up and Delivery (MDVRPPD), together with the variants of time windows and
vehicle capacity MDVRPPDTW. The lector may recall Roman numerals. There are
less exact algorithms for solving the MDVRP, [43]–[46] proposed exact branch-and-
bound algorithms, performing well only in relatively small settings. Further studies
were performed extending this problem, for example, the variant with pick up and
deliveries and heterogeneous fleet [47], or one of the most studied problem setting, the
Capacitated MDVRP [48]. Fig. 2.1 depicts a hierarchy of the VRP variants discussed.

Finally, the last type of problem studied in this literature review regards a static
and dynamic approach. It will be considered a static VRP when all the input data
of the problem are known before the routes are constructed. Conversely, it is called
dynamic VRP if only part of the data involved in constructing the routes is known,
and the rest of the information is updated throughout the process. Bianchi [49] defines
a problem as static if the decision maker can predict the updates for the input data,
i.e., although the data may not be deterministic, it is still possible to solve the problem
based on probabilistic assumptions. The problem is not dynamic. A Dynamic TSP
is introduced in Bianchi [49]. Nowadays, dynamic routing planning is needed due to
the possibility to foreseen traffic congestion [50]; moreover, fast inter-communication
allows updating the available information to optimize the route in real-time [51].

In recent years, the development of machine learning algorithms, such as deep
learning, promises to leverage challenges when solving vehicle routing optimization

11
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Figure 2.1: Subset of reviewed VRP variants (adapted from Eksioglu et al. [16]).

problems. However, these methods need a vast amount of training data before achiev-
ing satisfactory performance. To address the need for training data, Lucas et al. [52]
proposed a two-step approach: create a decision tree based on feature characterization
from previously generated solutions and then use them as an input for the solver. Due
to this, deep reinforcement learning has been demonstrated to be a viable option for
addressing the VRP, since the training dataset is not required. For instance, employing
a neural network-integrated with an attention mechanism empowers the policy in deep
reinforcement learning to select the subsequent nodes automatically [53].

The VRP is one of the most studied combinatorial problems, and as reviewed, it has
always been a trial benchmark for applying new developments. The following section
provides a literature review of a technology that could be employed to speed up current
VRPs solvers.

2.2 Quantum Computing

An additional part of this project consisted of testing the behavior of the VRP with non-
conventional computing. This section overviews significant developments concerning
quantum computing, especially QA.

12
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Quantum Computing

Quantum Computing is mainly distinct from CC, since it leverages specific properties
described by quantum mechanics to perform the computation [54]. It is acknowledged
that Richard Feynman introduced the concept of QC. However, in 1979 Benioff [55]
presented the theoretical basis for QC and how such a computer could be built. Shor’s
factorization algorithm is one of the first and most famous algorithms demonstrating
QC’s better performance than CC [54]. Factoring large numbers is intractable on
CC. Prime factorization forms the basis for several proposed cryptosystems [56]. QA
performance is also demonstrated in the breaking speed of the Rivest-Shamir-Adleman
(RSA) algorithm [57], which proves the optimality of QC for solving this type of
algorithm more than CC [56]. Further applications of QC have been studied in the
literature, such as quantum speed-up for Monte-Carlo sampling [58] or in chemistry
[59]. Several benefits encountered throughout this technology review are its application
in communication [60]–[62]. Biamonte et al. [63] studied software implementation paths
that may enable machine learning to run faster in QC than in CC. The superposition
of qubits, for example, enables QC to be a suitable option for handling large tensors
[64]. An evaluation of quantum advantages can be found in Harrow et al. [65].

Quantum Annealing

It was in 2011 when D-Wave Systems announced "the world’s first commercially avail-
able quantum computer" 3. In contrast, IBM 2016 was the first company to release
quantum computer services onto the cloud with a five-qubit quantum processor [66].
Real-world applications of QA are related to finding a solution to combinatorial op-
timization problems. The notion of using the quantum tunnel effect to include QA
rather than thermal into optimization modeling appears to have been independently
proposed in McGeoch [67]. Well-known research performed by Kadowaki et al. [68]used
the superiority of QA over SA on a particular system. Further research regarding QA
technology has been performed; for example, Fujitsu developed an algorithm inspired
by QC technology called Digital Annealing (DA), which represents a more affordable
alternative to QA. It is designed to solve fully connected QUBO problems. DA proved
to be two orders of magnitude faster than SA in solving dense problems, whereas
it does not exhibit a speed-up for sparse ones [69]. Ayodele et al. [70] proposed an
extension of the single-objective DA algorithm to a multi-objective one.

Successful quantum optimization stories from D-Wave’s customers can be found in
D-Wave [71], including portfolio risk management, protein design, and CO2 reduction
caused by waste control optimization. Likewise, quantum annealers proved to be helpful
in finance [58] and weather forecasting [72]. Further problems solved using QA in the

3D-Wave Systems Official Webpage: https://www.dwavesys.com/
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industry are addressed by Yarkoni et al. [73].

The TSP is one of the most studied problems addressed using QA from the VRP
family [74]–[76], VRP and its variants [77], [78] or a dynamic approach of the MD-
VRP, see Harikrishnakumar et al. [79]. However, QA does not always present better
performance than CC; the algorithm additionally encounters time delay issues for
embedding onto the qubit graph, the latency of the Internet connection, and queuing at
the quantum hardware [6]. Borowski et al. [80] introduced a hybrid quantum algorithm
solver called DBSCAN. This solver’s idea is to disjointly split the problem in minor
instances, proven to find faster results and can find solutions of similar or even better
quality than the tested classical algorithms. Feld et al. [6] proposed a hybrid guideline
of the Capacitated VRP, which studied the behavior of the QBSolv using QA and
a classical solver. The authors observe that QBSolv is currently more advantageous
when using classical methods, since finding a proper embedding of the QUBO problem
to the hardware generates overhead costs.

Currently, research work has emerged that solves machine learning methods using QA.
For example, Nath et al. [81] presented a review of D-wave QA for optimizing machine
learning algorithms in classification problems. On the other hand, the limitation of
QA due to a need for flawless control of the processor environment or hyperparameter
tuning motivated a research line; in which machine learning algorithms improve QA
Brence et al. [82]). An application of deep learning Monte-Carlo simulations technique
for speeding up sampling [83], and similarly, the use of reinforcement learning to adapt
the penalty term of unsatisfied constraints and adjust the given problem into a new
Hamiltonian was studied by Ayanzadeh et al. [84].

Contrary to VRP’s literature, this technology has fewer tested applications, making
it an excellent study object. There exist findings demonstrating that QA has confirmed
usefulness in particular scenarios, such as encryption and combinatorial optimization
problems. Several developments in this technology are expected, such as D-Wave’s
Advantage2 with 7,000 qubits and a new qubit design (Zephyr) [4], given its endorsement
by companies and governments in recent years [85]. The following chapter explains
the mathematical framework employed to model the VRP and construct the QUBO
problem required to use D-Wave’s QA software.
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Chapter 3

Problem Formulation

This chapter contains the mathematical formulations employed during this study. After
the Literature Review from Chapter 2, a selected a baseline of the route optimization
model that suits the project in Subsection 3.1.1 was chosen; nonetheless, one can find
assumptions in this model that do not entirely align with the scheme requirements.
In order to address the particular demands of the operational logistics process from
Siemens, the adjustments performed are outlined in Subsection 3.1.2.

On the other hand, this work aims to understand the scope of Quantum Annealing
applied to the VRP optimization problem. Therefore, a modification of the MIP
formulation into a legible structure for Quantum Annealing is needed. This modification
consists of mapping the optimization problem onto a QUBO problem Feld et al. [6].
The latter type of problem is solved with Ising machines1, where the energy function of
the Ising model or QUBO form corresponds to the objective function [87]. The physical
process for solving this instance is known as Quantum Annealing based on the principles
of Adiabatic Quantum Computing (AQC)2. Therefore, Section 3.2 describes the steps
to obtain its Hamiltonian formulation and then proposes a solution for reaching the
Quantum Annealing final formulation, namely QUBO.

3.1 Multi-Vehicle Routing Optimization
This section consists of two components. According to the literature reviewed, the
first one defines the VRP that describes reasonable and practically the faced problem.
Afterward, an adjustment that fulfills additional prerequisites of the selected VRP is
presented.

1Ising machines are hardware solvers whose objective is to locate an approximate ground state of
the Ising model [86].

2"An adiabatic quantum computing is a model of computation that uses quantum mechanical
processes operating under adiabatic conditions" [88].
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Chapter 3 Problem Formulation

3.1.1 The Capacitated Vehicle Routing Problem with Time Window

In Chapter 2, the limitations and advantages of members from the family of VRPs
were discussed. Their objective is to determine a set of vehicle routes to perform the
transportation requests; in particular, to decide which vehicle handles each sequence
request so that all routes can be feasibly executed as proposed by Irnich et al. [89].

The CVRPTW is described in Kallehauge et al. [90] as a fleet of identical vehicles
V = {1, ..., k} ( N located at a central depot, represented by the set {0, n+ 1} ( N,
that must be optimally routed to supply a set of customers C = {1, ..., n} ( N. Each
customer is served exactly once. In this setting, there exists a known demand q ∈ Rn of
goods of each customer. The set of all nodes is denoted by N = {0, 1, ..., n, n+ 1} ( N.
This relation is described as the complete and undirected graph G = (N ,A), where A
is the set of arcs between nodes i and j. Each arc (i, j) ∈ A, with i 6= j, reflects a time
τij associated with the distance between the nodes, dij ∈ R+. Additionally, i 6= n+ 1
since n+ 1 must be the last stop for all the vehicles, and similarly, j 6= 0 indicates that
at the starting point, no vehicle is allowed to arrive at the depot, when is node 0. In
other words, every route originates at node 0 and finishes at node n+ 1.

Each customer has a scheduled service time assigned to only one vehicle. The service
for any customer starts within a given time interval, called a time window. There are
two types of time window classification: i) they are called soft when the vehicles are
allowed to arrive to the customer before the earliest and after the latest predefined time
window; and ii) hard, if a vehicle must wait until the customer opens when arriving
too early and not reach the customer if the arrival time is after the upper bound. In
this problem description, the latter is modeled.

The objective of the CVRPTW is to serve several customers, each within a predefined
time window [ei, li] ( N, minimizing the distance traveled. Every vehicle must arrive
at the customer before bi, and wait if it arrives before ei to serve the customer. The
vehicle may not leave the depot before e0 and the last vehicle must return to the depot
before ln+1. Note that the interval from e0 to ln+1 describes the scheduling horizon.
For simplicity, assume e0 = 0. All requirements must be fulfilled without exceeding the
truck’s maximum capacity c, homogeneous fleet, such that the demand qi of customer
i is bounded by qi ≤ c. Note that the minimum number of vehicles needed to serve all
customers is d

∑
qi
c e [3].

The formulation considers two decision variables. The indicator variable:

xi,j,k =
{

1, if vehicle k drives from i to j,
0, otherwise,

(3.1)
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3.1 Multi-Vehicle Routing Optimization

establishes the connections in the graph G . In addition, for each node i and vehicle k,
the decision variable sik ∈ R+ specifies vehicle k′s starting service time at a customer
i; and no vehicle arrives at more than one customer. Therefore, sik only is considered
when xi,j,k = 1 and it is irrelevant otherwise. Regarding the depot, without loss of
generality, assume s0k = 0.

Finally, the mathematical formulation for the VRP with homogeneous truck Capacity
and hard Time-Windows (CVRPTW) is the following:

min
x

∑
k∈V

∑
i∈N

∑
j∈N

dijxijk (3.2a)

subject to
∑
k∈V

∑
j∈N

xijk = 1, ∀ i ∈ C , (3.2b)

∑
i∈C

∑
j∈N

qixijk ≤ c, ∀ k ∈ V , (3.2c)

∑
i∈N

x0jk = 1, ∀ k ∈ V , (3.2d)

∑
i∈N

xijk −
∑
i∈N

xjik = 0, ∀ j ∈ C , ∀ k ∈ V , (3.2e)

∑
i∈N

xijkxi,n+1,k = 1, ∀ k ∈ V , (3.2f)

xijk(sik + τij − sjk) ≤ 0, ∀ i, j ∈ N , ∀ k ∈ V , (3.2g)
ei ≤ sik ≤ li, ∀ i ∈ N , ∀ k ∈ V , (3.2h)
sik ∈ R+, ∀ i ∈ N , ∀ k ∈ V , (3.2i)
xijk ∈ {0, 1}, ∀ i, j ∈ N , ∀ k ∈ V . (3.2j)

The objective function (3.2a) minimizes the total travel distance. Constraint (3.2b)
guarantees that each customer is visited only once. Conversely, (3.2c) assures that
a vehicle can only be loaded to its maximum capacity. Equation (3.2d) ensures that
each vehicle must leave the depot 0, following equation (3.2e), known as the balance
constraint, since each vehicle that arrives at a customer must leave it. Then, (3.2f)
indicates that all vehicles must finish at the depot n+ 1. The inequality (3.2g) specifies
the relationship between the vehicle departure time from a customer and the vehicle’s
next customer. Finally, constraint (3.2h) attaches the service time within the allowed

17



Chapter 3 Problem Formulation

time window. Finally, (3.2i) and (3.2j) defined the decision variables description. The
formulation employed during the initial testing substituted equation 3.2g with 3.2k.

sik + τij −M(1− xijk) ≤ sjk, ∀ i, j ∈ N , ∀ k ∈ V (3.2k)

for a natural number M big enough, such that M ≥ maxij∈N {li − ej + tij} [91],
known in the literature as the Subtour Elimination Constraint. The service start
variables impose a unique route direction for each vehicle, thereby eliminating any
subtours. Note that sik ≤ sjk if xijk = 1 [90]. A study regarding other variants of this
problem can be found in Nanda Kumar et al. [3]; where variable sik is replaced with
another two variables ui and wi representing the arrival and waiting time at customer i
respectively. Note that this model approach considers the soft time windows described
above.

Due to the type of variables used, an entire procedure with this formulation was not
selected. The problem setting described in this Section utilizes non-binary variables.
Recall that binary variable to solve the problem using Quantum Annealing is needed.
In addition, this study is interested in utilizing volume constraints and minimizing the
number of vehicles employed.

3.1.2 CVRPTW Adjusted Formulation
Parallel to the problem setting presented previously, a set N = {1, ..., n} ( N of
suppliers distributed in different locations is considered. In the same manner, a unique
depot is used. Nevertheless, throughout this work, it will be referred to it only as
{0} ( N without using the index n+ 1. The notation utilized for the complete set of
nodes is now represented as N0 := N ∪ {0}.

An initial set of vehicles V = {1, ..., n} ( N to transport the commodities is consid-
ered in both problem settings. Similarly, these vehicles had the same loading capacity,
c ∈ R+, and respective volume, m ∈ R+. All the vehicles depart from only one supplier
and are allowed to visit each location within a predefined time window once. Recall
that, unlike in the last Subsection, all the vehicles depart only from the depot. Finally,
each of these vehicles must end its tour at the depot. Throughout the Section, a
rigorous description of the performed changes will be provided.

Time-indexed framework

The framework is constructed following a Service Network Design (SND) problem
[92]–[94] due to its advantages when using binary variables. Here, the time is not
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3.1 Multi-Vehicle Routing Optimization

modeled as a positive real number, (3.2i), but is discretized and assigned to an element
of the network, namely a time-expanded network. The implemented model employs a
5-index formulation (3.4), which consists in describing the route with 5 elements in a
decision variable xkitjt′ , such that:

• k represents the vehicle used
• i represents the departure node
• t represents the arriving time at node i
• j represents the arrival node
• t′ represents the arriving time at node j

In Subsection 3.1.1, an introduction to a 3-index formulation was explained. Addi-
tional strategies that use the time-index framework can be found. Albiński et al. [95]
studied a 4-index formulation; this approach reduces the computational effort when solv-
ing this problem. Related studies proposed different time-extended network analyses by
considering additional decision variables, such as clock variables, to follow the truck’s
driving time. They achieve it by counting the time after breaks or daily breaks [91],
[95], e.g., 8 hours of driving with breaks of 30 minutes after 4 hours of continuous driving.

Firstly, it is constructed as a standard connection network G = (N0,A), where N0
denotes the nodes of graph G representing the suppliers and the depot. Then, the
arrival time windows [ei, li] := {ei, ei + 1, ..., li} for each supplier i ∈ N using the
requested pick-up hour from the data received is created. In this regard, it is assumed
that the arrival times follow the principle First− In, First−Out, which states that a
later arrival li cannot lead to an earlier arrival ei and that the travel time is a piece-wise
linear function of departure time [96]. All possible options within this interval using
the opening hours of the supplier and a predefined padding time tw, giving an interval
of ± tw

2 hours around the requested pick-up time are given. For instance, tw = 12 hours
would give an additional buffer of ±6 from the requested supplier’s pick-up time if
these hours were elements of the supplier’s opening hours. The same situation for the
depot’s arrival time window [ei0, li0] is considered; using the requested depot delivery
hour, the arrival time in the depot according to each supplier’s requested order deadline
is generated. Note that all the vehicles must be in the depot at a time no later than
max∀i∈N0{li0}.

As mentioned at the beginning of this chapter, the CVRPTW is modeled with
various modifications. One adjustment is related to vehicles starting positions. In the
classic CVRPTW, all vehicles start in the depot and return to it at the end of the tour.
However, this problem setting has the advantage that any transport can start at the
most convenient supplier. Therefore, the time matrix T is modified by converting all
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Chapter 3 Problem Formulation

entries of the first row to zero. This is a valid transformation since this row can be
associated with the transit from the depot to each supplier. Let τij ∈ T ( R+n×n be
the transition time for going from i to j in an HGV according to the suppliers’ locations.

Then, the latter modification is given by:

T̃ :=


0 0 . . . 0
τ10 τ11 . . . τ1n
... . . . ...
τn0 τn1 . . . τnn

 =


τ00 τ01 . . . τ0n
τ10 τ11 . . . τ1n
... . . . ...
τn0 τn1 . . . τnn

 ◦


0 0 . . . 0
1 1 . . . 1
... . . . ...
1 1 . . . 1



where ◦ represents the Hadamard product, also known as the element-wise product.

Furthermore, the minimization function depends on the distance between nodes,
which also follows dij = 0 if and only if i = 0. Similarly, the distance between the
nodes is determined by their locations. This modification on the T̃ matrix also impacts
the connections from the graph G . Recall that A represents the set of arcs between
nodes. It can be considered these arcs as travel costs where A ( N × N indicates if
traveling between two nodes is possible. Note that each arc a = (i, j) ∈ A is associated
with the travel time between two nodes τa.

Assuming vehicle k arrives to supplier i at time t, the arrival time t′ at supplier j is
given by t′ = t+ τij . Thus, t′ is considered feasible if t′ ∈ [ej , lj ] and added to the set
of arcs in A. Furthermore, a service time si at each supplier is added to the model,
obtaining the arrival time at j, t′ = t+ si + τij ≥ 0. Note that in this formulation the
service time is a parameter and not a decision variable as in Subsection 3.1.1. This
view helps to prune connection options, i.e., if t′ turns out to be an element of the
supplier’s closing hours, and not be considered this connection. Finally, the feasible
solution would be a subset of the node-time pairs (i, t) ∈ N × T , where T represent
the time domain.

However, considering all possible options may increase the computational complexity,
since it must be given all the options to the network as inputs. Several authors have
introduced the concept of interval discretization in this setting, among the ones studied
in this research were [92], [95], [96]. The idea is to divide the interval into equally
distributed time partitions. Selecting an adequate discretization time is challenging,
since it can strongly impact the solving time and quality of the solution [96]. For
instance, choosing a relatively big discretization constant could imply a much faster
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3.1 Multi-Vehicle Routing Optimization

Discretized arrival time window interval for ∆ = 1 hour.

Discretized arrival time window interval for ∆ = 3 hours.

Figure 3.1: Arrival time window length according to two different discretization constants
Duc Minh et al. [94].

solution with very low-quality results; on the other side, a small one describes the
continuous space better and increases the quality of the result at the expense of running
time.

Assuming that the time-space starts in 0, without loss of generality, it is assigned
the earliest possible arrival to a supplier j, min∀i∈N0{ei} = 0, and an upper bound
H := max∀i∈N0{li0}. The discretization constant in this problem is computed using
the time matrix T . The idea is to create a trade-off between solution quality and
optimal solving time. For instance, in some scenarios studied during the experimental
phase, it was encountered situations where each node was 6 hours from the other, i.e.,
min τij = 6. In this case, a discretization constant of less than 6 would only increase
the computation cost without increasing the quality of the result. At the same time,
in scenarios where the nodes were too near each other, i.e., in the same city and only
minutes were needed to reach each other, a relatively big discretization constant would
substantially decrease the solution quality. Therefore, it is considered a discretization
constant ∆ = max{α,min τij} ∈ R+, with α ∈ N found by trial and error in the testing
period. Throughout the experimental phase, Chapter Chapter 4, it was selected an
α = 4 hours. Assume that the original time interval is T = [0, 12], then it can be
discretized such that T∆ := {0, 1, ..., d 12

∆e}. It can be redefined the discretized interval
T∆ := {0, 1, ..., dH

∆e} using a conservative rounding scheme, with H the planning. Figure
3.1 depicts the difference between different T∆ according to the discretization time given.

Thus far, the index formulation using a standard connection network G consisted
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of location nodes and travel time arcs. From now on refer to a time-node as the
union of the time with the location nodes, i.e., instead of considering a node i ∈ N0,
expanding the nodes to (i, t) ∈ NT∆ := N × T∆. Therefore, the time-arcs are
((i, t), (j, t′)) ∈ AT∆ := NT∆ × NT∆ , such that t′ = t + d si∆e + d τij∆ e and i 6= j. As
an example, assume vehicle k needs 12 hours for reaching j from i, i.e., τij = 12. If
the discretization constant is ∆ = 4; the adjusted time τij would be represented as a
3−steps in time within the network. Similar to the service time, assuming 4 hours, it
would become a 1−step in time with the given discretization parameter. For simplicity,
refer now to T∆ only as T . Both time-nodes and time-arcs define our time-expanded
network GT = (N0T ,AT ).

Mathematical Formulation

The formulation is firmly based on two studies: regarding the time-expanded network,
it was helpful the model solution for the TSPTW proposed by Boland et al. [93]; due
to its advantage when constructing the time-expanded matrix. This formulation grants
the freedom to add the service time to the time-network. Another practical usage of this
setting is the ability to operate only with binary variables. Nevertheless, as explained
in Section 2, the TSPTW only addresses the problem of a single vehicle. Applying the
transformations presented in Korablev et al. [97] can generalize the TSPTW model to a
multi-vehicle problem. The necessary notations used for the mathematical formulation
are listed in Table 5.1.

Firstly, define a binary variable, indicating whether vehicle k arrives to pick up
material at supplier i at time t, and afterward arrives at supplier j at time t′ =
t+d si∆e+d

τij
∆ e. The parameter si may include the waiting time needed until attendance

and the loading time. As depicted in 3.4:

xk(i,t),(j,t′) =
{

1, if vehicle k drives from i at time t and arrives to j at time t′,
0, otherwise.

(3.4)
The objective is to minimize the distance traveled by all the vehicles along the

suppliers until the depot, through the following function:

zx :=
∑

k∈V , ((i,t),(j,t′))∈AT :i 6=j
dijx

k
((i,t),(j,t′)), (3.5)
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where dij ∈ R+ represents the distance from node i to j.

During the testing phase, the number of given vehicles k = |V | significantly impacted
the time and quality of the solution. Therefore, it was introduced an additional binary
variable yk indicating whether or not vehicle k is used:

yk =
{

1, if vehicle k is used,
0, otherwise,

(3.6)

and its function (3.7), which reduces the number of vehicles.

zy :=
∑
k∈V

yk (3.7)

Currently, the amount of starting vehicles provided to the model is precisely the
number of nodes, seeking not to use them all. This approach also aims to reduce the
monetary capital invested during these processes due to the lower need for drivers—not
to mention the CO2 emissions.

Finally, the new minimization objective function (3.8), is formulated as the sum
of the costs from the selected arcs and routes plus a penalization for the number of
vehicles employed.

zxy = min
xy

wzx + (1− w)Pzy (3.8)

where w ∈ [0, 1] is the relative weight of costs, i.e. total distance traveled, and the
number of vehicles used; w is assumed to be known. A benefit of (3.8) is the opportunity
to replace the original objective function, single distance minimization, with a weighted
sum of objective functions as proposed by Korablev et al. [97].

Additionally, the penalization parameter P defined in (3.9) showed an adequate
performance during the testing period.

P :=
∑
j∈N0

dj0

|V |
(3.9)
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The foundation of P relies upon the result in which every vehicle visit only the
starting supplier and drives directly to the depot. Refer to this as the trivial solution.
Note that the penalization parameter P is the average distance driven in the trivial
solution. As a side note, the trivial solution serves as a benchmark to evaluate the
solution quality from any model tested during the study.

The following equations describe the constraints utilized in the model. Equation
(3.10) ensures that exactly one vehicle arrives at each location only one time during its
time window.

∑
k∈V , ((i,t),(j,t′))∈AT :i 6=j

xk((i,t),(j,t′)) = 1, ∀ (j, t) ∈ N0T (3.10)

Balance constraints guarantee that the number of vehicles that reach a timed node
equals the number of transports going out of the node; for all suppliers except the depot.

∑
((i,t),(j,t′))∈AT

xk((i,t),(j,t′)) =
∑

((j,̃t),(i,t))∈AT

xk((j,̃t),(i,t)), ∀ k ∈ V , ∀ (i, t) ∈ N0T

(3.11)

The following equation designates the number of vehicles allowed to return to the
depot.

∑
((i,t),(0,t′))∈AT

xk((i,t),(0,t′)) = yk, ∀ k ∈ V (3.12)

Let qi ∈ R+ be the weight of the goods requested to be picked up at supplier i.
The next equation maintains the truck’s load less or equal than its maximum weight
capacity c ∈ R+. If this constraint is not fulfilled, the truck will not load any more
goods, going straight to the depot.

∑
((i,t),(j,t′))∈AT

qix
k
((i,t),(j,t′)) ≤ cyk, ∀ k ∈ V (3.13)
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Similarly, let vi ∈ R+ be the volume of the goods requested to be picked up at
supplier i. The following equation tracks down the volume loaded into the truck,
meaning that the vehicle will go directly to the depot if the truck’s maximum volume
m ∈ R+ is reached.

∑
((i,t),(j,t′))∈AT

vix
k
((i,t),(j,t′)) ≤ myk, ∀ k ∈ V (3.14)

As stated above, the decision variables describe the connections between the time-
expanded network and the vehicle usage indicator function:

xk((i,t),(j,t′)) ∈ {0, 1}, ∀ ((i, t), (j, t′)) ∈ AT
yk ∈ {0, 1}, ∀ k ∈ V

(3.15)

Chapter 4 will explain in further detail the steps used to use this formulation accord-
ing to Siemens’ operational parameters, e.g., the depot’s opening and suppliers opening
hours. Afterward, Chapter 3 presents the results using an Amazon Web Service (AWS)
instance.

3.2 Quantum Annealing
3.2.1 Framework
This section will explain the approach used to construct the Hamiltonian function of
the optimization problem. The need for a Hamiltonian formulation to apply quantum
mechanics rules and its QUBO form for using quantum annealing is described in
Subsection 2.2.

Following the Hamiltonian formulation from Lucas [98], suppose a quantum Hamil-
tonian HF whose ground state encodes the solution to a problem of interest on one
side. And on the other, an initial state HI , whose lowest-energy state happens when
the qubits are in a superposition state of 0 and 1 [99], i.e., a trivial state to achieve.
Then, if a quantum system can gradually evolve from the initial state at t = 0 to the
final one at t = T, it is proved that the last state will represent the lowest energy, i.e.,
the solution to the problem of interest. Equation 3.16 describes the evolution function.
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H(t) = (1− t
T)HI + t

THF (3.16)

where t ∈ [0,T].

In other words, if it is measured the quantum system at a large enough time T, with
T, by the adiabatic theorem 3, the quantum state will return a solution to the problem
Lucas [98]. The Hamiltonian function from the mathematical formulation of Section
3.1 is constructed from the principles studied in Harikrishnakumar et al. [79]. In the
first place, let us consider the following simple optimization problem.

min
x

f(x) (3.17a)

subject to
nx∑
i=1

Aixi = b, (3.17b)

nx∑
i=1

Dixi ≤ c. (3.17c)

where x ∈ Znx2 represents a binary decision variable, A,D ∈ Rnx×nx the coefficient
matrices and b, c ∈ Z. According to Lucas [98], the equality constraints with the
penalty terms are depicted in 3.17d.

nx∑
i=1

Aixi= b ⇐⇒ (
nx∑
i=1

Aixi − b)2 = 0 (3.17d)

Quantum annealing uses the QUBO representation of the formulation; thus, it is
needed first to transform the inequality constraints into equality ones. This can be
done with the aid of slack variables, as in 3.17e.

nx∑
i=1

Dixi≤ c ⇐⇒ (
nx∑
i=1

Dixi +
nλ∑
j=1

2jλj − c)2 = 0 (3.17e)

3The adiabatic theorem states that a system remains in its state even when being perturbed, as
long as that perturbation is slow and gradual enough and there is a gap between the energy of that
state and the rest of the energy of the system [100].
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where nλ ∈ R+
0 represents the number of slack variables calculated as nλ = d1+ log2ce.

The purpose of introducing the slack variables is to transform inequality constraints
into equality ones; by representing all potential values of the decision variable x from 0
to the upper-bound c (3.17c). Nevertheless, the introduction of such variables increases
the model’s complexity. A proposal to decrease the number of slack variables can be
found at Verma et al. [101], where scalar transformations are employed. Notice that
the options available in (3.17c) start from minDi until c. This motivated to adjust the
predefined formula nλ = d1 + log2ce to nλ = d1 + log2(c−minDi)e in order to reduce
the number of possible options. To obtain the final formulation is necessary to add
(3.17d) and (3.17e) to f(x).

Lastly, the Hamiltonian needs to be transformed into its QUBO form. The QUBO
formulation represents the cost function when using binary variables with a linear and
a quadratic term. Even though the QUBO matrix can be computed directly by using
the Hamiltonian terms (since various elements go to zero); employed in the python
package, PyQUBO [87]. The PyQUBO package considers the following: assume the
Hamiltonian function from G = ((N ,A), undirected graph explained in Subsection
3.1.1, is equation 3.18. And let xi ∈ {0, 1} be the decision variable of the problem of
interest. Then:

Htest(x) =
∑
i∈N

cixi +
∑

(i,j)∈A

dijxixj (3.18)

where ai, bij ∈ R.

According to Zaman et al. [87], the QUBO formulation can be represented in a
matrix form Q ∈ R|N |×|N |, with elements:

Qi,j =


ci, |i = j, ∀ i ∈ V |,
dij , |i < j, ∀ (i, j) ∈ A|,
0, otherwise.

(3.19)

Then, equation 3.18 is transformed to its QUBO form by using the coefficients Qij ,
jointly with the vector form representation of the decision variable x ∈ Z and its
transport xT . See equation 3.20.

Htest(x) =
∑
i≤j

Qijxixj = xTQx, (3.20)
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3.2.2 Quantum Annealing Input Construction
In accordance with equation 3.16, our Hamiltonian termH0 is defined from the objective
function (3.8). Therefore:

H0 =
∑

k∈V , ((i,t),(j,t′))∈A

wdijx
k
((i,t),(j,t′)) + (1− w) P

|V |
∑
k∈V

yk (3.21)

Let Ci, with i ∈ J1, 5K be the five constraints given in Subsection 3.1.2, and let Hi
represent its corresponding Hamiltonian terms.

H1 =
∑

(j,t)∈N0T

 ∑
k∈V , ((i,t),(j,t′))∈AT :i 6=j

xk((i,t),(j,t′)) − 1

2

(3.22)

H2 =
∑

k∈V ,(i,t)∈N0T

( ∑
((i,t),(j,t′))∈AT

xk((i,t),(j,t′)) −
∑

((j,̃t),(i,t))∈AT

xk((j,̃t),(i,t))

)2

(3.23)

H3 =
∑
k∈V

( ∑
((i,t),(0,t′))∈AT

xk((i,t),(0,t′)) − yk

)2

(3.24)

H4 =
∑
k∈V

( ∑
((i,t),(j,t′))∈AT

qix
k
((i,t),(j,t′)) +

nq∑
l=0

2lλlk − cyk

)2

(3.25)

H5 =
∑
k∈V

( ∑
((i,t),(j,t′))∈AT

mix
k
((i,t),(j,t′)) +

nm∑
l=0

2lµlk − myk

)2

(3.26)

λlk ∈ {0, 1}, ∀ l ∈ J0, nqK, k ∈ V
µlk ∈ {0, 1}, ∀ l ∈ J0, nmK, k ∈ V

(3.27)

Here, it was introduced the slack variable λlk ∈ Znq×|V |2 in equation 3.25 where
nq := d1 + log2(c−min qi)e. Similarly, in 3.26 the slack variable µlk ∈ Znm×|V |2 where
nm := d1 + log2(v −minmi)e. Then, for ρ, a considerably large positive constant, the
overall Hamiltonian is equal to the sum of the individual Hamiltonian terms:

H = H0 + ρ
5∑
i=1

Hi (3.28)

28



3.2 Quantum Annealing

Chapter 4 will discuss how the Ocean package from D-Wave is employed based on
the QUBO matrix coefficients, given by the PyQUBO package using equation 3.28.
The decision variables used for the final QUBO solution are the ones described in
equation 3.15 and 3.27.
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Chapter 4

Experimental Study
Throughout this project, the focus was only based on the inbound logistics process,
assuming that there were no restrictions regarding the number of drivers or trucks
available and no connection between routes traveling to different depots. The studied
process corresponds to four months, in which one consignee or depot requests goods
from n suppliers. This chapter will describe the methodology developed from the data
prepossessing to the solution through our instance’s classical and quantum approach.
Due to confidentiality, the preliminary Exploratory Data Analysis (EDA) results will
be excluded such that this chapter starts with the pre-processing details.

4.1 Experimental Setup
4.1.1 Data Pre-procesing
As mentioned in Chapter 1, CVRPTW proved to be the most helpful framework for
solving our project. In addition to the adjustments explained in Subsection 3.1.2, new
fields were created to the data received. Figure 4.1 contains the fields used in our study.

String Data Homologation

The first pre-processing step regards character homologation due to the german char-
acters in some cells in the data. In order to do that, a function that helped to change
three types of characters: ä for ae, ü for ue and ß for ss was created. Later, as depicted
in Figure 4.1, the column Supplier Address based on the supplier street, postcode, and
city was added; the same process was done to obtain the column Depot Address. Both
supplier and depot addresses were used to obtain their coordinates by using them as
input for Google Maps API. Finally, two new columns were constructed: the first was
the Requested loading date using the pick-up date and time, and the second, was the
Requested delivery date using delivery date and time.

The creation of the geographic coordinates consisted of the following: opening an
account in Google Developer Console in order to create a key that allowed to make use
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Figure 4.1: Dataset received from Siemens on the left, and on the right, the columns added
during the pre-processing step.

of their geocoding1 tool. Through the package google-maps [102], the latitude and the
longitude from these addresses were retrieved. In some cases, the address was insuffi-
cient for Google to extract the coordinates. Therefore, only the postcode and city field
were used to obtain the supplier address. This alternative is considered feasible since
the distance driven in the model was mainly between European cities; the difference
generated from these changes would not impact the optimization results. Finally, the
located coordinates were plotted to validate their geolocalization, as dispatched in
Figure 4.2.

1Process known for taking location text-based elements, such as addresses, and returning geographic
coordinates.
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Figure 4.2: All suppliers included in our dataset are possible to be reached via ground
(simulated suppliers’ locations).

Data Expansion

In some scenarios, the goods requested to be transported from the depot to the suppliers
were heavier than the truck’s capacity. The same situation occurred with the requested
cargo’s volume, in which the volume of the overall goods, per request, was bigger than
the truck’s volume capacity. These misleading data values are caused due to how the
data was recorded in the company’s system.

The model reads tabular data in which each row corresponds to one request (per node).
Comprehending that some nodes will not fulfill the volume constraints established in
the model, a plain copy of each row ri was created in the following way: Let us say we
had a row (requested cargo) with volume vi requested to be picked-up at supplier i on a
predefined date; in this case, we can assume from the data that vi ≥ m. Let cli ∈ N be
the number of collis 2 corresponding to that good be bigger than one; otherwise, this
pick-up would not be viable, since one truck would not be enough for one single colli.
Table 4.1 describes the steps used in order to adapt the data to the model’s input format.

Throughout the data cleaning phase, two exceptions (aprox.0.02%) were encoun-
tered where the respective volume value for one colli was bigger than the complete
vehicle’s capacity c. This could be due to two main reasons, it was entered wrongly
into the system, or the truck’s chosen dimension could not handle this cargo. In such

2One colli designates the minor packaging units of a consignment of goods.
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Nodes Expansion

Step 1: Compute the respective cargo’s proportion volume per colli: pv = vi

cli
, i.e., pv represents

one colli’s volume.

Step 2: Calculate the maximum number of collis, according to the maximum volume c, denoted
as mc = bmpv

c. Note that b.c gives the minimum number of collis needed in order to
transport the complete volume vi. This last operation helped us know how many collis
we could load into one truck. The main idea is to split one request that exceeds the
truck capacity into multiple smaller ones.

Step 3: Given the total number of collis requested cli and the maximum number of collis that
can be loaded into one truck mc, define rv := d climc

e as the number of vehicles needed.
Then, create a new volume vector vr ∈ Rrv , such that rv−1 elements of vr are mc ·pv
(maximum volume that can be loaded into one truck, note that mc · pv + ε = c with
ε �), and one more element equal to mc · res, res ≡ vi mod m, being the volume
corresponding to the remaining collis needed to be transported.

Step 4: In Step 2: we created a new vector with the objective of splitting the cargo’s volume.
Note that is possible to split the cargo’s volume according to the number of collis.
Therefore, repeat the step in order to create a new vector Number of collis clr ∈ Rrv ,
such that rv − 1 elements of clr are mc and one element has value res ≡ cli mod mc.

Step 5: Similarly, the cargo’s weight needs to be substituted into a new weight vector:
1. Compute the proportion of this weight per colli: pw = wi

cli
as in Step 1:.

2. Create a new weight vector wr ∈ Rrv , such that rv − 1 elements of wr are mc ·wv
and one more element equal mc · res, res ≡ wi mod m.

Step 6: Expand the original row rv with all the original values, only substituting the volume
field with vr, the number of collis with clr. and the total weight wr. See Table 4.2 for
a concrete example.

Table 4.1: Performed steps to expand the requested orders into smaller ones according to the
maximum truckload volume m and maximum weight capacity c.

scenarios, we assigned one colli to the volume c. Another data quality issue regards
the field delivery date, in which sometimes the information was not entered into the
system, causing missing values in the dataset. Therefore, in order to fill those gaps, it
was assumed that the delivery date was three-days after the requested picked-up cargo
appointment. Table 4.3 summarizes the data pre-processing steps.

4.1.2 Classical Modeling

In the previous section, we described the data modifications needed before being used
for solving the VRP. The testing data from Siemens corresponds to almost four months
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Example:

Supplier Pick-up Num. Volume Total Gross ...
Address Date Colli (m3) Weight (kg)

0 P.Shermann 15.10.2022 350 504 9,000 ...

↓

Supplier Pick-up Num. Volume Total Gross ...
Address Date Colli (m3) Weight (kg)

0 P.Shermann 15.10.2022 69 99.36 1,774.28 ...
1 P.Shermann 15.10.2022 69 99.36 1,774.28 ...
2 P.Shermann 15.10.2022 69 99.36 1,774.28 ...
3 P.Shermann 15.10.2022 69 99.36 1,774.28 ...
4 P.Shermann 15.10.2022 69 99.36 1,774.28 ...
5 P.Shermann 15.10.2022 5 7.2 128.57 ...

Table 4.2: Expanded dataset according to the maximum volume capacity, c = 100. We initially
had one row with a volume of 504 > c. Therefore, the row was expanded into six rows such that
its total volume is still 504; the same matter occurs for the number of collis and the weight.

with multiple consignees and their corresponding suppliers. Even though an MDVRP
could be used to propose a solution, it was decided to reduce the problem to only one
Consignee. A single depot vehicle routing problem could be seen as a lower optimization
bound, since running the algorithm for multiple depots independently would perform
poorer than a Multi-Depot VRP. A lower bound that can benefit Siemens’ logistics
distribution by decreasing the amount of kilometers driven would be sufficient.

The number of suppliers for the selected consignee was almost 150, distributed
in four months. Each supplier could have more than one requested pick-up cargo;
consequently, throughout the complete evaluation, the same supplier (in location terms)
might be deemed a different time node. In order to simulate a realistic scenario, it was
decided to split the four months into sub-simulations of three days according to the
pick-up date, i.e., it was considered to have information three days in advance every
time the model was run. Notice that the number of periods evaluated was dH3 e, where
H is the planning horizon. From now on we will refer to a sub-simulated period as Si.
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Pre-processing Steps

Step 1: Data standardization.
Step 2: Creation of four new columns: Supplier Address, Consignee Address, Requested Pick-up

Date and Requested Delivery Date.
Step 3: Creation of two new columns corresponding to the supplier and the consignee addresses,

Supplier Coordinates and Consignee Coordinates.
Step 4: Expansion of the dataset in order to fulfill the maximum capacity constraints.
Step 5: If the Requested Delivery Date presents missing values, set a three-days time window

after the Requested Pick-up Date for filling them.

Table 4.3: Subsection summary, data transformation into a suitable input for the MIP model.

Connection Network

The first step was to create its respective distance and time matrix. This was achieved
through one function, matrix routing calculations, from the Open Route Service [103]
package. Among the arguments used in this function is the driving-hgv, which returns
the duration τij between nodes when driving an HGV. The output of the function uses
highway routes and not geodesic distances to calculate the distance between nodes,
Figure 4.3. Afterward, as explained in Subsection 3.1.2, the first row of the time and
distance matrices were transformed to zero, in other words, traveling from the consignee
to any supplier did not add costs in the objective function.

The following step regards the construction of T∆ = {0, 1, ..., H∆}, presented in
Subsection 3.1.2. First, consider the following example. Let us say a piece Si of
the entire period is being evaluated and assume we have a set of n = 3 suppliers
with their respective cargo requests. Without loss of generality, assume that supplier
1 has the earliest pick-up request date, 21.10.2022 07:30, and supplier 3 the latest,
22.10.2022 12:45. Therefore, if we consider a discretization constant of one hour, we
assign 0 to the earliest pick-up value at the supplier and 17 to the latest delivery
date at the consignee. Note that the latest value corresponds to supplier 3 cargo’s lat-
est arrival time at the consignee. The described example is further depicted in Table 4.4.

The time-index set T contains all possible arrival options according to the given
time windows. However, these options are not always feasible, e.g., opening or driving
hours. Accordingly, let us create three sets. The first two, Cs and Cd, correspond to
the closing suppliers’ and depot’s hours; similarly, let Fd be the forbidden driving
hours or driver’s testing time. Likewise, as displayed in Table 4.4 the forbidden hours
are assigned an integer number between 0 and H, so our final time-index matrix is
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Figure 4.3: Example of simulated routes from Si using Open Route Service with one depot in
Munich, Germany.

T \ {Cs
⋃
Cd ∪ Fd}. For instance, assume supplier i opens at 6 am and its requested

pick-up hour is also at 6 am, then allowing the vehicle to arrive at 5 am, from ±1 hour
time window, would not be feasible and thus removed from T∆. Finally, based on the
assumptions from Table 4.5, the time-expanded network G can be created. Recall from
Subsection 3.1.1 that G = N0T ×A with the nodes N0T = (N0, T∆) and A = N0T ×N0T .

Model Solver

The package used to have a CC benchmark against QA is called OR-Tools. It is an
open-source software developed by Google for combinatorial optimization problems,
which seeks to find the best solution out of a large set of options [104]. OR-Tools
was chosen at the beginning due to a set of pre-loaded VRP solvers, TSP or CVRP,
for naming some. However, specific requests from Siemens were unsuitable to add
when using the pre-loaded functions. Additionally, it became challenging to model the
constraints these functions were using. Therefore, without a mathematical formulation,
it was not possible to make a fair comparison between CC and QA. The solution
was to adapt Siemens’ requirements by defining a mathematical formulation of the
problem based on the CVRPTW, as explained in Subsection 3.1.2. Nevertheless, the
package OR-Tools was still used to call the solver Coin-or branch and cut (CBC), an
open-source mixed integer linear programming in C++ [105]. The CBC solver was run
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Suppliers Supplier’ Pick-up Date

1 21.10.2022 07:30
1 21.10.2022 08:30
1 21.10.2022 09:30

2 21.10.2022 11:00
2 21.10.2022 12:00
2 21.10.2022 13:00

3 22.10.2022 10:45
3 22.10.2022 11:45
3 22.10.2022 12:45

=⇒

T1

0
1
2
3
4
5
6
7
8

T2

0
1
1
2
2
3
3
4
4

=⇒

NT1

(1,0)
(1,1)
(1,2)
(2,3)
(2,4)
(2,5)
(3,6)
(3,7)
(3,8)

NT2

(1,0)
(1,1)
(1,1)
(2,2)
(2,2)
(2,3)
(3,3)
(3,4)
(3,4)

a) Supplier pick-up time-index according to its time window:

Suppliers Consignee’s Delivery Date

1 24.10.2022 07:30
1 24.10.2022 08:30
1 24.10.2022 09:30

2 24.10.2022 11:00
2 24.10.2022 12:00
2 24.10.2022 13:00

3 25.10.2022 10:45
3 25.10.2022 11:45
3 25.10.2022 12:45

=⇒

T1

9
10
11
12
13
14
15
16
17

T2

5
5
6
6
7
7
8
8
9

=⇒

NT1

(0,9)
(0,10)
(0,11)
(0,12)
(0,13)
(0,14)
(0,15)
(0,16)
(0,17)

NT2

(0,5)
(0,5)
(0,6)
(0,6)
(0,7)
(0,7)
(0,8)
(0,8)
(0,9)

b) Consignee delivery time-index according to suppliers’ cargo time window, recall that the
depot is represented by the index 0.

Table 4.4: Time-index construction. Example for three suppliers with ±1 arrival time
window. Presenting two possible options: T1 := {0, ..., 17} or T2 := {0, ..., d 17

2 e} with their
time-expanded nodes. The value of α = 4 was found by trial and error for the complete testing
period, nevertheless, ∆ changes according to Si.

in the AWS EC2 instance m6g.8xlarge3. A relative MIP GAP tolerance of 0.1% was
set, and no instance Si was allowed to run more than 90 minutes; if the maximum time
was reached, the solver returned the best solution until then.

3AWS EC2 instance description: https://aws.amazon.com/ec2/instance-types/m6g/?nc1=hls.
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Network Assumptions
Depot Opening: 7 am
Depot Closing: 4 pm
Supplier Opening: 7
Supplier End: 3 pm
Early arrival: 6 hours (time window)
Late arrival: 6 hours (time window)
Loading time: 2 hours
Driver Starts: 7 am
Driver Stops: 5 pm
Max Weight: 22,000 kg
Max Volume: 196 m3

Table 4.5: Parameters considered for creating the time-expanded network

4.1.3 QA Modeling
Like the classical solver, QA employed the network explained in Subsection 4.1.2. In
order to solve the VRP explained throughout this study with QA, a five-step approach
depicted in Table 4.6 was performed.

1) The first relies on the MIP’s Hamiltonian formulation, as explained in Subsection
3.2.2. Afterward, it is required to select a proper hyperparameter ρ. Several authors
proposed different rules of thumb for selecting ρ. For example, Lucas [98] established
the parameter selection based on the constraints’ contribution to the change in energy.
On the other hand, Feld et al. [6] selected ρ utilizing the costs values, i.e., ρ = n·maxdij ,
with n being the number of suppliers in Si. The approach used in this work employs
maxc := 2 ·maxi,j∈N0(dij), testing for different values within the set:

l := 1.5maxc − 0.7maxc
10 (4.1a)

ρ ∈ Iρ := { 0.7 ·maxc + l ·m | m ∈ J0, 10K }, (4.1b)

which can be considered as having taken 70% to 150% of twice the maximum distance
between nodes.

2) The parameter ρ is problem-dependent, and since QA is non-deterministic, it was
necessary to run each Si several times to find an acceptable solution. Unfortunately, it
was not always sufficient to fulfill the solution requirements.

3) The function to_qubo from the PyQUBO package was used for obtaining the QUBO
coefficients from the Hamiltonian model. Additionally, to_qubo has an argument,
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VRP solving procedure with QA

Step 1: Convert the MIP formulation into Hamiltonian, Subsection 3.2.2.
Step 2: Select a value for the parameter ρ, equation 3.28.
Step 3: Formulate the QUBO problem according to the output from Step Step 2:.
Step 4: Find an embedding.
Step 5: Solve and evaluate whether or not the solution is acceptable, if not return to Step 2:.

It is consider an acceptable solution if non-constraint is violated and its value is less or
equal than the trivial solution,

∑
j∈N0

dj0.

Table 4.6: Steps followed for solving an Si instance using QA.

Placeholder, which allows using different ρ values in the same instance without needing
to create a new Hamiltonian each time.

4) After different embedding approaches attempts, the function selected was find_embedding
from the package minorminer. This function heuristically attempts to find a minor-
embedding of a source graph S into a target graph T [106].

5) The size of the resulting QUBO from Step Step 3: was significant and, on some
occasions, exceeded the limit of available qubits on the QPU. The problem was ad-
dressed using the function QBSolv from D-Wave. It split the QUBO problem into
pieces, solved them sequentially, and returned its minimum value. Each piece can
be solved using either a classical solver or a D-Wave system solver; Feld et al. [6]
addressed NP problems with a similar procedure. In our case, the selected solver was
Advantage_system6, a physical lattice of qubits and couplers known as Pegasus. The
Advantage QPU from D-Wave contains 5,640 qubits and more than 35,000 couplers [7].
All the experiments were run in AWS-Braket4, located in London, UK.

Both procedures share the time-expanded network explained in Subsection 4.1.2 to
create either the classical model or the Hamiltonian. The complete simulation is run
in sequences of Si. The first part exclusively solves the Adjusted CVRPTW employing
OR_Tools; afterward, the Hamiltonian is constructed and utilized for defining the
QUBO problem. Then, the QBSolv function is employed for solving the QUBO problem
with D-Wave as the solver, and finally, it is reviewed whether or not the solution is
acceptable. Algorithm 1 summarizes the process in this section.

4"Amazon Braket is a fully managed quantum computing service designed to help speed up scientific
research and software development for quantum computing." [107]
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Algorithm 1 General Solver
1: procedure (N0, H,A). Where: N0 - nodes; H - planning horizon; A - model assumptions
2: Create a partition of the complete time set S = {S1, ..., Sd H

3 e}
3: for Si in S do
4: Create the Distance and Time matrix dij , τij ← f4(N0)
5: Create Time space T ← f5(dij , τij , Cs, Cd,Fd)
6: Discretize the time-space T∆ = T

∆
7: Create time-expanded network G ← f7(N0, T∆)
8: Create classical modelM← f8(G, A)
9: SolveM

10: Store CC solution
11: Create Hamiltonian H ← f11(G, A) . Starting QA phase
12: for ρ in Iρ do
13: while 5 trials are executed do . Due to QA’s probability nature, more than

one trial is preferable
14: Define a random seed r
15: Get the QUBO matrix Qij ← f15(H, ρ)
16: Perform embedding E ← f16(Qij , r)
17: Solve QA model E
18: if (QA solution ≤ trivial solution) and (Constraints are fulfilled) then
19: Store QA solution
20: end if
21: end while
22: end for
23: end for

4.2 Experimental Results

This section presents the insights and results obtained after solving the VRP with
CC and QA. Intuitively, one might assume that as more nodes are in an instance,
the solution time would increase in the same proportion. However, we encountered
scenarios where the solver needed less time for instances with more nodes. Recall that
a node in the time matrix represents an order to be picked-up at a specific location
and arrival time. Therefore, placing multiple orders at the same date and time did
not increase the number of connections in the time-expanded network. Figure 4.4
illustrates the number of connections, on average, according to the number of nodes.

For instances Si with nodes larger than 11 elements, the classical algorithm required
more than 90 minutes to obtain the optimal solution. Recall that if an instance Si
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Figure 4.4: Average number of connections (length) in the time-expanded network according
to different instances Si. For example, instances with 26 nodes required less connection than
instances with 17 nodes due to time window constraints. The average connections’ number of
the time-expanded network with 11 nodes is 262 elements. The set of 11 nodes refers to 10
suppliers plus 1 depot.

reached the 90 minutes solving limit, the best result obtained until then was accepted.
Throughout this chapter, we will refer to solving time as the time required since the
model is constructed until a minimal solution is found. The exponential solving time
increased when employing the classical solver as depicted in Figure 4.5.

Regarding the QA solver, up to 12 nodes could be solved. It is worth mentioning
that there were two instances with seven and nine nodes, respectively, in which the
procedures mentioned in this study were insufficient to find a solution through QA.

Figure 4.5: Classical solver. Average solving time according to the number of nodes in each
instance Si. The average solving time after 11 nodes exceeded the 90-minute time limit.
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Figure 4.6: Quantum annealing solver. Average solving time according to the number of nodes
in each instance Si. The maximum number of nodes capable of finding a solution through
QA was 12 elements. Hamiltonian + QUBO refers to the time required to construct the
Hamiltonian and its conversion into a QUBO problem. The QA solving time represents the
time it held for the QA solver to find a solution after completing all steps.

Figure 4.6 depicts the overall average solving time according to the number of nodes.
The total solving time is split into three groups: the construction of the Hamiltonian
and the QUBO in the same group, followed by the embedding time, and finishing with
the solely QA solving time. Note that the embedding time represented a significant
part of the time needed for solving the problem, followed by the construction of the
Hamiltonian and the QUBO.

Generally, QA required more time to solve the complete sample, up to 12 nodes,
Figure 4.7. The VRP must be adapted to an eligible input, substantially decreasing the

Figure 4.7: CBC solving time considers the model construction and finding the minimum
solution. QA total solving time encloses the Hamiltonian constructions, QUBO transformation,
embedding, and finding the minimum solution. CBC represents 45% of the QA required time.
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Figure 4.8: Average solving time over the reduced sample, i.e., instances with less than 12
elements. Comparison using Log10 time after all pre-processing requirements for an eligible
QA intake have been performed.

total solving time using QA. Furthermore, due to the nature of the problem, a formal
follow-up of the full time needed for obtaining the parameter ρ in the Hamiltonian is
not presented.

Experimental Results

Solving Sample Sample Pre-processing Total calculation Optimization5

approach [%] distance
driven [km]

time [h] time [h] [%]

CBC 846 455,919 v 0.03 27 11.7
CBC 167 64,226 v 0.002 3.7 8.3
Advantage
6.1

168 64,226 8.17 8.23 8.1

Table 4.7: Comparison results. Instances Si solved with CBC were 34, while 13 were solved
with QA.

5Percentage reduction in kilometers driven, employing the trivial solution as a baseline. Derived
from almost four months of simulated data from a logistic operational process of Siemens.

6Sample solved using CBC solver.
7Sample solved with CBC solver, smaller sub-sample selected for appropriate comparison with QA.
8Sample solved with QA.
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(a) Routes designed according to the trivial solu-
tion.

(b) CBC routing optimization solution.

Figure 4.9: Transports Heatmaps. Routing optimization simulated solution, one depot located
in Frankfurt, Germany. Reduction of 18% in the number of km driven using the trivial solution
as a baseline. Notice the creation of new paths to visit more suppliers on the course to Frankfurt,
resulting in fewer driven vehicles.

Even though the embedding was not achieved for instances with more than 12
nodes, and two more cases, with seven and nine nodes. QA proved to be more efficient
than a classical solver once all the necessary pre-processing steps, i.e., the Hamilto-
nian construction, QUBO transformation, embedding, and parameter testing, were
accomplished. Figure 4.8 illustrates a significant difference in computation time after
all the necessary pre-processing steps for both solvers are completed. QA and CBC
were tested remotely.

Table 4.7 presents the optimization results for both methods regarding data quality
and solving time. The column Optimization [%] indicates the reduction in km against
the trivial solution, considering different data sample lengths.

The pre-processing time utilizing the Advantage 6.1 architecture from D-Wave
represented 99.3% of the total QA solving time. On the other hand, the CBC algorithm
demonstrated slightly better solution quality, a reduction in the total distance driven of
0.2%, over the instances that QA managed to solve. Figure 4.9 illustrates an example of
the routes optimized with the CBC solver. Chapter 5 will present the final outstanding
points from this research.
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Chapter 5

Conclusion

5.1 Conclusion
The applicability of QC and CC was assessed throughout this thesis. Based on the VRP
literature, a new model benchmark according to Siemens requirements was defined.
In the tested sample, both solvers (QA and CBC) presented a better solution quality
than the trivial solution, see Table 4.7.

The results showed better performance regarding the solving time with QA than
CBC, Figure 4.8. Unlike the steps required to prepare both problems, CBC proved
more efficient. Whether QA can be used in the industry to solve this particular problem
faster still needs further investigation, especially concerning the embedding procedure.
Therefore, the CBC solver was better applied in real-world applications than QA,
as it presented an overall shorter total solving time, Figure 4.7. Furthermore, the
applicability of QA to optimize a company’s daily processes needs a more significant
improvement margin; if this gap is not high enough, the industry will not rent QC time
through the cloud (from one of the commercial QC servers). Especially for companies
whose main branch is other than research or technology. The incentive for using QC
must be higher than its financial costs. New developments are expected, and this
technology’s acceptance has risen recently; it will likely become more affordable for
further tests and applications soon.

5.2 Limitations and Future Works
Regarding the VRP problem setting, six main points are worth pointing out:

1) In Section 3 we studied a 5-index formulation in which the variable xk(i,t,j,t′) rep-
resented whether vehicle k travels from supplier i at time t to supplier j arriving
at time t′, such that t′ = t + d si∆e + d τij∆ e. One reason this formulation was chosen
was the straightforward introduction of the loading time si into the traveling time.
Notice that t already contains all the information required for knowing the arrival
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time, and including the variable t′ in the time-expanded matrix solely increases the
problem’s complexity. Therefore, a one-index reduction, i.e., a 4-index formulation
xk(i,t,j) transferring the loading time si into the problem constraints is recommended.

2) The time-expanded index formulation was selected due to the employment of binary
decision variables. Nevertheless, including only binary decision variables might lower
the possibility of testing new algorithms that can decrease the solving time.

3) In the formulated setting, only one depot was considered. As explained in Section
2.1, a multi-depot approach would help to reduce further the number of transports
needed in Siemens’ operational processes even more.

4) The guideline in this work corresponds to a static perspective of the routing problem,
i.e., all the information needed for modeling the problem never changes during the
planning horizon. Therefore, a dynamic view would be advantageous for a better
practical application responding in real-time to customer requests.

5) Throughout the reviewed literature, the tested VRP models employed geodesic
distances. Introducing real emulated routes is closer to the original problem. However,
there are still opportunities for enhancement. The presented work did not consider
changes in travel time, such as traffic or closed routes; this could be achieved by creating
a time-dependent distance matrix τij(t) with currently implemented packages that
forecast vehicle traffic.

6) It would be interesting to test the methodology with real-world data.

It is suggested that a dynamic multi-point approach is tailored according to the
needs of Siemens. Furthermore, a 4-index time-expanded network course is more likely
to perform satisfactorily with QA solvers. On the other hand, the embedding time in
QA represented around 50% of the total time needed for solving the sample. Moreover,
due to this limitation, instances Si with a higher number of nodes (n > 12) could
not be tested. Hence, optimizing the embedding time is key for speeding up QA’s
computation time. If this challenge is overcome, QA will be closer to performing more
promising than CC.
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Notations

Indices
i, j Nodes .
t, t′ Time points
k Vehicles

Sets
N Nodes in the space network, except the depot
N0 Nodes in the space network, including the depot
NT Nodes in the time-expanded network, except the depot
N0T Nodes in the time-expanded network, including the depot
A Arcs in the space network
AT Arcs in the time-space network
T Discretized time-expanded set

Functions
z Adjusted CVRPTW minimization function
z1 Distance function
z2 Number of vehicles function
H General Hamiltonian function
Hi Hamiltonian representation of constraint i

Table 5.1: Notation used in Chapter 3
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Parameters
dij Distance from i to j, dij = 0 if i = 0 or i = j
τij Travel time from i to j, tij = 0 if i = 0 or i = j
qi Cargo to be picked at supplier i
vi Volume to be picked at supplier i
cli Number of collis corresponding to vi
c Maximum vehicle weight capacity
m Maximum vehicle volume
si Service time at supplier i
H Simulation horizon
tw Time-window length
ei Earliest arrival window at supplier i
li Latest arrival window at supplier i
e0 Earliest arrival window at the depot
l0 Latest arrival window at the depot
∆ Discretization constant
Qij QUBO matrix coefficient
ρ Penalty Term.
nq Number of weight slack variables
nm Number of volume slack variables

Decision Variables
xkitjt′ Binary variable. Value 1 if vehicle k goes from i at

time t and arrives to j at time t′, 0 otherwise
yk Binary variable. Value 1 if vehicle k is used
sik Positive real variable. Starting service time at supplier

i with vehicle k
λlk Slack binary variables for weight constraints
µlk Slack binary variables for volume constraints

Table 5.1: Notation used in Chapter 3



Acronyms

AQC Adiabatic Quantum Computing.

AWS Amazon Web Service.

CBC Coin-or branch and cut.

CC Classical Computing.

CVRP Capacitated Vehicle Routing Problem.

CVRPTW Capacitated Vehicle Routing Problem with Time Windows.

DA Digital Annealing.

EDA Exploratory Data Analysis.

HGV Heavy Goods Vehicle.

MDVRP Multi-Depot Vehicle Routing Problem.

MDVRPPD Multi-Depot Vehicle Routing Problem with Pick-up and Delivery.

MDVRPPDTW Multi-Depot Vehicle Routing Problem with Pick-up, Delivery and
Time Windows.

mTSP multi-Traveling Salesman Problem.

QA Quantum Annealing.

QC Quantum Computing.

QUBO Quadratic Unconstrained Binary Optimization.

RSA Rivest-Shamir-Adleman.

SA Simulated Annealing.
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Acronyms

SND Service Network Design.

TSP Traveling Salesman Problem.

VRP Vehicle Routing Problem.

VRPB Vehicle Routing Problem with Backhauls.

VRPPD Vehicle Routing Problem with Pick-up and Delivery Problem.
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