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ABSTRACT: Maintenance of deteriorating infrastructure is a major cost factor for owners and society.
Therefore, efficient inspection and maintenance (I&M) strategies are of paramount importance. Deep
reinforcement learning (DRL) has been proposed for maintenance optimization of deteriorating systems.
For good performance, DRL relies on information rich state representations, but information about the
state may only be available through costly inspections. One option to alleviate this is by use of belief
states, however this might not always be possible due to incomplete model knowledge or computational
constraints. Hence, there is potential for DRL approaches using only the information which is already
available. In this work, we investigate several observation representations and compare them by training
multiple DRL agents. Our experiments show that the choice of informative observation representations
has a strong effect on the performance of the resulting optimized maintenance strategy.

1. INTRODUCTION quential decision-making problem for which, in re-

Inspection and maintenance (I&M) of deterio- cent years, deep reinforcement learning (DRL) has
rating infrastructure represent major costs to own- shown promising results by solving complex prob-
ers. With increasing demand and age, more ef- lem scenarios, such as mastering the game of Go
ficient I&M strategies are increasingly important. (Silver et al., 2017). For good performance, rein-
I&M planning can be efficiently formulated as a se- forcement learning (RL) relies on an information
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rich state representation, to make informed deci-
sions about actions. In the case of partial observ-
ability, such a representation might, however, be
unavailable. One way to address the uncertainty of
the system state is, to use the current belief state b;.
It serves as a probability distribution over the state
space, and can be updated using observations. This
has been successfully used to solve several partially
observable 1&M problems with DRL by Andriotis
and Papakonstantinou (2019, 2021). However, in
order to calculate the belief state, precise knowl-
edge about the model is required. If this model
information is not available during training or de-
ployment of the agent, other options have to be
considered. If just providing a single observation
is insufficient, the agent can be provided with ad-
ditional observations from previous time steps, as
well as previously taken actions as proposed by Lin
and Mitchell (1993). Depending on the system,
this can result in very high dimensional observation
representations, which can make training challeng-
ing. To this end, we investigate several observation
representations in this work, which are created us-
ing only the information already available through
inspections. The resulting observation spaces are
then used to train multiple DRL agents, to compare
the impact of different representation options.

2. PARTIALLY OBSERVABLE MARKOV
DECISION MODELS

In order to model the deterioration problem and
its possible interactions with a maintenance strat-
egy, it is formally described using a Markov De-
cision Process (MDP), first proposed by Bellman
(1957). In this setting, the deterioration problem
is referred to as the environment, and a mainte-
nance strategy as the agent. In the case of I&M
optimization, the true state of the environment is
not available to the agent, and information about
it can only be gained using observations yielded
through inspections. To model this inherent uncer-
tainty about the state, Partially Observable Markov
Decision Processes (POMDPs) can be used, which
are a generalization of the MDP. The POMDP is
formally defined using a 7-tuple (S,A,Z,T,0,R,Y),
where we follow the same notation as Memarzadeh
et al. (2015):
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S defines the hidden state space of the system,
within which current states s; € S lie,

* A refers to the action space of the system, from
which the agent can choose current actions
ar € A,

» Z is the observation space of the system, in
which current observations z; € Z lie,

* T:SxAxS—[0,1] is the transition probabil-
ity function of the system,

* 0:SxZ— |[0,1]is the observation probability
function of the system,

* R:SxA — R is the reward function, which
determines the reward r; at each time step,

* 7vis the discount factor for future rewards.

3. DEEP REINFORCEMENT LEARNING

A short introduction to reinforcement learning is
provided here; for a more detailed introduction, see
(Sutton and Barto, 2018), on which this summary
is based. In the RL framework, tasks are formu-
lated as a sequential decision-making problem: An
agent performs actions in an environment and re-
ceives observations and rewards depending on its
behavior. These interactions are formally described
by the aforementioned MDP. The goal of RL is to
find a policy 7w that maximizes the expected fu-
ture reward by choosing appropriate actions. This
is achieved by interacting with the environment,
and modifying the policy according to the observed
states, actions and rewards. Formally, the goal is
to maximize the expected return G;, which is the
discounted sum of future rewards.

T—t—1

Gr=ri+Yra+7 rsa+-= Z Y rei (1)
i=0

The expected future return G; of taking an action a
in a state s, when following a policy 7, is given by
the so called action-value or Q-function gz(s,a).

qr(s,a) = Ex [G/|S; = 5,A; = a] (2)
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When following an optimal policy 7., the corre-
sponding action-value function is referred to as the
optimal action-value function g.(s,a).

3)

It can be observed that by knowing the optimal
action-value function, the optimal policy can be ex-
tracted in discrete action spaces, through always
choosing the action corresponding to the maximum
optimal action-value.

q«(s,a) = max qr(s,a)

4)

T, (s) = argmax g« (s, a)
a

So the optimal policy might either be learned ex-
plicitly or implicitly through the value functions.

One distinguishes approaches which learn or use
a transition model T, so-called model-based RL
approaches, from approaches which do not use a
model of the environment, referred to as model free
RL. A second important distinction can be made by
the way the policy or value network is trained. If
the interaction data between an agent and the en-
vironment has to originate from the policy that is
currently trained, the approach is classified as on-
policy. If this is not the case, the approach is re-
ferred to as an off-policy approach.

DRL refers to a set of approaches that apply
artificial neural networks to approximate either a
value function, a policy, or both. This allows
problems with continuous and large discrete state-
action spaces to be solved using RL. In an influ-
ential work, which revitalized the field, an agent
was able to play several Atari games with super hu-
man performance by learning an approximate opti-
mal action-value function using an artificial neural
network (Mnih et al. (2013)).

As previously noted, most RL and especially
model free RL approaches were created to solve
MDP problems. Given observations with enough
information, however, these approaches are still
able to find policies with good performance.

4. MODELS AND METHODS
To investigate the impact of choosing different

observation features, we use a deteriorating system
as an example and perform several experiments in
simulation with differing observation spaces for the
same problem.
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4.1.

For our experiments, we investigate a single
component system, whose deterioration is de-
scribed by the gamma process. The gamma pro-
cess is an additive process, whose increments are
gamma distributed: AD(fyge) ~ Gamma(k(tage ), 2 ).
k(tage) is the shape parameter, which depends on
the age f,0¢ Of the component, and A is the rate pa-
rameter. At every time step, the deterioration state
is updated according to the following rule:

Deterioration Model

D(t) = D(t — AT) + AD(fage) )
The shape parameter of the gamma distribution is
described by

k(tage) = a ((zage FAT) — t;’ge> ©6)
The parameters of the model are summarized in Ta-
ble 1. The parameter a is uncertain and is modeled
by a lognormal distribution with mean p, and vari-
ance o_.

At t = 0 the system is initialized with the fol-
lowing values: D(0) = 0, fyee = 0. We consider a
time horizon of 200 time units and discretize time
in steps of AT = 0.1, resulting in 2000 total time
steps per episode.

Failure occurs if the damage D(f) exceeds a
threshold d.,;;. When the component fails it is im-
mediately replaced, the initial deterioration state
D(t) and age t,e of the new component are set
to zero and the process proceeds with the same
gamma process (with the same value of a). Fail-
ure also results in a failure cost of cgyjjyre, to model
the cost of replacement and costs related to unavail-
ability of the component.

4.2. Maintenance Actions

The system has several maintenance actions that
can be selected by the maintenance policy. The
available actions at every time step are the fol-
lowing: Do nothing, Inspect and Repair. In the
Do nothing action, no maintenance or inspection is
performed. When the Inspect action is taken, the
current deterioration state of the component D(t)
is observed, with perfect information and a cost
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Parameter Type Value
a stochastic | a ~In.t" (g, 07)
U Fixed 0.002
c? Fixed 0.001
b Fixed 2
A Fixed 10
derir Fixed 25
Te Fixed 0.5
T Fixed 200
AT Fixed 0.1
Cinspection Fixed 5
Crepair Fixed 50
Cfailure Fixed 1500

Table 1: Overview of deterioration model parameters.

Cinspection 18 incurred'. When a Repair is performed,
the current state of the system D(¢) is improved by
a factor r, (repair effect): D(t) = D(t) - r,. This re-
sults in a cost of crepair. When an action is chosen
by a policy, the algorithm will first update the inter-
nal deterioration state D(¢) according to Eq. 5 and
check for failure.

4.3.  Reinforcement Learning Environment

In order to enable reinforcement learning for the
I&M problem, the deterioration model is adapted
in the following ways: The agent is able to perform
four distinct actions, including a Repair and Inspect
action, which allows the agent to perform mainte-
nance and inspection in the same time step. The
effect of this action is equivalent to first performing
the Repair action, followed by the Inspect action,
yielding the deterioration state after the repair.

As described in section 4.1, observations of
the system state are available through inspections,
meaning there is no information gain if no inspec-
tion is performed. We investigate several options of
implementing these observations for the inspection
and maintenance task without use of a belief state
b;. The simplest observation, which can be given
to the agent, is just the current system state d.. If

"While inspection yields perfect information about the
deterioration state, it should be noted that the problem re-
mains partially observable, as this information is only avail-
able through inspections and the hidden state of a is never
observed.
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the agent has performed an inspection in this time
step, d. will take the value of the component state
D(t), otherwise d, takes a placeholder value of -1,
to enable the agent to distinguish it from real state
observations. The observation of the current time
step within the episode is denoted as z., starting at
zero and increasing by one each possible interaction
cycle (¢, = AI—T). By holding the information of the
last inspection state d. in memory, the last known
state d; of the system can be provided to the agent.
If an inspection has been performed d; will take the
value of the component state, if no inspection is per-
formed d; will remain constant according to the last
inspection value. Lastly, by storing the time step of
the last inspection, we may provide the time steps
since inspection ¢; to the agent. #; takes the value
of zero if an inspection has been performed in the
current time step, and increases by one in each fol-
lowing time step if no inspection is performed.

4.3.1. Investigated Observation Spaces

In order to investigate the effect of different ob-
servation features, we use the deterioration model
described in section 4.1 and define four DRL se-
tups, each with a distinct observation space. Table
2 shows an overview of the observation spaces for
each of the four investigated setups. Both setups
one and two rely on the current inspection state d.,
whereas setups three and four use a representation
that retains the value d; and age of ¢ previous in-
spection results.

Z |d.|t.|d |t
Setup1 | Z; | X
Setup2 | Zp | x | X
Setup 3 | Z3 X | X
Setup 4 | Z4 X | X | X

Table 2: Observation spaces for setups one to four.

During training and evaluation of the DRL
agents, the uncertain parameter a, which controls
the deterioration of the system, is sampled accord-
ing to its distribution (Table 1) at the beginning of
an episode and remains constant throughout. The
value of a is hidden, meaning the agent has to learn
a policy which is optimal considering the full dis-
tribution of a.
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The reward function R is defined by the negative
sum of costs incurred in a time step, encouraging
the agent towards minimizing total life-cycle cost.

Iy = — (Ct,inspection + ¢t repair 1 Ct,failure) (7
The associated costs in a time step ¢ are denoted as
Ct inspection Ct repair» Ct failure and take the values de-
scribed in Table 1 if the respective action was taken
or if failure has occurred, otherwise their corre-
sponding value is zero. For the discount factor, y
we choose a value of 1, meaning no discounting is
performed.

4.4. Deep Reinforcement Learning Approach

For the DRL agent, which is trained to perform
maintenance on the system, we choose Proximal
Policy Optimization (PPO) proposed by Schulman
et al. (2017). PPO is a model free, on policy, actor-
critic method, which is able to increase training sta-
bility by constraining policy updates within a cer-
tain region to prevent changes which degrade the
current policy too much. All training runs were per-
formed using state and reward normalization. The
specific implementation details can be found in our
accompanying code repository?.

4.5. Baseline Policies

As a baseline for the DRL agents’ performance,
the following three policies are implemented and
evaluated.

4.5.1.

This policy performs only the Do nothing action,
meaning the system is left to deteriorate without
performing any maintenance or inspections and is
only replaced upon failure. This is chosen over a
random policy to perform as a neutral baseline, due
to the high associated cost of performing repairs
and inspections in almost every time step. This
policy achieves an average life cycle cost (LCC) of
Crc = 1593.75 +363.09.

Corrective Replacement

2https:// github.com/INFRA-RELEARN/ICASP14-Submission
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4.5.2. Condition Based Maintenance

The Condition Based Maintenance (CBM) pol-
icy mepa (S|tins, dipr) inspects the system every s €
[0,T] time steps. If the observed system state d.
is at or above the repair threshold d;;, € [0,d, i
d. > dyj,,, the repair action is chosen by the pol-
icy. Such a heuristic policy is common in risk-based
1&M planning (Straub and Faber, 2006). To find the
optimal parameters ;. and d;;  we employ a grid
search over the parameter space with Ny c = 128
Monte Carlo simulations for every pair of values.
The optimal parameters are chosen according to the
lowest average value of the LCC.

*
ins»

t (8)

", = argmin E [Crc]

tinssdapy TCBM (S\tins dinr)

This policy achieves an average LCC of Cpc =
452.23 £ 333.7 using optimal parameters tj,; =
11.8, d;p, = 16. The high standard deviation is
due to the sampled parameter a, which can create
episodes in which repairs have to be performed with
high frequency to keep the system from failure. The
optimal policy according to the minimum average
LCC does therefore accept failures in some situa-
tions, to achieve a better overall performance.

4.5.3. Free Inspection Policy

To provide a lower bound on the cost of main-
taining the system, a Condition Based Maintenance
strategy with free inspections (CBM-FI) is consid-
ered. This policy has perfect information of the
deterioration state of the system at all times with-
out inspections and will always perform repairs
just before failure would occur at a threshold of
dir = 24. This policy achieves an average LCC
of Crc =234.38+65.47.

5. RESULTS

Using the four setups described in section 4.3.1,
ten DRL agents with different initialization were
trained for 12000 episodes. The resulting train-
ing curves can be seen in Figure 1. It can be seen
that within about 1000 to 2000 training episodes,
most agents reach the performance of the Correc-
tive replacement policy. Agents trained in setup
one and two are not able to outperform this cost,
and consistently learn to not perform any actions.
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Figure 1: Average life cycle cost Cic of the DRL agents trained
in four observation spaces. The minimum and maximum Cyc for
each setup are indicated using dashed lines, the std. error is in-
dicated by the transparent regions in the respective colors. Note
that setup one and two are not able to produce policies which ex-
ceed a "Corrective Replacement” strategy. Agents using richer
observations spaces, like setup three and four, are able to produce

Figure 2: Box plot of the life cycle costs
Cyc for the final model in each of ten
training runs of each observation space.
Agents trained in setups three and four
with observation spaces retaining in-
spection information often even outper-
Sform the CBM policy.

maintenance strategies that keep the system maintained.

Agents trained in setups three and four, however,
are able to quickly surpass this threshold and go
on to reach and even outperform the CBM strategy.
Setup four exhibits slower convergence compared
to setup three.

To show the distribution of final agent perfor-
mances, we select the best model from each train-
ing process and evaluate it using 128 test episodes
with fixed parameters. All heuristics are also evalu-
ated using the same 128 episodes to serve as a base-
line. The resulting box plot, can be seen in Fig-
ure 2. Agents trained using the observation spaces
of setup one and two consistently learn to perform
no actions at all, achieving the same final LCC as
the Corrective replacement heuristic. By contrast,
agents trained using setups three and four in most
cases exceed the CBM strategy. Table 3 shows the
best, median and worst LCC for each of the four
setups.

6. DISCUSSION

The experiments show that the choice of the ob-
servation space for the DRL Agent can have a pro-
found impact on final performance and training sta-

bility. In setups one and two, where the observa-
tion spaces do not contain information about past
inspection states, the DRL agents are not able to
find a policy that keeps the system maintained. In
setup one, merely the current inspection value when
available was provided to the agents. Intuitively, it
can be observed that a deterministic agent, can only
have a single action in response to the value of no
observation (d. = —1), therefore if no inspection
was performed, the agent has to perform the same
exact action in any circumstance, leading to either a
policy that inspects at least every second time step
or to a policy of no inspections. The performance of
agents trained using these observations is therefore
not surprising. To alleviate this, it might be possi-
ble to make use of recurrent neural networks for the
policy, which are able to store relevant information
over many time steps. It can also be noted that a
CBM policy similar to the one described in section
4.5.2 could not be implemented using this obser-
vation space without the agent internally keeping
track of the time steps which have passed since the
last inspection.

Interestingly, even though setup two provides in-
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Setup 2 ‘
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Setup 3 Setup 4

‘ Setup 1 ‘
Best Crc | 1593.75 £363.09
Median Cyc | 1593.75 + 363.09
Worst  Crc | 1593.75 £ 363.09

1593.75 £ 363.09 | 386.60 + 325.32 | 380.27 + 238.03
1593.75 £363.09 | 419.63 + 325.84 | 441.82 + 251.73
1593.75 £363.09 | 531.05 £ 196.10 | 683.32 +97.88

Table 3: Best, median and worst average LCC for each of the four setups. Best values in a row are highlighted.
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Figure 3: Sample deployment of DRL agent trained in
observation space Zs. (Life cycle cost Cyec = 250)

formation about the current time step, it is also un-
able to produce meaningful DRL policies. Concep-
tually, using this observation space, policies with
inspections in fixed time steps could be realized.
After inspections, a policy would be able immedi-
ately take action to repair the system if necessary.
A CBM policy as described in section 4.5.2 can be
implemented using this observation space. Agents
trained in this way, however, fail to learn such a
policy. This might indicate that this kind of infor-
mation is not as fit for use in DRL as other repre-
sentations.

Setups three and four provide observations,
which retain information of past inspections, such
as their value d; and age #;. Agents can therefore
choose actions based on information that might lie
several hundreds of time steps in the past. Enabling
agents trained with these observations to perform
on par or better than the CBM baseline.

DRL models trained using the observation space
of setup three overall seem to perform the best and
most consistent. The best model produces 85% of
the cost compared to the CBM baseline. Figure 3
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Figure 4: Sample deployment of the Condition Based
Maintenance heuristic. (Life cycle cost Cre = 330)

shows a sample episode of the best policy. Note
that the agent performs its first inspection only af-
ter around 750 time steps, where the condition of
the component is most likely still very good. After
this, the agent inspects more frequently and repairs
when the state reaches a value of about 20. Re-
pairs performed by this agent are always accompa-
nied by an inspection immediately after the repair.
This updates the last inspection value d; and allows
the agent to react to the new deterioration state. For
comparison, Figure 4 shows a sample of the same
episode using the CBM policy. Here, repairs are
not accompanied by inspections, because this pol-
icy solely relies on time intervals to decide when
to perform the next inspection. It can also be ob-
served that many inspections are performed in the
beginning of the episode, even though the state of
the system is still very good, which increases over-
all cost. The CBM policy also needs one additional
repair to keep the system maintained, as repairs are
done at lower deterioration state values compared
to the DRL policy, which decreases their efficiency.

While setup four contains the additional informa-
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tion of the current time step within an episode, it
seems that this hinders the training process more
than the extra information could improve the pol-
icy. Intuitively, the time step might allow the agent
to create policies that vary inspection and repair fre-
quencies depending on the current progress within
the episode. The extra information does however
not impact final performances very much, with only
slight increases in median and worst average LCC,
and a comparable best average LCC.

None of the setups can reach the CBM-FI policy,
which is expected. Even an exact solution would
not be able to reach this performance without at
least performing one inspection, in order to esti-
mate the parameter a and the deterioration state
D(t).

7. CONCLUSION

To investigate the effects of choosing different
observation representations for I&M problems, we
conducted several experiments with different obser-
vation spaces and compared the resulting optimized
maintenance strategies to relevant baselines. Our
experiments have shown that agents with only ac-
cess to current inspection values are unable to learn
a meaningful policy in our problem setting. By con-
trast, agents trained on systems with access to the
last known inspection value and time since inspec-
tion, are able to find policies that perform compara-
ble and even better than the CBM baseline. This
shows that simply providing observations gained
through inspections may not lead to good perfor-
mance of DRL in environments, in which optimal
inspection and maintenance decisions rely on infor-
mation that can lie many time steps in the past. Ob-
servations, which retain information on the result
and time of inspections, provide richer informa-
tion to the agent. This allows the creation of more
complex DRL maintenance policies able to dynam-
ically react to given observations, without provid-
ing belief states or any additional knowledge about
the model. To continue the investigation of obser-
vation representations, one direction for future re-
search is augmenting the observations to include
multiple previous inspection values and times, as
well as also providing timing information of previ-
ous repairs.
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