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German Abstract

Graphische Lyapunov Modelle sind ein neuartiger Ansatz, um korrelierte multivariate
Daten statistisch zu modellieren. Dabei nehmen wir an, dass jede Stichprobe eine Mo-
mentaufnahme des multivariaten Ornstein-Uhlenbeck Prozess im Gleichgewicht ist. Let-
zterer besitzt eine eindeutige Kovarianzmatrix, falls diese eine Lösung der stetigen Lya-
punov Gleichung ist, welche von einer stabilen Driftmatrix parametrisiert wird.
Jede dünnbesetzte Driftmatrix bestimmt die Adjazenz eines ungerichteten Graphen.
Wir verwenden das group lasso, um eine dünnbesetzte ungefähre Lösung für die stetige
Lyapunov Gleichung zu bestimmen für eine gegebene Kovarianzmatrix. Darüberhinaus
ermitteln wir hinreichende Bedingungen um die Adjazenz eines Graphen korrekt zu bes-
timmen zu können. Dazu führen wir sogenannte duale Normen ein und adaptieren die
primal-dual witness technique für das group lasso. Eine der hinreichenden Bedingun-
gen, die wir aufzeigen, ist eine sogenannte group irrepresentability condition, welche wir
genauer untersuchen.
Im zweiten Teil dieser Arbeit widmen wir uns algebraischen Fragestellungen bezüglich
graphischen Lyapunov Modellen. Wir untersuchen dabei die identifiability und Kovari-
anzäquivalenz. Für letztere beweisen wir, dass Bäume in niedrigen Dimensionen immer
unterschiedliche statistische Modelle induzieren.
Im letzten Teil führen wir eine Reihe von numerischen Experimenten durch, um die
Performance von dem lasso und group lasso für gerichtete und ungerichtete Graphen-
schätzung zu vergleichen.

English Abstract

Graphical continuous Lyapunov models present a novel approach to statistically model
correlated multivariate data. In this setting, every observation is treated as a one-time
cross-sectional snapshot of the multivariate Ornstein-Uhlenbeck process in equilibrium.
The preceding process has a unique covariance matrix obtained as a solution to the
continuous Lyapunov equation specified by a stable drift matrix.
The sparsity pattern of the drift matrix is related to the support of an undirected graph.
We propose the group lasso as a regularization approach to model selection, i.e., we find a
sparse approximate solution to the continuous Lyapunov equation for a given covariance
matrix. Moreover, we derive sufficient conditions for consistent correct recovery by
introducing the notion of dual norms and adapting the primal-dual witness method for
the group lasso. One of the key assumptions will be a group irrepresentability condition,
which we will further investigate.
In the second part of the thesis, we review several algebraic questions related to graphical
continuous Lyapunov models. We start by providing a theory for the identifiability
problem. In addition, we study covariance equivalence for undirected graphs, where we
derive that low-dimensional trees will always induce different statistical models.
Lastly, we conduct a series of numerical experiments comparing the performance of the
lasso and group lasso for both directed and undirected structure recovery.
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1 Introduction

Graphical models allow us to better understand and interpret complex dependencies in
multivariate data. Moreover, they enable us to establish cause-effect relationships or,
in other words causality, (Pearl (2009); Peters et al. (2017); Spirtes et al. (2000)). In
particular, this is done using structural equation modeling (SEM), where we consider
each variable X to be a function of parent variables and independent noise ε, i.e.,

X “ ΛTX ` ε

with Λ being a matrix of unknown parameters. Assuming Varpεq “ Ω the covariance
matrix Σ of X satisfies

pI ´ ΛqTΣpI ´ Λq “ Ω. (1.1)

For an acyclic graph, SEMs provide a parametrization of the observables from a di-
rected acyclic model with possible latent variables (Richardson and Spirtes (2002)).
These so-called directed acyclic graphs (DAG) can be interpreted, and their parameters
can be easily estimated due to statistically favorable density factorization properties
(Maathuis et al. (2019)).

By contrast, if we consider the cyclic case, i.e., we allow the graph to contain directed
cycles, the statistical model becomes more involved. In this setting, cycles represent
feedback loops (Bongers et al. (2021)). While we can still define the statistical model
by solving structural equations, a number of issues arise. For instance, the presence
of directed cycles impedes density factorizations, thus complicating the computation of
maximum likelihood estimates (Drton et al. (2019)). Furthermore appropriate model
selection is more difficult for cyclic graphs (Améndola et al. (2020); Richardson (1996)).
Consequently, the interpretation of these models is not as straightforward as in the
acyclic case. Fisher (1970) proposes an interpretation based on data that are time aver-
ages. Mooji et al. (2013) and Bongers and Mooji (2018) relate the equilibrium states of
differential equations to structural equations.

For some continuous-time stochastic processes, the equilibrium covariance matrix does
not have the simple graphical representation provided by equation (1.1) given above.
Rather we require a parametrization corresponding to the graphical representation of
the dynamics of the process. Consider the p-dimensional Ornstein-Uhlenbeck process
defined as the solution to the stochastic differential equation

dXt “MpXt ´ aqdt`DdWt, (1.2)

1



1 Introduction

where M,D P Rpˆp are non-singular parameter matrices, a P Rp and Wt is a standard
Brownian motion in Rp. Assuming M is stable, i.e., all real parts of the eigenvalues
are strictly negative, Xt has a stationary distribution that is multivariate normal with
mean vector a and positive definite covariance matrix Σ (Fitch (2019), Theorem 2). Σ
is defined to be the unique matrix that solves the continuous Lyapunov equation

MΣ` ΣMT
` C “ 0 (1.3)

with C :“ DDT. Fitch (2019) and Varando and Hansen (2020) now assume the data
to be generated by a Ornstein-Uhlenbeck process in equilibrium. Namely, we have a
sample X1, . . . , Xn P Rp from the aforementioned multivariate process, where Xi repre-
sents a single cross-sectional observation of the i-th process in equilibrium. Thus Xi is
multivariate normal with expectation a and covariance Σ. The focal point of graphical
continuous Lyapunov models is the drift matrix M as it quantifies temporal cause-effect
relations among the coordinates of the Ornstein-Uhlenbeck process Xt.

Estimating the support or sparsity pattern of the drift matrix M corresponds to es-
timating the mixed graph associated with each graphical continuous Lyapunov model.
Dettling et al. (2022) proposes the lasso as a structure recovery method. They establish
sufficient conditions for correct recovery. The crucial assumption here is the irrepre-
sentability condition.
For this thesis, we take a step back and restrict ourselves to estimating the undirected
structure of a mixed graph, i.e., the skeleton. We apply the group lasso to the continuous
Lyapunov equation and develop conditions for consistent support recovery. We review
existing literature for consistent support recovery of the group lasso and develop our
own approach based on dual norms and the primal-dual witness method. Specifically,
we introduce the group irrepresentability condition as a sufficient condition and study
its properties.

Besides estimating the underlying graph, we will also study several algebraic questions
concerning the graphical continuous Lyapunov model. Specifically, whether the graphi-
cal continuous Lyapunov model is uniquely determined by the multivariate distribution
of the observations. This question is referred to as identifiability, and we will provide a
review of existing results on this topic (Dettling et al. (2022)). Secondly, we examine
whether two different undirected graphs may induce the same graphical continuous Lya-
punov model, i.e., we study the notion of covariance equivalence for undirected graphs.

Structure of the thesis. In Chapter 2, we review the Kronecker product and re-
lated theory necessary to formulate graphical continuous Lyapunov models. Chapter 3
deals with undirected structure estimation via the group lasso and develops sufficient
conditions for consistent sparsity pattern estimation. In Chapter 4, we discuss different
notions of identifiability and covariance equivalence for undirected graphs. Lastly, in
Chapter 5, we perform a series of numerical studies to gain more insight into the behav-
ior of the lasso and group lasso for structure estimation.
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1 Introduction

Notation

• Let p P N. Then rps “ t1, . . . , pu.

• Cpˆq and Rpˆq denotes the set of pˆ q matrices in C or R, respectively.

• For a p ˆ q matrix A, we write Ak “ A¨k to select k-th column of A and Al¨ to
select the l-th row of A.

• Let A be a a matrix, then σpAq denotes the set of all eigenvalues of A.

• For v P Rp and b P r1,8s the `b-norm of v is ‖v‖b “ p
řp
i“1 |vi|

bq1{b with ‖v‖
8
“

max1ďiďp |vi|.
LetA P Rpˆq. The associated operator norm is denoted by ~A~b “ max‖x‖b“1 ‖Ax‖b.
‖A‖F “ p

řp
i“1

řq
j“1 |Aij|

2q1{2 denotes the Frobenius norm.

• We use the abbreviations LHS and RHS to refer to the left-hand side or right-hand
side of an equation or inequality.

3



2 Graphical Continuous Lyapunov
Models

2.1 Kronecker product and linear matrix equations

The Kronecker product is essential for the formulation and study of graphical continuous
Lyapunov models (GCLM). In the following, we will provide interesting properties and
key facts about the Kronecker product that will allow us to derive important results
with regard to GCLMs. The main reference for these results is Horn and Johnson (1991,
Chapter 4).

Definition 2.1 (Kronecker product). The Kronecker product of A “ paijq P Cmˆn and
B “ pbijq P Cpˆq is denoted by AbB and is defined to be the block matrix

AbB :“

¨

˚

˝

a11B ¨ ¨ ¨ a1nB
...

. . .
...

am1B ¨ ¨ ¨ amnB

˛

‹

‚

P Cmpˆnq.

Note that AbB ‰ BbA in general. A few basic properties of the Kronecker product
include:

pαAq bB “ Ab pαBq for all α P C
pA`Bq b C “ Ab C `B b C for all A,B P Cmˆn and C P Cpˆq

Ab pB ` Cq “ Ab C `B b C for all A P Cmˆn and B,C P Cpˆq

pAbBq b C “ Ab pB b Cq for all C P Crˆs

pAbBqT “ AT
bBT

pAbBq˚ “ A˚ bB˚

Another useful fact about the Kronecker product is the mixed-product property, which
combines ordinary matrix multiplication and the Kronecker product.

Lemma 2.2. (mixed-product property) Let A P Cmˆn, B P Cpˆq, C P Cnˆk and D P

Cqˆr. Then
pAbBqpC bDq “ AC bBD.

Proof. We define A “ pailq and C “ pcljq, then A b B “ pailBq and C b D “ pcljDq.
We obtain the following expression for the i, j block of pAb BqpC bDq by writing the
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2 Graphical Continuous Lyapunov Models

matrix multiplication explicitly as

n
ÿ

l“1

ailBcljD “

˜

n
ÿ

l“1

ailclj

¸

BD “ pACqijBD.

Note that this is exactly the i, j block of AC bBD, which concludes the proof.

The Kronecker product allows for convenient representations of linear matrix equa-
tions. For this purpose, we introduce the following definition.

Definition 2.3. For a matrix A “ paijq P Cmˆn we associate the vector vecpAq P Cmn

defined by
vecpAq :“ pa11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amnq

T.

We call vecpAq the vectorization of A.

The next lemma provides the connection between linear matrix equations and the
Kronecker product.

Lemma 2.4. Let A P Cmˆn, B P Cpˆq and X P Cnˆp. Then the following equation
holds true

vecpAXBq “ pBT
b AqvecpXq.

Proof. For k “ 1, . . . , q we get

pAXBqk “ ApXBqk “ AXBk “ pb1kA, b2kA, ¨ ¨ ¨ , bpkAqvecpXq

“ pBT
k b AqvecpXq.

Thus,

vecpAXBq “

¨

˚

˝

BT
1 b A

...
BT
q b A

˛

‹

‚

vecpXq.

Note that the above Kronecker products are just BTbA since the transpose of a column
of B is a row of BT. Finally, we obtain

vecpAXBq “ pBT
b AqvecpXq.

Example 2.5. Consider the continuous Lyapunov equation with M,Σ symmetric, C P
Rpˆp and

MΣ` ΣMT
` C “ 0.

This can be equivalently expressed as

vecpMΣq ` vecpΣMT
q ` vecpCq “ 0.

5



2 Graphical Continuous Lyapunov Models

Applying Lemma 2.4 to the first two summands and solving for Σ, i.e. X “ Σ, yields

ppM b Ipq ` pIp bMqqvecpΣq ` vecpCq “ 0. (2.1)

Alternatively, we could also solve for M

pΣb IpqvecpMq ` pIp b ΣqvecpMT
q ` vecpCq “ 0. (2.2)

For a more compact representation of equation (2.2) in the Example given above, it
would be useful to represent vecpMTq in terms of vecpMq. The next theorem provides
exactly this.

Theorem 2.6. There exists a unique matrix Kpm,nq P Cmˆn such that

vecpXT
q “ Kpm,nqvecpXq for all X P Cmˆn.

Kpm,nq is only dependent on the dimensions m and n and is given by

Kpm,nq :“
m
ÿ

i“1

n
ÿ

j“1

Eij b E
T
ij “ pEijqi“1,...,m

j“1,...,n
(2.3)

with Eij P Cmˆn having entry 1 at position pi, jq and all other entries being 0. Moreover,
Kpm,nq is a permutation matrix with Kpm,nq “ pKpn,mqqT “ pKpn,mqq´1.

Proof. see proof of Theorem 4.3.8 in Horn and Johnson (1991).

We also include the following corollary.

Corollary 2.7. Let Kpp,mq P Cpmˆpm and Kpn,qq P Cnqˆnq be permutation matrices.
Then

B b A “ Kpp,mq
pAbBqKpn,qq. (2.4)

Proof. see proof of Corollary 4.3.10 in Horn and Johnson (1991).

Example 2.5 (continued). (2.2) can now be written as

ppΣb Ipq ` pIp b ΣqKpm,nq
qvecpMq ` vecpCq “ 0. (2.5)

The matrices we obtain in Example 2.5 are examples of a more general structure, so-
called Kronecker sums, which have the following form pAbInq`pImbBq with A P Cmˆm

and B P Cnˆn. The following two theorems will allow us to compute the eigenvalues of
Kronecker sums and discuss the solvability of linear matrix equations.

Theorem 2.8. Let A P Cmˆm and B P Cnˆn with eigenvalues λ P σpAq “ tλ1, . . . , λmu
and µ P σpBq “ tµ1, . . . , µnu, respectively. Then λ`µ is an eigenvalue of pAbInq`pImb
Bq. In particular, σppAb Inq ` pIm bBqq “ tλi ` µj : i “ 1, . . . ,m and j “ 1, . . . , nu.
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2 Graphical Continuous Lyapunov Models

Proof. Using Schur’s decomposition, we can find two unitary matrices U P Cmˆm and
V P Cnˆn such that U˚AU “ ∆A and V ˚BV “ ∆B are upper triangular. In particular,
note that W “ V bU P Cmnˆmn is unitary, which can be easily verified using the mixed-
induct property.
Subsequent application of the mixed-induct property yields

W ˚
pAb InqW “ pV ˚ b U˚qpAb InqpV b Uq “ pV

˚Ab U˚qpV b Uq “ V ˚AV b U˚U

“ ∆A b In “

¨

˚

˝

λ1In ˚

. . .

0 λmIn

˛

‹

‚

.

For the last equality, recall that the eigenvalues of A are the diagonal entries of ∆A.
Analogously, we obtain

W ˚
pIm bBqW “ Im b∆B “

¨

˚

˝

∆B 0
. . .

0 ∆B

˛

‹

‚

(m copies of ∆B on the diagonal).
Consequently, we can write the Kronecker sum as

W ˚
rpAb Inq ` pIm bBqsW “ p∆A b Inq ` pIm b∆Bq

The RHS of the above equation forms an upper triangular matrix with the eigenvalues
of the Kronecker sum on its diagonal. Closer inspection reveals that each diagonal entry
of ∆A is paired with all diagonal entries of ∆B. Thus, noting that similar matrices have
the same eigenvalues, we can infer that

σppAb Inq ` pIm bBqq “ tλi ` µj : i “ 1, . . . ,m and j “ 1, . . . , nu.

Theorem 2.9. Let A P Cmˆm and B P Cnˆn. The equation AX ` XB “ C has a
unique solution X P Cmˆn for each C P Cmˆn if and only if σpAq X σp´Bq “ ∅.

Proof. Lemma 2.4 states that
AX `XB “ C

is equivalent to
ppAT

b Inq ` pIm bBqqvecpXq “ vecpCq

Note that AT has the same eigenvalues as A and thus according to Theorem 2.8 pAT b

Inq ` pIm bBq has a zero eigenvalue if and only if σpAq X σp´Bq ‰ ∅. Now recall that
the determinant of a matrix can be expressed as the product over all its eigenvalues,
hence pAT b Inq ` pIm bBq is non-singular if and only if σpAq X σp´Bq “ ∅.

σpAq X σp´Bq “ ∅ is equivalent to saying that the sum of any two eigenvalues from
A and B is nonzero.

Example 2.5 (continued). The eigenvalues of pM b Ipq ` pIpbMq are sums of pairs of
eigenvalues of M . The solution to (2.1) is thus unique if and only if the sum of any two
eigenvalues of M is nonzero.

7



2 Graphical Continuous Lyapunov Models

2.2 Definition of graphical continuous Lypanunov
models

We will study models of covariance matrices Σ given as solutions to the Lyapunov
equation (1.3). As we have seen in Example 2.5, this can be equivalently expressed as
the linear equation

ppM b Ipq ` pIp bMqqvecpΣq ` vecpCq “ 0. (2.6)

In order for (2.6) to have a unique solution, we require the sum of any two eigenvalues
of M to be nonzero. We denote the unique solution by ΣpM,Cq.

We introduce a few more definitions to describe the solutions of (1.3). Firstly, let
Mat0ppq be the set of all p ˆ p matrices that do not have eigenvalues summing to zero,
i.e.

Mat0ppq :“ tX P Rpˆp : σpXq X σp´Xq “ ∅u.
Furthermore, we denote the set of all symmetric matrices by

Symppq :“ tX P Rpˆp : XT
“ Xu

and the set of all stable matrices, that is, all matrices whose eigenvalues have strictly
negative parts, is denoted by

Stabppq :“ tX P Rpˆp : RepσpXqq ă 0u.

Note that Stabppq Ď Mat0ppq. Lastly, the cone of all positive definite matrices is given
by

PDppq :“ tX P Rpˆp : vTXv ą 0 for all v P Rp
u.

We can associate the sparsity patterns of M and C to a mixed graph.

Definition 2.10 (mixed graph). A mixed graph G “ pV,Eq is a graph with vertex set
V and edge set E containing directed as well as bidirected edges. In particular, we allow
for self-loops and multiple edges between two nodes.

A pair of matrices pM,Cq P Mat0ppqˆSymppq are called compatible with a mixed graph
G if Mji ‰ 0 implies i Ñ j P E and Cij ‰ 0 implies i Ø j P E. We denote the set of
G-compatible matrix pairs by ΞG Ď Mat0ppqˆSymppq and ΘG “ ΞGXpStabppqˆPDppqq.

Example 2.11. Consider the following pair of matrices

M “

¨

˚

˚

˚

˚

˝

´1 1 0 0 0
´1 0 0.2 0 0
0 0 ´1 ´0.5 0
0 0 0 ´1 1
0 0 1 0 ´1

˛

‹

‹

‹

‹

‚

and C “ I5.

8



2 Graphical Continuous Lyapunov Models

1 2
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1 1
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Figure 2.1: Compatible graph G with edge weights for pM,Cq given in Example 2.11,
where the black edges are specified by M and the red edges by C.

Note that M has eigenvalues ´1.79,´0.60˘ 0.69i and ´0.50˘ 0.87i, i.e., all real parts
are strictly negative, and thus M is stable. pM,Cq are compatible with the mixed graph
G as shown in Figure 2.1. Thus pM,Cq P ΘG.

For a mixed graph G the map pM,Cq ÞÑ ΣpM,Cq is well defined on ΞG with image
ΣpΞGq in Symppq. Moreover, the image of ΘG denoted by ΣpΘGq is in PDppq, which
follows from Theorem 2.12.

Theorem 2.12. Let pM,Cq P ΘG, then

ΣpM,Cq “ lim
sÑ8

Σpsq “

ż 8

0

euMCeuM
T

du, (2.7)

where Σpsq :“
şs

0
euMCeuM

T
du. Moreover, ΣpM,Cq P PDppq.

Proof. Note that by Theorem 2.9, the stability of M guarantees that the Lyapunov
equation (1.3) has a unique solution. Moreover, stability also implies that the improper
integral in (2.7) is convergent. We can prove the equality by verifying that the integral
on the RHS of (2.7) is indeed a correct solution to the Lyapunov equation.

M lim
sÑ8

Σpsq ` lim
sÑ8

ΣpsqMT
“

ż 8

0

MeuMCeuM
T

` euMCeuM
T

MTdu

“

ż 8

0

d

du
euMCeuM

T

du “ ´C

Let x P Rpzt0u, then we obtain the following expression using 2.7

xTΣpB,Cqx “

ż 8

0

xTeuMCeuM
T

xdu “

ż 8

0

peuM
T

xqTCpeuM
T

xqdu ą 0.

For the last inequality, we used that C is positive-definite.

9



2 Graphical Continuous Lyapunov Models

We can now state the definition for graphical continuous Lyapunov models (GCLM).

Definition 2.13 (GCLM ). Let G be a mixed graph, then the graphical continuous
Lyapunov model of G is the set of covariance matrices

MG :“ ΣpΘGq “ tΣ P PDppq : MΣ` ΣMT
` C “ 0 with pM,Cq P ΘGu Ď PDppq.

The extended GCLM is defined as Me
G :“ ΣpΞGq

When we refer to the undirected structure of a GCLM, we mean the skeleton of a
compatible graph G for a given GCLM MG.

Definition 2.14 (skeleton). The skeleton of a mixed graph G “ pV,Eq is the undirected
graph Gskel “ pV,Eskelq with v ´ w P Eskel if and only if v and w are adjacent in G.

Example 2.15. For the graph given in Example 2.11 we obtain the skeleton given in
Figure 2.2. Note that we omitted edge weights and self-loops as they are not of primary

1 2

3

4

5

Figure 2.2: Skeleton of the compatible graph G given in Example 2.11

interest when discussing the undirected structure of a GCLM.

We call a pair of matrices pM,Cq P Mat0ppq ˆ Symppq compatible with an undirected
graph Gskel if Mij ‰ 0 or Mji ‰ 0 implies i ´ j P Eskel, and Cij ‰ 0 or Cji ‰ 0
implies i ´ j P Eskel. We denote the set of Gskel-compatible matrix pairs by ΞGskel Ď

Mat0ppq ˆ Symppq and ΘGskel “ ΞGskel X pStabppq ˆ PDppqq. Analogously to directed
graphs, we can define undirected graphical continuous Lyapunov models as follows.

Definition 2.16 (undirected GCLM ). Let Gskel be an undirected graph, then the undi-
rected graphical continuous Lyapunov model of Gskel is the set of covariance matrices

MGskel :“ ΣpΘGskelq “ tΣ P PDppq : MΣ`ΣMT
`C “ 0 with pM,Cq P ΘGskelu Ď PDppq.

The extended undirected GCLM is defined as Me
Gskel

:“ ΣpΞGskelq.

10



3 Undirected Structure Estimation

3.1 Group Lasso

Our method of choice to estimate the undirected structure of GCLMs will be the group
lasso. It was first introduced by Yuan and Lin (2006) with the intent to select groups
of variables in regression problems in which covariates admit a natural group structure.
There exists a vast amount of literature on the group lasso. Our introduction to it will
mostly follow Hastie et al. (2015).

Consider the linear regression problem with response y P Rp, design matrix X P

Rpˆp and regression coefficients β P Rp. Moreover, let the parameter β have a natural
grouping with m total groups, i.e.,, β “ pβ11, . . . , β1p1 , β21, . . . , β2p2 , . . . , βm1, . . . , βmpmq
with

řm
j“1 pj “ m. Alternatively, we write β “ pβG1 , . . . , βGmq where each βGj :“

pβj1, . . . , βjpjq P Rpj for every j P rms.

Definition 3.1 (group lasso). The group lasso estimator solves the following convex
optimization problem

min
βPRp

1

2
}y ´Xβ}22 ` λ

m
ÿ

j“1

?
pj

∥∥βGj∥∥2
, (3.1)

where λ ě 0 is a tuning parameter that can be chosen freely.

Note that if we set each group size pj “ 1, the groups are all singletons, and the above
optimization problem (3.1) reduces to the ordinary lasso estimator. Depending on the
choice of λ, the parameter estimate β̂Gj for βGj will either be equal to zero, or all its
elements will be nonzero. We refer to the second summand in (3.1) as the penalty term.

Remark 3.2. The choice of the factor in front of
∥∥βGj∥∥2

is somewhat subjective. Here
we set it to

?
pj, thus weighting the penalty for each group j according to their size.

Other possible choices include setting it to 1 or
∥∥XGj

∥∥
F

.

We connect the problem of estimating undirected structures in GCLM to the group
lasso by introducing the group Lyapunov lasso. Given an i.i.d. sample of centered
observations X1, . . . , Xn P Rp from the Ornstein-Uhlenbeck process in equilibrium, the
group Lyapunov lasso estimator finds the optimal solution to the following problem

min
MPRpˆp

1

2

∥∥∥MΣ̂` Σ̂MT
` C

∥∥∥2

F
` λ

m
ÿ

j“1

?
pj

∥∥vecpMqGj
∥∥

2
, (3.2)

11



3 Undirected Structure Estimation

where λ ě 0 is a tuning parameter and

Σ̂ “
1

n

n
ÿ

i“1

XiX
T
i (3.3)

is the sample covariance matrix. vecpMqGj denotes the vector containing all entries of
M that belong to group j. The exact structure of Gj will be specified later.

To see how (3.2) relates to the group lasso, we transform the objective function. As
we have seen in Example 2.5 equation (2.5), the term in the Frobenius norm can be
rewritten as the linear equation

ppΣ̂b Ipq ` pIp b Σ̂qKpp,pq
qvecpMq ` vecpCq.

Setting
ApΣq :“ ppΣb Ipq ` pIp b ΣqKpp,pq

q P Rp2ˆp2

(3.4)

and using the fact that for a general matrix X

‖X‖F “ ‖vecpXq‖2

we obtain an alternative version of (3.2)

min
MPRpˆp

1

2

∥∥∥ApΣ̂qvecpMq ` vecpCq
∥∥∥2

2
` λ

m
ÿ

j“1

?
pj

∥∥vecpMqGj
∥∥

2
. (3.5)

This now more closely resembles the standard definition of the group lasso, where ApΣ̂q P
Rp2ˆp2

takes on the role of the design matrix in the linear regression setting, vecpMq P Rp2

represent the regression coefficients and ´vecpCq P Rp2
is the response vector.

Remark 3.3. There is a key difference between the group Lyapunov lasso and the group
lasso. While the latter has a random component in the form of an additive error ε, i.e.,

Y “ Xβ ` ε,

the group Lyapunov lasso introduces randomness through the design matrix ApΣ̂q, which
is based on the sample covariance matrix Σ̂.

We index the rows and columns of ApΣq by the pairs pi, jq P t1, . . . , pu2. The design
matrix ApΣq has an interesting structure, as the next example shows.

12



3 Undirected Structure Estimation

Example 3.4. For p “ 3 ApΣq is a 9ˆ 9 matrix and has the following form

p1, 1q p1, 2q p1, 3q p2, 1q p2, 2q p2, 3q p3, 1q p3, 2q p3, 3q
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p1, 1q 2Σ11 0 0 2Σ12 0 0 2Σ13 0 0
p1, 2q Σ21 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
p1, 3q Σ31 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(2,1) Σ21 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
p2, 2q 0 2Σ21 0 0 2Σ22 0 0 2Σ23 0
p2, 3q 0 Σ31 Σ21 0 Σ23 Σ22 0 Σ33 Σ23

(3,1) Σ31 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(3,2) 0 Σ31 Σ21 0 Σ23 Σ22 0 Σ33 Σ23

p3, 3q 0 0 2Σ31 0 0 2Σ23 0 0 2Σ33

.

Rows with an italicized index correspond to the strictly upper triangular entries in the
Lyapunov equation defined in (1.3).

Note that it holds in general that ApΣq has two copies of each row corresponding to
an off-diagonal entry in the Lyapunov equation. This is due to the symmetry of the
Lyapunov equation.

We define the Gram matrix

ΓpΣq :“ ApΣqTApΣq P Rp2ˆp2

(3.6)

and
gpΣq :“ ´ApΣqvecpCq P Rp2

.

(3.5) can then be reformulated as

min
MPRpˆp

1

2
vecpMqTΓpΣ̂qvecpMq ´ gpΣ̂qTvecpMq ` λ

m
ÿ

j“1

?
pj

∥∥vecpMqGj
∥∥

2
.

Observe that we omitted a term that is constant in M as it has no influence on the
minimization problem.

Recall from Definition 2.14 that the undirected structure of the GCLM is based on
the adjacency of two nodes. Consequently, given two nodes i and j, there exists an
undirected edge connecting them if mij ą 0 or mji ą 0. Thus it is only natural to
consider the

`

p
2

˘

groups each of length 2 defined as

Goffdiag :“ ttpi, jq, pj, iqu : i ‰ j, i, j P rpsu. (3.7)

This leaves us with the entries on the diagonal of M , which we will consider as p groups
each of length 1, i.e.,

Gdiag :“ ttpi, iqu : i P rpsu. (3.8)

We propose two versions of the group Lyapunov lasso. The first one penalizes all entries
of M , whereas the second only penalizes the off-diagonal entries.

13



3 Undirected Structure Estimation

Definition 3.5 (group Lyapunov lasso including the diagonal). The group Lyapunov
lasso estimator, including the diagonal, finds the optimal solution to the following prob-
lem

min
MPRpˆp

1

2

∥∥∥ApΣ̂qvecpMq ` vecpCq
∥∥∥2

2
` λ

pp2q`p
ÿ

j“1

?
pj

∥∥vecpMqGj
∥∥

2
, (3.9)

where Gj P Goffdiag YGdiag for j P r
`

p
2

˘

` ps.

We can elect to not penalize the entries on the diagonal of M as they describe the
edge j Ñ j for all j P rps, which is not directly a part of the undirected structure. Hence,
we obtain the second version of the group Lyapunov lasso.

Definition 3.6 (group Lyapunov lasso excluding the diagonal). The group Lyapunov
lasso excluding the diagonal estimator finds the optimal solution to the following problem

min
MPRpˆp

1

2

∥∥∥ApΣ̂qvecpMq ` vecpCq
∥∥∥2

2
` λ

pp2q
ÿ

j“1

?
2
∥∥vecpMqGj

∥∥
2
, (3.10)

where Gj P Goffdiag for j P r
`

p
2

˘

s.

3.2 Review of support recovery conditions for the group
lasso

When it comes to available literature for conditions that guarantee consistent support
recovery, there exist a few papers whose main ideas we aim to present in the following.
The results are slightly modified to match the group lasso setting defined in (3.1) and
thus allow for better comparison. Specifically, we omit the specification of a bias term
and fix the weights of our penalties to be the group size squared

?
pj for all j P rms.

Definition 3.7 (support). We define the support S of a vector β P Rp as

S “ Spβq :“ tj P rms : βGj ‰ 0u.

We use the convention for vectors that βS :“ tβGjujPS and for matrices XS is formed

by the columns of X with index in
Ť

jPS Gj. Moreover, let β̂ be the solution to (3.1)

with associated support Ŝ “ Spβ̂q and β˚ be the true signal with support S “ Spβ˚q.

Remark 3.8. We will use the terms correct support recovery, correct model selection
and correct sparsity pattern synonymously.

One of the first papers to study consistent model selection for the group lasso was
Bach (2008). It proposes sufficient and necessary conditions for correct model selection
under the following assumptions. Let Y P R be a response from covariates X P Rp, both
satisfying

14



3 Undirected Structure Estimation

1. Er‖X‖4
2s ă 8 and Er‖Y ‖4

2s ă 8,

2. ΣXX :“ ErXXTs ´ ErXsErXsT is invertible,

3. ErpY ´pβ˚qTXq2|Xs is almost surely greater than σ2
min ą 0 with β˚ P Rp denoting

the minimizer of ErpY ´ pβ˚qTXq2s.

Observe that the last assumption does not require ErY |Xs to be an affine function of X
and the conditional variance to be constant, as is commonplace for most results derived
for consistency in linear supervised learning.

Leading us to the consistency conditions

max
iPSc

1
?
pi

∥∥∥pΣXXqGiSppΣXXqSSq
´1diag

´

?
pj{

∥∥∥β˚Gj∥∥∥
2

¯

β˚S

∥∥∥
2
ă 1, (3.11)

max
iPSc

1
?
pi

∥∥∥pΣXXqGiSppΣXXqSSq
´1diag

´

?
pj{

∥∥∥β˚Gj∥∥∥
2

¯

β˚S

∥∥∥
2
ď 1, (3.12)

where diag
´

?
pj{

∥∥∥β˚Gj∥∥∥
2

¯

is a block-diagonal matrix (with block sizes pj) in which each

diagonal block is equal to
?
pj∥∥∥β˚Gj∥∥∥2

Ipj . We refer to (3.11) as the strong condition and

(3.12) is called the weak condition. The strong condition is sufficient for consistent
support recovery, as the next theorem shows.

Theorem 3.9. Under the assumptions 1. - 3. stated earlier, if condition (3.11) is
fulfilled, then for any sequence of regularization parameters λn with λn Ñ 0 and λn

?
nÑ

`8, the group lasso estimate β̂ (solution to (3.1)) will converge in probability to β˚ and
PpŜ “ Sq Ñ 1.

On the other hand, if there exists a consistent solution along a regularization sequence,
the weak condition (3.12) must be met.

Theorem 3.10. Under the previously stated assumptions, if there exists a regularization
path λn such that both β̂ converges to β˚ and Ŝ converges to S in probability, then (3.12)
holds true.

Theorem 3.9 implies that if there is low correlation between the predictors in S and
the predictors in Sc, the group lasso will be consistent. By contrast, Theorem 3.10
states that we can not hope for a consistent solution if the weak condition is not met.
In analogy to the theory for model consistency developed for the lasso by Zhao and Yu
(2006), (3.11) and (3.12) are called irrepresentability conditions. Moreover, note that for
the lasso Yuan and Lin (2007) proved that the strong condition is both necessary and
sufficient.

The two previous theorems provide results on a particular type of consistency, namely

consistency in both the norm
∥∥∥β̂ ´ β˚∥∥∥ and the sparsity pattern simultaneously. If we

are only interested in sparsistency, i.e., consistent estimation of the support, we have
the following result.
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3 Undirected Structure Estimation

Theorem 3.11. Under the assumptions stated earlier, if λn Ñ λ0 ą 0, the group lasso
estimate β̂ is sparsity-consistent if and only if the solution of

min
βPRp

1

2
pβ ´ β˚qTΣXXpβ ´ β

˚
q ` λ0

m
ÿ

j“1

?
pj

∥∥βGj∥∥2

has the correct sparsity pattern.

Consequently, we may have consistent estimation of the support but inconsistent
estimation of the parameters, even though the weak condition is not satisfied. Bach
(2008) also showed this fact in a simulation study, where 10000 covariance matrices were
sampled based on a certain procedure. The study revealed that even in cases where the
weak condition was violated the group lasso was able to consistently estimate the correct
sparsity pattern for roughly 40% of the samples.

Although the assumptions in Bach (2008) accommodate for quite general settings,
they are not directly applicable to the group Lyapunov lasso. In particular, ΣXX , which
would be equal to Γ˚ “ ApΣ˚qTApΣ˚q in our setting, is not invertible. This is due to
the identical rows that appear in the design matrix ApΣ˚q (cf. also Example 3.4).

For a more special setting, namely the linear model

Y “ Xβ˚ ` ε with X P Rnˆp, β˚ P Rp and ε „ N p0, σ2Inq,

Nardi and Rinaldo (2008) proposes the following conditions for sparsistency. First, they
make the simplifying assumption that

1

n
XT
Gj
XGj “ Ipj for all j P rms, (3.13)

which can be achieved by utilizing the Gram-Schmidt orthogonalization procedure.
Moreover, they assume that

1. The smallest eigenvalue of 1
n
pXT

SXSq is bounded from below by a constant Cmin ą
0.

2. For α :“ minjPS

∥∥∥β˚Gj∥∥∥
8

and s :“
ř

jPS pj

1

α

˜

c

log s

n
`
?
sλmax

jPS

?
pj

¸

Ñ 0.

3. For some 0 ă ε ă 1 and every j P Sc

�

�

�
XT
Gj
XSpX

T
SXSq

´1
�

�

�

2
ď

1´ ε
b

ř

jPS pj
. (3.14)
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3 Undirected Structure Estimation

4.
logpp´ sq

nλ2
Ñ 0.

They derive the following theorem for sparsistency.

Theorem 3.12. Let assumptions 1.´4. hold. Then for O, which is the event that there

exists a group lasso solution β̂ with
∥∥∥β̂Gj∥∥∥

2
ą 0 for all j P S and β̂Gj “ 0 for all j P Sc,

it holds that
PpOq Ñ 1 for nÑ 8.

The irrepresentability condition stated in (3.14) is more restrictive than the one pro-
posed by Bach (2008) in (3.11). However, this is because Nardi and Rinaldo (2008) con-
siders a more general asymptotic scenario. They study the so-called double-asymptotic
scenario, where the parameter space spanned by the columns of the nˆ pj submatrices
XGj with j P rms is allowed to change with n. In particular, they allow for m Ñ 8

and dimensions of the groups pj to change with n. Specifically, they include situations
where s ąą n, meaning s grows faster than n. By contrast, Bach (2008) assumes the
parameter space is fixed.

Lounici et al. (2011) established slightly different sufficient conditions for correct sup-
port recovery for the linear model. Let XGj be the nˆ pj sub-matrix of X obtained by
taking the columns of X indexed in Gj. Assume there exists some integer s ě 1 and a
constant α ą 0 such that

1. For any j P rms and t P rpjs it holds that pXT
Gj
XGj{nqt,t “ φ and

max
1ďt,t1ďpj ,t‰t1

|pXT
Gj
XGj{nqt,t1 | ď

miniPrms
?
piφ

14αmaxiPrms
?
pis

1

pj
. (3.15)

2. For any j ‰ j1 P rms it holds that

max
1ďtďmintpj ,pj1u

|pXT
Gj
XGj1

{nqt,t| ď
miniPrms

?
piφ

14αmaxiPrms
?
pis

(3.16)

and

max
1ďtďpj ,1ďt1ďpj1 ,t‰t

1
|pXT

Gj
XGj1

{nqt,t1 | ď
miniPrms

?
piφ

14αmaxiPrms
?
pis

1
?
pjpj1

. (3.17)

Note that pXT
Gj
XGj{nqt,t “ φ can be easily achieved by normalizing the design matrix X.

Compared to the orthogonality assumption (3.13) made in Nardi and Rinaldo (2008),
this allows for more general design matrices. Assumptions 1. and 2. take on the form
of a mutual coherence condition as they restrict the maximum absolute value of the
cross-correlations between the columns of X. Given the above two assumptions, we can
state the following theorem.
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3 Undirected Structure Estimation

Theorem 3.13. Let m ě 2,n ě 1, |S| ď s and choose

λ ě max
jPrms

2σ
?
npj

c

trpXT
Gj
XGj{nq ` 2

�

�

�
XT
Gj
XGj{n

�

�

�

2
p2q logm`

a

pjq logm, (3.18)

where q is a positive parameter. Moreover, assume the above-stated assumptions are
satisfied. In particular, let (3.15), (3.16) and (3.17) hold with the same s. Define

c :“

ˆ

3

2
`

16

7pα ´ 1q

˙

.

Then with probability at least 1 ´ 2m1´q, it holds that for any solution β̂ of the group
lasso

max
jPrms

∥∥∥pβ̂ ´ β˚qGj∥∥∥
2
ď
c

φ
max
iPrms

?
pi.

If additionally,

min
jPS

∥∥pβ˚qGj∥∥2
ą

2c

φ
max
iPrms

?
pi, (3.19)

then with the same probability, the set of indices

Ŝ “

"

j :
∥∥∥β̂Gj∥∥∥

2
ą
c

φ
max
iPrms

?
pi

*

will correctly estimate the true sparsity pattern S, i.e., Ŝ “ S.

(3.19) is referred to as the beta min condition. It states that pβ˚qGj cannot be arbitrar-
ily close to zero if j P S. In other words, the norms should be at least somewhat larger
than the noise level. For the group lasso this implies that at least one component in
pβ˚qGj has to be sufficiently large since we aim to select entire groups and not individual
components.

Note the theory developed in Nardi and Rinaldo (2008) and Lounici et al. (2011)
again cannot be applied to the group Lyapunov lasso as the underlying regression prob-
lem does not contain an additive error. For more details, we refer to Remark 3.3.

For some more specialized variants of the group lasso, there also exists some sufficient
conditions for correct support recovery. Wei and Huang (2010) studied the adaptive
group lasso, which iteratively uses the group lasso twice. Specifically, it uses the group
lasso to compute an initial estimate β̂ and reduce the dimension of the problem. After-

ward, the weights of the penalty are set to 1{
∥∥∥β̂Gk∥∥∥

2
, and the group lasso algorithm is

run for a second time. The crucial assumption for correct model selection is that the
initial estimator is consistent at zero. The latter is true for the group lasso given that
the sparse Riesz condition (SRC)

c˚ ď
‖XAv‖2

2

n ‖v‖2
2

ď c˚ for all A with q˚ “ |A| and v P R
ř

kPA pk
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is satisfied by the submatrix XA with rank q˚ and 0 ă c˚ ă c˚ ă 8. In words, the SRC
restricts the range of eigenvalues of the submatrix.

The group square root lasso is obtained by taking the square of the prediction error
in the group lasso, while the penalty remains the same. Bunea et al. (2014) showed that
assuming an irrepresentability condition

max
v:‖vGk‖2

ď
?
pk

max
jPSc

∥∥∥XT
Gj
XSpX

T
SXSq

´1v
∥∥∥

2
?
pj

ă η with 0 ă η ă 1

and a beta min condition, the group square root lasso can consistently select the correct
sparsity pattern.
The advantage of the group square root lasso is that the optimal tuning parameter λ
can be selected independently of the variance of the errors σ. For the group lasso, this
is not the case, as can be seen from the choice of λ in (3.18).

In summary, to establish sufficient conditions for correct support recovery we need a
condition on the design matrix X. This is usually in the form of an irrepresentability
condition or mutual coherence condition. Secondly, we require some restrictions on the
tuning parameter λ. Particularly, we either specify the speed of convergence or assume
a lower bound for λ. Lastly, we may need a beta min condition to distinguish the true
signal from the noise.
Surveying the available literature, we were not able to find appropriate theory for the
group Lyapunov lasso. To prove sufficient conditions for the latter we will proceed as
follows. We will adapt the primal-dual witness construction developed by Wainwright
(2009) to the group lasso setting. To achieve this it is useful to introduce the concept
of dual norms.

3.3 Dual norm

Recall that the result of consistent support recovery for the lasso

min
βPRp

1

2
}y ´Xβ}22 ` λ ‖β‖1

is dependent on the irrepresentability condition formulated in terms of the `8-norm∥∥XT
ScXSpX

T
SXSq

´1signpβ˚q
∥∥
8
ă 1.

This is by no means coincidental. In fact, the `8-norm is the dual norm to the `1-norm
in the lasso penalty. We will show that the group lasso penalty is a norm and derive its
dual norm, which will be the basis for a group irrepresentability condition. The theory
presented here is based on van de Geer (2016) and Miccheli et al. (2010).

Let Ω be a norm on Rp, we can define the dual norm Ω˚ of Ω as follows.
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3 Undirected Structure Estimation

Definition 3.14 (dual norm).

Ω˚pωq :“ max
Ωpβqď1

|wTβ|, ω P Rp.

We can immediately verify that the dual norm inequality holds by Definition 3.14

|wTβ| ď Ω˚pωqΩpβq. (3.20)

Example 3.15. Consider the `1-norm ‖¨‖1 whose dual norm is the `8-norm ‖¨‖
8

. To
see that we write

max
‖β‖1ď1

|wTβ| ď max
‖β‖1ď1

p
ÿ

i“1

|ωiβi| ď max
iPrps

|ωi| max
‖β‖1ď1

‖β‖1 ď ‖ω‖8 ,

where we used the triangle inequality for the first inequality. Note the maximum on the
RHS is attained by choosing β as the appropriate canonical basis vector.

Definition 3.16 (pΩ´qallowed). Let S Ď rps and Ω´S be a norm defined on Rp´|S|. We
say S is pΩ´qallowed if

Ωpβq ě ΩpβSq ` Ω´Spβ´Sq for allβ P Rp. (3.21)

We call Ω weakly decomposable for the set S.

Observe also that by the triangle inequality, it holds in general that

Ωpβq ď ΩpβSq ` Ωpβ´Sq.

Thus for allowed sets, we have the reverse implication of the above inequality, albeit
that Ωpβ´Sq is replaced by a different norm.

Example 3.17. For the `1-norm choosing Ω´S as the `1-norm again yields that any
subset S Ď rps is allowed. In fact, (3.21) then holds with equality, i.e.,

‖β‖1 “ ‖βS‖1 ` ‖β´S‖1 .

The group lasso penalty is an example of a more general class of norms that satisfy
the weak decomposability property (cf. Definition 3.16).

Definition 3.18. Let A be a convex cone in r0,8qp. The norm Ω generated by A is
defined as

Ωpβq :“ min
aPA

1

2

p
ÿ

j“1

„

|βj|
2

aj
` aj



, β P Rp. (3.22)

We use the convention 0{0 “ 0. Observe that if βj ‰ 0, one is forced to choose an
aj ‰ 0 in (3.22).

Lemma 3.19. The function Ω given in Definition 3.18 above is a norm.
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Proof. Ω is clearly non-negative by definition and can only be zero when β ” 0. Moreover
for λ ě 0 we have that

Ωpλβq “ min
aPA

1

2

p
ÿ

j“1

„

λ2|βj|
2

aj
` aj



“ λmin
aPA

1

2

p
ÿ

j“1

„

|βj|
2

aj
λ

`
aj
λ



“ λΩpβq,

thus proving homogeneity. For the last equality, we used that A is a cone, i.e., a
λ
P A.

To see that the triangle inequality holds note 1
2

řp
j“1

”

|βj |
2

aj
` aj

ı

is convex as it is a sum

of the convex functions pa, bq ÞÑ b2

a
and a ÞÑ a. Hence, when A is convex, Ω is convex

since it is the minimum of convex functions over A. Assume α, β P Rp, then applying
homogeneity and convexity of Ω we obtain that

Ωpα ` βq “ 2Ω

ˆ

α ` β

2

˙

ď Ωpαq ` Ωpβq.

Assume tGj : j P rmsu forms a partition of the index set rps into m groups with
|Gj| “ pj and

A “ tα P r0,8qp : αi “ θl, i P Gj, l P rms, θl ą 0u,

the set of all non-negative vectors which are constant within groups. Thus using the
arithmetic-geometric mean inequality, i.e. a`b

2
ě
?
ab

Ωpβq “ min
aPA

1

2

p
ÿ

j“1

„

|βj|
2

aj
` aj



“ min
aPA

1

2

m
ÿ

j“1

«∥∥βGj∥∥2

2

aj
` pjaj

ff

ě

m
ÿ

j“1

?
pj

∥∥βGj∥∥2

Hence, we have proven that the group lasso penalty is a norm of the form specified in
Definition 3.18.

Definition 3.20 (group norm). For β P Rp we define the group norm as

‖β‖g :“
m
ÿ

j“1

?
pj

∥∥βGj∥∥2
.

Note that any union of groups Gj form an allowed set, and for any allowed set S

Ω´Spβ´Sq “ ‖β´S‖g

and
‖β‖g “ ‖βS‖g ` ‖β´S‖g .
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To derive the corresponding dual norm, we simply use Definition 3.14 and the Cauchy-
Schwarz inequality.

Ω˚pωq “ max
‖β‖gď1

|wTβ| ď max
‖β‖gď1

m
ÿ

j“1

∥∥wGj∥∥2

∥∥βGj∥∥2

ď max
jPrms

∥∥wGj∥∥2
?
pj

max
‖β‖gď1

m
ÿ

j“1

?
pj

∥∥βGj∥∥2

ď max
jPrms

∥∥wGj∥∥2
?
pj

.

Definition 3.21 (dual group norm). For vectors ω P Rp the dual group norm is given
as

‖ω‖
˚

:“ max
jPrms

∥∥ωGj∥∥2
?
pj

.

If M P Rpˆp, we define the dual group matrix norm as

~M~
˚

:“ max
‖ω‖˚“1

‖Mω‖
˚
“ max

ω‰0

‖Mω‖
˚

‖ω‖
˚

.

Remark 3.22. If we choose the partition Gj “ tju for all j P rps, we obtain the `1-norm
for the group norm and the `8-norm for the dual group norm. On the contrary, if we
set the partition to be rps, we obtain a scaled version of the `2-norm for the group norm
and the dual group norm, respectively.

For two norms Ω and Ω1 on the Euclidean space, we say Ω is a stronger norm than Ω1

if
Ω ě Ω1 ô Ωpβq ě Ω1pβq for all β P Rp

In particular, this implies for the associated dual norms Ω1˚ ě Ω˚ since tβ : Ωpβq ď 1u Ď
tβ : Ω1pβq ď 1u and thus

Ω1˚pωq “ max
Ω1pβqď1

|wTβ| ě max
Ωpβqď1

|wTβ| “ Ω˚pωq.

Recall that for β P Rp the `1 ´ `2-inequality ‖β‖1 ď
?
p ‖β‖2 holds. As an immediate

consequence, we have that ‖¨‖g is stronger than ‖¨‖1. Indeed, for all norms of the form
given in Definition 3.18, it holds true that they are stronger than the `1-norm (van de
Geer (2016), Lemma 6.9) and hence their dual norms are weaker. When specifying or-
acle inequalities, weaker dual norms can result in more relaxed bounds on the tuning
parameter λ (van de Geer (2016), Section 6.7).

We finish this section by providing several bounds for the dual group matrix norm in
terms of the associated matrix norm ~¨~2 and ~¨~

8
.
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Lemma 3.23. Let M P Rpˆp, then

~M~
˚
ď max

iPrms

m
ÿ

j“1

c

pj
pi

�

�MGiGj

�

�

2
,

where MGiGj is the submatrix formed by selecting the rows of M with index in Gi and
columns of M with index in Gj.

Proof.

~M~
˚
“ max

‖ω‖˚“1
~Mω~

˚
“ max

‖ω‖˚“1
max
iPrms

‖MGiω‖2
?
pi

“ max
iPrms

max
‖ω‖˚“1

řm
j“1

∥∥MGiGjωGj
∥∥

2
?
pi

ď max
iPrms

max
‖ω‖˚“1

m
ÿ

j“1

�

�MGiGj

�

�

2

∥∥ωGj∥∥2
?
pi

ď max
iPrms

m
ÿ

j“1

c

pj
pi

�

�MGiGj

�

�

2

For the last inequality, we used that
‖ωGj‖2?

pj
ď ‖ω‖

˚
“ 1 for all j P rms by Definition

3.21.

Lemma 3.24. Let M P Rpˆq and S an allowed set of size q, then

~M~
˚
ď

?
q

minjPrms
?
pj
~M~2 .

Proof. Observe that ‖ω‖
˚
ď 1

minjPrms
?
pj
‖ω‖2, thus

~M~
˚
ď max

‖ω‖˚“1

1

minjPrms
?
pj
‖Mω‖2

Let mq be the number of groups in S, then ‖ω‖
˚
“ maxjPrmqs

‖ωGj‖2?
pj

“ 1 implies

‖ω‖2 “

g

f

f

e

mq
ÿ

j“1

pj

˜∥∥ωGj∥∥2
?
pj

¸2

ď

g

f

f

e

mq
ÿ

j“1

pj “
?
q,

which yields that

~M~
˚
ď

?
q

minjPrms
?
pj
~M~2 .

Lemma 3.25. Let M P Rpˆp, then

~M~
˚
ď max

jPrms

?
pj ~M~8 .

Proof. Recall that the group norm is stronger than the `1-norm, which implies that the
dual group norm ‖¨‖

˚
is weaker than the `8-norm. Therefore,

~M~
˚
“ max

‖ω‖˚“1
‖Mω‖

˚
ď max

‖ω‖˚“1
‖Mω‖

8

ď ~M~
8

max
‖ω‖˚“1

‖ω‖
8
ď ~M~

8
max
jPrms

?
pj.
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3.4 Primal-dual witness construction for group lasso

A key technique to prove consistency results for the group Lyapunov lasso will be the
primal-dual witness construction, which was introduced by Wainwright (2009) to prove
consistent support recovery of the lasso. We start by establishing general optimality
conditions for the group lasso. Then we will adapt the primal-dual witness construction
and provide a lemma showing that this method is viable.

Definition 3.26 (subgradient, subdifferential). Given a convex function f : Rp Ñ R a
vector z P Rp is said to be a subgradient of f at β if

fpβ1q ě fpβq ` xz, β1 ´ βy for all β1 P Rp. (3.23)

We denote the set of all subgradients of f at β - called subdifferential - by Bfpβq.

Example 3.27. We consider the group lasso penalty ‖β‖g and calculate the subgradient
to be Dz, where D P Rpˆp is a block-diagonal matrix with m blocks

?
pjIpj P Rpjˆpj

with j P rms and z P B ‖β‖g is defined as

zGj “

$

&

%

βGj

‖βGj‖2

if βGj ‰ 0,

P tx P Rpj : ‖x‖2 ď 1u if βGj “ 0.
(3.24)

Considering the case βGj ‰ 0, we used that the subdifferential reduces to a single vector
for differentiable functions, namely the derivative ∇

∥∥βGj∥∥2
. Clearly, the euclidean norm

is not differentiable at 0, hence we have to show that for βGj “ 0 the subgradient
condition (3.23) holds, i.e., ∥∥∥β1Gj∥∥∥

2
ě ‖0‖2 ` xzGj , β

1
Gj
´ 0y.

Assuming
∥∥zGj∥∥2

ď 1, we have with Cauchy-Schwarz that

|xzGj , β
1
Gj
y| ď

∥∥zGj∥∥2

∥∥∥β1Gj∥∥∥
2
ď

∥∥∥β1Gj∥∥∥
2
.

We can now state a necessary and sufficient optimality condition for the group lasso,
derived from the Karush-Kuhn-Tucker (KKT) conditions for constrained convex opti-
mization problems. In particular, the solution β̂ of the group lasso satisfies the following
subgradient equations

XTXβ̂ ´XTy ` λDẑ “ 0, (3.25)

where ẑ is defined as in (3.24).

Let S be the support defined in Definition 3.7. We use the convention for vectors
that βS :“ tβGjujPS and for matrices XS is formed by the columns of X with index in
Ť

jPS Gj.
The primal-dual witness (PDW) method is based on an explicit construction of a

pair of vectors pβ̂, ẑq that (when the procedure succeeds) are primal and dual optimal
solutions for the group lasso, and act as witnesses for the correct recovery of the support
S. We construct pβ̂, ẑq according to the following steps:
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1. Obtain β̂S by solving the restricted group lasso problem,

β̂S “ arg min
βS

"

1

2
‖y ´XSβS‖2

2 ` λ ‖βS‖g

*

.

We set β̂Sc “ 0.

2. Choose ẑS as an element of the subdifferential of the group norm evaluated at β̂S,

i.e., ẑS P B
∥∥∥β̂S∥∥∥

g
.

3. Assuming y “ Xβ˚ ` ε, solve the zero subgradient equation (3.25) for ẑSc and
check whether or not the dual feasibility condition ‖ẑSc‖˚ ă 1 is satisfied.

Lemma 3.28. If the primal-dual witness construction succeeds with ‖ẑSc‖˚ ă 1, pβ̂S, 0q

is an optimal solution for the group lasso. In particular, this implies Ŝ Ď S, where
Ŝ “ Spβ̂q.

Proof. By construction of the PDW-method β̂ “ pβ̂S, 0q is an optimal solution to (3.1)
with associated subgradient vector ẑ P Rp satisfying ‖ẑSC‖˚ ă 1.

Assume β̃ to be another optimal solution of the group lasso. Thus denoting F pβq :“
1
2
‖y ´Xβ‖2

2, we have

F pβ̂q ` λ
m
ÿ

j“1

?
pj

∥∥∥β̂Gj∥∥∥
2
“ F pβ̃q ` λ

m
ÿ

j“1

?
pj

∥∥∥β̃Gj∥∥∥
2
. (3.26)

Let D P Rpˆp be a block-diagonal matrix with m blocks
?
pjIpj P Rpjˆpj with j P rms.

Then by definition of the subgradient vector ẑ and β̂

xDẑ, β̂y “
ÿ

jPS

?
pj
β̂T
Gj
β̂Gj∥∥∥β̂Gj∥∥∥

2

“
ÿ

jPS

?
pj

∥∥∥β̂Gj∥∥∥
2
“

m
ÿ

j“1

?
pj

∥∥∥β̂Gj∥∥∥
2
.

We can now express (3.26) as

F pβ̂q ` λxDẑ, β̂y “ F pβ̃q ` λ
m
ÿ

j“1

?
pj

∥∥∥β̃Gj∥∥∥
2

F pβ̂q ´ λxDẑ, β̃ ´ β̂y “ F pβ̃q ` λ
m
ÿ

j“1

?
pj

∥∥∥β̃Gj∥∥∥
2
´ λxDẑ, β̃y.

Using the subgradient equations required for optimality, namely λDẑ “ ´∇F pβ̂q yields

F pβ̂q ` x∇F pβ̂q, β̃ ´ β̂y ´ F pβ̃q “ λ
m
ÿ

j“1

?
pj

∥∥∥β̃Gj∥∥∥
2
´ λxDẑ, β̃y. (3.27)
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Note that by convexity of F , the LHS of equation (3.27) is negative and hence∥∥∥β̃∥∥∥
g
“

m
ÿ

j“1

?
pj

∥∥∥β̃Gj∥∥∥
2
ď xDẑ, β̃y ď ‖Dẑ‖

˚

∥∥∥β̃∥∥∥
g
“

∥∥∥β̃∥∥∥
g
.

For the last inequality, we used the dual norm inequality (3.20), while for the last
equality, note that ‖Dẑ‖

˚
“ 1 by definition of ẑ.

Finally, we obtain ∥∥∥β̃∥∥∥
g
“ xDẑ, β̃y “

m
ÿ

j“1

?
pj ẑ

T
Gj
β̃Gj

ď
ÿ

jPS

?
pj

∥∥∥β̂Gj∥∥∥
2
`

ÿ

jPSc

?
pj

∥∥ẑGj∥∥2

∥∥∥β̂Gj∥∥∥
2
.

From this we can infer that β̃Gj “ 0 for all j P Sc because ‖ẑSc‖˚ ă 1.

3.5 Consistent support recovery of group Lyapunov lasso

The goal of this section is to establish sufficient conditions under which the group Lya-
punov lasso correctly recovers the undirected structure of a GCLM. In other words,
we are interested in finding conditions that guarantee the correct identification of the
support of the population drift matrix SpM˚q.

Definition 3.29. We define the support of a drift matrix M as

S “ SpMq :“ tj : vecpMqGj ‰ 0, j P rmsu.

The population drift matrix M˚ is a parameter of the continuous Lyapunov equation
(1.3) and M̂ denotes the solution of the group lasso problem defined in (3.9). For ease
of notation, let S ” SpM˚q be the support of the population drift matrix M˚ and
Ŝ ” SpM̂q the support of the estimate M̂ .

Example 3.30. Let M be a matrix defined as

M “

¨

˝

´2 0 0
0.1 ´3 0.1
0 0 ´4

˛

‚

and assume we use the partition Goffdiag YGdiag defined in (3.7) and (3.8), i.e.

Goffdiag “ ttp1, 2q, p2, 1qu, tp1, 3q, p3, 1qu, tp2, 3q, p3, 2quu “ tG2, G3, G5u

and
Gdiag “ ttp1, 1qu, tp2, 2qu, tp3, 3quu “ tG1, G4, G6u

then the support is
SpMq “ t1, 2, 4, 5, 6u.
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We introduce some more relevant notations.

Definition 3.31. For A P Rpˆp, the matrix AS “ A¨S is obtained from A by selecting
the columns specified by

Ť

jPS Gj. We order the columns by pi, jq ă pk, lq if i ă k and
pi, jq ă pk, lq if i “ k and j ă l. Analogously, we can define the matrices AS¨ and ASS.
By contrast, the matrix A´S is defined by removing the columns specified in S.

Furthermore, let Σ˚ and Σ̂ be the associated covariance matrices with M˚ and M̂ ,
obtained by solving the continuous Lyapunov equation (2.1) and using the formula for the
sample covariance matrix (3.3), respectively. Then Γ˚ “ ΓpΣ˚q,Γ̂ “ ΓpΣ̂q, g˚ “ gpΣ˚q
and ĝ “ gpΣ̂q. Moreover, we define the differences ∆Γ “ Γ̂ ´ Γ˚ and ∆g “ ĝ ´ g˚. The
constants

cΓ˚ “
�

�pΓ˚SSq
´1
�

�

˚
and cM˚ “ ‖vecpM˚

q‖
˚

appear in the statement of our theorem as well.

For the proof of the theorem, we adapt the ideas presented in Lin et al. (2016) and
Dettling et al. (2022). In particular, we use the specific PDW construction presented in
both papers.

Theorem 3.32. Let M˚ P Stabp be the true signal with support set S. Assume Γ˚SS is
invertible and the group-irrepresentable condition

�

�Γ˚ScSpΓ
˚
SSq

´1
�

�

˚
ď
?
dp1´ αq (3.28)

holds with parameter α P r0, 1q, where d is the constant group size on Sc. Furthermore,
assume that Γ̂ is a matrix, such that

~p∆Γq¨S~˚ ă ε1 ď
α

´

3` 3?
d

¯

cΓ˚

and ‖∆g‖˚ ă ε2.

For

λ ą

ˆ

1`
1
?
d
´ α

˙

3

α
maxtε1cM˚ , ε2u,

M̂ has its support Ŝ included in the true support S, i.e., Ŝ Ď S and M̂ satisfies

∥∥∥vecpM̂q ´ vecpM˚
q

∥∥∥
˚
ď

˜

1` 1?
d

1` 1?
d
´ α

¸

cΓ˚λ.

In addition, if

min
jPS

∥∥∥M˚
Gj

∥∥∥
˚
ą

˜

1` 1?
d

1` 1?
d
´ α

¸

cΓ˚λ,

then Ŝ “ S.
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Proof. We will use the PDW method to prove the theorem. First, note that our opti-
mization problem (3.9) is convex since Γ̂ is positive semi-definite by construction. Recall
that the KKT conditions are then necessary and sufficient conditions for a solution to
be optimal.
The KKT conditions are given by the following sub-gradient equations

Γ̂vecpM̂q ´ ĝ ` λDẑ “ 0, (3.29)

where ẑ P B
∥∥∥vecpM̂q

∥∥∥
g

is a sub-gradient vector with entries

ẑGj “

$

’

&

’

%

“
vecpM̂qGj

}vecpM̂qGj}2
j P S,

P tx P Rpj : }x}2 ď 1u j P Sc.

(3.30)

Recall that by Theorem 2.9 choosing M˚ P Stabppq and C P PDppq yields a unique
positive-definite Σ˚ determined by the continuous Lyapunov equation, i.e.,

Γ˚vecpM˚
q ´ g˚ “ 0. (3.31)

The goal of the PDW technique is to establish a primal-dual pair pM̂, ẑq, which solves
(3.29) and (3.31) with the correct support structure. As we have seen earlier, this
consists of three steps.

1. Solve the restricted optimization problem

vecpM̃q “ arg min
vecpMqSc“0

1

2
vecpMqTΓ̂vecpMq ´ ĝTvecpMq ` λ}vecpMq}g

.

2. Set z̃S “

ˆ

vecpM̃qGj
}vecpM̃qGj }2

˙

jPS

. Then z̃S P ||vecpM̃q||g.

We define ∆Γ :“ Γ̂ ´ Γ˚, ∆̃M :“ vecpM̃q ´ vecpM˚q and ∆g :“ ĝ ´ g˚. Using (3.29)
and (3.31) we obtain

Γ˚∆̃M `∆ΓvecpM̃q ´∆g ` λDz̃ “ 0. (3.32)

We can rewrite the above equation (3.32) in block-matrix form

ˆ

Γ˚SS Γ˚SSc
Γ˚ScSΓ˚ScSc

˙ˆ

p∆̃MqS

0

˙

`

ˆ

p∆ΓqSS p∆ΓqSSc

p∆ΓqScSp∆ΓqScSc

˙ˆ

vecpM̃qS
0

˙

´

ˆ

p∆gqS

p∆gqSc

˙

`λ

ˆ

DS z̃S
DSc z̃Sc

˙

“

ˆ

0
0

˙

.

This can then be solved for

z̃Sc “
1

λ
DSc

”

´Γ˚ScSp∆̃MqS ´ p∆ΓqScSvecpM̃qS ` p∆gqSc

ı
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and
p∆̃MqS “ pΓ

˚
SSq

´1
”

´p∆ΓqSSvecpM̃qS ` p∆gqS ´ λDS z̃S

ı

.

Substituting p∆̃MqS in z̃Sc yields our third and final step. Note this step differs from
the general PDW construction for the group lasso, as our problem does not have an
additive error.

3. We have

z̃Sc “
1

λ
D´1
Sc

”

Γ˚ScS pΓ
˚
SSq

´1
´

p∆ΓqSSvecpM̃qS ´ p∆gqS

¯

´p∆ΓqScSvecpM̃qS ` p∆gqSc

ı

(3.33)

`D´1
Sc Γ˚ScS pΓ

˚
SSq

´1DS z̃S.

According to Lemma 3.28 we need to show that ‖z̃Sc‖˚ ă 1 to prove Ŝ Ď S. Using
the triangle inequality we obtain the following bound

‖z̃Sc‖˚ ď
1

λ

�

�D´1
Sc

�

�

˚

”

�

�Γ˚ScS pΓ
˚
SSq

´1
�

�

˚

´
∥∥∥p∆ΓqSSvecpM̃qS

∥∥∥
˚
` ‖p∆gqS‖˚

¯

`

∥∥∥p∆ΓqScSvecpM̃qS

∥∥∥
˚
` ‖p∆gqSc‖˚

ı

`
�

�D´1
Sc

�

�

˚

�

�Γ˚ScS pΓ
˚
SSq

´1
�

�

˚
‖DS z̃S‖˚ .

Looking at the individual dual norm terms, we can further simply the above expression.
First note that on Sc all groups are of size d, thus

�

�D´1
Sc

�

�

˚
“ max

‖ω‖˚“1

∥∥∥∥ 1
?
d
ω

∥∥∥∥
˚

“
1
?
d
.

Furthermore, we observe that

‖DS z̃S‖˚ “ max
jPS

?
pj

∥∥z̃Gj∥∥2
?
pj

“ max
jPS

∥∥∥vecpM̃Gjq

∥∥∥
2∥∥∥vecpM̃Gjq

∥∥∥
2

“ 1.

By assumption we have
�

�Γ˚ScS pΓ
˚
SSq

´1
�

�

˚
ď
?
dp1´ αq. Therefore,

‖z̃Sc‖˚ ď
1

λ

”

p1´ αq
´
∥∥∥p∆ΓqSSvecpM̃qS

∥∥∥
˚
` ‖p∆gqS‖˚

¯

`
1
?
d

´∥∥∥p∆ΓqScSvecpM̃qS

∥∥∥
˚
` ‖p∆gqSc‖˚

¯



` p1´ αq.

Definition 3.21 of the dual group norm yields that

max
!
∥∥∥p∆ΓqSSvecpM̃qS

∥∥∥
˚
,
∥∥∥p∆ΓqScSvecpM̃qS

∥∥∥
˚

)

ď

∥∥∥p∆Γq¨SvecpM̃qS

∥∥∥
˚
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and maxt‖p∆gqS‖˚ , ‖p∆gqSc‖˚u ď ‖∆g‖˚. Hence,

‖z̃Sc‖˚ ď
1` 1?

d
´ α

λ

”
∥∥∥p∆Γq¨SvecpM̃qS

∥∥∥
˚
` ‖∆g‖˚

ı

` p1´ αq

“
1` 1?

d
´ α

λ

”
∥∥∥p∆Γq¨S

´

vecpM˚
qS ` p∆̃MqS

¯
∥∥∥
˚
` ‖∆g‖˚

ı

` p1´ αq

ď
1` 1?

d
´ α

λ

”

~p∆Γq¨S~˚ ‖vecpM˚
qS‖˚ ` ~p∆Γq¨S~˚

∥∥∥p∆̃MqS

∥∥∥
˚
` ‖∆g‖˚

ı

` p1´ αq.

(3.34)

We can bound the first summand by

1` 1?
d
´ α

λ
~p∆Γq¨S~˚ ‖vecpM˚

qS‖˚ ď
1` 1?

d
´ α

λ
ε1cM˚ ă

α

3
, (3.35)

where the last equality follows from our choice of λ.
By assumption ‖∆g‖˚ ă ε2, thus we deduce the following bound for the third summand

1` 1?
d
´ α

λ
‖∆g‖˚ ă

1` 1?
d
´ α

λ
ε2 ă

α

3
. (3.36)

It remains to bound the second summand or, to be more precise,
∥∥∥p∆̃MqS

∥∥∥
˚
. Analogously

to before, we can combine (3.29) and (3.31) (this time adding the null sum Γ̂vecpM˚q ´

Γ̂vecpM˚q) to obtain

Γ̂∆̃M `∆ΓvecpM˚q ´∆g ` λDz̃ “ 0.

Note that

∆̃M “

ˆ

p∆̃MqS

0

˙

and vecpM˚
q “

ˆ

vecpM˚qS

0

˙

.

Thus solving for p∆̃MqS we have

p∆̃MqS “ pΓ̂SSq
´1
p´p∆ΓqSSvecpM˚

qS ` p∆gqS ´ λDS z̃Sq .

Consequently,∥∥∥p∆̃MqS

∥∥∥
˚
ď

�

�

�
pΓ̂SSq

´1
�

�

�

˚

`

~p∆ΓqSS~ ‖vecpM˚
qS‖` ‖p∆gqS‖˚ ` λ ‖DS z̃S‖˚

˘

ď

�

�

�
pΓ̂SSq

´1
�

�

�

˚
pε1cM˚ ` ε2 ` λq.

Additionally, using our lower bounds for λ gives us∥∥∥p∆̃MqS

∥∥∥
˚
ď

�

�

�
pΓ̂SSq

´1
�

�

�

˚

˜

1

1` 1?
d
´ α

2α

3
λ` λ

¸

“

�

�

�
pΓ̂SSq

´1
�

�

�

˚

˜

1` 1?
d
´ α

3

1` 1?
d
´ α

λ

¸

. (3.37)

30



3 Undirected Structure Estimation

The next step now is to find an upper bound for
�

�

�
pΓ̂SSq

´1
�

�

�

˚
. For this purpose observe

that by assumption

~p∆ΓqSS~˚ ď ~p∆Γq¨S~˚ ă ε1 ď
α

cΓ˚p3`
3?
d
q
ă

1

cΓ˚

therefore implying
�

�pΓ˚SSq
´1
p∆ΓqSS

�

�

˚
ď
�

�pΓ˚SSq
´1
�

�

˚
~p∆ΓqSS~˚ ă 1. (3.38)

We aim to bound the dual group norm of the inverse of the estimated Gram matrix
�

�

�
pΓ̂SSq

´1
�

�

�

˚
by ~pΓ˚SSq

´1~
˚
. Consider the difference

pΓ̂SSq
´1
´ pΓ˚SSq

´1
“ rΓ˚SS ` p∆ΓqSSs

´1
´ pΓ˚SSq

´1

“
“

Γ˚SSpI ` pΓ
˚
SSq

´1
p∆ΓqSSq

‰´1
´ pΓ˚SSq

´1

“

!

“

I ` pΓ˚SSq
´1
p∆ΓqSS

‰´1
´ I

)

pΓ˚SSq
´1.

(3.38) allows us to express the above difference as the Neumann series (Horn and Johnson
(2013), Corollary 5.6.16)

pΓ̂SSq
´1
´ pΓ˚SSq

´1
“

«

´pΓ˚SSq
´1
p∆ΓqSS

8
ÿ

k“0

`

´pΓ˚SSq
´1
p∆ΓqSS

˘k

ff

pΓ˚SSq
´1.

This yields for the dual group norm difference

�

�

�
pΓ̂SSq

´1
´ pΓ˚SSq

´1
�

�

�

˚
ď
�

�pΓ˚SSq
´1
p∆ΓqSS

�

�

˚

8
ÿ

k“0

`
�

�pΓ˚SSq
´1
p∆ΓqSS

�

�

˚

˘k �
�pΓ˚SSq

´1
�

�

˚

“
~pΓ˚SSq

´1p∆ΓqSS~˚ ~pΓ
˚
SSq

´1~
˚

1´ ~pΓ˚SSq
´1p∆ΓqSS~˚

.

For the equality, we used that
ř8

k“0 p~pΓ
˚
SSq

´1p∆ΓqSS~˚q
k

is a convergent geometric
series due to (3.38). Then

�

�

�
pΓ̂SSq

´1
�

�

�

˚
ď
�

�ppΓ˚SSq
´1
�

�

˚
`

�

�

�
pΓ̂SSq

´1
´ pΓ˚SSq

´1
�

�

�

˚

ď
~ppΓ˚SSq

´1~
˚

1´ ~pΓ˚SSq
´1p∆ΓqSS~˚

ď
~ppΓ˚SSq

´1~
˚

1´ ~pΓ˚SSq
´1~

˚
~p∆ΓqSS~˚

ď
cΓ˚

1´ cΓ˚ε1
ď

cΓ˚

1´ α
3` 3?

d

. (3.39)

We can substitute (3.39) into (3.37) to find the new bound∥∥∥∆̃M

∥∥∥
˚
“

∥∥∥p∆̃MqS

∥∥∥
˚
ď

cΓ˚

1´ α
3` 3?

d

˜

1` 1?
d
´ α

3

1` 1?
d
´ α

λ

¸

“

˜

1` 1?
d

1` 1?
d
´ α

¸

cΓ˚λ,
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which also proves the second claim of the theorem.
Now it is straightforward to see that

1` 1?
d
´ α

λ
~p∆Γq¨S~˚

∥∥∥p∆̃MqS

∥∥∥
˚
ă
α

3
. (3.40)

Inserting (3.35), (3.36) and (3.40) into (3.34) yields

‖z̃Sc‖ ă
α

3
`
α

3
`
α

3
` p1´ αq “ 1,

thus establishing strict dual feasibility.

Lastly, to prove the last claim of the theorem for any j P S, the reverse triangle
inequality implies∥∥∥M̂Gj

∥∥∥
˚
ě

∥∥∥M˚
Gj

∥∥∥
˚
´

∥∥∥M̂Gj ´M
˚
Gj

∥∥∥
˚
ě min

jPS

∥∥∥M˚
Gj

∥∥∥
˚
´

∥∥∥vecpM̂q ´ vecpM˚
q

∥∥∥
˚
ą 0.

An immediate consequence is that Ŝ “ S.

Remark 3.33. Dettling et al. (2022) investigated irrepresentability conditions for the
direct Lyapunov lasso, which solves the following optimization problem

min
MPRpˆp

1

2

∥∥∥ApΣ̂qvecpMq ` vecpCq
∥∥∥2

2
` λ ‖vecpMq‖1 .

They obtained the irrepresentability condition
�

�Γ˚ScS pΓ
˚
SSq

´1
�

�

8
ď p1´ αq.

Note Theorem 3.32 contains the direct Lyapunov lasso as a special case since for groups
that of size pj ” 1, the group lasso is equal to the lasso. Moreover, recall from Remark
3.22 for a partition containing only singletons the group norm equals the `1-norm and
the associated dual group norm becomes the `8-norm. Consequently, the group irrepre-
sentability condition is then identical to the one given above. Furthermore, the bounds
on Σ and M match the ones given in Dettling et al. (2022) (Theorem 3.2).

Remark 3.34. One can slightly relax the group irrepresentability condition if we elect
by not penalizing the diagonal elements of M in the group lasso problem (cf. Definition
3.6). While the proof remains mostly the same, there are some notable differences.
Firstly, observe that due to the KKT conditions every optimal dual variable ẑ has to
satisfy

ẑGj “

$

’

’

’

’

&

’

’

’

’

%

“
vecpM̂qGj

}vecpM̂qGj}2
j P S and Gj P Goffdiag

“ 0 j P S and Gj P Gdiag

P tx P R2 : }x}2 ď 1u j P Sc

.
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The 0 entry in ẑ comes from taking the partial derivative of the penalty wrt. mii (with
mii not appearing in the penalty for all i P rps). We can leverage this particular structure
of ẑ to find a more efficient bound for∥∥D´1

Sc Γ˚ScS pΓ
˚
SSq

´1DS z̃S
∥∥
˚
ď
�

�D´1
Sc

�

�

˚

∥∥Γ˚ScS pΓ
˚
SSq

´1DS z̃S
∥∥
˚

“
1
?
d

∥∥∥Γ˚ScS
`

pΓ˚SSq
´1
˘

´Sdiag
pDS z̃Sq´Sdiag

∥∥∥
˚

ď
1
?
d

�

�

�
Γ˚ScS

`

pΓ˚SSq
´1
˘

´Sdiag

�

�

�

˚

where Sdiag :“ tj P S : Gj P Gdiagu.
The new group-irrepresentability condition therefore is

�

�

�
Γ˚ScS

`

pΓ˚SSq
´1
˘

´Sdiag

�

�

�

˚
ď
?
dp1´ αq,

which is smaller than or equal to the group-irrepresentability condition given in (3.28)
by definition of ~¨~

˚
.

Theorem 3.32 provides a deterministic result on estimation error and support recovery
under some conditions on ∆Γ and ∆g. Assuming our data is sub-Gaussian, we can
provide more specific bounds on the preceding quantities. We start by introducing a
series of lemmas, derived in Dettling et al. (2022) with the goal of bounding ∆Γ in
terms of ∆Σ “ Σ̂ ´ Σ˚. The key idea here is to leverage the special structure of the
Gram matrix Γ (cf. Lemma 3.35) to obtain a sharp bound and thus a good sample size
requirement.

Lemma 3.35. For a given covariance matrix Σ P Rp the Gram matrix ΓpΣq P Rp2ˆp2
is

equal to

ΓpΣq “ ApΣqTApΣq “ 2pΣ2
b Ipq ` pΣb ΣqKpp,pq

`Kpp,pq
pΣb Σq.

Proof. Recall that for two matrices A and B, pA b BqT “ pAT b BTq and Kpp,pq is
symmetric by definition (cf. (2.3)).

ApΣqTApΣq “
“

pΣb Ipq `K
pp,pq
pIp b Σq

‰ “

pΣb Ipq ` pIp b ΣqKpp,pq
‰

.

The mixed-product property implies

“ Σ2
b Ip ` pΣb ΣqKpp,pq

`Kpp,pq
pΣb Σq `Kpp,pq

pIp b Σ2
qKpp,pq.

In addition, Corollary 2.7 yields

“ 2pΣ2
b Ipq ` pΣb ΣqKpp,pq

`Kpp,pq
pΣb Σq.
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3 Undirected Structure Estimation

From the above Lemma we can deduce that ΓpΣq “ Γ1pΣq ` Γ2pΣq with

Γ1pΣq :“ 2pΣ2
b Ipq and Γ2pΣq :“ pΣb ΣqKpp,pq

`Kpp,pq
pΣb Σq.

The following two Lemmas provide bounds on the spectral norm of Γ1pΣq and Γ2pΣq in
terms of the spectral norm of Σ. We define the constant cΣ˚ :“ ~Σ˚~2.

Lemma 3.36.
�

�

�
Γ1pΣ̂q ´ Γ1pΣ

˚
q

�

�

�

2
ď 2~∆Σ~

2
2 ` 4cΣ˚ ~∆Σ~2 .

Proof. The Kronecker product is distributive, hence
�

�

�
Γ1pΣ̂q ´ Γ1pΣ

˚
q

�

�

�

2
“ 2

�

�

�
pΣ̂2

´ pΣ˚q2q b Ipq
�

�

�

2
.

From Theorem 4.2.15 in Horn and Johnson (1991) we can infer that ~AbB~2 “

~A~2 ~B~2, therefore

“ 2
�

�

�
Σ̂2
´ pΣ˚q2q

�

�

�

2
ď 2

�

�∆2
Σ

�

�

2
` 2~∆ΣΣ˚~2 ` 2~Σ˚∆Σ~2 .

Note that for a symmetric matrix, the spectral norm is equal to the absolute maximal
eigenvalue. Moreover, the eigenvalues of a squared matrix are the squared eigenvalues
of the original matrix. Thus, we find as claimed that

ď 2~∆Σ~
2
2 ` 4cΣ˚ ~∆Σ~2 .

Lemma 3.37.
�

�

�
Γ2pΣ̂q ´ Γ2pΣ

˚
q

�

�

�

2
ď 2~∆Σ~

2
2 ` 4cΣ˚ ~∆Σ~2 .

Proof. Observe that by (2.3) the commutation matrix Kpp,pq is an orthonormal matrix,
implying

�

�Kpp,pq
�

�

2
“ 1. Additionally, it holds that for orthonormal matrices Q and a

general matrix A, ~QA~2 “ ~AQ~2 “ ~A~2. Thus,
�

�

�
Kpp,pq

pΣ̂b Σ̂´ Σ˚ b Σ˚q
�

�

�

2
“

�

�

�
pΣ̂b Σ̂´ Σ˚ b Σ˚qKpp,pq

�

�

�

2
“

�

�

�
pΣ̂b Σ̂´ Σ˚ b Σ˚q

�

�

�

2
.

Applying the above equation and the same tricks as in the proof of Lemma 3.36 yields
�

�

�
Γ2pΣ̂q ´ Γ2pΣ

˚
q

�

�

�

2
ď 2

�

�

�
Σ̂b Σ̂´ Σ˚ b Σ˚

�

�

�

2

“ 2~p∆Σ ` Σ˚q b p∆Σ ` Σ˚q ´ Σ˚ b Σ˚~2

“ 2~∆Σ b∆Σ `∆Σ b Σ˚ ` Σ˚ b∆Σ ` Σ˚ b Σ˚ ´ Σ˚ b Σ˚~2

ď 2~∆Σ b∆Σ~2 ` 2~∆Σ b Σ˚~2 ` 2~Σ˚ b∆Σ~2

“ 2~∆Σ~
2
2 ` 4cΣ˚ ~∆Σ~2 .
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Let A P Rpˆs with s :“
ř

jPS pj, then ~A~
˚
ď

?
s

minjPrms
?
pj
~A~2 by Lemma 3.24. It

follows that

~p∆Γq¨S~˚ ď
?
s~p∆Γq¨S~2 , (3.41)

and by Lemma 3.36 and Lemma 3.37

ď
?
sp4~∆Σ~

2
2 ` 8cΣ˚ ~∆Σ~2q. (3.42)

We now shift our focus to bounding ‖∆g‖˚.

Lemma 3.38. Let cC :“ ‖vecpCq‖2, then

‖∆g‖˚ ď 2cC ‖∆Σ‖2 .

Proof. From Lemma 3.24 we can infer that

‖∆g‖˚ ď ‖∆g‖2

ď cC

�

�

�
Σ̂b Ip ` pIp b Σ̂qKpp,pq

´ Σ˚ b Ip ´ pIp b Σ˚qKpp,pq
�

�

�

2
.

Using the distributivity of the Kronecker product and orthonormality of Kpp,pq we have

ď cC

´
�

�

�
pΣ̂´ Σ˚q b Ip

�

�

�

2
`

�

�

�
Ip b pΣ̂´ Σ˚q

�

�

�

2

¯

.

As mentioned earlier ~AbB~2 “ ~A~2 ~B~2. Therefore,

“ 2cC ~∆Σ~2 ,

which completes the proof.

The bounds derived in (3.42) and Lemma 3.38 both depend on the spectral norm of
∆Σ. If we choose the latter to be sufficiently small, we can ensure that our assumptions
for ~p∆Γq¨S~˚ and ‖∆g‖˚ in Theorem 3.32 are met.

Lemma 3.39. If we choose sample size n to be large enough such that

~∆Σ~2 “

�

�

�
Σ̂´ Σ˚

�

�

�

2
ă min

"

ε1
?
sp4` 8cΣ˚q

,
ε2

2cC
, 1

*

.

Then
~p∆Γq¨S~˚ ă ε1 and ‖∆g‖˚ ă ε2.

Proof. The result is an immediate consequence of (3.42), where ~∆Σ~
2
2 ď ~∆Σ~2, and

Lemma 3.38.

The following theorem provides a probabilistic upper bound on ~∆Σ~2 (concentration
inequality) under the assumption that tXiu

n
i“1 are sub-Gaussian. We start by recalling

the definition of sub-Gaussian random vectors.
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Definition 3.40 (sub-Gaussian random vector). Let X P Rp be a random vector with
mean zero. It is said to be sub-Gaussian with parameter at most σ if for each fixed
v P Kp´1

Ereλxv,Xys ď e
λ2σ2

2 for all λ P R, (3.43)

where Kp´1 denotes the closed unit ball in Rp.

Example 3.41. A typical example of a sub-Gaussian random vector is the Gaussian
random vector X „ N p0,Σq. To see this, observe that

xv,Xy “ vTX „ N p0, vTΣvq. (3.44)

The moment generating function of xv,Xy equals

Ereλxv,Xys “ epλ
2vTΣvq{2 for all λ P R. (3.45)

Lastly, vTΣv ď ~Σ~2 for all v P Kp´1 proves that X is indeed sub-Gaussian with
parameter at most σ2 “ ~Σ~2.

Theorem 3.42. Let tXiu
n
i“1 be sub-Gaussian random vectors with parameter σ. Then

there exists universal constants tcju
3
j“1 such that the sample covariance matrix Σ̂ defined

in (3.3) satisfies

P

¨

˝

�

�

�
Σ̂´ Σ˚

�

�

�

2

σ2
ě c1

ˆ
c

p

n
`
p

n

˙

` δ

˛

‚ď c2 expp´c3nminpδ, δ2
qq for all δ ě 0.

(3.46)

Proof. see proof of Theorem 6.5 in Wainwright (2019).

We can rewrite Theorem 3.42 in a more convenient form.

Corollary 3.43. Suppose tcju
3
j“1 are the universal constants from Theorem 3.42. We

assume w.l.o.g. that c1 ą 1. Moreover, let tXiu
n
i“1 „ N p0,Σ˚q i.i.d.. Then for any

ε{cΣ˚ P p4c1

a

p{n, 2q, we have

P
´
�

�

�
Σ̂´ Σ˚

�

�

�

2
ě ε

¯

ď c2 exp

ˆ

´
c3

4c2
Σ˚
nε2

˙

.

Proof. Let δ :“ ε
2cΣ˚

. By assumption p
n
ă ε2

16c21c
2
Σ˚

, thus

cΣ˚

„

c1

ˆ
c

p

n
`
p

n

˙

` δ



ď
ε

4
`

ε2

16c1cΣ˚
`
ε

2
ă
ε

4
`
ε

8
`
ε

2
ă ε,

where the second to last inequality follows from c1 ą 1 and ε{cΣ˚ ă 2.
The above inequality immediately yields

P
´
�

�

�
Σ̂´ Σ˚

�

�

�

2
ě ε

¯

ď P
ˆ

�

�

�
Σ̂´ Σ˚

�

�

�

2
ě cΣ˚

„

c1

ˆ
c

p

n
`
p

n

˙

` δ

˙

.
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We showed in Example 3.41 that a multivariate normal distribution is sub-Gaussian with
parameter at most σ2 “ cΣ˚ . Furthermore, our choice of ε implies δ ă 1 and therefore
δ2 ă δ. Hence, from Theorem 3.42 we can infer that

ď c2 expp´c3nδ
2
q “ c2 exp

ˆ

´
c3

4c2
Σ˚
nε2

˙

.

Lastly, for sub-Gaussian data, we can now state a more explicit version of Theorem
3.32 with specific error bounds.

Theorem 3.44. Assume the data is drawn from a p-dimensional Ornstein-Uhlenbeck
process in equilibrium. Let M˚ P Stabppq be the corresponding true signal with support
set S and C P PDppq. Moreover, assume the Gram matrix Γ˚SS is invertible and the
group irrepresentability condition (3.28) holds for α P r0, 1q. For s :“

ř

jPS pj, we define

cΣ˚ :“ ~Σ˚~2 , cC :“ ‖vecpCq‖ , c˚ :“

´

3` 3?
d

¯

cΓ˚

α
,

ĉ :“ maxt
?
sp4` 8cΣ˚q, 2cCu, c̃ :“

4c2
Σ˚

c3s
ĉ2

with tcju
3
j“1 the universal constants from Theorem 3.42 and w.l.o.g c1 ą 1. If we choose

τ1 ą p4c
2
1c3ĉpq{ log p, n ą c̃s log pτ1 maxt1{p4c2

Σ˚ ĉq, 1{ĉ, c
2
˚u and the regularization param-

eter

λ ą

ˆ

1`
1
?
d
´ α

˙

3

α

c

c̃s log pτ1

n
maxtcM˚ , 1u,

then the following statements hold with probability at least 1´ c2p
´τ1.

(i) The estimate M̂ has its support Ŝ included in the true support S, i.e. Ŝ Ď S and
satisfies ∥∥∥vecpM̂q ´ vecpM˚

q

∥∥∥
˚
ď

˜

1` 1?
d

1` 1?
d
´ α

¸

cΓ˚λ.

(ii) In addition, if

min
jPS

∥∥∥M˚
Gj

∥∥∥
˚
ą

˜

1` 1?
d

1` 1?
d
´ α

¸

cΓ˚λ,

then Ŝ “ S.

Proof. Set ε “
a

c̃s log pτ1{n. Under the assumption for τ1, we have

min

"

ε
?
sp4` 8cΣ˚q

,
ε

2cC

*

“
ε

maxt
?
sp4` 8cΣ˚q, 2cCu

“
?
τ1

a

c̃s log p{n

ĉ
ą 4c1cΣ˚

c

p

n
.
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On the other hand, n ą c̃s log pτ1 maxt1{p4c2
Σ˚ ĉq, 1{ĉu yields

min

"

ε
?
sp4` 8cΣ˚q

,
ε

2cC

*

ă mint2cΣ˚ , 1u. (3.47)

Recall that the Ornstein-Uhlenbeck process in equilibrium has a stationary distribu-
tion that is multivariate normal with covariance matrix Σ˚. Hence, together with the
inequalities above, we can apply Corollary 3.43 and obtain that

P
ˆ

�

�

�
Σ̂´ Σ˚

�

�

�

2
ă min

"

ε
?
sp4` 8cΣ˚q

,
ε

2cC

*˙

ą 1´ c2 exp

˜

´
c3

4c2
Σ˚
nmin

"

ε
?
sp4` 8cΣ˚q

,
ε

2cC

*2
¸

“ 1´ c2p
´τ1 .

Therefore, by Lemma 3.39 and (3.47), we have that ~p∆Γq¨S~˚ ă ε and ‖∆g‖˚ ă ε.
Moreover, note that n ą c̃s log pτ1c2

˚ implies

ε ă c˚ “

´

3` 3?
d

¯

cΓ˚

α
.

In conclusion, we have shown that we can attain the error bounds assumed in Theorem
3.32, and thus the remaining statements immediately follow from the preceding theorem.

Closer inspection of Theorem 3.44 reveals that the group Lyapunov lasso requires
a sample size of n “ Ωps log pq to recover the support of M˚ correctly, where s is the
number of non-zero entries in M˚. This result is identical to the sample size requirement
for the lasso in the Lyapunov setting (Dettling et al. (2022), Corollary 3.2). If the true
signal is relatively sparse, s will be much smaller than the number of unknown parameters
p2. Consequently, Theorem 3.44 then states that the group Lyapunov lasso can also be
employed in a high-dimensional setting.
However, compared to other undirected structure recovery methods it is less powerful
for high-dimensional data. Consider, for example, the graphical lasso for multivariate
normal data. Ravikumar et al. (2011) showed that consistent support recovery requires
a sample size of the order s2 log p, where s is the number of non-zero entries in the rows
of the true precision matrix. This is due to the precision matrix being simply the inverse
of the covariance matrix. There is a straightforward one-to-one relation, whereas the
covariance matrix and the drift matrix M˚ for GCLMs don’t exhibit a similarly simple
connection (Dettling et al. (2022)).
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3.6 Analysis of the irrepresentability condition

The irrepresentability condition (3.28) is a crucial assumption for Theorem 3.32. Unlike
in standard lasso or group lasso regression, there exists no intuitive interpretation of
the preceding quantity for GCLMs. For both classical regression settings given a design
matrix X, the irrepresentability condition has the following form

�

�pXTXqScSpX
TXq´1

SS

�

� ă 1,

where ~¨~ is either the `8-norm ~¨~
8

or the dual group norm ~¨~
˚
, respectively. Here

the interpretation is that the predictors in the active set S are not strongly correlated
with the variables in the inactive set Sc. For the Lyapunov model, the design matrix is
replaced by ApΣq, which is not only dependent on the predictors but also on the signal
M itself. Recall, for example, the fixed structure of ApΣq given in Example 3.4, whose
individual entries are given as the solution to the continuous Lyapunov equation (2.1).
For the entirety of this section, we will assume that the volatility matrix C in the
continuous Lyapunov equation is a multiple of the identity matrix. To be more precise,
we will assume that C “ 2Ip. The results presented here would also hold for other
diagonal matrices C.

3.6.1 Irrepresentability condition for the direct Lyapunov lasso

Before we turn to the analysis of the irrepresentability condition for the group Lyapunov
lasso, we will investigate the irrepresentability conditon for the direct Lyapunov lasso.
The theory for this subsection was developed in Dettling et al. (2022).

First of, we define the following irrepresentability constant.

Definition 3.45 (irrepresentability constant). For M˚ P Stabppq, the true signal with
support set S, the irrepresentability constant is defined as

ρpM˚
q :“

�

�Γ˚ScS pΓ
˚
SSq

´1
�

�

8
.

Note the definition for the support S slightly changes if we work in the lasso setting. In
particular, as the lasso is equal to the group lasso if all considered groups are singletons,
we have

S “ SpM˚
q “ tpi, jq : M˚

ij ‰ 0u.

The appropriate irrepresentability condition can then be obtained from Theorem 3.32
by setting pj “ 1 for all j P rms and adjusting the norms (cf. Remark 3.33). Hence, we
deduce that

ρpM˚
q ď p1´ αq for α ą 0.

The key idea to gain more insight to the behaviour of ρpM˚q is the following fact
from standard lasso regression. Let X be a design matrix from a linear regression
problem. Assuming the Gram matrix XTX is diagonal, then pXTXqScS “ 0, and
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thus
�

�pXTXqScSpX
TXq´1

SS

�

�

8
“ 0. The irrepresentability condition is trivially satisfied.

Moreover, in a neighborhood around the diagonal matrix XTX the irrepresentability
condition will also hold true. We can adapt this idea for GCLMs by considering drift
matrices M that yield a diagonal Gram matrix. This leads us to the following definition.

Definition 3.46 (local irrepresentability constant). Let G “ pV,Eq be a graph with
associated support set SG :“ tpi, jq : i Ñ j P Eu. For a diagonal matrix M0 P Stabppq
the local irrepresentability constant is defined as

ρ̃GpM
0
q :“

�

�

�
Γ0
ScGSG

pΓ0
SGSG

q
´1
�

�

�

8

with Γ0 :“ ΓpΣ0q and Σ0 obtained from solving the continous Lyapunov equation (1.3)
with M0.

The local irrepresentability constant is not well-defined for non-simple graphs.

Definition 3.47. A graph G “ pV,Eq is simple if it contains no 2-cycle. In other words,
there exist no two nodes i, j P V with i ‰ j such that both iÑ j and j Ñ i are in E.

Lemma 3.48. Let G “ pV,Eq be a directed graph with a 2-cycle and M0 P Stabppq be
an arbitrary diagonal matrix. Then ρ̃GpM

0q is not well-defined.

Proof. We start with a general fact that holds for ApΣq. Let i, j P V be two nodes with
i Ñ j P E and j Ñ i P E. The columns of the design matrix ApΣq¨pi,jq and ApΣq¨pj,iq
(recall the way we index columns of ApΣq, cf. Example 3.4), will have diagonal entries of
Σ in the same two positions. Moreover, the remaining entries will either be off-diagonal
entries of Σ or 0.
Note that when we M0 is diagonal, Σ0 will, in turn, also be diagonal. In particular, this
implies for the columns ApΣ0q¨pi,jq and ApΣ0q¨pj,iq that they are identical. Hence, ApΣ0q

contains linearly dependent columns and Γ0
SGSG

“ ApΣ0qTApΣ0q cannot be inverted, i.e.,
ρ̃GpM

0q is not well-defined.

However, simply choosing M0 to be a diagonal matrix will not always result in the
Gram matrix Γ0 being diagonal as the next example shows.

Example 3.49. Consider the 3-chain graph G “ pr3s, t1 Ñ 2, 2 Ñ 3uq in Figure 3.1 and
the diagonal matrix

M0
“ diagp´d1,´d2,´d3q with di ą 0 for i P r3s.

M0 is obviously stable, thus specifying C “ 2I3 yields the covariance matrix

Σ0
“ diagp1{d1, 1{d2, 1{d3q
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as the unique solution to the Lyapunov equation in (1.3).
Moreover,

ApΣ0
q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2{d1 0 0 0 0 0 0 0 0
0 1{d1 0 1{d2 0 0 0 0 0
0 0 1{d1 0 0 0 1{d3 0 0
0 1{d1 0 1{d2 0 0 0 0 0
0 0 0 0 2{d2 0 0 0 0
0 0 0 0 0 1{d2 0 1{d3 0
0 0 1{d1 0 0 0 1{d3 0 0
0 0 0 0 0 1{d2 0 1{d3 0
0 0 0 0 0 0 0 0 2{d3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

Γ0
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

4{d2
1 0 0 0 0 0 0 0 0

0 2{d2
1 0 2{d1d2 0 0 0 0 0

0 0 2{d2
1 0 0 0 2{d1d3 0 0

0 2{d1d2 0 2{d2
2 0 0 0 0 0

0 0 0 0 4{d2
2 0 0 0 0

0 0 0 0 0 2{d2
2 0 2{d2d3 0

0 0 2{d1d3 0 0 0 2{d2
3 0 0

0 0 0 0 0 2{d2d3 0 2{d2
3 0

0 0 0 0 0 0 0 0 4{d2
3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Clearly, Γ0 is not diagonal, and we cannot immediately conclude that the local irrepre-
sentability condition is satisfied as in the classical lasso setting.

1 2 3

Figure 3.1: Directed graph on 3 nodes, where we omitted to draw the self-loops induced
by M and C

We require one more step. Namely, we can establish a sufficient and necessary condi-
tion for the local irrepresentability constant to be met by ordering the diagonal entries
in a certain way.

Theorem 3.50. Let G “ prps, Eq be a simple directed graph. For any diagonal matrix
M0 P Stabppq with diagonal entries ´di ă 0 for i P rps, ρ̃pM0q ă 1 if and only if di ă dj
for every edge j Ñ i P E.

Proof. Solving the Lyapunov equation (1.3) with M0 and C “ 2Ip, we obtain that

Σ0
“ diagp1{d1, . . . , 1{dpq.
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Let i, j, k, l P rps. Since Σ0 is diagonal, ApΣ0q “ pΣ0b Ipq` pIpbΣ0qKpp,pq is symmetric
as well. The entries of ApΣ0q are given as

ApΣ0
qpi,jq,pk,lq “

$

’

’

’

&

’

’

’

%

2{dk if i “ j “ k “ l,

1{dk if i “ k, j “ l and k ‰ l,

1{dk if i “ l, j “ k and k ‰ l,

0 otherwise.

Furthermore, recall that the entries of the Gram matrix Γ0 are given by the inner prod-
ucts of the columns of ApΣ0q, hence

Γ0
pi,jq,pk,lq “

$

’

’

’

&

’

’

’

%

4{d2
k if i “ j “ k “ l,

2{d2
k if i “ k, j “ l and k ‰ l,

2{pdkdlq if i “ l, j “ k and k ‰ l,

0 otherwise.

Observe that Γ0 has an off-diagonal entry only when the row index is pi, jq and the
column index is pj, iq with i ‰ j. By assumption we only consider simple graphs,
therefore Γ0

SGSG
is diagonal with entries

pΓ0
SGSG

qpk,lq,pk,lq “

#

4{d2
k if k “ l,

2{d2
k if k ‰ l,

with k Ñ l P E. The second submatrix appearing in the local irrepresentability constant
Γ0
ScGSG

has exactly one non-zero entry in each column as well. Assuming that k Ñ l P E,
then this entry equals

pΓ0
ScGSG

qpl,kq,pk,lq “ 2{pdkdlq.

Combining the above equations, we get that

pΓ0
ScGSG

pΓ0
SGSG

q
´1
qpi,jq,pk,lq “

#

dk{dl if pi, jq “ pl, kq and pk, lq P SG, pl, kq P S
c
G,

0 otherwise.

~¨~
8

is defined as the maximum absolute row sum, thus ρ̃pM0q ă 1 if and only if
di{dj ă 1 for all pairs pi, jq P SG, or equivalently, j Ñ i P E.

To illustrate the claims made in the proof above for a graph with 3 nodes, we refer to
Example 3.49 above and Example 3.51 below.

Example 3.51. Consider the same setting as in Example 3.49. We have

SG “ tp1, 1q, p2, 1q, p2, 2q, p3, 2q, p3, 3qu

and
ScG “ tp1, 2q, p1, 3q, p3, 1q, p2, 3qu.
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Consequently,

pΓ0
SGSG

q
´1
“ diagpd2

1{4, d
2
2{2, d

2
2{4, d

2
3{2, d

2
3{4q,

Γ0
ScGSG

“

¨

˚

˚

˝

0 2{d1d2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2{d2d3 0

˛

‹

‹

‚

,

and

Γ0
ScGSG

pΓ0
SGSG

q
´1
“

¨

˚

˚

˝

0 0 0 0 0
0 d2{d1 0 0 0
0 0 0 0 0
0 0 0 d3{d2 0

˛

‹

‹

‚

.

From this we can immediately see that
�

�

�
Γ0
ScGSG

pΓ0
SGSG

q´1
�

�

�

8
“ maxtd2{d1, d3{d2u ă 1 if

and only if d2{d1 ă 1 and d3{d2 ă 1. Noting that 1 Ñ 2 P E and 2 Ñ 3 P E, this is
exactly what Theorem 3.50 requires.

Another difficulty in analyzing the local irrepresentability constant arises when we
consider graphs containing directed cycles.

Corollary 3.52. Let G “ prps, Eq be a directed graph containing a directed cycle that
is not a 2-cycle. For any diagonal matrix M0 P Stabppq, it holds that ρ̃pM0q ě 1.

Proof. Wlog. assume that we have an n-cycle (1 Ñ n Ñ pn ´ 1q Ñ ¨ ¨ ¨ Ñ 2 Ñ 1) with
n ď p. Similar to before denote the diagonal entries of M0 by ´d1, . . . ,´dp. Then for
the local irrepresentability condition to be met Theorem 3.50 assumes

d1

d2

ă 1,
d2

d3

ă 1, . . . ,
dn´1

dn
ă 1,

dn
d1

ă 1.

Yet this implies
dn
d1

ą
dn
d1

dn´1

dn
“
dn´1

d1

ą ¨ ¨ ¨ ą
d2

d1

d1

d2

“ 1,

and thus by Theorem 3.50 again ρ̃pM0q ě 1.

Hence, for the local irrepresentability constant to be smaller than 1, we should only
consider directed graphs that are acylic.

Definition 3.53 (DAG). A directed acyclic graph (DAG) is a directed graph G “ pV,Eq
that contains no cycles. Meaning for any node i P V , there exists no sequence of edges
in E such that there is a directed walk iÑ ¨ ¨ ¨ Ñ i, excluding self-loops.

The next theorem shows how we can extend the local irrepresentability condition to
the regular irrepresentability condition. Note we say that the irrepresentability condition
for a support S holds uniformly over a set U Ď Stabppq, if there exists α ą 0 such that
ρpM˚q ď 1´ α for all M˚ P U with support S “ SpM˚q.
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Theorem 3.54. Let G “ prps, Eq be a DAG and M0 “ diagp´d1, . . . ,´dpq P Stabppq.
Then the irrepresentability condition for SG holds uniformly over a neighborhood of M0

if and only if
di ă dj for every edge j Ñ i P E.

Proof. By Theorem 3.50 ρ̃pM0q ă 1 if and only if di ă dj for every edge j Ñ i P E.
We define the matrix function Mpeq to be the matrix with diagonal entries equal to
M0 and off-diagonal entries e1, . . . , e|E|´p P R. Moreover, let DMpeq Ď R|E|´p be the
domain of Mpeq such that it is stable and SpMpeqq “ SG. The natural matrix function
Γpeq :“ ΓpΣpeqq obtained by solving the Lyapunov equation (1.3) with Mpeq for Σpeq
and plugging the latter into the formula for the design matrix ApΣpeqq (cf. (3.4)) and
computing the Gram matrix (cf. (3.6)). We can now define the function

Φ : DMpeq Ñ R

eÑ

#�

�ΓScGSGpeqpΓSGSGpeqq
´1
�

�

8
for e ‰ 0

�

�

�
Γ0
ScGSG

pΓ0
SGSG

q´1
�

�

�

8
for e “ 0

,

which is continuous because Φ is a rational function. It is also well defined since ΓSGSGpeq
is invertible for all DAGs. To see this we refer to the proof of Theorem 4.10, which states
that detpApΣpeqqSG,SGq ‰ 0 and thus detpΓSGSGpeqq “ detpApΣpeqqSG,SGq

2 ‰ 0.
As M0 is chosen such that Φp0q “ ρ̃pM0q ă 1 and Φ is continuous, we can find a small

open ball OM around e “ 0 such that Φpeq ă 1 for all e P OM . In summary, we have
found a neighborhood U around M0 such that ρpM˚q ă 1 for all M˚ P U , which proves
the theorem.

Remark 3.55. In other words, Theorem 3.54 states for any given DAG G, we can find
an associated drift matrix M˚ such that the irrepresentability condition is met. We start
by ordering the diagonal elements of M˚ to satisfy condition (3.54) in the following way.
Recall that for each DAG we can establish a topological ordering, i.e., we can enumerate
the nodes such that for any two nodes i, j P V with i ‰ j

iÑ j implies i ă j.

Consequently, reordering the diagonal elements such that di ă dj for j Ñ i P E, then
satisfies (3.54). The final consists of suitably choosing the off-diagonal entries of M˚.

3.6.2 Irrepresentability condition for the group Lyapunov lasso

Throughout this section we assume rp2s to be partitioned according to Goffdiag Y Gdiag.
There are a several challenges when it comes to analyzing the group irrepresentability
condition

�

�Γ˚ScSpΓ
˚
SSq

´1
�

�

˚
ď
?

2p1´ αq with α ą 0

for the group Lyapunov lasso. We refer to ~Γ˚ScSpΓ
˚
SSq

´1~
˚

as the group irrepresentability
constant.
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Firstly, we start by noting that the group irrepresentability constant cannot be readily
computed in closed form. Hence we provide an upper bound on the preceding quantity
based on Lemma 3.23

�

�Γ˚ScSpΓ
˚
SSq

´1
�

�

˚
ď max

iPSc

ÿ

jPS

c

pj
pi

�

�pΓ˚ScSpΓ
˚
SSq

´1
qGiGj

�

�

2

“ max
iPSc

ÿ

jPS

c

pj
pi

�

�

�

�

�

ÿ

kPS

Γ˚GiGkppΓ
˚
SSq

´1
qGkGj

�

�

�

�

�

2

. (3.48)

Bach (2008) suggests that the above bound (3.48) may be improved by solving a semidef-
inite programming problem. Recall that by definition of the dual group norm,

�

�Γ˚ScSpΓ
˚
SSq

´1
�

�

˚
“ max

iPSc

�

�Γ˚GiSpΓ
˚
SSq

´1
�

�

˚
.

Lemma 3.56. The quantity
�

�Γ˚GiSpΓ
˚
SSq

´1
�

�

2

˚
can be bounded from above by

max
Xľ0,trpXGjGj q“1,jPS

tr
`

X
`

DSpΓ
˚
SSq

´1Γ˚SGiΓ
˚
GiS
pΓ˚SSq

´1DS

˘˘

, (3.49)

where X is a matrix defined by blocks following the block structure of Γ˚SS. The blocks
are defined as Γ˚GiGj with i, j P S.

Proof. Let X “ uuT with
∥∥uGj∥∥2

“ 1 for all j P S. Then using basic properties of the
trace,

trpXGjGjq “ trpuGju
T
Gj
q “ trpuTGjuGjq “

∥∥uGj∥∥2

2
“ 1.

Moreover, by the symmetry of the Gram matrix Γ˚SS we have that

tr
`

uuT
`

DSpΓ
˚
SSq

´1Γ˚SGiΓ
˚
GiS
pΓ˚SSq

´1DS

˘˘

“ tr
`

uTDSpΓ
˚
SSq

´1Γ˚SGiΓ
˚
GiS
pΓ˚SSq

´1DSu
˘

“
∥∥Γ˚GiSpΓ

˚
SSq

´1DSu
∥∥2

2
.

The claim then follows from

�

�Γ˚GiSpΓ
˚
SSq

´1
�

�

2

˚
“ max
‖uGj‖2

“1,jPS

∥∥Γ˚GiSpΓ
˚
SSq

´1DSu
∥∥2

2
,

since the RHS of the above equation is upper-bounded by (3.49).

Secondly, the irrepresentability condition is only well-defined if the inverse of Γ˚SS
exists. The next lemma provides a necessary condition on the size |s| of the support S
for Γ˚SS to be invertible.

Lemma 3.57. If s “ |
Ť

jPS Gj| ą
ppp`1q

2
, Γ˚SS is not invertible.
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Proof. We use the fact that for a matrix A, rankpATAq “ rankpAq. Thus

rankpΓ˚SSq “ rankppApΣ˚q¨Sq
TApΣ˚q¨Sq “ rankpApΣ˚q¨Sq (3.50)

ď rankpApΣ˚qq ď
ppp` 1q

2
. (3.51)

The last inequality follows from the symmetry of the Lyapunov equation. ApΣq contains
two copies of each row corresponding to an off-diagonal entry in the Lyapunov equa-
tion. Consequently, ApΣq can have at most ppp`1q

2
linearly independent rows. Choosing

|
Ť

jPS Gj| ą
ppp`1q

2
results in Γ˚SS not having full rank, i.e., it is not invertible.

Lemma 3.57 restricts the number and type of undirected structures for which an
irrepresentability condition is well-defined. In Table 3.1, we illustrate how the number
of vertices p relates to the maximal number of undirected edges (t

ppp´1q
4

u, assuming all
diagonal entries of M are nonzero) for which the irrepresentability condition is still
well-defined. Observe, for instance, that a graph containing only 2 vertices can not be
investigated according to the framework proposed in Theorem 3.32.

p 2 3 4 5 6 10 20
maximal number of undirected edges 0 1 3 5 7 22 95

Table 3.1: Maximal number of undirected edges of Gskel “ prps, Eq for which the irrepre-
sentability condition is well-defined under the assumption that the diagonal
entries of M are all nonzero

As we have discussed earlier for the direct Lyapunov lasso, the interpretation of the
irrepresentability condition for GCLM is somewhat involved. In particular, we resort
to analyzing a diagonal signal M0 first to infer more general statements for sparse non-
diagonal signals. However, this approach does not apply to the group Lyapunov lasso.
The main issue is that the local irrepresentability constant is not well-defined since Γ0

SGSG

is not invertible for any choice of the support set SG ‰ tpi, iq : i P rpsu.
Assume we include one undirected edge l ´ k with l ‰ k, that is a single group
tpl, kq, pk, lqu that corresponds to an off-diagonal entry Mlk ą 0 or Mkl ą 0 in M .
Then SG “ tpi, iq : i P rpsu Y tpl, kq, pk, lqu. Hence, by Lemma 3.48 Γ0

SGSG
is not invert-

ible as we have included a de facto 2-cycle. As every group defined by an off-diagonal
signal entry is considered a 2-cycle in the viewpoint of Lemma 3.48, we cannot define
the local irrepresentability condition for the group Lyapunov lasso.
Establishing a different starting point than a diagonal signal M0 for a more in-depth
analysis of the group irrepresentability condition proved to be quite difficult. The crux
lies in describing pΓ0

SGSG
q´1 for non-diagonal M .

In general, it is rather difficult to find examples that meet the group irrepresentability
condition or, to be more precise, yield that an upper bound for it that is strictly smaller
than

?
2. One potential explanation is the presence of strongly correlated columns in
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the submatrix of the design matrix ApΣ˚q¨S. For the regression setting, this is also re-
ferred to as multicollinearity. Collinearity causes the matrix Γ˚SS “ pApΣ

˚q¨Sq
TApΣ˚q¨S

to be ill-conditioned, i.e. close to being singular (Draper and Smith (1998)). Conse-
quently, pΓ˚SSq

´1 will have very large entries, thus making it difficult to meet the group
irrepresentability condition. We illustrate this problem with the following example.

Example 3.58. Consider the line graph G “ pr4s, t1 Ñ 2, 2 Ñ 3, 3 Ñ 4uq with associ-
ated drift matrix

M˚
“

¨

˚

˚

˝

´2 0 0 0
0.1 ´3 0 0
0 0.1 ´4 0
0 0 0.1 ´5

˛

‹

‹

‚

and C “ 2I4.

We have support S “ t1, 2, 5, 6, 8, 9, 10u corresponding to the groups
ď

jPS

Gj “ ttp1, 1qu, tp1, 2q, p2, 1qu, tp2, 2qu, tp2, 3q, p3, 2qu, tp3, 3qu, tp3, 4q, p4, 3qu, tp4, 4quu.

Recall that the items in Gj represent the indices of the corresponding entries in M˚.
The correlation matrix for ApΣ˚q¨S reveals an interesting structure as it equals (rounded
up to 3 significant digits)

p1, 1q p1, 2q p2, 1q p2, 2q p2, 3q p3, 2q p3, 3q p3, 4q p4, 3q p4, 4q
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p1, 1q 1 ´0.086 ´0.042 ´0.071 ´0.105 ´0.103 ´0.07 ´0.103 ´0.101 ´0.069
p1, 2q ´0.086 1 0.998 ´0.05 ´0.153 ´0.149 ´0.103 ´0.151 ´0.148 ´0.101
p2, 1q ´0.042 0.998 1 ´0.084 ´0.157 ´0.154 ´0.106 ´0.155 ´0.152 ´0.104
p2, 2q ´0.071 ´0.05 ´0.084 1 ´0.096 ´0.065 ´0.072 ´0.106 ´0.104 ´0.071
p2, 3q ´0.105 ´0.153 ´0.157 ´0.096 1 0.999 ´0.068 ´0.155 ´0.151 ´0.104
p3, 2q ´0.103 ´0.149 ´0.154 ´0.065 0.999 1 ´0.089 ´0.153 ´0.15 ´0.103
p3, 3q ´0.07 ´0.103 ´0.106 ´0.072 ´0.068 ´0.089 1 ´0.096 ´0.072 ´0.07
p3, 4q ´0.103 ´0.151 ´0.155 ´0.106 ´0.155 ´0.153 ´0.096 1 0.999 ´0.074
p4, 3q ´0.101 ´0.148 ´0.152 ´0.104 ´0.151 ´0.15 ´0.072 0.999 1 ´0.09
p4, 4q ´0.069 ´0.101 ´0.104 ´0.071 ´0.104 ´0.103 ´0.07 ´0.074 ´0.09 1

.

Observe that we have high correlation corpApΣ˚q¨pi,i`1q, pApΣ
˚q¨pi`1,iqq ě 0.998 for i P r3s.

These are exactly the columns of ApΣ˚q¨S that belong to the same group (G2, G6, G9).
Hence, columns within the same group belonging to the support exhibit strong collinear-
ity. Consequently, Γ˚SS is very near to singularity, i.e. detpΓ˚SSq « 7.6 ˚ 10´24. Moreover,
computing the upperbound (3.48), we obtain ~Γ˚ScSpΓ

˚
SSq

´1~
˚
ă 652550.75. Clearly, the

group irrepresentability condition cannot be guaranteed by this bound.
By contrast, the lasso irrepresentability condition is met for this choice of M˚. We com-
pute the irrepresentability constant to be ~Γ˚ScSpΓ

˚
SSq

´1~
8
« 0.82 ă 1. For the lasso,

the definition of the support S changes and specifically excludes the correlated columns
that are present for the group lasso. Thus, the entries of pΓ˚SSq

´1 will be significantly
smaller due to lack of collinearity and the irrepresentability condition is more likely to
be met.
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3 Undirected Structure Estimation

It is worth pointing out that the group lasso condition is only sufficient and not nec-
essary. Consider, for example, the drift matrices M given in Figure 5.2. In simulations,
the group Lyapunov lasso was able to correctly recover the support of M for nÑ 8 (cf.
Figure 5.1).

There exists one scenario where meeting the lasso irrepresentability condition directly
implies that the group irrepresentability conditon is met as the next lemma shows.

Lemma 3.59. Let G be a graph were every edge is a 2-cycle, then the lasso irrepre-
sentability condition ~Γ˚ScSpΓ

˚
SSq

´1~
8
ď p1´αq implies the group lasso irrepresentability

condition ~Γ˚ScSpΓ
˚
SSq

´1~
˚
ď
?
dp1´ αq.

Proof. If every edge is a 2-cycle, the support defined for the lasso and the group lasso
coincide. Moreover, by Lemma 3.25 we obtain

�

�Γ˚ScSpΓ
˚
SSq

´1
�

�

˚
ď
?
d
�

�Γ˚ScSpΓ
˚
SSq

´1
�

�

8
ď
?
dp1´ αq. (3.52)

Lastly, we want to provide an example for Remark 3.34, where we show that we can
obtain a more relaxed group irrepresentability condition, that is,

�

�

�
Γ˚ScS

`

pΓ˚SSq
´1
˘

´Sdiag

�

�

�

˚
ď
?

2p1´ αq with α ą 0

for the group Lyapunov lasso not penalizing the diagonal entries of M .

Example 3.60. Choose the drift matrix

M˚
“

¨

˚

˚

˝

´0.468074 ´0.839606 ´0.976979 ´0.856221
´0.020352 ´0.59448 0 0
0.118385 0 ´0.941955 0
´0.162255 0 0 ´0.479817

˛

‹

‹

‚

and C “

¨

˚

˚

˝

2 2 0 0
2 2 0 0
0 0 2 0
0 0 0 2

˛

‹

‹

‚

.

Then the relaxed group irrepresentability condition is satisfied since
�

�

�
Γ˚ScS

`

pΓ˚SSq
´1
˘

´Sdiag

�

�

�

˚
ď

1.354331 ă
?

2.
On the other hand, using the same method to compute an upper-bound (cf. (3.48))

for the regular group irrepresentability constant, we obtain ~Γ˚ScSpΓ
˚
SSq

´1~
˚
ď 53584.53.

Extensive computations were required to derive the above example for M˚. Out of
roughly 108 generated drift matrices with matching sparsity pattern to M˚, the given
example was the only drift matrix where we could derive an upper bound smaller than?

2.
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4 Algebraic Results for GCLMs

In this section, we aim to address a few algebraic questions for graphical continuous
Lyapunov models. First of all, we provide an overview of the theory developed in
Dettling et al. (2022) to discuss the notion of identifiability in GCLMs. Secondly, we
investigate the problem of covariance equivalence for undirected structures in GCLMs.
Recall the definition for the continuous Lyapunov equation

MΣ` ΣMT
` C “ 0, (4.1)

where M,C P Rpˆp are parameters and Σ P Rpˆp is the covariance matrix for random
multivariate observations in Rp. For our investigations, we need to slightly refine the
definition of a GCLM (cf. Definition 2.13).

Definition 4.1 (GCLM given C ). For a mixed graph G “ prps, Eq and C P PDppq we
define the graphical continuous Lyapunov model given C as the set of covariance matrices

MG,C :“ tΣ P PDppq : MΣ` ΣMT
` C “ 0 with M P StabpEqu,

where StabpEq represents the set of stable matrices M “ pMijq P Stabppq with Mji “ 0
whenever iÑ j R E.

4.1 Identifiability in GCLMs

A key question when discussing graphical models is the notion of parameter identifi-
cation. Specifically, given a mixed graph G, are the effects of interest identifiable, i.e.,
uniquely determined by the multivariate distribution of the observations? For structural
equations, Drton (2016) provides a good overview of the corresponding theory.
Adapted for GCLMs identifiability, thus asks if the continuous Lyapunov equation with
a given covariance matrix Σ P MG,C is solvable for more than one choice of a matrix
M P StabpEq. Hence we investigate the injectivity of the parametrization map

φG,C : StabpEq Ñ PDppq

M ÞÑ ΣpM,Cq,

with ΣpM,Cq being the unique matrix Σ obtained by solving the continuous Lyapunov
equation with the stable matrix M and positive-definite matrix C.
Without any constraints on StabpEq, the function φG,C is not injective. To see this,
recall that the continuous Lyapunov equation is a symmetric matrix equation hence
providing ppp` 1q{2 constraints. On the other hand, M is a pˆ p matrix that may not
be symmetric. Consequently, we need some constraints on the sparsity pattern of M , or
else M is never uniquely determined by Σ.
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4 Algebraic Results for GCLMs

4.1.1 Notions of identifiability

To introduce the different notions of identifiability it is helpful to define the concept of
a fiber.

Definition 4.2 (fiber). LetMG,C be the GCLM for a given C P PDppq, associated with
a mixed graph G “ prps, Eq. Then the fiber of a matrix M0 P StabpEq is defined as

FG,CpM0q :“ tM P StabpEq : φG,CpMq “ φG,CpM0qu.

In words, the fiber consists of all drift matrices M P StabpEq, whose Lyapunov equa-
tion is solved by a given covariance matrix Σ for a fixed C P PDppq.

We distinguish three types of identifiability.

Definition 4.3. Let MG,C be the GCLM for a given C P PDppq, associated with a
mixed graph G “ prps, Eq. Then the model MG,C is

(i) globally identifiable if FG,CpM0q “ tM0u for all M0 P StabpEq;

(ii) generically identifiable if FG,CpM0q “ tM0u for almost all M0 P StabpEq, i.e., the
matrices with FG,CpM0q ‰ tM0u form a Lebesgue null set in StabpEq

(iii) non-identifiable if |FG,CpM0q| “ 8 for all M0 P StabpEq

To illustrate these definitions consider the following examples.

Example 4.4. Consider G to be the directed 3-cycle displayed in Figure 4.1. It can
be shown that solving the Lyapunov equation for M is equivalent to solving the linear
equation

ArpΣqvecpMq “ ´vechpCq,

where vechpCq represents the half-vectorization of C P PDppq (cf. (4.5)) and the ppp `
1q{2ˆ p2-matrix ArpΣq (cf. Definition 4.6) is equal to

1 Ñ 1 1 Ñ 2 1 Ñ 3 2 Ñ 1 2 Ñ 2 2 Ñ 3 3 Ñ 1 3 Ñ 2 3 Ñ 3
¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

p1, 1q 2Σ11 0 0 2Σ12 0 0 2Σ13 0 0
p1, 2q Σ12 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
p1, 3q Σ13 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

p2, 2q 0 2Σ12 0 0 2Σ22 0 0 2Σ23 0
p2, 3q 0 Σ13 Σ12 0 Σ23 Σ22 0 Σ33 Σ23

p3, 3q 0 0 2Σ13 0 0 2Σ23 0 0 2Σ33

.

Columns indexed by i Ñ j belong to the entry Mji of the drift matrix M . Observe
that for the directed 3-cycle M12 “ M23 “ M31 “ 0, hence the unique solvability of the
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4 Algebraic Results for GCLMs

equation system in (4.4) is solely determined by the invertibility of the submatrix

ArpΣq¨,E “

1 Ñ 1 1 Ñ 2 2 Ñ 2 2 Ñ 3 3 Ñ 1 3 Ñ 3
¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

p1, 1q 2Σ11 0 0 0 2Σ13 0
p1, 2q Σ12 Σ11 Σ12 0 Σ23 0
p1, 3q Σ13 0 0 Σ12 Σ33 Σ13

p2, 2q 0 2Σ12 2Σ22 0 0 0
p2, 3q 0 Σ13 Σ23 Σ22 0 Σ23

p3, 3q 0 0 0 2Σ23 0 2Σ33

.

To show invertibility we examine the determinant of ArpΣq¨,E, which factorizes as

detpArpΣq¨,Eq “ 23
¨ detpΣq ¨ pΣ11Σ22Σ33 ´ Σ12Σ13Σ23q. (4.2)

Note that by assumption Σ is positive definite and thus detpΣq ą 0. Furthermore, by
the Cauchy-Schwarz inequality detpΣij,ijq “ ΣiiΣjj´Σ2

ij ą 0 for i ‰ j, directly implying
Σ2

11Σ2
22Σ2

33 “ Σ11Σ22Σ11Σ33Σ22Σ33 ą Σ2
12Σ2

13Σ2
23. Therefore, both factors in (4.2) are

positive. In summary, for every Σ P MG,C there exists a unique matrix M such that
Σ “ φG,CpMq. Hence, FG,CpM0q “ tM0u for all M0 P StabpEq, i.e., MG,C is globally
identifiable for the 3-directed cycle.

1

2 3

Figure 4.1: The directed 3-cycle.

Example 4.5. For the 2-cycle G “ pt1, 2u, 1 Ñ 2, 2 Ñ 1, φG,C maps the 4-dimensional
parameter space StabpEq to the 3-dimensional PDp2q-cone. The fiber is then specified
by an undetermined linear system with 3 equations in 4 unknowns. We can therefore
conclude that regardless of the choice of C, MG,C is non-identifiable.

We can formulate equivalent rank conditions for identifiability. As shown in Example
2.5 the continuous Lyapunov equation (4.1) can be vectorized and thus transformed into
the linear equation

ppΣb Ipq ` pIp b ΣqKpm,nq
qvecpMq “ ´vecpCq. (4.3)

Observe that by the symmetry of the Lyapunov equation, the matrix on the LHS of
the above equation (4.3) has redundant rows (cf. also Example 3.4). We define a row-
restricted version of the preceding matrix as follows.
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4 Algebraic Results for GCLMs

Definition 4.6. Let Σ P Rpˆp be a symmetric matrix. The ppp` 1q ˆ p2 matrix ArpΣq
is obtained by selecting the rows of

ApΣq :“ pΣb Ipq ` pIp b ΣqKpm,nq (4.4)

indexed by pairs pk, lq with k ď l.

We use the same indexing method introduced for ApΣq in Section 3.1. To better
illustrate how each entry of the drift matrix Mij relates to ArpΣq, we change the column
index from pi, jq to j Ñ i. Moreover, we define the half-vectorization of the symmetric
matrix C to be

vechpCq :“ pCkl : k ď lq. (4.5)

Therefore, we can rewrite (4.3) as

ArpΣqvecpMq “ ´vechpCq (4.6)

Note that for a given GCLM, the drift matrix M has non-zero entries only for pairs
pj, iq, where the associated graph G has an edge iÑ j. Consequently, the solvability of
(4.6) can be determined by a subset of the columns of the coefficient matrix ArpΣq.

Lemma 4.7. Let G “ prps, Eq be a mixed graph and C P PDppq. We denote the
submatrix of ArpΣq restricted to the columns with indexes in E by ArpΣq¨,E. Then the
GCLM MG,C is

(i) globally identifiable if and only if ArpΣq¨,E has full column rank |E| for all Σ P

MG,C ;

(ii) generically identifiable if and only if there exists a matrix Σ P MG,C such that
ArpΣq¨,E has full column rank |E|;

(iii) non-identifiable if MG,C is not generically identifiable.

Proof. Choose M0 P StabpEq and let Σ0 be the associated covariance matrix. Let
vecpMqE be the subvector of vecpMq obtained by selecting the entries pj, iq with i Ñ
j P E, then by the definition of a fiber

FG,CpM0q “ tM P StabpEq : ArpΣ0q¨,EvecpMqE “ ´vechpCqu

For MG,C to be globally identifiable FG,CpM0q “ tM0u. Hence, this is satisfied if and
only if ArpΣ0q¨,E has full column rank, which proves (i).

To prove the second claim, first observe that ArpΣq¨,E has full column rank if and only
if the vector of all maximal minors of ArpΣ0q¨,E is non-zero.
From the continuous Lyapunov equation (4.3) it is clear that φG,C is a rational map.
Moreover, the function mapping M P StabpEq to the maximal minors of ArpφG,CpMqqq¨,E
will then be rational as well. Recall that a rational map is non-zero outside a Lebesgue
measure zero set if and only if we can find a single point where it is non-zero. Thus,
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4 Algebraic Results for GCLMs

if we can find a Σ PMG,C , where ArpΣq¨,E has full column rank, we can infer generic
identifiability of MG,C .

Finally, to show the last claim (iii), note that MG,C is not generically identifiable
if the column rank of ArpΣ0q¨,E is strictly smaller than |E| for all Σ0 “ φG,CpM0q P

MG,CpM0q. Consequently, the fiber FG,CpM0q Ď StabpEq will then be an affine subspace
with dimension larger than 1. Therefore, |FG,CpM0q| “ 8 for all M0 P StabpEq and
MG,C is non-identifiable.

4.1.2 Identifiability for simple graphs

For an entire class of graphs, namely directed acyclic graphs (DAG), we can prove that
they are globally identifiable. To motivate our choice of graphs, consider the following
lemma.

Lemma 4.8. Let MG,C be a globally identifiable GCLM with underlying mixed graph
G “ prps, Eq and C P PDppq. Consider E 1 Ď E a subset of the edges specified by G.
Then the model MH,C specified by the subgraph H “ prps, E 1q is globally identifiable.

Proof. Clearly, StabpE 1q Ď StabpEq. Hence, for any matrix M0 P StabpE 1q, it holds that
the fiber

FH,CpM0q Ď FG,CpM0q “ tM0u

since MG,C is assumed to be globally identifiable.

An immediate consequence of Lemma 4.8 and Example 4.5 is that the graph of a
globally identifiable GCLM cannot contain any 2-cycles. We call graphs that don’t
include any 2-cycles simple. One example of simple graphs are DAGs. Moreover, by
Lemma 4.8 we only need to consider complete DAGs to prove global identifiability for
all DAGs. Recall the definition for complete graphs.

Definition 4.9 (complete). A simple graph G “ prps, Eq is complete if there exists an
edge between every pair of distinct nodes.

Assuming the simple graph contains all self-loops i Ñ i, i P rps, it is complete if and
only if |E| “ ppp ` 1q{2. Since vertex relabelling will not affect identifiability, we may
assume w.l.o.g. that the DAG adheres to a topological ordering. In summary, it suffices
to consider the single complete DAG G˚ with edge set E˚ “ tiÑ j : i ě j, i, j P rpsu.

Theorem 4.10. Let G “ prps, Eq be a DAG. Then the GCLM MG,C is globally identi-
fiable for every C P PDppq.

Proof. As explained above, we may restrict ourselves to the complete and topologi-
cally ordered DAG G˚ “ pV,E˚q. By Lemma 4.7 global identifiability is equivalent to
detpArpΣq¨,E˚q ‰ 0 for all Σ PMG˚,C . The key idea of the proof is that the coefficient
matrix ApΣq exhibits a particular block structure, thus simplifying the calculation of
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the determinant.

Consider the partition of the edge set E˚ “
Ťp
i“1E

˚
i with E˚i :“ tj Ñ i : j ě i, j P

rpsu. Furthermore, we analogously partition the row index set of ArpΣq into the disjoint
union of the sets Rk :“ tpk, lq : l ě ku, k P rps. Recall that the entries of ApΣq have the
following form

ArpΣqpk,lq,iÑj “

$

’

’

’

&

’

’

’

%

0, if j ‰ k, l;

Σli, if j “ k, k ‰ l;

Σki, if j “ l, l ‰ k;

2Σji, if j “ k “ l.

(4.7)

From (4.7) we can infer that the submatrix

ArpΣqRk,E˚i “ 0 if k ą i.

Thus, ApΣq can be rearranged in a block upper-triangular form, and

detpArpΣq¨,E˚q “
p
ź

i“1

detpArpΣqRi,E˚i q.

Moreover, observe that by (4.7) ArpΣqRi,E˚i is equal to the principal submatrix P pΣqěi :“
Σti,...,pu,ti,...,pu with the first row (indexed by i) being multiplied by 2. Applying Sylvester’s
criterion for Σ P PDppq implies that all principal minors are positive and therefore

| detpArpΣq¨,E˚q| “ 2p
p
ź

i“1

detpP pΣqěiq ą 0 for all Σ P PDppq.

Specifically, for all Σ PMG˚,C Ď PDppq we have detpArpΣq¨,E˚q ‰ 0.

In fact, we can show that global identifiability holds for simple graphs in general, i.e.,
we can also include simple cyclic graphs. To prove this, first, recall the following fact
from Barnett and Storey (1967) that holds for the drift matrices M of the continuous
Lyapunov equation.

Lemma 4.11. Let Σ, C P PDppq be given. The continuous Lyapunov equation (4.1)
is solved by a matrix M P Rpˆp if and only if there exists a skew-symmetric matrix
K P Rpˆp (KT “ ´K) such that

M “

ˆ

K ´
1

2
C

˙

Σ´1.

Proof. Let M be a matrix that solves the continuous Lyapunov equation (4.1) for a
given Σ and C. Since Σ and C are symmetric we can rewrite (4.1) as

pMΣqT `
1

2
CT

“ ´MΣ´
1

2
C.
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The above equation yields that K :“MΣ` 1
2
C is a skew-symmetric matrix. Thus,

M “

ˆ

K ´
1

2
C

˙

Σ´1,

which proves the lemma.

Theorem 4.12. Let G “ prps, Eq be a simple directed graph. Then the GCLM MG,C is
globally identifiable for all C P PDppq.

Proof. Consider M1,M2 P StabpEq that both solve the Lyapunov equation (4.1) for the
same Σ P MG,C . Applying Lemma 4.11 yields that there exists two skew-symmetric
matrices K1 and K2 with M1 “ pK1´

1
2
CqΣ´1 and M2 “ pK2´

1
2
CqΣ´1. We define the

difference

M :“M1 ´M2 “

ˆ

K1 ´
1

2
C

˙

Σ´1
´

ˆ

K2 ´
1

2
C

˙

Σ´1
“ pK1 ´K2qΣ

´1.

Note that the difference K :“ K1 ´K2 is again skew-symmetric. Hence, M is again the
product of a skew-symmetric matrix M and the positive-definite matrix Σ´1.

The square M2 is equal to
M2

“ KΣ´1KΣ´1.

Since Σ is positive-definite, the square root Σ
1
2 and its inverse Σ´

1
2 both exist. Thus,

M2 is similar to
Σ´

1
2M2Σ

1
2 “ Σ´

1
2KΣ´1KΣ´

1
2 .

Moreover, recalling that K is skew-symmetric yields

Σ´
1
2KΣ´1KΣ´

1
2 “ ´pΣ´

1
2KqΣ´1

pΣ´
1
2KqT.

Therefore, M2 is similar to a symmetric and negative semi-definite matrix, hence shares
the same eigenvalues as the preceding matrix. Consequently, M2 has eigenvalues that
are non-positive and trpM2q ď 0 as it is the sum over all eigenvalues counted with mul-
tiplicity.

G is assumed to be simple, thus Mij ‰ 0 directly implies Mji “ 0 for all pairs of
indices i ‰ j. In particular, the diagonal of M2 is then only specified by the squared
diagonal elements of M , i.e. pM2qii “ pMiiq

2. Furthermore,

0 ď
p
ÿ

i“1

pMiiq
2
“ trpM2

q ď 0.

Let λ1, . . . , λp P C be the eigenvalues of M . Then the eigenvalues of M2 are λ2
1, . . . , λ

2
p.

Recall from above that all the eigenvalues of M2 are non-positive, i.e. λ2
1 ď 0, . . . , λ2

p ď 0.
Combining this with the fact that

0 “ trpM2
q “

p
ÿ

i“1

λ2
i ď 0,
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leads us to the conclusion that λ2
i “ 0 for all i P rps or equivalently λi “ 0 for all i P rps.

Note that M “ KΣ´1 is similar to M̃ “ Σ´
1
2KΣ´1Σ

1
2 , which is a skew-symmetric

matrix as
M̃T

“ pΣ´
1
2KΣ´

1
2 q

T
“ Σ´

1
2KTΣ´

1
2 “ ´Σ´

1
2KΣ´

1
2 “ ´M̃.

All skew-symmetric matrices are diagonalizable over C, implying that M is similar to
the zero matrix. However, then M “ 0 and thus M1 “ M2, which proves that the
Lyapunov equation has a unique solution if the underlying graph is simple.

Remark 4.13. If we restrict C P PDppq to be diagonal, G being simple can be shown to
be a sufficient and necessary condition for global identifiability (Dettling et al. (2022),
Theorem 31 (ii)).

4.1.3 Identifiability for non-simple graphs

For graphs that are non-simple, making general statements wrt. identifiability is much
more difficult. Although one can always check the rank conditions from Lemma 4.7 to de-
termine identifiability, finding a general class of graphs that will guarantee identifiability
proves to be much harder. However, we can at least provide a necessary combinatorial
condition that has to be satisfied if MG,C is generically identifiable. First, note the
following fact for non-identifiability.

Lemma 4.14. Let G “ prps, Eq be a directed graph and C P PDppq. If |E| ą
dimpMG,Cq, then the GCLM MG,C will be non-identifiable. In other words, all graphs
with more than ppp` 1q{2 edges give non-identifiable models.

Proof. The set of sparse stable matrices StabpEq is semi-algebraic by the Hurwitz cri-
terion (Horn and Johnson (1991), Theorem 2.3.3). Moreover, dimpStabpEqq “ |E| ą
dimpMG,Cq implies that the rational map φG,C is generically infinite-to-one (Barber et
al. (2022), Lemma 2.5). Hence, all fibers are infinite, and MG,C is non-identifiable.

We can refine the above criterion by observing that the existence of no treks between
two nodes implies that the corresponding covariance entry is 0. We define a trek as
follows.

Definition 4.15 (trek). A trek τ is a sequence of edges of the form

iÐ ¨ ¨ ¨ Ð i1 Ð k Ø l Ñ j1 Ñ ¨ ¨ ¨ Ñ j,

where k and l are connected by a bidirected edge. To the left and right of k and l we
have directed paths i Ð ¨ ¨ ¨ Ð i1 Ð k and l Ñ j1 Ñ ¨ ¨ ¨ Ñ j of length npτq and mpτq,
respectively. In particular, we allow for npτq “ 0 and npτq “ 0, thus we consider directed
paths as well as single nodes to be treks.
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Recall that by Theorem 2.12 for a given M and C the covariance matrix Σ PMG,C

can be expressed as the following limit

Σ “ lim
sÑ8

Σpsq “ lim
sÑ8

ż s

0

euMCeuM
T

du.

Furthermore, Varando and Hansen (2020) also proved that Σpsq can be expressed in
terms of the treks as follows.

Theorem 4.16. Let M P StabpEq and C P PDppq. We define

κps, τq :“
snpτq`mpτq`1

pnpτq `mpτq ` 1qnpτq!mpτq!

for any trek τ and s P R. Moreover, let

ωpM,C, τq :“ Ckl
ź

gÑhPτ

Mhg.

Then
Σpsqij “

ÿ

τPT pi,jq

κps, τqωpM,C, τq,

where T pi, jq represents the set of all treks from i to j.

Proof. By the series expansion of the matrix exponential euM , we have

Σpsqij “

ż s

0

peuMCeuM
T

qijdu “

ż s

0

p
ÿ

k,l“1

peuMqikCklpe
uM
qljdu

“

ż s

0

8
ÿ

n“0

8
ÿ

m“0

p
ÿ

k,l“1

tntm

n!m!
pMn

qikCklpM
n
qljdu.

Using Fubini’s theorem, we can exchange integration and summation. Therefore,

“

8
ÿ

n“0

8
ÿ

m“0

p
ÿ

k,l“1

sn`m`1

pn`m` 1qn!m!
pMn

qikCklpM
n
qlj

“
ÿ

τPT pi,jq

κps, τqωpM,C, τq

From Theorem 2.12 and Theorem 4.16 it is straightforward to deduce the next corol-
lary.

Corollary 4.17. Let G “ prps, Eq be a mixed graph and C P PDppq. Moreover, assume
there exists no treks between the nodes i and j in G. Then Σij “ 0 for all Σ PMG,C .
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Observe that if there exists no treks between certain nodes, the dimension ofMG,C is
upper bounded by

dimpMG,Cq ď
ppp` 1q

2
´ |tti, ju : i, j P rps with no trek between themu|.

In combination with Lemma 4.14 we can now establish the following necessary condition
for generic identifiability.

Corollary 4.18. Let G “ prps, Eq be a mixed graph and C P PDppq. Assume MG,C is
generically identifiable. Then

|E| ď
ppp` 1q

2
´ |tti, ju : i, j P rps with no trek between themu|.

4.2 Covariance equivalence for undirected GCLMs

The undirected structure of a GCLM is defined as the skeleton Gskel of the underlying
mixed graph G for a GCLM (cf. Definition 2.14). Similar as for the directed case, we
adjust our definition for an undirected GCLM (cf. Definition 2.16).

Definition 4.19 (undirected GCLM given C ). For an undirected graphGskel “ prps, Eskelq

and C P PDppq we define the undirected graphical continuous Lyapunov model given C
as the set of covariance matrices

MGskel,C :“ tΣ P PDppq : MΣ` ΣMT
` C “ 0 with M P StabpEskelqu,

where StabpEskelq represents the set of stable matrices M “ pMijq P Stabppq with
Mij “Mji “ 0 whenever i´ j R Eskel.

We are now interested in the question of whether different graphs may induce the same
model. Assume we have two different undirected graphs Gskel

1 and Gskel
2 , which represent

different scientific hypotheses. If MGskel1 ,C “ MGskel2 ,C , then we cannot differentiate
between the associated hypotheses based on the data alone. This leads us to the following
definition.

Definition 4.20 (covariance equivalence). LetGskel
1 “ prps, Eskel

1 q andGskel
2 “ prps, Eskel

2 q

be undirected graphs and C P PDppq. If the associated GCLMs satisfy the following
equality

MGskel1 ,C “MGskel2 ,C ,

we call G1 and G2 covariance equivalent.

Equivalently, we could look at the images of the rational maps φGskel1 ,C and φGskel2 ,C

defined as

φGskeli ,C : StabpEskel
i q Ñ PDppq

M ÞÑ ΣpM,Cq, for i “ 1, 2.
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4 Algebraic Results for GCLMs

Then G1 and G2 are covariance equivalent if

imgpφGskel1 ,Cq “ imgpφGskel2 ,Cq.

We will restrict our investigations to connected graphs.

Definition 4.21 (connected). An undirected graph G “ pV,Eq is said to be connected
if every pair of nodes in G is connected. Meaning there exists a path between every pair
of nodes. An undirected graph that is not connected is called disconnected.

Note for disconnected graphs we can infer the presence of zero entries in the covari-
ance matrix Σ by Corollary 4.17. In particular, for two disconnected nodes i and j it
is not possible to find a trek connecting them in a corresponding directed graph, and
thus Σij “ Σji “ 0. Hence, any potential covariance equivalent graph needs to have
a matching sparsity pattern for Σ. For connected graphs, we cannot make a similar
statement as the covariance matrix Σ does not contain zero entries in general.

To investigate covariance equivalence for connected graphs, we perform a simulation
study in Mathematica. The simulation setup is as follows.

1. Generate a random diagonal matrix C P PDppq, where the diagonal entries Cii for
i P rps are independently drawn from a uniform distribution on r100s. Moreover,
generate all possible symbolic drift matrices M sym each belonging to a connected
graph G.

2. We populate the off-diagonal non-zero entries of the symbolic drift matrices with
values independently drawn from a uniform distribution on t´100, 99, . . . ,´1u Y
t1, 2, . . . , 100u, i.e., for i ‰ j

M sample
ij “

#

uij „ Uniformpr100sq if M sym
ij is not zero,

0 if M sym
ij “ 0.

The diagonal entries of M are chosen to be

M sample
ii “ ´

ÿ

i‰j

|M sample
ij | ´ |uii| for i P rps,

where uii „ Uniformpr100sq.

3. We solve the following continuous Lyapunov equation

M sampleΣ` ΣpM sample
q
T
` C “ 0

for Σ.

4. Next, we solve the linear matrix equation with given Σ and C

M symΣ` ΣpM sym
q
T
` C “ 0 (4.8)

for all possible M sym generated in the first step.
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5. Steps 2. - 4. are repeated n = 4 times in total for each graph. Lastly, we tally
the results for each graph G, i.e., we note whether a symbolic drift matrix M symb

belonging to a graph Gskel
1 was able to solve the continuous Lyapunov equation

with a given Σ PMGskel2 ,C associated to a graph G2.

The first observation we make is that for low-dimensional graphs, all connected graphs
are potentially covariance equivalent. We call two graphs Gskel

1 and Gskel
2 potentially

covariance equivalent if there exists a covariance matrix Σ P PDppq such that Σ P

MGskel1 ,C and Σ PMGskel2 ,C . We stress the fact potential covariance equivalence is merely
an indication for covariance equivalence as for the latter, it is required that MGskel1 ,C “

MGskel2 ,C .

nodes p # of connected graphs # of potential equivalent graphs by edge count
(t# of edges,# of graphsu)

2 1 t1, 1u
3 4 t2, 4u, t3, 4u
4 38 t3, 38u, t4, 38u, t5, 38u, t6, 38u

Table 4.1: Simulation results for undirected graphs with p “ 2, 3, 4 nodes. The last
column displays the # of graphs that can solve (4.8) for a Σ provided by a
graph with a certain # of edges.

From Table 4.1 we can deduce that for p “ 2, 3, 4, all connected graphs are potentially
covariance equivalent since the number of potential equivalent graphs for each edge
count equals the total number of connected graphs. There is strong evidence that for
p “ 2, 3, 4, all connected graphs are, in fact, covariance equivalent as the results above
hold true even if we increase our number of repetitions n. The following lemma and
subsequent corollary prove that they are indeed covariance equivalent.

Lemma 4.22. Let Gskel
1 “ prps, Eskel

1 q and Gskel
2 “ prps, Eskel

2 q be two undirected graphs
and C P PDppq a diagonal matrix. If

mint|Eskel
1 |, |Eskel

2 |u ě
ppp´ 1q

4
,

G1 and G2 are covariance equivalent.

Proof. Note that the dimension of the undirected GCLM MGskel,C is given by

dimpMGskel,Cq “ min

"

p` 2|Eskel
|,
ppp` 1q

2

*

.

Assuming mint|Eskel
1 |, |Eskel

2 |u ě ppp´ 1q{4 then yields

dimpMGskel1 ,Cq “ dimpMGskel2 ,Cq “
ppp` 1q

2
.
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Recall that by definition MGskel1 ,C ,MGskel2 ,C Ď PDppq. Therefore, both undirected
GCLMs cover the entire cone of positive definite matrices, i.e.

MGskel1 ,C “ PDppq “MGskel2 ,C ,

which proves the lemma.

It suffices to look at one of the minimally connected undirected graphGskel “ prps, Eskelq,
i.e., Gskel is connected, and there is no edge that can be removed while still leaving the
graph connected. In this case |Eskel| “ p´ 1. Observe that

|Eskel
| “ p´ 1 ě

ppp´ 1q

4
for p “ 2, 3, 4.

Hence, we can directly infer from Lemma 4.22 this next corollary.

Corollary 4.23. Let p ď 4. Consider two undirected connected graphs Gskel
1 “

prps, Eskel
1 q and Gskel

2 “ prps, Eskel
2 q and C P PDppq a diagonal matrix. Then G1 and

G2 are covariance equivalent.

We now consider connected graphs with p “ 5 nodes. Moreover, we introduce the
following definition.

Definition 4.24 (tree). A tree is an undirected graph G “ prps, Eq in which any two
vertices are connected by exactly one path. Equivalently, G is a tree if and only if G is
connected and G has p´ 1 edges.

nodes p # of connected graphs # of potential equivalent graphs by edge count
(# of trees) (t# of edges,# of graphsu)

5 728 (125) t4, 604u, ti, 603u for 5 ď i ď 10

Table 4.2: Simulation results for undirected graphs with p “ 5 nodes. The last column
displays the # of graphs that can solve (4.8) for a Σ provided by a graph with
a certain # of edges.

According to Table 4.2, connected graphs with more i ď 5 edges have exactly 603
potentially covariance equivalent graphs. Note that for graphs with p “ 5 nodes, we
have exactly 125 trees. The preceding 603 “ 728 ´ 125 graphs are all non-trees. This
result is consistent with Lemma 4.22, which states that all 603 non-trees are covariance
equivalent since the number of edges is equal to or larger than ppp´ 1q{4. Moreover, we
observe that the trees are not covariance equivalent to the non-trees. This can also be
explained theoretically since dimpMGskel,Cq “ 13 ă 15 “ dimpPDp5qq if Gskel is a tree
and the corresponding GCLM for non-trees are equal to the entire PD-cone.
For the second key insight from Table 4.2, note that all trees have 604 potentially
covariance equivalent graphs. A closer inspection reveals that of the 604 graphs, 1 is
the original tree itself, whereas the remaining 603 graphs are non-trees. Consequently,
for p “ 5 all trees are not covariance equivalent. This fact holds for higher-dimensional
graphs as well.
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Theorem 4.25. Let p “ 5, 6. All trees corresponding to an undirected GCLM are not
covariance equivalent.

Proof. We can prove this fact computationally by running the simulation setup described
earlier, which will net a counterexample to covariance equivalence for each possible tree
combination.

The simulation results for trees with 6 nodes are displayed in Table 4.3.
We conjecture that the statement from Theorem 4.25 will hold for all p ě 5. However,
we are not able to provide a proof for this fact yet. In particular, we note that to run
the simulation setup for higher-dimensional trees, considerable computational effort is
required. The number of trees for a graph with p labeled nodes equals pp´2 (Gross and
Yellen (2004)). Our simulation setup then has to solve 4p2pp´2q Lyapunov equations in
total to check the validity of the above theorem. For example, for p “ 8, we would need
to check 262144 possible trees against each other.

nodes p # of trees # of potential equivalent trees

6 1296 1

Table 4.3: Simulation results for trees with p “ 6 nodes. The last column shows the
number of potential equivalent graphs for each tree
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5 Numerical Studies

5.1 Structure recovery methods and tuning

In the following numerical studies, we will use the direct Lyapunov lasso and the group
Lyapunov lasso. For the lasso, we use the implementation provided by the R package
glmnet and the group lasso is computed using the R package gglasso (Yang and Zou
(2015)). While there exist several other packages for these methods, both choices provide
some of the fastest computation times, which are necessary for the high-dimensional
setting we operate in.
For both methods, we use a decreasing regularization parameter sequence of length 100
with slight differences:

lasso : λ100 “ λmax,l ą ¨ ¨ ¨ ą λ1 “
λmax,l
104

ą 0

group lasso : λ100 “ λmax,gl ą ¨ ¨ ¨ ą λ1 “
λmax,gl

103
ą 0.

λmax,l is chosen to be the smallest penalization parameter such that M̂ is diagonal,

whereas λmax,gl is set to the smallest penalization parameter for which all entries of M̂
are zero. Moreover, we apply individual weights to the regularization parameters. For
the lasso, we set all weights to be 1 for the off-diagonal elements of M and 0 for the
diagonal entries of M . The weights for the group lasso are chosen to be the squared
group length, i.e.,

?
2 for the off-diagonal elements of M , and 0 or 1 for the diagonal

elements of M . Furthermore, we set the intercept in both algorithms to 0.

5.2 Performance comparison for fixed GCLMs

We start by comparing the performance of the lasso and the group lasso for correct
undirected graph recovery of fixed graphs. For the group lasso, we consider two variants.
The first one penalizes the diagonal elements of the signal M (cf. Definition 3.5), whereas
the second does not (cf. Definition 3.6).

5.2.1 Simulation setup

We will consider the following graphs with 10 nodes (p “ 10) each as displayed in Figure
5.1.
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Figure 5.1: Overview of the considered graphs

For each of these graphs we fix the diagonal elements of the corresponding matrix to
be p´2,´3, . . . ,´11q and the nonzero off-diagonal entries to be 0.1. An overview of the
matrices M is given in Figure 5.2.

We set C “ 2I10. Choosing C to be diagonal results in the undirected graph being only
determined by M as C introduces no additional edges. Based on the pair pM,Cq we solve
the Lyapunov equation for Σ, which is then used to generate n “ 102, 103, 104, 105,8
samples from a multivariate Gaussian N p0,Σq. For each sample size, we compute a
sample covariance matrix Σ̂. Note for n “ 8 we just set Σ̂ “ Σ. We repeat the
preceding process 100 times per sample size.

5.2.2 Results

Since we initialise both the lasso and the group lasso with a lambda sequence of length
100, we obtain solution paths of drift matrices M̂ . Specifically, for each given regu-
larization parameter λ, we compute a corresponding M̂ . We consider the following
performance measures computed by considering the undirected graph recovery as a clas-
sification problem over the ppp´1q

2
possible edges. The ground truth is represented by the

edges specified by the non-zero entries of M .

• True positives (TP ): The number of undirected edges that are specified by M̂ and
M , i.e.,
TP “ |tpi, jq : M̂ij ‰ 0 or M̂ji ‰ 0, i ă ju X tpi, jq : Mij ‰ 0 or Mji ‰ 0, i ă ju|.

• False positives (FP ): The number of undirected edges that are specified by M̂ but
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Figure 5.2: Overview of corresponding matrices M . The vector v in Star-mixed is defined
as v :“ p0, 0.1, 0, 0.1, 0, 0.1, 0, 0.1q.

not M , i.e.,
FP “ |tpi, jq : M̂ij ‰ 0 or M̂ji ‰ 0, i ă ju X tpi, jq : Mij “ 0 or Mji “ 0, i ă ju|.

• True negatives (TN): The number of absent undirected edges that are specified
by M̂ and M , i.e.,
TN “ |tpi, jq : M̂ij “ 0 or M̂ji “ 0, i ă ju X tpi, jq : Mij “ 0 or Mji “ 0, i ă ju|.

• False negatives (FN): The number of absent undirected edges that are specified
by M̂ but not M , i.e.,
FN “ |tpi, jq : M̂ij “ 0 or M̂ji “ 0, i ă ju X tpi, jq : Mij ‰ 0 or Mji ‰ 0, i ă ju|.

• Path-wise maximum accuracy (maxacc): The maximal accuracy achieved for undi-
rected edge recovery along a solution path
maxacc “ maxλ

TP pλq`TNpλq
ppp´1q{2

, where TP pλq and TNpλq refer to the TP and TN

for an estimate M̂ specified by their respective λ (one entry of the solution path).

Note we omitted the diagonal elements of M̂ and M in our definition of the various
metrics since they do not represent undirected edges in our interpretation of the drift
matrix and its corresponding undirected graph.

The results can be seen in Figure 5.3. As one would expect, the accuracy for all
algorithms improves with increasing sample size. For finite sample sizes both variants of
the group lasso are slightly better than the lasso across all considered graphs. Moreover,
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when the sample size is infinite, all structure recovery methods achieve perfect support
selection for all graphs but the line and the cycle. However, only the group lasso with no
penalties on the diagonal of M was able to correctly estimate the support for all graphs.
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Figure 5.3: Structure recovery results for selected graphs. Accuracy given for different
sample sizes and algorithms (color). The label group lasso represents the
group lasso penalizing the diagonal entries, whereas group lasso diag repre-
sents the second variant not penalizing the diagonal entries.

5.2.3 Permuting the diagonal

This experiment is motivated by the fact that the ordering of the diagonal elements of
M has an impact on the successful directed structure recovery via the direct Lyapunov
lasso. For instance, Theorem 3.54 states that around a neighborhood of a diagonal sig-
nal, where Mii ăMjj holds for every j Ñ i P E, we can find a DAG that will satisfy the
irrepresentability condition.
To explore the effect of the ordering of diagonal elements on undirected structure recov-
ery, we permute the diagonal elements of M. For a random subset (of size 1000) of all
permutations (10! in total), we evaluate the accuracy of the estimated M̂ . We restrict
ourselves to the n “ 8 case, i.e., we use the population covariance matrix Σ.
According to Figure 5.4, all methods achieve 100% accuracy for the 2-cycle graph regard-
less of the permutation. The group lasso that does not penalize the diagonal elements
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of M is able to correctly recover the true sparsity pattern for all graphs. On the other
hand, there exist permutations that will make it impossible for the first variant of the
group lasso and the lasso to correctly estimate the undirected structure of a GCLM.
However, the former achieves a higher accuracy on average across all considered graphs.
In particular, the number of cases where the group lasso achieves 100% accuracy is sig-
nificantly larger compared to the lasso.

In summary, we conclude that the group lasso not penalizing the diagonal entries
outperforms the standard group lasso and the lasso for all considered graphs. While the
performance is relatively comparable for smaller sample sizes, for n Ñ 8, it was the
only method able to achieve 100% accuracy consistently. Moreover, not penalizing the
diagonal entries for the group lasso seems to make the correct support recovery invariant
to the ordering of the diagonal elements.
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Figure 5.4: Accuracy for structure recovery under different permutations of the diagonal
elements for selected graphs. The label group lasso represents the group
lasso penalizing the diagonal entries, whereas group lasso diag represents the
second variant not penalizing the diagonal entries.
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5.3 Performance comparison for random GCLMs

We run a simulation study to compare the performance in terms of recovering the di-
rected and undirected part of a random GCLMs for different methods, namely the lasso
and the group lasso. By random GCLMs, we mean GCLMs associated with randomly
generated graphs. Note we use the variant of the group lasso, which does not penalize
the diagonal entries (Definition 3.6).

5.3.1 Simulation setup

The simulation setup is similar to the experiment conducted in Varando and Hansen
(2020). We explore the performance of our structure recovery methods for different
models of size p “ 10, ..., 50 and edge probability d “ k

p
with k P t1, 2, 3, 4u. For each

pair pp, kq, we create 100 drift matrices M as mentioned below.

1. Generate a matrix M with entries

Mij “

#

ωij|uij| for i ‰ j,

´
ř

k:k‰i |Mik| ´ |uii| for i “ j,

where ωij „ Bernoullipdq and uij „ Uniformpr0.1, 1sq. We set C to be a diagonal
matrix with entries Cii „ Uniformpr0, 1sq.

2. For each pM,Cq we solve the continuous Lyapunov equation (1.3) for Σ.

3. Generate n “ 1000 observations xi, . . . , xn from a multivariate Gaussian N p0,Σq.

4. Finally, we obtain our design matrix ApΣ̂q by computing the covariance matrix Σ̂
based on our observations and plugging it into the respective equation (3.4).

Step 1. produces stable Metzler matrices M (Briat (2017), Lemma 2.8) that will guar-
antee unique solutions to the Lyapunov equation (cf. Theorem 2.9). The drift matrices
M correspond to mixed graphs G “ prps, Eq with self-loops at every node and directed
edges independently generated with uniform probability d.

5.3.2 Results

We introduce a few additional metrics to assess the performance for random GCLMs.

• Path-wise maximum F1 score (maxf1): maxf1 “ maxλ
2TP pλq

2TP pλq`FP pλq`FNpλq
.

• Area under ROC curve (auroc): The ROC curve displays the true positive rate
on the y-axis and the false positive rate on the x-axis for each value of the regu-
larization parameter λ.

• Area under precision-recall curve (auprc): The PR curve displays the precision on
the y-axis and the recall on the x-axis for each value of the regularization parameter
λ.
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We also calculate the same metrics for the recovery of the directed graph. They can be
computed analogously to the undirected case, with the only difference being the defi-
nitions for TP, FP, TN and FN , which are now computed by considering the directed
graph recovery as a classification problem over the ppp´1q possible edges. We obtain the
directed graph from the undirected graph estimated by the group lasso by translating
every undirected edge into the two possible directed edges.

Figure 5.5 displays the results of our experiment averaged over 100 repetitions and
different edge probabilities d. For increasingly sparser models, i.e., increasing model size
p, the maximal accuracy maxacc and auroc improve for all methods and classification
problems. Accounting for the class imbalance due to the sparse models, the curves for
aupr and maxf1 reveal a different trend. Both metrics are actually decreasing with in-
creasing model size p.
According to all four metrics, the lasso is superior to the group lasso when considering
randomly drawn sparse graphs. This is true for both directed and undirected structure
recovery. Moreover, the evaluations for lasso and group lasso are highly similar in the
sense that the evaluation curves for all metrics run almost parallel for all dimensions p.
Comparing the performance of undirected and directed structure recovery against each
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Figure 5.5: Structure recovery simulation results for undirected and directed graphs (line
type). Average evaluation metrics (rows) as a function of the model size for
different algorithms (colors)

other has to be done with care. Recall that they both correspond to classification prob-
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lems with a different number of total samples ppp´ 1q{2 vs. ppp´ 1q. Consequently, for
example misclassifying one undirected edge for an undirected graph will always lead to a
lower accuracy compared to misclassifying one directed edge for a directed graph. This
also explains why maxacc for directed structure recovery is higher than for undirected
structure recovery. However, considering the remaining metrics, undirected structure
recovery achieves a better performance.

One possible scenario where one could hope that the group lasso would outperform
the lasso in terms of correct support recovery for undirected graphs is the case where
we only consider 2-cycle graphs, i.e., directed graphs where every edge corresponds to a
2-cycle. Lemma 3.59, for instance, states that the group irrepresentability condition is
always satisfied when the irrepresentability condition for the lasso is met. Recall that
irrepresentability is a sufficient condition for correct support recovery.
We employ the same simulation setup as before (cf. Subsection 5.3.1) with a slight
alteration in the first step. Namely,

1. For i ď j generate the entries of M as

Mij “

#

ωij|uij| for i ‰ j,

´
ř

k:k‰i |Mik| ´ |uii| for i “ j,
and Mji “ |uji| if Mij ‰ 0 and i ‰ j.

Using this procedure, we generate drift matrices associated with random 2-cycle graphs.
However, as we can see in Figure 5.6 the group lasso is not able to outperform the lasso
in terms of better support recovery for undirected graphs.
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Figure 5.6: Structure recovery simulation results for undirected and directed 2-cycle
graphs (line type). Average evaluation metrics (rows) as a function of the
model size for different algorithms (colors)
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6 Discussion

In this thesis, we proposed the group lasso as an undirected structure recovery method
for GCLMs. Specifically, we showed how to find sparse solutions to the continuous Lya-
punov equation using the group Lyapunov lasso. Moreover, we adapted the primal-dual
witness method for the group lasso by introducing the concept of dual norms and its
corresponding theory. Applying this technique, we were able to prove a deterministic
result for consistent model selection for GCLMs. Restricting ourselves to Gaussian data,
we can provide a bound on sample complexity for the group Lyapunov lasso by carefully
investigating the Gram matrix ΓSS.
Furthermore, we identified the group irrepresentability condition as a crucial sufficient
assumption for consistent model selection. While it is possible to formulate conditions
under which the lasso irrepresentability condition holds for DAGs, a similar analysis
for the group irrepresentability condition proved to be quite difficult. The existence of
no closed-form solutions for the group irrepresentability condition and restricted invert-
ibility of the Gram matrix further complicated the analysis. For a particular type of
graph, namely graphs where every edge corresponds to a 2-cycle, we showed that the
lasso irrepresentability condition directly implies the group irrepresentability condition.

In the second part of the thesis, we studied algebraic questions related to GCLMs. We
provided an overview for identifiability in GCLMs. The main result here is that every
simple graph is globally identifiable. In addition, we examined covariance equivalence
for undirected graphs. We derived a sufficient condition based on the number of edges
of two connected graphs for them to be covariance equivalent. In particular, we showed
that connected graphs with up to 4 nodes are always covariance equivalent. Moreover,
we were able to computationally prove that trees defined for p “ 5, 6 nodes are never
covariance equivalent. However, it remains an open question to prove this fact for higher
dimensions.

Lastly, we compared the performance of the direct Lyapunov lasso and the group
Lyapunov lasso for directed and undirected structure recovery. For a choice of fixed
graphs, the group Lyapunov has favorable properties for sample size n Ñ 8. Namely,
it seems to be invariant to the ordering of the diagonal elements of the drift matrix
M . However, for randomly drawn sparse graphs, the direct Lyapunov lasso was able
to outperform the group Lyapunov lasso for both directed and undirected structure
recovery.
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