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Abstract— Modern collaborative manipulators operate in
unknown environments and share the work space with human
coworkers. To ensure flexibility, their kinematic design is
redundant which increases the solution space of the inverse
kinematics (IK). We propose a real-time capable Predictive
Kinematics Controller (PKC) that tracks task space trajectories
as a first priority and computes optimal joint trajectories
w.r.t. secondary objectives based on model predictive control
(MPC). Therefor, the PKC solves a MPC problem in the
nullspace of the task space trajectory. We benchmark a direct
shooting, a direct collocation and an indirect gradient method
in simulation and we identify the direct shooting method as the
most efficient. We demonstrate the superior performance of the
PKC compared to state-of-the-art local redundancy resolution
approaches. In experiments, we show the real-time capability
of our implementation.

I. INTRODUCTION

Robotic automation solutions usually define tasks in Carte-
sian space or a subspace of it. Inverse Kinematics (IK)
computes the corresponding joint reference values for the
robot control. On position level, an analytical solution for
the nonlinear mapping between task space and configuration
space (C-space) only exists in special cases. Therefore,
iterative methods like Newton-Raphson are generally applied.
In contrast to that, on velocity and acceleration level, i.e. in
differential kinematics, the relationship between task space
and C-space is linear and a closed-form IK solution is de-
fined [1]. For redundant kinematic structures, the differential
IK has an infinite number of solutions and the definition of
additional secondary objectives, e.g. joint limit avoidance,
is used to obtain a unique solution. [2] proposes the state-
of-the-art IK scheme for local redundancy resolution, the
Automatic Supervisory Control (ASC), which may be applied
either on velocity or acceleration level:

q̇d = J# (ẇd +K(wd −w))︸ ︷︷ ︸
ẇd,eff

+(I − J#J)︸ ︷︷ ︸
N

u (1)

q̈d = J#(ẅd,eff − J̇ q̇) +N (u− kq̇) (2)

The C-space and task space trajectories are defined by
q, q̇, q̈ and w, ẇ, ẅ respectively. Trajectory values with
subscript d denote desired reference values and trajectory
values without subscript denote the measured trajectory pro-
files executed by the robot. u controls secondary objectives
based on gradient descent. E.g. joint limit avoidance can be
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(a) Two different cycle times hRT and hPKC are used for real-time control
and PKC respectively.
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(b) Multi-threaded implementation of the PKC with hRT = 1 ms and
hPKC = 100 ms. The time horizon length is 1 s.

Fig. 1. The low-level real-time control and the PKC run in different threads
and use two different cycle times, linked by discretization and interpolation.
The PKC computes the optimal nullspace control u? at a lower rate than the
one of the real-time control and therefore u? is interpolated before applying
it to the robot. The Real-Time Thread executes the interpolation of the first
horizon time step while the MPC Thread computes the next time horizon.
Thereby, in each time horizon, the PKC is initialized with the ASC solution
(see Section III). This architecture implies a cascaded control in which we
use a inner control loop to solve the IK and an outer control loop to solve
the MPC. Our multi-threaded implementation ensures real-time capability
(see Section IV-E).

expressed as an optimization objective lJla, that is controlled

by u =
(
−∂lJla

∂q

)T
. J# = W−1JT

w(JwW
−1JT

w)
−1 is

the Moore-Penrose pseudoinverse and we set W = I . To
deal with numerical drift that is introduced by differen-
tial kinematics, the effective desired task space reference
values ?d,eff compensate the task space error [1]. ẅd,eff

additionally compensates the drift on velocity level. The
control inputs for secondary tasks u must not influence the
execution of the primary task and therefore N is used for
nullspace mapping. In second-order redundancy resolution
schemes, instability problems occur that result in nullspace
drift of the joint variables: if the nullspace acceleration due
to second-order objectives vanishes in (2), the nullspace
velocity still remains constant [3]. Therefore, the damping
kq̇ is introduced.

(1) and (2) are implemented in the lower real-time control
of the robot. In case the task space trajectory is adapted
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online or in case the environment changes, the local ap-
proaches react instantaneously, however only locally, e.g.
when already in proximity to obstacles. Global redundancy
resolution approaches are on the other side of the spectrum
and compute globally optimized joint reference values for
the whole trajectory, however, they are not reactive and not
real-time capable [4], [5].

We propose an IK resolution scheme in between local and
global approaches that combines the best of both worlds:
optimal solutions and real-time. Our contributions are:

• We propose a real-time capable PKC for MPC of
redundant robot kinematics that we validate in exper-
iments on a FRANKA EMIKA robot. Related work
often simplifies the problem to quadratic programming
(QP). Our approach includes nonlinear objectives and
constraints which is required for involved secondary
objectives, e.g. collision avoidance. Fig. 1 shows our
PKC implementation that we detail in Section IV.

• To ensure efficiency, we benchmark three numerical
optimal control approaches and choose the best among
them: direct collocation, direct shooting and indirect
gradient method. Comparing these state-of-the-art ap-
proaches in kinematics control has not been published
yet and, if the problem is not simplified to QP, related
work most often uses the indirect gradient method to
solve the optimal control. However, we show that the
direct shooting method is more efficient.

• We derive the analytical gradients for the direct shooting
and direct collocation method. Compared to numerically
approximated gradients, this increases the computa-
tional efficiency significantly.

• We show that MPC, applied on velocity level, as done
in most related work, generates jerky trajectory profiles.
Therefore, we propose a PKC implementation on accel-
eration level to smooth the control signals.

II. RELATED WORK

[6] proposes a global redundancy control that minimizes
an integral performance index subject to differential IK. They
derive the first-order optimality conditions of the optimal
control problem and use an indirect shooting method to solve
the resulting two-point boundary value problem. [7] adopts
the approach in [6] and decouples the canonical differential
equations of the first-order optimality conditions. They apply
Pontryagin’s minimum principle, to boil down the optimal
control problem to an unconstrained minimization of the
Hamiltonian. [7] uses a conjugate gradient approach to solve
the latter. They demonstrate the advantages of the global
approach compared to ASC. For long trajectories and robots
with a high number of degrees of freedom (DoF), the compu-
tational effort to solve the MPC is not negligible. To ensure
real-time capability, [8] defines the maximum time δmax to
solve the optimization. A MPC cycle starting at time t solves
the optimization and the optimal control input computed in
the previous cycle is used for the real-time control cycle until
t+δmax. [9] enhances the approach by a feedback controller
that compensates uncertainties at a faster sampling rate than

the MPC cycle for a more robust control. [7] proposes to
apply their optimization formulation within MPC. To avoid
discontinuous nullspace velocities, they propose a double
integrator for u. They define self-collision avoidance as the
secondary objective and validate the implementation on a
manipulator with nine DoF. The efficiency is limited, with a
real-time control cycle of 10 ms and a MPC horizon of 0.15 s
with only one iteration per optimization. [10] extends the
approach and uses different sample times for the MPC and
low-level control in a multi-threaded architecture. They use
third-order polynomials to interpolate the solution of the
former before applying it to a humanoid. [11] replaces the
differential IK and directly sets q̇ = u which violates the
primary goal to track the task space trajectory. Therefore,
the cost function, besides collision avoidance, incorporates
the task space error on position level. They use a direct
method to solve the MPC, a sampling rate of 0.1 s and a time
horizon of 1.0 s in an application on a mobile manipulator
with ten DoF. [5], similar to [7], implements a second-
order integrator from u to q to smooth the signals. They
neglect the nullspace projection in (1) and instead ensure
task space trajectory tracking in the cost function. A QP
problem results that is solved in 0.45 ms for a kinematic
with four DoF. [12] enhances this approach and uses B-
splines and Newmark time integration to compute smooth
trajectories within the MPC horizon. [13] proposes a QP-
based predictive IK approach that replaces the differential
kinematics by double integrators that directly apply u as
reference joint accelerations. The task space error on velocity
level is incorporated in the cost function. The advantage of
the presented QP-based predictive IK approaches is that they
are real-time capable. However, they implement task space
trajectory tracking within the cost function which limits
accuracy. Further, QP implementations prevent more general
nonlinear objectives, e.g. required for collision avoidance.

III. PROPOSED METHOD

Our PKC uses the MPC formulation given in (3), which is
based on [6] extended by inequality constraints for the joint
limits that we set symmetric for simpler notification. Further,
the joint states at the beginning of a time horizon t0 with
given horizon duration TPKC are known according to (3c).
fIK are the first- or second-order differential IK according
to (1) or (2) respectively.

min
u(t)

L(q,u) =

∫ t0+TPKC

t0

l(q,u) dt (3a)

s. t.: fIK : w, ẇ,wd, ẇd, ẅd,u, q 7→ q̇, q̈ (3b)
q(t0) = q1 (3c)

|q| ≤ qmax; |q̇| ≤ q̇max; |q̈| ≤ q̈max (3d)

To derive a most efficient PKC implementation, we bench-
mark three state-of-the-art numerical optimal control ap-
proaches and thereby derive their analytical gradients: direct
collocation, direct shooting and indirect gradient method.
The two former transcribe the infinite dimensional problem
in (3) to the finite dimensional nonlinear program (NLP)
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in (4) for which we use state-of-the-art NLP solvers. With a
trapezoidal integration, we approximate L with a time step
size hPKC that discretizes TPKC into NPKC time steps. The
constraints (4b-4c) and the optimization variable x depend
on the transcription method and are outlined in the following.

min
x

φ(x) =
1

2
hPKC

NPKC−1∑
k=1

(lk + lk+1) (4a)

s. t.: c(x) = 0 (4b)
g(x) ≤ 0 (4c)

Note that regardless of the transcription method, we initialize
the optimization variable x based on the ASC solution.

A. Direct Transcription on Velocity Level

In this subsection, we present direct methods to solve (3)
on velocity-level. That is, we use (1) in (3b).

a) Direct Collocation with Analytical Gradients: In
collocation methods both the state and the control are fully
discretized and used as optimization variables. Applying this
approach on velocity level and considering (3c), gives the
following optimization vector:

x = [uT
1 · · · uT

NPKC︸ ︷︷ ︸
ûT

qT2 · · · qTNPKC︸ ︷︷ ︸
q̂T

]T (5)

Due to the collocation approach lk = l(uk, qk) is only a
function of the current control input and joint configuration
and independent of other time steps than k. Thus, the follow-
ing derivation of the analytical gradient of the optimization
function holds:

∂φ(x)

∂(û, q̂)
=
hPKC

2

NPKC−1∑
k=1

(
∂lk

∂(û, q̂)
+

∂lk+1

∂(û, q̂)

)
(6a)

∂lk
∂(û, q̂)

=

[
0T · · · ∂lk

∂(uk, qk)
· · · 0T

]
(6b)

The respective derivatives of l w.r.t. qk and uk depend on the
chosen secondary objectives, which are given in Section IV.
Similar to the discretization of the cost integral in (4a), we
use a trapezoidal rule for the collocation constraints that
incorporate the differential IK of (3b). Thus, (4b) is defined
as follows:

c(x) =

 · · ·
qk − qk+1 +

1
2hPKC(fIK,k + fIK,k+1)
· · ·

 (7)

Similar to the optimization function,
ck(uk, qk,uk+1, qk+1) only depends on the current
and next time step and a sparse Jacobian w.r.t. x results.
On velocity level, considering (1), the analytical Jacobian
of the collocation constraints (7) at time step k are defined
as follows:

∂ck
∂uk

=
1

2
hPKC

∂ fIK,k

∂uk

with
∂ fIK,k

∂uk

=N(qk) (8)

∂ck
∂qk

= I +
1

2
hPKC

∂ fIK,k

∂qk
(9)

The local derivatives ∂ fIK,k
∂qk

=

[
∂ fIK,k
∂qk,1

· · · ∂ fIK,k
∂qk,Nq

]
in (9)

are computed column-wise for a robot with Nq joints (note
that the subscript k, indicating the time step, is dropped for
readability) [7]:

∂ fIK

∂qi
=
∂J#

w

∂qi
ẇd,eff + J#

w

∂ẇd,eff

∂qi
+
∂N

∂qi
u (10a)

∂J#
w

∂qi
=

(
∂Jw

∂qi

)T (
JwJ

T
w

)−1

− JT
w

[(
JwJ

T
w

)−1

(
∂Jw

∂qi
JT

w + Jw

(
∂Jw

∂qi

)T
)(

JwJ
T
w

)−1
]

(10b)

∂N

∂qi
= −

(
∂J#

w

∂qi
Jw + J#

w

∂Jw

∂qi

)
(10c)

We use a finite forward difference approximation for ∂ẇd,eff

∂q
in (10a) since the incorporated drift compensation in ẇd,eff

includes the task space error on position level. The rotational
component is formulated with quaternions and there is no
analytical gradient derivation for this term.

(4c) ensures the actuator limits according to (3d). The
Jacobian of the position level constraint is straightforward
as it directly depends on the optimization vector, i.e. q̂.
The Jacobian of the velocity level constraint has already
been derived in (8) and (9) as q̇k = fIK(wk, ẇk,uk, qk).
The joint accelerations are obtained using central differences
for interior points and forward/backward differences on the
edges and the corresponding Jacobian is straightforward by
exploiting the velocity constraint Jacobian.

The derived gradient information is involved and incorrect
implementations badly influence the solution of the nonlinear
optimization [14]. Therefore, we compared our analytical de-
rived gradients to a centered finite difference approximation
with a step size of 1e−6. A relative error of less than 8e−8
for the optimization derivative and of less than 6e−7 for
the constraint derivatives proves the correct formulation and
implementation of the gradients.

Note that hPKC is different to the time step of the real-
time low-level control hRT (see Fig. 1). Therefore, we use a
similar method to [15] to interpolate the NLP solution and to
obtain the control values within the time t ∈ [tk, tk+hPKC ]:

u(t) ≈ uk +
uk+1 − uk

tk+1 − tk
(t− tk) (11a)

q̇(t) ≈ fIK,k +
fIK,k+1 − fIK,k

tk+1 − tk
(t− tk) (11b)

q(t) ≈ qk + fIK,k(t− tk) +
fIK,k+1 − fIK,k

2(tk+1 − tk)
(t− tk)2

(11c)

b) Direct Shooting with Analytical Gradients: In con-
trast to the collocation method, the optimization variables
for the shooting method consists of the nullspace controls
only, i.e. x = û. The joint positions q̂ are no independent
optimization variables, but depend on û. We use an Euler
forward integration to simulate the system:

qk+1 = qk + hPKC fIK,k(qk,uk) (12)
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(12) implicitly fulfills the collocation constraint in (7), which
eliminates (4b). Every uk influences the consecutive joint
configurations qk+1 . . . qNPKC

. To compute the analytical
gradients of the optimization objective and the constraints,
the following gradient is required:

∂qk
∂û

=

[
∂qk
∂u1

· · · ∂qk
∂uk−1

∂qk
∂uk

· · · ∂qk
∂uNPKC

]
=

[
∂qk
∂u1

· · · ∂qk
∂uk−1

0 · · · 0

] (13)

According to [16], we use the sensivity differential equa-
tion method to compute qS = ∂ q̂

∂û , i.e. the sensivity of q̂ w.r.t.
û. A direct relation between q and u is not there, however,
fIK defines the relation between q̇ and u and thus we are able
to compute the sensivity of q̇ w.r.t. u, i.e. q̇S = ∂ ˙̂q

∂û = ∂ fIK
∂û .

According to (12), the sensivity of a time step k, qSk, is
determined by a forward integration of q̇Sk as given in (14).
The initial value qS1 = ∂q1

∂û is 0.

qSk+1 = qSk + hPCK q̇Sk

= qSk + hPCK

[
∂ fIK

∂qk
qSk +

∂ fIK

∂uk

∂uk

∂û

]
(14)

The gradients of ∂ fIK
∂qk

are given in (10a) and ∂uk

∂û is straight-
forward:

∂uk

∂û
=

[
∂uk

∂u1

· · · ∂uk

∂uk

· · · ∂uk

∂uNPKC

]
= [ 0 · · · I · · · 0 ]

(15)

The derived sensivity qSk simplifies the formulation of the
gradient of the objective function. (6a) still holds, however,
the partial derivative w.r.t. q̂ vanishes and ∂lk

∂uk
is given by:

∂lk
∂û

=
∂lk
∂qk

qSk +
∂lk
∂uk

∂uk

∂û
(16)

The actuator constraints (4c) directly depend on q and q̇
and therefore ∂g

∂û is composed of qSk for the position con-
straint and q̇Sk for the velocity constraint. The acceleration
constraint is computed identically to the collocation method.
Again, the gradient formulation is straightforward.

B. Direct Transcription on Acceleration Level

The computation on acceleration level, i.e. using (2)
in (3b), is similar to the computation on velocity level.
However, instead of the trapezoidal integration, we use the
second-order Newmark scheme to discretize the differential
IK on acceleration level. Note that for the direct collocation
on acceleration level, the optimization vector is given by
x = [ûT q̂T ˙̂qT ]T . For the direct shooting method on
acceleration level, the sensitivities are derived as:

q̈Sk =
∂ fIK

∂qk
qSk +

∂ fIK

∂q̇k
q̇Sk +

∂ fIK,k

∂uk

∂uk

∂û
(17a)

q̇Sk+1 = q̇Sk + hPKC q̈Sk (17b)

qSk+1 = qSk + hPKC q̇Sk +
1

2
h2PKC q̈Sk (17c)

C. Indirect Gradient Method

With the derived analytical gradients, we are able to
implement the indirect conjugate gradient approach of [7].
For details, we refer to [7] and we only outline the main
steps here. In contrast to the direct approaches, the first-order
optimality conditions for (3) are derived instead of transcrib-
ing it to a NLP. Therefore, the Hamiltonian H(q,u,λ) is
formulated in which λ are the Lagrangian multipliers that
describe the costate variables. With boundary condition (3c)
and assuming a free final state for q, i.e. λ(t0+TPKC) = 0,
the first-order optimality conditions are decoupled:

H(q,u,λ) = l(q,u) + λT fIK(q,u) (18)

q̇ =

(
∂H

∂λ

)T

= fIK(q,u) (19)

λ̇ = −
(
∂H

∂q

)T

= −
(
∂l

∂q

)T

−
(
∂ fIK

∂q

)T

λ (20)

Since the optimal control trajectory should minimize the
Hamiltonian and u is unconstrained, the following additional
condition must hold:

0
!
=

(
∂H

∂u

)T

=

(
∂l

∂u

)T

+

(
∂ fIK

∂u

)T

λ (21)

Starting from an initial guess for u, ∂H
∂u is used to determine

the search direction for the update of u to iteratively mini-
mize the Hamiltonian. We discretize the problem formulation
with the same time step as for the direct methods [16], i.e.
hPKC . To summarize, the optimal nullspace controls u are
obtained by the following iterative approach:

1) Initial guess u0.
2) Euler forward integration of q using (19) and (3c).
3) Euler backward integration of λ using (20) and
λ(t0 + TPKC) = 0.

4) Evaluation of the termination condition, i.e. the cost
decrease of L(q,u) w.r.t. the previous iteration. Ter-
minate, if condition fulfilled.

5) Calculate step direction s for the update of u with (21)
and the conjugate gradient approach.

6) Calculate step size α for the update of u with the
Armijo rule.

7) Update: u 7→ u+ αs.

IV. RESULTS

Before implementing the PKC in our C++ framework for
the FRANKA EMIKA robot, we did a simulation benchmark
of the approaches proposed in Section III to derive the most
efficient approach. We implemented a planar manipulator
with four DoF (see Fig. 2) in MATLAB that we simulate
on a 64-bit Windows 10 PC with an Intel i7-9700K CPU at
3.6 GHz and 16 GB RAM. The task space trajectorywd(t) is
a point-to-point trajectory with quintic time scaling. We use
the interior-point solver of MATLAB for the NLP resulting
from the direct shooting and direct collocation approaches. In
a preliminary study the interior-point solver performed better
than the MATLAB implementation of a sequential quadratic
programming solver w.r.t. computation time. However, we
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MPC
ASC
RMRC

(a) t = 0 s. (b) t = 1.75 s. (c) t = 2.55 s. (d) t = 3.75 s.
(e) Collision avoidance cost.

Fig. 2. Collision avoidance evaluation scenario. Fig. 2a-2d show the motion from top to down computed with different IK schemes. The global solution
and the MPC solution result in the same motion and only the MPC approach is shown. Fig. 2e shows the collision avoidance cost over time for the four
approaches.

TABLE I
AVERAGE COMPUTATION TIME AND STANDARD DEVIATION FOR THE

DIRECT TRANSCRIPTION METHODS ON VELOCITY LEVEL

Analytical Forward Differences
Direct Shooting 10.96± 0.05 s 691.01± 5.66 s
Direct Collocation 20.57± 0.06 s 1366.20± 7.16 s

did not investigate or optimize the performance of the solvers
for specific problem formulations. There might be specif-
ically suited nonlinear optimization solvers for collocation
methods that result in big sparse matrices or for shooting
methods that result in small dense matrices.

As mentioned, hPKC is larger than the time step for
the simulation and later the real-time control that we both
denote with hRT (see Fig. 1a). The PKC may be applied for
the whole trajectory, i.e. TPCK is defined as the trajectory
duration, or in the sense of MPC, i.e. TPCK is a predefined
horizon length. In the following, we denote the former
approach with global and the latter with MPC. In the case
of MPC, we enforce continuity by introducing an additional
constraint, that forces the first control of the current horizon
to be equal to the last control of the previous horizon.

A. Efficiency due to Analytical Gradients

Table I shows the average computation time and its
standard deviation for the direct transcription methods on
velocity level to solve the scenario in Fig. 2. Thereby, we use
the global approach and we compare an implementation that
uses the analytically derived gradients of Section III with an
implementation that approximates the gradients numerically
with forward differences. The collision avoidance cost lCA is
given in the Appendix and we refer to [7] for its derivation.
We did five simulation runs each and the number of iterations
is set to five. The discretized NLP has NPKC = 39 time
steps. Solving the NLP with the analytically derived gradi-
ents in Section III decreases the computation by 98.41 % for
the shooting method and 98.49 % for the collocation method
which demonstrates the requirement for analytical gradients
in real-time applications.

Note that despite the analytically derived gradients the

computation times are still considerably long for the given
scenario. This is due to the implementation of the collision
detection module for which we use the MATLAB Robotics
System Toolbox. It implements the Gilbert-Johnson-Keerthi
(GJK) distance algorithm that is less efficient than other
approaches e.g. based on simplified geometries like swept
sphere volumes.

B. Benchmark of Optimal Control Approaches
We determine the most efficient optimal control approach

in a benchmark on velocity level. Therefore, we generate
50 random task space trajectories. The optimization objec-
tive incorporates joint limit avoidance lJla, comfort pose
maintenance lCmf and a control penalty lu with the formula
given in the Appendix: l(q,u) = 4lJla + 2lCmf + lu. Note
that the indirect gradient method is unconstrained. Thus,
to provide a fair comparison, for this scenario (3d) is also
removed for the direct methods and instead lJla is added
to the cost function. We compute the global solution for
each trajectory and evaluate the cost improvement relative
to the local redundancy resolution Resolved Motion Rate
Control (RMRC) proposed in [17]. This method is standard
for redundant robots and applications without secondary
objectives: q̇ = J#ẇd,eff :

Limpr =
LPKC − LRMRC

LRMRC
(22)

Further, we define the following relative trajectory computa-
tion time Trel, as long trajectories require more computation
time than short ones:

Trel =
Computation Time
Trajectory Duration

(23)

Table II shows the average and standard deviation for Limpr

and Trel for the 50 task space trajectories. All methods lead
to similar results for Limpr, which is expected, as all method
should provide the optimal solution. However, w.r.t. Trel the
shooting method shows the best performance. In 58% of the
trajectories, the shooting method was the fastest, the collo-
cation method in 26% and the indirect method in 16%. The
investigations show the superior performance of the direct
shooting method that we choose for the implementation of
the PKC.
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TABLE II
COMPARISON OF GLOBAL OPTIMIZATION WITH DIRECT AND INDIRECT

METHODS ON VELOCITY LEVEL ACCORDING TO (22) AND (23)

Collocation Shooting Indirect
Limpr [%] −23.4± 19.35 −23.6± 19.49 −23.0± 19.32
Trel [-] 3.06± 1.68 2.57± 1.01 4.24± 1.96

Fig. 3. Joint trajectories of the fourth joint for different IK schemes. Red
patches visualize the symmetrically defined actuator limits.

C. Cost Improvement with the PKC

We demonstrate the benefit of our PKC in a benchmark
with the local redundancy resolution schemes RMRC [17]
and ASC [2] (see Section I) on velocity level. We use the
same scenario as in Section IV-A. We compute a global
solution with PKC and a MPC solution. In the latter case,
we set TPKC = 1 s, hPKC = 0.1 s and hRT = 0.01 s. The
results are given in Fig. 2. Since RMRC does not include a
secondary objective for collision avoidance, it passes through
the obstacle. ASC can avoid the obstacle, but only reacts
locally, when the manipulator is already near the obstacle.
PKC detects the approaching obstacle early and therefore
avoids it with great distance. Both PKC approaches (global
and MPC) give similar results and both outperform ASC,
which has higher costs.

Fig. 3 shows the corresponding joint trajectories for the
fourth joint. The profiles show the early reaction of PKC. The
global PKC approach reacts from the beginning. The MPC
approach reacts from approximately t = 1 s on, i.e. when the
obstacle is detected within the prediction horizon. The local
ASC approach leads to a late reaction with discontinuous

Fig. 4. Comparison of smoothing approaches. Collision avoidance cost is
shown at the top and joint velocity profile of the fourth joint at the bottom.

velocity and acceleration. Though superior to ASC, PKC
encounters high joint velocity values to avoid the obstacle
and is not smooth which is discussed in the following.

D. Smooth Trajectories with Acceleration Level PKC

The limited smoothness of PKC is a consequence of
the linear interpolation of u when computing the reference
control values in (11). We investigated two approaches
to smooth the trajectory. The first approach, the damped
velocity approach, adds additional damping lu to the opti-
mization objective with the formula given in the Appendix:
l(q,u) = 20lCA + 0.1lu. The second approach applies PKC
on acceleration level as proposed in Section III. Fig. 4 shows
the trajectory profiles for q4 for the three approaches. With
the damped velocity approach and the PKC on acceleration
level, the robot keeps a smaller distance to the obstacle,
since a further term is considered in the cost. Nevertheless,
the behavior is still superior to ASC. The damped approach
reduces the velocity over the whole trajectory, even though,
the linear interpolated control still shows limited smoothness.
Applying PKC on acceleration level gives the best result.

E. Experiments on a FRANKA EMIKA Robot

We implemented the PKC in our C++ control frame-
work for a FRANKA EMIKA robot that runs on 64-bit
Ubuntu 18.04 using a 12-core Intel i7-7800K CPU at
3.7 GHz with 32 GB RAM. We use the NLopt library [14]
to solve the nonlinear optimizations. However, NLopt does
not provide an interface for a standard interior-point solver
and therefore, in contrast to the MATLAB simulation, we
use a sequential quadratic programming solver for the C++
framework.

We use the multi-threaded implementation shown in
Fig. 1b to compute the PKC horizon and the real-time control
in parallel. Similar to [9], the respective control sequence is
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(a) Initial Config. (b) RMRC (c) ASC (d) PKC
(e) Manipulability measure.

Fig. 5. Fig. 5a shows the initial configuration, which is the same for all three IK-scheme. Fig. 5e shows the manipulability measure over time.

optimized one PKC cycle ahead in a different thread than
the real-time control. In order to initialize the optimization a
prediction of its initial state has to be made. This is done by
measuring the current state and performing an Euler forward
integration using the currently applied control.

We use the maximization of the manipulablity according
to [18] as the application scenario. The formula for the
cost l = −lMM is given in the Appendix. We use the
PKC on velocity level with the MPC approach. Thereby,
we solve a time horizon of TPKC = 1.5 s with a step
size of hPKC = 0.1 s. In all MPC cycles, the optimization
was finished before the next cycle started which satisfies the
real-time requirement. Fig. 5e compares PKC, RMRC and
ASC for the given scenario. Between t = 3.5 − 4 s, RMRC
encounters a point with low manipulability, i.e. close to a
singular configuration. ASC reacts locally, which allows only
a slight improvement of the manipulablity. PKC is able to
detect the point of low manipulablity as soon as it is within its
receding horizon, i.e. 1.5 s beforehand. Thus, PKC increases
the manipulablity measure significantly, outperforming the
local schemes. The improvement of the manipulabilty is
achieved by bending the manipulator’s elbow. The videos
of the evaluation scenarios in Fig. 2 and 5 are given at:
https://youtu.be/8_OktWSjm68.

V. CONCLUSIONS

We derived an efficient implementation for our PKC based
on a benchmark of three optimal control approaches - direct
shoothing, direct collocation and indirect gradient method -
and based on the derivation of the analytical gradients.
Our implementation is a generic formulation for MPC of
redundant kinematic structures. We showed the applicability
to a wide range of optimization functions given in the
Appendix. As for other nullspace projection approaches,
objectives like collision avoidance are only optimized in
the nullspace of an already computed task space trajectory.
Therefore, infeasible solutions might be computed e.g. when
the end-effector reference trajectory intersects an obstacle.
Other techniques like generalized hierarchical control with
priority transitions and task insertions/deletions as proposed
in [19] might be used to overcome this issue.

In contrast to related work, we do not rely on a QP-
based approach and thus, we are able to solve nonlinear
objectives like collision avoidance or manipulability. Further,
related work uses double integrators to smooth the obtained

trajectory profiles. We derive the problem formulation also
on acceleration level and demonstrate its benefit. We present
the direct shooting method as the most efficient optimization
approach in redundancy resolution. For future work, it might
be interesting to investigate the performance of a multiple
shooting method for the PKC. They are often proposed
superior to single shooting in literature as changes early in
the trajectory do not propagate to the end of the trajectory
and parallel computing might speed up the computation time.

Our proposed PKC for redundancy resolution outperforms
state-of-the-art local IK schemes w.r.t. secondary objectives
and smoothness. Real-time capability is a key aspect in MPC.
With our proposed multi-threaded computation approach,
we achieve real-time capability which we demonstrate in
experiments with a horizon length of 1.5 s and a step size
of 0.1 s.

APPENDIX

Optimization objectives used for the evaluation of the
PKC. The gradients of lJla, lCmf and lu w.r.t. q and u, re-
quired for the derivations in Section III, are straightforward.
Note that we only give lJla for the upper limit and lsoft
defines a soft joint limit. The lower limits are accordingly.
di,j is the distance between robot link i and obstacle j. For
the gradients of lCA and lMM , we refer to [20] and [21]
respectively.

lJla =

Nq∑
i=1

1

2

(qi −
qa︷ ︸︸ ︷

(qmax,i − qsoft))2

q2soft
if qi > qa (24)

lCmf =
1

2
(q − qCmf )

T (q − qCmf ) (25)

lCA =

Nb∑
i=1

No∑
j=1

(da − di,j(q))3 if di,j(q) < da (26)

lu =
1

2
uTu (27)

lMM =

√
det(JJT ) (28)
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