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Abstract
In this paper, the analytical derivatives of flexible multibody dynamics with the floating
frame of reference formulation are derived in a new way using the invariants and their
sensitivities. This enables the decoupling of the sensitivity analysis of flexible multibody
dynamics from the finite-element solver and guarantees high accuracy and efficiency of the
sensitivity computations. The invariants are shown with both consistent and lumped mass
approaches. The latter allows generality towards the formulation of a finite-element type,
including beams, shells, and solids. The expressions are fully derived with lumped masses,
showing for the first time the compensation term of inertia due to the non-consideration of
the mass distribution with this approach. It is then shown that the expressions of the system
parameters in the lumped case with the newly introduced inertia compensation term corre-
spond to the general case, and, therefore, the derived approach and equations are of general
nature. Crucial for the decoupling of the sensitivity analysis are the analytical derivatives
of the system parameters that contain the derivatives of the invariants and whose analytical
expressions are derived and provided here for the first time. The partial derivatives arise
in the sensitivity analysis with both the direct differentiation method and the adjoint vari-
able method, and the former is shown here. In addition, the partial derivatives arise in the
Jacobian matrix of the nonlinear solver for the transient solution of flexible multibody sys-
tems.
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Nomenclature
� zeroth-order tensor or scalar� first-order tensor or vector
� second-order tensor or matrix
� third-order tensor or 3D matrix

� fourth-order tensor or 4D matrix

�̇ first time derivative
�̈ second time derivative
� expressed in floating coordinates�̃ skew symmetric matrix
∇� total derivative of � w.r.t. x
∂ � partial derivative of � w.r.t. x�∂� partial derivative of � w.r.t. ��J� Jacobian of � w.r.t. �
d damping matrix
e unit vector
e unit matrix (identity matrix)
k stiffness matrix
m mass
m mass matrix
q generalized position vector
q̇ generalized velocity vector
q̈ generalized acceleration vector
r position vector to inertial frame expressed in intertial coordinates
t time
u position vector to floating frame expressed in floating coordinates
u position vector to floating frame expressed in inertial coordinates
x vector of design variables
A rotation matrix
B Boolean matrix
F (�) function of �
G angular velocity matrix that relates ω and θ̇

I invariant (inertia shape integral)
K kinetic energy
Qe generalized external force vector
Qv quadratic velocity force vector

S matrix of shape functions expressed in floating coordinates
V volume
ζ vector of modal coordinates
θ vector of orientation coordinates
λ vector of Lagrange multipliers
ρ density
τ position vector of floating frame
χo center of mass of undeformed body
ω angular velocity vector

o inertia tensor of undeformed body
� vector of kinematic constraints
qJ� Jacobian matrix of kinematic constraints
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� modal matrix expressed in floating coordinates

1 Introduction

In this paper, the analytical sensitivities for flexible multibody dynamics with the floating
frame of reference formulation are derived in a new way using invariants and their sensi-
tivities. Sensitivity analysis is especially relevant for design optimization. Engineers aim
for the best possible design for given requirements, and to enable this, design optimiza-
tion is an algorithm-based design tool to achieve superior engineering designs. Structural
optimization, defined by design optimization in concert with structural analysis via finite-
element analysis, is well established, e.g., [1, 13, 20]. Design optimization of multibody
systems goes back at least to [2, 3, 14, 15], and recent developments of design optimization
with flexible multibody systems are reviewed in [12]. Gradient-based algorithms enable effi-
cient design optimization despite the high computational effort related to flexible multibody
dynamics [12, 31]. The driving motor is the efficient evaluation of gradients or design sensi-
tivities. Available methods for design sensitivities include numerical and analytical methods
and are reviewed in [19]. Because of their high accuracy and efficiency, analytical meth-
ods are most suitable for flexible multibody systems, and these include direct differentiation
[6, 9, 25] and the adjoint variable method [4, 16, 22, 23].

The floating frame of reference formulation (FFRF) describes flexible bodies by the po-
sition and orientation of a reference frame and the flexible deformations [27]. The system
vectors and matrices of FFRF are based on constant “ingredients”. Specifically, these in-
gredients are the inertia shape integrals, which are commonly referred to as invariants in
literature [7, 33, 35] and commercial software [8, 21]. It should be noted that these terms are
not tensor invariants, but instead invariant with respect to time, i.e., remain constant during
the dynamic simulation. The invariants, in turn, depend on the linear-elastic structural finite-
element model and allow for the decoupling of the finite-element solver and the multibody
solver. In this context, decoupling means the initial assembly of the finite-element model
and the invariants prior to the multibody simulation, which do not have to be calculated
again for a single design. The FFRF system parameters that require input from the finite-
element model are the linear elastic stiffness matrix (for linear-elastic material models),
the highly nonlinear mass matrix, and the highly nonlinear quadratic velocity force vec-
tor. Material damping can be modeled with proportional damping and thus also depends on
the finite-element model. In the following, the finite-element-dependent system parameters
containing the mass, damping, and stiffness matrices as well as the quadratic velocity force
vector are referred to as structural system parameters. The generalized external force vector
instead is loading specific and does not depend on the finite-element model. The kinematic
constraints depend on the joint description and are also independent of the finite-element
model.

To avoid the evaluation of the inertia shape integrals in the conventional FFRF, commer-
cial software packages use lumped mass approaches to compute the invariants [8, 21, 27].
The evaluation of the invariants with the lumped mass approach is agnostic to the element
type, while the conventional FFRF using a consistent mass matrix requires a separate deriva-
tion of the inertia shape integrals for each element type. Another option is the so-called
nodal-based FFRF, where the evaluation of the inertia shape integrals is avoided all to-
gether [34, 36]. Because of the widespread use and the mentioned agnosticity to the finite-
element type, the lumped mass FFRF is used here. The derivation of the system parameters
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with the lumped mass approach is only partially shown in literature [27] and in the docu-
mentation of commercial software [8, 21] and therefore is provided here for the first time.
The generality of the lumped mass approach is given by the compensation terms of inertia
due to the non-consideration of the mass distribution with lumped masses, introduced here
for the first time. It is shown that the lumped mass approach is the general case and there-
fore the derived method and equations are of general nature. The sensitivity analysis and the
partial derivatives of the system parameters are based on the derived lumped mass approach
and are shown with the singularity-free and the widespread used Euler parameters but can
be extended to any orientation parametrization for generality.

In this work, the sensitivity analysis with respect to general design variables is of inter-
est. This is carried out with the direct differentiation method [12, 29, 31]. A semi-analytical
method for flexible multibody systems was introduced in [9], where the equations of motions
are differentiated analytically, and the partial derivatives of the system parameters are com-
puted numerically with forward differencing. To increase the accuracy and the efficiency of
the method, the present work expands the analytical differentiation by a further level. There-
fore, the partial derivatives of the system parameters depending on the finite-element model,
i.e. the mass matrix, the damping matrix, the stiffness matrix and the quadratic velocity force
vector are derived analytically and shown here for the first time. The analytical derivatives of
the system parameters guarantee both high efficiency and high accuracy. The partial deriva-
tives appear in the sensitivity analysis with the shown direct differentiation method and are
partially required for the adjoint variable method as well. Applications that require the eval-
uation of the partial derivatives of the system parameters in addition to the design sensitivity
analysis for design optimization include the uncertainty analysis and the Jacobian matrix of
the nonlinear solver for the transient solution of flexible multibody systems, regardless of
solving for positions, velocities or accelerations.

In the following, the equations of motion of flexible multibody systems are introduced,
and the system parameters and invariants of the floating frame of reference formulation
are fully derived with the lumped mass approach in § 2. In § 3, the equations of motion
are differentiated with respect to the design variables for the sensitivity analysis and with
respect to positions, velocities and accelerations for the Jacobians of the nonlinear solver. In
§ 4, the analytical expressions of the partial derivatives of the system parameters, derived in
§ 2 and required in § 3, are provided.

2 Equations of motion

The equations of motion of flexible multibody dynamics are given by the index-3
differential–algebraic equations,

mq̈ + d q̇ + k q + qJ�
T
λ = Qe + Qv, (1)

� = 0, (2)

where q is the vector of generalized positions, q̇ is the vector of generalized velocities, q̈ is
the vector of generalized accelerations, λ is the vector of Lagrange multipliers, m is the mass
matrix, d is the damping matrix, k is the stiffness matrix, � is the vector of kinematic con-
straints, qJ� is the Jacobian matrix of the kinematic constraint given by the partial derivative
of � w.r.t. q , Qe is the vector of generalized external forces, and Qv is the quadratic velocity
force vector. Symbols with one underline � denote a vector, symbols with two underlines� denote a matrix, and overdots denote the first �̇ and the second �̈ derivative w.r.t. time.
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In the following, the system parameters for the FFRF are derived. With FFRF, the most
complicated terms are the inertia forces, including the mass matrix that is nonlinear in posi-
tions, and the quadratic velocity force vector that is nonlinear in positions and velocities. The
complete derivation of these terms is shown with the widely used lumped mass approach as
used in commercial software, see, e.g., [8, 21]. This allows calculating the invariants by sums
instead of integrals that depend on the shape functions and therefore makes the calculation
of the invariants independent of the finite element type and formulation.

2.1 Definitions and preparations

The generalized coordinates with FFRF are given by the position coordinates τ and the
rotation coordinates θ of the reference frame and the flexible deformations of the body q f,
leading to the generalized position vector given by

q = [
τ T θT qT

f

]T
. (3)

In many applications, FFRF is used with the component mode synthesis (CMS) [5, 17, 18,
26] to limit the computational effort by reducing the degrees of freedom. The generalized
position vector of FFRF with CMS is given by

q ≈ [
τ T θT ζ T

]T
, (4)

where ζ are the modal coordinates associated with CMS, and the flexible deformation is
approximated by

q f ≈ � ζ, (5)

with the modal matrix � containing column-wise the component modes that usually include
eigenmodes and static modes of the flexible body. The overline on the symbols � denotes
that the coordinates of the quantity are expressed in the floating frame. The reduced coor-
dinates shown in (4) are considered as the general form of the generalized position vector
and will be used in the following. If no model reduction is used, the modal coordinates ζ are

replaced by the flexible coordinates q f and the modal matrix � is replaced by the identity
matrix e. The flexible coordinates are given by

q f =
[
· · · u

(j)

f

T
θ

(j)

f

T · · ·
]T

, (6)

with the flexible nodal translations u
(j)

f and the flexible nodal rotations θ
(j)

f of node j . The
flexible nodal translation of one node is obtained by

u
(j)

f = B
(j)
t q f, (7)

≈ �
(j)
t ζ , (8)

where Eq. (5) is used, and the translational modal matrix of the node j is given by

�
(j)
t = B

(j)
t �, (9)

and the translational Boolean matrix of the node j is defined by

B
(j)
t = [

0 0 · · · e 0 · · · 0 0
]
. (10)
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Fig. 1 Position coordinates on a flexible body with FFRF (colors online)

The flexible nodal rotations are obtained by

θ
(j)

f = B(j)
r q f, (11)

≈ �(j)
r ζ , (12)

where Eq. (5) has been used, and the rotational modal matrix of the node j is given by

�(j)
r = B(j)

r �, (13)

and the rotational Boolean matrix of the node j is defined by

B(j)
r = [

0 0 · · · 0 e · · · 0 0
]
. (14)

As shown in Fig. 1, the position vector r of the node j is given by

r(j) = τ + Au(j)
n , (15)

= τ + A
(
u(j)

o + u
(j)

f

)
, (16)

where A is the rotation matrix, and u
(j)
n is the nodal position of node j relative to the floating

frame expressed in floating coordinates consisting of the undeformed position u
(j)
o and the

flexible deformation u
(j)

f .
The translational velocity of the node j on a flexible body is given by the time derivative

of the position, leading to

ṙ (j) = τ̇ + Ȧ u(j)
n + Au̇

(j)

f , (17)

= τ̇ − Aũ(j)
n Gθ̇ + A�

(j)
t ζ̇ , (18)

=
[
e −Aũ

(j)
n G A�

(j)
t

]
⎡

⎣
τ̇

θ̇

ζ̇

⎤

⎦ , (19)

= L
(j)
t q̇, (20)
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where Ȧ u
(j)
n = −Aũ

(j)
n Gθ̇ is used as shown, e.g., in [27], ũ(j)

n is the skew-symmetric matrix

of the vector u
(j)
n , G is the angular velocity matrix expressed in floating coordinates that

relates the angular velocity of the floating frame to the time derivative of the orientation
parametrization ωo = Gθ̇ and in analogy to [33],

L
(j)
t = qJr

(j) = ∂r(j)

∂q
. (21)

A further differentiation w.r.t. time leads to the acceleration of node j on the flexible body

r̈ (j) = L̇
(j)
t q̇ + L

(j)
t q̈, (22)

where in analogy to [33],

L̇t =
[

0 −A
(
ω̃oũ

(j)
n G + ˙̃

u
(j)

f G + ũ
(j)
n Ġ

)
Aω̃o� t

]
. (23)

The angular velocity vector of the node j on a flexible body ω
(j)
n is given by

ω(j)
n = ωo + ω

(j)

f , (24)

= Gθ̇ + �(j)
r ζ̇ , (25)

=
[

0 G �
(j)
r

]
⎡

⎣
τ̇

θ̇

ζ̇

⎤

⎦ (26)

= L(j)
r q̇, (27)

where ω
(j)

f = θ̇
(j)

f is used, ωo is the angular velocity vector of the floating frame relative to
the inertial frame expressed in floating coordinates, ω

(j)

f is the flexible angular velocity of
node j relative to the floating frame expressed in floating coordinates, and

L(j)
r =

[
0 G �

(j)
r

]
. (28)

A further differentiation w.r.t. time leads to the angular acceleration of the node j on the
flexible body,

ω̇(j)
n = L̇(j)

r q̇ + L(j)
r q̈, (29)

where

L̇(j)
r =

[
0 Ġ 0

]
. (30)

2.2 Inertia forces

The kinetic energy K is given by a translational and a rotational contribution,

K = Kt + Kr, (31)
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and is approximated for the lumped mass approach by

Kt ≈ 1

2

nn∑

j=1

m(j)ṙ (j)T
ṙ (j), (32)

Kr ≈ 1

2

nn∑

j=1

ω(j)
n

T

(j)

n ω(j)
n , (33)

with the nodal mass m(j), the velocity vector of the node ṙ (j), the angular velocity of the node
ω

(j)
n and the nodal inertia tensor 


(j)
n . The translational contribution of the kinetic energy

Kt includes in ṙ (j) the translational and rotational contribution of the floating frame and
the flexible displacements of the node, see Fig. 1. The rotational contribution of the kinetic
energy Kr includes the contribution of the angular velocity of the node itself as shown in
Eq. (24) and Fig. 1.

The abstract derivation suggested by [33, 35] gives the following expressions for the
translational part

d

dt

(
∂Kt

∂q̇T

)

− ∂Kt

∂qT
= d

dt

⎛

⎝
nn∑

j=1

∂Kt

∂ṙ(j)

∂ṙ(j)

∂q̇

⎞

⎠

T

−
⎛

⎝
nn∑

j=1

∂Kt

∂ṙ(j)

∂ṙ (j)

∂q

⎞

⎠

T

, (34)

= d

dt

⎛

⎝
nn∑

j=1

m(j)ṙ (j)T
L

(j)
t

⎞

⎠

T

−
⎛

⎝
nn∑

j=1

m(j)ṙ (j)T d

dt

(
∂r(j)

∂q

)⎞

⎠

T

, (35)

=
nn∑

j=1

m(j) d

dt

(
L

(j)
t

T
L

(j)
t q̇

)
−

nn∑

j=1

m(j) d

dt

(
∂r(j)

∂q

)T

L
(j)
t q̇, (36)

=
nn∑

j=1

m(j)
(
L̇

(j)
t

T
L

(j)
t q̇ + L

(j)
t

T
L̇

(j)
t q̇ + L

(j)
t

T
L

(j)
t q̈

)
+

−
nn∑

j=1

m(j)L̇
(j)
t

T
L

(j)
t q̇, (37)

=
nn∑

j=1

m(j)L
(j)
t

T
L̇

(j)
t q̇ +

nn∑

j=1

m(j)L
(j)
t

T
L

(j)
t q̈, (38)

= −Qtran
v + mtran q̈. (39)

This leads to the mass matrix of the translational contribution

mtran =
⎡

⎣
mtran

tt mtran
tr mtran

tf

mtran
rr mtran

rf

sym. mtran
ff

⎤

⎦ , (40)

=
nn∑

j=1

m(j)L
(j)
t

T
L

(j)
t , (41)
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=
nn∑

j=1

m(j)

⎡

⎢⎢
⎣

e −Aũ
(j)
n G A�

(j)
t

G
T
ũ

(j)
n

T
ũ

(j)
n G −G

T
ũ

(j)
n

T
�

(j)
t

sym. �
(j)
t

T
�

(j)
t

⎤

⎥⎥
⎦ , (42)

and the quadratic velocity force vector of the translational contribution

Qtran
v =

⎡

⎣
Qtran

v,t

Qtran
v,r

Qtran
v,f

⎤

⎦ , (43)

= −
nn∑

j=1

m(j)L
(j)
t

T
L̇

(j)
t q̇, (44)

=
nn∑

j=1

m(j)

⎡

⎢⎢
⎢
⎣

−A
(
ω̃oω̃ou

(j)
n + 2ω̃ou̇

(j)

f − ũ
(j)
n Ġ θ̇

)

G
T
ũ

(j)
n

T
(
ω̃oω̃ou

(j)
n + 2ω̃ou̇

(j)

f − ũ
(j)
n Ġ θ̇

)

−�
(j)
t

T
(
ω̃oω̃ou

(j)
n + 2ω̃ou̇

(j)

f − ũ
(j)
n Ġ θ̇

)

⎤

⎥⎥
⎥
⎦

, (45)

=
nn∑

j=1

m(j)

⎡

⎢
⎢⎢
⎣

A
(
ω̃oũ

(j)
n ωo + 2 ˙̃

u
(j)

f ωo + ũ
(j)
n Ġ θ̇

)

−G
T
(
ω̃oũ

(j)
n

T
ũ

(j)
n ωo + 2ũ

(j)
n

T ˙̃
u

(j)

f ωo + ũ
(j)
n

T
ũ

(j)
n Ġ θ̇

)

(
eζ ⊗ ωo

)T
�̃

(j)
t

T
ũ

(j)
n ωo + 2�

(j)
t

T ˙̃
u

(j)

f ωo + �
(j)
t

T
ũ

(j)
n Ġ θ̇

⎤

⎥
⎥⎥
⎦

. (46)

Analogously to the translational part, following the abstract derivation suggested by [33,
35] gives the expressions for the rotational part,

d

dt

(
∂Kr

∂q̇T

)

− ∂Kr

∂qT
= d

dt

⎛

⎝
nn∑

j=1

∂Kr

∂ω
(j)
n

∂ω
(j)
n

∂q̇

⎞

⎠

T

−
⎛

⎝
nn∑

j=1

∂Kr

∂ω
(j)
n

∂ω
(j)
n

∂q

⎞

⎠

T

, (47)

= d

dt

⎛

⎝
nn∑

j=1

(

(j)

n ω(j)
n

)T
L(j)

r

⎞

⎠

T

−
⎛

⎝
nn∑

j=1

(

(j)

n ω(j)
n

)T ∂ω
(j)
n

∂q

⎞

⎠

T

, (48)

=
nn∑

j=1

d

dt

(
L(j)

r
T

(j)

n L(j)
r q̇

)
−

nn∑

j=1

(
∂ω

(j)
n

∂q

)T


(j)
n L(j)

r q̇, (49)

=
nn∑

j=1

(
L̇(j)

r
T

(j)

n L(j)
r q̇ + L(j)

r
T

(j)

n L̇(j)
r q̇ + L(j)

r
T

(j)

n L(j)
r q̈

)
+

−
nn∑

j=1

(
∂ω

(j)
n

∂q

)T


(j)
n L(j)

r q̇, (50)

=
nn∑

j=1

(

L̇(j)
r − ∂ω

(j)
n

∂q

)T


(j)
n L(j)

r q̇ +
nn∑

j=1

L(j)
r

T

(j)

n L̇(j)
r q̇+



V. Gufler et al.

+
nn∑

j=1

L(j)
r

T

(j)

n L(j)
r q̈, (51)

= −Qrot
v + mrot q̈, (52)

where the following partial derivatives have been used

∂ω
(j)
n

∂q
=

[
0 ∂ω

(j)
o

∂θ
0
]
. (53)

This leads to the mass matrix of the rotational contribution

mrot =
⎡

⎣
mrot

tt mrot
tr mrot

tf

mrot
rr mrot

rf

sym. mrot
ff

⎤

⎦ , (54)

=
nn∑

j=1

L(j)
r

T

(j)

n L(j)
r , (55)

=
nn∑

j=1

⎡

⎢
⎣

0 0 0

G
T



(j)
n G G

T



(j)
n �

(j)
r

sym. �
(j)
r

T



(j)
n �

(j)
r

⎤

⎥
⎦ , (56)

and the quadratic velocity force vector of the rotational contribution

Qrot
v =

⎡

⎣
Qrot

v,t

Qrot
v,r

Qrot
v,f

⎤

⎦ , (57)

= −
nn∑

j=1

(

L̇(j)
r − ∂ω

(j)
n

∂q

)T


(j)
n L(j)

r q̇ −
nn∑

j=1

Lr
T
(j)

n L̇(j)
r q̇, (58)

= −
nn∑

j=1

⎡

⎢⎢
⎣

0
(
Ġ − ∂ω

(j)
o

∂θ

)T



(j)
n

(
ωo + �

(j)
r ζ̇

)
+ G

T



(j)
n Ġ θ̇

�
(j)
r

T



(j)
n Ġ θ̇

⎤

⎥⎥
⎦ . (59)

Assembling the translational and rotational contribution leads to the full FFRF mass
matrix

m =
⎡

⎣
mtt mtr mtf

mrr mrf

sym. mff

⎤

⎦ , (60)

= mtran + mrot, (61)

=
nn∑

j=1

⎡

⎢
⎢
⎣

m(j)e −Am(j)ũ
(j)
n G Am(j)�

(j)
t

G
T
(
m(j)ũ

(j)
n

T
ũ

(j)
n + 


(j)
n

)
G −G

T
(
m(j)ũ

(j)
n

T
�

(j)
t − 


(j)
n �

(j)
r

)

sym. m(j)�
(j)
t

T
�

(j)
t + �

(j)
r

T



(j)
n �

(j)
r

⎤

⎥
⎥
⎦ ,

(62)
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where the node-dependent terms are isolated with the expression shown in [35] for

ũ(j)
n = ũ(j)

o + ũ
(j)

f , (63)

= ũ(j)
o + �̃

(j)
t

(
ζ ⊗ e

)
, (64)

where �̃
(j)
t contains the skew-symmetric matrices of the columns of �

(j)
t [35], ⊗ denotes

Kronecker’s product, and e is the identity matrix.
The term mtt is given by

mtt =
nn∑

j=1

m(j)e, (65)

= me, (66)

where the total mass of the body m is obtained by

me =
nn∑

j=1

m(j)e, ∈R
3×3. (67)

The term mtr is given by

mtr = −A

nn∑

j=1

m(j)ũ(j)
n G, (68)

= −A

nn∑

j=1

m(j)
(
ũ(j)

o + �̃
(j)
t

(
ζ ⊗ e

))
G, (69)

= −A

nn∑

j=1

(
m(j)ũ(j)

o + m(j)�̃
(j)
t

(
ζ ⊗ e

))
G, (70)

= −A
(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
G, (71)

where the center of mass of the undeformed body w.r.t. the floating frame χo, and its skew-
symmetric matrix χ̃o are given by

χo = 1

m

nn∑

j=1

m(j)u(j)
o , ∈R

3×1, (72)

χ̃o = 1

m

nn∑

j=1

m(j)ũ(j)
o , ∈R

3×3, (73)

and the invariants Iψ and Iψ̃ are defined by

Iψ =
nn∑

j=1

m(j)�
(j)
t , ∈R

3×nm , (74)
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Iψ̃ =
nn∑

j=1

m(j)�̃
(j)
t , ∈R

3×3nm . (75)

The term mtf is given by

mtf = A

nn∑

j=1

m(j)�
(j)
t , (76)

= AIψ, (77)

where the invariant Iψ has already been defined.
The term mrr is given by

mrr = G
T

nn∑

j=1

(
m(j)ũ(j)

n
T
ũ(j)

n + 
(j)
n

)
G, (78)

= G
T

nn∑

j=1

(
m(j)

(
ũ(j)

o + �̃
(j)
t

(
ζ ⊗ e

))T (
ũ(j)

o + �̃
(j)
t

(
ζ ⊗ e

))
+ 
(j)

n

)
G, (79)

= G
T

nn∑

j=1

(
m(j)ũ(j)

o
T
ũ(j)

o + 
(j)
n + ũ(j)

o
T
�̃

(j)
t

(
ζ ⊗ e

)
+

+
(
ζ ⊗ e

)T
�̃

(j)
t

T
ũ(j)

o +
(
ζ ⊗ e

)T
�̃

(j)
t

T
�̃

(j)
t

(
ζ ⊗ e

))
G, (80)

= G
T
(


o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
G, (81)

where the inertia tensor of the undeformed body expressed in the floating frame is given by


o = 
o,t + 
o,r, (82)

=
nn∑

j=1

m(j)ũ(j)
o

T
ũ(j)

o +
nn∑

j=1


(j)
n , ∈R

3×3, (83)

and the invariants I ũoψ̃ and Iψ̃ψ̃ are defined by

I ũoψ̃ =
nn∑

j=1

m(j)ũ(j)
o

T
�̃

(j)
t , ∈R

nm×3nm , (84)

Iψ̃ψ̃ =
nn∑

j=1

m(j)�̃
(j)
t

T
�̃

(j)
t , ∈ R

3nm×3nm . (85)

The term mrf is given by

mrf = −G
T

nn∑

j=1

(
m(j)ũ(j)

n
T
�

(j)
t − 
(j)

n �(j)
r

)
, (86)
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= −G
T

nn∑

j=1

(
m(j)

(
ũ(j)

o + �̃
(j)
t

(
ζ ⊗ e

))T
�

(j)
t − 
(j)

n �(j)
r

)
, (87)

= −G
T

nn∑

j=1

(
m(j)ũ(j)

o
T
�

(j)
t +

(
ζ ⊗ e

)T
m(j)�̃

(j)
t

T
�

(j)
t − 
(j)

n �(j)
r

)
, (88)

= −G
T
(
I ũoψ +

(
ζ ⊗ e

)T
Iψ̃ψ

)
, (89)

where the invariants I ũoψ and Iψ̃ψ are defined by

I ũoψ = I ũoψ,t − I ũoψ,r, (90)

=
nn∑

j=1

m(j)ũ(j)
o

T
�

(j)
t −

nn∑

j=1


(j)
n �(j)

r , ∈R
3×nm , (91)

Iψ̃ψ =
nn∑

j=1

m(j)�̃
(j)
t

T

�
(j)
t , ∈ R

3nm×nm . (92)

The term mff is given by

mff =
nn∑

j=1

(
m(j)�

(j)
t

T
�

(j)
t + �(j)

r
T

(j)

n �(j)
r

)
, (93)

= Iψψ, (94)

where the invariant Iψψ is defined by

Iψψ =
nn∑

j=1

m(j)�
(j)
t

T
�

(j)
t +

nn∑

j=1

�(j)
r

T

(j)

n �(j)
r , ∈R

nm×nm . (95)

with the components expressed in terms of the invariants by

mtt = me, (96)

mtr = −A
(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
G, (97)

mtf = AIψ, (98)

mrr = G
T
(


o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
G, (99)

mrf = −G
T
(
I ũoψ +

(
ζ ⊗ e

)T
Iψ̃ψ

)
, (100)

mff = Iψψ, (101)
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Assembling the translational and rotational contribution of the quadratic velocity force vec-
tor leads to the full expressions,

Qv =
⎡

⎣
Qv,t

Qv,r

Qv,f

⎤

⎦ , (102)

= Qtran
v + Qrot

v , (103)

where the components are given by

Qv,t = Aω̃o

nn∑

j=1

m(j)ũ(j)
n ωo + 2A

nn∑

j=1

m(j) ˙̃u(j)

f ωo + A

nn∑

j=1

m(j)ũ(j)
n Ġ θ̇ , (104)

Qv,r = −G
T
ω̃o

nn∑

j=1

m(j)ũ(j)
n

T
ũ(j)

n ωo − 2G
T

nn∑

j=1

m(j)ũ(j)
n

T ˙̃
u

(j)

f ωo+

− G
T

nn∑

j=1

m(j)ũ(j)
n

T
ũ(j)

n Ġ θ̇ − G
T

nn∑

j=1


(j)
n Ġ θ̇+

−
nn∑

j=1

(

Ġ − ∂ω
(j)
o

∂θ

)T


(j)
n

(
ωo + �(j)

r ζ̇
)

, (105)

Qv,f =
(
eζ ⊗ ωo

)T
nn∑

j=1

m(j)�̃
(j)
t

T

ũ(j)
n ωo + 2

nn∑

j=1

m(j)�
(j)
t

T ˙̃
u

(j)

f ωo+

+
nn∑

j=1

m(j)�
(j)
t

T
ũ(j)

n Ġ θ̇ −
nn∑

j=1

�(j)
r

T

(j)

n Ġ θ̇ . (106)

Isolating the node-dependent expressions as shown in [35] for positions by Eq. (64) and for
velocities by

˙̃
u

(j)

f = �̃
(j)
t

(
ζ̇ ⊗ e

)
(107)

and using the introduced definitions of the invariants lead to the full expression of the
quadratic velocity force vector in terms of the invariants given by

Qv,t = Aω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
ωo + 2AIψ̃

(
ζ̇ ⊗ e

)
ωo+

(108)

Qv,r = −G
T
ω̃o

(

o,t + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

− 2G
T
(
I ũoψ̃

(
ζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ̇ ⊗ e

))
ωo+
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(109)

Qv,f =
(
eζ ⊗ ωo

)T (
IT

ũoψ̃
+ Iψ̃ψ̃

(
ζ ⊗ e

))
ωo + 2IT

ψ̃ψ

(
ζ̇ ⊗ e

)
ωo+

(110)

where blue highlighted terms are only present for lumped mass approach, and red high-
lighted terms are not needed when using Euler parameters (colors online). In fact, when
comparing the derived Eqs. (96)–(101) and Eqs. (108)–(110) using the lumped mass ap-
proach with the derivations using the integral formulation in [24, 27, 28] and the nodal-
based FFRF in [32, 35], it becomes clear that the obtained equations are identical with the
exception of one additional term in Eq. (109) highlighted in blue (colors online), see § 2.2.2
and Table 1 for more details. This term appears only with the lumped mass approach and
is interpreted as the compensation term of inertia due to the non-consideration of the mass
distribution when using the lumped mass approach. This additional inertia compensation
term originates in the model for the kinetic energy with a translational and a rotational con-
tribution when using lumped masses, see Eq. (31). This is not necessary with the consistent
approach because the terms off the diagonal of the consistent mass matrix are occupied, and
thus the mass distribution is already considered. In the rotational contribution of the kinetic
energy with lumped masses, the contribution of the nodal inertia tensor and the angular ve-
locity of the node itself is considered, including the angular velocity of the floating frame
and the flexible angular velocity of the node, see Eq. (24) and Fig. 1. These lead to the
additional inertia compensation term with the lumped mass approach.

The shown derivation is general for any orientation parametrization. In the following,
Euler parameters will be used since they are free from singularities and for their widespread
use. In addition, the Euler parameters simplifies the equations of the quadratic velocity vec-
tor, and the terms highlighted in red in Eqs. (108)–(110) can be removed (colors online), see
§ 2.2.1 for more details.

2.2.1 Simplifications with Euler parameters

Euler parameters describe the orientation of the reference frame with four parameters related
by one algebraic constraint. These include one value related to the angle of rotation θ0 and
the direction cosines of a unique orientational axis of rotation θ s = [

θ1 θ2 θ3
]T

,

θ = [
θ0 θT

s

]T = [
θ0 θ1 θ2 θ3

]T
. (111)

The rotation matrix with Euler parameters is given by

A = e + 2θ̃ s

(
θ0e + θ̃ s

)
, (112)

=
⎡

⎣
1 − 2θ2

2 − 2θ2
3 2 (θ1θ2 − θ0θ3) 2 (θ1θ3 + θ0θ2)

2 (θ1θ2 + θ0θ3) 1 − 2θ2
1 − 2θ2

3 2 (θ2θ3 − θ0θ1)

2 (θ1θ3 − θ0θ2) 2 (θ2θ3 + θ0θ1) 1 − 2θ2
1 − 2θ2

2

⎤

⎦ . (113)
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The angular velocity matrix expressed in floating coordinates is given in terms of Euler
parameters by

G = 2
[
−θ s −θ̃ s + θ0e

]
, (114)

= 2

⎡

⎣
−θ1 θ0 θ3 −θ2

−θ2 −θ3 θ0 θ1

−θ3 θ2 −θ1 θ0

⎤

⎦ . (115)

The angular velocity vector of the floating frame relative to the inertial frame expressed in
floating coordinates is given by

ωo = Gθ̇, (116)

= −Ġ θ. (117)

Therefore, the differentiation of the angular velocity vector with respect to Euler parameters
that is present among others in Eqs. (53) and (109) is given by

∂ω
(j)
o

∂θ
= −Ġ, (118)

leading to

∂ω
(j)
n

∂q
= −L̇r. (119)

Inserting these expressions in the shown derivation and using the following Euler parameter
identities as shown in [24],

Ġ θ̇ = 0, (120)

2Ġ
T = G

T
ω̃o, (121)

does not affect the terms of the mass matrix shown in Eqs. (96)–(101) but leads to simplified
expressions of the quadratic velocity force vector with the use of Euler parameters given by

Qv,t = Aω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
ωo + 2AIψ̃

(
ζ̇ ⊗ e

)
ωo, (122)

Qv,r = −G
T
ω̃o

(

o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

− 2G
T
(
I ũoψ̃

(
ζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ̇ ⊗ e

))
ωo

(123)

Qv,f =
(
eζ ⊗ ωo

)T (
IT

ũoψ̃
+ Iψ̃ψ̃

(
ζ ⊗ e

))
ωo + 2IT

ψ̃ψ

(
ζ̇ ⊗ e

)
ωo. (124)

These expressions with the use of Euler parameters will be used for the analytical deriva-
tives of the system parameters in § 4. The inertia compensation term in Eq. (123) that is
highlighted in blue appears only with the lumped mass approach, and the related derivation
terms will also be highlighted in blue in the following (colors online).
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Table 1 FFRF invariants with different approaches

Invariant
symbols

Inertia shape
integrals

Consistent mass Lumped mass

me
∫

ρdV e
(

1 ⊗ e
)T

mFE

(
1 ⊗ e

) ∑nn
j=1 m(j)e

χo
1
m

∫
ρuodV

(
1 ⊗ e

)T
mFEuo

1
m

∑nn
j=1 m(j)u

(j)
o


o
∫

ρũT
o ũodV ũT

omFEũo
∑nn

j=1 m(j)ũ
(j)
o

T
ũ
(j)
o + ∑nn

j=1 

(j)
n

Iψ

∫
ρSdV

(
1 ⊗ e

)T
mFE�

∑nn
j=1 m(j)�

(j)
t

I
ψ̃

∫
ρS̃dV

(
1 ⊗ e

)T
mFE�̃

∑nn
j=1 m(j)�̃

(j)
t

I ũoψ

∫
ρũT

o S̃dV ũT
omFE�

∑nn
j=1 m(j)ũ

(j)
o

T
�

(j)
t + ∑nn

j=1 

(j)
n �

(j)
r

I ũoψ̃

∫
ρũT

o S̃dV ũT
omFE�̃

∑nn
j=1 m(j)ũ

(j)
o

T
�̃

(j)
t

Iψψ

∫
ρS

T
SdV �

T
mFE�

∑nn
j=1 m(j)�

(j)
t

T
�

(j)
t +∑nn

j=1 �
(j)
r

T



(j)
n �

(j)
r

I
ψ̃ψ

∫
ρS̃

T
SdV �̃

T
mFE�

∑nn
j=1 m(j)�̃

(j)
t

T
�

(j)
t

I
ψ̃ψ̃

∫
ρS̃

T
S̃dV �̃

T
mFE�̃

∑nn
j=1 m(j)�̃

(j)
t

T
�̃

(j)
t

2.2.2 Expressions of inertia terms with different approaches

Table 1 shows a comparison of the invariants when using the integral formulation [24, 27],
the consistent mass formulation with nodal-based FFRF [32, 35] and the lumped mass ap-
proach used in [8, 21] and fully derived here. In Table 1, S is the matrix of shape functions

expressed in the floating frame, S̃ is generated from S in analogy to Eq. (64) and [35], and
mFE is the consistent mass matrix of the FE model.

The generality of the lumped mass approach is given by the compensation term of iner-
tia. A first discretization is given by the geometric discretization with the FE meshing of the
flexible bodies and is applied equally to all approaches. With the lumped mass approach,
a second discretization is given by the diagonalization of the FE-mass matrix leading to
the additional compensation term of inertia due to the non-consideration of the mass distri-
bution. When using another approach for the calculation of the invariants, the expressions
of the inertia terms remain exactly the same, see Eqs. (96)–(101) for the mass matrix and
Eqs. (122)–(124) for the quadratic velocity force vector. The only exception is the compen-
sation term of inertia that only appears when using the lumped mass approach and is blue
highlighted (colors online) in Eq. (123).

2.3 Stiffness matrix

When using a linear-elastic material model, the elastic forces can be expressed in terms of a
linear stiffness matrix,

k =
⎡

⎣
0 0 0
0 0 0
0 0 kff

⎤

⎦ . (125)

The sub-matrix related to the flexible coordinates of the stiffness matrix corresponds to that
from the structural analysis, and the other terms are equal to zero.
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2.4 Damping matrix

For material damping, the damping matrix is linear when using a linear-elastic material
model,

d =
⎡

⎣
0 0 0
0 0 0
0 0 d ff

⎤

⎦ . (126)

The sub-matrix d ff corresponds to the flexible coordinates and is the damping matrix of
structural dynamics. All other terms of the FFRF damping matrix are equal to zero.

2.5 Dependencies

The equations of motion shown in Eq. (1) and (2) are solved for the system responses that
generally depend on the vector of design variables x and on time t ,

q = F
(
x, t

)
, q̇ = F

(
x, t

)
, q̈ = F

(
x, t

)
, λ = F

(
x, t

)
, (127)

where � = F (�) denotes that � is a function of �. The dependencies of the system param-
eters are given by

m = F
(

x, q
(
x, t

))
, Qv = F

(
x, q̇

(
x, t

)
, q

(
x, t

))
,

d = F
(
x
)
, Qe = F

(
x, q̇

(
x, t

)
, q

(
x, t

))
, (128)

k = F
(
x
)
, � = F

(
x, q̇

(
x, t

)
, q

(
x, t

))
,

and a summary is given in Table 2. A filled circle shows a dependency, a half-filled circle
shows that there can be a dependency, and an empty circle shows that there is no dependency.
Explicit and implicit dependencies are shown in black and gray, respectively. A clear under-
standing of the dependencies is fundamental for the differentiation of the system parameters
in the following sections.

The mass matrix and the quadratic velocity force vector explicitly depend on generalized
positions, and the quadratic velocity force vector explicitly also depends on generalized
velocities. The generalized external forces may depend on generalized positions and veloc-
ities; if so, loading is specific and depends on the application. Similarly, the type of the
kinematic constraints determines its dependencies. Holonomic constraints explicitly depend
on generalized positions, and nonholonomic constraints explicitly depend on generalized
velocities. Rheonomic constraints explicitly depend on time, and scleronomic constraints
are time-independent.

The dependency of the system parameters w.r.t. the design variables changes for different
types of design variables. Here, the design variables are categorized in structural, control,
and kinematic. The structural system parameters, including the mass, damping, and stiffness
matrices, as well as the quadratic velocity force vector explicitly, depend on structural design
variables such as cross-sectional dimensions of beam elements or the thickness of shell
elements. The generalized external forces explicitly depend on control design variables.
The kinematic constraints explicitly depend on the design variables when kinematic design
variables are used, e.g., joint positions. Certain design variables are of composite nature,
i.e., affect, for example, the structure and the kinematics, e.g., when the length of a flexible
body is used as a design variable, and a joint is located at the end of the body.
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Table 2 Dependencies of system parameters: � explicitly dependent, implicitly dependent, � indepen-
dent, �� denotes possible dependency; structural system parameters requiring input from finite-element model
are highlighted in green (colors online)

3 Derivatives of the equations of motion

Design sensitivities or gradients are the derivatives of a function or a parameter w.r.t. the
vector of design variables. A generic parameter � that depends on the vector of design
variables x, the position vector q , and the velocity vector q̇ is given by

� = F
(

x, q, q̇
)

, (129)

and its gradient is obtained by the application of the chain rule leading to

d�
dx

= ∂�
∂x

+ ∂�
∂q

dq

dx
+ ∂�

∂q̇

dq̇

dx
, (130)

∇� = ∂� + qJ�∇q + q̇J�∇q̇, (131)

where ∇� is the total derivative of � w.r.t. x, ∂� is the partial derivative of � w.r.t. x,
and �J� is the Jacobian or partial derivative of � w.r.t. the coordinates �. The deriva-
tive w.r.t. the vector of design variables leads to an additional dimension of the gradient.
As shown in Fig. 2, the gradient of a scalar is one-dimensional, the gradient of a vector
is two-dimensional, and the gradient of a matrix is three-dimensional. Analogously to the
differentiation with respect to the design variables, the total position Jacobian, which is the
total derivative of the generic parameter � shown in Eq. (129) w.r.t. the position vector, is
given by

d�
dq

= ∂�
∂q

+ ∂�
∂q̇

dq̇

dq
, (132)

qJ� = qJ� + q̇J� qJq̇, (133)

where �J� is the total Jacobian of � w.r.t. �, and �J� is the partial Jacobian of � w.r.t.�. Similarly, the total velocity Jacobian and the total acceleration Jacobian of the generic
parameter � are given by

q̇J� = q̇J� + qJ� q̇Jq, (134)

q̈J� = q̇J�q̈Jq̇ + qJ� q̈Jq. (135)

This section shows the derivatives of the equations of motion. This is, first of all, the
sensitivity analysis as the driving motor for efficient design optimization and uncertainty
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Fig. 2 Visualization of design sensitivities with nx = 5

analysis with the differentiation of the equations of motion w.r.t. the design variables. Using
the analytical direct differentiation method, it is shown where the partial derivatives of the
system parameters appear. Numerical methods, in addition to the design sensitivity analy-
sis, that require the evaluation of the partial derivatives of the system parameters include
the nonlinear solver in the time integration of a flexible multibody system. These usually
require the Jacobian matrix of the nonlinear solver, which is the derivative of the equations
of motion w.r.t. the system responses for which the system is solved. There are different
time integration methods, which solve either for positions, velocities or accelerations. To
cover all methods, the derivatives of the equations of motion w.r.t. positions velocities and
accelerations are shown.
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3.1 Derivatives of the equations of motion w.r.t. the design variables

The direct differentiation of the equations of motion w.r.t. the design variables leads to the
governing equations of the sensitivity analysis,

∇mq̈ + m∇q̈ + ∇d q̇ + d ∇q̇ + ∇k q + k ∇q + ∇qJ�
T
λ + qJ�

T∇λ = ∇Qe + ∇Qv,

(136)

∇� = 0. (137)

These equations are solved for the design sensitivities of the system responses ∇q̈ , ∇q̇ , ∇q

and ∇λ. The dependencies shown in Eq. (128) and Table 2, as well as the application of the
chain rule, lead to the derivatives of the system parameters,

∇m = ∂m + qJm∇q, (138)

∇d = ∂d, (139)

∇k = ∂k, (140)

∇qJ� = ∂qJ� + qJqJ�∇q + q̇JqJ�∇q̇, (141)

∇Qe = ∂Qe + qJQe ∇q + q̇JQe ∇q̇, (142)

∇Qv = ∂Qv + qJQv ∇q + q̇JQv ∇q̇, (143)

∇� = ∂� + qJ�∇q + q̇J�∇q̇. (144)

The same solution strategy used in the primal analysis can be applied to the solution of
the sensitivity analysis. In addition to the sensitivity analysis of the equations of motion,
the sensitivity analysis must be performed for the time integration method and the nonlinear
solver [29]. A solution routine for flexible multibody dynamics, including the sensitivity
analysis with generalized-α time integration and Baumgarte stabilization with a numerical
computation of the partial derivatives, is shown in [9, 11, 30].

3.2 Derivatives of the equations of motion w.r.t. position

The nonlinear solver of time integration methods that solve for positions requires the posi-
tion Jacobian that is the differentiation of the equations of motion w.r.t. positions. The total
derivative of the equations of motion w.r.t. the generalized positions is given by

qJmq̈ + mqJq̈ + d qJq̇ + k + qJqJ�
T
λ = qJQe + qJQv, (145)

qJ� = 0, (146)

where the application of the chain rule leads to

qJm = qJm, (147)

qJqJ� = qJqJ� + q̇JqJ�qJq̇, (148)
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qJQe = qJQe + q̇JQe
qJq̇, (149)

qJQv = qJQv + q̇JQv
qJq̇, (150)

qJ� = qJ� + q̇J�qJq̇. (151)

With implicit time integration, the system responses may have dependencies among
themselves and therefore qJq̈ �= 0 and qJq̇ �= 0 in the general case. However, if qJq̈ = 0 and
qJq̇ = 0, then the differentiation of the equations of motion w.r.t. the generalized positions

reduces to

qJmq̈ + k + qJqJ�
T
λ = qJQe + qJQv, (152)

qJ� = 0. (153)

3.3 Derivatives of the equations of motion w.r.t. velocity

When using time integration methods that solve for velocities, the nonlinear solver requires
the velocity Jacobian that is given by the differentiation of the equations of motion w.r.t. the
generalized velocities. This is given by

q̇Jmq̈ + mq̇Jq̈ + d + k q̇Jq + q̇JqJ�
T
λ = q̇JQe + q̇JQv, (154)

q̇J� = 0, (155)

where the chain rule leads to

q̇Jm = qJmq̇Jq, (156)

q̇JqJ� = q̇JqJ� + qJqJ�q̇Jq, (157)

q̇JQe = q̇JQe + qJQe
q̇Jq, (158)

q̇JQv = q̇JQv + qJQv
q̇Jq, (159)

q̇J� = q̇J� + qJ�q̇Jq. (160)

When using implicit time integration, the derivatives of the system responses are gener-
ally not zero, q̇Jq̈ �= 0 and q̇Jq �= 0. In cases where the derivatives of the system responses are

zero q̇Jq̈ = 0 and q̇Jq = 0, the differentiation of the equations of motion w.r.t. the generalized

velocities reduces to

d + q̇JqJ�
T
λ = q̇JQe + q̇JQv, (161)

q̇J� = 0. (162)

3.4 Derivatives of the equations of motion w.r.t. acceleration

The nonlinear solver for time integration methods that solve for accelerations as shown in
[11, 29, 30] requires the acceleration Jacobian given by the total derivative of the equations
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of motion w.r.t. the generalized accelerations. This is given by

q̈Jmq̈ + m + d q̈Jq̇ + k q̈Jq + q̈JqJ�
T
λ = q̈JQe + q̈JQv, (163)

q̈J� = 0, (164)

where the chain rule leads to

q̈Jm = qJm q̈Jq, (165)

q̈JqJ� = qJqJ�q̈Jq + q̇JqJ�q̈Jq̇, (166)

q̈JQe = qJQe
q̈Jq + q̇JQe

q̈Jq̇, (167)

q̈JQv = qJQv
q̈Jq + q̇JQv

q̈Jq̇, (168)

q̈J� = qJ�q̈Jq + q̇J�q̈Jq̇. (169)

With implicit time integration methods, the positions and velocities may depend on the
accelerations and therefore q̈Jq̇ �= 0 and q̈Jq �= 0 in general. In cases where positions and

velocities are independent of accelerations, the derivatives of the system responses are zero
q̈Jq̇ = 0 and q̈Jq = 0, and the mass matrix m is the only term that remains.

4 Partial derivatives of the system parameters

The derivatives of the equations of motion have been performed in § 3 where the derivatives
of the system parameters appear. In previous works [9, 10, 29, 30], the derivatives of the sys-
tem parameters have been computed numerically for a semi-analytical approach. To further
increase the efficiency of the method and the precision of the results, the analytical deriva-
tives of the system parameters will be introduced in the following. The derivation is limited
to the structural system parameters, which can be formulated in general terms, including
the mass matrix shown in Eqs. (96)–(101), the quadratic velocity force vector with the use
of Euler parameters shown in Eqs. (122)–(124), the stiffness matrix shown in Eq. (125),
and the damping matrix shown in Eq. (126). The derivatives of the loading specific gener-
alized external forces and the joint specific kinematic constraints need to be differentiated
separately and are not shown here.

4.1 Partial derivatives w.r.t. design variables

The structural system parameters, including the mass matrix, the stiffness matrix, the damp-
ing matrix, and the quadratic velocity force vector explicitly depend on the design variables.
In particular, the finite-element mass and stiffness matrix and the inertia shape integrals or
invariants are the depending terms.

The partial derivative of the mass matrix w.r.t. the design variables as required in
Eq. (138) is given by

∂m =
⎡

⎢
⎣

∂mtt ∂mtr ∂mtf

∂mrr ∂mrf

sym. ∂mff

⎤

⎥
⎦ , (170)
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where

∂mtt = ∂me, (171)

∂mtr = −A

(
∂m χ̃o + m∂χ̃o + ∂Iψ̃

(
ζ ⊗ e

))
G, (172)

∂mtf = A∂Iψ, (173)

∂mrr = G
T
(

∂
o + ∂I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
∂IT

ũoψ̃
+

+
(
ζ ⊗ e

)T
∂Iψ̃ψ̃

(
ζ ⊗ e

))
G, (174)

∂mrf = −G
T
(

∂I ũoψ +
(
ζ ⊗ e

)T
∂Iψ̃ψ

)
, (175)

∂mff = ∂Iψψ . (176)

This shows that the partial derivatives of the invariants are required for the partial derivative
of the mass matrix.

The partial derivative of the quadratic velocity force vector w.r.t. the design variables as
required in Eq. (143) is given by

∂Qv =
⎡

⎢
⎣

∂Qv,t

∂Qv,r

∂Qv,f

⎤

⎥
⎦ , (177)

where

∂Qv,t = Aω̃o

(
∂m χ̃o + m∂χ̃o + ∂Iψ̃

(
ζ ⊗ e

))
ωo + 2A∂Iψ̃

(
ζ̇ ⊗ e

)
ωo, (178)

∂Qv,r = −G
T
ω̃o

(
∂
o + ∂I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
∂IT

ũoψ̃
+

+
(
ζ ⊗ e

)T
∂Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

− 2G
T
(

∂I ũoψ̃

(
ζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
∂Iψ̃ψ̃

(
ζ̇ ⊗ e

))
ωo

(179)

∂Qv,f =
(
eζ ⊗ ωo

)T (
∂IT

ũoψ̃
+ ∂Iψ̃ψ̃

(
ζ ⊗ e

))
ωo + 2∂IT

ψ̃ψ

(
ζ̇ ⊗ e

)
ωo, (180)

where the blue highlighted term is for the lumped mass approach only (colors online), see
§ 2.2. As with the mass matrix, the derivatives of the invariants are required.
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The partial derivative of the stiffness matrix w.r.t. the design variables as required in
Eq. (140) is given by

∂k =
⎡

⎢
⎣

0 0 0

0 0 0

0 0 ∂kff

⎤

⎥
⎦ , (181)

where ∂kff is the partial derivative of the finite-element stiffness matrix.

The partial derivative of the damping matrix w.r.t. the design variables as required in
Eq. (139) is given by

∂d =
⎡

⎢
⎣

0 0 0

0 0 0

0 0 ∂d ff

⎤

⎥
⎦ , (182)

where ∂d ff is the partial derivative of the damping matrix of structural dynamics.

It can be summarized that the calculation of the partial derivatives of the system param-
eters w.r.t. the design variables require the partial derivatives of the finite element mass and
stiffness matrices, the damping matrix and the invariants. Since these are constant in time,
a single evaluation for each design evaluation at the beginning of the sensitivity analysis is
sufficient. This enables the decoupling of the sensitivity analysis of the multibody system
from the finite-element analysis and guarantees the high efficiency of the method. In ad-
dition, the decoupling allows computing the partial derivatives of the finite-element mass
and stiffness matrix, the damping matrix and the invariants with numerical differentiation
since a single evaluation per design is sufficient. However, the authors recommend the im-
plementation of analytical differentiation for typical design variables that are used in many
optimization formulations and numerical differentiation for other design variables to keep
the method general.

4.2 Partial derivatives w.r.t. generalized positions

The structural system parameters that directly depend on the generalized positions are the
mass matrix and the quadratic velocity force vector. In particular, the rotation matrix, the
angular velocity vector, the angular velocity matrix, and the flexible coordinates directly
depend on the generalized positions.

The Jacobian of the mass matrix w.r.t. generalized positions as required in Eqs. (138),
(147), (156), (165) is given by

qJm =
⎡

⎢
⎣

qJmtt
qJmtr

qJmtf

qJmrr
qJmrf

sym. qJmff

⎤

⎥
⎦ , (183)

where

qJmtt = 0, (184)

qJmtr = −qJA
(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
G − AIψ̃

(
qJζ ⊗ e

)
G+
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− A
(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
qJG, (185)

qJmtf = qJAIψ, (186)

qJmrr = qJG
T
(


o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
G+

+ G
T
(
I ũoψ̃

(
qJζ ⊗ e

)
+

(
qJζ ⊗ e

)T
IT

ũoψ̃
+

+
(

qJζ ⊗ e
)T

Iψ̃ψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
qJζ ⊗ e

))
G+

+ G
T
(


o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
qJG,

(187)

qJmrf = −qJG
T
(
I ũoψ +

(
ζ ⊗ e

)T
Iψ̃ψ

)
− G

T
(

qJζ ⊗ e
)T

Iψ̃ψ , (188)

qJmff = 0. (189)

The Jacobian of the quadratic velocity force vector w.r.t. generalized positions as required
in Eqs. (143), (150), (159), (168) is given by

qJQv =
⎡

⎢
⎣

qJQv,t

qJQv,r

qJQv,f

⎤

⎥
⎦ , (190)

where

qJQv,t = qJAω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
ωo + AqJω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
ωo+

+ Aω̃o

(
Iψ̃

(
qJζ ⊗ e

))
ωo + Aω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
qJωo+

+ 2qJAIψ̃

(
ζ̇ ⊗ e

)
ωo + 2AIψ̃

(
ζ̇ ⊗ e

)
qJωo, (191)

qJQv,r = −qJG
T
ω̃o

(

o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

− G
TqJω̃o

(

o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

− G
T
ω̃o

(
I ũoψ̃

(
qJζ ⊗ e

)
+

(
qJζ ⊗ e

)T
IT

ũoψ̃
+

+
(

qJζ ⊗ e
)T

Iψ̃ψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
qJζ ⊗ e

))
ωo+

− G
T
ω̃o

(

o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
qJωo+
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− 2qJG
T
(
I ũoψ̃

(
ζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ̇ ⊗ e

))
ωo+

− 2G
T
((

qJζ ⊗ e
)T

Iψ̃ψ̃

(
ζ̇ ⊗ e

))
ωo+

− 2G
T
(
I ũoψ̃

(
ζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ̇ ⊗ e

))
qJωo+

(192)

qJQv,f =
(
eζ ⊗ ωo

)T (
Iψ̃ψ̃

(
qJζ ⊗ e

))
ωo +

(
eζ ⊗ ωo

)T (
IT

ũoψ̃
+ Iψ̃ψ̃

(
ζ ⊗ e

))
qJωo+

+ 2IT
ψ̃ψ

(
ζ̇ ⊗ e

)
qJωo, (193)

where the blue highlighted term is for the lumped mass approach only (colors online), see
§ 2.2.

The Jacobian of the rotation matrix w.r.t. generalized positions is independent of the
position of the reference frame and the flexible deformations, leading to

qJA = 2qJθ̃ s

(
θ0e + θ̃ s

)
+ 2θ̃ s

(
qJθ0e + qJθ̃ s

)
, (194)

=
[

τJA θJA ζJA
]
, (195)

=
[

0 θJA 0
]
, (196)

with

θJA =
⎡

⎣

⎡

⎣
0 −2θ3 2θ2

2θ3 0 −2θ1

−2θ2 2θ1 0

⎤

⎦

⎡

⎣
0 2θ2 2θ3

2θ2 −4θ1 −2θ0

2θ3 2θ0 −4θ1

⎤

⎦ · · ·

· · ·
⎡

⎣
−4θ2 2θ1 2θ0

2θ1 0 2θ3

−2θ0 2θ3 −4θ2

⎤

⎦

⎡

⎣
−4θ3 −2θ0 2θ1

2θ0 −4θ3 2θ2

2θ1 2θ2 0

⎤

⎦

⎤

⎦ . (197)

The Jacobian of the angular velocity matrix expressed in floating coordinates w.r.t. gen-
eralized positions is given by

qJG =
[
−qJθ s −qJθ̃ s + qJθ0e

]
(198)

=
[

τJG θJG ζJG
]

(199)

=
[

0 θJG 0
]

(200)

with

θJG = 2

⎡

⎣

⎡

⎣
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎦

⎡

⎣
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤

⎦

⎡

⎣
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤

⎦

⎡

⎣
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤

⎦

⎤

⎦ . (201)
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The Jacobian of the angular velocity vector of the floating frame relative to the inertial
frame expressed in floating coordinates w.r.t. generalized positions is given by

qJωo = qJGθ̇, (202)

= [
τJωo

θJωo
ζJωo

]
, (203)

= [
0 θJωo 0

]
, (204)

where

θJωo = θJGθ̇, (205)

= −Ġ, (206)

= 2

⎡

⎣
θ̇1 −θ̇0 −θ̇3 θ̇2

θ̇2 θ̇3 −θ̇0 −θ̇1

θ̇3 −θ̇2 θ̇1 −θ̇0

⎤

⎦ . (207)

The Jacobian of the flexible coordinates w.r.t. the generalized positions is given by

qJζ =
[

τJζ θJζ ζJζ
]
, (208)

= [
0 0 e

]
. (209)

4.3 Partial derivatives w.r.t. generalized velocities

The quadratic velocity vector depends on the generalized velocities. In particular, the angular
velocity vector and velocity of the elastic coordinates directly depend on the generalized
velocities.

The Jacobian of the quadratic velocity force vector w.r.t. the generalized velocities as
required in Eqs. (143), (150), (159), (168) is given by

q̇JQv =
⎡

⎢
⎣

q̇JQv,t

q̇JQv,r

q̇JQv,f

⎤

⎥
⎦ , (210)

where

q̇JQv,t = A q̇Jω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
ωo + Aω̃o

(
mχ̃o + Iψ̃

(
ζ ⊗ e

))
q̇Jωo+

+ 2AIψ̃

(
q̇Jζ̇ ⊗ e

)
ωo + 2AIψ̃

(
ζ̇ ⊗ e

)
q̇Jωo, (211)

q̇JQv,r = −G
T q̇Jω̃o

(

o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

− G
T
ω̃o

(

o + I ũoψ̃

(
ζ ⊗ e

)
+

(
ζ ⊗ e

)T
IT

ũoψ̃
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ ⊗ e

))
q̇Jωo+

− 2G
T
(
I ũoψ̃

(
q̇Jζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
q̇Jζ̇ ⊗ e

))
ωo+
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− 2G
T
(
I ũoψ̃

(
ζ̇ ⊗ e

)
+

(
ζ ⊗ e

)T
Iψ̃ψ̃

(
ζ̇ ⊗ e

))
q̇Jωo+

(212)

q̇JQv,f =
(
eζ ⊗ q̇Jωo

)T (
IT

ũoψ̃
+ Iψ̃ψ̃

(
ζ ⊗ e

))
ωo+

+
(
eζ ⊗ ωo

)T (
IT

ũoψ̃
+ Iψ̃ψ̃

(
ζ ⊗ e

))
q̇Jωo+

+ 2IT
ψ̃ψ

(
q̇Jζ̇ ⊗ e

)
ωo + 2IT

ψ̃ψ

(
ζ̇ ⊗ e

)
q̇Jωo, (213)

where the blue highlighted term is for the lumped mass approach only (colors online),
see § 2.2.

The Jacobian of the angular velocity vector of the floating frame relative to the inertial
frame expressed in floating coordinates is given by

q̇Jωo =
[

τ̇Jωo
θ̇Jωo

ζ̇Jωo

]
, (214)

=
[

0 θ̇Jωo 0
]
, (215)

with

θ̇Jωo = G, (216)

and the Jacobian of the flexible velocity coordinates w.r.t. the generalized velocities is given
by

q̇Jζ̇ =
[

τ̇Jζ̇ θ̇Jζ̇ ζ̇Jζ̇
]
, (217)

= [
0 0 e

]
. (218)

5 Conclusion

In this paper, the equations of motion of flexible multibody dynamics with FFRF are shown,
and the system parameters are fully derived with the widely used lumped mass approach.
It is shown that the lumped mass approach is general in relation to the finite-element type,
and thus, the derived equations are of general nature. The sensitivity analysis and the partial
derivatives of the system parameters are derived for the general lumped mass approach and
are shown with Euler parameters but can be extended to any orientation parametrization for
generality.

The use of the lumped mass approach enables computing the invariants by numerical
integration that is agnostic to the type of finite elements. The system parameters are derived
for any orientation parametrization, and the associated simplifications for the singularity-
free and the widespread used Euler parameters are shown. The expressions of the system
parameters derived with the lumped mass approach correspond to the general case with the
additional compensation terms of inertia due to the non-consideration of the mass distribu-
tion with lumped masses.
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Analytical sensitivity analysis via direct differentiation is applied to the equations of
motion for flexible multibody systems. This is the driving motor for efficient design opti-
mization and uncertainty analysis, and this is where the partial derivatives of the system
parameters appear. In addition to the sensitivity analysis, the equations of motion are differ-
entiated w.r.t. the generalized coordinates, including positions, velocities and accelerations.
These are required in the Jacobian matrix of the nonlinear solver when solving flexible
multibody systems. Here the partial derivatives of the system parameters also appear.

In previous studies based on a semi-analytical approach, the partial derivatives of the
system parameters have been computed numerically. To further increase the efficiency and
the accuracy, the analytical derivatives of the structural system parameters of FFRF are pro-
vided here. The analytical derivatives are based on FFRF with the lumped mass approach,
including the derivatives of the invariants enabling the decoupling of the sensitivity analysis
of flexible multibody dynamics from the FE solver. The partial derivatives are shown with
Euler parameters but can be extended to any orientation parametrization for generality. The
derived partial derivatives are useful for the shown direct differentiation method and for the
adjoint variable method as well. In addition, the partial Jacobians w.r.t. positions and veloc-
ities can be used in the nonlinear solver when solving the governing equations of flexible
multibody dynamics for higher efficiency and accuracy.
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