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Abstract

Spine imaging, in the form of computed tomography (CT, among others), provides
an insight into an essential structure of the human body. Automated extraction of
information from spine images not only speeds up a radiologist’s workflow but also
acts as a supporting-tool that identifies abnormalities in opportunistic scans (e.g.
chest CT). The objective of this thesis is to automate this information-extraction
from spine images in a data-driven manner.

We start by addressing the problem of localising and identifying the vertebrae,
a fundamental step in any spine image processing pipeline. We propose an efficient
convolutional neural network architecture that works on two-dimensional, orthogonal
projections. This architecture achieves a detection performance comparable to three-
dimensional architectures at a fraction of their computational budget. This network
is further reinforced by an adversarial-learning regime that enforces an anatomical
shape prior into the network’s prediction. We refer to this as ad-hoc prior learning.
Next, we explore post-hoc enforcement of anatomical priors using a prior-informed
linear conditional random field (CRF) that corrects the network’s predictions at
inference-time. Solving a linear CRF during inference enables faster runtime, making
its deployment feasible in a clinical setting. Additionally, we learn five different
prior-models to account for anomalous spine anatomies, thereby achieving near 100%
identification of vertebrae.

Following this, we shift our focus from automated processing to automated di-
agnosis in spine imaging. Here, we investigate vertebral fracture detection, also in
a compute-parsimonious and annotation-limited setting. Assuming that an accu-
rate vertebral segmentation mask is available, we task a generative model (variation
auto-encoder) to learn the data distribution of healthy vertebrae in the point-cloud
domain. A fractured vertebrae can then be identified as an outlier in this distribu-
tion. Furthermore, the model is extended to result in probabilistic reconstructions,
which makes the detection of fractures interpretable by locating the region of the
vertebra where the shape deviates from that of its healthy counterpart.

In conclusion, we have attempted to address some important questions towards
automated spine image analysis, with a focus on the challenges in a clinical de-
ployment such as compute restrictions, anatomical anomalies, and severe lack of
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annotated data. Crucially, most of our answers have given rise to many other, more
important questions in spine image processing. This thesis is an attempt to collate
the questions, our answers, and the set of new questions that arose out of these
answers.
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Zusammenfassung

Die Wirbelsäulen-Bildgebung, unter anderem in Form von Computertomographie
(CT), bietet einen Einblick in eine essentielle Struktur des menschlichen Körpers.
Die automatisierte Extraktion von Informationen aus Wirbelsäulenbildern beschleu-
nigt nicht nur den Arbeitsablauf eines Radiologen, sondern dient auch als Hilfsmittel
zur Erkennung von Anomalien bei opportunistischen Scans (z. B. Brust-CT). Ziel
dieser Arbeit ist es, diese Informationsextraktion aus Wirbelsäulenbildern auf daten-
gesteuerte Weise zu automatisieren.

Wir beginnen mit dem Problem der Lokalisierung und Identifizierung der Wirbel,
was als erster Schritt in jeder medizinischen Bildverarbeitungspipeline für die Wir-
belsäule gilt. In diesem Zusammenhang wird eine effiziente Convolutional Neural
Network-basierte Architektur, die orthogonale 2D-Projektionen verarbeitet, vorge-
stellt. Die vorgestellte Architektur demonstriert Erkennungsleistungen vergleichbar
mit 3D Architekturen, während nur einen Bruchteil der Rechenressourcen benötigt
wird.

Die Erkennungsleistung wird durch Training in einem adversen Lernregime (ad-
versarial learning-regime) weiter verstärkt, indem eine anatomische Formpriorität
in die Vorhersage eingebettet wird. Wir bezeichnen dies als ad-hoc Prior Learning.
Zudem erforschen wir die post-hoc Durchsetzung von Prioritäten mit Hilfe eines prior-
informierten Conditional Random Fields (CRF), das die Vorhersagen des Neuronalen
Netzwerkes korrigiert. Das Lösen eines linearen CRFs während der Inferenz ermög-
licht eine schnellere Laufzeit. Darüber hinaus lernen wir fünf verschiedene a-priori
Modelle, um anomale Wirbelsäulenanatomien zu berücksichtigen, wodurch die Wir-
belidentifikationsleistung auf nahezu 100% gesteigert wird.

Im Anschluss daran verlagern wir unseren Schwerpunkt von der automatisierten
Verarbeitung auf die automatisierte Diagnose im Bereich der Wirbelsäulenbildge-
bung. Hier untersuchen wir die Erkennung von Wirbelfrakturen in einem ebenfalls
rechenschwachen Umfeld unter Mangel an annotierten Daten. Unter der Annahme,
dass eine genaue Wirbelsäulensegmentierung verfügbar ist, beauftragen wir ein ge-
neratives Modell (Variational Autoencoder) mit dem Erlernen der Datenverteilung
gesunder Wirbel in der Punktwolkendomäne. Ein gebrochener Wirbel kann dann
als ein Ausreißer in dieser Verteilung identifiziert werden. Darüber hinaus wird das
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Modell so erweitert, dass es zu probabilistischen Rekonstruktionen führt, was die
Erkennung von Frakturen durch die Lokalisierung der Wirbelregion, in der die Form
von der eines gesunden Gegenstücks abweicht, interpretierbar macht.

Zusammenfassend haben wir versucht, wichtige Fragen zur automatisierten Wir-
belsäulenbildanalyse zu beantworten, wobei wir uns auf die Herausforderungen im
klinischen Einsatz konzentriert haben, wie z. B. Rechenbeschränkungen, anatomi-
sche Anomalien und einen erheblichen Mangel an annotierten Daten. Entscheidend
ist, dass die meisten unserer Antworten zu vielen anderen, noch wichtigeren Fragen
in der Wirbelsäulenbildverarbeitung geführt haben. Diese Arbeit ist ein Versuch, die
Fragen, unsere Antworten und eine Reihe neuer Fragen, die sich aus diesen Antworten
ergeben haben, zusammenzustellen.
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Foreword

Look well to the spine for the
cause of disease.

Hippocrates
Father of western medicine

The human spine is responsible for the human posture and support, holding
almost every organ in place. It protects the spinal cord, the neural highway of the
body. The vertebrae, which are the individual bones of the spine, protect the spinal
cord. Along with the inter-vertebral discs, the vertebrae bear majority of the weight
on the spine. The neural foramen are where the nerve roots exit the spinal canal to
the rest of the body. The paraspinal muscles are responsible crucial motion of the
body, and so on. Thus, the spine is one of the most critical and complex anatomies
of the human body. However, all is not well in the spine. Back pain is one of the
most commonly reported problems in the world. Von der Lippe et al. [1] report that
more than 60% of the respondents in a study in Germany reported back pain in 2020.
In UK, its prevalence is around 80% [2]. Osteoporosis, a disease characterised by low
bone mass leading to frailty, is extremely common worldwide. More than 32 million
in Europe and more than 10 million people in the USA are effected by osteoporosis
today. Annually, around 4.3 million osteoporotic fractures will occur, resulting in a
debilitating effect in the quality of life. It also leads to an 8-fold higher mortality
rate [3]. Most common malignant cancers predominantly metastasise to the spine,
e.g. breast cancer (21%), lung cancer (19%), etc. Therefore, it is of immense interest
to look at the spine.

Every year, around 66 million CT scans are imaged in Europe. Nearly 50% of
the capture some part of the spine. However, less than 1% of all the CT scans are
actually imaged to screen the spine. This is wasted opportunity cost. Now consider
the fact that a chest/abdomen/pelvis CT takes the longest to read compared to say a
brain CT or a chest CT. In a setting where the radiologist is already constrained for
time, the long reading times further exacerbate the cost of this wasted opportunity.
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1. Foreword

Eventually, for instance, close to 90% of osteoporotic fractures go undiagnosed or
significant fraction of bone cancers are misdiagnosed. Hence, there is a clear need to
design computer-aided, support systems for radiological reading of spine images.

One fundamental task of any computer-aided support system is to understand the
raw image data, which is broadly referred to medical image analysis. In other words,
this involves abstracting information from the raw image data, thereby extracting
useful information for subsequent reading. A primary task in medical image anal-
ysis is anatomical landmark detection. In the context of the spine, this refers
to the challenging task vertebrae labelling which involves localising and identifying
the vertebrae. Labelling the vertebrae have immediate diagnostic consequences such
as estimating the spinal curvature and identifying deformities such as scoliosis and
kyphosis. From a non-diagnostic perspective, it enables important downstream tasks
such as vertebral segmentation, fracture detection, surgical planning, and biome-
chanical modelling. One task immediately enabled by vertebral labelling is vertebral
segmentation [4, 5], which in turn plays a crucial role in vertebral fracture detec-
tion and grading [6]. As stated above, vertebral fractures are extremely common
and almost certainly crippling.

Deep neural networks (DNN) are ubiquitous not only in natural image processing
but also on medical image processing. They have been used for numerous tasks
such as disease classification, anatomical segmentation, and anatomical landmark
detection. So, what makes spine image processing special? Typical spine scans are
very large (∼ 106 voxels at a spatial resolution of 1mm3), which convetional DNNs
struggle to process readily. Moreover, the scans come in all shapes and forms in
terms of fields-of-view, metal insertions, anatomical anomalies such as transitional
vertebrae, fractured vertebrae etc. However, the number of naturally occurring cases
with these exceptions are few. This severe data imbalance calls for novel approaches
towards handling the tasks of spine image processing. Finally, if our objective is to
design a system that can be deployed in a real clinical setting, one needs to also
consider the run-time, compute budget, the system’s explainability, etc.

A typical spine image analysis system consists of two parts: an image-to-structure
component which is responsible for giving raw image some structure in the form of
landmarks, segmentation masks etc., and a structure-to-diagnosis component which
includes any downstream task that the structure could enable, e.g. detect fractures
from vertebral segmentation masks. This thesis deals with both these components of
the system with a focus on designing algorithms are are based on learning anatom-
ical data priors. First, the thesis presents methods aimed at labelling vertebrae by
enforcing local and global anatomical priors into the feed-forward network using ad-
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versarial learning or conditional random-fields (CRF). The presented methods are
designed to be accurate, robust, and deployable on low-resource medical hardware.
Next, given a structured spine image (e.g. labelled and segmented), the thesis tackles
the downstream task of fracture detection by posing it as an out-of-distribution de-
tection (OOD) problem. Such formulation works around the issue of data-imbalance
described above, as the system can now be trained only on healthy vertebrae. The
presented method, working in the point-cloud domain, results in fast inference times
and requires little compute resources. As mentioned above, translation of machine
learning into real-world clinical setting is a recurring theme of this thesis.

Organisation

This dissertation consists of three parts, each part divided into chapters. Part I, of
which the this Foreword (1) chapter is a part, consists of three other chapters. Chap-
ter 2 lays out the medical background required to understand and appreciate this
dissertation, mostly dealing with the anatomy of the spine, the challenges, and the
current trends and so on. Following this, a review of the the key methodological con-
cepts employed in this dissertation is given in 3. As a final part of introduction, Chap-
ter 4 collects the open questions described prior and summarises the contributions
of this thesis. The second part of this thesis (Part II) consists of four peer-reviewed
publications that constitute this thesis, each as a chapter, Chapters 5-8. Every pub-
lication is self-contained in terms of introduction, methodology, experiments, and
discussion. However, each publication is preceded by a brief synopsis on how the
publication fits into the bigger scheme of this dissertation. Lastly, in Part III, we
discuss the presented work in Chapter 9 and draw an overall conclusion along with an
outlook for the future in Chapter 10. Finally, Part IV consists of the appendix with
two related, high-impact works that are a consequence of this thesis: (1) VerSe,
a large-vertebrae segmentation challenge, and (2) https://anduin.bonescreen.de,
an open-source web application for spine segmentation, which speak towards the
clinical translation often touched upon in this thesis.
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Background

This chapter provides a brief overview of the anatomy of the spine and the imaging
modality (CT) explored in this thesis. Thereby, it also describes the challenges that
are faced during real-world deployment of any spine-based image-processing algo-
rithms, with the objective of helping the reader appreciate the complexity involved
in automated spine image analysis.

2.1 Anatomy of the spine
A typical human spine is an S-shaped stack of 33 individual bones. As shown in
Fig. 2.1a, spine is divided into three major regions: the cervical spine, the thoracic
spine, and the lumbar spine. Typically, each of these regions consists of seven (C1–
C7), twelve (T1–T12), and five (L1–L5) vertebrae respectively. Additionally, the
spine also consists of five sacral vertebrae (S1–S5) forming the sacrum and one coccyx.
The first 24 vertebrae are movable while the sacrum and the coccyx are fused to the
hip bone and immovable. The first part of this thesis deals with automatically
localising these vertebrae in a scan and identifying them. Between a pair of every
movable vertebra is the inter-vertebral disc (IVD), a gel-filled disc which cushions
the vertebrae and prevents their rubbing. Note that if the vertebrae are identified,
the identification of the IVDs naturally follows.

Fig. 2.1b shows the large variability in the shapes of the individual vertebrae.
Almost every vertebra can be broadly sub-divided into three parts: (1) the vertebral
body or the anterior, (3) the vertebral arch forming the spinal canal, and (3) posterior,
consisting of the spinous and transverse processes, and facets etc. Observe that C1
and C2 are exceptions to this and have a special morphology. The second patrt of
this thesis aims to characterise the morphology of these vertebrae in order to identify
outlying shapes.

There exist other, very critical, components of the spine which are not looked
into as part of this thesis. The spinal muscles, majorly the extensors and the flexors,
aid human motion. The former are also referred to as the back muscles, crucial for
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2. Background

Figure 2.1: (a) Anatomy of a typical human spine. (b) Sub-regions of the various
vertebrae in the spine

spine stabilisation, and the site where back pain is reported. The spinal cord that
runs down the entire spinal canal is the information super-highway, relaying signals
from the brain to the rest of the body, branching into spinal nerves at the vertebral
foramem.

2.2 Spine analysis in a clinical setting
When deploying algorithms for automated spine analysis, it essential that they not
only work for typical, healthy spines but also for abnormal spines. In this subsection,
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2.2. Spine analysis in a clinical setting

Figure 2.2: Diversity of spine CTs in a clincal setting(Labelled clockwise) Algo-
rithms analysis the spine must be robust to wide variation of spine scans in terms
of: the fields of view, fractured vertebrae (B, J), metal insertions (C), cemented ver-
tebrae (G), transitional vertebrae (L6 and T13 in D and I respectively), scan noise
(K) etc. Source: [4]

we list of set of challenging cases that the an algorithm is bound to face (due to their
natural prevalence) when working with the spine. Fig. 2.2 shows a (non-exhaustive)
overview of the scans an algorithm would have to process.

• Field-of-view. Spine is one of the largest component in the body. As a conse-
quence, it is imaged in a variety of scans, e.g a cardiac MR, a lung CT, abdomen
scan etc. This variety in the FoV of the scans must be efficiently tackled.

• Spines with degeneration. With patient’s age, the prevalence of degeneration
in the spine increases [7]. Degeneration could occur at the level of the spine (e.g.
kyphosis or lordosis) or at the level of the vertebra (e.g. fractures). Additionally,
these degenerations might also have been addressed by inserting metal plates,
screws, or cement. The algorithms should thus be robust to degeneration as well
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as its treatment.

• Anatomical abnormalities. In Sec. 2.1, we learnt that that a typical spine
consists of twelve thoracic vertebrae and five lumbar vertebrae. However, a sig-
nificant fraction of scans seen in clinical settings contain an atypical anatomy.
Following are a few anatomical abnormalities that could exist in a clinical setting:

1. An additional thoracic vertebrae, T13.
2. Missing T12.
3. An additional lumbar vertebra, L6. Lumbosacral transitional vertebra where

S1 assimilates to a lumbar vertebra.
4. Missing L5, possibly caused by its sacralisation.

It should be noted that the prevalence of these anomalies is not insignificant
(e.g. 35% of scans could have a transitional lumbosacral vertebrae) and should be
accounted for when deploying algorithms into the clinic.

• Efficient computation. Medical images are three-dimensional and the extant
of spine is large. When working at an isotropic spacial resolution of 1mm, this
could result in a scan sizes between 106 to 108 voxels (two orders higher than a
natural image of size 1024 ×1024). Hence, computational efficiency of to be taken
into account for a clinical deployment. This could involve opting for light-weight
data modalities, pipelining methods to remove rudimentary image information, or
model simplification (e.g. linear vs. quadratic).

2.3 Imaging modalities for the spine
Having an overview of the spinal anatomy, we now look into how this anatomy can
be imaged, especially 2D radiography and 3D magnetic resonance imaging (MRI),
and 3D computed tomography (CT)

2.3.1 Computed Tomography
X-rays are a form of electromagnetic radiation that have an energy higher than visible
light and a wavelength much smaller than it. As a result, they can penetrate and pass
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through many objects, including the human body. However, the x-rays can also be
absorbed by the human tissue at a rate dependant on the tissue type. The resulting,
un-absorbed rays, on hitting the detector places on the other side of the body, form
the image. A 2D x-ray radiograph, therefore, is an image of the shadow of the internal
tissue structure. Computed tomography (CT) imaging elevates 2D radiography to 3D
by employing a rotating x-ray tube (source) and multiple x-ray detectors in a spiral
gantry that measure the x-ray attenuation or absorption. This results in multiple
‘virtual’ x-ray projections of the human body from various views. The reconstruction
of a 3D CT image from these multiple but finite number of projections is a multi-
dimensional inverse problem also called tomographic reconstruction. Since x-rays
travel easily through less dense regions such as muscle and air-cavities and face high
attenuation in dense tissue such as bones, radiographic imaging is useful for imaging
bones, calcification, foreign objects, etc. Since the theme of this thesis is to localise
the vertebrae and and to analyse its morphology, CT is chosen as the modality-of-
interest.

Hounsfield Units. As stated, the voxel corresponding to an anatomical region in
a CT image correspond to the mean x-ray attenuation of the tissue in that region,
in other words, its radiodensity. This is represented quantitatively using ‘Hounsfield
Unit (HU) Scale‘, between -1024 (least attenuating) to + 3071 (most attenuating).
HU is defined relative to the attenuation coefficients of air (-1024 HU) and water (0
HU). Attenuation of bone typically lies between +400 HU to +2000 HU. The process
of increasing the dynamic range of the CT to better emphasise the densities within
a certain range ‘windowing’. E.g. A bone window between 500 HU to 2000 HU will
emphasise the bone. In this thesis, all data is calibrated to the Housfield Scale, which
enables efficient data re-normalisation.

Multi-planar reconstructions. Recall that there is a need to explore efficient
data representations for efficient processing of information in spine scans. An ex-
ample of such representations are Multi-planar reconstructions (MPR). For instance,
the voxel in CT represents the mean attenuation of an anatomical region. This is
referred to as the average intensity projection (AIP). However, the same voxel can
also represent the maximum attenuation in an anatomical region. This would re-
sult in the maximum intensity projection (MIP). The minimum intensity projection
(minIP) can be defined by extension. Different projections highlight regions with
specific attenuation, e.g. AIP is used for investigating solid organs, MIP for spine
[8] or angiographic studies, and MinIP for air spaces such as lungs.
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2.3.2 Magnetic Resonance Imaging
For the sake of completion, we describe another common imaging modality for the
spine, Magnetic Resonance Imaging (MRI). Unlike x-rays, MR imaging does not work
with radiation. It works by re-aligning the spins of the protons in the hydrogen atoms
using magnetic fields. The abundance of water in human body makes MR imaging
possible. Radio-frequency pulses are used to deflect the spins of the photons, which
release energy as they return to their resting alignment. This energy is characteristic
of the tissue type and is captured by the receiver coils, called k-space measurements.
An inverse Fourier transform of these measurements results in the MR image.

Due to its dependency on a tissue’s water content, MRI is usually unsuitable for
bone imaging. However, it is predominantly used for imaging soft-tissue, which in
the realm of spine, includes the sub-structures such as the spinal cord, the IVDs,
the spinal muscles, tumours etc. Since spine extends over a large region, spine MR
imaging is time-intensive. Typically spine MR images are limited either in terms of
anatomical FoV (e.g. cervical spine or lumbar spine) or in terms of resolution (e.g.
sagittal reformation or axial reformation) depending on the purpose of the scan. In
Chapter 9, we allude to this limitation for suggesting future work in the domain of
MR image analysis.
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Methodology

Any medical image processing pipeline can be split into two-stages: First, extract a
meaningful representation or structure from the image and second, use the represen-
tation to perform any downstream task such as diagnosis. A typical spine processing
pipeline is illustrated in Fig. 3.2. Of interest for this thesis are the subjects of verte-
brae labelling and fracture detection, both of which are approached from a common
perspective: anatomical prior learning and efficient data representations for faster
computation.

In this section, we provide the methodological background essential towards un-
derstanding the contributions of this thesis towards the two topics mentioned above.
We start by motivating fundamental deep learning models and eventually build to-
wards generative models which are employed for prior-learning. We also introduce
the representation of data in the point cloud domain and motivate outlier detection

Figure 3.1: A pictorial description of a spine pipeline for spine image analysis
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in this domain, which is the theme of this thesis’ contribution towards fracture de-
tection. Please note that the description is intended to provide a concise overview
and hence takes the liberty of simplifying the concepts.

3.1 Preliminaries: Data, Models, and Losses
Tom M. Mitchell (1997) defines a learning system as:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.

In a data-driven approach, the experience E is typically gained using an anno-
tated dataset D = {X ,Y}. The input x ∈ X and its annotation y ∈ Y vary with task
T . x could be a feature vector ( Rd), an image (RH×W ), a 3D CT scan (RH×W×D), or
a point-cloud in 3D space (RN×3, where N is the number of surface points). Similarly,
the dimensionality of y is defined by the task T .

Given D, the aim of learning is to learnt a mapping F parameterised by θ such
that:

Fθ : X → Y (3.1)

The function is learnt by minimising a loss criterion L over the space of parameter
space such that:

θ∗ = argmin
θ

L(Fθ(x), y), ∀ {x, y} ∈ D, (3.2)

Of interest in this thesis are neural networks, which offer one way to model Fθ.
The field of deep learning, led by AlexNet [9], is currently ubiquitous and has achieved
super-human performance in many vision-based tasks. In the following section, we
briefly provide of an overview of some deep neural network (DNN) architectures. Fθ

is a DNN if it can be decomposed into a composition of functions:

Fθ(x) = (f1
θ ·f2

θ · . . .fn
θ )(x), (3.3)

where fi
θ denotes a non-linear function and the choice of modelling it defines the

DNN architectures.
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Figure 3.2: Architectural illustration of three fundamental deep neural networks.

3.1.1 Model Architecture
Broadly, DNNs are a composition of encoders and decoders. The role of an encoder is
to take the high-dimensional data as input and encode them into a compact represen-
tation, while the role of a decoder is to generate high-dimensional data from the en-
coded representation. In this work, we focus on three relevant network architectures:
multi-layer perceptrons, convolutional neural networks, and the fully-convolutional
neural networks.

Multi-layer perceptron

A Multi-Layered Perceptron (MLP) introduced bu Rosenblatt et al. [10] is a densely-
connected neural network for when the data is vector-valued, i.e x ∈ RH . A layer
of an MLP can be represented as fi

θ(x) = Wix + bi, where W1 ∈ RH×h is the linear
transformation matrix and bi is the bias. If h < H, the resulting representation is
an encoded version of the input. A two-layered perceptron with a non-linearity (σ)
can be described as:

FMLP (x) = W2(σ(W1x+ b1)) + b2 (3.4)

Convolutional neural networks

Aimed at efficiently extracting local patterns in images by exploiting spatial-invariance,
convolutional neural networks (CNN) were first introduced in [11]. A layer in a CNN
is a filter that is convolved with the input (instead of densely multiplied as in an
MLP). Moreover, encoding or reduction in feature dimension in a CNN is achieved
using downsampling or pooling layers. A two-layered CNN acting on an image
x ∈ RH×W can thus be represented as
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FCNN(x) = W2⊛ ↓2 (σ(W1 ⊛ x+ b1)) + b2, (3.5)
where ↓2 representing downsampling by a factor of 2.

Fully-convolutional neural networks

For tasks pertaining to image-to-image mapping (e.g segmentation, denoising, super-
resolution) the fully-convolutional network (FCN) architecture was introduced [12,
13]. An FCN is a combination of an encoder and a decoder, where the encoding
happens using convolutional and downsampling layers while the decoding happens
using upsampling layers. Borrowing the CNN encoder in Eq. 3.6, we can represent
an FCN as

FFCN(x) = W4⊛ ↑2 (σ(W3 ⊛ FCNN(x) + b3)) + b4, (3.6)
where ↑2 representing upsampling by a factor of 2. Upsampling can be obtained

using a combination of interpolation and convolution layers or using transposed con-
volution layers.

3.1.2 Loss
The task T not only decides the choice of the model architecture but also the loss
used to gain the experience E. In this section, we will briefly introduce the most
common loss functions while highlighting the once employed in this thesis.

Cross-entropy (CE) loss

CE loss is the most commonly used one in machine learning for predicting categorical
variables, e.g in the tasks of binary of multi-class classification. It can be denoted
as:

L = −
∑

c∈classes
yc log(ỹc), (3.7)

where c denotes the class-specific prediction. In probabilistic sense, yc would be
discrete while ỹc would be predicted class-wise probability distribution.

CE loss can also be repurposed for tasks such as segmentation and landmark
detection. For instance, in case of segmentation, every pixel can be classified into its
corresponding class. Similarly, in landmark detection, the feature corresponding to
each landmark can be classified into a class corresponding to its location.
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Norm-based loss (MSE, MAE)

When the desired prediction (y) is real-valued, norm-based losses such as mean-
squared error or mean-absolute error are employed. A p-norm can be used as a loss
as shown:

Lp = ∥ỹ − y∥p (3.8)

Overlap-based loss

It is common practice to optimise the performance metric P . In tasks of segmenta-
tion, soft-Dice [14] is one such example, where the authors optimise a differentiable
version of the Dice metric:

Ldice =

∑
(y ⊙ ỹ)∑
y +

∑
ỹ
, (3.9)

where ⊙ denotes point-wise multiplication and the summation happens over all the
pixels (or voxels) in the image.

Statistical distance as a loss

Instead of optimising the p-norm distances between the ground truth and prediction,
one can also optimise statistical distances. Two such distances used in this thesis
are the Kullback-Leibler (KL) divergence and the Earth-mover distance (EMD or
Wasserstein metric). Denoting the probability distributions Py and Pỹ defined over
the space of probability measures over Y ,

• The KL divergence is defined as:

KL(Py||Pỹ) =
∑
y∈Y

Py log
(Py(y)

Pỹ(y)

)
(3.10)

• The Earth-mover distance or Wasserstein metric is defined as:

W (Py,Pỹ) = inf
γ∈Π(Py ,Pỹ)

E(p,q)∼γ[||p− q||], (3.11)

where Π denotes the set of all joint distributions γ over p and q whose marginals
are Py and Pỹ respectively.

17



3. Methodology

Figure 3.3: Block diagram of a Generative adversarial network.

3.2 Generative models
The previous section largely assumed that a DNN model is used for mapping data,
x to its annotation, y, such as a class, segmentation mask etc. Such models are
called discriminative models, and learn the conditional probability, P (Y/X = x).
There exist another class of models, called generative models, that learn the joint
probability distribution of the data and the labels, P (X ,Y , or the data distribution
itself, P (X ). Such models are predominantly used for generation of new data, e.g.
images. However, learning the data distribution or its probability density p(x) is hard.
For instance, considering the density functions latent variable decomposition, p(x) =∫
p(x/z)p(z)dz, summing over all possible latents (z) is intractable. Depending on

the approach taken to work around this intractability, there exists a variety of model-
families such as generative adversarial networks (GANs), variational autoencoders
(VAEs), flow-based models [15], and diffusion models [16]. In this thesis, we focus
on GANs and VAEs.

3.2.1 Generative Adversarial Networks
A GAN [17] consists of two models, A discriminator D and a generator G, solving
a min-max problem (cf. Fig. 3.3). Specifically, the discriminator estimates the
probability of a given input to be a real image or a fake, generated image. On the
other hand, the generator takes a noise latent variable z as input to generate or
synthesise real-looking data or images. This results in the following optimisation
problem:

min
G

max
D

L(D,G) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z))]. (3.12)

The discriminator is trained to produce a high probability for a real sample x ∼
p(x), obtained by minimising Ex∼p(x)[logD(x)]. It is also trained to predict a low
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Figure 3.4: Block diagram of a Wasserstein GAN.

probability when a fake sample G(z), z ∼ p(z) is fed, by minimising Ez∼p(z)[log(1 −
D(G(z))]. At the same time, G maximises the last term in order to generate real-
looking samples.

Ad-hoc optimisation of Eq. 3.12 is know to face several problems such as unstable
training, vanishing gradient, mode collapse (whereG generates data with high fidelity
but low diversity), etc. Several alternatives have thus been proposed to the vanilla
GAN such as Wasserstein GAN (WGAN), least-squared GAN (LSGAN), energy-
based GAN (EBGAN), boundary-equilibrium GAN (BEGAN) etc, each alters the
optimisation problem such that the training is stable while avoiding the problems
listed above.

Wasserstein GAN

Arjovsky et al. [18, 19] propose to train the GAN using the Wasserstein distance,
introduced in Eq.3.11, to reduce the distance between the real distribution of x ∼
pr and generator’s distribution of it, x ∼ pg. However, since it is intractable to
determine the infimum over all possible joint distributions Π(pr, pg), the authors
propose an alternative metric using the Kantorovic-Rubenstein duality, which can
be used as a loss:

L(pr, pg) = W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼p(z)[fw(gθ(z))], (3.13)

where fw comes from a family of K-Lipschitz continuous functions {fw}w∈W . In
practice, as shown in Fig. 3.4 the discriminator D is used to model fw, with tricks
such as gradient-clipping to maintain Lipschitz continuity. Essentially, D is no longer
a ‘critic’ but a ‘helper’ for estimating the Wasserstein distance.

Energy-based GAN

An autoencoder is an encoder-decoder architecture that learns to encode an input
image and decode its exact copy. Instead of using a discriminator that provides
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Figure 3.5: Block diagram of an Energy-based GAN.

point gradients based on the input to D being real vs. fake, Zhao et al. [20] design a
discriminator that uses an autoencoder that outputs the reconstruction error between
the input image and its reconstruction, as shown in Fig. 3.5.

D(x) = ||Dec(Enc(x)− x)||

The EBGAN is trained towards two goals: the reconstruction error D(x) should be
low for a real input, x ∼ pr, and D should be penalised if D(x) is lower than a value
(m) for a fake input, x ∼ pg. On the other hand, the generator is trained to produce
samples resulting in low reconstruction error. These objectives can be represented
as:

LD = D(x) + [m−D(G(z))]+, (3.14)

LG = D(G(z)), (3.15)
where [·] = max(0, ·) denotes the hinge function. To avoid mode collapse, EBGAN

also introduced introduces a pull-away term as a regulariser acting on the image fea-
tures S, the output of Enc(x). This is defined as:

fPT (S) =
1

N(N − 1)

∑
i∈batch

∑
j ̸=i

( ST
i Sj

||Si|||Sj|

)2

,

which is essentially the cosine-distance between the encoded representations of
the different images in the batch. In case of a mode-collapse, the cosine distance is
maximum, which is discouraged.

3.2.2 Variational Autoencoders
VAEs [21, 22] originate from latent variable modelling of a data distribution

∫
p(x/z)p(z)dz.

Since summing over all z is intractable, VAE’s narrow the search space by learning
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3.2. Generative models

Figure 3.6: Block diagram of an autoencoder and a variational autoencoder.

an encoder qϕ(z/x), whose role is to output a feasible latent z given an input x. It is
necessary that the approximate posterior qϕ(z/x) is close to the real posterior p(z/x),
which forms the basis for deriving the loss function for training the VAE. Specifically,
from Eq. 3.10:

KL(qϕ(z/x)||p(z/x)) =
∑
z∈Z

qϕ(z/x) log
qϕ(z/x)

p(z/x)
(3.16)

= log p(x) +KL(qϕ(z/x)||p(z))− Ez∼qϕ(z/x) log p(x/z). (3.17)

Rearranging the terms,

log p(x)−KL(qϕ(z/x)||p(z/x)) = Ez∼qϕ(z/x) log p(x/z)︸ ︷︷ ︸
Reconstruction Loss

−KL(qϕ(z/x)||p(z))︸ ︷︷ ︸
KL divergence

. (3.18)

Incidentally, maximising the left-hand side of this equation is our indirect objec-
tive, viz. maximising the log-likelihood of x and minimise the KL-divergence between
the approximate and true posteriors. The right-hand side, called the evidence-lower
bound (ELBO) of p(x) (because KL divergence in L.H.S is non-negative) forms the
loss function for training the VAE. The expectation term requires sampling from qϕ,
which can be done using the reparameterisation trick, eventually making the VAE
trainable using back-propagation. Fig. 3.9 shows an overview of the VAE architecture
while comparing it with an autoencoder.
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Figure 3.7: Landmark detection: Two traditional approaches towards landmark
detection: (a) coordinate-regression (b) heatmap-regression

3.3 Landmark detection and anatomical priors
The objective of landmark detection is to automatically identify landmarks (points-
of-interest) in an image or a scan. It is one of the fundamental steps that builds
towards other processing tasks such as segmentation, registration, pose-estimation,
etc. In the context of medical imaging, landmark detection is also used for critical
tasks such as surgery planning, bone age estimation etc. In this section, we introduce
the problem of landmark detection in the context of spine and, through prior work,
explore how anatomical priors can be incorporated into this task.

Given a 3D scan, x ∈ RH×W×D, the task of landmark detection pertains to de-
tecting the 3D coordinates of N landmarks, y ∈ N × 3. In vertebrae labelling, N
is typically 24, but could be lesser or more depending on the normality of the spine
(see Sec. 2.2). There exits two families of approaches, (1) coordinate-regression
based methods and (2) heatmap-regression based methods, as shown in Fig. 3.8.
Coordinate-regression based approaches directly predict the output coordinates typ-
ically using a CNN followed by a dense layer [23, 24, 25, 26]. The task of coordinate-
regression inherently involves learning the structural-prior (e.g. in the last dense
layer), and shows competitive performance in computer vision tasks such as facial
landmark detection and pose-estimation. However, spine images have two prob-
lems: not all vertebrae are visible in the image (occlusion) and the image sizes are
not standardised (making normalised coordinate predicting infeasible). Therefore,
heatmap-based regression methods are preferred for vertebrae labelling [27, 28, 29,
8, 30]. In this, instead of predicting the coordinates directly, the task is modified to
predict heatmaps, y ∈ RH×W×D×N , where every channel i ∈ [0, 1, ...N − 1] contains
a Gaussian heatmap at the location of the ith vertebra. Variants of an FCN are
employed for this task and are learnt using a regression-based loss such as MSE and
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Figure 3.8: Priors in landmark detection: Two traditional approaches towards
landmark detection: (a) coordinate-regression (b) heatmap-regression

MAE or a pixel-level cross-entropy loss.

Incorporating anatomical priors

CNNs inherently are local feature extractors and an FCN lacks global feature ag-
gregation. However, efficient vertebrae labelling requires collating local and global
priors. The latter can typically be done either post-hoc (predict first, correct anatomy
next), wherein a prior-informed corrected happens as a second stage. Post-hoc pri-
ors enforcement are traditionally implemented using Markov chains or conditional
random fields [31, 32]. Deep neural networks such as denoising auto-encoder trained
on ground-truth annotations can also be used to enforce these priors [33, 34, 35].
There exists a second category of prior incorporation, termed ad-hoc in which the
main model (e.g. FCN) is regularised to make anatomically consistent predictions.
An additional loss term can be employed, for instance, a task-specific loss [36] or
the reconstruction loss of an autoencoder trained to reconstruct healthy anatomies
[37]. This thesis focuses on both ad-hoc and post-hoc prior enforcement in vertebral
labelling.
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Figure 3.9: An illustration describing outlier-detection in the point-cloud domain

3.4 Point clouds and anomaly detection
Deep learning has predominantly been developed on image and language domains.
Architectures such as CNNs and FCNs for images and recurrent neural networks and
transformers for language are well established. However, there exists numerous other
data modalities which could be optimal for representing data, e.g. graphs for social
networks and surface representations for shape models. In the context of this thesis,
shape analysis plays a critical role in analysing the spine once it has been processed
(e.g. landmarks are detected and vertebrae have been segmented). A point cloud
(PC) is a set of N points denoted by x = {pi}Ni=0, where pi denotes a 3D coordinate on
the surface. Consider the problem of vertebral fractures, where looking at 3D image
patches in high-resolution is compute intensive while lowering the resolution could
lead loss of crucial information. How about representing vertebral shapes as point
clouds? A high-resolution representation with N = 2048 would occupy a memory at
least two-orders lesser than a 3D image. Point cloud representations have been used
for neuroanatomical [38] and vascular tasks [39].

Representation learning and anomaly detection

Consider solving the problem of fracture detection in a data-driven approach. There
exists severe data imbalance due to the significantly lesser prevalence of fractured
vertebrae compared to healthy ones. Naive, supervised learning approaches such as
PointNet [40, 41] fail in this setting. One approach is to use AE-based methods for
learning efficient representations for reconstructing healthy vertebrae. Once trained,
when an outlier is passed as input, the AE will unsuccessfully project it onto the
learnt healthy-representation space resulting in a high reconstruction error. The
reconstruction can be represented as x → z → x̂, where z is the the latent represen-
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3.4. Point clouds and anomaly detection

tation and x̂ is the reconstruction. In the realm of point clouds, reconstruction error
is usually measures using Champfer distance, computed as:

dch(x, x̂) = Lae =
∑
p∈x

min
p̂∈x̂

||p− p̂||22 +
∑
p̂∈x̂

min
p∈x

||p− p̂||22.

Extending AE-based reconstruction to also encode aleoteric uncertainty (data un-
certainty), and eventually to a VAE that encodes the latent representations under
a Gaussian distribution, classic density-based distance metrics can be employed to
detect anomalies [42, 43]. For instance, recalling the notation of the encoder and
decoder from Sec. 3.2.2, we can compute the following metrics, for example:

• Reconstruction error for a test sample xt is defined as,

d = ||xt − E[pθ/(qϕ(z/xt))]||22

• Reconstruction likelihood of xt can be computed as,

p = − log pθ(xt/E[qϕ(z/xt)])

Note that corresponding metrics can also be computed in the representation space
(z-space) thanks to the Gaussian encoding of the VAE. We refer the reader to [44]
work for a list of distance metrics in statistical sense. In this work, we combine
the domains of deep learning on point clouds and outlier detection using generative
modelling, in order to detect fractures in an unsupervised manner.
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Summary of the Contributions

In this section, we will formulate the contributions of this thesis while simultane-
ously relating them to the preliminaries discussed in Chapter 3 and lay down the
organisation of these contributions thesis. Broadly, the thesis contributes to two do-
mains: (1) Vertebrae labelling using anatomical priors and (2) Outlier detection for
vertebral fractures; in both cases focusing on efficient computation and explainable
implementation geared towards clinical deployment.

Vertebrae labelling using anatomical priors

Recall that labelling vertebra is the task of localising the vertebra and identifying
them and an FCN can be used to regress location-based heatmaps. However, due
to the high correlation of shape among neighbouring vertebrae, it is important to
process enough context in the image for efficient labelling. We propose a novel
architecture called Btrfly Net that works with sagittal and coronal reformations
of the 3D scan with feature fusion. Working in 2D instead of 3D facilitates the
learning of deeper representations. So, how far can we get in spine labelling when
working two dimensions? Addressing this, a novel architecture, termed BtrflyNet, is
proposed to work on orthogonal 2D reformations in Chapter 5. Furthermore, an
anatomical prior is enforced onto BtrflyNet’s predictions using adversarial training.
Specifically, instead of post-hoc correction of predictions, what if the second stage
could be repurposed as a a discriminator, D, in an adversarial regime? Chapter 5
also details this approach using a fully-convolutional EBGAN which enforced a local
prior (3-5 vertebrae). In Chapter 6, the possibility of enforcing a global prior (entire
spine) is explored by employing a Wasserstein GAN. Additionally, the question of
how this adversarial prior enforcement affects the latent representations of the Btrfly
Net? is investigated.

Note that in both the chapters above, prior encoding is done implicitly into
the Btrfly Net thanks to adversarial training. In other words, the anatomical prior
is simultaneously learnt by the discriminator and enforced in a data-driven way.
How can one handle the anatomically abnormal spines mentioned in Sec. 2.2? This
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problem is approached in two phases: First, we adapt a high-resolution network [29]
to work in 3D. Second, we employ a prior-informed conditional random field (CRF)
conditioned on the likelihood maps of the HRNet to refine the predictions based
on five prior-models of the spine. The CRF model being linear makes a real-time
solution feasible. Chapter 7 presents this approach in detail.

Out-of-distribution detection for vertebral fractures

After extracting structure from the image, e.g. landmarks from the image, segmen-
tation from image etc., we look attempt to tackle the challenging task of fracture de-
tection. Recall the efficiency of point-cloud based representation of vertebral shapes
and the scarcity of fractured vertebrae. This leads to formulating fracture detection
as an outlier detection problem in the PC domain. Specifically, we answer the ques-
tions: How to detect vertebral fractures as outliers with interpretability? For this, a
probabilistic variational autoencoder is proposed, capable of inducing distributions
in both the latent space and the reconstruction space, given an input, resulting in
human-interpretable fracture detection. This approach is detailed in Chapter 8.

28



PART II

PUBLICATIONS

29





Btrfly Net: Vertebrae Labelling
with Energy-Based Adversarial
Learning of Local Spine Prior
Anjany Sekuboyina, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander
Valentinitsch, Jan S. Kirschke, & Bjoern H. Menze

Conference: International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2018.

Synopsis: Robust localisation and identification of vertebrae is essential for au-
tomated spine analysis. The contribution of this work to the task is two-fold: (1)
Inspired by the human expert, we hypothesise that a sagittal and coronal reformation
of the spine contain sufficient information for labelling the vertebrae. Thereby, we
propose a butterfly-shaped network architecture (termed Btrfly Net) that efficiently
combines the information across reformations. (2) Underpinning the Btrfly net, we
present an energy-based adversarial training regime that encodes local spine structure
as an anatomical prior into the network, thereby enabling it to achieve state-of-art
performance in all standard metrics on a benchmark dataset of 302 scans without
any post-processing during inference.

Contributions of thesis author: Conceptualised the project, gathered necessary
software resource, developed and implemented the novel architecture and training
scheme, lead experimentation and manuscript-writing tasks.

Copyright: Springer Nature AG (Authors permitted to reuse content in full for
non-commercial purposes)

31



Btrfly Net: Vertebrae Labelling
with Energy-Based Adversarial Learning

of Local Spine Prior

Anjany Sekuboyina1,2(B), Markus Rempfler1, Jan Kukačka1,2, Giles Tetteh1,
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Abstract. Robust localisation and identification of vertebrae is essen-
tial for automated spine analysis. The contribution of this work to the
task is two-fold: (1) Inspired by the human expert, we hypothesise that a
sagittal and coronal reformation of the spine contain sufficient informa-
tion for labelling the vertebrae. Thereby, we propose a butterfly-shaped
network architecture (termed Btrfly Net) that efficiently combines the
information across reformations. (2) Underpinning the Btrfly net, we
present an energy-based adversarial training regime that encodes local
spine structure as an anatomical prior into the network, thereby enabling
it to achieve state-of-art performance in all standard metrics on a bench-
mark dataset of 302 scans without any post-processing during inference.

1 Introduction

The localisation and identification of anatomical structures is a significant part
of any medical image analysis routine. In spine’s context, labelling of vertebrae
has immediate diagnostic and modelling significance, e.g.: localised vertebrae
are used as markers for detecting kyphosis or scoliosis, vertebral fractures, in
surgical planning, or for follow-up analysis tasks such as vertebral segmentation
or their bio-mechanical modelling for load analysis.

Vertebrae Labelling. Like several analysis approaches off-late, vertebrae
labelling has seen successful utilisation of machine learning. One of the incipient
and notable works by Glocker et al. [2], followed by [3] used context-based fea-
tures with regression forests and Markov models for labelling. In spite of their
intuitive motivation, these approaches suffer a setback due to limited FOVs or
presence of metal insertions. On a similar footing, [7] proposed a deep multi-
layer perceptron using long-range context features. With the emergence of con-
volutional neural networks (CNN), Chen et al. [1] proposed a joint-CNN as
a combination of a random forest for initial candidate selection followed by a
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CNN trained to identify the vertebra based on its appearance and a conditional
dependency on its neighbours. Without hand-crafting features this approach
performed remarkably well. However, since the CNN works on a limited region
around the vertebra, it results in a high variability of the localisation distance.
Recently, Yang et al. with [8,9], proposed a deep, volumetric, fully-convolutional
3D network (FCN) called DI2IN with deep-supervision. The output of DI2IN is
improved in subsequent stages that employ either message-passing across chan-
nels or a convolutional LSTM followed by further tuning with a shape dictionary.

Owing to equivariance of the convolutional operator and limited receptive
field, an FCN doesn’t always learn the anatomy of the region-of-interest. This is
a severe limitation as human-equivalent learning utilises anatomical details aided
with prior knowledge. An immediate remedy is to increase the receptive field by
going deeper. However, this comes at the cost of higher model complexity or is
just unfeasible due to memory constraints when working with volumetric data.

Prior and Adversarial Learning in CNNs. Recent work in [5] and [4] pro-
pose encoding (anatomical) segmentation priors into an FCN by learning the
shape representation using an auto encoder (AE). The segmentation is expressed
in terms of a pre-learnt latent space for evaluating a prior-oriented loss, which
is then used to guide the FCN into predicting an anatomically sound segmen-
tation. Our approach shares similarities with this approach with certain funda-
mental differences: (1) Our approach is aimed at localisation, which requires a
redefinition of the notion of anatomical shape. (2) We employ an AE for shape
regularisation, but do not ‘pre-train’ it to learn the latent space. We train the
AE adversarially in tandem with the FCN. Parallels can be drawn between end-
to-end learning of priors and learning the distribution of priors using generative
adversarial networks (GANs). Both have two networks, a predictor (generator)
and an auxiliary network which works on the ‘goodness’ of the prediction. In
medical image analysis where scan sizes are large and data are few, inspired
from an energy-based adversarial generation framework (Zhao et al. [11]), it is
preferable to employ an adversary providing an anatomically-inspired supervi-
sion instead of the usual binary adversarial supervision (vanilla GAN).

Our Contribution. In this work, we propose an end-to-end solution for verte-
brae labelling by adversarially training an FCN, thereby encoding the local spine
structure into it. More precisely, relying on the sufficiency of information in cer-
tain 2D projections of 3D data, we propose: (1) A butterfly-shaped network that
operates on 2D sagittal and coronal reformations, combining information across
these views at a large receptive field, (2) Encoding the spine’s structure into the
Btrfly net using an energy-based, fully-convolutional, adversarial auto encoder
acting as a discriminator. Our approach attains identification rates above 85%
without any post-processing stages, achieving state-of-art performance.

2 Methodology

We present our approach in two stages. First, we describe the Btrfly network
tasked with the labelling of the vertebrae. Then we present the adversarial
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Fig. 1. (a) Overview of our approach. (b) Label correcting capability of the AE when
trained as a denoising convolutional auto-encoder (red: corrupted, green: corrected).
This motivates the discriminator in our adversarial framework.

learning of the local spine shape with an energy-based auto-encoder acting as
the discriminator. Figure 1a gives an overview of the proposed approach and the
motivation for prior-encoding is illustrated in Fig. 1b.

2.1 Btrfly Network

Working with 3D volumetric data is computationally restrictive, more so for
localisation and identification that rely on a large context so as to capture spa-
tially distant landmarks. Consequently, there is a trade-off between working with
low-resolution data or resorting to shallow networks. Therefore, we propose work-
ing in 2D with sufficiently–representative projections of the volumetric data. The
choice of projection is application dependant. Since we are working with bone,
we work on sagittal and coronal maximum intensity projections (MIP). The for-
mer captures the spine’s curve and the latter captures the rib-vertebrae joints,
both of which are crucial markers for labelling. Note that a naive MIP might not
always be the optimal choice of projection, eg. in full-body scans where spine is
not spatially centred or is obstructed by the ribcage in a MIP. Such cases are
handled with a pre-processing stage detecting the occluded spine in the MIP.

Annotations. We formulate the problem of learning the vertebrae labels as
a multi-variate regression. The ground-truth annotation Y ∈ R

(h×w×d×25) is
a 25-channeled, 3D volume with each channel corresponding to each of the 24
vertebrae (C1 to L5), and one for the background. Each channel i is constructed
as a Gaussian heat map of the form yi = e−||x−μi||2/2σ2

, x ∈ R
3 where μi is the

location of the ith vertebra and σ controls the spread. The background channel
is constructed as, y0 = 1 − maxi(yi). The sagittal and coronal MIPs of Y are
denoted by Ysag ∈ R

(h×w×25) and Ycor ∈ R
(h×d×25), respectively.

Architecture. We employ an FCN to perform the task of labelling. Since essen-
tial information is contained in both the sagittal and coronal reformations, and
since the spine is approximately spatially centred in both, fusing this informa-
tion across views leads to an improved identification. We propose a butterfly-like
network (cf. Fig. 2) with two arms (xz- and yz-arms) each concerned with one
of the views. The feature maps of both the views are combined after a certain
depth in order to learn their inter-dependency.
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Fig. 2. The Btrfly architecture. The xz- (blue) and the yz-arms (yellow) correspond
to the sagittal and coronal views. The kernel’s shape resulting in each of the blocks is
indicated as: {input channels} · {kern. height} · {kern. width} · {output channels}

Loss. We choose an �2 distance as the primary loss supported by a cross-entropy
loss over the softmax excitation of the ground truth and the prediction. The total
loss is expressed as:

Lb,sag = ||Ysag − Ỹsag||2 + ωH(Yσ
sag, Ỹ

σ
sag), (1)

where Ỹsag is the prediction of the net’s xz-arm, H is the cross-entropy function,
and Yσ

sag = σ(Ysag), the softmax excitation. ω is the median frequency weighing
map (described in [6]), boosting the learning of less frequent classes. The loss
for the yz-arm is constructed in a similar fashion and the total loss of the Btrfly
net is given by Lb = Lb,sag + Lb,cor.

2.2 Energy-Based Adversary for Encoding Prior

Since the Btrfly net is fully-convolutional, its predictions across voxels are inde-
pendent of each other owing to the spatial invariance of convolutions. Whatever
information it encodes is solely due to its receptive field, which may not be
anatomically consistent across the image. We propose to impose the anatomical
prior of the spine’s shape onto the Btrfly net with adversarial learning.

Denoting the projected annotation as Yview, where view ∈ {sag, cor}, a
sample annotation consists of a 2D Gaussian at the vertebral location in each
channel (except y0). Looking at Yview as a 3D volume enables us in learning
the spread of Gaussians across channels and consequently the vertebral labels.
However, owing to the extreme variability of FOVs and scan sizes, it is preferable
to learn the spread of the vertebrae in parts. Therefore, we employ a fully-
convolutional, 3D auto encoder (AE) with a receptive field covering a part of
the spine at a time. The absence of fully-connected layers in the AE also removes
the necessity to resize the data, making it end-to-end trainable with the Btrfly
net. Figure 3a shows the arrangement of the AEs as adversaries w.r.t the Btrfly
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net. In an adversarial framework, the Btrfly net acts as the generator (G), and
the local manifolds learnt from Yview influence Ỹview and vice versa.

Discriminator. We devise the 3D adversary (D, cf. Fig. 3b) consisting of the
AE as a functional predicting the �2 distance between the input Yview and its
reconstruction by the AE, rec(Yview): D(Yview) = E = ||Yview − rec(Yview)||2.
This energy, E is fed back into G for adversarial supervision, as in [11]. As it is an
energy-based functional, we interchangeably refer to the discriminator as EB-D.
Since Yview consists of Gaussians, it is less informative than an image. Therefore,
we avoid using max-pooling by resorting to average pooling. In order to have
a receptive field covering multiple vertebrae without using pooling operations,
we employ spatially dilated convolution kernels [10] of size (5 × 5 × 5) with a
dilation rate of 2 (only in image plane), resulting in a receptive field of 76 × 76
pixels. At 1 mm isotropic resolution, this covers 2 to 3 vertebrae in the lumbar
region and more elsewhere.

Fig. 3. (a) A overview of adversarial training showing the input to, and the energy-
based supervision signal from, the discriminators. (b) The composition of the energy-
based discriminator (EB-D). It gives the �2 reconstruction error as output.

Losses. As in any adversarial setup, EB-D is shown real (Yx(≡ Yview)) and
generated annotations (Yg(≡ Ỹview)), and it learns to discriminate between both
by predicting a low E for real annotations, while G learns to generate annotations
that would trick D. For a given positive, scalar margin m, the following generator
and discriminator losses are optimised:

LD = D(Yx) + max(0,m − D(Yg)), and (2)

LG = D(Yg) + Lb,view. (3)

The joint optimisation of (2) and (3) for both the EB-Ds results in a G that
performs vertebrae labelling while respecting the spatial distribution of the ver-
tebrae across channels. We refer to this prior-encoded G as the ‘Btrflype’ net.

2.3 Inference

Once trained, an inference for a given input scan of size (h×w×d) proceeds as: the
desired sagittal and coronal MIP reformations are obtained and given as input to
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the xz- and yz-arms of the Btrfly net, resulting in a (h×w×25) sagittal heatmap
and (h × d × 25) coronal heatmap. The values below a threshold (T , selected on
validation set) are ignored in order to remove noisy predictions. As the Gaussian
kernel is separable, an outer product of the predictions results in the final heat
map as Ỹ = Ỹsag ⊗ Ỹcor, where ⊗ denotes the outer product. The 3D location
of the vertebral centroids are obtained as the maxima in their corresponding
channels. Note that the EB-D is no longer required during inference as its role
in encoding the prior ends with the convergence of the Btrflype net.

Fig. 4. Effect of prior encoding: the prior-encoded Btrflype net successfully performs its
task of prevent overlapping labels (C6 & C7), consequently reordering all the vertebral
labels. The reported id. rates are per volume.

3 Experiments

The evaluation is performed using a dataset introduced in [3] with a total of 302
CT scans (242 for training and 60 for testing) including various challenges such
as scoliotic spines, metal insertions, and highly restrictive FOVs. However, these
are cropped to a region around the spine which excludes the ribcage. Thus, a
naive sagittal and coronal MIP, without any pre-processing, suffices to obtain
the input images for our approach. In order to enhance the net’s robustness, 10
MIPs are obtained from one 3D scan, each time randomly choosing half the slices
of interest. This leads to a total of 2420 reformations per view for training (incl. a
validation split of 100). We present the experiments with the Btrfly net trained
as stand-alone as well as with the prior-encoding discriminator EB-D. Batch-
normalisation is used after every convolution layer, along with 20% dropout in
the fused layers of Btrfly. Additionally, so as to validate the necessity of the
combination of views, we compare the Btrfly net’s performance with that of two
networks working individually on the views (denoted as Cor.+Sag. nets). The
architecture of each of these networks is similar to one arm of the Btrfly net. The
optimiser’s setup in all the three cases is similar: an Adam optimiser is employed
with an initial learning rate of λ = 1 × 10−3, working on data resampled to a 1
mm isotropic resolution. λ is decayed by a factor of 3/4th every 10k iterations
to 0.2 × 10−3. Convergence of all the networks is tested on the validation set.

Evaluation and Discussion. For evaluating the performance of our network
with prior work, we use two metrics defined in [2] namely, the identification rates
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Table 1. Performance comparison of our approach (setting T = 0, for a fair com-
parison) with Glocker et al. [3], Chen et al. [1] and Yang et al. [8]. DI2IN refers to
stand-alone FCN, while DI2IN* includes use of message passing and shape dictionary.
We do not compare with experiments in [8] that use additional undisclosed data.

Measures [3] [1] DI2IN[8] DI2IN∗[8] Cor.+Sag. Btrfly Btrflype

Id.rate 74.0 84.2 76.0 85.0 78.1 81.8 86.1

dmean 13.2 8.8 13.6 8.6 9.3 7.5 7.4

dstd 17.8 13.0 37.5 7.8 8.0 5.4 9.3

Fig. 5. A precision-recall curve with F1 iso-
lines, illustrating the effect of the T during
inference. For any T , Btrflype offers a better
trade-off between P and R.

Table 2. The optimal P and R values
based on F1 score, along with the opti-
mal T . R at optimal-F1 of Btrflype is
comparable to state-of-art.

Approach P R F1

Cor.+Sag.(T=0.05) 74.7 77.0 75.8

Btrfly(T=0.1) 78.7 79.1 78.9

Btrflype (T=0.2) 84.6 83.7 84.1

(id. rate, in %) and localisation distances (dmean & dstd, in mm). We report the
measures in Table 1. It lists the performance of three variants of our network and
compares them with several recent approaches. We address three main questions
through our experiments: (1) Why the butterfly shape? Compared to Cor.+Sag.
nets, performance improves with the Btrfly net. This is because the combination
of views causes the predictions of the Btrfly net to be spatially consistent across
views. We also observe a 6% improvement in the id.rate over a naive 3D FCN
(DI2IN). (2) Why the adversarial prior-encoding? In addition to the advantages
of the Btrfly net, the Btrflype net possesses adversarially encoded spatial dis-
tribution of the vertebrae. This results in about a 4% increase in the id. rate.
Compared to the prior work, Btrflype net achieves state-of-art measures in both
the metrics, and it does so by being a single network trained end-to-end. (cf.
Fig. 4) (3) Relation to latent-space learning? EB-D is more flexible than the
AEs in [4,5] as it learns from scratch and converges to a latent manifold best
representing the true as well as generated data. The reconstruction capability of
the AE for a generated sample is of interest. Using the output of the AE instead
of Btrflype, we achieve an id.rate of 75% with a dmean of 19 mm, indicating the
AEs’ capability of transferring the learning from true to contrastive samples.

Precision and Recall. Localisation distance and id.rate capture the ability
of the network in accurately labelling a vertebra. However, both the measures
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are agnostic to false positive predictions. Accounting for spurious predictions
becomes important especially when dealing with FCNs, as the predictions
depend on a locally constrained receptive field. In our case, the false positives
are controlled by the threshold T as described in Sect. 2.3. Accounting for these,
we define two measures, precision (P ) and recall (R) as: P = #hits/#predicted and
R = #hits/#actual, where #hits is the number of vertebrae satisfying the condition
of identification as defined for id.rate, #predicted is the vertebrae in the predic-
tion, and #actual is the vertebrae actually present in the image. Observe that id.
rate is measured over all vertebrae in the test set while R is measured per scan
and averaged over test scans. Figure 5 shows a precision-recall curve generated
by varying T between 0 to 0.8 in steps of 0.05, while Table 2 shows the perfor-
mance at the F1-optimal threshold. In spite of not choosing an recall-optimistic
threshold, our networks perform comparably well. Notice the over-arcing nature
of Btrfly over Cor.+Sag. nets and that of Btrflype over others.

4 Conclusions

We validate the sufficiency of 2D orthogonal projections of the spine for localising
and identifying the vertebrae by combining information across the projections
using a butterfly-like architecture. In addition to looking at a local receptive field
like any FCN, our approach considers the local structure of the spine thanks to an
adversarial energy-based prior encoding, thereby outperforming the state-of-art
approaches as a stand-alone network without any post-processing stages.
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Synopsis:
Purpose.: To use and test a labeling algorithm that operates on two-dimensional
reformations, rather than three-dimensional data to locate and identify vertebrae.
Materials and Methods. We improved the Btrfly Net, a fully convolutional net-
work architecture which works on sagittal and coronal maximum intensity projections
(MIPs) and augmented it with two additional components: spine localisation and ad-
versarial a priori learning. Furthermore, two variants of adversarial training schemes
that incorporated the anatomic, a priori knowledge into the Btrfly Net were explored.
The superiority of the proposed approach for labelling vertebrae on three datasets
was investigated: a public benchmarking dataset of 302 CT scans and two in-house
datasets with a total of 238 CT scans. The Wilcoxon signed rank test was employed
to compute the statistical significance of the improvement in performance observed
with various architectural components in the approach.
Results. On the public dataset, the proposed approach using the described Btr-
fly Net with energy-based prior encoding (Btrflype-eb) network performed as well
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6. Labeling Vertebrae with Two-dimensional Reformations of
Multidetector CT Images: An Adversarial Approach for
Incorporating Prior Knowledge of Spine Anatomyas current state-of-the-art methods, achieving a statistically significant (p < .001)
vertebrae identification rate of 88.5% ± 0.2 (standard deviation) and localization
distances of less than 7mm. On the in-house datasets that had a higher interscan
data variability, an identification rate of 85.1% ± 1.2 was obtained.
Conclusion. An identification performance comparable to existing three-dimensional
approaches was achieved when labelling vertebrae on two-dimensional MIPs. The
performance was further improved using the proposed adversarial training regimen
that effectively enforced local spine a priori knowledge during training. Spine locali-
sation increased the generalizability of our approach by homogenising the content in
the MIPs .
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sary software resource, gathered and prepared the in-house data, developed and
implemented the novel architecture and training schemes, lead experimentation and
manuscript-writing tasks.
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ORIGINAL RESEARCH

Spine CT is a commonly performed imaging proce-
dure. In this study, we focused on labeling the verte-

brae, which is the task of both locating and identifying 
the cervical, thoracic, lumbar, and sacral vertebrae in a 
regular spine CT scan. Labeling the vertebrae has imme-
diate diagnostic consequences. Vertebral landmarks help 
identify scoliosis, pathologic lordosis, and kyphosis, for 
example. From a modeling perspective, labeling simpli-
fies the downstream tasks of intervertebral disk segmenta-
tion and vertebral segmentation.

Previous approaches to labeling fell into one of two 
broad categories: the traditional model-based approaches 
and the relatively recent learning-based approaches. 
Model-based approaches such as those of Schmidt et al 
(1), Klinder et al (2), and Ma and Lu (3) used a priori 
information on the spine structure, such as statistical shape 
models or atlases. Due to their extensive reliance on a priori 
information, the generalizability of these approaches was 
limited. From a machine learning perspective, approaches 

have existed, ranging from regression forest models work-
ing on context features in Glocker et al (4), Glocker et al 
(5), and Suzani et al (6); a combination of convolutional 
neural networks and random forest models in Chen et al 
(7); and three-dimensional (3D) fully convolutional net-
works in Yang et al (8), followed by recurrent neural net-
works in Yang et al (9) and Liao et al (10). Most of these 
approaches work on full 3D multidetector CT scans. Re-
cently, an approach achieved a higher labeling performance 
by working on two-dimensional (2D) maximum intensity 
projections (MIPs) using an architecture termed Btrfly Net, 
which was first proposed by Sekuboyina et al (11).

In this study, we improved on the Btrfly architecture 
and extended it with a spine localization module, thus 
making the combination more generalizable. Concur-
rently, inspired by the generative adversarial learning do-
main, we investigated an a priori learning module that 
enforced the spine’s anatomic a priori knowledge (ie, 
prior) onto the Btrfly network. Earlier approaches were 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose:  To use and test a labeling algorithm that operates on two-dimensional reformations, rather than three-dimensional data to 
locate and identify vertebrae.

Materials and Methods:  The authors improved the Btrfly Net, a fully convolutional network architecture described by Sekuboyina et al, 
which works on sagittal and coronal maximum intensity projections (MIPs) and augmented it with two additional components: spine 
localization and adversarial a priori learning. Furthermore, two variants of adversarial training schemes that incorporated the anatomic 
a priori knowledge into the Btrfly Net were explored. The superiority of the proposed approach for labeling vertebrae on three data-
sets was investigated: a public benchmarking dataset of 302 CT scans and two in-house datasets with a total of 238 CT scans. The 
Wilcoxon signed rank test was employed to compute the statistical significance of the improvement in performance observed with vari-
ous architectural components in the authors’ approach.

Results:  On the public dataset, the authors’ approach using the described Btrfly Net with energy-based prior encoding (Btrflype-eb) net-
work performed as well as current state-of-the-art methods, achieving a statistically significant (P , .001) vertebrae identification rate 
of 88.5% 6 0.2 (standard deviation) and localization distances of less than 7 mm. On the in-house datasets that had a higher interscan 
data variability, an identification rate of 85.1% 6 1.2 was obtained.

Conclusion:  An identification performance comparable to existing three-dimensional approaches was achieved when labeling vertebrae 
on two-dimensional MIPs. The performance was further improved using the proposed adversarial training regimen that effectively en-
forced local spine a priori knowledge during training. Spine localization increased the generalizability of our approach by homogeniz-
ing the content in the MIPs.
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tational Spine Imaging (CSI) workshop during the 2014 Medi-
cal Image Computing and Computer Assisted Intervention 
conference by the Department of Radiology at the University 
of Washington released a public benchmarking dataset, called 
CSIlabel. It consists of 302 spine-focused (ie, tightly cropped) 
CT scans (of which 242 are for training and 60 are for testing) 
that include fractures, scans with and without contrast material 
enhancement, abnormal curvatures, and nearly 150 scans com-
prising postoperative cases with metal implants. The dataset 
has a mean voxel spacing of approximately 2 3 0.35 3 0.35 
mm3 in the craniocaudal 3 left-right 3 anteroposterior direc-
tions and a mean dimension of (318 6 131) 3 (172 6 24) 3 
(172 6 24) at 1-mm3 isotropic resolution. Vertebrae centroids 
have been manually annotated as described by Glocker et al 
(5).

Our two in-house datasets consisted of 238 CT scans in total 
(178 for training and 60 for testing, with fivefold cross valida-
tion). It is a collection of examinations of healthy and abnormal 
spines (eg, osteoporosis, vertebral fractures, degeneration, and 
scoliosis) of patients 30–80 years old, collected for two previ-
ously published retrospective studies (14,15). Ethics approval 
was obtained from the local ethics committee of the faculty of 
medicine of the Technical University of Munich for both studies. 
Because of the retrospective nature of these studies, the need for 
informed consent was waived. In the study published in 2017, 
Valentinitsch et al (14) established a normative atlas of the thora-
columbar spine in healthy patients using nonenhanced CT scans 
collected between 2005 and 2014. In the study published in 
2019, Valentinitsch et al (15) investigated texture analysis tech-
niques for diagnosis of opportunistic osteoporosis using contrast 
material–enhanced CT scans collected from February 2007 to 
February 2008. For both studies, cases with metastasis and metal 
implants were excluded as they would change vertebral texture as 
well as biomechanical behavior and thus interfere with fracture 
prediction. These exclusion criteria are based on the older studies 
and not on the current study we report on here. In this study, 
we used 65 non–contrast-enhanced scans from Valentinitsch et 
al (14) and 173 contrast-enhanced scans from Valentinitsch et al 
(15). Overall, approximately 20% of the dataset (46 scans) in-
cluded parts of the rib cage, where 92 patients had fractured ver-
tebrae. Annotations of the vertebrae were automatically derived 
from available segmentations, performed with an automated al-
gorithm based on shape model matching (2). They were verified 
by one radiologist (J.S.K.), with more than 15 years of experi-
ence in spine imaging, and corrected where necessary.

CT Imaging
All CT scans were performed with either a 256–detector row 
(Philips Medical Systems, Best, the Netherlands) or a 128–de-
tector row (Siemens Healthineers, Erlangen, Germany) CT 
scanner and reconstructed using an edge-enhancing kernel. All 
scans were acquired with 120 kVp and an adaptive tube load. 
All patients received intravenous contrast material (Iomeron 
400; Bracco, Konstanz, Germany) with a delay of 70 seconds, 
a flow rate of 3 mL/sec, and a body weight–dependent dose 
between 80 and 100 mL. The mean voxel size of the dataset is 
approximately 0.7 3 2.75 3 0.7 mm3 in the craniocaudal 3 

aimed at prior learning, such as those of Ravishankar et al (12) 
and Oktay et al (13). Typically, such approaches consist of 
two networks, with one primary network solving a task (eg, 
segmentation) and use of a secondary pretrained network that 
learns the shape of interest and either “corrects” the primary 
network’s prediction (12) or “enforces” it on the primary net-
work (13). Our network was similar to these approaches in 
that it includes two components: a labeling network and an 
adversary as the secondary network. However, Btrfly Net was 
fundamentally different in the training and inference processes 
compared with the previous work (12,13). First, the adversary 
required no pretraining because it was trained along with the 
labeling network by penalizing it if the labels deviated from 
the ground truth distribution. Second, since the adversarial loss 
was used to update directly the weight of the Btrfly net, the 
adversary was no longer needed during inference.

Thus, our hypothesis was that by incorporating a spine local-
ization stage before vertebral labeling and then using adversarial 
learning on an anatomic prior and enforcing it onto the Btrfly 
network, the labeling performance would be improved while 
also making the setup generalizable to clinical routines. We de-
scribe the use of the prior-encoded Btrfly variant for improved 
vertebrae identification and labeling compared with the original 
Btrfly Net. Furthermore, we validate this network for vertebrae 
labeling on in-house data, supporting its use in a clinical diag-
nostic setting.

Materials and Methods

Study Datasets
We worked with two datasets: (a) a public benchmarking data-
set and (b) a collection of two in-house datasets. The Compu-

Abbreviations
Btrflype-eb = Btrfly Net with energy-based prior encoding, Btrflype-w 
= Btrfly Net with Wasserstein distance–based prior encoding, CSI 
= computational spine imaging, MIP = maximum intensity projec-
tion, 3D = three-dimensional, 2D = two-dimensional 

Summary
The proposed fully convolutional network architecture, Btrfly Net 
with energy-based prior encoding, was trained to learn the a priori 
knowledge of the spine’s shape on two-dimensional maximum inten-
sity projections to locate and identify vertebrae at a rate comparable 
to that of prior methods that operated in three dimensions.

Key Points
	n Three-dimensional labeling of vertebrae using two-dimensional 

sagittal and coronal maximum intensity projections resulted in a 
computationally lighter but high-performing pipeline when pro-
cessed using a butterfly-shaped fully convolutional network.

	n Employing spine localization as a preprocessing stage enabled the 
proposed approach to be applicable to scans of any field of view, 
including complete vertebrae, thus increasing its generalizability to 
a clinical setting.

	n Enforcing anatomic a priori knowledge (in the form of the verte-
bral arrangement) onto the labeling network using so-called adver-
sarial learning improved the vertebrae identification rate to greater 
than 88% on a public benchmarking dataset.
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Figure 1:  Spine localization and its necessity illustrated on a data sample from the in-house dataset. (a) Ground truth and predicted localization maps along with ex-
tracted bounding boxes (blue = actual, green = predicted), plotted on sagittal and coronal sections of a CT scan. (b) A naive maximum intensity projection (MIP) of a scan 
shows the rib cage completely occluding the spine (left). This can be handled by extracting a localized MIP of the same scan using the bounding box of the localized spine 
(right).

ors). For example, in the spine, vertebra L2 is almost always 
caudal to L1 and cranial to L3. Enabling a network to learn 
such priors results in anatomically consistent predictions. In 
our case, a secondary network or discriminator (D), which was 
trained along with the primary Btrfly Net, learned the spine’s 
shape and forced the Btrfly Net’s predictions to respect this 
shape. In Sekuboyina et al (11), an energy-based (EB) auto-
encoder was used as a discriminator (EB-D). In this study, we 
improved the architecture of the EB-D and compared it with 
a purely encoding, Wasserstein distance–based discriminator 
(W-D). (16). The combination of the Btrfly Net and EB-D was 
referred to as Btrflype-eb (denoting energy-based prior encoding) 
and that of the Btrfly Net and W-D was referred to as Btrflype-w 
(for Wasserstein distance–based prior encoding). The architec-
tures, the cost functions, and the adversarial training details of 
both the improved EB-D and proposed W-D are described in 
Appendix E1 (supplement). Note that EB-D is a fully convo-
lutional network and has a receptive field covering only a fixed 
part of the spine irrespective of the input scan dimension. On 
the other hand, W-D has a receptive field covering the full im-
age owing to the dense connections in the architecture. We re-
fer to these two receptive fields as local and global, respectively, 
and investigate the difference in their behavior.

Inference
Our algorithm included two components—spine localiza-
tion and vertebrae labeling—as illustrated in Figure 2. Given 
a multidetector CT scan, the localization stage predicts a heat 
map (and a bounding box) indicating the location of the spine 
from which localized MIPs can be extracted and passed to the 
labeling stage. Each arm of the Btrfly Net labels the sagittal 
and coronal projections, which are then fused by outer prod-
uct to obtain the 3D vertebral locations. Note that the role 
of the discriminators ends with adversarial enforcement of the 
spine prior onto the Btrfly Network during the training stage 
and are not a part of the inference path. The improvement in 
performance due to various components of our approach was 
assessed using a Wilcoxon signed rank test assuming indepen-
dence across scans.

left-right 3 anteroposterior directions with a mean size of (565 
6 111) 3 (123 6 58) 3 (401 6 140) mm3.

Spine Localization as a Preprocessing Stage
For efficiently handling data with diverse fields of view, local-
izing the spine was an important step that improved the 2D pro-
jections on which all subsequent vertebrae labeling stages relied. 
For localizing the spine, a 3D fully convolutional neural network 
was employed to regress Gaussian heat maps centered at the ver-
tebrae, followed by extracting a bounding box around the spine. 
This stage operated at very low resolution (4-mm isotropic), em-
ploying a lightweight, fully convolutional U-network. The net-
work architecture is described in Figure E1 (supplement). Figure 
1a shows examples of the predicted heat maps and the extracted 
bounding boxes. With this spine localization stage, we were able 
to extract a localized MIP, which is an MIP across only those sec-
tions that contain the spine. Localized MIP projections gave an 
unoccluded view of the spine (Fig 1b).

Vertebrae Labeling with the Btrfly Net
Networks working in 3D are computationally intensive owing 
to their features vectors being of O (N3 ), where N is one of 
the scan dimensions. As an alternative to working in a com-
putationally demanding 3D domain, Sekuboyina et al (11) 
proposed working with 2D sagittal and coronal MIPs by pro-
posing a butterfly-shaped architecture, Btrfly Net. As the Btrfly 
Net processes 2D data, its feature dimensionality is limited to 
O (N2). This reduction in requirement of computational re-
sources allows the design of deeper 2D networks with more 
convolutional layers leading to higher receptive fields. In this 
study, we used an improved version of the Btrfly Net. Most 
importantly, we work with scans at 2-mm isotropic resolution, 
consequently increasing the receptive field and the representa-
tional capacity of the Btrfly Net (Fig E2 [supplement]).

Adversarial Enforcement of the Shape of the Spine onto 
Btrfly Net
Human anatomy usually follows certain structural rules; thus, 
anatomic nomenclature has strong tacit assumptions (or pri-
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detection rate of 100% on CSIlabel and 97% on the in-house 
dataset indicated a successful localization of the spine in all the 
cases. Note that a complete failure of localization might not be 
detrimental as it would result only in an occluded MIP. Label-
ing such a projection could be handled in the subsequent stages 
with appropriate augmentation if the failure rate is minimal.

Btrfly Network Variants, Btrflype-eb and Btrflype-w, Perform 
Refined Vertebrae Labeling Compared with the Original 
Btrfly Network
We evaluated the vertebrae labeling performance in two stages: 
(a) On the public CSIlabel dataset, we evaluated the performance 
of the stand-alone labeling component and compared it with 
prior work (Tables 2, 3) and (b) on the in-house dataset, we 
deployed the combination of localization and labeling to evalu-
ate the contribution of localizing the spine (Table 4). To be 
agnostic to initialization, and since the train-test split is official, 
we reported the mean performance over three runs of training 
with independent initializations on the public dataset, while 
we performed a fivefold cross-validation on the in-house data-
set to compensate for any dataset bias. All the improvements in 
the performance due to our contributions are statistically sig-
nificant (P , .05) according to the Wilcoxon signed rank test.

Contribution of Btrfly architecture.—To validate the impor-
tance of combining the views and processing them in the Btrfly 

Performance Evaluation of Spine and Vertebral Detection

Spine localization.—The performance of the localization stage 
is evaluated with two metrics defined as: (a) intersection over 
union between the actual and predicted bounding boxes and 
(b) detection rate, where a detection was successful if the cor-
responding intersection over union was greater than 50%. It 
was observed that this overlap suffices for our task of filtering 
out the obstructions.

Vertebrae labeling.—The labeling performance was evaluated 
using metrics defined in Glocker et al (4) and Sekuboyina et 
al (11), namely, identification rate, localization distance, pre-
cision, and recall. A vertebra was correctly “identified” if the 
predicted vertebral location was the closest point to the ground 
truth location and was less than 20 mm away from it. The 
distance of this prediction was then recorded as the localization 
distance. Precision and recall values were used to quantify the 
relevance of the predictions (eg, accurately labeling all verte-
brae in the scan vs labeling a vertebra that was not present in 
the scan).

Statistical Analysis
Since the test sets are large with 60 scans each for the public 
and in-house datasets, we employed the nonparametric Wil-
coxon signed rank test for validating the statistical significance 
of the improvement in various performance measures due to 
our architectural modifications. These modifications included 
the fusion of the sagittal and coronal views in the Btrfly Net 
and the inclusion of prior-encoding components in Btrflype-w 
and Btrflype-eb Nets.

Results

Successful Spine Localization within the CSIlabel and In-House 
Datasets
Localizing the spine at CT is a relatively simple task owing to 
the higher attenuation (measured in Hounsfield units) of the 
bone. The network only needs to isolate the spine from the 
rest of the skeletal structure. Table 1 records the performance 
of this stage on the two datasets in use. We obtained a mean 
intersection over union greater than 75% on both datasets. A 

Figure 2:  An overview of our labeling approach. Also illustrated is the spine localization stage, which is, in some cases, necessary for our approach to be generalizable 
to any clinical CT scan including complete vertebrae. 3D = three-dimensional, 2D = two-dimensional.

Table 1: Performance of the Spine Localization Stage

Measure
CSIlabel 
Dataset

In-house 
Dataset

Mean intersection over union 0.86 0.76
Detection rate (%) 100 96.7

Note.—Intersection over union (ratio between 0.0 and 1.0) is 
between the bounding boxes around the spine in the ground 
truth and prediction data. Detection rate is the ratio of success-
ful localizations in the dataset based on the intersection over 
union. Observe a high detection rate for both the public CSIlabel 
dataset and the in-house dataset. CSI = computational spine 
imaging.
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[Btrflype-eb] vs 1.2 [Btrflype-w]). A qualitative comparison of the 
three variants in our experiments is shown in Figure 3. The 
top row shows a use-case with successful labeling, and the 
bottom row shows an interesting failure use-case where the 
labeling fails due to the presence of an obstruction along the 
coronal view.

Net, we compared its performance to a network setup work-
ing individually on the coronal and sagittal views without any 
such fusion of views. This setup was denoted by “Cor1Sag”. 
The architecture of each of these networks was similar to one 
arm of the Btrfly Net without the fusion of views. Due to this 
architectural modification, an increase of 1% in the identifi-
cation rate was observed between Cor-
1Sag Net and Btrfly Net, as reported 
in Table 2.

Effect of adversarial encoding.—En-
forcing prior information into the Btr-
fly Net’s training resulted in a 1% to 
2% improvement in the identification 
rate. We observed that the performance 
of Btrflype-eb was marginally superior to 
that of Btrflype-w (Table 2). This can be 
explained by the distinction between 
the locally encoding Btrflype-eb and 
a globally acting Btrflype-w. This dif-
ference in encoding also explains the 
high variance of the identification rate 
of Btrflype-w (standard deviation of 0.2 

Table 2: Performance Comparison of Our Approach with Prior Work

Approach

Identification Rate (%) Localization Distance (mm)

All Cervical Thoracic Lumbar All Cervical Thoracic Lumbar

Chen et al (7) 84.2 91.8 76.8 88.1 8.8 6 13.0 5.1 6 8.2 11.4 6 16.5 8.2 6 8.6
Yang et al (8) 85 92 81 83 8.6 6 7.8 5.6 6 4.0 9.2 6 7.9 11.0 6 10.8
Liao et al (10) 88.3 95.1 84.0 92.2 6.5 6 8.6 4.5 6 4.6* 7.8 6 10.2 5.6 6 7.7*
Cor+Sag 85.8 6 0.8 92.3 6 0.2* 80.1 6 2.1 90.0 6 2.3 6.7 6 5.4 5.8 6 5.3 8.2 6 7.4 7.2 6 8.1
Btrfly 86.7 6 0.4 89.4 6 0.7 83.1 6 1.0 92.6 6 1.1 6.3 6 4.0 6.1 6 5.4 6.9 6 5.5 5.7 6 6.6
Btrflype-w 87.7 6 1.2 89.2 6 1.3 85.8 6 1.4 92.9 6 1.9* 6.4 6 4.2 5.8 6 5.4 7.2 6 5.7 5.6 6 6.2*
Btrflype-eb 88.5 6 0.2* 89.9 6 0.2 86.2 6 0.4* 91.4 6 1.7 6.2 6 4.1* 5.9 6 5.5 6.8 6 5.9* 5.8 6 6.6

Note.—Unless otherwise indicated, data are means 6 standard deviations. The identification rate is throughout three runs of training with 
different initializations. Localization distances are the distance computed throughout all vertebrae in the three runs of training (ie, through-
out vertebrae in 3 3 60 test set scans). Improvement in the identification rate computed per scan throughout all variants was statistically 
significant in all runs (P , .05). Specifically, the gain in performance of Btrflype-eb was statistically significant, with the lowest P value (< 
.001). Btrflype-eb = Btrfly Net with energy-based prior encoding, Btrflype-w = Btrfly Net with Wasserstein distance–based prior encoding, 
Cor1Sag = coronal plus sagittal.
* The best performer among the entries.

Table 3: Precision and Recall Analysis

Approach
F1 Optimal 
Threshold Precision (%) Recall (%) F1

Cor+Sag 0.2 79.5 82.5 79.5
Btrfly 0.33 79.9 85.1 82.4
Btrflype-w 0.23 77.8 86.1 81.7
Btrflype-eb 0.23 80.2* 87.9* 83.4*

Note.—Reported are the optimal mean precision and recall values based on the F1 score and 
the mean of the F1-optimal threshold for three runs. Precision = No. of hits/No. predicted 
and recall = No. of hits/No. of actual, where No. of hits is the number of vertebrae satisfying 
the condition of identification as defined for identification rate, No. predicted is the vertebra 
in the prediction, and No. actual is the vertebrae actually present on the image. Btrflype-eb = 
Btrfly Net with energy-based prior encoding, Btrflype-w = Btrfly Net with Wasserstein dis-
tance–based prior encoding, Cor1Sag = coronal plus sagittal, No. = number.
* The best performer among the entries.

Table 4: Contribution of Spine Localization

Reformation

Identification Rate (%) Localization Distance (mm)

All Cervical Thoracic Lumbar All Cervical Thoracic Lumbar

Naive MIP 81.3 6 3.9 63.1 6 10.0 79.2 6 4.6 89.6 6 4.7 9.5 6 8.2 14.1 6 8.4 9.4 6 7.6 9.5 6 14.4
Localized MIP 85.1 6 1.2* 65.7 6 6.7* 83.7 6 3.1* 92.0 6 2.0* 8.1 6 6.6* 13.4 6 8.8* 8.1 6 8.1* 7.7 6 9.4*

Note.—Data are means 6 standard deviations. The in-house dataset contained a significant fraction of scans in which the rib cage causes 
occluded maximum intensity projections (MIPs). In such cases, localization of the spine enabled extraction of “localized MIPs” from only 
the spine region. Illustrated in this table is the advantage offered by localized MIPs. Reported measures are obtained using the best-perform-
ing architecture (Btrflype-eb) from Table 2, averaged with fivefold cross validation. 
* The best performer among the entries.
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Precision and recall.—A Gaussian image 
predicted for any vertebra was counted as a 
final label if the response was higher than a 
threshold. Thus, the threshold controls the 
false-positive and true-positive label predic-
tions of the network. Figure 4 shows a pre-
cision-recall curve generated by varying the 
threshold between 0 and 0.8 in steps of 0.1, 
while Table 3 records the performance at the 
F1-optimal threshold. Despite not choosing 
a recall-optimistic threshold, our networks 
performed comparably well at an optimal-F1 
threshold. Notice the overarching nature of 
Btrflype-eb over others at all thresholds.

Rigorous evaluation with respect to iden-
tification rate.—As defined in Glocker et al 
(4), a vertebra was accurately identified if it 
was the closest to the ground truth and less 
than 20 mm away. We denote this distance 
threshold as dth. However, a dth of 20 mm is 
a weak requirement; for example, in the case of cervical verte-
brae, which are quite close to one another, predicting the cur-
rent vertebra’s landmark on the adjacent vertebra might not be 
penalized. Demonstrating the spatial precision of our localiza-
tion, we performed a breakdown test with respect to the identi-
fication rates by varying dth between 5 mm and 30 mm in steps 
of 5 mm. Figure 5 shows the regionwise performance curves 
obtained for this variation across our setups. Notice the reason-
ably stable behavior of the curves until dth = 10 mm.

Labeling with improved projections.—The performance of 
the Btrflype-eb architecture (chosen because of its superior 
performance) on naive MIPs with that of localized MIPs on 
the in-house dataset is shown in Table 4. Observe an inferior 
identification rate and high localization distances with naive 
MIPs due to the lack of visible vertebrae (Fig 6). However, 
localized MIPs from the spine’s bounding box result in ap-
proximately a 4% gain in identification rate.

Figure 3:  Qualitative comparison of our network architectures shows two cases from the public dataset with one successful labeling (top, sagittal view) and one unsuc-
cessful labeling (bottom, coronal view). The Cor1Sag and Btrfly Nets label mostly in the presence of spatial information. However, the energy-based prior encoding Btrfly 
Net (Btrflype-eb) and Wasserstein distance–based prior encoding Btrfly Net (Btrflype-w) hallucinate prospective vertebral labels despite no image information (labels on shaded 
gray area on coronal view). In addition, Btrflype-eb tries to retain the order of vertebral labels. Cor+Sag = coronal plus sagittal.  Id. rate = identification rate. 

Figure 4:  Precision-recall curve with F1 isolines shows the effect of the threshold during inference. For 
any threshold, Btrflype-eb offers a better trade between precision and recall. Cor+Sag = coronal plus sagittal, 
Btrfly (pe-eb) = Btrfly Net with energy-based prior encoding, Btrfly (pe-w) = Btrfly Net with Wasserstein 
distance–based prior encoding.
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Discussion
We proposed a generalizable pipeline to localize and identify 
vertebrae on multidetector CT scans that operates on ap-
propriate 2D projections, unlike prior studies whose authors 
worked with 3D scans. Specifically, we incorporated an im-
proved version of the Btrfly architecture in combination with 
a spine localization and a prior-learning stage.

The performance of the localization stage, with intersec-
tion over unions greater than 75%, shows that detecting the 
spine is an easier task. The network localized the spine better 

in the public dataset when compared with the in-house data-
set. This can be attributed to the composition of the datasets: 
CSIlabel is predominantly composed of thoracolumbar refor-
mations with a uniform axial field of view centered around 
the spine, while the in-house dataset has a higher variety of 
scans in terms of axial and coronal fields of view. For the same 
reason, localizing the spine and extracting MIPs only across 
the sections containing the spine showed an improvement in 
labeling performance on the in-house dataset from 81% with 
naive MIPs to 85% (Table 4) with localized MIPs. Such an 

improvement was not observed for scans from CSIlabel due 
to their relatively uniform fields of view. For the in-house 
dataset, the improvement can be attributed to the result-
ing homogeneity in the appearance of the MIPs owing 
to the localization irrespective of the scan content in the 
anteroposterior and lateral directions. Such data homog-
enization also resulted in a more stable learning.

In the module responsible for vertebral labeling, our 
algorithm contained two principle architectural compo-
nents: (a) Fusion of the sagittal and coronal MIPs (us-
ing the Btrfly net) and (b) incorporation of anatomic 
prior information using the adversarial discriminators. 
This architecture, when trained end-to-end, resulted in 
an identification rate of 88% and localization distances 
of 6 mm (Table 2) on the public dataset, outperform-
ing prior state-of-the-art methods (7,8,10). The effec-
tiveness of these architectural components can be ana-
lyzed in three stages: First, a setup working purely on 
2D MIPs (Cor1Sag) readily outperformed the naive 3D 
fully convolutional network proposed by Yang et al (8). 

This was mainly due to the depth of our 
setup, which can be afforded due to lesser 
computational load in 2D. Second, fusing 
the coronal and sagittal views increased the 
identification rate by approximately 1%. 
This can be attributed to two reasons: (a) 
one view now gets access to the key points 
in the other view, and (b) the combination 
of views causes the predictions of the Btr-
fly net to be spatially consistent between 
views. Third, the Btrfly net’s predictions 
were made to respect an anatomic prior 
using adversarial discriminators (EB-D 
or W-D) as a proxy to the postprocessing 
steps usually employed. For example, Yang 
et al (8) used a learned dictionary of verte-
bral centroids to correct a new prediction, 
and Yang et al (9) and Liao et al (10) used 
a pretrained recurrent neural network en-
forcing the vertebrae’s sequence to the pre-
diction. Substituting these secondary steps, 
our Btrfly net was trained adversarially. 
The second network in our case (the adver-
sary) was neither pretrained nor required 
during inference. The adversary provided a 
higher loss when the Btrfly network’s pre-
diction did not conform to a normal spine 

Figure 5:  Regionwise variation of identification rates (Id.rates) (y-axis) for different 
values of the distance threshold (dth) (x-axis) considered as a positive identification. Btrfly 
(pe-eb) = Btrfly Net with energy-based prior encoding, Btrfly (pe-w) = Btrfly Net with 
Wasserstein distance–based prior encoding, Cor1Sag = coronal plus sagittal.

Figure 6:  Localized (Loc) maximum intensity projection (MIP) and a naive MIP from the same scan from 
the in-house dataset using the Btrflype-eb network. Observe occlusions in naive MIP and the lack thereof in the 
localized MIP, resulting in an improved labeling performance. Btrfly (pe-eb) = Btrfly Net with energy-based 
prior encoding, Id. rate = identification rate.
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structure. This enforced the anatomic prior directly onto the 
Btrfly Net during training. On one of the cross-validation 
data splits of the in-house dataset, our method achieved a 
100% vertebra identification in 34 of the 60 test scans. More-
over, of the remaining 26 scans, seven scans had only one 
vertebra misidentified and two scans had only two vertebrae 
misidentified.

Delving deeper into prior learning, EB-D, whose receptive 
field covered a fixed part of a spine irrespective of the input 
field of view, enforced the spine’s structure locally. In con-
trast, W-D enforced a global spine prior since the dense layers 
in it resulted in the receptive field covering the entire input 
scan. Note that adversarial learning in any form improved 
the identification rate by 1% to 2%. However, Btrflype-eb mar-
ginally outperformed Btrflype-w. This can be attributed to the 
fact that a local prior is easier to learn than a global one. 
Since spine multidetector CT scans have highly varying fields 
of view, accurately learning a global prior was nontrivial for 
W-D. In the case of EB-D, the receptive field always cov-
ered approximately three vertebrae in the lumbar region (and 
more elsewhere). Since these subregions are relatively similar 
across scans, it was relatively easier for EB-D to learn and en-
force a local prior. This can also be observed in a lower stan-
dard deviation in the identification rate of Btrflype-eb across 
initializations, indicating a more stable performance.

This study has certain limitations stemming from design 
choices that need further investigation. First, concerning the 
proposed approach, the optimality of MIPs for labeling re-
quires further study to ascertain cases in which they would 
break down. From the evaluations performed in this study, it 
seems to accurately label scoliotic spines, spines with metal-
lic insertions, and spines with fractures, and so forth. How-
ever, an organized analysis is lacking. Second, the indepen-
dent training of the localization stage weakens our approach’s 
“end-to-end trainable” feature. Moreover, the labeling perfor-
mance depends on the accuracy of localization. When trained 
until convergence, localization seems to be accurate enough 
to aid the subsequent labeling stage. However, the robust-
ness of the labeling stage to errors in spine localization is yet 
to be ascertained. Finally, our study is retrospective, and the 
computations have been performed on graphical processing 
units, where a forward pass takes less than 10 seconds. How-
ever, even if our model is lighter than its contemporaries, it 
is demanding for a regular CPU and takes approximately 1 
minute per scan. Hence, an effort toward further making the 
setup lighter is of interest. Finally, consistent with the labels 
of CSIlabel, we only considered 24 labels for C1-L5 and did 
not account for segmentation anomalies, such as L6, or tran-
sitional vertebrae, such as a lumbarized S1 vertebra.

Our study presents a simple, efficient algorithm for label-
ing vertebrae by arguing for processing the spine scans in two 
dimensions using an appropriate network architecture. Local-
izing the spine before labeling and forcing the labeling net-
work to respect the spine’s anatomic shape during prediction 
further improved the labeling performance. The entire setup 
is computationally lighter than its counterparts in the litera-
ture, which is a step toward real-time clinical deployment.
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Synopsis: In this work, we propose a simple pipeline for labelling vertebrae in a
spine CT image composed of a fully convolutional neural network (FCN) and a con-
ditional random field (CRF). Firstly, we adapt the high-resolution network to work
on three-dimensional spine CT images and train them with recent advances in deep
learning to regress spatial likelihood maps of the vertebral locations. This sets a
strong baseline performance for fully automated identification, resulting in a perfor-
mance comparable to prior state-of-art. Secondly, we employ a prior-informed CRF
conditioned on the predicted likelihood maps of the HRNet, thus refining the location
predictions. Our custom FCN-CRF solution produces state-of-the-art results in au-
tomated labelling tasks for three benchmark datasets achieving identification rates
higher than 97%. Finally, we design an interaction module to perform drag-and-
drop correction on the CRF output graph. This semi-automated solution achieves
near-100% identification with minimal interaction (measured in actions per scan)1.

Contributions of thesis author: Conceptualised the project, developed and imple-
mented the neural network baseline, prepared all the datasets, shared responsibility
for experimentation and manuscript-writing..
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1Code for this work is published at https://github.com/JannikIrmai/interactive-fcn-crf
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ABSTRACT

In this work, we propose a simple pipeline for labelling
vertebrae in a spine CT image composed of a fully con-
volutional neural network (FCN) and a conditional random
field (CRF). Firstly, we adapt the high-resolution network to
work on three-dimensional spine CT images and train them
with recent advances in deep learning to regress spatial like-
lihood maps of the vertebral locations. This sets a strong
baseline performance for fully automated identification, re-
sulting in a performance comparable to prior state-of-art.
Secondly, we employ a prior-informed CRF conditioned on
the predicted likelihood maps of the HRNet, thus refining
the location predictions. Our custom FCN-CRF solution
produces state-of-the-art results in automated labelling tasks
for three benchmark datasets achieving identification rates
higher than 97%. Finally, we design an interaction module to
perform drag-and-drop correction on the CRF output graph.
This semi-automated solution achieves near-100% identifica-
tion with minimal interaction (measured in actions per scan).
Code for this work is published at https://github.
com/JannikIrmai/interactive-fcn-crf.

Index Terms— landmark detection, spine, vertebrae,
fully convolutional neural network, conditional random fields

1. INTRODUCTION

Benefits of computer-aided diagnosis have been demonstrated
in multiple instances [1, 2, 3]. In the case of the spine, such
automated diagnosis or processing typically requires accurate
identification of the vertebrae [4, 5], which enables the suc-
cess of downstream tasks such as segmentation, surgery plan-
ning, automated reporting, etc. With the prevalence of deep
learning, automated processing has seen rapid growth. How-
ever, the clinical adoption of such a system remains limited
[6], with one argument being that such systems are difficult to
integrate into clinical workflows, especially because they will
work as support-tools.

∗Equal contribution.

Fig. 1: An overview of the proposed method composed of a fully-
convolutional neural network, a prior-informing conditional random
field, and an interaction module facilitating high gain with minimal
interaction (in this case with missing T12, only T11 is corrected and
the other vertebrae also move while respecting the anatomy).

In this paper, we work toward the objective of automat-
ically labelling vertebrae with a focus on the clinical adapt-
ability of such a system, wherein an expert wishes to interact
as little as possible, if at all, with any automated system. To
this end, we specifically propose a vertebrae labelling method
consisting of three components: The first component consists
of a fully-convolutional neural network (FCN) predicting the
spatial likelihoods (heatmaps) of the vertebrae. In spite of
demonstrating strong identification performances, the convo-
lutional network’s prediction is still ‘local’. The second com-
ponent consists of a conditional random field (CRF), whose
role is to incorporate ‘global’ information into the predic-
tion. This is done by considering the joint distribution of both
the localisation predicted by the FCN as well as the relative
positioning of neighbouring vertebrae that encode the spine
shape prior. In our pipeline, the CRF increases the number
of perfectly identified scans (wherein every vertebra is cor-
rectly identified and localised) to more than 90%. We ob-
serve that the remaining errors occur due to abnormal spines
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(e.g., severe vertebral fracture, transitional vertebrae such as
T13 or L6, etc.) and argue that any simple yet automated sys-
tem will typically find it challenging to learn such abnormal
cases reliably. One can think of increasing model complexity
to counter these edge cases, however, the limited amount of
train data and no explicit quality control would add little-to-no
values to their reliable deployability. Therefore, as the third
component, we opt for a human-in-loop approach for correct-
ing such erroneous predictions. Importantly, thanks to the
anatomical prior enforced by the CRF, our pipeline requires
very little interaction. This is because adjusting one landmark
also refines the location of the other landmarks, thanks to the
CRF in the backend, while staying faithful to the FCN pre-
dictions (see Fig. 1). For instance, on the CSI dataset [7], we
achieve a near-perfect identification rate of 98% with just two
mouse-actions over the entire test set.
Related work. Sekuboyina et al. [8], provide a holistic
overview of the prior work tackling vertebrae labelling till
2021. A common theme among the recent best performing,
deep learning-based methods involves supporting the local
feature extraction of the FCN with a module that enforces the
global spine prior. The latter is done using generative learning
[9], recurrent neural networks [10], or an auxiliary FCN [11].
Recently, attention-based models, i.e., Spine Transformers
[12] have shown very high vertebrae labelling performance.
Keeping the model deployability in mind, in this work, we
side-step from intricate methodological modelling, and in-
stead focus on simplicity. Of interest is a pioneering works
by Glocker et al. [7] and Chen et al. [13], which use a re-
gression forest or an FCN to obtain candidate locations of the
vertebrae and refine it using a hidden Markov model (HMM)
on the class-wise votes. Our composite of a learnable model
and a graphical model is similar to these approaches in prin-
ciple. However, in contrast to these approaches, we propose
an FCN to learn the calibrated spatial likelihood (instead of
any voting mechanism) and fit a conditional random field on
these likelihoods, transiting from the pixel domain to the 3D
coordinate domain (Further details in Sec. 2).

2. METHODS

2.1. HRNet3D for heatmap-based vertebrae labelling

Our first objective is to predict for each voxel v ∈ H×W×D
and every vertebra i ∈ C a likelihood Y v

i ∈ [0, 1] of voxel v
being part of the vertebra i. Specifically, we aim to predict
Y ∈ RH×W×D×|C|, where Yi is a likelihood map of the ith

vertebra and is defined by e||x−xi||2/2σ2

. Here, x, xi, and
σ denote the voxel location, the vertebra’s location, and the
user-defined spread of the likelihood, respectively.
Architecture. For this, we adapt the HRNet [14], an FCN
proposed for facial landmark detection1. HRNet is a collec-
tion of parallel convolution streams performing feature ex-

1https://github.com/HRNet/HRNet-Facial-Landmark-Detection

Fig. 2: A schematic of the HRNet3D illustrating the parallel
convolution streams and multi-resolution fusion.

traction at multiple resolutions with multi-scale fusion. After
every stage, a lower-resolution convolution stream is added.
In our case, a 3D input image is convolved to 1

4

th of its resolu-
tion using two strided convolution kernels. Following this, we
employ four stages of parallel convolution streams as shown
in Fig. 2. The last stage has resolution streams of 1

4 , 1
8 , 1

16 ,
and 1

32 . The final prediction is a concatenation of the multi-
ple resolutions upsampled using trilinear interpolation to the
image dimension.
Loss. We propose to use a combination of the mean-squared
error (MSE) and cross-entropy (CE) losses to train the net-
work. We observed that the CE-loss was essential for con-
vergence in a low-data regime while the MSE-loss resulted in
calibrated heatmaps, which is essential for the following CRF
stage. Specifically, we first construct a background channel
Y0 = 1−sumC(Y ), a summation along the C-dimension and
concatenate it to the likelihood map. We now learn to predict
Y + = [Y0;Y ] ∈ RH×W×D×(1+|C|) using the following loss:

L = ||Y + − softmax(Ŷ )||2 +H(Y +, Ŷ ) , (1)

where H denotes the CE function. Observe that the predic-
tion Ŷ contains logits, whose probability-normalised (soft-
max) values are calibrated to the ground truth.

2.2. Gaussian CRF as a spine-prior model

Whereas the HRNet predicts the location of every single ver-
tebra independently, a conditional random field (CRF) [15]
can take into account the relative position of the vertebrae to
each other. More specifically, the relative positioning of the
vertebrae is informed by a spine-prior model that captures the
shape of the spine. For an example, see Fig. 3a.

Let C be the set of vertebrae and let G = (C,E) be
a graph where the set of edges E are the pairs of vertebrae
whose relative positions are considered. In this work we con-
sider only the relative positions of neighbouring vertebrae, i.e.
G is a path with E = {{i, i+ 1} | i ∈ {1, . . . , |C| − 1}}.
The Gaussian CRF with respect to G is defined as the joint
probability distribution

P(x | Ŷ ) =
∏
i∈C

ϕi(xi | Ŷi)
∏
ij∈E

ψij(xi − xj) , (2)
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(a) (b)

Fig. 3: (a) CRF. The heatmaps (left) predicted by the HRNet are
ambiguous for vertebrae T7 to T10. This is also reflected in the fit-
ted unary distributions, which are depicted by the ellipses. Thanks
to the spine-prior, the MAP estimate (right) of the CRF is capable
of resolving this ambiguity. (b) Interaction. Depicted on the left is
an erroneous MAP estimate which was caused by several fractures.
Depicted on the right is the path (brown) that a user dragged the ver-
tebra L4 to correct its location and the CRF automatically readjusts
all other vertebral locations.

where ϕi is the unary distribution of vertebra i which is in-
ferred from the corresponding heatmap Ŷi and ψij is the dis-
tribution of the relative position of vertebrae i and j which
encode the spine shape prior. We model both ϕ and ψ as three
dimensional Gaussian distributions with mean µ ∈ R3 and
positive-definite covariance matrix Σ ∈ R3×3. The param-
eters µij and Σij of ψij are maximum likelihood estimates
from the training set, while the parameters µi and Σi of ϕi
are fitted to the predicted heatmap Ŷi of a test image.

The joint probability density (2) of the CRF is a 3 · |C|-
dimensional Gaussian distribution with meanm and precision
matrix P , where

P =

P11 . . . P1n

...
. . .

...
Pn1 . . . Pnn

 , b =

b1...
bn

 , Pm = b

with

Pii = Σ−1
i +

∑
j∈C:ij∈E

Σ−1
ij for i ∈ C

Pij =

{
−Σ−1

ij for ij ∈ E

0 otherwise
for i, j ∈ C, i ̸= j

bi = Σ−1
i µi +

∑
j∈C:ij∈E

Σ−1
ij µij for i ∈ C .

The maximum a posteriori (MAP) estimate of (2) is precisely
the joint mean m, the prior-adjusted prediction, and it can be
efficiently computed by solving the linear system Pm = b.

2.3. Expert interaction

Abnormal spines are unlikely by definition and unlikely also
w.r.t. the shape prior of our CRF. Thus, we cannot expect this

CRF to locate all vertebrae of abnormal spines correctly. To
address this, we have implemented an application that allows
for an intuitive and efficient correction of these erroneous pre-
dictions by an expert. The expert interactions consist of se-
lecting a misplaced vertebra and dragging it to the correct lo-
cation. This corrected location is used as evidence in the CRF,
and the locations of the remaining vertebrae are updated with
respect to that evidence. An advantage of using a Gaussian
CRF (compared to a more involved graphical model) is that
the MAP estimate for the given evidence can be computed
readily by solving a linear system of 3 · |C| equations and
3 · |C| unknowns and the user can observe in real-time how
changing the location of one vertebrae effects the locations of
the other vertebrae (see Fig. 3b).

3. RESULTS & DISCUSSION

Implementation. The HRNet3D was trained on isotropic
spine CT images resampled to 2mm. In the case of the
VERSE datasets, the scans were cropped to the spine’s ex-
tant using a U-Net operating at 5mm [8]. The network was
trained with a batch size 2. An initial learning rate of 1e-3
was used and annealed using cosine annealing till 1e-5 with
warm restarts every 1500 batches. The hyperparameters were
tuned on 20% of the train data, and the final model trained on
all train data used the same hyperparameters.

Before fitting the parameters of the unary terms ϕ of the
CRF to the predicted heatmaps Ŷ , we set all heatmap values
below 0.1 to zero to suppress noise. Further, we set the preci-
sion Σ−1

i of all vertebrae i for which the maximal value in the
corresponding heatmap Ŷi is below 0.3 to zero such that the
MAP estimate of vertebrae with highly uncertain HRNet pre-
diction is informed only by the prior model. The thresholds
0.1 and 0.3 are not tuned for the individual datasets.

We benchmark our approach on three datasets: CSI-2014
[7], VERSE‘19 and VERSE‘20 [8]. CSI 2014 consists of 242
CT images for training and 60 images for testing. VERSE‘19
and ‘20, have two testing phases: public and hidden. Their
splits among train/public-test(I)/hidden-test(II) are 80/40/40
and 113/103/103 images respectively.

In line with prior work [7], we measure the performance
using the identification rate (id-rate) and mean localisation
distance (dmean) for CSI-2014. Please note the slightly differ-
ent scan-level computation of id-rate in the VERSE datasets
[8]. We note that the id-rate was computed as required by
the dataset. Additionally, we introduce a new measure, perf-
id, that captures the amount of human intervention needed
post-automated labelling. perf-id (perfect-identification) is
computed as the ratio of the number of scans that obtain an
id-rate of 100% to the total number of scans in the dataset.

A strong FCN baseline. Table. 1 compares our approach
with prior state-of-arts for every datasets. Observe that HR-
Net3D, a single-stage FCN performs competitively even with
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the multi-staged methods. For instance, on CSI-2014, Payer
et al. [11] uses a two-stream FCN followed by hard-coded
post-processing and Chen et al. [13] uses an FCN followed
by a HMM. Similarly, on the VERSE datasets, HRNet’s per-
formance is comparable to the top performers, which are also
multi-staged. For instance, Chen et al. (VERSE‘19) use a
heavily engineered labelling scheme. Chen et al. (VERSE‘20)
re-label every vertebra after segmenting it. Our HRNet3D,
however, is learnt end-to-end.

Table 1: Performance comparison on the three datasets with prior
work. dmean in millimeters. Blue values indicate the best in a fully-
automated, no-oracle setting while the bold values indicate the best
overall. ∗ indicates an oracle for the prior selection.

Methods id-rate dmean perf-id

C
SI

-2
01

4

Payer et al. [11] 96.0% 2.9 –
Chen et al. [13] 94.7% 2.6 –
Tao et al. [12] 92.2% 4.8 –

HRNet3D 96.3% 2.5 88.3%
HRNet3D + CRF 97.3% 2.3 93.3%
HRNet3D + CRF∗ 97.3% 2.3 93.3%

. . . +1-click interaction 98.0% 2.3 96.7%

V
E

R
S

E
‘1

9
-I

Chen et al. [8] 96.9% 4.4 –
Payer et al. [8] 95.6% 4.3 –
Tao et al. [12] 97.2% 4.3 –

HRNet3D 94.5% 2.7 75.0%
HRNet3D + CRF 97.9% 2.8 92.5%
HRNet3D + CRF∗ 98.2% 2.8 95.0%

. . . +1-click interaction 98.4% 2.7 97.5%

V
E

R
S

E
‘1

9
-I

I

Chen et al. [8] 86.7% 7.1 –
Payer et al.[8] 94.3% 4.8 –
Tao et al. [12] 96.7% 4.8 –

HRNet3D 94.4% 2.8 75.0%
HRNet3D + CRF 95.2% 2.8 85.0%
HRNet3D + CRF∗ 95.4% 2.8 87.5%

. . . +1-click interaction 100% 2.2 100%

V
E

R
S

E
‘2

0
-I

Chen et al. [8] 95.6% 2.0 –
Payer et al. [8] 95.1% 2.9 –

HRNet3D 94.1% 2.6 80.6%
HRNet3D + CRF 93.3% 2.8 77.7%
HRNet3D + CRF∗ 94.1% 2.8 80.6%

. . . +1-click interaction 97.1% 2.6 92.2%

V
E

R
S

E
‘2

0
-I

I

Chen et al. [8] 96.6% 1.4 –
Payer et al. [8] 92.8% 2.9 –

HRNet3D 96.4% 2.6 87.4%
HRNet3D + CRF 96.8% 2.4 90.3%
HRNet3D + CRF∗ 97.1% 2.4 92.2%

. . . +1-click interaction 98.0% 2.4 97.1%

Fixing mislabelling with the CRF. Observe that the perf-
id for the HRNet3D leaves considerable room for improve-
ment for a fully-automated setting. We identify that the failed
cases typically are due to the FCN being uncertain locally
(see Fig 3). The role of the CRF is to incorporate a global,
anatomical prior into HRNet3D’s predictions. In Table. 1, we
observe that such prior information results in a consistent im-

provement of not only the id-rate but also the perf-id. How-
ever, it is important to note that one spine-prior model cannot
account for all spine anatomies, e.g the abnormal anatomies
with transitional vertebrae (T13), L6, or a missing T12 or L5.
Hence, we collect five prior models for the spine: 1. the nor-
mal spine {C1-C7, T1-T12, L1-L5, S1, S2}, 2. the normal
spine with an additional T13, 3. the normal spine without
T12, 4. the normal spine with an additional L6, and 5. the
normal spine without L5.

Now, how do we choose which model to enforce? We
propose to reuse the channel-responses in the predictions for
prior model selection (e.g. if the channel corresponding to
T13 has a response higher than 0.5, we choose model 2 from
above). This is reported as CRF in Table 1.Till this point
our method is fully automated and outperforms the prior
state-of-art on CSI-2014, VERSE‘19-I and VERSE‘20-II.
However, one can design other auxiliary models to inform the
prior selection; for instance the shape classification model in
Chen et al. (VERSE‘20, [8]). Using the ground truth as the
oracle, we report the maximum performance that can thus be
achieved using a CRF denoted as CRF∗ in Table 1.

The minimal-interaction setup. We limit the allowed inter-
action to reflect the little time available for such corrections
as part of the clinical routine. Specifically, we allowed only
ONE action per image, and this mouse-action is allowed
ONLY if the expert knows that the action leads to perfect
identification (here, we use the oracle to infer which prior
model to use as the expert is assumed to be able to always
identify the correct model). Such minimal-interaction al-
lowance lets us validate the convenience offered by the CRF-
based prior models, which is a key objective of this work.
Table 1 shows the immense gain obtained even in these very
restricted interactive settings. The final id-rates are above
97% for every dataset, with perf-id going above 96%. We
believe that a sophisticated prior-model selection will offer
further advantage, including for VERSE‘20-I. We also note
that a comprehensive study with multiple experts is part of
the future work. Interestingly, VERSE‘19 gets a 100% iden-
tification and CSI-2014 gets a near-100% (only two failed
cases due to missing vertebral bodies).

4. CONCLUSIONS

We introduced a deep neural network for automatically la-
belling all vertebrae in a spine CT and a Gaussian CRF with
a shape prior for refining the labelling. The identification
rate of the FCN-CRF composition is state-of-the-art on three
datasets and is improved further by single drag-and-drop ex-
pert interactions, especially for abnormal spines. Our CRF
module readjusts other, relevant vertebrae from single expert
interaction in real-time by solving a linear system and thereby
has the potential for implementation in medical hardware and
clinical routine.
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Bayat, Maximilian Löffler, Hans Liebl, et al., “Verse:
A vertebrae labelling and segmentation benchmark for
multi-detector ct images,” MedIA, vol. 73, pp. 102166,
2021.

[9] Anjany Sekuboyina, Markus Rempfler, Jan Kukačka,
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Abstract. We propose an auto-encoding network architecture for point
clouds (PC) capable of extracting shape signatures without supervision.
Building on this, we (i) design a loss function capable of modelling data
variance on PCs which are unstructured, and (ii) regularise the latent
space as in a variational auto-encoder, both of which increase the auto-
encoders’ descriptive capacity while making them probabilistic. Evalu-
ating the reconstruction quality of our architectures, we employ them
for detecting vertebral fractures without any supervision. By learning to
efficiently reconstruct only healthy vertebrae, fractures are detected as
anomalous reconstructions. Evaluating on a dataset containing ∼1500
vertebrae, we achieve area-under-ROC curve of >75%, without using
intensity-based features.

1 Introduction

One of the consequences of the numerous algorithms proposed for segmenting
organs, tissues, the spine etc. involves analysing their anatomical shapes, even-
tually contributing towards population studies [1], disease characterisation [2],
survival analysis [3], etc. Employing convolutional neural networks (CNN) for
this task involves processing voxelised data due to its Euclidean nature. Such
voluminous representation, however, is inefficient, especially when the masks are
binary and the shape information corresponds to its surface profile. Alternatively,
surface meshes (a collection of vertices, edges, and faces) or active contours could
be used. Since the data is no longer Euclidean, a conventional CNN is unusable.
Graph convolutional networks (GCN) [4] were thus developed by redefining the
notion of ‘neighbourhood’ and ‘convolution’ for meshes and graphs. However,
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if the number of nodes is high, GCNs (esp. spectral) become bulky. Moreover,
each mesh is treated as a domain, making mesh registration a requisite.

An alternative surface representation is a set of 3D points in space, referred
to as the point clouds (PC). A PC represents the surface just with a set of N
vertices, thus avoiding both the cubic-complexity of voxel-based representations
and the N×N dimensional, sparse, adjacency matrix of meshes. However, despite
their representational effectiveness, PCs are permutation invariant and do not
describe data on a structured grid, preventing the usage of standard convolution.
To this end, we work with an architecture capable of processing PCs (point-net,
[5]), and design a network capable of reconstructing PCs thereby extracting
shape signatures in an unsupervised manner.

Uncertainty and Latent Space Modelling. Unlike supervised learning on
PCs [6], we set out to obtain shape signatures from PCs without supervision,
building towards a relatively less explored topic of auto-encoding point clouds.
This involves mapping the PC to a latent vector and reconstructing it back. Since
the PCs are unordered, PC-specific reconstruction losses replace traditional ones
[7,8]. Extending auto-encoders (AE) based on such a loss, we propose to improve
its representational capacity by regularising the latent space to make it compact
and by modelling the variance that exists in a PC population. We claim that this
results in learning improved shape signatures, validating the claim by employing
the extracted features for unsupervised vertebral fracture detection.

Fig. 1. Variation among vertebral
shapes: compare the higher variation
between healthy (blue) vertebrae of dif-
ferent classes (T3, top and L1, bot-
tom) w.r.t the relatively lower variation
within-class between fractured (red)
and healthy vertebrae. (Color figure
online)

Vertebral Fracture Detection. There
exists an inherent shape variation in
vertebral shapes within the spine of
a single patient (e.g. cervical–thoracic–
lumbar) along with a natural variation in
a vertebra’s shape in a population (e.g. L1
across patients, cf. Fig. 1). Additionally,
osteoporotic fractures start without sig-
nificant shape change and progress into a
vertebral collapse. Hence, fracture detec-
tion in vertebrae is non-trivial. Added to
this, limited availability of fractured ver-
tebrae makes the learning of supervised
classifiers non-trivial. In literature, several
classification systems exist mainly based
on vertebral height measurement [9] or
analysing sub-regions of the spine in sagittal slices [10]. However, an explicit
shape-based approach seems absent. Evaluating the representational ability of
the proposed AE architectures, we seek to analyse vertebral shapes and eventu-
ally detect vertebral fractures using the extracted latent shape features.
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Fig. 2. Point cloud auto-encoder (pAE): architectural details of decoding path con-
structing a point cloud from a latent vector. Top arm is convolutional while bottom
arm is fully-connected. Transposed convolution (− · − · channels) have a stride of 2.
Since encoder is an adapted point-net [5], we detail its architecture in the supplement.

Our Contribution. Summarising the contributions of this work: (1) We build
on existing point-net-based architectures to propose a point-cloud auto encoder
(pAE). (2) Reinforcing this architecture, we incorporate latent space modelling
and a more challenging uncertainty quantification. (3) We present a compre-
hensive analysis of the reconstruction capabilities of our pAEs by investigating
their utility in detecting vertebral fractures. We work with an in-house, clini-
cal dataset (∼1500 vertebrae) achieving an area-under-curve (AUC) of >75% in
detecting fractures, even without employing texture or intensity-based features.

2 Methodology

We present this section in two stages: First, we introduce the notation used
in this work and describe a point-net-based architecture capable of efficiently
auto-encoding point clouds. Second, we build on this architecture to model the
natural variance in vertebrae while regularising the latent space.

2.1 Auto-Encoding Point Clouds

Given accurate voxel-wise segmentation of a vertebra, a point cloud (PC) can
be extracted as a set of N points denoted by X = {pi}N

i=0, where pi represents a
point by its 3D coordinate (xi, yi, zi). Additionally, pi could also represent other
point specific features such as normal, radius of curvature etc. So, each vertebra
is represented by a PC of dimension N × m (in this work, N = 2048 vertices
and m = 3 coordinates, with the vertices randomly subsampled from a higher
resolution mesh). Recall the lack of a regular coordinate space associated with
the PC and that any permutation of these N points represents the same PC.
Thus, a unique variant of deep networks is incorporated for processing PCs.

Architecture. An AE consists of an encoder mapping the PC to the latent
vector and a decoder reconstructing the PC back from this latent vector, i.e
X �→ z �→ X. As the encoder, we employ a variant of the point-net architec-
ture [5]. The latent vector, z, respects the permutation invariance of the PC
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and represents its shape signature. As a decoder, taking cues from [7], we con-
struct a combination of an up-convolutional and dense branches taking z as
input and predicting X̂, the reconstructed X. The convolutional path, owing
to its neighbourhood processing, models the ‘average’ regions, while the dense
path reconstructs the finer structures. This combination of the point-net and
the decoder forms our point cloud auto-encoding (pAE, or interchangeably AE)
architecture as illustrated in Fig. 2.

Loss. Reconstructing point clouds requires comparing the predicted PC with
the actual PC to back-propagate the loss during training. However, owing to
the unordered nature of PCs, usual regression losses cannot be employed. Two
prominent candidates for such a task are the Chamfer distance and the Earth
Mover (EM) distance [7]. We observed that minimising EM distance ignores
the natural variation in shapes (e.g. the processes of the vertebrae) and recon-
structs only a mean representation (e.g. the vertebral body), as validated in [7].
Since we intend to model the natural variance in the data, using EM distance is
undesirable in our case. We thus employ the Chamfer distance computed as:

dch(X, X̂) = Lae =
∑

p∈X

min
p̂∈X̂

||p − p̂||22 +
∑

p̂∈X̂

min
p∈X

||p − p̂||22. (1)

In essence, dch is the distance between a point in X and its nearest neighbour
in X̂ and vice versa.

2.2 Probabilistic Reconstruction

From a generative modelling perspective, an AE can be seen to predict the
parameters of Gaussian distribution imposed on X, i.e. pΘ(X) = N (X|X̂, Σ̂),
parameterised by the weights of the AE denoted by Θ. Determining the distri-
bution parameters, viz. optimising for the AE weights, now involves maximising
the log-likelihood of X, resulting in:

Θ∗ = arg max
Θ

log pΘ(X) = arg min
Θ

1
2
(X − X̂)T Σ̂−1(X − X̂) +

1
2

log |Σ̂|. (2)

This perspective towards auto-encoding enables us to extend the pAE to encom-
pass the data variance (Σ̂) while modelling the latent space, as described in
following sections. It is important to note that the difference X − X̂ is not well
defined for point clouds, requiring us to opt for alternatives.

Assuming Σ = I, implying an independence among the elements of X and an
element-wise unit variance, results in the familiar mean squared error (MSE),
L = ||X − X̂||2. Based on the parallels between MSE and the Chamfer distance
(Eq. 1), we design σ-AE and σ-VAE, as illustrated in Fig. 3.

σ-AE. The assumption of unit covariance, as in AE, is inherently restric-
tive. However, modelling an unconstrained covariance matrix is infeasible due
to quadratic complexity. A practical compromise is the independence assump-
tion. Thus, representing covariance as, Σ = diag{σ̂2

p1
, . . . , σ̂2

pi
, . . . , σ̂2

pN
}, where
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Fig. 3. Probabilistic reconstruction architectures: ∼ indicates a sampling operation.
Since a point’s variance has a smaller scale compared to its mean, the variance is
predicted using a softplus activation (added with ε = 10−6 for stabilising divisions)
and uses a layer parallel to the one predicting the mean.

σ̂2
pi

denotes the variance corresponding to pi, Eq. (2) morphs to a loss function
as:

L =
∑

p̂∈X̂

σ−2
p̂ ||pi − p̂i||2 + log σ2

p̂ (3)

This optimisation models the aleoteric uncertainty [11]. Equation 3 is an atten-
uated MSE, where a high variance associated to a point down-weighs its con-
tribution to the loss. However, due to the lack of a reference grid in the point
cloud space, the notion of uncertainty being associated to a data point (eg. pixel,
spatial location etc.) is absent. We propose to associate the notion of variance
to every point, p̂i. This results in the variance-modelling Chamfer distance:

Lσae =
∑

p∈X

min
p̂∈X̂

σ−2
p̂ ||p − p̂||22 +

∑

p̂∈X̂

σ−2
p̂ min

p∈X
||p − p̂||22 + log σ2

p̂ (4)

Observe the slight abuse of notation in Eq. 4, wherein the variance at a
predicted point, σp̂, actually represents the variance of the coordinate elements
of p, i.e {σx̂, σŷ, σẑ}. Current notation is chosen to avoid clutter.

Variational and σ-Variational AE. An alternative approach for modelling
p(X) involves modelling its dependency over a latent variable z, which is dis-
tributed according to a known prior p(z). A variational auto-encoder (VAE)
operates on these principles and involves maximising a lower bound on the log-
evidence (referred to as ELBO) of the data described as below:

log p(X) ≥ Ez∼qφ(z|X)

[
log pθ(X|z)

] − KL
[
qφ(z|X) || pθ(z)

]
, (5)

where qφ(z|x) is the approximate posterior of z learnt by the encoder and param-
eterised by φ. pθ(X|z) is the data likelihood modelled by the decoder and param-
eterised by θ. pθ(z) is the prior on z.

Maximising ELBO is equivalent to maximising the log-likelihood of X while
minimising the Kullback-Leibler divergence between the approximate and true
prior. Representing the combination as Lrec + βLKL, where Lrec is the recon-
struction loss seen is earlier sections. β is a scaling factor weighing the con-
tribution of the two losses appropriately. Standard practice assigns Gaussian
distributions for qφ(z|x) ∼ N (z|μz,σz) and p(z) ∼ N (z|0,1) (cf. Fig. 3). Thus,
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LKL models the latent space to follow a Gaussian distribution inline with the
prior. Incorporating this into the point cloud domain, results in an objective
function for a PC-based VAE (or σ-VAE) as Lvae = Lae/σae + βLKL. Thus, σ-
VAE acts as a AE capable of modelling the data variance while regularising the
latent space. The prior on the latent space also imparts point cloud generation
capabilities to σ-VAE.

2.3 Detecting Fractures as Anomalies

Examining the descriptive ability of our pAE architectures in auto-encoding PCs,
we utilise them for detecting vertebral fractures. Assuming the AE is trained only
on ‘normal’ patterns, a fracture can be detected as an ‘anomaly’ based on its
‘position’ in latent space. We inspect two measures for this purpose:

1. Reconstruction error or Chamfer distance: AEs trained on healthy samples
fail to accurately reconstruct anomalous ones, resulting in a high dch.

2. Reconstruction probability or likelihood [12]: Expected likelihood E
[
pΘ(X)

]

of an input can be computed for σ – architectures (cf. Eq. 2). For any input
PC, Xin, it is computed by N (Xin|μΘ, ΣΘ) with the predicted mean and
variances. We expect fractured vertebrae to be less likely than healthy ones.

Intuitively, relying on the reconstruction error or likelihood for detecting
anomalies requires the learnt ‘healthy’ latent space to be representative. Both
σ-AE and the VAE work towards this objective. In σ-AE, predictive variance
down-weighs the loss due to highly uncertain points in the PC. This suppresses
the interference due to natural variation in the vertebral PCs. On the other hand,
VAE acts directly on the latent space by modelling the encoding uncertainty
(X �→ z). The σ-VAE encompasses both these features.

Inference. A given vertebral PC is reconstructed and the reconstruction error
and (or) likelihood are computed. This vertebra is said to be fractured if the
reconstruction error is greater than a threshold, Trec, or its likelihood is lesser
than a threshold, Tl. Trec and Tl and determined on the validation set.

3 Experiments and Discussion

We present this section in two parts: first, we explore the auto-encoding, variance
modelling, and generative capabilities of our AE networks. Second, we deploy
these architecture to detect vertebral fractures without supervision.

Data preparation: We evaluate our architecture on an in-house dataset with
accurate voxel-level segmentations converted into PCs. The dataset consists of
1525 healthy and 155 fractured vertebrae, denoted as (1525H +155F ) vertebrae.
Since we intend to learn the distribution of healthy vertebrae, we do not use
any fractured vertebrae during training. The validation and test sets consists
of (50H + 55F ) and (100H + 100F ) vertebrae, respectively. For the supervised
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baselines, the train set needs to contain fractured vertebrae. Thus, validation
and test sets were altered to contain (50H + 55F ) and (55H + 55F ) vertebrae.
Training : The architecture of the encoder and the decoder is similar across all
architectures (cf. Fig. 3) except for the layers predicting variance. PCs are aug-
mented online by perturbing the points with Gaussian noise and random rota-
tions (±15◦). Finally, the PCs are median-centred to origin and normalised to
have the same surface area. The networks are trained until convergence using an
Adam optimiser with an initial learning rate of 5 × 10−4. Specific to the VAE,
we use KL-annealing by increasing β from 0 to 0.1.

Fig. 4. Characteristics of σ-VAE: (a) Comparison of TSNE embeddings of simple pAE
with σ-VAE. Observe transition in clusters being inline with vertebral indices. Note
that embedding becomes compact for a VAE. (b) A PC and its reconstruction coloured
with log(σ2) of every point. Observe high variance in vertebral processes. (c) Example
generations from decoder with z ∼ N (0,1). (Color figure online)

Qualitative Evaluation of AE Architectures. We investigate if meaningful
shape features can be learnt without supervision. Validating this, in Fig. 4a, we
plot a TSNE embedding of the test set latent vectors learnt by a naive pAE and
σ-VAE trained only on healthy vertebrae. Observe the clusters formed based on
the vertebral index and the transition between the indices. This corresponds to
the natural variation of vertebral shapes in a human spine. Indicating the frac-
tured vertebrae in the embedding, we highlight their degree of similarity with the
healthy counterparts. Also, observe that embedding is more regularised repre-
senting a Gaussian in case of σ-VAE, indicating the continuity of the learnt latent
space. Figure 4b shows the predictive variance modelled by the σ-VAE. Poste-
rior elements of a vertebrae are the most varying among population. Observe
this being captured by the variance in the vertebral process regions. Lastly,
illustrating σ-VAE’s generative capabilities, Fig. 4c shows vertebral PC samples
generated by sampling the latent vector, z ∼ N (0,1).

Vertebral Fracture Detection. Evaluating the reconstruction quality of our
pAE architectures, we employ them to detect fractures as anomalies. As base-
lines, we choose two supervised approaches: (1) point-net (PN), the encoding
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part in our pAE architectures, cast as a binary classifier and (2) the same point-
net trained with median frequency balancing the classes (ref. as PNbal) to accen-
tuate the loss from minority fractured class. We report their performance in
Table 1, over 3-fold cross-validation while retaining the ratio of healthy to frac-
tured vertebrae in the data splits. Frequency balancing improves the F1 score
significantly, albeit not at the level of the proposed anomaly detection schemes.

Fig. 5. Reconstructions: healthy (top) and fractured (bottom) vertebral PCs. Observe
pAE’s ‘healthy’ reconstruction of a fracture. Errors and log-probabilities are normalised
to [0, 1] within PC for visualisation, but anomaly detection works on un-normalised
values.

Table 1. Performance comparison of unsupervised and supervised fracture detection
approaches. Measures: Precision (P), Recall (R), F1-score, and area-under-ROC curve
(AUC) computed by varying thresholds on recon. error and recon. log-probabilities.
Since supervised models have no threshold selection, AUC is not reported.

Measures PN PNbal recon. error recon. log-likelihood

AE VAE σ-AE σ-VAE σ-AE σ-VAE

P 100 ± 0.0 68.6 ± 3.4 57.6 ± 4.1 61.1 ± 1.9 67.1 ± 6.5 68.4 ± 3.3 62.3 ± 4.3 61.6 ± 1.4

R 13.9 ± 3.1 57.6 ± 7.5 85.0 ± 9.8 79.0 ± 3.6 74.3 ± 4.0 71.7 ± 4.1 72.7 ± 6.1 79.7 ± 2.5

F1 24.7 ± 4.7 62.5 ± 5.8 68.0 ± 0.9 68.5 ± 1.7 67.5 ± 5.1 69.6 ± 1.2 66.7 ± 1.3 69.5 ± 0.6

AUC n.a n.a 70.8 ± 2.2 74.8 ± 3.0 75.9 ± 2.0 75.9 ± 1.5 70.2 ± 2.2 73.8 ± 2.0

Reconstruction for fracture detection: When detecting fractures based on recon-
struction error (dch), we observe that a naive pAE already out-performs the
supervised classifiers (cf. Table 1). On top of this, we see that latent space mod-
elling and variance modelling individually offer an improvement in F1-scores
while increasing the AUC, indicating a stable detection of fractures. The perfor-
mance of both σ-AE and σ-VAE is similar indicating the role of loss attenuation.
However, the advantage of explicitly regularising the latent space for σ-VAE can
be seen in likelihood-based anomaly detection, where σ-VAE outperforms σ-AE.
Figure 5 compares a reconstruction of a healthy and fractured vertebrae of the
same vertebral level. Note the high reconstruction error and a low log-likelihood
spatially corresponding to the deformity due to fracture.
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4 Conclusions

We presented point-cloud-based auto-encoding architectures for extracting
descriptive shape features. Improving their description, we incorporated vari-
ance and latent space-modelling capability using specially defined PC specific
losses. The former captures the natural variance in the data while the latter
regularises the latent space to be continuous. Deploying these networks for the
task of unsupervised fracture detection, we achieved an AUC of 76% without
using any intensity or textural features. Future work will combine the extracted
shape signatures with textural features e.g. bone density and trabecular texture
of vertebrae to perform fracture-grade classification.
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Discussion

The central theme of this thesis is the advancement of automated spine image analysis
with a special focus on learning and incorporating structural priors from the data. In
the spirit of a cumulative thesis, these contributions are presented in Chapters 5–8, in
the form of self-contained, peer-reviewed conference or journal articles. Specifically,
Chapters 5, 6, and 7 tackles with the problem of vertebrae labelling and Chapter 8
tackles the problem of vertebral fracture detection. As each of these chapters also
discussed and concludes its corresponding contribution, this section will be discuss
their key contributions in the broader context of spine image analysis while detailing
the questions that these contributions opened up.

Chapter 5 - Btrfly Net: Vertebrae Labelling with Energy-Based
Adversarial Learning of Local Spine Prior

Accurate localisation and identification of vertebrae is a challenging problem in spine
image analysis, especially due to the need to combine global context with localised
feature extraction. However, a larger receptive field implied the CNN to be deeper,
thereby making it heavy, more so, when processing three-dimensional data. The
proposed combination of Btrfly Net and an energy-based discriminator validated
the use of 2D orthogonal projections for accurate vertebrae labelling. Especially,
the role of adversarial-training in learning a local anatomical prior was validated
quantitatively and qualitatively.

Although Btrfly Net is tailored towards the spine due to it working with maximum
intensity projections, the composite of a CNN as a generator (G) and an auto-encoder
as an energy-based discriminator (D) generalises to other applications. However,
since the autoencoder is fully convolutional with a limited receptive field, it learns a
local anatomical prior, which is not always useful. E.g. in cephalometric x-rays, a
global prior is more valuable than a local prior.
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9. Discussion

Chapter 6 - Labeling Vertebrae with Two-dimensional Reformations of
Multidetector CT Images: An Adversarial Approach for Incorporating
Prior Knowledge of Spine Anatomy

Investigating how a local anatomical prior is enforced into the Btrfly Net in an
energy-based adversarial, the representations learnt by the Btrfly Net thus trained
are analysed. Furthermore, the possibility of adversarially enforcing a global spine
prior is studied, thanks to a discriminator with a densely-connected last layer. The
dense layer increases the receptive field to the full input. Additionally, addressing
the problem of occluded projections in clinically occurring scans, a spine localisation
network is employed to obtained improved localised projections. It is concluded that
the proposed energy-based prior learning, whose receptive field is fixed, enforces
structure over a local region, irrespective of the scan’s FoV. On the other hand,
learning a global prior is challenging due to high variability in the FoV, thus rendering
its enforcement not as effective. In spite of its limited success in spine, it must
be noted that global prior learning has potential in other data domains such as
cephalometric x-rays or hand x-rays.

Chapter 7 - Pushing the limits of an FCN and a CRF towards near-ideal
vertebrae labelling

Observe that in the previous two chapters, the learnt priors are adversarially enforced
ad-hoc into the primary CNN, the Btrfly Net. In this chapter, the limits of traditional,
post-hoc prior enforcement approaches were investigated. An important reason for
this was to accommodate the naturally occurring anatomical abnormalities in the
spine (Sec. 2.2), which are challenging to learn in a data-driven manner due to their
rare occurrence. Additionally, the 2D Btrfly Net was replaced with a more generalis-
able 3D FCN architecture. This FCN-CRF combination achieved high performance
on multiple public datasets, in a fully automated setting, including the selection of
the correct prior model for the spine from among five anatomical variations. The
linear CRF is capable of updating its prediction by solving a linear system in real-
time, thus resulting is fast runtime. Thus, an interaction module was developed
to take minimal expert-input (e.g. choose the right prior model, adjust one wrong
prediction etc.) to correct erroneous predictions in real time. This human-machine
combination achieved near-ideal labelling performance.
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Chapter 8 - Probabilistic Point Cloud Reconstructions for Vertebral
Shape Analysis

Switching from the processing end to the diagnosing end, the problem of fracture
detection is tackled from a shape modelling perspective, while addressing the chal-
lenges of data representation and limited annotations. First, the vertebral shapes
are represented as point clouds, a very efficient representation compared to voxels.
Compared to other surface presentations such as meshes, point clouds are easier to
work with, thanks to their permutation-invariant representation. Then, the problem
of fracture detection is posed as a problem of outlier detection, wherein the distri-
bution of healthy vertebrae is learnt using a VAE and a fracture is detected as an
outlier in this distribution. Furthermore, the VAE was extended to learn the data
variance at a point-level in the reconstruction space, which enabled localisation of
the outlying region, making the proposed approach interpretable.

Due to the domain agnostic nature of the data representation, the proposed ap-
proach generalises across modalities and across morphology. An important limitation
of the proposed approach is that the distribution is learnt unconditionally, wherein,
the distribution of all the vertebrae, be it thoracic or lumbar, are mapped to a uni-
modal Gaussian. This is restrictive and a multi-modal mapping conditioned on the
vertebrae label could result in a superior performance.
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Outlook

Deep neural networks are immensely capable of learning task-effective representa-
tions given sufficient data. However, the sufficiency of data is ill-defined. Moreover,
medical images not only lack the semantic information typical to natural images,
but contain a heavy inductive bias. How many annotated cases does a model need
to learn reliable representations? This brings in unique challenges towards clinical
deployment where domain generalisation, calibrated confidence prediction, and ex-
plainability are more important. A wrong prediction is just more expensive. This
leads us towards learning data priors and explicitly or implicitly incorporating them
into the learning systems. In this thesis’ attempt towards this, several novel research
problems opened up and progress occurred in other fields that could act as an in-
spiration for future research in spine image analysis. Again as with the rest of the
thesis, we categorise the outlook into the two parts of vertebrae labelling and fracture
detection, both using data priors.

Vertebrae labelling

Taking the baton from CNNs, transformer-based architectures are currently the cho-
sen approach for image processing. SpineTransformers, proposed by Tao et al. [5],
are their first successful application in spine image analysis. The attention-layer of
the transformer acts as a proxy for learning and incorporating an anatomical prior,
but this is not explicit. An CNN-based implemented with explicit prior incorpora-
tion eventually showed superior performance [30]. An important research direction
could thus be the study of prior incorporation in transformer-based architecture.

Taking a step back, we look at prior enforcement itself. In every approach till
date, the prior has been learnt from data, be it using autoencoders or conditional
random fields. However, the errors we face in vertebrae labelling are more simpler,
e.g. L1 detected above T12. Or L1 and T12 labelled on the same vertebrae. These
simple errors can be sorted using hard-coded rules. Alternatively, these rules can be
posed as constraints in a combinatorial optimisation problem [45], whose loss can be
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10. Outlook

used as a regulariser to train the labelling network. This domain of combinatorial
prior enforcement is another interesting research venue.

Lastly, a problem that is yet to be solved in literature is the accurate labelling
of vertebrae in the presence of transitional vertebrae (T13 or L6) or in spines with
other naturally occurring anomalies. The strong inductive prior of a normal spine
learnt by a data-driven model and the rarity of abnormal spines (with transitional
vertebrae) makes this problem a difficult one to solve. Further research in shape
analysis, uncertainty quantification, and prior enforcement is needed to address this
problem.

Fracture detection

Admittedly, generative modelling has seem immense progress in recent years, e.g
improved GANs [46] and VAEs [47], normalising flows [15], and diffusion models [16].
Almost all these models have also percolated into the point cloud domain [48, 49, 50].
An obvious extension of [51] would be to model the vertebral shapes, conditionally,
using improved generative models.

Furthermore, outlier detection, or its parent field, generalised out-of-distribution
(OOD) detection [52], offers multiple avenues for improved fracture detection. It is
also important to note that the fractures are not the only outliers from a normal
distribution. Vertebrae with screws, Schmorl’s node etc. also count as outliers
and cannot be distinguished under the proposed approach. Outlier detection in this
scenario is called multi-class anomaly detection [53], an interesting research direction.
The problem of fracture grading makes this problem all the more interesting.

Spine image analysis, in general

Through this thesis, we have only scratched a surface of automated spine image
analysis. On the image-processing end, the presented labelling approaches can be
improved, adapted, and translated to other imaging modalities such as MR [54] and
2D radiographs [55]. These modalities also bring research problems of their own
[56, 57]. Efficient 3D image processing is always of interest, given the size of a
spine scan using resource efficient neural networks such as Binarised CNNs [58] or
quantised CNNS [59]. On a clinical front, automated spine analysis has potential
for extracting crucial biomarkers with global consequences, for instance, towards
osteoporosis detection [60], spinal metastasis [61], back pain [62] etc.
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All in all, the field of automated spine image analysis is all the more active today,
with challenging research questions both on clinical and methodological fronts, and
we hope this thesis plays its small part in advancing the field forward.
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5 Supplementary Material

5.1 Case study on a non-spine-centred scan

The benchmark dataset used in Section 3 of our work is mostly spine-centred, and the naive maximum intensity
projections contain no occlusions. However, in certain full-body scans, the spine is obstructed by the ribcage in
a MIP of the entire scan, or the spine is not spatially centred in both the views, thus not taking full advantage
of Btrfly net’s view fusion (cf. Fig. 6a). Such cases can be handled by a introducing a pre-processing step before
the Btrflype net in the form of an ‘object-detection’ network.

For such scenario, we construct the MIPs in two stages. The first MIP is constructed on the entire scan. On
this, we use a single-shot object detection (SSD) inspired architecture [1] trained to identify occluded spines (cf.
Fig. 6a). Once the spine is located, we construct the second pair of MIPs based on the spine-slices, which are
then used as inputs to the Btrflype net (cf. Fig. 6b,c). The ground truth for the SSD net can be constructed
from the ground truth annotation of the vertebral centroids. We use a generic 16-layer residual CNN with an
SSD extension. This use-case is illustrated on a scan from the training set of the xVertSeg [2] dataset. Note
that we used the xVertSeg data only for inference and not for re-training the network. The centroids of the
vertebrae are obtained from the maximum point of the distance transform of the segmentation map (xVertSeg
has voxel-level annotations from L1 to L5).

(a) (b)

(c) (d)

Fig. 6: An illustration of the extension to Brtflype net. (a) Naive sagittal and coronal MIPs on the entire scan with
the bounding box predictions (in blue) of our SSD net. Observe the ribcage obstructing the spine. (b) Improved MIPs
constructed from the slices containing the spine based on the localisation in (a). (c) Output of the Btrflype net, resulting
in an 80 % id.rate. Also observe the incorrect localisation of T8 and L5, along with prediction noise in sagittal view
owing to the non-aligned spine in both views. We believe that aligning the spine using its detection could further improve
the prediction. (d) The ground truth centroids constructed from the voxel-level annotation map of scan. Since xVertSeg
data only has lumbar annotations, we visualise the lumbar centroids.

References

1. Liu W. et al.: SSD: Single Shot MultiBox Detector. CoRR abs/1512.02325 (2015),
http://arxiv.org/abs/1512.02325.

2. The xVertSeg Challenge, http://lit.fe.uni-lj.si/xVertSeg/
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Fig. 7: Additional quantitative results. MIP images with predictions of the three variants of our approach at T=0
for all cases. The spine’s local structure is conserved in the predictions of Btrflype. Also observe that, as a consequence
of prior encoding, in some cases labels are predicted in spite of no useful spatial information, albeit the strength of these
predictions is less.
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Appendix E1 

In this section, we present the architectural and training details of various components in our 
approach in three parts: spine localization, Btrfly network, and prior encoding using adversarial 
learning. 

Spine Localization 
For localization, annotations were obtained from the available vertebral centroids by putting 
Gaussians at vertebral locations. The input was a 3D scan at low isotropic resolution of 4 mm. 
The output was also a 3D volume with a Gaussian at every vertebra location. We used a higher σ 
(= 15) for wider Gaussians as annotations. The architecture was a light-weight U-Net as shown 
in Figure E1. The loss used for training is a simple 2  regression loss. 

Training 
For training, an Adam optimizer was employed with an initial learning rate of 5 × 10−4. 
Convergence was tested on a held-out validation set consisting of 10% of the training data. Once 
trained, a bounding box is constructed out of the predicted heatmap using a fixed tolerance 
around the “active” voxels in the prediction, which indicate the presence of the spine. 

Btrfly Net 
The detailed architecture of the Btrfly net is shown in Figure E2. Similar to that in Sekuboyina et 
al (11), the loss for the Btrfly net is a combination of cross-entropy and 2  regression loss. 
Denoting viewx  and viewy , {sag,  cor}view∈  to be the 2D projections of the image and the 
annotations respectively, the loss of the sagittal arm of the Btrfly Net was given by: 

( ),  2||      ||   ,  .b sag sag sag sag sagH σ σω= − +  y y y y
, 

where   sagy  is the prediction of the net's xz-arm, H  is the cross-entropy function, and 

  ( )sag sag
σ σ=y y , the softmax excitation of the prediction. ω  is the median frequency weight map 

over the occurrence of vertebral labels, incorporated for boosting the learning of less frequent 
vertebral classes. The loss for the yz-arm was similarly constructed, resulting in the total loss of 
the Btrfly net: 

,  ,  .btrfly b sag b cor= +  
. 

Training 
Data for this phase consisted of MIPs across the two views. For training the network, an Adam 
optimizer was employed with an initial learning rate of λ  = 1 × 10−3. λ  was decayed by a factor 
of 3/4th every 10k iterations till 0.2 × 10−3. 10% of the training data were held out to ascertain 
training convergence. 
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Prior Learning Using Adversaries 
In this article, we also investigated the ability of two adversaries in aiding the labeling of 
vertebrae: an energy-based adversary and a Wasserstein-distance based adversary. Both the 
adversaries worked on the label maps ( viewy  or viewy ) and provided a discriminating signal 
specific to their architecture. This signal corresponded to “real-ness” or “fakeness” of the input 
to the discriminator. Figure E3 shows the arrangement of the discriminators with respect to the 
Btrfly Net and their detailed architecture. 

EB-D 
The discriminating signal here was the 2  distance between the input viewy  (or viewy ) and its 
reconstruction, ( )viewrec y : ( ) 2 ||  ( ) ||view view viewE rec= = − y y y . The total loss combined with the 
Btrfly net (generator, G) is as follows: 

( ) ( )( )max 0,      ,D view viewm= + −   y y
 and 

( ) ,  G view b view= +  y
. 

Thus, D learned to better reconstruct “real” label maps by minimizing the reconstruction loss for 
a real sample. On the other hand, G learned to predict better “fake” label maps so that the 
discriminator gives a low reconstruction loss. m in the equation above is a margin discouraging 
EB-D from learning to reconstruct fake or predicted samples. It was varied from 10 to 0 rapidly  
(m was halved every 1000 iterations). 

W-D 
In the case of Wasserstein GAN, the D- or G-specific losses are not as intuitive as in the earlier 
case. However, the combined setup of the generator (Btrfly) and discriminator tried to minimize 
the Wasserstein distance between the distributions of real and generated label maps. We 
followed the loss design as in the improved Wasserstein GAN with gradient penalty (17) as 
below: 

( ) ( ) ( ) 2
ˆ 2(||  || 1) , and

viewD view view viewλ= − + ∇ −   yy y y
 

( ) ,   ,G view b view=− +   y
, 

where ( )  1   ,ˆview view view= + −  y y y  for any [ ] ~  0,1U . λ  (= 1.0 in our work) is a scalar weight for 
the regularization term on the gradients. 

Reference 

17. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved training of 
Wasserstein GANs. Poster presented at: Advances in Neural Information Processing 
Systems 30; December 4-9, 2017, Long Beach, CA. https://papers.nips.cc/paper/7159-
improved-training-of-wasserstein-gans. Accessed March 9, 2020. 
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Figure E1: Localization network architecture. Kernel sizes for all convolution kernels 
except the last layer are 3 × 3 × 3. Last convolutional kernel is 1 × 1 × 1. Transposed 
convolution kernels are 4 × 4 × 4. Average pooling kernels are 2 × 2 × 2 with a stride of 2.

Figure E2: Btrfly-Net architecture. The xz- (blue) and the yz arms (yellow) correspond to 
the sagittal and coronal views. In upscaling path, kernel size × denotes two different kernel 
sizes: 4 × 4 transposed convolution followed by 3 × 3 convolution.



Figure E3: (a) The arrangement of the discriminators with respect to the Btrfly net. (b) The 
architecture of the Wasserstein-distance-based discriminator (W-D). (c) The architecture of 
the energy-based discriminator (EB-D), giving an ℓ2 reconstruction error as output. In both 
of the architectures, Leaky ReLU and batch normalization is employed after every layer 
except the last.

(a)

(b) (c)
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As supplementary content, we present: (1) A detailed description of the com-
plete point-cloud auto-encoder, including the encoder architecture adapted from
point net [1] (cf. Fig. 6), (2) additional illustrations of point-wise data uncertainty
modelled by the proposed σ-VAE (cf. Fig. 7), and (3) Further qualitative results
comparing probabilistic reconstructions of healthy and anomalous or fractured
vertebrae, along with point-wise Chamfer distance and log-probability between
the input and its reconstruction (cf. Fig. 8).

Fig. 6: Architecture for pAE: Architectural details of encoding and decoding paths
of the pAE. Note that every layer (except the last, in encoder and in the decoder)
is followed by batch normalisation and leaky ReLU. The values in the dense layers
indicate the number of nodes while the values in the transposed convolution layers
(− · − · channels) indicate the size of the resulting feature map. For example, the first
transposed convolution layer, z is reshaped to 1 · 1 · 64 and up-convolved to 2 · 2 · 1024.
As the networks operate in point-clouds, they are light-weight. The encoder consists
< 3000 parameters. The decoder’s ‘fully-connected’ component has < 4500 parameters.
The ‘convolutional-part’ is relatively heavier with ∼ 12M parameters. However, the
forward pass takes <1 second.

? Joint supervising authors.
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Fig. 7: Variance modelling by the proposed σ-VAE for healthy (blue) and fractured
(red) cases. Observe a higher variance in the vertebral processes representing the nat-
urally occurring shape variance in a population. Note the lack of high uncertainty
values for fractured vertebrae, in accordance with aleoteric uncertainty’s property of
capturing only data variance [2]. Hence, predictive variance cannot be used as a means
to detect fractures. However, it can reliably be employed as an attenuation factor for
improving reconstruction or for computing the reconstruction probability (cf. Fig. 8),
thereby enabling fracture detection.

Fig. 8: Probabilistic reconstructions of healthy and fractured vertebrae. Alongside
spatial localisation of fractures, compare the dynamic range of the reconstruction log
probability between healthy and fractured cases when normalised to [0,1]. Reconstruc-
tion probabilities are relatively uniformly-spread in the healthy case and are pushed
to the extremes for a fractured one. This indicates a higher dynamic range in the un-
normalised values while reconstructing fractured vertebrae. Thus, a low reconstruction
probability (or a high reconstruction error) does indicate an outlier or a fracture.
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a b s t r a c t 

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing 

pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support 

systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. How- 

ever, designing automated algorithms for spine processing is challenging predominantly due to consid- 

erable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available 

data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge ( VerSe ) was organised 

in conjunction with the International Conference on Medical Image Computing and Computer Assisted 

Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmen- 

tation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients 

were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine 

hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked 

on these datasets. In this work, we present the results of this evaluation and further investigate the 

performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the 

generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing al- 

gorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe : 

the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly 

identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: 

https://github.com/anjany/verse. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 

The spine is an important part of the musculoskeletal system, 

sustaining and supporting the body and its organ structure while 

playing a major role in our mobility and load transfer. It also 

shields the spinal cord from injuries and mechanical shocks due 

to impacts. Efforts towards quantification and understanding of 

the biomechanics of the human spine include quantitative imaging 

( Löffler et al., 2020a ), finite element modelling (FEM) of the verte- 

brae ( Anitha et al., 2020 ), alignment analysis ( Laouissat et al., 2018 ) 

of the spine and complex biomechanical models ( Oxland, 2016 ). 

Biomechanical alterations can cause severe pain and disability in 

the short term, and can demonstrate worse consequences in the 

long term, e.g. osteoporosis leads to an 8-fold higher mortality rate 

( Cauley et al., 20 0 0 ). In spite of their criticality, spinal patholo- 

gies are often under-diagnosed ( Howlett et al., 2020; Müller et al., 

2008; Williams et al., 2009 ). This calls for computer-aided assis- 

tance for efficient and early detection of such pathologies, enabling 

prevention or effective treatment. 

Vertebral labelling and vertebral segmentation are two fundamen- 

tal tasks in understanding spine image data. Labelled and seg- 

mented spines have diagnostic implications for detecting and grad- 

ing vertebral fractures, estimating the spinal curve, and recognis- 

ing spinal deformities such as scoliosis and kyphosis. From a non- 

diagnostic perspective, these tasks enable efficient biomechanical 

modelling, FEM analysis, and surgical planning for metal inser- 

tions. Vertebral labelling can be performed quickly by a medical 

expert, on smaller datasets, as it follows clear rules ( Wigh, 1980 ). 

But, manually segmenting them is unfeasible owing to the time 

required for annotating large structures (e.g. 25 objects of interest 

with a size of ∼ 10 4 voxels each). Moreover, the complex morphol- 

ogy of the vertebra’s posterior elements combined with lower scan 

resolutions prevents a consistent and accurate manual delineation. 

Automating these tasks also involves multiple challenges: highly 

varying fields of view (FoV) across datasets (unlike brain images), 

large scan sizes, highly correlating shapes of adjacent vertebrae, 

scan noise, different scanner settings, and multiple anomalies or 

pathologies being present. For example, the presence of vertebral 

fractures, metal implants, cement, or transitional vertebrae should 

be considered during algorithm design. Fig. 1 illustrates this diver- 

sity using the scans included in the Large Scale Vertebrae Segmen- 

tation Challenge ( VerSe ). 

1.1. Terminology 

In this section, we introduce three spine-processing terms fre- 

quently used in this work: localisation, labelling, segmentation . As 

used in the rest of the work: Localisation is the task of detecting a 

3D coordinate on the vertebra and labelling is the task of detecting 

a 3D coordinate on the vertebra as well as identifying the verte- 

brae. Specifically, labelling superscribes localisation by assigning a 

3D coordinate as well as a class to the vertebra (C1-C6, T1-T13, L1- 

L5, as well as T13 and L6). Unless mentioned otherwise, spine seg- 

mentation is a voxel-level, multi-class annotation problem, where 

in each vertebra level has a defined class label (e.g. C1 → 1, C2 → 2, 

T1 → 8 etc.). It can now be seen that once a vertebra is segmented, 

its labelling and localisation is implied. 

1.2. Prior work 

Spine image analysis has received subsistence attention from 

the medical imaging community over the years. Although com- 

puted tomography (CT) is a preferred modality for studying the 

’bone’ part of a spine due to high bone-to-soft-tissue contrast, 

there are several prior works on the tasks of labelling and seg- 

menting the spine using multiple modalities in addition to CT such 

as magnetic resonance imaging (MRI), and 2D radiographs. There 

are works tackling segmentation (most of which inherently include 

vertebral labelling), and those tackling labelling specifically from a 

landmark-detection perspective. 
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Fig. 1. Example scan slices from the VerSe datasets, labelled clockwise. In addition to the wide variation in the fields of view, we illustrate with fractured vertebrae (B, J), 

metal insertions (C), cemented vertebrae (G), transitional vertebrae (L6 and T13 in D and I respectively), and a noisy scan (K). 

1.2.1. Vertebral segmentation 

Traditionally, vertebral segmentation was performed using 

model-based approaches, which loosely involve fitting a shape 

prior to the spine and deforming it so that it fits the given spine. 

The incorporated shape priors range from geometric models ( Štern 

et al., 2011; Ibragimov et al., 2014; 2017 ), deformed with Markov 

random fields (MRF) ( Kadoury et al., 2011; 2013 ), statistical shape 

models ( Rasoulian et al., 2013; Pereañez et al., 2015; Castro-Mateos 

et al., 2015 ), and active contours ( Leventon et al., 2002; Athertya 

and Kumar, 2016 ). There are also intensity-based approaches such 

as level sets ( Lim et al., 2014 ) and a priori variational inten- 

sity models ( Hammernik et al., 2015 ). Landmark frameworks tack- 

ling fully automated vertebral labelling and segmentation from a 

shape-modelling perspective exist ( Klinder et al., 2009; Korez et al., 

2015 ). 

With the increased adoption of machine learning in image anal- 

ysis, works incorporating significant data-based learning compo- 

nents have been proposed. Suzani et al. (2015a) propose using a 

multi-layer perceptron (MLP) to detect the vertebral bodies and 

employ deformable registration for segmentation. Similar in phi- 

losophy, Chu et al. (2015) propose random forest regression for lo- 

cating and identifying the vertebrae followed by segmentation per- 

formed using random forest classification at a voxel level. Incor- 

porating deep learning, Korez et al. (2016) learn vertebral appear- 

ances using 3D convolutional neural networks (CNN) and predict 

probability maps, which are then used to guide the boundaries of 

a deformable vertebral model. 

The recent advent of deep learning in image analysis and in- 

creased computing capabilities have led to works wherein de- 

formable shape modelling and/or vertebral identification was 

replaced by data-driven learning of the vertebral shape us- 

ing deep neural networks. Sekuboyina et al. (2017a) perform 

a patch-based binary segmentation of the spine using a U-Net 

( Ronneberger et al., 2015 ) (or a fully convolutional network, FCN) 

followed by denoising the spine mask using a low-resolution heat 

map. Sekuboyina et al. (2017b) propose two neural networks for 

vertebral segmentation in the lumbar region. First, an MLP learns 

to regress the localisation of the lumbar region, following which 

a U-Net performs multi-class segmentation. Improving on this, 

Janssens et al. (2018) replace the MLP with a CNN, thus perform- 

ing multi-class segmentation of lumbar vertebrae with two suc- 

cessive CNNs. Lessmann et al. (2018) propose a two-staged iter- 

ative approach, wherein the first stage involves identifying and 

segmenting one vertebra after another at a lower resolution, fol- 

lowed by a second CNN to refine the lower-resolution masks. 

Building on this, Lessmann et al. (2019) proposed a single-stage 

FCN which iteratively regresses the vertebrae’s anatomical label 

and segments it. Once the entire scan is segmented, the verte- 

bral labels are adjusted using a maximum likelihood approach. Ap- 

proaching the problem from the other end, Payer et al. (2020) pro- 

pose a coarse-to-fine approach involving three stages, spine local- 

isation, vertebra labelling, and vertebrae segmentation, all three 

utilising purposefully designed FCNs. Note that ( Payer et al., 2020 ) 

and ( Lessmann et al., 2019 ) are included in this VerSe benchmark. 

1.2.2. Vertebral labelling 

Similar to the segmentation works discussed above, classical 

works on vertebral labelling also involve deformable shape or 

pose models ( Ibragimov et al., 2015; Cai et al., 2015 ). Learning 

from data, Major et al. (2013) landmark point using probabilis- 

tic boosting trees followed by matching local models using MRFs. 

As such, works transitioned towards incorporating machine learn- 

ing using hand-crafted features. Glocker et al. (2012, 2013) em- 

ploy context features to regress vertebral centroids using regres- 

sion forests and MRFs. Bromiley et al. (2016) use Haar-like fea- 

tures to identify vertebrae using random forest regression voting. 

Similarly, Suzani et al. (2015b) employ an MLP to regress the cen- 

troid locations. With the incorporation of the ubiquitous CNNs, 

Chen et al. (2015) proposed a joint-CNN as a combination of ran- 

dom forests for candidate selection followed by a CNN for identi- 

fying the vertebrae. Forsberg et al. (2017) employ CNNs to detect 

the vertebrae followed by labelling them using graphical models. 

Going fully convolutional and regressing on input-sized 

heatmap responses instead of directly learning the centroid lo- 

cations (which is a highly non-linear mapping), Yang et al. 

(2017a,b) propose DI2IN, an FCN, for heatmap regression of the 

3 
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Table 1 

Comparing VerSe with other publicly available, annotated CT datasets. In ‘Annota- 

tions’, L and S refer to annotations concerning the labelling (3D centroid coordi- 

nates) and segmentation tasks (voxel-level labels), respectively. 

Dataset #train #test Annotations 

CSI-Seg 2014 ( Yao et al., 2012 ) 10 10 S 

CSI-Label 2014 ( Glocker et al., 2012 ) 242 60 L 

Dataset-5 ( Ibragimov et al., 2014 ) 10 – S (Lumbar) 

xVertSeg 2016 ( Korez et al., 2015 ) 15 10 S (Lumbar) 

VerSe 2019 80 80 L + S 

VerSe 2020 103 216 L + S 

vertebral centroids at lower resolution, followed by correction us- 

ing message passing and recurrent neural networks (RNN) respec- 

tively. Utilising a single network termed Btrfly-Net, Sekuboyina 

et al. (2018, 2020) propose labelling sagittal and coronal maxi- 

mum intensity projections (MIP) of the spine, reinforced by a prior 

learnt using a generative adversarial network. Using a three-staged 

approach, Liao et al. (2018) combine a CNN with a bidirectional- 

RNN to label and then fine-tune network predictions. Handling 

close to two hundred landmarks, Mader et al. (2019) use mul- 

tistage, 3D CNNs to regress heatmaps followed by fine-tuning 

using regression trees regularised by conditional random fields. 

Payer et al. (2019) propose a two-stream architecture called 

spatial-configuration net for integrating global context and local 

detail in one end-to-end trainable network. With a similar motiva- 

tion of combining long-range and short-range contextual informa- 

tion, Chen et al. (2019) propose combining a 3D localising network 

with a 2D labelling network. 

1.3. Motivation 

Recent spine-processing approaches discussed above are pre- 

dominantly data-driven, thus requiring annotated data to either 

learn from (e.g. neural network weights) or to tune and adapt pa- 

rameters (e.g. active shape model parameters). In spite of this, pub- 

licly available data with good-quality annotations is scarce. Even- 

tually, the algorithms are either insufficiently validated or vali- 

dated in private datasets, preventing a fair comparison. SpineWeb 2 , 

an archive for multi-modal spine data, lists a total of four CT 

datasets with voxel-level or vertebra level annotations: CSI2014- 

Seg ( Yao et al., 2012; 2016 ), xVertSeg ( Korez et al., 2015 ), Dataset-5 

( Ibragimov et al., 2014 ), and CSI2014-Label ( Glocker et al., 2012 ). 

Table 1 provides an overview of these public datasets. Except 

Dataset-5, all datasets were released as part of segmentation 

and labelling challenges organised as part of the computational 

spine imaging (CSI) workshop at MICCAI. CSI2014-Seg and Label 

were made publicly available in conjunction with MICCAI 2014 

and xVertSeg with MICCAI 2016. Credit is due to these incipi- 

ent steps towards open-sourcing data, which have yielded interest 

in spine processing. A significant portion of the work detailed in 

Section 1.2 is benchmarked on these datasets. However, much is 

to be desired in terms of data size and data variability . The largest 

spine CT dataset with voxel-level annotations to date consists of 25 

scans, with lumbar annotations only. CSI-Label, even though it is a 

collection of 302 scans with high data variability, is collected from 

a single centre (Department of Radiology, University of Washing- 

ton), possibly inducing a bias. 

With the objective of addressing the need for a large spine 

CT dataset and to provide a common benchmark for current and 

future spine-processing algorithms, we prepared a dataset of 374 

multi-detector, spine CT (MDCT) scans (an order of magnitude 

( ∼20 times) increase from the prior datasets) with vertebral-level 

2 spineweb.digitalimaginggroup.ca . 

(3D centroids) and voxel-level annotations (segmentation masks). 

This dataset was made publicly available as part of the Large Scale 

Ver tebrae Se gmentation challenge ( VerSe ), organised in conjunction 

with MICCAI 2019 and 2020. In total, 160 scans were released as 

part of VerSe ‘19 and 355 scans for VerSe ‘20, with a call for fully 

automated and interactive algorithms for the tasks of vertebral la- 

belling and vertebral segmentation . 

As part of the VerSe challenge, we evaluated twenty-five algo- 

rithms (eleven for VerSe ‘19, thirteen for VerSe ‘20, and one base- 

line). This work presents an in-depth analysis of this benchmark- 

ing process, in addition to the technical aspects of the challenge. 

In summary, the contribution of this work includes: 

• A brief description of the setup for the VerSe ‘19 and VerSe ‘20 

challenges ( Section 2 ) 
• A summary of the three top-performing algorithms from each 

iteration of VerSe , along with a description of the in-house, in- 

teractive spine processing algorithm utilised to generate the ini- 

tial annotation. ( Section 3 ) 
• Performance overview of the participating algorithms and fur- 

ther experimentation provide additional insights into the algo- 

rithms. ( Section 4 ) 

2. Materials and challenge setup 

2.1. Data and annotations 

The entire VerSe dataset consists of 374 CT scans made pub- 

licly available after anonymising (including defacing) and obtaining 

an ethics approval from the institutional review board for the in- 

tended use. The data was collected from 355 patients with a mean 

age of ∼ 59(±17) years. The data is multi-site and was acquired 

using multiple CT scanners, including the four major manufactur- 

ers (GE, Siemens, Phillips and Toshiba). Care was taken to compose 

the data to resemble a typical clinical distribution in terms of FoV, 

scan settings, and findings. For example, it consists of a variety 

of FoVs (including cervical, thoraco-lumbar and cervico-thoraco- 

lumbar scans), a mix of sagittal and isotropic reformations, and 

cases with vertebral fractures, metallic implants, and foreign ma- 

terials. Fig. 1 illustrates this variability in the VerSe dataset. Refer 

to Löffler et al. (2020b) ; Liebl et al. (2021) for further details on 

the data composition. 

The dataset consists of two types of annotations: 1) 3D coordi- 

nate locations of the vertebral centroids and 2) voxel-level labels 

as segmentation masks. Twenty-six vertebrae (C1 to L5, and the 

transitional T13 and L6) were considered for annotation with labels 

from 1 to 24, along with labels 25 and 28 for L6 and T13, respec- 

tively. Note that partially visible vertebrae at the top or bottom of 

the scan (or both) were not annotated. Annotations were generated 

using a human-hybrid approach. The initial centroids and segmen- 

tation masks were generated by an automated algorithm (details in 

Section 3 ) and were manually and iteratively refined. Initial refine- 

ment was performed by five trained medical students followed by 

further refinement, rejection, or acceptance by three trained radi- 

ologists with a combined experience of 30 years (ML, HL, and JSK). 

All annotations were finally approved by one radiologist with 19 

years of experience in spine imaging (JSK). 

2.2. Challenge setup 

VerSe was organised in two iterations, first at MICCAI 2019 

and then at MICCAI 2020 with a call for algorithms tackling ver- 

tebral labelling and segmentation. Both the iterations followed an 

identical setup, wherein the challenge consisted of three phases: 

one training and two test phases. In the training stage, partici- 

pants have access to the scans and their annotations, on which 

4 
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Table 2 

Data split and additional details concerning the two iterations of VerSe . Scan split 

indicates the split of the data into training/ Public test/ Hidden test phases. Cer, Tho, 

and Lum refer to the number of vertebrae from the cervical, thoracic, and lumbar 

regions, respectively. Note that of the 300 patients in VerSe ‘20, 86 patients are from 

VerSe ‘19, resulting in the total patients not being an ad hoc sum of the two itera- 

tions. VerSe ‘19 data can be identified by its image ID being less than 500. (Overlap 

is not absolute owing to the difference in the objectives of the two challenge itera- 

tions.). 

VerSe Patients Scans Scan split Vertebrae (Cer/Tho/Lum) 

2019 141 160 80/40/40 1725 (220/884/621) 

2020 300 319 113/103/103 4141 (581/2255/1305) 

Total 355 374 141/120/113 4505 (611/2387/1507) 

they can propose and train their algorithms. In the first test phase, 

termed Public in this work, participants had access to the test 

scans on which they were supposed to submit the predictions. 

In the second test phase, termed Hidden , participants had no ac- 

cess to any test scans but were requested to submit their code 

in a docker container. The dockers were evaluated on hidden test 

data, thus disabling re-training on test data or fine-tuning via over- 

fitting. Information about the data and its split across the two 

VerSe iterations is tabulated in Table 2 . All the 374 scans of VerSe 

dataset and their annotations are now publicly available, 2019: 

https://osf.io/nqjyw/ and 2020: https://osf.io/t98fz/ . We have also 

open-sourced the data processing and the evaluation scripts. All 

VerSe -content is accessible at https://github.com/anjany/verse 

2.3. Evaluation metrics 

In this work, we employ four metrics for evaluation, two for the 

task of labelling and two for the task of segmentation. Note that 

the evaluation protocol employed for ranking the challenge partic- 

ipants builds on the one presented in this work. Please refer to 

Appendix A for an overview of the former. 

Labelling. To evaluate the labelling performance, we compute 

the Identification Rate ( id.rate ) and localisation distance ( d mean ): As- 

suming a given scan contains N annotated vertebrae and denoting 

the true location of the i th vertebra with x i and it predicted loca- 

tion with ˆ x i , the vertebra i is correctly identified if ˆ x i is the closest 

landmark predicted to x i among { x j ∀ j in 1 , 2 , . . . , N} and the Eu- 

clidean distance between the ground truth and the prediction is 

less than 20mm, i.e. || ̂ x i − x i || 2 < 20mm. For a given scan, id.rate 

is then defined as the ratio of the correctly identified vertebrae to 

the total vertebrae present in the scan. Similarly, the localisation 

distance is computed as d mean = ( 
∑ N 

i =1 || ̂ x i − x i || 2 ) /N, the mean of 

the euclidean distances between the ground truth vertebral loca- 

tions and their predictions, per scan. Typically, we report the mean 

measure over all the scans in the dataset. Note that our evalua- 

tion of the labelling tasks slightly deviates from its definition in 

( Glocker et al., 2012 ), where id.rate and d mean are computed not at 

scan-level but at dataset level. 

Segmentation. To evaluate the segmentation task, we choose 

the ubiquitous Dice coefficient (Dice) and Hausdorff distance ( HD ). 

Denoting the ground truth by T and the algorithmic predictions by 

P , and indexing the vertebrae with i , we compute the mean Dice 

score across the vertebrae as follows: 

Dice (P, T ) = 

1 

N 

N ∑ 

i =1 

2 | P i ∩ T i | 
| P i | + | T i | . (1) 

As a surface measure, we compute the mean Hausdorff distance 

over all vertebrae as: 

HD (P, T ) = 

1 

N 

N ∑ 

i =1 

max 

{
sup 

p∈P i 
inf 
t∈T i 

d(p, t) , sup 

t∈T i 
inf 
p∈P i 

d(p, t) 

}
, (2) 

where P i and T i denote the surfaces extracted from the voxel 

masks of the i th vertebra and d(p, t) = || p − t|| 2 , i.e a Euclidean 

distance between the points p and t on the two surfaces. 

Outliers. In multi-class labelling and segmentation, there will be 

cases where the prediction of an algorithm will contain fewer ver- 

tebrae than the ground truth. In such cases, d mean and HD are not 

defined for the missing vertebrae. For the sake of analysis in this 

work, we ignore such vertebrae while computing the averages. This 

way, we still get a picture of the algorithm’s performance on the 

rest of the correctly predicted vertebrae. The missing vertebrae are 

anyway clearly penalised by the other two metrics, viz. id.rate and 

Dice. 

3. Methods 

In this section, we present Anduin, our spine processing frame- 

work that enabled the medical experts to generate voxel-level an- 

notations at scale. Then, we present details of select participating 

algorithms. 

3.1. Anduin: Semi-automated spine processing framework 

Anduin is a semi-automated, interactive processing tool devel- 

oped in-house, which was employed to generate the initial anno- 

tations for more than 40 0 0 vertebrae. It is a three-staged pipeline 

consisting of: 1) Spine detection , performed by a light-weight, FCN 

predicting a low-resolution heatmap over the spine location, 2) 

Vertebra labelling , based on the Btrfly Net ( Sekuboyina et al., 2018 ) 

architecture working on sagittal and coronal MIPs of the localised 

spine region, and finally, 3) Vertebral segmentation , performed by 

an improved U-Net ( Ronneberger et al., 2015; Roy et al., 2018 ) to 

segment vertebral patches, extracted at 1mm resolution, around 

the centroids predicted by the preceding stage. Fig. 2 gives a 

schematic of the entire framework. Importantly, the detection and 

labelling stages offer interaction, wherein the user can alter the 

bounding box predicted during spine detection as well as the ver- 

tebral centroids predicted by the labelling stage. Such human-in- 

loop design enabled the collection of accurate annotations with 

minimal human effort. We made a web-version of Anduin pub- 

licly available to the research community that can be accessed at 

anduin.bonescreen.de . Refer to Appendix B for further details on 

Anduin (at the time of this work) such as network architecture, 

training scheme, and post-processing steps. Furthermore, without 

human-interaction, Anduin is fully automated. We include this ver- 

sion of Anduin in the benchmarking process as ‘Sekuboyina A.’. We 

note that since the ground-truth segmentation masks are gener- 

ated with Anduin -predictions as initialisation, there exists a bias. 

However, the bias is not as strong for the labelling task as the cen- 

troid annotations are sparse and have a high intra- and inter-rater 

variability. 

3.2. Participating methods 

Over its two iterations, VerSe has received more than five hun- 

dred data download requests. Forty teams uploaded their sub- 

missions onto the leaderboards. Of these, eleven and thirteen 

teams were evaluated for VerSe ‘19 and VerSe ‘20, respectively. 

Table 3 provides a brief synopsis of all the participating teams. 

Below, we present the algorithms proposed by the best and the 

second-best-performing teams in each iteration of the challenge. 

Appendix C provides the details of the remaining algorithms. 

Payer C. et al.: Vertebrae localisation and segmentation with 

SpatialConfiguration-net and U-net [VERSE‘19] 

Vertebrae localisation and segmentation are performed in a 

three-step approach: spine localisation, vertebrae localisation and 

5 
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Table 3 

Brief summary of the participating methods in VerSe benchmark, ordered alphabetically according to referring author. 

Team / Ref. Author Method Features 

VerSe ‘19 zib / Amiranashvili T. Multi-stage, shape-based approach. Multi-label segmentation with arbitrary labels for vertebrae. 

Unique label assignment for based on shape templates. Landmark positions are derived as 

centres of fitted model. 

christoph / Angermann C. Single-staged, slice-wise approach. One 2.5D U-Net ( Angermann et al., 2019 ) and two 2D U-Nets 

are employed. The first network generates 2D projections containing 3D information. Then, one 

2D U-Net segments the projections, one segments the 2D slices. Labels are obtained as 

centroids of segmentations. 

brown / Brown K. A 3D bounding box around the vertebra is predicted by regressing on a set of canonical 

landmarks. Each vertebra is segmented using a residual U-Net and labelled by registering to a 

common atlas. 

iflytek / Chen M. A three-staged approach. Spine localisation and multi-label segmentation are based on a 3D 

U-Net. Using the predicted segmentation mask, the third stage employs a RCNN-based 

architecture to label the vertebrae. 

yangd05 / Dong Y. Single-staged approach. A 3D U-Net based on neural-architecture search is employed to segment 

vertebrae as 26-class problem. Vertebral-body centre are located using iterative morphological 

erosion. 

huyujin / Hu Y. Single-staged, patch-based approach. Based on the nnU-Net ( Isensee et al., 2019 ). All three 

networks are used: a 3D-UNet at high resolution, a 3D U-Net at low resolution, and a 2D U-Net. 

alibabadamo / Jiang T. Single-staged approach, employing a V-Net ( Milletari et al., 2016 ) backbone with two heads, 

one for binary- segmentation and the other for vertebral-labelling. Vertebrae C2, C7, T12, and L5 

are identified and the rest are inferred from these. 

lrde / Kirszenberg A. Multi-stage, shape-based approach. A combination of three 2D U-Nets generate 3D binary mask 

of spine. Anchor points on a skeleton obtained from this mask are used for template matching. 

Five vertebrae are chosen for matching, and one with highest score is chosen as a match. 

diag / Lessmann N. Single-staged, patch-based approach. A 3D U-Net ( Lessmann et al., 2019 ) iteratively identifies 

and segments the bottom-most visible vertebra in extracted patches, eventually crawling the 

spine. An additional network is trained to detect first cervical and thoracic vertebrae. 

christian_payer / Payer C. Multi-staged, patch-wise approach. A 3D U-Net regresses a heatmap of the spinal centre line. 

Individual vert-ebrae are localized and are identified with the SpatialConfig-Net ( Payer et al., 

2020 ). Each vertebra is then independently segmented as a binary segmentation. 

init / Wang X. Multi-staged-approach. A single-shot 2D detector is utilised to localise the spine. A modified 

Btrfly-Net ( Sekuboyina et al., 2018 ) and a 3D U-Net are employed to address labelling and 

segmentation respectively. 

VerSe ‘20 deepreasoningai_team1 / Chen D. Multi-staged, patch-based approach. A 3D U-Net coarsely localises the spine. Then, a U-Net 

performs binary segmentation, patchwise. Lastly, a 3D Resnet-model identifies the vertebral 

class taking the vertebral mask and CT-image segmented vertebra. 

carpediem / Hou F. Multi-staged approach. First, the spine position is located with 3D U-Net. Second the vertebrae 

are labelled in the cropped patches. Lastly, U-Net segments individual vertebrae from 

background using centroids labels. 

poly / Huang Z. Single-staged, patch-based approach. A U-Net with feature-aggregation and squeeze & exictation 

module is proposed.Contains two task-specific heads, one for vertebrae labelling and the other 

for segmentation. 

lrde / Hu ̀ynh L. D. A single model with two-stages, a Mask-RCNN-inspired model incorporating RetinaNet is 

proposed. First stage detects and classifies vertebral RoIs. Second stage outputs a binary 

segmentation for each of the RoIs. 

ubmi / Jakubicek R. Multi-staged, semi-automated approach ( Jakubicek et al., 2020 ). Stages include: spine-canal 

tracking, localising and labelling the inter-vertebral disks, and then labelling the vertebrae. 

Segmentation is based on graph-cuts. 

htic / Mulay S. Single-staged approach. A 2D Mask R-CNN withcomplete IoU loss performs slice-wise 

segmentation. 

superpod / Netherton T. J. Multi-staged approach. Combines a 2D FCN for coarse spinal canal segmentation, a multi-view 

X-Net ( Netherton et al., 2020 ) for labelling, and a U-Net + architecture for vertebral 

segmentation. 

rigg / Paetzold J. A naive 2D U-Net performs multi-class segmentation of sagittal slices. 

christian_payer / Payer C. Similar to Payer C.’s 2019 submission. Different from it, Markov Random fields are employed for 

post- processing the localisation stage’s output. Additionally, appropriate floating-point 

optimisation of network weights scans into patches. 

fakereal / Xiangshang Z. Both tasks are handled individually. A modified Btrfly-Net ( Sekuboyina et al., 2018 ) detects 

vertebral key points. An nnU-Net ( Isensee et al., 2019 ) performs multi-class segmentation. 

sitp / Yeah T. Two-staged approach containing two 3D U-Nets. First one performs coarse localisation of the 

spine at low-resolution. Second one performs multi-class segmentation of the vertebra at a 

higher resolution. 

aply / Zeng C. Multi-staged approach. First stage detects five key-points on the spine using a HRNet. Second, 

improved Spatialconfig-Net ( Payer et al., 2019 ) performs the labelling. Segmentation is now a 

binary problem. 

jdlu / Zhang A. A four-step approach. A patch-based V-Net is used to regress the spine center-line. A key-point 

localization V- Net predicts potential vertebral candidates. A three-class vertebrae segmentation 

network obtains main class of each vertebrae. Final labels are obtained using a rule-based 

postprocessing. 
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Fig. 2. Our interactive spine-processing pipeline : Schematic of the semi- 

automated and interactive spine processing pipeline developed in-house. The bold 

lines indicate automated steps. The dotted lines indicate a possibly interactive step. 

Fig. 3. The three processing stages in Payer C. for localisation, identification, and 

segmentation of vertebrae. 

identification, and finally binary segmentation of each located ver- 

tebra (cf. Fig. 3 ). The results of the individually segmented verte- 

brae are merged into the final multi-label segmentation. 

Spine Localisation. To localise the approximate position of the 

spine, a variant of the U-Net was used to regress a heatmap of the 

spinal centreline, i.e. the line passing through vertebral centroids, 

with an � 2 loss. The heatmap of the spinal centreline is generated 

by combining Gaussian heatmaps of all individual landmarks. The 

input image is resampled to a uniform voxel spacing of 8mm and 

centred at the network input. 

Vertebra Localisation & Identification. The SpatialConfiguration- 

Net ( Payer et al., 2020 ) is employed to localise centres of the ver- 

tebral bodies. It effectively combines the local appearance of land- 

marks with their spatial configuration. Please refer to ( Payer et al., 

2020 ) for details on architecture and loss functions. Every input 

volume is resampled to have a uniform voxel spacing of 2mm, 

while the network is set up for inputs of size 96 × 96 × 128 . As 

some volumes have a larger extent in the cranio-caudal axis and 

do not fit into the network, these volumes are processed as fol- 

lows: During training, sub-volumes are cropped at a random posi- 

tion at the cranio-caudal axis. During inference, volumes are split 

at the cranio-caudal axis into multiple sub-volumes that overlap 

for 96 pixels and processed them one after another. Then, the net- 

work predictions of the overlapping sub-volumes are merged by 

taking the maximum response over all predictions. 

Final landmark positions are obtained as follows: For each pre- 

dicted heatmap volume, multiple local heatmap maxima are de- 

tected that are above a certain threshold. Then, the first and last 

vertebrae that are visible on the volume are determined by taking 

the heatmap with the largest value that is closest to the volume 

top or bottom, respectively. The final predicted landmark sequence 

is then the sequence that does not violate the following conditions: 

consecutive vertebrae may not be closer than 12.5 mm and further 

away than 50 mm, and a subsequent landmark may not be above 

a previous one. 

Vertebra Segmentation. To create the final vertebrae segmenta- 

tion, a U-Net is set up with a sigmoid cross-entropy loss for binary 

segmentation to separate individual vertebrae. The entire spine im- 

age is cropped to a region around the localised centroid such that 

the vertebra is in the centre of the image. Similarly, the heatmap 

image of the vertebral centroid is also cropped from the prediction 

of the vertebral localisation network. Both the cropped vertebral 

image and vertebral heatmap are used as an input for the seg- 

mentation network. Both input volumes are resampled to have a 

uniform voxel spacing of 1 mm. To create the final multi-label seg- 

mentation result, the individual predictions of the cropped inputs 

are resampled back to the original input resolution and translated 

back to the original position. 

Lessmann et al.: Iterative fully convolutional neural networks 

[VERSE‘19] 

The proposed approach largely depends on iteratively applied 

fully convolutional neural networks ( Lessmann et al., 2019 ). Briefly, 

this method relies on a U-net-like 3D network that analyses a 

128 × 128 × 128 region of interest (RoI). In this region, the network 

segments and labels only the bottom-most visible vertebra and ig- 

nores other vertebrae that may be (partly) visible within the RoI. 

The RoI is iteratively moved over the image by placing it at the 

centre of the detected piece of the vertebra after each segmenta- 

tion step. If only part of a vertebra was detected, moving the RoI 

to the centre of the detected fragment ensures that a larger part of 

the vertebra becomes visible for the next iteration. Once the entire 

vertebra is visible in the RoI, the segmentation and labeling results 

are stored in a memory component. This memory is a binary mask 

that is an additional input to the network and is used by the net- 

work to recognise and ignore already segmented vertebrae. By re- 

peating the process of searching for a piece of vertebra and follow- 

ing this piece until the whole vertebra is visible in the region of in- 

terest, all vertebrae are segmented and labeled one after the other. 

When the end of the scan is reached, the predicted labels of all 

detected vertebrae are combined in a global maximum likelihood 

model to determine a plausible labeling for the entire scan, thus 
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avoiding duplicate labels or gaps. Please refer to ( Lessmann et al., 

2019 ) for further details. Note that two publicly available datasets 

were also used for training: CSI-Seg 2014 ( Yao et al., 2012 ) and 

the xVertSeg 2016 datasets ( Korez et al., 2015 ). The approach is 

supplemented with minor changes over ( Lessmann et al., 2019 ) so 

that: anatomical labelling of the detected vertebra is optimised by 

minimising a combination of � 1 and � 2 norms; the loss for the seg- 

mentation network is a combination of the proposed segmentation 

error and a cross-entropy loss. 

Rib Detection. In order to improve the labeling accuracy, a sec- 

ond network is trained to predict whether a vertebra is a thoracic 

vertebra or not. As input, this network receives the final image 

patch in which a vertebra is segmented and the corresponding seg- 

mentation mask as a second channel. The network has a simple 

architecture based on 3 × 3 × 3 convolutions, batch normalisation 

and max-pooling. The final layer is a dense layer with a sigmoid 

activation function. At inference time, the first thoracic vertebra 

and the first cervical vertebra identified by this auxiliary network 

had a stronger influence on the label voting. Their vote counted 

three times as much as that of other vertebrae. 

Cropping at Inference. Note that if the first visible vertebra is not 

properly detected, the whole iterative process might fail. Therefore, 

at inference time, an additional step is added which crops the im- 

age along the z-axis in steps of 2.5% from the bottom if no vertebra 

was found in the entire scan. This helps in case the very first, i.e. 

bottom-most, vertebra is only visible with a very small fragment. 

This small element might be too small to be detected as a vertebra 

but might prevent the network from detecting any vertebra above 

as the bottom-most vertebra. 

Centroid Estimation. Instead of the vertebral centroids provided 

as training data, the centroids of the segmentation masks were 

utilised to estimate the “actual” centroids. This was done by esti- 

mating the offset between the centroids measured from the seg- 

mentation mask ( ̂ v i ) and the expected centroids ( v i ). For every 

vertebra individually, an offset ( δ) was determined by minimising ∑ 

i ̂  v i − v i + δ. 

Chen D. et al.: Vertebrae Segmentation and Localisation via Deep 

Reasoning [VERSE‘20] 

The authors propose deep reasoning approach as a multi-stage 

scheme. First, a simple U-Net model with a coarse input resolu- 

tion identifies the approximate location of the entire spine in the 

CT volume to identify the area of interest. Secondly, another U-Net 

with a higher resolution is used, zoomed in on the spinal region, 

to perform binary segmentation on each individual vertebra (bone 

vs. background). Lastly, a CNN is employed to perform multi-class 

classification for each segmented vertebra obtained from the sec- 

ond step. The results of the classification and the segmentation are 

merged into the final multi-class segmentation, which is then used 

to compute the corresponding centroids for each vertebra. 

Spine Localisation. Considering the large volume of whole-body 

CT scan, the original CT image is down-sampled to a coarse resolu- 

tion and fed to a shallow 3D-UNet to identify the rough location of 

the visible spine. The network has the following number of feature 

maps for both the sequential down and up sampling layers: 8, 16, 

32, 64, 128, 64, 32, 16, 8. This is similar to Payer C. et al.’s method 

for VerSe ‘19 in Section 3.2 . The authors replaced batch normali- 

sation with instance normalisation and ReLU activation with leaky 

ReLU (leak rate of 0.01), similar to Payer et al. (2020) . 

Vertebrae Segmentation. The authors train a 3D U-Net model 

to solely perform binary segmentation (vertebrae bone vs. back- 

ground) at a resolution of 1mm. Given the natural sequential struc- 

ture of the vertebrae, inspired by Lessmann et al. (2018) , the au- 

thors train a model to perform an iterative vertebrae segmentation 

process along the spine. That is, the model is given the mask of 

the previous vertebra and the CT scan as input, and mask for the 

next vertebrae is predicted. The input is restricted to a small-sized 

patch obtained from the spine localisation step. A 3D U-Net with 

the following number of kernels for both the sequential down and 

up sampling layers is used: 64, 128, 256, 512, 512, 512, 256, 128, 

64. 

Vertebrae Classification. A 3D ResNet-50 model is used to pre- 

dict the class of each vertebra. As input, this model takes the seg- 

mentation mask obtained in the vertebral segmentation step, as 

well as the corresponding CT volume, and outputs a single class 

for the entire vertebrae. Given the prior knowledge of the anatom- 

ical structure of the spine and its variations, it can be ensured that 

the predictions are anatomically valid. 

Deep Reasoning Module Given the biological setting of this com- 

puter vision challenge, the task is very structured and the pro- 

posed models use reasoning to leverage the anatomical struc- 

ture and prior knowledge. Using the Deep Reasoning framework 

( Chen et al., 2020 ), the authors were able to encode and constrain 

the model to produce results that are anatomically correct in terms 

of the sequence of vertebrae, as well as only produce vertebral 

masks that are anatomically possible. 

Payer C. et al.: Improving Coarse to Fine Vertebrae Localisation and 

Segmentation with SpatialConfiguration-Net and U-Net [VERSE‘20] 

The overall setup of the algorithm stays the same as Payer 

et al.’s approach for VerSe ‘19 ( Payer et al., 2020 ): a three-stage ap- 

proach consisting of: spine localisation, vertebrae localisation and 

identification, and finally binary segmentation of each located ver- 

tebra. 

This approach, however, differs in its post-processing after the 

localisation and identification stage, due to an increased variation 

in the VerSe ‘20 data. For all vertebrae i ∈ { C1... L6 } , the authors 

generate multiple location candidates and identify the ones that 

maximises the following function of the graph with vertices V and 

edges E modelling an MRF, ∑ 

i ∈V 
U 

(
v k i 

)
+ 

∑ 

i, j∈E 
P 

(
v k i , v 

l 
j 

)
, (3) 

where U describes the unary weight of candidate k of vertebrae i , 

and P describes the pairwise weight of the edge from candidate 

k of vertebrae i to candidate l of vertebrae j. An edge from i to j

exists in the graph if v i and v j are possible subsequent neighbors 

in the dataset. 

The unary terms are set to the heatmap responses plus a bias, 

i.e. u 
(
v k 

i 

)
= λh k 

i 
+ b, where h k 

i 
is the heatmap response of the can- 

didate k of vertebra i , b is the bias, and λ is the weighting fac- 

tor. The pairwise terms penalise deviations from the average vector 

from vertebrae i to j and are defined as 

P 

(
v k i , v 

l 
j 

)
= (1 − λ) 

⎛ 

⎝ 1 −
∣∣∣∣∣
∣∣∣∣∣2 

d i, j − d k,l 
i, j 

|| d i, j || 2 

∣∣∣∣∣
∣∣∣∣∣

2 
⎞ 

⎠ , (4) 

with d i, j being the mean vector from vertebra i to j in the ground 

truth, d k,l 
i, j 

being the vector from v k 
i 

and v l 
j 
, and || · || denoting the 

Euclidean norm. 

The bias is set to 2.0 and also encourages the detection of ver- 

tebrae, for which the unary and pairwise terms would be slightly 

negative. The weighting factor λ set 0.2 to encourage the MRF to 

more rely on the direction information. For the location candidates 

of vertex v i , the authors take the local maxima responses of the 

predicted heatmap with a heatmap value larger than 0.05. Addi- 

tionally, as the authors observed that the networks often confuse 

subsequent vertebrae of the same type, the authors add to the lo- 

cation candidates of a vertebra also the candidates of the previ- 

ous and following vertebrae of the same type. For these additional 
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Table 4 

Benchmarking VerSe : Overall performance of the submitted algorithms for the tasks of labelling and segmentation over the two test phases. The table reports mean and 

median (in brackets) measures over the dataset. The teams are ordered according to their Dice scores on the Hidden set. Dice and id.rate are reported in % and d mean 

and HD in mm. � indicates that the team’s algorithm did not predict the vertebral centroids. ∗ indicates a non-functioning docker container. † Jakubicek R. submitted a 

semi-automated method for Public and a fully automated docker for Hidden . 

Team Labelling Segmentation 

Public Hidden Public Hidden 

id.rate d mean id.rate d mean Dice HD Dice HD 

Payer C. 95.65 (100.0) 4.27 (3.29) 94.25 (100.0) 4.80 (3.37) 90.90 (95.54) 6.35 (4.62) 89.80 (95.47) 7.08 (4.45) 

Lessmann N. 89.86 (100.0) 14.12 (13.86) 90.42 (100.0) 7.04 (5.3) 85.08 (94.25) 8.58 (4.62) 85.76 (93.86) 8.20 (5.38) 

Chen M. 96.94 (100.0) 4.43 (3.7) 86.73 (100.0) 7.13 (3.81) 93.01 (95.96) 6.39 (4.88) 82.56 (96.5) 9.98 (5.71) 

Amiranashvili T. 71.63 (100.0) 11.09 (4.78) 73.32 (100.0) 13.61 (4.92) 67.02 (90.47) 17.35 (8.42) 68.96 (91.41) 17.81 (8.62) 

Dong Y. 62.56 (60.0) 18.52 (17.71) 67.21 (71.40) 15.82 (14.18) 76.74 (84.15) 14.09 (11.10) 67.51 (66.05) 26.46 (28.18) 

Angermann C. 55.80 (57.19) 44.92 (15.29) 54.85 (57.18) 19.83 (16.79) 43.14 (43.44) 44.27 (35.75) 46.40 (47.98) 41.64 (36.27) 

Kirszenberg A. 0.0 (0.0) 155.42 (126.24) 0.0 (0.0) 1000 (1000.0) 13.71 (0.01) 77.48 (86.83) 35.64 (0.09) 65.51 (60.27) 

Jiang T. 89.82 (100.0) 7.39 (4.67) ∗ ∗ 82.70 (92.62) 11.22 (8.1) ∗ ∗

Wang X. 84.02 (100.0) 12.40 (8.13) ∗ ∗ 71.88 (84.65) 24.59 (18.58) ∗ ∗

Brown K. � � ∗ ∗ 62.69 (85.03) 35.90 (29.58) ∗ ∗

Hu Y. � � � � 84.07 (91.41) 12.79 (11.66) 81.82 (90.47) 29.94 (20.33) 

Sekuboyina A. 89.97 (100.0) 5.17 (3.96) 87.66 (100.0) 6.56 (3.6) 83.06 (90.93) 12.11 (7.56) 83.18 (92.79) 9.94 (7.22) 

VerSe ‘19 

Team Labelling Segmentation 

Public Hidden Public Hidden 

id.rate d mean id.rate d mean Dice HD Dice HD 

Chen D. 95.61 (100.0) 1.98 (0.65) 96.58 (100.0) 1.38 (0.59) 91.72 (95.52) 6.14 (4.22) 91.23 (95.21) 7.15 (4.30) 

Payer C. 95.06 (100.0) 2.90 (1.62) 92.82 (100.0) 2.91 (1.54) 91.65 (95.72) 5.80 (4.06) 89.71 (95.65) 6.06 (3.94) 

Zhang A. 94.93 (100.0) 2.99 (1.49) 96.22 (100.0) 2.59 (1.27) 88.82 (92.90) 7.62 (5.28) 89.36 (92.77) 7.92 (5.52) 

Yeah T. 94.97 (100.0) 2.92 (1.38) 94.65 (100.0) 2.93 (1.29) 88.88 (92.93) 9.57 (5.43) 87.91 (92.76) 8.41 (5.91) 

Xiangshang Z. 75.45 (92.86) 22.75 (5.88) 82.08 (93.75) 17.09 (4.79) 83.58 (92.69) 15.19 (9.76) 85.07 (93.29) 12.99 (8.44) 

Hou F. 88.95 (100.0) 4.85 (1.97) 90.47 (100.0) 4.40 (1.97) 83.99 (90.90) 8.10 4.52 84.92 (94.21) 8.08 (4.56) 

Zeng C. 91.47 (100.0) 4.18 (1.95) 92.82 (100.0) 5.16 (2.17) 83.99 (90.90) 9.58 6.14 84.39 (91.97) 8.73 (5.68) 

Huang Z. 57.58 (62.5) 19.45 (15.57) 3.44 (0.0) 204.88 (155.75) 80.75 (88.83) 34.06 (27.36) 81.69 (89.85) 15.75 (11.58 

Netherton T. 84.62 (100.0) 4.64 (1.67) 89.08 (100.0) 3.49 (1.6) 75.16 (86.74) 13.56 (6.8) 78.26 (87.44) 14.06 (7.05) 

Huynh L. 81.10 (88.23) 10.61 (5.66) 84.94 (90.91) 10.22 (4.93) 62.48 (66.02) 20.29 (16.23) 65.23 (69.75) 20.35 (16.48) 

Jakubicek R. † 63.16 (80.0) 17.01 (13.73) 49.54 (56.25) 16.59 (13.87) 73.17 (85.15) 17.26 (12.80) 52.97 (63.56) 20.30 (19.45) 

Mulay S. 9.23 (0.0) 191.02 (179.26) ∗ ∗ 58.18 (64.96) 99.75 (95.60) ∗ ∗

Paetzold J. � � � � 10.60 (4.79) 166.55 (265.16) 25.49 24.55 240.61 191.29 

Sekuboyina A. 82.68 (93.75) 6.66 (3.87) 86.06 100.0 5.71(3.51) 78.05 (85.09) 10.99 (6.38) 79.52 (85.49) 11.61 (7.76) 

VerSe ‘20 

candidates from the neighbors, heatmap response is penalised by 

multiplying it by a factor of 0.1 such that the candidates from the 

actual landmark are still preferred. Function 3 is solved by creat- 

ing the graph and finding the shortest negative path from a virtual 

start to a virtual end vertex. 

Another minor change involves usage of mixed-precision net- 

works. The memory consumption of training the networks is dras- 

tically reduced due to 16-bit floating-point intermediate outputs, 

while the accuracy of the networks stays high due to the network 

weights still being represented as 32-bit floating-point values. 

4. Experiments 

In this section, we report the performance measures of the par- 

ticipating algorithms in the labelling and segmentation tasks. Fol- 

lowing this, we present a dissected analysis of the algorithms over 

a series of experiments that help understand the tasks as well as 

the algorithms. 

4.1. Overall performance of the algorithms 

The overall performance of the evaluated algorithms for 

VerSe ‘19 and VerSe ‘“20 is reported in Tables 4 a and 4 b, respec- 

tively. We report the mean and the median values of all four eval- 

uation metrics, viz. identification rate ( id.rate ) and localisation dis- 

tance ( d mean ) for the labelling task and Dice and Hausdorff dis- 

tance ( HD ) for segmentation. Note that the algorithms are arranged 

according to their performance on the corresponding challenge 

Table 5 

Mean performance ( id.rate and Dice, in %) of all the evaluated algorithms in both 

the VerSe iterations. “Top-5” indicates that the mean was computed on the five 

top-performing algorithms in that year’s leaderboard. “All” considers all submitted 

algorithms. 

VerSe Public Hidden 

All Top-5 All Top-5 

id.rate 2019 61.4 ±44.5 83.3 ±30.7 61.6 ±43.6 82.4 ±31.6 

2020 72.5 ±39.3 93.9 ±21.0 68.6 ±42.1 94.4 ±17.5 

Dice 2019 71.2 ±33.7 82.5 ±25.9 71.3 ±32.6 78.9 ±28.4 

2020 75.2 ±28.5 89.3 ±17.9 71.1 ±32.2 88.8 ±16.7 

leaderboards. Of the evaluated algorithms in VerSe‘19 , the high- 

est id.rate and Dice in the Public phase were 96.9% and 93.0%, 

both by Chen M. On the Hidden data, these are 94.3% and 89.8%, 

by Payer C. Similarly, for VerSe‘20 , Chen D. achieved the highest 

mean id.rate and Dice on both the test phases: 95.6% and 91.7% 

in Public and 96.6% and 91.2% in Hidden phase. Fig. 4 illustrates 

the mean and other statistics pertaining to the algorithms’” perfor- 

mance as box plots for the four evaluation metrics. Of importance: 

At least four methods in VerSe ‘19 achieve a median id.rate of 100%. 

In VerSe ‘20, this is achieved by seven teams, a majority of the 

submissions. 

Table 5 provides a bigger picture, reporting the mean perfor- 

mance of all the evaluated algorithms as well as the five top- 

performing algorithms. In 2019, the performance of all methods 

(incl. Top 5) is consistent between the Public and Hidden phases, 
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Fig. 4. Overall performance : Box plots comparing all the submissions on the four performance metrics. The plots also show the mean (green triangle) and median (orange 

line) values of each measure. The two boxes for every team correspond to the performance on the Public and Hidden data. Note that Dice and id.rate are on a scale of 0 

to 1 while Hausdorff distance ( HD ) and localisation distance (d mean ) are plotted in mm. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

except for a slight drop in Dice in2019 ′ s Hidden phase. However, in 

2020, we see that the mean performance of all teams drops, while 

that of only the top-5 stays relatively consistent. Additionally, ob- 

serve that the mean id.rate and Dice score increased from 2019 to 

2020 (for both All and Top-5 ). These observations can be attributed 

to: 1) Supervised algorithms fail to generalise to out-of-distribution 

cases (L6 in VerSe ‘19) when their percentage of occurrence in the 

dataset is consistent with their low clinical prevalence. 2) With the 

availability of large, public data with an over-representation of out- 

of-distribution cases (as in VerSe ‘20), makes better algorithm de- 

sign and learning feasible. 

In Figs. 5 and 6 , we show predictions of the algorithms on 

the best, median , and worst scans, ranked by the average per- 

formance of all the algorithms on every scan. In VerSe ‘19, the 
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Fig. 5. VerSe ‘19: Qualitative results of the participating algorithms on the best, median , and worst cases, determined using the mean performance of the algorithms on all 

cases. We indicate erroneous predictions with arrows. A red arrow indicates mislabelling with a one-label shift . From Brown K., the prediction for the worst case was missing. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

best scan, a lumbar FoV, is segmented correctly by all the algo- 

rithms. The median scan, a thoracic FoV with a fracture, is er- 

roneously segmented by a few teams, due to mislabelling (Jiang 

T., Kirszenberg A., and Wang X.) or stray segmentation (Anger- 

mann C., Brown K. and Dong Y.). The worst -case scan, interest- 

ingly, is an anomalous one, wherein L5 is absent. Seemingly, the 

lumbar-sacral junction is a strong anatomical pointer for labelling 

and hence almost every algorithm wrongly labels an L4 as an L5. 

Medical experts, on the other hand, use the last rib (attached to 

T12) to identify the vertebrae and hence would arrive at the cor- 

rect spine labels. Similarly, in VerSe ‘20, the best case is a lumbar 

scan. The median case is a thoracolumbar scan with severe scol- 

iosis. In spite of this, the majority of the algorithms identify and 

segment the scan correctly. The worst case again occurs due to an 

anomaly at the lumbar-sacral junction, here due to the presence 

of a transitional L6 vertebra. Interestingly, the semi-automated 

approach of Jakubicek R. succeeds in identifying this anomaly 

correctly. 
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Fig. 6. VerSe ‘20: Qualitative results of the participating algorithms on the best, median , and worst cases, determined using the mean performance of the algorithms on all 

cases. We indicate erroneous predictions with arrows. A red arrow indicates mislabelling with a one-label shift . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

4.2. Vertebrae-wise and region-wise evaluation 

In Fig. 7 , we illustrate the mean labelling at segmentation ca- 

pabilities of the submitted methods at a vertebra-level and region- 

level (cervical, thoracic, and lumbar). 

At a vertebra level, we observe a sudden performance drop 

in the case of transitional vertebrae (T13 and L6). Concerning L6, 

None of the methods in VerSe ’19 identified the presence of L6. 

However, in VerSe ‘20, almost all algorithms identify at least a frac- 

tion of the L6 vertebrae. On the other hand, for T13, except for Xi- 

angshang Z., the identification rate widely varies between the Pub- 

lic and Hidden phases for all teams. 

Looking at the region-specific performance, VerSe ‘19 shows a 

trend of performance-drop in the thoracic region. This could be ex- 

pected as mid-thoracic vertebrae have a very similar appearance, 

making them indistinguishable without external anatomical refer- 

ence. Of course, such a reference (as T12/L1 or C7/T1 junctions) 

was present in all scans, but apparently not considered by most 
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Fig. 7. Vertebra-wise and region-wise performance : Plot shows the mean labelling and segmentation performance of the submitted algorithms at a vertebra level (left) 

and at a spine-region level (right), viz. cervical, thoracic, and lumbar regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

algorithms. This drop is not observed in VerSe ‘20. We hypothe- 

sise this to be a consequence of better algorithm design because 

the condition of identifying transitional vertebrae required accu- 

rate identification at a local level and reliable aggregation of labels 

at a global level. We further investigate this behaviour in the fol- 

lowing sections. 

4.3. Labelling and segmentation at a scan level 

When an algorithm is deployed in a clinical setting, minimal 

manual intervention is desired. Therefore, it is of interest to peruse 

the effort needed for correction. As a proxy, we analyse the number 

of scans in the dataset that were successfully processed. We define 

success using a threshold τ , wherein a scan is said to be success- 

fully identified if its id.rate is above τid.rate . Similarly, successful seg- 

mentation is defined using τDice . The fraction of scans successfully 

processed is denoted by n . In Fig. 8 a, we show the behaviour of 

n at varying thresholds. The best-case scenario for both the tasks 

is n = 1 , ∀ τ . The methods in VerSe ‘20 are closer to this behaviour 

than VerSe ‘19, the latter showing more spread over the grid. Es- 

pecially, Chen D., Payer C., Zhang A., and Yeah T. perfectly iden- 

tify ( id.rate = 100%) close to 90% of the scans. In 2019, this number 

was closer to 80% for Chen M., Payer C., and Jiang T. Looking at 

the Dice curves in 2020, given a vertebra is labelled correctly, its 

segmentation seems trivial, with the majority of the methods at- 

taining scores of 80–90% on at least 80% of the scans. In 2019, only 

three methods indicate this performance. 

Looking specifically at “failed” scans, we log the number of 

scans which resulted in less than 5% id.rate or Dice in Table 6 . 

When seen in tandem with Fig. 4 , this table provides an idea of 

scan-level failures. Interestingly, in VerSe ‘20, numerous methods 

do not show absolute failure in the Hidden phase, e.g. Chen D., 

Zhang A., Yeah T., and Huynh L. 

4.4. Effect of field of view on performance 

Delving deeper into the region-wise performance of the meth- 

ods, we ask the question: What landmark in a scan most aids la- 

belling and segmentation? . For this, we identify four landmarks on 

the spine: the cranium (if C1 exists), the cervico-thoracic junction 

(if C7 and T1 coexist), the thoraco-lumbar junction (if T12/T13 and 

L1 coexist), and lastly the sacrum (if L5 or L6 exists). Based on this, 

we divide the scans into six categories, namely: 

1. C/T (+ C1) : Cranium and the cervico-thoracic junction are 

present. Thoraco-lumbar junction absent. 

2. C/T (−C1) : Cervico-thoracic junction present. Thoraco-lumbar 

junction absent. 

3. T /L (+ L 5) : Sacrum and the thoraco-lumbar junction are present. 

Cervico-thoracic junction absent. 

4. C/T (−L 5) : Thoraco-lumbar junction present. Sacrum and 

cervico-thoracic junction absent. 

5. C/T /L (+ C1& L 5) : Full spines. Both cervico-thoracic and thoraco- 

lumbar junctions are present. 

6. C/T /L (−C1 /L 5) : Cervico-thoracic and thoraco-lumbar junctions 

are present. Either cranium or both cranium and sacrum are ab- 

sent. ( VerSe did not contain any scan with cranium and without 

sacrum) 

Note that in the categories above, L5 refers to the last lumbar 

vertebra, which could be L4 or L6 as well. Fig. 8 b shows an exam- 

ple of a full spine scan with crops that would fall into one of these 

categories. Once every scan in the dataset is assigned the appro- 

priate category, we compute the mean identification rate and Dice 
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Fig. 8. (a) Fraction of scans, n , with an id.rate or Dice higher than a threshold, τ . The fraction is computed over scans in both the test phases. Uninformative dockers with 

lines hugging the axes are not visualised (Kirszenberg A., Brown K., Mulay S., and Paetzold J.). Hu Y. is not included in the id.rate experiment due to missing centroid 

predictions. (b) Performance measures of scans grouped according to their field of view. Scans are binned into six categories of FoVs. Please refer to Section 4.4 for details. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

score of every method for every category (cf. Fig. 8 b). In VerSe ‘19, 

we observe that scans with all lumbar vertebra are easier to pro- 

cess compared to cervical ones ( T /L or C/T /L with L5). For a sim- 

ilar FoV, we see a large drop when cases do not contain L5 or 

C1. This shows the reliance of the VerSe ‘19 methods on the cra- 

nium and sacrum. Interestingly, the reliance on L5 is not as dras- 

tic in VerSe ‘20 (refer to categories −C1& L 5 and −L 5 ). However, 

the cranium seems to still be a strong reference. Essentially, the 

median segmentation performance (Dice) coefficient of the meth- 

ods is ∼ 80% in thoracic and lumbar regions for a variety of FoVs, 

where at least one of the four landmarks mentioned above is vis- 

ible. Nonetheless, for cervical (-thoracic) scans, there is room for 

improvement for FoVs without the cranium. 

4.5. Performance on anatomically rare scans vs. normal scans 

As stated earlier, VerSe ‘20 was rich in rare anatomical anoma- 

lies in the form of transitional vertebrae, viz. T13 and L6. In Fig 9 , 

we illustrate the difference in performance of the submitted algo- 

rithms between a normal scan and a scan with transitional verte- 

brae. As expected, we observe a superior performance on normal 

anatomy when compared to that on rare anatomy. The difference 

in performance, however, is of interest. In Public , Yeah T., Zhang A., 

and Zeng C. have a small drop in performance, with the first two 

approaches showing a better performance on the rare cases com- 

pared to the two top performers, Payer C. and Chen D. In Hidden , 

Payer C. does not show any drop in performance, and outperforms 

the rest on the rare cases. Arguably, algorithms that either show 

a stable performance across anatomies or those that identify (and 

skip processing) a rare case are preferred in a clinical routine. 

4.6. Generalisability of the algorithms 

Owing to the Hidden test phase in both iterations of VerSe , 

we have access to the docker containers that can be deployed on 

any spine scan. The only prerequisite for this being that the scan 

conforms to the Hounsfield scale (as in VerSe data). Exploring the 

dockers’ ability at clinical translation, we deploy three of the top- 

performing dockers of VerSe ‘19 on the Hidden set of VerSe ‘20, and 

vice versa. Table 7 and Fig. 10 report the cross-iteration perfor- 

mance of these dockers. 

Recall that the VerSe ‘20 data has some overlap with VerSe ‘19. 

Therefore, the approaches trained on VerSe ‘20 perform reason- 

ably well on the VerSe ‘19 data. There is a drop of ∼ 3% , which 

can be attributed a domain shift between the datasets. Note that 

Payer C. and Zhang A. succeed in identifying L6, while none of 

the methods in 2019 do, owing to the over-representation of L6 

in VerSe ‘20. This underpins our motivation for the second VerSe 

iteration. 

On the other hand, the setting of VerSe ‘19 methods on VerSe ‘20 

data is more interesting. In addition to a domain shift (due to 

multi-scanner, multi-centre data in 2020), there are also unseen 

anatomies. Understandably, we see a drop in performance for Less- 

mann N. and Chen M. Interestingly, the performance drop is not 

as large for Payer C. This can be attributed to the way these ap- 

proaches arrive at the final labels. Lessmann N. depends on iden- 

tifying the last vertebra. In cases with L6, this affects the entire 
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Fig. 9. Performance on transitional vertebrae : Dice scores of the VerSe ‘20 algorithms computed on anatomically rare scans with transitional vertebrae ( � ), i.e. T13 and L6, 

and the normal scans without them ( �). 

Fig. 10. (Left) Teamwise overall Dice scores of the approaches from one VerSe iteration run on the Hidden set of the other iteration. (Center and right) Mean vertebrae-wise, 

and region-wise Dice scores of the same. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

scan. We assume a similar behaviour for Chen M. In case of Payer 

C., the presence of L6 was not as detrimental, as the rest of the 

vertebrae were identified and segmented correctly and the final 

labels depended prediction confidences during the post-processing 

stage. Vertebra T13, however, can be ignored due to its absence in 

VerSe ‘19. 

5. Discussion 

5.1. Algorithm design 

In this section, we comment on the design of the submitted 

approaches. Brief descriptions of the evaluated algorithms are pro- 

vided in Table 3, Section 3 , and Appendix C . We look into the fol- 

lowing design decisions: pure deep-learning (DL) vs. hybrid mod- 

els, 3D patch-based vs. 2D slice-wise approach, and a single model 

vs. a multi-staged approach. 

Deep learning vs. hybrid. Out of the twenty-four algorithms 

benchmarked in this work, twenty-one are purely deep-learning- 

based, albeit with minor pre- (e.g. intensity-based filtering) and 

post-processing components (e.g. connected components or mor- 

phological operations). Three algorithms: Amiranashvili T., Kirszen- 

berg A, and Jakubicek R. employ statistical shape models. The first 

two approaches use such models for identifying the vertebrae. 

The third approach uses it for segmentation using elastic regis- 

tration. Unlike learning-based approaches, atlases incorporate re- 

liable prior information, thus preventing anatomically implausible 

results. However, in this benchmark, we see a clear superiority 

of data-driven, DL approaches compared to the hybrid ones. This 

is understandable, given the size of VerSe . Better integration of 

shape-based and learning-based ones is of interest, thus enabling 

segmentation with anatomical guarantees. 

3D patch-based vs. 2D slice-wise segmentation. Common 

among all the algorithms is the motivation that a clinical spine 

scan’s size is large for current-generation GPU memory. We can 
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Table 7 

Mean Dice (%) of running the 

three of the top-performing dock- 

ers of one VerSe iteration on Hid- 

den set of the other iteration. 

V‘19 approaches on V‘20 data 

Payer C. 85.21 

Lessmann N. 66.96 

Chen M. 65.21 

V‘20 approaches on V‘19 data 

Chen D. 86.44 

Payer C. 84.11 

Zhang A. 85.42 

draw two lines of algorithms among the benchmarked ones: First, 

those performing 2D slice-wise segmentation (e.g. Angermann C., 

Kirszenberg A., Mulay S., Paetzold J.). Second, which form the ma- 

jority, are the approaches that perform patch-wise segmentation 

in 3D using architectures such as 3D U-Net ( Çiçek et al., 2016 ), V- 

Net ( Milletari et al., 2016 ), or nnU-Net ( Isensee et al., 2019 ). The 

second category can further be split into approaches performing 

multi-label segmentation, and those performing binary segmenta- 

tion. 

Observe that, in general, 3D processing is preferable naive 2D 

slice-wise segmentation. More so, when compared to 2D slice-wise 

multi-label segmentation. This is expected because slice-wise pro- 

cessing, in spite of offering a larger FoV and memory efficiency, 

ignores crucial 3D context for an anatomically large structure such 

as a spine. Moreover, labelling the vertebrae becomes noisy as not 

every vertebra is visible in every slice. 

Single model vs. multi-staged. One principal categorisation of 

the benchmarked algorithms is into two categories based on the 

number of stages they employ to tackle the tasks of labelling and 

segmentation, as demonstrated by some representative algorithms 

listed below: 

1. Single-stage: Lessmann N., Jiang T., Huang Z., and Hu ̀ynh D. 

2. Multi-staged: Chen D., Payer C., Zhang A., and Netherton T. 

Typically, single-staged models work with 3D patches. The likes 

of Lessmann N. perform iterative identification and segmentation 

and determine a label arrangement using maximum likelihood es- 

timation. Jiang T. and Huang Z. propose dedicated architectures 

with multiple heads, one each for the labelling and segmentation 

tasks, thus exploiting their interdependency. nnU-Net or 3D-UNet- 

based multi-label classification followed by final labelling is also a 

recurring theme. 

On the other hand, numerous sequential frameworks have also 

been proposed. Payer C., for instance, perform labelling and seg- 

mentation in three stages of localisation, then labelling, and fi- 

nally binary vertebral segmentation. Zhang A. propose a four-stage 

approach involving spine-centerline detection, vertebral candidate 

prediction, and a three-class segmentation of the localised spine. 

Following this, final labels are identified based on certain spine- 

centric rules. 

As evidenced by the performance, one cannot propose a ‘win- 

ner’ among the two categories. Both categories equally span the 

upper regions of the leaderboards. The first category could possi- 

bly result in numerous inferences of large patches per scan (result- 

ing in longer inference times), while the second approach could be 

prone to errors compounding from a preliminary stage of the se- 

quence. 

5.2. On rare anatomical variations: Transitional vertebrae 

VerSe ‘19 included two cases with L6 in the train set, a propor- 

tion resembling its clinical occurrence. We observed that almost 
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every algorithm fails to segment the one L6 in the Hidden set. 

A major motivation for the second iteration of VerSe , was hence, 

to increase number of anatomically anomalous cases. VerSe ‘20 in- 

cluded six cases with T13 (2/2/2 in Train/Public/Hidden ) and 47 

cases with an L6 (15/15/17). The effect of this increase in transi- 

tional vertebrae can be seen in Fig. 7 , with L6 now being detected 

and segmented, at least in some cases. Surprisingly, T13, if occur- 

ring only twice is successfully identified by some methods. Note 

that Xiangshang Z. is the only approach that successfully identifies 

all T13 instances in both test phases. 

This contradictory behaviour of better performance of ap- 

proaches in the case of T13 compared to L6, in spite of higher 

numbers gives us some insights into the task at hand. For T13, the 

sequence of vertebral labels gives a strong prior. In the case of L6, 

which itself acts as a strong prior due to the sacrum, its reliable 

detection doesn’t seem as consistent. Hanaoka et al. (2017) , for ex- 

ample, recognise this issue and work towards directly predicting 

such abnormal numbers. Nonetheless, the improved behaviour of 

the approaches in such anatomical variations brings us closer to 

realising automated algorithms in clinical settings. 

5.3. Limitations of our study 

The scale, clinical similitude, data and anatomical variability are 

the strengths of the VerSe benchmark. In this section, we identify 

some limitations of this study. 

Foremost among the limitations is the lack of inter-rater anno- 

tations. Owing to the effort involved in creating the voxel-level an- 

notations for a multitude of vertebrae, the hierarchical process of 

okaying an annotation, and the use of a machine in the annotation 

process, the decision of having multiple-raters was delegated to fu- 

ture challenge iterations. This would eventually enable algorithms 

to predict uncertainty, inter-rater variability studies, and learning 

annotator biases. 

Putting aside the insufficiency of the Dice metric for evaluat- 

ing segmentation performance ( Taha and Hanbury, 2015 ), the met- 

rics in the spine literature have a major short-coming: one-label 

shift, where the labels of the predicted mask are off by one la- 

bel (cf. Fig. 6 , Worst Case). One-label shift penalises the current 

metrics more than label mixing, which results in unusable masks. 

The drastic drop in performance of Chen M. between the Public 

and Hidden phases ( Table 4 a) was due to this issue. Therefore, re- 

search towards better domain-specific evaluation metrics is of in- 

terest, more so for differentiable variants enabling neural network 

optimisation. 

6. Conclusions 

The Large Scale Vertebrae Segmentation Challenge ( VerSe ) was 

organised in two iterations in conjunction with MICCAI 2019 and 

2020. VerSe , publicly made available 374 CT scans from 355 pa- 

tients, the largest spine dataset to date with accurate centroid 

and voxel-level annotations. On this data, twenty-five algorithms 

(twenty-four participating algorithms, one baseline) are evaluated 

for the tasks of vertebral labelling and segmentation. This work de- 

scribes the challenge setup, summarises the baseline and the par- 

ticipating algorithms, and benchmarks them with each other.The 

best algorithm in terms of mean performance in VerSe’19 achieves 

identification rate of 94.25% and a Dice score of 89.80% (Payer 

C.) on the Hidden test set. In VerSe’20 , these numbers are 96.6% 

( id.rate ) and 91.72% (Dice), achieved by Chen D. Based on the sta- 

tistical ranking method chosen for evaluating VerSe challenges, 

Payer C.’s approach led the leaderboard due to its better and rel- 

atively consistent performance on healthy as well as the anatomi- 

cally rare cases. 

Aimed at understanding the algorithms’ behaviour, we present 

an in-depth analysis in terms of the spine region, fields of view, 

and manual effort. We make the following key observations: 

(1) The performance of algorithms, on average, increased from 

VerSe ‘19 to VerSe ‘20, in spite of the data being more multi-centred 

and anomalous, (2) Spine processing, for now, is better approached 

in 3D, either as large patches or in a appropriately designed se- 

quence of stages, and (3) Transitional vertebrae (T13 and L6) can 

be efficiently handled given sufficient data and post-processing. 

We hope that the VerSe dataset and benchmark will enable re- 

searchers to contribute towards more accurate and reliable clinical 

translation of their spine algorithms. 

As stated, future directions could include the incorporation of 

multi-raters, inter-rater variability, and spine-centred evaluation 

measures. Additionally, modelling the sacrum is of interest for load 

analysis. Lastly, in spite of labelling and segmentation being inter- 

dependent, our motivation for having two tasks was to enable par- 

ticipation in individual tasks. However, our experience shows this 

to be redundant. Moreover, the VerSe challenges did not explicitly 

require the participating algorithms to be optimised for run time. 

Including this as an objective could bring in added insights into 

algorithm design. We bring these observations to the attention of 

future attempts at benchmarking. 
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Appendix A. Challenge Evaluation and Ranking 

A1. Statistical tests & points 

In this technical report ( Section 4 ), we reported four perfor- 

mance measures, id.rate , d mean , Dice, and HD . However, recall from 

2 , that HD and d mean are undefined in the case of missing ver- 

tebral predictions. Therefore, to rank the teams in VerSe ‘19, the 

missing predictions for vertebrae were substituted by a maximum 

Euclidean distance of 10 0 0mm for d mean and 100mm for HD . Ex- 

pecting more missed predictions in VerSe ’20, and in order to avoid 

inducing a bias due to such substitution, HD and d mean were not 

used to rank the teams in VerSe ‘20. 

Once computing the performance measures, we compare them. 

Inspired by Maier-Hein et al. (2018) and Menze et al. (2014) , the 

comparison and ranking of the participating algorithms were based 

on a scheme based on statistical significance. The value of the 

performance measure obtained from each scan in the cohort was 

treated as a sample from a distribution and the Wilcoxon signed- 

rank test with a ‘greater’ or ‘less’ hypotheses testing (as appropri- 

ate for the performance metric) was employed to test the signifi- 

cance of the difference in performance between a pair of partici- 

pants. A p−value of 0.001 was chosen as the threshold to ascertain 

a significant difference. Following this, a point was assigned to the 

better team. All possible pairwise comparisons were performed for 
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every performance measure. Each comparison awards a point to 

a certain team unless the difference is not statistically significant. 

For every measure, the points are aggregated at a team level and 

normalised with the total number of participating teams in the ex- 

periment to obtain a score between 0 and 1. 

Lastly, for every team, the normalised points across the mea- 

sures are combined as described in the next section, which de- 

scribes particulars of point-computation for the ranking pertaining 

to the challenge. 

The points scored by each team are reported in Tables A.8 a and 

A.8 b respectively. Illustrated in Figs. A .11 and A .12 are the p–values 

of the significance as well as their binarised versions (thresholded 

at p = . 001 ) that ensue from the pairwise comparisons. 

A2. Final ranking: Combining all the scores 

Fig. A.13 illustrates how the performance of the algorithms 

over the multiple stages was combined to construct one ranking 

scheme. Tables A.8 a and A.8 b also report the normalised points. 

The rationale in choosing this presented scheme was as follows: 

• d mean and HD , compared to id.rate and Dice, are weighted at a 

ratio of 1 : 2 in order to de-emphasise the contribution of the 

upper bounds chosen on the former measures in case of miss- 

ing predictions. (This does not apply to VerSe ‘20.) 
• Hidden has twice the weight as Public as it was evaluated on 

a completely hidden dataset, thus nullifying the chance of over- 

fitting or retraining on the test set. 
• Lastly, the segmentation task has twice the weight of the la- 

belling task as the latter can possibly be a consequence of the 

former, as was the final goal of this challenge. 

Appendix B. Description of Anduin 

The Anduin framework was used to assist the data 

team in the creation of the ground truth. Please refer to 

Löffler et al. (2020b) for an overview of annotation-creation 

for VerSe . Given the CT scan of a spine, our framework aims 

to predict accurate voxel-level segmentation of the vertebrae by 

splitting the task in to three sub-tasks: spine detection, vertebrae 

labelling, and vertebrae segmentation. In the following section, the 

network architectures, loss functions, and training and inference 

details of each of these modules is elaborated. Fig. 2 gives an 

overview of the proposed framework and Fig. B.14 details the 

architectures of the networks employed in the three sub-tasks. 

B1. Notation. 

The input CT scan is denoted by x ∈ R 

h ×w ×d where h , w , 

and d are the height, width, and depth of the scan respectively. 

The annotations available are, (1) the vertebral centroids, denoted 

by { μi ∈ R 

3 } for i ∈ { 1 , 2 , . . . N} . These are used to construct the 

ground truth for the detection and labelling tasks, denoted by y d 
and y l , respectively. (2) the multi-label segmentation masks, de- 

noted by y s ∈ Z 

h ×w ×d . 

B2. Spine detection 

To detect the spine, we propose a parametrically-light, 3D, FCN 

operating at an isotropic resolution of 4mm. This network re- 

gresses a 3D volume consisting of Gaussians at the vertebral lo- 

cations as shown in Fig. B.14 . The Gaussian heatmap is generated 

Table A.8 

Point counts of the submitted approaches of (a) VerSe ‘19 and (b) VerSe ‘20, based on the proposed pairwise, statisti- 

cal comparison. ∗ indicates a non-functioning docker container. † Jakubicek R. submitted a semi-automated method for 

Public and a fully-automated docker for Hidden . 

Team Normalised Points Labelling Segmentation 

Public Hidden Public Hidden 

id.rate d mean id.rate d mean Dice HD Dice HD 

Ver Se’19 (a) 

Payer C. 0.691 3 7 3 5 8 8 5 5 

Chen M. 0.597 5 7 2 4 10 8 3 4 

Lessmann N. 0.496 3 1 4 3 4 5 3 5 

Hu Y. 0.279 � � � � 4 4 3 3 

Dong Y. 0.216 1 1 1 1 2 4 2 1 

Amiranashvili T. 0.215 1 1 1 1 1 3 2 2 

Jiang T. 0.140 3 5 ∗ ∗ 4 4 ∗ ∗

Angermann C. 0.107 1 1 1 1 1 2 0 1 

Wang X. 0.084 2 3 ∗ ∗ 2 3 ∗ ∗

Brown K. 0.022 � � ∗ ∗ 1 1 ∗ ∗

Kirszenberg A. 0.007 0 0 0 0 0 1 0 0 

Team Normalised Points Labelling Segmentation 

Public Hidden Public Hidden 

id.rate id.rate Dice Dice 

VerSe ’20 (b) 

Payer C. 0.675 6 4 11 10 

Chen D. 0.581 7 5 10 7 

Yeah T. 0.453 6 5 7 5 

Zhang A. 0.453 6 5 7 5 

Hou F. 0.393 5 4 7 4 

Zeng C. 0.333 6 4 5 3 

Xiangshang Z. 0.316 2 2 6 4 

Netherton T. 0.222 3 3 3 2 

Huang Z. 0.171 1 0 4 2 

Huynh L. 0.119 3 2 1 2 

Jakubicek R. † 0.085 1 1 3 0 

Mulay S. 0.017 0 ∗ 1 ∗

Paetzold J. 0.0 � � 0 0 
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Fig. A.11. VerSe ‘19 points: Illustrating the p−value matrices and their binarised versions for every metric used. 

Fig. A.12. VerSe ‘20 points: Illustrating the p−value matrices and their binarised versions for every metric used. 

at a resolution of 1mm with a standard deviation, σ = 8 , and then 

downsampled to a resolution of 4mm. Additionally, spatial squeeze 

and channel excite blocks (SSCE) are employed to increase the net- 

work’s performance-to-parameters ratio. Specifically, the probabil- 

ity of each voxel being a spine voxel or a non-spine one is predicted 

by optimising a combination of � 2 and binary cross-entropy losses 

as shown: 

L detect = || y d − ˜ y d || 2 − H ( σ (y d ) , σ ( ̃ y d ) ) (B.1) 

where y d is constructed by concatenating the Gaussian location 

map with a background channel obtained by subtracting the fore- 

ground from 1, ˜ y d denotes the prediction of whose foreground 

19 



A. Sekuboyina, M.E. Husseini, A. Bayat et al. Medical Image Analysis 73 (2021) 102166 

Fig. A.13. Protocol for obtaining the final ranking : Flow diagram of the weights assigned to each stage of the VerSe evaluation, in order to obtain the final point count. 

channel represents the desired location map, and σ (·) and H(·) 
denote the softmax and cross-entropy functions. 

B3. Stage 2: Vertebrae labelling 

To label the vertebrae, we adapt and improve the Btrfly net 

( Sekuboyina et al., 2018; 2020 ) that works on two-dimensional 

sagittal and coronal MIP. By virtue of the spine’s extent obtained 

from the previous component, MIPs can now be extracted from 

a region focused on the spine, thus eliminating occlusions from 

ribs and pelvic bones. Cropping the scans to the spine region also 

makes the input to the labelling stage more uniform, thus im- 

proving the training stability. The labelling module works at 2mm 

isotropic resolution and is trained by optimizing the loss func- 

tion that is a combination of the sagittal and coronal components, 

L label = L 

sag 
label 

+ L 

cor 
label 

, where the loss of each view is given by: 

L 

sag 

label 
= || y sag 

l 
− ˜ y sag 

l 
|| 2 + ωH 

(
σ (y sag 

l 
) , σ ( ˜ y sag 

l 
) 
)
, (B.2) 

where ˜ y 
sag 

l 
is the prediction of the net’s sagittal-arm of the Btr- 

fly net and ω denotes the median frequency weight map giving a 

higher weight to the loss originating from less frequent vertebral 

classes. 

B4. Stage 3: Vertebral segmentation 

Once the vertebrae are labelled, their segmentation is posed as 

a binary segmentation problem. This is done by extracting a patch 

around each vertebral centroid predicted in the earlier stage and 

segmenting the vertebra of interest. An architecture based on the 

U-Net working at a resolution of 1mm is employed for this task. 

Additionally, SSCE blocks are incorporated after every convolution 

and upconvolution block. Importantly, as there will be more than 

one vertebra within a patch, a vertebra-of-interest (VOI) arm is 

used to point the segmentation network to delineate the verte- 

bra of interest. The VOI arm is an encoder parallel to the image 

encoder as shown in Fig. B.14 , processing a 3D Gaussian heatmap 

centred at the vertebral location predicted by the labelling stage. 

The feature maps of the VOI arm are concatenated to those of the 

image encoder at every resolution. The segmentation network is 

trained using a standard binary cross-entropy as a loss. 

B5. Inference & interaction 

Simplifying the flow of control throughout the pipeline, Algo. 

1 describes the inference routine given a spine CT scan and various 

points where medical experts can interact with the results, thus 

improving its overall performance. 

Appendix C. Participating Algorithms 

Amiranashvili T. et al.: Combining Template Matching with CNNs for 

Vertebra Segmentation and Identification 

A multi-stage approach is adopted to label and segment the 

vertebrae as illustrated in Fig. C.15 : 1. Multi-label segmentation 

with arbitrary, but separate labels for each vertebra based on lo- 

cal regions of interest in the image. 2. Unique label-assignment to 

segmented vertebral masks based on shape, while globally regular- 

ising over the entire CT field of view. 3. Derive landmark positions 

from the multi-label segmentation masks by applying a shape- 

based approach. 

Multi-label Segmentation. This stage includes creating a first, 

rough binary segmentation of the overall spine followed by lo- 

calising regions of interests around each vertebra and perform- 

ing voxel-level, refined segmentation of each vertebra. Binary seg- 

mentation separating the spine from the background is achieved 

through a U-Net employed on 2D sagittal slices. For each slice, 

neighboring slices are included as additional channels in the in- 

put to provide a larger context. The network is trained on fixed- 

size, random crops from original slices. Following this, the num- 

ber of vertebra and their rough positions are computed based on 

the binary segmentation by combining shape-based fitting via gen- 

eralised Hough transform (GHT) ( Seim et al., 2008 ) with a CNN- 

based heat-map regression for localising vertebra in the spinal col- 

umn. Put to use in the fitting procedure were manually generated 

GHT templates of the lumbar (L1-L5), lower thoracic (T10-T12), 

mid-thoracic (T5-T9), upper-thoracic (T1-T4), lower-to-mid cervical 

(C3-C5), and upper-cervical (C2-C1) spine. The Butterfly networ k 

( Li et al., 2018 ) was trained on mean and maximum intensity pro- 

jections in anterior-posterior and lateral directions of the CTs. Fi- 

nally, multi-label segmentation is performed based on the rough 

locations from the previous step by deriving a region of interest 

for each visible vertebra. Individual vertebrae are then segmented 

via a U-Net based on 2D sagittal slices cropped to the correspond- 

ing regions of interests while including neighboring slices as addi- 

tional input channels. The segmentation masks resulting from the 

cropped images are then combined into a multi-label segmentation 

mask. 

Vertebra Identification. Vertebra identification is performed 

based on shape through template fitting along with explicit global 

regularisation over the whole visible spine. For each vertebra, 

shape templates are fitted non-rigidly to the given labels via the 

iterative closest points (ICP) algorithm using the six templates in- 

troduced above. This results in a table containing a fitting score 

for each template and each detected vertebra. Then, optimisation 

for a set of unique vertebra types is performed such that the com- 

bined score from the table is maximised while maintaining the 

consistent ordering of vertebra (e.g. L4 must follow L5). The multi- 
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Fig. B.14. Architectures : Detailed network architectures of the three stages in Anduin : the spine detection, vertebrae labelling, and the vertebra segmentation stages. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

label segmentation of the previous stage is then re-labelled accord- 

ing to the determined ordering, resulting in a segmentation with 

uniquely identified labels for each vertebra. 

Landmark Extraction. After segmentation and identification, the 

positions of the landmarks are identified by re-fitting a template 

of the body of each vertebra to the unique labels followed by ex- 

tracting the template’s centre point which forms the landmark. 

Angermann C. et al.: A Projection-based 2.5D U-net Architecture for 

VERSE ‘19. ( Angermann et al., 2019 ) 

For the task of a fully-automated technique for volumetric spine 

segmentation, a combination of a 2D slice-based approach and 

a projections-based approach is proposed with two tasks: 1. 3D 

spine segmentation with one output channel denoting the proba- 

bility of a voxel belonging to a vertebra, followed by assignment of 
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Fig. C.15. Multiple stages involved in the algorithm proposed by Amiranashvili T. . 

Fig. C.16. Maximum intensity projections of a 3D spine scan with directions { k ×
30 degrees | k = 0 , ..., 5 } . 

a label from C1 to L6. 2. Using the multi-label segmentation mask, 

weighted centroid computation for each label for the task of ver- 

tebra labelling. Please refer to ( Angermann et al., 2019 ) for details 

on the 3D segmentation procedure. 

Vertebra Segmentation. This is a two-step approach working 

with images of size 224 × 224 × 224 , obtained by zooming the ar- 

ray such that the longest axis is size 224 and padding the other 

axes with zeros. In the first step, whose output is a one chan- 

nel segmentation mask (vertebra as foreground), a 2.5D U-net 

( Angermann et al., 2019 ) and two 2D U-net are employed. The for- 

mer network takes the 3D array as input and generates 2D pro- 

jections containing full 3D information. Here the MIPs are em- 

ployed (cf. Fig C.16 ). These 2D projections are propagated through 

a 2D U-net and lifted back to a volume using a trainable recon- 

struction algorithm (cf. Eq 3.1, ( Angermann et al., 2019 )). Due to 

the non-convex nature of vertebrae, this segmentation is com- 

bined with that of a 2D slice-based U-net in the probability space. 

In the second step, the binary segmentation mask is assigned 

multiple labels. For this, A 2D U-Net working on six MIPs per 

scan is employed. Each of the MIPs is obtained at an angle in 

{ 0 o , 10 o , 80 o , 90 o , 100 o , 170 o } , as in Fig. C.16 . As output, six labelled 

Fig. C.17. The residual U-Net employed for segmentation in Brown K. ’s approach. 

MIP segmentation masks are obtained. From these, the 3D labelled 

mask is obtained by back-projection, wherein each 2D MIP mask 

is multiplied by a rotated 3D binary segmentation from the previ- 

ous step, rotated according to the angle corresponding to the MIP 

mask in question. 

Vertebra Labelling. Since the vertebrae are already labelled in the 

segmentation stage, the vertebral centroids are obtained by just 

weighing the edges of the vertebra and computing the centroid. 

The edge-weight is set empirically and is same across the verte- 

brae. 

Brown K. et al.: Spine Segmentation with Registration 

Segmentation of the vertebrae is performed by extracting a 

bounding box around each vertebra and segmenting this box with 

a residual U-net. The bounding box around the vertebra is iden- 

tified via a regressed set of canonical landmarks. Each vertebra is 

then registered to a common ‘atlas’ space via these landmarks. For 

segmentation, the employed residual U-net works with inputs of 

size 64 × 64 × 64 voxels with a depth of five blocks (cf. Fig. C.17 ). 

Objective Function. A network is trained to minimise a combi- 

nation of Dice coefficient ( L D ) and a weighted false-positive/false- 

negative loss ( L F PF N ), described as: L = L D + αL F PF N ( α = 0 . 5 in this 

work). Specifically, the dice coefficient measures the degree of 

overlap between two sets. For two binary sets ground truth (G) 

and predicted class membership (G) with (N) elements each, the 

dice coefficient can be written as 

D = 

2 

∑ N 
i p i g i ∑ N 

i p i + 

∑ N 
i g i 

, (C.1) 

where each p i and g i are binary labels. In this case, p i is set to [0, 

1] from the softmax layer representing the probability that the i th 

voxel is in the foreground class. Each g i is obtained from a one- 

hot encoding of the ground-truth-labelled volume of tissue class. 

Additionally, the weighted false-positive/false-negative loss term is 

included to provide smoother convergence. It is defined as: 

L F PF N = 

∑ 

i ∈ I 
w i p i (1 − g i ) + 

∑ 

i ∈ I 
w i (1 − p i ) g i , (C.2) 

where the weight, w i = γe exp (−d 2 
i 
/σ ) + γc f i , with d i being the eu- 

clidean distance to the nearest class boundary and f i the frequency 

of the ground truth class at voxel i . In this work, σ is chosen to be 

10 voxels, and the parameters γe and γc are set to 5 and 2, respec- 

tively. 
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Chen M.: An Automatic Multi-stage System for Vertebra Segmentation 

and Labelling 

A three-stage strategy is applied to solve the task of vertebral 

segmentation and labelling. The first two stages are based on a 

U-Net architecture for multi-label segmentation. Utilising the pre- 

dicted segmentation mask, the third stage employs an RCNN-based 

architecture ( Girshick et al., 2014; Girshick, 2015 ) to label the ver- 

tebrae. 

Segmentation (Stages 1 & 2). The first stage consists of a 3D U- 

Net working on randomly extracted patches of size 224 × 160 ×
128 . The network is trained to predict 25 labels, ignoring the rare 

L6 label. It is observed that the segmentation Stage 1 performs 

well in regions close to C1 and L5. However, in the other re- 

gions, the vertebral labels are mixed with each other due to a 

similarity in their shapes. To resolve this problem, a second refine- 

ment network is introduced with an architecture similar to the first 

stage but with a major difference in the training regime. For this, 

patches are extracted covering the spine in the middle and extend- 

ing 1.5 times in the slice direction. These patches are padded to 

128 × 128 × 128 with zeroes if necessary. The network is trained to 

predict a binary label only for the mid-vertebra. The combination 

is trained as follows: All the labelled Stage 1 masks are combined 

into a binary mask, indicating the foreground. Each of these masks 

(corresponding to each vertebral label) is used to generate a patch 

for Stage 2. This prediction is believed to be accurate at instance 

level and filled back into the binary foreground. If the foreground 

is not filled sufficiently, new patches will be selected from the not- 

filled regions for Stage 2 recursively till convergence. Because the 

well-segmented instances in Stage 1 and Stage 2 mostly overlap, it 

is operable to assign labels based on both the stages by comparing 

the Dice of the pairs. With the constraint on the label continu- 

ity of neighboring spines, this process can be performed using the 

matching algorithm presented in Fig. C.18 . 

Labelling. An RCNN-based architecture with a 3D ResNet-50 is 

used as the backbone for the vertebra labelling task. RoI pooling is 

performed on the features of the feature map at stride 4 to regress 

the deviation of the vertebra centre to the RoI box’s centre in the 

coordinate space of the box. This network works with inputs of 

size 160 × 192 × 224 . In the training phase, boxes are generated 

from the segmentation ground truth such that more positive sam- 

ples are generated. During inference, the predicted segmentation 

mask is utilised. 

Dong Y. et al.: Vertebra Labeling and Segmentation in 3D CT using 

Deep Neural Networks ( Yu et al., 2020 ) 

A U-shaped deep network is used for generating the vertebral 

segmentation masks and labels in the form of a model ensemble 

followed by a post-processing module. 

The problem is formulated as a 26-class segmentation task 

given 3D CT as input. The class information from prediction is 

able to provide labels (cervical C1 ∼ C7 , thoracic T 1 ∼ T 12 , lum- 

bar L 1 ∼ L 6 ) for different vertebrae. For vertebra localisation, the 

centroids of vertebrae are determined as the mass centres of seg- 

mentation masks. 

We have adopted a U-shaped neural network for vertebral seg- 

mentation following the fashion of the state-of-the-art network 

for 3D medical image segmentation. The network architecture is 

nearly symmetric with an encoder and a decoder. After achiev- 

ing the segmentation results, the vertebrae centroids are computed 

based on the mass centres of binary labels for each individual ver- 

tebra. To further help determine the vertebral body centre, several 

iterations of morphological erosion are conducted to remove the 

vertebral ‘wings’. The final prediction is from the ensemble of the 

five models. 

Fig. C.18. Procedure for label correction after Stage 2 of Chen M. ’s approach. 

Hu Y. et al.: Large Scale Vertebrae Segmentation Using nnU-Net 

The tasks at hand are posed as an application of the nnU-Net 

( Isensee et al., 2019 ), a framework that automatically adapts the 

hyper-parameters to any given dataset. 

Generally, nnU-Net consists of three U-Net models (2D, 3D, and 

a cascaded 3D network) working on the images patch-wise. It au- 

tomatically sets the training hyper-parameters such as the batch 

size, patch size, pooling operations etc. while keeping the GPU 

budget within a certain limit. If the selected patch size covers less 

than 25% of the voxels in case, the 3D-Net cascade is additionally 

configured and trained on a downsampled version of the training 

data. Specific to VerSe ‘19, a sum of cross-entropy loss and Dice loss 

are used the training objective, minimised using the Adam opti- 

miser. An initial rate of 3 × 10 −4 and � 2 weight decay of 3 × 10 −5 . 

The learning rate is dropped by a factor of 0.2 whenever the ex- 

ponential moving average of the training loss does not improve 

within the last 30 epochs. Training is stopped when the learning 

rate drops below 10 −6 or 10 0 0 epochs are exceeded. The data is 

augmented using elastic deformations, random scaling, random ro- 

tations, and gamma augmentation. Note that in Phase 1, the nnU- 

Net ensemble did not include all its components. Included are a 

3D U-Net operating at full resolution, a 3D U-Net at low resolution 

(as part of the cascade 3D), and a 2D U-Net. 

Jiang T. et al.: SpineAnalyst: A Unified Method for Spine Identification 

and Segmentation 

In contrast to most approaches that treat identification and 

segmentation as two separate steps, this work efficiently solves 

them simultaneously with a keypoint based instance segmentation 

framework applying anchor-free instance segmentation networks 

in a 3D setting. To the best of the participant’s knowledge, this is a 
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Fig. C.19. An overview of SpineAnalyst network, a contribution of Jiang T .. 

first. The proposed network adopts the encoder-decoder paradigm 

with two prediction heads attached to the shared decoder, as de- 

scribed in Fig. C.19 . The “binary segmentation head” distinguishes 

spine pixels resulting in a binary semantic map. The “vertebra la- 

beling head” detects and labels all the vertebrae landmarks, while 

also predicting a vector field that associates vertebral pixels with 

their vertebrae centres. The predictions of two heads are fused to- 

gether to produce the final instance segmentation results 

Encoder & Decoder. A V-Net is used as the backbone with the 

encoder containing four cascaded blocks. Following this, the Atrous 

Spatial Pyramid Pooling (ASPP) method is applied to further in- 

crease the receptive field and capture multi-scale information ef- 

fectively. In the decoder, the concatenated features of ASPP are 

passed through four cascaded up-sampling blocks recovering the 

original volume resolution. 

Binary Segmentation Head. A binary semantic segmentation 

head is trained to detect the spine as the foreground pixels. These 

pixels will further be assigned with vertebral labels in the subse- 

quent fusion processing. 

Vertebra Labeling Head. This component performs two tasks: 1. 

Detect and label landmarks: For the former, the heatmap chan- 

nels predict the probability that a pixel belongs to a vertebra cen- 

tre. Pixels corresponding to high confidence are reserved as ver- 

tebral landmarks. Due to the similarity of the adjacent vertebrae, 

it is challenging to directly identify individual vertebrae. Instead, 

the reference vertebrae with obvious anatomical features, such as 

C2, L5 and C7, T12, are first identified. Other vertebrae labels are 

then inferred from the reference vertebrae. Following this, 2. a 

vector-field is predicted with each channel denoting the offsets 

relative to the corresponding vertebra centre. Each pixel is then 

labelled with the closest vertebra centre according to the long 

offset. 

Fusion Process. The final instance segmentation is obtained from 

binary semantic segmentation as follows: Each pixel within the se- 

mantic mask acquires its label from the centre point closest to its 

predicted centres, which is computed by pixel coordinates plus the 

vector field. 

Kirszenberg A. et al.: 

A multi-stage approach is proposed involving a pseudo-3D U- 

Net architecture for segmentation and a template matching ap- 

proach enabled by morphological operation. 

Segmentation. Three different U-Net models are trained in a 

“pseudo-3D” segmentation technique wherein, the 3D input is 

sliced into 3-voxel wide slices along the three axes. Prior to this, 

patches of size 80 × 128 × 128 are extracted from the scan, result- 

ing in sagittal, coronal, and axial slices of shapes 3 × 123 × 128 , 

80 × 3 × 128 , and 80 × 128 × 3 , respectively. This step performs 

a binary segmentation of “spine vs. background’. The predicted 

masks of the three models are combined using majority voting and 

passed through a filtering operation for removal of stray segmen- 

tation and hole-filling (cf. Fig. C.20 a). 

Labelling. This task is attempted as a combination of morpho- 

logical operations and template matching, implemented as fol- 

lows: 1. The predicted binary segmentation mask is blurred us- 

ing a Gaussian kernel and skeletonised to obtain a skeleton of 

the vertebral column. Further clean-up is obtained by choosing 

the path connecting the voxels between two end-points using Di- 

jkstra’s algorithm. 2. The skeleton is then discretised into 1mm 

distant points which are used as anchors for template matching. 

These templates were generated from the training data at a ver- 

tebra level by centring each vertebra at the centroid and averaging 

over a certain number of rotations as shown in Fig. C.20 b. For tem- 

plate matching, the five best vertebrae, point candidates are chosen 

and for every point its previous and next vertebrae are matched to 

the points before and after, respectively. Once no vertebrae can be 

matched, scores for each vertebrae are summed from each of the 

five vertebral columns and the one with the highest score is se- 

lected. Following this, each voxel of the column is labelled after 

the template with the highest score. 

Wang X. et al.: Improved Btrfly Net and a residual U-Net for VERSE ‘19 

Improved versions of Btrfly Net ( Sekuboyina et al., 2018 ) and 

the U-Net ( Ronneberger et al., 2015 ) are employed to address the 

tasks of labelling and segmentation, respectively. Of interest is the 

task-oriented pre- and post-processing employed in each task. 

Pre-processing. A Single Shot MultiBox Detector (SSD) is imple- 

mented to localise the vertebrae in the sagittal and coronal projec- 

tions and its predictions are used to crop the 3D scans. This is fol- 

lowed by re-sampling the crops to a 1mm resolution and padding 

the projections to 610 × 610 pixels. 

Labelling. The Btrfly Net is employed for this task with a ma- 

jor difference in the reconstruction of 3D coordinates from its 2D 

heatmap predictions. However, unlike obtaining the 3D coordinates 

from the outer product of the 2D channelled heat-maps followed 

by an argmax , the authors propose an improved scheme resulting 

in a 4% improvement of the identification rate. Specifically, 2D co- 

ordinates of the vertebra are obtained from the individual projec- 

tions, denoted by (x, z s ) from the sagittal and (y, z c ) from the coro- 

nal heat maps. Notice the two variants of the z-coordinate. The fi- 

nal z-coordinate is then calculated as the weighted average of z s 
and z c with the maximum values of their corresponding heat maps 

as weights. Additionally, the missing predictions are filled in with 

interpolation. 

Segmentation. Since the vertebral centroids are now identified, 

the segmentation is tasked to segment one vertebra given its cen- 

troid position. For this, a 3D U-Net with residual blocks is chosen 

( Fig. C.21 ). The network is trained with Dice loss and works with 

patches of size 96 × 96 × 96 centred at the vertebral centroid in 

question. Once segmented, the vertebra is labelled according to its 

centroid’s label and assigned back to the full scan. In case of a con- 
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Fig. C.20. Team Kirszenberg A. ’s contribution involving (a) detection of the spline passing through the vertebral column and (b) a sample template for L4 use for vertebra 

identification. 

Fig. C.21. Architecture of residual U-net employed by team Wang X. for the seg- 

mentation task. 

flict, i.e: if a voxel labelled as i is again labelled as j, the label with 

a higher logit is chosen. 

Hou et al.: Fully Automatic Localisation and Segmentation of 

Vertebrae Based on Cascaded U-Nets 

The authors propose a multi-stage pipeline for vertebral local- 

isation and segmentation based on a general U-net architecture. 

Firstly, the centre-line of the spine is inferred, and then the spine 

region is cropped to be fed as the input of the second stage. Ac- 

cordingly, the second neural network predicts the centre coordi- 

nates and classes of all vertebrae. In the last stage, the segmen- 

tation network performs a binary segmentation of each of the 

cropped vertebrae. The full pipeline is illustrated in Fig. C.22 

Spine Localisation. In the first stage, the authors use a variant 

of the U-Net ( Ronneberger et al., 2015 ) to predict heat-maps that 

cover the whole spine. They set the filters of each convolutional 

layer to 64, which can significantly improve training speed while 

ensuring performance. The authors utilise the general � 2 -loss to 

minimise the difference between the target and predicted heat- 

maps. As a pre-processing step, the CT images are sub-sampled 

to a uniform voxel spacing of 8mm, and then a patch size of 

6 4 × 6 4 ×128 is fed into the network. The predicted coordinates 

of the centre of the spine help are used to crop the spine region 

as the input of the second stage. 

Vertebrae Localisation. The authors deploy the general U-Net 

( Ronneberger et al., 2015 ) as a baseline. Both encoder and the de- 

coder use five levels consisting of two convolution layers with a 

leaky-ReLU activation function. Due to the specific shape and fixed 

relative position of vertebrae, for most cases, the labels of the ver- 

tebrae are a continuous sequence despite their coordinates. It is 

important to localise and identify the first and the last vertebrae. 

The authors use a weighted � 2 -loss function to emphasise the con- 

tribution of the first and the last vertebrae in the loss. Similarly 

to the first stage, the CT images are re-sampled to uniform voxel 

spacing of 2mm, and then a patch size of 96 × 96 × 128 is fed 

into the network. 

Vertebrae Segmentation. In this stage, the predicted coordinates 

of each vertebra are used to crop the individual vertebrae region. 

Similar to the localisation stage, the U-Net is used and the CT vol- 

umes are re-sampled to a uniform voxel spacing of 1mm, the seg- 

mentation network with a patch size of 128 × 128 × 96 produces 

the individual predictions of each vertebra, and finally, the multi- 

label segmentation results are obtained by merging all binary seg- 

mentation results. 

Postprocessing. Due to the partial vertebrae often in the top or 

bottom of volume, which has a bad influence on detecting the po- 

sition of the first or last vertebrae, in this work, the landmark is 

abandoned if its distance from the top or the bottom of the vol- 

ume is less than a threshold. 

Huang et al.: A 

2 Unet: Attention and Aggregation UNet for Vertebrae 

Localisation and Segmentation 

The authors formulate both tasks as a pixel-level prediction 

problem. Specifically, the landmark detection problem (task 1) is 

converted into a heat-map prediction format and the vertebrae 

segmentation problem (task 2) is converted into a multi-class 

semantic map prediction scheme. Both tasks generate full-scale 

outputs that enabled the authors to utilise a U-net architecture 

( Ronneberger et al., 2015 ) to extract the features. In this work, the 

authors develop a new variation of 3D Unet, in which an atten- 

tion and aggregation mechanisms are introduced to enhance the 

feature representation in both tasks. This new variant is called the 

A 

2 UNet. 

Attention and Aggregation UNet (A 

2 UNet). The proposed A 

2 UNet, 

which is shown in Fig. C.23 , adopts the original U-Net structure 

that consists of a contracting path to downsample the inputs for 

global representation, and an expanding path to upsample the fea- 

ture for detailed prediction. Several skip connections link the con- 

tracting and expanding paths that directly transfer the information 

from the shallow to deep layers. However, features from differ- 

ent convolution stages contain information from different semantic 

levels. In this work, the authors embed the efficient feature aggre- 

gation (FA) module shown in Fig. C.24 , into the U-Net structure for 

channel-wise attention based on the Squeeze-and-Excitation (SE) 

block ( Hu et al., 2019 ). It receives the two feature maps where one 

is from the contracting path, and the other is from the expand- 

ing path. The features are firstly sent to the average pooling pro- 

cess for global representation. Then, two fully connected layers are 

used to investigates the importance (weights) of different feature 
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Fig. C.22. Team Hou et al .’s proposed pipeline. 

Fig. C.23. A 2 Unet’s Architecture. 

Fig. C.24. Team Huang et al. ’s Feature Aggregation block. 

channels. By multiplying the weights to corresponding channels, 

the key features can be focused that will be used for the following 

process. 

Heads for Vertebra Localisation and Segmentation. The authors 

develop two sub-networks, or heads, to decode the backbone out- 

put into the feature format for each task. For the localisation task, 

a convolution layer is applied to generate a 26-channel output, 

each channel corresponds to one of 26 classes of the vertebra. Each 

channel is actually a heat map where the location information of 

a specific vertebra is encoded. To reason the vertebra location, the 

coordinates candidates are selected where the corresponding score 

in the heat-map is above 0:35. The final vertebra coordinates are 

determined by adopting the non-maximum suppression (NMS) al- 

gorithm towards those candidates in an adjacent vertebra region 

which has a distance between 12.5mm and 40mm. 

For the segmentation task, a convolutional layer is deployed to 

generate a single semantic map, each pixel contains 27 categorical 

value, indicating one of 26 anatomical classes or the background. 

The segmentation model is trained with Dice loss and CE loss. 

Since every voxel is classified only considering the channel score 

after obtaining the segmentation mask, outlier voxels that are not 

connected with the largest component will be removed. 

Hu ̀ynh et al.: 3D Mask Retinanet for Vertebrae Instance Segmentation 

The authors propose a single model that performs both sub- 

tasks. A two-stage model is adopted inspired by Mask R-CNN 

( He et al., 2018 ). Mask R-CNN is a two-staged model, in which the 

first stage localises RoI while two sub-nets on the second stage 

classify and segment a subset of these RoIs. Since the Mask R- 

CNN is a heavy model, an extended version or Mask R-CNN for 

3-D images will require significant memory, and as a result, it lim- 

its the number of RoIs that could be passed to the second stage. 

This problem makes the model more sensitive to class imbalance. 

For that reason, the authors propose a new two-stage model. They 

replace the first stage of Mask R-CNN with the Retinanet ( Lin et al., 

2018 ). With this modification, the first stage is now responsible for 

both RoIs” localisation and classification. The first stage is more ro- 

bust to class-imbalance than the original Mask R-CNN thanks to 

Focal Loss. This allows the authors to use a small, fully convolu- 

tional network on the second stage to performs the mask regres- 

sion. Since only RoIs that contain objects will be passed through 

the second stage, training the model requires less memory. This 

model is called the Mask RetinaNet. Due to memory limitation, 

the authors are forced to train with a small batch size and they 

use Group Normalisation ( Wu and He, 2018 ) instead of Batch Nor- 

malisation in their network. The architecture of Mask RetinaNet is 

illustrated in Fig C.25 

The detector stage. The authors adapt RetinaNet for 3D cases. 

Their version will also predict the object’s centroid in addition 

to the axis-aligned bounding box (AABB). The backbone is con- 

structed with a 3D version of the Resnet50 and Feature Pyra- 

mid Network ( Lin et al., 2018 ). For this dataset, the authors only 

use pyramid levels 3 to 5. They avoid level 2 because anchors 

defined on it are unnecessarily dense for this dataset, while an- 
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Fig. C.25. Mask RetinaNet’s architecture, as employed by Hu ̀ynh et al.. 

chors defined on levels greater than 5 are too sparse to distinguish 

nearby vertebrae. At each pyramid level, they use four anchors 

with two width/height/depth ratios of 1/1/0.625 and 1/0.74/0.42, 

and a width of 86 and 68 for level 3, 100 and 79 for level 4 and 

120 and 94 for level 5. They are chosen by running a K-means clus- 

tering on the AABBs of training vertebrae similar to the algorithm 

described in ( Redmon and Farhadi, 2016 ) to ensure that for each 

vertebra, they could find at least one anchor so that the Intersec- 

tion over Union (IoU) with its AABB is higher than 0.6. The classi- 

fication and regression sub-nets are implemented as described in 

( Lin et al., 2018 ). The classification subnet is responsible for the 

classification of anchors. It predicts a length N one-hot classifica- 

tion vector for each anchor, with N being the number of classes. 

The regression subnet performs AABB and centroid regression. For 

each positive anchor, it predicts a length nine regression vector, of 

which the first 6 encode the AABB (itscentre coordinate and size), 

and the last 3 encode the centroids’ position. Instead of predicting 

these values directly, they adopt the coordinate parameterisations 

of ( Ren et al., 2015 ) for their case. 

The mask regression stage. To perform instance segmentation, 

the authors attach a second stage to their 3D-RetinaNet to out- 

put a binary mask for each RoIs detected by the first stage. This 

stage is implemented similar to Mask R-CNN: a 3D-ROIAlign layer 

extracts a fixed-size w × h × d feature map from the FPN for each 

RoI using trilinear interpolation, followed by simple fully convolu- 

tional networks. These subnets will produce D × 2w × 2h × 2d ×
N with D the number of detections provided by the first stage and 

N the number of classes. 

Jakubicek et al.: Approach for Vertebrae Localisation, Identification 

and Segmentation 

The authors propose a fully automatic multi-stage system as 

shown in Fig. C.26 . Moreover, they provide an auxiliary semi- 

automatic mode that enables the inspection and possibly correc- 

tion of automatically detected positions of the inter-vertebral discs 

(IVD) and their labels before the following segmentation step. 

Their approach combines modern deep-learning-based algorithms 

with more classical image and signal processing steps and with 

segmentation using the intensity vertebra models adaptation. 

Pre-processing. The authors first attempt to cut the data from 

background and “black” artefacts caused by geometrical shearing. 

The second step is the correction of the random rotation,which is 

not presented in the real CT data. For this purpose they provide 

the CTDeepRot algorithm ( Jakubicek et al., 2020 ), which predicts 

these rotational angles using a CNN and transforms the data into 

the standard Head First Supine (HFS) patient position. 

Detection of spinal cord centre-line : First, each axial slice of the 

CT data is classified by a CNN into four categories (slices contain- 

ing complex C1-2, slices with the main part of the spine from C3 

to L6, slices containing the sacrum, and remaining areas feet, head, 

background). A pre-trained AlexNet ( Krizhevsky et al., 2012 ) CNN 

is used for this purpose. In the slices containing the main part 

of the spine, the approximate position of a spinal canal is found 

( Simonyan and Zisserman, 2014 ) architecture. Each detected cen- 

troid of a detected bounding box is taken as a potentially correct 

centre of the spinal canal in the appropriate axial slice. The whole 

spinal canal is then traced by the algorithm using the growing in- 

scribed circles, where the detected centroids are taken as starting 

(seed) points of the tracing. The optimum spine centre-line is then 

chosen by the population-based optimisation process. 

Vertebra localisation and identification. The spine CT data is geo- 

metrically transformed into the straightened data according to the 

spine centre-line curvature. In the straightened data, the centroids 

of the vertebral bodies are determined by morphological trans- 

forms, and the respective intensity profile along the z-axis is taken. 

This way, the obtained 1D signal is processed by an adaptive IIR 

(infinite impulse response) filter, which enables detection of the 

positions of the individual IVDs. Adaptation of the filter is con- 

trolled by a statistical model using knowledge about the anatomy 

of the spine. Finally, each detected IVD is classified into a cat- 

egory of the vertebral type (label) by a combination of a CNN 

(pre-trained Inception V3 ( Guan et al., 2019 )) and the dynamic 

programming optimisation. All used pre-trained CNN architectures 

were pre-trained on the ImageNet dataset ( Russakovsky et al., 

2015 ) and fine-tuned on the authors’ database of CT image data. 

Vertebra segmentation. The segmentation of the vertebrae is 

based on four-step vertebra intensity model registration. In the 

first step the mean model of the individual vertebra is scaled and 

deployed along the spine in accordance with the detected and la- 

belled IVDs. The second step performs rigid registration of each 

vertebra, which aligns the model into an optimally precise posi- 

tion in the 3D CT data, followed by improvement via elastic regis- 

tration of each vertebra. In the third step, the elastic registration is 

performed on the whole spine model, where the models fits the 

shapes of the vertebrae. In the last step, the final segmentation 
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Fig. C.26. An overview of the multi-stage framework proposed by Jakubicek R. : Pre-processing, spinal slices detection, spinal canal tracking, inter-vertebral disc (IVD) locali- 

sation, IVD labelling, and vertebral segmentation. 

contours are slightly refined and smoothed by the graph-cut based 

algorithm. Elastix v.5.0.0 ( Klein et al., 2009; Shamonin et al., 2014 ) 

is sued as the registration software. 

Supriti M. et al.: Vertebrae localisation and Segmentation using 

Mask-RCNN with Complete-IoU Loss 

The authors propose to segment vertebrae using Mask-RCNN 

trained with Complete-IoU (CIoU) loss. The spine vertebrae seg- 

mentation process contains the following pipeline: 3D to 2D con- 

version, pre-processing, Mask-RCNN feature extraction with Com- 

plete IoU loss for geometric factor enhancement ( Frosio and 

Kautz, 2018 ), and 2D to 3D back conversion. 

3D to 2D conversion. Reorientation of the image is done with 

flips and reordering the image data array so that the axes match 

the directions indicated in orientation required for spinal vertebrae 

segmentation. Reoriented images are resampled to get the balance 

between image smoothness and identify fine image details. 

Preprocessing. CT images reconstructed from low-dose acquisi- 

tions may be severely degraded with noise and streak artefacts due 

to quantum noise, or with view-aliasing artefacts due to insuffi- 

cient angular sampling. To improve CT image quality median filter 

along with non-local means (NLM) with Statistical Nearest Neigh- 

bors(SNN) by Frosio et al. ( Frosio and Kautz, 2018 ) filtering algo- 

rithm is applied. Sampling neighbors with the nearest neighbour 

approach introduces a bias in the denoised patch which improves 

the CT image quality significantly. Fig. C.27 (a) and (c) shows the 

original slice of a spine CT while (b) and (d) shows the enhanced 

images. 

Segmentation using Mask-RCNN with CIoU loss. Mask R-CNN pre- 

dicts bounding boxes and corresponding object classes for each of 

the proposed region obtained using a backbone. Following this, a 

binary mask classifier generates a mask for every class. Bounding 

box regression is sometimes inaccurate due to overlapping areas. 

So a complete IoU (CIoU) loss is added in Mask R-CNN. 

A good loss for bounding box regression should consider three 

important geometric factors, i.e. overlap area, central point dis- 

tance and aspect ratio. Zheng et al. ( Zheng et al., 2020 ) proposed 

CIoU loss based on these requirements. The authors use an end-to- 

end pretrained Mask R-CNN-based detectron with CIoU loss model 

with Resnet x-152 backbone. An existing open-source implementa- 

tion 

3 using Pytorch is chosen. 

3 https://github.com/Zzh- tju/DIoU- pytorch-detectron . 

Once the scan is segmented slice-wise in 2D, the final segmen- 

tation is obtained by stacking the predicted masks and reorienting 

and resampling it back to the original image particulars. 

Netherton T. et al.: A Multi-view Localisation and Deeply Supervised 

Segmentation Framework 

The authors propose a framework that combines the use of a 

set of individual CNNs to accomplish 1) course spinal canal seg- 

mentation, 2) spine localisation via a multi-view network, and 3) 

automatic segmentation of individual vertebrae using a deeply su- 

pervised approach. A detailed description of steps (1) and (2) of 

the approach can be found in Netherton et al. (2020) . Refer to 

Fig. C.28 for an overview of the proposed approach. 

Algorithm 1: Pseudocode for inference on Anduin . 

Input : x , a 3D MDCT spine scan 

Output : Vertebral centroids & segmentation masks 

~Detection 

1 x d = resample_to_4mm ( x ) 
2 y d = predict_spine_heatmap ( x d ) 
3 bb = construct_bounding_box ( y d , threshold = T d ) 
4 Possible interaction : Alter bb by mouse-drag action. 

Labelling 

5 x l = resample_to_2mm ( x ) 
6 bb = upsample_bounding_box ( bb, from =4mm, to =2mm) 

7 x sag , x cor = get_localised_mips ( x l , bb) 

8 y sag , y cor = predict_vertebral_heatmaps ( x sag , x cor ) 

9 y l = get_outer_product ( y sag , y cor ) 

10 centroids = heatmap_to_3D_coordinates ( y l , threshold = T l ) 
11 Interaction : Insert missing vertebrae, delete spurious 

predictions, drag incorrect predictions. 

Segmentation 

12 x s = resample_to_1mm ( x ); mask = np.zeros_like ( x s ) 
13 for every centroid in centroids do 

14 p = get_3D_vertebral_patch ( x s , centroid ) 
15 p mask = binary_segment_vertebra_of_interest ( p) 

16 p mask = index_of ( mask , centroid ) ∗p mask 

17 mask = put_vertebrae_in_mask ( p mask ) 

18 end 

Data. Data from VerSe 2019 and 2020 was used to train locali- 

sation and segmentation CNNs. All images and segmentations were 
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Fig. C.27. Enhancement of CT slices using the filtering algorithm proposed by Frosio and Kautz (2018) employed by Mulay S. . 

Fig. C.28. (A) An overview of the three-stage framework proposed by Netherton T. : Sinal canal segmentation, localisation, and segmentation. (B) Ground truth sagittal and 

coronal intensity projection image pairs used in the training of the second stage. Each colored planar projection is housed in a separate channel. Centroids of each colored 

mask provide coordinates used in subsequent stages in this approach. 

resampled to have isotropic voxel sizes (1.0mm 

3 ) and set to a com- 

mon orientation. Ground truth localisation coordinates were not 

used in this approach. In total, 160 pairs of CT scans and segmenta- 

tions were obtained and split into five groups for cross-validation. 

Spinal canal segmentation. First, the spinal canal is segmented 

via a 2-dimensional FCN-8s with batch normalisation on the axial 

CT slices. Pairs of intensity projection images (sagittal and coro- 

nal) are then generated about a volume of interest (cropped from 

the CT scan) surrounding the spinal canal. These image pairs pro- 

vide the network with sagittal and coronal views of the vertebral 

column and have a fixed width but variable length l (where l is 

the length of the CT scan); their corresponding ground-truth la- 

bels are then assigned individual channels (27 total) to account 

for each vertebral level. For the training stage, planar segmentation 

masks posterior to the spinal canal are removed to produce mod- 

ified vertebral coordinates. In order to provide a large number of 

image augmentations, intensity projection image pairs (and corre- 

sponding ground truth masks) are incrementally cropped from the 

superior-inferior, inferior-superior, and medial-lateral directions. 

Multi-view spinal localisation. X-Net ( Netherton et al., 2020 ), 

the localisation architecture, inputs the sagittal and coronal in- 

tensity projection pairs and outputs labeled, multi-dimensional 

sagittal and coronal arrays of individual vertebral column seg- 

mentations. X-Net, inspired by Sekuboyina et al. (2020) and 

Milletari et al. (2016) , incorporates residual connections, pReLU 

activations, and is end-to-end trainable. By combining centre-of- 

mass coordinates from sagittal and coronal planar segmentations, 

3-dimensional locations are obtained for each vertebral body. Dur- 

ing training, the loss function, which incorporated the soft-Dice 

loss and cross-entropy loss, was applied to each view (i.e. coro- 

nal and sagittal, L = L s + L c ). Augmentations were applied during 

training with a frequency of 0.7; coronal arrays were flipped left- 

right with a frequency of 0.5. Training was performed on a 16GB 

NVIDIA-V100 with batch size 8. Each model was trained for at least 

26,0 0 0 iterations using early stopping. 

Deeply supervised vertebral body segmentation. To perform ver- 

tebral body segmentation, a UNet++ architecture using skip con- 

nections, multi-class structure, and deep supervision is designed 

based on work by ( Zhou et al., 2019 ). Using ground truth images 

and segmentations, three channel arrays are formed for each ver- 

tebral level by cropping around the centre of mass of each verte- 

bral level. Separate channels contained background, adjacent ver- 

tebral levels, and the central vertebral level, respectively. For each 

3-dimensional coordinate (from the second stage), the CT scan is 

cropped to form separate volumes of interest (120 × 96 ×96mm 

3 ). 

The top two most supervised outputs from each prediction are av- 

eraged to yield the vertebral body of interest. 

Paetzold J. et al.: A 2D-UNet on the VERSE data 

The authors implement a 2-D segmentation architecture for 

slices of the sagittal orientation of the 3-D dataset using a 2D U- 

Net ( Ronneberger et al., 2015 ). The encoder is made of a ResNet- 

34 backbone pre-trained on the ImageNet. The network is trained 

by optimising an equally weighted sum of the Dice loss and the 

binary cross-entropy loss (BCE) with data augmentations such as 

flipping, rotation, scaling, and shifting. The images are centre- 

cropped to 512 by 512 pixels to account for the irregular image 

sizes during training. All networks are implemented in Pytorch us- 

ing the Adam optimiser and are trained for 10 0 0 epochs. After pre- 

diction, the 2D slices are stacked together to reconstruct the 3D 
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volume. The training was carried out on an NVIDIA QUADRO RTX 

80 0 0 GPU with a batch size of 52. 

Xiangshang Z. et al.: Vertebra Labelling and Segmentation using the 

Btrfly-net and the nnU-net 

The authors design an improved Btrfly Network 

( Sekuboyina et al., 2018 ) to detect the key points of the ver- 

tebrae and then build an nn-Unet ( Isensee et al., 2019 ) to segment 

the vertebral regions. Both the labelling and segmentation tasks 

are handled independently. 

Vertebra Labelling. Similar to Sekuboyina et al. (2018) , the au- 

thors work with 2D sagittal and coronal MIP. Improving on it, 

changes were made to the model architecture and the training pro- 

cedure. Two convolution layers for each layer of encoder and de- 

coder in the network followed by batch-normalisation and ReLU 

non-linearity after each convolution layer. Kaiming-initialisation is 

used for the network parameters. In terms of data-based enhance- 

ments, the authors use horizontal and vertical flip for augmenta- 

tion and with normalisation. 

Vertebra segmentation. The preprocessing and training proce- 

dure of the nnU-Net is retained. On top of it, data augmentation 

is applied on the fly during training using the batch-generators 

framework ( Isensee et al., 2020 ). Specifically, elastic deformations, 

random scaling, and random rotations are used. If the data is 

anisotropic, the spatial transformations are applied in-plane as 2D 

transformations. Once trained, cases are predicted using a sliding 

window approach with half the patch size overlap between pre- 

dictions. 

Yeah T. et al. : A Coarse-to-Fine Two-stage Framework for Vertebra 

Labeling and Segmentation. 

The author propose a two-stage network to achieve vertebra 

labeling and segmentation. Firstly, the low-resolution net deter- 

mines the rough target location from downsampled CT images. 

Secondly, by feeding the first stage’s prediction results (upsam- 

pling before feeding) and high-resolution CT scans into a full reso- 

lution net, more accurate vertebra classification and segmentation 

are achieved. Considering the competition among different verte- 

bra classes especially for adjacent vertebra, finally connected com- 

ponent analysis is applied to refine vertebrae segmentation results. 

The two-stage cascaded segmentation pipeline consists of two 

steps. Firstly a coarse location of spine RoI is obtained based on a 

lightweight low-resolution 3D U-Net from 3D CT scans with low 

resolution. Secondly the RoI and the accurate segmentation results 

are performed with a high-resolution 3D U-Net. Finally some post- 

processing methods are adopted to fill the holes inside each ver- 

tebrae and rule-based methods to recalibrate the vertebrae label. 

Both the low-resolution network and the high-resolution network 

have 26 output channels (C1-C7, T1-T13, L1-L6). 

The first stage preprocesses the training 3D CT scans to a larger 

spacing through downsampling and train the low-resolution 3D U- 

Net model with a patch size of 224 × 128 ×96. The second stage 

preprocesses 3D CT images to smaller spacing through upsampling 

and crops the RoI of spine regions as the training dataset for a 

high-resolution U-Net model with a patch size of 256 × 96 ×80. 

Preprocessing and Augmentation. All input images are normalised 

zero mean and unit standard deviation (based on foreground vox- 

els only). The data augmentation include elastic deformation, rota- 

tion transformation, gamma transformation, random cropping, etc. 

Loss and Optimisation. The low-resolution model with a classi- 

cal combination of Dice loss and cross-entropy loss, while training 

the high-resolution model with a dynamic hybrid loss combining 

Dice loss and weighted cross-entropy loss. A model with a dynamic 

hybrid loss combining Dice loss and Adam optimiser with an ini- 

tial learning rate of 10 −4 was used. During training, an exponen- 

tial moving average of the validation and training losses is used. 

Whenever the training loss does not improve within the last 30 

epochs, the learning rate is reduced by factor 5. The training is ter- 

minated automatically if validation loss does not improve within 

the last 50 epochs. 

Zeng C.: Two-stage Keypoint Location Pipeline for Vertebrae Location 

and Segmentation. 

The author proposes a two-stage keypoint detection pipeline for 

vertebral labeling based on the scheme of Payer et al. (2019) which 

uses Spatial-Configuration-Net and U-Net in VerSe ‘19 described in 

Section 3.2 . 

Additional Data and Preprocessing. An additional 13 data sets 

from the VerSe ‘19 training set are used. The data is first pre- 

processed to the RAI direction. Data augmentation includes rota- 

tion, intensity shift, scaling and elastic deformation. The model is 

trained with all 113 cases. 

Localisation. To localize centres of the vertebrae, five keypoints 

location and global vertebrae location is performed separately. For 

the five keypoints, which contains the first and last two ver- 

tebral masses of the cervical spine, thoracic spine and lumbar 

spine, a network is designed of which the backbone is an HRNet 

( Sun et al., 2019 ) to regress the five keypoint heatmaps. The signif- 

icance of the first stage is for better identification of several verte- 

bral masses with obvious characteristics. The second stage follows 

Payer et al. (2019) , with a re-designed channel attention block in 

the network with a weighted loss function. 

Vertebrae Segmentation. For vertebrae segmentation, a binary 

segmentation network is trained based on the outcome of the la- 

belling stage. A U-Net with an inputs size of 128 × 128 ×64 is used. 

The loss function is a mixture of Dice loss and binary cross-entropy 

loss. 

Zhang A. et al. : A Segmentation-Based Framework for Vertebrae 

Localisation and Segmentation. 

In general, the vertebrae localisation and segmentation tasks 

are performed in a four-step approach: 1) spine localisation to ob- 

tain the region of interest, 2) single-class key point localisation to 

obtain the potential vertebrae candidates, 3) a triple-class verte- 

brae segmentation to obtain the individual mask and main cate- 

gory of each vertebrae, and 4) rule-based post-processing. 

A variant of V-Net with a mixture of Dice and binary cross- 

entropy loss is utilised in the first three steps and only a few 

hyperparameters are changed in each step, such as input/output 

shape, depth, width, etc. Step 2 and step 3 could be corrected by 

each other in an ‘intertwined’ way as mentioned above: the pro- 

posed key-point candidates are used as input for step 3 to specify 

the vertebra to be segmented if the resulting segmentation result 

does not seem to be a mask (the volume is not large enough), then 

the proposed key-point can be regarded as a false positive. 

Spine Localisation. To obtain the spinal centerline, a variant of 

V-Net is used to regress a heatmap of the spinal centerline. The in- 

put is a 4-time downsampled single-channel 3D-patch with a size 

of 64 × 64 ×64). The sliding window approach is applied to serve 

the network with the specific size of local cubes. The heatmaps are 

generated using a Gaussian kernel by a kernel size (5, 5, 5) and 

sigma (6, 6, 6) on the downsampled mask to keep unique 3D con- 

nected domain. The output heatmap is converted to a binary mask 

by a threshold of 0.4 and resampled back to the origin image scale 

for later use. 

Keypoint Localization. A similar variant of V-Net is employed to 

regress a heatmap of the spine. The input in this step is a single- 
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channel 3d-patch with the size of 64 × 128 ×128. Sliding window 

approach is applied as above. The heatmaps are generated by ker- 

nel size (7, 9, 9) and sigma (6, 6, 6) on the original scale based on 

the JSON label to ensure they are independent and disconnected. 

The proposed regression results are converted to a binary mask by 

a threshold of 0.4 and the centroid is calculated for each cluster. 

Vertebrae Segmentation. Considering half of the vertebrae ac- 

count for a lack of samples for a 26-class classification, a triple- 

class segmentation task is defined to segment three categorises: 

‘cspine’, ‘tspine’ or ‘lspine’ for each vertebra in this step. A variant 

of V-Net is employed. The input is a cropped 3D patch around the 

localised centroid obtained from step 2. 

Rule-based Post-processing. In this step a simple post- 

preprocessing logic is applied to create the final multi-label 

result. If more than one category of vertebrae is found in one 

case, the two or four ‘split points’ which is C7-T1 and T12-L1 

can be localised. Then the others can be deduced based on these 

split points. If split points are not found in one case, then ‘cspine’ 

vertebrae are deduced from C1 to the bottom and ‘lspine’ ones are 

deduced from the bottom to the top. 
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Largely based on the work presented in this work, along with the supporting works
on vertebrae segmentation, we developed anduin, an publicly-available, web-based
spine segmentation tool. anduin is hosted at Klinikum rechts der Isar and was
developed by Giles Tetteh, Malek Husseini, and Anjany Sekuboyina, under the
supervision of Dr. Jan S. Kirschke. It encompasses our experience in spine image pro-
cessing through multiple publications as well as from the largest spine segmentation
benchmark yet [4].

Overview

The landing page of anduin, hosted at anduin.bonescreen.de is shown in Fig. F.1.
As input, anduin takes a spine CT image in the NIFTI file format along with an op-
tional JSON side-car consisting of the DICOM header information (cf. Fig. F.2). In
this image, the following steps are performed: spine localisation, vertebrae labelling,
vertebrae segmentation, and vertebral subregion1 segmentation. The processing of a
scan in progress is shown in Fig. F.3. The output of each of these stages can be down-
loaded as shown in Fig. F.4. Finally, an example out of the tool is shown in Fig. F.5,
indicating the vertebral centroids and segmentation masks of both vertebrae and its
subregions.

Contributions

Project inception and planning, prototyping, development of machine-learning back-
end, project supervision (technology) and management.

1Subregions: every vertebrae is further segmented into ten subregions such as vertebral arch,
spinous process, cortex, left and right transverse process etc.
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Figure F.1: Anduin’s landing page: Anduin is hosted at anduin.bonescreen.
de, released under CC-BY-SA 4.0 license. Users have the ability to request for user
accounts after agreeing to the data policy along with anduin’s terms and conditions
on data processing
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Figure F.2: Upload dialogue: Users have the ability to upload NIFTI files (*.nii
or *.nii.gz) along with a JSON side car containing the header information

Figure F.3: Processing status: Once uploaded, the scan can be processed to
result in an ‘evaluation’ containing the processing artefacts. Processing of a CT of
diagnostic quality takes approximately 1–2 minutes.
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Figure F.4: Artefact download: Once processed, every artefact of the processing
pipeline can be download, as required. This includes the bounding box around the
spine, the vertebral centroids, the segmentation masks or the vertebrae and their
subregion masks.

Figure F.5: A snapshot of anduin’s output, the left two tiles showing the sagittal
and coronal reformations with the predicted centroids and segmentation masks and
the two tiles on the right showing the maximum intensity projection of the subregion
mask (sagittal and coronal).

144


	Abstract
	Zusammenfassung
	Acknowledgements
	blackContents
	List of Figures
	Publication List
	TUMBlueI INTRODUCTION
	1 Foreword
	2 Background
	2.1 Anatomy of the spine
	2.2 Spine analysis in a clinical setting
	2.3 Imaging modalities for the spine
	2.3.1 Computed Tomography
	2.3.2 Magnetic Resonance Imaging


	3 Methodology
	3.1 Preliminaries: Data, Models, and Losses
	3.1.1 Model Architecture
	3.1.2 Loss

	3.2 Generative models
	3.2.1 Generative Adversarial Networks
	3.2.2 Variational Autoencoders

	3.3 Landmark detection and anatomical priors
	3.4 Point clouds and anomaly detection

	4 Summary of the Contributions

	TUMBlueII PUBLICATIONS
	5 Btrfly Net: Vertebrae Labelling with Energy-Based Adversarial Learning of Local Spine Prior
	6 Labeling Vertebrae with Two-dimensional Reformations of Multidetector CT Images: An Adversarial Approach for Incorporating Prior Knowledge of Spine Anatomy
	7 Pushing the limits of an FCN and a CRF towards near-ideal vertebrae labelling
	8 Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis

	TUMBlueIII CONCLUDING REMARKS
	9 Discussion
	10 Outlook
	Bibliography

	TUMBlueIV APPENDICES
	A Supplementary Material: Btrfly Net: Vertebrae Labelling with Energy-Based Adversarial Learning of Local Spine Prior
	B Supplementary Material: Labeling Vertebrae with Two-dimensional Reformations of Multidetector CT Images: An Adversarial Approach for Incorporating Prior Knowledge of Spine Anatomy
	C Supplementary Material: Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis
	D VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images
	E Anduin: An open-source, web-based spine segmentation tool
	F Anduin: An open-source, web-based spine segmentation tool


