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Zusammenfassung

Die vorliegende Masterarbeit untersucht Auswirkungen von Parameterunsicherheiten
auf ein nichtlineares und ein-dimensionales Grönland Eisschild Modell. Dafür wer-
den Sensitivitätsanalysen und probabilistische Analysen auf das Modell angewandt
und zu jeder dieser Analysen wird ein numerisches Framework mittels MATLAB er-
stellt.

Zunächst werden unter anderem numerische Fortsetzungsmethoden auf das Grön-
land Eisschild Modell angewendet. Basierend auf den Entscheidungskriterien, wie
Ergebnisqualität oder Performance, ist MATCONT dafür am geeignetsten.

Die Sensitivitätsanalyse umfasst die lokale Sensitivität, globale Sensitivität mit
der Sobol Methode und die Sensitivität von Bifurkationskurven. Die Modellpa-
rameter besitzen eine Wahrscheinlichkeitsdichtefunktion, für das in dieser Arbeit
betrachtete Modell wird eine uniforme Verteilung verwendet. Dabei liegt der Fokus
auf der Sobol Methode, die während dieser Arbeit in MATLAB implementiert wird.
Die Besonderheit des Codes ist, dass dieser allgemein gehalten ist und damit auch
auf andere Klimamodelle mit beliebig vielen Parametern angewandt werden kann.

Um die Sensitivität von Bifurkationskurven zu untersuchen, wird die Wasserstein-
Distanz von Bifurkationskurven berechnet und davon dann die Sensitivität mit der
Sobol Methode bestimmt. Diese Vorgehensweise wird auf Beispielmodelle ange-
wandt, um zunächst die Gültigkeit der Idee zu testen. Im Anschluss werden Verbesse-
rungsvorschläge gegeben, um diesen Ansatz künftig weiterführen zu können.

Mit der probabilistischen Analyse wird ein analytischer und numerischer Weg zur
Bestimmung der Wahrscheinlichkeitsdichtefunktion sowie der kumulierten Verteilungs-
funktion der kritischen Erdoberflächentemperatur vorgestellt. Das Ergebnis ist
dabei von den Wahrscheinlichkeitsdichtefunktionen der Modellparameter abhängig.

Die Arbeit umfasst nicht nur mathematische Herangehensweisen, sondern auch
eine ausführliche Dokumentation des MATLAB Frameworks. Damit wird es Leser*innen
ermöglicht, die Wahrscheinlichkeitsdichtefunktion der Parameter des Modells zu
ändern oder sogar auf andere Klimamodelle anzuwenden.
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Abstract

In this Master’s thesis, the impacts of parameter uncertainties on a nonlinear and
one-dimensional Greenland ice sheet model are investigated. To do this, sensitiv-
ity analyses and probabilistic analyses are applied to the model and a numerical
framework for each of these analyses is constructed using MATLAB.

First, numerical continuation methods are applied to the Greenland ice sheet
model. MATCONT is the most suitable for this purpose based on decision criteria,
such as result quality or performance.

The sensitivity analysis includes local sensitivity, global sensitivity with the Sobol
method and the sensitivity of branches of equilibria. The model parameters have
a probability density function, and a uniform distribution is used for the model
considered in this thesis. The focus is on the Sobol method, which is implemented
in MATLAB in this thesis. The special feature of the code is that it is general and
thus can be applied to other climate models with any number of parameters.

To examine the sensitivity of branches of equilibria, the Wasserstein distance of
branches of equilibria is calculated and from this the sensitivity is determined using
the Sobol method. This approach is applied to example models to first test the
validity of the idea. Suggestions for improvement are then given to further develop
this approach in the future.

Probabilistic analysis is presented as an analytical and numerical way to deter-
mine the probability density function as well as the cumulative distribution function
of the critical earth surface temperature. The result depends on the probability den-
sity functions of the model parameters.

The thesis not only provides mathematical approaches, but also detailed docu-
mentation of the MATLAB framework. This allows the reader to modify the probability
density function of the model parameters or even apply it to other climate models.
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1. Introduction

Environmental and climatological changes are one of the great threats of our times.
Knowing about the impacts of these changes is therefore of utmost importance. In
the Intergovernmental Panel on Climate Change (IPCC) assessment reports, the
“state of knowledge on climate change” is determined and topics that need more
research in the future are identified. [25] Not only are climate assessment reports
published, but also special reports such as “Global Warming of 1.5 ◦C” and “The
Ocean and Cryosphere in a Changing Climate”, to name a few. [25,62]

Ice sheets and glaciers contribute to sea level rise as they lose mass due to
enhanced warming of the climate. [62, A. 1.1, FAQ 1.1] Note that the Greenland ice
sheet alone has lost 278± 11Gt year–1 of ice mass on average, which has caused the
sea level to rise about 0.77± 0.03mmyear–1. [62, A. 1.1]

The loss of ice mass of the Greenland ice sheet can be explained through a cycle
of processes: High temperatures lead to the Greenland ice sheet losing more ice
mass, which ensures that more sunlight can be absorbed and the average surface
temperature of the Earth increases, causing more loss of ice mass in the Greenland
ice sheet, and so on. [2, Fig. 16.8] [72] Eventually, a tipping point in the Earth
system is passed such that an irreversible process is triggered and the Greenland ice
sheet can no longer grow. [62, Sec. 4.2.3.5] [72]

Hence, research questions regarding the tipping point can be investigated with
climate models. Often, in order to model processes in nature mathematically and
physically, complexity is reduced and simpler assumptions are made. [2, Ch. 16, p.456]
Ultimately, parameter uncertainties arise for these models, which are then often con-
sidered probabilistically. [69, Sec. 1.1] So, this brings us to the key goal of this thesis,
which is to analyze the impacts of parameter uncertainties of a Greenland ice sheet
model through sensitivity or probabilistic analyses. Each analysis is supported by a
numerical framework implemented using MATLAB.

At this point, we would like to emphasize that this thesis combines mathematics
and climate science. Yet, the impacts of parameter uncertainties are approached
from a mathematical standpoint, leaving interpretations that fall within the realm
of climate science to climate scientists.

The thesis is structured as follows: Chapter 2 begins with the basics of climatology.
Important terms are introduced and put into context. Next, the mathematical ba-
sics, specifically the bifurcation theory is explained. Chapter 4 then introduces the
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Greenland ice sheet model and analyzes it using numerical continuation. Thereby,
different methods are compared. To examine how small variations in a model input
affect the model output, Chapter 5 addresses local and global sensitivity analy-
ses. Following, the bifurcation and sensitivity analysis is linked using Wasserstein-
inspired as well as Wasserstein distances. Finally, in Chapter 7, the probability
density function for the critical surface temperature is calculated analytically and
numerically.

The two supervisors of this thesis are involved in the EU Horizon 2020 project Tip-
ping Points in the Earth System (TiPES). [71] “The main object [of that project]
is to better quantify the tipping elements that are present in the climate system and
to ensure that climate projections also include these.” [70] The subject of this thesis
was established with the TiPES project in mind.
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2. Climatological Fundamentals

This chapter collects basic topics necessary for understanding this work. It does not
claim to be complete, but is only a supplement to explain the basics of climate to
the mathematical reader.

The interested reader can gain more knowledge to each topic by reading the book
“Meteorology today: an introduction to weather, climate, and the environment” by
C. Donald Ahrens [2].

Sources are from C. Donald Ahrens [2] and the Intergovernmental Panel on
Climate Change (IPCC) Special Report on the Ocean and Cryosphere in a Changing
Climate [62]. Other sources are cited accordingly.

Ice Sheet, Glacier Ice sheets and glaciers cover 10% of Earth’s land area and
hold over two thirds of Earth’s freshwater. Their mass grows or shrinks depending
on atmospheric changes. The two largest ice sheets are the Greenland and Antarctic
ice sheets.

Dynamic Thinning The movement of ice sheets towards outlet glaciers or ice
streams is called ice sheet flow which causes spreading and thinning of the ice
sheet. [61] An increased flow rate is called dynamic thinning, i.e., “glacier flow ac-
celeration”. [62, p. 237]

Global Mean Surface Temperature The global mean surface temperature (GMST)
is recorded since the year 1880. [4] Historic records show the increase of the aver-
age surface temperature began around 1900. In the year 2021, the average Earth’s
surface temperature was around 0.85◦C. [4]

As we can see in Fig. 2.1, the global mean surface temperature (GMST) has
increased by approximately 1◦C since the recordings began. Although this may not
seem “much” in general, it is still alarming since the Earth’s surface temperature has
increased by 0.5◦C from 1880 to 2000 (120 years) and then again by approximately
0.5◦C from 2000 to 2020 (20 years). This shows more and rapid increase of the
GMST with progressing time. [4]

Please note, when speaking about the GMST, we refer to the temperature above
the pre-industrial level. [34]

3



Figure 2.1: Global mean surface temperature above the pre-industrial level from
1880 to 2021. [4]

Greenland Ice Sheet The Greenland ice sheet gains and loses mass through
snowfall and melting of ice shelves depending on processes in the atmosphere. Their
difference is referred to as surface mass balance (SMB). In the 1900s, mass gain and
loss was in balance. Due to increasing GMST and increase in dynamic thinning, the
SMB reduced and the Greenland ice sheet has lost more mass.

From 2006 to 2015, the global sea level has risen about 0.77 ± 0.03mmyear–1,
mostly as a result of surface melting of the Greenland ice sheet. If melted off
completely, the sea level would rise by more than 7m. [34]

The consequences of the complete melting of the Greenland ice sheet would be
flooding, disruption of the overturning circulation of the ocean, and damages on
coastal ecosystems. [34]

Tipping Point A tipping point can be defined as a “critical threshold at which a
tiny perturbation can qualitatively alter the state or development of a system”. [33,
p. 1786]

TheWorking Groups I and II of the IPCC describe in “The Ocean and Cryosphere
in a Changing Climate” a tipping point as “a critical threshold at which global or
regional climate changes from one stable state to another stable state”. [62, p. 699]

Albedo Albedo is defined as “the percent of radiation returning from a surface
compared to that which strikes it”. [2, p. G-1]
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Feedback Mechanism A feedback mechanism is a cycle of implications that
shows whether a process is strengthened (positive feedback) or weakened (negative
feedback) by circumstances. In the climatological context, one can see if the surface
temperature increases (or decreases) depending on processes affecting the Earth-
atmosphere system. This means, that the surface temperature can be increased, if
the flow of events cycles is being strengthened.

Some examples of feedback mechanisms are the water vapor-greenhouse feedback,
ice-albedo feedback and cloud feedback. Thus, feedbacks can be used to simulate
climate models more accurately. [24]

Ice-Albedo Feedback The increasing surface temperature ensures the melting
off the snow and ice layer which decreases the albedo. Hence, more sunlight can
be absorbed by the surface instead of being reflected back to space. This positive
feedback mechanism is called ice-albedo or snow-albedo feedback. [24] We can observe
the process of enhancing of the surface temperature in Fig. 2.2.

In [24], one can also notice that when the overlying atmosphere is taken into
account, the ice-albedo effect becomes a negative feedback. However, this thesis will
only consider the positive ice-albedo feedback.

Figure 2.2: Positive Ice-Albedo Feedback, inspired by [2, Fig. 16.8] and [24, Fig. 7.6].
When following the arrows, one can see how the cycle of processes is being enhanced,
thus the surface temperature getting warmer.
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Melt-Elevation Feedback The reason the critical threshold of the Greenland ice
sheet is triggered is the (positive) melt-elevation feedback. Due to increased GMST,
the ice sheet melts and thus decreases in height. With the implications explained
in the ice-albedo feedback, the surface temperature gets warmer and causes more
melting of the ice sheet. [5]

Melting Sensitivity of Ice The melting sensitivity of ice γ is defined as “increase
in surface melt rate per degree of warming”. [34, p. 1800]

Atmospheric Lapse Rate The atmospheric lapse rate Γ denotes the rate at
which the “temperature decreases linearly with the height of the ice surface”. [34,
p. 1800]
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3. Mathematical Fundamentals

The complete melting of the Greenland ice sheet could lead to serious consequences,
as we have discussed in Chapter 2. Although we can observe some fluctuations in
the surface mass balance (SMB), such as the growth of the Jakobshavn glacier since
2016, these cannot stop the increasing melting of the Greenland ice sheet due to
anthropogenic global warming in the long term. [5]

Ultimately, the melting of the Greenland ice sheet leads to surpassing a tipping
point which triggers irreversible processes, like the Greenland ice sheet not growing
again. [62] Further, exceeding the tipping point would cause the triggering of other
tipping points, for example in the Amazon rainforest and the tropical monsoon
systems and thus upsetting the balance of the Earth. [2, 5]

That is why it is important to analyze how certain preconditions affect the tip-
ping point which corresponds to the surface temperature of the Earth.

As described in Chapter 2, a tipping point can change the quality of a system and
cause it to lose its stability. From a mathematical point of view, tipping points
of a system can be described by bifurcations. [35] This is because tipping points
“are often caused by a change in the topological appearance of the system’s phase
portrait upon parameter variation”. [35, p. 2]

Consequently, we will cover fundamentals of ordinary differential equations (ODEs),
bifurcations and numerical continuation.

3.1 Introduction to Ordinary Differential

Equations

We introduce the theory of parameter dependent ordinary differential equations
(ODEs) as it forms the basis for the bifurcation theory in Section 3.2 and hence for
the analysis of the tipping points.

Definition 3.1 (Ordinary Differential Equation [8, Sec. 1.1]). Let T ⊆ R, X ⊆ Rn

and Λ ⊆ Rk be open subsets. An ordinary differential equation (ODE) that models
how a physical process evolves over time is defined as

dx(t)

dt
≡ x′ = f(t, x, λ), (3.1)
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where f : T × X × Λ → Rn is a (nonlinear) continuously differentiable function,
x ∈ X is the vector of state variables, t ∈ T is the independent variable time, and
λ ∈ Λ is the vector of parameters.

Remark 3.1 (Smooth Function [8, Sec. 1.1]). A function that is continuously dif-
ferentiable is also called a smooth function.

To address questions of existence and uniqueness of solutions, we define an initial
value problem (IVP).

Definition 3.2 (Initial Value Problem [8, Sec. 1.1]). Let (t0, x0) ∈ T ×X . Consider
an ODE as defined in Definition 3.1 Then, the pair

dx(t)

dt
≡ x′ = f(t, x, λ), x(t0) = x0, (3.2)

is called an initial value problem (IVP) and the equation x(t0) = x0 is called an
initial value.

Consider an IVP as stated in Definition 3.2. Let be λ0 ∈ Λ0. The Existence and
Uniqueness Theorem as described in Theorem 1.2 of C. Chicone can be applied to
the IVP. This theorem is one of the fundamental issues of the theory of ODEs. For
detailed information, refer to Section 1.1 of C. Chicone. [8]

We introduce a classification of ODEs as they are relevant for later results. Thus,
from now on, we consider all ODEs to be autonomous ODEs as specified in Definition
3.3.

Definition 3.3 (Autonomous ODE [8, Sec. 1.2]). An autonomous ODE is a type
of ODE that is defined as

dx

dt
≡ x′ = f(x, λ), (3.3)

where the function f is not explicitly dependent on the independent variable.

The solution curve of an autonomous ODE is called a trajectory. [75, Sec. 3.V]

Definition 3.4 (Phase Portrait [75, Sec. 3.V], [8, Sec. 1.3]). The geometric repre-
sentation of all trajectories of an autonomous differential equation in a phase plane
is called a phase portrait.

We would like to now discuss the stability of their equilibria x∗.

Definition 3.5 (Equilibrium, Steady State, Critical Point [8, Sec. 1.3]). If f(x∗, λ) =
0 holds, then x∗ is called an equilibrium, steady state or critical point.

Stability theory analyzes the behavior of the solution or steady state of an au-
tonomous ODE in the long-term despite small changes. Roughly speaking, if the
solution or steady state remains in the neighborhood of the trajectory or equilibrium,
then it is stable, otherwise unstable. [8, Fig. 1.8, Def. 1.38, Def. 1.39]
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Definition 3.6 (Notions of Stability [20, Sec. 1.5, Definition 1.5.1, p. 24]). Consider
a nonlinear ODE x′ = f(x), where x ∈ Rn and f(x) ∈ Rn.

1. “An equilibrium solution x0 of [the ODE] is stable if for each ϵ > 0 there exists
a δ > 0 such that if x(t) (t ≥ 0) is a solution to [the ODE] with ∥x(0)−x0∥ ≤ δ,
then ∥x(t)− x0∥ ≤ ϵ for all t ≥ 0.”

2. “An equilibrium solution x0 to [the ODE] is asymptotically stable if it is stable
and furthermore there exists a δ ≥ 0 such that if x(t) is a solution to [the ODE]
for t ≥ ß and ∥x(0)− x0∥ ≤ δ, then x(t) → x0 for t → ∞.”

3. “A solution to [the ODE] is unstable if it is not stable.”

3.2 Bifurcation Theory

We proceed with the bifurcation theory of one-dimensional ODEs to analyze their
behavior qualitatively. [32, Sec. 2.1] Given an ODE as in Definition 3.3, consider the
problem

f(x, λ) = 0, (3.4)

where f : Rk+1 → R is smooth. The key point of bifurcation theory is analyzing
the stability of the equilibria under variation of the bifurcation parameter λ. [32,
Sec. 2.1] [73]

Definition 3.7 (Topological Equivalence of Systems [32, Def. 2.1]). Two systems are
topologically equivalent to each other, if there exists a homeomorphism h : Rn → Rn

that maps trajectories from one system to another, preserving the direction of time.

This leads to the definition of a bifurcation.

Definition 3.8 (Bifurcation [32, Def. 2.11, p. 57]). “The appearance of a topologi-
cally nonequivalent phase portrait under variation of parameters is called a bifurca-
tion.”

“Thus, a bifurcation is a change of the topological type of the system as its param-
eters pass through a bifurcation (critical) value.” [32, p. 57] We will use bifurcation
diagrams to analyze the qualitative behavior of phase portraits. [8, 20]

Proposition 3.1 (Bifurcation Diagram [8, Sec. 1.3]). A diagram that collects all
phase portraits for different values of the parameter λ of the differential equation as
defined in Definition 3.3 is called bifurcation diagram.

We now consider saddle-node bifurcations, also called fold bifurcations as they are an
important part of this thesis. [66] The general theorem of the saddle-node bifurcation
will be given after first examining a simple exemplary ODE and its characteristics.
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Figure 3.1: Example of a saddle-node bifurcation. Visualization of the branches of
equilibria and their stability for x′ = λ− x2. [66, Fig. 2.1]

Example 3.1. [32, Sec. 3.2] [66] Consider the one-dimensional system

x′ = λ− x2. (3.5)

Let us compute and analyze the equilibria of (3.5) for different values of λ. This
shows that for λ = 0 there is an equilibrium at x∗ = 0. For λ < 0, there exist no real
equilibria. However, for λ > 0, the system has two fixed points x± = ±

√
λ. Based

on A. Spencer and I. G. Graham [66] and Definition 3.6, the steady state x− = −
√
λ

is unstable and x+ =
√
λ is stable.

This brings us to the characteristic of saddle-node bifurcations:

Proposition 3.2. [32, Sec. 3.1, Sec. 3.2] In a saddle-node bifurcation, parameter
variation leads either to a stable equilibrium and an unstable equilibrium, or to their
collision to an equilibrium, or to their disappearance.

A visualization of Example 3.1 is shown in Fig. 3.1. This type of figure is a bifur-
cation diagram. Thereby, the two solid curves for positive and negative values of x
are called branches of equilibria. [21, Sec. 3.1] The point (x∗, λ∗) = (0, 0) at which
the branches of equilibria meet is called bifurcation point, fold point, turning point,
or saddle-node. [21, Sec. 3.1] [66]
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Let us give a general theorem to saddle-node bifurcations.

Theorem 3.1 (Topological Normal Form of the Saddle-Node Bifurcation [32, Sec. 3.3]).
Consider the one-dimensional ODE as given in Definition 3.3. If the conditions

1. f(0, 0) = 0, fx(0, 0) = 0,

2. fxx(0, 0) ̸= 0, fλ(0, 0) ̸= 0,

are satisfied, then the ODE is locally topologically equivalent near the origin (x, λ) =
(0, 0) to the normal form

x′ = λ± x2, (3.6)

which is also called topological normal form of the saddle-node bifurcation.

The proof to this theorem can be found in Y. A. Kuznetsov. [32, Sec. 3.3]

3.3 Introduction to Numerical Continuation

After having introduced the theory of bifurcation analysis, we now discuss briefly
how to numerically compute and numerically visualize the branches of equilibria of
one-dimensional ODEs (stated in Definition 3.3).

Numerical continuation is a technique that uses a suitable algorithm to find equilib-
ria of the problem (3.4) introduced in the beginning of Section 3.2. [20, Sec. 2.3]
Thereby, discrete and consecutive points are computed, which approximate the
branches of equilibria. [19] Interpolating and visualizing these with a graphics pack-
age then gives the bifurcation diagram. [13,66]

There exist toolboxes and methods to perform numerical continuation. Advan-
tages of using numerical continuation are practicability, efficiency and the applica-
bility on complex models. [13,18]

Consider now Example 3.1. We want to apply numerical continuation to this prob-
lem. To do this, we use the MATLAB (Version R2022a) function vpasolve which
“solve[s] symbolic equations numerically”. [59] It is available in the Symbolic Math
Toolbox. [59]

Hence, to find a consecutive sequence of points that approximates the branches
of equilibria, we implement a for-loop that iterates over the bifurcation parameter
λ. In each iteration, vpasolve solves Example 3.1 for a λ ∈ [0, 1] and stores the
found equilibria in a solution vector.

A relevant part of the implementation is as follows

syms x ;
S = vpaso lve (=x .ˆ2 + L( i ) == 0 , x ) ;

11



Figure 3.2: Bifurcation diagram of x′ = λ− x2 using vpasolve.

Hereby, this variable is defined as a symbolic variable. [59] The complete code can
be found in the Appendix A.1. The resulting bifurcation diagram of Example 3.1
is achieved by interpolating the points from the solution vector (see Fig. 3.2). The
blue solid lines are the branches of equilibria. Given the similarity of this diagram to
Fig. 3.1, the approach of using vpasolve to numerically determining the bifurcation
diagram of ODEs is confirmed.

Note, this section is only an outlook. In Section 4.2, we will see that vpasolve is not
the only MATLAB function or package that can be used for numerical continuation.
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4. Greenland Ice Sheet Model

Passing a critical tipping point would trigger an irreversible process of complete
melting of the Greenland ice sheet. Such a tipping point can exist due to positive
melt-elevation feedback. With increasing surface temperature, the thickness of the
ice decreases, leading to potential vanishing of the Greenland ice sheet. [5]

We introduce a climate model that incorporates these features. To analyze its
tipping points and start building the framework, different numerical continuation
methods are applied to this model.

4.1 Model Introduction

In the publication “A simple equation for the melt elevation feedback of ice sheets”
by A. Levermann and R. Winkelmann, an one-dimensional nonlinear climate model
is introduced. This model is a time-evolution of the ice thickness of the Greenland
ice sheet depending on the increasing surface temperature. [34]

Hereby, the connection between the ice thickness and surface temperature represents
a self-enforcing feedback. The underlying assumptions are as follows: the “surface
melt rate depends linearly on the surface temperature and [. . .] the temperature
decreases linearly with the height of ice surface following a constant atmospheric
lapse rate”. [34, p. 1800]

The model is then derived from the Vialov profile which is “the mass conservation
equation in the shallow ice approximation for flat glacier bed” [15, p. 887] and is
given as [34]

h̃(x) = hm

(
1−

(x
L

)n+1
n

)(n/(2n+1))

(4.1)

Hereby, hm corresponds to maximum surface elevation, x is the horizontal position
and L represents the horizontal limit of the ice sheet. Further, n is Glen’s flow law
exponent. [34] In our situation, the exponent is ñ = 3 since we consider ice flow in
glaciers. [15, 34]

Notice, comparing the exponents in the Vialov profile (4.1) and Equation (4) in
A. Levermann and R. Winkelmann yields m = 2(ñ+ 1) = 8. [34]
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Starting from the Vialov profile and using further derivations explained in Section
2.1 by A. Levermann and R. Winkelmann, we get the Greenland ice sheet model. [34]

Model 4.1 (Greenland Ice Sheet Model [34]). The time-evolution of the ice thickness
of the Greenland ice sheet depending on the temperature is given by the climate model

dh

dt
= −h8 + γΓh− T. (4.2)

The parameters are the atmospheric lapse rate Γ = 5 ± 2 ◦C km−1 and the melting
sensitivity of ice γ = 4.4± 2cm year−1 ◦C−1. The ice thickness is given by h and T
is the surface temperature.

For simplicity, the units of the parameters are omitted throughout the thesis.

4.2 Methods for Numerical Continuation

Numerical continuation is applied to the Greenland ice sheet model (Model 4.1).
Thereby, we compare the MATLAB functions vpasolve and fsolve, and also the
MATLAB software MATCONT based on algorithms, implementation, benchmarking re-
sults and limitations.

Preliminaries For better comparison of the numerical continuation methods, the
parameters of Model 4.1 are set to the mid-point of the parameter ranges γ = 440
and Γ = 0.005. Recall, that the bifurcation parameter is T .

Information about Benchmarking The benchmarks are performed on a Windows
11 21H2 machine with an 11th generation Intel i7 processor with 2.80GHz and
16GB of RAM. In terms of software configuration, the MATLAB function timeit is
used for benchmarking. “In order to perform a robust measurement, [it] calls the
specified function multiple times and returns the median of the measurements.” [57]

4.2.1 vpasolve

In Section 3.3, numerical continuation was introduced using the MATLAB function
vpasolve. In the following section, we solve the Greenland ice sheet model (Model
4.1) numerically with vpasolve and visualize the corresponding bifurcation diagram.
For this purpose, we first start with the implementation. After that, we look into
benchmarking and possible obstacles encountered. For the complete MATLAB code,
see Appendix A.1.

Implementation The basic idea behind the implementation is similar as pre-
sented in Section 3.3. Solving the Greenland ice sheet model (Model 4.1) for the
fixed parameter values γ = 440 and Γ = 0.005 while varying T , where T ∈ [0, 5],
results in the equilibria h1, h2, . . . , h8, where hi ∈ R for i = 1, 2, . . . 8. Intuitively,
the ice thickness and surface temperature of the Earth are in R+. Hence, the search
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interval is restricted to [0,∞]. The MATLAB command for that part is implemented
as follows:

syms h ;
S = vpaso lve (=h.ˆ8+gamma*Gamma*h=T( i )==0, h , [ 0 I n f ] ) ;

Simultaneously in each iteration step, the current solution T is noted separately.
The reason for this implementation step is to find and mark the critical surface tem-
perature Tc. The corresponding critical ice thickness hc is calculated using Equation
(9) in [34]. These points (Tc, hc) are the tipping point, or limit point (LP), which is
depicted as the orange star in Figures 4.1a and 4.1b.

Model 4.1 is then evaluated at 500 points for the parameter values γ = 440,
Γ = 0.005, and T ∈ [0, 5]. The result can be seen in Fig. 4.1a).

Benchmark Analysis A benchmark analysis is done to analyze the performance
of the code. Therefore, we run the function vpasolve bifurcation to numerically
compute the bifurcation points of certain parameters γ and Γ (without the plotting
part) using the MATLAB function timeit. It shows the median elapsed time for the
code execution. [45,57] The result is 12.6768 seconds.

Limitations The bifurcation diagram Fig. 4.1a shows a gap in the neighborhood
around the critical point LP. If zoomed in (see Fig. 4.1b), we can observe that the
critical point LP was placed in the center of the gap. But this is not necessarily the
exact bifurcation point.

Even though the MATLAB function vpasolve has no problems with solving and
visualizing Example 3.1, it has struggles with solving the Greenland ice sheet model
(Model 4.1). Consequently, instead of this method, other algorithms should be used
to achieve more accurate results. That is why in the subsequent section we will
apply another MATLAB function that might overcome this problem.
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(a) Bifurcation diagram using vpasolve.

(b) Zoom in on the bifurcation point.

Figure 4.1: Bifurcation diagram of the Greenland ice sheet model (Model 4.1) for
the parameter values γ = 440 and Γ = 0.005 by applying the MATLAB function
vpasolve.
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4.2.2 fsolve

Next, we take a look at the MATLAB function fsolve. It is a root-finding algorithm
that uses the Newton-based method Trust-Region-Dogleg algorithm [38, 40]. Such
an algorithm is an iterative method which finds the minimum x∗ of an objective
function by approximating a model in a certain neighbourhood. [9, Sec. 1.1]

Same as the function vpasolve, this method is not specifically intended for
solving bifurcation problems numerically, but can still be used as such. Further, the
implementation principle is the same as vpasolve. The complete implementation
can be found in the Appendix A.1.

Trust-Region-Dogleg Algorithm Without going into much detail, let us ex-
plain the basic working principle of such trust-region algorithms. At each step of
the iteration, a trust-region is constructed around the iterate xk by approximating
f in the trust-region of xk. A trust-region is a region “where we trust the model
to be a faithful representation of the objective function”. [9, p. 2] This trust-region
contains a set of points that are in trust-region radius to xk. If the difference be-
tween the approximation in step k − 1 and k is sufficiently positive, then in the
next iteration step k+1, the trust-region radius and hence the trust-region is made
smaller. [9, Sec. 1.1]

The trust-region-dogleg algorithm is one of the most simple and widely used
method which joins the iterates xk with linear segments. [9, Sec. 1.1] This algorithm
solves the trust-region subproblem [38, 78]

min
d

(1
2
f(xk)

⊤f(xk) + d⊤J(xk)
⊤f(xk) +

1

2
d⊤f(xk)

⊤J(xk)d
)
, s.t. ∥Dd∥ ≤ ∆. (4.3)

Thereby, d is the search direction, D the diagonal scaling matrix, and ∆ a positive
scalar. [38]

Implementation The MATLAB function fsolve solves a nonlinear system denoted
by f(x) = 0 for x. [40] Since Model 4.1 is also nonlinear, this MATLAB function can
be applied to this model. The arguments of fsolve are the function f(x) that is to
be solved, an initial point x0 and options, with the last one being optional. [40]

The first argument is implemented in MATLAB through an anonymous function
set in R:

g i s mode l = @(h ) [ r e a l (=h.ˆ8+Gamma*gamma*h=T) ] ;

The initial points were selected as x0 = (0.1, 1)⊤. Furthermore, the options were set
to

opt ions = opt imopt ions ( @fsolve , ’ StepTolerance ’ , 1 e=20,
’ FunctionTolerance ’ , 1 e=20 , ’MaxFunctionEvaluations ’ ,
1e5 , ’ MaxIterat ions ’ , 1 e5 , ’ Display ’ , ’ i t e r ’ ) ;
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whereby the step tolerance was set from the default value 10−6 to 10−20, the ter-
mination tolerance was set from 10−6 to 10−20, the maximum number of function
evaluations was set from 100 to 105, and the maximum number of iterations was set
from the default value 400 to 105. [40]

Again, the MATLAB code iterates over T ∈ [0, 5] and is evaluated at 500 points.
In each iteration step, the equilibria h for the corresponding T are numerically com-
puted using fsolve with the above arguments.

The result for the parameter values γ = 440 and Γ = 0.005 with the initial values
(0.1, 1)⊤ can be seen in Fig. 4.2a. We observe that in comparison to the computation
using vpasolve, all bifurcation points could be found as there are no gaps.

The plotting settings, number of iteration points and also the way of finding
the bifurcation point LP are all carried out in the same way as with vpasolve (see
Section 4.2.1).

Benchmark Analysis Benchmarking analysis shows that the elapsed time for
the code execution with the intial points being (0.1, 1)⊤ is 6.8019 seconds. This
solution is quite an improvement in comparison to vpasolve.

Limitations What stands out visually is the horizontal line at in Fig. 4.2a, start-
ing at T ≈ 1.6. These are the points at which the algorithm fsolve could not find
a solution. In other words, the algorithm does not terminate after having computed
the bifurcation points and arriving at the critical temperature Tc. It still continues
until the limit for T is reached, which was set to 5 in our case. That is also why
both of the plots (Fig. 4.2a and Fig. 4.2b) have no marked LP points.

This part may be avoided by integrating a code-snippet such that the code ter-
minates if the solution for a specific T cannot be computed. Furthermore, choosing
the initial points (0, 0)⊤ leads to only one branch of equilibria, as we can see in Fig.
4.2b. Thus, choosing the right initial point is important for this algorithm.

All in all, even if some obstacles of numerical continuation using vpasolve were
avoided with fsolve, there are still small hiccups.
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(a) Bifurcation diagram with the initial values (0.1, 1)⊤.

(b) Bifurcation diagram with the initial values (0, 0)T .

Figure 4.2: Bifurcation diagrams of the Greenland ice sheet model (Model 4.1) for
the parameter values γ = 440 and Γ = 0.005 and different starting points obtained
with the MATLAB function fsolve.
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4.2.3 MATCONT

In this section, we consider a numerical continuation and bifurcation toolbox for
MATLAB, which is MATCONT. It is a GUI-MATLAB package, but the functions defined in
this package can also be used directly. [19] MATCONT can be downloaded from [60]
and as of this writing the last version is from July 2021 (Version 7p3).

In the following, we present the algorithm that MATCONT uses for numerical con-
tinuation and apply it to the Greenland ice sheet model (Model 4.1).

Pseudo-Arclength Continuation A. Spence and I. G. Graham point out in [66]
that Newton’s method has difficulties in producing results in the neighbourhood
of the bifurcation point of an ODE system because the Jacobian matrix becomes
singular.

The numerical continuation method pseudo-arclength continuation can, however,
overcome this problem. It is a predictor-corrector algorithm and consists of the steps
prediction and correction. [66] Fig. 4.3 illustrates the steps of the pseudo-arclength
continuation method.

Figure 4.3: Illustration of the pseudo-arclength continuation method based on [66]
and [19].

Consider that the points (x, λ) ∈ Rk+1 interpolating the bifurcation diagram are
points on the bifurcation curve, and thus are points of an arc S. [66] Let us assume
that there is a point xi on the curve with the tangent vector vi fulfilling fx(xi)vi = 0,
where ⟨vi, vi⟩ = 1. Here, i = 1, 2, . . . is the number of points on S. [19]

The first step is the tangent prediction: From xi, a new point

x̃0 = xi + hvi, (4.4)

with h > 0 being the stepsize is predicted. This point x̃0 is on a hyperplane g(x) =
⟨x− x̃0, vi⟩ orthogonal to the vector vi . [19, 66]
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The second step is correction: The predicted point x̃0 is corrected and thus projected
onto the curve S. To do so, apply Newton’s method to x̃0 [19, 66]

x̃k+1 = x̃j −H−1
x (x̃j)H(x̃j), j = 1, 2, . . . , (4.5)

which converges to the new point xi+1. Hereby, H(x̃) = (f(x̃), 0)⊤ and Hx(x̃) =
(fx(x̃), v

⊤
i )

⊤. [19]
Lastly, the tangent vector of the newly found point xi+1 should fulfil the following

conditions: fx(i+1)vi+1 = 0, and also [19](
fx(xi+1)

v⊤i

)
vi+1 =

(
0
1

)
. (4.6)

After having found the next approximated point xi+1 with the corresponding tangent
vector vi+1, one has to normalize this vector and apply the predictor-corrector steps
to xi+1. Meanwhile, there are several aspects to consider: [19]

� tolerance criterion: ∥f(xi)∥ ≤ ϵ for some ϵ > 0

� accuracy condition: ∥δxi∥ ≤ ϵ̃ for some ϵ̃ and δxi being the last point of the
correction step

� stepsize h: right choice of h to not miss details of the bifurcation diagram

The algorithm is called pseudo-arclength because the points of the bifurcation are
approximated, hence pseudo, on an arc with an arc length as the distance to the
next point. [12,66]

Implementation The idea is to implement a MATLAB function that numerically
computes the bifurcation points as well as the corresponding tangent vectors and
indicates the location and type of the bifurcation point for our Model 4.1. This
function is bifurcation points and has two inputs: γ and Γ, which are scalars.
The code can be found in Lst. 4.1.

The Model 4.1 has the three parameters γ (gamma), Γ (Gamma), and T (T), while
the last one is the bifurcation parameter. Since we know that at (T∗, h∗) = (0, 0)
is an equilibrium, we set the initial point for the temperature to be 0 (line 2).
Furthermore, the bifurcation parameter is the active parameter, which is why we
set ap = 3 (line 3).

The initial tangent vector v0 of x0 is optional. If it is not specified, then this will
be computed by MATCONT. [19] Then, the initial points are computed via init EP EP

(MATCONT function) in line 4. Its first input parameter is our model. This is created
using the GUI. [19] Fig. 4.4 shows how the ODE is introduced.

The maximum number of points on the curve were set to 100 and by marking
the singularities as 1, it was flagged that our problem has a singular matrix. [19]
To perform a numerical continuation, the function cont from MATCONT is executed
in line 9 of Lst. 4.1. It has several input arguments: @equilibrium, initial points
x0 and v0, and settings. [19]
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Figure 4.4: System definition, similar to [19, Fig. 5].
.

By calling the function @equilibrium, we specify that we want to compute the
equilibria of our problem. [19]

In order to be able to continue computing with the results in later analyses,
we store them in a structured array (MATLAB function struct). [56] It contains the
parameter values (gamma and Gamma), points of the curve (x and v), and also infor-
mation about found singularities (s).

1 function bfpts = bifurcation_points(gamma , Gamma)

2 p = [gamma; Gamma; 0];

3 ap = 3;

4 [x0 ,v0] = init_EP_EP (@ IceSheet_LW ,0,p,ap);

5 opt = contset;

6 opt = contset(opt ,'MaxNumPoints ' ,100);

7 opt = contset(opt ,'Singularities ' ,1);

8

9 [x,v,s,h,f] = cont(@ equilibrium ,x0 ,[],opt);

10

11 bfpts = struct('gamma ',gamma ,'Gamma ',Gamma ,

12 'x',x,'v',v,'s',s);

13 end

Listing 4.1: Numerical continuation of the Greenland ice sheet model (Model 4.1).
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Figure 4.5: Bifurcation diagram of the Greenland ice sheet model (Model 4.1) for
the parameters γ = 440 and Γ = 0.005 using MATCONT.

The bifurcation diagram for γ = 440 and Γ = 0.005 is depicted in Fig. 4.5. Com-
pared to the previous plots (Fig. 4.1a and Fig. 4.2a), the result is without any
issues: The code terminates after having found all points, it has no obstacles with
initial points (here only one initial point is needed which was easy to calculate) and
solutions in the neighborhood of the bifurcation point do exist.

This plot can be obtained by using the MATCONT file cpl.m (see Appendix A.1).
The options for plotting regarding color and text position of LP were slightly mod-
ified by the author.

Benchmark Analysis Before executing the benchmark analysis, the maximum
number of points was set to 500 to fairly compare the MATCONT performance with the
other methods used for numerical continuation in Chapters 4.2.1 and 4.2.2. Note,
that this means that the bifurcation diagram may consist of 500 points.

The median elapsed time for the code execution is 0.1548 seconds which is a
significant improvement compared to the other two methods.
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Limitations There are some minor disadvantages of MATCONT. The toolbox must
be downloaded and consumes about 5.4MB of disk space. Also, the user must get
familiar with the package since at first, it is complicated to operate. [13,60]

4.2.4 Comparison

As we have seen, the methods to numerically solve the Greenland ice sheet model
(Model 4.1) produce different bifurcation diagrams.

The first two considered methods vpasolve and fsolve exhibited difficulties.
The former displayed problems regarding the computation of points around the
bifurcation point while the latter did not terminate after having computed the nec-
essary bifurcation points and was highly dependent on the initial values.

The MATCONT toolbox, on the other hand, did show none of the aforementioned
issues and, as a bonus, was significantly faster. To be exact, around 82 times faster
than using vpasolve and around 44 times faster than fsolve.

To put it in a nutshell, the numerical continuation with MATCONT is preferable
over the other methods. This is especially due to the more accurate computation of
the bifurcation point and its visualization.

Therefore, in further analyses, the MATLAB function bifurcation points created
in Section 4.2.3 for using MATCONT will be used.
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5. Sensitivity Analysis

In order to better capture processes in nature, their mathematical models are getting
more and more complex. [7] An important aspect during model selection is perform-
ing a sensitivity analysis. With this, one can see how small variations in the input
parameters influence the output of the model. [7, 36] From that, it may be possi-
ble to adjust the system or pay more attention to certain parameters. A parameter
with a high influence on the model output is called sensitive. [36, Sec. 6.5] [11,64,73]

There are various methods for performing sensitivity analysis. These methods in-
clude the local and the global sensitivity analysis as well as the direct and the
indirect method. [36, Sec. 6.5] [11,64,73,77] We focus in this thesis on the first two
methods. After defining and explaining these, they are applied to the Greenland ice
sheet model 4.1.

5.1 Local Sensitivity Analysis

To perform local sensitivity analysis on a model, each parameter is considered indi-
vidually. This means that all parameters except for one are fixed. The parameter
we are interested in is then varied slightly. [36, Sec. 6.5.1]

Let us consider the ODE as stated in Definition 3.1. The “change in the solution with
respect to the parameter” is expressed through the partial derivatives. [36, p. 140]
This brings us to the definition of local sensitivity.

Definition 5.1 (Local Sensitivity [36, Sec. 6.5] [11,64,73]). Local sensitivity is the
change of the solution of differential equations in relation to the parameter

Sλ(t) =
dx(t, λ)

dλ
. (5.1)

More specifically in scalar notation,

Si;λ(t) =
dxi(t, λ)

dλ
. (5.2)

The sensitivity may also be called dynamic sensitivity because the model outputs
are time-dependent trajectories. [64]
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Figure 5.1: Local sensitivity analysis of the ordinary differential equation x′(t) =
px(t), x(0) = 2 for varying parameter values p ∈ {−1.9,−2.0,−2.1}. This Figure is
similar to [36, Fig. 6.5].

Example 5.1. Let us apply the definition onto a simple example. For this purpose,
let T ∈ R, X ∈ R and Λ ∈ R be open subsets. Consider an IVP as stated in
Definition 3.2

x′(t) = f(t, x, p) = px(t), x(0) = 2, (5.3)

where f : T ×X×Λ → R and p ∈ R. Further, (t0, x0) ∈ T ×X , where t0 = 0, x0 = 2.
With the Existence and Uniqueness Theorem 1.2 from [8], there exists a unique
solution x(t) = 2 exp(pt) (see Sec. I.1.VII., separation of variables in [75]). Using
Definition 5.1, the local sensitivity of the parameter p is

Sp(t) =
d

dp
2 exp(pt) = 2t exp(pt). (5.4)

Fig. 5.1 depicts the sensitivity Sp(t) for different values of the parameter p. For the
implementation, refer to Appendix A.2. We begin our analysis by considering only
case p = −2 (blue solid line). The sensitivity curve has a maximum at t ≈ 0.5. This
peak is an indicator that the parameter is particularly sensitive at this point. As t
progresses, the sensitivity approaches zero. This being said, the parameter p has a
large influence on the result of the function around the peak value t ≈ 0.5. Later
this effect weakens.
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Let us now compare the sensitivity curves with each other for small variations of the
parameter p. The difference between the curves is not large, but for increasing values
of p the peak becomes stronger and thus the parameter becomes more sensitive. [36,
Def. 6.4]

All in all, Fig. 5.1 shows that the parameter p is locally sensitive. This is because
as the parameter increases, so does the peak. [36, Sec. 6.5.1]

5.2 Global Sensitivity Analysis using Sobol Method

In this section, we look at global sensitivity analysis which is an extension of local
sensitivity analysis. [36, Sec. 6.5.1] [11] The goal is to analyze all parameters at
once, and also to see the interaction between the parameters in the whole input
space. [3, 79] By performing such a global analysis, one can not only see how sen-
sitive each parameter is, but also which parameter combinations affect the output
and how the parameters of the model interact with each other. [23,79]

There are various methods to perform global sensitivity analysis. Common tech-
niques are: weighted average of local sensitivity analysis, partial rank correlation
coefficient, multi-parametric sensitivity analysis, Fourier amplitude sensitivity anal-
ysis, and Sobol method. [79, Tab. 1]

We focus on the Sobol method because it is variance-based and thus one can
determine to what degree an input parameter influences the variability of the out-
put. [3] Further, in comparison to other mentioned techniques, the Sobol method
has advantages in model independence, it can consider nonlinear relationships, and
it is robust. The only negative aspect is that it is not computationally effective. [79]

In the following, the Sobol method is defined, explained and implemented.

5.2.1 Definition of the Sobol Method

The global sensitivity computed using the Sobol method is the ratio of the variance
of the analyzed parameter or parameters to the variance of the entire model. Thus,
the one-way, two-way, three-way etc. parameter interactions can be captured. [23,79]

The model we are interested in is defined through the function

f(x) = f(x1, x2, . . . , xn) (5.5)

with x = (x1, x2, . . . , xn) being the input parameters. We define the function f on
the n-dimensional unit cube [23,79]

Kn = {x : 0 ≤ xi ≤ 1, i = 1, . . . , n}. (5.6)
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Given that the mean f0 =
∫ 1

0
f(x) dx is a constant and “the integral of every sum-

mand over any of its own variables is zero” [3, p. 101], the function f can be decom-
posed into the sum [3,23,79]

f(x) = f0 +
n∑

i=1

fi(xi) +
n∑

i=1,i ̸=j

fij(xi, xj) + . . .+ f1...n(x1, . . . , xn). (5.7)

In the publications [65] and [79], this decomposition is also referred to as analysis
of variance (ANOVA) representation.

Provided that f is integrable in Kn, the decomposition terms can also be written
as [23,79]

fi(xi) =

∫ 1

0

. . .

∫ 1

0

f(x)
∏
k ̸=i

dxk − f0,

fij(xi, xj) =

∫ 1

0

. . .

∫ 1

0

f(x)
∏
k ̸=i,j

dxk − fi(xi)− fj(xj)− f0.

(5.8)

Note, that fi is the term for one-way parameters, fij for two-way parameters, and
so on. [23]

Now that the prerequisites have been introduced, we can give the definition for the
partial and total variance since the Sobol method is variance-based as explained at
the beginning of the chapter. [3]

Definition 5.2 (Partial Variance [3,23]). The partial variance Di for the respective
parameter i is defined as

Di =

∫ 1

0

f 2
i dxi. (5.9)

Definition 5.3 (Total Variance [3, 23]). D is the total variance

D =

∫
Kn

f 2(x) dx− f 2
0 , (5.10)

which can also be written as the sum of all partial variances

D =
n∑

i=D

Di +
n∑

i=1,i ̸=j

Dij + . . .+D1...n. (5.11)

To determine the value of the partial variance Dij, we need numerical computation.
This is be discussed in Section 5.2.2.

The only thing remaining for this section is to define the Sobol sensitivity indices.
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Definition 5.4 (Sobol Sensitivity Indices [79]). The Sobol sensitivity indices for
the i-th parameter are given by

Si =
Di

D
, (5.12)

and the Sobol sensitivity indices for the interaction of the i-th and j-th parameter is

Sij =
Dij

D
. (5.13)

Proposition 5.1 (Property of Sobol Sensitivity Indices [23, 79]). The sum of all
Sobol sensitivity indices is 1

1 =
n∑

i=1

Si +
n∑

i=1,i ̸=j

Sij + . . .+ S1...n. (5.14)

From the number n of parameters one can also determine the number of terms.
Then, there are 2n − 1 parameter combinations. [23]

5.2.2 Numerical Computation

The numerical implementation of the Sobol method is based on the techniques de-
scribed in “Sensitivity measures, ANOVA-like techniques and the use of bootstrap”
by G. E. B. Archer, A. Saltelli and I. M. Sobol. [3]

The Sobol method can be performed with Monte Carlo integrals, a numerical
method for simulation and integration. [3, 6]

Definition 5.5 (Monte Carlo Integration [6]). Let x be a random variable that is
uniformly distributed over [0, 1]. Further, consider a sequence {xn} that is sampled
from the uniform distribution. In Monte Carlo integration, the one-dimensional
unit interval I(f) =

∫ 1

0
f(x) dx is approximated empirically by

IN(f) =
1

N

N∑
n=1

f(xn). (5.15)

By the Strong Law of Large Numbers, IN(f) converges to I(f) for N → ∞.

The mean and variance of the model output f (introduced in Section 5.2.1) are
approximated by Monte Carlo integrals as given in Definition 5.5. Therefore, for
each parameter xi, i = 1, . . . , n, a Sobol LP T number sequence consisting ofN points
is generated. This is a low-discrepancy sequence which consists of quasirandom
numbers which converge fast and perform better than other sequences. [3, 23]

f̂0 =
1

N

N∑
m=1

f(xm),

D̂ =
1

N

N∑
m=1

f 2(xm)− f̂ 2
0 .

(5.16)
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To numerically obtain the partial variances Di, Dij, Dijk, and so on, the correspond-
ing equations are also estimated via Monte Carlo integrals. The reformulation in [23,
Eq. 22] shows the approximation for the partial variance Di, which is D̂i:

Proposition 5.2 (Estimation of Di [23]). The partial variance Di is approximated
by Monte Carlo integrals and is given by

D̂i =
1

N

N∑
m=1

f
(
x
(1)
−i,m, xi,m

)
f
(
x
(2)
−i,m, xim

)
− f̂ 2

0 . (5.17)

Let us now make clear where the input parameters xi,m, x
(1)
−i,m and x

(2)
−i,m come from

and the reasoning behind this. For further explanation, we introduce the following
notation [3]

x−i,m = (x1,m, . . . , xi−1,m, xi+1,m, . . . , xn,m), (5.18)

where i = 1, . . . , n and m = 1, . . . , N .

Example 5.2. To demonstrate the notation given in Equation (5.18), let us look
at an example: x−1,m = (x2,m, x3,m, x4,m, . . . , xn,m).

The publication of Archer, Saltelli and Sobol suggests to generate three Sobol LP T

number sequences, each of dimension N × n. Then, xi,m is at the m-th stage of
the Monte Carlo process and takes values from the i-th column of the first LP T

sequence. With Equation (5.18) and the explanation from Example 5.2, x
(1)
−i,m takes

values from all columns except the i-th from the second LP T sequence. Similarly,
x
(2)
−i,m takes values from all columns except the i-th from the third sequence. [3]
Note that xi,m occurs twice in the input. The reason for this is enhancing the

effect of the considered parameter and thus seeing how the result is affected by it. [3]

Figure 5.2: Illustration of the numerical computation of the Sobol method based on
the explanations in [3].
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An example for D̂1 is given by the illustration in Fig. 5.2. The matrices are the
respective Sobol LP T sequences of dimension N × n. The orange highlighted area
(left) is the considered parameter x1,m, the blue area (middle) is x

(1)
−1,m, and lastly

the green area (right) is x
(2)
−1,m. It is emphasized, that in the multiplication for each

step, the considered parameter i stems from the same sequence (orange; left), while
the other parameters each are from different sequences.

Analogously to the notation x−i,m from Equation (5.18), we introduce

x−i,j,m = (x1,m, . . . , xi−1,m, xi+1,m, . . . , xj−1,m, xj+1,m, . . . , xn,m), (5.19)

where i < j and i = 1, . . . , n, j = 1, . . . , n. We use this notation to approximate the
partial variance Dij of two parameters i and j. [3]

Proposition 5.3 (Estimation of Dij [23]). The approximated partial variance of the
two-way parameter interaction Dij is formulated as

D̂ij =
1

N

N∑
m=1

f
(
x
(1)
−i,j,m, xi,m, xj,m

)
f
(
x
(2)
−i,j,m, xi,m, xj,m

)
− D̂i − D̂j − f̂ 2

0 . (5.20)

Here, four inputs are needed. This is because two parameters, namely i and j, are
considered and the effect of these two needs to be enhanced.

Finally, the equations for the numerically approximated Sobol sensitivity indices Ŝi

can be derived using Definition 5.4.

Proposition 5.4 (Estimation of Sobol Sensitivity Indices [23]). The Sobol sensitiv-
ity indices Si can be approximated by Monte Carlo integrals as

Ŝi =
D̂i

D̂
. (5.21)

The Sobol sensitivity indices for the two-way, three-way, and so on, parameter in-
teractions are estimated analogously.

Using the Sobol method and its numerical implementation has the advantage of
being computationally efficient. [3] With this numerical computation at hand, we
can now continue to implement this method in MATLAB.

5.2.3 MATLAB Implementation

The Sobol method performed with Monte Carlo integrals presented in Section 5.2.2
is implemented in MATLAB. Therefore, the function sobol method is written in a way
that the partial variances and Sobol indices of any model can be computed. The
code can be found in Lst. 5.1 and is explained hereafter in further detail.
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The function sobol method takes the following input parameters: an integrable
function f, the number of parameters n, the number of points N, and also three
N × n-dimensional matrices, each containing Sobol LP T sequences as explained in
Section 5.2.2 and Fig. 5.2. These matrices are referred to as matrix current (or-
ange/left, Fig. 5.2), matrix sample (blue/middle, Fig. 5.2), and matrix resample

(green/right, Fig. 5.2).
The code outputs are the matrices D and S which each have the dimension

(
n

⌈n/2⌉

)
×n.

Hereby, D contains the partial variances and S the corresponding Sobol indices. The
structure of these matrices is explained shortly.

First the approximated mean f̂0 (f0 hat) and approximated variance D̂ (D hat) are
computed according to Equation (5.16) (lines 2 and 3). Both f̂0 and D̂ take their
inputs from the i-th column in xi,m, i.e. matrix current.

In line 6, an empty matrix D for the partial variances D̂i, D̂ij, . . . is created. The
entries are then filled in the for-loop, starting in line 8. Its structure is constructed
in such a way that each column holds the indices for the one-way, two-way, etc.
parameter interactions.

This means, for n = 4 parameters, the matrix D has the dimension
(
4
2

)
× 4 and

consists of the following indices:

1 12 123 1234
2 13 124 −
3 14 134 −
4 23 234 −
− 24 − −
− 34 − −

One can obtain the indices of each column by creating a vector s with the one-way,
two-way, etc. parameter interactions using binomial coefficients (line 9). [47]

Another for-loop starting in line 12 is run to prepare for the input of the partial
variance as introduced in Proposition 5.2. Therefore, two matrices A and B are con-
structed (lines 13 and 14) and filled (lines 17 to 24). Hence, the matrix A constitutes

the input (x
(1)
−im, xim), whereas B is (x

(2)
−i,m, xi,m).

As visualized in Fig. 5.2, the values for the considered parameter are taken from
the corresponding row (or rows) from matrix current. We get x

(1)
−i,m and x

(2)
−i,m from

the corresponding columns of matrix sample and matrix resample, respectively.
The computation of the partial variances D̂i, D̂ij, . . . differs in the code for one-way
parameter interactions or two- and more-way parameter interactions. The former
uses D i = 0 (line 29, see Proposition 5.2) while the latter uses the sum of D(a,i-1)
(line 27, see Proposition 5.3).

So, in the sense of the code, the respective columns of the last iteration are
summed to be subtracted later as indicated in the formula. This means that the
part −(D̂i + D̂j) of the equation stated in Proposition 5.3 is subtracted due to the
intuition described in T. Homma and A. Saltelli. [23]

The matrix S of Sobol indices can be determined using Proposition 5.4 which
has the same structure as matrix D.
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1 function [D, S] = sobol_method(n, N, fct ,

matrix_current , matrix_sample , matrix_resample)

2 f0_hat = sum(fct(matrix_current))/N;

3 D_hat = sum(fct(matrix_current).^2)/N - f0_hat ^2;

4

5 vec = 1:n;

6 D = zeros(nchoosek(n,round(n/2)),n);

7

8 for i = 1:n

9 s = nchoosek(vec ,i);

10 k_size = size(s,1);

11

12 for j = 1: k_size

13 A = zeros(N,n);

14 B = zeros(N,n);

15 a = s(j,:);

16

17 for k = 1:size(a,2)

18 A(:,a) = matrix_current (:,a);

19 B(:,a) = matrix_current (:,a);

20 end

21

22 b = setdiff(vec ,a);

23 A(:,b) = matrix_sample (:,b);

24 B(:,b) = matrix_resample (:,b);

25

26 if i ~= 1

27 Di = sum(D(a,i-1));

28 else

29 Di = 0;

30 end

31

32 D(j,i) = sum(fct(A).*fct(B))/N - f0_hat ^2 - Di;

33

34 end

35 end

36

37 S = D/D_hat;

38 end

Listing 5.1: Implementation of the Sobol method with Monte Carlo integrals using
MATLAB. It is based on the approach described in [3].
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5.2.4 Validation of the Sobol Approach

The implementation sobol method (see Lst. 5.1) is now verified with the analytical
as well as computational results of the Ishigami and Homma model (Model 5.1) since
these results are known from Section 3 in “Importance measures in global sensitivity
analysis of nonlinear models” by T. Homma and A. Saltelli. [23]

Model 5.1 (Ishigami and Homma Model [27]). The model introduced in T. Ishigami
and T. Homma is a non-monotone and nonlinear function

h(x1, x2, x3) = sin(x1) + a sin(x2)
2 + bx4

3 sin(x1), (5.22)

with the variables a and b.

The three parameters x1, x2, x3 have the uniform probability density function (PDF)
[23,27]

fi(xi) =


1

2π
, for xi ∈ [−π, π], i = 1, 2, 3

0, else,
(5.23)

The variables of Model 5.1 are selected as a = 7 and b = 0.1. [23, 27]

Before we can execute sobol method, the input arguments of the code must be
prepared. These steps are individual depending on the model and user preferences.
The explanations for this example can be used as a basis.

The first step is to implement the Ishigami and Homma function h (see Lst.
5.2). Notice, the function parameters x1, x2 and x3 are expressed as the columns of

x. This later facilitates the computation of f(x
(1)
−im, xim) and f(x

(1)
−im, xim), respec-

tively, since these inputs were constituted through the matrices A and B, respectively.

1 function y = ishigami_homma(x)

2 a = 7; b = 0.1;

3 y = sin(x(:,1))+a*sin(x(:,2)).^2+b*x(:,3) .^4.* sin(x

(:,1));

4 end

Listing 5.2: Implementation of the Ishigami and Homma function. [27]

It remains the step of creating the matrices matrix current, matrix sample, and
matrix resample. The code for this can be found in Lst. 5.3.

Therefore, a 3n-dimensional Sobol LP T number sequence p is generated using
the MATLAB function sobolset (line 4). Further, it is recommended to skip the first
entries since these are often zero and thus the sequence is unbalanced. [54] In line
5, we take the first N entries from the Sobol LP T number sequence with net. [48]
Hence, x forms the basis for the generation of the matrices just mentioned.

The Sobol LP T sequence is a low-discrepancy sequence, which means that its
deviation from a uniform distribution is very low. [10, 5.5] [63] For this reason, we
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assume the Sobol LP T sequence to be uniformly distributed in [0, 1]n. This eases
the computation regarding the transformation of random variables.

With this being said, matrix current is an N ×n-dimensional matrix with val-
ues between −π and π (lines 7, 8 and 10). The same procedure is applicable to the
matrices matrix sample (line 11) and matrix resample (line 12).

After generating the input arguments, we can now compute the partial variances as
well as the Sobol indices for the Ishigami and Homma function h with sobol method

(line 14).

1 n = 3;

2 N = 2^11;

3

4 p = sobolset (3*n, 'skip', 1e3);

5 x = net(p,N);

6

7 lower_bounds = [-pi -pi -pi];

8 upper_bounds = [pi pi pi];

9

10 matrix_current = x(:,1:n).*[ upper_bounds - lower_bounds

]+ lower_bounds;

11 matrix_sample = x(:,(n+1):2*n).*[ upper_bounds -

lower_bounds ]+ lower_bounds;

12 matrix_resample = x(: ,(2*n+1) :(3*n)).*[ upper_bounds -

lower_bounds ]+ lower_bounds;

13

14 [D, S] = sobol_method(n, N, @ishigami_homma ,

matrix_current , matrix_sample , matrix_resample)

15

16 X = categorical ({'x_1','x_2','x_3'});

17 X = reordercats(X,{'x_1','x_2','x_3'});

18 bar(X, [S(1,1), S(1,1)+S(1,2)+S(2,2)+S(3,1); ...

19 S(2,1), S(2,1)+S(1,2)+S(3,2)+S(3,1); ...

20 S(3,1), S(3,1)+S(2,2)+S(3,2)+S(3,1)]);

21 xlabel('Parameters ');

22 ylabel('(Total) Sobol Sensitivity Indices ');

23 legend('$$\hat{S}$$','$$\hat{S}_T$$','Interpreter ','

Latex ');

24 ylim ([0 1])

Listing 5.3: Preparation, execution and visualization of the Sobol method for the
Ishigami and Homma model (Model 5.1).
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The outputs from sobol method are compared side by side with the analytical (ex-
act) results [23, Eq. 50-57, Table 2, Table 4] and can be viewed in Table 5.1. Further,
the numerical results are visualized in the form of a bar plot (see Fig. 5.3, lines 16-
24), which will be discussed later.

Since there are n = 3 parameters, the number of parameter interactions is 23 −
1 = 7. [23] Thus, the first column of Table 5.1 shows these one-way, two-way,
and three-way parameter interactions. While Di are the values for the analytically
computed partial variances, D̂i are the values that resulted from the sobol method.
Further, the analytical Si and numerical Ŝi values of the Sobol indices are compared.

The last two columns contain the (analytical and numerical) values of the total
Sobol indices ST i and ŜT i. These are not direct outputs of the code and must be
calculated separately.

Definition 5.6 (Total Sobol Indices [79]). The total Sobol indices indicate how
much influence a single parameter has in total, i.e.,

STi
= Si +

n∑
i=1,i ̸=j

Sij + . . .+ S1...i...n. (5.24)

From Definition 5.6, it can be implied that the estimation of the total Sobol indices
is given as ŜTi

= Ŝi +
∑n

i=1,i ̸=j Ŝij + . . .+ Ŝ1...i...n.

In Table 5.1, the analytical and numerical results obtained with the Sobol method
are summarized. The analytical calculations come from T. Homma and A. Saltelli
and the numerical results from the execution of function sobol method, as described
earlier in this section.

First of all, we would like to emphasize that the results of the analytical and nu-
merical calculations are quite identical as the difference between the numerically and
analytically calculated results is very small. Slight deviations are due to rounding
errors.

Variables Di D̂i Si Ŝi ST i ŜT i

(exact) (approx.) (exact) (approx.) (exact) (approx.)
x1 4.3459 4.3320 0.3138 0.3138 0.5574 0.5620
x2 6.125 6.0733 0.4424 0.4400 0.4442 0.4523
x3 0.0 0.0364 0.0 0.0026 0.2410 0.2549
x1x2 0.0 0.0383 0.0 0.0028 -/- -/-
x1x3 3.3737 3.3507 0.2436 0.2428 -/- -/-
x2x3 0.0 0.0952 0.0 0.0069 -/- -/-
x1x2x3 0.0 −0.1229 0.0 −0.0089 -/- -/-

Table 5.1: Analytical and computational results of the partial variances, Sobol in-
dices and total Sobol indices of the Ishigami and Homma model (Model 5.1). The
exact results are from [23, Eq. 50-57, Table 2, Table 4] and the approximated values
are results from the output of the MATLAB code sobol method.
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Figure 5.3: (Total) Sobol sensitivity indices of the Ishigami and Homma function.
The visualization is based on [79, Fig. 3].

Next, let us look at the parameter interactions. They indicate that between the
parameters x1 and x2, and also x2 and x3, is no interaction due to S12 = 0 and
S23 = 0. Also, the three-way sensitivity indices S123 show no interaction. [79] That
the partial variance D3 is zero is an indicator that the parameter x3 is negligible for
Model 5.1. Nevertheless, it is not since there is a parameter interaction between x1

and x3. [23]
From Definition 5.6, we deduce that the total Sobol indices can only be calculated

for the parameters x1, x2, and x3. This can be seen from the empty cells in Table
5.1.

Ultimately, the results in Table 5.1 show that the MATLAB code sobol method

yields the correct results and can be used for further analyses.

Let us now plot the first-order sensitivity indices and the total sensitivity indices
side by side. [79, Fig. 3]. The former is given by the blue bar (left, Fig. 5.3) and
the latter by the orange bar (right, Fig. 5.3).

By looking at the orange bars (right), we observe that the parameter x1 affects
Model 5.1 by almost 60%, x2 by approximately 45%, and the parameter x3 affects
the Model 5.1 by 25%. The results also hint, that the parameter x1 is the more
critical since Sx1 has the highest value. [79]
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Finally, we would like to emphasize once again that global sensitivity analysis using
the Sobol method is from now on done using the implementation sobol method.

5.3 Analysis of the Greenland Ice Sheet Model

To identify the sensitivity of the parameters and thus the quality of the model, we
propose the following sensitivity analysis framework: First, we analyze the local
sensitivity of the Greenland ice sheet model (Model 4.1). Second, we analyze the
global sensitivity of the critical temperature. Lastly, we analyze the global sensitivity
set of all tipping points. With this, we get a comprehensive overview of the behavior
of the model in question and can evaluate its quality.

5.3.1 Local Sensitivity of the Greenland Ice Sheet Model

In this section, we want to determine the local sensitivity of the Greenland ice sheet
model (Model 4.1) to analyze whether the parameters are well-suited and how the
model output reacts to small changes of the parameters. The corresponding imple-
mentation can be found in Appendix A.2.

In agreement with Definition 5.1, the solution to this problem is required. However,
this is difficult to solve analytically. Thus, the ODE is simplified by using the
approximation approach:

h′(t) = −h8(t) + γΓh(t)− T ≈ γΓh(t)− T +O(h8). (5.25)

Since the local sensitivity is the change of the solution in relation to the parameter
(see Definition 5.1), approximating the ODE (Equation (5.25)) will not affect the
result of the local sensitivity because the part−h8(t) does not contain the parameters
γ, Γ, or T .

The approximated ODE (Equation (5.25)) is inhomogeneous. Its general solution
can be found with the help of W. A. Adkins and M. G. Davidson. [1, p. 53] First,
the homogenous ODE h′

hom(t) = γΓh(t) is solved with separation of variables [75,
Sec. I.1.VII]

hhom(t) = c exp(γΓt), (5.26)

where c is a constant factor in R. Next, the particular solution of h′
p(t) = −T is

solved according to [1, p. 53]

hp(t) = exp

(∫
γΓ dt

) ∫ (
(−T ) exp

(
−
∫

γΓ dt

))
dt =

T

γΓ
. (5.27)
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Then, the general solution of the simplified ODE (Equation (5.25)) is the sum of
the homogenous and particular solution, which is [1, p. 53]

h(t) = c · exp(γΓt) + T

γΓ
. (5.28)

If we choose the initial condition to be h(0) = 1+ T
γΓ
, then it is c = 1 and the ODE

(5.25) has the corresponding solution [75, p. 12]

h(t) = exp(γΓt) +
T

γΓ
. (5.29)

Remark 5.1. Choosing a different initial condition leads to a different correspond-
ing solution of the ODE. This also results in a different local sensititivity. In this
thesis, we will not compare the sensitivity results for different initial conditions.

Let us now apply Definition 5.1 to each parameter of the solution 5.29. The local
sensitivity of the melting sensitivity of ice γ is given by

Sγ(t) =
1

Γt
exp(γΓt)− T

γ2Γ
, (5.30)

the local sensitivity of the atmospheric lapse rate Γ is

SΓ(t) =
1

γt
exp(γΓt)− T

Γ2γ
, (5.31)

and lastly, the local sensitivity of the surface temperature T is

ST (t) =
1

γΓ
. (5.32)

Let us start with the analysis of the sensitivity of γ which is shown in the left graph
in Fig. 5.4. Further, set Γ at 0.005 and T at 1.6.

As can be seen in the graph, the sensitivity curve rises faster after a certain point.
This means, the γ parameter becomes more sensitive as time progresses. Thus, the
melting sensitivity of the ice γ has a larger effect on the model after a certain point.
Looking at small variations of the melting sensitivity γ, we find that the curves of
Sγ(t) differ slightly. However, the rapid increase remains the same.

The right graphs in Fig. 5.4 show the sensitivity of the atmospheric lapse rate Γ.
The curves SΓ(t) are obtained by fixing γ = 440 and T = 1.6. Again, it can be seen
that the parameter Γ becomes more sensitive over time. The parameter values of Γ
are varied slightly around 0.005 to see whether small variations change the output.
The curves are equally spaced and behave similarly.

Overall, the distance between the curves Sγ(t) is close to zero until T ≈ 1.6
and thereafter their distance is approximately equal as time progresses. Yet, for the
sensitivity curves SΓ(t) on the left, the individual curves gradually increase.

Nonetheless, one can say that both the melting sensitivity of ice γ as well as the
atmospheric lapse rate Γ have influence on the outcome. Therefore, the parameters
of Model 4.1 are not negligible.
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Figure 5.4: Local sensitivity analyses Sγ(t) and SΓ(t) of the ice sheet model h′(t) =
γΓh(t)− T +O(h8), h(0) = 1 + T/(γΓ). Inspired by [36, Fig. 6.5].

Notice from Equation (5.32) that for fixed values of γ and Γ, the local sensitivity
of the temperature ST (t) is a straight line. Thus, we cannot make any significant
statements about the local sensitivity of the surface temperature.

5.3.2 Sobol Method applied to the Critical Temperature

In this section, we analyze the global sensitivity of the critical temperature Tc using
the Sobol method. For this, the equation for the critical temperature is needed.
To obtain it, we determine the extremum of the Model 4.1 as suggested in the
publication of A. Levermann and R. Winkelmann. [34]

Proposition 5.5 (Equation of the Critical Temperature [34]). The formula for the
critical temperature Tc is given by

Tc = −
(
γΓ

8

)8/7

+ γΓ

(
γΓ

8

)1/7

= 7

(
γΓ

8

)8/7

. (5.33)

Proof. To get the equation for the critical temperature Tc, derive the right-hand
side of Model 4.1 with respect to h

d

dh
(−h8 + γΓh− T ) = −8h7 + γΓ. (5.34)

Then, set this derivative (Equation (5.34)) equal to zero and solve for h. This results
in the critical surface elevation of the ice sheet hc

hc =

(
γΓ

8

)1/7

. (5.35)
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Next, put the equation for hc (Equation (5.35)) into the right-hand side of Model 4.1
and set this equation equal to zero. Solving for T gives the formula for the critical
temperature Tc:

Tc = −
(
γΓ

8

)8/7

+ γΓ

(
γΓ

8

)1/7

=

(
γΓ

8

)8/7
(
−1 + γΓ

(
γΓ
8

)1/7(
γΓ
8

)8/7
)

=

(
γΓ

8

)8/7
(
−1 + γΓ

(
γΓ

8

)−1
)

= 7

(
γΓ

8

)8/7

.

(5.36)

With the assumptions made in Section 5.2.1, the function f is then defined on the
2-dimensional unit cube as

f(x) = f(x1, x2) = 7
(x1x2

8

)8/7
, (5.37)

which can be implemented in MATLAB as follows:

1 function T = critical_temperature(x)

2 format longE

3 T = 7*((x(:,1).*x(:,2))/8) .^(8/7);

4 end

Listing 5.4: MATLAB implementation of the function for the critical temperature.

Notice the number format style of the output is longE which is a “notation with
15 digits after the decimal point for double values”. [39] We use that because the
parameter Γ is in the range of 10−3, which can later on lead to very small results.
Hence, the format style is changed to still display these properly.

Variables D̂i Ŝi ŜT i

γ 0.2324205677119697 0.5436742046962126 0.5828421151754957
Γ 0.1783348769887136 0.4171578848245044 0.4563257953037874
γΓ 0.01674427057795258 0.03916791047928299 -/-

Table 5.2: Computational results of the partial variances, Sobol indices and total
Sobol indices of the critical temperature. From the output of the MATLAB code
sobol method.
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The MATLAB function sobol method is executed as described in Section 5.2.4, i.e.,
by generating input arguments for the MATLAB code (see Appendix A.2). As for
the PDF of the parameters, we assume that the parameters of the model are both
uniformly distributed, i.e., γ ∼ U(240, 640) and Γ ∼ U(0.003, 0.007).

The results of the numerically computed partial variances D̂i, Sobol indices Ŝi

and total Sobol indices ŜT i are gathered in the Table 5.2 and visualized in Fig. 5.5.
From the total Sobol indices ŜT i (see orange/right bar in Fig. 5.5 or fourth

column in Table 5.2), one can obtain that the variable γ affects about 58% of the
model output whereas Γ influences the output around 46%. Further, there is almost
no interaction between both of the parameters (ŜγΓ ≈ 0.0039). Nevertheless, since
both parameters of the ice sheet model have an influence, they are non negligible. [79]

The total Sobol indices indicate that both the melting sensitivity of ice γ as well
as the atmospheric lapse rate Γ have comparable influence on the outcome. Since
both parameters are a part of the linear factor of the Greenland ice sheet model
(Model 4.1) and since they are being multiplied with each other, it is no surprise
that both influence the outcome of the model to a similar degree.

Figure 5.5: (Total) Sobol indices of the critical temperature Tc of the Greenland ice
sheet model (Model 4.1). The visualization is based on [79, Fig. 3].
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5.3.3 Sobol Method applied to the Set of Bifurcation Points

Let us here consider all bifurcation points of all bifurcation diagrams for the param-
eters γ ∼ U(240, 640) and Γ ∼ U(0.003, 0.007). In Fig. 5.6, each bifurcation curve
(blue line) results from a parameter combination and the execution of Lst. 4.1. The
orange point on the curve is the corresponding bifurcation point.

The bifurcation points of every bifurcation diagram constitutes a set of critical
points. This brings up the question, how sensitive this set would be.

In implementing this idea, we proceed as follows: First, the set of critical points is
interpolated resulting in a function. Subsequently, the Sobol indices of this function
are computed.

Refer to Appendix A.2 for the implementation of the results presented in this
section.

We begin by interpolating the elements in the set of critical points. Thus, we find a
function f̂ that has the critical temperature Tc (as derived in Proposition 5.5) as an
input parameter and maps to the critical thickness hc (see Equation (5.35)) of the
Greenland ice sheet model (Model 4.1).

Given the visual form of the curve, a polynomial regression for the fifth degree
is used. Thereby, the fifth degree forms such a polynomial that the discrete points
are fitted as good as necessary. [76, Sec. 13.6]

Figure 5.6: Bifurcation diagrams of the Greenland ice sheet model (Model 4.1) with
their respective bifurcation points (orange points), results obtained with MATCONT.
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This can be implemented in MATLAB using polyfit as shown: [49]

p = p o l y f i t (Tc , hc , 5 ) ;

The result obtained from polyfit is

f̂(Tc) = 0.0013T 5
c − 0.0156T 4

c + 0.0753T 3
c − 0.1920T 2

c + 0.3127Tc + 0.6025, (5.38)

which approximates the critical points of each bifurcation diagram. This function
is implemented in MATLAB as follows

1 function y = critical_points(x)

2 format longE

3 T = 7*((x(:,1).*x(:,2))/8) .^(8/7);

4 y = 0.0013*T.^5 -0.0156*T.^4 +0.0753*T.^3 -0.1920*T

.^2 +0.3127*T +0.6025;

5 end

Listing 5.5: MATLAB implementation of the approximated function f̂(Tc).

The approximated function f̂(Tc) (orange solid line) is now plotted against the points
from the set (blue circles) (see Fig. 5.7 on the left). We can see from the plot on
the right (see Fig. 5.7) that the residuals are close to 0, which is an indicator for a
good fit. [76, Sec. 13.1]

Figure 5.7: The plot on the left compares the result of the polynomial regression to
the critical points. The plot on the right is a residual plot which demonstrates that
the approximated function from the left plot is a good fit for the data.

44



Variables D̂i Ŝi ŜT i

γ 0.001015955927761159 0.5610766835934421 0.5498436262423541
Γ 0.0008151096805689706 0.4501563737576459 0.4389233164065579
γΓ −0.00002033998477646293 −0.01123305735108801 -/-

Table 5.3: Computational results of the partial variances, Sobol indices and total
Sobol indices of the set of bifurcation points, with the MATLAB code sobol method.

For a global sensitivity analysis, the MATLAB function sobol method (Section 5.2.4)
is executed. The numerical results can be found in Table 5.3 as well as in Fig. 5.8.

The results are similar to the ones in Section 5.3.2. The melting sensitivity of
ice γ has approximately 55% influence on the outcome of the model whereas the
atmospheric lapse rate Γ affects the outcome around 44%.

This analysis puts the sensitivity analysis of the critical points in a different light.
This is because now not only a single critical point is considered, but a function
approximating all tipping points. We find that again, the results of the Sobol indices
are very similar to the results of the Sobol indices from Section 5.3.2. The main
difference between the two is the partial variance, which is mainly due to the fact
that the inputs for the Sobol method are different.

Figure 5.8: (Total) Sobol indices of the set of bifurcation points of the Greenland
ice sheet model (Model 4.1). The visualization is based on [79, Fig. 3].
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6. Link between Bifurcation and
Sensitivity

We have already seen in Section 3.2 that varying the parameter of the ODE system
can, for example, result in a change of stability of the equilibria. This means that
the qualitative behavior of the system changes for small perturbations in the input
parameters. [8, Sec. 8.1.3]

The characteristic of an input-output-connection is very similar to the sensitivity
of an ODE. When analyzing a model, sensitivity analysis (see Chapter 5) can be
combined with bifurcation analysis (as we have introduced in Section 3.2) to gain
more understanding about the model and to enhance its quality. Hereby, the partial
derivatives provide the connection of both analyses. [32, Sec. 2.3] [73]

Prior to this work, there is not yet enough information about the connection be-
tween sensitivities and bifurcations. Especially, performing only a sensitivity anal-
ysis leads to overlooked qualitative observation, whereas just bifurcation analysis
leads to the fact that the sensitivity can be interpreted differently. [73]

In this chapter, we give two new approaches to analyze the sensitivity of the branches
of equilibria of a bifurcation. In both approaches, the distance between a branch of
equilibria and a reference branch of equilibria (that means branch of equilibria of
an ODE with fixed parameters) is calculated and then the Sobol method is applied
to these distances. The corresponding implementation is in the Appendix A.3.

The idea comes from visually looking at the bifurcation diagrams of the Green-
land ice sheet model (Model 4.1) with the lowest and highest critical surface tem-
perature (see blue lines in Fig. 6.1). Inserting the approximated function of all
bifurcation points (Equation (5.38) derived in Section 5.3.3) into this visualization
(see orange line in Fig. 6.1), we find that the bifurcation diagrams are stretched or
compressed along this function.

For the realization, Wasserstein-inspired and Wasserstein distances are chosen
for computing the distance between two branches of equilibria. The reason for this
choice is that the Wasserstein distance is an optimal distance problem and thus
suitable for our purposes. [74, Ch. 3]

The chapter is structured in a way that first the theory of Wasserstein distance is
introduced. Subsequently, both approaches are explained by means of toy models.
Finally, these approaches are compared and suggestions for improvement are given.
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Figure 6.1: Bifurcation diagrams of the Greenland ice sheet model (Model 4.1) for
the lowest and highest critical temperature with the interpolated function of all
critical points.

6.1 Introduction to Wasserstein Distances

The optimal transport problem, also known as Earth mover’s distance, addresses
the problem of the “most efficient way of transforming one distribution of mass to
another, relative to a given cost function”. [30, p. 44]

G. Monge considered this problem as the minimal transport cost of moving a
certain amount of soil from a source to another destination respecting the quantity
in order to save costs. [74, Ch. 3] Thereby, the cost of transporting “one unit of
mass along a certain distance was [determined as] the product of the mass by the
distance”. [74, p. 30]

This problem was then taken up in turn by L. Kantorovich, who proposed the
optimal transportation cost for moving masses from different locations to multiple
destinations, e.g., for bakeries distributing their goods to multiple cafés. [16, Sec. 1.1]
This can also be represented as the optimal distance between probability measures,
where both the quantity of goods from the bakeries and the goods consumed in the
cafés are probability measures. [74, Ch. 3]
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Such and other variants of distances are also called the Kantorovich-Rubinstein
distance, or the Wasserstein distance. [74, Ch. 3] The Wasserstein distance for p = 1
is also known as the Earth mover’s distance. [30]

This section will now give an introduction to p-Wasserstein distances. We begin
with some auxiliary definitions:

Definition 6.1 (Separable Metric Space [28, Sec. 13.1]). A metric space (Ω, τ) is
separable if there exists a countable and dense subset of Ω.

Definition 6.2 (Polish Space [28, Sec. 8.3]). A Polish space is a separable topological
space whose topology is generated by a complete metric.

Some examples of Polish spaces are Rd,Zd, (C([0, 1]), ∥·∥∞), where d ∈ N. [28,
Sec. 8.3]

Definition 6.3 (Coupling [28, Def. 17.53]). Let be (Ω1,A, µ) and (Ω2,B, ν) two
probability spaces. A coupling of the probability measures µ and ν is a probability
measure on (Ω1 × Ω2,A⊗ B) with π(· × Ω2) = µ and π(Ω1 × ·) = ν.

With those in mind, we can now define the p-Wasserstein distance as follows.

Definition 6.4 (p-Wasserstein Distance [74, Def. 6.1], [16, Def. 1.4.3]). Let (X , d) be
a Polish metric space. The p-Wasserstein distance between the probability measures
µ and ν on X is defined as

Wp(µ, ν) =

(
inf

Π(µ,ν)

∫
X
d(x, y)p dπ(x, y)

)1/p

, (6.1)

where p ∈ [1,∞) and Π(µ, ν) is a set of couplings between µ and ν.

The closed-form solution of the p-Wasserstein distance is a basis for the application
in Section 6.2.

Proposition 6.1 (Closed-Form Solution for the p-Wasserstein Distance [30, Eq. 7]).
Let Fµ and Fν be the cumulative distribution functions (CDFs) of the probability
measures µ and ν, respectively. Assume that the inverses of the CDFs exist. Then,
F−1
µ and F−1

ν denotes the inverses of the CDFs. The closed-form solution for the
p-Wasserstein distance is given by

Wp(µ, ν) =

(∫ 1

0

|F−1
µ − F−1

ν |p dz
)1/p

(6.2)
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6.2 Wasserstein-Inspired Distance and

Sobol Sensitivity

The goal of this section is to determine the global sensitivity of branches of equi-
libria using the idea of the closed-form solution of the 1-Wasserstein distance from
Proposition 6.1 and the Sobol method (see Section 5.2.1). Thereby, we will apply
the ansatz on one-dimensional ODEs with one parameter each.

We begin by introducing a Wasserstein-inspired distance, that is based on Proposi-
tion 6.1.

Proposition 6.2 (1-Wasserstein-Inspired Distance). Consider an autonomous one-
dimensional ODE x′ = f(x, κ) as stated in Theorem 3.1 with the parameter vector
κ = (a, λ)⊤ ∈ R2, where λ is the bifurcation parameter, satisfying the conditions

1. Let F±(λ) be the positive or negative branch of equilibria of the ODE. There
exists the inverse of F±(a), which is F−1

± (z), provided each branch of equilibria
is bijective.

2. Let G±(λ) be the positive or negative branch of equilibria for fixed parameter
â. Its inverse is given as G−1

± (z). The positive or negative branch of equilibria
for fixed parameter will be called the reference positive or negative branch of
equilibria.

Then, the 1-Wasserstein-inspired distance between a branch of equilibria F±(z) and
a reference branch of equilibria G±(z) is given as

W̃ =

(∫ 1

0

∣∣F−1
± (z)−G−1

± (z)
∣∣ dz) . (6.3)

This Proposition will be applied in the following sections on simple models.

6.2.1 Quadratic Influence

Let us apply the 1-Wasserstein-inspired distance to a simple one-dimensional ODE
that has a quadratic, linear and constant term. The peculiarity of this model is that
the quadratic term is amplified by a parameter. With this, we want to determine
the quadratic influence.

The following model meets the characteristics described in Proposition 6.2. It is
inspired from [68, Sec. 3.1].

Model 6.1. Consider an autonomous and one-dimensional ODE as defined in Def-
inition 3.3

x′ = ax2 + x+ λ, (6.4)

where a ∈ [1, 5] is a parameter and λ is the bifurcation parameter.
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The solid lines in Fig. 6.2 are the bifurcation diagrams for the parameter values
a ∈ [1, 5]. The light-blue dashed line is the reference bifurcation diagram for â = 1

2
.

Note that the choice of the reference bifurcation diagram is arbitrary. In this section,
we will work with â = 1

2
.

We observe that the bifurcation diagram for a = 1 (dark-blue solid line) is close
to the reference bifurcation diagram. The larger the values for the parameter a
are, the narrower the curves of the bifurcation diagrams get (observe the green
bifurcation diagram (a = 5)). Not only do they become thinner, but they also share
an equilibrium (x∗, λ∗) = (0, 0).

Remark 6.1 (Visualization of Bifurcation Diagrams). Each bifurcation diagram is
visualized as explained in Section 4.2.3.

Hypothesis The parameter a of the quadratic term of Model 6.1 has a rather small
influence on the model. We justify this hypothesis with the fact that the bifurcation
diagrams only get narrower and do not move along the axes.

Figure 6.2: Bifurcation diagrams for different values of the parameter of Model 6.1.
The light-blue dashed line is the reference bifurcation diagram for x′ = 1

2
x2 + x+ λ.
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To check if the hypothesis is met or not, we find the 1-Wasserstein-inspired distance
W̃q and then numerically compute the Sobol sensitivity from Section 5.2.3. The
subscript q of the distance is just a notation to show that it is the 1-Wasserstein-
inspired distance for the quadratic influence.

Note that the results are performed for the positive branch of equilibria. The cal-
culations for the negative branch of equilibria are analogous, but are not shown here.

The positive branch of equilibria is calculated by solving the right-hand side of Model
6.1 for x.

F+(λ) =
−1 +

√
1− 4aλ

2a
(6.5)

We assume a ̸= 0. The inverse of the branch of equilibria F+(λ) is given by

F−1
+ (z) =

1− (2az + 1)2

4a
= −az2 − z. (6.6)

As already explained above, the choice for the reference branch of equilibria is ar-
bitrary. In this example, we set â = 1

2
. Then, the positive reference branch of

equilibria is

G+(λ) = −1 +
√
1− 2λ, (6.7)

and the inverse reference branch of equilibria is stated as

G−1
+ (z) =

1− (z + 1)2

2
= −1

2
z2 − z. (6.8)

We can now apply Proposition 6.2 to Model 6.1.

W̃q =

∫ 1

0

|F−1
+ (a; z)−G−1

+ (â; z)| dz

=

∫ 1

0

|−az − z +
1

2
z2 − z| dz =

∫ 1

0

|−az − 2z +
1

2
z2| dz

=


∫ 1

0

|−az − z +
1

2
z2 − z| dz =

1

3

(
1

2
− a

)
− 1 for a < 1

2∫ 1

0

|−
(
−az − z +

1

2
z2 − z

)
| dz = −1

3

(
1

2
− a

)
+ 1 for a > 1

2

(6.9)

To obtain the case distinction, solve −az − 2z + 1
2
z2 = 0 for z and consider z > 0.

Also, z < 1 holds for any a.

The sensitivity of W̃q is computed in Section 6.2.3.
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6.2.2 Linear Influence

Another interesting approach is to analyze the Sobol sensitivity of the branches of
equilibria of a simple one-dimensional ODE whose linear term is strengthened by a
parameter.

The following model meets the characteristics described in Proposition 6.2 and is
also inspired from [68, Sec. 3.1].

Model 6.2. Consider an autonomous and one-dimensional ODE as stated in Defi-
nition 3.3

x′ = x2 + bx+ λ, (6.10)

where b ∈ [1, 5] is a parameter and λ is the bifurcation parameter.

The bifurcation diagrams of the branches of equilibria for different values of param-
eter b of Model 6.2 as well as the bifurcation diagram of the reference branches of
equilibria for b̂ = 1

2
are visualized in Fig. 6.3. The former are represented by solid

lines, the latter by the light-blue dashed line.
As we can see, the leftmost dark-blue solid line is the bifurcation diagram for

b = 1 and the rightmost green solid line is the bifurcation diagram for b = 5. All
bifurcation diagrams have only one intersection point at λ ≈ 0. The larger the
parameter values b get, the more the bifurcation diagrams moves away from the
reference bifurcation diagram. Note that there is only movement as the bifurcation
diagrams do not get narrower or wider. They just move along both axes.

Hypothesis The parameter b of the linear term of Model 6.2 has significant influence
on the model. Thereby, we suspect that the influence of the linear term bigger is
than the influence of the quadratic term. This is due to the bigger movement of the
bifurcation diagrams.

To check if the hypothesis is correct, we begin with the calculation of the 1-Wasserstein-
inspired distance W̃l. Again, we only analyze the positive branch of equilibria.

The positive branch of equilibria is calculated in the same means as in Section 6.2.1.

K+(λ) =
−b+

√
b2 − 4λ

2
(6.11)

The following equation is the inverse of the branch of equilibria K+(λ).

K−1
+ (z) =

b2 − (2z + b)2

4
= −z2 − bz (6.12)

Again, the choice of the reference branch of equilibria is arbitrary and is here b̂ = 1
2
.

Then, the reference branch of equilibria is given by

L+(λ) =
−1

2
+
√

1
4
− 4λ

2
, (6.13)
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Figure 6.3: Bifurcation diagrams for different values of the parameter of Model
6.2. The light-blue dashed line is the reference bifurcation diagram, i.e., for x′ =
x2 + 1

2
x+ λ.

and the inverse reference branch of equilibria is

L−1
± (z) =

1
4
− (2z + 1

2
)2

4
= −z2 − 1

2
z. (6.14)

Let us apply Proposition 6.2 to Model 6.1.

W̃l =

∫ 1

0

|K−1
+ (b; z)− L−1

+ (b̂, z)| dz

=

∫ 1

0

|−z2 − zb+ z2 +
1

2
z| dz =

∫ 1

0

|−zb+
1

2
z| dz

=


∫ 1

0

|−zb+
1

2
z| dz = −1

2
b+

1

4
for b < 1

2∫ 1

0

|−
(
−zb+

1

2
z

)
| dz =

1

2
b− 1

4
for b > 1

2

(6.15)

The case distinction is calculated by solving −zb + 1
2
z for z and considering z > 0

as well as z < 1.

In Section 6.2.3, the sensitivity of W̃l is computed.
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6.2.3 Global Sensitivity Analysis of Wasserstein-Inspired
Distance

In the last sections, the 1-Wasserstein-inspired distances W̃q (see Equation (6.9))

and W̃l (see Equation (6.15)) were calculated using Proposition 6.2. To conclude
the analysis, the Sobol method will be applied to each of these distances.

The function sobol method is executed as decribed in Section 5.2.3 and Section
5.2.4. As there is only one parameter (a or b) whose influence we want to measure,
n is set to 1. Both of the parameters are in the range [1, 5]. Thus, the lower bound
of the 3-dimensional Sobol LP T number sequence is 1 and the upper bound is 5. As
for the input function, it is simply the 1-Wasserstein-inspired distance W̃q and W̃l,
respectively.

Notice, that the functions W̃q and W̃l, respectively, only consist of one parameter.
Thus, the Sobol method computes the partial variance and Sobol index of the one-
way parameter interaction. The Sobol index, however, is 1 in both cases due to
Proposition 5.1. That is, since there is only one Sobol index, it is 1 by implication.

We have seen through the calculations and visualizations that the new approach
of analyzing the global sensitivity of branches of equilibria of bifurcation diagrams
is valid.

Figure 6.4: Results from the Sobol method applied to the 1-Wasserstein-inspired
distance W̃q (left bar) and W̃l (right bar), respectively.
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Fig. 6.4 shows the variance for W̃q (obtained with Model 6.1; left bar) and W̃l

(obtained with Model 6.2; right bar), respectively. Observe that the variance of the
quadratic influence is at 0.15 and less than the variance of the linear influence that
is around 0.35.

Thus, the hypotheses made in Section 6.2.1 and Section 6.2.2 were confirmed.

However, there is a limitation. For the branches of equilibria, interpolation of the
results from the numerical continuation (as described in Section 4.2.3) is needed.
This will be shown in the next section.

6.3 Wasserstein Distance and Sobol Sensitivity

Here, we will apply the Definition 6.4 of the 1-Wasserstein distance to the simple
models presented in Section 6.2.1 and Section 6.2.2. A new approach to the appli-
cation of the Sobol method to Wasserstein distance is then presented.

The 1-Wasserstein distance is a distance between probability measures (see Defini-
tion 6.4). To be able to determine the distance between the branches of equilibria of
different bifurcation diagrams, we represent these as empirical distribution functions.

Definition 6.5 (Empirical distribution function [28, Def. 5.22]). Let X1, X2, . . . be
random variables. An empirical distribution function is defined as

Fn : R → [0, 1], x 7→ 1

n

n∑
i=1

1(−∞,x)(Xi). (6.16)

Instead of analytically determining the empirical distribution function of the branches
of equilibria of bifurcation diagrams, we utilize the MATLAB package ws distance

(Version 1.0.1). It “computes the 1- and 2-Wasserstein distances between two
uniform probability distributions given through samples.” [29]

With this package, we now determine the 1-Wasserstein distance Wq between the
branches of equilibria of Model 6.1 and the reference branches of equilibria (Model
6.1 with â = 1

2
). For Model 6.2, the 1-Wasserstein distance Wl is computed analo-

gously.

We now proceed to the calculation of global sensitivity using the Sobol method with
the MATLAB function sobol method. The idea of the code explained in Section 5.2.3
remains the same, but the call of the input function changes.

The Sobol LP T number sequence of dimension N × 1 is created and has random
values between 1 and 5. Hereby, the dimension and bounds are chosen in that way
due to the considered model having only one parameter that is defined in [1, 5] (see
Section 6.2.1 and Section 6.2.2).
Instead of executing the function f, we now call the function ws distance of the
MATLAB package. Thereby, the inputs of the function are the bifurcation points of
the positive or negative branch of equilibria of the reference bifurcation diagram
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and the bifurcation points of the positive or negative branch of equilibria of another
bifurcation diagram. Let us break down this statement:

Bifurcation points of the positive or negative branch of equilibria of the reference
bifurcation diagram: These are the bifurcation points of the positive or negative
branch of equilibria obtained with a MATCONT execution similar as in Section 4.2.3.
These points are “fixed” in the code due to being the reference bifurcation diagram.

Bifurcation points of the positive or negative branch of equilibria of a bifurcation
diagram: For these, we get the bifurcation points by executing the MATCONT function
for a parameter input that comes from the Sobol LP T number sequence.

Then, the 1-Wasserstein distance between these bifurcation points is computed with
ws distance. These steps are done for every row of the Sobol LP T number sequence.
Every result is then stored in a vector. With that, the partial variance and Sobol
index is computed with Equation (5.16).

The result of the variance obtained with the 1-Wasserstein distance for Model
6.1 and Model 6.2 is constituted in Fig. 6.5. The variance for quadratic influence is
around 0.035 and for the linear influence is around 0.045. There is a small difference
between both variances. Nevertheless, the quadratic influence is lower than the
linear influence.

6.4 Comparison and Outlook

Let us conclude this chapter with a comparison and outlook. We have presented
two approaches for analyzing the global sensitivity of the branches of equilibria of
bifurcation diagrams. Therefore, we looked into the 1-Wasserstein-inspired distance
and also the 1-Wasserstein distance.

The statements were made on the basis of two simple models. In one we studied
the sensitivity of the quadratic term parameter and in the other the sensitivity of
the linear term parameter. The comparison of the two results can be seen in Fig. 6.6.

As can be seen, the variance for the quadratic influence is lower than the variance
of the linear influence at each distance. This can also be seen from Fig. 6.2 and Fig.
6.3, where the behavior of the bifurcation diagrams for different parameters can be
observed.

Notice that the scales for the variances of the two distances are quite differ-
ent. This is due to different proceedings. The 1-Wasserstein-inspired distance, on
one hand, computes the difference between branches of equilibria using their in-
verse (see Proposition 6.2). On the other hand, the 1-Wasserstein distance uses
empirical distribution functions. As for the sensitivity analysis, the approach with
the 1-Wasserstein-inspired distance uses the Sobol method directly as introduced in
Section 5.2.3 while the procedure with the 1-Wasserstein distance makes modifica-
tions on the Sobol method.

56



Figure 6.5: Results from the Sobol method applied to the 1-Wasserstein distance
Wq (left bar) and Wl (right bar), respectively.

Although the scales are not equal, both variances calculated over the 1-Wasserstein-
inspired distance and 1-Wasserstein distance have similar ratios, i.e., the quadratic
influence is larger than the linear influence.

Further, it should be noted that the choice of the reference branches of equilibria
can affect the results.

This can be explained by considering Fig. 6.3. Here, the reference branches of
equilibria (light-blue dashed line) were selected such that they lie on the rightmost.
The branches of equilibria for varying parameter move away from the light-blue
dashed line. Hence, the distance gets bigger the bigger the parameter b gets.

Now imagine that the reference branches of equilibria would be in the posi-
tion of the yellow solid line (b = 3), i.e., in the “middle” between all bifurcation
diagrams. Then, the distance between the reference branches of equilibria that
are on the right and on the left of said reference branches of equilibria is approx-
imately the same. If we would create a distance vector, then it could look like
this: d = (1, 1, 2, 2, 3, 3, . . .)⊤. Hence, this kind of vector as an input for the partial
variance and Sobol sensitivity may affect the outcome.

In the future, it would be interesting to see how much the choice of the reference
branch of equilibria influences the sensitivity results.
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Figure 6.6: Comparison of the results gained through the 1-Wasserstein-inspired
distance (left figure) and 1-Wasserstein distance (right figure).

Another point is that the code for the approach described in Section 6.3 could be
extended to support a larger number of parameters and thus apply it to more com-
plex models.

Still, the idea for analyzing the sensitivity of branches of equilibria of bifurcation
diagrams using Wasserstein distances is interesting and offers clues to new insights.
The findings from this chapter can be used as cornerstones.
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7. Probabilistic Analysis of the
Critical Temperature

Due to uncertainties in nature, one cannot find a specific fixed tipping point, in our
case the critical temperature, for which the irreversible melt-off of the Greenland ice
sheet is triggered. This means that these uncertainties are closely related the value
of the critical temperature. [26]

The Greenland ice sheet model (Model 4.1) that is considered in this paper, con-
sists inter alia of the parameters melting sensitivity of ice γ and atmospheric lapse
rate Γ. The equation for the critical temperature Tc was derived and explained in
Proposition 5.5. From this, we assume that the density of the parameters γ and
Γ may affect the PDF of the critical temperature. Thus, by using a probabilistic
approach, we want to determine the PDF of the critical temperature Tc to analyze
what critical temperature is most likely.

First, we describe the theory of probabilistic analysis. The knowledge is then be
applied to determine the PDF as well as the CDF of the critical surface tempera-
ture Tc. Last but not least, the analytical results are visualized using MATLAB and
compared to numerical results.

7.1 Methodology

Fundamentals for the probabilistic analysis of the critical surface temperature are
given.

Theorem 7.1 (Cumulative Distribution Function (CDF) [76, Def. 2.5, Thm. 2.8]).
A function FX : R→ [0, 1] defined by

FX(x) = P(X ≤ x), (7.1)

is called cumulative distribution function (CDF) if and only if the following condi-
tions are met:

1. F is non-decreasing: x1 < x2 ⇒ F (x1) ≤ F (x2)

2. F is normalized: limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

3. F is right-continuous: F (x) = F (x+) = limy→x,y>x F (y) ∀x
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The proof of the conditions can be found in Theorem 2.8 of Wasserman. [76]

Definition 7.1 (Probability Density Function (PDF) [76, Def. 2.11]). The proba-
bility density function (PDF) for a continuous random variable X is a function fX
that is defined as

P(a < X < b) =

∫ b

a

fX(x) dx for a ≤ b. (7.2)

Thereby, fX satisfies fX ≥ 0 ∀x and
∫∞
−∞ fX(x) dx = 1.

Now that both the CDF and the PDF of a continuous random variable are defined,
we can examine their relationship.

Proposition 7.1 (Relation between CDF and PDF [76, Def. 2.11]). Given a CDF
FX as defined in Theorem 7.1 and a PDF fX as defined in Definition 7.1, their
relation is given by

FX(x) =

∫ x

−∞
fX(t) dt, (7.3)

and
F ′
X(x) = fX , (7.4)

for FX that is differentiable at all x.

Let there be a continuous random variable X with known PDF fX . Consider a
continuous random variable Y which is some transformation of X, i.e., Y = g(X).
With the following theorem, one can determine the PDF of Y . [22, Sec. 1.7.2]

Theorem 7.2 (Transformation of Continuous Random Variables [22, Thm. 1.7.1,
p. 55]). “Let X be a continuous random variable with PDF fX(x) and support SX .
Let Y = g(X), where g(x) is a one-to-one differentiable function, on the support of
X, SX . Denote the inverse of g by x = g−1(y) and let dx

dy
= d

dy
(g−1(y)). Then the

PDF of Y is given by

fY (y) = fX(g
−1(y))

∣∣∣∣dxdy
∣∣∣∣ , for y ∈ SY , (7.5)

where the support of Y is the set SY = {y = g(x) : x ∈ SX}.”

The proof of this theorem can be found in Theorem 1.7.1 of Hogg. It uses mainly
Equation (7.1) given in Theorem 7.1 and then Proposition 7.1. [22, Thm. 1.7.1].

The Mellin convolution gives the PDF of the product Z = XY of two non-negative
and independent continuous random variables X and Y . [67, Sec. 4.2] It is defined
as follows:

Definition 7.2 (Mellin Convolution [67, Eq. 4.2.4]). Let X and Y be two non-
negative and independent continuous random variables. The Mellin convolution of
the product of the PDF φ1(x) of X and the PDF φ2(y) of Y with x, y > 0 is given
as

h(z) =

∫ ∞

0

1

x
φ2

(z
x

)
φ1(x) dx. (7.6)
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Assume that the space of the product of the two random variables X and Y is
completely in the first quadrant. In that instance, the calculation of the Mellin
convolution as defined in Definition 7.2 undergoes a distinction between cases. [17]

Proposition 7.2 (Case Differentiation for Mellin Convolution [17]). The PDF of
the product of independent random variables X and Y with the respective PDFs
φ1(x) defined on (a, b), where 0 < a < b < ∞ and φ2(y) defined on (c, d), where
0 < c < d < ∞ is given by

h(z) =



∫ z/c

a

1

x
φ2

(z
x

)
φ1(x) dy for ac < z < bc,∫ b

a

1

x
φ2

(z
x

)
φ1(x) dy for bc < z < ad,∫ b

z/d

1

x
φ2

(z
x

)
φ1(x) dy for ad < z < bd,

(7.7)

when ad > bc.

Case distinctions for Mellin convolution can also be made for ad = bc and ad < bc.
The respective formulas can be found in Chapter 2 of A. W. Glen, L. M. Leemis
and J. H. Drew. The proofs can also be found in [17].

7.2 Analytical Computation

As seen from Proposition 5.5, the equation for the critical temperature is given by

Tc = 7

(
γΓ

8

)8/7

. (7.8)

The goal of this section is to determine the PDF of the critical temperature which is
yet unknown. However, in the publication of A. Levermann and R. Winkelmann, it
was assumed that both the parameters γ as well as Γ are independent and uniformly
distributed, such as [34]

φγ(x) =
1

400
1[240,640](x), and

φΓ(x) =
1

0.004
1[0.003,0.007](x).

(7.9)

Thus, we will use it as our advantage that the probability densities of the parameters
of the critical temperature are known. With this being said, we first reformulate the
equation for the CDF of Tc as done in Section 1.7.2 in R. V. Hogg, J. W. McKean
and A. T. Craig. Let z be in the support of Tc, i.e. z ∈ (0,∞). [22]

FTc(z) = P(Tc ≤ z) = P

(
7

(
γΓ

8

)8/7

≤ z

)
= P

(
γΓ ≤ 8

(z
7

)7/8)
= FγΓ

(
8
(z
7

)7/8)
(7.10)
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We continue with the last part of Equation (7.10). The random variable γ has
support on the interval (240, 640) and the random variable Γ has support on the
interval (0.003, 0.007). The space of the product of γ and Γ is therefore completely in
the first quadrant. Thus, from the CDF of the product of the random variables γ and
Γ follows the PDF using the Mellin convolution (see Definition 7.2 and Proposition
7.2). (Step 1 )

After having determined the PDF fγΓ, we use the tranformation of continuous
random variables (see Theorem 7.2), to get the PDF of the critical temperature Tc.
(Step 2 )

What is left to do, is to complete the calculation in Equation (7.10). Hence, by
making use of the relation between CDF and PDF as shown in Proposition 7.1, we
can find the CDF of the critical temperature. (Step 3 )

The next subsections demonstrate the steps that were explained.

7.2.1 Step 1: Probability Density Function of γΓ

Let us determine the PDF of the product of the random variables γ and Γ. To do
this, we link to the last step of Equation (7.10), i.e.,

FγΓ

(
8
(z
7

)7/8)
=

∫ 8( z
7
)7/8

0

hγΓ(y) dy. (7.11)

As mentioned earlier in Section 7.2, both random variables γ and Γ are independent
and defined on positive intervals, respectively. Further, the product of these random
variables lies completely in the first quadrant.

Hence, we can apply the Mellin convolution with case distinction (see Proposition
7.2). With the prerequisites introduced in said Proposition 7.2, it is a = 0.003,
b = 0.007, c = 240, and d = 640. Hence, ad > bc.

Remark 7.1. Here, we choose φ1 as the PDF of Γ, and φ2 as the PDF of γ.
However, the choice for φ1 and φ2 could also be the other way around, i.e., φ1 as the
PDF of γ, and φ2 as the PDF of Γ. Then the condition ad < bc holds and the first
case from the Theorem in A. G. Glen, L. M. Leemis and J. H. Drew is applied. [17]

The conditions for the case differentiation for Mellin convolution are met (see Propo-
sition 7.2) and the density function for the product of γ and Γ is calculated as follows:

hγΓ(y) =

∫ ∞

0

5

8

1

x
dx

=



∫ y/240

0.003

5

8

1

x
dx =

5

8
(ln(y)− ln(0.72)) for 0.72 < y < 1.68,∫ 0.007

0.003

5

8

1

x
dx =

5

8
ln

(
7

3

)
for 1.68 < y < 1.92,∫ 0.007

y/640

5

8

1

x
dx =

5

8
(− ln(y)− ln(4.48)) for 1.92 < y < 4.48.

(7.12)
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To find the antiderivative of each section of the PDF, the Fundamental Theorem of
Calculus is used. [31, Sec. 11.4]

Next, we go to the second step.

7.2.2 Step 2: Transformation of γΓ and Probability Density
Function of Tc

In this step, we want to find the PDF of the random variable Tc using the trans-
formation of continuous random variables. For this, let us check the conditions of
Theorem 7.2.

The product of the independent and continous random variables γ and Γ is
again a continuous random variable with the PDF given in Equation (7.12) and the
support SγΓ = (0.72, 4.48).

Let be g(y) = 7
(
y
8

)8/7
the transformation function which is a one-on-one differ-

entiable function. The inverse of g is given by g−1(z) = 8
(
z
7

)7/8
and the derivative

of the inverse with respective to z is d
dz
(g−1(z)) =

(
z
7

)−1/8
.

Then, the PDF of the critical temperature Tc is given by

fTc(z) = fγΓ

(
8
(z
7

)7/8) ∣∣∣∣(z7)−1/8
∣∣∣∣

=



5

8

(
ln(8

(z
7

)7/8
)− ln(0.72)

) (z
7

)−1/8

for 7
(
0.72
8

)8/7
< z < 7

(
1.68
8

)8/7
,

5

8
ln

(
7

3

) (z
7

)−1/8

for 7
(
1.68
8

)8/7
< z < 7

(
1.92
8

)8/7
,

5

8

(
− ln(8

(z
7

)7/8
) + ln(4.48)

) (z
7

)−1/8

for 7
(
1.92
8

)8/7
< z < 7

(
4.48
8

)8/7
.

(7.13)

Note that the definition ranges for z for each section of the PDF given in 7.13 are

also transformed with the transformation function g(z) = 7
(
z
8

)8/7
.

We move on to the next and final step.

7.2.3 Step 3: Cumulative Distribution Function of Tc

Lastly, the CDF of the critical temperature Tc is determined using the relation be-
tween CDFs and PDFs (see Proposition 7.1). For this purpose, the antiderivative is
found for each section of the PDF calculated in Section 7.2.2 (see Equation (7.13)).
The calculations in this part of thesis are performed with Mathematica (Version
13.1.0.0).

63



Then, the CDF of the critical temperature Tc is given by

FTc(z) =

∫
fTc(z) dz

=


z7/8 (−0.26849 + 0.797108 ln(z)) + c1 for 7

(
0.72
8

)8/7
< z < 7

(
1.68
8

)8/7
,

0.771872 z7/8 + c2 for 7
(
1.68
8

)8/7
< z < 7

(
1.92
8

)8/7
,

z7/8 (1.93388− 0.797108 ln(z)) + c3 for 7
(
1.92
8

)8/7
< z < 7

(
4.48
8

)8/7
.

(7.14)

As the PDF (see Equation (7.13)) is continuous, the CDF (see Equation (7.14)) has
to be continuous as well. With this fact and the properties of CDFs (see Theorem
7.1), the integration constants c1, c2 and c3 can be determined as the following
calculation shows.

FTc;1

(
7

(
0.72

8

)8/7
)

!
= 0 ⇒ c1 ≈ 0.45

FTc;1

(
7

(
1.68

8

)8/7
)

!
= FTc;2

(
7

(
1.68

8

)8/7
)

⇒ c2 ≈ −0.6

FTc;2

(
7

(
1.92

8

)8/7
)

!
= FTc;3

(
7

(
1.92

8

)8/7
)

⇒ c3 ≈ −1.8

FTc;3

(
7

(
4.48

8

)8/7
)

!
= 1 ⇒ that is true

(7.15)

Consequently, we can proceed with the visualization of the results and the compar-
ison with numerical results.

7.3 Visualization and Interpretation

As important the analytical computation of the PDF and CDF of the critical tem-
perature Tc is, the numerical simulation of the PDF and CDF is also significant. By
doing this, we can validate the results and gain more information about them.

The code used during this chapter can be found in Appendix A.4.

64



7.3.1 Visualization of the Probability Density Function

The analytical computation of the PDF of the critical surface temperature Tc was
shown in Section 7.2.2. We visualize the piecewise densities as indicated in Fig. 7.1.
The blue line depicts fTc;1, the orange line describes fTc;2, and the yellow line shows
fTc;3 (for all pieces of the PDF, see Equation (7.13)).

The histograms in Fig. 7.1 are constructed from empirical data. The black solid
bars are obtained from the empirical data from MATCONT. The purple dotted bars
show the histogram that is obtained using the analytical formula of the critical sur-
face temperature (see Proposition 5.5).

We can visually see that all graphs coincide. The mathematical comparison and in-
terpretation are done in Section 7.3.3. The following paragraphs explain the process
of simulating such data.

Figure 7.1: Probability density function of the critical surface temperature. The
analytical result is depicted by the blue (fTc;1), orange (fTc;2) and yellow (fTc;3)
lines. Both histograms obtained from empirical data show the normalized frequency
of the critical temperature.
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Empirical Data from MATCONT The function bifurcation points was intro-
duced in Section 5.2.3. For Model 4.1, the function numerically computes the bi-
furcation points and marks the critical point for input values γ and Γ. Remember,
that these are uniformly and independent distributed as described in Section 7.2.
The goal is to numerically simulate values for the critical surface temperature Tc,
hence we make use of the the function bifurcation points and execute this n =
5000 times to generate critical points Tc.

First, the parameter distributions are specified using makedist and then within
a for-loop, the function bifurcation points is being executed. The MATLAB func-
tion makedist generates a probability distribution object. [43] Thereby, a random
number is drawn using random. [50] These n results are saved into a .mat file using
save, so they can be visualized in a separate step without having to compute all
the results again. [51,52]

The MATLAB function histogram is then being used to plot a histogram of the
critical points from each iteration step. The bin width is set to 0.1. [41]

Empirical Data from Analytical Formula There is another way of numerically
simulating the critical surface temperature Tc. For this, we take the analytical
formula for the critical temperature (see Equation (5.33) derived in Proposition
5.5), which we also use for the analytical calculation of the PDF. Then we simulate
the uniformly distributed random numbers for γ and Γ and insert them into the
analytical formula for the critical temperature.

Remark 7.2 (Note about Visualization). Even though it takes a couple of minutes
to generate one .mat file, it saves time for later computations, like visualizations
and trials for different ideas. To access the results of the numerical continuation,
use the function load. [42]

7.3.2 Visualization of the Cumulative Distribution Function

Let us consider the CDF of the critical surface temperature Tc. The piecewise
functions that were computed in Section 7.2.3 are visualized in Fig. 7.2. Also here,
for Equation (7.14), the blue line depicts FTc;1, the orange line describes FTc;2, and
the yellow line shows FTc;3.

As for the numerical validation, an empirical CDF (black dashed line) of the
critical points Tc is plotted using the MATLAB function cdfplot. [37] These points
were generated with MATCONT as in Section 7.3.1. The purple dotted line is also
an empirical CDF of the critical points Tc which were obtained with the analytical
formula (see Proposition 5.5 and Section 7.3.1).

The range of the data is approximately between 0.4 and 3.6, so the analytical results
are in agreement with the numerical results. The curve is steep from approximately
1 to 2 and it flattens at around 2.8.

About 30% of the data have a critical surface temperature less than 1.2, about
50% of the data have a critical surface temperature less than 1.5, and 80% of the
data have a critical surface temperature less than 2.
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Figure 7.2: Cumulative distribution function of the critical surface temperature. The
analytical result is depicted by the blue (FTc;1), orange (FTc;2) and yellow (FTc;3) lines.
The dashed black and purple lines are obtained from empirical data, each shows the
empirical cumulative distribution function.

Figure 7.3: Zoom into the cumulative distribution function of the critical surface
temperature.
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In Fig. 7.2, the lines cannot completely be distinguished. Therefore, Fig. 7.3 shows
a close up.

As we can see from Fig. 7.2, the analytical result follows both empirical CDFs
pretty well. Furthermore, we can conclude that the piecewise functions are contin-
uous.

7.3.3 Analysis of the Characteristics

Finally, both analytical and numerical data of the PDF of the critical surface tem-
perature Tc from Section 7.2.2 and Section 7.3.1 are evaluated.

From Fig. 7.1, we see that the PDF is not symmetric and has a positive skew. The
density function has a steep increase (see blue line; fTc;1), a slight constant part (see
orange line; fTc;2), and on the right side a tail that decreases slowly (see yellow line;
fTc;3).

These are only visual observations. In the course of this section, we deter-
mine further information from data and the analytical formula (see Equation (7.13))
mathematically.

As outlined in L. Fahrmeir et. al., PDFs can be described by certain charac-
teristics. To gain insight into the PDF of the critical surface temperature, we have
a look at the characteristics mean, variance, standard deviation, median and skew-
ness. [14, Sec. 2.2]

The results are summarized in Table 7.1.

Characteristics Empirical Data Empirical Data Analytical Solution
(MATCONT) (analytical formula)

Mean E[Tc] 1.6155 1.6314 1.617053
Variance Var[Tc] 0.4244 0.4281 0.4272
Standard Deviation s 0.6514 0.6543 0.6536
Median zm 1.5112 1.5245 1.50583
Skewness 0.5567 0.5564 -/-

Table 7.1: Characteristics of the probability density function of the critical surface
temperature. The table compares the properties from the analytical and numerical
results.

Numerical Results For each property there is a suitable MATLAB function. [44,
46,53,55,58] They can be used to determine the properties of the data obtained with
MATCONT and the analytical function (see second and third column of Table 7.1).

Analytical Results The mean, variance, standard deviation, and median are
calculated from the analytically calculated formula of the PDF (see Equation (7.13))
and the CDF (see Equation (7.14)). For this, Mathematica is used and the results
are presented in the fourth column of Table 7.1.
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The mean, or expected value, of the critical surface temperature is calculated using
Definition 3.1 given in L. Wasserman. [76] The mean of piecewise functions is then
the sum of the expected value of each section.

E[Tc] =

∫ ∞

−∞
zfTc(z) dz

=

∫ 7( 1.68
8

)8/7

7( 0.72
8

)8/7
zfTc;1(z) dz +

∫ 7( 1.92
8

)8/7

7( 1.68
8

)8/7
zfTc;2(z) dz +

∫ 7( 4.48
8

)8/7

7( 1.92
8

)8/7
zfTc;3(z) dz

= 0.263147 + 0.161776 + 1.19213

= 1.617053

(7.16)

The variance for the random variable Tc is defined as [22, Def. 1.9.2]

Var[Tc] = E[T 2
c ]− (E[Tc])

2 . (7.17)

This intermediate calculation is necessary to receive the value of E[T 2
c ].

E[T 2
c ] =

∫ ∞

−∞
z2fTc(z) dz

=

∫ 7( 1.68
8

)8/7

7( 0.72
8

)8/7
z2fTc;1(z) dz +

∫ 7( 1.92
8

)8/7

7( 1.68
8

)8/7
z2fTc;2(z) dz +

∫ 7( 4.48
8

)8/7

7( 1.92
8

)8/7
z2fTc;3(z) dz

= 0.248365 + 0.20632 + 2.58735

= 3.042035

(7.18)

Then, the individual results from Equation (7.16) and Equation (7.18) yield the
variance of the critical surface temperature.

Var[Tc] = E[T 2
c ]− (E[Tc])

2 = 3.042035− (1.617053)2 = 0.4272 (7.19)

The standard deviation is the square root of the variance. [76, Def. 3.14]

s =
√
Var[Tc] =

√
0.4272 ≈ 0.6536 (7.20)

To determine the median of a function, we need its CDF. Then, the median xm is
given by solving FX(xm) =

1
2
. [22, Ex. 2.1.7]

As we can observe from Fig. 7.2, the probability 1
2
is achieved for a certain

critical surface temperature by the third piecewise function FTc;3. Thus, we use this
information and compute the median zm of the critical surface temperature with the
help of Mathematica.
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FTc;3(zm) =
1

2

⇔ zm
7/8 (1.93388− 0.797108 ln(zm))− 1.8 =

1

2
⇒ zm = 1.50583

(7.21)

Evaluation Comparing the individual columns of Table 7.1 with each other shows
us that the results hardly differ from each other. From this we can conclude that
our observation that the different representations of the PDFs in Fig. 7.1, namely
piecewise functions and two histograms, coincide.

Another observation is that even though the input parameters γ and Γ are uni-
formly distributed, the PDF of the critical surface temperature is not uniform.

The expected value E[Tc] for all data obtained with the three methods lies at
approximately 1.6. The median Zm of all results deviates slightly from the mean,
and is approximately 1.5.

The skewness is approximately 0.56 and the variance is approximately 0.42.
These show that the form of the PDF is asymmetrical and the values are mostly
distributed on the right tail. [14, Sec. 2.2]

7.3.4 Conclusion

According to the results from Table 7.1, there is a probability of around 60% that
the tipping point lies approximately at 1.6 ◦C. But there is also a possibility of 30%
that the melting of the Greenland ice sheet is triggered at 2.2 ◦C. More detailed
interpretation and consequences will be left to climatologists.

Chapter 7 offers a framework for probabilistic analysis of the Greenland ice sheet
model 4.1. With this, the PDF and CDF of the climate model were determined
analytically and numerically. Thereby, our analysis was for the parameters of the
model γ and Γ being uniformly distributed.

Hence, this framework serves as a basis for further probabilistic analyses. To
get started, the PDF of the critical surface temperature Tc might be determined
using different distributions for the parameters γ and Γ. Then, a detailed analysis
between different PDFs could give more information to climatologists.

Furthermore, it is encouraged that the methods presented in this chapter be
applied to other climate models as well.
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8. Conclusion and Further Work

The motivation of this thesis was to analyze the impacts of parameter uncertainties
of the Greenland ice sheet Model 4.1 through sensitivity and probabilistic analyses
and to provide a MATLAB framework for each of these.

In Chapter 4, numerical continuation was applied to the Greenland ice sheet model
(Model 4.1). In doing so, we compared the different methods vpasolve, fsolve,
and MATCONT. The comparison was based on implementation results, obstacles, and
performance benchmarking. We have seen that MATCONT is the most suitable pack-
age. This is not only because the bifurcation diagram was displayed without any
problems, but also because the benchmark showed MATCONT to be significantly faster
than the other methods.

For bifurcation analysis, the MATLAB function bifurcation points was imple-
mented. This was used throughout the thesis for further analyses of Model 4.1.

With local and global sensitivity analysis, one can among others determine the sen-
sitivity of individual parameters and also the sensitivity of the interaction between
parameters. [36, Sec. 6.5.1] [3, 79] The global sensitivity analysis, was performed
with the Sobol method.

We then established a sensitivity analysis framework in Section 5.3 to analyze
the sensitivity of the Greenland ice sheet model. The result of the local sensitivity
analysis of Model 4.1 was that both parameters are sensitive and have an influence
on the outcome (see Fig. 5.4). For the global sensitivity analysis, the application
of the Sobol method to the critical temperature showed that both parameters have
a comparable influence on the outcome of Model 4.1 (see Table 5.2 and Fig. 5.5).
We also analyzed the global sensitivity of the set of the critical temperatures, which
yielded results similar to the previous analysis (see Table 5.3 and Fig. 5.8).

Besides the sensitivity analysis framework in Section 5.3, a novel MATLAB function
sobol method was created as implementation of the Sobol method. This function
is adaptable, such that the partial variances and Sobol indices of one-dimensional
functions with any number of parameters can be numerically approximated.

Bifurcation and sensitivity analysis were then combined in Chapter 6, so that the
global sensitivity of branches of equilibria could be analyzed. Therefore, we looked at
two approaches: 1-Wasserstein-inspired distance and 1-Wasserstein distance. Both
distances were then applied to the Sobol method and thus used to analyze the
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parameter influence of simple one-dimensional ODEs.
Results from this analysis showed that the new approach to linking bifurcation

and sensitivity analysis is viable and can be applied to climate models in the future.

The thesis was concluded with a probabilistic analysis of the critical surface temper-
ature. Chapter 7 shows a structured way of analytically and numerically computing
the PDF (as shown in Fig. 7.1) as well as the CDF (as shown in Fig. 7.2) of the
critical surface temperature. The challenge was to determine the PDF of a random
variable, that itself is a product of independent random variables. To solve this, the
Mellin convolution (see Definition 7.2) and the transformation of continuous random
variables (see Theorem 7.2) were applied.

The PDF of the critical surface temperature was then visually compared to the
PDF obtained with empirical data from the numerical analysis. We could determine
by visual observation that the analytical and numerical analyses agree. This was
further reinforced by computations of the properties of the PDF, such as the mean
and median.

Overall, different methods for analyzing parameter impacts on the Greenland ice
sheet Model 4.1 were presented. These are sensitivity analysis, sensitivity analy-
sis using Wasserstein distances and probabilistic analysis. Each can be utilized to
enhance the quality of ice sheet models.

The thesis presents a foundational framework based on the Greenland ice sheet
model (Model 4.1), for which the parameters of the critical surface temperature
turned out to be sensitive. These analyses were done for an assumed uniform dis-
tribution of the parameters.

For continuing these analyses, observational data might be used to estimate the
PDFs for the parameters and then to apply them on the presented frameworks.
These frameworks also can be applied to other ice sheet models with only making
minor adjustments due to the implementations for the bifurcation and sensitivity
analysis being kept general.
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A. Appendix

A.1 Numerical Continuation

1 n = 250;

2 t = linspace (0,1,n);

3 y = zeros(n,2);

4

5 for i = 1:250

6 L = t(i);

7 syms x;

8 S = vpasolve(-x.^2 + L == 0, x);

9 y(i,:) = S;

10 end

11

12 plot(t,y)

13 ylabel('x')

14 xlabel('\lambda ')

Listing A.1: Numerical continuation of Example 3.1.

1 function [y, greatest_temp] = vpasolve_bifurcation(

gamma , Gamma)

2 n = 500;

3 T = linspace(0, 5, n);

4

5 y = zeros(n,2);

6 greatest_temp = 0;

7

8 for i = 1:n

9 syms h;

10 S = vpasolve(-h.^8 + gamma*Gamma*h - T(i) == 0, h

, [0 Inf]);

11

12 if size(S,1) == 2

A1



13 y(i,:) = S;

14 greatest_temp = T(i);

15 else

16 y(i,:) = [NaN NaN];

17 end

18 end

19 end

Listing A.2: Numerical continuation of the Greenland ice sheet model (Model 4.1)
using vpasolve.

1 c = colors ();

2 n = 500;

3 gamma = 4.4*100;

4 Gamma = 5/1000;

5 T = linspace(0, 5, n);

6

7 [y, greatest_temp] = vpasolve_bifurcation(gamma ,Gamma);

8

9 plot(T, y, 'Color ', c('blue'))

10 hold on;

11 plot(greatest_temp , ((gamma*Gamma /8) .^(1/7)), '*', '

Color ', c('orange '))

12 text(greatest_temp + 0.02, (( gamma*Gamma /8) .^(1/7)), '

LP');

13 xlabel('Surface Temperature T');

14 ylabel('Ice Thickness h');

15 ylim ([0 1.2]);

16 xlim ([0 2]);

17

18 figure (2); % Zoom -In

19 plot(T, y, 'Color ', c('blue'))

20 hold on;

21 plot(greatest_temp , ((gamma*Gamma /8) .^(1/7)), '*', '

Color ', c('orange '))

22 text(greatest_temp + 0.0002 , ((gamma*Gamma /8) .^(1/7)),

'LP');

23 xlabel('Surface Temperature T');

24 ylabel('Ice Thickness h');

25 ylim ([0.75 0.9]);

26 xlim ([1.59 1.6]);

Listing A.3: Bifurcation diagram of the Greenland ice sheet model (Model 4.1) using
vpasolve.
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1 function [y, greatest_temp] = fsolve_bifurcation(gamma ,

Gamma , initial_point)

2 n = 500;

3 T = linspace(0, 5, n);

4

5 y = zeros(n,2);

6 greatest_temp = 0;

7

8 options = optimoptions (@fsolve ,'StepTolerance ',1e-20,

...

9 'FunctionTolerance ',1e-20,'MaxFunctionEvaluations

',1e5, ...

10 'MaxIterations ',1e5,'Display ','iter');

11

12 for i = 1:n

13 t = T(i);

14 greatest_temp = t;

15

16 gis_model = @(h)[real(-h.^8 + Gamma.*gamma.*h - t

)];

17

18 syms h;

19 y(i,:) = fsolve(gis_model , initial_point , options

);

20 end

21 end

Listing A.4: Numerical continuation of the Greenland ice sheet model (Model 4.1)
using fsolve.

1 c = colors ();

2 n = 500;

3 gamma = 4.4*100;

4 Gamma = 5/1000;

5 T = linspace(0, 5, n);

6

7 [y, greatest_temp] = fsolve_bifurcation(gamma , Gamma ,

[0.1 1]);

8

9 figure (1)

10 plot(T, y, 'Color ', c('blue'))

11 hold on;

12 plot(greatest_temp , ((gamma*Gamma /8) .^(1/7)), '*', '
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Color ', c('orange '))

13 text(greatest_temp + 0.02, (( gamma*Gamma /8) .^(1/7)), '

LP');

14 xlabel('Surface Temperature T');

15 ylabel('Ice Thickness h');

16 xlim ([0 2]); ylim ([0 1.2]);

17

18 [y, greatest_temp] = fsolve_bifurcation(gamma , Gamma ,

[0 0]);

19

20 figure (2);

21 plot(T,y, 'Color ', c('blue'))

22 hold on;

23 plot(greatest_temp , ((gamma*Gamma /8) .^(1/7)), '*', '

Color ', c('orange '))

24 text(greatest_temp + 0.02, ((gamma*Gamma /8) .^(1/7)), '

LP');

25 xlabel('Surface Temperature T');

26 ylabel('Ice Thickness h');

27 xlim ([0 2]); ylim ([0 1.2]);

Listing A.5: Bifurcation diagram of the Greenland ice sheet model (Model 4.1) using
fsolve.

1 bf = bifurcation_points (4.4*100 , 5/1000);

2 cpl(bf.x, bf.v, bf.s, [2 1])

3 xlim ([0 2]);

4 xlabel('Surface Temperature T');

5 ylabel('Ice Thickness h');

Listing A.6: Bifurcation diagram of the Greenland ice sheet model (Model 4.1) using
MATCONT.

1 function bfpts = bifurcation_points_for_timeit(gamma ,

Gamma)

2 p = [gamma; Gamma; 0];

3 ap = 3;

4 [x0 ,v0] = init_EP_EP (@ IceSheet_LW ,0,p,ap);

5 opt = contset;

6 opt = contset(opt ,'MaxNumPoints ' ,500);

7 opt = contset(opt ,'Singularities ' ,1);

8 [x,v,s,h,f] = cont(@ equilibrium ,x0 ,[],opt);
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9

10 bfpts = struct('gamma ',gamma ,'Gamma ',Gamma ,'x',x,'v

',v,'s',s);

11 end

Listing A.7: Numerical continuation of Model 4.1, adjusted for performance
benchmarking.

1 gamma = 440;

2 Gamma = 0.005;

3

4 vpasolve_bifurcation_timeit = @() vpasolve_bifurcation(

gamma ,Gamma);

5 fsolve_bifurcation_timeit = @() fsolve_bifurcation(

gamma ,Gamma);

6 bifurcation_points_timeit = @()

bifurcation_points_for_timeit(gamma ,Gamma);

7

8 timeit(vpasolve_bifurcation_timeit)

9 timeit(fsolve_bifurcation_timeit)

10 timeit(bifurcation_points_timeit)

Listing A.8: Benchmark analysis of the numerical continuation functions
vpasolve bifurcation, fsolve bifurcation and bifurcation points.

A.2 Sensitivity Analysis

1 c = colors ();

2 n = 150;

3 t = linspace (0,4,n);

4 ode_ex = @(t,p) 2.*t.*exp(p*t);

5

6 plot(t, ode_ex(t,-2.1), 'LineStyle ', '--', 'Color ', c('

orange '), 'LineWidth ' ,0.8)

7 hold on;

8 plot(t, ode_ex(t, -2), 'LineStyle ', '-', 'Color ', c('

blue'), 'LineWidth ' ,0.8)

9 hold on;

10 plot(t, ode_ex(t, -1.9), 'LineStyle ', '-.', 'Color ', c(

'yellow '), 'LineWidth ' ,0.8);

11 hold on;

12 xlabel('t')

13 ylabel('S_p(t)')
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14 legend('p = -2.1', 'p = -2.0', 'p = -1.9')

Listing A.9: Local sensitivity analysis of Example 5.1.

1 function y = sensitivity_lapserate(t, gamma , Gamma ,

Temp)

2 y = exp(gamma*Gamma*t)/gamma*t - Temp/(gamma*Gamma

^2);

3end

Listing A.10: Implementation of Equation (5.30).

1 function y = sensitivity_melting(t, gamma , Gamma , Temp)

2 y = exp(gamma*Gamma*t)/Gamma*t - Temp/(Gamma*gamma

^2);

3 end

Listing A.11: Implementation of Equation (5.31).

1 n = 500;

2 m = 5;

3 t = linspace (0.5,4,n);

4

5 gamma = [4.2; 4.3; 4.4; 4.5; 4.6]*100;

6 Gamma = [4.8; 4.9; 5; 5.1; 5.2]/1000;

7 Temp = 1.6;

8

9 M = ones(n,m);

10 L = ones(n,m);

11

12 for i = 1:n

13 for j = 1:m

14 M(i,j) = sensitivity_melting(t(i), gamma(j),

5/1000 , Temp);

15 L(i,j) = sensitivity_lapserate(t(i), 4.4*100 ,

Gamma(j), Temp);

16 end

17 end

18

19 linS = {'-','--','-.','--', '-'};

20
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21 subplot (1,2,1);

22 for i = 1:m

23 plot(t, M(:,i), 'linestyle ', linS{i})

24 hold on;

25 end

26 legend('\gamma = 4.2\ cdot10 ^2', '\gamma = 4.3\ cdot10 ^2'

, '\gamma = 4.4\ cdot10 ^2', '\gamma = 4.5\ cdot10 ^2',

'\gamma = 4.6\ cdot10 ^2');

27 title('Sensitivity of \gamma ');

28 xlabel('t');

29 ylabel('S_{\ gamma}(t)');

30

31 subplot (1,2,2);

32 for i = 1:m

33 plot(t, L(:,i), 'linestyle ', linS{i})

34 hold on;

35 end

36 legend('\Gamma = 4.8\ cdot10^-3', '\Gamma = 4.9\ cdot10

^-3', '\Gamma = 5.0\ cdot10^-3', '\Gamma = 5.1\ cdot10

^-3', '\Gamma = 5.2\ cdot10^-3');

37 title('Sensitivity of \Gamma ');

38 xlabel('t');

39 ylabel('S_{\ Gamma}(t)');

Listing A.12: Local sensitivity analysis of the Greenland ice sheet model (Model
4.1).

1 n = 2;

2 N = 2^11;

3

4 p = sobolset (3*n, 'skip', 1e3);

5 x = net(p,N);

6

7 lower_bounds = [240 0.003];

8 upper_bounds = [640 0.007];

9

10 matrix_current = x(:,1:n).*( upper_bounds - lower_bounds

)+lower_bounds;

11 matrix_sample = x(:,(n+1):2*n).*( upper_bounds -

lower_bounds)+lower_bounds;

12 matrix_resample = x(: ,(2*n+1) :(3*n)).*( upper_bounds -

lower_bounds)+lower_bounds;

13
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14 [D, S] = sobol_method(n, N, @critical_temperature ,

matrix_current , matrix_sample , matrix_resample)

15

16 X = categorical ({'\gamma ','\Gamma ', '\gamma \Gamma '});

17 X = reordercats(X,{'\gamma ','\Gamma ', '\gamma \Gamma '})

;

18 bar(X, [S(1,1), S(1,1)+S(1,2); S(2,1), S(2,1)+S(1,2); S

(1,2) 0]);

19 xlabel('Parameters ');

20 ylabel('(Total) Sobol Sensitivity Indices ');

21 legend('$$\hat{S}$$','$$\hat{S}_T$$','Interpreter ','

Latex ')

22 ylim ([0 1]);

Listing A.13: Preparation, execution and visualization of the Sobol method for the
critical temperature of the Greenland ice sheet model (Model 4.1).

1 rng('default ');

2 n = 5000;

3

4 pd_g = makedist('Uniform ' ,240,640);

5 pd_G = makedist('Uniform ' ,0.003 ,0.007);

6

7 B = [];

8

9 for i = 1:n

10 g = random(pd_g);

11 G = random(pd_G);

12 bp = bifurcation_points(g,G);

13 B = [B; bp];

14 end

15

16 file_name = 'bifurcation_uniform_uniform.mat';

17 save(file_name , 'B');

Listing A.14: Creation of a .mat file with the points for branches of equilibria for the
Greenland ice sheet model (Model 4.1). The parameters are drawn from a uniform
distribution.
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1 c = colors ();

2 % for B, see Lst. A.14

3 n = size(B,1);

4

5 for i = 1:n

6 plot(B(i).x(2,:),B(i).x(1,:),'Color ',c('blue'))

7 hold on;

8 LP = B(i).s(2).index;

9 plot(B(i).x(2,LP), B(i).x(1,LP), 'Color ', c('orange

'), 'Marker ', '.')

10 end

11 xlim ([0 ,4.5]);

12 xlabel('Surface Temperature ');

13 ylabel('Ice Thickness ');

Listing A.15: Visualization of all bifurcation diagrams with their respective
bifurcation points.

1 rng('default ')

2 s = 500;

3

4 pd_g = makedist('Uniform ', 2.4*100 , 6.4*100);

5 pd_G = makedist('Uniform ', 0.003, 0.007);

6 g = sort(random(pd_g ,s,1));

7 G = sort(random(pd_G ,s,1));

8

9 Tc = [];

10 hc = [];

11

12 for i = 1:s

13 T = 7*((g(i)*G(i))/8) ^(8/7);

14 h = ((g(i)*G(i))/8) ^(1/7);

15 hc = [hc; h];

16 Tc = [Tc; T];

17 end

18

19 p = polyfit(Tc,hc ,5)

Listing A.16: Polynomial regression for the set of critical points.
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1 c = colors ();

2 format('default ')

3 rng('default ')

4

5 % for B, see Lst. A.14

6 n = size(B,1);

7

8 s = 100;

9 pd_g = makedist('Uniform ', 2.4*100 , 6.4*100);

10 pd_G = makedist('Uniform ', 0.003, 0.007);

11 g = sort(random(pd_g ,s,1));

12 G = sort(random(pd_G ,s,1));

13

14 fun = @(x) 0.0013*x.^5 -0.0156*x.^4 +0.0753*x.^3

-0.1920*x.^2 +0.3127*x +0.6025;

15

16 y = [];

17 Tc = [];

18 hc = [];

19 for i = 1:s

20 T = 7*((g(i)*G(i))/8) ^(8/7);

21 h = ((g(i)*G(i))/8) ^(1/7);

22 Tc = [Tc; T];

23 hc = [hc; h];

24 y = [y; fun(T)];

25 end

26

27 subplot (1,2,1)

28 plot(Tc, hc , 'o')

29 hold on;

30 plot(Tc, fun(Tc), '-')

31 xlabel('Critical Surface Temperature ');

32 ylabel('Critical Ice Thickness ');

33 legend('Data', 'Approximated Function ');

34

35 subplot (1,2,2);

36 times = linspace(Tc(1),Tc(end));

37 plot(times ,zeros(s,1),'k-')

38 hold on

39 plot(Tc, hc -fun(Tc), '.', 'Color ', c('blue'))

40 ylim ([-0.1 0.1])

41 xlabel('Fitted Values ');

42 ylabel('Residuals ');

Listing A.17: Comparison of the polynomial regression to the critical points.
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1 n = 2;

2 N = 2^11;

3

4 p = sobolset (3*n, 'skip', 1e3);

5 x = net(p,N);

6

7 lower_bounds = [240 0.003];

8 upper_bounds = [640 0.007];

9

10 matrix_current = x(:,1:n).*( upper_bounds - lower_bounds

)+lower_bounds;

11 matrix_sample = x(:,(n+1):2*n).*( upper_bounds -

lower_bounds)+lower_bounds;

12 matrix_resample = x(: ,(2*n+1) :(3*n)).*( upper_bounds -

lower_bounds)+lower_bounds;

13

14 [D, S] = sobol_method(n, N, @critical_points ,

matrix_current , matrix_sample , matrix_resample)

15

16 X = categorical ({'\gamma ','\Gamma ', '\gamma \Gamma '});

17 X = reordercats(X,{'\gamma ','\Gamma ', '\gamma \Gamma '})

;

18 bar(X, [S(1,1), S(1,1)+S(1,2); S(2,1), S(2,1)+S(1,2); S

(1,2) 0]);

19 xlabel('Parameters ');

20 ylabel('(Total) Sobol Sensitivity Indices ');

21 legend('$$\hat{S}$$','$$\hat{S}_T$$','Interpreter ','

Latex ')

22 ylim ([0 1]);

Listing A.18: Preparation, execution and visualization of the Sobol method for thes
set of critical points of the Greenland ice sheet model (Model 4.1).

A.3 Wasserstein Distance and Sensitivity

Analysis

1 f_hat = @(x) 0.0013*x.^5 -0.0156*x.^4 +0.0753*x.^3

-0.1920*x.^2 +0.3127*x +0.6025;

2 % for B, see Lst. A.14

3 n = size(B,1);

4 LP = zeros(n,4);

5 x = linspace (0,4,100);

6
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7 for i = 1:n

8 LP_i = B(i).s(2).index;

9

10 LP(i,1) = i;

11 LP(i,2) = LP_i; % index of LP

12 LP(i,3) = B(i).x(2,LP_i); % critical surface

temperature

13 LP(i,4) = B(i).x(1,LP_i); % ice thickness

14 end

15

16 LP_sorted = sortrows(LP ,3);

17

18 a = LP_sorted (1,1);

19 b = LP_sorted(end ,1);

20 plot(B(a).x(2,:), B(a).x(1,:), 'Color ', c('blue'))

21 hold on;

22 plot(B(b).x(2,:), B(b).x(1,:), 'Color ', c('blue'))

23 hold on;

24 plot(x, f_hat(x), 'Color ', c('orange '))

25

26 xlim ([0 ,4])

27 xlabel('Surface Temperature ');

28 ylabel('Ice Thickness ');

29

30 str1 = [strcat('\gamma =' , num2str(B(a).gamma)),

strcat(', \Gamma =' , num2str(B(a).Gamma))];

31 str2 = [strcat('\gamma =' , num2str(B(b).gamma)),

strcat(', \Gamma =' , num2str(B(b).Gamma))];

32 legend(str1 , str2 , 'Approximated Function f')

Listing A.19: Bifurcation diagrams for lowest and highest critical temperature with
the interpolated function of all critical points.

1 function bfpts = bifurcation_quadratic(a)

2 p = [a; 0];

3 ap = 2;

4 [x0 ,v0] = init_EP_EP (@ toymodel_quadratic ,0,p,ap);

5 opt = contset;

6 opt = contset(opt ,'MaxNumPoints ' ,100);

7 opt = contset(opt ,'Singularities ' ,1);

8 opt = contset(opt ,'Backward ' ,1);

9 [x1 ,v1,s1,h1 ,f1] = cont(@ equilibrium ,x0 ,[],opt);

10 opt = contset;

11 opt = contset(opt ,'MaxNumPoints ' ,100);
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12 opt = contset(opt ,'Singularities ' ,1);

13 [x2 ,v2,s2,h2 ,f2] = cont(@ equilibrium ,x0 ,[],opt);

14 bfpts = struct('a',a,'x1',x1 ,'x2',x2 ,'v1',v1 ,'v2',

v2 ,'s1',s1 ,'s2',s2);

15 end

Listing A.20: Numerical continuation of Model 6.1.

1 function y = toy_model_quadratic(x)

2 a = x(:,1);

3 y = (1/3) *(0.5-a) -1;

4 end

Listing A.21: Implementation of Model 6.1.

1 c = colors ();

2 C = {c('blue'),c('orange '),c('yellow '),c('purple '),c('

green ')};

3 parameter = linspace (1,5,5);

4

5 for i = 1:5

6 a = parameter(i);

7 bfpts = bifurcation_quadratic(a);

8 plot(bfpts.x1(2,:), bfpts.x1(1,:), 'color ', C{i});

9 hold on;

10 plot(bfpts.x2(2,:), bfpts.x2(1,:), 'color ', C{i});

11 hold on;

12 end

13

14 a = 0.5;

15 bfpts = bifurcation_quadratic(a);

16 plot(bfpts.x1(2,:), bfpts.x1(1,:), 'color ', c('

lightblue '), 'LineStyle ', '--');

17 hold on;

18 plot(bfpts.x2(2,:), bfpts.x2(1,:), 'color ', c('

lightblue '), 'LineStyle ', '--');

19

20 legend('a=1','','a=2','','a=3','','a=4','','a=5','','

reference ')

21 xlabel('\lambda ')

22 ylabel('x')

Listing A.22: Bifurcation diagrams of Model 6.1.
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1 function bfpts = bifurcation_linear(b)

2 p = [b; -0.1];

3 ap = 2;

4 [x0 ,v0] = init_EP_EP (@ toymodel_linear ,0,p,ap);

5 opt = contset;

6 opt = contset(opt ,'MaxNumPoints ' ,100);

7 opt = contset(opt ,'Singularities ' ,1);

8 opt = contset(opt ,'Backward ' ,1);

9 [x1 ,v1,s1,h1 ,f1] = cont(@ equilibrium ,x0 ,[],opt);

10 opt = contset;

11 opt = contset(opt ,'MaxNumPoints ' ,100);

12 opt = contset(opt ,'Singularities ' ,1);

13 [x2 ,v2,s2,h2 ,f2] = cont(@ equilibrium ,x0 ,[],opt);

14 bfpts = struct('b',b,'x1',x1 ,'x2',x2 ,'v1',v1 ,'v2',

v2 ,'s1',s1 ,'s2',s2);

15 end

Listing A.23: Numerical continuation of Model 6.2.

1 function y = toy_model_linear(x)

2 b = x(:,1);

3 y = 0.5*b -0.25;

4 end

Listing A.24: Implementation of Model 6.2.

1 c = colors ();

2 C = {c('blue'),c('orange '),c('yellow '),c('purple '),c('

green ')};

3 parameter = linspace (1,5,5);

4

5 for i = 1:5

6 b = parameter(i);

7 bfpts = bifurcation_linear(b);

8 plot(bfpts.x1(2,:), bfpts.x1(1,:), 'color ', C{i});

9 hold on;

10 plot(bfpts.x2(2,:), bfpts.x2(1,:), 'color ', C{i});

11 hold on;

12 end

13

14 b = 0.5;
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15 bfpts = bifurcation_linear(b);

16 plot(bfpts.x1(2,:), bfpts.x1(1,:), 'color ', c('

lightblue ') ,'LineStyle ', '--');

17 hold on;

18 plot(bfpts.x2(2,:), bfpts.x2(1,:), 'color ', c('

lightblue '), 'LineStyle ', '--');

19

20 legend('b=1','','b=2','','b=3','','b=4','','b=5','','

reference ')

21 xlabel('\lambda ')

22 ylabel('x')

Listing A.25: Bifurcation diagrams of Model 6.2.

1 rng('default ');

2 n = 1;

3 N = 2^11;

4

5 p = sobolset (3*n, 'skip', 1e3);

6 x = net(p,N);

7

8 lower_bounds = 1;

9 upper_bounds = 5;

10

11 matrix_current = x(:,1:n).*( upper_bounds - lower_bounds

)+lower_bounds;

12 matrix_sample = x(:,(n+1):2*n).*( upper_bounds -

lower_bounds)+lower_bounds;

13 matrix_resample = x(: ,(2*n+1) :(3*n)).*( upper_bounds -

lower_bounds)+lower_bounds;

14

15 [Dq_insp , Sq_insp] = sobol_method(n, N, @

toy_model_quadratic , matrix_current , matrix_sample ,

matrix_resample)

16 [Dl_insp , Sl_insp] = sobol_method(n, N, @

toy_model_linear , matrix_current , matrix_sample ,

matrix_resample)

17

18 save('toymodel_wasserstein_inspired.mat','Dq_insp ','

Dl_insp ')

Listing A.26: Preparation and execution of the Sobol method for Model 6.1 and
Model 6.2 using the 1-Wasserstein-inspired distance derived in Equation (6.9) and
Equation (6.15).
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1 rng('default ');

2 format longE;

3 n = 1;

4 N = 2^11;

5

6 p = sobolset (3*n, 'skip', N);

7 x = net(p,N);

8

9 lower_bounds = 1;

10 upper_bounds = 5;

11

12 matrix_current = x(:,1:n).*[ upper_bounds - lower_bounds

]+ lower_bounds;

13

14 a = 0.5;

15 bf_reference_q = bifurcation_quadratic(a).x2(1,:);

16

17 distance_vector_q = zeros(N,1);

18 for i = 1:N

19 distance_vector_q(i) = ws_distance(bf_reference_q ,

bifurcation_quadratic(matrix_current(i,1)).x2

(1,:) ,1);

20 end

21

22 f0_q = sum(distance_vector_q)./N

23 Dq = sum(distance_vector_q .^2)./N - f0_q .^2

24

25 b = 0.5;

26 bf_reference_l = bifurcation_linear(b).x2(1,:);

27

28 distance_vector_l = zeros(N,1);

29 for i = 1:N

30 distance_vector_l(i) = ws_distance(bf_reference_l ,

bifurcation_linear(matrix_current(i,1)).x2(1,:)

,1);

31 end

32

33 f0_l = sum(distance_vector_l)./N

34 Dl = sum(distance_vector_l .^2)./N - f0_l .^2

35

36 save('toymodel_wasserstein.mat','Dq','Dl')

Listing A.27: Preparation and execution of the Sobol method for Model 6.1 and
Model 6.2 using the 1-Wasserstein distance.
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1 load('toymodel_wasserstein.mat')

2 load('toymodel_wasserstein_inspired.mat')

3

4 subplot (1,2,1)

5 X = categorical ({'Quadratic Influence ', 'Linear

Influence '});

6 X = reordercats(X,{'Quadratic Influence ', 'Linear

Influence '});

7 bar(X, [Dq_insp; Dl_insp ]);

8 ylabel('Variance obtained with Wasserstein -Inspired

Distance ')

9 ylim ([0 0.4])

10

11 subplot (1,2,2)

12 X = categorical ({'Quadratic Influence ', 'Linear

Influence '});

13 X = reordercats(X,{'Quadratic Influence ', 'Linear

Influence '});

14 bar(X, [Dq; Dl]);

15 ylabel('Variance obtained with Wasserstein Distance ')

16 ylim ([0 0.05])

17

18 figure (2)

19 X = categorical ({'Quadratic Influence ', 'Linear

Influence '});

20 X = reordercats(X,{'Quadratic Influence ', 'Linear

Influence '});

21 bar(X, [Dq_insp; Dl_insp ]);

22 ylabel('Variance obtained with Wasserstein -Inspired

Distance ')

23 ylim ([0 0.4])

24

25 figure (3)

26 X = categorical ({'Quadratic Influence ', 'Linear

Influence '});

27 X = reordercats(X,{'Quadratic Influence ', 'Linear

Influence '});

28 bar(X, [Dq; Dl]);

29 ylabel('Variance obtained with Wasserstein Distance ')

30 ylim ([0 0.05])

Listing A.28: Visualization of the variance obtained with 1-Wasserstein-inspired
distance and 1-Wasserstein distance.
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A.4 Probabilistic Analysis

1 c = colors ();

2

3 z1 = linspace (0.45 ,1.18 ,70);

4 z2 = linspace (1.18 ,1.38 ,70);

5 z3 = linspace (1.38 ,3.61 ,70);

6

7 gg = random(makedist('Uniform ' ,240,640) ,5000,1);

8 GG = random(makedist('Uniform ' ,0.003 ,0.007) ,5000,1);

9 TT = 7*((gg.*GG)/8) .^(8/7);

10

11 n = 70;

12 % for B, see Lst. A.14

13 m = size(B,1);

14

15 Tc = [];

16 for i = 1:m

17 LP = B(i).s(2).index;

18 Tc = [Tc; B(i).x(2,LP)];

19 end

20

21 F1 = @(z) (z.^(7/8)).*( -0.26849+0.797108* log(z))+0.45;

22 f1 = @(z) ((5/8) *((z./7) .^( -1/8))).*(log (8) + (7/8)*log

(z) - (7/8)*log (7) - log (0.72));

23 F2 = @(z) (z.^(7/8)).*(0.771872) - 0.6;

24 f2 = @(z) (5/8)*log (7/3) *((z./7) .^( -1/8));

25 F3 = @(z) (z.^(7/8)).*(1.93388 - 0.797108* log(z)) -1.8;

26 f3 = @(z) ((5/8) *((z./7) .^( -1/8))).*(-log(8) - (7/8)*

log(z) + (7/8)*log(7) + log (4.48));

27

28 figure (1)

29 h = cdfplot(Tc);

30 set(h, 'Color ', 'k', 'LineStyle ','--')

31 hold on;

32 hh = cdfplot(TT);

33 set(hh , 'Linestyle ', '-.', 'Color ', c('purple '), '

LineWidth ' ,1.6)

34 plot(z1, F1(z1), 'LineWidth ', 1.2, 'Color ',c('blue'))

35 hold on;

36 plot(z2, F2(z2), 'LineWidth ', 1.2, 'Color ',c('orange '))

37 hold on;

38 plot(z3, F3(z3), 'LineWidth ', 1.2, 'Color ',c('yellow '))

39
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40 xlabel('Critical Surface Temperature ')

41 ylabel('Probability ')

42 title('')

43 legend('empirical CDF (MATCONT)', 'empirical CDF (

analytical formula)', 'F_{Tc;1}','F_{Tc;2}','F_{Tc

;3}', 'Location ', 'southeast ')

44 grid off

45 ylim ([0 1.05])

46

47 figure (2)

48 histogram(Tc , 'BinWidth ', 0.1, 'Normalization ', 'pdf',

'FaceColor ', 'none');

49 hold on;

50 histogram(TT , 'BinWidth ', 0.1, 'Normalization ', 'pdf',

'FaceColor ', 'none', ...

51 'LineStyle ', ':', 'LineWidth ', 1.6, 'DisplayStyle ',

'stairs ', 'EdgeColor ' ,c('purple '));

52 hold on

53 plot(z1, f1(z1), 'LineWidth ', 1.2, 'Color ',c('blue'))

54 hold on;

55 plot(z2, f2(z2), 'LineWidth ', 1.2, 'Color ',c('orange '))

56 hold on;

57 plot(z3, f3(z3), 'LineWidth ', 1.2, 'Color ',c('yellow '))

58 hold on;

59

60 xlim ([0 4])

61 ylim ([0 1])

62 xlabel('Critical Surface Temperature ')

63 ylabel('Density of Probability ')

64 legend('empirical data (MATCONT)','empirical data (

analytical formula)','f_{Tc;1}','f_{Tc;2}','f_{Tc;3}

')

65

66 mean(Tc)

67 median(Tc)

68 skewness(Tc)

69 mean(TT)

70 median(TT)

71 skewness(TT)

Listing A.29: Probability density function and cumulative density function of the
critical surface temperature.
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