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1 Introduction

Under the "Green Deal", the European Union aims to reduce greenhouse gas emissions to less
than 55 % from 1990 levels by 2030, and become climate-neutral by 2050 [1]. One quarter of
these greenhouse gas emissions is caused by the transport sector, where road transport is
responsible for the largest share (72 % in 2019) [2, p. 7]. A rapid transition to zero-emission
vehicles is therefore vital to meet the Green Deal targets.

The largest share of road transport emissions in the EU is caused by passenger vehicles (60.6 %
in 2019 [2, p.18]), where one type of zero-emission vehicle, the Battery-Electric Vehicle (BEV),
has seen promising growth in recent years. In Europe, BEV sales increased by 65 % from 2021
to 2022, reaching a car sales share of 9 % [3, p. 15]. The number of available BEV models has
also seen a continuous increase from approximately 50 models in 2015 to almost 300 models in
2021 [3, p. 19].

The second largest share of road transport emissions within the EU is caused by heavy-duty
vehicles (27.1 % in 2019 [2, p.18]), illustrated in Figure 1.1. This includes emissions from buses
& coaches, construction & utility vehicles, service vehicles (≤ 7.5 t), and trucks operating on
urban-delivery, regional-delivery and long-haul routes. While the sales share of electric buses
has been continuously increasing in Europe, reaching 6 % in 2021, only 0.1 % of heavy-duty
trucks sold in 2021 were electrified [3, p. 35]. In particular long-haul trucks, which are the largest
emitters among heavy-duty vehicles in Europe (37.1 % of all heavy-duty vehicle fuel consumption
[4, p. 181]), are challenging to decarbonize due to long travel distances and heavy loads. Yet, to
reach the Green Deal targets, an effective zero-emission alternative is required.

Several decarbonization pathways for long-haul trucks are currently being explored, including
synthetic fuels, hydrogen, catenary systems, and battery-powered vehicles. Each pathway has
advantages and disadvantages.

Synthetic fuels, also known as e-fuels, are manufactured from hydrogen and CO2. If the hydrogen
is generated using renewable energy resources and the CO2 is captured from the air, these fuels
are climate-neutral. Synthetic fuels benefit from a high energy density and could be integrated in
existing vehicle and fuel infrastructure [5]. However, the fuels have a low well-to-wheel efficiency,
meaning that it would require about 5 times more renewable energy sources to decarbonize the
mobility sector using synthetic fuels compared to a battery-electric option [6, p. 11]. Additionally,
although carbon emissions are accounted for, burning synthetic fuels would still locally emit
particulate matter and nitrogen oxides.

Hydrogen can be used for propulsion by converting it into electricity in a fuel cell and powering
an electric machine, emitting only water. The energy density of compressed hydrogen on a
system level is lower than that of fossil fuels, but higher than that of batteries. It is therefore often
proposed as a zero-emission alternative for applications where volume and weight constraints
might make a battery-electric option challenging to realize [7, p. 25]. Additionally, compared
to BEV, hydrogen vehicles can be refueled faster, although BEV charging times have been
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Figure 1.1: Share of heavy-duty truck emissions in the transport sector [2, p. 18].

continuously decreasing [8]. That said, a decarbonization pathway based on hydrogen faces two
major challenges. First, the infrastructure is still sparse: In 2020 only 540 hydrogen refueling
stations were in operation globally, compared to 1.3 million charging points for BEV [9]. Second,
the conversion step from electricity to hydrogen and back causes efficiency losses, resulting in a
decarbonization pathway that would require 2.5 times the amount of renewable energy sources
compared to a battery-electric option [10, p. 20].

Alternatively, hydrogen may be used for propulsion by burning it in a combustion engine. This
use of hydrogen benefits from synergies with fossil fuel combustion engine technology [11] and
does not require expensive materials for the fuel cell catalyst [11]. However, although combusting
hydrogen does not result in CO2 emissions, the high combustion temperature does cause
nitrogen oxide emissions. Additionally, the tank-to-wheel efficiency for combusting hydrogen
is lower than the fuel cell option, resulting in a further increased need for renewable energy
sources for this decarbonization pathway.

Catenary systems are a hybrid propulsion technique where the truck has a vehicle battery and a
pantograph, which allows the vehicle to attach to overhead powerlines where these are available
[12]. As a result, smaller batteries onboard the vehicle may suffice, reducing the vehicle cost
and increasing payload capability. However, this concept would require large investments in
overhead charging infrastructure estimated at €2.44 · 106 km−1 [13].

Finally, climate-neutral long-haul trucks might be realized with a battery-electric powertrain. This
option has a high well-to-wheel efficiency and could benefit from synergies with the passenger
car market, where battery-electric drivetrains have dominated among zero-emission alternatives
[9]. However, the required driving range and payload capacity might be challenging to realize,
due to the low energy density of batteries compared to fossil fuels [14].

All decarbonization pathways have their own advantages and disadvantages. However, taking
into account the low availability of renewable energy sources and the slow development of new
infrastructure, Battery-Electric Truck (BET) may be our best bet for reaching the goals of the
Green Deal. With this thesis, I hope to contribute to making battery-electric long-haul trucks
feasible and cost-competitive with status-quo Diesel Truck (DT).
2



1 Introduction

The most crucial component for realizing battery-electric long-haul trucks is the traction battery.
The long travel distances and heavy payloads that are typical for this vehicle type result in a high
energy demand. At the same time, the available volume onboard the vehicle is limited, and the
battery mass should not result in payload losses compared to a DT. Additionally, fast-charging
capability is required to allow recharging the vehicle during the driver’s rest period and a high
cycle life is needed to cover the high annual mileage. All these requirements need to be met at a
competitive price point as the logistics market expects payback periods on investments of less
than two years [15].

These requirements result in a conflict, because batteries that excel at cycle life typically offer
a lower energy density, and cells that are capable of fast-charging might be more expensive
[16, 17]. The system design needs to be considered too, because the battery life is influenced
by the Battery Thermal Management System (BTMS). To find a good trade-off between these
characteristics in the battery design, I developed a structured approach to design the battery of
a battery-electric truck.

The structure of this thesis is illustrated in Figure 1.2. After this introduction, I will describe
previous research on truck electrification and battery design, and define the research gap.
Subsequently, I will present the developed method, which consists of five steps: cell selection,
battery model parametrization, power profile generation, battery lifetime simulation, and BTMS
design. The cell selection method and battery model have been published in previous work.
Results will be presented after describing the method of each step. Finally, chapter 4 provides a
discussion and conclusion.

1. Introduction

2. State of the art

4. Discussion & Conclusion

Truck 
electrification

2.1
Battery 
design

2.2 Research gap2.3

3. Method and results

Cell selection
(published)

3.1
Battery model 
parametrization
(published)

3.2
Power profile 
generation

3.3
Battery 
lifetime 
simulation

3.4 BTMS design3.5

Figure 1.2: Thesis structure
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2 State of the art

Related work can be clustered into two groups: studies investigating the feasibility and cost
competitiveness of truck electrification, and studies focusing on battery design. In the following, I
will give an overview of previous work in both groups and conclude with the research gap.

2.1 Long-haul truck electrification

The first study investigating zero-emission alternatives for long-haul transport was published
in 2013 by den Boer et al. [18]. The authors explored options for zero-emission road freight
transport, concluding that battery-electric technology is a feasible option for short-distance
transport, but not a viable mainstream option for long-haul applications without on-the-road
charging technologies.

A 2016 study commissioned by Shell [19] agrees with this result, concluding that the restrictions
on range and payload would be too severe for a battery-electric powertrain.

In 2017, Sripad et al. [14] reached a similar conclusion. The authors carried out Monte-Carlo
simulations to determine the required battery capacity and resulting battery mass, battery cost
and maximum payload capacity for status quo lithium-ion cells and beyond lithium-ion cells. Their
results show that in order to achieve cost competitiveness with DT the improved performance of
beyond lithium-ion cells is required.

The 2017 International Energy Agency (IEA) study on the future of trucks [15] excluded BET
from their cost comparison among vehicle and fuel technologies for long-haul transport, instead
focusing on diesel hybrids, trucks fueled with natural gas, hydrogen trucks, and electric trucks
operating on electricity from catenary-based electric road systems.

Until 2017, battery-electric propulsion was not seen as a viable option for long-haul transport.
However, two important aspects were not considered. First, battery technology has been im-
proving rapidly. Energy density and specific energy have more than tripled since the initial
introduction of lithium-ion batteries [20], while the cell price has been falling by 25 % every time
the cumulative volume of deployed cells doubled [21]. Additionally, on pack-level, costs have
come down due to improvements in the cell-to-pack cost ratio [22], while energy density has
increased due to novel cell-to-pack integration concepts [21].

Second, the studies concluding that BET are not feasible assumed that a range between 965 km
and 1100 km is required to mimic DT operation. However, current EU regulations prohibit a driver
from driving more than 4.5 h without a rest period of 45 min . At the maximum speed for trucks
of 80 kmh−1, this results in a range between rest periods of 360 km. If charging infrastructure is
available during the rest periods, the required range of a BET operating with a single driver can
therefore be reduced significantly.
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More recent studies underline the feasibility of BET. Only a few months after Transport &
Environment published a report concluding that battery electric vehicle technology is limited to
small and medium trucks [23], the authors published an update [24] stating that long range BET
not only have the potential to bring the EU close to zero emissions, but also that the transition
would be cost effective for the trucking sector. In their 2021 report [25] they expect between
88 000 and 185 000 battery-electric long-haul trucks on the road in 2030.

In 2018 Sripad et al. [26] revisited the conclusion from their 2017 article, finding that economic
competitiveness of electric semi-trucks for hauling ranges of up to 500 miles will be enabled
if optimistic but feasible conditions for vehicle drag, charging infrastructure availability, cost of
charging, battery cost and battery cycle life are met.

Phadke et al. [27] found that at the 2021 global average battery pack price of $135 kWh−1 a BET
with 600 km range operating 480 km per day offers about 13 % lower Total Cost of Ownership
(TCO) than a DT with only a 3 % reduction in payload capacity.

This is in line with announcements from truck manufacturers. An overview of long-haul BET
models, their characteristics and their Start of production (SOP) is shown in Table 2.1. Manu-
facturers expect a rapid uptake: MAN [28] announced that 40 % of their long-haul truck sales
will be zero-emission in 2030; Scania [29] aims at 50 % of its sales to be electric in 2030; and
Daimler, Iveco, Scania, Volvo Group, DAF and MAN all announced their commitment to sell
100 % fossil-free trucks by 2040 [30].

Table 2.1: Characteristics and SOP of announced long-haul trucks [31]

Truck SOP tractor mass Installed energy Battery chemistry Range
Daimler eActros LongHaul Q4 2024 11 t 600 kWh LFP 500 km
Scania 45R Q3 2023 10.7 t 624 kWh NMC 350 km
Volvo FH electric Q4 2022 10.55 t 540 kWh NCA 300 km
Nikola TRE BEV Q3 2023 12.3 t 738 kWh NMC 530 km
DAF XFe FT Q2 2023 9.8 t 525 kWh LFP 500 km
MAN eTruck 2024 10.34 t 534 kWh NMC 611 km

However, the point at which BET become cost competitive with DT depends on a wide range of
factors. First, on the vehicle range and annual mileage. Wolff et al. [32] investigated the cost-
effectiveness and well-to-wheel emissions of different powertrain concepts for different annual
mileages and vehicle ranges. The authors considered different scenarios: a 2020 scenario, a
realistic 2030 scenario, and an optimistic 2030 scenario. Their results for the realistic 2030
scenario show that BET are the most cost-competitive option up to a range of 600 km. At this
range, BET have the lowest well-to-wheel emissions as well for a typical long-haul truck annual
mileage.

Second, it depends on local policy and the divergence between diesel cost and the cost of
charging. Basma et al. [33] analyzed the year in which BET and DT reach TCO parity in
seven European countries, taking into account ownership taxes, electricity and diesel costs,
maintenance costs, road tolls, battery replacement, and charging infrastructure costs. They
conclude that TCO parity will be reached during this decade for all considered countries, but
the year at which it will be reached varies from 2021 in Germany to 2027 in Italy. Noll et al. [34]
compared the road-freight TCO for 5 drive-technologies in 3 applications and 10 countries. They
find that cost competitiveness in the heavy-duty long-haul segment is exhibited already today in
countries that have enacted targeted policy measures. Earl et al. [35] analyzed the potential of
battery-electric heavy-duty trucks in the EU. Their analysis of the total cost of ownership shows
that the biggest sensitivity to cost competitiveness is the electricity price.
6
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Third, it depends on the available charging infrastructure. Forrest et al. [36] compared the trip
share that can be covered by battery-powered trucks and hydrogen-powered trucks for different
ranges and charging capacities. Their results show that the share of covered trips can be greatly
increased by enabling fast charging during the day.

Finally, the characteristics of the BET battery are crucial for a cost-effective and feasible
implementation. The battery of a BET must be: small, to fit into the available volume on board the
vehicle; light, to avoid any reductions in payload; resistant to aging, to avoid battery replacement
during the operating life; fast-charging capable, to enable recharging during driver rest periods;
and low cost to minimize investment costs. Previous studies investigated the impact of the
battery properties on the feasibility and cost-effectiveness of BET.

Mareev et al. [37] determined the required battery capacity for long-distance truck operation in
Germany, taking into account battery charging during driver rest periods. They then performed a
life cycle cost analysis for two different cell types, which showed that life cycle costs are strongly
influenced by battery lifetime, justifying the use of more expensive but aging-resistant cells.

Nykvist and Olsson [38] modeled the feasibility of BET that use fast charging with high power.
Their results show that battery characteristics strongly influence the cost competitiveness of BET
and that battery lifetime may be more important than specific battery price.

Mauler et al. [39] compared the life-cycle costs of a BET with Lithium Iron Phosphate (LFP) cells,
a BET with high-nickel cells, and a hydrogen truck in the united states, taking into account lost
profits due to charging times and lower cargo capacity. The results show that LFP batteries excel
in volume-constrained transport on short hauls, while high nickel batteries have an advantage
in weight-constrained transport. Hydrogen trucks become competitive only on long and weight-
constrained routes.

In conclusion, announcements from truck manufacturers and recent studies agree that long-haul
trucks are primed for electrification now. However, the boundary conditions for widespread
adoption are complex, requiring targeted policy measures and the implementation of a dense
charging infrastructure network. Additionally, several studies address the importance of the
battery characteristics. Although these studies compare the suitability of different battery cells,
or battery sizes, a holistic battery design method is still missing.

2.2 Battery design

Battery technology is a vast research field. Between 2000 and 2019 more than 170000 articles
related to batteries have been published [40]. These articles cover a wide range of topics, includ-
ing material development, battery diagnostics, operating strategies, and thermal management
systems. However, only few researchers presented methodologies for a holistic battery system
design.

Burda [41] developed a range of tools that support the battery design for a passenger vehicle:
battery sizing and package definition during the concept phase, technology selection and
packaging during the definition phase, simulation and detailed design during the realization
phase, and finally validation and homologation during the construction phase. All tools were
applied to the design and realization of the MUTE BEV prototype. As one of the limitations, the
author states that costs were not included in this battery design method.

7
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Hesse et al. [42] provide a guideline for the system design of lithium-ion based stationary storage
systems. They first discuss the performance and aging characteristics of different electrode
materials. Subsequently, they describe which additional components are needed in a stationary
storage system, and discuss different stationary storage applications and the resulting load
patterns. Finally, they present different simulation models that allow optimizing the sizing, position
and energy dispatch control for different applications.

Naumann [43] optimized the size and installed photovoltaic peak power of a home energy
storage system to maximize its profitability. The author took special consideration of the battery
aging behavior by characterizing an LFP cell using extensive calendar and cycle aging studies.
However, different cells or the impact of the battery thermal management system design are not
considered.

Rothgang et al. [44] analyzed the design process for electric public buses. The authors quali-
tatively discuss the impact of different bus operating strategies, cell selection and the thermal
management system. However, the trade-offs in individual design decisions are not quantified.

Reiter [45] presented a procedure for top-level thermal design of lithium-ion battery systems in
electric passenger vehicles. The procedure compares different cell formats, taking the electrical
connections and cell parameter variations into account. However, different cell chemistries were
not considered.

Epp et al. [46] focused on the battery packaging. They presented a multi-physically coupled
battery design tool that optimizes space allocation of the main system components for different
cell geometries. For a passenger car use case, they optimized the design of the mechanical
battery frame, the cooling plate topology, and the integration capability of the electronics, finding
a Pareto-optimal result in terms of installation space and cost.

In addition to studies presenting holistic design methods, other studies cover individual aspects
of the battery design process: cell selection, battery modeling, load profile generation, battery
life simulation or BTMS design. The state-of-the-art in these domains will be discussed in the
following.

Further battery-design aspects, including optimization of the battery size [47] and cell intercon-
nections [45], are not covered in this thesis. I assume that the battery size will be minimized while
enabling BET to mimic DT operation in worst-case conditions, thereby removing the need for
battery size optimization; and I consider the optimization of cell interconnections and geometric
positioning to be part of the detailed battery design, which will not be covered in this thesis.

2.2.1 Cell technologies and selection methods

Although a wide range of energy storage technologies exists, state-of-the-art BEV solely use
lithium-ion batteries [48], due to their high energy density, high efficiency, low self discharge,
and long cycle life [42]. Therefore, I will limit myself to lithium-ion cells here. Post Lithium-ion cell
technologies, such as lithium-sulfur or sodium-ion batteries are not considered, because they
are not commercially available yet. Despite these restrictions, lithium-ion cells are available with
vastly different parameters.

Lithium-ion cells consist of a positive and a negative electrode, a separator, the electrolyte
plus additives, and the cell housing. By changing the properties of these components, the cell
characteristics can be modified [49].
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The positive electrode typically consists of an aluminum current collector and the active material.
Different active materials are used in lithium-ion cells. The first commercially available lithium-
ion battery, presented by Sony, used Lithium Cobalt Oxide (LCO) as the active material on
the positive electrode [50]. LCO has excellent cycling performance, low self-discharge, and
an adequate gravimetric and volumetric energy density [51]. However, the high cost of cobalt
disqualifies it for automotive applications [50].

Most widely used in automotive applications are batteries with a Nickel Manganese Cobalt
(NMC) or Nickel Cobalt Aluminum (NCA) positive electrode [52]. Automotive companies are
moving towards lower cobalt content in both materials to reduce costs [53]. These materials offer
high energy densities and good cycling stability [54], but require additional safety measures on
pack level [21].

Alternatively LFP is used, which shows excellent safety and aging characteristics [55]. Addition-
ally, the cost and environmental impact of the material is low [56]. On the downside, LFP has a
lower energy density than NMC or NCA cells, although this may be compensated on pack level
by lower requirements of the cooling and safety systems [21]. Batteries with an LFP positive
electrode are used in the China-build Tesla model 3 and in many Chinese vehicle models [57].

The negative electrode typically consists of a copper current collector and graphite as the active
material. Graphite is low cost and achieves an adequate energy density. The energy density
can be increased by adding silicon to the graphite anode, although high silicon contents might
reduce the cell’s cycle life [58].

Higher charging rates and a longer cycle life can be achieved with Lithium Titanium Oxide (LTO)
as the negative electrode active material [59]. However, using LTO instead of graphite results
in a lower energy density. Additionally, the use of titanium leads to a higher cost compared to
graphite [58].

By combining different active materials for the positive and negative electrodes, cells with
widely different properties can be created. Additionally, cell properties are affected by the active
material thickness, cell tab design, electrolyte composition, separator material and cell form
factor [60]. As a result, lithium-ion cells are available with vastly different properties, which led to
the development of cell selection methods.

The most well known decision aid for energy storage device selection is the Ragone diagram
presented by David Ragone in 1968 [61] and shown in Figure 2.1. The Ragone diagram visualizes
the specific energy and specific power of an energy storage technology as a band representing
different battery construction details and parameters, such as battery age, discharge rate,
charge state and temperature. To assess the suitability of an energy storage technology for
an automotive application, the specific power and specific energy that are required to propel
a vehicle at a given speed for a given distance are superimposed in the figure. This enables
a visual comparison of the range and vehicle speed that could be enabled by different energy
storage technologies.

Since its initial publication, the Ragone plot has been extended to include further energy storage
technologies, such as supercapacitors and lithium-ion batteries, and has been applied in a
wider range of applications [50]. Other studies included additional cell characteristics in the
Ragone plot. Catenaro et al. [62] developed an enhanced Ragone plot that takes the operating
temperature of the cell into account, where the impact of the temperature on the relationship
between energy and power is determined using pulse tests at different temperatures. Dechent et
al. [63] proposed a further extension of the Ragone plot, called ENPOLITE, which visualizes
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Figure 2.1: The original Ragone diagram [61]. Lithium-ion batteries and other energy storage devices
were only included in later versions.

the energy, power, lifetime and temperature of energy storage technologies in a single figure,
that contains the information from aging tests of several hundred cells with different chemistries,
shape factors and load profiles.

Few studies describe cell selection methods unrelated to the Ragone plot. Panday and Bansal
[64] proposed a multi-criteria decision making method that selects an energy storage device
by comparing its characteristics to a target specification. The differences are then mapped in
an Euclidean space and the energy storage device with the shortest distance from the ideal
solution is selected. Loganathan et al. [65] presented a weighted-sum model for the selection
of lithium-ion batteries in electric vehicles. The authors reviewed characteristics such as price,
safety and energy density of various lithium-ion batteries, and ranked them on a five-point scale.
Subsequently, weights were assigned to each characteristic and the performance of different
lithium-ion batteries was compared.

Although different cell selection methods have been proposed in previous studies, they require
knowledge about the required cell properties and don’t consider the impact on system cost.

2.2.2 Battery modeling

After a cell is selected, battery models can be used for a detailed assessment of the cell’s
performance under different operating conditions. The battery model should cover the electric,
thermal and aging behavior of the cell. In the following, I will describe different model types, the
models I will use in this thesis, and their fundamentals. Subsequently, I will discuss previous
work using combined electric, thermal, aging models.
10
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Electric models

Electric models can be grouped into three categories: physics-based models, Equivalent Circuit
Model (ECM), and black-box models. Physics-based models, e.g. PyBamm [66], aim to describe
the battery structure and the physical and chemical processes that take place inside the battery
in high detail [67]. For example, the porous structure of the electrode materials is simulated by
a large number of spherical particles [68]. The simulation models resulting from this approach
provide spatial concentration, potential and temperature distributions, and thus provide detailed
insights into battery behavior. This type of model enables investigating design parameters of
the battery structure, such as layer thickness or conductivity, and their influences in a targeted
manner. However, solving these models is computationally expensive and parametrizing them
requires detailed knowledge of the investigated battery cell.

ECM aim to simulate battery behavior with a small number of electrical components, such as
voltage sources, resistors, capacitors and inductors, each of which is used to represent a specific
physical effect [69]. These models allow fast computation times and are easier to parametrize
than physics-based models. However, the possibilities for investigating the interaction between
individual cell parameters is limited.

In contrast to the previous two types of battery models, black-box models regard the battery as a
closed system whose input and output variables, such as current, voltage and SOC are linked
by means of various methods [70]. Black-box models can be simple equations with low accuracy,
such as the Peuckert equation [71], or complex artificial neural networks [72], that require vast
amounts of measurement data to train.

In this thesis, I will use an ECM-based battery model, because battery designers typically have
limited information about the internals of a cell, need higher accuracy than simple equations,
and may not have enough operating data to train an artificial neural network.

ECM typically consist of a voltage source UOCV, that models the cell’s open circuit voltage, a
series resistance R0, and a number of RC-elements. Figure 2.2 shows an ECM with a single
RC-element, where R1 and C1 denote the RC-element components, U1 denotes the voltage
across the RC-element, Uk the voltage over the cell terminal and Icell the cell current. Positive
currents correspond to charging.

Uocv

R0

R1

Icell

Uk

C1

U1

Figure 2.2: An ECM with a single RC-element.

The SOC dependency of the open circuit voltage can be parametrized using a pOCV measure-
ment. In the pOCV measurement the cell voltage is measured while charging and discharging
the cell with a low current. The OCV is approximated by taking the average of the cell voltage
measured in a charging and discharging direction, as shown in Figure 2.3 [73].

11



2 State of the art

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

SOC in %

V
ol

ta
ge

in
V

1/40C Charge
1/40C Discharge
OCV

Figure 2.3: pOCV measurement and OCV-curve of the VW ID.3 cell [74]

The series resistance R0 and RC-element components, R1 and C1 can be parametrized using
a Hybrid Pulse Power Characterization (HPPC). In the HPPC, the cell voltage is measured in
response to a current pulse, as shown in Figure 2.4. The measurement should be repeated at
different SOC and temperature to include the impact of these factors.
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Figure 2.4: Voltage response to a 1/2C 30 s current pulse for the VW ID.3 cell at 50 % SOC and 20 °C
[74]

The corresponding increase in cell resistance can be calculated using Equation (2.1), where Rj

denotes the resistance and the subscript j the time step.

Rj =
Uk,j − Uk,j=0

Icell,j − Icell,j=0
(2.1)

The cell’s resistance increases with the pulse duration. This transient behavior is modeled by the
ECM using Equation (2.2), where t denotes the pulse duration. The parameters R0, R1 and C1

can be found using a curve fitting algorithm, such as the "Trust-Region-Reflective Least Squares
Algorithm" provided in the Matlab curve fitting toolbox. An example is shown in Figure 2.5. The
quality of the fit is described by the coefficient of determination, R2.
12
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Figure 2.5: Exemplary curve fit for the VW ID.3 cell at 50 % SOC and 20 °C. The curve fit achieves a
coefficient of determination of 98.2 %, where the biggest deviation occurs at the beginning
of the pulse.

Rj = R0 + R1

�

1− exp(
−t

R1C1
)
�

(2.2)

The series resistance, R0, corresponds to the internal resistance at the start of the pulse. As the
pulse duration increases, the internal resistance increases, approaching an asymptotic value
of Rtot, calculated by Equation (2.3). The speed at which this asymptotic value is reached is
described by the RC-time, tRC, given by Equation (2.4), which corresponds to the time until
the RC-element resistance reaches 63 % of its asymptotic value. Multiple RC-elements may be
used to cover different physical effects and achieve a better curve fit, but lead to an increase in
computation time.

lim
j→∞

Rj = Rtot = R0 + R1 (2.3)

tRC = R1C1 (2.4)

Thermal models

Thermal models model the thermal behavior of the cell and the interaction with the battery
housing, cooling system and ambient temperature. Thermal models can be categorized as
lumped-capacitance model or multi-dimensional models [75].

Multi-dimensional models include transient Finite Element Model (FEM) and Computational Fluid
Dynamics (CFD) simulations. These models enable modeling the battery geometry and coolant
flow in great detail, but require large computational resources and knowledge about the detailed
battery design.
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Lumped-capacitance models assume that the temperature of a solid object is uniform and can be
represented by a single, lumped value. Although they are not as accurate as multi-dimensional
models, they require less computational resources and are easier to parametrize.

In this thesis, I will used a lumped-capacitance thermal model, because the detailed battery
design is not known yet and the model should require little computation power to allow simulating
the battery life.

Using a lumped-capacitance model, the cell is modeled as a thermal mass with a given heat
capacity and a connection to other thermal masses described by a thermal resistance. Heat
generated in the cell is added to thermal mass, while heat exchange between the thermal
masses is a function of the temperature difference and the thermal resistance. Additionally, heat
may be added or removed by a heating or cooling system.

Aging models

Aging models model the capacity loss, Qloss, and internal resistance increase, Rinc, caused by
aging. Aging models can be grouped into two categories: physical models and semi-empirical
models [76].

Physical models aim to model individual aging mechanisms such as Solid Electrolyte Interface
(SEI) growth, particle cracking or lithium plating [77]. The models can achieve high accuracy
and investigate the interaction between different battery design parameters, but require solving
many partial differential equations and a thorough understanding of all physical and chemical
mechanisms [76].

Semi-empirical aging models use curve-fits to capture the relationship of various stress factors
in relatively simple analytical formula. They require large test matrices to parametrize, but do not
require detailed knowledge about the cell internals and allow fast computation [76].

Because information about the cell internals is typically not known to a battery designer and fast
computation times are required, I use semi-empirical aging models in this thesis.

Semi-empirical aging models calculate calendar and cyclic aging separately, using Equa-
tion (2.5) - (2.8), where α describes the impact of stress factors such as temperature or Depth
Of Discharge (DOD), t denotes time, n FEC, and the exponent z describes the shape of the
degradation curve. The subscripts Q, R, cal, and cyc denote capacity loss, resistance increase,
calendar and cyclic aging respectively. The total capacity loss and internal resistance increase
are the sum of the calendar and cyclic components as given in Equation (2.9) and (2.10).

Qloss,cal = αQ,cal tzQ,cal (2.5)

Qloss,cyc = αQ,cyc nzQ,cyc (2.6)

Rinc,cal = αR,cal tzR,cal (2.7)

Rinc,cyc = αR,cyc nzR,cyc (2.8)

Qloss =Qloss,cal +Qloss,cyc (2.9)

Rinc = Rinc,cal + Rinc,cyc (2.10)

To model dynamic aging conditions, the incremental capacity loss and internal resistance
increase need to be determined for the stress factors over a given time step. Unless the
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exponent z is 1, these increments depend on the aging state of the battery at the beginning of
the time step. The approach to update the aging state is illustrated at the example of calendar
capacity loss.

An equivalent time, teq, is defined corresponding to the time that would have passed under the
current aging coefficients to reach the capacity loss at the beginning of the time step, as given in
Equation (2.11). The aging at the next time step can then be calculated using Equation (2.12).
For cyclic aging, the same approach is used by calculating the equivalent FEC.

teq =

�

Qloss,cal,j

αQ,cal

�1/zQ,cal

(2.11)

Qloss,cal,j+1 = αQ,cal(teq +∆t)zQ,cal (2.12)

The capacity loss and internal resistance increase caused by calendar aging can be updated at
every time step. For cyclic aging this is not possible, because stress factors such as DOD or the
average cycling voltage can only be determined once a cycle is completed. To determine if a
cycle is completed, rainflow counting is used. Rainflow counting is a cycle counting scheme that
has traditionally been employed to analyze cumulative damage fatigue in stress/strain hysteresis
[78].

The rainflow counting algorithm determines the DOD and average cycling voltage based on SOC
vertices that are detected by changes in the sign of the cell current, i.e. a change from charging
to discharging or vice versa. The sequence of SOC vertices is stored and updated when a new
SOC vertex is reached.

Figure 2.6 illustrates how the algorithm works, where the initial sequence of SOC vertices is
shown on the panel on the left and subsequent sequences are shown on the panels to the right.
Panel A shows the initial SOC vertices. When a new SOC vertex is detected, it is appended to
the previous SOC vertices, as shown in panel B, and the DOD between the last and previous
SOC vertices is calculated. If the last DOD is smaller than the previous DOD, the simulation
continues, resulting in the SOC vertices in panel C. If the last DOD is larger than or equal to the
previous DOD, the SOC vertices of the previous DOD are removed from the list, as shown in
panel D, and cyclic degradation is calculated for the DOD and average cycling voltage of the
removed SOC vertices. The algorithm continues until the last DOD is smaller than the previous
DOD, or the list of SOC vertices has reduced to 2 or fewer points. The algorithm is executed
every time a new SOC vertex is added to the list.

Combined electric, thermal, aging models

Combining ECM with thermal lumped capacitance models and semi-empirical aging models, the
combined electric, thermal and aging behavior of a battery can be simulated, as demonstrated
by the following studies.

Schmalstieg et al. [79] presented a coupled electric-thermal-aging model for a 2 Ah lithium-ion
cell. The aging model is parametrized by conducting calendar and cycle aging tests for more
than 60 cells. However, the model was only validated on cell level.

Neubauer [80] developed the Battery Lifetime Analysis and Simulation Tool (BLAST), which pairs
a battery degradation model with an electrical and thermal model. The tool allows simulating

15



2 State of the art

0

20

40

60

80

100
S

O
C

in
%

A B

10 % DOD
around 35 % SOC

SOC vertices

C

30 % DOD
around 35 % SOC

D E
90 % DOD

around
55 %
SOC

F

Figure 2.6: Illustration of the rainflow counting algorithm that is used to calculate cyclic aging.

vehicle, stationary storage and behind-the-meter applications, although only the electric model
of the behind-the-meter model is available open-source. Additionally, no validation data was
presented.

Naumann et al. [43] developed the SimSES software tool, which models the battery as an ECM
and couples it with a thermal and degradation model. As of February 2023, the open-source
version of the model contains parametrizations of eight different lithium-ion cells and one sodium-
ion cell. However, none of the available cells are currently used in automotive applications or
were validated on vehicle level.

Schimpe et al. [81] assessed the system efficiency of a stationary storage system using a
detailed electric-thermal model of a 3 Ah lithium-ion cell. The cell model was scaled to system
level and validated using experimental data of a prototype stationary battery system.

Yuksel et al. [82] combined an ECM with a vehicle model, thermal model and battery life model
to assess the impact of driver behavior and different climates. However, no validation was
presented.

Although previous studies presented combined electric, thermal, aging models, an open-source
model for a state-of-the-art automotive grade battery cell that was validated on vehicle level is
still missing.

2.2.3 Power profiles

To model battery behavior under typical operating conditions, the power demand under such
conditions needs to be quantified. In automotive applications, power demand is typically derived
based on standardized driving cycles, which are used for homologation purposes. One example
of such a driving cycle is the Worldwide harmonized Light vehicles Test Procedure (WLTP) ,
which is used to determine the fuel consumption of combustion, hybrid and fully electric cars
[83].

Similarly, for heavy-duty vehicles, the European Union developed the VECTO driving cycles,
including five different cycles for trucks and five for buses and coaches [84]. Since 1 January
2019, these cycles are used for determining CO2 emissions and fuel consumption from heavy
duty vehicles (trucks, buses and coaches) with a gross vehicle weight above 3500 kg [85, p. 3].
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However, as the name suggests, these driving cycles are limited to a vehicle’s driving phase, not
taking into account the time spent charging or parked. Additionally, variations in trip distance
and duration are not taken into account. To estimate the battery life for typical truck operation,
these aspects need to be included. Previous studies generated load profiles for truck operation
for longer time periods.

Walz et al. [86] presented a method to generate synthetic charging profiles of electric trucks for
grid planning purposes. The authors used trip chain generation to obtain a charging profile based
on historic mobility data of conventional vehicles and estimations of BET energy consumption
during driving. The resulting power profile describes the charging power in 15-minute intervals
for an entire year. Although this is sufficient for modeling the impact of charging on the grid, it
does not capture the dynamic behavior of the power drawn from or supplied to the battery during
driving and can therefore not be used to simulate battery aging. Additionally, the authors did not
consider the impact of differences in driving behavior at different vehicle speeds, or the payload
distribution on the vehicle energy consumption.

In a later work, Walz et al. [87] presented an implementation that includes a vehicle payload
distribution and used it to model the cumulative energy demand of 300 trucks in different
weight classes: up to 7.5 t, up to 18 t and above 18 t. However, the resolution of driving energy
consumption is still too low to accurately model battery aging.

Tong et al. [88] estimated location-specific hourly charging powers for a national fleet of long-haul
electric trucks based on bottom-up truck mass modeling, vehicle energy modeling, large-scale
truck traffic data, and simulation of electric truck operation and charging behavior. However,
vehicle energy consumption was calculated based on the average speed and the fraction of
uphill driving, instead of a longitudinal transient simulation, and therefore does not capture the
dynamic power profile of the battery during driving.

Borlaug et al. [89] developed synthetic depot charging load profiles for heavy-duty trucks from
the real-world operating schedules of three different fleets. However, they used an average
energy consumption rate during driving, independent of payload or trip speed variations.

The power profiles presented in previous studies show a lack of detail in the driving phase, due
to their focus on the interaction between BET and the grid. This is also seen for BEV [90, 91]
with one notable exception.

Gaete et al. [92] presented a method that combines both driving cycles and mobility data to
generate power profiles for passenger vehicles. As a driving cycle, they used the WLTP profile
and allow modeling different vehicles. For the mobility behavior they used data from the ’Mobilität
in Deutschland" study [93], which provides probability distributions for the amount of trips per
day, trip destination, distance, duration, and trip departure times. By using stochastic sampling,
trips can be assigned to each day and the power profile can be determined using a longitudinal
vehicle simulation.

Although previous studies developed power profiles for BET, they were all generated to assess
the impact on the electricity grid. To model battery aging, a power profile should capture both
high dynamic driving behavior and high-level mobility patterns. The solution presented by Gaete
et al. [92] enables this for passenger vehicles, but cannot be directly implemented to generate a
power profile for trucks for the following reasons. First, truck drivers will aim to minimize the time
spent away from the depot, rendering an individual sampling of the departure time of each trip
unreasonable. Second, EU regulations regarding rest duration need to be enforced, and third,
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the payload distribution must be included in the vehicle simulation, due to its large impact on
energy consumption.

2.2.4 Battery lifetime simulation

By combining a load profile and an electric, thermal, aging model, the battery life under different
operating conditions and ambient temperatures can be simulated, as demonstrated by the
following studies.

Yuksel and Michalek [94] combined a thermal model with an aging model to investigate how
much improvement in battery life can be obtained by implementing passive air cooling for an
LFP battery in a plug-in hybrid vehicle. They investigated two climates: Miami, Florida, and
Phoenix, Arizona. The authors assumed that the vehicle makes two trips per day followed by a
slow-charging event. The simulation was performed for the duration of one week at the average
ambient temperature of each season (spring, summer, fall, winter) for both climates and then
extrapolated to estimate the battery life. In a later work [95], the authors used the same model
to investigate the impact of driving behavior by implementing different driving cycles, and the
impact of different temperature thresholds for activating the cooling system.

Neubauer and Wood [96] investigated the impact of driver aggression, climate, cabin thermal
management, and battery thermal management on the utility of a BEV, taking battery degradation
into account. Battery operation was simulated over lifetime, where the power drawn from the
battery during driving was approximated using a Root Mean Square (RMS) value. This enabled
using relatively large time steps for calculating the battery electric and thermal response: 1 min
during driving, charging and preconditioning, and 10 min during resting.

Diorio et al. [97] presented a simulation framework to predict the performance and economic
benefit of behind the meter energy storage. To include battery replacements in their financial
analysis, the battery operation was simulated over lifetime, albeit with a one-hour time step.

Reiter [45] developed a detailed electric-thermal model that simulates multiple individual cells,
taking temperature and current distributions within the pack into account. Due to the high
computational load of the model, the authors simulated load cycles of several minutes or hours
and subsequently used load-spectrum analysis to compare aging behavior of different cooling
designs.

Naumann [43] presented a detailed electric-thermal-aging simulation in MATLAB and investigated
the impact of simulation parameters on the computation time and quality of the results. They
concluded that for their analysis of the aging behavior of a home energy storage system, the
load profile can be downsampled to a time step of 5 min without causing a large model error,
because the profiles show few dynamics below this sample time. Subsequently, they simulated
the battery operating behavior over a simulation period of 20 years.

Previous studies presented simulations to estimate battery life under different operating condi-
tions, taking into account variations in ambient temperature and operating conditions. Different
approaches are presented to deal with the resulting computation load: load-spectrum analysis,
extrapolating simulations results at representative temperatures for each season, or using large
simulation time steps. However, taking both highly dynamic loads resulting from driving a BET
and ambient temperature changes into account requires a simulation over lifetime with a small
time step.
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2.2.5 Battery thermal management system design

Finally, battery simulations may be used to assess different BTMS designs. Temperatures
above 25 °C cause accelerated capacity loss and internal resistance increase in lithium-ion cells,
thereby shortening a battery’s operating life [98]. Temperatures above 60 °C can lead to safety
critical conditions that might result in a thermal runaway, and should thus be avoided at all times
[98].

To prevent the negative effects of operating lithium-ion cells at high temperatures, a wide range
of BTMS is used to cool the cells. The review papers by Xia et al. [75] and Jaguemont et al. [99]
give a detailed overview of state-of-the-art BTMS and their advantages and disadvantages.

Two top-level design parameters of BTMS are the installed cooling power and the temperature
threshold at which the cooling system is activated. High cooling powers enable withdrawing
a large amount of heat from the battery, even during worst-case operating conditions. Lower
cooling powers, on the other hand, might be sufficient if high thermal losses occur rarely and
are dampened by the battery’s thermal inertia, enabling smaller, lighter, less noisy and cheaper
cooling systems.

The cooling threshold is the temperature threshold at which the cooling system is activated. Low
cooling thresholds ensure the battery is operated in its ideal temperature window, but result in
an increased energy consumption because the cooling system is activated more frequently. Few
studies investigated the impact of different cooling strategies.

Xie et al. [100] developed an Model Predictive Control (MPC)-based control strategy for a
refrigerant cooling system. Their results show that battery aging could be maintained, while
the cooling system energy consumption is reduced by 24.5 % compared to an on-off controller.
These results were extrapolated from a 2 hour operating profile.

Pham et al. [101] presented a control strategy for a refrigerant cooling system in a hybrid-electric
heavy-duty truck, that reduces the total fuel consumption by 1.8 % while maintaining a favorable
battery temperature.

Although the optimization of the BTMS control was addressed in previous studies, battery aging
was not considered or extrapolated from a short driving cycle. Furthermore, the impact of the
installed cooling power has not been investigated.

2.3 Research gap

Section 2.1 showed that long-haul trucks are primed for electrification, while the studies dis-
cussed in Section 2.2 highlight that a holistic battery design method can reduce the system cost.
However, a holistic method for the battery design of BET is still missing. The resulting research
gap is illustrated in Figure 2.7. To fill this gap and advance the adoption of BET, I developed
a battery design method for battery-electric trucks. Additionally, the method contributes to the
state-of-the-art of cell selection, battery modeling, power profile generation, battery life simulation
and BTMS design.

Although different cell selection methods exist in literature, none of them quantifies the impact of
cell characteristics on system properties, most notably on the system cost. To bridge this gap, I
developed a novel cell selection method and applied it to a BET application.
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Figure 2.7: Research gap

Although previous studies presented parametrized and validated electric-thermal-aging models,
they are not parametrized using a status-quo automotive grade cell, nor are they validated on
vehicle level. Therefore, I conducted measurements and used the data that I co-published with
Wassiliadis et al. [74] to parametrize an electric-thermal-aging model for the VW ID.3 cell and
validated it on vehicle level.

Although previous studies developed power profiles for BET, they do not capture the dynamic
behavior occurring during driving. To improve upon this, I extended the method presented by
Gaete et al. [92] to generate a detailed power profile for BET.

Although previous studies presented battery life simulations under different operating conditions,
all use simplifications to deal with the high computational load. To model the highly dynamic loads
occurring during driving over the entire battery life without any simplifications, I implemented my
battery simulation in a compiled programming language.

Finally, although previous studies presented optimization of the BTMS control strategy, they did
not analyze battery aging for varying operating profiles and the impact of the installed cooling
power has not been investigated. Therefore, I used my computationally efficient implementation
of my validated electric-thermal-aging model to quantify the impact of different cooling thresholds
and installed cooling powers on the battery life and safety.

20



3 Method & results

To design the battery for a long-haul BET, I developed the five-step method shown in Figure 3.1.
The method can be used to define the top-level battery properties during the early-stage design
phase.
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Figure 3.1: Overview of the battery design method. The results from the first step are used as an input
to the second and third step, which then feed in to the fourth step. Finally, the fifth step uses
the model from the fourth step to generate a top-level battery-design.

As an input, the method uses truck regulations, standardized truck driving cycles and real world
DT operating data. The generated battery design is capable of mimicking DT operation, without
any time loss.

In step 1, a battery cell is selected using the self-developed techno-economic cell selection
method. Techno-economic cell selection uses datasheet values to determine the impact of cell
characteristics on system properties. For a truck, these are the maximal payload that a BET
would be able to transport, the volume that a battery would require onboard the vehicle, and the
cell price that would result in cost parity with a DT. I implement the method to select a suitable
cell from a database containing 160 unique cells.
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Selecting a cell based on datasheet values enables the comparison of a wide range of cells, but
leads to large simplifications in the estimation of the battery life. Therefore, in steps 2 to 5 of the
method, a more detailed analysis is conducted for the selected cell.

In step 2, the selected cell is characterized to parametrize a combined electric, thermal, and aging
model. Subsequently, the parametrized model is validated using over 100 hours of measurement
data on vehicle level.

In step 3, a power profile is generated that describes the energy supply and demand resulting
from driving and charging a BET. As an input, the battery size and mass that were determined in
step 1 are combined with standardized truck driving cycles and truck mobility statistics, such
as trip distance and trip duration. To obtain a representative power profile that includes both
demanding long trips with high payload and days with multiple shorter trips, the power profile
covers a long time period, in this case one year.

In step 4, the parametrized electric-thermal-aging model, including the thermal system design of
the parametrized electric vehicle, is scaled to match the truck battery size and combined with the
obtained power profile to predict the battery life under typical operating conditions. Additionally,
safety is evaluated by analyzing the maximum cell temperature that is reached during operation.

Finally, in step 5, a parameter sensitivity analysis investigates the impact of the BTMS design
on the battery life and battery safety. Specifically, the installed cooling power and the cooling
threshold are analyzed.

The result of the five-step process is a top-level battery design for a battery-electric truck,
defining:

• the battery cell,

• the price at which this cell must be purchased to reach cost parity with status quo
DT,

• the required volume for the battery onboard the vehicle,

• the truck’s payload capability,

• the battery life under typical truck operating conditions,

• and the impact of the cooling system design on the battery life and safety.

The method supports an iterative approach, where the price at which the selected cell must
be purchased to reach cost parity can be updated based on the detailed simulation results.
Additionally, an initial cell selection may be corrected based on discouraging results from the
battery life simulation or safety assessment.

The full method including all models is made available open source and can be accessed at
the following repository: https://github.com/TUMFTM/TruckBatteryDesign. In the following, each
step of the method is presented in detail.

3.1 Step 1: cell selection

In the first step, a suitable cell for a long-haul BET is selected. I published the cell selection
method as a first author in a previous publication [102]. In the following, I will summarize the pre-
vious publication, specify my contribution and provide the published manuscript. Subsequently,
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additions to the publication are explained and the updated results are presented. Note that in the
included previously published manuscript, the term "weight" is used instead of "mass", because
it is more common in the truck industry.

3.1.1 Summary of the published cell selection method

The publication presents a method to find the most suitable cell for a battery-electric long-haul
truck by quantifying the impact of cell characteristic on system level properties: the volume
required for the battery onboard the vehicle, the maximum vehicle payload, and the price at
which a cell must be purchased to reach cost parity with a status quo diesel truck, from hereon
referred to as cost-parity price.

The method combines a vehicle simulation with a sizing algorithm and a cost model, as shown
in Figure 3.2. First, a quasi-static longitudinal vehicle simulation is used to determine the
vehicle’s energy consumption at different vehicle masses. As inputs, the simulation uses vehicle
characteristics of newly registered diesel trucks and the VECTO long-haul driving cycle [103],
which is used by the European Union to simulate emissions of newly registered heavy-duty
vehicles.
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Figure 3.2: Schematic of the cell selection method [102]

Subsequently, a battery sizing algorithm determines the required battery size. The BET is
required to cover the same operating pattern as a diesel truck. In Europe, truck drivers may
drive up to 4.5 hours, after which they have to take a mandatory break of 45 minutes [104]. The
45-minute rest period may be replaced by a 15-minute break, followed by a 30-minute break,
resulting in the same stop duration after 4.5 hours of driving [104]. The maximum daily driving
time for a single driver is limited to ten hours [104]. Assuming that the stops can be used to
recharge the BET, a nine-hour drive with a 45-minute stop duration is the most demanding
scenario.

The required battery size is thus determined by the amount of energy that can be recharged
during the rest period. This amount may be limited by the installed charging power or the
maximum charging rate of a battery cell. The sizing algorithm oversizes the battery to account
for the share of usable energy, and the End Of Life (EOL) condition of the battery. The resulting
battery can power a fully loaded vehicle for the maximal legal driving duration during its entire
operating life.

23



3 Method & results

The battery sizing algorithm sizes the battery for all cells in a database containing 160 unique
cells. The cell’s are characterized based on the specification in their datasheet, such as energy
density, specific energy, charging rate and cycle life. Based on each cell’s characteristics, the
sizing algorithm sizes the battery and determines the battery volume, battery mass, resulting
maximum payload, and the battery lifetime.

Finally, the cost model determines the cost-parity price. For this purpose, the cost model
considers all cost components that differ between a BET and DT: maintenance, taxes, tolls,
energy costs, powertrain costs and the cost for the battery itself. The costs for maintenance,
taxes, tolls, and the powertrain are independent of the selected cell. The energy costs are
influenced by the battery size, which may depend on the cell’s maximum charging rate, and
its specific energy. The cost for the battery depends on the battery life, which is influenced by
the determined battery size, the impact of the cell’s specific energy on energy consumption,
the cell’s cycle life and the cell’s calendar life. The cost-parity price for each cell is found using
bisection.

The method was applied in two scenarios: trucks charged at 350 kW and trucks charged at 1 MW.
The results showed that trucks charged at 350 kW require purchasing cells at a lower price
(€60 kWh−1) to reach cost-parity with DT compared to trucks charged at 1 MW (€100 kWh−1).
A parameter sensitivity analysis showed that the cell cycle life, cost of charging and vehicle
energy consumption have the biggest impact on the cost-effectiveness of battery electric trucks.
Note that the vehicle energy consumption can be reduced by optimizing the vehicle’s drag area,
rolling friction coefficient or powertrain efficiency.

3.1.2 Contributions

I initiated the idea of the paper, implemented the method, wrote the first draft of the manuscript
and implemented all revisions. Steffen Link created the cell database and provided some of the
cost-model parameters. Steffen Link, Jakob Schneider, Sebastian Wolff and Markus Lienkamp
provided valuable feedback during the many iterations following the first draft.
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A B S T R A C T

To reach cost-parity with diesel trucks, battery-electric trucks require fast-chargeable lithium-ion cells with a
high energy density and cycle life, at a low specific cost. However, cells generally excel at only a fraction of
these characteristics. To help select the optimal cell, we have developed the techno-economic cell selection
method. The method determines the price per kilowatt-hour that is required to reach cost-parity with a diesel
truck, based on the characteristics provided in a cell’s datasheet. We demonstrate the method by selecting
the optimal cell out of a database containing 160 cells for a long-haul truck operating with a single driver in
Germany in two scenarios: charged at 350 kW and charged at 1MW. The results show that for trucks charged
at the current maximum charging power of 350 kW, the cell price needs to drop to ca. e60 kWh−1 to reach
cost-parity with a diesel truck. When 1MW charging power is available, cost-parity can be reached at a cell
price around e100 kWh−1, which is within reach of optimistic cost estimates. However, the most cost-effective
cells require more volume and result in a lower maximum payload than a diesel truck. A parameter sensitivity
analysis shows that best-in-class cell energy density and packaging efficiency are required to match the payload
capacity and powertrain volume of a diesel truck. The cell cycle life, cost of charging and vehicle energy
consumption have the biggest impact on the cost-effectiveness of battery electric trucks.

1. Introduction

Heavy-duty vehicles generate a quarter of all green house gas
emissions in the transport sector, meaning that they must be quickly
decarbonized if climate targets are to be met [1]. One option for re-
ducing emissions is the implementation of battery-electric trucks (BET),
which has been the subject of a wide range of studies and reports [2].
Whether BETs become cost-competitive with diesel trucks (DT) depends
on the vehicle-acquisition cost, fuel and electricity prices [3], available
charging infrastructure [4], driving distance [5] and local policy [6].
Furthermore, the battery of a BET must be: light, to avoid any reduc-
tions in payload; small, to fit into the available volume on board the
vehicle; fast-charging capable, to enable recharging during driver rest
periods; resistant to aging, to avoid battery replacement during the
service life; and low-cost to minimize investment costs. Previous studies
have investigated the suitability of different cell technologies for BETs.

Sripad et al. [7] carried out Monte-Carlo simulations to deter-
mine the required battery capacity and resulting battery weight, bat-
tery cost, and maximum payload capacity, for status-quo lithium-ion
cells and beyond-lithium-ion cells. Their results show that in order
to achieve cost-competitiveness with DTs the improved performance
of beyond-lithium-ion cells is required. However, these results might

∗ Corresponding author.
E-mail address: olaf.teichert@tum.de (O. Teichert).

be overly conservative because the authors did not consider en-route
fast-charging.

Mareev et al. [8] determined the required battery capacity for
long-haul truck operation in Germany incorporating battery charging
during driver rest periods. Subsequently they conducted a life cycle
cost analysis for a low-cost low-performance cell and a high-cost high-
performance cell. Their results show that the life cycle costs are strongly
influenced by the battery life, justifying the use of more expensive, but
aging-resistant cells.

Çabukoglu et al. [9] investigated the feasibility of BETs in a case
study in Switzerland, showing that the share of vehicle kilometers that
can be electrified increases when the energy density of the batteries is
increased.

Nykvist and Olsson [10] modeled the feasibility of BETs that use
high-power fast charging. Their results show that the battery properties
strongly influence the cost-competitiveness of BETs and that battery life
may be more important than the specific battery price.

Mauler et al. [11] compared the life cycle costs of a BET with
lithium iron phosphate (LFP) cells, a BET with high-nickel cells and
a hydrogen truck in the US, taking into account the profits fore-
gone due to charging times and lower cargo capacity. Their results

https://doi.org/10.1016/j.etran.2022.100225
Received 12 May 2022; Received in revised form 28 October 2022; Accepted 26 December 2022
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Nomenclature

Vehicle simulation

𝑎 Applied acceleration in ms−2

𝑎acc Acceleration limit in ms−2

𝑎dec Deceleration limit in ms−2

𝑎mot Max. acceleration achievable by motor in ms−2

𝑎target Target acceleration in ms−2

𝑏 Energy consumption in kWhkm−1

𝑐A Drag area in m2

𝑐rr Coefficient of rolling resistance
𝑓b(𝑚) Interpolant: energy consumption vs. vehicle mass
𝑓v(𝑚) Interpolant: avg. speed vs. vehicle mass
𝐹drag Drag resistance in N
𝐹incl Inclination resistance in N
𝐹res Total driving resistance in N
𝐹roll Rolling resistance in N
𝑔 Gravitational acceleration in ms−2

𝑗 Simulation step index
𝑘 Driving cycle step index
𝑘dec Index where a target speed reduction occurs
𝑚 Vehicle mass in kg
𝑃 Applied motor power in W
𝑃aux Auxiliary power consumption in W
𝑃bat Battery power in W
𝑃mot Rated motor power in W
𝑠 Distance along the route in m
𝑡 Time in s
𝑡stop Stop duration in s
𝑣 Vehicle speed in ms−1

𝑣cycle Target speed defined by driving cycle in ms−1

𝑣target Target speed incl. deceleration phases in ms−1

𝛼 Slope in radians
𝛥𝑠 Distance step length in m
𝜂 Powertrain efficiency
𝜌 Air density in kgm−3

Battery sizing

𝑏BET Typical BET energy consumption in kWhkm−1

𝐸bat Required battery size in kWh
𝐸crate-lim Required battery size for cell charging rate in kWh
𝐸Plim Required battery size for charging power in kWh
𝐸max Energy demand without fast charging in kWh
𝑚bat Battery mass in kg

𝑚gvw Gross vehicle weight in t
𝑚payload,max Maximum payload in kg
𝑚spec Cell specific energy in Whkg−1

𝑚veh,nobat Vehicle mass without battery in t
𝑛cycle Cell cycle life
𝑠life Battery life in km
𝑉bat Battery volume in L
𝑧fc Share of fast chargeable energy
𝑧EOL Share of energy at battery replacement
𝑧m,c2s Gravimetric packaging efficiency
𝑧V,c2s Volumetric packaging efficiency
𝜌cell Cell energy density in WhL−1

Cost model

𝑏DT Typical DT energy consumption in L km−1

𝐶bat Battery cost in e

𝐶bat,inv Battery investment in e

𝐶bat,scrap Battery scrappage value in e

𝐶bat,res Battery residual value in e

𝐶bat,imp Battery imputed interest in e

𝑐diesel Diesel cost in eL−1

𝑐ene Specific energy cost in e km−1

𝐶ene Energy costs in e

𝑐fc Cost of fast charging in e kWh−1

𝑐maint Specific maintenance cost in e km−1

𝐶maint Maintenance costs in e

𝐶pt Powertrain cost in e

𝐶pt,inv Powertrain investment e
𝐶pt,res Powertrain residual value in e

𝐶pt,imp Powertrain imputed interest in e

𝑐sc Cost of slow charging in e kWh−1

𝑐spec Cell specific cost in e kWh−1

𝑐tax Annual motor vehicle tax in e years−1

𝐶taxes Taxes in e

𝑐toll Toll cost in e km−1

𝐶tolls Tolls in e

𝑛repl Number of battery replacements
𝑟 Discount rate
𝑠annual Annual vehicle mileage in km
𝑡own Ownership duration in years
𝑧c,c2s Ratio between cell and system costs
𝑧ene,fc Share of fast charged energy
𝑧scr Ratio between investment and scrappage value
𝑧SOH Share of remaining battery life
𝑧toll Share of kilometers driven on toll roads

show that LFP batteries excel in volume-constrained transport on
short routes, whereas high-nickel batteries have the advantage in
weight-constrained transportation. Hydrogen trucks only become cost-
competitive on routes that are long and weight-constrained.

Although these studies recognize the impact of the battery cell
properties, a method for selecting the optimal cell is still missing. Other
studies have developed methods for cell selection in general.

The most well-known decision aid for energy storage device selec-
tion is the Ragone plot presented by David Ragone in 1968 [12]. The
Ragone plot maps energy density and power density to automotive driv-
ing requirements, such as top speed and range, enabling the selection
of a suitable energy storage device. Since its introduction, the Ragone
plot has been extended to include a wider variety of energy storage

technologies, such as supercapacitors or lithium-ion batteries, and has
been applied in a wider range of applications [13].

More recently, Catenaro et al. [14] developed an enhanced Ragone
plot that takes the operating temperature of the cell into account.
Dechent et al. [15] proposed a further extension of the Ragone plot,
called ENPOLITE, which visualizes the energy, power, lifetime and
temperature of energy storage technologies in a single figure.

Although these cell selection methods visualize the characteristics
of a wide range of energy storage technologies, they do not quantify
the impact of the cell selection on the system costs. On the other hand,
life cycle cost studies only compare a small number of cell technologies
and do not provide a tool for selecting the best cell from a database.
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To bridge this gap, we have developed the techno-economic cell selec-
tion method for BETs to support selecting the optimal individual cell.
The method uses the characteristics specified in a cell’s datasheet to
determine the price per kWh required to reach cost-parity with a DT, in
the following referred to as the cost-parity price. We demonstrate the
method by selecting the optimal cell from a database containing 160
cells for a long-haul BET operating with a single driver in Germany.

The contributions of this study can be summarized as follows:

• a novel cell selection method that incorporates the trade-off be-
tween cell cost and performance;

• results showing the cost-competitiveness of different cell chemist-
ries and cell formats for a BET application;

• a parameter sensitivity analysis quantifies the impact of cell, pack,
and system characteristics.

The method serves as a decision making aid for battery designers
at truck manufacturing companies. Furthermore, the method can be
used by cell manufacturers to optimize their cell design. The method
and the developed cell database are available open source and can
be accessed at the following repository: https://github.com/TUMFTM/
TechnoEconomicCellSelection.

2. Method

To determine the cost-parity price for a single cell, we combine a
vehicle simulation with a battery sizing algorithm and a cost model, as
illustrated in Fig. 1. First, the vehicle simulation determines the energy
consumption and average speed for a range of vehicle masses, based
on the vehicle parameters and a driving cycle. The results are used to
create interpolation functions between vehicle mass on the one hand,
and energy consumption and average speed on the other. Second, the
battery sizing algorithm determines the required battery size subject
to the results from the vehicle simulation, cell properties and mobility
requirements. The volume, weight, maximum payload, typical energy
consumption and battery life are calculated for the determined battery
size. Third, based on the results from the battery sizing algorithm and
cost & operating conditions, the cost model determines the cost-parity
price, using bisection to minimize the cost difference between a BET
and a DT.

Fig. 1. Schematic representation of the techno-economic cell selection for BET, which
combines a vehicle simulation with a battery sizing algorithm and a cost model.

2.1. Vehicle simulation

The vehicle model simulates a vehicle’s speed and energy consump-
tion using a quasi-static distance-based longitudinal-dynamics model,
based on the vehicle characteristics and the VECTO long-haul driving
cycle [16]. The driving cycle defines the target speed, road gradient
and duration of stops along a route, as shown in Fig. 2.

The driving cycle does not prescribe braking or acceleration behav-
ior because these are strongly influenced by the vehicle characteristics.
The acceleration and braking behavior are therefore determined by the
simulation. We simulate braking behavior by adding constant decel-
eration phases in front of distance steps at which a reduction of the
target speed occurs, in accordance with Eq. (1), where 𝑣target,k denotes
the modified target speed at a distance step with index 𝑘, 𝑣cycle is the
driving cycle target speed, kdec is the distance step index at which the
target speed reduction occurs, 𝑎dec is the deceleration, and 𝑠k is the
distance along the route. Fig. 3 illustrates the addition of a deceleration
phase.

𝑣target,k =
√

𝑣2cycle,k=kdec
+ 2 𝑎dec (𝑠k=kdec − 𝑠k) (1)

The acceleration behavior and energy consumption of the truck
are then simulated in a forward simulation. The simulation uses a
different step index, denoted 𝑗, because two time-values occur for a
single distance-value during a stop. The start conditions are given by
Eq. (2), where 𝑡 denotes the time and 𝑣 the vehicle speed.

𝑠j=1 = 0

𝑡j=1 = 0

𝑣j=1 = 0

(2)

Fig. 2. The VECTO long-haul driving cycle is one of a range of driving cycles that
was developed by the European commission to determine the CO2 emissions from
heavy-duty vehicles and represents the typical operation of a long-haul truck [16].

Fig. 3. Illustration of an added constant deceleration phase.
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For every distance step, we first check if the vehicle is stopped. If
it is, an additional data point is added according to Eq. (3), where 𝑡stop
denotes the stop duration and 𝑃 the applied motor power.

𝑠j+1 = 𝑠j

𝑡j+1 = 𝑡j + 𝑡stop,k

𝑣j+1 = 0

𝑃j = 0

𝑗 = 𝑗 + 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

if 𝑡stop,k > 0 (3)

Subsequently, the driving resistances are calculated using Eqs. (4)–
(6), where 𝑚 denotes the vehicle mass, 𝑔 the gravitational acceleration,
𝑐rr the rolling resistance coefficient, 𝛼 the slope, 𝜌 the density of air,
and 𝑐A the drag area.

𝐹roll,j = 𝑚 𝑔 𝑐rr cos(𝛼k) (4)

𝐹drag,j = 0.5 𝜌 𝑐A 𝑣2j (5)

𝐹incl,j = 𝑚 𝑔 sin(𝛼k) (6)

Then we calculate the acceleration required to reach the target
speed, 𝑎target, and the maximum acceleration that can be achieved by
the motor, 𝑎mot, using Eqs. (7) and (8), respectively, where 𝛥𝑠 denotes
the distance step length, 𝑃mot the rated motor power, and 𝜂 the overall
powertrain efficiency,

𝑎target,j =
𝑣2target,k+1 − 𝑣2j

2 𝛥𝑠
(7)

𝑎mot,j =
1
𝑚

(
𝑃mot 𝜂

𝑣j
− 𝐹roll,j − 𝐹incl,j − 𝐹drag,j

)
(8)

The applied acceleration is the minimum of the target acceleration,
motor-limited acceleration and an absolute acceleration limit, 𝑎acc,max,
as shown in Eq. (9).

𝑎j = min(𝑎target,j, 𝑎mot,j, 𝑎acc,max) (9)

Based on the applied acceleration, the new vehicle speed, time, and
applied power are calculated using Eq. (10)–(14).

𝑣j+1 =
√

𝑣2j + 2 𝑎j𝛥𝑠 (10)

𝑡j+1 = 𝑡j +
2 𝛥𝑠

𝑣j + 𝑣j+1
(11)

𝑠j+1 = 𝑠j + 𝛥𝑠 (12)

𝐹res,j = 𝑚 𝑎j + 𝐹roll,j + 𝐹drag,j + 𝐹incl,j (13)

𝑃j = 𝐹res,j 𝑣j 𝜂
− sgn(𝐹res,j) (14)

Finally, we calculate the power drawn from or supplied to the
battery using Eq. (15), where we assume that negative powers up to
the rated motor power are recuperated and the remaining power is
converted into heat by the mechanical brakes.

𝑃bat,j = max(𝑃j,−𝑃mot) (15)

Eq. (3) to (15) are repeated for every distance step in the driving
cycle. The energy consumption per kilometer can then be calculated
using Eq. (16), where 𝑃aux denotes the energy consumption of auxiliary
loads and 𝑛 is the number of simulation steps. The constant corresponds
to the conversion from kJ km−1 to kWhkm−1.

𝑏 = 1
3600 𝑠j=n

(
𝑃aux 𝑡j=n +

𝑗=𝑛−1∑
j=1

𝑃bat,j(𝑡j+1 − 𝑡j)

)
(16)

The average vehicle speed 𝑣avg is calculated using Eq. (17), where
the constant corresponds to the conversion from ms−1 to kmh−1.

𝑣avg = 3.6
𝑠j=n

𝑡j=n
(17)

The vehicle simulation is executed for a range of vehicle weights to
generate the linear interpolation functions 𝑓b(𝑚) and 𝑓v(𝑚) for energy
consumption and average speed, respectively.

2.2. Battery sizing model

The battery sizing algorithm determines the required battery size
subject to the results from the vehicle simulation, cell properties and
mobility requirements. The BET mimics the operation of a DT without
any additional time loss.

In Europe, truck drivers are prohibited to drive for more than 4.5 h
at a time and are then required to take a 45 minute break before
continuing [17]. The 45 minute break may be replaced by a break of at
least 15 minutes followed by a break of at least 30 min, which would
result in the same rest duration after 4.5 h of driving. We assume that
these rest periods can be used to recharge the BET. The daily driving
time is limited to 10 h [17]. For a 10-hour drive, the battery can be
recharged before the last hour of driving, which makes a 9-hour drive
with a 45 minute break the most demanding single-driver scenario in
Europe.

The maximum energy demand for driving nine hours, 𝐸max is given
by Eq. (18), where 𝑚gvw is the gross vehicle weight, i.e. the maximum
combined operating weight of the truck, trailer and payload.

𝐸max = 9 𝑓b(𝑚gvw) 𝑓v(𝑚gvw) (18)

The battery size that is required to complete a day of driving
depends on the amount of energy that can be recharged during the rest
period, as illustrated in Appendix A. The amount of energy that can
be recharged during the rest period may be limited by the installed
charging power, given by Eq. (19), or the cell’s charging rate, given
by Eq. (20). 𝑃fc denotes the installed charging power, 𝑡fc the time
available for charging, 𝑧EOL the share of remaining energy at battery
replacement, 𝑧usable the share of usable energy, 𝐶cell the cell’s charging
rate, and 𝑧fc the share of the battery that can be recharged using fast
charging. The required battery size is simply the maximum of both
constraints, Eq. (21). Note that the resulting battery can power a fully
loaded vehicle for the maximal legal driving duration during its entire
operating life.

𝐸P-lim = 𝐸max − 𝑃fc 𝑡fc (19)

𝐸crate-lim =
𝐸max

1 + min( 𝐶cell 𝑡fc
𝑧EOL 𝑧usable

, 𝑧fc)
(20)

𝐸bat =
max(𝐸crate-lim, 𝐸P-lim)

𝑧EOL 𝑧usable
(21)

Based on the determined battery size, the battery volume, 𝑉bat, bat-
tery weight, 𝑚bat, and the resulting maximum payload, 𝑚payload,max, can
be calculated using Eq. (22)–(24), where 𝜌cell and 𝑚spec denote a cell’s
energy density and specific energy, 𝑧m,c2s and 𝑧V,c2s the gravimetric and
volumetric packaging efficiency, and 𝑚veh,nobat the weight of the vehicle
without the battery.

𝑉bat =
𝐸bat

𝜌cell 𝑧V,c2s
(22)

𝑚bat =
𝐸bat

𝑚spec 𝑧m,c2s
(23)

𝑚payload,max = 𝑚gvw − 𝑚veh,nobat − 𝑚bat (24)

Eq. (25) then calculates the typical energy consumption, 𝑏BET, under
the loading conditions that are used by the European Commission to
estimate the CO2 emissions during long-haul operation of a newly
registered truck. These correspond to a low load of 2.6 t over 30% of the
trip distance and a reference load of 19.3 t over the remaining 70% [18].
A cell resulting in a maximum payload below the reference load is
considered unfeasible for a long-haul BET.

𝑏BET =0.3𝑓con(𝑚bat + 𝑚veh,nobat + 2600)
+0.7𝑓con(𝑚bat + 𝑚veh,nobat + 19300)

(25)

Finally, the battery life in kilometers, 𝑠life, is calculated using
Eq. (26), where 𝑛cycle denotes the cell’s cycle life.

𝑠life =
𝐸bat 𝑛cycle

𝑏BET
(26)
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2.3. Cost model

To determine cost-parity, the cost model only needs to consider the
cost components that differ between a BET and a DT. To determine
these cost-components, a cost breakdown of a long-haul truck was
analyzed, shown in Table 1. Converting a DT to a BET affects the cost
of the powertrain (motor and transmission) and battery, but is assumed
not to influence the cost of other vehicle components. Additionally, the
conversion influences the maintenance costs, cost of energy, taxes and
tolls. The costs for insurance and the driver are assumed to be unaf-
fected because the vehicle operation remains unchanged. BET subsidies
are not considered.

The sum of cost components that differ between a BET and a DT
is referred to as the relevant cost of ownership (RCO) and is given by
Eq. (27), where 𝐶maint denotes the maintenance costs, 𝐶ene the cost for
energy consumption, 𝐶taxes taxes, 𝐶tolls tolls, 𝐶pt the powertrain costs,
and 𝐶bat the battery costs. To account for both operating costs and
investment costs, all costs are expressed by their net present value.

RCO = 𝐶maint + 𝐶ene + 𝐶taxes + 𝐶tolls + 𝐶pt + 𝐶bat (27)

We assume that taxes are due annually, maintenance costs are
incurred twice a year, and toll and energy are paid weekly. The cor-
responding net present value is then calculated using Eq. (28) to (31),
where 𝑡own denotes the ownership duration in years, 𝑟 the discount rate,
𝑐tax the annual motor vehicle tax, 𝑠annual the annual vehicle mileage,
𝑐maint the specific maintenance cost per kilometer, 𝑧toll the share of
kilometers driven on toll roads, 𝑐toll the toll costs per kilometer, and
𝑐ene the cost of energy per kilometer. The cost of energy for diesel
trucks simply corresponds to the product of the DT consumption, 𝑏DT,
and the cost of diesel per liter, 𝑐diesel. The cost of energy for the BET
is the product of the typical BET consumption, 𝑏BET, and the cost of
charging, which differentiates between slow charging overnight, 𝑐sc,
and fast charging, 𝑐fc, where 𝑧ene,fc denotes the share of fast charged
energy. To avoid any bias from forecasts, we assume that the electricity
costs and diesel costs are constant throughout the ownership duration.

𝐶taxes =
𝑛=𝑡own∑
𝑛=1

𝑐tax𝑟
−𝑛 (28)

𝐶maint =
𝑛=2×𝑡own−1∑

𝑛=0

1
2
𝑠annual𝑐maint 𝑟

−𝑛∕2 (29)

𝐶toll =
𝑛=52×𝑡own−1∑

𝑛=0

1
52

𝑠annual 𝑧toll𝑐toll 𝑟
−𝑛∕52 (30)

𝐶ene =
𝑛=52×𝑡own−1∑

𝑛=0

1
52

𝑠annual𝑐ene 𝑟−𝑛∕52 (31)

where 𝑐ene=
⎧⎪⎨⎪⎩

𝑏DT 𝑐diesel for DT

𝑏BET

(
𝑐fc 𝑧ene,fc + 𝑐sc (1 − 𝑧ene,fc)

)
for BET

The powertrain costs include the initial investment, 𝑐pt,inv, the resale
value at the end of ownership, 𝑐pt,res, and the imputed interest, 𝑐pt,imp,

Table 1
Analysis of cost components that differ between a BET and a DT.

Cost component Differs between BET & DT

Powertrain Yes
Battery Yes
Vehicle w/o powertrain No
Maintenance Yes
Energy (electricity/fuel) Yes
Taxes Yes
Tolls Yes
Insurance No
Driver No

given by (32). The resale value is calculated by Eq. (33), where the first
term in the equation describes the relation between the resale value
and the vehicle mileage that was determined for a semi-trailer truck by
Kleiner and Friedrich [19]. The imputed interest describes the interest
that could have been earned by the bound investment and is given by
Eq. (34).

𝐶pt = 𝐶pt,inv − 𝐶pt,res + 𝐶pt,imp (32)

𝐶pt,res = (0.951 exp(
−𝑡own𝑠annual

500000
)) 𝐶pt,inv 𝑟−𝑡own (33)

𝐶pt,imp =
𝐶pt,inv + 𝐶pt,res

2
(𝑟𝑡own − 1) (34)

The RCO of diesel trucks does not include any battery costs. For
the BET, the costs for the battery consist of the sum of all investments,
𝐶bat,inv, the scrappage value of all replaced batteries (e.g. for use in
second-life applications), 𝐶bat,scrap, the resale value at the end of own-
ership 𝐶bat,res and the imputed interest, 𝐶bat,imp, as given in Eq. (35).

𝐶bat =
∑

𝐶bat,inv,n −
∑

𝐶bat,scrap,n − 𝐶bat,res + 𝐶bat,imp (35)

The investment costs are given by Eq. (36), where 𝑐spec denotes the
specific battery costs and 𝑧c,c2s the ratio between costs at the cell and
system level. The number of required replacements, 𝑛repl, is given by
Eq. (37).

𝐶bat,inv,n = 𝑐spec𝑧c,c2s 𝐸bat 𝑟
− 𝑛 𝑠life

𝑠annual ∀ 𝑛 ∈ [0,… , 𝑛repl] (36)

𝑛repl = ⌊𝑡own𝑠annual∕𝑠life⌋ (37)

The value for second-use applications is calculated with Eq. (38),
where 𝑧scr denotes the share of remaining value at scrappage.

𝐶bat,scrap,n = 𝑧scr𝑐spec 𝑧c,c2s 𝐸bat 𝑟
− 𝑛 𝑠life

𝑠annual ∀ 𝑛 ∈ [1,… , 𝑛repl] (38)

The resale value of the battery at the end of ownership is assumed to
be proportional to the remaining battery life as given by Eq. (39), where
the remaining battery life, 𝑧SOH, is calculated from Eq. (40). Finally, the
imputed interest is given by Eq. (41).

𝐶bat,res =
(
𝑧scr + (1 − 𝑧scrap) 𝑧SOH

)
𝑐spec 𝑧c,c2s 𝐸bat 𝑟

−𝑡own (39)

𝑧SOH = 𝑛repl + 1 − 𝑡own𝑠annual∕𝑠life (40)

𝐶bat,imp =
𝑛=𝑛repl−1∑

𝑛=0

𝐶bat,inv,n + 𝐶bat,scrap,n

2
(𝑟𝑠life∕𝑠annual − 1)

+ 𝐶bat,inv,nrepl+𝐶bat,res
2 (𝑟

(𝑡own−
𝑛repl 𝑠life
𝑠annual

)
− 1)

(41)

The cost-parity price is found by using bisection to minimize the
difference between the RCO of a DT and a BET.

3. Implementation

The method is demonstrated by selecting the optimal cell for a
BET out of a database containing 160 unique cells. To highlight the
impact of the available installed charging power, we evaluated two
scenarios. In the first scenario, trucks are charged during the rest period
using a 350 kW charger, which corresponds to the maximum currently
available charging power under the CCS-standard [32]. In the second
scenario, the trucks are charged using a 1MW charger, which would
be possible under the MCS-standard that is currently being developed
for commercial vehicles and expected to be available within the next
years [33]. In the following, we first present the parameters that define
the use case and subsequently show the characteristics of the cells in
our database.
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Table 2
Use case parameters for a BET operating in Germany.

Model Parameter Symbol Value Comments & sources

Vehicle simulation

Drag area 𝑐A 5.68m2 DT Average, see Appendix B
Rolling resistance coefficient 𝑐rr 5.48‰ DT Average, see Appendix B
Engine motor power 𝑃mot 352.4 kW DT Average, see Appendix B
Auxiliary power consumption 𝑃aux 2.3 kW [20] Standard trailer w/o additional

auxiliaries
Powertrain efficiency 𝜂 85% [21]
Maximum acceleration 𝑎max 1m s−2 [16]
Deceleration 𝑎dec 1m s−2 [16]
Gravitational acceleration 𝑔 9.81m s−2 [16]
Air density 𝜌 1.188 kgm−3 [16]

Sizing algorithm

Charging time 𝑡fc 40min Mandatory break period minus 5min [17]
Share of usable energy 𝑧usable 93% [22]
Share of fast chargeable energy 𝑧fc 80% [10]
Gross vehicle weight 𝑚gvw 42 t [23]
Vehicle weight without battery 𝑚veh,nobat 13.8 t See Appendix C

Volumetric packaging efficiency 𝑧V,c2s
Cylindrical 29.5% Electric vehicle average [24]
Pouch/Prismatic 35.3% Electric vehicle average [24]

Gravimetric packaging efficiency 𝑧m,c2s
Cylindrical 55.2% Electric vehicle average [24]
Pouch/Prismatic 57.5% Electric vehicle average [24]

Cost model

Service life 𝑡own 5 years [2]
Annual mileage 𝑠annual 116 000 km [18]
Discount rate 𝑟 1.095 [2]
Diesel fuel cost 𝑐diesel e1.36 L−1 Average in Germany on the

1st of Jan 2022, excluding VAT
DT consumption 𝑏DT 0.301 L km−1 DT average, see Appendix B
Battery scrappage 𝑧scr 15% [25]
Cost scaling cell to system 𝑧c,c2s 2.07 Electric vehicle average [26]
Share of toll kilometers 𝑧toll 92% [27]
Share of fast charged energy 𝑧ene,fc 20% [2]
Slow charging cost 𝑐sc e0.25 kWh−1 See Appendix C

Fast charging cost 𝑐fc
350 kW e0.29 kWh−1 For a 350 kW charger in Germany on

the 1st of Jan 2022, excluding VAT [28]
1MW e0.37 kWh−1 Limit announced by the German

government [29], excluding VAT

Maintenance costs 𝑐maint
DT e0.147 km−1 [19]
BET e0.098 km−1 [19]

Toll costs 𝑐toll
DT e0.182 km−1 [30]
BET e0 km−1 [30]

Taxes 𝑐tax
DT e556 years−1 [31]
BET e278 years−1 [31]

Powertrain costs 𝑐pt
DT e48 712 See Appendix C
BET e34 232.51 See Appendix C

3.1. Use case

The parameters that define the use case are summarized in Table 2.
To realistically model the vehicle characteristics, we used data reported
for newly registered heavy-duty vehicles between the 1st of January
2019 and the 30th June 2020. The analysis of the reported data and
deduction of average values for a DT can be found in Appendix B. The
BET was assumed to have the average drag area, tire rolling coefficient
and rated engine power of the registered DTs. For the volumetric and
gravimetric packaging efficiency we differentiated between cylindrical
and pouch/prismatic cells. The time available for charging was as-
sumed to be 5min shorter than the legally required break period to
account for the time it takes to connect to and disconnect from the
charger. The DT fuel consumption corresponds to the reported fuel
consumption at the same payload split used to determine the typical
BET energy consumption. The costs for charging at 350 kW correspond
to the cheapest rate in Germany [28] excl. VAT. The cost for charging
at 1MW is the upper limit for the charging cost announced by the
German government [29], excl. VAT. The detailed calculations of the
vehicle weight excluding the battery, the cost of slow charging and the
powertrain component costs can be found in Appendix C.

3.2. Cell database

To calculate the cost-parity price, the following cell properties need
to be known: energy density, specific energy, charging rate, cycle life

and corresponding EOL condition. We collected these properties from
publicly available cell data sheets resulting in a database containing
160 unique cells.

Since the charging rate has a large impact on the cycle life and
our use case requires frequent fast charging, we used the cell charging
rate at which the cycle life was specified. If the cycle life at multiple
EOL conditions or charging rates was specified, we determined the cost-
parity price for each configuration. Additionally, we characterized the
cells according to their format and chemistry. Since the cell chemistry
was mostly not specified on the data sheet, we differentiated only based
on the nominal voltage: below 3V as lithium-titanium-oxide (LTO)
cells, between 3V and 3.4V as LFP cells, and above 3.4V as other cell
chemistries.

Fig. 4 shows the characteristics of the 160 cells in our database.
The LTO cells have the lowest specific energy and energy density,
followed by the LFP cells. The highest specific energy and energy
densities are reached by pouch cells with a nominal voltage above 3.4V,
corresponding to 393Whkg−1 and 1047WhL−1. The majority of cell
datasheets limit charging to 1 h−1 or lower. The highest charging rate is
provided by an LTO cell, that allows charging at 4 h−1. The longest cycle
life is achieved by LTO cells, followed by the LFP cells. The cylindrical
cells have a shorter cycle life on average.

4. Results

The cells in our database that reach the highest cost-parity price,
meaning they can be purchased at the highest price to reach cost-parity,
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Fig. 4. Specific energy, energy density, charging rate and cycle life of the cells in our
database. For the visualization, cycle life specified to different end-of-life conditions
was converted to 80% of initial capacity using cross-multiplication. In all further
calculations, the specified cycle life and end-of-life condition are used.

are the LG E78 in the 350 kW scenario and the Leclanché GL65 in the
1MW scenario. In the following we will refer to these cells as reference
cell 1 and 2. The reference cell properties and results from the method
are summarized in Table 3.

In the following, we first illustrate the implementation of the vehicle
simulation, sizing algorithm and cost model for reference cell 2 in
the 1MW charging scenario. Subsequently, the cost-parity price of all
cells in our database is shown for both charging scenarios. Finally
a parameter sensitivity analysis shows the impact of cell, pack, and
system parameters.

Table 3
Reference cell properties and results for both charging scenarios.

Scenario 350 kWcharging 1MW charging

Capacity 78Ah 65Ah
Nominal voltage 3.6V 3.72V
Format Pouch Pouch
Specific energy 265Whkg−1 216Whkg−1
Energy density 623WhL−1 395WhL−1

Cycle life 1500 7000
EOL 0.8 0.8
Charging rate 0.33 h−1 1 h−1

Battery size 1111 kWh 792 kWh
Battery volume 5051 L 5681L
Battery mass 7293 kg 6377 kg
Max. Payload 20.9 t 21.9 t
Typical energy consumption 1.34 kWh km−1 1.32 kWh km−1

Battery life 1.2 × 106 km 4.2 × 106 km
Cost-parity price e63.12 kWh−1 e96.57 kWh−1

4.1. Method implementation for a single cell

Fig. 5(a) shows the result of the vehicle simulation, which is in-
dependent of the cell selection. The BET energy consumption was
simulated for a range of vehicle masses, ranging from the mass of an
empty vehicle excluding the battery weight up to the gross vehicle
weight. Energy consumption increases with vehicle weight. The energy
consumption of a fully loaded vehicle of 1.49 kWh km−1 matches the
results from previous studies well [2,3,21,34].

Fig. 5(b) shows the battery sizing for different installed charging
powers and cell charging rates. Increasing the charging rate or installed
charging power reduces the required battery size because more energy
can be recharged during the driver rest period. Installed charging
powers above 707 kW or charging rates above 0.9 h−1 do not result in
a further decrease of the required battery size because the battery size
is limited by the energy consumption during a single leg of the trip
and the share of fast-chargeable energy. The required battery size for
reference cell 2 in the 1MW charging scenario is 792 kWh.

The cost model components for the DT and BET and their differ-
ences are shown in Fig. 5(c). To reach cost-parity, the battery costs
can be compensated by the lower costs of the BET in the other cost
components. The costs of the powertrain, taxes, toll and maintenance
are independent of the cell properties. The BET energy consumption
costs depend on the battery sizing and the cell’s specific mass. The
battery costs are influenced by the battery sizing, cell cycle life and the
cell specific cost. The cell specific cost at which cost-parity is reached,
i.e. the cost-parity price, is determined using bisection. A BET using
reference cell 2 in the 1MW charging scenario would reach cost-parity
with a DT if the cell can be purchased at e96.57 kWh−1.

4.2. Comparison of the cells in our database

Fig. 6 shows the cost-parity price for all cells in our database
versus the maximum payload and battery volume in both scenarios.
The cell chemistry and format are indicated by the marker color and
shape respectively. Additionally, for each scenario the reference cell
is highlighted, and the reference load, maximum payload of a DT and
powertrain volume of a DT are indicated.

The cost parity-price could be determined for more cells in the 1MW
charging scenario because the higher available charging power means
the operating requirements can be fulfilled with a smaller battery,
allowing cells with a lower specific energy to transport the reference
load without exceeding the maximum payload. For the same reason,
the use of reference cell 2 and LFP cells is infeasible in the 350 kW
charging scenario and LTO cells cannot be used in either scenario. The
smaller battery size in the 1MW charging scenario also results in a
higher cost-parity price.
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Fig. 5. Illustration of the method steps for the reference cell in the 1MW charging scenario: (a) Vehicle energy consumption for a range of vehicle masses determined by the vehicle
simulation; (b) Impact of the charging rate and installed charging power on the required battery size ( marks the required battery size for reference cell 2); (c) Comparison
between the DT cost components and the BET costs at a specific cell cost of e96.57 kWh−1.

Fig. 6. Cost-parity price of all cells in the database vs. the maximum payload and required battery volume for the (a) 350 kW scenario and (b) 1MW scenario.
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The maximum payload of a DT is higher than the payload that
can be realized by any cell in both scenarios. The battery volume
exceeds the volume of the DT powertrain for all cells in the 350 kW
scenario, whereas one cell results in a smaller battery volume in the
1MW scenario. Vehicle manufacturers may select cells that results in a
higher payload or a smaller volume than the reference cells, but would
have to purchase these at a lower price to reach cost-parity with a DT,
because of the lower cycle life of these cells.

4.3. Parameter sensitivity analysis

We conducted a parameter sensitivity analysis to quantify the im-
pact of cell, pack, and system parameters on the cost-parity price,
maximum payload and battery volume for reference cell 1 in the 350 kW
scenario and reference cell 2 in the 1MW scenario.

Fig. 7 shows the impact of the cell properties: cycle life, specific
energy, energy density and charging rate. Each property was varied
between the minimum and maximum value of all cells in our database.

The minimum and maximum cycle life of the cells in our database
corresponds to 100 cycles and 20 000 cycles until 80% of the initial
capacity. Changing the cycle life does not affect the payload or required
volume, but has the largest impact on the cost-parity price among the
cell properties. In both charging scenarios, improving the cell’s cycle
life leads to a small increase in the cost-parity price, whereas reducing
the cell’s cycle life leads to a large reduction.

The cell’s specific energy was varied between the minimum value
that was able to transport the reference load, corresponding to
216Whkg−1 and 154Whkg−1 in the 350 kW and 1MW charging sce-
narios, and the highest specific energy of a cell in our database,
corresponding to 393Whkg−1. Improving the cell’s specific energy
results in an increase in the cost-parity price, because the typical energy

consumption is reduced. Additionally, an increase in specific energy
enables a higher maximum payload. Increasing the specific energy of
the reference cells to the best-in-class specific energy would enable
transporting the same payload as a DT in the 1MW charging scenario.

The cell energy density is varied between the minimum and max-
imum value of the cells in our database, corresponding to 122WhL−1

and 1047WhL−1. The cell energy density only affects the battery vol-
ume and is therefore only shown in the right panes of Fig. 7. The lower
energy density limit results in a battery volume exceeding the figure
bounds and is therefore indicated by an arrow. The best-in-class energy
density would result in a smaller battery volume than the volume that
would become available if the DT powertrain is removed.

Finally, the impact of the cell’s charging rate is shown. Increasing
the charging rate beyond 0.3 h−1 in the 350 kW charging scenario and
0.9 h−1 in the 1MW charging scenario does not reduce the required
battery size, as was shown in Fig. 5(b). In the 1MW charging scenario,
the lower limit is the minimum value that enables transporting the
reference load. Increasing the charging rate leads to an increase in
cost-parity-price and maximum payload, and a decrease of the battery
volume, because the required battery size is decreased.

Fig. 8 shows the impact of the pack parameters: the cell-to-pack
cost ratio, gravimetric packaging efficiency and volumetric packaging
efficiency. The cell-to-pack cost ratio was varied between the minimum
and maximum values reported for battery-electric vehicles in the year
2020 by König et al. [26], corresponding to 1.94 and 2.21. Reducing the
cell-to-pack cost ratio results in a higher cost-parity price, while it does
not affect the maximum payload or battery volume.

The gravimetric packaging efficiency was varied between the min-
imum and maximum value for pouch cells in commercial battery-
electric vehicles [24], corresponding to 49.5% and 74.2%. Increasing
the gravimetric packaging efficiency results in a higher cost-parity

Fig. 7. Impact of cell properties on the cost-parity price, maximum payload and battery volume for (a) the 350 kW scenario and (b) the 1MW scenario. The insets show a close-up
of the area around the reference cell characteristics. The arrow indicates the direction of the parameter variation.
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Fig. 8. Impact of pack properties on the cost-parity price, maximum payload and battery volume for (a) the 350 kW scenario and (b) the 1MW scenario. The insets show a close-up
of the area around the reference cell characteristics. The arrow indicates the direction of the parameter variation.

price, since the typical energy consumption is decreased. Additionally,
the maximum payload is increased. However, even at the best-in-class
gravimetric packaging efficiency, the reference cells do not achieve the
same payload as a DT in either scenario.

The volumetric packaging efficiency was varied between 16.8% and
52.8%, corresponding to the minimum and maximum values for pouch
cells used in commercial battery-electric vehicles [24]. The volumetric
packaging efficiency only affects the battery volume and is therefore
only shown in the right panes of Fig. 8. The lower limit requires
a volume exceeding the figure bounds and is therefore indicated by
an arrow. Increasing the volumetric packaging efficiency results in a
smaller battery volume, but even the best-in-class packaging efficiency
results in a battery with more volume than the DT powertrain.

Fig. 9 shows the impact of the system parameters: annual mileage,
service life, diesel cost, cost of charging, and vehicle energy con-
sumption. Apart from the vehicle energy consumption, the system
parameters only influence the cost-parity price and not the payload or
battery volume.

For the annual mileage, the lower limit corresponds to the average
annual mileage of all semi-trailer trucks in Germany, including drayage
trucks [35]. The upper limit is the annual mileage resulting from
driving 9 h a day on 250 days a year. On the one hand, increasing
the annual mileage reduces the battery residual value at the end of
the service life. On the other hand, BETs benefit from a lower cost per
kilometer than DTs for toll, maintenance and energy costs. Overall, the
latter effect is more significant, which results in an increased cost-parity
price as the annual mileage increases.

For the BET energy consumption, the lower limit corresponds to
the typical and maximum energy consumption simulated for a truck
with the lowest reported rolling friction coefficient and drag area of all
trucks registered between the 1st January 2019 and the 30th June 2020.
The upper limit corresponds to the values that were used in the case

study, as defined in Table 2. Reducing the energy consumption results
in an increase in the cost-parity price, since the required battery size is
reduced and the typical energy consumption is decreased. Additionally,
reducing energy consumption results in a higher maximum payload and
smaller battery volume.

For the service life, the lower limit corresponds to the payback
period considered by large fleets [36] and the upper limit is the average
service life of a truck in Germany [5]. The cost-parity price decreases
as the service life is increased, because a longer service life results in a
longer bound investment and a smaller net present value of the residual
battery value.

The cost of charging is varied between the cost that might be
realized if truck companies can participate in the electricity wholesale
market [34] and the current upper limit for the charging cost stipulated
by the German government, excluding VAT. [29]. Increasing the cost
of charging results in a decrease in the cost-parity price.

Finally, the diesel cost is varied between the lowest and highest
diesel cost in Germany excluding VAT between Jan 2021 and March
2022 [37]. An increase in the diesel cost results in an increase in the
cost-parity price.

Comparing the impact of cell-, pack, and system parameters shows
that improving the cell specific energy and energy density has the
biggest impact on matching the payload and volume of a DT power-
train. This can be supported by improving the volumetric and gravi-
metric packaging efficiencies. The impact of improving the cycle life
beyond the cycle life of the reference cells is relatively small, but
reducing the cycle life leads to a strong decline in the cost-parity price.
The biggest potential to increase the cost-parity price is providing 1MW
charging, reducing the cost of charging and reducing the vehicle energy
consumption.
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Fig. 9. Impact of system properties on the cost-parity price, maximum payload and battery volume for (a) the 350 kW scenario and (b) the 1MW scenario. The insets show a
close-up of the area around the reference cell characteristics. The arrow indicates the direction of the parameter variation.

5. Discussion

Techno-economic cell-selection extends traditional cell selection
methods, such as the Ragone plot, by quantifying the impact of in-
dividual cell characteristics on the system cost. The visualization in
Fig. 6 allows truck manufacturers to compare the cost-parity price of
different cells with properties that do not influence the system cost
directly, such as the maximum payload and battery volume. Based on
this visualization, a truck manufacturer can exclude cells that do not
meet the payload and volume requirements for a given vehicle concept.
Additionally, cells that are not available in the required quantities or
that do not meet safety standards can be excluded. Other constraints,
such as the preferred cell format, or a minimum cell capacity for
handling during production may be considered. By obtaining quotes
for the remaining cells, and comparing these to the cost-parity price
for each cell, the optimal cell can be selected. Additionally, the param-
eter sensitivity analysis of the pack and system parameters, and the
comparison of different scenarios show how system performance can
be improved independent from the cell selection.

Techno-economic cell selection can not only help truck manufac-
turers select the optimal cell, but also provides cell manufacturers with
insights. First, the cost-parity price quantifies at which price point a cell
becomes cost-competitive. Second, the parameter sensitivity analysis,
illustrated in Fig. 7, shows which price increases are justified if individ-
ual cell properties are improved. Finally, the sensitivity analysis of use
case parameters and the comparison of different scenarios can support
the anticipation of future business opportunities for cell technologies.

Techno-economic cell selection relies solely on values provided
in cell data sheets. This enables the comparison of a wide range of

different cells during the early-stage design phase before conduct-
ing resource-intensive parametrization studies. However, this approach
also leads to simplifications. Most notably, the data provided on the
cell’s aging behavior is limited. Only cyclic battery aging can be con-
sidered, since data sheets do not provide information on the storage life
of a cell. Furthermore, due to the limited information available in cell
datasheets, the impact of the depth of discharge, C-rate, and tempera-
ture on the battery life cannot be quantified. Therefore, after using the
method to shortlist one or multiple cells, a detailed characterization
of the electric, thermal and aging behavior of the cell is required to
estimate the battery life for the given usage condition and optimize
further design parameters such as the battery size or the battery thermal
management system.

We demonstrated techno-economic cell-selection by selecting a cell
from a database containing 160 unique cells for a long-haul truck
operating with a single driver in Germany. The results show that for
BETs charged at 350 kW, the cell price needs to drop to ca. e60 kWh−1

to reach cost-parity with a DT. When 1MW charging power is available,
cost-parity can be reached at a cell price around e100 kWh−1, which is
within reach of optimistic cost estimates [26]. The maximum payload
of a BET charged with 1MW using reference cell 2 would be 2.9 t less
than a DT, which may be acceptable because trucks are mostly volume-
constrained instead of payload-constrained [8]. The required volume,
however, would be almost double the volume of the DT powertrain,
which may be challenging to realize. Other cells provide a higher
maximum payload and require less volume, but need to be purchased
at a lower price to reach cost-parity, due to their lower cycle life.
The parameter sensitivity analysis showed that improving packaging
efficiency and vehicle energy consumption can support matching the
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payload and powertrain volume of a diesel truck, while the cost of
charging and vehicle energy consumption provide the biggest oppor-
tunity for increasing the cost-parity price. These results indicate that it
will remain challenging, but possible, to make BETs cost-competitive
with DT.

For our use case, we sized the battery based on the single-driver
daily driving-time limit of 10 h and an average speed of 80 kmh−1,
which results in a maximum daily driving distance of 800 km. This
approach covers a large share of truck driving patterns: Basma et al. [2]
and Tol et al. [38] show that 98% of truck daily distances in Europe are
shorter than 800 km, where the remaining 2% are likely operated by
multiple drivers. That said, trip distances and durations vary widely.
Link et al. [39] recorded over one million vehicle kilometers from a
German truck fleet revealing high variance in durations and distances
of single trips, daily mileage, number of trips per day, and different
shift schedules (i.e., single shift or multi-shift operations). Similarly,
Tol et al. [38] find a standard deviation of up to 40% for day-to-day
distances for current DT. This indicates the potential of an individual
battery sizing and highlights the importance of future research in truck
travel patterns.

Furthermore, we assumed that a charger is available after 4.5 h
of driving, resulting in a maximum distance between two chargers of
360 km. This is in-line with the targets of the European Commission
for electric recharging infrastructure dedicated to heavy-duty vehi-
cles [40]: By the end of 2025 a 350 kW charger shall be available
every 60 km along the TEN-T-core network and every 100 km along the
TEN-T-comprehensive network. However, the MCS-Standard that will
enable 1MW charging will only be available from the mid-2020s, and
in addition to charging infrastructure at public rest areas, semi-public
charging infrastructure needs to be available to enable trucks to charge
while loading and unloading cargo [39]. The presented results are
therefore only valid, if the available charging infrastructure is increased
and future research in charging infrastructure optimization is required.

Finally, although we took great care in using realistic design cri-
teria and use case parameters for the BET application, the following
limitations should be taken into account. First, our cell database con-
tains information from data sheets that were available to researchers,
which might not reflect the status quo of cells used in the automotive
industry [41]. Second, operation with multiple drivers, or with cooled
trailers would influence the battery sizing. Third, the cost function
assumes a linear depreciation of the battery value with the vehicle
mileage, favoring cells with a high cycle life. However, it might not
be in the interest of vehicle manufacturers to provide a battery life
that exceeds the warranty conditions. Fourth, the impact of axle load
limitations on the battery sizing should be considered before selecting
a cell. Finally, the results are specific to a truck operating in Germany
today. Policy measures, such as toll and tax exemptions, the cost of
charging and diesel cost vary widely in different countries and have a
large impact on the cost-competitiveness of BET [2,6]. By publishing
the source code of our method, we hope to enable other researchers to
extend the cell database, sizing model and cost model, and implement
the techno-economic cell selection in further scenarios.

6. Conclusion

Techno-economic cell selection is a novel cell selection method that
takes the trade-off between cost and performance into consideration.
Additionally, the method enables quantifying the impact of improving
cell, pack, and system properties. We demonstrated the method by
selecting a cell from a database containing 160 unique cells for a
long-haul truck operating with a single driver in Germany. Our results
show that, when 1MW charging is available, the best performing cell
becomes cost-competitive around e100 kWh−1, which is within reach
of price estimates for lithium-ion cells today. However, the achievable
payload and required volume on board the vehicle still pose challenges
for battery technology.

In future work, we plan to implement techno-economic cell selec-
tion in further automotive and non-automotive applications to show
the general applicability and compare cost-parity prices across applica-
tions.
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Appendix A. Battery energy throughput for different charging sce-
narios

Fig. A.1 illustrates the cumulative energy throughput of a truck bat-
tery for two scenarios: with a 350 kW and with a 1MW charger available
during the rest period. In both scenarios the truck consumes 530 kWh
of energy during the driving phase, but due to the different charging
powers, the cumulative energy throughput after the second driving
event is larger for the 350 kW charging scenario. Further reductions in
the amount of recharged energy may be caused by the cell’s maximum
charging rate. Note that the amount of fast chargeable energy during
the rest period is limited to 80% of the usable energy at the end of
life of the battery. As a result, in the 1MW scenario the battery is fully
recharged before the end of the rest period, which shows that a lower
charging power would have been sufficient. The required battery size
is determined by dividing the cumulative energy throughput after the
second driving event by the EOL condition and the share of usable
energy. If the amount of rechargeable energy is not limited by the
cell’s charging rate, the required battery size for the 350 kW and 1MW
charging scenario are 792 kWh and 1111 kWh respectively.

Fig. A.1. Energy throughput of a battery charged with 350 kW and 1MW during the
charging break.



eTransportation 16 (2023) 100225

13

O. Teichert et al.

Fig. B.1. (a) Drag ranges defined by the European Parliament and the council [42]; (b-h) reported vehicle characteristics of 161 129 trucks in the vehicle sub-group ‘‘LH-5’’ that
were registered between the 1st January 2019 and the 30 June 2020.

Appendix B. Analysis of reported long-haul truck data

To realistically model the vehicle characteristics, we use data that
heavy-duty vehicle manufacturers are required to report in accordance
with EU Regulation 2018/956. We limit the data to vehicle sub-group
‘‘LH-5’’, which comprises tractors that have a 4 × 2 axle configuration,
a sleeper cab, and a technically permissible maximum laden mass over
16 tonnes [18]. This vehicle sub-group makes up 62% of new regulated
truck sales [43]. The parameters of interest for the vehicle simulation
are the engine rated power, drag area, and tire rolling resistance
coefficient. Additionally, the chassis curb mass is required to determine
the vehicle mass for the sizing algorithm, and the consumption of a
diesel truck is needed for the cost model.

The reported data directly includes the chassis curb mass and the
engine rated power. The rolling resistance coefficient is given for the
first and second axle, the fuel consumption is specified for a 2.6 t
and 19.3 t load and the drag area is specified according to the drag
ranges defined by the European Commission, shown in Fig. B.1(a). The

distribution of these parameters for 161 129 trucks registered between
the 1st of January 2019 and the 30th June 2020 is shown in Fig. B.1(b)
to B.1(h).

The average values are summarized in Table B.1. For the rolling
resistance coefficient this is the average of the front and rear axle. The
drag area is calculated by assuming that the center of each drag range
is representative for the drag areas in that range. The average diesel
truck fuel consumption is determined based on the loading conditions
defined by the European Commission, which correspond to 2.6 t over
30% of the trip distance and 19.3 t over the remaining 70%.

Appendix C. Vehicle weight without battery, cost of slow charging
and powertrain component costs

The vehicle weight without the battery is the sum of the average
DT chassis curb mass (7753 kg, Table B.1), minus the weight of the DT
powertrain (25% [44]), plus the weight of the e-axle (450 kg [8]), plus
the weight of the trailer (7500 kg [45]), resulting in 13.8 t.
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Table B.1
Average vehicle parameters of 161,129 trucks in the vehicle sub-group ‘‘LH-5’’ that
were registered between the 1st January 2019 and the 30 June 2020.

Parameter Average

Engine rated power 352.4 kW
Rolling resistance coefficient 0.00548
Drag area 5.68m2

Chassis curb mass 7753 kg
DT fuel consumption 0.301 L km−1

The costs of slow charging corresponds to the sum of the average
industrial electricity price in 2021 of e0.2138 kWh−1 [46] and an over-
head costs for the overnight charging infrastructure of e0.0377 kWh−1

[2]. The resulting cost of slow charging is e0.2515 kWh−1.
We model the powertrain costs based on the specific direct manu-

facturing costs for major powertrain components in the reference year
2020 published by Speth et al. [47]. For DT, these are the internal
combustion engine plus gearbox (e72 kW−1), fuel tank (e2 L−1, 800 L
tank volume), and the emission after-treatment system (e19.8 kW−1).
For BETs, these are electric motors (e32 kW−1) and power electronics
plus HV system components (e35 kW−1). Additionally, we use a markup
factor of 1.45 to account for indirect manufacturing costs such as
overhead, warranty and margins [2]. The resulting powertrain costs for
the DT and BET are e49 223.64 and e34 232.51 respectively.

Appendix D. DT powertrain volume

The powertrain volume of a DT is determined using a package
model of a diesel 4 × 2 semi-tractor with a wheelbase of 3600mm, as
shown in Fig. D.1(a). When converting the DT to a BET, the cab, frame,
wheelbase, and axles remain unchanged [48]. By removing all ICEV-
specific components (engine, tank, transmission, cardan shaft, exhaust),
large areas outside the ladder frame (between the axles) and in the
engine compartment are freed up, as illustrated in Fig. D.1(b). The total
volume that becomes available is 3250 L. Smaller, irregular areas and
the inside of the ladder frame at the rear axle, which is reserved for the
axle suspension and the electric motor [49] are not included.

Fig. D.1. Visualization of (a) the DT measurements, and (b) the volume that becomes
available when the DT powertrain components are removed.
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3 Method & results

3.1.3 Changes to the published method

The results from the previous publication and other studies [36, 38] agree that high charg-
ing powers are required to make long-haul truck electrification feasible and cost-competitive.
Therefore, in the following, I will limit the results to the scenario where 1 MW charging power is
available during the rest period, matching the charging capability of BET announced by truck
manufacturers [105].

Additionally, I decided to update the following model components based on numerous feedback
I have received since the publication: the battery life estimation, energy consumption, packaging
efficiency, and cell-to-pack cost ratio.

Battery life

In the previous publication the battery life was determined solely based on the cycle life given
in the cell’s datasheet, ignoring any calendar aging. This assumption was made because of
the short service-life of long-haul trucks and the lack of information on a cell’s calendar life in
the datasheet. To improve the battery life estimation, I here include calendar life estimates for
different cell chemistries from literature as follows.

As described in Subsubsection 2.2.2, semi-empirical aging models typically superimpose cyclic
and calendar aging to determine a cell’s capacity loss [79, 106], resulting in a formula similar to
Equation (3.1).

Qloss = αQ,cal tzQ,cal +αQ,cyc nzQ,cyc (3.1)

The exponents zQ,cal, and zQ,cyc depend on the aging mechanism and the cell chemistry. In
Section 3.2 an aging model will be introduced that takes these details into account, but here I
assume that both calendar and cyclic aging are linear.

The coefficients αQ,cal and αQ,cyc depend on aging stress factors, such as temperature, SOC,
DOD and the charging rate. To quantify the impact of these individual stress factors for a given
cell, extensive aging studies are required. To estimate the battery life without extensive testing, I
make the following simplifications.

A cell’s calendar life, tcal, describes the time until the EOL capacity loss criterion, Qloss,end is
reached in the absence of any cycling. Therefore, Equation (3.1) can be rewritten to calculate
coefficient αQ,cal.

αQ,cal =
Qloss,end

tcal
(3.2)

A cell’s cycle life, ncyc, describes the number of FEC that can be completed before the EOL
capacity loss criterion is reached. By neglecting the calendar aging that occurs during the
relatively short duration of cyclic aging tests, Equation (3.1) can be rewritten to determine
coefficient αQ,cyc.
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αQ,cyc =
Qloss,end

ncyc
(3.3)

By combining Equation (3.2) and (3.3), the battery life until the EOL condition is reached can be
calculated for a given calendar and cycle life using Equation (3.4), where nannual denotes the
number of FEC per year. Because the calendar life is not specified in the cell’s datasheet, I use
literature estimates differentiating between cells with an NMC and LFP cathode: 13 years for
NMC and 15 years for LFP [107]. The cycle life corresponds to the cycle life specified in a cell’s
datasheet. Equation (3.4) replaces Equation (26) in the sizing model of the previous publication.

tbat =
1

1
tcal
+ nannual

ncycle

(3.4)

Energy consumption

In the previous publication, the vehicle simulation used the average rolling friction coefficient and
drag area of all DT registered between the 1st January 2019 and the 30 June 2020, resulting
in an energy consumption of 1.49 kWhkm−1 for a 42 t BET. This matches results from previous
literature studies well [26, 33, 35, 108].

However, the drag area and rolling friction coefficient of BET will likely be optimized for energy
consumption and therefore have a smaller the drag area and rolling friction coefficient than
status-quo DT. Results from prototype tests show an energy consumption of 1.1 kWhkm−1 for a
40 t BET [109], which is 26 % lower than the energy consumption used in the previous publication.
To align my simulation results with these prototype tests, I here use the lowest drag area and
rolling friction coefficient of all trucks registered between the 1st January 2019 and the 30 June
2020, resulting in a simulated energy consumption of 1.11 kWhkm−1 for a 40 t BET.

Packaging efficiency

In the previous publication, I used the average volumetric and gravimetric packaging efficiencies
reported for passenger cars released between 2010 and 2019: for cylindrical cells 29.5 % and
55.2 %, and for pouch or prismatic cells 35.3 % and 57.5 % respectively [110]. However, newer
vehicle models reach higher packaging efficiencies: the VW ID.3 achieves a volumetric packaging
efficiency of 41.5 % and a gravimetric efficiency of 63.4 % [74], while the Tesla Model 3 with an
LFP battery achieves a volumetric and gravimetric packaging efficiency of 55.3 % and 71.6 %
respectively [111].

To match the packaging efficiency of status quo BEV and differentiate between the achievable
packaging efficiencies for different cell chemistries, I use the packaging efficiencies reported
for the VW ID.3 and Tesla Model 3 for pouch and prismatic cells, and scale the packaging
efficiencies of cylindrical cells accordingly. Using the same packaging efficiencies for BEV and
BET matches the EUCAR targets [112], which do not differentiate between passenger cars and
commercial heavy-duty vehicles.
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Cell-to-pack cost ratio

The previous publication used a conservative estimate for the ratio between costs at the cell and
system level of 2.07. More recent publications show that this ratio has come down significantly:
Bloomberg reports an average cell-to-pack cost ratio of 1.2 for the year 2022 [22], while the
EUCAR consortium considers a ratio of 1.3 the state-of-the-art in 2019 [112]. To take these
advances into account, while still taking a conservative approach, I will use the value of 1.3
reported by the EUCAR consortium in the following.

3.1.4 Updated results

The results for all cells in the database are shown in Figure 3.3. The vertical axis shows the
cost-parity price, while the horizontal axis in the left pane shows the maximum payload and in
the right pane the battery volume. Additionally, the reference load used for homologation in the
EU, the maximum payload of a DT, the volume of a DT powertrain and the 2022 average cell
price [22] are indicated. Cells that result in a vehicle that cannot transport the EU reference load
are not considered. Cells in the green area can transport a higher payload or require less volume
than a DT and can be more expensive than the 2022 average cell price to reach cost-parity.
Finally, different cell formats, cell chemistries and the selected cell are indicated by marker
shapes and colors.
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Figure 3.3: Comparison of all cells in the cell database.

The results show that only few cells in the database reach payload parity with a DT. However, a
small decrease in payload capability may be acceptable because long-haul trucks are mostly
volume constrained instead of payload constrained [37]. Several cells achieve the same or less
volume onboard the vehicle than the current DT powertrain. LFP cells can transport less payload
and require more volume than NMC cells, due to their lower energy density. Additionally, a trade-
off between cost and performance can be seen. Some cells reach cost parity at €222 kWh−1, but
would require more volume onboard the vehicle and enable less payload than a DT powertrain.
Cells that result in a better match with payload and volume of status quo DT, would need to be
bought at a lower price to reach cost parity.

A truck manufacturer may use this visualization to exclude cells that do not meet the payload
or volume requirement for a given vehicle concept. Additionally, cells that do not meet safety
standards or are not available in the required quantities might be excluded. Further constraints
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regarding the cell size or format for handling during production may be enforced. By obtaining
quotes for the remaining cells, a cell can be selected. Cells that have a higher cost-parity price
than the quoted price would result in a cost-competitive vehicle.

Because I am not in a position to obtain quotations for large-volume cell purchases, I select the
cell with the highest cost-parity price that results in less than 1 t payload loss compared to a
DT. The resulting cell is produced by LG Chem and used in the VW ID.3 battery pack. The cell
characteristics and resulting battery properties are shown in Table 3.1. The resulting battery size,
battery mass and vehicle energy consumption match announcements from truck manufacturers
well [31].

Table 3.1: Properties of the selected cell, obtained from the cell database, and results from the cell
selection method.

Cell characteristics from database

Capacity 78 Ah [74]
Nominal voltage 3.7 V [74]
Format Pouch [74]
Specific energy 273 Whkg−1 [74]
Energy density 685 WhL−1 [74]
Cycle life 2000 FEC [74]
EOL 0.8 [74]
Charging rate 1 h−1 [74]

Results from cell selection method

Battery size 616 kWh
Battery volume 2168 L
Battery mass 3559 kg
Max. Payload 24.7 t
Typical energy consumption 0.97 kWhkm−1

Battery life 5.9 years
Cost-parity price €200 kWh−1

3.2 Step 2: battery model parametrization

To obtain a better estimate of the battery life for the selected cell under typical truck operating
conditions, the cell is characterized to parametrize a battery model. I published the implemented
battery model as a first author in a previous study [113]. The initial published model has
been adapted for the selected cell. In the following, I will summarize the previous publication,
specify my contribution, and provide the published manuscript and supplement. Subsequently,
changes to the model are explained and the parametrization for the electric and thermal model
is presented. Finally, the validation of these models, and the parametrization and validation of
the aging model are shown.

3.2.1 Summary of the published battery model

The previous publication investigated the cost-effectiveness of different BTMS designs in different
climates using a combined electric-thermal-aging model. The battery model consists of 5
submodels, shown in Figure 3.4, that are executed at every time step in a transient simulation.

First, the cell power limits are calculated, based on the cell’s SOC, temperature and aging
condition. Subsequently, based on the power profile, power limits and battery temperature, the
control algorithm determines the power drawn from or supplied to the battery, and the applied
cooling & heating power. The electric model then calculates the ohmic losses and updates the
SOC, based on the battery power, cell temperature, SOC and aging status. The thermal model

43



3 Method & results

updates the battery temperature based on the ohmic losses, applied cooling & heating power
and the ambient temperature. Finally, the aging model updates the capacity loss and internal
resistance increase of the cell, based on the cell temperature, SOC and depth of discharge.

Cell power limits

Control algorithm

Electric model

Thermal model

Aging model

S
tates

Ambient temperature

Power profile

Power limits

Battery power
Applied cooling
& heating power

SOCLosses

Battery temperature

Capacity loss
& resistance increase

Figure 3.4: Schematic of implemented battery model, adapted from [113].

The model was applied to a stationary energy storage system supporting a fast charging station.
The results showed that the cost-effectiveness of different BTMS designs depends on the climate
in which the battery is operated. In Munich, passive cooling results in the lowest costs, whereas
in Singapore, enhancing the heat transfer to ambient air with cooling fins proved to be the most
cost-effective.

3.2.2 Contributions

I initiated the idea of the paper, implemented the battery model, wrote the first draft and
implemented all revisions. Florian Müller helped reduce the computation time of the model
significantly during his master thesis. Florian Müller and Markus Lienkamp provided valuable
feedback during the many iterations following the first draft.
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A B S T R A C T

The battery thermal management system (BTMS) of a lithium-ion battery aims to prevent accelerated battery
aging at elevated temperatures and reduced operability at low temperatures. Cooling or heating the battery
prevents it from being operated outside the preferred temperature window but increases energy consumption,
increases maintenance costs and requires an additional investment. Therefore, for a given use case, battery
designers need to decide whether installing a heating system is required, if it is cost effective to install a cooling
system, and how the battery should be thermally connected to the ambient air. This study presents a method
for the techno-economic assessment of different BTMS. The method is applied to stationary energy storage
(SES) supporting a fast charging station. This use case was chosen because these batteries are located outdoors
and their heat transfer to the surrounding air can be increased or reduced without being limited by packaging
constraints. The method is demonstrated by evaluating the cost of five different BTMS in the tropical climate
of Singapore and the continental climate of Munich, Germany. The results show that the cost-effectiveness of
different BTMS depends on the climate in which the battery is operated. For the Munich climate, the passively
cooled baseline design results in the lowest cost, whereas in the Singapore climate the lowest cost is achieved
by equipping the SES with cooling fins. Installing active cooling is not cost-effective in both climates for the
given use case, but might be considered for ecological considerations, warranty requirements, or to allow safe
operation in unexpected extreme conditions. The method enables thermal system designers to evaluate the
cost effectiveness of different BTMS in different climate conditions during the early-stage design phase.

1. Introduction

Lithium-ion batteries play a central role in the reduction of global
carbon emissions: they enable mobility without local emissions, and
support the integration of renewable energy sources into the electric
grid. Lithium-ion batteries are used for this wide range of applications
due to their high energy density, high efficiency, low self discharge,
and long cycle life [1]. However, lithium-ion cells are sensitive to the
temperature at which they are stored and operated [2].

Temperatures above 25 °C cause accelerated capacity loss and inter-
nal resistance increase of a cell, thereby shortening the cell’s operating
life [3]. Temperatures above 60 °C can lead to safety critical conditions,
that might result in a thermal runaway, and should thus be avoided at
all times [3,4]. Operating a cell at temperatures below 15 °C decreases
the available discharging power and can result in rapid capacity loss

∗ Corresponding author at: Technical University of Munich (TUM), School of Engineering & Design, Department of Mobility Systems Engineering, Institute of
Automotive Technology, 85748 Garching, Germany.

E-mail address: olaf.teichert@tum.de (O. Teichert).

caused by lithium plating, especially at high charging rates [5].
To prevent the negative effects of operating lithium-ion cells outside

of their preferred temperature window, a wide range of battery thermal
management systems (BTMS) is used to heat or cool the cells. The
review papers by Xia et al. [6] and Jaguemont et al. [7] give a
detailed overview of state-of-the-art BTMS and their advantages and
disadvantages.

Low temperatures can be avoided by equipping a battery with
insulation, electric heating mats, or a heat pump. Adding insulation
requires a relatively small investment and does not generate energy
consumption or maintenance costs, but can lead to undesired high
battery temperatures at high ambient temperatures. Heating mats and
heat pumps do not cause undesired high temperatures, since they are
only activated when needed, but have higher investment and operating

https://doi.org/10.1016/j.est.2021.103832
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Nomenclature

𝐴sides,conv SES effective side surface area for convection in m2

𝐴sides,rad SES effective side surface area for radiation in m2

𝐴top SES top surface area in m2

𝑐bat Specific battery cost in eWh−1

𝑐cell Cell heat capacity in J K−1

𝑐ene Energy cost in e kWh−1

𝑐h Battery housing heat capacity in J K−1

𝐶bat Annual discounted battery depreciation in e year−1

𝐶BTMS Annual BTMS costs in e year−1

𝐶cool Average annual cooling system energy consumption
cost in e year−1

𝐶heat Average annual heating system energy consumption
cost in e year−1

𝐶inv BTMS investment cost in e

𝐶loss Average annual energy consumption cost due to
parasitic losses in e year−1

𝐶maint BTMS annual maintenance costs in e year−1

𝐶rate Cell C-rate in h−1

𝐶tot Sum of all considered cost components in e year−1

𝐶𝑂𝑃cool Cooling system coefficient of performance
𝐶𝑂𝑃heat Heating system coefficient of performance
𝐶𝑅𝐹bat Capital recovery factor for battery investment
𝐶𝑅𝐹BTMS Capital recovery factor for BTMS investment
𝐸bat Battery size in Wh
𝐸ene,cool Average annual cooling system energy consumption

in kWh
𝐸ene,heat Average annual heating system energy consumption

in kWh
𝐸ene,p Average annual energy consumed by parasitic losses

in kWh
ℎ SES height in m
𝑖 Interest rate
𝐼ch Cell instantaneous charging current limit in A
𝐼ch,cont Cell continuous charging current limit A
𝐼dch Cell instantaneous discharging current limit in A
𝐼dch,cont Cell continuous discharging current limit in A
𝐼cell Cell applied current in A
𝑗 Subscript denoting aging time step
𝑘 Subscript denoting simulation time step
𝑘air Thermal conductivity of air in W m−1 K−1

𝑘ins Thermal conductivity of insulation in W m−1 K−1

𝑙 SES length in m
𝑙fins Cooling fin length in m
𝑛cells Number of cells in the battery
𝑛fins Number of cooling fins
𝑁𝑢sides Nusselt number for convection at the side surfaces
𝑁𝑢top Nusselt number for convection at the top surface
𝑃avail Power available for cooling or heating in W
𝑃bat Power drawn from or supplied to the battery in W
𝑃cell Cell power in W
𝑃cool Applied cooling power in W
𝑃cooler Installed cooling power in W

𝑃dem Charging demand power profile in W
𝑃grid Power drawn from the grid in W
𝑃heat Applied heating power in W
𝑃heater Installed heating power in W
𝑃ch Cell maximum charging power in W
𝑃dch Cell maximum discharging power in W
𝑃th Peak shaving threshold in W
𝑃top SES top surface perimeter in m
𝑄 Cell capacity in A h
𝑄loss Aging-induced capacity loss
𝑄loss,EOL End of life capacity loss criterion
𝑄nom Cell nominal capacity in A h
𝑅conv,top Thermal resistance of convective heat transfer at

the top of the housing in K W−1

𝑅conv,sides Thermal resistance of convective heat transfer at
the sides of the housing in K W−1

𝑅i Cell internal resistance in Ω
𝑅in Thermal resistance between cell and battery

housing in K W−1

𝑅inc Aging-induced internal resistance increase
𝑅ins Thermal resistance of insulation material in

K W−1

𝑅i,d Cell discharging resistance in Ω
𝑅i,c Cell charging resistance in Ω
𝑅out Thermal resistance between SES housing and

ambient temperature in K W−1

𝑅rad Thermal resistance of radiative heat transfer in
K W−1

𝑠fins Cooling fin spacing in m
𝑆𝑂𝐶 Cell state of charge (SOC)
𝑆𝑂𝐶max Upper SOC limit
𝑆𝑂𝐶min Lower SOC limit
𝑡eol,bat Battery life in s
𝑡eol,BTMS BTMS investment duration in s
𝑡ins Insulation thickness in m
𝑇ambient Ambient temperature profile in K
𝑇c Cell temperature in K
𝑇cool Cooling threshold in K
𝑇h Battery housing temperature in K
𝑇heat Heating threshold in K
𝑇limit Safety critical temperature limit in K
𝑈max Cell maximum voltage in V
𝑈min Cell minimum voltage in V
𝑈nom Cell nominal voltage in V
𝑈OCV Cell open circuit voltage in V
𝑤 SES width in m
𝑧cell2pack Ratio between the mass on cell level and pack

level
𝛥𝑡j Aging timestep in s
𝛥𝑡k Simulation timestep in s
𝜖 Emittance
𝜎 Stefan–Boltzmann constant

costs. Heat pumps are more efficient than heating mats and may be
used for cooling as well, but require a larger investment.

High temperatures can be avoided by increasing the heat transfer
to ambient air, installing air cooling, or installing a refrigerant cooling

system [8]. Increasing the heat transfer to ambient air, also referred
to as passive cooling, can be achieved with relatively small invest-
ment costs and without energy consumption or maintenance costs,
but can lead to undesired low battery temperatures at low ambient
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temperatures. Air cooling and a refrigerant cooling system do not
cause undesired low temperatures, since they are only activated when
needed, but have higher investment and operating costs. In contrast
to the air cooling system, a refrigerant cooling system can cool the
battery to temperatures below the ambient temperature, but requires
larger investment and maintenance costs.

The majority of studies investigating BTMS evaluate the thermal
system’s performance by assessing the increase in cell temperature for a
single load cycle or charging cycle, representing a typical or worst-case
scenario. Few studies analyzed the performance of the BTMS for longer
time periods under varying ambient conditions.

Neubauer et al. [9] assessed the operability of a passively cooled
stationary energy storage (SES) coupled with a photovoltaic system pro-
viding peak shaving services at three different levels of shading in the
climates of Phoenix, Arizona, Los Angeles, California, and Minneapolis,
Minnesota. The thermal response of the cells and corresponding degra-
dation was simulated over 10 years, where the peak shaving target was
adjusted according to the degradation status. The results show that in
all investigated climates the original peak shaving target of the SES
could be maintained the longest in the fully shaded scenario.

In a later study, Neubauer et al. [10] investigated the impact of
battery cooling and heating on the annual-miles-traveled of a battery
electric vehicle in different climates, assuming that drivers will resort
to different modes of transportation if the energy in the battery is
insufficient to complete a given trip. The thresholds at which cooling
and heating are activated were set to 30 °C and 10 °C, respectively. The
results show that battery wear can be reduced by actively cooling the
battery, especially in hot climates. In cold climates, the improvement
in vehicle utilization achieved by heating is offset by the increase in
energy consumption.

Yuksel et al. [11] simulated the lifetime of batteries in plug-in
hybrid-electric vehicles, comparing an air-cooled battery to a passively
cooled battery in different climates and for different driving cycles.
Air cooling is activated when the battery temperature exceeds a fixed
cooling threshold of 35 °C. The results show that air cooling can more
than double the battery life in hot climates or under high-acceleration
driving cycles.

Keyser et al. [12] investigated the effects of three BTMS for fast
charging vehicles in Seattle and Phoenix: passive cooling, active cooling
during driving, and active cooling during driving and standby. The
cooling thresholds are not specified. The authors conclude that the
choice of thermal system has little impact on the 10-year capacity loss
in moderate climates such as Seattle, but can have a large impact in
hot climates such as Phoenix.

Although previous studies investigated the impact of the BTMS
choice on the battery life and the resulting operability in different
climates, no conclusions with respect to the cost effectiveness were
made. Furthermore, the impact of the selected cooling and heating
threshold was not investigated. Finally, none of the previous studies
investigated the impact of enhancing or reducing the heat transfer to
ambient air.

In this study we present a holistic method for evaluating the cost
effectiveness of different BTMS. The method is applied to an SES
that supports a fast charging station by reducing the power drawn
from the grid, thereby reducing peak demand charges and grid rein-
forcement costs. This application was selected because SES supporting
fast-charging stations present a unique use case for the thermal system
design: different from SES coupled with photovoltaic systems, they
are located outdoors and are therefore directly affected by climate
conditions; different from vehicle batteries, the packaging constraints
for SES supporting fast charging stations are less strict, which makes
it possible to enhance or reduce the heat transfer to the ambient air
through cooling fins or insulation [13].

The method combines a cost model with an operability constraint,
a safety constraint and a battery simulation that quantifies the battery

life, cooling system energy consumption, heating system energy con-
sumption, and parasitic losses. For each BTMS, the minimum heating
threshold that prevents the operability constraint from being violated
is found. Furthermore, for the active-cooled BTMS the cost-optimal
cooling threshold is determined. BTMS configurations that violate the
safety constraint are not considered. A case study investigates the
cost effectiveness of installing active cooling, installing cooling fins,
or insulating the SES, for two different climates: the tropical climate
of Singapore and the continental climate of Munich, Germany. The
method serves as a decision-making aid for BTMS designers during the
early-stage design phase.

The contributions of this study can be summarized as follows:

• A techno-economic assessment of BTMS configurations in differ-
ent climates

• Evaluation of the optimal cooling threshold and required heating
threshold for different BTMS

• Quantification of the impact of thermal design measures that
enhance or reduce the heat transfer to the ambient heat sink

The presented method and simulation are available open source
and can be accessed at the following repository: https://github.com/
TUMFTM/BTMS-Design. The method was implemented in the Julia
programming language to accommodate the computational intensity of
the simulations [14].

2. Method

To quantify the cost effectiveness of different BTMS, a cost model is
combined with a battery simulation. Furthermore, an operability con-
straint ensure that the SES can effectively reduce the power drawn from
the grid throughout its entire operating life, and a safety constraint
warrants that the maximum temperature never exceeds the safety
critical temperature limit. An overview of all the variables introduced
in the following can be found in the nomenclature.

2.1. Cost model

The cost model only considers cost components that are influenced
by the BTMS configuration. To allow comparing investment costs and
operational costs, investments are expressed by their annual discounted
depreciation, while operational costs are expressed by the average
annual operating costs. The total costs are given by Eq. (1), where 𝐶bat
is the annual discounted battery depreciation, 𝐶BTMS denotes the annual
depreciation and maintenance cost of the BTMS, 𝐶cool and 𝐶heat are
the average annual energy cost for operating the cooling and heating
system, respectively, and 𝐶loss is the average annual energy cost due to
parasitic losses in the battery.

𝐶tot = 𝐶bat + 𝐶BTMS + 𝐶cool + 𝐶heat + 𝐶loss (1)

The annual discounted battery depreciation is calculated by Eq. (2),
where 𝐸bat denotes the battery size and 𝑐bat is the specific battery
cost. The capital recovery factor of the battery investment, denoted
by 𝐶𝑅𝐹bat, is used to convert the investment cost into the annual
discounted depreciation and is given by Eq. (3), where 𝑖 denotes the
discount factor and 𝑡eol,bat is the time until the end of life (EOL) of the
battery is reached in years.

𝐶bat = 𝐸bat 𝑐bat 𝐶𝑅𝐹bat (2)

𝐶𝑅𝐹bat =
𝑖 (1 + 𝑖)𝑡eol,bat

(1 + 𝑖)𝑡eol,bat − 1
(3)

The depreciation and maintenance costs of the BTMS are calculated
using Eq. (4), where 𝐶maint denotes the annual maintenance costs and
𝐶inv denotes the BTMS investment costs. The capital recovery factor,
𝐶𝑅𝐹BTMS is used to calculate the annual discounted depreciation of
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Fig. 1. Overview of the battery simulation framework. Inputs are represented by yellow parallelograms, functions by red horizontal rectangles and the logged system states are
denoted by a blue vertical rectangle. The variables that define the BTMS configuration are emphasized in bold, whereas input vectors are marked by an arrow superscript.

the investment, analogous to the battery investment costs, following
Eq. (5).

𝐶BTMS = 𝐶maint + 𝐶inv 𝐶𝑅𝐹BTMS (4)

𝐶𝑅𝐹BTMS = 𝑖 (1 + 𝑖)𝑡eol,BTMS

(1 + 𝑖)𝑡eol,BTMS − 1
(5)

The average annual energy consumption costs resulting from oper-
ating the cooling system, operating the heating system, and parasitic
losses are calculated by Eqs. (6)–(8), where 𝑐ene is the specific energy
cost and 𝐸ene,cool, 𝐸ene,heat, and 𝐸ene,loss denote the average annual
energy consumption of the cooling system, the heating system, and
parasitic losses, respectively.

𝐶cool = 𝐸ene,cool 𝑐ene (6)

𝐶heat = 𝐸ene,heat 𝑐ene (7)

𝐶loss = 𝐸ene,loss 𝑐ene (8)

To determine the battery life and the energy consumed by cooling,
heating, and parasitic losses, the battery operation is simulated.

2.2. Battery simulation

The battery simulation models the operation of the battery for
a given BTMS configuration, using the cell’s power limits, a control
algorithm, an electric model, a thermal model, and an aging model.
The simulation framework is shown in Fig. 1. The variables that define
the BTMS configuration are emphasized in bold and correspond to the
heating threshold, denoted by 𝑇heat, the cooling threshold, denoted by
𝑇cool and the thermal design, which determines the addition of cooling
fins or insulation. In the following, first an overview of the simulation
framework is given and then the calculations are described in detail.

It is assumed that all cells in the battery pack start with equal
parameters and have the same temperature throughout the simulation,
which enables reducing the model to a single cell. The number of
cells in the pack are calculated using Eq. (9), where 𝑈nom and 𝑄nom
correspond to the nominal voltage and capacity of the cell, respectively.

𝑛cells =
𝐸bat

𝑈nom 𝑄nom
(9)

The simulation uses two time steps: a short time step, denoted by
the subscript 𝑘, to update the cells state of charge (SOC), 𝑆𝑂𝐶k, cell
temperature, 𝑇c,k, and housing temperature, 𝑇h,k; and a larger time step,
denoted by the subscript 𝑗, at which the aging-induced capacity loss,
𝑄loss,j, and internal resistance increase 𝑅inc,j are updated.

For every short time step, first the maximum charging and discharg-
ing power of a single cell, denoted by 𝑃ch,k and 𝑃dch,k, are calculated,
subject to the cell temperature, SOC and aging status of the cell.
Subsequently, a control algorithm determines the power drawn from
or supplied to a cell, 𝑃cell,k, the applied cooling power, 𝑃cool,k, and the
applied heating power, 𝑃heat,k, based on the power demand, 𝑃dem,k,
the number of cells, the peak shaving threshold, 𝑃th, the heating and
cooling thresholds, and the cell temperature. The electric model then
computes the C-rate, 𝐶rate,k, the ohmic losses, 𝑃loss,k, and the new SOC,
based on the cell temperature, SOC, and aging state. Based on the
ohmic losses, the thermal model calculates the new cell temperature
and housing temperature taking into account the ambient temperature,
𝑇a,k, the number of cells and the thermal design. At the larger time step,
the aging states are updated, based on the battery temperatures, SOC,
and C-rates over that interval.

The simulation steps are repeated until the capacity loss exceeds a
predefined end of life condition, 𝑄loss,eol. Finally, the inputs required
for the cost model can be calculated, using Eqs. (10)–(13), where
𝛥𝑡k denotes the short simulation time step duration and 𝛥𝑡j denotes
the duration at which the aging status is updated. The constant in
Eq. (10) converts the batterylife from seconds to years, while the
constants in Eq. (11)-(13) correspond to the conversion from Joule to
kilowatt-hours.

𝑡eol,bat =
1

3600 × 24 × 365

𝑄loss,j>𝑄loss,eol∑
𝑗=1

𝛥𝑡j (10)

𝐸ene,cool =
1

1000 × 3600
1

𝑡eol,bat

∑
𝑃cool,k 𝛥𝑡k (11)

𝐸ene,heat =
1

1000 × 3600
1

𝑡eol,bat

∑
𝑃heat,k 𝛥𝑡k (12)

𝐸ene,loss =
1

1000 × 3600
1

𝑡eol,bat

∑
𝑃loss,k 𝛥𝑡k (13)

2.2.1. Cell power limits
To determine the power limits of the cells, first the maximum charg-

ing and discharging currents, denoted by 𝐼ch and 𝐼dch, are calculated
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according to the method proposed by Plett [15] and given in (14) and
Eq. (15). Negative powers and currents correspond to discharging the
cell, while positive powers and currents correspond to charging. The
first term prevents exceeding the continuous charging and discharging
current limits, 𝐼ch,cont and 𝐼dch,cont, the second term prevents exceed-
ing the voltage limits, 𝑈min and 𝑈max, and the third term prevents
exceeding the state of charge limits, 𝑆𝑂𝐶min and 𝑆𝑂𝐶max. The constant
converts the cell capacity from ampere-hours to coulomb. The cell
open circuit voltage, 𝑈OCV, remaining capacity, 𝑄, charging resistance,
𝑅i,d, and discharging resistance, 𝑅i,c, are updated at each time step
according to the cell temperature, SOC, and aging status. To prevent
lithium plating, the charging rate is reduced at low temperatures by
the factor 𝑘der, following the relationship between the maximum non-
harming charging rate and cell temperature derived by Remmlinger
et al. [5]. Subsequently, the maximum charging and discharging power
are calculated using Eqs. (16) and (17).

𝐼ch = min

(
𝑘der 𝐼ch,cont,

𝑈max − 𝑈OCV
𝑅i,c

,

3600 𝑄 (𝑆𝑂𝐶max − 𝑆𝑂𝐶k)
𝛥𝑡k

) (14)

𝐼dch = max

(
− 𝐼dch,cont,

𝑈min − 𝑈OCV
𝑅i,d

,

3600 𝑄 (𝑆𝑂𝐶min − 𝑆𝑂𝐶k)
𝛥𝑡k

) (15)

𝑃ch,k = 𝐼ch(𝑈OCV + 𝑅i,c 𝐼ch) (16)

𝑃dch,k = 𝐼dch(𝑈OCV + 𝑅i,d 𝐼dch) (17)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑈OCV = 𝑓 (𝑆𝑂𝐶k)
𝑅i,d = 𝑓 (𝑆𝑂𝐶k, 𝑇c,k) (1 +𝑅inc,j)
𝑅i,c = 𝑓 (𝑆𝑂𝐶k, 𝑇c,k) (1 + 𝑅inc,j)
𝑄 = 𝑄nom −𝑄loss,j

𝑘der = 𝑓 (𝑇c,k)

2.2.2. Control algorithm
The control algorithm ensures that the power drawn from the grid

does not exceed the peak shaving threshold by discharging the battery
when the power demand exceeds this threshold. The remaining avail-
able power, denoted by 𝑃avail, and calculated by Eq. (18), is then used
to power the heating and cooling system if the cell temperature falls
below the heating threshold or exceeds the cooling threshold, following
Eqs. (19) and (20), where 𝑃heater and 𝑃cooler denote the installed heating
and cooling power. If the power demand drops below the peak shaving
threshold, the battery is recharged, subject to the maximum charging
power. The power drawn from or supplied to the battery, the power on
cell level, and the power drawn from the grid are then calculated using
Eqs. (21)–(23).

𝑃avail = max(𝑃th − 𝑃dem,k − 𝑛cells 𝑃dch,k, 0) (18)

𝑃heat,k =

{
min(𝑃heater, 𝑃avail) if 𝑇c,k ≤ 𝑇heat

0 if 𝑇c,k > 𝑇heat
(19)

𝑃cool,k =

{
0 if 𝑇c,k < 𝑇cool

min(𝑃cooler, 𝑃avail) if 𝑇c,k ≥ 𝑇cool
(20)

𝑃bat = min(𝑃th − 𝑃dem,k − 𝑃heat,k − 𝑃cool,k, 𝑛cells 𝑃ch,k) (21)

𝑃grid = 𝑃dem,k + 𝑃bat (22)

𝑃cell,k = 𝑃bat∕𝑛cells (23)

2.2.3. Electric model
The electric behavior of the battery is modeled by the equivalent

circuit model shown in Fig. 2(a). The cell current, 𝐼cell, is calculated by
Eq. (24), where the internal resistance, 𝑅i, corresponds to the charging

Fig. 2. Model representation of the SES: (a) Equivalent circuit model of a single cell,
(b) Thermal Model of the SES, shown here with insulation material.

resistance for positive cell powers and to the discharging resistance
for negative cell powers. Subsequently, the C-rate, the state of charge
at the end of the time step and the ohmic losses are calculated using
Eqs. (25)–(27), respectively.

𝐼cell =
−𝑈OCV +

√
𝑈2

OCV + 4 𝑅i𝑃cell,k

2𝑅i
(24)

𝐶rate,k =
𝐼cell
𝑄

(25)

𝑆𝑂𝐶k+1 = 𝑆𝑂𝐶k +
𝐶rate,k 𝛥𝑡k

3600
(26)

𝑃loss,k = 𝑅i 𝐼
2
cell (27)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑈OCV = 𝑓 (𝑆𝑂𝐶k)
𝑅i,d = 𝑓 (𝑆𝑂𝐶k, 𝑇c,k) (1 +𝑅inc,j)
𝑅i,c = 𝑓 (𝑆𝑂𝐶k, 𝑇c,k) (1 +𝑅inc,j)

𝑅i =

{
𝑅i,c if 𝑃cell,k > 0
𝑅i,d if 𝑃cell,k ≤ 0

𝑄 = 𝑄nom −𝑄loss,j

2.2.4. Thermal model
The thermal model assumes that the SES consists of a cuboid

housing with internal shelves on which the battery modules are placed,
as shown in Fig. 2(b). The battery temperature is modeled by a lumped
capacitance model with two thermal masses, corresponding to a single
cell and the battery housing, similar to [10,11]. The thermal model
therefore assumes that all cells within the battery pack have the same
temperature and that the housing temperature is uniform. As Neubauer
et al. [9] showed that it is beneficial to provide full shading for the
SES, it is assumed that the SES is unaffected by solar irradiation,
wind, or precipitation. Furthermore, the heat exchange with the ground
is assumed to be negligible and it is assumed that there is no heat
exchange between the battery and the power electronic components of
the charging station. Heat flow entering the thermal masses is defined
as positive.

The temperature of the battery cells at the end of the time-step is
calculated using Eq. (28), where 𝑐cell denotes the cell’s heat capacity
and 𝑅𝑖𝑛 is the thermal resistance between the cell internals and the
housing.

𝑇c,k+1 = 𝑇c,k +
𝛥𝑡k
𝑐cell

(
𝑃loss,k +

𝑇h,k − 𝑇c,k
𝑅in

)
(28)
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The updated housing temperature is calculated using Eq. (29),
where 𝑐h denotes the housing heat capacity, 𝐶𝑂𝑃heat and 𝐶𝑂𝑃cool are
the coefficients of performance of the heating and cooling systems
respectively and 𝑅out is the thermal resistance between the battery
housing and the ambient air. The cooling and heating systems are as-
sumed to act directly on the housing, which approximates the behavior
of integrated cooling channels or a heating mat.

𝑇h,k+1 = 𝑇h,k +
𝛥𝑡k
𝑐h

(
𝑃heat,k 𝐶𝑂𝑃heat + 𝑃cool,k 𝐶𝑂𝑃cool+

𝑛cells (𝑇c,k − 𝑇h,k)
𝑅in

+
𝑇a,k − 𝑇h,k

𝑅out

) (29)

The housing heat capacity is estimated by assuming that the hous-
ing’s specific heat capacity matches the specific heat capacity of alu-
minum. The heat capacity can then be calculated using Eq. (30), where
𝑚cell is the cell mass, 𝑧cell2pack is the ratio between the mass on cell and
on pack level, and 𝑐p,alu is the specific heat capacity of aluminum.

𝑐h = 𝑛cells 𝑚cell (𝑧cell2pack − 1) 𝑐p,alu (30)

The thermal resistance between the battery housing and the ambient
air, 𝑅out, takes into account insulation, natural convection at the top
and sides of the battery, and radiation, according to Eq. (31), where
𝑅ins is the thermal resistance of any installed insulation material,
𝑅conv,top and 𝑅conv,sides are the thermal resistances of convection at
the top and sides of the housing, and 𝑅rad is the thermal resistance
of radiation.

𝑅out = 𝑅ins +

(
1

𝑅conv,top
+ 1

𝑅conv,sides
+ 1

𝑅rad

)−1

(31)

To determine the thermal resistances, first the surface areas of the
SES are calculated using Eqs. (32)–(36), where 𝑙, 𝑤, and ℎ are the
length, width, and height of the SES respectively, 𝑡ins is the thickness of
the insulation material, 𝑠fins is the spacing between cooling fins, 𝑙fins is
the cooling fin length, 𝐴top denotes the top surface area, 𝑃top is the top
surface perimeter, and 𝑛fins is the number of installed cooling fins. We
differentiate between the effective side surface areas for natural con-
vection, 𝐴side,conv, and for radiation, 𝐴side,rad, where the latter does not
include the surface area of cooling fins facing each other. The impact
of the cooling fin efficiency on the effective surface area for convection
is neglected, as the fin efficiency approaches unity for low heat transfer
coefficients such as those resulting from natural convection [16].

𝐴top = (𝑙 + 2 𝑡ins) (𝑤 + 2 𝑡ins) (32)

𝑃top = 2 𝑙 + 2 𝑤 + 8 𝑡ins (33)

𝑛fins = 𝑃top∕𝑠fins + 4 (34)

𝐴sides,conv = ℎ (𝑃top + 2 𝑙fins 𝑛fins) (35)

𝐴sides,rad = ℎ (𝑃top + 8 𝑙fins) (36)

Finally, the individual thermal resistances are calculated using
Eqs. (37)–(40), where 𝑘ins is the thermal conductivity of the insulation
material, 𝑁𝑢top and 𝑁𝑢sides are the Nusselt numbers for natural con-
vection on the top and side surfaces, 𝑘air is the thermal conductivity
of air, 𝜖 is the emittance, and 𝜎 the Stefan–Boltzmann constant. The
Nusselt numbers are calculated using empirical correlations for natural
convection over vertical [17] and horizontal [18] isothermal plates.

𝑅ins =
𝑡ins

𝑘ins(𝐴top + 𝐴sides,rad)
(37)

𝑅conv,top = 1
𝑁𝑢top 𝑘air 𝑃top

(38)

𝑅conv,sides =
ℎ

𝑁𝑢sides 𝑘air 𝐴sides,conv
(39)

𝑅rad = 1
𝜖𝜎(𝑇 2

s,k + 𝑇 2
a,k)(𝑇s,k + 𝑇a,k) (𝐴top + 𝐴sides,rad)

(40)

2.2.5. Aging model
The aging model calculates the decrease in capacity and the increase

in internal resistance due to battery aging using the semi-empirical
aging model developed by Naumann et al. [3,19]. The aging model
superimposes calendaric aging and cyclic aging, where calendaric aging
is a function of the cell temperature and SOC, and cyclic aging is a
function of the depth of discharge (DOD) and C-rate. To determine the
DOD of the charge–discharge cycles in the interval over which aging is
evaluated, the rainflow counting algorithm described by Downing et al.
is used [20]. Two minor adjustments to the aging model were made.

First, the aging tests performed by Naumann et al. at temperatures
below 25 °C showed ambiguous results and were therefore excluded
during the parametrization of the aging model, limiting its validity to
temperatures above this point. To model the full range of occurring
temperatures, it is assumed that the aging rate does not decrease
further for temperatures below 25 °C. This is implemented by using
the temperature-dependent aging factor at 25 °C for all temperatures
below this point. Cell aging at low temperatures due to lithium plating
is assumed to be fully prevented by reducing the charging current in
the power limit estimation in Eq. (14).

Second, Naumann et al. investigated the impact of the C-rate on bat-
tery aging for C-rates up to 1 C, finding a negative correlation between
the magnitude of the C-rate and the aging-induced increase in internal
resistance. However, using the linear curve fit they applied results in
a reduction of the internal resistance at large C-rates. Therefore, the
C-rate-dependent aging factor for the internal resistance increase at 1 C
is used for all larger C-rates. Note that this adjustment does not apply to
the capacity loss, that it results in a larger internal resistance increase
compared to the unaltered aging model, and that it only applies to
discharging, as the non-harming charging rate defined by Remmlinger
et al. is limited to 1 C.

2.3. Constraints

At the end of the battery simulation, it is evaluated whether the
operability constraint and the safety constraint are met. BTMS config-
urations that do not meet either of the constraints are not considered.

The operability constraint guarantees that the power drawn from
the grid never exceeds the peak shaving threshold, by ensuring that
the discharging power limit of the SES is sufficient throughout the
operating life of the SES, as given in Eq. (41).

𝑛cells 𝑃dch,k ≤ (𝑃th − max(𝑃dem)) ∀𝑘 ∈ [1..𝑡eol,bat∕𝛥𝑡k] (41)

The safety constraint guarantees that the maximum cell temperature
never exceeds the safety critical temperature limit, denoted by 𝑇limit, as
given in Eq. (42).

𝑇c,k < 𝑇limit ∀𝑘 ∈ [1..𝑡eol,bat∕𝛥𝑡k] (42)

3. Case study

In the following, first the design of experiment is described to give
an overview of the simulations that were conducted. Subsequently, the
details of the considered use case are presented.

3.1. Design of experiment

The case study investigates the cost of five BTMS: a baseline design,
a design with cooling fins, the baseline design with active cooling,
a design with cooling fins and active cooling, and a design with
insulation and active cooling. An uncooled design with insulation is not
considered, as it would result in cells exceeding the safety-critical tem-
perature limit. The absence of active cooling is modeled by setting the
cooling threshold to infinity. The costs of BTMS with active cooling are
calculated for cooling thresholds between 25 °C and 60 °C to determine
the cost-optimal threshold. Additionally, to ensure functionality at low
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Table 1
Investigated BTMS and the investment costs, operating life and maintenance costs of
their components.

BTMS BTMS Components 𝐶inv 𝑡eol,BTMS 𝐶maint

I – e0 – e0 year−1

II Cooling fins [22] e810 30 years e0 year−1

III Active cooling [21] e13,000 20 years e135 year−1

IV Active cooling [21] e13,000 20 years e135 year−1

Cooling fins [22] e810 30 years e0 year−1

V Active cooling [21] e13,000 20 years e135 year−1

Insulation [23] e10 30 years e0 year−1

Fig. 3. Thermal designs from left to right: baseline, baseline with cooling fins, and
insulated baseline design.

ambient temperatures, for each combination of cooling threshold and
thermal design, the heating threshold is increased iteratively from 10 °C
to 20 °C until the operability constraint is met. The BTMS including the
investment costs, operating life and annual maintenance costs of their
components are shown in Table 1. On top of the listed components,
a heater with an investment cost of e8000, operating life of 30 years
and maintenance cost of e810 year−1 is added if using the heater
was required to fulfill the operability constraint in the simulation,
i.e. 𝐸ene,heat > 0 [21].

A schematic representation of the baseline design, the design with
cooling fins, and the insulated design is shown in Fig. 3. For the baseline
design, the insulation thickness and fin length are both set to 0 m.
The design with cooling fins adds cooling fins with a length, 𝑙fins, of
0.1 m and spacing, 𝑠fins, of 0.05 m along the battery housing perimeter,
whereas the insulated design adds expanded polystyrene padding with
a thickness, 𝑡ins, of 0.02 m to the side and top surfaces of the battery
housing.

The cost effectiveness is investigated for the tropical climate of
Singapore and the continental climate of Munich, Germany. Both cli-
mates are modeled using hourly ambient temperature data, 𝑇a, that was
recorded for the year 2015 in each location [24] and is shown in Fig.
S1. In the simulation, the hourly temperature data is interpolated to
match the small simulation time-step and is repeated until the end of
life condition is reached.

3.2. Use case

The power demand, 𝑃dem, corresponds to the demand of a bus
charging station and was derived in previous work by using an agent-
based city-scale simulation to simulate the operation of all buses in
Singapore [25]. The power demand is shown in Fig. S2 and has a
maximum demand of 705 kW. The same power demand profile is used

Fig. 4. Power limits of the considered cell with SOC limits at 0.05 and 0.95.

for both climates. In the simulation, the power profile is repeated until
the end of life condition is reached.

The peak shaving threshold is set to 300 kW to reduce the maximum
power drawn from the grid, thereby reducing peak demand charges
and reducing the required power rating of the grid transformer. The
battery size is set to 98 kWh, which was iteratively determined to be
the smallest battery size that does not violate the operability constraint
of a well-heated and well-cooled battery in the Munich climate. The
resulting maximum discharging C-rate of the battery equals 4.13 C.

The calculations of the cell power limits and electric model are
parametrized with data corresponding to the Sony US26650FTC1
LiFePO4/graphite cell, which was also used to parametrize the imple-
mented aging model. A curve fit is used to determine the open circuit
voltage for different SOC values, whereas the charging and discharging
resistance for different SOC and temperatures are determined by linear
interpolation and extrapolation [26]. The resulting power limits for an
unaged cell, calculated with Eqs. (16)–(17), are shown in Fig. 4.

An overview of all constant parameters used to parametrize the
model is given in Table 2. The small simulation time-step was set to 10 s
to match the timestep of the used charging demand profile, whereas
the aging state is updated at the end of each day. The end of life
criterion was defined as 30 % capacity loss. The width, length, and
height of the SES are based on a similarly sized SES, which supports
fast charging buses [27]. The COP of the heating system matches an
ideal heating mat, the emittance corresponds to a painted surface,
and the thermal conductivity of the insulation material corresponds to
expanded polystyrene.

4. Results

In the following, first the battery operation is illustrated for a sin-
gle BTMS configuration. Subsequently, the required heating threshold
and optimal cooling threshold for all BTMS is presented. Finally, a
comparison between the total cost of all BTMS is made.

4.1. BTMS operation

The SES operation is illustrated at the example of a BTMS with
the baseline thermal design and a cooling threshold of 35 °C in the
Singapore climate, as shown in Fig. 5. BTMS operation in the climate
of Munich and operation over a longer period are shown in Fig. S3 and
S4. The first pane shows how the grid power is effectively reduced to
the selected peak shaving threshold by discharging the battery during
the high power demand phase that occurs after the buses return from
the Singapore morning rush hour around 9AM.

As a result, the battery is discharged to 48.8 % SOC, as shown in
the second pane. Lower SOCs are reached when the battery capacity
and efficiency reduce through aging or when the battery charge rate
is limited at lower cell temperatures. However, the minimum SOC is
never reached, as the reduced discharging power at low SOC requires
over-sizing the SES.
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Fig. 5. Single day of operation for a 98 kWh SES with the baseline thermal design and a cooling threshold of 35 °C limiting the power drawn from the grid by a bus charging
station to 300 kW in the Singapore climate.

Table 2
Constant parameters used in the case study.

Parameter Symbol Value

Discount factor 𝑖 0.05 [25]
Specific battery cost 𝑐bat e0.420 Wh−1 [28]
Specific energy cost 𝑐ene e0.1909 kW−1 h [29]
Simulation timestep 𝛥𝑡k 10 s
Aging timestep 𝛥𝑡j 86,400 s
EOL capacity loss 𝑄loss,EOL 0.3
Cell nominal capacity 𝑄nom 3.0 A h [3]
Cell nominal voltage 𝑈nom 3.2 V [3]
Cell min. voltage 𝑈min 2.0 V [3]
Cell max. voltage 𝑈max 3.6 V [3]
Cell min. SOC 𝑆𝑂𝐶min 0.05 [30]
Cell max. SOC 𝑆𝑂𝐶max 0.95 [30]
Cell max. discharge current 𝐼min,cont 20 A [3]
Cell max. charge current 𝐼max,cont 3 A [3]
Cell heat capacity 𝑐cell 76.27 J K−1 [31]
Cell thermal resistance 𝑅in 3.3 K W−1 [31]
Cooling power 𝑃cool 10 kW [32]
Heating power 𝑃heat 11.2 kW [32]
Cooling COP 𝐶𝑂𝑃cool −3 [32]
Heating COP 𝐶𝑂𝑃heat 1
Cell mass 𝑚cell 0.0845 kg [3]
Cell-to-pack mass ratio 𝑧cell2pack 1.8 [33]
Aluminum spec. heat capacity 𝑐p,alu 896 J kg−1 K−1[34]
SES height ℎ 2.2 m [27]
SES width 𝑤 0.8 m [27]
SES length 𝑙 0.8 m [27]
Insulation thermal conductivity 𝑘ins 0.035 W m−1 K−1 [34]
Air thermal conductivity 𝑘air 0.0264 W m−1 K−1 [34]
Emittance 𝜖 0.92 [34]
Stefan–Boltzmann constant 𝜎 5.67e−8 [34]
Safety critical temperature limit 𝑇limit 60 °C [3]

The resulting cell and housing temperatures are shown in the third
pane, together with the ambient temperature. During the high power
demand phase, the cell temperature and subsequently the housing
temperature increase. Once the cell temperature exceeds the cooling
threshold of 35 °C, the cooling system is activated, which directly
lowers the housing temperature. Due to the thermal inertia of the

battery cells and the thermal resistance between the cells and the
housing, the cell briefly exceeds the cooling threshold before the cells
cool down. After the morning peak in power demand, the battery is
recharged and used sporadically throughout the rest of the day, not
discharging below 90 % SOC. The short discharge events result in minor
temperature rises that require the cooling system to be briefly activated
again once around 2pm. Finally, during the night, the battery cools
down towards the ambient temperature.

4.2. Required heating thresholds

For each combination of cooling threshold and thermal design, the
required heating threshold was determined by iteratively increasing the
heating threshold from 10 °C to 20 °C until the operability constraint
was met. Increasing the heating threshold prevents the operability
constraint from being violated in two ways. First, a higher heating
threshold prevents the cells from reaching low temperatures at which
the internal resistance is higher and therefore the discharging power is
limited. Second, by preventing low temperatures, the cells are able to
recharge faster, which prevents them from reaching low SOC at which
the discharging power is limited as well.

For the Singapore climate, no heating is required, since the battery
never reaches temperatures at which the charging power is reduced.
The required heating thresholds for the Munich climate are shown in
Fig. 6. The required heating thresholds for the baseline design and
the design with cooling fins increase with the cooling threshold. At
higher cooling thresholds, the battery is operated at higher average
temperatures, which results in a larger increase of the internal resis-
tance at the end of life of the battery, as shown in Fig. S5, and therefore
reduces the maximum discharging power. The heating threshold is
slightly higher for the design with cooling fins as more heat is dissi-
pated to the ambient air due to the enhanced thermal connectivity.
The insulated design does not require any heating. Due to the safety
constraint, only insulated BTMS with cooling thresholds below 53 °C
are considered, since higher cooling thresholds would result in cell
temperatures exceeding the safety critical temperature.
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Fig. 6. Required heating thresholds to fulfill the operability constraint for a 98 kWh
SES limiting the power drawn from the grid by a bus charging station to 300 kW in the
Munich climate for different thermal designs and cooling thresholds. The annotations
refer to the passively cooled BTMS defined in Table 1 and are placed at the cooling
threshold at which no cooling energy is consumed.

4.3. Optimal cooling threshold

The individual cost components for the range of cooling threshold
are shown for all BTMS in Fig. 7 for the Munich and Singapore climates.
The impact of the cooling threshold on the BTMS investment and
maintenance costs is not shown, since these costs are independent
from the cooling threshold. The impact of the cooling threshold on
the battery life, internal resistance increase, minimum temperature,
average temperature and maximum temperature is shown in Fig. S5.

The top panes in Fig. 7 show the annual battery depreciation for
the Munich and Singapore climates. For both climates and for all
thermal designs, the annual battery depreciation increases with higher
cooling thresholds. SES with higher cooling thresholds are, on average,
operated at higher temperatures, which results in a shorter battery life
and therefore higher battery depreciation costs. For both climates, the
increase in battery costs at higher cooling thresholds is largest for the
insulated design and smallest for the design with cooling fins. This
is due to the higher passive dissipation of heat for the designs with
a better thermal connectivity to the ambient heat sink, resulting in a
lower average temperature and longer battery life. Since the ambient
temperatures in the Munich climate are, on average, lower than those
in Singapore, this effect is more pronounced for the Munich climate.
Finally, for both climates, the battery depreciation converges for all
thermal designs as the cooling threshold approaches 25 °C, since battery
aging was assumed not to decrease further for temperatures below
25 °C.

The second row of panes in Fig. 7 shows the average annual cooling
system energy consumption costs for the Munich and Singapore cli-
mates. In both climates and for all thermal designs, the cooling system
energy consumption costs decline with higher cooling thresholds. For
higher cooling thresholds, a larger amount of heat is dissipated to the
ambient air before the cooling system is activated, thereby reducing
the energy consumption. In the Munich climate and in the Singapore
climate for cooling thresholds above 28 °C, the cooling system energy
consumption is lower for the designs with a higher thermal connectivity
to the ambient air. For cooling thresholds below 28 °C in the Singapore
climate, the order is reversed and cooling system energy consumption
is lower for the thermal designs with a reduced thermal connectivity
to the ambient air. 28 °C is close to the average ambient temperature
in Singapore and therefore cooling thresholds below this point benefit
from insulation, as less heat is entering the SES from the surrounding
air.

The third row of panes in Fig. 7 shows the average annual heat-
ing system energy consumption costs for the Munich and Singapore
climates. For the insulated design in the Munich climate and for all
thermal designs in the Singapore climate, no heating is required and
therefore no heating energy consumption costs occur. In the Munich cli-
mate, the heating energy consumption costs of the design with cooling
fins are higher than those of the baseline design, since the design with
cooling fins dissipates more heat to the surroundings. Additionally,
the heating energy consumption is higher for the configurations that
require a higher heating threshold.

The fourth row of panes in Fig. 7 shows the average annual en-
ergy consumption costs due to parasitic losses for the Munich and
Singapore climates. Since the internal resistance decreases at higher
temperatures, the parasitic losses decrease for higher cooling threshold
in both climates. For the Munich climate, parasitic losses are largest
for the design with cooling fins, followed by the baseline design. The
thermal designs with an increased dissipation of heat to the ambient air
are, on average, operated at lower temperatures at which the internal
resistance of the cells is higher, thereby increasing parasitic losses. For
the Singapore climate, the impact of the thermal design on the parasitic
losses is negligible, as the cells are not operated at low temperatures
in this climate. A slight increase in the parasitic losses at high cooling
thresholds can be seen for the insulated design in both climates, which
is caused by the larger aging-induced increase in internal resistance, as
shown in Fig. S5.

The bottom row of panes in Fig. 7 shows the total annual costs
for the Munich and Singapore climates. The optimal cooling thresholds
of the actively cooled designs balance the trade-off between increased
battery depreciation costs and increased costs for cooling and parasitic
losses. Additionally, the optimal cooling threshold is influenced by the
discontinuous increase in the required heating threshold.

4.4. Comparison of BTMS costs

Finally, the total cost of all BTMS is shown in Fig. 8. The per-
centages in the figure refer to the relative change in total cost com-
pared to the baseline design without active cooling, following (𝐶tot,i −
𝐶tot,I)∕𝐶tot,I ∀𝑖 ∈ {II,III,IV,V}. Table 3 gives an overview of the key
parameters of each BTMS for both climates.

For the Munich climate, the baseline BTMS without active cooling
results in the lowest costs. Although the battery depreciation cost can
be reduced by the other BTMS, this does not compensate the higher
costs for the BTMS investment. The total costs are highest for the
designs with cooling fins, due to the high energy consumption of
the required heating system. The insulated design does not require a
heating system, avoiding the heating energy consumption and heating
system costs, but has higher energy consumption costs for cooling.

For the Singapore climate, installing cooling fins can reduce the sum
of the considered cost components by 8.7 %, due to the large reduction
in battery depreciation costs.

5. Discussion

The presented method investigates the cost effectiveness of different
BTMS configurations by simulating the battery operation until the EOL
criterion is reached. This enables modeling the impact of seasonal
variations in ambient temperature, aging-induced capacity loss, and
aging-induced internal resistance increase, on the battery temperature
and operability. However, simulating battery operation with a timestep
of 10 s over a period of multiple years for a large number of BTMS
configurations results in a large computational load. By implementing
the simulation in a compiled programming language such as Julia, the
computation time of the simulations was drastically reduced compared
to a simulation written in an interpreted language, thereby enabling
the comparison of a large number of BTMS configurations as presented
in this work.
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Fig. 7. Cost components for a 98 kWh SES limiting the power drawn from the grid by a bus charging station to 300 kW for the baseline design, the design with cooling fins, and
the insulated design in the climates of Munich, Germany, and Singapore. The annotations refer to the BTMS defined in Table 1, where the annotations of the passively cooled
systems are placed at the cooling threshold at which no cooling energy is consumed, and the annotations of the actively cooled systems are placed at the optimal cooling threshold.

The results show that the cost effectiveness of different BTMS de-

pends on the considered climate and use case and therefore needs to

be evaluated on a case-by-case basis. For the given use case, installing

active cooling was not cost-effective in both the climate of Munich and
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Fig. 8. Costs of the different BTMS for a 98 kWh SES limiting the power drawn from the grid by a bus charging station to 300 kW in the climates of Singapore and Munich,
Germany. The numbers refer to the BTMS defined in Table 1. The percentages in the figure correspond to the relative change in total cost compared to the baseline design without
active cooling, following (𝐶tot,i − 𝐶tot,I)∕𝐶tot,I ∀𝑖 ∈ {II,III,IV,V}.

Table 3
Parameters of the different BTMS for the a 98 kWh SES limiting the power drawn from the grid by a bus charging station to 300 kW in the climates of Munich, Germany, and
Singapore.

Parameter Unit Munich Singapore

I II III IV V I II III IV V

𝑇heat °C 13 14 12 13 – – – – – –
𝑇cool °C – – 32 27 26 – – 26 49 26
𝐶tot e year−1 7,143 8,096 8,271 9,249 7,585 7,218 6,588 7,805 7,766 7,740
𝐶inv e year−1 620 673 1,799 1,851 1,179 0 53 1,178 1,231 1,179
𝐶bat e year−1 5,113 4,912 4,982 4,876 4,906 6,238 5,548 4,968 5,548 4,954
𝐶BTMS e year−1 620 825 1,178 1,231 1,179 0 205 1,178 1,231 1,179
𝐶cool e year−1 0 0 76 103 305 0 0 460 0 411
𝐶heat e year−1 265 1,267 223 1,110 0 0 0 0 0 0
𝐶loss e year−1 1,145 1,244 1,192 1,308 1,196 979 988 1,199 988 1,196
𝑡eol years 10.6 11.1 10.9 11.2 11.1 8.2 9.5 11.0 9.5 11.0
𝑅inc,eol Ω 0.166 0.145 0.147 0.136 0.136 0.270 0.203 0.138 0.203 0.137
min(𝑇c) °C 13.0 13.8 12.0 12.9 14.8 24.7 23.9 23.3 23.9 23.2
mean(𝑇c) °C 22.5 18.6 20.9 17.3 23.9 35.7 31.2 25.5 31.2 25.4
max(𝑇c) °C 50.9 44.3 37.8 34.6 33.8 55.7 48.3 33.9 48.3 33.8

the climate of Singapore. However, ecological considerations, warranty
requirements, or being able to safely operate in worst-case scenarios
might justify installing an active cooling system.

The method can be used to evaluate the impact of further ther-
mal design parameters such as the installed heating power, installed
cooling power, or heating and cooling systems with different COP.
The performance of different cells can be evaluated by adjusting the
parametrization of the cell power limits calculation, the electric model,
and the aging model. Furthermore, the method can be extended to
evaluate other applications, such as electric trucks, by adjusting the
control algorithm, the thermal model and the operability constraint. On
top of that, for mobile applications the cost function should be adjusted
to reflect the impact of the thermal system weight and packaging
requirements on the overall system costs.

The method can be adapted to specific use case conditions. First, the
manufacturer might not benefit from increasing the battery life beyond
a set warranty condition, which can be included in the cost function.
Second, the presented implementation uses an operability constraint
that leads to the requirement of heating the battery for BTMS without
insulation in the Munich climate. Alternatively, if reduced performance
is acceptable to the operator, the operability could be included in the
cost function, where limited performance of the SES would result in
an increase of the peak demand charges during the months with low
ambient temperatures. The selected implementation should reflect the
requirements of the specific use case and operator.

Although the presented method supports decisions in the early-stage
design phase, additional factors should be taken into account during the
detailed design. First, a more detailed thermal model is required that
takes into account temperature differences within the battery pack, the

cell configuration, the coolant flow, heat emitted from power electronic
components, solar irradiation when shading is not possible, and the
impact of wind, rain, or snow. The BTMS needs to ensure a homo-
geneous temperature distribution within the battery pack, because the
operability and lifetime of a battery are determined by the cell with
the lowest power limits or highest degradation, respectively. Locally
increased temperatures can therefore reduce the lifetime of the SES,
whereas the coldest battery cell determines the SES power limits. An
active cooling system could reduce the thermal inhomogenities in the
system. Further research is required to quantify the resulting impact on
system costs.

Second, the results strongly depend on the aging behavior of the
cell and the modeling thereof. The aging model used in this study
parametrized the impact of the cell temperature on battery aging based
on measurements at three different temperatures, corresponding to
25 °C, 40 °C, and 60 °C. As a result, the validity of the aging model is
limited to this temperature range and the accuracy for small temper-
ature changes is unknown. Therefore, a carefully parametrized aging
model of the considered battery cell over a wide temperature range is
required for the detailed BTMS design.

Finally, although we took great care in using appropriate validated
data to parametrize all subcomponents of our model, the combined
model was not validated and the results can therefore not be interpreted
as proof of superiority of a certain BTMS for this use case. The results
rather illustrate the implementation of the method and the trade-
offs involved in designing a BTMS. By publishing the source code of
the simulation framework, we hope to enable others to compare the
cost-effectiveness of their fully validated BTMS models.
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6. Conclusion

To support battery designers in designing their battery thermal
management system, we presented a method to determine the cost
effectiveness of different BTMS in different climates. For each configu-
ration, we iteratively determined the heating threshold that is required
to maintain operability, whereas for each actively cooled configuration
the cost-optimal cooling threshold was found.

The results showed that the cost effectiveness of different BTMS de-
pends on the climate. For the considered use case in the Munich climate
the lowest total cost was achieved by the baseline design without active
cooling. In the Singapore climate, the design with cooling fins resulted
in the lowest total cost. The longer battery life achieved by installing
an active cooling system could not justify the additional investment
and energy consumption costs, but ecological considerations, warranty
requirements, or the ability to safely operate in worst-case scenarios
might justify installing an active cooling system nonetheless.

In future work, we plan to extend the presented method to evaluate
the cost effectiveness of additional BTMS, such as non-refrigerant-based
cooling systems, or phase change materials. Furthermore, we plan to
apply the method to other use cases such as electric trucks.
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Figure S1: Hourly ambient temperature profiles from Munich and Singapore for the year 20151
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Figure S2: Power demand from buses charging at the Kent Ridge bus terminal in Singapore. The charging power supplied to the
buses is derived from previous work where an agent-based city-scale simulation was used to simulate the operation of all buses in
Singapore2. The considered bus terminal serves one electrified bus route that operates all day, and two peak hour lines, which
corresponds to a scenario where 50 % of all bus lines in Singapore are electrified. The charging station consists of two chargers that
charge buses with a constant power of 450 kW, which is gradually reduced as the SOC of the buses exceeds 80 %. The day-to-day
differences are caused by the stochasticity of the traffic simulation that causes slight variations in the bus arrival times.

1T. Huld, R. Müller, A. Gambardella, A new solar radiation database for estimating pv performance in europe and africa, Solar
Energy 86 (6) (2012) 1803–1815. doi:10.1016/j.solener.2012.03.006

2F. Trocker, O. Teichert, M. Gallet, A. Ongel, M. Lienkamp, City-scale assessment of stationary energy storage supporting
end-station fast charging for different bus-fleet electrification levels, Journal of Energy Storage 32 (2020) 101794. doi:10.1016/j.

est.2020.101794
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Figure S3: Single day of operation for a 98 kWh SES with the passively cooled baseline thermal design and a heating threshold of
13 °C in the Munich climate. The top pane shows how the SES effectively reduces the power drawn from the grid to the peak shaving
threshold. Additionally, the power drawn from the grid to power the heating system during the night can be seen. The middle pane
shows the resulting SOC of the battery throughout the day. During the morning rush hour, the batteries are discharged the most
to support the charging station with charging incoming buses. During the rest of the day, the battery is discharged occasionally
to reduce smaller peak powers, but the SOC never drops below 90%. The lower pane shows the battery temperature, the housing
temperature and the ambient temperature. During the high demand phase in the morning, the cell temperature increases to
32.6 °C, closely followed by the housing temperature. Afterwards the cell temperature decreases, except from minor increases due
to battery operation, until the heating threshold is reached around 11pm and the cell temperature is maintained by the heating
system afterwards.
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Figure S4: Long term operation of a 98 kWh SES with the passively cooled baseline thermal design and a heating threshold of
13 °C in the Munich climate. The top pane shows that battery reaches lower SOC over the course of operation, since the battery
capacity declines due to aging. Additionaly, the battery is discharged slightly deeper in winter due to the higher internal resistance
and the reduced charging power. The second pane shows the cell temperature throughout the battery life, where seasonal changes
are clearly visible. In winter the minimum battery temperature is kept constant by activating the heating at the heating threshold.
The peak temperature reached in summer increases over the years as a result of the aging-induced internal resistance increase. The
lowest pane shows the maximum discharging power of a single cell, combined with the operability constraint. The gap between
the discharge power limit and the operability constraint reduces as the battery ages, due to the increased internal resistance and
the lower SOC reached. Adapting the heating strategy to the batteries aging state could reduce the heating energy consumption
during the early battery life.
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Figure S5: Battery characteristics for a 98 kWh SES limiting the power drawn from the grid by a bus charging station to 300 kW for
the baseline design, the design with cooling fins, and the insulated design in the climates of Munich, Germany, and Singapore. The
annotations refer to the BTMS defined in Table 1 of the paper, where the annotations of the passively cooled systems are placed
at the cooling threshold at which no cooling energy is consumed, and the annotations of the actively cooled systems are placed
at the optimal cooling threshold. The top panes show the battery life in years, which decreases at higher cooling thresholds for
all thermal designs and in both climates. At higher cooling thresholds, the battery is operated at higher temperatures on average,
resulting in a shorter battery lifetime. This effect is more pronounced for the thermal designs with a lower thermal conductivity
to the ambient air and for the hotter Singapore climate. The second row of panes shows the aging-induced internal resistance
increase at the EOL of the battery. Although the battery is replaced at the same capacity loss for all BTMS configurations, the
final internal resistance increase is higher for batteries that are operated at higher temperatures. The bottom three row of panes
shows the minimum, average and maximum temperatures of the batteries throughout their operating life, underlining the impact
of the thermal connectivity to the ambient air.
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3 Method & results

3.2.3 Changes to the published battery model

To model the selected cell in an automotive application, the electric model, thermal model and
control algorithm of the battery model are changed.

Electric model

The ECM used in the previous publication did not take the dependence of the cell’s internal
resistance on the pulse duration into account, because measurement data to parametrize this
behavior was not available. For the cell selected in Section 3.1, however, this data is available
and will be included to improve the model’s accuracy.

To model the transient response of the cell to a current pulse, I use an ECM with a single RC-
element, as was introduced in Fig. 2.2. The addition of the RC-elements changes the calculation
of battery current, ohmic losses, and power limits.

To account for the voltage drop over the RC element, an extra term is added to the calculation
of the cell current (Equation (3.5)), where j denotes the time step and Pcell is the power drawn
from or supplied to the cell. The voltage drop is also taken into account in calculating the ohmic
losses Ploss in Equation (3.6) and the voltage across the cell terminal in Equation (3.7), and is
updated for the next time step using Equation (3.8).

Icell =
−UOCV − U1,j +

Æ

(UOCV + U1,j)2 + 4 R0Pcell

2R0
(3.5)

Ploss = Icell

�

U1,j + IcellR0

�

(3.6)

Uk = UOCV +
�

U1,j + IcellR0

�

(3.7)

U1,j+1 = U1,j +
�

Icell

C1
− U1,j

R1 C1

�

∆t (3.8)

The addition of the RC-element also needs to be considered in the calculation of the power limits.
The voltage drop over the RC-element adds an extra term to the calculation of the current and
power limits in charging and discharging direction, as shown in Equation (3.9) - (3.12). Ich,cont

and Idch,cont denote the maximum continuous charging and discharging current, Umin and Umax

the voltage limits, SOCmin and SOCmax the SOC limits, R0,c and R0,d the series resistance for
charging and discharging, Q the cell’s capacity and ∆t the time step duration.

Ich,lim =min

�

Ich,cont,
Umax − UOCV − U1,j

R0,c
,
Q (SOCmax − SOCj)

∆t

�

(3.9)

Idch,lim =max

�

Idch,cont,
Umin − UOCV − U1,j

R0,d
,
Q (SOCmin − SOCj)

∆t

�

(3.10)

Pch = Ich,lim(UOCV + U1,j1+ R0,c Ich,lim) (3.11)

Pdch = Idch,lim(UOCV + U1,j + R0,d Idch,lim) (3.12)
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Figure 3.5: Lumped thermal capacitance model

Thermal model

The thermal model in the previous publication used two thermal masses to simulate the cell and
housing temperature. To allow validating the model, I add an additional thermal mass for the
temperature at the position of the temperature sensor.

The updated lumped thermal capacitance model is shown in Figure 3.5. Tc, Ts, and Th denote the
temperatures of the cell, sensor and housing respectively. Identical to the previous publication,
Ohmic losses act directly on the cell, whereas the applied heating and cooling power act on the
housing, approximating the behavior of integrated cooling and heating channels. Heat transfer
between the cell core, the temperature sensor, the housing, and ambient air, is modeled by the
thermal resistances Rcs, Rch, Rsh, and Rout. The cell, sensor and housing temperature at the
next time step are calculated using Equation (3.13) - (3.15), where ccell, cs and ch denote the
thermal capacity of the cells, sensors and housing respectively, and COPheat and COPcool are
the coefficients of performance of the heating and cooling system. Note that although not every
cell in the vehicle has a temperature sensor, the temperature at the top of the cell, where the
temperature sensor would be, is modeled for all cells to avoid the need to model cells with and
without temperature sensors individually.

Tc,j+1 = Tc,j +
∆t
cc

�

Ploss +
Ts,j − Tc,j

Rcs
+

Th,j − Tc,j

Rch

�

(3.13)

Ts,j+1 = Ts,j +
∆t
cs

�

Tc,j − Ts,j

Rcs
+

Th,j − Ts,j

Rhs

�

(3.14)

Th,j+1 = Th,j +
∆t
ch

�

Pheat COPheat + Pcool COPcool +
ncells (Tc,j − Th,j)

Rch

+
ncells (Ts,j − Th,j)

Rsh
+

Ta − Th,j

Rout

� (3.15)

Control algorithm

In the previous publication, the control algorithm prioritized discharging the battery over heating
and cooling, because a lack of discharging power might violate the peak-shaving threshold and
therefore incur additional costs. For an automotive application, derating the discharging power in
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extreme operating conditions is acceptable and discharging will therefore not be prioritized over
heating or cooling.

Additionally, where in the previous publication heating and cooling could be activated any
time, because stationary storage systems are typically active continuously, for the automotive
application heating and cooling are only activated when the vehicle is driving or charging.

3.2.4 Electric model parametrization

Parametrizing the electric model requires constant parameters, the OCV-curve and the depen-
dency of the series resistance and RC-element on the SOC and temperature. The constant
parameters needed to model the electric behavior of the cell are listed in Table 3.2. The
open-circuit voltage curve was parametrized using a pOCV-measurement [74] and is shown in
Figure 2.3.

Table 3.2: Constant parameters of ECM

Parameter Symbol Value Source

Nominal Capacity Qnom 78 Ah [74]
Upper voltage limit Umax 4.2 V [74]
Lower voltage limit Umin 2.5 V [74]
Minimum SOC SOCmin 4.1 % [74]
Maximum SOC SOCmax 97 % [74]
Maximum charging current Imax 125 A [74]
Maximum discharging current Imin 250 A [74]

The series resistance and the RC-element of the ECM are parametrized using HPPC measure-
ments at different SOC and temperatures. The dynamic response of the cell differs for different
SOC and temperatures. R0, R1 and C1 were fitted for 1/2C charge and 1/2C discharge pulses, at
0 °C, 20 °C and 40 °C, and between 10 % and 90 % SOC in increments of 10 %. These charging
and discharging rates were chosen, because they match those occurring during BET driving the
closest. A dependency on the charging rate was not included, as Wassiliadis et al. [74] show
that the impact of the charging rate on the cell’s internal resistance is small compared to the
impact of SOC or temperature. The coefficient of determination for all fits, the series resistance
R0, the asymptotic resistance Rtot and the RC times tRC are shown in Figure 3.6.

For all curve fits, a coefficient of determination above 93 % could be realized. The quality of the
fit is better at high temperatures than at low temperatures. The series resistance and asymptotic
resistance both increase as the temperature and SOC decrease. A dependency of the RC time
on the SOC or temperature cannot be seen.

For a tight link between the ECM properties and physical processes in the cell, the series
resistance should model the ohmic resistance, while the dependency of diffusion processes
on temperature and SOC should be modeled by the RC element. However, because I only use
a single RC element, the dependency of the initial diffusion processes is also included in the
parametrization of the series resistance. Using two RC elements would enable decoupling the
series resistance from transient processes and result in a curve fit quality above 99.3 % for all
SOC and temperatures, as shown in Appendix A. However, this would result in an RC time of less
than 0.01 s for one of the RC elements, which would require a small time step in the simulation.
Because I will simulate the battery operation over the entire lifetime to estimate the battery life in
Section 3.4, the large increase in computational load caused by using 2 RC-elements cannot be
justified by the improved curve fit quality.

65



3 Method & results

0

20

40

Te
m

pe
ra

tu
re

in
°C

Charge Discharge

93.06

94.06

95.05

96.04

97.03

98.02

99.01

100

R2
in

pe
rc

en
t

0

20

40

Te
m

pe
ra

tu
re

in
°C

1.25

1.54

1.83

2.11

2.4

2.69

2.97

3.26

R
0

in
m
Ω

0

20

40

Te
m

pe
ra

tu
re

in
°C

1.76

2.28

2.79

3.31

3.83

4.34

4.86

5.38

R
to

t
in

m
Ω

10 20 30 40 50 60 70 80 90
0

20

40

SOC in %

Te
m

pe
ra

tu
re

in
°C

10 20 30 40 50 60 70 80 90

SOC in %

15.47

17.15

18.83

20.51

22.19

23.88

25.56

27.24

t R
C

in
s

Figure 3.6: Quality and found parameters of the ECM parametrization

66



3 Method & results

3.2.5 Thermal model parametrization

The thermal model parameters are listed in Table 3.3. The cell’s thermal capacity is esti-
mated by multiplying the cell mass of 1.101 kg [74], with an assumed specific heat capacity of
1045 J kg−1 K−1. This specific heat capacity corresponds to the average of six measured specific
heat capacities of lithium-ion cells [114] with the same format and chemistry as the selected cell.

Table 3.3: Constant parameters of the thermal model

Parameter Symbol Value Comments & source

Thermal resistance between cell and sensor Rcs 0.578 K W−1 [115]
Thermal resistance between cell and housing Rch 0.899 K W−1 [115]
Thermal resistance between sensor and housing Rsh 2.151 K W−1 [115]
Cooling coefficient of performance COPcool −3 [81]
Heating coefficient of performance COPheat 4 [81]
Cell thermal capacity cc 1150 J K−1 Calculated
Housing thermal capacity ch 112 kJ K−1 Calculated
Thermal resistance between hosing and ambient Rout 10.9 W K−1 Based on curve fit

The thermal capacity of the housing is estimated based on the housing components mass of
125 kg, and the assumption that the specific heat capacity of all housing components matches
that of aluminum (896 J kg−1 K−1) [116].

To determine the heat transfer coefficient between the VW ID.3 and ambient air, I conducted an
experiment on vehicle level: First, the vehicle battery was heated up on the chassis dynamometer.
Once the battery temperature reached 32 °C, the vehicle was stopped and the cool down was
logged using the onboard temperature sensors of the battery modules. The ambient temperature
was recorded using a Lascar Electronics EL-USB-1 temperature logger. To log the battery
temperature, the low-voltage electronics of the car needed to be active. To avoid any resulting
current flow from the traction battery, the low-voltage battery was connected to an external power
supply.

The recorded ambient temperature, minimum and maximum battery temperature and the curve
fit are shown in Fig. 3.7. Over time, the battery temperature approaches the ambient temperature.
Because the ambient temperature was not constant, the curve fit uses a transient simulation
taking the variable ambient temperature signal as an input. The curve fit has a coefficient of
determination of 91.2 % for an effective heat transfer coefficient of 10.9 W K−1.

3.2.6 Electric & thermal model validation

To validate the electric & thermal models, I use measurements on vehicle level that were recorded
by Wassiliadis et al. [74] during driving and charging a Volkswagen ID.3 Pro Performance, which
uses the selected cell.

The driving and charging sequences are shown in Figure 3.8. The driving data was generated
on a chassis dynamometer for three different speed profiles, corresponding to typical operation
in an urban, interurban and highway driving scenario. The shown velocity profiles were repeated
until the vehicle could no longer follow the target velocity. All driving measurements were
conducted at two different ambient temperatures: approximately 15 °C and 30 °C. The recorded
charging sequences correspond to charging at a mode 3 Alternating Current (AC) Wallbox
charger and at a mode 4 Direct Current (DC) fast charger. The charging power during the
AC-charging event is relatively constant at 11 kW, while the charging power at the DC fast
charger is reduced by the vehicle at higher SOC to avoid damaging the battery. For both the
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Figure 3.7: Measurement of passive heat transfer between the battery and ambient air. The blue band
corresponds to the area between the minimum and maximum measured temperature.

0 5 10 15
0

50

100

150

Time in min

V
el

oc
ity

in
km
/h

Urban

0 5 10 15 20

Time in min

Interurban

0 5 10 15 20

Time in min

Highway

(a)

0 50 100 150 200 250 300
0

50

100

CP

Time in min

P
ow

er
in

kW

AC charging

0 5 10 15 20 25 30 35

CP

CC

Time in min

DC charging

(b)

Figure 3.8: Data used to validate the electric and thermal model: a) driving at different speed profiles b)
charging at different charging powers.

68



3 Method & results

driving and charging sequences, the battery voltage, current and temperature were recorded,
resulting in over 100 hours of validation data on vehicle level.

To validate the electric and thermal model I calculate the voltage and temperature error. The
voltage error is the difference between the average measured voltage and simulated terminal
voltage. The temperature error is the difference between the average measured temperature and
the simulated sensor temperature. Figure 3.9 summarizes the validation results for all driving
and charging profiles.

The voltage error of all driving profiles is concentrated around zero, while the maximum errors
increase with the average velocity of the driving profile. At higher velocities, the current drawn
from the battery increases, resulting in a larger error if the simulated resistance does not match
the measurement. For the charging profiles, a systematic offset can be seen. The errors in the
thermal model show a larger variation among the different driving and charging cycles, but no
systematic offset.
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Figure 3.9: Voltage and temperature distributions for all validation profiles.

To elucidate the cause of the model errors, I will discuss the validation cycles with the highest
errors in detail: the interurban cycle at 15 °C, the highway cycle at 15 °C, and both charging
cycles. A discussion of the remaining validation cycles is included in Appendix B.

69



3 Method & results

Figure 3.10 shows the results of the validation based on the interurban cycle at 15 °C. Using
the interurban driving cycle, the battery was depleted in 9.3 hours. The top pane shows the
measured and simulated voltage. The voltage decreases as the battery is discharged, due to the
SOC dependency of the OCV. The spikes in the measured voltage correspond to acceleration
and deceleration events in the driving cycle, that require higher currents and therefore cause an
increased voltage drop over the cell’s internal resistance.

The third pane shows the measured and simulated temperatures. The blue band is defined
by the minimum and maximum temperature in the entire pack. The simulated temperature
matches the measurement well in the first half of the driving cycle, but strongly overestimates
the temperature rise during the second half, even though the applied power profile remained the
same. This may be caused by entropy effects: Jalkanen et al. [117] showed that entropy effects
can lead to temperature reductions during discharging, especially at low SOC. Due to the lack of
entropy effects in the model, the temperature increase in the battery is overestimated and the
cooling system is activated in the simulation, even though it was not during the measurement.
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Figure 3.10: Interurban cycle at 15 °C ambient temperature
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Figure 3.11 shows the validation results for the highway driving profile at an ambient temperature
of 15 °C. The highway driving cycle has the highest energy consumption among all recorded driv-
ing cycles and depletes the battery within 3 hours. As a result of the higher energy consumption,
the currents in the battery are higher, resulting in a larger absolute voltage error.

The measurement shows that it takes 1.8 hours for the battery temperature to increase from
24 °C to 32 °C. The battery heats up at different rates, caused by differences in driving intensity
in the speed profile. The recurrence is caused by repetitions of the 20 minute long speed
profile. The simulated temperature matches the measured temperature well during the first hour,
but then starts to overestimate it. Because the battery reaches a different SOC here, it may
again be due to entropy effects that are not considered in the model. In the second half of the
measurement, the cooling system is activated and deactivated when the measured temperature
exceeds 32.5 °C, or drops below 30.5 °C. The simulation matches this behavior well, but due to a
phase shift an additional model error is incurred.
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Figure 3.11: Highway cycle at 15 °C ambient temperature
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Figure 3.12 shows the validation results for the Wallbox charging measurement. The voltage
increases over time, due to the SOC dependency of the OCV. At the end of the measurement,
some cells briefly exceed the voltage limit of 4.2 V. The simulated voltage underestimates the
measured voltage, except during the first minutes of the measurement. This is likely caused
by the fact that the electric model was parametrized using pulse tests of 30 s. This approach
captures voltage loss caused by charge transfer well, but does not account for the voltage
loss caused by diffusion, which happens on a longer timescale [50]. The internal resistance for
the charging event, which is a much longer pulse, is therefore underestimated. At the end of
the measurement, the model error increases, due to the upper SOC limit implemented in the
simulation.

The temperature measurement shows an increase in the battery temperature, that resulted in
the activation of the cooling system. The simulation underestimates this temperature increase,
which is likely due to the underestimation of the cell’s internal resistance at long pulse durations
that is also responsible for the voltage error.
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Figure 3.12: Wallbox charging cycle
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Finally, Figure 3.13 shows the validation results for fast charging. The vehicle is charged from
5.2 % SOC to 97 % SOC in just over one hour. Similar to the Wallbox charging event, the
simulation underestimates the voltage drop. The error is larger for fast charging due to the higher
charging current.

The temperature measurement shows that the battery reaches a maximum temperature of 45 °C,
despite activation of the cooling system. This may be caused by insufficient cooling power, or
may be part of the vehicle’s charging strategy. A vehicle’s charging strategy may target increased
battery temperatures to reduce the internal resistance of the cells, which could help avoid lithium
plating [74]. Among all validation cycles, the difference between the simulated temperature in
the cell and the housing, i.e. the temperature gradient across the cell, is the largest for the fast
charging event.
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Figure 3.13: Fast charging cycle

The major causes of error are the underestimation of the internal resistance for long pulse
durations and the missing impact of entropy coefficients. Further errors may be caused by
differences in the aging state of the cell that was used for parametrization and the vehicle battery
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that was used for validation, inhomogeneities between the battery cells, and heat generated by
other electric components in the pack.

Therefore, a simulation error can be expected. Nonetheless, the model accurately covers a wide
range of operating conditions with an average temperature error below 1 °C. The model will
be used to estimate the battery life, which is affected by the simulated SOC and temperature.
For this purpose, I consider the simulation errors to be reasonable, and will use the presented
electric and thermal model in the following chapters.

3.2.7 Aging model parametrization & validation

Parametrizing a semi-empirical aging model requires conducting extensive aging tests with
different combinations of aging stress factors, such as temperature, charging rate, DOD and
SOC. Unfortunately, results from such tests or the resources to conduct them were not available
for the selected cell. However, Schreiber [118] provided measurement data on the degradation
of the selected cell at three different aging conditions: 1C/1C charging and discharging cycles at
100 % DOD, a commuter trip power profile, and a long distance trip power profile. By using one
of these measurements to scale an existing fully-parametrized semi-empirical aging model for a
cell with a similar chemistry, an approximation of the cell aging behavior can be achieved.

The fully parametrized semi-empirical aging model that will be scaled was published by Schmal-
stieg et al. [79] and describes capacity loss and internal resistance increase of the 2.05 Ah
Sanyo UR18650E cell. The parametrized cell uses NMC for the positive electrode and graphite
for the negative electrode, which matches the material composition of the selected cell [119].
The model considers the impact of the OCV, temperature, DOD, and voltage around which the
battery is cycled. The impact of the charging rate was not included in the parametrization by
Schmalstieg et al.

To implement the model in my simulation, a linear scaling factor for both capacity loss and
internal resistance increase is implemented to match the degradation measurements of the
selected cell. Because the charging rates of the long distance trip power profile are closest to
those occurring during truck operations, these measurements are used to find the scaling factor.
For this purpose, I use the generalized reduced gradient solver provided by Microsoft Excel. The
two other measurements are used for validation.

The measured cell degradation and the results from the scaled aging model are shown in Fig-
ure 3.14. The capacity loss of the aging model is scaled by a factor 0.43 to match the measured
degradation of the selected cell for the long-distance profile, obtaining a coefficient of determi-
nation of 91 %. For the 1C/1C profile and the commuter profile, coefficients of determination of
99 % and 73 % are achieved. I thus consider the scaled aging model to capture capacity loss at
different operating conditions reasonably well.

The internal resistance increase is scaled by a factor 0.12 to match the measured internal
resistance increase for the long-distance profile, obtaining a coefficient of determination of 53 %.
The low quality of the curve fit is caused by irregularities in the measurements during the first 500
cycles, as shown in the inset of the graph. The measurement shows a steep initial increase of the
internal resistance, which may be caused by initial SEI growth [118]. Subsequently, the internal
resistance decreases, which is likely caused by irregularities in the test plan that resulted in
longer rest durations between checkups. The same irregularities also caused an increase in the
measured cell capacity. After the first 500 cycles, the internal resistance increases continuous
on a linear slope.
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Figure 3.14: Curve fit of scaled aging model for three different aging conditions [118]. The degradation
was not recorded during the first 300 cycles of the 1C/1C profile due to a faulty measurement
setup.

The scaled model underestimates the internal resistance increase seen in the 1C/1C and
commuter measurements, obtaining coefficients of determination of 44 % and −34 %. Note that
a negative coefficient of determination means that the curve fit is worse than a straight line
through the average value. The scaled model is therefore not well equipped to predict the internal
resistance increase of the selected cell for different aging conditions. Because the model will
be used to estimate when the battery has reached 80 % of it’s initial capacity, I consider this
error to be acceptable. Nonetheless, conclusions regarding maximum cell temperatures should
be treated with caution, because the heat generation within the cells directly depends on the
internal resistance.

3.3 Step 3: power profile generation

In addition to the validated battery model, a power profile corresponding to typical truck operation
is required to estimate the battery life for the selected cell. The power profile should represent the
typical power demand (driving) and supply (charging and regeneration) for BET. In the following,
I will present my method and conclude with the results.

3.3.1 Method

The method consists of three steps, as shown in Fig. 3.15. First, a vehicle mobility algorithm
generates a trip schedule by sampling the number of trips per day, departure time of the first trip,
distance & duration of each trip, and the stop durations, while taking EU driving time regulations
into account. Second, the energy consumption simulation samples the payload for each trip,
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selects a driving cycle based on the average trip speed and simulates the energy consumption.
Finally, the charger assignment algorithm samples the available charging power at the depot
and rest areas to generate a power profile that does not violate the SOC limits. The algorithm is
limited to single-driver operation, where the truck always returns to the depot within the daily
driving time limit of 10 hours. The maximum daily driving distance is thus 800 km, which covers
98 % of daily truck driving distances [33, 120].
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Figure 3.15: Schematic overview of the method that generates a power profile for BET.

The method is available open source within the emobpy framework developed by Gaete et al.
and can be accessed at the following repository: https://gitlab.com/diw-evu/emobpy/emobpy

Vehicle mobility

The vehicle mobility algorithm generates a mobility profile that fulfills EU driving time regulations,
based on distributions of the number of trips per day, stop duration, initial departure time and the
distance & duration of each trip. All input data was derived from recorded measurements of a
truck fleet published by Balke et al. [121]. The investigated truck fleet consisted of 18 vehicles
that traveled 91 950 km year−1 on average. The generated power profile is therefore specific to
the operating pattern of this operator and might differ largely for different truck operators.

The distribution of the number of trips per day is shown in Figure 3.16. I differentiate between
the number of trips on weekdays and the weekend. To ensure that the truck is returned to the
depot, the probability of a single trip per day was removed during post processing. The trucks in
the dataset complete up to 11 trips per day and are most likely to make 3 trips on weekdays. On
weekends the trucks are most likely to make no trips at all.

The distribution of the first departure time of the day is shown in Figure 3.17, where the recorded
departure times have been discretized in one-hour time steps. The trucks are most likely to
76
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Figure 3.16: Distribution of number of trips per day

depart on their first trip at 6 a.m. or 7 a.m. The lowest probability of departing on a trip is at
8 p.m..
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Figure 3.17: Distribution of first departure time

The distance-duration distribution is shown in Figure 3.18. The trip distance and duration are
linked by the average trip velocity, resulting in the diagonal distribution. The most frequent trip
was short in terms of both distance and duration. Furthermore, a decline in probability can be
seen for combinations of distance and duration that deviate from the typical average velocity.

The final input for the mobility algorithm, the distribution of stop durations, is shown in Figure 3.19,
where the mandatory break duration after 4.5 h is indicated by a dashed line. Shorter stops
are more frequent than long stops. A small increase in probability can be seen around a stop
duration of 9 h, which corresponds to the minimum daily rest duration.

A pseudocode representation of the algorithm is shown in Algorithm 3.1. For each day in the
desired mobility profile length, the algorithm first samples the number of trips on that day,
differentiating between weekdays and the weekend. If the number of trips is larger than zero,
the departure time of the first trip is sampled. Subsequently, the distance & duration of each
trip is sampled, while checking that the maximum driving duration does not exceed the daily
driving time limit of 10 hours [104]. Similarly, the stop durations between the trips are sampled
until a sequence is found that does not violate the EU regulation requiring drivers to take a 45
minute break after 4.5 hours of driving. The 45 minute break may be replaced by a break of at
least 15 minutes followed by a break of at least 30 minutes. The trips and stops of each day are
concatenated to generate a mobility profile.
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Figure 3.18: Distribution of trip distance and duration
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Figure 3.19: Distribution of stop duration

Data: profile length, trips per day distribution, departure time distribution,
distance-duration distribution, rest-time distribution, EU regulations

Result: mobility profile
for Days in profile length do

Sample number of trips;
if Number of trips > 0 then

Sample departure time of first trip;
while EU regulations on max. driving time per day not met do

Sample distance-duration of trips
end
while EU regulations on max. rest time per day not met do

Sample rest times between trips
end

end
Add trips and stops to mobility profile;

end

Algorithm 3.1: Pseudocode of vehicle mobility algorithm.
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Energy consumption

The energy consumption simulation uses the generated mobility profile, combined with standard-
ized driving cycles and a payload distribution, to simulate the truck energy consumption.

Depending on the average speed of the trip, I differentiate between the three VECTO driving
cycles shown in Figure 3.20: long haul, regional delivery, and urban delivery. The VECTO driving
cycles have been developed by the European Union to determine a truck’s energy consumption
and the resulting carbon dioxide emissions [103]. The driving cycles define a target speed,
gradient and stop duration over a distance of 100 km. The long-haul profile has the highest
average speed and the fewest stops. The regional-delivery profile has more frequent stops and
does not reach the truck’s top speed at the start and end of the cycle. The urban-delivery profile
has the lowest average speed, with frequent, sometimes long, stops and only few sections where
the maximum vehicle speed is reached. Additionally, the urban-delivery profile encounters the
steepest road gradient.

The vehicle mass distribution corresponds to axle-load measurements for semi-trailer trucks
with three-axle trailers from 41 measuring stations in Germany in January 2022 [122]. The
resulting distribution is shown in Figure 3.21. Most trucks are fully loaded and operating with
the maximum vehicle mass in Germany of 40 t [123, p. 30]. Trucks that were operated with a
higher vehicle mass are removed during post processing, since they were either overweight
or engaging in intermodal transport, i.e. transporting one or more containers on the initial or
final leg of a journey while the remaining journey is covered by rail, maritime services or inland
waterways. An increased probability occurs at a vehicle mass of 15 t, which roughly corresponds
to the mass of an empty semi-trailer truck. Lower masses correspond to a tractor without a trailer
or measurement errors. Vehicle masses below the 7.8 t average mass of a diesel tractor [102]
were removed during post processing, because I assume they are measurement errors.

A pseudocode representation of the energy consumption simulation is shown in algorithm 3.2.
The energy consumption simulation first calculates the share of payloads that cannot be trans-
ported due to the reduced payload capability caused by the mass of the battery. The distribution
of DT payloads is calculated by subtracting the average diesel tractor mass from the curve in
Figure 3.21. The selected cell can transport 70 kg less than a DT that adheres to the Gross
Vehicle Weight (GVW) limit. I consider this payload loss to be negligible and therefore do not no
adjust the payload distribution here.

Subsequently, for each trip in the mobility profile, the energy consumption is simulated. First, a
payload from the payload distribution is sampled. Then, a driving cycle is selected and modified
to match the trip distance and duration in the mobility profile. To obtain the trip distance, the
selected driving cycle is simply repeated and then cropped at the end. Matching the trip duration,
however, is less straightforward.

The trip duration and distance determine the average speed. The average speed that a vehicle
can achieve for a given driving cycle depends on the payload and on the distance at which the
driving cycle was cropped. For the standard driving cycle length of 100 km and a vehicle at full
payload, i.e. 42 t vehicle mass, the long-haul, regional and urban driving cycles have an average
speed of 79.4 kmh−1, 60.8 kmh−1, and 25.9 kmh−1 respectively.

To match the trip duration defined in the mobility profile, I first select the most suited driving
cycle: for trips with an average speed above 70 kmh−1 I use the long-haul driving cycle, between
40 kmh−1 and 70 kmh−1 the regional-driving cycle, and below 40 kmh−1 the urban-driving cycle.
These thresholds were chosen to obtain a rounded equidistant split between the average speed
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Figure 3.20: VECTO driving cycles [103]
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Figure 3.21: Vehicle mass distribution. Values below 7.8 t are assumed to be measurement errors and
are not included. Vehicle masses above 40 t are outside of the legal operating limits or
non-intermodal transport and are therefore not included.

of the driving cycles at full length and payload. To match the exact trip duration, I scale the
selected speed profile with a constant factor, that I find using bisection.

Finally, the energy consumption is simulated for the cropped and scaled driving cycle using
the longitudinal vehicle simulation from my previous publication included in Section 3.1. The
energy consumption profile of each trip is added to the mobility profile to generate the mobility
consumption profile.

Data: mobility profile, payload distribution, driving cycles, battery mass
Result: mobility & consumption profile
Calculate share of payloads that cannot be transported without violating the GVW;
Drop unfeasible payloads from payload distribution;
for Trips in mobility profile do

Sample payload;
if Average trip speed > 70 kmh−1 then

Use VECTO long-haul driving cycle
end
else if Averate trip speed > 40 kmh−1 then

Use VECTO regional driving cycle
end
else

Use VECTO urban driving cycle
end
Crop driving cycle to trip distance;
Scale the speed profile to match the trip duration;
Simulate energy consumption ;
Add trip energy consumption profile to mobility & consumption profile ;

end

Algorithm 3.2: Pseudocode of energy consumption simulation.
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Charger assignment

In the last step, the charger assignment algorithm assigns chargers to the vehicle at rest stops.
As an input, the algorithm uses a probability distribution of the availability of charging powers,
where a charging power of 0 kW corresponds to a stop with no charger available. Since the
Megawatt Charging System (MCS) standard is not available yet, an artificial scenario is created,
where I assume that the trucks always have access to 100 kW chargers at the depot, and that
the probability distribution of charging powers at the rest stops is as follows: 50 % chance that
no charger is available, 30 % chance that a truck can be charged with 350 kW, which is the
maximum available charging power under the Combined Charging System (CCS) standard
[124], and a 20 % chance that the truck can be charged with 1 MW, which will be possible under
the new MCS standard.

100 kW

Depot

0 kW

350 kW 1 MW

Stop

Figure 3.22: Charger availability

A pseudocode representation of the charger assignment is shown in algorithm 3.3. The algorithm
first splits the mobility & consumption profile into tours, where one tour includes all trips and
stops between starting and leaving the depot. For each tour, chargers are assigned until a
solution is found that does not violate the SOC limit, taking the EOL condition of the battery into
account. The feasibility check of the SOC limit does not use the detailed model presented in
Section 3.2, but uses a simple energy balance based on the battery size that was determined
for the selected cell by the sizing algorithm in Section 3.1. A charging strategy is implemented,
where the truck is only charged at stops if the SOC drops below 80 %. The resulting charging
powers are combined with the simulated energy consumption during driving to create the power
profile.

3.3.2 Results

The first week of the generated power profile and resulting SOC are shown in Figure 3.23a. The
vehicle is not moved on the first day. On the second day, the vehicle embarks on a tour with six
trips with a long rest duration between the last three trips. The minimum and maximum power
during driving correspond to the maximum truck motor power of 352 kW. Because the vehicle
SOC during the stops is higher than the charging threshold, the battery is not recharged. When
the vehicle returns to the depot it has access to a 100 kW charger, although it does not need the
full time at the depot to recharge. On the eve of the third day, the vehicle embarks on a longer
trip, discharging the battery to 62 % SOC. During the subsequent stop, the vehicle has access to
a 350 kW charger to recharge the battery, but does not need the full stop duration to recharge.
The rest of the week, the vehicle completes multiple trips, charging at both the depot and during
the stops.

Figure 3.23b shows the power profile for the full length of one year. In the weeks following the
first week, charging events of up to 1 MW can be seen. The SOC also reaches lower levels than
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Data: mobility & consumption profile, charger availability distribution, charging treshold
Result: power profile
for Tours in mobility & consumption profile do

while SOC limit breached do
for Stops in tour do

if SOC < charging threshold or stop at depot then
Sample charger power

end
else

Charger power = 0
end
Calculate SOC after stop;

end
Add charging power to mobility & consumption profile

end
end
Generate power profile from charging power and power consumption during driving;

Algorithm 3.3: Pseudocode of charger assignment algorithm.

during the first week, getting close to the buffer reserved for battery aging, although this only
happens a few times per month.

The driven distance of the generated power profile is 101 788 km annually. Note that I generated
multiple power profiles and selected the profile with the highest annual mileage, to approach
the annual driving distance used for homologation in the EU. The furthest trip without a stop is
362.5 km with a duration of 4.5 hours. The truck spends 18 % of the year driving, 20 % stopped
away from the depot, and the remaining time in the depot. This matches the data recorded by
Balke et al. [121] well, where vehicles were driving 17 % of the investigated period. The truck is
charged away from the depot 248 times a year. The available charging power is 0 kW at 71 %
of the stops, 350 kW at 15 % of the stops, and 1 MW at 14 % of the stops. The share of stops
without a charger is higher than the charger availability distribution, due to the applied charging
strategy that only charges the truck when the SOC drops below 80 %. The split between 350 kW
and 1 MW chargers has shifted towards 1 MW chargers, because these are the only feasible
option in some cases, but the shift is relatively small.

The presented method enables generating an annual power profile based on probability dis-
tributions of truck mobility data and charger availability. Due to the stochastic nature of the
method, every power profile will be different and variations in operating behavior can be investi-
gated. Additionally, the tool may be used to investigate the impact of different charging station
availability.

Although the tool uses real-world mobility data, the following limitations should be taken into
account. Due to the limited data availability, the mobility data and payload data were not
determined for the same vehicles. Additionally, the available data could only take the covariance
between the trip distance and duration into account, and not between the other parameters. For
example, there might be a correlation between payload and trip distance, which could not be
considered here. Finally, the trial and error approach for assigning trip durations and chargers
may result in an overrepresentation of short trips and high power chargers.
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Figure 3.23: Power profile and resulting SOC of the truck battery (a) for the first week, and (b) for the
full power profile length of one year.

84



3 Method & results

3.4 Step 4: battery lifetime simulation

Based on the validated battery model of the selected cell and the generated power profile that
reflects typical truck operating conditions, the lifetime of the truck battery can be simulated.

The battery model that was parametrized in Section 3.2 is scaled to the BET battery size of
616 kWh determined in Section 3.1. The number of cells is scaled linearly to obtain the required
battery capacity. Similarly, the mass of the pack components and the installed cooling power are
scaled linearly. The effective heat transfer coefficient to ambient air is assumed to scale with the
surface area, i.e. with an exponent of 2/3. The cooling and heating thresholds were assumed to
be the same as for the passenger car.

The battery operation is simulated over the entire battery lifetime with a time step of 10 s,
where the annual power profile and ambient temperature are repeated until the EOL criterion
of 20 % capacity loss is reached. The ambient temperature data corresponds to temperature
measurements in Munich, Germany in 2017 [125], which was the most up-to-date dataset at the
time of writing.

The resulting capacity loss, internal resistance increase, SOC and temperature are shown in
Figure 3.24. The EOL criterion is reached after 9.5 years of operation. The majority of the
capacity loss is caused by cyclic aging. The internal resistance at EOL has increased by 17 %,
where cyclic aging was the dominating aging mechanism as well. As a result of the capacity
decrease and internal resistance increase, the battery reaches lower SOC at the EOL compared
to the beginning of life. Similarly, the highest battery temperature of 55 °C is reached near the
EOL, which is still within the safe operating range of the cell.

The battery temperature over the course of the first year of operation is shown in Figure 3.25.
The battery temperature is strongly affected by seasonal temperature changes, because of
the long duration the vehicle is parked. As a result, high temperatures that lead to accelerated
aging are more frequent in summer. High battery temperatures coincide with high temperature
gradients, given by the difference between the cell and the housing temperature. Due to the
implemented heating strategy, the battery temperature rarely drops below 15 °C.

A close up of the battery temperature on the day that the hottest temperature was reached within
the first year is shown in Figure 3.26. The top pane shows the power profile and the battery
power. The battery closely follows the power profile, but stops charging when the maximum SOC
is reached. The power profile shows three trips, with no option to charge between the first two
trips and the option to charge with a 1 MW charger between the last two trips. After the last trip
the battery is recharged with 100 kW in the depot.

During the first two driving events, the battery is discharged down to 29 % SOC. The fast charging
event recharges the battery to 83 % SOC. Subsequently, the battery is discharged during the
last short trip and then recharged fully at the depot.

The battery temperature increases during driving, followed by a sharp increase in the battery
temperature during the charging event. The highest battery temperature of 49.5 °C is reached at
the end of the charging event. During the short trip after the charging event and the charging
event in the depot, the battery temperature decreases and converges towards the ambient
temperature.

The simulated battery life of 9.5 years is 61 % higher than the battery life that was estimated
based on the assumed calendar life and the cycle life that was specified in the cell’s datasheet.
This is caused by the lower stress factors that occur in real-life operation compared to the aging
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Figure 3.24: Battery capacity loss, resistance increase, SOC and cell temperature for the full battery life.
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Figure 3.25: Battery temperature during the first year of operation.
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Figure 3.26: Close up of battery temperature on the day where the hottest temperature was reached in
the first year, where the origin is placed at the time step in which the hottest cell temperature
was reached.

conditions at which the cell’s cycle life was specified in the datasheet: 1C/1C at 100 % DOD.
This emphasizes the need to perform a detailed simulation of the battery life, which requires
a detailed cell characterization. Based on the lifetime obtained by the detailed simulation, a
BET using the selected cell would reach cost-parity with a DT if the cell can be purchased at
223€kWh−1.

3.5 Step 5: battery thermal management system de-
sign

In the last step of the battery design method, the impact of the BTMS on the battery life and
battery safety is investigated. I published this analysis for a different cell as a first author in a
previous study [126].

To model the impact of the BTMS design on the battery life, I use the simulation that was
presented in Section 3.4. To investigate the impact of the installed cooling power and cooling
threshold, I conduct full factorial simulations for both parameters. The results are shown in
Figure 3.27, where the BTMS configuration corresponding to the results in Section 3.4 is
highlighted by the VW-marker.

The top-left pane shows the impact of the installed cooling power and the cooling threshold on
the maximum cell temperature. The highest cell temperature of 65 °C is reached at a cooling
power of 0 kW, corresponding to a battery without an active cooling system. This temperature
exceeds the typical safe operating window of lithium-ion cells [98], suggesting that an active
cooling system is necessary to allow charging the battery with 1 MW during the entire operating
life. The lowest maximum temperature of 41.3 °C is achieved by high installed cooling powers
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Figure 3.27: Impact of the installed cooling power and selected cooling threshold on the truck’s battery
life. The scaled configuration of the VW ID.3 cooling system is denoted by

and a low cooling threshold. The irregularities in the top-left pane are caused by simulating the
battery until the EOL is reached. This causes some simulations end on a day with a fast-charging
event in summer, whereas others end before, resulting in variations of the maximum temperature.

The top-right pane shows the impact on the average temperature. A similar trend as for the
maximum temperature can be seen, but the impact of the installed cooling power is relatively
smaller than the impact of the cooling threshold.

The lower-left pane shows the impact on the temperature gradient within the cell. Although tem-
perature gradients are not considered in the implemented aging model, Offer et al. [127] showed
that they cause accelerated aging behavior. The temperature gradients in the cell increase with
an increase in installed cooling power. Additionally, a slight increase in the temperature gradient
can be seen at lower cooling thresholds.

Finally, the impact on the battery life is shown in the bottom-right pane. The impact of the
installed cooling power and cooling threshold on the battery life closely matches the impact on
the average cell temperature: the battery life can be extended from 9.5 years, achieved by the
scaled VW ID.3 BTMS configuration, to 11.5 years, achievable with an installed cooling power of
18 kW and a cooling threshold of 25 °C. However, the impact of the installed cooling power on
the battery life is small. A reduction of the installed cooling power by a factor of five leads to a
reduction of the battery life of only 4.4 %. The cooling threshold, however, has a larger impact,
where a reduction in cooling threshold to 25 °C results in a lifetime increase of 15 %.

Whether the reduced battery life resulting from a decrease in the installed cooling power is
justified is highly dependent on the cost, volume reduction and impact on noise pollution.
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Similarly, whether the increased battery life achieved by a lower cooling threshold is justified
strongly depends on the additional energy consumption and resulting range reduction. Because
I do not have sufficient data to quantify these impacts, the result does not provide an optimal
solution, but rather a sensitivity analysis of these BTMS parameters that highlight the impact of
the BTMS design.

The following limitations should be taken into account. First, the impact of battery temperature in
the aging model was solely parametrized based on calendar aging tests. Therefore, the model
only applies accelerated aging during the duration that the battery has a high temperature.
Because high battery temperatures only occur during a small fraction of the vehicle life, the
impact is relatively small. However, other aging stress factors might not be captured by the aging
model that cause accelerated aging during short periods of high temperatures.

Second, in some cases high battery temperatures are beneficial in terms of efficiency and power
capability. In particular during charging, higher battery temperatures are desirable to avoid lithium
plating. This aspect is not considered by the implemented aging model and should be included
in future work on BTMS design.

Finally, in addition to typical operating conditions, worst case operation in strenuous terrain or
ambient conditions must be taken into account during the BTMS design.
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4 Discussion & Conclusion

The top-level battery-design resulting from the five-step method is summarized below.

• The battery uses the LG Chem ID.3 cell and requires a 616 kWh battery to mimic
DT operation at the maximum vehicle weight over the entire operating life.

• BET using this cell would become cost-competitive if the cell can be bought for
less than €225 kWh−1. Note that the cost-parity price found in Section 3.1 was
updated based on the simulated lifetime in Section 3.4. The current average cell
price for automotive applications is €142 kWh−1 [22], meaning that cost-parity with
DT can be achieved today.

• The battery would require a volume of 2168 L onboard the vehicle, which is 33 %
less than the volume of the current DT powertrain.

• The BET with this battery could transport a payload of 24.7 t, which is only 70 kg,
or 0.3 % lower than state-of-the-art DT.

• Using a scaled-up version of the VW ID.3 cooling system, would result in a battery
life of 9.5 years (967 thousands kilometers) under typical truck operating conditions
and avoid safety critical cell temperatures throughout the entire operating life.

• Increasing the installed cooling power and lowering the cooling threshold could
extend the battery life to 11.5 years, corresponding to 1.2 million kilometers.

The results show, that BET are not only our best bet for reaching the goals of the Green Deal,
but also feasible and cost-competitive. Using a status-quo lithium-ion cell, BET can mimic DT
operation in a cost-competitive manner, with negligible payload losses and no volume constraints
onboard the vehicle, provided that 1 MW charging is available during the mandatory driver rest
period. The found battery size and resulting vehicle range and mass match announcements
from truck manufacturers well (Table 2.1). The remaining results can not be verified, due to the
lack of commercially available BET and their properties.

The presented method supports vehicle designers with the top-level battery design of a BET.
In addition to the overall novelty of the design method, novel contributions are achieved by the
individual method steps.

The cell selection method extends traditional cell selection methods, such as the Ragone plot,
by quantifying the impact of individual cell characteristics on the system cost. The challenging
requirements for BET batteries make it difficult to find one cell that meet all aspects. Trade-offs
must therefore be managed effectively. Figure 3.3 serves truck manufacturers as a tool to com-
pare the cost-effectiveness of different cells with properties that do not directly influence system
costs, such as the achievable payload or required volume onboard the vehicle. Additionally,
the parameter sensitivity analysis allows cell manufacturers to quantify the impact of improving
individual cell properties in different scenarios.
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The battery model was parametrized for a status-quo automotive-grade lithium-ion cell and vali-
dated based on over 100 hours of measurements on vehicle level. To the best of my knowledge,
a validation on this scale for a commercially-available vehicle has not been presented in litera-
ture before. Additionally, the implementation of the battery model in a compiled programming
language allows taking seasonal temperature and load variations into account within reason-
able computation times. As a result, the simulation is well equipped to do detailed parameter
sensitivity studies.

Finally, the power profile generation method combines truck mobility data and a longitudinal
vehicle simulation to generate detailed power profiles that cover driving, charging and idling
phases of a vehicle. In contrast to previous BET load profile generation methods, the power
profiles can be used to simulate battery operation in a wide variety of scenarios.

Although previous studies presented battery design methods, none covered the entire process
from cell selection to BTMS design in this level of detail. The method can be easily adapted to
design batteries for other applications. I developed the cell selection method for the BetterBat
project, where it will be extended to cover further applications. If a different cell is selected, a
new parametrization of the battery model needs to be conducted. The battery model remains
unchanged, except for the thermal model, which is application specific. The presented load
profile generation is specific to BET. For some other applications load profiles are available in
literature, e.g. for home storage [128] or peak shaving [129], others may require new methods
and measurements. Finally, the last two steps of the method that assess the battery life, safety
and impact of the cooling system can be used unchanged.

That said, the following limitations need to be taken into account. First and foremost, the designed
battery will only be able to mimic DT operation if 1 MW charging is available during the rest
duration. Although Charin, a global association with over 300 members, is actively developing a
standard to make this possible, 1 MW charging infrastructure does not exist yet. Future research
is required to support the cost-effective implementation of high power charging infrastructure.

Second, the presented battery model uses the simplest possible models that reproduce the
observable behavior. Nonetheless, the analysis of the model errors identified opportunities
for future research for each sub-model. The electric model underestimates the cell’s internal
resistance for long pulse durations, typically occurring during charging, because the diffusion
behavior of the internal resistance could not be captured in the 30 s HPPC pulses. The thermal
model does not consider entropy effects, which may explain deviations from the measurements.
And finally, the aging model could not describe the resistance increase well under different oper-
ating conditions. Additionally, the model was only parametrized for three different temperatures
and did not take the impact of temperature gradients on battery aging into account.

Third, the considered load profile only covers the average operation of a German truck operator.
BET should be designed to cover a wide range of use cases, including worst-case operation.
Additionally, designing batteries for different use case, e.g. weight and volume-constrained,
could prove to be economical.

By making all measurement data and code available open-source, I hope to enable other
researchers to improve upon the current limitations of the method and investigate new scenarios.
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A Fitting results using an ECM with 2
RC-elements

In the following, I will demonstrate the impact of including a second RC-element in the ECM of
the selected cell. The ECM with two RC-elements is shown in Figure A.1.

Uocv

R0

R1 R2

Icell

Uk
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U1

C2
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Figure A.1: ECM with two RC-elements.

Using the same pulse fitting approach as described in Figure 2.2.2 results in the parametrization
shown in Figure A.2. For all SOC and temperatures, in both charging and discharging direc-
tion, a coefficient of determination above 99.3 % is achieved. For the series resistance R0, no
dependency on the SOC or temperature can be seen. The resistance of the first and second
RC-element, however, decreases with an increase in cell temperature. The time constants of
both RC-elements do not reveal a dependency on SOC or temperature, but differ from each
other by three orders of magnitude: The time constant of the first RC-element is between 7 ms
and 30 ms, while the time constant of the second RC-element is between 16 s and 30 s. They
therefore model different processes in the cell: capacitive behavior and diffusion. To accurately
model an ECM with two RC-elements would require a simulation time step smaller than the 7 ms,
which is not feasible when simulating battery operation over the entire battery life.
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Figure A.2: Quality and found parameters of the ECM parametrization
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B Additional validation results

In Subsection 3.2.6 the validation of the electric and thermal models was presented and the
validation profiles with the highest errors were discussed in detail. Here, the detailed validation of
the remaining profiles is shown. Figure B.1 shows the measured and simulated cell voltages and
temperatures for urban driving at an ambient temperature of approximately 15 °C. Additionally,
the voltage and temperature errors are shown.
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Figure B.1: Urban cycle at 15 °C ambient temperature
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B Additional validation results

The measurement was spread out over two separate days, because the battery could not be
discharged with the urban speed profile within 8 hours, resulting in a total duration of 34 hours.
The voltage decreases as the battery is discharged, due to the SOC dependency of the open-
circuit voltage.

The measured temperature remains constant during the first measurement day, showing that
the ohmic losses resulting from driving with the urban speed profile are not sufficient to heat
up the battery significantly. While the vehicle is parked overnight, a slight decrease in battery
temperature can be seen. On the second measurement day, the battery temperature drops
initially, which could be caused by entropy effects in the battery. Subsequently, the battery
temperature increases, which is likely caused by the higher battery current that is required to
deliver the same power at a reduced battery voltage. The simulation results show a stronger
cool-down overnight, suggesting that the implemented heat transfer to ambient air might be too
high. The initial dip in the battery temperature at the start of the second measurement day is
not seen in the simulation, because the battery model does not include entropy effects. The
simulated temperature increase at the end of the measurement matches the measurement well.

Figure B.2 shows the results of the validation for the urban driving cycle at an ambient tempera-
ture of approximately 30 °C. The measured voltage shows a relaxation overnight, which is not
covered by the model. The voltage error is consistent with the measurement at 15 °C.

The battery temperature increases during the first measurement day, contrary to the measure-
ment at an ambient temperature of 15 °C, because less heat is dissipated to the environment.
During the night, the battery temperature decreases. On the second day of measurements, the
battery temperature increases further and the cooling system is briefly activated, resulting in a
sharp temperature drop 32.5 hours after the start of the measurement. The simulation matches
the temperature on the first day and during the night well. On the second day, the simulated
temperature exceeds the measured temperature, which again may be caused by entropy effects
that are not included in the model.

Figure B.3 shows the validation result for the interurban driving cycle at an ambient temperature of
30 °C. The voltage error is consistent with the measurement at 15 °C shown in Subsection 3.2.6.

As a result of the higher ambient temperature, the cooling system is activated multiple times
during the measurement, resulting in a saw-tooth profile. The simulation matches the measure-
ment well, but has a phase shift during the activation and deactivation of the cooling system.
In the middle of the measurement, the temperature increase of the battery is lower despite
the continuous repetition of the same load-profile, which is attributed to entropy effects. The
simulated temperature gradient is larger than in the urban and interurban driving cycles, due to
the activation of the cooling system.

Figure B.4 shows the validation results for the highway driving cycle at an ambient temperature
of 30 °C. The absolute voltage error is consistent with the measurement at 15 °C.

The measurement shows that the battery reaches 32 °C faster than during the measurement at
15 °C, because less heat is dissipated to the environment. The simulation briefly overestimates
the temperature at the end of the heat-up phase, which, again, might be caused by entropy
effects.
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Figure B.2: Urban cycle at 30 °C ambient temperature
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Figure B.3: Interurban cycle at 30 °C ambient temperature
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Figure B.4: Interurban cycle at 30 °C ambient temperature
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