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Abstract: Consensus and synchronization are fundamental concepts for the coordination of
cooperating multi-robot teams. Applications like cooperative manipulation may require not
only synchronization of the position, but also of the orientation of the individual agents. The
pose of the agent can be described within the special Euclidean group and common results for
coordination have to be adapted. We propose a control framework for full-pose synchronization
in SE (3) for a team of Euler-Lagrange agents, relying only on relative information in the absence
of a global coordinate frame. The framework consists of an inner loop for feedback linearization
and an outer loop for pose synchronization. The measurements are taken by external sensors
and communicated to the respective agents via a common communication network. To deal
with limited communication bandwidth, we propose an event-triggered update strategy for
the relative measurements. Finally, the efficacy of the proposed control and triggering law is
illustrated in simulations.
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1. INTRODUCTION

The recent successes in communication technology enable
distributed multi-agent coordination over wireless com-
munication networks, with applications in manufactur-
ing, search and rescue and surveillance (Roumeliotis and
Bekey, 2002; Montijano et al., 2016). Especially, consen-
sus and synchronization of the individual agents states
is a fundamental task in multi-agent coordination prob-
lems like cooperative manipulation (B. gen. Dohmann
and Hirche, 2020b). In such settings, the communication
bandwidth is typically limited and, as a result, high net-
work traffic can lead to negative effects like delays and
packet dropout. Since typically continuous control laws
are approximated by discrete systems with high sampling
intervals, those constraints can not be maintained, and it
becomes crucial to limit the amount of networked data. In
order to reduce the network traffic, event-triggered control
presents a promising alternative and several single and
multi-agent problems have already been solved in event-
triggered fashion (Heemels et al., 2012; Tabuada, 2007;
Dimarogonas et al., 2012; B. gen. Dohmann and Hirche,
2020a; Liu et al., 2014). While event-triggered attitude
synchronization exists (Weng and Yue, 2016), those rely
on absolute measurements in a common inertial frame
and disregard the position of the agents. However, in
many real-world scenarios a common reference frame is
unavailable and pose synchronization, with only relative
⋆ This work was supported by the German Research Foundation
(DFG) within the Joint Sino-German research project Control and
Optimization for Event-triggered Networked Autonomous Multi-
agent Systems (COVEMAS).

measurements, becomes of great interest. Time-continuous
control frameworks for the relative pose synchronization
problem in SE (3) exist, considering simple first order
models (Hatanaka et al., 2012). In (Thunberg et al., 2016)
the authors present pose-synchronization control laws for
a group of agents, modeled by first and second order sys-
tems. The results are general in the sense that they cover
relative and absolute measurements, as well as different
types for the representation of the orientation. Local sta-
bility results are provided for all presented cases; depend-
ing on the type of controller used, different assumptions on
the initial angle of rotation are required. For applications
in robotics these results need to be adapted, considering
the well known Euler-Lagrange equations commonly used
to model mechanical systems. To the best knowledge of
the authors an event-triggered framework for full-pose
synchronization in the absence of a common inertial frame
is non-existent in this context.

In this work we present a control framework for pose
synchronization for Euler-Lagrange agents, consisting of
a local control loop for feedback linearization, combined
with an external control loop for the synchronization task.
The external loop relies solely on relative measurements,
which are obtained from external sensing agents and com-
municated in event-triggered fashion. Our existing works
show how event-triggered control can reduce the load on
the communication drastically and that tasks such as co-
operative manipulation can benefit from position synchro-
nization (B. gen. Dohmann and Hirche, 2020b,a). However,
they only deal with synchronization of the translational
position and joint states, respectively. The contribution
of this work is to provide an event-triggered control algo-



rithm for full pose synchronization in SE (3) using relative
measurements only.

The remainder of the paper is structured as follows. In Sec-
tion 2 we present some preliminaries, the agent model and
the problem statement. In Section 3 we present the main
control framework and the corresponding stability results.
In Section 4 the results are illustrated in simulations and
concluding remarks are provided in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section we give a brief overview of our model and
state the given problem.

2.1 Notation

Throughout this work, we denote with 0 a zero vector
or matrix, whose dimensions are clear from context. For

any a = [a1 a2 a3]
T
, ak ∈ R,∀k ∈ {1, 2, 3}, the operator

(·)∧ : R3 → so(3) is defined as

a∧ =

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
, (1)

where so(3) corresponds to the vector space of all 3 × 3
skew-symmetric matrices. For any time-dependent vari-
able a(t), we omit the time-dependency t if it is clear
from context. The Euclidean norm of a vector and the
matrix norm, induced by the Euclidean norm, are denoted
by ∥(·)∥2. The L2 and L∞ norm of a function are denoted
with ∥(·)∥L2

and ∥(·)∥∞, respectively, and we say that
a function is in L2 or L∞ if the corresponding norm is
bounded. The superscript (·)l,∀l ∈ {z, r} of any quantity
refers to the translational and rotational degrees of free-
dom, respectively.

2.2 Graph Theory

We consider a team of N agents, which obtain relative
measurements by a group of external sensors. The sensing
topology of the sth sensor is described by the graph
Gs = {Vs, Es}, where Vs ⊆ {1, ..., N} is the vertex set,
representing the individual agents whose states can be
sensed by s and E ⊆ V × V is the edge set, where
(i, j) ∈ Es if sensor s can measure the relative pose of
i and j. We consider that the complete sensing graph
G =

⋃
s
Gs = {V, E} is undirected, i.e. if (i, j) ∈ E ⇒

(j, i) ∈ E . The neighborhood of agent i is then defined
as Ni =

⋃
s
{j ∈ Vs|(i, j) ∈ Es}. Additionally, we pose the

following assumption on the sensing topology.

Assumption 1.

(1) The complete sensing graph G =
⋃
s
Gs is connected.

(2) If agent i receives a measurement of sensor s, its
complete neighborhood has to be included in the
sensing graph of s, i.e. j ∈ Vs,∀j ∈ Ni.

The first assumption is to ensure that the overall topology
is connected, while the second assumption implies that the
neighborhood Ni of each agent i is limited to the sensing
range Vs of the sth sensor.

2.3 Rigid Body Motion

In this work we consider agents moving in the three-
dimensional space, and we briefly introduce the basic
concepts of rigid body motion. Each agent has a body-fixed
coordinate frame Σi, the pose of which is represented with
respect to the fixed inertial frame Σw by the homogeneous
transformation matrix

gi =

[
Ri pi

0 1

]
, (2)

where pi ∈ R3 is the translation and Ri ∈ SO(3) is
the rotation of the frame Σi relative to the fixed inertial
coordinate frame Σw. Define the body twist as ui =[
vT
i ωT

i

]T ∈ R6, where vi,ωi ∈ R3 are the instantaneous
linear and angular velocity. Differentiating (2) with respect
to time, results in the well known kinematics

ġi =

[
Riω

∧
i Rivi

0 0

]
. (3)

The relative pose of agent j with respect to agent i is given
as

igj = g−1
i gj =

[
iRj

ipj

0 1

]
, (4)

where iRj = RT
i Rj and ipj = RT

i (pj − pi), with relative
kinematics

iġj =
igj

[
jω∧

i
jvi

0 0

]
(5)

where the relative velocity is given as

jui =

[
jvi
jωi

]
= uj −Ad(jgi)ui (6)

with the adjoint transformation

Ad(g) =

[
R p∧R
0 R

]
∀g = (R,p) ∈ SE(3). (7)

Other representations of the orientation of agent i include
the axis angle representation with the rotation axis {xi ∈
R3| ∥xi∥2 = 1} and rotation angle θi ∈ [0, π], as well as
the unit quaternion qi defined as

qi =

[
εi
ηi

]
=

[
cos(θi/2)
sin(θi/2)xi

]
, (8)

with corresponding time-derivative

q̇i =
1

2

[
−ηT

i ωi

εiωi + ω∧
i ηi

]
. (9)

2.4 Problem Statement

In this work we present a nested loop control framework
for pose synchronization ofN agents. The proposed control
structure can be found in Figure 1. The dynamics of the ith
agent are modeled using the well known Euler-Lagrange
equations of motion transformed into the task space, which
can be found in any textbook about robotics, as

Mi(ri)u̇i +Ci(ri, ṙi)ui + hg
i (ri) = hi, (10)

where ri ∈ Rdi ,hi ∈ R6 are the generalized coordinates
and forces of the ith agent and di is the number of
generalized coordinates of the ith agent. The matrices
Mi(ri),Ci(ri, ṙi) ∈ R6×6 denote the inertia and Corio-
lis/centrifugal matrix of the ith agent and hg

i (ri) ∈ R6
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Fig. 1. Block diagram of the proposed control framework.
The dotted lines correspond to continuous measure-
ments of the agents pose and dashed lines correspond
to event-triggered signals. The triggering condition
can be evaluated directly at the sensors.

is the gravitation. With the well known computed torque
approach

hi = Ci(ri, ṙi)ui + hg
i (ri) +Mi(ri)h̃, (11)

where h̃i =
[
fT
i τi

]
is an outer loop control law, we obtain

the linearized dynamics as

v̇i = fi (12)

ω̇i = τi. (13)

The outer loop consists of a control law for pose synchro-
nization which is said to be achieved if ∀i, j ∈ V

∥pi − pj∥2 → 0 (14)∥∥iηj

∥∥
2
→ 0. (15)

Note that
∥∥iηj

∥∥
2
= 0 iff qi = ±qj , which means that

agent i and j have the same orientation relative to a
common frame. For achieving the control goal, each agent
is assumed to have access only to relative pose information
ipj ,

iqj of its neighbors j ∈ Ni. We are interested in an
event-triggered control law, which determines online the
update instances of the control law, requiring only relative
measurements. To solve the problem, we pose following
assumptions on the initial angles of the rotations.

Assumption 2. For all agents i ∈ V the initial orientations
satisfy |θi(0)| < π

2 .

Note that local stability results are quite common for
control algorithms on SE (3) and the posed assumption
on the initial configuration is the same as for compara-
ble time-continuous control approaches (Thunberg et al.,
2016; Hatanaka et al., 2012).

Remark 1. The presented second order model is a common
occurrence after feedback linearization of Euler-Lagrange
systems. In case of model uncertainties, adaptive control
approaches (Slotine and Li, 1987; Umlauft and Hirche,
2019) can be used and also integrated in even-triggered
fashion (Liu et al., 2016).

3. OUTER LOOP POSE SYNCHRONIZATION

In this section we derive the outer loop for pose syn-
chronization as well as the triggering condition, which

determines online if data should be transmitted, in order
to achieve stability of the complete system.

3.1 Control Law and Trigger Condition

We proceed by deriving a control law, which force the
dynamics on a manifold where the sliding variables

si = vi −
∑
j∈Ni

kzij
ipj (16)

ςi = ωi −
∑
j∈Ni

krij
iηj (17)

are zero. On this manifold the remaining first order dy-
namics yield convergence of the relative pose error. For
this consider the piecewise-continuous control inputs

fi(t) =
∑
j∈Ni

kzij
iṗj(t

z
kij

) (18)

− kzi
mz

i

vi(t)−
∑
j∈Ni

kzij
ipj(t

z
kij

)


τi(t) =

∑
j∈Ni

krij
iη̇j(t

r
kij

) (19)

− kri
mr

i

ωi(t)−
∑
j∈Ni

krij
iηj(t

r
kij

)

 ,

where the gains mz
i ,m

r
i , k

z
i , k

r
i , k

z
ij , k

r
ij > 0. The trigger

instances tlkij
, l ∈ {z, r} are defined as

tlkij+1 = inf{t > tlkij
|iµl

j + ϕl
ijf

l
ij ≤ 0} (20)

where ϕl
ij > 0, with the triggering functions

f t
ij = σz

ijk
z
i ∥si∥

2
2 −

1

4σz
ijk

z
i

∥∥iej∥∥22 (21)

fr
ij = σr

ijk
r
i ∥ςi∥

2
2 −

1

4σr
ijk

r
i

∥∥iζj∥∥22 , (22)

where 0 < σl
ij , σl

i =
∑

j∈Ni
σl
ij < 0.5, Finally, the

trigger-induced errors are defined as

iej = kzij

(
iṗj(t)− iṗj(t

z
kij

)
)
+

kzi k
z
ij

mz
i

(
ipj(t)− ipj(t

z
kij

)
)

(23)

iζj = krij

(
iη̇j(t)− iη̇j(t

r
kij

)
)
+

kri k
r
ij

mr
i

(
iηj(t)− iηj(t

r
kij

)
)

(24)

and iµl
j are the states of the dynamical systems

iµ̇l
j(t) = −αl

ij
iµl

j + f l
ij (25)

with initial condition iµl
j(0) > 0 and gain αl

ij > 0. Note
that due to Assumption 1.2 each sensor has the available
information to evaluate the trigger conditions locally. The
following lemma about the properties of iµl

j is crucial for
the later analysis.

Lemma 1. ((Girard, 2015)). If for l ∈ {z, r} the event-
times tlkij

are chosen according to (20) and iµl
j(0) > 0,

then iµl
j(t) > 0,∀0 ≤ t < ∞.

The proposed control law (18), (19) consists of a contin-
uous feedback term of the velocities vi,ωi, as well as a
piecewise constant feedback of the triggered relative pose



and its derivative. The idea is that in situations where
the relative states are measured by external sensors, those
communicate their measurements to the agents over a
wireless communication network. In such settings, efficient
use of the communication bandwidth becomes crucial for
the overall performance of the system. Note that vi and ωi

are the velocities in the body-fixed frame and thus can be
locally measured by the agent itself and are not included in
the event-triggering framework. The closed loop dynamics
of the system are obtained, by substituting the control
law (18), (19) into the linearized dynamics (12), (13) and
using the definition of the trigger-induced error (23), (24),
resulting in

mz
i ṡi + kzi si +

∑
j∈Ni

iej = 0 (26)

mr
i ς̇i + kri ςi +

∑
j∈Ni

iζj = 0. (27)

Remark 2. For the sake of derivation, we assume scalar
parameters kzij , k

r
ij , k

z
i , k

r
i ,m

z
i ,m

r
i for the control law. The

results can be generalized using matrix-valued parameters,
by adapting the presented Lyapunov functions.

3.2 Stability

We now present the main stability results of the proposed
control law. We start by providing the following statement
on the exponential decay of the sliding variables.

Lemma 2. The dynamics (26) and (27) are exponentially
stable as

∥si(t)∥22 ≤ ∥W z
i (0)∥

2
2 exp (−ρit) (28)

∥ςi(t)∥22 ≤ ∥W r
i (0)∥

2
2 exp (−ϱit) , (29)

where

ρi = min{(1− 2σz
i )

kzi
mz

i

,
∑
j∈Ni

αz
ij} (30)

ϱi = min{(1− 2σr
i )

kri
mr

i

,
∑
j∈Ni

αr
ij}. (31)

Proof. Consider the Lyapunov candidates

W t
i = sTi m

z
i si +

∑
j∈Ni

iµz
j (32)

W r
i = ςTi m

z
i ςi +

∑
j∈Ni

iµr
j (33)

with time-derivatives

Ẇ t
i ≤ −sTi k

z
i

si +
∑
j∈Ni

iej

+
∑
j∈Ni

iµ̇z
j (34)

Ẇ t
i ≤ (σz

i − 1) kzi ∥si∥
2
2 (35)

+
∑
j∈Ni

[
1

4σz
ijk

z
i

∥∥iej∥∥22 − αz
ij

iµz
j + fz

ij

]
(36)

≤ (2σz
i − 1) kzi ∥si∥

2
2 −

∑
j∈Ni

αz
ij

iµz
j (37)

≤ −ρiW
z
i , (38)

due to (21) and Lemma 1. Analogously, it can be shown
that

Ẇ r
i ≤ −ϱiW

r
i . (39)

Due to the exponential decay of the sliding variables in
Lemma 2, we have the following invariance property.

Lemma 3. For any positive a, b such that 0 < a < b < π/2
and c > 0, if ϱi ≥ 2bc

(b−a) , θi(0) < a and W r
i (0) < c it holds

that θi(t) < b and W r
i (t) < c.

Proof. Define the potential

Wi = θ2i = θ2ix
T
i xi (40)

and denote i = argmaxk Wk, as the agent with maximum
energy at time t. Taking the derivative, we obtain

Ẇi = θix
T
i Lωi, (41)

where L = I + fx∧
i + h(x∧

i )
2, with some scalar f, h and

note that xT
i L = xT

i due to the skew symmetric matrix.
Substituting (17), we obtain

Ẇi = θix
T
i

∑
j∈Ni

krij
iηj + ςi

 (42)

≤ θix
T
i

∑
j∈Ni

krij
iηj + θi ∥ςi∥2 (43)

=
∑
j∈Ni

θik
r
ijx

T
i (εiηj − εjηi) + θi ∥ςi∥2 (44)

=
∑
j∈Ni

θik
r
ij

[
εi sin

(
θj
2

)
xT
i xj − εj sin

(
θi
2

)]
(45)

+ θi ∥ςi∥2 (46)

≤
∑
j∈Ni

θik
r
ij sin

(
θj − θi

2

)
+ θi ∥ςi∥2 (47)

≤ θi ∥ςi∥2 ≤ θiW
r
i (0) exp

(
−ϱi

2
t
)
, (48)

since θi sin(
θj−θi

2 ) ≤ 0 if θi > θj . Without loss of generality
assume the initial time t0 = 0 and considering θi is a
continuous variable, there exists an interval [0, t1) such
that

Ẇi ≤ bc exp
(
−ϱi

2
t
)
. (49)

The rest of the proof follows the lines of Proposition 26
in (Thunberg et al., 2016) and is omitted here.

With the presented results, we can finally state the main
theorem of this work, regarding the overall stability of the
system.

Theorem 1. If Assumptions 1 and 2 are fulfilled and the
event-times are chosen according to (20), the dynam-
ics (26) and (27) achieve pose synchronization asymptoti-
cally and the inter-event times are lower bounded as

trkij+1 − trkij
≥ 1

τ

4σr
ijk

r
i

ϕr
ij

(
iµr

j + σr
ijk

r
i ∥ςi∥

2
2

)
, (50)

which is strictly positive for any finite time.

Proof. In the following we will prove the results for the
more technically involved rotational case and remark that
similar steps can be followed for the proof of the relative
translation using the potential function

W t =
1

2

N∑
i=1

∥pi∥22 . (51)

Now consider the potential



W r =

N∑
i=1

∥ηi∥22 (52)

with time-derivative

Ẇ r =

N∑
i=1

εiη
T
i ωi (53)

=

N∑
i=1

εiη
T
i

∑
j∈Ni

krij
iηj + ςi

 (54)

≤
N∑
i=1

εi

ηT
i

∑
j∈Ni

krij
iηj +

e1
2

∥∥iηj

∥∥2
2
+

1

2e1
∥ςi∥22

 ,

where the last line follows from Young’s inequality for any
0 < e1. In the appendix, we show that if θi ≤ π

2 for all
agents and a balanced graph, there exists a e2 > 0 such
that

N∑
i=1

∑
j∈Ni

εiη
T
i
iηj ≤ −

N∑
i=1

∑
j∈Ni

e2
∥∥iηj

∥∥2
2
. (55)

Thus, by integrating (53) in the time-interval [0, t], we
have

W r(t) ≤ W (0) (56)

−
N∑
i=1

∑
j∈Ni

∫ t

0

[
(e2k

r
ij −

e1
2
)
∥∥iηj

∥∥2
2
− 1

2e1
∥ςi∥22

]
.

Note that due to Lemma 2, ςi ∈ L2,L∞. Additionally,
there always exists an e1 such that e1 < 2e2k

r
ij . As a result,

we can conclude that −(e2k
r
ij − e1

2 )
∥∥iηj

∥∥2
2

is negative

definite. It follows that iηj ∈ L2,L∞ and considering (17),
ωi ∈ L∞ and with that iη̇j ∈ L∞ can be concluded. Local
asymptotic stability then follows from Barbalat’s Lemma
and considering that the graph is connected. Regarding
the minimum inter-event times, consider the time-interval
[trkij

, trkij+1). The derivative of
∥∥iζj∥∥2 in the given interval

is obtained as
d

dt

∥∥iζj∥∥2 ≤
∥∥∥ ˙iζj

∥∥∥
2
≤ krij

∥∥iη̈j

∥∥
2
+

kzi k
r
ij

mr
i

∥∥iη̇j

∥∥
2
. (57)

Note that with (9) and (27) it can be shown that all terms
are bounded and as a result

d

dt

∥∥iζj∥∥2 ≤ τ (58)

for some τ > 0. By integration over [trkij
, t] for any

t ∈ [trkij
, trkij+1) we thus obtain∥∥iζj(t)∥∥2 − ∥∥∥iζj(trkij

)
∥∥∥
2
≤ τ(t− trkij

) (59)

Note that
∥∥∥iζj(trkij

)
∥∥∥
2
= 0 and by definition (20), it holds

that

lim
t→tr

kij+1

∥∥iζj(t)∥∥2 =
4σr

ijk
r
i

ϕr
ij

(iµr
j + σr

ijk
r
i ∥ςi∥

2
2), (60)

resulting in (50). Finally, since by Lemma 1 we have that
iµr

j > 0 and, as a result, (50) is strictly positive for any
finite time.

4. SIMULATIONS

In this section we perform simulations and provide il-
lustrative results for the proposed control approach. We
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Fig. 2. Top: Tracking performance in terms of W l for
l ∈ {z, r}. Bottom: Tracking performance in terms

of
∑N

i=1 W
l
i .

use the closed-loop dynamics (26) and (27), with mz
i =

mr
i = 1, kzi = kri = kzij = krij = 10 and the event-

times are determined via the triggering law (20), with
ϕl
ij = αl

ij = 1, iµj(0) = 0.5, σl
ij = 0.4 for l ∈ {z, r}.

The initial configurations pi(0), θi(0)xi(0) of the agents
are chosen as

p1(0) = [2 0 6]
T

p2(0) = [4 −2 −4]
T

p3(0) = [6 2 4]
T

p4(0) = [−2 −4 0]
T

θ1(0)x1(0) = [0.21 0.5 0.77]
T

θ2(0)x2(0) = [0.6 0.04 0.83]
T

θ3(0)x3(0) = [−0.21 0.77 −0.5]
T

θ4(0)x4(0) = [−0.63 0.37 −0.64]
T

and the initial velocities are chosen as ui = 0. We
chose four sensing agents whose vertex set corresponds to
the neighborhood of a respective agent as V1 = N1 =
{2, 4},V2 = N2 = {1, 3},V3 = N3 = {2, 4},V4 =
N4 = {1, 3}. The duration of the simulation is 1s and the
sampling frequency is chosen as 1kHz. Note that the bound
in Lemma 2 and with that the conditions in Lemma 3
are quite conservative. We will see in the following that
the convergence properties can still be maintained, even
if the conditions are not met. The two top plots in
Figure 2 show the potentials W t and W r as defined in (51)
and (52). As it can be seen both potentials decrease,
illustrating the results in Theorem 1. The two bottom plots



Table 1. Number of events between agent i and
its first and second neighbor nl

j for j ∈ {1, 2}
translational (l = z) and rotational(l = r)

measurements, respectively.

i nz
1 nz

2 nr
1 nr

2

1 22 19 26 48

2 23 17 18 35

3 14 27 47 22

4 23 26 34 18

Table 2. Minimum inter-event times between
agent i and its first and second neighbor nl

j

for j ∈ {1, 2} translational (l = z) and
rotational(l = r) measurements, respectively.

i nz
1 nz

2 nr
1 nr

2

1 0.01s 0.006s 0.01s 0.006s

2 0.015s 0.008s 0.015s 0.008s

3 0.006s 0.013s 0.006s 0.013s

4 0.008s 0.016s 0.008s 0.016s

0

0.5

1

·105

Time (s)

1
µ
z 4
+
ϕ
z 1
4
f
z 1
4

Fig. 3. Triggering-mechanism, illustrated as the triggering
condition (20) for the translational measurement be-
tween agent 1 and 4.

of Figure 2 show the decay of the sum of the squared sliding

variables
∑N

i=1 ∥si∥
2
2 and

∑N
i=1 ∥ςi∥

2
2 and the theoretical

bound from Lemma 2, confirming the conservativeness
of the results in the presented scenario. The result of
the triggering is depicted in Table 1 with the number
of events and in Table 2 with the minimum inter-event
times. For reference, a periodic sampling scheme would
result in 1000 transmissions. Immediately the efficiency of
the proposed event-triggered framework can be seen with
a drastic reduction in the transmission rates. In addition,
since all minimum inter-event times are greater than 0.001s
it can be concluded that no Zeno behavior was present
during the simulations. Finally, in Figure 3 the trigger
condition (20) for the relative translational measurements
is provided. Recall that an event is triggered whenever zero
is reached. It should be noted that at the start relative high
trigger intervals are required, which become larger over the
duration.

5. CONCLUSION

In this work we present a control law for pose synchro-
nization in SE (3) for a multi-robot team modeled with
Euler-Lagrange equations. The control framework consists
of a time-continuous inner control loop for feedback lin-
earization, based only on locally available information and
a piecewise continuous outer loop for the pose synchro-
nization. In the absence of a common inertial frame, only
relative measurements and local velocities are required

for the outer loop. The relative poses are measured by
external sensing agents, typically vision-based systems,
and communicated to the respective agents. In order to
reduce the load on the communication network, an event-
triggered update strategy is used. We show that with the
proposed event-triggering mechanism, the event instances
are chosen such that asymptotic stability can be locally
achieved. Finally, we conclude with simulations, illustrat-
ing the results. In the future we plan to include various
network effects, such as delay and packet loss.

Appendix A. PROOF FOR INEQUALITY (55)

In the following we proof, that there exist an e2, such that
N∑
i=1

∑
j∈Ni

εiη
T
i
iηj +

N∑
i=1

∑
j∈Ni

e2
∥∥iηj

∥∥2
2
≤ 0 (A.1)

Consider
N∑
i=1

∑
j∈Ni

εiη
T
i
iηj +

N∑
i=1

∑
j∈Ni

e2
∥∥iηj

∥∥2
2

=

N∑
i=1

∑
j∈Ni

(
ε2iη

T
i ηj − εiεj ∥ηi∥22 + e2

∥∥iηj

∥∥2
2

)

=

N∑
i=1

∑
j∈Ni

(
ε2iη

T
i ηj − εiεj ∥ηi∥22

+e2(ε
2
i ∥ηj∥22 + ε2j ∥ηi∥22 − 2εiεjη

T
i ηj + ∥ηi × ηj∥22)

)
(A.2)

Considering that the graph is balanced, we can rewrite (A.2)
as

N∑
i=1

∑
j∈Ni

[
1

2

(
ε2i + ε2j − 4e2εiεj

)
ηT
i ηj + e2 ∥ηi × ηj∥22

−
(
1

2
εiεj − e2ε

2
i

)
∥ηi∥22 −

(
1

2
εiεj − e2ε

2
j

)
∥ηi∥22

]
(A.3)

Denoting ∠(xi,xj) the angle between the xi and xj axis,
we can rewrite the term
1

2

(
ε2i + ε2j − 4e2εiεj

)
ηT
i ηj + e2 ∥ηi × ηj∥22

=
1

2

(
ε2i + ε2j − 4e2εiεj

)
sin(θi/2) sin(θj/2) cos(∠(xi,xj))

+ e2 sin
2(θi/2) sin

2(θj/2)(1− cos2(∠(xi,xj)))

≤ 1

2

(
ε2i + ε2j − 4e2εiεj

)
sin(θi/2) sin(θj/2)

for any e2 ≤ ε2i+ε2j
4 cos(θi/2−θj/2)

. As such, the term in the

sum (A.3) can be upper bounded as
1

2

(
ε2i + ε2j − 4e2εiεj

)
sin(θi/2) sin(θj/2)

−
(
1

2
εiεj − e2ε

2
i

)
sin2(θj/2)−

(
1

2
εiεj − e2ε

2
j

)
sin2(θi/2)

= 2e2 sin
2

(
θj − θi

2

)
− 1

2
(sin(θj)− sin(θi)) sin

(
θj − θi

2

)
,

where we use standard trigonometric identities. As a
result,

2e2 sin
2

(
θj − θi

2

)
−1

2
(sin(θj)− sin(θi)) sin

(
θj − θi

2

)
≤ 0



holds if

⇒ e2 ≤ sin(θj)− sin(θi)

4 sin
(

θj−θi
2

) =
1

2
cos

(
θi + θj

2

)
. (A.4)

As a result of Lemma 3 there always exists a strictly
positive e2 fulfilling (A.4).
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