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German Abstract

Eine vielleicht interessantere Aufgabe als die statistische Inferenz ist die kausale In-
ferenz, bei der nicht nur Korrelationen, sondern auch Kausalitäten untersucht wer-
den. Wir können die kausale Struktur einer Gruppe von Variablen mit Hilfe von
gerichteten azyklischen Graphen illustrieren, in denen die kausalen Richtungen und be-
dingten Unabhängigkeiten gezeigt werden. Die grafische Darstellung hat jedoch einige
Einschränkungen, wenn ein Effekt das Ergebnis einer Interaktion ist. Deshalb verwen-
den wir die Strukturmodelle als eine alternative analytische Standarddarstellung, bei
denen jede Variable durch ihre Eltern und etwas Rauschen definiert ist.
Eine wichtige Aufgabe bei der kausalen Inferenz ist die Entdeckung der kausalen

Struktur mit reinen Beobachtungsdaten. Dies ist im Allgemeinen unmöglich, da Vari-
ablen mit unterschiedlichen Kausalstrukturen genau dieselbe gemeinsame Wahrschein-
lichkeitsverteilung haben können und die Entdeckung nur auf Markov-äquivalente Klassen
beschränkt werden kann. Aber wenn alle relevanten Variablen beobachtet werden, ist
die Aufgabe jedoch in einigen Fällen möglich. Einer davon ist wenn wir annehmen, dass
die kausalen Beziehungen linear sind und das Rauschen die gleiche Varianz hat.
Wir betrachten den bivariaten Fall unter dieser Annahme. Wir schlagen A-priori-

Wahrscheinlichkeiten für die zugrundeliegende kausale Richtung, die gleiche aber un-
bekannte Varianz und den von Null verschiedenen kausalen Effekt der richtigen Richtung
vor. Wir haben auch einige Kriterien für die Festlegung geeigneter priorisierter Hyperpa-
rameter diskutiert. Die Konjugierte A-priori-Verteilungen, die wir setzen, ermöglichen
eine geschlossene A-posteriori-Verteilung abzuleiten und sie mit Glaubwürdigkeitsregio-
nen weiter zusammenzufassen. Das A-posteriori-Verteilung wird eine Mischverteilung
aus einem Punktmaß an 0 und einer stetigen Verteilung sein. Daher untersuchen und
diskutieren wir die Bedingungen von 0 in der Region. Wir schlagen drei Arten von
Regionen vor, nämlich das ”equal-tailed interval” (ETI), die ”highest density region”
(HDR) und die ”threshold Region”. Der dritte Typ enthält 0 nur wenn die Dichte bei 0
höher als eine Schranke ist.
Unser Modell wird sowohl mit simulierten Daten als auch mit Benchmarks getestet

und verglichen. Unsere Beobachtung aus den Experimenten zeigt, dass unser Modell
dazu tendiert zu sicher über die vorhergesagte grafische Struktur ist. Um das problem
zu lösen verwenden wir einen Bootstrap-Durchschnitt. Wir implementieren unser Modell
mit R und die Ergebnisse zeigen vergleichbare Abdeckungsraten und kleinere Breite im
Durchschnitt.
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English Abstract

Causal inference is perhaps a more interesting topic than statistical inference, where not
only correlations but also causations are studied. We can illustrate the causal struc-
ture of a group of variables using directed acyclic graphs (DAGs) that represent the
causal directions and conditional independencies. However, the graphical representation
has some limitations if an effect is the result of an interaction, so an alternative stan-
dard analytical representation is using structural equation models (SEMs), where each
variable is defined by its parents and some noise.
An important task in causal inference is to discover the causal structure with only

observational data. This is in general impossible since variables with different causal
structures can have exactly the same joint probability distribution and the discovery
can only be limited to Markov equivalent classes even in the best case. However, under
the assumption that all relevant variables are observed, the task is possible in some
cases, one of which is if we assume the causal relations to be linear and the noises to
have equal variance.
We consider the bivariate case under this assumption. We propose priors for the

underlying causal direction, the equal but unknown variance, and the non-zero causal
effect of the correct direction. We also discussed some criteria for setting proper prior
hyperparameters. The conjugate priors we set allow us to derive a closed-form posterior
distribution and further summarize it with credible regions (CRs). The posterior will be
a mixture of a point mass at 0 and a continuous distribution, so we especially discussed
the conditions of 0 being included in the CR. We suggest three types of CRs, i.e., the
equal-tailed interval (ETI), the highest density region (HDR), and the “threshold CR”.
The third type is proposed by us, where the decision to include 0 is made by comparing
the density at 0 with a self-defined threshold.
Our model is tested and compared with both simulated data and benchmarks. In

the experiments, we figure out that our model tends to be too certain about predicting
the graphical structure, so we use a bootstrap average to reduce the effect of extreme
decisions. We implement our model with R and the results show comparable coverage
rates and smaller average widths.
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1. Introduction

Statistical inference Peters et al. (2017) has been used to infer properties of the depen-
dence among random variables. However, sometimes only knowing the correlation can
lead us to completely wrong and even absurd results. For example, a previous study
Messerli (2012) has verified that there is a significant positive linear correlation between
chocolate consumption and winning the Nobel prize. Another study Peters (2013) stated
that the rate of homicides increases as ice cream sales increase. Both conclusions from
statistical learning sound totally non-logical if any rational person thinks of them with
their brain. In fact, they can be having a common cause or even be completely inde-
pendent of each other. To be able to infer the relation between two or more variables
better, we might want to ask questions what is the real cause of what? How will other
variables change if we apply actions or interventions to certain variables?

We call the task where we explore causal relations: causal inference. In addition
to only looking at the joint distribution of a group of variables, we now also focus on
the structures between variables Peters et al. (2017). The very natural illustration of
a causal structure is using a causal Bayesian network Spirtes et al. (2000), which we
usually represent by a directly acyclic graph (DAG) Spirtes et al. (2000) concerning the
conditional independence relations in a probability distribution. Variables are denoted
by nodes, and direct causalities are represented by directed edges. However, there are
also clear limitations of such kinds of representations when effects do not only come
from simple direct causes but also from interactions of variables or indirect causes as
explained in Spirtes et al. (2000). A better way to represent interactions is through the
probability distribution associated with the graph, which can be defined by a causal
structural model (SEM) Pearl (2009). An SEM is defined as a collection of equations
and a joint probability distribution, which acts as a powerful analytical tool when we
for example apply interventions and analyze causal effects.

There are basically two scenarios corresponding to two types of SEMs concerning
how much we know about the whole environment, namely the deterministic or quasi-
deterministic case Spirtes et al. (2000); Pearl (2009). The former assumes that the effects
are deterministic functions (with independent noises) of their direct causes, while the
latter refers to the case where some variables are not determined by their immediate
causes or some of their causes are unobserved. Both assumptions have been studied
under different needs.
In real-world scenarios, one of the most important and interesting things that catches

our attention is to identify the true causal relation purely from the joint distribution
of observational data. Being able to do this is quite surprising and appealing because
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1. Introduction

we could go one step beyond statistical inference without using any extra information.
In general, reconstructing the causal graph and recovering the causal structure purely
from the joint distribution can be carried out by the PC algorithm Spirtes et al. (2000),
yet the procedure is inefficient and the discovery can only be limited up to Markov
equivalence class. However, under the assumption of causal sufficiency, i.e., all relevant
variables are observed Peters et al. (2014), we might have the chance to recover the
SEM from the joint distribution solely if the distribution has causal minimality Peters
et al. (2014) and the SEM satisfy some special assumptions Peters et al. (2017). For
example, the LiNGAM, i.e., the SEM with linear functions and non-Gaussian noises
can be identified from the joint distribution Shimizu et al. (2006). Also if we have an
additive noise model (ANM) with non-linear functions and non-Gaussian noises, then
the underlying causal structure is identifiable from the joint distribution Hoyer et al.
(2008); Peters et al. (2012). If we assume the SEM consists of linear functions with
Gaussian noises, then the causal structure is identifiable from the joint distribution if
the noises are assumed to have equal variances Peters and Bühlmann (2014). In this
thesis, we will pay attention to the last setting i.e., linear function with noises of equal
variances.

To dig even deeper than just recognizing the causal structure, we could argue about
the causal effect after an intervention on some variables of other variables. Informally
speaking, causal effects can be seen as correlations in certain directions. Knowing the
causal effect, we can answer questions such as what is the amount of aspirin we need
to relieve headaches, or how exactly would smoking more cigarette increase the risk of
getting lung cancer. We will see if we have some data and assume that the SEM is
known, we can compute the causal effects as statistics as they are functions of the data.
A natural way to summarize the prediction of a coefficient is to calculate its (1− α)-

confidence region using some hypothesis tests. For example in Strieder et al. (2021),
several statistical tests, e.g., the likelihood ratio tests (LRT) and split likelihood ratio
tests (SLRT) are considered, and the out-coming confidence regions highlight the range
of values the causal effects most likely will be. Another state-of-the-art approach for es-
timating the causal effect is using Bayesian inference. Considering some self-set priors,
we compute the posterior distribution of the causal effects and summarize the distri-
bution with a (1 − α)-credible region. There are already plenty of previous works that
focused on this direction, for example, Hoyer and Hyttinen (2012) focused on structure
discovery of linear graphs, and Cao et al. (2019) dig deep into posterior high-dimensional
graph selection. In addition to focusing mainly on the graphical structure, Castelletti
and Consonni (2021) proposed a possibility to sample causal effects from its posterior
distribution. But to the best of our knowledge, there is still no paper that focused on
directly estimating the credible region of the causal effects.

We are going to present our work in the following order. In Chapter 2, we will
introduce basic notations and assumptions of the thesis, and also the causal inference
theory, e.g., DAG, intervention, and causal effects that are relevant to our purpose, and
we will restrict our attention to bivariate cases. Then in Chapter 3, we will set priors
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1. Introduction

for the causal graph, the common yet unknown variance, and the coefficient under the
correct direction. With these, we will derive the credible regions (CR) for causal effects
by applying Bayesian inference. We will give closed-form expressions for different types
of CRs, including the equal-tailed interval (ETI), the highest density region (HDR), or
a CR similar to the HDR except we determine whether to include 0 with a threshold.
We will especially discuss under what setting would the hyperparameters make it a good
prior, and how we determine whether to include 0 in the CR. In Chapter 4, we will test
our model on both simulated data and benchmarks. Since there is not much similar
work in computing the CR, we will compare our results with Strieder et al. (2021) in
terms of coverage rate, width, and zero percentage. Finally, in Chapter 5 we will have a
brief conclusion and discussion.

3



2. Basics

In this chapter, we will first introduce some definitions of graphical structures, such
as directed acyclic graphs (DAGs) and d-separation. Then we will present the causal
relation of a group of random variables in another manner, namely using the structural
equation models (SEMs). We will show that DAGs and SEMs are equivalent under
certain restrictions, and the causal effects under interventions can be computed from
the SEMs. We will argue that recovering the causal structure only from observational
data is possible when causal sufficiency and some other model assumptions are satisfied.
Following one of the identifiable settings, we will focus on bivariate linear SEMs with
Gaussian noises of equal variances, and analyze the causal effects after an intervention.
The notations and assumptions mentioned in this chapter will be continuously used
throughout the thesis.

2.1. Graphical Structure

As one of the mostly preferred illustration tool, we will introduce some graphical termi-
nologies. The definitions introduced in this section regarding graphical structure follow
contentwise and logically from Peters et al. (2017), while we also refer to Pearl (2009)
for some details and interpretations.

Definition 2.1 (Graph). A graph G = (V,E) consists of a set of vertices (or nodes)
V and a set of edges E ⊂ V × V with (v, v) /∈ E for any v ∈ V .

In our graphs, the vertices often represent variables, whereas the edges represent
particular relationships that exist between pairs of variables. More specific interpretation
however will differ depending on the application.

Definition 2.2 (Adjacency, Parent and Child). Let G = (V,E) be a graph with V =
{1, . . . , n} and n ≥ 2. Two vertices i, j are adjacent if either (i, j) ∈ E or (j, i) ∈ E. A
vertex i is called a parent of j if (i, j) ∈ E yet (j, i) /∈ E, and a child of j if (j, i) ∈ E
yet (i, j) /∈ E. The set of parents of vertex i is denoted by paG(i) and the set of children
of i is denoted by chG(i). We sometimes call the elements of paG(i) not only parents but
also direct causes of i, while i is called the direct effect of all its direct causes. In
bivariate case that we will discuss the most later, we will even omit the word “direct”,
and just say cause and effect.

In a graph, each edge can be either directed (denoted by a single arrowhead on the
edge) or undirected.
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2. Basics

Definition 2.3 (Directed Edge). An edge between two vertices i and j is undirected if
(i, j) ∈ E and (j, i) ∈ E. Sometimes it is also called “bidirected”. An edge is directed
if it is not undirected, and we write i→ j for (i, j) ∈ E.

Like in a family tree, we are not only interested in nodes that are directly connected
by an edge, but also those node groups that are distinct relatives, so we use a path to
connect all nodes that are more or less related to each other.

Definition 2.4 (Path, Ancestors and Descendants). A path in a graph G is a sequence
of distinct vertices i1, . . . , im with m ≥ 2, such that ik and ik+1 are adjacent for all
k = 1, . . . ,m − 1. If further we have ik → ik+1 for all k = 1, . . . ,m − 1, then we call
it a directed path from i1 to im. In this case, we call i1 an ancestor of im and im
a descendant of i1. We further call vertex j a non-descendant of vertex i if j is
not a descendant of i. As commonly assumed (e.g. in Peters et al. (2017)), a vertex
i is neither an ancestor, nor a descendant, nor a non-descendant of itself. We denote
the set of ancestors of i by anG(i), the set of descendants of i by deG(i), and the set of
non-descendants of i by ndG(i).

Remark 2.5. In later writing, when it is clear to which graph we are referring, or when
pointing out the graph is not necessary, we will simplify the notations for the sets of
parents, children, ancestors, descendants and non-descendants, and write them as pa(i),
ch(i), an(i), de(i), nd(i) instead.

Finally we define a specific type of graph called a DAG, which is used to represent a
priori assumptions about the connections between and among variables and has various
applications in science and computation.

Definition 2.6 (DAG). We call a graph G a directed acyclic graph (DAG) if the
following two properties hold:

1. all edges are directed;

2. there is no directed circle, i.e., no pair of vertices (i, j) with directed path from i
to j and from j to i.

The second condition can also be understood as no directed path from a node to itself
is permitted. This property is important for being able to arrange vertices in a causal
ordering (see Peters et al. (2017)) that is consistent with all edge directions, which also
enforces the notion that causes must come before their effects. Example 2.7 shows what
a DAG could look like.

Example 2.7. We displayed an example of a DAG with four nodes (X1, X2, X3, X4)
and four edges. It is a DAG since all edges are directed and there is no cycle.

Since it will be used later in this thesis, we will formulate the graphical concepts of
blocked paths and d-separations, which could be interpreted as stopping the flow of
information between the variables that are transferred by some paths, as defined next.
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2. Basics

X1 X2

X3 X4

Figure 2.1.: A four-variate DAG with four edges.

Definition 2.8 (d-separation). Let G = (V,E) be a DAG. A path π between nodes i1
and in is said to be blocked by a set of nodes C if and only if it contains a node ik ∈ π
such that either

• ik ∈ C, and directed edges in π do not meet head-to head at ik, i.e., either ik−1 →
ik → ik+1 or ik−1 ← ik → ik+1 or ik−1 ← ik ← ik+1, or

• ik /∈ C, nor has ik descendants in C and directed edges in π do meet head-to-head
at ik, i.e., ik−1 → ik ← ik+1.

Set A,B ⊂ V are said to be d-separated by C ⊂ V if all paths between i ∈ A and
j ∈ B are blocked by C, and we write A ⊥⊥G B|C.

The following example will provide a more intuitive understanding of d-separation.

Example 2.9. We will give examples of blocked paths and d-separations considering
the DAG as in Figure 2.1. We do not distinguish here a single element from a singleton
set.
Considering path π1 : X2 − X1 − X3 between X2 and X3, then π1 is blocked by X1

since X1 ∈ π1 and directed edges do not meet head-to-head at X1.

X1

X2X3

For similar reasons, path π2 : X1−X2−X4 is blocked by X2 and path π3 : X1−X3−X4

is blocked by X3. Since π2 and π3 are the only two paths between X1 and X4, we say
that X1, X4 is d-separated by {X2, X3}, i.e., X1 ⊥⊥G X4|X2, X3.

X1

X3

X4

X1

X2

X4

X1

X2

X3

X4
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2. Basics

Finally, we look at path π4 : X2−X4−X3. We say π4 is blocked by X1 since the only
node on path π4 is X4 /∈ {X1} and X1 is not a descendant of X4 and X3 → X4 ← X2.
However, it is worth noticing that π4 is not blocked by X4 since X4 ∈ π4 and directed
path do meet head-to-head at X4.

X3

X1

X4

X2

The concept of d-separation in a graph will later be related to conditional indepen-
dence of random variables when we introduce Markov properties.

2.2. Structural Equation Models

Structural equation models (SEMs) have been employed for a very long time in various
fields, including agriculture, social sciences (Wright (1921); Haavelmo (1944); Duncan
(1975)), as well as physics and engineering. SEMs describe causal relations as deter-
ministic, functional equations. We will introduce semantics of SEMs and its relation to
DAGs in this section, then learn how to use them to compute intervention distributions
in the next section. The main part of this section follows from Peters et al. (2017); Pearl
(2009) and some interpretations follow from Mooij et al. (2016).

Definition 2.10 (Structural Equation Models). A structural equation model (SEM)
M := (S,Pϵ), sometimes also called a structural causal model in other literature, consists
of a collection S of equations of the form

Xi = fi(Xpa(i), ϵi), i = 1, . . . , d, (2.1)

where Xpa(i) denotes the set of parents of Xi. The joint distribution Pϵ = Pϵ1,...,ϵd over
the noise variables that are supposed to be jointly independent, i.e., Pϵ = Pϵ1× . . .×Pϵd .
Given a SEM we could draw its corresponding graph G by creating a vertex for each Xi

and drawing a directed edge from every vertex in Xpa(i) to Xi. We further require the
graph G to be a DAG.

Example 2.11. We can represent the DAG in Figure 2.1 as an SEM of the form

X1 = f1(ϵ1)

X2 = f2(X1, ϵ2)

X3 = f3(X1, ϵ3)

X4 = f4(X2, X3, ϵ4),

where Xi correspond to nodes, fi are individual functions representing the causal rela-
tions, and ϵi are jointly independent noises for i = 1, 2, 3, 4.

7



2. Basics

The functional relationship in (2.1) could be interpreted as a method for describing the
impact that various possible value combinations of (Xpa(i), ϵi) will have on Xi, indicated
by a different equation for each variable. Any subset of the structural equations will
remain valid and could be viewed as the conditions for a certain set of interventions
(Pearl (2009)).
To define a proper graphical model, we introduce a widely used assumption known

as the Markov property that allows us to relate d-separation in DAGs with conditional
independence of probability distributions, see Pearl (2009); Peters et al. (2017).

Definition 2.12 (Markov Property). Given a DAG G = (V,E) and a joint distribution
PX , then PX is said to satisfy

• the local Markov property with respect to the DAG G if each variable is inde-
pendent of its non-descendants given its parents, i.e.,

Xi ⊥⊥ XndG(i)|XpaG(i) for all i ∈ V ;

• the global Markov property with respect to the DAG G if

X ⊥⊥G Y |Z ⇒ X ⊥⊥ Y |Z

for all disjoint sets X, Y, Z ∈ V ;

• the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . , xd) =
d∏

i=1

p(xi|xpaG(i)),

where we assume PX has density p.

The first two Markov properties describe from the perspective that the separation of
nodes in a graph shall be equivalent to the conditional independence of sets of random
variables. The third Markov property provides an easier formulation of the joint distri-
bution given the parents of each node and is usually useful for calculations. Adding a
simple constraint to the joint probability will make all three Markov properties equiva-
lent as shown in the following theorem (Peters et al. (2017)).

Theorem 2.13. All Markov properties in Definition 2.12 are equivalent if PX has a
density function p.

The proof of Theorem 2.13 can be found in Lauritzen (1996).
Since we will only deal with distributions with a density function in this thesis, we

will make mixed use of all three Markov properties from Definition 2.12 and simply refer
to all of them as Markov properties.
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2. Basics

Example 2.14. Let X = (X1, X2, X3, X4) be a random vector with joint probability PX

and density p. Note that we simply refer to all density functions as p. We further assume
PX to be Markovian with respect to the DAG shown in Figure 2.1. Then according to
the global Markov property, we have

X1 ⊥⊥G X4|X2, X3 ⇒ X1 ⊥⊥ X4|X2, X3.

Considering the Markov factorization property, we can rewrite the joint density as a
multiplication

p(x1, . . . , x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3).

As a background knowledge for later discussions regarding identifiability of the causal
structure from the joint distribution, we also define faithfulness and Markov equivalence
class following Peters et al. (2017). We first introduce faithfulness, which can be seen as
the converse of the Markov property.

Definition 2.15 (Faithfulness). Let G be a DAG and PX be a joint distribution, then
PX is faithful to G if

X ⊥⊥ Y |Z ⇒ X ⊥⊥G Y |Z
for all disjoint vertex sets X, Y, Z.

Definition 2.16 (Markov Equivalence Class). We denote the set of probability distri-
butions P that are Markovian with respect to DAG G as

M(G) := {P : P that satisfies Markov properties with respect to G}.

Two DAGs G1 and G2 are Markov equivalent ifM(G1) =M(G2). The set of DAGs
that are Markovian with respect to G is called the Markov equivalence class of G.

Now we will give the evidence why we could represent causal graph nicely with an
SEM following from Peters et al. (2017); Pearl (2009). First, we will show that an SEM
can uniquely define a joint distribution.

Proposition 2.17. An SEM defines a unique joint distribution PX over the variables

X = (X1, . . . , Xd)
⊤ such that Xi

d
= fi(Xpa(i), ϵi) for all i = 1, . . . , d, where ⊤ denotes

matrix (vector) transpose, and
d
= means equal in distribution. We call PX the entailed

distribution of the SEM.

Then, we will show that the SEM can be constructed from a joint distribution as long
as the Markov property holds.

Proposition 2.18. Consider X1, . . . , Xd random variables with strictly positive joint
density PX with respect to the Lebesgue measure. If we assume that PX is Markovian
with respect to G, then there exists an SEM (S,Pϵ) with graph G that generates PX .

Remark 2.19. From now on when we refer to a SEM, we always assume its correspond-
ing graph G is a DAG, and its entailed distribution satisfies the Markov property with
respect to G.

9



2. Basics

2.3. Intervention and Causal Effect

We are now prepared to introduce an intervention (Peters et al. (2017)) into an SEM.
Intuitively, intervening on a variable means changing its direct causes. For example, a
student is playing a game where the only way to win ten euros was to roll a dice to
six, and now we change the winning rule to be flipping a coin and getting a tail. We
call this an intervention since modifying the rule changes the distribution of winning
ten euros. Formally, we construct intervention distributions from an SEM M . They are
obtained by making modifications to M and considering the new entailed distribution.
In general, intervention distributions are different from the original distributions. This
section mainly follows from Peters et al. (2017); Maathuis et al. (2009).

Definition 2.20 (Intervention). Let M = (S,Pϵ) be an SEM with entailed distribution
PX . We call the replacement of one (or more) structural equations (without generating
cycles) an intervention, and denote the entailed distribution of the new SEM as

P̃X = PX|do(Xi=f̃(X̃pa(i),ϵ̃i)))
,

which we call an intervention distribution.

In this thesis, we will only work with perfect intervention where f̃(X̃pa(i), ϵ̃i) is just
a point mass on some a ∈ R, hence we will use a shorter notation PX|do(Xi=a). It is
important to understand that an intervention distribution is different from a conditional
distribution as explained in the following example.

Example 2.21. Assume we have an SEM

X1 = ϵ1, X2 = X1 + ϵ2

with ϵ1, ϵ2
i.i.d.∼ N (0, 1). Then we have

PX1|do(X2=a) ∼ N (0, 1),

while
PX1|X2=a ∼ N (a, 1)

and
PX1|do(X2=a) ̸= PX1|X2=a.

Having the Markov property ensures us to compute the intervention distribution of
a perfect intervention relatively convenient with a truncated factorization formula, see
Maathuis et al. (2009).

Proposition 2.22. Let p be the density of PX satisfying the Markov property with
respect to some underlying DAG, then the density of the intervention distribution P̃X

after intervening on Xi is denoted by

p(x1, . . . , xd|do(Xi = x̃i)) =

{∏d
j ̸=i p(xj|xpa(i))

∣∣
xi=x̃i

, if xi = x̃i,

0, otherwise.
,

10
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We could further compute the marginal distribution and the expectation of a certain
variable after intervention following Proposition 2.22 and Maathuis et al. (2009).

Proposition 2.23. The marginal distribution of Y = X1 after the intervention do(Xi =
x̃i) for i = 2, . . . , d can be computed by

p(y|do(xi = x̃i)) =

{
p(y), if Y ∈ Xpa(i),∫
p(y|x̃i, xpa(i)) · p(xpa(i))dxpa(i), otherwise.

The expectation of Y after intervention do(Xi = x̃i) is thus

E[Y |do(Xi = x̃i)] =

{
E[Y ], if Y ∈ Xpa(i),∫
E[Y |x̃i, xpa(i)] · p(xpa(i))dxpa(i), otherwise,

where E[·] denotes the expectation of a certain random variable under the corresponding
probability distribution, and E[·|·] denotes the conditional expectation.

It is interesting to see that the distributions of the parents of a variable Xi will not
change after an intervention on Xi. This leads us to our definition of the causal effect
of an intervention given the SEM, see Maathuis et al. (2009).

Definition 2.24 (Causal Effect). Following the notations from Proposition 2.23, we
define the causal effect of do(Xi = x̃i) on Y as

d

dx
E[Y |do(Xi = x)]

∣∣∣∣
x=x̃i

.

It is worth noticing that the existence of a causal effect is related to the existence of
a directed path. The latter statement is a necessary condition of the former, yet not a
sufficient condition, see Peters et al. (2017).

Proposition 2.25. Given a SEM with corresponding graph G drawn upon variables
X1, . . . , Xd. If there is no directed path from Xi to Xj, then there is no causal effect of
Xi on Xj. Sometimes there is still no causal effect even if a directed path exists.

The first statement follows directly from the Markov factorization property. The
second statement could be shown by a counter example.

Example 2.26. Assume we have an SEM

X1 = ϵ1, X2 = −X1 + ϵ2, X3 = X1 +X2 + ϵ3

with ϵ1, ϵ2, ϵ3
i.i.d.∼ N (0, 1). Plugging X2 in X3 we have X3 = X1−X1 + ϵ2 + ϵ3 = ϵ2 + ϵ3.

Because the noises are jointly independent, we have

PX3 = PX3|X1=a = PX3|do(X1=a),

and the causal effect of X1 on X3 is by definition

d

dx
E[X3|do(X1 = x)]

∣∣∣∣
x=a

=
d

dx

[∫
X3dPX3|do(X1=x)

] ∣∣∣∣∣
x=a

=
d

dx

[∫
X3dPX3

] ∣∣∣∣∣
x=a

= 0,

since the integral is independent of x.

11
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2.4. Linear SEM with Homoscedastic Noise

Now we look at a special case of the Gaussian linear SEM as an example of the definitions
in previous sections, and as a foundation for later chapters. The characterizations and
theories follow mainly from Peters and Bühlmann (2014); Chen et al. (2019).

Assumption 2.27. Without loss of generality, we assume a centered random vector
X = (X1, . . . , Xd)

⊤. We consider an SEM with DAG G = (V,E) of the form

Xi =
∑
k ̸=i

βikXk + ϵi, i = 1, . . . d, (2.2)

where all ϵi’s are jointly independent random variables with mean zero and the coef-
ficients βik are unknown parameters. Following Peters and Bühlmann (2014) we as-
sume that all ϵi’s have a common unknown variance σ2 > 0. Additionally, for each
i ∈ {1, . . . , d} we require βik = 0 if and only if (Xk, Xi) /∈ E.

We call the SEM generated by the system of equations (2.2) and the assumed type of
distributions of (ϵi)

d
i=1 in Assumption 2.27 a linear structural equation model (LSEM)

with homoscedastic noise. To see the nice properties of such a LSEM, we first recall
a definition of matrix similarity from linear algebra following from Horn and Johnson
(2012).

Definition 2.28. Let A,B be two n × n matrices. We say that B is permutation
similar to A if there is a permutation matrix P such that

B = P⊤AP.

Recall that a square matrix P is a permutation matrix if exactly one entry in each row
and column is equal to one.

We are now ready to characterize a LSEM with homoscedastic noises, see Chen et al.
(2019).

Proposition 2.29. We denote the coefficients with a matrix B = (βji)
d
j,i=1 that is

permutation similar to a strict lower triangular matrix with all zero diagonal entries.
Then, the system of equations (2.2) admit the unique solution X = (I − B)−1ϵ, where
ϵ = (ϵ1, . . . , ϵd)

⊤ and I is the identity matrix. Moreover, X has the covariance matrix

E[XX⊤] = σ2(I −B)−1(I −B)−⊤,

where −⊤ denotes the inverse transpose of a matrix.
By Definition 2.24 and Proposition 2.25 we compute the causal effects of Xi on Xj as

C(i→ j) :=
d

dx
E[Xj|do(Xi = x)]

∣∣∣
x=xi

=

{
(I −B)−1

ji , if i→ j,

0, otherwise.
(2.3)
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Structural equation models enable us to exploit different types of restrictions. Specif-
ically, we call a SEM with jointly independent normally distributed noise variables a
Gaussian SEM. In general, it is impossible to identify the underlying graphical structure
G uniquely from a SEM with the entailed distribution PX even if all relevant variables are
observed. We will formalize this concept as causal sufficiency in the following definition
(see Spirtes et al. (2000)).

Definition 2.30 (Causal Sufficiency). A set of variables X is causally sufficient if
there is no hidden common cause S /∈ X that is causing more than one variable in X.

The causal sufficiency assumption does not hold in many real world scenarios, however
it is the basic assumption for our study, on which the reasoning of identifiability is based.
Lemma 2.31 shows that the identifiability is only limited to Markov equivalence class
for causally sufficient data, see Peters et al. (2017).

Lemma 2.31 (Identifiability of Markov Equivalence Class). Let us assume distribution
PX to be Markovian and faithful with respect to DAG G0, then if PX is the entailed
distribution of another DAG G, PX is also Markovian and faithful with respect to G if
and only if G is in the Markov equivalence class of G0.

There are two main drawbacks of this identifiability. First, there might still be plenty
of possible DAGs in the Markov equivalence class, and it is hard to decide which is the
true one. Second, faithfulness is hard to test in general, see Zhang and Spirtes (2008).
Luckily, recent studies have shown that unique identifiability is possible for causally
sufficient data for some special SEMs: (i) if we consider a LSEM with non-Gaussian
noise variables, then the underlying DAG is identifiable (Shimizu et al. (2006)); (ii) if
we consider SEMs with non-Gaussian noises that are added to the non-linear functions,
then the underlying graphical structure is identifiable from PX (Hoyer et al. (2008)); (iii)
if we consider a Gaussian LSEM with noise variables sharing the same variance, then
the underlying DAG is identifiable from the joint distribution PX . We formally describe
here the third case before we use it later, see Peters and Bühlmann (2014).

Theorem 2.32 (Identifiability). Let PX be the entailed distribution of the SEM (2.2)
where we additionally assume that the noise variables are i.i.d. normally distributed,

i.e., ϵ1, . . . , ϵd
i.i.d.∼ N (0, σ2), then the underlying DAG G is identifiable from the entailed

distribution PX and the coefficients βik can be reconstructed for all i = 1, . . . , d and
k ∈ paG(i).

Following Theorem 2.32, we are confident that estimating the causal structures and
causal effects is at least theoretically possible under the setting of Gaussian LSEM with
noises of equal variances.

2.5. Bayesian Inference in Bivariate Case

In this section we will further restrict our attention to bivariate case assuming Gaussian
LSEM with homoscedastic noise as we will later work mainly under this setting. We
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will look into the two formulations of SEMs, analyze the distributions of the bivariate
random vectors, and compute the causal effect of one variable on another. The notations
and results in this section follows from Strieder et al. (2021).
Let G = (V,E) be a DAG with 2 nodes V = {X1, X2}. Consider a cause-effect

pair X = (X1, X2)
⊤ as a bivariate random vector on R2 with zero mean. We write

(X1, X2) ∈ E if X1 is the cause of X2 and vice versa. Since we only have two variables,
the cause and effect are naturally to be direct. We always assume that there is an
underlying causal relation between X1 and X2, hence E ̸= ∅ and have exactly one
element, either (X1, X2) or (X2, X1). We write the DAG with (X1, X2) ∈ E as G12, and
conversely the DAG with (X2, X1) ∈ E as G21. It is clear that G12 and G21 are the only
two possible graphical structures, i.e., G ∈ {G12,G21}.
Then there are two possible formulations of LSEMs. Let two noise variables ϵ1, ϵ2

i.i.d.∼
N (0, σ2). If we assume the relationship between X1 and X2 to be represented by G12,
i.e., 1→ 2, then we formulate the SEM as

(M1) X1 = ϵ1, X2 = β21X1 + ϵ2.

On the other hand, if we assume the causal relation to be the opposite direction, i.e.,
2→ 1, then we have the SEM

(M2) X1 = β12X2 + ϵ1, X2 = ϵ2.

In both systems of equations β12, β21 ∈ R are unknown coefficients. We can represent
the coefficients with one variable by setting

β = β121{G = G21}+ β211{G = G12},

where 1{·} is the indicator function that attains value 1 when the statement inside
the curly bracket is true, and 0 otherwise. Under this assumption, we can express the
distribution of X given G, β and σ2.
Following Proposition 2.29, we now characterize the entailed distribution of model

(M1) and model (M2). Writing the system of equations of model (M1) in matrix form,
we have (

X1

X2

)
=

(
1 0
β21 1

)(
ϵ1
ϵ2

)
,

hence we can identify the distribution of X given all other coefficients as

X|β21, σ
2,G12 ∼ N2 (0,Σ) (2.4)

with covariance matrix

Σ = σ2

(
1 β21

β21 β2
21 + 1

)
,

where N2 (µ,Σ) stands for bivariate normal distribution with mean vector µ and covari-
ance matrix Σ. Similarly, reformulating model (M2) in matrix form we have(

X1

X2

)
=

(
1 β12

0 1

)(
ϵ1
ϵ2

)
,
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and the entailed distribution of (M2) is

X|β12, σ
2,G21 ∼ N2 (0,Σ) (2.5)

with covariance matrix

Σ = σ2

(
β2
12 + 1 β12

β12 1

)
.

Following the notations of Pearl (2009) and Strieder et al. (2021), an intervention on
Xi (i = 1, 2) is expressed as do(Xi = xi). The causal effects of both directions can be
expressed by β12 and β21 respectively as

C(1→ 2) =
d

dx
E[X2|do(X1 = x)]

∣∣∣
x=x1

=

{
β21, if 1→ 2,

0, otherwise,
(2.6)

and

C(2→ 1) =
d

dx
E[X1|do(X2 = x)]

∣∣∣
x=x2

=

{
β12, if 2→ 1,

0, otherwise.
(2.7)

2.6. Bootstrapping

To end the theoretical background chapter, we now briefly introduce what is bootstrap
as a resampling method following Rizzo (2019) since we will be needing this later. In
this section, we will mainly focus on introducing what this method is and how it can
be proceeded. We will evaluate the goodness of the estimation in later chapter directly
with empirical results.
Bootstrap methods are a class of non-parametric Monte Carlo methods that estimate

the distribution of a population by resampling. Resampling methods treat an observed
sample as a finite population, and random samples are generated from it to estimate
population characteristics and make inferences about the sampled population. Bootstrap
methods are often used when the distribution of the target population is not specified,
i.e., the sample is the only information available, which is usually the case in real-world
scenarios.
The empirical distribution of the observed samples can be considered to have similar

characteristics as the true underlying distribution. We can estimate the statistic of
the true distribution by repeatedly generating random samples from the observed data,
which we also call resampling.
Suppose that x = (x1, . . . , xn) is an observed random sample from a distribution with

cumulative distribution function F (x). If X∗ is selected at random from x, then

P(X∗ = xi) =
1

n
, i = 1, . . . , n.

Bootstrap generates random samples X∗
1 , . . . , X

∗
n by sampling with replacement from

x, i.e., the random variables X∗ are i.i.d., uniformly distributed on the set {x1, . . . , xn}.
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We could also see this as generating samples from the empirical distribution. The
empirical cumulative distribution function Fn(x) is an estimator of F (x). It can be shown
that Fn(x) is a sufficient statistic for F (x). In fact, the empirical cumulative distribution
function Fn is the cumulative distribution function of X∗. Thus in bootstrap, there are
two approximations. Function Fn is an approximation of function F . Function F ∗

n of
the bootstrap replications is an approximation of the function Fn. Resampling from the
sample x is equivalent to generating random samples from the distribution Fn(x).

Strategy. Suppose θ is the parameter of interest , and θ̂ is an estimator of θ. Then the
bootstrap estimate of the distribution of θ̂ is obtained as follows.

1. For each bootstrap replication indexed b = 1, . . . , B:

a) generate sample x∗(b) = (x∗
1, . . . , x

∗
n) by sampling with replacement from the

observed sample x1, . . . , xn;

b) compute the b-th replication θ̂(b) from the b-th bootstrap sample.

2. The bootstrap estimate of Fθ̂(·) is the empirical distribution of the replications

θ̂(1), . . . , θ̂(B).
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From now on, we only compute the results for estimating C(1 → 2) no matter how the
true causal direction is unless otherwise stated. The causal effect of the other direction
C(2 → 1) can be easily computed analogously. Recall from the last chapter that the
causal effect given by (2.6) only depends on β21 given the DAG structure. In other
words, if 1 → 2 is the true causal direction, we would expect the estimated C(1 → 2)
to be close to β21, otherwise the estimated C(1 → 2) is expected to be approximately
0. Furthermore, instead of having a fixed estimate of C(1→ 2) given observational data
(Mooij et al. (2016)), we are interested in providing a credible interval for C(1 → 2)
by doing Bayesian inference. For this purpose, we will first define and compute prior
distributions of the DAG structure G, the variance σ2 and the causal effect β21, then
derive the posterior distribution of C(1 → 2) such that we could sample from it, and
conclude a credible interval that we believe C(1→ 2) will most likely lie in. We will first
start with deriving the distributions of the bivariate random vector X = (X1, X2)

⊤, then
generalize it to the case when we have a set of n data pairs Xn generated i.i.d. from the
same distribution as X. Note that we sometimes do not distinguish between a random
variable (X1, X2) and a sample (x1, x2) drawn from the random variable. In the end, we
will derive the posterior distributions and the credible intervals for the causal effects.
Since there is no formal definition of credible intervals, we will compute two kinds of
most commonly used credible intervals, the equal-tailed interval (ETI) and the highest
density region (HDR), and a third type that we defined ourselves through a threshold.

3.1. Posterior Distribution of Parameters

Let us assume X1, X2 to be variables either following model (M1) or model (M2), i.e.,
we always assume that there exists a causal relation between the two variables, yet the
direction and the strength is unclear.

3.1.1. Given Random Variable X

Our goal in this section is to sample G, σ2 and β from their posterior distributions
given data X. More formally speaking, we need to compute the posterior distribution
p(σ2, β,G|X), and the marginal posterior distributions of each random variable. We
first briefly recall the Bayes’ theorem, then we make our assumptions about the prior
distributions of each parameters, and finally we derive step-by-step the posterior dis-
tributions. By Bayes’ theorem, we have the posterior distribution of graph structure G
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given X as
p(G|X) ∝ p(X|G) · p(G), (3.1)

and the posterior distributions of parameters σ2 and β given X and G (von Kügelgen
et al. (2019)), which could be expressed as

p(σ2, β|X,G) ∝ p(X|σ2, β,G) · p(σ2, β|G), (3.2)

where p(·) denote a probability density function. Note that here we do not distinguish
between a distribution and its density function.
Following the theory from Castelletti and Consonni (2021), it is natural to set the

prior distributions of the graph structure G and parameters β21, σ
2 as

p(G) ∼ 1

2
1{G = G12}+

1

2
1{G = G21}, (3.3)

p(σ2|G12) ∼ I-Ga

(
1

2
a12,

1

2
U11

)
, (3.4)

p(β21|σ2,G12) ∼ N
(
U12

U11

,
σ2

U11

)
, (3.5)

where I-Ga(a, b) stands for Inverse-Gamma distribution with shape a > 0 and rate b > 0
(see Appendix B.1). The usage of parameters a12, U11, U12 ∈ R follows from Castelletti
and Consonni (2021) for comprehensive and computational convenience. In order to
let the above distributions be well defined, we need a12, U11, U12 > 0. Plugging the
prior distributions in the Bayes’ theorem, we could split our goal of this section into
three different parts, more specifically we need to compute the three distributions in the
following order

p(G|X), (3.6)

p(σ2|X,G12), (3.7)

p(β21|σ2, X,G12). (3.8)

We first start with deriving a convenient formulation of p(X|G12) such that is easy to
refer to and compare with later.

Lemma 3.1. The distribution p(X|G12) can be formualted as

p(X|G12) = p(X,G12)
∫ +∞

0

(∫ +∞

−∞
p(β12|σ2, X,G12)dβ21

)
p(σ2|X,G12)d(σ2) (3.9)

= p(X,G12)
∫ +∞

0

p(σ2|X,G12)d(σ2). (3.10)

Proof. We formulate p(X|G12) as the integration of the joint density p(X, β21, σ
2|G12)
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over β21 and σ2

p(X|G12) =
∫
(0,+∞)×R

p(X, β21, σ
2|G12)d(β21 × σ2)

=

∫ +∞

0

∫ +∞

−∞
p(X, β21, σ

2|G12)dβ21d(σ
2)

=

∫ +∞

0

∫ +∞

−∞
p(X,G12)p(β21, σ

2|X,G12)dβ21d(σ
2)

= p(X,G12)
∫ +∞

0

∫ +∞

−∞
p(β12|σ2, X,G12)p(σ2|X,G12)dβ21d(σ

2)

= p(X,G12)
∫ +∞

0

(∫ +∞

−∞
p(β12|σ2, X,G12)dβ21

)
p(σ2|X,G12)d(σ2)

= p(X,G12)
∫ +∞

0

p(σ2|X,G12)d(σ2),

where the third equality could be achieved since p(X,G12) depends neither on σ2 nor on
β21. The first equality of rewriting a doubled integral by a iterated integral follows from
Fubini’s theorem (see Royden and Fitzpatrick (1988)).

Equation (3.9) and (3.10) are interesting in the sense that they show how the posterior
densities of σ2 and β21 will appear when we compute p(X|G12). It will be cumbersome
to separately compute the two posterior densities. Luckily, now we can derive them
simply by comparing the density functions. Then, we will compute p(X|G) and derive
the marginal posterior densities along the way. We will first get

Lemma 3.2. The marginal posterior distribution of β21 is

β21|σ2, X,G12 ∼ N
(
µ,

σ2

λ

)
, where µ =

x1x2 + U12

x2
1 + U11

, λ = x2
1 + U11. (3.11)

which gives a closed form expression for (3.8).

Proof. To get a closed form expression for p(G|X), we still need to compute p(X|G),
which follows from law of total probability

p(X|G12) =
∫
(0,+∞)×R

p(X|β21, σ
2,G12)p(σ2, β21|G12)d(σ2, β21)

=

∫
(0,+∞)×R

p(X|β21, σ
2,G12)p(β21|σ2,G12)p(σ2|G12)d(σ2, β21)

=

∫
(0,+∞)×R

1

det(2πΣ)1/2
· exp

(
− 1

2σ2
(x1, x2)

(
β2
21 + 1 −β21

−β21 1

)(
x1

x2

))

· 1√
2π σ2

U11

exp

(
−
(β21 − U12

U11
)2

2σ2

U11

)
·
(
1
2
U11

) 1
2
a12

Γ
(
1
2
a12
) (

1

σ2

) 1
2
a12+1

· exp
(
−U11

σ2

)
d(σ2, β21)
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=
1

Γ(a12
2
)

∫
(0,+∞)×R

1

2πσ2

√
2π σ2

U11

·
(
U11

2σ2

) 1
2
a12+1

· 2

U11

· exp

(
− 1

2σ2

[
(β2

21 + 1)x2
1 − 2β21x1x2 + x2

2

]
− 1

2σ2

[
U11β

2
21 − 2U11β21 +

U2
12

U11

]
− U12

2σ2

)
d(σ2, β21)

=
1

Γ(a12
2
)U11

∫ +∞

0

∫ +∞

−∞

1

πσ2

√
2π σ2

U11

·
(
U11

σ2

) 1
2
a12+1

· exp

(
− 1

2σ2

[
β2
21(x

2
1 + U11)− 2β21(x1x2 + U12)

+ x2
1 + x2

2 +
U2
12

U11

+ U11

])
dβ21dσ

2,

(3.12)

where det(Σ) denotes the determinant of a matrix and the last equality of rewriting a
doubled integral by a iterated integral follows from Fubini’s theorem.
Reformulating the expression inside exp(·) in the form of a density function of normal

distribution with respect to β21, we have

exp

(
− 1

2σ2

(
x2
1 + x2

2 +
U2
12 + U2

11

U11

− (x1x2 + U12)
2

x2
1 + U11

))

· exp

− 1

2σ2

(
β21

√
x2
1 + U11 −

x1x2 + U12√
x2
1 + U11

)2


= exp

(
− 1

2σ2

(
x2
1 + x2

2 +
U2
12 + U2

11

U11

− (x1x2 + U12)
2

x2
1 + U11

))
· exp

(
−x2

1 + U11

2σ2

(
β21 −

x1x2 + U12

x2
1 + U11

)2
)
.

(3.13)

We further reformulate and simplify (3.12) as

1

Γ(a12
2
)

∫ +∞

0

1

2πσ2

(
U11

x2
1 + U11

) 1
2

·
(
U11

σ2

) 1
2
a12+1

·

∫ +∞

−∞

1√
2πσ2

x2
1+U11

· exp

(
−x2

1 + U11

2σ2

(
β21 −

x1x2 + U12

x2
1 + U11

)2
)
dβ21


· exp

(
− 1

2σ2

(
x2
1 + x2

2 +
U2
12 + U2

11

U11

− (x1x2 + U12)
2

x2
1 + U11

))
d(σ2).

(3.14)
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It is interesting to see that (3.14) has exactly the same form as (3.9), and the integrated
part inside the inner integral of (3.14) is actually the density function of a normal
distribution. We can make two conclusions out of this. First, the inner integral can be
simply reduced to 1. Second, we derive the posterior distribution β21|σ2, X,G12.

Now as we continue to simplify (3.14), we could also derive the marginal posterior of
σ2.

Lemma 3.3. The marginal posterior distribution of σ2 is

σ2|X,G12 ∼ I-Ga(a, b),

where a =
1

2
a12 + 1, b =

1

2

[
x2
1 + x2

2 +
U2
12 + U2

11

U11

− (x1x2 + U12)
2

x2
1 + U11

]
,
(3.15)

which gives a closed form expression for (3.7).

Proof. We further simplify (3.14) to

1

Γ(a12
2
)

∫ +∞

0

1

2πσ2

(
U11

x2
1 + U11

) 1
2

·
(
U11

σ2

) 1
2
a12+1

· exp
(
− 1

2σ2

(
x2
1 + x2

2 +
U2
12 + U2

11

U11

− (x1x2 + U12)
2

x2
1 + U11

))
d(σ2).

(3.16)

The term inside the exponential component that does not depend on σ2 can be refor-
mulated as

U11x
2
1 + 2U2

11x
2
1 + U2

11x
2
2 + U2

12x
2
1 + U3

11 − 2U11U12x1x2

U11(x2
1 + U11)

=
U11(x

2
1 + U11)

2 + (U11x2 − U12x1)
2

U11(x2
1 + U11)

.

(3.17)

We do the reformulation because it will have a better looking multiplicative inverse.
Plugging (3.17) into (3.16) and turning what inside the integral sign into the form of a
density function of a Inverse-Gamma distribution, we further rewrite (3.16) as

a12
2π
· U

a12+
3
2

12 · (x2
1 + U11)

1
2
a12+

1
2

[U11(x2
1 + U11)2 + (U11x2 − U12x1)2]

1
2
a12+1

·
∫ +∞

0

1

Γ(1
2
a12 + 1)

(
x2
1 + U11 +

(U11x2 − U12x1)
2

U11(x2
1 + U11)2

) 1
2
a12+1

· (2σ2)−( 1
2
a12+1)−1 · exp

[
− 1

2σ2

(
U11(x

2
1 + U11)

2 + (U11x2 − U12x1)
2

U11(x2
1 + U11)

)]
d(2σ2),

(3.18)
with exactly the same form as (3.10). Similar as before, we get two results out of the
expression (3.18). First, we can simplify the integral to 1, since it is an integration of
a probability density function over the whole range. Second, we derive the posterior
distribution σ2|X,G12.
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3. Bayesian Inference

Now we come the the last step before we can derive the posterior of the graphical
structure G.

Lemma 3.4. The density function of the bivariate random variable X = (x1, x2) given
G = G12 is

p(X|G12) =
a12
2π
· U

a12+
3
2

11 · (x2
1 + U11)

1
2
a12+

1
2

[U11(x2
1 + U11)2 + (U11x2 − U12x1)2]

1
2
a12+1

. (3.19)

The bivariate random variable X = (x1, x2) given G = G21 is

p(X|G21) =
a21
2π
· U

a21+
3
2

22 · (x2
2 + U22)

1
2
a21+

1
2

[U22(x2
2 + U22)2 + (U22x1 − U21x2)2]

1
2
a21+1

. (3.20)

Proof. The expression of p(X|G12) follows directly from (3.18) after setting the integral
as 1. The density p(X|G21) can be derived analogously by just switching the positions
of variable 1 and 2.

Figure 3.1 displays the conditional density (X|G12) characterized by 30 × 30 points
when we set a12 = 2, U11 = 1, and U12 = 0. Lemma 3.4 already indicates p(G|X) since it
differs from p(X|G) only by multiplying a constant under the prior assumption that both
graphical structures are obtained with the same probability. Yet we still want to compute
the exact density probability and represent the expression with simpler notations.

Lemma 3.5. We denote with a new notation

r2112 :=
p(G21|X)

p(G12|X)
=

p(X|G21)
p(X|G12)

, (3.21)

and obtain the marginal posterior distribution of G as

p(G|X) = p(G12|X)1{G = G12}+ p(G21|X)1{G = G21}, (3.22)

with

p(G12|X) =
1

1 + r2112
, p(G21|X) =

r2112
1 + r2112

. (3.23)

Proof. The equality in (3.21) holds based on our discussion that p(G|X) and p(X|G) are
proportional to each other. We obtain (3.23) by further considering the constraint that
the probabilities of obtaining both graphs must add up to one, i.e.,

p(G12|X) + p(G21|X) = 1 (3.24)

It is interesting to see that we could compute r2112 from (3.19) and (3.20), which only
depends on X and hyperparamters a12, U11, U12 that we assumed for the prior distribu-
tion. Until now, we are confident that we could sample G, σ2 and β one by one following
this order from their corresponding posterior distributions as long as we know X.
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Figure 3.1.: The conditional density function of X = (x1, x2) given G = G12 for a12 =
2, U11 = 1, and U12 = 0.

3.1.2. Given i.i.d. Samples Xn

Especially for our later purpose of testing the model using a group of samples generated
independently from the same distribution, we generalize the results in the previous
section from random variable X to a set of n i.i.d. samples Xn := {X1, X2, . . . , Xn},
where each Xi = (xi,1, xi,2) denotes a bivariate sample for i = 1, . . . , n. Our goal remains
unchanged, i.e., we still want to sample G, σ2 and β from their posterior distributions,
yet given a pile of data sampled i.i.d. from the same distribution as X in the previous
section. All the computations are similar as and are half done in the previous section,
and now we give the expressions of the three marginal posterior densities.

Lemma 3.6. The posterior density of G given Xn is

p(G|X) = p(G12|X)1{G = G12}+ p(G21|X)1{G = G21} (3.25)
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with

p(G12|X) =
1

1 + r2112
, p(G21|X) =

r2112
1 + r2112

, (3.26)

where

r2112 :=

∏n
i=1 p(Xi|G21)∏n
i=1 p(Xi|G12)

= exp

(
n∑

i=1

log p(Xi|G21)−
n∑

i=1

log p(Xi|G12)

)
, (3.27)

and p(Xi|G) has the same form as (3.19) and (3.20) for all i ∈ {1, . . . , n}, G ∈ {G12,G21}.
The posterior distribution of β21 is

β21|σ2, Xn,G12 ∼ N
(
µ,

σ2

λ

)
, where µ =

∑n
i=1 xi,1xi,2 + U12∑n

i=1 x
2
i,1 + U11

, λ =
n∑

i=1

x2
i,1+U11. (3.28)

The posterior distribution of σ2 is

σ2|Xn,G12 ∼ I-Ga(a, b),

where a =
1

2
a12 + n, b =

1

2

[∑
i=1

(x2
i,1 + x2

i,2) +
U2
12 + U2

11

U11

− (
∑n

i=1 xi,1xi,2 + U12)
2∑n

i=1 x
2
i,1 + U11

]
.

(3.29)

Proof. Generalizing results from the previous section, we find that the posterior distri-
bution of G is

p(G|Xn) ∝ p(Xn|G)p(G) = p(G)
n∏

i=1

p(Xi|G), (3.30)

which directly derives the r2112 for n data. Then we compute the posterior distributions
of the two parameters σ2 and β through p(X, β21, σ

2|G12). Recall from (3.12) that

p(Xn, β21, σ
2|G12) = p(Xn|β21, σ

2,G12)p(σ2, β21|G12)
= p(Xn|β21, σ

2,G12)p(β21|σ2,G12)p(σ2|G12)

=
1

Γ(a12
2
)
· 1

(2πσ2)n
√

2π σ2

U11

·
(
U11

2σ2

) 1
2
a12+1

· 2

U11

· exp

{
− 1

2σ2

n∑
i=1

[
(β2

21 + 1)x2
i,1 − 2β21xi,1xi,2 + x2

i,2

]
− 1

2σ2

[
U11β

2
21 − 2U11β21 +

U2
12

U11

]
− U12

2σ2

}
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=
2

Γ(a12
1
)U11

· 1

(2πσ2)n
√

2π σ2

U11

·
(
U11

2σ2

) 1
2
a12+1

· exp

{
− 1

2σ2

[
β2
21

(
n∑

i=1

x2
i,1 + U11

)
− 2β21

(
n∑

i=1

xi,1xi,2 + U12

)

+
n∑
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(
x2
i,1 + x2

i,2

)
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U2
12

U11

+ U11
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∝ 1√
2π σ2∑n

i=1 x
2
i,1+U11

· exp

−
(
β21 −

∑n
i=1 xi,1xi,2+U12∑n

i=1 x
2
i,1+U11

)2
2σ2

(∑n
i=1 x

2
i,1 + U11

)−1


· (2σ2)−[(n+ 1

2
a12)−1] · exp

{
− 1

2σ2

[
n∑

i=1

(x2
i,1 + x2

i,2)

+
U2
12 + U2

11

U11

− (
∑n

i=1 xi,1xi,2 + U12)
2∑n

i=1 x
2
i,1 + U11

}
,

(3.31)

where the first line of (3.31) corresponds to the posterior distribution of β21, while the
second and third lines correspond to the posterior distribution of σ2.

3.1.3. Discussion of Hyperparameters

Let Xn = {(xi,1, xi,2)}i=1,...,n be a group of n centered data pairs such that (xi,1, xi,2)
i.i.d.∼

N (0,Σ) for i = i = 1, . . . , n, where Σ is a covariance matrix in general. In particular,
We denote

X1 = (xi,1)i=1,...,n
i.i.d.∼ N (0,Σ11) and X2 = (xi,2)i=1,...,n

i.i.d.∼ N (0,Σ22).

It is clear that the normally distributed sequences (xi,1)i=1,...,n and (xi,2)i=1,...,n satisfy
E[|x1,1|] < ∞ and E[|x1,2|] < ∞, which are the conditions of the strong law of large
numbers (strong LLN) (see Theorem A.2). So we have

1

n

n∑
i=1

xi,1
a.s.−−−→

n→∞
0,

1

n

n∑
i=1

xi,2
a.s.−−−→

n→∞
0.

Moreover, since E[x2
1,1] = σ2

1 <∞ and E[x2
1,2] = σ2

2 <∞. By the strong LLN we have

1

n

n∑
i=1

x2
i,1

a.s.−−−→
n→∞

Σ11,
1

n

n∑
i=1

x2
i,2

a.s.−−−→
n→∞

Σ22.

In addition, by Hölder’s inequality (see Appendix A.4) we have E[|xi,1xi,2|] < ∞. By
the strong LLN we have

1

n

n∑
i=1

xi,1xi,2
a.s.−−−→

n→∞
E[xi,1xi,2] = Σ12.
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Recall the formulas of priors (3.5), (3.4), posteriors (3.28), (3.29), and parameters
a, b, µ, λ characterizing the above mentioned distributions. Following Castelletti and
Mascaro (2022), we set U11 = U22 ̸= 0, U12 = U21 = 0, and a12 = 2. We want to clarify
under which conditions of setting the hyperparameters and rescaling the data would
our estimation of the causal effect (asymptotically) make sense. We will support our
statements by analyzing the asymptotic (approximated) behaviours of two statistics:

• µ, the posterior mean of β21;

• p(G|Xn), the posterior distribution of graphical structures.

Lemma 3.7. If nΣ11 ≫ U11, then µ is asymptotically equal to β21. If nΣ11 ≪ U11, then
µ is approximately equal to nβ21σ

2/U11.

Proof. Discussing β21 only makes sense if we assume Xi follows the entailed distribution
of model (M1) and the likelihood of Xi to be as (2.4) for all i ∈ {1, . . . , n}, i.e., xi,1 =

ϵi,1, xi,2 = β21xi,1 + ϵi,2 with ϵi,1, ϵi,2
i.i.d.∼ N (0, σ2). Under this assumption we have

Σ11 = σ2, Σ22 = (1 + β2
21)σ

2, and Σ12 = β21σ
2.

Case 1. If nΣ11 ≫ U11, then by continuous mapping theorem (CMT) (see Theorem
A.3) we have

µ
a.s.−−−→

n→∞

Σ12

Σ11

= β21.

Case 2. If nΣ11 ≪ U11, then

µ ≈ nΣ12

U11

=
nβ21σ

2

U11

,

which depends not only on β21, but also on n and σ2.

Case 1 obtains an approximation of µ asymptotically, which is exactly what we would
expect. Case 2 presents the case where the estimation is approximately incorrect, i.e.,
even if n is large, the estimation of µ will still be far from the true causal effect as long
as U11 dominates over nΣ11. Hence, we would always want to make sure that case 1
happens, and tries our best to prevent the setting of case 2 to happen.

Lemma 3.8. If nΣ11 ≫ U11, then assuming model (M1) to be true, we have

p(G12|Xn) >
1

2

and p(G12|Xn) increases as β21 increases; assuming model (M2) to be true, we have

p(G21|Xn) >
1

2

and p(G21|Xn) increases as β12 increases.
On the other hand, if nΣ11 ≪ U11, then assuming model (M1) to be true, we have

p(G21|Xn) ≈ C · 1

U11

;
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assuming model (M2) to be true, we have

p(G12|Xn) ≈ C · 1

U22

.

Proof. By (3.30) and the CMT, we have

p(G12|Xn)
a.s.−−−→

n→∞
C · U

a12+
3
2

11 (nσ2 + U11)
1
2
a12+

1
2

[U11(nσ2 + U11)2 + U2
11n(1 + β2

21)σ
2]

1
2
a12+1

,

where C is a normalizing constant.
Case 1. If nΣ11 ≫ U11. When we assume model (M1) to be true, we have

p(G12|Xn) ≈ C · U
a12+

3
2

11 (nσ2)
1
2
a12+

1
2

[U11(nσ2)2 + U2
11n(1 + β2

21)σ
2]

1
2
a12+1

= C · 1

(U11nσ2)
1
2

[
nσ2

U11
+ (1 + β2

21)
] 1

2
a12+1

≈ C · U
1
2
a12+

1
2

11

(nσ2)
1
2
a12+

3
2

= C · 1

U11

(
U11

nσ2

) 1
2
a12+

3
2

,

where the last approximation is based on our assumption that β21 is not that large and
hence nσ2

U11
≫ 1 + β21. Similarly, we have

p(G21|Xn) ≈ C · 1

U22

(
U22

n(1 + β2
21)σ

2

) 1
2
a21+

3
2

.

Hence,

r2112 ≈
(

1

1 + β2
21

) 1
2
a12+

3
2

< 1

and decreases as β21 increases. More precisely, we have

p(G12|Xn) =
1

1 + r2112
>

1

2
, p(G21|Xn) =

r2112
1 + r2112

<
1

2
,

and when β21 increases, r2112 decreases causing p(G12|Xn) to increase and p(G21|Xn) to
decrease, i.e., we are more confident to predict G = G12 for larger β21.
When we assume instead model (M2) to be true, we have analogously

r2112 ≈
(
1 + β2

12

1

) 1
2
a21+

3
2

> 1,
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where r2112 increases with β12. More precisely, we have

p(G12|Xn) =
1

1 + r2112
<

1

2
, p(G21|Xn) =

1

1 + r2112
>

1

2
.

When β12 increases, p(G12|Xn) decreases and p(G21|Xn) increases, i.e., we are more
confident to predict G = G21, leading us to predict C(1→ 2) = 0.
Case 2. If nΣ11 ≪ U11. Assuming model (M1) to be true, we have

p(G12|Xn) ≈ C · U
a12+

3
2

11 · U
1
2
a12+

1
2

11

[U11 · U2
11 + U2

11n(1 + β2
12)σ

2]
1
2
a12+1

= C · 1

U11

[
1 + nσ2

U11
(1 + β2

21)
] 1

2
a12+1

≈ C · 1

U11

,

where the last approximation is based on our assumption that nσ2

U11
≈ 0 and U11

nσ2 ≫ 1+β2
21.

Similarly we have

p(G21|Xn) ≈ C · 1

U22

.

Under the assumption that U11 = U22, we have r
21
12 ≈ 1, and further leading to p(G12|Xn) ≈

p(G21|Xn) ≈ 1
2
regardless of the causal effect β21 and data Xn,

Case 1 obtains a reasonable estimation for p(G|Xn) while case 2 ends up estimating
the probabilities of graphical structures to be approximately the same as coin tossing,
which does not make much sense.
Considering Lemma 3.7 and Lemma 3.8, we want the covariance of X to be at least

as large as the hyperparameters U11 and U22. In other word, we definitely need to
avoid the case that U11 ≫ nσ2 when applying the method on datasets. On the other
hand, having a too small U11, i.e. for U11 ≪ σ2, will make the Bayesian approach
pointless, since the prior belief is too weak and can almost be neglected. So when doing
numerical simulations, we set U11 to be of the same range as σ2. This discussion is an
important instruction of how we should set hyperparameters reasonably when we test
with simulated data and real world benchmark data.

3.2. Posterior distribution of Causal Effect

From (2.6) we recall that the causal effect C(1→ 2) equals β21 when we assume G = G12,
and C(1 → 2) equals 0 when we assume G = G21. Hence to compute the posterior
distribution of the causal effect given data Xn we first need to compute the distribution
of β21 given Xn,G12, then sum both cases up by a mixture of distributions.
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Lemma 3.9. Let tν denote a Student’s t-distribution with ν > 0 degrees of freedom.
Assume we have a random variable Z ∼ t2a, then the marginal posterior distribution of
β21 is

β21|Xn,G12 =
√

b

aλ
Z + µ ∼ t2a

(
µ,

b

aλ

)
with λ, µ defined in (3.28) and a, b defined in (3.29), which is a generalized Student’s
t-distribution (see Appendix B.2) of the form tν(µ, σ

2) with location parameter µ, scale
parameter σ > 0, and degrees of freedom ν > 0.

Proof. Recall that from (3.28) and (3.29) we have

p(σ2|Xn, G12) = I-Ga(a, b),

p(β21|σ2, Xn,G12) = N
(
µ,

σ2

λ

)
.

Following Marin and Robert (2014) we have the marginal posterior distribution√
aλ

b
(β21 − µ)

∣∣∣Xn,G12 ∼ t2a. (3.32)

Formula (3.32) is useful for computing corresponding quantiles and creating credible
intervals, just as what we usually do to compute confidence intervals using statistics with
known distribution. The posterior distribution of β21 that we claimed in the lemma can
also be easily derived from (3.32).
Having everything prepared, we could finally derive the posterior distribution of the

causal effect C(1→ 2).

Proposition 3.10. The posterior distribution of C(1→ 2) is a mixture of a point mass
and a Student’s t-distribution characterized by the density function

p(C(1→ 2)|Xn) =
1

1 + r2112
t2a

(
µ,

b

aλ

)
+

r2112
1 + r2112

1{C(1→ 2) = 0}, (3.33)

with λ, µ defined in (3.28) and a, b defined in (3.29).

Proof. From Lemma 3.9 we know that C(1 → 2) = 0 with probability 1 when G = G21.
Together with Lemma 3.6, expression (2.6) and the law of total probability, we have the
posterior distribution of causal effects

p(C(1→ 2)|Xn) = p(C(1→ 2)|Xn,G12)p(G12|Xn) + p(C(1→ 2)|Xn,G21)p(G21|Xn)

=
1

1 + r2112
p(β21|Xn,G12) +

r2112
1 + r2112

p(0|Xn,G21)

=
1

1 + r2112
t2a

(
µ,

b

aλ

)
+

r2112
1 + r2112

1{C(1→ 2) = 0}.

An example of the density function of C(1→ 2) is illustrated in Figure 3.2.
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Figure 3.2.: The density function of the posterior distribution of causal effect from 1
on 2, when we set a12 = a21 = 2, U11 = U22 = 1 and U12 = U21 = 0. We
simulate 200 data pairs (xi,1, xi,2) where xi,1 is generated i.i.d. from standard
normal distribution, and xi,2 = β21xi,1 + ϵi, where we set β12 = 0.2 and ϵi
i.i.d. sampled from standard normal distribution for i ∈ {1, . . . , 200}. The
red vertical line corresponds to the point mass at 0.

3.3. Credible Regions

A way of summarizing the posterior distribution of the causal effect is the credible
intervals (CIs) Kruschke (2014); Makowski et al. (2019), or more generally speaking,
credible regions (CRs). Note that we will not distinguish between the terminologies CI
and CR and will use both interchangeably.
The CR is an important concept in Bayesian statistics, mainly used to describe and

summarize the remaining uncertainty when estimating a parameter. It is the Bayesian
equivalent of a confidence interval in frequentist statistics. However, they have quite
different statistical meanings. As doing Bayesian inference, we would return a posterior
distribution that describes our current beliefs of the parameters of interest given the
available data. The CR is thus a set of more plausible values that we believe contain the
parameter with a particular probability. We could more formally define a CR following
Jackman (2009).
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Definition 3.11 (Credible Regions). Let θ ∈ Ω denote parameters in general, and let
X denote random variables or data, then C ⊂ Ω is a (1 − α)-credible region (CR)
for θ under posterior distribution given X if

P(θ ∈ C|X) ≥ 1− α, for 0 ≤ α ≤ 1, (3.34)

and C is the smallest region under certain conditions satisfying (3.34). For single-
parameter problems (i.e. C ⊂ R), if C is not a set of disjoint intervals, then C is a
credible interval (CI).

As it was also argued in Jackman (2009), a CR might not be unique.

Remark 3.12. There is trivially only one 100%-credible region that is the entire support
of θ|X. But non-trivial CRs may not be unique, since any region spanning the (1− α)
percentiles could be a CR according to our definition. We could solve this problem by
restricting attention to CRs that have certain desirable properties. We will discuss them
in details in the following sections.

Now we will give a common setup for a CR as an example.

Example 3.13. As in frequentist statistics, we usually set α = 5% and search for a 95%-
credible region. This means that given the observed data, there is a 95% probability
that the true value of θ lies within the CR.

In our case, we want to estimate the CRs of C(1→ 2) based on its posterior distribu-
tion. Since it is a mixture distribution with a point mass at 0 and continuous distribution
in R, the CR has three possible formats: an interval, the union of an interval and point
{0}, or the difference of an interval and point {0}. So we always determine the CR with
a two-step approach:

1. determine whether 0 is included in the CR;

2. compute the interval part by defining its lower bound l and upper bound u.

This approach will be used repeatedly later when we compute different types of CRs. In
general, we could determine the lower and upper bounds with the following lemma.

Lemma 3.14. Set C is a CR of C(1 → 2) if it is the smallest region under certain
conditions satisfying

P(C(1→ 2) ∈ C|Xn)

= p(G21|Xn)P(0 ∈ C|Xn,G21) + p(G12|Xn)P(β21 ∈ C|Xn,G12) (3.35)

= p(G21|Xn)1{0 ∈ C}+ p(G12|Xn)

(
F

(√
aλ

b
(u− µ)

)
− F

(√
aλ

b
(l − µ)

))
(3.36)

≥ 1− α.
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We decide whether to include 0 in the CR or not by the posterior distribution of the
graphical structure p(G|Xn). When G|Xn has probability densities of special values,
e.g., one DAG has probability 0 or the two DAGs have the same probabilities, we would
obtain some interesting results in these extreme cases. Here we need to make a basic
assumption that 0.5 < α ≤ 1 since we are not interested in credible regions with a
theoretical coverage of less than 50%. We will observe the following special cases from
a quantitative perspective, where we will use approximations without formal definition.
Please also note that the following computations are valid only under the assumption
that we have the true priors.

Remark 3.15. When p(G12|Xn) ≈ p(G21|Xn) ≈ 1/2 and the true causal effect β21 = 0,
then the probability of the credible interval C containing the true causal effect is P(0 ∈
C|Xn) = 1− α.

Proof. Solving (3.35)= 1− α under the assumption β21 = 0, we obtain the results.

Remark 3.16. When p(G12|Xn) ≈ p(G21|Xn) ≈ 1/2 and the true causal effect β21 is
very close to but not equal to 0, then the probability of the credible interval C containing
the true causal effect is P(β21 ∈ C|Xn) ≈ 1− 2α.

Proof. First of all, we need to have P(0 ∈ C|Xn,G21) = 1. Otherwise, we would destroy
the assumption of a CI to have at least probability 1−α, since p(G21|Xn) ≈ 1/2. Under
this setting, we could rewrite (3.35) as

1

2
P(β21 ∈ C|Xn,G12) +

1

2
≈ 1− α

⇒ P(β21 ∈ C|Xn,G12) ≈ 1− 2α. (3.37)

We see that even if in the worst case when the model can hardly tell the correct causal
direction, the (1− α)-credible interval we computed shall contain the true causal effect
at least with probability 1−2α, e.g., when α = 0.05, we have P(β21 ∈ C|Xn,G12) ≈ 90%.

Remark 3.17. When p(G12|Xn) ≈ 1, p(G12|Xn) ≈ 0, then the probability of the credible
interval C containing the true causal effect is P(β21 ∈ C|Xn) ≈ 1− α.

Proof. In this case, we are very sure that 1 → 2 is the correct causal direction, and
solving (3.35) we get the result.

For example, when α = 0.05, we have P(β21 ∈ C|Xn,G12) ≈ 95%.

Remark 3.18. When p(G12|Xn) ≈ α, p(G21|Xn) ≈ 1 − α, then the probability of the
credible interval C containing the true causal effect is P(0 ∈ C|Xn,G21) = 1.
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3. Bayesian Inference

Proof. Solving (3.35)=1− α we have

P(β21|Xn,G12) =
(1− α)− P (G21|Xn)

p(G12|Xn)

=
(1− α)− (1− P (G21|Xn))

p(G12|Xn)

=
P (G21|Xn)− α

p(G12|Xn)
. (3.38)

If (G12|Xn)→ α, then (3.38) converges to 0, thus a non-zero causal effect will be almost
surely not included in the credible interval.

Remark 3.19. When 0 < p(G12|Xn) < α and 1− α < p(G21|Xn) < 1, we would expect
P(β21 ∈ C|Xn,G12) = 0, with C being the (1− α)-credible interval.

Proof. Solving (3.35)≥ 1− α we have

P(β21 ∈ C|Xn,G12) ≥
(1− α)− p(G21|Xn)

p(G12|Xn)
, (3.39)

of which the right-hand side is less than 0. Since P(β21 ∈ c|Xn,G12) is a probability, it
has to be greater or equal to 0. Hence the inequality (3.39) always holds.

The above five remarks show the theoretical coverage rates of the CRs when we have
different posterior distributions of G, which could be used as instructions for evaluating
our model.

Before we continue, we define some notations:

• let Ftν and ftν denote the cumulative distribution function and the probability
density function of a Student’s t-distribution with ν degrees of freedom resp.;

• let F and f denote the cumulative distribution function and the probability density

function of
√

b
aλ
Z + µ resp., where Z a Student’s t-distribution with ν degrees of

freedom, and a, b, λ, µ are constants we computed before;

• let qtν (p) denote the p-quantile of a Student’s t-distribution with ν degrees of
freedom, whose value could not be computed analytically, but can be found in the
quantile table.

3.3.1. Equal-Tailed Interval

The first type of CI that we consider is the equal-tailed interval (ETI) (see Kruschke
(2014)), which is used by some authors and software because it is easy to compute. As
already indicated by its name, we require the tails on both sides to be equal and we get
indeed an interval. We define the ETI more formally as the following.
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3. Bayesian Inference

Definition 3.20 (Equal-Tailed Interval). An interval C = [l, u] is the equal-tailed
interval for a parameter θ under its posterior distribution given some data X if

1. P(θ ∈ [l, u]|X) ≥ 1− α;

2. there exists some ϵ ≥ 0 s.t. P(θ > u|X) = P(θ < l|X) ≤ α/2− ϵ;

3. l, u are values such that ϵ in 2. reaches its minimum.

Next, we will discuss how ETI could be analytical represented by first analyzing
whether 0 is included, then deciding the lower and upper bounds of the interval.
Case 1. ETI includes 0.

Case 1.1. µ ≥ 0.
When r2112 satisfies the inequality constraint

1

1 + r2112
Ft2a

(√
aλ

b
(l − µ)

)
+

r2112
1 + r2112

>
α

2
, (3.40)

ETI will contain 0, since otherwise the left tail will be too heavy. The lower and upper
bounds l, u of the ETI satisfies{

P(l ≤ C(1→ 2) ≤ u|Xn) ≥ 1− α
µ− l = u− µ

, (3.41)

where

P(l ≤ C(1→ 2) ≤ u|Xn) =
r2112

1 + r2112
+

1

1 + r2112

(
Ft2a

(√
aλ

b
(u− µ)

)
− Ft2a

(√
aλ

b
(l − µ)

))
.

Plugging the second equation in (3.41) into the first inequality we get

1− 2Ft2a

(√
aλ

b
(l − µ)

)
≥ (1− α)(1 + r2112)− r2112

⇒ 2Ft2a

(√
aλ

b
(l − µ)

)
≤ 1 + r2112 − (1− α)(1 + r2112) = α(1 + r2112)

⇒ Ft2a

(√
aλ

b
(l − µ)

)
≤ α

2
(1 + r2112)

⇒
√

aλ

b
(l − µ) = qt2α

(α
2
(1 + r2112)

)
⇒ l =

√
b

aλ
qt2α

(α
2
(1 + r2112)

)
+ µ. (3.42)

Analogously, we have

u = 2µ− l =

√
b

aλ
qt2α

(
1− α

2
(1 + r2112)

)
+ µ. (3.43)
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3. Bayesian Inference

If the interval [l, u] we computed does not contain 0, i.e. if l > 0, it is against our
assumption, and we need to extend the lower boundary of the ETI to 0. In order to let
both tails to have equal probabilities, we extend the upper bound to 2µ because of the
symmetry of the Student’s t-distribution. On the other hand, if r2112/(1 + r2112) ≥ 1 − α
we might obtain u ≤ l, which shall not be the case since upper bound shall always be
greater than the lower bound. In this case, 0 itself obtains probability larger than 1−α,
and the ETI is constructed based on symmetry and equal-tailed property to be [0, 2µ].
In short, if l > 0 or u ≤ l, we set ETI = [0, 2µ]. Otherwise, we simply set ETI = [l, u]
with l defined by (3.42) and u defined by (3.43).

Case 1.2. µ < 0.
When r2112 satisfies the inequality constraint

1

1 + r2112

(
1− Ft2a

(√
aλ

b
(u− µ)

))
+

r2112
1 + r2112

>
α

2
, (3.44)

the ETI will include 0. We obtain the same l, u as (3.42) and (3.43) by solving (3.41).
With similar discussion as in Case 1.1, we know that if u < 0 or u ≤ l we set ETI=[2µ, 0],
otherwise we set ETI=[l, u] with l defined by (3.42) and u defined by (3.43).

Case 2. 0 is excluded from ETI.
If constraints of Case 1.1 is not satisfied, i.e. p(G21|Xn) is a very low probability and

0 is far away from the mean µ, then we could compute the ETI with the following two
cases.

Case 2.1. µ ≥ 0.
In this case, 0 will be included in the left tail. By the equal-tailed property, both tails

have probability α/2. Looking at the left tail, we have

1

1 + r2112
Ft2a

(√
aλ

b
(l − µ)

)
+

r2112
1 + r2112

=
α

2

⇒ Ft2a

(√
aλ

b
(l − µ)

)
=

α

2
(1 + r2112)− r2112

⇒ l =

√
b

aλ
qt2a

(α
2
(1 + r2112)− r2112

)
+ µ. (3.45)

Observing the right tail, we have

1

1 + r2112

(
1− Ft2a

(√
aλ

b
(u− µ)

))
=

α

2

⇒ Ft2a

(√
aλ

b
(u− µ)

)
= 1− α

2
(1 + r2112)

⇒ u =

√
b

aλ
qt2a

(
1− α

2
(1 + r2112)

)
+ µ. (3.46)
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The l we just computed is always larger than 0, otherwise it is against the assumption.
Hence, we could directly set ETI= [l, u] with l defined by (3.45) and u defined by (3.46).

Case 2.2. µ < 0.
This case is analogous to Case 2.1, except here 0 is located in the right tail. Also by

the equal-tailed property, both tails have probability α/2. Looking at the left tail, we
have

1

1 + r2112
Ft2a

(√
aλ

b
(l − µ)

)
=

α

2

⇒ l =

√
b

aλ
qt2a

(α
2
(1 + r2112)

)
+ µ. (3.47)

The upper bound could be computed from the probability of the right tail

1

1 + r2112

(
1− Ft2a

(√
aλ

b
(u− µ)

))
+

r2112
1 + r2112

=
α

2

⇒ u =

√
b

aλ
qt2a

((
1− α

2

)
(1 + r2112)

)
+ µ. (3.48)

For similar reason as in Case 2.1, we obtain ETI= [l, u] with l defined by (3.47) and u
defined by (3.48).
We could summarize our procedure of computing the ETI with Algorithm 1, where we

denote the hyperparameters of the prior distributions as a = (a12, a21), U = (Uij)i,j=1,2,
the n i.i.d. samples as Xn, the credible level as α, and posterior probability of the
graphical structure as p(G|Xn). We write p(G|Xn) as an array of length 2 with p(G12|Xn)
being the first entry and p(G21|Xn) being the second entry. We will keep using these
notations when we later write algorithms.
In our experiments, we will refer to the method describe in Algorithm 1 as ETI.

3.3.2. Highest Density Region

Another way of defining a CR is to choose the highest density region (HDR) (see Kr-
uschke (2014); Jackman (2009)). Some authors refer to this as the highest density
interval (HDI), since for most continuous distributions, the region with the highest den-
sity is indeed an interval. However in our case, the posterior distribution of C(1 → 2)
is a mixture of a continuous distribution on R and a point mass at 0, hence it is very
likely for the HDR not to be an interval so we stick to the terminology HDR. However,
we do not distinguish between HDI and HDR.
Intuitively speaking, the HDR indicates which points of a distribution are most cred-

ible and cover most of the distribution. In other words, all values inside the HDR have
higher probability densities (i.e., credibility) than any value outside the HDR. We define
an HDR following the definitions from Jackman (2009).

Definition 3.21. A region C is the highest density region for a parameter θ under
its posterior distribution given some data X if
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3. Bayesian Inference

Algorithm 1 Compute the CR as an ETI

Input: a, U,Xn, α, p(G|Xn)
Output: a (1− α)-ETI of C(1→ 2) with respect to its posterior distribution given

Xn

1: Compute the posterior mean µ of the posterior distribution of β21|Xn by (3.28);
2: if (3.40) is satisfied when l = 0, and p(G21|Xn) < 1− α then
3: Set l as in (3.42) and u as in (3.43);
4: if µ ≥ 0 then
5: Set l̃ = min(0, l), ũ = max(u, 2µ) and let C = [l̃, ũ];
6: else
7: Set l̃ = min(2µ, 0), ũ = max(0, u) and let C = [l̃, ũ];
8: end if
9: else if p(G21|Xn) ≥ 1− α then
10: Set l = min(0, 2µ), u = max(0, 2µ) and C = [l, u];
11: else
12: if µ ≥ 0 then
13: Set C = [l, u] with l in (3.45) and u in (3.46);
14: else
15: Set C = [l, u] with l in (3.47) and u in (3.48);
16: end if
17: end if
18: return the credible interval C as a ETI

1. P(θ ∈ C|X) ≥ 1− α;

2. p(θ1|X) ≥ p(θ2|X), ∀θ1 ∈ C, θ2 /∈ C.

Our goal is to find the values with the highest density from the mixture distribution.
Since we have an analytical solution of the mixture distribution, we could always compute
the density of any point with the help of the probability density function. However, for
a mixture distribution, the most difficult part is to decide when 0 should be included
in the HDR, since we need to compare the densities of a point mass and a continuous
distribution. We will discuss with three cases.

Case 1. HDR includes 0 and not only 0.
The following constraints need to be satisfied

1. the HDR needs to obtain a probability of at least 1−α, i.e., the probability of the
tail have to be less than α;

2. p(G21|Xn) < 1− α;

3. p(G21|Xn) needs to be large enough to be selected into the HDR.
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3. Bayesian Inference

We formulate the constraints mathematically as

r2112
1 + r2112

+
1

1 + r2112
(F (l) + 1− F (u)) ≤ α,

where l =

{
f−1

(
r2112

1 + r2112

)}
min

, u =

{
f−1

(
r2112

1 + r2112

)}
max

, (3.49)

where f−1 denotes the general inverse of f , i.e., the inverse mapping of the density
function f . Since f is not injective, the inverse image f−1(x) of any well-defined x ∈
(0,+∞) is a set of two elements, and we use “max” and “min” to denote the larger and
smaller element in the set resp.. We could see an example of the general inverse function
f−1 from Figure 3.3, which we draw empirically using 200 data pairs from model (M1)

with β = 0.2, ϵ1, ϵ2
i.i.d.∼ N (0, 1), a12 = 2, U11 = 1, and U12 = 0.

What we described above is the boundary condition when p(G21|Xn) is just as large as
p(G12|Xn) times the density of the upper or lower bound of the interval of the continuous
distribution.
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Figure 3.3.: An example of the general inverse of the posterior density of β21 given 200

data pairs simulated from model (M1) with β = 0.2, ϵ1, ϵ2
i.i.d.∼ N (0, 1),

a12 = 2, U11 = 1, and U12 = 0.

To get a closed form expression for (3.49), we need to have at least a closed form
expression for f−1. To compute this, we first compute f−1

t2a . Recalling the density of a

38
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Student’s t-distribution we have

ft2a(y) = t ⇒
Γ
(
2a+1
2

)
√
2aπΓ(a)

(
1 +

y2

2a

)− 2a+1
2

= t

⇒
(
1 +

y2

2a

)− 2a+1
2

=

√
2aπΓ(a)

Γ
(
2a+1
2

) t

⇒ 1 +
y2

2a
=

(√
2aπΓ(a)

Γ
(
2a+1
2

) t

)− 2
2a+1

⇒ f−1
t2a

(t) = ±

√√√√√2a

(√2aπΓ(a)
Γ
(
2a+1
2

) t

)− 2
2a+1

− 1

. (3.50)

Next, we compute f−1. By the density transformation formula, we know that

f(β21) = ft2a

(√
aλ

b
(β21 − µ)

)
·
√

aλ

b
.

Plugging this into the inverse, we get

β21 = f−1(t) ⇒ft2a

(√
aλ

b
(β21 − µ)

)
=

b

aλ
t

⇒

(√
aλ

b
(β21 − µ)

)
= f−1

t2a

(√
b

aλ
t

)

⇒ f−1(t) =

√
b

aλ
f−1
t2a

(√
b

aλ
t

)
+ µ. (3.51)

Taking (3.50) and (3.51) together, we have

{f−1(t)}min = −

√√√√√2b

λ

(√2aπΓ(a)
Γ
(
2a+1
2

) t

)− 2
2a+1

− 1

+ µ (3.52)

{f−1(t)}max =

√√√√√2b

λ

(√2aπΓ(a)
Γ
(
2a+1
2

) t

)− 2
2a+1

− 1

+ µ (3.53)

Hence, although we could not give an analytical solution for the constraints regarding
r2112, the constraint (3.49) purely depends on r2112, and we could always tell for any fixed
r2112 whether we shall include 0 into the HDR. We would only include 0 in the HDR if r2112
is a value that satisfies (3.49). If (3.49) is satisfied, the tails on both sides of the HDR are
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3. Bayesian Inference

constructed solely from the Student’s t-distribution, which is a symmetric continuous
distribution. Hence, we could still obtain equal tails with lower bound l defined by (3.42)
and upper bound u defined by (3.43). Since here equal-tailed is not an obliged property,
we directly set HDR = [l, u] ∪ {0}.
Case 2. HDR includes only 0.
Under some extreme scenarios, p(G21|Xn) is very high, i.e., the posterior distribution

of the graphical structure tells that G21 is chosen with a very high probability. When
p(G21|Xn) ≥ 1− α, we directly set HDR = {0} by definition.

Case 3. 0 is excluded from HDR.
If the constraints of Case 1 and Case 2 are both not satisfied, intuitively speaking if

p(G21|Xn) is very low and 0 is far away from µ, then 0 is excluded from the HDR. In
this case, it is clear that the HDR is not equal-tailed with respect to to the mixture
distribution anymore. However, the HDR is symmetric with respect to µ since two
distinct values obtain the same densities of a Student’s t-distribution if and only if they
are symmetric with respect to µ. We can compute the lower and upper bounds l, u of
the HDR by 

1
1+r2112

(
Ft2a

(√
aλ
b
(u− µ)

)
− Ft2a

(√
aλ
b
(l − µ)

))
= 1− α

Ft2a

(√
aλ
b
(u− µ)

)
= 1− Ft2a

(√
aλ
b
(l − µ)

) . (3.54)

Representing l with u using the second equation in (3.54) and plugging it into the first
equation, we have

1− 2Ft2a

(√
aλ

b
(l − µ)

)
= (1− α)(1 + r2112)

⇒ 2Ft2a

(√
aλ

b
(l − µ)

)
=

α

2
(1 + r2112)−

r2112
2

⇒ l =

√
b

aλ
qt2a

[
α

2
(1 + r2112)−

r2112
2

]
+ µ (3.55)

Analogously, representing u with l using the second equation in (3.54) and plugging it
into the first equation, we have

2Ft2a

(√
aλ

b
(u− µ)

)
− 1 = (1− α)(1 + r2112)

⇒ 2Ft2a

(√
aλ

b
(u− µ)

)
= 1−

[
α

2
(1 + r2112)−

r2112
2

]

⇒ u =

√
b

aλ
qt2a

(
1−

[
α

2
(1 + r2112)−

r2112
2

])
+ µ (3.56)
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Since we exclude 0 from HDR by assumption, we have HDR = [l, u] \ {0} with l defined
by (3.55) and u defined by (3.56). We could summarize the process of computing an
HDR with Algorithm 2. We will later refer to this method as HDI.

Algorithm 2 Compute the CR as an HDR

Input: a, U,Xn, α, p(G|Xn)
Output: a (1−α)-HDR of C(1→ 2) with respect to its posterior distribution given

Xn

1: if (3.49) is satisfied and p(G21|Xn) < 1− α then
2: Set C = [l, u] ∪ {0} with l in (3.42) and u in (3.43);
3: else if p(G21|Xn) ≥ 1− α then
4: Set C = {0};
5: else
6: Set C = [l, u]\{0} with l in (3.55) and u in (3.56);
7: end if
8: return the credible interval C as the HDR

3.3.3. Credible Region with a Threshold

In order to avoid the cumbersome process of deciding whether to include 0 in the credible
region when computing an HDR, we innovatively develop an approach to decide whether
0 shall be included in the CI or not. We set in advance a threshold α0 with 0 ≤ α0 ≤ α.
If p(G21|Xn) ≥ α0, then the posterior density of the graph has a high enough probability
at G21, and hence we include 0 in the CR. Otherwise, 0 is excluded from the CR. We
discuss this method with the following three cases.

Case 1. CR includes 0 and not only 0.
By assumption, when r2112 satisfies the constraint α0 ≤ p(G21|Xn) = r2112/1+r2112 < 1−α,

we include 0 in the HDR. Analogous to computing the CR, we have CR = [l, u] ∪ {0}
with l and u defined by (3.42) and (3.43).

Case 2. CR includes only 0.
Under some extreme scenarios, p(G21|Xn) is very high, i.e., the posterior distribution

of the graphical structure tells that G21 is chosen with a very high probability. When
p(G21|Xn) ≥ 1− α, we directly set HDR = {0} by definition.

Case 3. 0 is excluded from CR.
By assumption, when r2112 satisfies p(G21|Xn) = r2112/(1 + r2112) < α0, we exclude 0 from

the CR. Analogous to the HDR, we have CR = [l, u] \ {0} with l, u define in (3.55) and
(3.56).

We summarize our method of computing a CR by defining a threshold α0 using Al-
gorithm 3. We need one additional input α0 in comparison to Algorithm 1 and 2.
Since α0 is a preset hyperparameter, we could obtain quite different CRs under dif-

ferent settings of α0. We set special values for α0 if we want to follow certain accepting
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Algorithm 3 Compute the CR by defining a threshold for p(G21|Xn)

Input: a, U,Xn, α, α0, p(G|Xn)
Output: a (1− α)-CR of C(1→ 2) with respect to its posterior distribution given

Xn

1: if α0 ≤ p(G21|Xn) < 1− α then
2: Set C = [l, u] ∪ 0 with l in (3.42) and u in (3.43);
3: else if p(G21|Xn) ≥ 1− α then
4: Set C = {0};
5: else
6: Set C = [l, u]\{0} with l in (3.55) and u in (3.56);
7: end if
8: return the credible interval C.

criteria. Setting α0 = 0 indicates that we would always include 0 in the CR as long as
p(G21|Xn) ̸= 0. On the other hand, setting α0 = α indicates that we only include 0 in
the CR if it becomes too large for the tail, i.e., still excluding 0 from the CR will cause
a contradiction to the assumption of the (1 − α)-credible region. In this case, we are
very conservative about including 0 in the CR.
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In this chapter, we will first summarize the essential algorithms, then apply them to
datasets for model testing and comparing. For the choice of datasets, we will use simu-
lated data pairs as well as benchmarks of cause-effect pairs. We use the programming
language R to do our simulations and evaluations.

4.1. Simulated Data

We first test our methods for deriving the credible intervals for causal effects C(1 →
2) with simulated data. The process of generating n i.i.d. bivariate samples can be
summarized in the following steps:

1. we generate n noise pairs (ϵi,1, ϵi,2)i=1,...,n
i.i.d.∼ N (0, D2) where D2 is a 2×2 diagonal

matrix in which all diagonal entries are equal to σ2;

2. we set the causal effect β (can either be β12 or β21 depending on the choice of the
model);

3. we decide the LSEM we want to sample from; if we sample from model (M1), then
we set

xi,1 = ϵi,1, xi,2 = βxi,1 + ϵi,2 for i = 1, . . . , n;

on the other hand, if we sample from model (M2), then we set

xi,2 = ϵi,2, xi,1 = βxi,2 + ϵi,1 for i = 1, . . . , n.

Using this procedure, we could generate n i.i.d. sample pairs with Gaussian noises of
variances σ2. We will set σ2 = 1 for our simulation test so that all noises are standard
normal. According to Peters and Bühlmann (2014), the main indication of one variable
being the cause is that it has a relatively smaller variance, and the effect will have a
larger variance in contrast. This is also obvious from the formulas of model (M1), since
X1 has variance 1, while X2 has variance β2 + 1 > 1.
The main goal of our paper is to generate credible intervals from the posterior distri-

butions of the causal effect C(1→ 2) given the data. This would be easy to compute if
the posterior distribution is clear, which is a mixture of a point mass at 0 and a con-
tinuous distribution p(β21|Xn) with p(G12|Xn) and p(G21|Xn) being the weights. So the
essential ideas and calculations of our model could be separated into two algorithms: the
first algorithm computes p(G|Xn), and the second algorithm computes p(C(1→ 2)|Xn)
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Algorithm 4 Compute p(G|Xn)

Input: a, U,Xn

Output: an array (p(G12|Xn), p(G21|Xn)) representing p(G|Xn)

1: Compute r2112 using the log-likelihood and exponential function indicated by (3.28);
2: Set

p(G21|Xn) =
1

1 + r2112
, p(G21|Xn) =

r2112
1 + r2112

;

3: return a vector p(G|Xn) = (p(G12|Xn), p(G21|Xn)).

based on p(G|Xn) and methods for computing CRs mentioned in Section 3.3. We first
use Algorithm 4 to compute the posterior distribution of the graphical structure.
If we have data following model (M1), we would expect Algorithm 4 to have an output

of p(G12|Xn) > p(G21|Xn). In the worst case when the algorithm cannot predict the
graphical structure from the data, we would expect to have an output of p(G12|Xn) =
p(G21|Xn) = 0.5. We will check this by doing 500 Monte Carlo replications and drawing
histograms of posterior probabilities p(G12|Xn) and p(G21|Xn). Each time we generate
500 sample pairs following model (M1) with β = 0.1 and we set a = (2, 2), U = I2 with
I2 being the two-dimensional identity matrix. We purposefully set β to be close to zero
to make it challenging for the model to estimate the graphical structure. Under this
setting, the variances of X1 and X2 will be theoretically very close to each other (only
differ by 0.01) and the estimation might just be as good as random guesses. Hence we
would expect p(G12|Xn) ≈ p(G21|Xn) ≈ 0.5.
However, the empirical results do not meet our expectations. We could see from

Figure 4.1 that instead of p(G12|Xn) ≈ p(G21|Xn) ≈ 1/2, we have something more like

E(p(G12|Xn)) ≈ E(p(G21|Xn)) ≈ 1/2, (4.1)

where with probability ≈ 45% we obtain p(G12|Xn) ≈ 1, with probability ≈ 40% we
obtain p(G21|Xn) ≈ 0, and with probability ≈ 15%, p(G21|Xn) has some values between
0 and 1. Most of the posterior probabilities cluster around 0 or 1, but not around 0.5 as
we would be expecting. In other words, the algorithm is too sure about its prediction
in each replication.
For example, among the 500 values p(G12|X) we have, more than 175 is < 0.05, that

is more than 35%. This would be causing serious problems, since in these over 35% of
the cases, p(G21|X) > 0.95, so the CIs of C(1 → 2) is nothing but {0} for all methods
except ETI. But since β21 is 0.1 and not 0, the CIs do not cover the true causal effect
in these cases, leading our coverage rate to be always less than 65%. This coverage rate
is even worse than when we decide the graphical structure by coin flipping (see Remark
3.16), which will theoretically still lead to a coverage rate of 90%.
Inspired by (4.1), we try to solve this problem by computing a bootstrap mean (see

Section 2.6)z for p(G|Xn) instead of computing each time a single probability. In other
words, we bootstrap from data Xn and compute a mean for p(G|Xn), then use the mean
as an estimation for p(G|Xn) to compute the posterior mixture. Here we use bootstrap
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Figure 4.1.: The histogram of p(G12|Xn) (red) and p(G21|Xn) (blue) of 500 replications,
where the bivariate pairs (x1, x2) are generated under model (M1) for β21 =
0, 0.1, 0.2, 0.5. The dashed lines represent the mean values of p(G|Xn) with
p(G12|Xn) being red and p(G21|Xn) being blue.

resampling rather than direct sampling from the entailed distribution of model (M1) for
later generalization to real-world datasets since their underlying distributions are usually
unknown. Here we claim that such estimation for p(G|Xn) is still a valid probability
density for a categorical distribution since the estimated p(G12|Xn) and p(G21|Xn) will
still sum up to 1.
In Figure 4.2, we show the histograms of the estimated posterior probabilities p(G12|Xn)

and p(G21|Xn) under the same setting as for Figure 4.1.
We could see a large improvement in the result. For instance, when β is small,

the probabilities do not cluster around 0 and 1. Instead, they are kind of uniformly
distributed between 0 and 1 and have slightly larger densities in the middle than on the
sides. We have certainly improved the problem that the algorithm is too sure about
deciding the graphical structure, while still preserving its ability to decide between G12
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Figure 4.2.: The histogram of bootstrap estimated p(G12|Xn) (red) and p(G21|Xn) (blue)
of 500 replications, where 500 bivariate data pairs (x1, x2) are generated
under model (M1) for β21 = 0, 0.1, 0.2, 0.5. The dashed lines represent the
mean posterior distributions with p(G12|Xn) being red and p(G21) being blue.

and G21, especially for larger β. When β = 0.2, we can already see that the histogram
of estimated p(G12|Xn) is left skewed while p(G21|Xn) is right skewed, indicating that
the algorithm tends to estimate p(G12|Xn) > p(G21|Xn) and in more cases. A similar
conclusion can be drawn by observing the average lines, and the distance between the
lines grows wider for larger β’s. Even in the cases when the estimated p(G12|Xn) >
p(G21|Xn), i.e., p(G12|Xn) > 0.5, it would most likely not be an extreme value that
is very close to 1. Hence when we further compute the CR, we would most likely
get the union of an interval and the point 0 rather than having only {0}, which will
remarkably improve the chance of covering the true non-zero causal effect. For β = 0.5,
the bootstrap estimation of p(G|Xn) can successfully predict the true causal direction
in almost all cases, as we can see that almost all red bins are located to the right of
0.5, while the blue bins are almost all on the left side. In comparison, the bootstrap
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estimations reduce randomness and provide more trustworthy probabilities. As a trade-
off, we need to resample B(= 200) times for computing one estimation of p(G|Xn), which
drastically increases the computational cost. Such a cost is affordable for us since we
only deal with small datasets of causal pairs. However, this would become a serious
problem if the dataset is large, and would limit the number of Monte Carlo replications
we can make when testing the algorithm.
We now show with Algorithm 5 how we generate the posterior CR using three different

methods. As discussed before, we will use a bootstrap average to estimate the true
p(G|Xn), so we also need to define as inputs the bootstrap size B, which is the number
of bootstrap replications we have, and the bootstrap sample size N , which is the number
of samples to select in each bootstrap replication. In addition, we need to decide the
desired type of CRs by setting method in the input.

Algorithm 5 Compute CR
Input: a, U,Xn, α, α0, method, B,N
Output: the credible region C

1: for b = 1, . . . , B do
2: Select with replacement N samples from Xn and call them XN

(b);

3: Compute p(G|XN
(b)) using Algorithm 4;

4: end for
5: Average the bootstrapping results and get an estimated distribution ̂p(G|Xn) with

̂p(G12|Xn) =
1

B

B∑
b=1

p(G12|XN
(b)),

̂p(G21|Xn) =
1

B

B∑
b=1

p(G21|XN
(b))

and use them as inputs for computing the CRs;
6: if method=“ETI” then
7: Compute the credible region C as an ETI using Algorithm 1;
8: else if method=“HDI” then
9: Compute the credible region C as an HDR using Algorithm 2;
10: else if method=“threshold” then
11: Compute the credible region C as an CR defined by a threshold α0 using Algo-

rithm 3;
12: end if
13: return the (1− α)-credible region C

Algorithm 5 is the most essential algorithm in our thesis since it is a synthesis of
the previous four algorithms and outputs a credible interval of our interest. We will
evaluate the performance of Algorithm 5 by comparing the outputs of different types
of credible regions with confidence intervals from other algorithms in various aspects.
There is no standard criterion for evaluating credible regions, so we will compare the
following values following Strieder et al. (2021) when evaluating our algorithms in 1000
Monte Carlo replications:
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• coverage rate: the percentage of replications where the true causal effects lie in
the CRs;

• width: the average width of the CRs, where we only consider the length of the
interval part, i.e., if the CR is the union of {0} and an interval, we do not care
about the distance from 0 to the interval, but only the width of the interval itself;

• zero percentage: the percentage of replications where 0 is contained in the CRs.

In addition to the above three criteria that directly show the model performance, we
will also compare the running time of different algorithms since this is also an important
criterion for evaluating an algorithm.
For comparison, we will compute the credible intervals of causal effects from X1 on

X2 using different methods: ETI, HDI, and CR determined by a threshold, where the
threshold α0 will be set to 0, 0.01, and 0.05. We denote the methods of producing CRs
with these thresholds as thre0, thre01 and thre05 respectively. It is worth noticing
that 0 is the minimum and 0.05 is the maximum value a threshold can take given that
α = 0.05. Although several previous research studied the causal structure of bivariate
cases with Bayesian approaches, they mostly focused on the graphical structure rather
than the causal effects, not to say the credible regions of causal effects. This makes it
hard to find a proper method to compare with. So instead of comparing with other
credible regions, we compare our results with confidence regions of likelihood ratio tests
(method LRT) and split likelihood ratio tests (method SLRT) from Strieder et al. (2021).
As stated in Section 3.3, credible regions can be seen as the Bayesian version of

confidence regions. Let us briefly recap what a confidence region (or more commonly
confidence interval) is (see Rice (2006)). A (1− α)-confidence region for a parameter θ
of some probability distribution under a statistical test H is a random region (interval)
that contains θ with probability (1 − α) given that the null hypothesis H0 is true. On
the other hand, a (1−α)-credible region, constructed based on the posterior distribution
of the parameter θ, is a set of more plausible values that we believe would contain θ
with probability (1−α). Although both regions (intervals) are constructed from different
underlying probability distributions, they are regions that we believe θ would most likely
lie in. We also assume that the credible and confidence regions cover the true value with
probabilities of at least (1 − α) under the posterior distribution and null hypothesis
respectively. In short, credible intervals and confidence intervals are very similar in the
sense of likelihood and coverage, so it makes sense for us to compare them. Without
distinguishing between terminologies, we will also write CR for both credible regions
and confidence regions, as well as CI for both credible intervals and confidence intervals.
We first compare the coverage rates of CRs of C(1→ 2) constructed via seven different

methods in 1000 replications. We also want to see the performance of each method under
different settings, so we will vary the sample size and the true causal effect. In addition,
data are constructed both from model (M1) and model (M2). For the latter case, the
true causal effect is 0 under our assumption (2.6).
The results are reported in Table 4.1. We have a total of two columns where the left

column reports the coverage rate from data generated under model (M1) and the right
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under model (M2). To evaluate how the size of the true causal effect would affect the
accuracy of our prediction, we set β to a list of values from 0 to 0.5. We also set the
sample sizes to 100, 500, and 1000.

model 1→ 2 2→ 1
method n\β 0.00 0.05 0.10 0.20 0.50 0.00 0.05 0.10 0.20 0.50
ETI 100 1.00 0.94 0.93 0.94 0.95 1.00 1.00 1.00 1.00 1.00

500 1.00 0.92 0.93 0.93 0.95 1.00 1.00 1.00 1.00 1.00
1000 1.00 0.94 0.93 0.95 0.94 1.00 1.00 1.00 1.00 1.00

HDI 100 0.99 0.93 0.92 0.94 0.95 0.99 0.99 0.99 1.00 1.00
500 0.99 0.92 0.92 0.93 0.95 0.99 0.99 1.00 1.00 1.00
1000 0.99 0.93 0.92 0.94 0.95 0.99 0.99 1.00 1.00 1.00

thre0 100 1.00 0.93 0.92 0.94 0.95 1.00 1.00 1.00 1.00 1.00
500 1.00 0.92 0.92 0.93 0.97 1.00 1.00 1.00 1.00 1.00
1000 1.00 0.92 0.93 0.94 0.97 1.00 1.00 1.00 1.00 1.00

thre01 100 1.00 0.94 0.93 0.94 0.95 1.00 1.00 1.00 1.00 1.00
500 1.00 0.92 0.92 0.93 0.95 1.00 1.00 1.00 1.00 1.00
1000 1.00 0.92 0.93 0.94 0.95 1.00 1.00 1.00 1.00 1.00

thre05 100 0.99 0.93 0.92 0.94 0.95 0.99 0.99 0.99 1.00 1.00
500 0.99 0.92 0.92 0.93 0.95 0.98 0.99 1.00 1.00 1.00
1000 0.99 0.92 0.93 0.94 0.95 1.00 0.99 0.99 1.00 1.00

LRT 100 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.94 0.95 0.94
500 0.95 0.96 0.94 0.95 0.96 0.94 0.95 0.96 0.95 0.95
1000 0.96 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.95

SLRT 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.1.: The coverage rates of credible intervals and confidence intervals of C(1→ 2)
estimated with 1000 replications.

Many interesting observations can be made from Table 4.1. We can see that the
CRs constructed with SLRT achieved the highest coverage rate among all the methods.
Method LRT achieved the desired coverage rate of approximately 0.95. Besides, all five
proposed methods achieved coverage rates of at least 0.90, which is at least better than
the worst case explained by Remark 3.16. Also as explained in Remark 3.15, we achieve
better coverage rates when β = 0 than when β is close but not equal to 0. In fact, all
methods except for LRT achieve an almost 100% coverage rate when β = 0. In other
words, we can almost always predict it when the two variables are completely not related.
Apart from that, the estimated CRs have higher coverage rates for data generated from
model (M2). For data generated from model (M1), our five methods achieve higher
coverage rates for larger β, while for LRT and SLRT the coverage rates remain unchanged
no matter how large β is. For all seven approaches, there is no clear evidence that sample
size can influence the coverage rate. Overall, we cannot tell which of our five methods
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is the best concerning the coverage rate.

Next, we compare the widths of CRs when we have different sample sizes n and
different true causal effects β both under model (M1) and model (M2). Since we might
have regions instead of intervals, the way of computing the widths remains open for
discussion. There are two types of such regions we might get, either the union of an
interval and a point {0} or the difference of an interval and a point {0}. In both cases,
the added part or the deleted part is just a single point, which is a null set under
the Lebesgue measure. Here we compute the width of a region similar to its Lebesgue
measure in the sense that the width of [l, u] ∪ {0}, [l, u] and [l, u]\{0} are all u − l for
l ≤ u.
The importance of exploring the widths of CRs is clear. When having the same

coverage rates, a CR with smaller width is considered to be more precise. In the most
extreme case, a CR with an infinitely large width will surely cover the desired value with
100% probability. However, such a CR does not make much sense since it contributes
almost nothing to our estimation. The trend of how the widths change against the
sample size is compared in Figure 4.3 with different fixed β’s.
Figure 4.3 provides interesting results in multiple aspects. When β is small, the widths

of CRs for data from model (M1) and model (M2) do not have large differences if other
factors are under the same settings. On the other hand, when β is large simulated
samples from model (M2) have in general smaller widths meaning that we can give more
precise estimates of the causal effect being 0 satisfying the desired coverage rate (e.g.
95%). When β is small, the widths of CRs of all methods decrease with the sample size.
When β is large, the trend remains the same for CRs produced by all other methods
except ETI for data generated under model (M2). As discussed before, the construction
of a CR is based on two parts: the point mass at 0 indicating the probability of predicting
the graph wrongly, and the continuous distribution of β in the correct direction. For
model (M2) with high β the point mass at 0 is very likely to be over 0.5 as can be seen
from Figure 4.1, which ensures that 0 is included in the CR generated by method ETI.
On the other hand, since 0 can never be the mean of the mixture distribution for large
β, CRs produced by ETI always have to include something else other than 0 to make
sure the equal-tailed assumption holds. Hence the width of an ETI will always end up
being 2µ with µ being the mean of the Student’s t-distribution defined in (3.28).
We will neglect ETI from our discussion in this paragraph because of its abnormal

behavior. Among all other methods that at least have similar trends, SLRT generates
CRs with larger widths compared to other methods. In most cases, LRT also produces
CRs with larger widths than our four methods. The difference is more obvious for
smaller β, and not that obvious for large β and large sample size. For model (M1), the
widths of CRs generated by all methods except SLRT converge to around 0.17. To what
value will the widths of SLRT converge remains unclear, yet for sample size 1000 the
width is around 0.25. For model (M2) on the other hand, the widths of CRs of our four
methods converge quickly to 0 as the sample size increases. LRT needs to have higher
sample sizes to be certain about the estimation and to obtain CRs of widths close to 0,
while the performance of SLRT remains unclear even with a very large sample size, yet
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Figure 4.3.: Curves showing the widths of CRs against the sample size for different fixed
causal effects estimated with 1000 replications.
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we know that it always tends to give wider regions.
From Figure 4.4 we can see the tendency of the widths against β for different fixed

sample sizes. We could already have an insight into how it looks like from the series of
plots in Figure 4.3, however plotting what we want to observe in the same plot illustrates
the changes more intuitively. We set β in both model (M1) and model (M2) to be some
values between −0.2 and 1, while fixing the sample sizes to be 100, 200, 500 and 1000.
A general view of Figure 4.4 would already give us some interesting observations. For

data generated under model (M1), the widths of CRs are almost constant for all β’s
and all methods. We could observe a slight increase in the widths of CRs from our
five methods when β gets larger. On the other hand, the width decreases for larger β
for data generated under model (M2) when we use all other methods except ETI. Not
observing ETI, we see that the width will eventually decrease to 0 for model (M2) despite
the sample size. The widths under this setting will be smaller for larger sample sizes and
will decrease to 0 when β is large enough. For example, when β = 1 almost all methods
except ETI produce CRs with widths very close to 0. The abnormal behavior of ETI, as
already observed in Figure 4.3, becomes now clearer. The widths of CRs produced by
ETI seem to start increasing when β exceeds 0.5. However, the width seems to be larger
when we have more simulated samples. In general, the trend of how the width changes
with β stays the same for different sample sizes. Also for the first time, we observe data
with negative causal relations. It is interesting to see that all of the methods provide
symmetric behaviors for positive and negative causal effects, showing that all methods
can generalize nicely no matter whether the causal effects are positive or negative.

Another measure that we are interested in evaluating is the percentage of zero being
included in the CRs. Having a completely non-zero CR can be seen as strong evidence
of the existence of a non-zero causal effect. On the other hand, having 0 included in the
CR makes our statement less persuasive. In Figure 4.5, we look at how the percentage
of zero will change with different sample sizes from 100 to 1000. We also compared the
curves under different settings of true causal effects and causal directions.
In general, for data generated under model (M1), the CRs produced by LRT have the

lowest zero percentages, and they converge also fastest to 0 as the sample size increases,
followed by thre05, HDI, SLRT, and ETI. The method thre01 has slightly larger zero
percentages than the above-mentioned methods and the CRs of thre0 always contain 0
with 100% possibility. This could be explained by the assumption we made for method
thre0 that we will include 0 in the CR even if p(G21|Xn) is just slightly larger than
0. In comparison, LRT is much more conservative about including 0. Methods thre05,
HDI, and SLRT have very similar zero percentages. For very small β(= 0.1), 0 will
always be included in CRs constructed by all methods, even with large sample sizes. In
other words, no matter how large the sample size is, the algorithm will not be confident
enough to state that there is a non-zero causal effect, since the true causal effect is
small. For slightly larger β(= 0.2), the zero percentages of LRT first start to show
an obvious decrease with the sample size. For even larger β(= 0.5), LRT can give a CR
without 0 already when the sample size is 500. The zero percentages of all other methods
except ETI also start to converge against 0 as the sample size increases. Only the zero
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Figure 4.4.: Curves showing the widths of CRs against the causal effects for different
fixed sample sizes estimated with 1000 replications.
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Figure 4.5.: Curves showing the zero percentages of CRs against the sample size for fixed
causal effects estimated with 1000 replications.
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percentages of ETI remain to be 100% with similar reasons as when we explained why its
widths are so large. However, when β is large enough (= 1), the zero percentage of ETI
will finally drop to 0 as the sample size increases. For data generated under model (M2),
the CRs of LRT have zero percentages of about 95% while CRs of all other methods have
100% zero percentages, no matter how large the sample sizes are. On the one hand, we
can say that LRT is very conservative about including 0 in comparison to other methods,
no matter the true causal direction. On the other hand, having a CR without zero can
almost indicate that there is a non-zero causal effect while the converse is not true.
In Figure 4.6 we show more directly how the zero percentage will change with β from
−0.2 to 1. The plots illustrate the curves for sample sizes being fixed to 100, 500, and
1000. We still consider data generated under both model (M1) and model (M2).
There is not much to say about model (M2) since it is already clearly illustrated in

Figure 4.5. However, we could still make some interesting observations for data generated
under model (M1). No matter how large the sample size is, the zero percentage will
decrease drastically from 1 for small β to 0 for large β. The only difference might be
that data of large sample sizes are more confident with detecting relatively small β
than data with smaller sample sizes. We also see a symmetry of negative and positive
causal effects from the plots, since the zero percentage for data with negative β are
approximately the same as for positive β with the same absolute values.

We summarize the observations in the table and figures presented above and highlight
the most interesting findings in short. Among all the seven methods, SLRT achieves
the best coverage rate, yet also produces CRs with significantly larger widths. LRT also
tends to produce CRs with slightly larger widths than our five methods. It is also the
most conservative about including zero. Considering our methods, ETI performs nicely
when we can assume the causal direction but will create CIs with very large widths in
the opposite direction. However, we usually do not know the causal direction in such
a task and our goal is to predict the causal direction. At the same time, ETI does
not outperform other methods in terms of coverage rate, so it does not seem to be a
nice summary of the mixture distribution. Constructing the CR by method thre0 will
strongly encourage the CR to include 0, so having a CR by method thre0 not including 0
is a very strong signal of having a remarkable causal effect, yet it is a bit too conservative
in stating the existence of a causal effect when it is small. It is surprising to see that
the two methods: HDI and thre05 have very similar characteristics in almost all three
values we measured. Since thre05 has the most strict condition of including 0, we could
expect it to be almost as strict for HDI. On the other hand, method thre01 also seems to
be similar to HDI and thre05, only thre01 seems to have more preference of including
0 than the other two methods, especially for small β.

Finally, we compare the computational cost of each method. For evaluating the run-
ning time we use the function system.time() in R. The function takes an expression
and evaluates the time in three aspects: user time, system time, and elapsed time (see
Becker (2018)). The “user time” is the CPU time charged for the execution of the given
expression (i.e., the current R session). The “system time” is the CPU time spent by
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Figure 4.6.: Curves showing the zero percentages of CRs against the causal effect for
different fixed sample sizes estimated with 1000 replications.
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the kernel (the operating system) on behalf of the current process. The “elapsed time”
is the real time that has passed between invocation and termination. Trying to avoid
the influence of the system and focus on the running times of the algorithms alone,
we compare the “running time” of all methods. Figure 4.7 uses box plots to illustrate
the running times (evaluated with different sample sizes) of all seven methods in 1000
replications.
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Figure 4.7.: User times of all the seven methods evaluated by 1000 replications with
different sample sizes.

The running time of all methods seems to have a positive (sub-)linear relation with
the sample size, which indicates that the computational cost of none of the methods
will grow exponentially with the sample size, and we could expect an upper bound for
the running time we need. Looking at the differences between different methods, we
see that LRT has an obvious advantage over other methods. For example, for data with
1000 samples, the user time of LRT is even less than 0.01 seconds while the user time
of all other methods is over 0.04. SLRT is the second fastest algorithm, yet does not
show much difference from our five methods. All other methods that use the Bayesian
approach have very similar running times no matter the sample size. Surprisingly, all
the threshold methods are not faster than others, even though they have the simplest
decision criteria of including 0. A reasonable explanation for this might be that instead
of deciding on whether to include 0, estimating the posterior distribution of p(G|Xn)
with bootstrapping is the most costly performance.
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4.2. Benchmarks

For benchmark datasets, we use the collection presented in Mooij et al. (2016). This
is a standard choice for testing causal models in bivariate cases since the data is nicely
described and the causal directions are clearly provided. It contains 108 datasets from
various fields, 102 of which are bivariate datasets. According to our assumptions of
having an LSEM with noises of equal variances, we only choose pairs that are at least
normally distributed and linearly related. Following the choice of Strieder et al. (2021)
for example, we select the following pairs: pair66, pair67, pair76, pair89, pair90.
We will give a brief description of the datasets (see details in Mooij et al. (2016)):

• pair66 and pair67 denote daily stock returns from several financial institutions;

• pair76 denotes the average annual rate of change of total food consumption and
the total population;

• pair89 and pair90 denote the fine root decomposition rates of different months
in German forests and grasslands.

We summarize the true causal directions, the sample sizes, and the sample variances of
the five causal-effect pairs in Table 4.2. We specifically list the variances of all variables
for two reasons:

1. Due to our assumption of homoscedasticity, we want the added noises of both
variables to have equal variances. Although we could not test the variances of the
noises directly, we require X1 and X2 in each paired data to have variances at least
of the same scale, leading to possibly similar noise variances.

2. We will be needing the variances as references for setting hyperparameters U ac-
cording to our discussion in Section 3.1.3.

Name True Direction Sample Size Var(X1) Var(X2)
pair66 1→ 2 1331 3.98× 10−4 4.02× 10−4

pair67 1→ 2 1331 4.02× 10−4 5.33× 10−4

pair76 1→ 2 347 4.18× 100 7.33× 100

pair89 1← 2 131 1.92× 101 7.01× 100

pair90 1← 2 126 3.89× 101 1.72× 101

Table 4.2.: The true causal directions, the sample sizes, and the sample variances of both
variables of the five selected cause-effect pairs.

We now verify that the datasets are properly chosen satisfying our assumptions. The
scatter plots in Figure 4.8 show that the two variables from each dataset can be modeled
by a linear relationship.
The first three plots show clear linear relationships between X1 and X2. The points in

the last two plots look a bit randomly located, yet still lie around some straight lines. It
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Figure 4.8.: Scatter plots of the five selected cause-effect pairs showing roughly linear
relations.

is also interesting to see that all pairs seem to show a positive correlation. Although X1

and X2 in each collection of data pairs land within the same scale, there are relatively
large differences between datasets. For example, data in pair66 range mostly between
-0.1 and 0.1, yet data in pair89 range from 0 to 50. Also, our model assumes the data
to be centered, yet most of the real-world data are not. Hence, we need to pre-process
all data properly by centering them before testing our model with them.
We now use QQ-plots (as shown in Figure 4.9) to illustrate that the empirical distri-

butions of both variables from each dataset are roughly Gaussian distributed.
From the plots, we see that pair66 and pair67 are somewhat heavy-tailed while

pair76 is a bit light-tailed. However, they stated around the line in general. We
also see from the last two plots that pair89 and pair90 are almost perfectly normally
distributed. In short, the five selected collections of cause-effect pairs roughly satisfy
our assumptions of Gaussianity and linearity and can be considered as chosen properly.

The first step after we obtain some real-world datasets is preprocessing so that they
fulfill our model assumptions and basic beliefs. We have already checked with the above
two plots that linearity and Gaussianity hold for all datasets and we still need to ensure
that the data are centered according to Assumption 2.27, which is not the case as can
be seen from Figure 4.8. Hence, we center X1 and X2 in each dataset by subtracting the
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Figure 4.9.: QQ-plots for all variables of the five selected cause-effect pairs for checking
whether their empirical distributions are Gaussian.

sample mean. More formally speaking, the transformed data X̃n = {(x̃i,1, x̃i,2)}i=1,...,n is
obtained from the original data Xn = {(xi,1, xi,2)}i=1,...,n by

x̃i,1 = xi,1 − x1, x̃i,2 = xi,2 − x2, for i = 1, . . . , n,

where

xk =
1

n

n∑
i=1

xi,k, for k = 1, 2.

The second step would be to set proper hyperparameters a12, U11, U12 as we have
discussed in Section 3.1.3. From Table 4.2 we see that the variances of both variables
in pair66 and pair67 are so small that if we still set U11 = U22 = 1 and U12 = U21 = 0
as in the simulation studies, the hyperparameters will dominate the prediction and lead
to undesired results. Hence it is important for us to set proper hyperparameters. As
discussed before, we want U11, U22 to be of the same range as Var(X1),Var(X2). Hence,
we set U11 = U22 = Var(X1)/2 when we apply the algorithm to real-world datasets,
where Var(X1) is the sample variance of variable 1. We could of course also use the
sample variance of variable 2 without causing much difference since at least for the
datasets that we selected, the variances of the two variables do not differ much from
each other. In fact, there will only be a large difference in the variances if the noises
have very large variances and/or there exists a large causal effect. We could also directly
set U11 and U22 to be the sample variances of X1 or X2, or to be the variances divided
by some other constants as long as they are not too extreme. Under our setting, the
hyperparameters will neither dominate the data nor be trivial.
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For evaluating the seven methods with the selected benchmark datasets, we computed
the causal effects in both directions, i.e., C(1→ 2) and C(2→ 1) as defined by (2.6) and
(2.7). Recall that the posterior distribution of C(1 → 2) has the formula (3.10) and is
defined by both the data Xn and the hyperparameters a12, U11, U12 of the prior belief.
The posterior distribution of C(2 → 1), although has not been computed analytically,
can be obtained directly by changing 1 to 2 and 2 to 1 in the index. We usually set

a21 := a12, U22 := U11 and U21 := U12

as done in Castelletti and Mascaro (2022). We plot the posterior CRs of C(1→ 2) and
C(2→ 1) in the following Figure 4.10 and Figure 4.11. Since we know the correct causal
direction of each dataset and we assume all of them to have linear relationships, we
do linear regressions on all five datasets in the correct direction and use the estimated
coefficients as references for our results. In the wrong causal direction, we would simply
estimate the coefficient to be 0. We plot the regression coefficients as black dashed
horizontal lines on top of the CRs.
Many interesting observations can be made from the results in Figure 4.10 and Figure

4.11. The most unexpected observation might be that LRT returns empty sets for all
methods, despite its nice performance in simulation studies. An interpretation (see
Strieder et al. (2021)) might be that this method constructs a null hypothesis of linear
and equal variance against a general Gaussian alternative. Even if the data is almost
perfectly Gaussian, equal variance is a characteristic that is very hard to achieve in the
real world, so LRT performs poorly and can always result in empty confidence intervals.
Method SLRT on the other hand does not have this problem and can be considered to
have a nice performance, in the sense that for the first three datasets where 1→ 2 is the
correct causal direction, SLRT is the only method that returns non-zero intervals for all
three datasets while all other methods include 0 at least for pair66. However, it seems
to produce remarkably wider regions than other methods in general.
Another method that produces extremely wider regions compared to others is ETI,

especially when the true causal effect is 0 or close to 0. The reason for this has already
been discussed when we do simulation studies. The method thre0 also shows a special
characteristic in the sense that it always includes 0. In simulation studies, we see that
only when the sample size and the true causal effect are large enough, thre0 can generate
CRs that do not include 0. It seems hard for real-world data to have these characteristics
since all CRs from thre0 contain the point 0. The other 3 methods, HDI, thre01, and
thre05 give almost the same CRs. This is no surprise since these methods only differ
in the criteria of including 0.
Among all the five datasets, pair66 seems to be the most difficult to learn for all

seven methods even though its causal effect is almost as large as pair67. We might
be able to give a reasonable explanation for this if we look at Table 4.2 that shows the
variances. We could tell an obvious difference between Var(X1) and Var(X2) in pair67.
More precisely speaking, in pair67 Var(X2) is over 30% larger than Var(X1). However,
the variances of the two variables in pair66 are too similar to be distinguished. So even
though the causal effect is large, the causal structure is hard to be identified as there is
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Figure 4.10.: The 95%-CRs of C(1 → 2) estimated with five real-world datasets with
seven methods. Each method is represented by a unique color. The black
dashed lines represent a constant that is equal to the estimated coefficients
of linear regressions under the correct direction and equal to 0 under the
wrong direction.

not much information bias (see Mooij et al. (2016)). Looking at all other four datasets,
we could at least tell whether or not there exists a non-zero causal effect with HDI,
SLRT, thre01, and thre05, which is quite a nice observation. In addition, the CRs from
the above-mentioned methods all include the regression coefficients, which we regard as
references of the “true” causal effect given that we know the true causal direction.
Finally, we summarize the performance of our five methods by comparing them with

each other and with LRT and SLRT. ETI produces intervals with very large widths if the
causal effects are 0. This is due to the fact that the equal-tailed assumption is maybe not
suitable for an asymmetric mixture distribution of a continuous distribution and a point
mass. Method thre0 will always ptoduce CRs containing 0 since we set the threshold to
be extreme. Hence, it is hard to tell the causal direction if we observe the CRs generated
by thre0, unless we have an adequate amount of data and/or the causal effect is very
significant. The other three methods have quite similar performance, only thre01 is a
bit more careful about leaving 0 out of the CR. Moreover, all five methods can generalize
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Figure 4.11.: The 95%-CRs of C(2 → 1) estimated with five real-world datasets with
seven methods. Each method is represented by a unique color. The black
dashed lines represent a constant that is equal to the estimated coefficients
of linear regressions under the correct direction and equal to 0 under the
wrong direction.

nicely to real-world data, even if the assumptions might be slightly broken.
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5. Conclusion

In this thesis, we proposed a Bayesian approach for causal inference. Identifying the
causal structure of a group of causally efficient variables purely from their joint distribu-
tion is usually limited to Markov equivalence classes. However, several studies provide
model assumptions that allow the causal structure to be uniquely identified. We follow
one of the assumptions proposed by Peters and Bühlmann (2014) that assumed vari-
ables to have linear relations and homoscedastic noises. For Bayesian inference, we first
set trivial priors for the underlying graphical structures, inverse Gamma prior for the
unknown variance, and Gaussian prior for the non-zero causal effect. We also discussed
that the hyperparameters of the priors shall be neither too powerful nor too trivial.
Based on the priors and the Gaussian assumption, we derived the posterior distribution
of the causal effect as a mixture of a point mass at 0 and a Student’s t-distribution
with the graph posterior being the weight. We proposed then three different types of
(1 − α)-credible region (CR), namely the equal-tailed interval (ETI), the highest den-
sity region (HDR), and the “threshold CR”. Theoretically, their difference lies in the
construction methodology. Reflecting on our model, the discussion focuses on whether
to include point 0 in the CR. The including principle for ETI and HDR is clear, and
for the last case, it is comparing the posterior density at 0 with a self-set threshold.
We discussed the results of setting different thresholds in a theoretical manner and also
compared them later with experiments. To solve the problem that our model is always
too sure about deciding the graphical structure, we use bootstrap averages to estimate
the posterior density of the graphical structure.

We tested and compared the 95%-credible regions produced by our methods with both
simulated data and benchmarks. The simulation results shown in Table 4.1 and Figure
4.3-4.6 provided us with interesting insights into how the models perform in an ideal
setting. When the true causal effect is small, the models are unsure about predicting
the underlying graphical structure, leading to a coverage rate lower than 95% yet still
over 90%. On the other hand, except for method ETI which produces wide intervals
because of its equal-tailed assumption, CRs produced by other methods have relatively
small widths of around 0.17. The zero percentages present the differences when setting
different thresholds α0. Setting α0 = 0 tends to include 0 in most cases while setting
α0 = α let the model be very careful about including 0. Our model has not much
advantage in terms of running time, which might be a result of using bootstrap averages
for computing the posterior distribution of the graphical structure. A positive aspect of
our model is that it generalizes nicely to real-world datasets even if not all assumptions
are perfectly satisfied. For datasets with larger information bias between the cause and
the effect, our model can provide nicer predictions of the existence of causal relations
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and the size of causal effects.

The strength of our methods is that we provide a closed-form expression for directly
computing the credible region out of the posterior distribution of the causal effect. How-
ever, we just consider the very basic Gaussian linear setting, and there remain many
more open questions to be studied and discussed. For example, we could generalize from
linear to non-linear SEM following Hoyer et al. (2008) or from Gaussian to non-Gaussian
noises following Shimizu et al. (2006). It would be also interesting to think about gen-
eralizing it from low-dimensional to high-dimensional cases. A possible challenge in the
generalization might be the way we define the priors since the number of DAGs will
increase tremendously as we increase the number of nodes. Moreover, it is argued in
McElreath (2020) that it is better to compute an 89%-credible region rather than a
95%-credible region and this would be an interesting attempt to try out. In addition,
we only applied Bayesian inference by taking the common prior from Castelletti and
Consonni (2021) with some discussion about the hyperparameters yet without further
arguments. Selecting and comparing the prior distributions will always be an important
problem in Bayesian inference and remains to be discussed more formally.
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A. Probability Theory

First, we recall the weak and strong law of large numbers for i.i.d. random variables
that follows from Loeve (1977).

Definition A.1 (Convergence of Random Variables). A sequence of random variables
(Xn)n∈N converges almost surely to X, and we write as

Xn
a.s.−−−→

n→∞
X,

if
P
(
lim
n→∞

Xn = X
)
= 1.

We say a sequence of random variables (Xn)n∈N converges in probability to X,
and we write as

Xn
p−−−→

n→∞
X,

if for every ϵ > 0 we have
lim
n→∞

P(|Xn −X| > ϵ) = 0.

Next, we recall the weak and strong law of large numbers for i.i.d. random variables
that follows from Loeve (1977).

Theorem A.2 (Law of Large Numbers). Let X1, . . . , Xn, n ∈ N be a list of i.i.d. random
variables. If E[X2

1 ] <∞, then (Xi)
n
i=1 satisfies the weak law of large numbers, i.e.,

1

n

n∑
i=1

Xi
p−−−→

n→∞
E[X1].

If E[|X1|] <∞, then (Xi)
n
i=1 satisfies the strong law of large numbers, i.e.,

1

n

n∑
i=1

Xi
a.s.−−−→

n→∞
E[X1].

We then recall a part of the continuous mapping theorem following from Van der
Vaart (2000).

Theorem A.3 (Continuous Mapping). Let g : Rk 7→ Rm be continuous at every point
of a set C such that P(X ∈ C) = 1. If Xn

a.s.−−−→
n→∞

X, then g(Xn)
a.s.−−−→

n→∞
g(X).

Finally, we recall the Höder’s inequality following Loeve (1977).
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Definition A.4 (Hölder’s inequality). Let X, Y be random variables defined on the
same probability space then the Hölder’s inequality regarding the expectation can be
expressed as

E[|XY |] ≤ (E [Xr])
1
r (E [Xs])

1
s ,

for r > 1 and 1/r + 1/s = 1.
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B. Distributions

We characterize two important but not that basic distributions in this part by stating
their density functions, expected values, and variances (see Gelman et al. (1995)).

Definition B.1 (Inverse Gamma distribution). We denote an Inverse-Gamma distribu-
tion with shape a > 0 and scale b > 0 as I-Ga(a, b). The probability density function
is

p(x) =
ba

Γ(a)
x−(a+1)eb/x, x ∈ (0,∞),

with Γ(·) denoting the gamma function.
The expected value of a random variable X ∼I-Ga(a, b) is given by

E[X] =
b

a− 1
, a > 1,

and the variance is

Var(X) =
b2

(a− 1)2(a− 2)
, a > 2.

Definition B.2. (Student’s t-distribution) We characterize the student’s t-distribution
tν(µ, σ

2) with degrees of freedom ν > 0, location µ and scale σ > 0 with probability
density function

p(x) =
Γ
(
µ+1
2

)
Γ
(
µ
2

)√
πνσ

(
1 +

1

ν

(
x− µ

σ

)2
)−(ν+1)/2

.

A random variable X following the distribution tν(µ, σ
2) has expected value

E[X] = µ, ν > 1,

and variance
Var(X) =

ν

ν − 2
σ2, ν > 2.
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